/N N /NN /AN
NONALN AV//N N VAN - - ___
NN NN NN NN N SN D NN N 2N
AN W W/ W VO W W W W N WA Ny ANV A U U U VANV A RN
AN W U W W/ W V7 WU W WEUHUU W VU W W N N W 4
N/ZINTZINT /NS /N /N L\ \/_/ N\/___/
/IN____/
_/__/ Version 4.2.0

A game programming library.
By Shawn Hargreaves, Nov 05, 2005.

See the AUTHORS file for a
complete list of contributors.
#include <std_disclaimer.h>
"I do not accept responsibility for any effects, adverse or otherwise, that this code may have
on you, your computer, your sanity, your dog, and anything else that you can think of. Use
it at your own risk."

Chapter 1: API 1

1 API

1.1 Using Allegro

See readme.txt for a general introduction, copyright details, and information about how to
install Allegro and link your program with it.

1.1.1 install_allegro

int install_allegro(int system_id, int *errno_ptr, int (*atexit_ptr) ());

See also:

See Section
See Section
See Section
See Section

Initialises the Allegro library. You must call either this or allegro_init() before
doing anything other than using the Unicode routines. If you want to use a text
mode other than UTF-8, you can set it with set_uformat() before you call this.
The other functions that can be called before this one will be marked explicitly
in the documentation, like set_config_file().

The available system ID codes will vary from one platform to another, but
you will almost always want to pass SYSTEM_AUTODETECT. Alternatively,
SYSTEM_NONE installs a stripped down version of Allegro that won’t even
try to touch your hardware or do anything platform specific: this can be useful
for situations where you only want to manipulate memory bitmaps, such as the
text mode datafile tools or the Windows GDI interfacing functions.

The ‘errno_ptr’ and ‘atexit_ptr’ parameters should point to the errno variable
and atexit function from your libc: these are required because when Allegro is
linked as a DLL, it doesn’t have direct access to your local libc data. ‘atexit_ptr’
may be NULL, in which case it is your responsibility to call allegro_exit() man-
ually. Example:

install_allegro(SYSTEM_AUTODETECT, &errno, atexit);

This function returns zero on success and non-zero on failure (e.g. no system
driver could be used). Note: in previous versions of Allegro this function would
abort on error.

1.1.2 [allegro_init], page 1.
1.1.3 [allegro_exit], page 2.
1.3.1]
[

1.4.1 [set_config_file], page 50.

set_uformat], page 26.

1.1.2 allegro_init

int allegro_init();

See also:
See Section

Macro which initialises the Allegro library. This is the same thing as calling
install_allegro(SYSTEM_AUTODETECT, &errno, atexit).

1.1.1 [install_allegro], page 1.

Allegro Manual

See Section 1.1.3 [allegro_exit], page 2.
See Section 3.4 [Available|, page 387.

1.1.3 allegro_exit

void allegro_exit();

See also:

Closes down the Allegro system. This includes returning the system to text
mode and removing whatever mouse, keyboard, and timer routines have been
installed. You don’t normally need to bother making an explicit call to this
function, because allegro_init() installs it as an atexit() routine so it will be
called automatically when your program exits.

Note that after you call this function, other functions like destroy_bitmap() will
most likely crash. This is a problem for C++ global destructors, which usually
get called after atexit(), so don’t put Allegro calls in them. You can write the
destructor code in another method which you can manually call before your
program exits, avoiding this problem.

See Section 1.1.1 [install_allegro], page 1.

See Section 1.1.2 [allegro_init], page 1.

See Section 1.10.9 [destroy_bitmap]|, page 123.
See Section 3.4.34 [ex3d], page 419.

See Section 3.4.47 [exswitch], page 436.
See Section 3.4.31 [exxfade], page 415.

[
[
See Section 3.4.38 [exscn3d], page 425.
[
[
[

See Section 3.4.39 [exzbuf], page 426.

1.1.4 END_OF_MAIN
Macro END_OF_MAIN()

In order to maintain cross-platform compatibility, you have to put this macro
at the very end of your main function. This macro uses some ‘magic’ to mangle
your main procedure on platforms that need it like Windows, some flavours of
UNIX or MacOS X. On the other platforms this macro compiles to nothing, so
you don’t have to #ifdef around it. Example:

int main(void)

{
allegro_init();
/* more stuff goes here */
return O;

}

END_QF_MAIN()

Chapter 1: API 3

See also:

See Section 2.2 [Windows|, page 355.
See Section 2.3 [Unix|, page 364.

See Section 2.6 [MacOS], page 372.
See Section 2.7 [Differences|, page 374.
See Section 3.4 [Available], page 387.

1.1.5 allegro_id

extern char allegro_idl[];
Text string containing a date and version number for the library, in case you
want to display these somewhere.

1.1.6 allegro_error

extern char allegro_error [ALLEGRO_ERROR_SIZE] ;
Text string used by set_gfx_mode(), install_sound() and other functions to re-
port error messages. If they fail and you want to tell the user why, this is the
place to look for a description of the problem. Example:

void abort_on_error(const char *message)

{
if (screen != NULL)
set_gfx_mode (GFX_TEXT, 0, 0, 0, 0);
allegro_message("%s.\nLast Allegro error ‘%s’\n",
message, allegro_error);
exit(-1);
}

if (some_allegro_function() == ERROR_CODE)
abort_on_error("Error calling some function!");

See also:

See Section 1.9.7 [set_gfx_mode|, page 107.
See Section 1.25.5 [install_sound], page 239.
See Section 3.4 [Available], page 387.

1.1.7 ALLEGRO_VERSION

#define ALLEGRO_VERSION
Defined to the major version of Allegro. From a version number like 4.1.16, this
would be defined to the integer 4.

4 Allegro Manual

1.1.8 ALLEGRO_SUB_VERSION

#define ALLEGRO_SUB_VERSION
Defined to the middle version of Allegro. From a version number like 4.1.16,
this would be defined to the integer 1.

1.1.9 ALLEGRO_WIP_VERSION

#define ALLEGRO_WIP_VERSION
Defined to the minor version of Allegro. From a version number like 4.1.16, this
would be defined to the integer 16.

1.1.10 ALLEGRO_VERSION_STR

#define ALLEGRO_VERSION_STR
Defined to a text string containing all version numbers and maybe some ad-
ditional text. This could be ‘4.1.16 (CVS)’ for an Allegro version obtained
straight from the CVS repository.

1.1.11 ALLEGRO_DATE_STR

#define ALLEGRO_DATE_STR

Defined to a text string containing the year this version of Allegro was released,
like ‘2004°.

1.1.12 ALLEGRO_DATE

#define ALLEGRO_DATE
Defined to an integer containing the release date of Allegro in the packed format
‘yyyymmdd’. Example:

const int year = ALLEGRO_DATE / 10000;
const int month = (ALLEGRO_DATE / 100) % 100;
const int day = ALLEGRO_DATE % 100;

allegro_message("Year %d, month %d, day %d\n",
year, month, day);

1.1.13 AL_ID

Macro AL_ID(a,b,c,d)
This macro can be used to create a packed 32 bit integer from 8 bit characters,
on both 32 and 64 bit machines. These can be used for various things, like
custom datafile objects or system IDs. Example:

#define OSTYPE_LINUX AL_ID(C°T’,’U’,’X’,”)

See also:
See Section 1.32.10 [DAT_ID], page 295.

Chapter 1: API 5

1.1.14 MAKE_VERSION

Macro MAKE_VERSION(a, b, c)

This macro can be used to check if some Allegro version is (binary) compatible
with the current version. It is safe to use > and < to check if one version is more
recent than another. The third number is ignored if the second number is even,
so MAKE_VERSION(4, 2, 0) is equivalent to MAKE_VERSION(4, 2, 1). This
is because of our version numbering policy since 4.0.0: the second number is
even for stable releases, which must be ABI-compatible with earlier versions of
the same series. This macro is mainly useful for addon packages and libraries.
See the ‘ABI compatibility information’ section of the manual for more detailed
information. Example:

/* Check if the current version is compatible with Allegro 4.2.0 */|Jj
#if (MAKE_VERSION(4, 2, 0) <= MAKE_VERSION(ALLEGRO_VERSION, \
ALLEGRO_SUB_VERSION, ALLEGRO_WIP_VERSION))
/* Allegro 4.2.0 compatibility */
#else
/* Work-around */
#endif

See also:

See Section 1.1.7 [ALLEGRO_VERSION], page 3.

See Section 1.1.8 [ALLEGRO_SUB_VERSION], page 3.
See Section 1.1.9 [ALLEGRO_WIP_VERSION], page 4.

1.1.15 os_type

extern int os_type;
Set by allegro_init() to one of the values:

OSTYPE_UNKNOWN - unknown, or regular MSDOS
OSTYPE_WIN3 - Windows 3.1 or earlier
OSTYPE_WIN95 - Windows 95
OSTYPE_WINO8 - Windows 98
OSTYPE_WINME - Windows ME
OSTYPE_WINNT - Windows NT
OSTYPE_WIN2000 - Windows 2000
OSTYPE_WINXP - Windows XP

OSTYPE_0S2 - 0s/2

OSTYPE_WARP - 0S/2 Warp 3
OSTYPE_DOSEMU - Linux DOSEMU
OSTYPE_OPENDQOS - Caldera OpenDOS
OSTYPE_LINUX - Linux

OSTYPE_SUNOS - Sun0S/Solaris
OSTYPE_FREEBSD - FreeBSD

OSTYPE_NETBSD - NetBSD

6 Allegro Manual

OSTYPE_IRIX - IRIX

OSTYPE_DARWIN - Darwin

OSTYPE_QNX - QNX

OSTYPE_UNIX - Unknown Unix variant
OSTYPE_BEQS - BeOS

OSTYPE_MACOS - MacO0S

OSTYPE_MACOSX - MacOS X

See also:

See Section 1.1.2 [allegro_init], page 1.

See Section 1.1.16 [os_version|, page 6.

See Section 1.1.17 [os_multitasking], page 6.

1.1.16 os_version
extern int os_version;

extern int os_revision;
The major and minor version of the Operating System currently running. Set by
allegro_init(). If Allegro for some reason was not able to retrieve the version of
the Operating System, os_version and os_revision will be set to -1. For example:
Under Win98 SE (v4.10.2222) os_version will be set to 4 and os_revision to 10.

See also:
See Section 1.1.15 [os_type], page 5.
See Section 1.1.17 [os_multitasking], page 6.

1.1.17 os_multitasking

extern int os_multitasking;
Set by allegro_init() to either TRUE or FALSE depending on whether your
Operating System is multitasking or not.

See also:
See Section 1.1.15 [os_type], page 5.
See Section 1.1.16 [os_version], page 6.

1.1.18 allegro_message

void allegro_message(const char *text_format, ...);

Outputs a message, using a printf() format string. Usually you want to use
this to report messages to the user in an OS independant way when some
Allegro subsystem cannot be initialised. But you must not use this function
if you are in a graphic mode, only before calling set_gfx_mode(), or after a
set_gfx_mode(GFX_TEXT). Also, this function depends on a system driver
being installed, which means that it won’t display the message at all on some
platforms if Allegro has not been initialised correctly.

Chapter 1: API 7

See also:

On platforms featuring a windowing system, it will bring up a blocking GUI
message box. If there is no windowing system, it will try to print the string
to a text console, attempting to work around codepage differences by reducing
any accented characters to 7-bit ASCII approximations. Example:

if (allegro_init() != 0)
exit(1);

if (init_my_data() != 0) {
allegro_message("Sorry, missing game data!\n");
exit(2);

See Section 1.1.2 [allegro_init], page 1.

See Section 1.1.1 [install_allegro], page 1.

See Section 1.3.1 [set_uformat], page 26.
See Section 3.4 [Available], page 387.

1.1.19 set_window_title

void set_window_title(const char *name);

See also:

On platforms that are capable of it, this routine alters the window title for your
Allegro program. Note that Allegro cannot set the window title when running
in a DOS box under Windows. Example:

set_window_title("Allegro rules!");

See Section 1.1.20 [set_close_button_callback], page 7.

See Section 1.3.1 [set_uformat|, page 26.

See Section 3.4.18 [exunicod], page 402.

1.1.20 set_close_button_callback

int set_close_button_callback(void (*proc) (void));

On platforms that have a close button, this routine installs a callback function
to handle the close event. In other words, when the user clicks the close button
on your program’s window or any equivalent device, the function you specify
here will be called.

This function should not generally attempt to exit the program or save any
data itself. The function could be called at any time, and there is usually a
risk of conflict with the main thread of the program. Instead, you should set a
flag during this function, and test it on a regular basis in the main loop of the
program.

8 Allegro Manual

Pass NULL as the ‘proc’ argument to this function to disable the close button
functionality, which is the default state.

Note that Allegro cannot intercept the close button of a DOS box in Windows.

Also note that the supplied callback is also called under MacOS X when the
user hits Command-Q or selects "Quit" from the application menu. Example:

volatile int close_button_pressed = FALSE;

void close_button_handler (void)
{
close_button_pressed = TRUE;
}
END_OF_FUNCTION(close_button_handler)

allegro_init();
LOCK_FUNCTION (close_button_handler);
set_close_button_callback(close_button_handler) ;

while (!close_button_pressed)
do_stuff();

Returns zero on success and non-zero on failure (e.g. the feature is not sup-
ported by the platform).

See also:
See Section 1.1.19 [set_window_title], page 7.

1.1.21 desktop_color_depth

int desktop_color_depth();
Finds out the currently selected desktop color depth. You can use this informa-
tion to make your program use the same color depth as the desktop, which will
likely make it run faster because the graphic driver won’t be doing unnecessary
color conversions behind your back.

Under some OSes, switching to a full screen graphics mode may automatically
change the desktop color depth. You have, therefore, to call this function before
setting any graphics mode in order to retrieve the real desktop color depth.
Example:

allegro_init();

if ((depth = desktop_color_depth()) !'= 0) {
set_color_depth(depth);
}

Chapter 1: API 9

Returns the color depth or zero on platforms where this information is not
available or does not apply.

See also:

See Section 1.1.22 [get_desktop_resolution], page 9.
See Section 1.9.1 [set_color_depth], page 105.

See Section 1.9.7 [set_gfx_mode], page 107.

1.1.22 get_desktop_resolution

int get_desktop_resolution(int *width, int *height);
Finds out the currently selected desktop resolution. You can use this infor-
mation to avoid creating windows bigger than the current resolution. This is
especially important for some windowed drivers which are unable to create win-
dows bigger than the desktop. Each parameter is a pointer to an integer where
one dimension of the screen will be stored.

Under some OSes, switching to a full screen graphics mode may automatically
change the desktop resolution. You have, therefore, to call this function be-
fore setting any graphics mode in order to retrieve the real desktop resolution.
Example:

int width, height;
allegro_init();

if (get_desktop_resolution(&width, &height) == 0) {
/* Got the resolution correctly */

}

Returns zero on success, or a negative number if this information is not available
or does not apply, in which case the values stored in the variables you provided
for ‘width’ and ‘height’ are undefined.

See also:
See Section 1.1.21 [desktop_color_depth], page 8.
See Section 1.9.7 [set_gfx_mode], page 107.

1.1.23 check_cpu

void check_cpuQ);
Detects the CPU type, setting the following global variables. You don’t nor-
mally need to call this, because allegro_init() will do it for you.

See also:

See Section 1.1.24 [cpu_vendor], page 10.
See Section 1.1.25 [cpu_family], page 10.
See Section 1.1.26 [cpu_model], page 11.

10 Allegro Manual

See Section 1.1.27 [cpu_capabilities], page 11
See Section 1.1.2 [allegro_init], page 1

1.1.24 cpu_vendor

extern char cpu_vendor([];
On Intel PCs, contains the CPU vendor name if known. On Mac OSX systems
this contains the PPC subtype name. On other platforms, this may be an empty
string. You can read this variable after you have called check_cpu() (which is
automatically called by allegro_init()).

See also:
See Section 1.1.23 [check_cpu], page 9.
See Section 1.1.25 [cpu-family], page 10.

[
[
See Section 1.1.26 [cpu_model], page 11.
See Section 1.1.27 [cpu_capabilities], page 11

See Section 1.1.2 [allegro_init], page 1

1.1.25 cpu_family

extern int cpu_family;
Contains the Intel type, where applicable. Allegro defines the following CPU
family types:

CPU_FAMILY_UNKNOWN The type of processor is unknown

CPU_FAMILY_I386 - The processor is an Intel-compatible 386
CPU_FAMILY_I486 - The processor is an Intel-compatible 486
CPU_FAMILY_I586 - The processor is a Pentium or equivalent
CPU_FAMILY_I686 - The processor is a Pentium Pro, II, III

or equivalent
CPU_FAMILY_ITANIUM - The processor is an Itanium processor
CPU_FAMILY_POWERPC - The processor is a PowerPC processor
CPU_FAMILY_EXTENDED - The processor type needs to be read
from the cpu_model

You can read this variable after you have called check_cpu() (which is automat-
ically called by allegro_init()).

See also:

See Section 1.1.23 [check_cpu], page 9.

See Section 1.1.24 [cpu_vendor], page 10.
See Section 1.1.26 [cpu_model], page 11.

See Section 1.1.27 [cpu_capabilities], page 11
See Section 1.1.2 [allegro_init], page 1

Chapter 1: API 11

1.1.26 cpu_model

extern int cpu_model;
Contains the CPU submodel, where applicable. Allegro defines at least the
following CPU family types (see include/allegro/system.h for a more complete
list):

CPU_FAMILY_I586:
CPU_MODEL_PENTIUM, CPU_MODEL_K5, CPU_MODEL_K6

CPU_FAMILY_I1686:
CPU_MODEL_PENTIUMPRO, CPU_MODEL_PENTIUMII,
CPU_MODEL_PENTIUMIITIKATMAI, CPU_MODEL_PENTIUMIIICOPPERMINE,
CPU_MODEL_ATHLON, CPU_MODEL_DURON

CPU_FAMILY_EXTENDED:
CPU_MODEL_PENTIUMIV, CPU_MODEL_XEOQON,
CPU_MODEL_ATHLON64, CPU_MODEL_OPTERON

CPU_FAMILY_POWERPC:
CPU_MODEL_POWERPC_x, for x=601-604, 620, 750, 7400, 7450

You can read this variable after you have called check_cpu() (which is auto-
matically called by allegro_init()). Make sure you check the cpu_family and
cpu_vendor so you know which models make sense to check.

See also:

See Section 1.1.23 [check_cpu], page 9.

See Section 1.1.24 [cpu_vendor], page 10.
See Section 1.1.25 [cpu_family], page 10.
See Section 1.1.27 [cpu_capabilities], page 11
See Section 1.1.2 [allegro_init], page 1.

1.1.27 cpu_capabilities

extern int cpu_capabilities;
Contains CPU flags indicating what features are available on the current CPU.
The flags can be any combination of these:

CPU_ID - Indicates that the "cpuid" instruction is
available. If this is set, then all Allegro CPU
variables are 100% reliable, otherwise there
may be some mistakes.

CPU_FPU - An FPU is available.
CPU_IA64 - Running on Intel 64 bit CPU
CPU_AMD64 - Running on AMD 64 bit CPU

CPU_MMX Intel MMX instruction set is available.

12 Allegro Manual

CPU_MMXPLUS - Intel MMX+ instruction set is available.

CPU_SSE - Intel SSE instruction set is available.

CPU_SSE2 - Intel SSE2 instruction set is available.

CPU_SSE3 - Intel SSE3 instruction set is available.

CPU_3DNOW - AMD 3DNow! instruction set is available.

CPU_ENH3DNOW - AMD Enhanced 3DNow! instruction set is
available.

CPU_CMOV - Pentium Pro "cmov" instruction is available.

You can check for multiple features by OR~ing the flags together. For example,
to check if the CPU has an FPU and MMX instructions available, you’d do:

if ((cpu_capabilities & (CPU_FPU | CPU_MMX)) ==
(CPU_FPU | CPU_MMX)) {
printf ("CPU has both an FPU and MMX instructions!\n");
}

You can read this variable after you have called check_cpu() (which is automat-
ically called by allegro_init()).

See also:

See Section 1.1.23 [check_cpu], page 9.

See Section 1.1.24 [cpu_vendor], page 10.

See Section 1.1.25 [cpu_family], page 10.

See Section 1.1.26 [cpu-model], page 11.

See Section 1.1.27 [cpu_capabilities], page 11.
See Section 1.1.2 [allegro_init], page 1.

1.2 Structures and types defined by Allegro

There are several structures and types defined by Allegro which are used in many functions
(like the BITMAP structure). This section of the manual describes their useful content
from a user point of view when they don’t fit very well any of the existing manual sections,
and redirects you to the appropiate section when it’s already described there. Note that
unless stated otherwise, the contents shown here are just for read only purposes, there might
be other internal flags, but you shouldn’t depend on them being available in past/future
versions of Allegro.

1.2.1 fixed

typedef long fixed
This is a fixed point integer which can replace float with similar results and
is faster than float on low end machines. Read chapter "Fixed point math
routines" for the full explanation.

See also:
See Section 1.33 [Fixed], page 301.
See Section 3.4.42 [ex12bit], page 429.

Chapter 1: API

See Section 3.4.41 [ex3buf], page 428.
See Section 3.4.34 [ex3d], page 419.

See Section 3.4.17 [excustom], page 401.
See Section 3.4.8 [exfixed], page 392.
See Section 3.4.44 [exspline|, page 432.
See Section 3.4.23 [exsprite], page 406.
See Section 3.4.37 [exstars|, page 424.
See Section 3.4.46 [exupdate], page 435.

1.2.2 BITMAP
typedef struct BITMAP

int w, h;
int clip;
int cl, cr, ct, cb;

unsigned char *linel[];

13

size of the bitmap in pixels
non-zero if clipping is turned on
clip rectangle left, right, top,
and bottom

pointers to the start of each line

There is some other stuff in the structure as well, but it is liable to change and
you shouldn’t use anything except the above. The ‘w’ and ‘h’ fields can be used
to obtain the size of an existing bitmap:

bmp = load_bitmap("file.bmp", pal);
allegro_message("Bitmap size: (%dx’%d)\n", bmp->w, bmp->h);

The clipping rectangle is inclusive on the left and top (0 allows drawing to
position 0) but exclusive on the right and bottom (10 allows drawing to position
9, but not to 10). Note this is not the same format as that of the clipping API,

which takes inclusive coordinates for all four corners.

All the values of this

structure should be regarded as read-only, with the exception of the line field,
whose access is described in depth in the "Direct access to video memory"
section of the manual. If you want to modify the clipping region, please refrain
from changing this structure. Use set_clip_rect() instead.

See also:

See Section 1.10.4 [create_bitmap|, page 120.
See Section 1.10.25 [set_clip_rect], page 129.

See Section 1.10.11 [bitmap_color_depth], page 124.

See Section 1.2.3 [RLE_SPRITE], page 13.

See Section 1.2.4 [COMPILED_SPRITE], page 14.

See Section 1.23 [Direct], page 227.
See Section 3.4 [Available|, page 387.

14 Allegro Manual

1.2.3 RLE_SPRITE
typedef struct RLE_SPRITE

int w, h; - width and height in pixels

int color_depth; - color depth of the image
RLE sprites store the image in a simple run-length encoded format, where
repeated zero pixels are replaced by a single length count, and strings of non-
zero pixels are preceded by a counter giving the length of the solid run. Read
chapter "RLE sprites" for a description of the restrictions and how to obtain/use
this structure.

See also:

See Section 1.16.1 [get_rle_sprite], page 178.

See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.4 [COMPILED_SPRITE], page 14.
See Section 1.16 [RLE], page 178.

1.2.4 COMPILED_SPRITE
typedef struct COMPILED_SPRITE

short planar; - set if it’s a planar (mode-X) sprite
short color_depth; - color depth of the image
short w, h; - size of the sprite

Compiled sprites are stored as actual machine code instructions that draw a
specific image onto a bitmap, using mov instructions with immediate data val-
ues. Read chapter "Compiled sprites" for a description of the restrictions and
how to obtain/use this structure.

See also:

See Section 1.17.1 [get_compiled_sprite], page 181.
See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.3 [RLE_SPRITE], page 13.

See Section 1.17 [Compiled], page 181.

1.2.5 JOYSTICK_INFO
typedef struct JOYSTICK_INFO

int flags; - status flags for this
joystick

int num_sticks; - how many stick inputs?

int num_buttons; - how many buttons?

JOYSTICK_STICK_INFO stickl[n]; - stick state information

JOYSTICK_BUTTON_INFO button[n]; - button state information

Chapter 1: API 15

Read chapter "Joystick routines" for a description on how to obtain/use this
structure.

See also:
See Section 1.8.5 [joy], page 98.
See Section 1.8 [Joystick], page 96.

1.2.6 JOYSTICK_BUTTON_INFO
typedef struct JOYSTICK_BUTTON_INFO

int b; - boolean on/off flag
char *name; - description of this
button

Read chapter "Joystick routines" for a description on how to obtain/use this
structure.

See also:
See Section 1.8.5 [joy], page 98.
See Section 1.8 [Joystick], page 96.

1.2.7 JOYSTICK_STICK_INFO
typedef struct JOYSTICK_STICK_INFO

int flags; - status flags for this
input
int num_axis; - how many axes do we
have? (note the misspelling)]]
JOYSTICK_AXIS_INFO axis[n]; - axis state information
char *name; - description of this
input

Read chapter "Joystick routines" for a description on how to obtain/use this
structure.

See also:
See Section 1.8.5 [joy|, page 98.
See Section 1.8 [Joystick], page 96.

1.2.8 JOYSTICK_AXIS_INFO
typedef struct JOYSTICK_AXIS_INFO
int pos; - analogue axis position

int d1, d2; - digital axis position
char *name; - description of this axis

16

Allegro Manual

Read chapter "Joystick routines" for a description on how to obtain/use this

structure.

See also:
See Section 1.8.5 [joy], page 98.
See Section 1.8 [Joystick], page 96.

1.2.9 GFX_MODE_LIST
typedef struct GFX_MODE_LIST

int num_modes;
GFX_MODE *mode;

Structure returned by get_gfx_mode_list,
GFX_MODE structures.

See also:
See Section 1.2.10 [GFX_MODE], page 16.
See Section 1.9.5 [get_gfx_mode_list], page 106.

1.2.10 GFX_MODE
typedef struct GFX_MODE

int width, height, bpp;
Structure contained in GFX_MODE_LIST.

See also:
See Section 1.2.9 [GFX_MODE_LIST], page 16.
See Section 1.9.5 [get_gfx_mode_list], page 106.

1.2.11 PAL_SIZE
#define PAL_SIZE
Preprocessor constant equal to 256.

See also:

See Section 1.2.13 [RGB], page 17.

See Section 1.2.12 [PALETTE], page 16.
See Section 1.2.16 [COLOR_-MAP], page 18.

1.2.12 PALETTE
typedef PALETTE RGB[PAL_SIZE]

which contains an

Allegro palettes are arrays of PAL_SIZE RGB entries.

array of

Chapter 1: API 17

See also:

See Section 1.2.13 [RGB], page 17.
See Section 1.12 [Palette], page 140.
See Section 3.4 [Available], page 387.

1.2.13 RGB
typedef struct RGB

unsigned char r, g, b;

Palette entry. It contains an additional field for the purpose of padding but
you should not usually care about it. Read chapter "Palette routines" for a
description on how to obtain/use this structure.

See also:

See Section 1.12 [Palette], page 140.
See Section 1.2.12 [PALETTE], page 16.
See Section 3.4.42 [ex12bit], page 429.
See Section 3.4.34 [ex3d], page 419.

See Section 3.4.27 [excolmap], page 411.
See Section 3.4.21 [exconfig], page 404.
See Section 3.4.3 [expal], page 388.

See Section 3.4.28 [exrgbhsv], page 412.
See Section 3.4.40 [exscroll], page 428.
See Section 3.4.29 [exshade], page 413.
See Section 3.4.25 [extrans], page 409.
See Section 3.4.26 [extruec|, page 410.

1.2.14 V3D

typedef struct V3D
fixed x, y, z; - position
fixed u, v; - texture map coordinates
int c; - color

A vertex structure used by polygon3d and other polygon rendering functions.
Read the description of polygon3d() for a description on how to obtain/use this
structure.

See also:

See Section 1.2.15 [V3D_f], page 18.

See Section 1.20.11 [polygon3d], page 203.

See Section 1.33.11 [Fixed point trig], page 307.

18 Allegro Manual

See Section 3.4.34 [ex3d], page 419.

1.2.15 V3D_f
typedef struct V3D_f

float x, y, z; - position
float u, v; - texture map coordinates
int c; - color

Like V3D but using float values instead of fixed ones. Read the description of
polygon3d_f() for a description on how to obtain/use this structure.

See also:

See Section 1.2.14 [V3D], page 17.

See Section 1.20.11 [polygon3d], page 203.

See Section 1.33.11 [Fixed point trig], page 307.
See Section 3.4.35 [excameral, page 421.

See Section 3.4.38 [exscn3d], page 425.

See Section 3.4.39 [exzbuf], page 426.

1.2.16 COLOR_MAP
typedef struct COLOR_MAP

unsigned char data[PAL_SIZE] [PAL_SIZE];

Read chapter "Transparency and patterned drawing", section "256-color trans-
parency" for a description on how to obtain/use this structure.

See also:

See Section 1.21.4 [256-color transparency], page 215.
See Section 1.21.5 [color_map], page 215.

See Section 3.4.34 [ex3d], page 419.

See Section 3.4.27 [excolmap], page 411.

See Section 3.4.33 [exlights], page 417.

See Section 3.4.29 [exshade], page 413.

See Section 3.4.25 [extrans|, page 409.

1.2.17 RGB_MAP
typedef struct RGB_MAP

unsigned char datal[32][32] [32];

Read chapter "Converting between color formats" for a description on how to
obtain/use this structure.

Chapter 1: API

See also:
See Section 1.22 [Converting|, page 225.

19

See Section 1.22.3 [create_rgb_table], page 226.

See Section 3.4.34 [ex3d], page 419.

See Section 3.4.27 [excolmap], page 411.
See Section 3.4.28 [exrgbhsv], page 412.
See Section 3.4.29 [exshade], page 413.
See Section 3.4.25 [extrans], page 409.

1.2.18 al_ffblk
struct al_ffblk

int attrib; -
time_t time; -
long size; -
char name[512]; -

actual attributes of the file found
modification time of file

size of file

name of file

Read the description of al_findfirst for a description on how to obtain/use this

structure.

See also:

See Section 1.31.20 [al_findfirst], page 276.

1.2.19 DATAFILE
typedef struct DATAFILE

void *dat; - pointer to the actual data
int type; - type of the data

long size; - size of the data in bytes
void *prop; - list of object properties

Read chapter "Datafile routines", section "Using datafiles" for a description on
how to obtain/use this structure.

See also:

See Section 1.32.1 [load-datafile], page 291.
See Section 1.32.11 [Using datafiles|, page 296.

See Section 3.4.17 [excustom], page 401.
See Section 3.4.22 [exdatal, page 405.
See Section 3.4.24 [exexedat], page 408.
See Section 3.4.16 [exgui], page 399.
See Section 3.4.23 [exsprite], page 406.
See Section 3.4.18 [exunicod], page 402.

20 Allegro Manual

1.2.20 MATRIX
typedef struct MATRIX

fixed vI[3][3]; - 3x3 scaling and rotation component
fixed t[3]; - x/y/z translation component

Fixed point matrix structure. Read chapter "3D math routines" for a descrip-
tion on how to obtain/use this structure.

See also:

See Section 1.2.21 [MATRIX_f], page 20.
See Section 1.34 [3D], page 313.

See Section 3.4.42 [ex12bit], page 429.
See Section 3.4.34 [ex3d], page 419.

See Section 3.4.37 [exstars], page 424.

1.2.21 MATRIX_f
typedef struct MATRIX_f

float v[3][3]; - 3x3 scaling and rotation component
float t[3]; - x/y/z translation component

Floating point matrix structure. Read chapter "3D math routines" for a de-
scription on how to obtain/use this structure.

See also:

See Section 1.2.20 [MATRIX], page 20.
See Section 1.34 [3D], page 313.

See Section 3.4.35 [excameral, page 421.
See Section 3.4.36 [exquat], page 422.
See Section 3.4.38 [exscn3d], page 425.
See Section 3.4.39 [exzbuf], page 426.

1.2.22 QUAT
typedef struct QUAT

float w, x, y, Z;

Read chapter "Quaternion math routines" for a description on how to ob-
tain/use this structure.

See also:
See Section 1.35 [Quaternion|, page 324.
See Section 3.4.36 [exquat], page 422.

Chapter 1: API 21

1.2.23 DIALOG
typedef struct DIALOG

int (*proc) (int, DIALOG *, int); - dialog procedure
(message handler)

int x, y, w, h; - position and size of the object

int fg, bg; - foreground and background colors

int key; - ASCII keyboard shortcut

int flags; - flags about the status of the object
int di, d2; - whatever you want to use them for

void *dp, *dp2, *dp3; - pointers to more object-specific data

This is the structure which contains a GUI object. Read chapter "GUI routines"
for a description on how to obtain/use this structure.

See also:

See Section 1.36.36 [do_dialog], page 340.
See Section 1.36 [GUI], page 327.

See Section 3.4.17 [excustom], page 401.

See Section 3.4.16 [exgui], page 399.

See Section 3.4.28 [exrgbhsv], page 412.

1.2.24 MENU
typedef struct MENU

char *text; - the text to display for the menu item
int (*proc) (void); - called when the menu item is clicked
struct MENU *child; - nested child menu

int flags; - disabled or checked state

void *dp; - pointer to any data you need

Structure used to hold an entry of a menu. Read chapter "GUI routines",
section "GUI menus" for a description on how to obtain/use this structure.

See also:

See Section 1.36.43 [do_menu]|, page 343.
See Section 1.36.42 [GUI menus|, page 342.
See Section 3.4.16 [exguil, page 399.

1.2.25 DIALOG_PLAYER

typedef struct DIALOG_PLAYER
A structure which holds GUI data used internally by Allegro. Read the docu-
mentation of init_dialog() for a description on how to obtain/use this structure.

See also:
See Section 1.36.38 [init_dialog], page 341.

22 Allegro Manual

See Section 1.36.39 [update_dialog], page 342.
See Section 1.36.40 [shutdown_dialog], page 342.
See Section 1.36 [GUI|, page 327.

1.2.26 MENU_PLAYER

typedef struct MENU_PLAYER
A structure which holds GUI data used internally by Allegro. Read the docu-
mentation of init_menu() for a description on how to obtain/use this structure.

See also:

See Section 1.36.44 [init_menu|, page 343.

See Section 1.36.45 [update_menu], page 344.
See Section 1.36.46 [shutdown_menu], page 344.
See Section 1.36.42 [GUI menus|, page 342.

1.2.27 FONT

typedef struct FONT
A structure holding an Allegro font, usually created beforehand with the grab-
ber tool or Allegro’s default font. Read chapter "Fonts" for a description on
how to load/destroy fonts, and chapter "Text output" for a description on how
to show text.

See also:

See Section 1.19.1 [font], page 194.

See Section 3.4.17 [excustom], page 401.
See Section 3.4.9 [exfont], page 392.

See Section 3.4.18 [exunicod], page 402.

1.2.28 ZBUFFER

typedef struct BITMAP ZBUFFER
Structure used by Allegro’s 3d zbuffered rendering functions. You are not sup-
posed to mix ZBUFFER with BITMAP even though it is currently possible to
do so. This is just an internal representation, and it may change in the future.

See also:

See Section 1.20.16 [Zbuffered rendering], page 206.
See Section 1.2.2 [BITMAP], page 13.

See Section 3.4.39 [exzbuf], page 426.

See Section 1.2.2 [BITMAP], page 13.

Chapter 1: API 23

1.2.29 SAMPLE
typedef struct SAMPLE

See also:

int bits; - 8 or 16

int stereo; - sample type flag

int freq; - sample frequency

int priority; - 0-255

unsigned long len; - length (in samples)

unsigned long loop_start; - loop start position

unsigned long loop_end; - loop finish position
void *data; - raw sample data

A sample structure, which holds sound data, used by the digital sample routines.
You can consider all of these fields as read only except priority, loop_start and
loop_end, which you can change them for example after loading a sample from
disk.

The priority is a value from 0 to 255 (by default set to 128) and controls how
hardware voices on the sound card are allocated if you attempt to play more
than the driver can handle. This may be used to ensure that the less important
sounds are cut off while the important ones are preserved.

The variables loop_start and loop_end specify the loop position in sample units,
and are set by default to the start and end of the sample.

If you are creating your own samples on the fly, you might also want to modify
the raw data of the sample pointed by the data field. The sample data are
always in unsigned format. This means that if you are loading a PCM encoded
sound file with signed 16-bit samples, you would have to XOR every two bytes
(i.e. every sample value) with 0x8000 to change the signedness.

See Section 1.27.1 [load_sample], page 242.
See Section 1.27 [Digital], page 242.

See Section 1.27.14 [Voice control], page 247.
See Section 3.4.14 [exsample], page 398.

1.2.30 MIDI
typedef struct MIDI

See also:

A structure holding MIDI data. Read chapter "Music routines (MIDI)" for a
description on how to obtain/use this structure.

See Section 1.28.1 [load-midi], page 255.
See Section 1.28 [Music], page 254.
See Section 3.4.15 [exmidi], page 398.

24 Allegro Manual

1.2.31 AUDIOSTREAM
typedef struct AUDIOSTREAM

int voice; - the hardware voice used for the sample

A structure holding an audiostream, which is a convenience wrapper around a
SAMPLE structure to double buffer sounds too big to fit into memory, or do
clever things like generating the sound wave real time.

While you shouldn’t modify directly the value of the voice, you can use all of the
voice functions in chapter "Digital sample routines" to modify the properties
of the sound, like the frequency.

See also:

See Section 1.29.1 [play_audio_stream], page 261.
See Section 1.29 [Audio], page 260.

See Section 1.27.14 [Voice control], page 247.

See Section 3.4.48 [exstream], page 437.

1.2.32 PACKFILE

typedef struct PACKFILE
A packfile structure, similar to the libc FILE structure. Read chapter "File
and compression routines" for a description on how to obtain/use this struc-
ture. Note that prior to version 4.1.18, some internal fields were accidentally
documented - but PACKFILE should be treated as an opaque structure, just
like the libc FILE type.

See also:

See Section 1.31 [File], page 268.

See Section 1.31.26 [pack_fopen], page 279.

See Section 1.31.46 [pack_fopen_chunk], page 286.
See Section 1.31.27 [pack_fopen_vtable], page 280.
See Section 3.4.49 [expackf], page 438.

1.2.33 PACKFILE_VTABLE
typedef struct PACKFILE_VTABLE

int pf_fclose(void *userdata);

int pf_getc(void *userdata);

int pf_ungetc(int c, void *userdata);

long pf_fread(void *p, long n, void *userdata);

int pf_putc(int c, void *userdata);

long pf_fwrite(const void *p, long n, void *userdata);
int pf_fseek(void *userdata, int offset);

int pf_feof(void *userdata);

Chapter 1: API 25

int pf_ferror(void *userdata);

This is the vtable which must be provided for custom packfiles, which then can
read from and write to wherever you like (eg. files in memory). You should
provide all the entries of the vtable, even if they are empty stubs doing nothing,
to avoid Allegro (or you) calling a NULL method at some point.

See also:

See Section 1.31 [File], page 268.

See Section 1.31.27 [pack_fopen_vtable], page 280.
See Section 3.4.49 [expackf], page 438.

1.2.34 LZSS_PACK_DATA

typedef struct LZSS_PACK_DATA
Opaque structure for handling LZSS compression. Read chapter "File and
compression routines for a description on how to obtain/use this structure.

See also:
See Section 1.31 [File], page 268.
See Section 1.31.48 [create_lzss_pack_data], page 288.

1.2.35 LZSS_UNPACK_DATA

typedef struct LZSS_UNPACK_DATA
Opaque structure for handling LZSS decompression. Read chapter "File and
compression routines for a description on how to obtain/use this structure.

See also:
See Section 1.31 [File], page 268.
See Section 1.31.51 [create_lzss_unpack_data], page 289.

1.3 Unicode routines

Allegro can manipulate and display text using any character values from 0 right up to 2°32-1
(although the current implementation of the grabber can only create fonts using characters
up to 2°16-1). You can choose between a number of different text encoding formats, which
controls how strings are stored and how Allegro interprets strings that you pass to it. This
setting affects all aspects of the system: whenever you see a function that returns a char *
type, or that takes a char * as an argument, that text will be in whatever format you have
told Allegro to use.

By default, Allegro uses UTF-8 encoded text (U_UTFS). This is a variable-width format,
where characters can occupy anywhere from one to four bytes. The nice thing about it is
that characters ranging from 0-127 are encoded directly as themselves, so UTF-8 is upwardly
compatible with 7-bit ASCII ("Hello, World!" means the same thing regardless of whether
you interpret it as ASCII or UTF-8 data). Any character values above 128, such as accented

26 Allegro Manual

vowels, the UK currency symbol, and Arabic or Chinese characters, will be encoded as a
sequence of two or more bytes, each in the range 128-255. This means you will never get
what looks like a 7-bit ASCII character as part of the encoding of a different character
value, which makes it very easy to manipulate UTF-8 strings.

There are a few editing programs that understand UTF-8 format text files. Alternatively,
you can write your strings in plain ASCII or 16-bit Unicode formats, and then use the
Allegro textconv program to convert them into UTF-8.

If you prefer to use some other text format, you can set Allegro to work with normal 8-
bit ASCII (U_ASCII), or 16-bit Unicode (U_UNICODE) instead, or you can provide some
handler functions to make it support whatever other text encoding you like (for example it
would be easy to add support for 32 bit UCS-4 characters, or the Chinese GB-code format).

There is some limited support for alternative 8-bit codepages, via the U_ASCII_CP mode.
This is very slow, so you shouldn’t use it for serious work, but it can be handy as an easy
way to convert text between different codepages. By default the U_ASCII_CP mode is set
up to reduce text to a clean 7-bit ASCII format, trying to replace any accented vowels
with their simpler equivalents (this is used by the allegro_message() function when it needs
to print an error report onto a text mode DOS screen). If you want to work with other
codepages, you can do this by passing a character mapping table to the set_ucodepage()
function.

Note that you can use the Unicode routines before you call install_allegro() or allegro_init().
If you want to work in a text mode other than UTF-8, it is best to set it with set_uformat()
just before you call these.

1.3.1 set_uformat

void set_uformat(int type);
Sets the current text encoding format. This will affect all parts of Allegro,
wherever you see a function that returns a char *, or takes a char * as a
parameter. ‘type’ should be one of these values:

U_ASCII - fixed size, 8-bit ASCII characters

U_ASCII_CP - alternative 8-bit codepage (see set_ucodepage())
U_UNICODE - fixed size, 16-bit Unicode characters

U_UTF8 - variable size, UTF-8 format Unicode characters

Although you can change the text format on the fly, this is not a good idea.
Many strings, for example the names of your hardware drivers and any lan-
guage translations, are loaded when you call allegro_init(), so if you change the
encoding format after this, they will be in the wrong format, and things will
not work properly. Generally you should only call set_uformat() once, before
allegro_init(), and then leave it on the same setting for the duration of your
program.

See also:

See Section 1.3.2 [get_uformat], page 27.

See Section 1.3.3 [register_uformat|, page 27.
See Section 1.3.4 [set_ucodepage], page 28.

Chapter 1: API 27

See Section 1.3.1 [set_uformat|, page 26.

See Section 1.3.8 [uconvert], page 30.

See Section 1.3.23 [ustrsize], page 35.

See Section 1.3.12 [ugetc], page 31.

See Section 1.3.13 [ugetx], page 32.

See Section 1.3.14 [usetc], page 32.
See Section 1.3.15 [uwidth], page 32.
See Section 1.3.16 [ucwidth], page 33.

See Section 1.3.18 [uoffset], page 33.
See Section 1.3.19 [ugetat], page 34.
See Section 1.3.20 [usetat], page 34.
See Section 1.3.21 [uinsert], page 35.

[
[
[
[
[
[
See Section 1.3.17 [uisok], page 33.
[
[
[
[
[

See Section 1.3.22 [uremove|, page 35.

See Section 1.1.2 [allegro_init], page 1.

See Section 3.4.18 [exunicod], page 402.

1.3.2 get_uformat

int get_uformat(void);

See also:

Finds out what text encoding format is currently selected. This function is
probably useful only if you are writing an Allegro addon dealing with text
strings and you use a different codepath for each possible format. Example:

switch(get_uformat()) {
case U_ASCII:
do_something () ;
break;
case U_UTF8:
do_something_else();
break;

}

Returns the currently selected text encoding format. See the documentation of
set_uformat() for a list of encoding formats.

See Section 1.3.1 [set_uformat], page 26.

28

Allegro Manual

1.3.3 register_uformat

void register_uformat(int type, int (*u_getc) (const char *s), int
(*u_getx) (char **s), int (*u_setc)(char *s, int c), int (*u_width) (const
char *s), int (*u_cwidth) (int c), int (*u_isok) (int c));

See also:

Installs a set of custom handler functions for a new text encoding format. The
‘type’ is the ID code for your new format, which should be a 4-character string
as produced by the AL_ID() macro, and which can later be passed to functions
like set_uformat() and uconvert(). The function parameters are handlers that
implement the character access for your new type: see below for details of these.

See Section 1.3.1 [set_uformat|, page 26.

See Section 1.3.8 [uconvert], page 30.

See Section 1.3.12 [ugetc], page 31.

See Section 1.3.13 [ugetx], page 32.

See Section 1.3.14 [usetc], page 32.

See Section 1.3.16 [ucwidth], page 33.

[
[
[
See Section 1.3.15 [uwidth], page 32.
[
[

See Section 1.3.17 [uisok|, page 33.

1.3.4 set_ucodepage

void set_ucodepage(const unsigned short *table, const unsigned short

*extras) ;

When you select the U_ASCII_CP encoding mode, a set of tables are used to
convert between 8-bit characters and their Unicode equivalents. You can use
this function to specify a custom set of mapping tables, which allows you to
support different 8-bit codepages.

The ‘table’ parameter points to an array of 256 shorts, which contain the Uni-
code value for each character in your codepage. The ‘extras’ parameter, if not
NULL, points to a list of mapping pairs, which will be used when reducing
Unicode data to your codepage. Each pair consists of a Unicode value, followed
by the way it should be represented in your codepage. The list is terminated by
a zero Unicode value. This allows you to create a many->one mapping, where
many different Unicode characters can be represented by a single codepage value
(eg. for reducing accented vowels to 7-bit ASCII).

Allegro will use the ‘table’ parameter when it needs to convert an ASCII string
to an Unicode string. But when Allegro converts an Unicode string to ASCII,
it will use both parameters. First, it will loop through the ‘table’ parameter
looking for an index position pointing at the unicode value it is trying to convert
(ie. the ‘table’ parameter is also used for reverse matching). If that fails, the
‘extras’ list is used. If that fails too, Allegro will put the character ‘*’, giving
up the conversion.

Note that Allegro comes with a default ‘table’ and ‘extras’ parameters set in-
ternally. The default ‘table’ will convert 8-bit characters to ‘*’. The default

Chapter 1: API 29

See also:

‘extras’ list reduces Latin-1 and Extended-A characters to 7 bits in a sensible
way (eg. an accented vowel will be reduced to the same vowel without the
accent).

See Section 1.3.1 [set_uformat|, page 26.

1.3.5 need_uconvert

int need_uconvert(const char *s, int type, int newtype);

See also:

Given a pointer to a string (‘s’), a description of the type of the string (‘type’),
and the type that you would like this string to be converted into (‘newtype’),
this function tells you whether any conversion is required. No conversion will
be needed if ‘type’ and ‘newtype’ are the same, or if one type is ASCII, the
other is UTF-8, and the string contains only character values less than 128.
As a convenience shortcut, you can pass the value U_CURRENT as either of
the type parameters, to represent whatever text encoding format is currently
selected. Example:

if (need_uconvert(text, U_UTF8, U_CURRENT)) {
/* conversion is required */

¥

Returns non-zero if any conversion is required or zero otherwise.

See Section 1.3.1 [set_uformat], page 26.

See Section 1.3.2 [get_uformat], page 27.

[
[

See Section 1.3.7 [do_uconvert], page 30.
[

See Section 1.3.8 [uconvert], page 30.

1.3.6 uconvert_size

int uconvert_size(const char *s, int type, int newtype);

See also:

Finds out how many bytes are required to store the specified string ‘s’ after a
conversion from ‘type’ to ‘newtype’, including the mandatory zero terminator
of the string. You can use U_.CURRENT for either ‘type’ or ‘newtype’ as
a shortcut to represent whatever text encoding format is currently selected.
Example:

length = uconvert_size(old_string, U_CURRENT, U_UNICODE);
new_string = malloc(length);
ustrcpy(new_string, old_string);

Returns the number of bytes required to store the string after conversion.

See Section 1.3.5 [need_uconvert], page 29.

30 Allegro Manual

See Section 1.3.7 [do_uconvert], page 30.

1.3.7 do_uconvert

void do_uconvert(const char *s, int type, char *buf, int newtype, int
size);
Converts the specified string ‘s’ from ‘type’ to ‘newtype’, storing at most
‘size’ bytes into the output ‘buf’. The type parameters can use the value
U_CURRENT as a shortcut to represent the currently selected encoding format.
Example:

char temp_string[256];
do_uconvert (input_string, U_CURRENT, temp_string, U_ASCII, 256);]}

Note that, even for empty strings, your destination string must have at least
enough bytes to store the terminating null character of the string, and your pa-
rameter size must reflect this. Otherwise, the debug version of Allegro will abort
at an assertion, and the release version of Allegro will overrun the destination
buffer.

See also:
See Section 1.3.8 [uconvert], page 30.

1.3.8 uconvert

char *uconvert(const char *s, int type, char *buf, int newtype, int size);
Higher level function running on top of do_uconvert(). This function converts
the specified string ‘s’ from ‘type’ to ‘newtype’, storing at most ‘size’ bytes into
the output ‘buf’ (including the terminating null character), but it checks before
doing the conversion, and doesn’t bother if the string formats are already the
same (either both types are equal, or one is ASCII, the other is UTF-8, and
the string contains only 7-bit ASCII characters).

As a convenience, if ‘buf’ is NULL it will convert the string into an internal
static buffer and the ‘size’ parameter will be ignored. You should be wary of
using this feature, though, because that buffer will be overwritten the next time
this routine is called, so don’t expect the data to persist across any other library
calls. The static buffer may hold less than 1024 characters, so you won’t be
able to convert large chunks of text. Example:

char *p = uconvert(input_string, U_CURRENT, buffer, U_ASCII, 256);]}

Returns a pointer to ‘buf’ (or the static buffer if you used NULL) if a conversion
was performed. Otherwise returns a copy of ‘s’. In any cases, you should use
the return value rather than assuming that the string will always be moved to
‘buf’.

See also:
See Section 1.3.1 [set_uformat], page 26.

Chapter 1: API 31

See Section 1.3.5 [need_uconvert], page 29.
See Section 1.3.8 [uconvert], page 30.

See Section 1.3.9 [uconvert_ascii], page 31.
See Section 1.3.10 [uconvert_toascii], page 31.
See Section 1.3.7 [do_uconvert], page 30.

1.3.9 uconvert_ascii

char *uconvert_ascii(const char *s, char buf[]);
Helper macro for converting strings from ASCII into the current encoding for-
mat. Expands to uconvert(s, U_ASCII, buf, U_.CURRENT, sizeof(buf)).

See also:
See Section 1.3.8 [uconvert], page 30.
See Section 3.4.18 [exunicod], page 402.

1.3.10 uconvert_toascii

char *uconvert_toascii(const char *s, char buf[]);
Helper macro for converting strings from the current encoding format into
ASCII. Expands to uconvert(s, U_CURRENT, buf, U_ASCII, sizeof(buf)).

See also:
See Section 1.3.8 [uconvert], page 30.

1.3.11 empty_string

extern char empty_stringl[];
You can’t just rely on "" to be a valid empty string in any encoding format.
This global buffer contains a number of consecutive zeros, so it will be a valid
empty string no matter whether the program is running in ASCII, Unicode, or
UTF-8 mode.

1.3.12 ugetc

int ugetc(const char *s);
Low level helper function for reading Unicode text data. Example:

int first_unicode_letter = ugetc(text_string);

Returns the character pointed to by ‘s’ in the current encoding format.

See also:
See Section 1.3.13 [ugetx], page 32.

See Section 1.3.15 [uwidth], page 32.

[
See Section 1.3.14 [usetc], page 32.
[
See Section 1.3.16 [ucwidth], page 33.

32 Allegro Manual

See Section 1.3.17 [uisok], page 33.

1.3.13 ugetx

int ugetx(char *xs);

int ugetxc(const char **s);
Low level helper function for reading Unicode text data. ugetxc is provided for
working with pointer-to-pointer-to-const char data. Example:

char *p = string;

int first_letter, second_letter, third_letter;

first_letter = ugetx(&p);

second_letter = ugetx(&p);

third_letter = ugetx(&p);
Returns the character pointed to by ‘s’ in the current encoding format, and
advances the pointer to the next character after the one just returned.

See also:

See Section 1.3.12 [ugetc], page 31.
See Section 1.3.14 [usetc], page 32.
See Section 1.3.15 [uwidth], page 32.
See Section 1.3.16 [ucwidth], page 33.
See Section 1.3.17 [uisok], page 33.

1.3.14 usetc

int usetc(char *s, int c);
Low level helper function for writing Unicode text data. Writes the character
‘c’ to the address pointed to by ‘s’.

Returns the number of bytes written, which is equal to the width of the char-
acter in the current encoding format.

See also:

See Section 1.3.12 [ugetc], page 31.
See Section 1.3.13 [ugetx], page 32.
See Section 1.3.15 [uwidth], page 32.
See Section 1.3.16 [ucwidth], page 33.
See Section 1.3.17 [uisok|, page 33.

1.3.15 uwidth
int uwidth(const char *s);
Low level helper function for testing Unicode text data.

Returns the number of bytes occupied by the first character of the specified
string, in the current encoding format.

Chapter 1: API 33

See also:

See Section 1.3.25 [uwidth_max], page 36.
See Section 1.3.12 [ugetc], page 31.

See Section 1.3.13 [ugetx], page 32.

See Section 1.3.14 [usetc], page 32.

See Section 1.3.16 [ucwidth], page 33.
See Section 1.3.17 [uisok|, page 33.

1.3.16 ucwidth

int ucwidth(int c);
Low level helper function for testing Unicode text data.

Returns the number of bytes that would be occupied by the specified character
value, when encoded in the current format.

See also:
See Section 1.3.25 [uwidth_max], page 36.
See Section 1.3.12 [ugetc], page 31.

See Section 1.3.14 [usetc], page 32.
See Section 1.3.15 [uwidth], page 32.

[
[
See Section 1.3.13 [ugetx], page 32.
[
[
See Section 1.3.17 [uisok|, page 33.

1.3.17 uisok

int uisok(int c);
Low level helper function for testing Unicode text data. Finds out if the char-
acter value ‘c’ can be encoded correctly in the current format, which can be
useful if you are converting from Unicode to ASCII or another encoding format
where the range of valid characters is limited.

Returns non-zero if the value can be correctly encoded, zero otherwise.

See also:
See Section 1.3.12 [ugetc], page 31.
See Section 1.3.13 [ugetx], page 32.

See Section 1.3.15 [uwidth], page 32.

[
[
See Section 1.3.14 [usetc|, page 32.
[
See Section 1.3.16 [ucwidth], page 33.

1.3.18 uoffset

int uoffset(const char *s, int index);
Finds out the offset (in bytes from the start of the string) of the character at
the specified ‘index’ in the string ‘s’. A zero ‘index’ parameter will return the

34 Allegro Manual

first character of the string. If ‘index’ is negative, it counts backward from the
end of the string, so an ‘index’ of ‘-1’ will return an offset to the last character.
Example:

int from_third_letter = uoffset(text_string, 2);
Returns the offset in bytes to the specified character.

See also:

See Section 1.3.19 [ugetat], page 34.

See Section 1.3.20 [usetat], page 34.

See Section 1.3.21 [uinsert], page 35.
[

See Section 1.3.22 [uremove], page 35.

1.3.19 ugetat

int ugetat(const char *s, int index);
Finds out the character value at the specified ‘index’ in the string. A zero ‘index’
parameter will return the first character of the string. If ‘index’ is negative, it
counts backward from the end of the string, so an ‘index’ of ‘-1’ will return the
last character of the string. Example:

int third_letter = ugetat(text_string, 2);

Returns the character value at the specified index in the string.

See also:

See Section 1.3.18 [uoffset], page 33.

See Section 1.3.20 [usetat], page 34.

See Section 1.3.21 [uinsert], page 35.
[

See Section 1.3.22 [uremove], page 35.

1.3.20 usetat

int usetat(char *s, int index, int c);
Replaces the character at the specified index in the string with value ‘c’, han-
dling any adjustments for variable width data (ie. if ‘c’ encodes to a different
width than the previous value at that location). If ‘index’ is negative, it counts
backward from the end of the string. Example:

usetat (text_string, 2, letter_a);

Returns the number of bytes by which the trailing part of the string was moved.

This is of interest only with text encoding formats where characters have a
variable length, like UTF-8.

See also:
See Section 1.3.18 [uoffset], page 33.

Chapter 1: API 35

See Section 1.3.19 [ugetat], page 34.
See Section 1.3.21 [uinsert], page 35.
See Section 1.3.22 [uremove], page 35.

1.3.21 wuinsert

int uinsert(char *s, int index, int c);
Inserts the character ‘c’ at the specified ‘index’ in the string, sliding the rest of
the data along to make room. If ‘index’ is negative, it counts backward from
the end of the string. Example:

uinsert(text_string, 0, prefix_letter);

Returns the number of bytes by which the trailing part of the string was moved.

See also:

See Section 1.3.18 [uoffset], page 33.
See Section 1.3.19 [ugetat], page 34.
See Section 1.3.20 [usetat], page 34.
See Section 1.3.22 [uremove], page 35.

1.3.22 uremove

int uremove(char *s, int index);
Removes the character at the specified ‘index’ within the string, sliding the rest
of the data back to fill the gap. If ‘index’ is negative, it counts backward from
the end of the string. Example:

int length_in_bytes = ustrsizez(text_string);

length_in_bytes -= uremove(text_string, -1);
Returns the number of bytes by which the trailing part of the string was moved.
See also:
See Section 1.3.18 [uoffset], page 33.
See Section 1.3.19 [ugetat], page 34.
See Section 1.3.20 [usetat], page 34.
See Section 1.3.21 [uinsert], page 35.

1.3.23 wustrsize

int ustrsize(const char *s);
Returns the size of the specified string in bytes, not including the trailing null
character.

See also:

See Section 1.3.24 [ustrsizez|, page 36.

36 Allegro Manual

See Section 1.3.11 [empty_string], page 31.
See Section 3.4.18 [exunicod], page 402.

1.3.24 ustrsizez

int ustrsizez(const char *s);
Returns the size of the specified string in bytes, including the trailing null
character.

See also:

See Section 1.3.23 [ustrsize], page 35.

See Section 1.3.11 [empty_string], page 31.
See Section 3.4.18 [exunicod], page 402.

1.3.25 uwidth_max

int uwidth_max(int type);
Low level helper function for working with Unicode text data. Returns the
largest number of bytes that one character can occupy in the given encoding
format. Pass U_CURRENT to represent the current format. Example:

char *temp_buffer = malloc(256 * uwidth_max(U_UTF8));

See also:
See Section 1.3.15 [uwidth], page 32.
See Section 1.3.16 [ucwidth], page 33.

1.3.26 utolower

int utolower(int c);
This function returns ‘c’, converting it to lower case if it is upper case.

See also:

See Section 1.3.27 [utoupper], page 36.
See Section 1.3.12 [ugetc], page 31.
See Section 1.3.13 [ugetx], page 32.

See Section 1.3.15 [uwidth], page 32.
See Section 1.3.16 [ucwidth], page 33.

[
[
[
See Section 1.3.14 [usetc], page 32.
[
[
See Section 1.3.17 [uisok], page 33.

1.3.27 utoupper

int utoupper(int c);
This function returns ‘c’, converting it to upper case if it is lower case.

Chapter 1: API 37

See also:

See Section 1.3.26 [utolower|, page 36.
See Section 1.3.12 [ugetc], page 31.
See Section 1.3.13 [ugetx], page 32.

See Section 1.3.15 [uwidth], page 32.
See Section 1.3.16 [ucwidth], page 33.

[
[
[
See Section 1.3.14 [usetc], page 32.
[
[
See Section 1.3.17 [uisok], page 33.

1.3.28 uisspace

int uisspace(int c);
Returns nonzero if ‘¢’ is whitespace, that is, carriage return, newline, form feed,
tab, vertical tab, or space. Example:

for (counter = 0; counter < ustrlen(text_string); counter++) {
if (uisspace(ugetat(text_string, counter)))
usetat (text_string, counter, ’_’);

See also:

See Section 1.3.29
See Section 1.3.12
See Section 1.3.14
See Section 1.3.15
See Section 1.3.16
See Section 1.3.17

uisdigit], page 37.
ugetc|, page 31.
usetc], page 32.
uwidth], page 32.
ucwidth], page 33.

uisok], page 33.

1.3.29 uisdigit
int uisdigit(int c);
Returns nonzero if ‘¢’ is a digit.

for (counter = 0; counter < ustrlen(text_string); counter++) {
if (uisdigit(ugetat(text_string, counter)))
usetat (text_string, counter, ’*’);

See also:
See Section 1.3.28 [uisspace], page 37.
See Section 1.3.12 [ugetc], page 31.

See Section 1.3.15 [uwidth], page 32.

[
[
See Section 1.3.14 [usetc], page 32.
[
See Section 1.3.16 [ucwidth], page 33.

38 Allegro Manual

See Section 1.3.17 [uisok], page 33.

1.3.30 ustrdup

char *ustrdup(const char *src)
This functions copies the null-terminated string ‘src’ into a newly allocated area
of memory, effectively duplicating it. Example:

void manipulate_string(const char *input_string)
{

char *temp_buffer = ustrdup(input_string);

/* Now we can modify temp_buffer */

Returns the newly allocated string. This memory must be freed by the caller.
Returns NULL if it cannot allocate space for the duplicated string.

See also:

See Section 1.3.31 [_ustrdup], page 38.
See Section 1.3.8 [uconvert], page 30.
See Section 1.3.23 [ustrsize|, page 35.
See Section 1.3.24 [ustrsizez], page 36.
See Section 3.4.21 [exconfig], page 404.

1.3.31 _ustrdup

char *_ustrdup(const char *src, void* (*malloc_func) (size_t))
Does the same as ustrdup(), but allows the user to specify a custom memory
allocator function.

See also:

See Section 1.3.30 [ustrdup], page 38.

See Section 1.3.8 [uconvert], page 30.

See Section 1.3.23 [ustrsize], page 35.

See Section 1.3.24 [ustrsizez], page 36.

1.3.32 ustrcpy

char *ustrcpy(char *dest, const char *src);
This function copies ‘src¢’ (including the terminating null character into ‘dest’.
You should try to avoid this function because it is very easy to overflow the
destination buffer. Use ustrzcpy instead.

Returns the value of dest.

See also:
See Section 1.3.8 [uconvert], page 30.

Chapter 1: API 39

See Section 1.3.33 [ustrzcpy], page 39.
See Section 1.3.38 [ustrncpy], page 40.
See Section 3.4.18 [exunicod], page 402.

1.3.33 ustrzcpy

char *ustrzcpy(char *dest, int size, const char *src);
This function copies ‘src¢’ (including the terminating NULL character into ‘dest’,
whose length in bytes is specified by ‘size’ and which is guaranteed to be null-
terminated even if ‘src’ is bigger than ‘size’.

Note that, even for empty strings, your destination string must have at least
enough bytes to store the terminating null character of the string, and your pa-
rameter size must reflect this. Otherwise, the debug version of Allegro will abort
at an assertion, and the release version of Allegro will overrun the destination
buffer.

Returns the value of ‘dest’.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.32 [ustrcpy], page 38.
See Section 1.3.39 [ustrzncpy], page 41.
See Section 3.4.41 [ex3buf], page 428.
See Section 3.4.16 [exguil, page 399.

1.3.34 ustrcat

char *ustrcat(char *dest, const char *src);
This function concatenates ‘src¢’ to the end of ‘dest’. You should try to avoid
this function because it is very easy to overflow the destination buffer, use
ustrzcat instead.

Returns the value of ‘dest’.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.35 [ustrzcat], page 39.
See Section 1.3.40 [ustrncat], page 41.
See Section 3.4.18 [exunicod], page 402.

1.3.35 ustrzcat

char *ustrzcat(char *dest, int size, const char *src);
This function concatenates ‘src¢’ to the end of ‘dest’, whose length in bytes is
specified by ‘size’ and which is guaranteed to be null-terminated even when ‘src’
is bigger than ‘size’.

40 Allegro Manual

Note that, even for empty strings, your destination string must have at least
enough bytes to store the terminating null character of the string, and your pa-
rameter size must reflect this. Otherwise, the debug version of Allegro will abort
at an assertion, and the release version of Allegro will overrun the destination
buffer.

Returns the value of ‘dest’.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.34 [ustrcat], page 39.
See Section 1.3.41 [ustrzncat], page 42.
See Section 3.4.16 [exgui], page 399.

1.3.36 ustrlen

int ustrlen(const char *s);
This function returns the number of characters in ‘s’. Note that this doesn’t
have to equal the string’s size in bytes.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.23 [ustrsize|, page 35.
See Section 1.3.24 [ustrsizez], page 36.

1.3.37 ustrcmp
int ustrcmp(const char *sl, const char *s2);
This function compares ‘s1’ and ‘s2’.

Returns zero if the strings are equal, a positive number if ‘s1’ comes after ‘s2’
in the ASCII collating sequence, else a negative number.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.23 [ustrsize], page 35.
See Section 1.3.24 [ustrsizez|, page 36.

[

[

See Section 1.3.42 [ustrncmp], page 42.

See Section 1.3.43 [ustricmp], page 42.
[

See Section 1.3.44 [ustrnicmp]|, page 43.

1.3.38 ustrncpy

char *ustrncpy(char *dest, const char *src, int n);
This function is like ustrcpy() except that no more than ‘n’ characters from
‘src’ are copied into ‘dest’. If ‘src¢’ is shorter than ‘n’ characters, null characters
are appended to ‘dest’ as padding until ‘n’ characters have been written.

Chapter 1: API 41

See also:

Note that if ‘src’ is longer than ‘n’ characters, ‘dest’ will not be null-terminated.

The return value is the value of ‘dest’.

See Section 1.3.8 [uconvert], page 30.

See Section 1.3.32 [ustrcpy], page 38.

See Section 1.3.39 [ustrzncpy], page 41.

1.3.39 ustrzncpy

char *ustrzncpy(char *dest, int size, const char *src, int n);

See also:

This function is like ustrzepy() except that no more than ‘n’ characters from
‘src’ are copied into ‘dest’. If ‘src’ is shorter than ‘n’ characters, null characters
are appended to ‘dest’ as padding until ‘n’ characters have been written. In
any case, ‘dest’ is guaranteed to be null-terminated.

Note that, even for empty strings, your destination string must have at least
enough bytes to store the terminating null character of the string, and your
parameter ‘size’ must reflect this. Otherwise, the debug version of Allegro
will abort at an assertion, and the release version of Allegro will overrun the
destination buffer.

The return value is the value of ‘dest’.

See Section 1.3.8 [uconvert], page 30.

See Section 1.3.33 [ustrzcpy], page 39.

See Section 1.3.38 [ustrncpy], page 40.
See Section 3.4.12 [exkeys], page 395.

1.3.40 ustrncat

char *ustrncat(char *dest, const char *src, int n);

See also:

This function is like ustrcat() except that no more than ‘n’ characters from
‘sr¢’ are appended to the end of ‘dest’. If the terminating null character in
‘src¢’ is reached before ‘n’ characters have been written, the null character is
copied, but no other characters are written. If ‘n’ characters are written before
a terminating null is encountered, the function appends its own null character to
‘dest’, so that ‘n+1’ characters are written. You should try to avoid this function
because it is very easy to overflow the destination buffer. Use ustrzncat instead.

The return value is the value of ‘dest’.

See Section 1.3.8 [uconvert], page 30.

See Section 1.3.34 [ustrcat], page 39.
See Section 1.3.41 [ustrzncat], page 42.

42 Allegro Manual

1.3.41 ustrzncat

char *ustrzncat(char *dest, int size, const char *src, int n);
This function is like ustrzcat() except that no more than ‘n’ characters from
‘sr¢’ are appended to the end of ‘dest’. If the terminating null character in
‘src¢’ is reached before ‘n’ characters have been written, the null character is
copied, but no other characters are written. Note that ‘dest’ is guaranteed to
be null-terminated.

The return value is the value of ‘dest’.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.35 [ustrzcat]|, page 39.
See Section 1.3.40 [ustrncat], page 41.

1.3.42 ustrncmp

int ustrncmp(const char *sl, const char *s2, int n);
This function compares up to ‘n’ characters of ‘s1” and ‘s2’. Example:

if (ustrncmp(prefix, long_string, ustrlen(prefix)) == 0) {
/* long_string starts with prefix x/

}

Returns zero if the substrings are equal, a positive number if ‘s1’ comes after
‘s2” in the ASCII collating sequence, else a negative number.

See also:

See Section 1.3.8 [uconvert|, page 30.

See Section 1.3.23 [ustrsize|, page 35.

See Section 1.3.24 [ustrsizez], page 36.

[

[
See Section 1.3.37 [ustrcmp], page 40.
See Section 1.3.43 [ustricmp], page 42.
[

See Section 1.3.44 [ustrnicmp], page 43.

1.3.43 ustricmp

int ustricmp(const char *sl, const char *s2);
This function compares ‘s1’ and ‘s2’, ignoring case. Example:

if (ustricmp(string, user_input) == 0) {
/* string and user_input are equal (ignoring case) */

¥

Returns zero if the strings are equal, a positive number if ‘s1’ comes after ‘s2’
in the ASCII collating sequence, else a negative number.

Chapter 1: API 43

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.23 [ustrsize], page 35.
See Section 1.3.24 [ustrsizez], page 36.

[

[

See Section 1.3.44 [ustrnicmp], page 43.

See Section 1.3.37 [ustrcmp], page 40.

See Section 1.3.42 [ustrncmp]|, page 42.
[

See Section 3.4.21 [exconfig], page 404.

1.3.44 ustrnicmp

int ustrnicmp(const char *sl, const char *s2, int n);
This function compares up to ‘n’ characters of ‘s1’” and ‘s2’, ignoring case.
Example:

if (ustrnicmp(prefix, long_string, ustrlen(prefix)) == 0) {
/* long_string starts with prefix (ignoring case) */

¥

Returns zero if the strings are equal, a positive number if ‘s1’ comes after ‘s2’
in the ASCII collating sequence, else a negative number.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.23 [ustrsize|, page 35.
See Section 1.3.24 [ustrsizez|, page 36.

[

[

See Section 1.3.43 [ustricmp], page 42.

See Section 1.3.37 [ustrcmp]|, page 40.
[

See Section 1.3.42 [ustrncmp]|, page 42.

1.3.45 ustrlwr

char *ustrlwr(char *s);
This function replaces all upper case letters in ‘s’ with lower case letters. Ex-
ample:

char buffer[] = "UPPER CASE STRING";
allegro_message (ustrlwr (buffer));

The return value is the value of ‘s’.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.26 [utolower], page 36.
See Section 1.3.46 [ustrupr|, page 44.

44 Allegro Manual

1.3.46 ustrupr

char *ustrupr(char *s);
This function replaces all lower case letters in ‘s’ with upper case letters. Ex-
ample:

char buffer[] = "lower case string";
allegro_message (ustrupr (buffer));

The return value is the value of ‘s’.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.26 [utolower], page 36.
See Section 1.3.45 [ustrlwr], page 43.

1.3.47 ustrchr

char *ustrchr(const char *s, int c);
Finds the first occurrence of the character ‘c’ in the string ‘s’. Example:

char *p = ustrchr("one,two,three,four", ’,’);

Returns a pointer to the first occurrence of ‘c’ in ‘s’, or NULL if no match was
found. Note that if ‘¢’ is NULL, this will return a pointer to the end of the
string.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.48 [ustrrchr], page 44.
See Section 1.3.49 [ustrstr], page 45.
See Section 1.3.50 [ustrpbrk]|, page 45.
See Section 1.3.51 [ustrtok], page 45.

1.3.48 wustrrchr

char *ustrrchr(const char *s, int c);
Finds the last occurrence of the character ‘¢’ in the string ‘s’. Example:

char *p = ustrrchr("one,two,three,four", ’,’);

Returns a pointer fo the last occurrence of ‘¢’ in ‘s’, or NULL if no match was
found.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.47 [ustrchr], page 44.
See Section 1.3.49 [ustrstr], page 45.

Chapter 1: API 45

See Section 1.3.50 [ustrpbrk]|, page 45.
See Section 1.3.51 [ustrtok], page 45.

1.3.49 ustrstr

char *ustrstr(const char *s1, const char *s2);
This function finds the first occurence of string ‘s2’ in string ‘s1’. Example:

char *p = ustrstr("hello world", "world");

Returns a pointer within ‘s1’, or NULL if ‘s2” wasn’t found.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.47 [ustrchr], page 44.
See Section 1.3.48 [ustrrchr], page 44.
See Section 1.3.50 [ustrpbrk]|, page 45.
See Section 1.3.51 [ustrtok]|, page 45.

1.3.50 ustrpbrk

char *ustrpbrk(const char *s, const char *set);
This function finds the first character in ‘s’ that matches any character in ‘set’.
Example:

char *p = ustrpbrk("one,two-three.four", "-. ");

Returns a pointer to the first match, or NULL if none are found.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.47 [ustrchr], page 44.

See Section 1.3.48 [ustrrchr], page 44.
See Section 1.3.49 [ustrstr], page 45.

See Section 1.3.51 [ustrtok], page 45.

1.3.51 ustrtok

char *ustrtok(char *s, const char *set);
This function retrieves tokens from ‘s’ which are delimited by characters from
‘set’. To initiate the search, pass the string to be searched as ‘s’. For the
remaining tokens, pass NULL instead. Warning: Since ustrtok alters the string
it is parsing, you should always copy the string to a temporary buffer before
parsing it. Also, this function is not reentrant (ie. you cannot parse two strings
at the same time). Example:

46 Allegro Manual

char *word;
char string[]="some-words with dashes";
char *temp = ustrdup(string);
word = ustrtok(temp, " -");
while (word) {
allegro_message("Found ‘%s’\n", word);
word = ustrtok(NULL, " -");

}
free(temp);

Returns a pointer to the token, or NULL if no more are found.

See also:
See Section 1.3.8 [uconvert], page 30.
See Section 1.3.47 [ustrchr], page 44.

See Section 1.3.48 [ustrrchr], page 44.
See Section 1.3.49 [ustrstr], page 45.

See Section 1.3.50 [ustrpbrk]|, page 45.
See Section 1.3.52 [
[
[
[

See Section 1.1.18 [allegro_message|, page 6.

ustrtok_r|, page 46.

See Section 1.3.38 [ustrncpy], page 40.
See Section 3.4.16 [exgui], page 399.

1.3.52 ustrtok_r

char *ustrtok_r(char *s, const char *set, char *xlast);
Reentrant version of ustrtok. The ‘last’ parameter is used to keep track of
where the parsing is up to and must be a pointer to a char * variable allocated
by the user that remains the same while parsing the same string. Example:

char *word, *last;
char string[]="some-words with dashes";
char *temp = ustrdup(string);
word = ustrtok_r(string, " -", &last);
while (word) {
allegro_message("Found ‘%s’\n", word);
word = ustrtok_r(NULL, " -", &last);

}
free(temp);

Returns a pointer to the token, or NULL if no more are found. You can free
the memory pointed to by ‘last’ once NULL is returned.

See also:
See Section 1.3.51 [ustrtok], page 45.

Chapter 1: API 47

1.3.53 uatof

double uatof (const char *s);
Convert as much of the string as possible to an equivalent double precision real
number. This function is almost like ‘ustrtod(s, NULL)’.

Returns the equivalent value, or zero if the string does not represent a number.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.54 [ustrtol|, page 47.
See Section 1.3.55 [ustrtod], page 47.

1.3.54 ustrtol

long ustrtol(const char *s, char **endp, int base);
This function converts the initial part of ‘s’ to a signed integer, setting ‘*endp’
to point to the first unused character, if ‘endp’ is not a NULL pointer. The
‘base’ argument indicates what base the digits (or letters) should be treated as.
If ‘base’ is zero, the base is determined by looking for ‘0x’, ‘0X’, or ‘0’ as the
first part of the string, and sets the base used to 16, 16, or 8 if it finds one. The
default base is 10 if none of those prefixes are found. Example:

char *endp, *string = "456.203 askdfg";
int number = ustrtol(string, &endp, 10);

Returns the string converted as a value of type ‘long int’. If nothing was
converted, returns zero with ‘“*endp’ pointing to the beginning of ‘s’.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.55 [ustrtod], page 47.
See Section 1.3.53 [uatof], page 46.

1.3.55 ustrtod

double ustrtod(const char *s, char **endp);
This function converts as many characters of ‘s’ that look like a floating point
number into one, and sets ‘*endp’ to point to the first unused character, if
‘endp’ is not a NULL pointer. Example:

char *endp, *string = "456.203 askdfg";
double number = ustrtod(string, &endp);

Returns the string converted as a value of type ‘double’. If nothing was con-
verted, returns zero with *endp pointing to the beginning of s.

See also:
See Section 1.3.8 [uconvert], page 30.

48

Allegro Manual

See Section 1.3.54 [ustrtol], page 47.
See Section 1.3.53 [uatof], page 46.

1.3.56 ustrerror

const char *ustrerror(int err);

See also:

This function returns a string that describes the error code ‘err’, which normally
comes from the variable ‘errno’. Example:

PACKFILE =input_file = pack_fopen("badname", "r");
if (input_file == NULL)
allegro_message ("%s\nSorry!\n", ustrerror(errno));
Returns a pointer to a static string that should not be modified or freed. If you
make subsequent calls to ustrerror(), the string will be overwritten.

See Section 1.3.8 [uconvert], page 30.

See Section 1.1.6 [allegro_error], page 3.

1.3.57 usprintf

int usprintf(char *buf, const char *format, ...);

See also:

This function writes formatted data into the output buffer. A NULL character
is written to mark the end of the string. You should try to avoid this function
because it is very easy to overflow the destination buffer. Use uszprintf instead.

Returns the number of characters written, not including the terminating null
character.

See Section 1.3.8 [uconvert], page 30.

See Section 1.3.58 [uszprintf], page 48.

See Section 1.3.59 [uvsprintf], page 49.
See Section 3.4.12 [exkeys], page 395.

1.3.58 uszprintf

int uszprintf (char *buf, int size, const char *format, ...);

This function writes formatted data into the output buffer, whose length in
bytes is specified by ‘size’ and which is guaranteed to be NULL terminated.
Example:

char buffer[10];
int player_score;

uszprintf (buffer, sizeof (buffer), "Your score is: %d", player_score);|]

Chapter 1: API 49

Returns the number of characters that would have been written without even-
tual truncation (like with usprintf), not including the terminating null charac-
ter.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.57 [usprintf], page 48.
See Section 1.3.60 [uvszprintf], page 49.
See Section 3.4.16 [exguil, page 399.

1.3.59 uvsprintf

int uvsprintf (char *buf, const char *format, va_list args);
This is like usprintf(), but you pass the variable argument list directly, instead
of the arguments themselves. You can use this function to implement printf like
functions, also called variadic functions. You should try to avoid this function
because it is very easy to overflow the destination buffer. Use uvszprintf instead.
Returns the number of characters written, not including the terminating null
character.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.57 [usprintf], page 48.
See Section 1.3.60 [uvszprintf], page 49.

1.3.60 uvszprintf

int uvszprintf (char *buf, int size, const char *format, va_list args);
This is like uszprintf(), but you pass the variable argument list directly, instead
of the arguments themselves. Example:

#include <stdarg.h>

void log_message(const char *format, ...)
{

char buffer[100];

va_list parameters;

va_start(parameters, format);
uvszprintf (buffer, sizeof(buffer), format, parameters);
va_end(parameters) ;

append_buffer_to_logfile(log_name, buffer);
send_buffer_to_other_networked_players(multicast_ip, buffer);|}
and_also_print_it_on_the_screen(cool_font, buffer);

50 Allegro Manual

void some_other_function(void)
{

log_message("Hello %s, are you %d years old?\n", "Dave", 25);]}
}

Returns the number of characters that would have been written without even-
tual truncation (like with uvsprintf), not including the terminating null char-
acter.

See also:

See Section 1.3.8 [uconvert], page 30.
See Section 1.3.58 [uszprintf], page 48.
See Section 1.3.59 [uvsprintf], page 49.

1.4 Configuration routines

Various parts of Allegro, such as the sound routines and the load_joystick_data() function,
require some configuration information. This data is stored in text files as a collection of
‘variable=value’ lines, along with comments that begin with a ‘#’ character and continue
to the end of the line. The configuration file may optionally be divided into sections, which
begin with a ‘[sectionname]|’ line. Each section has a unique namespace, to prevent variable
name conflicts, but any variables that aren’t in a section are considered to belong to all the
sections simultaneously.

By default the configuration data is read from a file called ‘allegro.cfg’, which can be lo-
cated either in the same directory as the program executable, or the directory pointed to
by the ALLEGRO environment variable. Under Unix, it also checks for ‘~/allegro.cfg’,
~ J.allegrorc’, ¢/etc/allegro.cfg’, and ‘/etc/allegrorc’, in that order; under BeOS only the
last two are also checked. MacOS X also checks in the Contents/Resources directory of the
application bundle, if any, before doing the checks above.

If you don’t like this approach, you can specify any filename you like, or use a block
of binary configuration data provided by your program (which could for example be
loaded from a datafile). You can also extend the paths searched for allegro resources with
set_allegro_resource_path().

You can store whatever custom information you like in the config file, along with the stan-
dard variables that are used by Allegro (see below). Allegro comes with a setup directory
where you can find configuration programs. The standalone setup program is likely to be
of interest to final users. It allows any user to create an ‘allegro.cfg’ file without the need to
touch a text editor and enter values by hand. It also provides a few basic tests like sound
playing for soundcard testing. You are welcome to include the setup program with your
game, either as is or with modified graphics to fit better your game.

1.4.1 set_config_file

void set_config file(const char *filename) ;
Sets the configuration file to be used by all subsequent config functions. If you
don’t call this function, Allegro will use the default ‘allegro.cfg’ file, looking first

Chapter 1: API 51

See also:

in the same directory as your program and then in the directory pointed to by
the ALLEGRO environment variable and the usual platform-specific paths for
configuration files. For example it will look for ‘/etc/allegro.cfg’ under Unix.

All pointers returned by previous calls to get_config_string() and other related
functions are invalidated when you call this function! You can call this function
before install_allegro() to change the configuration file, but after set_uformat()
if you want to use a text encoding format other than the default.

See Section 1.4.2 [set_config_data], page 51.

See Section 1.4.5 [push_config_state|, page 53.

[

See Section 1.4.3 [override_config_file], page 51.
[
[

See Section 1.3.1 [set_uformat|, page 26.

See Section 1.4.23 [Standard config variables], page 60.

See Section 1.4.18 [set_config_string], page 58.

[
See Section 1.4.11 [get_config_string], page 55.
[

See Section 3.4.21 [exconfig], page 404.

1.4.2 set_config_data

void set_config_data(const char *data, int length);

See also:

Specifies a block of data to be used by all subsequent config functions, which
you have already loaded from disk (eg. as part of some more complicated
format of your own, or in a grabber datafile). This routine makes a copy of the
information, so you can safely free the data after calling it.

See Section 1.4.1 [set_config_file|, page 50.

See Section 1.4.4 [override_config-datal, page 52.

See Section 1.4.5 [push_config_state], page 53.

See Section 1.4.23 [Standard config variables], page 60.

See Section 1.4.18 [set_config_string], page 58.

See Section 1.4.11 [get_config_string], page 55.

1.4.3 override_config_file

void override_config_file(const char *filename);

Specifies a file containing config overrides. These settings will be used in addi-
tion to the parameters in the main config file, and where a variable is present
in both files this version will take priority. This can be used by application
programmers to override some of the config settings from their code, while still
leaving the main config file free for the end user to customise. For example,
you could specify a particular sample frequency and IBK instrument file, but
the user could still use an ‘allegro.cfg’ file to specify the port settings and irq
numbers.

52 Allegro Manual

The override config file will not only take precedence when reading, but will
also be used for storing values. When you are done with using the override
config file, you can call override_config_file with a NULL parameter, so config
data will be directly read from the current config file again.

Note: The override file is completely independent from the current configura-
tion. You can e.g. call set_config_file, and the override file will still be active.
Also the flush_config_file function will only affect the current config file (which
can be changed with set_config_file), never the overriding one specified with
this function. The modified override config is written back to disk whenever
you call override_config_file.

Example:

override_config file("my.cfg");

/* This will read from my.cfg, and if it doesn’t find a
* setting, will read from the current config file instead.
*/

language = get_config_string("system", "language", NULL);

/* This will always write to my.cfg, no matter if the
* settings is already present or not.

*/

set_config_string("system", "language", "RU");

/* This forces the changed setting to be written back to
* disk. Else it is written back at the next call to
* override_config_file, or when Allegro shuts down.

*/
override_config_file(NULL);

Note that this function and override_config_data() are mutually exclusive, i.e.
calling one will cancel the effects of the other.

See also:
See Section 1.4.4 [override_config_datal], page 52.
See Section 1.4.1 [set_config_file|, page 50.

1.4.4 override_config_data

void override_config_data(const char *data, int length);
Version of override_config_file() which uses a block of data that has already
been read into memory. The length of the block has to be specified in bytes.
Example:

/* Force German as system language, Spanish keyboard map. */
const char *override_data = "[system]\n"

"language=DE\n"

"keyboard=ES";
override_config_data(override_data, ustrsize(override_data));

Chapter 1: API 53

Note that this function and override_config_file() are mutually exclusive, i.e.
calling one will cancel the effects of the other.

See also:
See Section 1.4.3 [override_config_file], page 51.
See Section 1.4.2 [set_config_datal, page 51.

1.4.5 push_config_state

void push_config_state();
Pushes the current configuration state (filename, variable values, etc). onto an
internal stack, allowing you to select some other config source and later restore
the current settings by calling pop_config_state(). This function is mostly in-
tended for internal use by other library functions, for example when you specify
a config filename to the save_joystick_data() function, it pushes the config state
before switching to the file you specified.

See also:

See Section 1.4.6 [pop-config_state], page 53.
See Section 1.4.1 [set_config_file|, page 50.

See Section 1.8.8 [save_joystick_datal, page 102.
See Section 3.4.21 [exconfig], page 404.

1.4.6 pop-_config_state

void pop_config_state();
Pops a configuration state previously stored by push_config_state(), replacing
the current config source with it.

See also:
See Section 1.4.5 [push_config_state], page 53.
See Section 3.4.21 [exconfig], page 404.

1.4.7 flush_config_file

void flush_config file();
Writes the current config file to disk if the contents have changed since it was
loaded or since the latest call to the function.

See also:

See Section 1.4.1 [set_config_file], page 50.

See Section 1.4.3 [override_config_file], page 51.
See Section 1.4.5 [push_config_state], page 53.

54 Allegro Manual

1.4.8 reload_config_texts

void reload_config_texts(const char *new_language) ;

Reloads the translated strings returned by get_config_text(). This is useful to
switch to another language in your program at runtime. If you want to modify
the ‘[system]’ language configuration variable yourself, or you have switched
configuration files, you will want to pass NULL to just reload whatever lan-
guage is currently selected. Or you can pass a string containing the two letter
code of the language you desire to switch to, and the function will modify the
language variable. After you call this function, the previously returned pointers
of get_config_text() will be invalid. Example:

/* The user selects French from a language choice menu. */
reload_config_texts("FR");

See also:

See Section 1.4.17 [get_config_text], page 57.

See Section 1.4.11 [get_config_string], page 55.

See Section 1.4.23 [Standard config variables], page 60.

1.4.9 hook_config_section

void hook_config_section(const char *section, int (*intgetter) (const char

*name, int def), const char *(*stringgetter) (const char *name, const char

xdef), void (*stringsetter) (const char *name, const char *value));
Takes control of the specified config file section, so that your hook functions will
be used to manipulate it instead of the normal disk file access. If both the getter
and setter functions are NULL, a currently present hook will be unhooked.
Hooked functions have the highest priority. If a section is hooked, the hook will
always be called, so you can also hook a ’#’ section: even override_config_file()
cannot override a hooked section. Example:

int decode_encrypted_int(const char *name, int def)

{

const char *decode_encrypted_string(const char *name, const char *def)fl

{

void encode_plaintext_string(const char *name, const char *value)f]

{

Chapter 1: API 55

int main(int argc, char *argv[])

{

/* Make it harder for users to tinker with the high scores. */|}
hook_config_section("high_scores", decode_encrypted_int,
decode_encrypted_string, encode_plaintext_string);

} END_OF_MAIN(Q)

See also:
See Section 1.4.10 [config_is_hooked], page 55.

1.4.10 config_is_hooked

int config_is_hooked(const char *section);
Returns TRUE if the specified config section has been hooked. Example:

if (config_is_hooked("high_scores")) {
hook_config_section("high_scores, NULL, NULL, NULL);
}

See also:
See Section 1.4.9 [hook_config_section], page 54.

1.4.11 get_config_string
const char *get_config_string(const char *section, const char *name, const
char *def);
Retrieves a string variable from the current config file. The section name may
be set to NULL to read variables from the root of the file, or used to control

which set of parameters (eg. sound or joystick) you are interested in reading.
Example:

const char *lang = get_config_string("system", "language", "EN");Jj

Returns a pointer to the constant string found in the configuration file. If the
named variable cannot be found, or its entry in the config file is empty, the
value of ‘def’ is returned.

See also:

See Section 1.4.1 [set_config_file|, page 50.
See Section 1.4.18 [set_config_string], page 58.
See Section 1.4.16 [get_config_argv], page 57.
See Section 1.4.14 [get_config_float], page 56.
See Section 1.4.13 [get_config_hex], page 56.
See Section 1.4.12 [get_config_int], page 56.

56 Allegro Manual

See Section 1.4.15 [get_config_id], page 57.
See Section 1.4.17 [get_config_text], page 57.
See Section 3.4.21 [exconfig], page 404.

1.4.12 get_config_int

int get_config_int(const char *section, const char *name, int def);
Reads an integer variable from the current config file. See the comments about
get_config_string().

See also:
See Section 1.4.1 [set_config_file|, page 50.
See Section 1.4.19 [set_config_int], page 58.
See Section 1.4.11 [get_config_string], page 55.
See Section 1.4.16 [get_config_argv], page 57.
See Section 1.4.14 [get_config_float], page 56.
See Section 1.4.13 [get_config_hex], page 56.
See Section 1.4.15 [get_config_id], page 57.

[

See Section 3.4.21 [exconfig], page 404.

1.4.13 get_config_hex

int get_config_hex(const char *section, const char *name, int def);
Reads an integer variable from the current config file, in hexadecimal format.
See the comments about get_config_string().

See also:

See Section 1.4.1 [set_config_file|, page 50.
See Section 1.4.20 [set_config_hex], page 59.
See Section 1.4.11 [get_config_string], page 55.
See Section 1.4.16 [get_config_argv], page 57.

[
[
See Section 1.4.14 [get_config_float], page 56.
See Section 1.4.12 [get_config_int], page 56.

[

See Section 1.4.15 [get_config_id], page 57.

1.4.14 get_config_float

float get_config_float(const char *section, const char #*name, float def);
Reads a floating point variable from the current config file. See the comments
about get_config_string().

See also:

See Section 1.4.1 [set_config_file|, page 50.
See Section 1.4.21 [set_config_float], page 59.
See Section 1.4.11 [get_config_string], page 55.

Chapter 1: API 57

See Section 1.4.16 [get_config_argv], page 57.
See Section 1.4.13 [get_config_hex], page 56.
See Section 1.4.12 [get_config_int], page 56.
[

See Section 1.4.15 [get_config_id], page 57.

1.4.15 get_config_id

int get_config_id(const char *section, const char *name, int def);
Reads a 4-letter driver ID variable from the current config file. See the com-
ments about get_config_string().

See also:

See Section 1.4.1 [set_config_file|, page 50.
See Section 1.4.22 [set_config_id], page 59.
See Section 1.4.11 [get_config_string], page 55.
See Section 1.4.16 [get_config_argv], page 57.

See Section 1.4.13 [get_config_hex], page 56.

[
[
See Section 1.4.14 [get_config_float], page 56.
[
See Section 1.4.12 [get_config_int], page 56.

1.4.16 get_config_argv

char **get_config_argv(const char *section, const char *name, int *argc);
Reads a token list (words separated by spaces) from the current config file. The
token list is stored in a temporary buffer that will be clobbered by the next call
to get_config_argv(), so the data should not be expected to persist.

Returns an argv style argument list and sets ‘arge’ to the number of retrieved
tokens. If the variable is not present, returns NULL and sets argc to zero.

See also:

See Section 1.4.1 [set_config_file|, page 50.

See Section 1.4.11 [get_config_string], page 55.
See Section 1.4.14 [get_config_float], page 56.
See Section 1.4.13 [get_config_hex], page 56.
See Section 1.4.12 [get_config_int|, page 56.
See Section 1.4.15 [get_config_id], page 57.
See Section 3.4.21 [exconfig], page 404.

1.4.17 get_config_text

const char *get_config_text(const char *msg);
This function is primarily intended for use by internal library code, but it
may perhaps be helpful to application programmers as well. It uses the ‘lan-
guage.dat’ or ‘XXtext.cfg’ files (where XX is a language code) to look up a
translated version of the parameter in the currently selected language.

58

See also:

Allegro Manual

This is basically the same thing as calling get_config_string() with ‘[language]’
as the section, ‘msg’ as the variable name, and ‘msg’ as the default value,
but it contains some special code to handle Unicode format conversions. The
‘msg’ parameter is always given in ASCII format, but the returned string will
be converted into the current text encoding, with memory being allocated as
required, so you can assume that this pointer will persist without having to
manually allocate storage space for each string.

Note that if you are planning on distributing your game on the Unix platform
there is a special issue with how to deal with the ‘language.dat’ file. Read
section "Files shared by Allegro" of the chapter "Unix specifics" to learn more
about this.

Returns a suitable translation if one can be found or a copy of the parameter
if nothing else is available.

See Section 1.4.11 [get_config_string], page 55.

See Section 1.4.8 [reload_config_texts], page 53.

See Section 1.4.23 [Standard config variables], page 60.

1.4.18 set_config_string

void set_config_string(const char *section, const char *name, const char

*xval) ;

See also:

Writes a string variable to the current config file, replacing any existing value
it may have, or removes the variable if ‘val’ is NULL. The section name may be
set to NULL to write the variable to the root of the file, or used to control which
section the variable is inserted into. The altered file will be cached in memory,
and not actually written to disk until you call allegro_exit(). Note that you can
only write to files in this way, so the function will have no effect if the current
config source was specified with set_config_data() rather than set_config_file().

As a special case, variable or section names that begin with a ’#’ character
are treated specially and will not be read from or written to the disk. Addon
packages can use this to store version info or other status information into the
config module, from where it can be read with the get_config_string() function.

See Section 1.4.1 [set_config_file], page 50.

See Section 1.4.11 [get_config_string], page 55.

See Section 1.4.21 [set_config_float], page 59.

See Section 1.4.19 [set_config_int|, page 58.

[

See Section 1.4.20 [set_config_hex], page 59.
[
[

See Section 1.4.22 [set_config_id], page 59.

Chapter 1: API 59

1.4.19 set_config_int

void set_config_int(const char *section, const char *name, int val);
Writes an integer variable to the current config file. See the comments about
set_config_string().

See also:

See Section 1.4.1 [set_config_file|, page 50.
See Section 1.4.12 [get_config_int], page 56.
See Section 1.4.18 [set_config_string], page 58.

[

See Section 1.4.21 [set_config_float], page 59.

See Section 1.4.20 [set_config_hex], page 59.
[

See Section 1.4.22 [set_config_id], page 59.

1.4.20 set_config_hex

void set_config hex(const char *section, const char *name, int val) ;
Writes an integer variable to the current config file, in hexadecimal format. See
the comments about set_config_string().

See also:

See Section 1.4.1 [set_config_file|, page 50.
See Section 1.4.13 [get_config_hex], page 56.
See Section 1.4.18 [set_config_string], page 58.
See Section 1.4.21 [set_config_float], page 59.
See Section 1.4.19 [set_config_int], page 58.
[

See Section 1.4.22 [set_config_id], page 59.

1.4.21 set_config_float

void set_config float(const char *section, const char *name, float val);
Writes a floating point variable to the current config file. See the comments
about set_config_string().

See also:

See Section 1.4.1 [set_config_file|, page 50.
See Section 1.4.14 [get_config_float], page 56.
See Section 1.4.18 [set_config_string], page 58.
See Section 1.4.20 [set_config_hex], page 59.
See Section 1.4.19 [set_config_int], page 58.
[

See Section 1.4.22 [set_config_id], page 59.

60

1.4.22

Allegro Manual

set_config_id

void set_config id(const char *section, const char *name, int val);

See also:

Writes a 4-letter driver ID variable to the current config file. See the comments
about set_config_string().

See Section 1.4.1 [set_config_file], page 50.
See Section 1.4.15 [get_config_id], page 57.

See Section 1.4.18 [set_config_string], page 58.

See Section 1.4.20 [set_config_hex], page 59.

[

See Section 1.4.21 [set_config_float], page 59.
[
[

See Section 1.4.19 [set_config_int], page 58.

1.4.23

Standard config variables

Allegro uses these standard variables from the configuration file:

e [system]
Section containing general purpose variables:

system = x
Specifies which system driver to use. This is currently only useful on Linux, for
choosing between the XWindows ("XWIN") or console ("LNXC") modes.

keyboard = x

Specifies which keyboard layout to use. The parameter is the name of a keyboard
mapping file produced by the keyconf utility, and can either be a fully qualified
file path or a basename like ‘us’ or ‘uk’. If the latter, Allegro will look first for a
separate config file with that name (eg. ‘uk.cfg’) and then for an object with that
name in the ‘keyboard.dat’ file (eg. ‘UK_CFG’). The config file or ‘keyboard.dat’
file can be stored in the same directory as the program, or in the location pointed
to by the ALLEGRO environment variable. Look in the ‘keyboard.dat’ file to see
what mappings are currently available.

language = x

Specifies which language file to use for error messages and other bits of system
text. The parameter is the name of a translation file, and can either be a fully
qualified file path or a basename like ‘en’ or ‘es’. If the latter, Allegro will look
first for a separate config file with a name in the form ‘entext.cfg’, and then for an
object with that name in the ‘language.dat’ file (eg. ‘ENTEXT_CFG’). The config
file or ‘language.dat’ file can be stored in the same directory as the program, or in
the location pointed to by the ALLEGRO environment variable.

Look in the ‘language.dat’ file to see which mappings are currently available. If
there is none for your language, you can create it using the English one as model,
and even send it to the Allegro development team to include it in future releases.

disable_screensaver = x
Specifies whether to disable the screensaver: 0 to never disable it, 1 to disable it
in fullscreen mode only and 2 to always disable it. Default is 1.

Chapter 1: API 61

menu_opening_delay = x
Sets how long the menus take to auto-open. The time is given in milliseconds
(default is ‘300”). Specifying ‘-1’ will disable the auto-opening feature.

e [graphics]
Section containing graphics configuration information, using the variables:

gfx_card = x

Specifies which graphics driver to wuse when the program requests
GFX_AUTODETECT. Multiple possible drivers can be suggested with extra
lines in the form ‘gfx_cardl = x’, ‘gfx_card2 = x’, etc, or you can specify different
drivers for each mode and color depth with variables in the form ‘gfx_card_24bpp
= x’, ‘gfx_card_640x480x16 = x’, etc.

gfx_cardw = x

Specifies which graphics driver to wuse when the program requests
GFX_AUTODETECT_WINDOWED. This variable functions exactly like
gfx_card in all other respects. If it is not set, Allegro will look for the gfx_card
variable.

disable_vsync = x

Specifies whether to disable synchronization with the vertical blank when page-
flipping (yes or no). Disabling synchronization may increase the frame rate on
slow systems, at the expense of introducing flicker on fast systems.

vbeaf_driver = x

DOS and Linux only: specifies where to look for the VBE/AF driver (vbeaf.drv). If
this variable is not set, Allegro will look in the same directory as the program, and
then fall back on the standard locations (‘c:\” for DOS, ¢/usr/local/lib’, ¢ /usr/lib’,
‘/lib’, and ¢/’ for Linux, or the directory specified with the VBEAF_PATH envi-
ronment variable).

framebuffer = x

Linux only: specifies what device file to use for the fbcon driver. If this variable
is not set, Allegro checks the FRAMEBUFFER environment variable, and then
defaults to ‘/dev/fb0’.

force_centering = x

Unix/X11 only: specifies whether to force window centering in fullscreen mode
when the XWF'S driver is used (yes or no). Enabling this setting may cause some
artifacts to appear on KDE desktops.

disable_direct_updating = x

Windows only: specifies whether to disable direct updating when the
GFX_DIRECTX_WIN driver is used in color conversion mode (yes or no). Direct
updating can cause artifacts to be left on the desktop when the window is moved
or minimized; disabling it results in a significant performance loss.

e [mouse]
Section containing mouse configuration information, using the variables:

mouse = X
Mouse driver type. Available DOS drivers are:

MICK - mickey mode driver (normally the best)

62 Allegro Manual

I33 - int 0x33 callback driver
POLL - timer polling (for use under NT)

Linux console mouse drivers are:

MS - Microsoft serial mouse

IMS - Microsoft serial mouse with Intellimouse extension
LPS2 - PS2 mouse

LIPS - PS2 mouse with Intellimouse extension

GPMD - GPM repeater data (Mouse Systems protocol)

EV - Event interfaces (EVDEV)

e num_buttons = x
Sets the number of mouse buttons viewed by Allegro. You don’t normally need to
set this variable because Allegro will autodetect it. You can only use it to restrict
the set of actual mouse buttons to zero or positive values, negative values will be
ignored.

e emulate_three = x
Sets whether to emulate a third mouse button by detecting chords of the left and
right buttons (yes or no). Defaults to no.

e mouse_device = x
Linux only: specifies the name of the mouse device file (eg. ‘/dev/mouse’).

e ev_absolute = x
Linux only: specifies the mode for the default EV input: 0 - relative mode: pointer
position changes if the input moves, 1 - absolute mode: pointer position is the input
position. If unspecified, the mode is relative. If the device supports several tools
(such as a graphic tablet), the default input is the mouse. If the device has only
one tool (e.g. a normal mouse) the default input is this tool. All additionnal tools
work in absolute mode.

e ev_.min_.x = X
ev_max_X = X
ev_min_.y = x
ev_max.y = X
ev_min_z = x
ev_max_-z = X
Linux only: for absolute EV inputs, minimum and maximum value. By default
this information is autodetected.

e mouse_accel_factor = x
Windows only: specifies the mouse acceleration factor. Defaults to 1. Set it to 0
in order to disable mouse acceleration. 2 accelerates twice as much as 1.

e [sound]
Section containing sound configuration information, using the variables:
e digi_card = x
Sets the driver to use for playing digital samples.
e midi_card = x
Sets the driver to use for MIDI music.

Chapter 1: API 63

e digi_input_card = x
Sets the driver to use for digital sample input.
e midi_input_card = x
Sets the driver to use for MIDI data input.
e digi_voices = x
Specifies the minimum number of voices to reserve for use by the digital sound
driver. How many are possible depends on the driver.
e midi_voices = x
Specifies the minimum number of voices to reserve for use by the MIDI sound
driver. How many are possible depends on the driver.
e digi_volume = x
Sets the volume for digital sample playback, from 0 to 255.
e midi_volume = x
Sets the volume for midi music playback, from 0 to 255.
e quality = x
Controls the sound quality vs. performance tradeoff for the sample mixing code.
This can be set to any of the values:

0 - fast mixing of 8-bit data into 16-bit buffers
1 - true 16-bit mixing (requires a 16-bit stereo soundcard)
2 - interpolated 16-bit mixing
e flip_pan = x
Toggling this between 0 and 1 reverses the left/right panning of samples, which
might be needed because some SB cards get the stereo image the wrong way round.

e sound_freq = x
DOS, Unix and BeOS: sets the sample frequency. With the SB driver, possible
rates are 11906 (any), 16129 (any), 22727 (SB 2.0 and above), and 45454 (only on
SB 2.0 or SB16, not the stereo SB Pro driver). On the ESS Audiodrive, possible
rates are 11363, 17046, 22729, or 44194. On the Ensoniq Soundscape, possible
rates are 11025, 16000, 22050, or 48000. On the Windows Sound System, possible
rates are 11025, 22050, 44100, or 48000. Don’t worry if you set some other number
by mistake: Allegro will automatically round it to the closest supported frequency.

e sound_bits = x

Unix and BeOS: sets the preferred number of bits (8 or 16).
e sound_stereo = x

Unix and BeOS: selects mono or stereo output (0 or 1).
e sound_port = x

DOS only: sets the soundcard port address (this is usually 220).
e sound_dma = x

DOS only: sets the soundcard DMA channel (this is usually 1).
e sound_irq = x

DOS only: sets the soundcard IRQ number (this is usually 7).
e fm_port = x

DOS only: sets the port address of the OPL synth (this is usually 388).

64

Allegro Manual

mpu-port = x

DOS only: sets the port address of the MPU-401 MIDI interface (this is usually
330).

mpu_irq = x

DOS only: sets the IRQ for the MPU-401 (this is usually the same as sound_irq).
ibk_file = x

DOS only: specifies the name of a .IBK file which will be used to replace the
standard Adlib patch set.

ibk_drum_file = x
DOS only: specifies the name of a .IBK file which will be used to replace the
standard set of Adlib percussion patches.

oss_driver = x
Unix only: sets the OSS device driver name. Usually ‘/dev/dsp’ or ‘/dev/audio’,
but could be a particular device (e.g. ‘/dev/dsp2’).

oss_numfrags = x

oss_fragsize = x

Unix only: sets number of OSS driver fragments (buffers) and size of each buffer
in samples. Buffers are filled with data in the interrupts where interval between
subsequent interrupts is not less than 10 ms. If hardware can play all information
from buffers faster than 10 ms, then there will be clicks, when hardware have
played all data and library has not prepared new data yet. On the other hand, if
it takes too long for device driver to play data from all buffers, then there will be
delays between action which triggers sound and sound itself.

oss_midi_driver = x
Unix only: sets the OSS MIDI device name. Usually ‘/dev/sequencer’.

oss_mixer_driver = x
Unix only: sets the OSS mixer device name. Usually ‘/dev/mixer’.

esd_server = x
Unix only: where to find the ESD (Enlightened Sound Daemon) server.

alsa_card = x
alsa_pcmdevice = x
Unix only: card number and PCM device for the ALSA 0.5 sound driver.

alsa_device = x

Unix only: device name for the ALSA 0.9 sound driver. The format is
<driver>[:<card>,<device>|, for example: ‘hw:0,1’.

alsa_mixer_device = x

Unix only: mixer device name for the ALSA 0.9 sound driver. The default is
"default".

alsa_mixer_elem = x

Unix only: mixer element name for the ALSA 0.9 driver. The default is PCM.
alsa_numfrags = x

Unix only: number of ALSA driver fragments (buffers).

alsa_fragsize = x

Unix only: size of each ALSA fragment, in samples.

Chapter 1: API 65

e alsa_rawmidi_card = x
Unix only: card number and device for the ALSA 0.5 midi driver.

e alsa_rawmidi_device = x
Unix only: device for the ALSA 0.5 midi driver or device name for the ALSA 0.9
midi driver (see alsa_device for the format).

e jack_client_name = x
Sets the name with which Allegro should identify itself to the Jack audio server.

e jack_buffer_size = x
Forces a buffer size for the transfer buffer from Allegro’s mixer to Jack.

e be_midi_quality = x
BeOS only: system MIDI synthesizer instruments quality. 0 uses low quality 8-bit
11 kHz samples, 1 uses 16-bit 22 kHz samples.

e be_midi_freq = x
BeOS only: MIDI sample mixing frequency in Hz. Can be 11025, 22050 or 44100.

e be_midi_interpolation = x
BeOS only: specifies the MIDI samples interpolation method. 0 doesn’t interpo-
late, it’s fast but has the worst quality; 1 does a fast interpolation with better
performances, but it’s a bit slower than the previous method; 2 does a linear inter-
polation between samples, it is the slowest method but gives the best performances.

e be_midi_reverb = x
BeOS only: reverberation intensity, from 0 to 5. 0 disables it, 5 is the strongest
one.

e ca_midi_quality = x
MacOS X only: CoreAudio MIDI synthesizer rendering quality, from 0 to 127.
Higher qualities sound better but increase the CPU work load.

e ca_midi_reverb = x
MacOS X only: CoreAudio MIDI synthesizer reverberation intensity, from 0 to 5.
0 equals to a small room (low reverb), 5 to a plate (high reverb).

e patches = x
Specifies where to find the sample set for the DIGMID driver. This can either
be a Gravis style directory containing a collection of .pat files and a ‘default.cfg’
index, or an Allegro datafile produced by the pat2dat utility. If this variable is
not set, Allegro will look either for a ‘default.cfg’ or ‘patches.dat’ file in the same
directory as the program, the directory pointed to by the ALLEGRO environ-
ment variable, and the standard GUS directory pointed to by the ULTRASND
environment variable.
e [midimap]

If you are using the SB MIDI output or MPU-401 drivers with an external synthesiser

that is not General MIDI compatible, you can use the midimap section of the config

file to specify a patch mapping table for converting GM patch numbers into whatever

bank and program change messages will select the appropriate sound on your synth.

This is a real piece of self-indulgence. I have a Yamaha TG500, which has some great

sounds but no GM patch set, and I just had to make it work somehow...

This section consists of a set of lines in the form:

66 Allegro Manual

e p<n> = bank0 bankl prog pitch
With this statement, n is the GM program change number (1-128), bank0 and
bankl are the two bank change messages to send to your synth (on controllers #0
and #32), prog is the program change message to send to your synth, and pitch is
the number of semitones to shift everything that is played with that sound. Setting
the bank change numbers to -1 will prevent them from being sent.

For example, the line:

p36 = 0 34 9 12

specifies that whenever GM program 36 (which happens to be a fretless bass) is
selected, Allegro should send a bank change message #0 with a parameter of 0,
a bank change message #32 with a parameter of 34, a program change with a
parameter of 9, and then should shift everything up by an octave.

e [joystick]
Section containing joystick configuration information, using the variables:
e joytype = x

Specifies which joystick driver to wuse when the program requests
JOY_TYPE_AUTODETECT.

e joystick_device = x
BeOS and Linux only: specifies the name of the joystick device to be used (as
reported in the system joystick preferences under BeOS). The first device found is
used by default. If you want to specify the device for each joystick, use variables
of the form joystick_device_n, where n is the joystick number.

e throttle_axis = x
Linux only: sets the axis number the throttle is located at. This variable will
be used for every detected joystick. If you want to specify the axis number for
each joystick individually, use variables of the form throttle_axis_n, where n is the
joystick number.

See also:

See Section 1.4.1 [set_config_file|, page 50.

See Section 1.4.18 [set_config_string], page 58.
See Section 1.4.11 [get_config_string], page 55.

1.5 Mouse routines

Allegro provides functions for reading the mouse state and displaying a mouse cursor on-
screen. You can read the absolute position of the mouse and the state of the mouse buttons
from global variables. Additionally, you can read the mouse position difference as mouse
mickeys, which is the number of pixels the cursor moved since the last time this information
was read.

Allegro offers three ways to display the mouse cursor:

e Standard Allegro cursor
Allegro is responsible for drawing the mouse cursor from a timer. Use

Chapter 1: API 67

set_mouse_sprite() and show_mouse() to define your own cursor and display it on the
screen. You need to call scare_mouse()/unscare_mouse() to hide the mouse cursor
whenever you draw to the screen.

e Custom operating system cursor (hardware cursor)

Allegro will let the operating system draw the mouse cursor. Use set_mouse_sprite()
and show_mouse() (or show_os_cursor) to define your own cursor and display it on the
screen. Not all graphics drivers are capable of this and some may only be able to display
cursors upto a certain size. Allegro will fall back on its own cursor drawing if it cannot
let the OS handle this. On some platforms, the hardware cursor is incompatible with
get_mouse_mickeys() and it is therefor disabled by default. In such cases you need to
call enable_hardware_cursor() to enable it explicitly.

e Default operating system cursor
Allegro will not draw its own cursor, but use the operating system default cursor.
You can use the select_mouse_cursor() function to select the cursor shape to display.
As with custom operating system cursors, you need to call enable_hardware_cursor()
before you can use this. Or you can use the low level show_os_cursor() function.

Not all drivers will support all functionality. See the platform specific information for more
details.

1.5.1 install_mouse

int install_mouse();
Installs the Allegro mouse handler. You must do this before using any other
mouse functions.

Returns -1 on failure, zero if the mouse handler is already installed (in which
case this function does nothing) and the number of buttons on the mouse if
the mouse handler has successfully been installed (ie. this is the first time a
handler is installed or you have removed the previous one).

Note that the number of mouse buttons returned by this function is more an
indication than a physical reality. With most devices there is no way of telling
how many buttons there are, and any user can override the number of mouse
buttons returned by this function with a custom configuration file and the
variable num_buttons. Even if this value is overriden by the user, the global
mouse variables will still report whatever the hardware is sending.

See also:
See Section 1.5.2 [remove_mouse|, page 68.
See Section 1.5.3 [poll_mouse], page 68.
See Section 1.5.9 [mouse_x], page 71.

See Section 1.5.11
See Section 1.5.23
See Section 1.5.17
See Section 1.5.19
See Section 1.5.20
See Section 1.4.23

show_mouse], page 73.
get_mouse_mickeys|, page 76.
position_mouse|, page 75.
set_mouse_range|, page 75.
set_mouse_speed], page 76.

Standard config variables], page 60.

68 Allegro Manual

See Section 3.4 [Available|, page 387.

1.5.2 remove_mouse

void remove_mouse() ;
Removes the mouse handler. You don’t normally need to bother calling this,
because allegro_exit() will do it for you.

See also:
See Section 1.5.1 [install_mouse], page 67.
See Section 1.1.3 [allegro_exit], page 2.

1.5.3 poll_mouse

int poll_mouse();
Wherever possible, Allegro will read the mouse input asynchronously (ie. from
inside an interrupt handler), but on some platforms that may not be possible,
in which case you must call this routine at regular intervals to update the
mouse state variables. To help you test your mouse polling code even if you
are programming on a platform that doesn’t require it, after the first time that
you call this function Allegro will switch into polling mode, so from that point
onwards you will have to call this routine in order to get any mouse input at
all, regardless of whether the current driver actually needs to be polled or not.

Returns zero on success, or a negative number on failure (ie. no mouse driver
installed).

See also:

See Section 1.5.4 [mouse_needs_poll], page 68.
See Section 1.5.1 [install_mouse], page 67.
See Section 1.5.9 [mouse_x|, page 71.

See Section 3.4.33 [exlights|, page 417.

See Section 3.4.10 [exmouse], page 393.

See Section 3.4.29 [exshade], page 413.

See Section 3.4.44 [exspline], page 432.

See Section 3.4.25 [extrans], page 409.

1.5.4 mouse_needs_poll

int mouse_needs_poll();
Returns TRUE if the current mouse driver is operating in polling mode.

See also:

See Section 1.5.3 [poll_mouse], page 68.
See Section 1.5.1 [install_mouse], page 67.
See Section 1.5.9 [mouse_x|, page 71.

Chapter 1: API 69

1.5.5 enable_hardware_cursor

void enable_hardware_cursor(void);
After calling this function, Allegro will let the operating system draw the
mouse cursor instead of doing it itself. This is not possible with all graph-
ics drivers though: you’ll need to check the gfx_capabilities flags after calling
show_mouse() to see if this works. On some platforms, enabling the hardware
cursor causes get_mouse_mickeys() to return only a limited range of values, so
you should not call this function if you need mouse mickeys.

See also:

See Section 1.5.1 [install_mouse|, page 67.

See Section 1.5.11 [show_mouse], page 73.

See Section 1.5.21 [set_mouse_sprite], page 76.

See Section 1.5.23 [get_mouse_mickeys|, page 76.
See Section 1.9.13 [gfx_capabilities|, page 111.

See Section 1.5.6 [disable_hardware_cursor|, page 69.
See Section 1.5.15 [show_os_cursor]|, page 74.

See Section 3.4.45 [exsyscur], page 434.

1.5.6 disable_hardware_cursor

void disable_hardware_cursor(void);
After calling this function, Allegro will be responsible for drawing the
mouse cursor rather than the operating system. On some platforms calling
enable_hardware_cursor() makes the return values of get_mouse_mickeys()
unreliable. After calling this function, get-mouse_mickeys() returns reliable
results again.

See also:

See Section 1.5.1 [install_mouse|, page 67.

See Section 1.5.11 [show_mouse], page 73.

See Section 1.5.21 [set_mouse_sprite], page 76.

See Section 1.5.23 [get_mouse_mickeys|, page 76.
See Section 1.9.13 [gfx_capabilities|, page 111.

See Section 1.5.5 [enable_hardware_cursor], page 69.

1.5.7 select_mouse_cursor

void select_mouse_cursor(int cursor);
This function allows you to use the operating system’s native mouse cursors
rather than some custom cursor. You will need to enable this functionality
by calling enable_hardware_cursor() beforehand. If the operating system does
not support this functionality, or if it has not been enabled, then Allegro will
substitute its own cursor images. You can change these substitute images using
set_mouse_cursor_bitmap().

70

See also:

Allegro Manual

Note that the effects of this function are not apparent until show_mouse() is
called.

To know whether the operating system’s native cursor is being used, or if Allegro
has made a substitution, you can check the GFX_SYSTEM_CURSOR flag in
gfx_capabilities after calling show_mouse().

The cursor argument selects the type of cursor to be displayed:
MOUSE_CURSOR_NONE

Selects an invisible mouse cursor. In that sense, it is similar to calling

show_mouse(NULL);

MOUSE_CURSOR_ALLEGRO
Selects the custom Allegro cursor, i.e. the one that you set with
set_mouse_sprite().

MOUSE_CURSOR_ARROW
The operating system default arrow cursor.

MOUSE_CURSOR_BUSY
The operating system default ‘busy’ cursor (hourglass).

MOUSE_CURSOR_-QUESTION
The operating system default ‘question’ cursor (arrow with question mark).

MOUSE_CURSOR_EDIT
The operating system default ‘edit’ cursor (vertical bar).

Example:

/* initialize mouse sub-system */
install_mouse();
enable_hardware_cursor();

/* Set busy pointer */
select_mouse_cursor (MOUSE_CURSOR_BUSY) ;
show_mouse (screen) ;

/* Initialize stuff */

/* Set normal arrow pointer */
select_mouse_cursor (MOUSE_CURSOR_ARROW) ;

See Section 1.5.1 [install_mouse], page 67.

See Section 1.5.11 [show_mouse], page 73.

See Section 1.5.21 [set_mouse_sprite], page 76.

See Section 1.9.13 [gfx_capabilities], page 111.

See Section 1.5.5 [enable_hardware_cursor], page 69.

See Section 1.5.8 [set_mouse_cursor_bitmap|, page 71.

See Section 1.5.15 [show_os_cursor]|, page 74.

Chapter 1: API 71

See Section 3.4.45 [exsyscur|, page 434.

1.5.8 set_mouse_cursor_bitmap

void set_mouse_cursor_bitmap(int cursor, BITMAP *bmp) ;
This function changes the cursor image Allegro uses if select_mouse_cursor() is
called but no native operating system cursor can be used, e.g. because you did
not call enable_hardware_cursor().

The cursor argument can be one of:
MOUSE_CURSOR-ALLEGRO
MOUSE_CURSOR_ARROW
MOUSE_CURSOR_BUSY
MOUSE_CURSOR_QUESTION
MOUSE_CURSOR_EDIT

but not MOUSE_CURSOR_NONE.

The bmp argument can either point to a valid bitmap or it can be NULL.
Passing a bitmap makes Allegro use that image in place of its own default
substition (should the operating system’s native cursor be unavailable). The
bitmap must remain available for the duration in which it could be used. Passing
NULL lets Allegro revert to its default substitutions.

The effect of this function will not be apparent until show_mouse() is called.

See also:

See Section 1.5.1 [install_mouse], page 67.

See Section 1.5.11 [show_mouse], page 73.

See Section 1.5.21 [set_mouse_sprite], page 76.

See Section 1.9.13 [gfx_capabilities|, page 111.

See Section 1.5.5 [enable_hardware_cursor], page 69.
See Section 1.5.15 [show_os_cursor]|, page 74.

See Section 1.2.2 [BITMAP], page 13.

1.5.9 mouse_x

extern volatile int mouse_x;
extern volatile int mouse_y;
extern volatile int mouse_z;
extern volatile int mouse_b;

extern volatile int mouse_pos;
Global variables containing the current mouse position and button state.
Wherever possible these values will be updated asynchronously, but if
mouse_needs_poll() returns TRUE, you must manually call poll_mouse() to
update them with the current input state. The ‘mouse_x’ and ‘mouse_y’
positions are integers ranging from zero to the bottom right corner of the

72

See also:

Allegro Manual

screen. The ‘mouse_z’ variable holds the current wheel position, when using
an input driver that supports wheel mice. The ‘mouse_b’ variable is a bitfield
indicating the state of each button: bit 0 is the left button, bit 1 the right,
and bit 2 the middle button. Additional non standard mouse buttons might
be available as higher bits in this variable. Usage example:

if (mouse_b & 1)
printf("Left button is pressed\n");

if (!(mouse_b & 2))
printf ("Right button is not pressed\n");

The ‘mouse_pos’ variable has the current X coordinate in the upper 16 bits and
the Y in the lower 16 bits. This may be useful in tight polling loops where a
mouse interrupt could occur between your reading of the two separate variables,
since you can copy this value into a local variable with a single instruction and
then split it up at your leisure. Example:

int pos, x, V;

pos = mouse_pos;
x = pos >> 16;
y = pos & 0xOO000ffff;

See Section 1.5.1 [install_mouse], page 67.
See Section 1.5.3 [poll_mouse|, page 68.
See Section 1.5.4 [mouse_needs_poll], page 68.

See Section 3.4.32
See Section 3.4.33
See Section 3.4.10
See Section 3.4.29
See Section 3.4.44
See Section 3.4.25

exalphal, page 416.
exlights], page 417.
exmouse|, page 393.
exshade], page 413.
exspline|, page 432.

extrans|, page 409.

1.5.10 mouse_sprite

extern BITMAP *mouse_sprite;

extern int mouse_x_focus;

extern int mouse_y_focus;

See also:

Global variables containing the current mouse sprite and the focus point.
These are read-only, and only to be modified using the set_mouse_sprite() and
set_mouse_sprite_focus() functions.

See Section 1.5.21 [set_mouse_sprite], page 76.

Chapter 1: API 73

See Section 1.5.22 [set_mouse_sprite_focus], page 76.
See Section 1.2.2 [BITMAP], page 13.

1.5.11 show_mouse
void show_mouse(BITMAP *bmp) ;

See also:

Tells Allegro to display a mouse pointer on the screen. This will only work if
the timer module has been installed. The mouse pointer will be drawn onto the
specified bitmap, which should normally be ‘screen’ (see later for information
about bitmaps). To hide the mouse pointer, call show_mouse(NULL).

Warning: if you draw anything onto the screen while the pointer is visible, a
mouse movement interrupt could occur in the middle of your drawing operation.
If this happens the mouse buffering and graphics drawing code will get confused
and will leave 'mouse droppings’ all over the screen. To prevent this, you must
make sure you turn off the mouse pointer whenever you draw onto the screen.
This is not needed if you are using a hardware cursor.

See Section 1.5.1 [install_mouse], page 67.

See Section 1.6.1 [install_timer|, page 77.

See Section 1.5.21 [set_mouse_sprite], page 76.

See Section 1.5.12 [scare_mouse], page 73.

See Section 1.5.16

freeze_mouse_flag], page 75.

[
[

See Section 1.5.15 [show_os_cursor|, page 74.
[

See Section 3.4.10 [exmouse], page 393.

See Section 3.4.3 [expal], page 388.
See Section 3.4.29 [exshade], page 413.
See Section 3.4.44 [exspline|, page 432.

See Section 3.4.45 [exsyscur], page 434.
See Section 1.2.2 [BITMAP], page 13.

1.5.12 scare_mouse

void scare_mouse();

See also:

Helper for hiding the mouse pointer prior to a drawing operation. This will
temporarily get rid of the pointer, but only if that is really required (ie. the
mouse is visible, and is displayed on the physical screen rather than some other
memory surface, and it is not a hardware or OS cursor). The previous mouse
state is stored for subsequent calls to unscare_mouse().

See Section 1.5.14 [unscare_mouse|, page 74.

See Section 1.5.13 [scare_mouse_area|, page 74.

See Section 1.5.11 [show_mouse], page 73.

74

Allegro Manual

1.5.13 scare_mouse_area

void scare_mouse_area(int x, int y, int w, int h);

See also:

Like scare_mouse(), but will only hide the cursor if it is inside the specified
rectangle. Otherwise the cursor will simply be frozen in place until you call
unscare_mouse(), so it cannot interfere with your drawing.

See Section 1.5.14 [unscare_mouse|, page 74.

See Section 1.5.12 [scare_mouse|, page 73.

See Section 1.5.11 [show_mouse], page 73.

1.5.14 unscare_mouse

void unscare_mouse();

See also:

Undoes the effect of a previous call to scare_mouse() or scare_mouse_area(),
restoring the original pointer state.

See Section 1.5.12 [scare_mouse|, page 73.

See Section 1.5.13 [scare_mouse_area|, page 74.

1.5.15 show_os_cursor

int show_os_cursor(int cursor);

See also:

In case you do not need Allegro’s mouse cursor API, which automatically emu-
lates a cursor in software if no other cursor is available, you can use this low level
function to try to display or hide the system cursor directly. The cursor param-
eter takes the same values as select_mouse_cursor. This function is very similar
to calling enable_hardware_cursor, select_mouse_cursor and show_mouse, but
will not try to do anything if no system cursor is available.

The most common use for this function is to just call it once at the beginning
of the program to tell it to display the system cursor inside the Allegro window.
The return value can be used to see if this suceeded or not. On some systems
(e.g. DirectX fullscreen) this is not supported and the function will always
fail, and in other cases only some of the cursors will work, or in the case of
MOUSE_CURSOR_ALLEGRO, only certain bitmap sizes may be supported.

You never should use show_os_cursor together with the function show_mouse
and other functions affecting it (select_mouse_cursor, enable_hardware_cursor,
disable_hardware_cursor, scare_mouse, unscare_mouse). They implement the
standard high level mouse API, and don’t work together with this low level
function.

Returns 0 if a system cursor is being displayed after the function returns, or -1
otherwise.

See Section 1.5.11 [show_mouse], page 73.

Chapter 1: API 75

See Section 1.5.8 [set_mouse_cursor_bitmap], page 71.
See Section 1.5.7 [select_mouse_cursor]|, page 69.

1.5.16 freeze_mouse_flag

extern volatile int freeze_mouse_flag;
If this flag is set, the mouse pointer won’t be redrawn when the mouse moves.
This can avoid the need to hide the pointer every time you draw to the screen,
as long as you make sure your drawing doesn’t overlap with the current pointer
position.

See also:

See Section 1.5.11 [show_mouse], page 73.

1.5.17 position_mouse

void position_mouse(int x, int y);
Moves the mouse to the specified screen position. It is safe to call even when a
mouse pointer is being displayed.

See also:

See Section 1.5.1 [install_mouse|, page 67.

See Section 1.5.18 [position-mouse_z|, page 75.

See Section 1.5.19 [set_mouse_range|, page 75.

See Section 1.5.20 [set_mouse_speed], page 76.

1.5.18 position_mouse_z

void position_mouse_z(int z);
Sets the mouse wheel position variable to the specified value.
See also:
See Section 1.5.1 [install_mouse], page 67.
See Section 1.5.17 [position_mouse|, page 75.

1.5.19 set_mouse_range

void set_mouse_range(int x1, int yl1, int x2, int y2);
Sets the area of the screen within which the mouse can move. Pass the top left
corner and the bottom right corner (inclusive). If you don’t call this function
the range defaults to (0, 0, SCREEN_W-1, SCREEN_H-1).

See also:

See Section 1.5.1 [install_mouse], page 67.

See Section 1.5.20 [set_mouse_speed], page 76.
See Section 1.5.17 [position_mouse|, page 75.

76 Allegro Manual

1.5.20 set_mouse_speed

void set_mouse_speed(int xspeed, int yspeed);
Sets the mouse speed. Larger values of xspeed and yspeed represent slower
mouse movement: the default for both is 2.

See also:

See Section 1.5.1 [install_mouse|, page 67.

See Section 1.5.19 [set_mouse_range|, page 75.
See Section 1.5.17 [position_mouse|, page 75.

1.5.21 set_mouse_sprite

void set_mouse_sprite(BITMAP *sprite);
You don’t like Allegro’s mouse pointer? No problem. Use this function to
supply an alternative of your own. If you change the pointer and then want to
get Allegro’s lovely arrow back again, call set_mouse_sprite(NULL).

As a bonus, set_mouse_sprite(NULL) uses the current palette in choosing colors
for the arrow. So if your arrow mouse sprite looks ugly after changing the
palette, call set_mouse_sprite(NULL).

See also:

See Section 1.5.1 [install_mouse], page 67.

See Section 1.5.11 [show_mouse], page 73.

See Section 1.5.22 [set_mouse_sprite_focus], page 76.
See Section 3.4.10 [exmouse], page 393.

See Section 1.2.2 [BITMAP], page 13.

1.5.22 set_mouse_sprite_focus

void set_mouse_sprite_focus(int x, int y);
The mouse focus is the bit of the pointer that represents the actual mouse
position, ie. the (mouse_x, mouse_y) position. By default this is the top left
corner of the arrow, but if you are using a different mouse pointer you might
need to alter it.

See also:
See Section 1.5.21 [set_mouse_sprite], page 76.
See Section 3.4.10 [exmouse], page 393.

1.5.23 get_mouse_mickeys

void get_mouse_mickeys(int *mickeyx, int *mickeyy);
Measures how far the mouse has moved since the last call to this function. The
values of mickeyx and mickeyy will become negative if the mouse is moved left
or up, respectively. The mouse will continue to generate movement mickeys

Chapter 1: API 7

even when it reaches the edge of the screen, so this form of input can be useful
for games that require an infinite range of mouse movement.

Note that the infinite movement may not work in windowed mode, since under
some platforms the mouse would leave the window, and may not work at all if
the hardware cursor is in use.

See also:
See Section 1.5.1 [install_mouse], page 67.
See Section 3.4.10 [exmouse], page 393.

1.5.24 mouse_callback

extern void (*mouse_callback) (int flags);

Called by the interrupt handler whenever the mouse moves or one
of the buttons changes state. This function must be in locked
memory, and must execute _very_ quickly! It is passed the event
flags that triggered the call, which is a bitmask containing any of
the values MOUSE_FLAG_MOVE, MOUSE_FLAG_LEFT_DOWN,
MOUSE_FLAG_LEFT_UP, MOUSE_FLAG_RIGHT_DOWN,
MOUSE_FLAG_RIGHT_UP, MOUSE_FLAG_MIDDLE_DOWN,
MOUSE_FLAG_MIDDLE_UP, and MOUSE_FLAG_MOVE_Z. Note that even
if the mouse has more than three buttons, only the first three can be trapped
using a callback.

See also:

See Section 1.5.1 [install_mouse], page 67.

1.6 Timer routines

Allegro can set up several virtual timer functions, all going at different speeds.

Under DOS it will constantly reprogram the clock to make sure they are all called at the
correct times. Because they alter the low level timer chip settings, these routines should
not be used together with other DOS timer functions like the DJGPP uclock() routine.
Moreover, the FPU state is not preserved across Allegro interrupts so you ought not to use
floating point or MMX code inside timer interrupt handlers.

Under other platforms, they are usually implemented using threads, which run parallel to the
main thread. Therefore timer callbacks on such platforms will not block the main thread
when called, so you may need to use appropriate synchronisation devices (eg. mutexes,
semaphores, etc.) when accessing data that is shared by a callback and the main thread.
(Currently Allegro does not provide such devices.)

1.6.1 install_timer

int install_timer();
Installs the Allegro timer interrupt handler. You must do this before installing
any user timer routines, and also before displaying a mouse pointer, playing
FLI animations or MIDI music, and using any of the GUI routines.

78 Allegro Manual

Returns zero on success, or a negative number on failure (but you may decide
not to check the return value as this function is very unlikely to fail).

See also:

See Section 1.6.2 [remove_timer|, page 78.
See Section 1.6.3 [install_int], page 78.
See Section 3.4 [Available], page 387.

1.6.2 remove_timer

void remove_timer();
Removes the Allegro timer handler (and, under DOS, passes control of the clock
back to the operating system). You don’t normally need to bother calling this,
because allegro_exit() will do it for you.

See also:
See Section 1.6.1 [install_timer|, page 77.
See Section 1.1.3 [allegro_exit], page 2.

1.6.3 install_int

int install_int(void (*proc) (), int speed);
Installs a user timer handler, with the speed given as the number of
milliseconds between ticks. This is the same thing as install_int_ex(proc,
MSEC_TO_TIMER(speed)). If you call this routine without having first
installed the timer module, install_timer() will be called automatically. Calling
again this routine with the same timer handler as parameter allows you to
adjust its speed.

Returns zero on success, or a negative number if there is no room to add a new
user timer.

See also:

See Section 1.6.1 [install_timer|, page 77.

See Section 1.6.8 [remove_int|, page 81.

See Section 1.6.4 [install_int_ex], page 78.
See Section 1.6.9 [install_param_int|, page 81.
See Section 3.4.38 [exscn3d], page 425.

See Section 3.4.47 [exswitch], page 436.

See Section 3.4.11 [extimer], page 394.

See Section 3.4.39 [exzbuf], page 426.

1.6.4 install_int_ex

int install_int_ex(void (*proc) (), int speed);
Adds a function to the list of user timer handlers or, if it is already installed,
retroactively adjusts its speed (i.e makes as though the speed change occured

Chapter 1: API 79

precisely at the last tick). The speed is given in hardware clock ticks, of which
there are 1193181 a second. You can convert from other time formats to hard-
ware clock ticks with the macros:

SECS_TO_TIMER(secs) give the number of seconds between

each tick

MSEC_TO_TIMER(msec) - give the number of milliseconds
between ticks

BPS_TO_TIMER (bps) - give the number of ticks each second

BPM_TO_TIMER (bpm) - give the number of ticks per minute

There can only be sixteen timers in use at a time, and some other parts of
Allegro (the GUI code, the mouse pointer display routines, rest(), the FLI
player, and the MIDI player) need to install handlers of their own, so you should
avoid using too many at the same time. If you call this routine without having
first installed the timer module, install_timer() will be called automatically.

Your function will be called by the Allegro interrupt handler and not directly
by the processor, so it can be a normal C function and does not need a special
wrapper. You should be aware, however, that it will be called in an interrupt
context, which imposes a lot of restrictions on what you can do in it. It should
not use large amounts of stack, it must not make any calls to the operating
system, use C library functions, or contain any floating point code, and it must
execute very quickly. Don’t try to do lots of complicated code in a timer handler:
as a general rule you should just set some flags and respond to these later in
your main control loop.

In a DOS protected mode environment like DJGPP, memory is virtualised
and can be swapped to disk. Due to the non-reentrancy of DOS, if a disk
swap occurs inside an interrupt handler the system will die a painful death,
so you need to make sure you lock all the memory (both code and data)
that is touched inside timer routines. Allegro will lock everything it uses,
but you are responsible for locking your handler functions. The macros
LOCK_VARIABLE (variable), END_OF_FUNCTION (function_name),
END_OF_STATIC_FUNCTION (function_name), and LOCK_FUNCTION
(function_name) can be used to simplify this task. For example, if you want
an interrupt handler that increments a counter variable, you should write:

volatile int counter;

void my_timer_handler ()

{

counter++;

END_OF _FUNCTION(my_timer_handler)

and in your initialisation code you should lock the memory:

80 Allegro Manual

LOCK_VARIABLE (counter) ;
LOCK_FUNCTION (my_timer_handler);

Obviously this can get awkward if you use complicated data structures and
call other functions from within your handler, so you should try to keep your
interrupt routines as simple as possible.

Returns zero on success, or a negative number if there is no room to add a new
user timer.

See also:

See Section 1.6.1 [install_timer], page 77.

See Section 1.6.8 [remove_int], page 81.

See Section 1.6.3 [install_int], page 78.

See Section 1.6.10 [install_param_int_ex], page 82.
See Section 3.4.35 [excameral, page 421.

See Section 3.4.23 [exsprite], page 406.

[

[
See Section 3.4.11 [extimer], page 394.
See Section 3.4.18 [exunicod], page 402.
[

See Section 3.4.46 [exupdate], page 435.

1.6.5 LOCK_VARIABLE

Macro LOCK_VARIABLE(variable_name);
Due to interrupts, you are required to lock all the memory used by your timer
routines. See the description of install_int_ex() for a more detailed explanation
and usage example.

See also:

See Section 1.6.3 [install_int], page 78.
See Section 1.6.4 [install_int_ex], page 78.
See Section 3.4.38 [exscn3d], page 425.
See Section 3.4.23 [exsprite], page 406.
See Section 3.4.47 [exswitch], page 436.
See Section 3.4.11 [extimer], page 394.
See Section 3.4.46 [exupdate], page 435.
See Section 3.4.39 [exzbuf], page 426.

1.6.6 LOCK_FUNCTION

Macro LOCK_FUNCTION(function_name);
Due to interrupts, you are required to lock all the memory used by your timer
routines. See the description of install_int_ex() for a more detailed explanation
and usage example.

See also:
See Section 1.6.3 [install_int], page 78.

Chapter 1: API 81

See Section 1.6.4 [install_int_ex], page 78.
See Section 3.4.12 [exkeys]|, page 395.

See Section 3.4.38 [exscn3d], page 425.
See Section 3.4.23 [exsprite], page 406.
See Section 3.4.47 [exswitch]|, page 436.
See Section 3.4.11 [extimer], page 394.
See Section 3.4.46 [exupdate], page 435.
See Section 3.4.39 [exzbuf], page 426.

1.6.7 END_OF_FUNCTION

Macro END_OF_FUNCTION(function_name) ;
Due to interrupts, you are required to lock all the code used by your timer
routines. See the description of install_int_ex() for a more detailed explanation
and usage example.

See also:

See Section 1.6.3 [install_int], page 78.
See Section 1.6.4 [install_int_ex|, page 78.
See Section 3.4.12 [exkeys], page 395.

See Section 3.4.38 [exscn3d], page 425.
See Section 3.4.23 [exsprite], page 406.
See Section 3.4.47 [exswitch], page 436.
See Section 3.4.11 [extimer], page 394.
See Section 3.4.46 [exupdate], page 435.
See Section 3.4.39 [exzbuf], page 426.

1.6.8 remove_int

void remove_int(void (*proc)());
Removes a function from the list of user interrupt routines. At program termi-
nation, allegro_exit() does this automatically.

See also:

See Section 1.6.3 [install_int], page 78.

See Section 1.6.4 [install_int_ex], page 78.

See Section 1.6.11 [remove_param_int|, page 82.

1.6.9 install_param_int

int install_param_int(void (*proc)(void *), void *param, int speed);
Like install_int(), but the callback routine will be passed a copy of the specified
void pointer parameter. To disable the handler, use remove_param_int() instead
of remove_int().

82 Allegro Manual

See also:

See Section 1.6.1 [install_timer|, page 77.

See Section 1.6.11 [remove_param_int], page 82.
See Section 1.6.10 [install_param_int_ex], page 82.
See Section 1.6.3 [install_int], page 78.

1.6.10 install_param_int_ex

int install_param_int_ex(void (*proc)(void *), void *param, int speed);
Like install_int_ex(), but the callback routine will be passed a copy of the spec-
ified void pointer parameter. To disable the handler, use remove_param_int()
instead of remove_int().

See also:

See Section 1.6.1 [install_timer], page 77.

See Section 1.6.11 [remove_param_int], page 82.
See Section 1.6.9 [install_param_int|, page 81.
See Section 1.6.4 [install_int_ex], page 78.

1.6.11 remove_param_int

void remove_param_int(void (*proc)(void *), void *param);
Like remove_int(), but for use with timer callbacks that have parameter values.
If there is more than one copy of the same callback active at a time, it identifies
which one to remove by checking the parameter value (so you can’t have more
than one copy of a handler using an identical parameter).

See also:

See Section 1.6.9 [install_param_int], page 81.

See Section 1.6.10 [install_param_int_ex], page 82.
See Section 1.6.8 [remove_int], page 81.

1.6.12 retrace_count

extern volatile int retrace_count;
If the retrace simulator is installed, this count is incremented on each vertical
retrace; otherwise, if the refresh rate is known, the count is incremented at the
same rate (ignoring retraces); otherwise, it is incremented 70 times a second.
This provides a way of controlling the speed of your program without installing
user timer functions.

See also:

See Section 3.4.34 [ex3d], page 419.
See Section 3.4.30 [exblend], page 414.
See Section 3.4.6 [exdbuf], page 391.

Chapter 1: API 83

See Section 3.4.7 [exflip], page 391.
See Section 3.4.33 [exlights|, page 417.

1.6.13 rest

void rest(unsigned int time);
This function waits for the specified number of milliseconds.

Passing 0 as parameter will not wait, but just yield. This can be useful in order
to "play nice" with other processes. Other values will cause CPU time to be
dropped on most platforms. This will look better to users, and also does things
like saving battery power and making fans less noisy.

Note that calling this inside your active game loop is a bad idea, as you never
know when the OS will give you the CPU back, so you could end up missing
the vertical retrace and skipping frames. On the other hand, on multitasking
operating systems it is good form to give up the CPU for a while if you will not
be using it.

See also:

See Section 1.6.1 [install_timer]|, page 77.
See Section 1.6.14 [rest_callback], page 83.
See Section 1.9.20 [vsync], page 117.

See Section 1.36.16 [d_yield_proc], page 335.
See Section 3.4.12 [exkeys]|, page 395.

See Section 3.4.15 [exmidi], page 398.

See Section 3.4.36 [exquat], page 422.

[
[
[
See Section 3.4.14 [exsample], page 398.
See Section 3.4.23 [exsprite], page 406.
See Section 3.4.11 [extimer], page 394.

[

See Section 3.4.18 [exunicod], page 402.

1.6.14 rest_callback

void rest_callback(long time, void (*callback)())
Like rest(), but for non-zero values continually calls the specified function while
it is waiting for the required time to elapse. If the provided ‘callback’ parameter
is NULL, this function does exactly the same thing as calling rest().

See also:
See Section 1.6.1 [install_timer|, page 77.
See Section 1.6.13 [rest], page 83.

84 Allegro Manual

1.7 Keyboard routines

The Allegro keyboard handler provides both buffered input and a set of flags storing the
current state of each key. Note that it is not possible to correctly detect every combination
of keys, due to the design of the PC keyboard. Up to two or three keys at a time will
work fine, but if you press more than that the extras are likely to be ignored (exactly which
combinations are possible seems to vary from one keyboard to another).

On DOS, Allegro requires the user to specify the language of the keyboard mapping because
it is impossible to obtain this information from the OS, otherwise the default US keyboard
mapping will be used. Allegro comes with a prepackaged ‘keyboard.dat’ file which you
can put along with your binary. If this file is present, Allegro will be able to extract the
keyboard mapping information stored there. However, the end user still needs to select
which keyboard mapping to use. This can be acomplished through the keyboard variable of
the system section in a standard ‘allegro.cfg’ configuration file. Read chapter "Configuration
routines" for more information about this.

1.7.1 install_keyboard

int install_keyboard();

Installs the Allegro keyboard interrupt handler. You must call this before using
any of the keyboard input routines. Once you have set up the Allegro handler,
you can no longer use operating system calls or C library functions to access
the keyboard.

Note that on some platforms the keyboard won’t work unless you have set
a graphics mode, even if this function returns a success value before calling
set_gfx_mode. This can happen in environments with graphic windowed modes,
since Allegro usually reads the keyboard through the graphical window (which
appears after the set_gfx_call). Example:

allegro_init();

install_timer();

install_keyboard() ;

/* We are not 100% sure we can read the keyboard yet! */

if (set_gfx_mode (GFX_AUTODETECT, 640, 480, 0, 0) != 0)
abort_on_error("Couldn’t set graphic mode!")

/* Now we are guaranteed to be able to read the keyboard. */
readkey () ;

Returns zero on success, or a negative number on failure (but you may decide
not to check the return value as this function is very unlikely to fail).

See also:

See Section 1.7.2 [remove_keyboard], page 85.
See Section 1.7.4 [poll_keyboard], page 86.
See Section 1.7.6 [key], page 86.

See Section 1.7.8 [keypressed], page 89.

See Section 1.7.9 [readkey]|, page 89.

Chapter 1: API 85

See Section 1.7.10 [ureadkey], page 90.
See Section 1.7.15 [keyboard_callback], page 92.
See Section 1.7.16 [keyboard_ucallback], page 93.

See Section 1.7.21 [three_finger_flag], page 96.
See Section 1.7.22 [key_led_flag], page 96.

[
[
[
See Section 1.7.17 [keyboard_lowlevel_callback], page 94.
[
[
[

See Section 1.7.18 [set_leds], page 95.
See Section 1.7.19 [set_keyboard_rate|, page 95.

See Section 1.9.7 [set_gfx_mode], page 107.

See Section 1.4.23 [Standard config variables], page 60.
See Section 3.4 [Available], page 387.

1.7.2 remove_keyboard

void remove_keyboard();

See also:

Removes the keyboard handler, returning control to the operating system. You
don’t normally need to bother calling this, because allegro_exit() will do it
for you. However, you might want to call this during runtime if you want to
change the keyboard mapping on those platforms were keyboard mappings are
needed. You would first modify the configuration variable holding the keyboard
mapping and then reinstall the keyboard handler. Example:

remove_keyboard () ;

/* Switch to Spanish keyboard mapping. */
set_config_string("system", "keyboard", "es");
install_keyboard () ;

See Section 1.7.1 [install_keyboard], page 84.

See Section 1.1.3 [allegro_exit], page 2.

See Section 1.4.18 [set_config_string], page 58.

1.7.3 install_keyboard_hooks
void install_keyboard_hooks(int (*keypressed) (), int (*readkey) ());

See also:

You should only use this function if you *aren’t* using the rest of the keyboard
handler. It should be called in the place of install_keyboard(), and lets you
provide callback routines to detect and read keypresses, which will be used by
the main keypressed() and readkey() functions. This can be useful if you want
to use Allegro’s GUI code with a custom keyboard handler, as it provides a way
for the GUI to get keyboard input from your own code, bypassing the normal
Allegro input system.

See Section 1.7.1 [install_keyboard], page 84.

86

Allegro Manual

See Section 1.7.8 [keypressed], page 89.

See Section 1.7.9 [readkey|, page 89.

1.7.4 poll_keyboard
int poll_keyboard();

See also:

Wherever possible, Allegro will read the keyboard input asynchronously (ie.
from inside an interrupt handler), but on some platforms that may not be
possible, in which case you must call this routine at regular intervals to update
the keyboard state variables.

To help you test your keyboard polling code even if you are programming on a
platform that doesn’t require it, after the first time that you call this function
Allegro will switch into polling mode, so from that point onwards you will have
to call this routine in order to get any keyboard input at all, regardless of
whether the current driver actually needs to be polled or not.

The keypressed(), readkey(), and ureadkey() functions call poll_keyboard() au-
tomatically, so you only need to use this function when accessing the key|] array
and key_shifts variable.

Returns zero on success, or a negative number on failure (ie. no keyboard driver
installed).

See Section 1.7.5 [keyboard_needs_poll], page 86.

[
See Section 1.7.1 [install_keyboard], page 84.
See Section 1.7.6 [key], page 86.
See Section 1.7.7 [key_shifts], page 88.

See Section 3.4.35 [excamera], page 421.

[
See Section 3.4.14 [exsample], page 398.
[

See Section 3.4.37 [exstars], page 424.

1.7.5 keyboard_needs_poll
int keyboard_needs_poll();

See also:

Returns TRUE if the current keyboard driver is operating in polling mode.

See Section 1.7.4 [poll_keyboard], page 86.

See Section 1.7.1 [install_keyboard], page 84.
See Section 1.7.6 [key], page 86.

1.7.6 key
extern volatile char key[KEY_MAX];

Array of flags indicating the state of each key, ordered by scancode.
Wherever possible these values will be updated asynchronously, but if

Chapter 1: API 87

keyboard_needs_poll() returns TRUE, you must manually call poll_keyboard()
to update them with the current input state. The scancodes are defined in
allegro/keyboard.h as a series of KEY_* constants (and are also listed below).
For example, you could write:

if (key[KEY_SPACE])
printf ("Space is pressed\n");

Note that the array is supposed to represent which keys are physically held
down and which keys are not, so it is semantically read-only.

These are the keyboard scancodes:

KEY_A ... KEY_Z,

KEY_O ... KEY_9,
KEY_O_PAD ... KEY_9_PAD,
KEY_F1 ... KEY_F12,

KEY_ESC, KEY_TILDE, KEY_MINUS, KEY_EQUALS,
KEY_BACKSPACE, KEY_TAB, KEY_OPENBRACE, KEY_CLOSEBRACE,
KEY_ENTER, KEY_COLON, KEY_QUOTE, KEY_BACKSLASH,
KEY_BACKSLASH2, KEY_COMMA, KEY_STOP, KEY_SLASH,
KEY_SPACE,

KEY_INSERT, KEY_DEL, KEY_HOME, KEY_END, KEY_PGUP,
KEY_PGDN, KEY_LEFT, KEY_RIGHT, KEY_UP, KEY_DOWN,

KEY_SLASH_PAD, KEY_ASTERISK, KEY_MINUS_PAD,
KEY_PLUS_PAD, KEY_DEL_PAD, KEY_ENTER_PAD,

KEY_PRTSCR, KEY_PAUSE,

KEY_ABNT_C1, KEY_YEN, KEY_KANA, KEY_CONVERT, KEY_NOCONVERT,
KEY_AT, KEY_CIRCUMFLEX, KEY_COLON2, KEY_KANJI,

KEY_LSHIFT, KEY_RSHIFT,

KEY_LCONTROL, KEY_RCONTROL,

KEY_ALT, KEY_ALTGR,

KEY_LWIN, KEY_RWIN, KEY_MENU,
KEY_SCRLOCK, KEY_NUMLOCK, KEY_CAPSLOCK

KEY_EQUALS_PAD, KEY_BACKQUOTE, KEY_SEMICOLON, KEY_COMMAND

Finally, you may notice an ‘odd’ behaviour of the KEY_PAUSE key. This key
only generates an interrupt when it is pressed, not when it is released. For this
reason, Allegro pretends the pause key is a ‘state’ key, which is the only way to
make it usable.

88

See also:

See Section 1.7.1 [install_keyboard], page 84.
See Section 1.7.4 [poll_keyboard], page 86.
See Section 1.7.7 [key_shifts], page 88.

See Section 3.4 [Available], page 387.

1.7.7 key_shifts

extern volatile int key_shifts;

Allegro Manual

Bitmask containing the current state of shift/ctrl/alt, the special Windows
keys, and the accent escape characters. Wherever possible this value will be
updated asynchronously, but if keyboard_needs_poll() returns TRUE, you must
manually call poll_keyboard() to update it with the current input state. This

can contain any of the flags:

KB_SHIFT_FLAG
KB_CTRL_FLAG
KB_ALT_FLAG
KB_LWIN_FLAG
KB_RWIN_FLAG
KB_MENU_FLAG
KB_COMMAND_FLAG
KB_SCROLOCK_FLAG
KB_NUMLOCK_FLAG
KB_CAPSLOCK_FLAG
KB_INALTSEQ_FLAG
KB_ACCENT1_FLAG
KB_ACCENT2_FLAG
KB_ACCENT3_FLAG
KB_ACCENT4_FLAG

Example:

if (key[KEY_W]) {

if (key_shifts & KB_SHIFT_FLAG) {
/* User is pressing shift + W. */

} else {

/* Hmmm... lower case W then.

3

See also:

See Section 1.7.1 [install_keyboard], page 84.
See Section 1.7.4 [poll_keyboard], page 86.
See Section 1.7.6 [key], page 86.

See Section 3.4.35 [excameral, page 421.

Chapter 1: API 89

See Section 3.4.12 [exkeys], page 395.

1.7.8 keypressed

int keypressed();
Returns TRUE if there are keypresses waiting in the input buffer. You can use
this to see if the next call to readkey() is going to block or to simply wait for
the user to press a key while you still update the screen possibly drawing some
animation. Example:

while (!keypressed()) {
/* Show cool animated logo. */
b

/* So he skipped our title screen. */

See also:

See Section 1.7.1 [install_keyboard], page 84.
See Section 1.7.9 [readkey], page 89.

See Section 1.7.10 [ureadkey], page 90.

See Section 1.7.20 [clear_keybuf], page 95.

See Section 1.7.13 [simulate_keypress|, page 91.
See Section 1.7.14 [simulate_ukeypress|, page 92.
See Section 3.4 [Available|, page 387.

1.7.9 readkey

int readkey();
Returns the next character from the keyboard buffer, in ASCII format. If the
buffer is empty, it waits until a key is pressed. You can see if there are queued
keypresses with keypressed|().

The low byte of the return value contains the ASCII code of the key, and the
high byte the scancode. The scancode remains the same whatever the state of
the shift, ctrl and alt keys, while the ASCII code is affected by shift and ctrl in
the normal way (shift changes case, ctrl+letter gives the position of that letter
in the alphabet, eg. ctrl+A = 1, ctrl+B = 2, etc). Pressing alt+key returns only
the scancode, with a zero ASCII code in the low byte. For example:

int val;

val = readkey();
if ((val & Oxff) == ’d’) /* by ASCII code */
allegro_message("You pressed ’d’\n");

if ((val >> 8) == KEY_SPACE) /* by scancode */
allegro_message("You pressed Space\n");

90

See also:

Allegro Manual

if ((val & Oxff) == 3) /* ctrl+letter */
allegro_message("You pressed Control+C\n");

if (val == (KEY_X << 8)) /* alt+letter */
allegro_message("You pressed Alt+X\n");

This function cannot return character values greater than 255. If you need to
read Unicode input, use ureadkey() instead.

See Section 1.7.1 [install_keyboard], page 84.
See Section 1.7.10 [ureadkey], page 90.

See Section 1.7.8 [keypressed], page 89.

See Section 1.7.20 [clear_keybuf], page 95.

See Section 1.7.13 [simulate_keypress|, page 91.
See Section 3.4 [Available], page 387.

1.7.10 ureadkey

int ureadkey(int *scancode);

See also:

Returns the next character from the keyboard buffer, in Unicode format. If the
buffer is empty, it waits until a key is pressed. You can see if there are queued
keypresses with keypressed(). The return value contains the Unicode value of
the key, and if not NULL, the pointer argument will be set to the scancode.
Unlike readkey(), this function is able to return character values greater than
255. Example:

int val, scancode;

val = ureadkey(&scancode) ;
if (val == 0x00F1)
allegro_message("You pressed n with tilde\n");

if (val == 0xOO0DF)
allegro_message("You pressed sharp s\n");
You should be able to find Unicode character maps at http://www.unicode.org/.
Remember that on DOS you must specify a custom keyboard map (like those
found in ‘keyboard.dat’) usually with the help of a configuration file specifying
the language mapping (keyboard variable in system section of ‘allegro.cfg’), or
you will get the default US keyboard mapping.

See Section 1.7.1 [install_keyboard], page 84.

See Section 1.7.9 [readkey], page 89.
See Section 1.7.8 [keypressed], page 89.
See Section 1.7.20 [clear_keybuf|, page 95.

Chapter 1: API 91

See Section 1.7.14 [simulate_ukeypress|, page 92.
See Section 3.4.12 [exkeys]|, page 395.

1.7.11 scancode_to_ascii

int scancode_to_ascii(int scancode) ;
Converts the given scancode to an ASCII character for that key (mangling
Unicode values), returning the unshifted uncapslocked result of pressing the key,
or zero if the key isn’t a character-generating key or the lookup can’t be done.
The lookup cannot be done for keys like the F1-F12 keys or the cursor keys,
and some drivers will only return approximate values. Generally, if you want
to display the name of a key to the user, you should use the scancode_to_name
function.

Example:
int ascii;

ascii = scancode_to_ascii(scancode);
allegro_message("You pressed ’Y%c’\n", ascii);

See also:
See Section 1.7.12 [scancode_to_name], page 91.

1.7.12 scancode_to_name

const char *scancode_to_name(int scancode) ;
This function returns a string pointer containing the name of they key with the
given scancode. This is useful if you e.g. let the user choose a key for some
action, and want to display something more meaningful than just the scancode.
Example:

char const *keyname = scancode_to_name(scancode) ;
allegro_message("You pressed the %s key.", keyname);

See also:
See Section 1.7.11 [scancode_to_ascii|, page 91.
See Section 3.4.12 [exkeys]|, page 395.

1.7.13 simulate_keypress

void simulate_keypress(int key);
Stuffs a key into the keyboard buffer, just as if the user had pressed it. The
parameter is in the same format returned by readkey(). Example:

simulate_keypress(KEY_SPACE << 8);

92 Allegro Manual

if (readkey() == (KEY_SPACE << 8))
allegro_message("You simulated Alt+Space\n");

See also:

See Section 1.7.1 [install_keyboard], page 84.
See Section 1.7.14 [simulate_ukeypress|, page 92.
See Section 1.7.8 [keypressed], page 89.

See Section 1.7.9 [readkey]|, page 89.

1.7.14 simulate_ukeypress

void simulate_ukeypress(int key, int scancode);
Stuffs a key into the keyboard buffer, just as if the user had pressed it. The
parameter is in the same format returned by ureadkey(). Example:

/* We ignore the scancode simulation. */

simulate_ukeypress(0xOODF, 0);

if (ureadkey(&scancode) == 0xOODF)
allegro_message("You simulated sharp s\n");

See also:

See Section 1.7.1 [install_keyboard], page 84.
See Section 1.7.13 [simulate_keypress|, page 91.
See Section 1.7.8 [keypressed], page 89.

See Section 1.7.10 [ureadkey]|, page 90.

1.7.15 keyboard_callback

extern int (*keyboard_callback) (int key) ;
If set, this function is called by the keyboard handler in response to every
keypress. It is passed a copy of the value that is about to be added into the
input buffer, and can either return this value unchanged, return zero to cause
the key to be ignored, or return a modified value to change what readkey() will
later return. This routine executes in an interrupt context, so it must be in
locked memory. Example:

int enigma_scrambler(int key)
{

/* Add one to both the scancode and ascii values. */
return (((key >> 8) + 1)

}

END_QOF_FUNCTION(enigma_scrambler)

install_timer();

Chapter 1: API 93

LOCK_FUNCTION (enigma_scrambler) ;
install_keyboard() ;
keyboard_callback = enigma_scrambler;

Note that this callback will be ignored if you also set the unicode keyboard
callback.

See also:

See Section 1.7.1 [install_keyboard], page 84.

See Section 1.7.9 [readkey|, page 89.

See Section 1.7.10 [ureadkey]|, page 90.

See Section 1.7.16 [keyboard_ucallback], page 93.

See Section 1.7.17 [keyboard_lowlevel_callback], page 94.

1.7.16 keyboard_ucallback

extern int (*keyboard_ucallback) (int key, int *scancode);
Unicode-aware version of keyboard_callback(). If set, this function is called by
the keyboard handler in response to every keypress. It is passed the character
value and scancode that are about to be added into the input buffer, can modify
the scancode value, and returns a new or modified key code. If it both sets the
scancode to zero and returns zero, the keypress will be ignored. This routine
executes in an interrupt context, so it must be in locked memory. Example:

int silence_g_key(int key, int *scancode)

{
if (key == ’g’) {
*scancode = 0;
return O;
}

return key;
} END_OF_FUNCTION(silence_g_key)

install_timer();
LOCK_FUNCTION(silence_g_key) ;
install_keyboard() ;
keyboard_ucallback = silence_g_key;

Note that this keyboard callback has priority over the non unicode callback. If
you set both, only the unicode one will work.

See also:

See Section 1.7.1 [install_keyboard], page 84.
See Section 1.7.9 [readkey], page 89.

See Section 1.7.10 [ureadkey]|, page 90.

See Section 1.7.15 [keyboard_callback], page 92.

94 Allegro Manual

See Section 1.7.17 [keyboard_lowlevel_callback], page 94.

1.7.17 keyboard_lowlevel_callback

extern void (*keyboard_lowlevel_callback) (int scancode);
If set, this function is called by the keyboard handler in response to every
keyboard event, both presses (including keyboard repeat rate) and releases. It
will be passed a raw keyboard scancode byte (scancodes are 7 bits long), with
the top bit (8th bit) clear if the key has been pressed or set if it was released.
This routine executes in an interrupt context, so it must be in locked memory.
Example:

volatile int key_down, key_up;

void keypress_watcher(int scancode)

{
if (scancode & 0x80) {
key_up = 1;
} else {
key_down = 1;

}
} END_OF_FUNCTION (keypress_watcher)

install_timer();

LOCK_FUNCTION(silence_g_key);

LOCK_VARIABLE (key_down) ;

LOCK_VARIABLE (key_up) ;

install_keyboard() ;

keyboard_lowlevel_callback = keypress_watcher;

/* Disable keyboard repeat to get typewriter effect. */
set_keyboard_rate(0, 0);

while (game_loop) {
if (key_down) {
key_down = O;

/* Play sample of typewriter key press. */

}
if (key_up) {

key_up = 0;

/* Play sample of typewriter key release. */
}

Chapter 1: API 95

See also:

See Section 1.7.1 [install_keyboard], page 84.

See Section 1.7.15 [keyboard_callback], page 92.
See Section 1.7.16 [keyboard_ucallback], page 93.
See Section 3.4.12 [exkeys], page 395.

1.7.18 set_leds

void set_leds(int leds);
Overrides the state of the keyboard LED indicators. The parameter is a bitmask
containing any of the values KB_.SCROLOCK_FLAG, KB_LNUMLOCK_FLAG,
and KB_CAPSLOCK_FLAG, or -1 to restore the default behavior. Example:

/* Cycle led indicators. */
set_leds (KB_SCROLOCK_FLAG) ;

rest (1000) ;
set_leds (KB_CAPSLOCK_FLAG) ;
rest (1000) ;
set_leds (KB_NUMLOCK_FLAG) ;
rest (1000);

set_leds(-1);
Note that the led behaviour cannot be guaranteed on some platforms, some
leds might not react, or none at all. Therefore you shouldn’t rely only on them
to communicate information to the user, just in case it doesn’t get through.

See also:
See Section 1.7.1 [install_keyboard], page 84.
See Section 1.7.22 [key_led_flag], page 96.

1.7.19 set_keyboard_rate

void set_keyboard_rate(int delay, int repeat);
Sets the keyboard repeat rate. Times are given in milliseconds. Passing zero
times will disable the key repeat.

See also:

See Section 1.7.1 [install_keyboard], page 84.
See Section 1.7.9 [readkey|, page 89.

See Section 1.7.10 [ureadkey], page 90.

1.7.20 clear_keybuf

void clear_keybuf ();
Empties the keyboard buffer. Usually you want to use this in your program
before reading keys to avoid previously buffered keys to be returned by calls to
readkey() or ureadkey().

96 Allegro Manual

See also:

See Section 1.7.1 [install_keyboard], page 84.
See Section 1.7.8 [keypressed], page 89.

See Section 1.7.9 [readkey], page 89.

See Section 1.7.10 [ureadkey], page 90.

See Section 3.4 [Available], page 387.

1.7.21 three_finger_flag

extern int three_finger flag;
The DJGPP keyboard handler provides an ’emergency exit’ sequence which you
can use to kill off your program. If you are running under DOS this is the three
finger salute, ctrl+alt+del. Most multitasking OS’s will trap this combination
before it reaches the Allegro handler, in which case you can use the alternative
ctrl+alt+end. If you want to disable this behaviour in release versions of your
program, set this flag to FALSE.

See also:
See Section 1.7.1 [install_keyboard], page 84.

1.7.22 key_led_flag

extern int key_led_flag;
By default, the capslock, numlock, and scroll-lock keys toggle the keyboard
LED indicators when they are pressed. If you are using these keys for input in
your game (eg. capslock to fire) this may not be desirable, so you can clear this
flag to prevent the LED’s being updated.

See also:
See Section 1.7.1 [install_keyboard], page 84.
See Section 1.7.18 [set_leds], page 95.

1.8 Joystick routines

Unlike keyboard or mouse input, which are usually read through hardware interrupts by
Allegro, joystick input functions have to be polled because there are no hardware interrupts
for them on most platforms. This doesn’t mean that you have to poll the joysticks on
each line of code you want to read their values, but you should make sure to poll them at
least once per frame in your game loop. Otherwise you face the possibility of reading stale
incorrect data.

1.8.1 install_joystick

int install_joystick(int type);
Initialises the joystick, and calibrates the centre position value. The type pa-
rameter should usually be JOY_TYPE_AUTODETECT, or see the platform

Chapter 1: API 97

specific documentation for a list of the available drivers. You must call this
routine before using any other joystick functions, and you should make sure
that the joystick is in the middle position at the time. Example:

textout_centre_ex(screen, font,
"Center the joystick and press a key",
SCREEN_W/2, SCREEN_H/2, red_color, -1);
readkey () ;
if (install_joystick(JOY_TYPE_AUTODETECT) != 0)
abort_on_error("Error initialising joystick!");
Returns zero on success. As soon as you have installed the joystick module,
you will be able to read the button state and digital (on/off toggle) direction
information, which may be enough for some games. If you want to get full
analogue input, though, you need to use the calibrate_joystick() functions to
measure the exact range of the inputs: see below.

See also:

See Section 1.8.2
See Section 1.8.4
See Section 1.8.9
See Section 1.8.7
See Section 1.8.6
See Section 1.8.3
See Section 1.4.23 [Standard config variables], page 60.
See Section 2.1.1 [JOY_TYPE_*/DOS], page 348.

See Section 2.2.1 [JOY_TYPE_*/Windows], page 356.
See Section 2.3.1 [JOY_TYPE_*/Linux], page 365.
See Section 3.4.13 [exjoy], page 396.

remove_joystick|, page 97.
num_joysticks|, page 98.
load_joystick_datal], page 102.
calibrate_joystick], page 101.
calibrate_joystick_name], page 101.

poll_joystick]|, page 97.
[

1.8.2 remove_joystick

void remove_joystick();
Removes the joystick handler. You don’t normally need to bother calling this,
because allegro_exit() will do it for you.

See also:
See Section 1.8.1 [install_joystick], page 96.
See Section 1.1.3 [allegro_exit], page 2.

1.8.3 poll_joystick

int poll_joystick();
The joystick is not interrupt driven, so you need to call this function every now
and again to update the global position values. Example:

98 Allegro Manual

do {
/* Get joystick input */
poll_joystick();

/* Process input for the first joystick */
if (joy[O].button[0].b)
first_button_pressed();

if (joy[O].button[1].Db)
second_button_pressed() ;

} while(!done);
Returns zero on success or a negative number on failure (usually because no
joystick driver was installed).

See also:

See Section 1.8.1 [install_joystick]|, page 96.
See Section 1.8.5 [joy], page 98.

See Section 1.8.4 [num_joysticks|, page 98.
See Section 3.4.13 [exjoy], page 396.

1.8.4 num_joysticks

extern int num_joysticks;
Global variable containing the number of active joystick devices. The current
drivers support a maximum of four controllers.

See also:

See Section 1.8.1 [install_joystick]|, page 96.
See Section 1.8.5 [joy], page 98.

See Section 3.4.13 [exjoy], page 396.

1.8.5 joy

extern JOYSTICK_INFO joyl[n];
Global array of joystick state information, which is updated by the

poll_joystick() function. Only the first num_joysticks elements will contain
meaningful information. The JOYSTICK_INFO structure is defined as:

typedef struct JOYSTICK_INFO

{
int flags; - status flags for this
joystick
int num_sticks; - how many stick inputs?
int num_buttons; - how many buttons?

JOYSTICK_STICK_INFO stick[n]; - stick state information

Chapter 1: API 99

JOYSTICK_BUTTON_INFO button[n]; - button state information
} JOYSTICK_INFO;

The button status is stored in the structure:

typedef struct JOYSTICK_BUTTON_INFO

{
int b; - boolean on/off flag
char *name; - description of this
button

} JOYSTICK_BUTTON_INFO;

You may wish to display the button names as part of an input configuration
screen to let the user choose what game function will be performed by each but-
ton, but in simpler situations you can safely assume that the first two elements
in the button array will always be the main trigger controls.

Each joystick will provide one or more stick inputs, of varying types. These can
be digital controls which snap to specific positions (eg. a gamepad controller,
the coolie hat on a Flightstick Pro or Wingman Extreme, or a normal joystick
which hasn’t yet been calibrated), or they can be full analogue inputs with a
smooth range of motion. Sticks may also have different numbers of axes, for
example a normal directional control has two, but the Flightstick Pro throttle
is only a single axis, and it is possible that the system could be extended in the
future to support full 3d controllers. A stick input is described by the structure:

typedef struct JOYSTICK_STICK_INFO

{
int flags; - status flags for this
input
int num_axis; - how many axes do we
have? (note the misspelling)]]
JOYSTICK_AXIS_INFO axis[n]; - axis state information
char *name; - description of this
input

} JOYSTICK_STICK_INFO;

A single joystick may provide several different stick inputs, but you can safely
assume that the first element in the stick array will always be the main direc-
tional controller.

Information about each of the stick axis is stored in the substructure:

typedef struct JOYSTICK_AXIS_INFO

{
int pos; - analogue axis position
int d1, d2; - digital axis position
char *name; - description of this axis

} JOYSTICK_AXIS_INFO;

100

See also:

Allegro Manual

This provides both analogue input in the pos field (ranging from -128 to 128
or from 0 to 255, depending on the type of the control), and digital values in
the d1 and d2 fields. For example, when describing the X-axis position, the
pos field will hold the horizontal position of the joystick, d1 will be set if it
is moved left, and d2 will be set if it is moved right. Allegro will fill in all
these values regardless of whether it is using a digital or analogue joystick,
emulating the pos field for digital inputs by snapping it to the min, middle, and
maximum positions, and emulating the d1 and d2 values for an analogue stick
by comparing the current position with the centre point.

The joystick flags field may contain any combination of the bit flags:

JOYFLAG_DIGITAL
This control is currently providing digital input.

JOYFLAG_ANALOGUE
This control is currently providing analogue input.

JOYFLAG_CALIB_DIGITAL
This control will be capable of providing digital input once it has been cali-
brated, but is not doing this at the moment.

JOYFLAG_CALIB_ANALOGUE
This control will be capable of providing analogue input once it has been cali-
brated, but is not doing this at the moment.

JOYFLAG_CALIBRATE

Indicates that this control needs to be calibrated. Many devices require multiple
calibration steps, so you should call the calibrate_joystick() function from a loop
until this flag is cleared.

JOYFLAG_SIGNED
Indicates that the analogue axis position is in signed format, ranging from -128
to 128. This is the case for all 2d directional controls.

JOYFLAG_UNSIGNED
Indicates that the analogue axis position is in unsigned format, ranging from 0
to 255. This is the case for all 1d throttle controls.

Note for people who spell funny: in case you don’t like having to type "ana-
logue", there are some #define aliases in allegro/joystick.h that will allow you
to write "analog" instead.

See Section 1.8.1 [install_joystick], page 96.

See Section 1.8.3 [poll_joystick], page 97.

See Section 1.8.7 [calibrate_joystick], page 101.

[
[
See Section 1.8.4 [num_joysticks|, page 98.
[
[

See Section 1.8.6 [calibrate_joystick_name], page 101.

See Section 3.4.13 [exjoy], page 396.
See Section 1.2.5 [JOYSTICK_INFO], page 14.

Chapter 1: API 101

1.8.6 calibrate_joystick_name

const char *calibrate_joystick_name(int n);
As parameter pass the number of joystick you want to calibrate.

Returns a text description for the next type of calibration that will be done on
the specified joystick, or NULL if no more calibration is required.

See also:

See Section 1.8.1 [install_joystick], page 96.
See Section 1.8.7 [calibrate_joystick], page 101.
See Section 1.8.5 [joy], page 98.

See Section 1.8.4 [num_joysticks|, page 98.

See Section 3.4.13 [exjoy], page 396.

1.8.7 calibrate_joystick

int calibrate_joystick(int n);
Most joysticks need to be calibrated before they can provide full analogue in-
put. This function performs the next operation in the calibration series for
the specified stick, assuming that the joystick has been positioned in the man-
ner described by a previous call to calibrate_joystick_name(), returning zero on
success. For example, a simple routine to fully calibrate all the joysticks might
look like:

int 1i;

for (i=0; i<;num_joysticks; i++) {
while (joy[i].flags & JOYFLAG_CALIBRATE) {
char *msg = calibrate_joystick_name(i);
textprintf_ex(..., "%s, and press a key\n", msg);

readkey () ;
if (calibrate_joystick(i) !'= 0) {
textprintf_ex(..., "oops!\n");
readkey () ;
exit(1);
}
}
}
Returns zero on success, non-zero if the calibration could not be performed
successfully.

See also:

See Section 1.8.1 [install_joystick], page 96.

See Section 1.8.6 [calibrate_joystick_name], page 101.
See Section 1.8.5 [joy], page 98.

See Section 1.8.4 [num_joysticks|, page 98.

102 Allegro Manual

See Section 3.4.13 [exjoy], page 396.

1.8.8 save_joystick_data

int save_joystick_data(const char *filename);
After all the headache of calibrating the joystick, you may not want to make
your poor users repeat the process every time they run your program. Call this
function to save the joystick calibration data into the specified configuration
file, from which it can later be read by load_joystick_data(). Pass a NULL
filename to write the data to the currently selected configuration file.

Returns zero on success, non-zero if the data could not be saved.

See also:
See Section 1.8.9 [load_joystick_datal, page 102.
See Section 1.4.1 [set_config_file], page 50.

1.8.9 load_joystick_data

int load_joystick_data(const char *filename);
Restores calibration data previously stored by save_joystick_data() or the setup
utility. This sets up all aspects of the joystick code: you don’t even need to call
install_joystick() if you are using this function. Pass a NULL filename to read
the data from the currently selected configuration file.

Returns zero on success: if it fails the joystick state is undefined and you must
reinitialise it from scratch.

See also:

See Section 1.8.1 [install_joystick], page 96.

See Section 1.8.8 [save_joystick_datal, page 102.
See Section 1.4.1 [set_config_file], page 50.

1.8.10 initialise_joystick
int initialise_joystick();
Deprecated. Use install_joystick() instead.
See also:
See Section 1.8.1 [install_joystick], page 96.

1.9 Graphics modes

Graphics modes are the common denominator for most Allegro programs. While it is
possible to write platform specific programs using Allegro which don’t set a graphic mode
through the routines provided in this chapter, these are not very common.

The first thing to note is that due to the wide range of supported platforms, a graphic mode
is the only way to safely communicate with the user. When Allegro was a DOS only library

Chapter 1: API 103

(versions 3.x and previous), it was frequent for programmers to use functions from the C
standard library to communicate with the user, like calling printf() before setting a graphic
mode or maybe scanf() to read the user’s input. However, what would happen for such a
game running under Windows where there is no default console output or it may be hidden
from the user? Even if the game compiled successfully, it would be unplayable, especially
if there was vital information for the user in those text only messages.

Allegro provides the allegro_message() function to deal with this problem, but this is not a
very user friendly method of communicating with the user and its main purpose is displaying
small error like messages when no graphic mode is available. Therefore, the first thing your
Allegro program should do is set a graphic mode, and from there on, use Allegro’s text
output routines to display messages to the user, just like ‘allegro/examples/exhello.c’ does.

Setting a graphic mode involves deciding how to allocate the memory of the video card
for your program. On some platforms this means creating a virtual screen bigger than the
physical resolution to do hardware scrolling or page flipping. Virtual screens can cause a
lot of confusion, but they are really quite simple. Warning: patronising explanation coming
up, so you may wish to skip the rest of this paragraph. Think of video memory as a
rectangular piece of paper which is being viewed through a small hole (your monitor) in a
bit of cardboard. Since the paper is bigger than the hole you can only see part of it at any
one time, but by sliding the cardboard around you can alter which portion of the image is
visible. You could just leave the hole in one position and ignore the parts of video memory
that aren’t visible, but you can get all sorts of useful effects by sliding the screen window
around, or by drawing images in a hidden part of video memory and then flipping across
to display them.

For example, you could select a 640x480 mode in which the monitor acts as a window onto
a 1024x1024 virtual screen, and then move the visible screen around in this larger area
(hardware scrolling). Initially, with the visible screen positioned at the top left corner of
video memory, this setup would look like:

(0,0)———————————- (640,0)----(1024,0)
| | |
| visible screen | I
| | |
(0,480) ——-——----- (640,480) |
| |
| the rest of video memory |
|

(0,1024) ~=—————==—=———m—mm— (1024,1024)

With a virtual screen bigger than the visible screen you can perform smooth CPU inexpen-
sive scrolling: you draw your graphics once, and then only tell the video card to show a
different portion of the screen. However, virtual screens are not supported on all platforms,
and on some they might be emulated through software, losing any performance. On top
of that, many video cards only allow horizontal scrolling in steps of 32 bytes. This is not
a problem if your game runs in 24 or 32 bit, but it tends to mean jerky scrolling for other
color depths.

The other reason you could use virtual screens for is page flipping. This means showing one
portion of the virtual screen while your program draws to the hidden one. When you finish,

104 Allegro Manual

you show the part you have been drawing to and repeat the process with the area now
hidden. The result is a perfectly smooth screen update without flickering or other graphical
artifacts.

Scrolling manually to one part of the video memory is one non portable way to
accomplish this. The portable way is to use functions like create_system_bitmap(),
create_video_bitmap(), show_video_bitmap(), etc. These functions divide the memory of
the video card in areas and switch between them, a feature supported on all platforms and
video cards (given that they have enough memory for the screen resolutions you asked for).

The last thing you need to know about setting a graphic mode are drivers. Each platform
has a number of graphic drivers wich support a different range of hardware or behave in
different ways. To avoid cluttering your own code with #ifdefs and dealing with drivers
added after you release your program, Allegro provides several so called magic drivers.
These magic drivers don’t really exists, they wrap around a specific kind of functionality.

The magic drivers you can use are:

e GFX_AUTODETECT:
Allegro will try to set the specified resolution with the current color depth in fullscreen
mode. Failing that, it will try to repeat the same operation in windowed mode. If the
call to set_gfx_mode() succeeds, you are guaranteed to have set the specified resolution
in the current color depth, but you don’t know if the program is running fullscreen or
windowed.

e GFX_AUTODETECT_FULLSCREEN:
Allegro will try to set the specified resolution with the current color depth in fullscreen
mode. If that is not possible, set_gfx_mode() will fail.

e GFX_AUTODETECT_WINDOWED:

Allegro will try to set the specified resolution with the current color depth in a windowed
mode. If that is not possible, set_gfx_mode() will fail. When it comes to windowed
modes, the ‘specified resolution’ actually means the graphic area your program can draw
on, without including window decorations (if any). Note that in windowed modes run-
ning with a color depth other than the desktop may result in non optimal performance
due to internal color conversions in the graphic driver. Use desktop_color_depth() to
your advantage in these situations.

e GFX_SAFE:

Using this driver Allegro guarantees that a graphic mode will always be set correctly.
It will try to select the resolution that you request, and if that fails, it will fall back
upon whatever mode is known to be reliable on the current platform (this is 320x200
VGA mode under DOS, a 640x480 resolution under Windows, the actual framebuffer’s
resolution under Linux if it’s supported, etc). If it absolutely cannot set any graphics
mode at all, it will return negative as usual, meaning that there’s no possible video
output on the machine, and that you should abort your program immediately, possibly
after notifying this to the user with allegro_message.

This fake driver is useful for situations where you just want to get into some kind of
workable display mode, and can’t be bothered with trying multiple different resolutions
and doing all the error checking yourself. Note however, that after a successful call to
set_gfx_mode with this driver, you cannot make any assumptions about the width,
height or color depth of the screen: your code will have to deal with this little detail.

Chapter 1: API 105

e GFX_TEXT:
Closes any previously opened graphics mode, making you unable to use the global
variable ‘screen’, and in those environments that have text modes, sets one previously
used or the closest match to that (usually 80x25). With this driver the size parameters
of set_gfx_mode don’t mean anything, so you can leave them all to zero or any other
number you prefer.

1.9.1 set_color_depth
void set_color_depth(int depth);

See also:

Sets the pixel format to be used by subsequent calls to set_gfx_mode() and
create_bitmap(). Valid depths are 8 (the default), 15, 16, 24, and 32 bits.
Example:

set_color_depth(32);
if (set_gfx_mode (GFX_AUTODETECT, 640, 480, 0, 0) != 0) {
abort_on_error("Couldn’t set a 32 bit color resolution");

}

Note that the screen color depth won’t change until the next successful call to
set_gfx_mode().

See Section 1.9.2 [get_color_depth], page 105.

See Section 1.9.7 [set_gfx_mode], page 107.

See Section 1.11.17 [set_color_conversion|, page 138.
See Section 1.13.3 [makecol], page 150.

See Section 1.13.9 [getr], page 153.

See Section 1.1.21 [desktop_color_depth], page 8.
See Section 3.4 [Available], page 387.

1.9.2 get_color_depth
int get_color_depth(void);

See also:

Returns the current pixel format. This can be very useful to know in order to
write generic functions which select a different code path internally depending
on the color depth being used.

Note that the function returns whatever value you may have set previously with
set_color_depth(), which can be different from the current color depth of the
screen global variable. If you really need to know the color depth of the screen,
use bitmap_color_depth().

See Section 1.9.1 [set_color_depth], page 105.
See Section 1.10.11 [bitmap_color_depth], page 124.
See Section 3.4.28 [exrgbhsv], page 412.

106 Allegro Manual

1.9.3 request_refresh_rate

void request_refresh_rate(int rate);

Requests that the next call to set_gfx_mode() try to use the specified refresh
rate, if possible. Not all drivers are able to control this at all, and even when
they can, not all rates will be possible on all hardware, so the actual settings
may differ from what you requested. After you call set_gfx_mode(), you can use
get_refresh_rate() to find out what was actually selected. At the moment only
the DOS VESA 3.0, X DGA 2.0 and some Windows DirectX drivers support
this function. The speed is specified in Hz, eg. 60, 70. To return to the normal
default selection, pass a rate value of zero. Example:

request_refresh_rate(60);

if (set_gfx_mode (GFX_AUTODETECT, 640, 480, 0, 0) != 0)
abort_on_error("Couldn’t set graphic mode!");

if (get_refresh_rate() != 60)
abort_on_error("Couldn’t set refresh rate to 60Hz!");

See also:
See Section 1.9.7 [set_gfx_mode], page 107.
See Section 1.9.4 [get_refresh_rate], page 106.

1.9.4 get_refresh_rate

int get_refresh_rate(void);
Returns the current refresh rate, if known (not all drivers are able to report
this information). Returns zero if the actual rate is unknown.

See also:
See Section 1.9.3 [request_refresh_rate], page 106.

1.9.5 get_gfx_mode_list

GFX_MODE_LIST *get_gfx_mode_list(int card);
Attempts to create a list of all the supported video modes for a certain graphics
driver, made up from the GFX_MODE_LIST structure, which has the following
definition:

typedef struct GFX_MODE_LIST
{

int num_modes;
GFX_MODE *mode;
} GFX_MODE_LIST;

The mode entry points to the actual list of video modes.

typedef struct GFX_MODE
{

Chapter 1: API 107

See also:

int width, height, bpp;
} GFX_MODE;

This list of video modes is terminated with an { 0, 0, 0 } entry.

Note that the card parameter must refer to a _real_ driver. This function fails
if you pass GFX_SAFE, GFX_AUTODETECT, or any other "magic" driver.

Returns a pointer to a list structure of the type GFX_MODE_LIST or NULL
if the request could not be satisfied.

See Section 1.9.6 [destroy_gfx_mode_list], page 107.

See Section 1.9.7
See Section 1.9.1

set_gfx_mode], page 107.
set_color_depth], page 105.

[
[
[
[

See Section 1.2.9 [GFX_MODE_LIST], page 16.

1.9.6 destroy_gfx_mode_list
void destroy_gfx_mode_list(GFX_MODE_LIST #*mode_list);

See also:

Removes the mode list created by get_gfx_mode_list() from memory. Use this
once you are done with the generated mode list to avoid memory leaks in your
program.

See Section 1.9.5 [get_gfx_mode_list], page 106.

See Section 1.9.7
See Section 1.9.1

set_gfx_mode], page 107.
set_color_depth], page 105.

[
[
[
[

See Section 1.2.9 [GFX_MODE_LIST], page 16.

1.9.7 set_gfx_mode

int set_gfx_mode(int card, int w, int h, int v_w, int v_h);

Switches into graphics mode. The card parameter should usually be one of
the Allegro magic drivers (read introduction of chapter "Graphics modes")
or see the platform specific documentation for a list of the available drivers.
The w and h parameters specify what screen resolution you want. The color
depth of the graphic mode has to be specified before calling this function with
set_color_depth().

The v_w and v_h parameters specify the minimum virtual screen size, in case
you need a large virtual screen for hardware scrolling or page flipping. You
should set them to zero if you don’t care about the virtual screen size.

When you call set_gfx_mode(), the v.w and v_h parameters represent the min-
imum size of virtual screen that is acceptable for your program. The range
of possible sizes is usually very restricted, and Allegro may end up creating a
virtual screen much larger than the one you request. Allowed sizes are driver
dependent and some drivers do not allow virtual screens that are larger than
the visible screen at all: don’t assume that whatever you pass will always work.

108

See also:

Allegro Manual

In mode-X the virtual width can be any multiple of eight greater than or equal
to the physical screen width, and the virtual height will be set accordingly (the
VGA has 256k of vram, so the virtual height will be 256*1024 /virtual_width).

Currently, using a big virtual screen for page flipping is considered bad practice.
There are platforms which don’t support virtual screens bigger than the physical
screen but can create different video pages to flip back and forth. This means
that, if you want page flipping and aren’t going to use hardware scrolling, you
should call set_gfx_mode() with (0,0) as the virtual screen size and later create
the different video pages with create_video_bitmap(). Otherwise your program
will be limited to the platforms supporting hardware scrolling.

After you select a graphics mode, the physical and virtual screen sizes can be
checked with the macros SCREEN_W, SCREEN_H, VIRTUAL_W, and VIR-
TUAL_H.

Returns zero on success. On failure returns a negative number and stores a
description of the problem in allegro_error.

See Section 1.9.1 [set_color_depth], page 105.

See Section 1.9.3 [request_refresh_rate], page 106.

See Section 1.10.1 [screen], page 118.

See Section 1.9.13 [gfx_capabilities|, page 111.

See Section 1.1.6 [allegro_error], page 3.

See Section 1.4.23 [Standard config variables], page 60.
See Section 2.1.2 [GFX_*/DOS], page 351.

See Section 2.2.2 [GFX_*/Windows|, page 357.

See Section 2.3.3 [GFX_*/X], page 367.

See Section 2.4.1 [GFX_*/BeOS], page 369.

[
[
[
See Section 2.3.2 [GFX_*/Linux]|, page 366.
[
[

See Section 2.6.1 [GFX_*/MacOSX], page 373.

See Section 1.10.7 [create_video_bitmap|, page 122.

See Section 1.1.22 [get_desktop_resolution], page 9.

See Section 1.10.2 [SCREEN_W], page 119.

[
[
See Section 1.10.2 [SCREEN_W], page 119.
[
[

See Section 1.10.3 [VIRTUAL_W], page 120.
See Section 1.10.3 [VIRTUAL_W], page 120.
See Section 3.4 [Available], page 387.

1.9.8 set_display_switch_mode

int set_display_switch_mode(int mode);

Sets how the program should handle being switched into the background, if the
user tabs away from it. Not all of the possible modes will be supported by every
graphics driver on every platform. The available modes are:

Chapter 1: API 109

e SWITCH_NONE
Disables switching. This is the default in single-tasking systems like DOS.
It may be supported on other platforms, but you should use it with caution,
because your users won’t be impressed if they want to switch away from
your program, but you don’t let them!

e SWITCH_PAUSE
Pauses the program whenever it is in the background. Execution will be
resumed as soon as the user switches back to it. This is the default in most
fullscreen multitasking environments, for example the Linux console, but
not under Windows.

e SWITCH_AMNESIA
Like SWITCH_PAUSE, but this mode doesn’t bother to remember the
contents of video memory, so the screen, and any video bitmaps that you
have created, will be erased after the user switches away and then back
to your program. This is not a terribly useful mode to have, but it is the
default for the fullscreen drivers under Windows because DirectDraw is too
dumb to implement anything better.

e SWITCH_BACKGROUND
The program will carry on running in the background, with the screen
bitmap temporarily being pointed at a memory buffer for the fullscreen
drivers. You must take special care when using this mode, because bad
things will happen if the screen bitmap gets changed around when your
program isn’t expecting it (see below).

e SWITCH_BACKAMNESIA
Like SWITCH_BACKGROUND, but this mode doesn’t bother to remem-
ber the contents of video memory (see SWITCH_AMNESIA). It is again
the only mode supported by the fullscreen drivers under Windows that lets
the program keep running in the background.

Note that you should be very careful when you are using graphics routines in
the switching context: you must always call acquire_screen() before the start
of any drawing code onto the screen and not release it until you are completely
finished, because the automatic locking mechanism may not be good enough to
work when the program runs in the background or has just been raised in the
foreground.

Returns zero on success, invalidating at the same time all callbacks previously
registered with set_display_switch_callback(). Returns -1 if the requested mode
is not currently possible.

See also:

See Section 1.9.9 [set_display_switch_callback], page 110.
See Section 1.9.11 [get_display_switch_mode], page 110.
See Section 3.4.15 [exmidi], page 398.

See Section 3.4.47 [exswitch], page 436.

110 Allegro Manual

1.9.9 set_display_switch_callback

int set_display_switch_callback(int dir, void (*cb)());

Installs a notification callback for the switching mode that was previously se-
lected by calling set_display_switch_mode(). The direction parameter can either
be SWITCH_IN or SWITCH_OUT, depending whether you want to be noti-
fied about switches away from your program or back to your program. You can
sometimes install callbacks for both directions at the same time, but not every
platform supports this. You can install several switch callbacks, but no more
than eight on any platform.

Returns zero on success, decreasing the number of empty callback slots by one.
Returns -1 if the request is impossible for the current platform or you have
reached the maximum number of allowed callbacks.

See also:

See Section 1.9.10 [remove_display_switch_callback], page 110.
See Section 1.9.8 [set_display_switch_mode], page 108.

See Section 3.4.47 [exswitch], page 436.

1.9.10 remove_display_switch_callback

void remove_display_switch_callback(void (*cb) ());
Removes a notification callback that was previously installed by calling
set_display_switch_callback(). All the callbacks will automatically be removed
when you call set_display_switch-mode(). You can safely call this function
even if the callback you want to remove is not installed.

See also:
See Section 1.9.9 [set_display_switch_callback], page 110.

1.9.11 get_display_switch_mode

int get_display_switch_mode();
Returns the current display switching mode, in the same format passed to
set_display _switch_mode().

See also:
See Section 1.9.8 [set_display_switch_mode], page 108.
See Section 3.4.47 [exswitch], page 436.

1.9.12 is_windowed_mode

int is_windowed_mode(void);
This function can be used to detect wether or not set_gfx_mode() selected a
windowed mode. Example:

if (set_gfx_mode (GFX_AUTODETECT, 640, 480, 0, 0) != 0)

Chapter 1: API 111

See also:

abort_on_error("Couldn’t set graphic mode!");
if (is_windowed_mode()) {

/* Windowed mode stuff. */
} else {

/* Fullscreen mode stuff. */

}

Returns true if the current graphics mode is a windowed mode, or zero if it is
a fullscreen mode. You should not call this function if you are not in graphics
mode.

See Section 1.9.7 [set_gfx_mode], page 107.

1.9.13 gfx_capabilities

extern int gfx_capabilities;

Bitfield describing the capabilities of the current graphics driver and video
hardware. This may contain combination any of the flags:

GFX_CAN_SCROLL:
Indicates that the scroll_screen() function may be used with this driver.

GFX_CAN_TRIPLE_BUFFER:

Indicates that the request_scroll() and poll_scroll() functions may be used with
this driver. If this flag is not set, it is possible that the enable_triple_buffer()
function may be able to activate it.

GFX_HW_CURSOR:

Indicates that a hardware mouse cursor is in use. When this flag is set, it is safe
to draw onto the screen without hiding the mouse pointer first. Note that not
every cursor graphic can be implemented in hardware: in particular VBE/AF
only supports 2-color images up to 32x32 in size, where the second color is
an exact inverse of the first. This means that Allegro may need to switch
between hardware and software cursors at any point during the execution of
your program, so you should not assume that this flag will remain constant for
long periods of time. It only tells you whether a hardware cursor is in use at
the current time, and may change whenever you hide/redisplay the pointer.

GFX_SYSTEM_CURSOR
Indicates that the mouse cursor is the default system cursor, not Allegro’s
custom cursor.

GFX_HW _HLINE:

Indicates that the normal opaque version of the hline() function is implemented
using a hardware accelerator. This will improve the performance not only of
hline() itself, but also of many other functions that use it as a workhorse, for
example circlefill(), triangle(), and floodfill().

GFX_HW_HLINE_XOR:
Indicates that the XOR version of the hline() function, and any other functions
that use it as a workhorse, are implemented using a hardware accelerator.

112

Allegro Manual

GFX_HW_HLINE_SOLID_PATTERN:
Indicates that the solid and masked pattern modes of the hline() function,
and any other functions that use it as a workhorse, are implemented using a
hardware accelerator (see note below).

GFX_HW_HLINE_COPY_PATTERN:

Indicates that the copy pattern mode of the hline() function, and any other
functions that use it as a workhorse, are implemented using a hardware accel-
erator (see note below).

GFX_HW_FILL:
Indicates that the opaque version of the rectfill() function, the clear_bitmap()
routine, and clear_to_color(), are implemented using a hardware accelerator.

GFX_HW_FILL_XOR:
Indicates that the XOR version of the rectfill() function is implemented using
a hardware accelerator.

GFX_HW_FILL_SOLID_PATTERN:
Indicates that the solid and masked pattern modes of the rectfill() function are
implemented using a hardware accelerator (see note below).

GFX_HW_FILL_COPY_PATTERN:
Indicates that the copy pattern mode of the rectfill() function is implemented
using a hardware accelerator (see note below).

GFX_HW_LINE:
Indicates that the opaque mode line() and vline() functions are implemented
using a hardware accelerator.

GFX_HW_LINE_XOR:
Indicates that the XOR version of the line() and vline() functions are imple-
mented using a hardware accelerator.

GFX_HW_TRIANGLE:
Indicates that the opaque mode triangle() function is implemented using a
hardware accelerator.

GFX_HW_TRIANGLE_XOR:
Indicates that the XOR version of the triangle() function is implemented using
a hardware accelerator.

GFX_HW_GLYPH:
Indicates that monochrome character expansion (for text drawing) is imple-
mented using a hardware accelerator.

GFX_HW_VRAM_BLIT:

Indicates that blitting from one part of the screen to another is implemented
using a hardware accelerator. If this flag is set, blitting within the video memory
will almost certainly be the fastest possible way to display an image, so it may
be worth storing some of your more frequently used graphics in an offscreen
portion of the video memory.

GFX_HW_VRAM_BLIT_MASKED:
Indicates that the masked_blit() routine is capable of a hardware accelerated
copy from one part of video memory to another, and that draw_sprite() will

Chapter 1: API 113

See also:

use a hardware copy when given a sub-bitmap of the screen or a video memory
bitmap as the source image. If this flag is set, copying within the video memory
will almost certainly be the fastest possible way to display an image, so it may
be worth storing some of your more frequently used sprites in an offscreen
portion of the video memory.

Warning: if this flag is not set, masked_blit() and draw_sprite() will not work
correctly when used with a video memory source image! You must only try to
use these functions to copy within the video memory if they are supported in
hardware.

GFX_HW_MEM _BLIT:
Indicates that blitting from a memory bitmap onto the screen is being acceler-
ated in hardware.

GFX_HW_MEM_BLIT_MASKED:

Indicates that the masked_blit() and draw_sprite() functions are being acceler-
ated in hardware when the source image is a memory bitmap and the destination
is the physical screen.

GFX_HW_SYS_.TO_VRAM_BLIT:

Indicates that blitting from a system bitmap onto the screen is being accelerated
in hardware. Note that some acceleration may be present even if this flag is not
set, because system bitmaps can benefit from normal memory to screen blitting

as well. This flag will only be set if system bitmaps have further acceleration
above and beyond what is provided by GFX_HW_MEM_BLIT.

GFX_HW_SYS_.TO_VRAM_BLIT_MASKED:

Indicates that the masked_blit() and draw_sprite() functions are being accel-
erated in hardware when the source image is a system bitmap and the des-
tination is the physical screen. Note that some acceleration may be present
even if this flag is not set, because system bitmaps can benefit from nor-
mal memory to screen blitting as well. This flag will only be set if sys-

tem bitmaps have further acceleration above and beyond what is provided by
GFX_HW_MEM_BLIT_MASKED.

Note: even if the capabilities information says that patterned drawing is
supported by the hardware, it will not be possible for every size of pattern.
VBE/AF only supports patterns up to 8x8 in size, so Allegro will fall back
on the original non-accelerated drawing routines whenever you use a pattern
larger than this.

Note2: these hardware acceleration features will only take effect when you are
drawing directly onto the screen bitmap, a video memory bitmap, or a sub-
bitmap thereof. Accelerated hardware is most useful in a page flipping or triple
buffering setup, and is unlikely to make any difference to the classic "draw onto
a memory bitmap, then blit to the screen" system.

See Section 1.10.1 [screen], page 118.

See Section 1.10.7 [create_video_bitmap|, page 122.

See Section 1.9.15 [scroll_screen], page 114.

114

Allegro Manual

See Section 1.9.16 [request_scroll], page 115.

See Section 1.5.11 [show_mouse], page 73.
See Section 1.9.14 [enable_triple_buffer], page 114.

See Section 3.4.43 [exaccel], page 431.

See Section 3.4.45 [exsyscur], page 434.

[
[
[
See Section 3.4.41 [ex3buf], page 428.
[
[
[

See Section 3.4.46 [exupdate], page 435.

1.9.14 enable_triple_buffer
int enable_triple_buffer();

See also:

If the GFX_CAN_TRIPLE_BUFFER bit of the gfx_capabilities field is not set,
you can attempt to enable it by calling this function. In particular if you are
running in mode-X in a clean DOS environment, this routine will enable the
timer retrace simulator, which will activate the triple buffering functions.

Returns zero if triple buffering is enabled, -1 otherwise.

See Section 1.9.13 [gfx_capabilities|, page 111.

See Section 1.9.16 [request_scroll], page 115.

See Section 3.4.41 [ex3buf], page 428.

[
[
See Section 1.9.19 [request_video_bitmap], page 116.
[
[

See Section 3.4.46 [exupdate], page 435.

1.9.15 scroll_screen

int scroll_screen(int x, int y);

See also:

Attempts to scroll the hardware screen to display a different part of the virtual
screen (initially it will be positioned at 0, 0, which is the top left corner). You
can use this to move the screen display around in a large virtual screen space,
or to page flip back and forth between two non-overlapping areas of the virtual
screen. Note that to draw outside the original position in the screen bitmap
you will have to alter the clipping rectangle with set_clip_rect().

Mode-X scrolling is reliable and will work on any card, other drivers may not
work or not work reliably. See the platform-specific section of the docs for more
information.

Allegro will handle any necessary vertical retrace synchronisation when scrolling
the screen, so you don’t need to call vsync() before it. This means that
scroll_screen() has the same time delay effects as vsync().

Returns zero on success. Returns non-zero if the graphics driver can’t handle
hardware scrolling or the virtual screen is not large enough.

See Section 1.9.7 [set_gfx_mode], page 107.

See Section 1.9.18 [show_video_bitmap], page 115.

Chapter 1: API 115

See Section 1.9.16 [request_scroll], page 115.

See Section 1.9.19 [request_video_bitmap]|, page 116.
See Section 3.4.40 [exscroll], page 428.

1.9.16 request_scroll

int request_scroll(int x, int y);

See also:

This function is used for triple buffering. It requests a hardware scroll to the
specified position, but returns immediately rather than waiting for a retrace.
The scroll will then take place during the next vertical retrace, but you can
carry on running other code in the meantime and use the poll_scroll() routine
to detect when the flip has actually taken place.

Triple buffering is only possible with certain drivers: you can look at the
GFX_CAN_TRIPLE_BUFFER bit in the gfx_capabilities flag to see if it will
work with the current driver.

This function returns zero on success, non-zero otherwise.

See Section 1.9.17 [poll_scroll], page 115.

See Section 1.9.19 [request_video_bitmap], page 116.

[
[

See Section 1.9.13 [gfx_capabilities], page 111.
[

See Section 1.9.15 [scroll_screen], page 114.

1.9.17 poll_scroll
int poll_scroll();

See also:

This function is used for triple buffering. It checks the status of a hardware
scroll previously initiated by the request_scroll() routine.

Returns non-zero if it is still waiting to take place, and zero if the requested
scroll has already happened.

See Section 1.9.16 [request_scroll], page 115.

See Section 1.9.19

request_video_bitmap|, page 116.

[

[
See Section 3.4.41 [ex3buf], page 428.
See Section 3.4.46 [exupdate], page 435.

1.9.18 show_video_bitmap

int show_video_bitmap(BITMAP *bitmap);

Attempts to page flip the hardware screen to display the specified video bitmap
object, which must be the same size as the physical screen, and should have
been obtained by calling the create_video_bitmap() function.

Allegro will handle any necessary vertical retrace synchronisation when
page flipping, so you don’t need to call vsync() before it. This means that

116

Allegro Manual

show_video_bitmap() has the same time delay effects as vsync() by default.
This can be adjusted with the "disable_vsync" config key in the [graphics]

section of allegro.cfg. Example:

int current_page;
BITMAP *video_page[2];

/* Create pages for page flipping */

video_page[0] = create_video_bitmap(SCREEN_W, SCREEN_H);
video_page[1] = create_video_bitmap(SCREEN_W, SCREEN_H);

current_page = O;

/* draw the screen and flip pages */
draw_screen(video_page [current_pagel);
show_video_bitmap(video_page [current_pagel);
current_page = (current_page+1)%2;

Returns zero on success and non-zero on failure.

See also:

See Section 1.9.15 [scroll_screen], page 114.

See Section 1.10.7 [create_video_bitmap]|, page 122.
See Section 1.4.23 [Standard config variables], page 60.
See Section 3.4.43 [exaccel], page 431.

See Section 3.4.7 [exflip], page 391.

See Section 3.4.46 [exupdate], page 435.

See Section 1.2.2 [BITMAP], page 13.

1.9.19 request_video_bitmap
int request_video_bitmap(BITMAP *bitmap) ;

This function is used for triple buffering. It requests a page flip to display the
specified video bitmap object, but returns immediately rather than waiting for
a retrace. The flip will then take place during the next vertical retrace, but
you can carry on running other code in the meantime and use the poll_scroll()
routine to detect when the flip has actually taken place. Triple buffering is
only possible on certain hardware: see the comments about request_scroll().

Example:

int current_page;
BITMAP *video_pagel[3];

/* Create pages for page flipping */

video_page[0] = create_video_bitmap(SCREEN_W, SCREEN_H);
video_page[1] = create_video_bitmap(SCREEN_W, SCREEN_H);

Chapter 1: API 117

video_page[2] = create_video_bitmap(SCREEN_W, SCREEN_H);
current_page = O;

/* draw the screen and flip pages */
draw_screen(video_page [current_pagel) ;

do {

} while (poll_scroll());
request_video_bitmap(video_page[current_pagel);
current_page = (current_page+1)%3;

Returns zero on success and non-zero on failure.

See also:

See Section 1.9.17 [poll_scroll], page 115.

See Section 1.9.16 [request_scroll], page 115.

See Section 1.9.13 [gfx_capabilities], page 111.

See Section 1.10.7 [create_video_bitmap|, page 122.
See Section 1.9.15 [scroll_screen], page 114.

See Section 3.4.41 [ex3buf], page 428.

See Section 3.4.46 [exupdate], page 435.

See Section 1.2.2 [BITMAP], page 13.

1.9.20 vsync

void vsync();

Waits for a vertical retrace to begin. The retrace happens when the electron
beam in your monitor has reached the bottom of the screen and is moving back
to the top ready for another scan. During this short period the graphics card
isn’t sending any data to the monitor, so you can do things to it that aren’t
possible at other times, such as altering the palette without causing flickering
(snow). Allegro will automatically wait for a retrace before altering the palette
or doing any hardware scrolling, though, so you don’t normally need to bother
with this function.

See also:

See Section 1.12.3 [set_palette], page 142.
See Section 1.9.15 [scroll_screen], page 114.
See Section 3.4 [Available], page 387.

1.10 Bitmap objects

Once you have selected a graphics mode, you can draw things onto the display via the
‘screen’ bitmap. All the Allegro graphics routines draw onto BITMAP structures, which
are areas of memory containing rectangular images, stored as packed byte arrays (in 8-bit
modes one byte per pixel, in 15- and 16-bit modes two bytes per pixel, in 24-bit modes

118 Allegro Manual

3 bytes per pixel and in 32-bit modes 4 bytes per pixel). You can create and manipulate
bitmaps in system RAM, or you can write to the special ‘screen’ bitmap which represents
the video memory in your graphics card.

Read chapter "Direct access to video memory" for information on how to get direct access
to the image memory in a bitmap.

Allegro supports several different types of bitmaps:

e The ‘screen’ bitmap, which represents the hardware video memory. Ultimately you
have to draw onto this in order for your image to be visible. It is destroyed by any
subsequent calls to set_gfx_mode(), so you should never attempt to destroy it yourself.

e Memory bitmaps, which are located in system RAM and can be used to store graphics
or as temporary drawing spaces for double buffered systems. These can be obtained
by calling create_bitmap(), load_pcx(), or by loading a grabber datafile.

e Sub-bitmaps. These share image memory with a parent bitmap (which can be the
screen, a video or system bitmap, a memory bitmap, or another sub-bitmap), so draw-
ing onto them will also change their parent. They can be of any size and located
anywhere within the parent bitmap, and can have their own clipping rectangles, so
they are a useful way of dividing a bitmap into several smaller units, eg. splitting a
large virtual screen into multiple sections (see examples/exscroll.c).

Warning: Make sure not to destroy a bitmap before all of its sub-bitmaps, otherwise
bad things will happen when you try to access one of these sub-bitmaps.

e Video memory bitmaps. These are created by the create_video_bitmap() function, and
are usually implemented as sub-bitmaps of the screen object. They must be destroyed
by destroy_bitmap() before any subsequent calls to set_gfx_mode().

e System bitmaps. These are created by the create_system_bitmap() function, and are
a sort of halfway house between memory and video bitmaps. They live in system
memory, so you aren’t limited by the amount of video ram in your card, but they are
stored in a platform-specific format that may enable better hardware acceleration than
is possible with a normal memory bitmap (see the GFX_HW_SYS_TO_VRAM_BLIT
and GFX_HW_SYS_TO_VRAM_BLIT_MASKED flags in gfx_capabilities). System
bitmaps must be accessed in the same way as video bitmaps, using the bank switch
functions and bmp_write*() macros. Not every platform implements this type of bit-
map: if they aren’t available, create_system_bitmap() will function identically to cre-
ate_bitmap(). They must be destroyed by destroy_bitmap() before any subsequent calls
to set_gfx_mode().

1.10.1 screen

extern BITMAP *screen;
Global pointer to a bitmap, sized VIRTUAL_W x VIRTUAL_H. This is created
by set_gfx_mode(), and represents the hardware video memory. Only a part of
this bitmap will actually be visible, sized SCREEN_W x SCREEN_H. Normally
this is the top left corner of the larger virtual screen, so you can ignore the extra
invisible virtual size of the bitmap if you aren’t interested in hardware scrolling
or page flipping. To move the visible window to other parts of the screen
bitmap, call scroll_screen(). Initially the clipping rectangle will be limited to

Chapter 1: API 119

See also:

the physical screen size, so if you want to draw onto a larger virtual screen
space outside this rectangle, you will need to adjust the clipping.

For example, to draw a pixel onto the screen you would write:

putpixel(screen, x, y, color);

Or to implement a double-buffered system:

/* Make a bitmap in RAM. */

BITMAP *bmp = create_bitmap(320, 200);

/* Clean the memory bitmap. */

clear_bitmap (bmp) ;

/* Draw onto the memory bitmap. */

putpixel (bmp, x, y, color);

/* Copy it to the screen. */

blit(bmp, screemn, 0, 0, 0, 0, 320, 200);
Warning: be very careful when using this pointer at the same time as any
bitmaps created by the create_video_bitmap() function (see the description of
this function for more detailed information). And never try to destroy it with
destroy_bitmap().

See Section 1.9.7 [set_gfx_mode|, page 107.

See Section 1.10.17 [is_screen_bitmap], page 126.

See Section 1.10.7 [create_video_bitmap]|, page 122.

See Section 1.9.15 [scroll_screen], page 114.
See Section 3.4 [Available|, page 387.
See Section 1.2.2 [BITMAP], page 13.

1.10.2 SCREEN_W

#define SCREEN_W;
#define SCREEN_H;

See also:

Global defines that return the width and height of the screen, or zero if the
screen has not been initialised yet. Example:

char buf[100];

uszprintf (buf, sizeof (buf),
"The screen size is %d x %d pixels",
SCREEN_W, SCREEN_H);

See Section 1.10.1 [screen], page 118.

See Section 1.9.7 [set_gfx_mode|, page 107.
See Section 1.10.3 [VIRTUAL_W], page 120.

120 Allegro Manual

See Section 1.10.3 [VIRTUAL_W], page 120.
See Section 3.4 [Available|, page 387.

1.10.3 VIRTUAL_W
#define VIRTUAL_W;
#define VIRTUAL_H;

Global defines that return the width and height of the virtual screen, or zero if
the screen has not been initialised yet. Example:

char buf[100];

uszprintf (buf, sizeof (buf),
"The virtual screen size is %d x %d pixels",
SCREEN_W, SCREEN_H);

See also:

See Section 1.10.1 [screen], page 118.

See Section 1.9.7 [set_gfx_mode], page 107.
See Section 1.10.2 [SCREEN_W], page 119.
See Section 1.10.2 [SCREEN_W], page 119.

1.10.4 create_bitmap

BITMAP *create_bitmap(int width, int height);
Creates a memory bitmap sized width by height. The bitmap will have clipping
turned on, and the clipping rectangle set to the full size of the bitmap. The
image memory will not be cleared, so it will probably contain garbage: you
should clear the bitmap before using it. This routine always uses the global
pixel format, as specified by calling set_color_depth(). The minimum height of
the BITMAP must be 1 and width can’t be negative. Example:

/* Create a 10 pixel tall bitmap, as wide as the screen. */
BITMAP *bmp = create_bitmap(SCREEN_W, 10);
if (!bmp)
abort_on_error("Couldn’t create bitmap!");
/* Use the bitmap. */

/* Destroy it when we don’t need it any more. */
destroy_bitmap (bmp) ;

Returns a pointer to the created bitmap, or NULL if the bitmap could not be
created. Remember to free this bitmap later to avoid memory leaks.

See also:
See Section 1.10.5 [create_bitmap_ex], page 121.

Chapter 1: API

See Section 1.10.6 [create_sub_bitmap], page 122.
See Section 1.10.7 [create_video_bitmap|, page 122.
See Section 1.10.8 [create_system_bitmap], page 123.
See Section 1.10.9 [destroy_bitmap]|, page 123.

See Section 1.9.1 [set_color_depth], page 105.

See Section 1.10.16 [is_memory_bitmap|, page 126.
See Section 1.14.1 [clear_bitmap], page 155.

See Section 1.14.2 [clear_to_color], page 155.

See Section 3.4 [Available|, page 387.

See Section 1.2.2 [BITMAP], page 13.

1.10.5 create_bitmap_ex

BITMAP *create_bitmap_ex(int color_depth, int width, int height);

121

Creates a bitmap in a specific color depth (8, 15, 16, 24 or 32 bits per pixel).

Example:

/* Create screen sized bitmap in 32 bits per pixel. /*
BITMAP *bmp = create_bitmap_ex(32, SCREEN_W, SCREEN_H);

if (!bmp)
abort_on_error("Couldn’t create bitmap!");
/* Use the bitmap. */

/* Destroy it when we don’t need it any more. */
destroy_bitmap (bmp) ;

Returns a pointer to the created bitmap, or NULL if the bitmap could not be

created. Remember to free this bitmap later to avoid memory leaks.

See also:

See Section 1.10.4 [create_bitmap|, page 120.

See Section 1.10.6 [create_sub_bitmap|, page 122.
See Section 1.10.7 [create_video_bitmap|, page 122.
See Section 1.10.8 [create_system_bitmap], page 123.
See Section 1.10.9 [destroy_bitmap|, page 123.

See Section 1.10.16 [is_memory_bitmap|, page 126.
See Section 1.14.1 [clear_bitmap], page 155.

See Section 1.14.2 [clear_to_color], page 155.

See Section 3.4.42 [ex12bit], page 429.

See Section 3.4.33 [exlights|, page 417.

See Section 3.4.28 [exrgbhsv], page 412.

See Section 3.4.25 [extrans], page 409.

See Section 1.2.2 [BITMAP], page 13.

122

Allegro Manual

1.10.6 create_sub_bitmap

BITMAP *create_sub_bitmap(BITMAP *parent, int x, y, width, height);

See also:

Creates a sub-bitmap, ie. a bitmap sharing drawing memory with a pre-existing
bitmap, but possibly with a different size and clipping settings. When creating
a sub-bitmap of the mode-X screen, the x position must be a multiple of four.
The sub-bitmap width and height can extend beyond the right and bottom
edges of the parent (they will be clipped), but the origin point must lie within
the parent region.

Returns a pointer to the created sub bitmap, or NULL if the sub bitmap could
not be created. Remember to free the sub bitmap before freeing the parent
bitmap to avoid memory leaks and potential crashes accessing memory which
has been freed.

See Section 1.10.4 [create_bitmap|, page 120.

See Section 1.10.5 [create_bitmap_ex], page 121.

See Section 1.10.9 [destroy_bitmap], page 123.
See Section 1.10.20 [is_sub_bitmap|, page 127.
See Section 1.14.1 [clear_bitmap], page 155.

See Section 1.14.2 [clear_to_color], page 155.
See Section 3.4.4 [expat], page 389.

See Section 3.4.40 [exscroll], page 428.

See Section 3.4.47 [exswitch], page 436.

See Section 1.2.2 [BITMAP], page 13.

1.10.7 create_video_bitmap

BITMAP *create_video_bitmap(int width, int height);

See also:

Allocates a video memory bitmap of the specified size. This can be used to
allocate offscreen video memory for storing source graphics ready for a hardware
accelerated blitting operation, or to create multiple video memory pages which
can then be displayed by calling show_video_bitmap(). Read the introduction
of this chapter for a comparison with other types of bitmaps and other specific
details.

Warning: video memory bitmaps are usually allocated from the same space
as the screen bitmap, so they may overlap with it; it is therefore not a good
idea to use the global screen at the same time as any surfaces returned by this
function.

Returns a pointer to the bitmap on success, or NULL if you have run out of

video ram. Remember to destroy this bitmap before any subsequent call to
set_gfx_mode().

See Section 1.10.4 [create_bitmap|, page 120.

See Section 1.10.5 [create_bitmap_ex], page 121.

Chapter 1: API

See Section 1.10.8 [create_system_bitmap], page 123.

See Section 1.10.6 [create_sub_bitmap|, page 122.
See Section 1.10.9 [destroy_bitmap]|, page 123.

See Section 1.9.18 [show_video_bitmap], page 115.
See Section 1.9.13
See Section 1.10.18 [is_video_bitmap], page 126.

[
[
[
See Section 1.10.1 [screen], page 118.
[
[gfx_capabilities]|, page 111.
[
See Section 1.14.1 [clear_bitmap], page 155.

See Section 3.4.41 [ex3buf], page 428.
See Section 3.4.43 [exaccel], page 431.
See Section 3.4.7 [exflip], page 391.

See Section 3.4.46 [exupdate], page 435.
See Section 1.2.2 [BITMAP], page 13.

[

See Section 1.14.2 [clear_to_color], page 155.
[
[

1.10.8 create_system_bitmap

BITMAP *create_system_bitmap(int width, int height);

123

Allocates a system memory bitmap of the specified size. Read the introduction
of this chapter for a comparison with other types of bitmaps and other specific

details.

Returns a pointer to the bitmap on success, NULL otherwise. Remember to

destroy this bitmap before any subsequent call to set_gfx_mode().

See also:

See Section 1.10.4 [create_bitmap|, page 120.

See Section 1.10.5 [create_bitmap_ex], page 121.
See Section 1.10.7 [create_video_bitmap]|, page 122.
See Section 1.10.6 [create_sub_bitmap|, page 122.
See Section 1.10.9 [destroy_bitmap]|, page 123.

See Section 1.10.19 [is_system_bitmap], page 127.
See Section 1.14.1 [clear_bitmap], page 155.

See Section 1.14.2 |
See Section 3.4.46 [exupdate], page 435.
See Section 1.2.2 [BITMAP], page 13.

clear_to_color|, page 155.

1.10.9 destroy_bitmap
void destroy_bitmap(BITMAP *bitmap) ;

Destroys a memory bitmap, sub-bitmap, video memory bitmap, or system bit-
map when you are finished with it. If you pass a NULL pointer this function
won’t do anything. See above for the restrictions as to when you are allowed to

destroy the various types of bitmaps.

124 Allegro Manual

See also:

See Section 1.10.4 [create_bitmap|, page 120.
See Section 1.11.1 [load-bitmap]|, page 131.
See Section 3.4 [Available], page 387.

See Section 1.2.2 [BITMAP], page 13.

1.10.10 lock_bitmap

void lock_bitmap(BITMAP *bitmap);
Under DOS, locks all the memory used by a bitmap. You don’t normally need
to call this function unless you are doing very weird things in your program.

See Section 1.2.2 [BITMAP], page 13.

1.10.11 bitmap_color_depth

int bitmap_color_depth(BITMAP *bmp) ;
Returns the color depth of the specified bitmap (8, 15, 16, 24, or 32). Example:

switch (bitmap_color_depth(screen)) {
case 8:
/* Access screen using optimized 8-bit code. */
break;
default:
/* Use generic slow functions. */
break;

See also:

See Section 1.9.1 [set_color_depth], page 105.
See Section 1.10.12 [bitmap_mask_color], page 124.
See Section 3.4.34 [ex3d], page 419.

See Section 3.4.33 [exlights], page 417.

See Section 3.4.38 [exscn3d], page 425.

See Section 3.4.47 [exswitch], page 436.

See Section 3.4.25 [extrans], page 409.

See Section 3.4.46 [exupdate], page 435.

See Section 3.4.39 [exzbuf], page 426.

See Section 1.2.2 [BITMAP], page 13.

1.10.12 bitmap_mask_color

int bitmap_mask_color (BITMAP *bmp) ;
Returns the mask color for the specified bitmap (the value which is skipped
when drawing sprites). For 256-color bitmaps this is zero, and for truecolor

Chapter 1: API 125

bitmaps it is bright pink (maximum red and blue, zero green). A frequent use
of this function is to clear a bitmap with the mask color so you can later use
this bitmap with masked_blit() or draw_sprite() after drawing other stuff on it.
Example:

/* Replace mask color with another color. */
for (y = 0; y h; y++)
for (x = 0; x w; x++)
if (getpixel(bmp, x, y) == bitmap_mask_color (bmp))
putpixel(bmp, x, y, another_color);

See also:

See Section 1.13.12 [MASK_COLOR_8]|, page 154.
See Section 1.9.1 [set_color_depth], page 105.

See Section 1.10.11 [bitmap_color_depth], page 124.
See Section 3.4.34 [ex3d], page 419.

See Section 3.4.10 [exmouse], page 393.

See Section 3.4.4 [expat], page 389.

See Section 1.2.2 [BITMAP], page 13.

1.10.13 is_same_bitmap

int is_same_bitmap(BITMAP *bmpl, BITMAP *bmp2);
Returns TRUE if the two bitmaps describe the same drawing surface, ie. the
pointers are equal, one is a sub-bitmap of the other, or they are both sub-
bitmaps of a common parent.

See also:
See Section 1.10.6 [create_sub_bitmap|, page 122.
See Section 1.2.2 [BITMAP], page 13.

1.10.14 is_planar_bitmap

int is_planar_bitmap(BITMAP *bmp) ;
Returns TRUE if bmp is a planar (mode-X or Xtended mode) screen bitmap.

See also:

See Section 1.10.15 [is_linear_bitmap]|, page 125.
See Section 1.10.16 [is_memory_bitmap], page 126.
See Section 1.2.2 [BITMAP], page 13.

1.10.15 is_linear_bitmap

int is_linear_bitmap(BITMAP *bmp) ;
Returns TRUE if bmp is a linear bitmap, i.e. a bitmap that can be accessed
linearly within each scanline (for example a memory bitmap, the DOS VGA or

126 Allegro Manual

SVGA screen, Windows bitmaps, etc). Linear bitmaps can be used with the
_putpixel(), _getpixel(), bmp_write_line(), and bmp_read_line() functions.

Historically there were only linear and planar bitmaps for Allegro, so
is_linear_bitmap() is actually an alias for lis_planar_bitmap().

See also:

See Section 1.10.14 [is_planar_bitmap|, page 125.
See Section 1.10.16 [is_memory_bitmap], page 126.
See Section 1.2.2 [BITMAP], page 13.

1.10.16 is_memory_bitmap

int is_memory_bitmap(BITMAP *bmp) ;
Returns TRUE if bmp is a memory bitmap, ie. it was created by calling cre-
ate_bitmap() or loaded from a grabber datafile or image file. Memory bitmaps
can be accessed directly via the line pointers in the bitmap structure, eg. bmp-
>line[y][x] = color.

See also:

See Section 1.10.15 [is_linear_bitmap]|, page 125.
See Section 1.10.14 [is_planar_bitmap|, page 125.
See Section 1.2.2 [BITMAP], page 13.

1.10.17 is_screen_bitmap

int is_screen_bitmap(BITMAP *bmp) ;
Returns TRUE if bmp is the screen bitmap, or a sub-bitmap of the screen.

See also:

See Section 1.10.1 [screen|, page 118.

See Section 1.10.6 [create_sub_bitmap|, page 122.
See Section 1.2.2 [BITMAP], page 13.

1.10.18 is_video_bitmap

int is_video_bitmap(BITMAP x*bmp) ;
Returns TRUE if bmp is the screen bitmap, a video memory bitmap, or a
sub-bitmap of either.

See also:

See Section 1.10.1 [screen], page 118.

See Section 1.10.7 [create_video_bitmap]|, page 122.
See Section 1.10.6 [create_sub_bitmap], page 122.
See Section 1.2.2 [BITMAP], page 13.

Chapter 1: API 127

1.10.19 is_system_bitmap

int is_system_bitmap(BITMAP *bmp) ;

See also:

Returns TRUE if bmp is a system bitmap object, or a sub-bitmap of one.

See Section 1.10.8 [create_system_bitmap], page 123.

See Section 1.10.6 [create_sub_bitmap], page 122.
See Section 1.2.2 [BITMAP], page 13.

1.10.20 is_sub_bitmap
int is_sub_bitmap(BITMAP *bmp) ;

See also:

Returns TRUE if bmp is a sub-bitmap.

See Section 1.10.6 [create_sub_bitmap], page 122.
See Section 1.2.2 [BITMAP], page 13.

1.10.21 acquire_bitmap

void acquire_bitmap(BITMAP *bmp) ;

See also:

Locks the specified video memory bitmap prior to drawing onto it. This does
not apply to memory bitmaps, and only affects some platforms (Windows needs
it, DOS does not). These calls are not strictly required, because the drawing
routines will automatically acquire the bitmap before accessing it, but locking a
DirectDraw surface is very slow, so you will get much better performance if you
acquire the screen just once at the start of your main redraw function, and only
release it when the drawing is completely finished. Multiple acquire calls may be
nested, and the bitmap will only be truly released when the lock count returns
to zero. Be warned that DirectX programs activate a mutex lock whenever a
surface is locked, which prevents them from getting any input messages, so you
must be sure to release all your bitmaps before using any timer, keyboard, or
other non-graphics routines!

Note that if you are using hardware accelerated VRAM->VRAM blits, you
should not call acquire_bitmap().

See Section 1.10.22 [release_bitmap]|, page 128.

See Section 1.10.23 [acquire_screen|, page 128.

See Section 1.10.24 [release_screen], page 128.
See Section 3.4.41 [ex3buf], page 428.
See Section 3.4.43 [exaccel], page 431.

See Section 3.4.4 [expat], page 389.

See Section 3.4.36 [exquat], page 422.
See Section 3.4.40 [exscroll], page 428.

128 Allegro Manual

See Section 3.4.47 [exswitch], page 436.
See Section 3.4.46 [exupdate], page 435.
See Section 1.2.2 [BITMAP], page 13.

1.10.22 release_bitmap

void release_bitmap(BITMAP *bmp) ;
Releases a bitmap that was previously locked by calling acquire_bitmap(). If
the bitmap was locked multiple times, you must release it the same number of
times before it will truly be unlocked.

See also:

See Section 1.10.21 [acquire_bitmap], page 127.
See Section 1.10.23 [acquire_screen|, page 128.
See Section 1.10.24 [release_screen], page 128.
See Section 3.4.41 [ex3buf], page 428.

See Section 3.4.43 [exaccel], page 431.

See Section 3.4.4 [expat], page 389.

See Section 3.4.36 [exquat], page 422.

See Section 3.4.40 [exscroll], page 428.

See Section 3.4.47 [exswitch], page 436.

See Section 3.4.46 [exupdate], page 435.

See Section 1.2.2 [BITMAP], page 13.

1.10.23 acquire_screen

void acquire_screen();
Shortcut version of acquire_bitmap(screen);

See also:

See Section 1.10.21 [acquire_bitmap], page 127.
See Section 1.10.22 [release_bitmap]|, page 128.
See Section 1.10.24 [release_screen], page 128.
See Section 3.4 [Available|, page 387.

1.10.24 release_screen

void release_screen();
Shortcut version of release_bitmap(screen);

See also:

See Section 1.10.21 [acquire_bitmap], page 127.
See Section 1.10.22 [release_bitmap|, page 128.
See Section 1.10.23 [acquire_screen|, page 128.

Chapter 1: API

See Section 3.4 [Available|, page 387.

1.10.25 set_clip_rect

void set_clip_rect(BITMAP *bitmap, int x1, int yi1, int x2, int y2);
Each bitmap has an associated clipping rectangle, which is the area of the
image that it is ok to draw onto. Nothing will be drawn to positions outside
this space. This function sets the clipping rectangle for the specified bitmap.
Pass the coordinates of the top-left and bottom-right corners of the clipping
rectangle in this order; these are both inclusive, i.e. set_clip_rect(bitmap, 16,
16, 32, 32) will allow drawing to (16, 16) and (32, 32), but not to (15, 15) and

(33, 33).

Drawing operations will be performed (at least partially) on the bitmap as long
as the first coordinates of its clipping rectangle are not greater than the second
coordinates and its intersection with the actual image is non-empty. If either
condition is not fulfilled, drawing will be turned off for the bitmap, e.g.

set_clip_rect(bmp, O, 0, -1, -1); /* disable drawing on bmp */

Note that passing "out-of-bitmap" coordinates is allowed, but they are likely to
be altered (and so the coordinates returned by get_clip_rect() will be different).
However, such modifications are guaranteed to preserve the external effect of
the clipping rectangle, that is not to modify the actual area of the image that

it is ok to draw onto.

See also:

See Section 1.10.26 [get_clip_rect], page 129.
See Section 1.10.27 [add_clip_rect], page 130.
See Section 1.10.28 [set_clip_state], page 130.
See Section 1.10.29 [get_clip_state], page 130.
See Section 3.4.42 [ex12bit], page 429.

See Section 3.4.35 [excameral, page 421.

See Section 1.2.2 [BITMAP], page 13.

1.10.26 get_clip_rect

void get_clip_rect(BITMAP #bitmap, int *x1, int *yl, int *x2, int *y2);
Returns the clipping rectangle for the specified bitmap.

See also:

See Section 1.10.25 [set_clip_rect], page 129.
See Section 1.10.27 [add_clip_rect], page 130.
See Section 1.10.28 [set_clip_state], page 130.
See Section 1.10.29 [get_clip_state], page 130.
See Section 1.2.2 [BITMAP], page 13.

130 Allegro Manual

1.10.27 add_clip_rect

void add_clip_rect(BITMAP *bitmap, int x1, int y1, int x2, int y2);
Sets the clipping rectangle of the specified bitmap as the intersection of its
current clipping rectangle and the rectangle described by the four coordinates.

See also:
See Section 1.10.25 [set_clip_rect], page 129.

See Section 1.10.28 [set_clip_state], page 130.

See Section 1.10.29 [get_clip_state], page 130.
See Section 1.2.2 [BITMAP], page 13.

[

See Section 1.10.26 [get_clip_rect], page 129.
[
[

1.10.28 set_clip_state

void set_clip_state(BITMAP *bitmap, int state)
Turns on (if state is non-zero) or off (if state is zero) clipping for the specified
bitmap. Turning clipping off may slightly speed up some drawing operations
(usually a negligible difference, although every little helps) but will result in
your program dying a horrible death if you try to draw beyond the edges of the
bitmap.

See also:

See Section 1.10.25 [set_clip_rect], page 129.

See Section 1.10.26 [get_clip_rect], page 129.

See Section 1.10.27 [add_clip_rect], page 130.
See Section 1.10.29 [get_clip_state], page 130.
See Section 1.2.2 [BITMAP], page 13.

1.10.29 get_clip_state

int get_clip_state(BITMAP *bitmap)
Returns non-zero if clipping is turned on for the specified bitmap and zero
otherwise.

See also:

See Section 1.10.25 [set_clip_rect], page 129.

See Section 1.10.26 [get_clip_rect], page 129.

See Section 1.10.27 [add_clip_rect], page 130.
See Section 1.10.28 [set_clip_state], page 130.
See Section 1.2.2 [BITMAP], page 13.

Chapter 1: API 131

1.10.30 is_inside_bitmap

int is_inside_bitmap(BITMAP *bmp, int x, int y, int clip);
Returns non-zero if point (x, y) lies inside the bitmap. If ‘clip’ is non-zero, the
function compares the coordinates with the clipping rectangle, that is it returns
non-zero if the point lies inside the clipping rectangle or if clipping is disabled
for the bitmap. If ‘clip’ is zero, the function compares the coordinates with the
actual dimensions of the bitmap.

See also:

See Section 1.10.25 [set_clip_rect], page 129.
See Section 1.10.28 [set_clip_state], page 130.
See Section 1.14.5 [getpixel], page 156.

See Section 1.2.2 [BITMAP], page 13.

1.11 Loading image files

Warning: when using truecolor images, you should always set the graphics mode before
loading any bitmap data! Otherwise the pixel format (RGB or BGR) will not be known,
so the file may be converted wrongly.

1.11.1 load_bitmap

BITMAP *load_bitmap(const char *filename, RGB *pal);
Loads a bitmap from a file. The palette data will be stored in the second
parameter, which should be an array of 256 RGB structures. At present this
function supports BMP, LBM, PCX, and TGA files, determining the type from
the file extension.

If the file contains a truecolor image, you must set the video mode
or call set_color_conversion() before loading it. In this case, if the
destination color depth is 8-bit, the palette will be generated by calling
generate_optimized_palette() on the bitmap; otherwise, the returned palette
will be generated by calling generate_332_palette().

The pal argument may be NULL. In this case, the palette data are simply not
returned. Additionally, if the file is a truecolor image and the destination color
depth is 8-bit, the color conversion process will use the current palette instead
of generating an optimized one.

Example:

BITMAP *bmp;
PALETTE palette;

bmp = load_bitmap("image.pcx", palette);
if (!bmp)
abort_on_error("Couldn’t load image.pcx!");

Allegro Manual

132
destroy_bitmap (bmp) ;
Returns a pointer to the bitmap or NULL on error. Remember that you are
responsible for destroying the bitmap when you are finished with it to avoid
memory leaks.
See also:

See Section 1.11.2 [load_bmp], page 132.

See Section 1.11.4 [load-lbm], page 133.

See Section 1.11.5 [load-pcx], page 133.

See Section 1.11.7 [load-tgal, page 134.

See Section 1.10.9 [destroy_bitmap]|, page 123.

See Section 1.11.9 [save_bitmap]|, page 135.

See Section 1.11.16 [register_bitmap_file_type], page 137.
See Section 1.9.1 [set_color_depth], page 105.

See Section 1.11.17 [set_color_conversion], page 138.

See Section 1.12.18 [generate_optimized_palette], page 147.
See Section 1.12.17 [generate_332_palette], page 146.

See Section 3.4.43 [exaccel], page 431.

See Section 3.4.32 [exalpha], page 416.

See Section 3.4.19 [exbitmap], page 403.

See Section 3.4.30 [exblend], page 414.

See Section 3.4.21 [exconfig], page 404.

See Section 3.4.33 [exlights], page 417.

See Section 3.4.29 |
See Section 3.4.25 [extrans], page 409.
See Section 3.4.31 [exxfade], page 415.
See Section 1.2.2 [BITMAP], page 13.
See Section 1.2.13 [RGB], page 17.

exshade|, page 413.

1.11.2 load_bmp
BITMAP *load_bmp(const char *filename, RGB *pal);

Loads an 8-bit, 16-bit, 24-bit or 32-bit Windows or OS/2 BMP file.

Returns a pointer to the bitmap or NULL on error. Remember that you are
responsible for destroying the bitmap when you are finished with it to avoid

memory leaks.

See also:

See Section 1.11.1 [load-bitmap]|, page 131.
See Section 1.11.3 [load_bmp_pf], page 133.
See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.13 [RGB], page 17.

Chapter 1: API 133

1.11.3 load_bmp_pf
BITMAP *load_bmp_pf (PACKFILE *f, RGB *pal);

See also:

A version of load_bmp() which reads from a packfile. Example:

PACKFILE *packfile;
BITMAP *bmp;

packfile = pack_fopen("mybitmap.bmp", F_READ);
if (!packfile)
abort_on_error("Couldn’t open mybitmap.bmp");

bmp = load_bmp_pf(packfile, pal);
if (!bmp)
abort_on_error ("Error loading mybitmap.bmp");
Returns a pointer to the bitmap or NULL on error. Remember that you are
responsible for destroying the bitmap when you are finished with it to avoid
memory leaks.

See Section 1.11.2 [load_bmp], page 132.
See Section 3.4.49 [expackf], page 438.
See Section 1.2.2 [BITMAP], page 13.
See Section 1.2.13 [RGB], page 17.

See Section 1.2.32 [PACKFILE], page 24.

1.11.4 load_lbm
BITMAP *load_lbm(const char *filename, RGB *pal);

See also:

Loads a 256-color IFF ILBM/PBM file.

Returns a pointer to the bitmap or NULL on error. Remember that you are
responsible for destroying the bitmap when you are finished with it to avoid
memory leaks.

See Section 1.11.1 [load_bitmap]|, page 131.
See Section 1.2.2 [BITMAP], page 13.
See Section 1.2.13 [RGB], page 17.

1.11.5 load_pcx
BITMAP *load_pcx(const char *filename, RGB *pal);

Loads a 256-color or 24-bit truecolor PCX file.

Returns a pointer to the bitmap or NULL on error. Remember that you are
responsible for destroying the bitmap when you are finished with it to avoid
memory leaks.

134 Allegro Manual

See also:

See Section 1.11.1 [load-bitmap]|, page 131.
See Section 3.4.49 [expackf], page 438.

See Section 3.4.20 [exscale], page 404.

See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.13 [RGB], page 17.

1.11.6 load_pcx_pf

BITMAP *load_pcx_pf (PACKFILE *f, RGB #*pal);
A version of load_pcx() which reads from a packfile. Example:

PACKFILE *packfile;
BITMAP *bmp;

packfile = pack_fopen("mybitmap.pcx", F_READ);
if (!packfile)
abort_on_error("Couldn’t open mybitmap.pcx");

bmp = load_bmp_pf (packfile, pal);
if (!bmp)
abort_on_error ("Error loading mybitmap.pcx");
Returns a pointer to the bitmap or NULL on error. Remember that you are
responsible for destroying the bitmap when you are finished with it to avoid
memory leaks.

See also:

See Section 1.11.5 [load-pcx], page 133.
See Section 3.4.49 [expackf], page 438.
See Section 1.2.2 [BITMAP], page 13.
See Section 1.2.13 [RGB], page 17.

See Section 1.2.32 [PACKFILE], page 24.

1.11.7 load_tga

BITMAP *load_tga(const char *filename, RGB *pal);
Loads a 256-color, 15-bit hicolor, 24-bit truecolor, or 32-bit truecolor+alpha
TGA file.
Returns a pointer to the bitmap or NULL on error. Remember that you are
responsible for destroying the bitmap when you are finished with it to avoid
memory leaks.

See also:
See Section 1.11.1 [load-bitmap]|, page 131.
See Section 1.2.2 [BITMAP], page 13.

Chapter 1: API 135

See Section 1.2.13 [RGB], page 17.

1.11.8 load_tga_pf

BITMAP *load_tga_pf (PACKFILE *f, RGB *pal);
A version of load_tga() which reads from a packfile. Example:

PACKFILE *packfile;
BITMAP *bmp;

packfile = pack_fopen("mybitmap.tga", F_READ);
if (!packfile)
abort_on_error("Couldn’t open mybitmap.tga'");

bmp = load_bmp_pf (packfile, pal);
if (!bmp)
abort_on_error("Error loading mybitmap.tga");
Returns a pointer to the bitmap or NULL on error. Remember that you are
responsible for destroying the bitmap when you are finished with it to avoid
memory leaks.

See also:

See Section 1.11.7 [load-tga], page 134.
See Section 3.4.49 [expackf], page 438.
See Section 1.2.2 [BITMAP], page 13.
See Section 1.2.13 [RGBJ, page 17.

See Section 1.2.32 [PACKFILE], page 24.

1.11.9 save_bitmap

int save_bitmap(const char *filename, BITMAP *bmp, const RGB #*pal);
Writes a bitmap into a file, using the specified palette, which should be an array
of 256 RGB structures. The output format is determined from the filename
extension: at present this function supports BMP, PCX and TGA formats.

Two things to watch out for: on some video cards it may be faster to copy the
screen to a memory bitmap and save the latter, and if you use this to dump
the screen into a file you may end up with an image much larger than you were
expecting, because Allegro often creates virtual screens larger than the visible
screen. You can get around this by using a sub-bitmap to specify which part
of the screen to save, eg:

BITMAP *bmp;
PALETTE pal;

get_palette(pal);

136 Allegro Manual

bmp = create_sub_bitmap(screen, O, 0, SCREEN_W, SCREEN_H);
save_bitmap("dump.pcx", bmp, pal);
destroy_bitmap (bmp) ;

Returns non-zero on error.

See also:

See Section 1.11.10 [save_bmp], page 136.

See Section 1.11.12 [save_pcx], page 136.

See Section 1.11.14 [save_tga], page 137.

See Section 1.11.1 [load_bitmap], page 131.

See Section 1.11.16 [register_bitmap_file_type], page 137.
See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.13 [RGB], page 17.

1.11.10 save_bmp
int save_bmp(const char *filename, BITMAP *bmp, const RGB *pal);
Writes a bitmap into a 256-color or 24-bit truecolor BMP file.

Returns non-zero on error.

See also:

See Section 1.11.9 [save_bitmap], page 135.
See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.13 [RGB], page 17.

1.11.11 save_bmp_pf

int save_bmp_pf (PACKFILE *f, RGB *pal);
A version of save_bmp which writes to a packfile.

See also:

See Section 1.11.10 [save_bmp], page 136.
See Section 3.4.49 [expackf], page 438.
See Section 1.2.13 [RGB], page 17.

See Section 1.2.32 [PACKFILE], page 24.

1.11.12 save_pcx

int save_pcx(const char *filename, BITMAP *bmp, const RGB *pal);
Writes a bitmap into a 256-color or 24-bit truecolor PCX file.

Returns non-zero on error.

See also:
See Section 1.11.9 [save_bitmap], page 135.
See Section 1.2.2 [BITMAP], page 13.

Chapter 1: API 137

See Section 1.2.13 [RGB], page 17.

1.11.13 save_pcx_pf

int save_pcx_pf (PACKFILE *f, RGB *pal);
A version of save_pcx which writes to a packfile.

See also:

See Section 1.11.12 [save_pcx], page 136.
See Section 1.2.13 [RGB|, page 17.

See Section 1.2.32 [PACKFILE], page 24.

1.11.14 save_tga

int save_tga(const char *filename, BITMAP *bmp, const RGB *pal);
Writes a bitmap into a 256-color, 15-bit hicolor, 24-bit truecolor, or 32-bit
truecolor+alpha TGA file.

Returns non-zero on error.

See also:

See Section 1.11.9 [save_bitmap]|, page 135.
See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.13 [RGB], page 17.

1.11.15 save_tga_pf

int save_tga_pf (PACKFILE *f, RGB *pal);
A version of save_tga which writes to a packfile.

See also:

See Section 1.11.14 [save_tga], page 137.
See Section 3.4.49 [expackf], page 438.
See Section 1.2.13 [RGB], page 17.

See Section 1.2.32 [PACKFILE], page 24.

1.11.16 register_bitmap_file_type

void register_bitmap_file_type(const char *ext, BITMAP *(*xload) (const char
xfilename, RGB *pal), int (*save) (const char *filename, BITMAP *bmp, const
RGB *pal));
Informs the load_bitmap() and save_bitmap() functions of a new file type,
providing routines to read and write images in this format (either function
may be NULL). The functions you supply must follow the same prototype as
load_bitmap() and save_bitmap(). Example:

138 Allegro Manual

BITMAP *load_dump(const char *filename, RGB *pal)
{

int save_dump(const char *filename, BITMAP *bmp, const RGB *pal)l]
{

register_bitmap_file_type("dump", load_dump, save_dump);

See also:

See Section 1.11.1 [load_bitmap]|, page 131.
See Section 1.11.9 [save_bitmap]|, page 135.
See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.13 [RGB], page 17.

1.11.17 set_color_conversion

void set_color_conversion(int mode) ;

Specifies how to convert images between the various color depths when read-
ing graphics from external bitmap files or datafiles. The mode is a bitmask
specifying which types of conversion are allowed. If the appropriate bit is set,
data will be converted into the current pixel format (selected by calling the
set_color_depth() function), otherwise it will be left in the same format as the
disk file, leaving you to convert it manually before the graphic can be displayed.
The default mode is total conversion, so that all images will be loaded in the
appropriate format for the current video mode. Valid bit flags are:

COLORCONV_NONE // disable all format
// conversions

COLORCONV_8_TO_15 // expand 8-bit to 15-bit
COLORCONV_8_TO_16 // expand 8-bit to 16-bit
COLORCONV_8_T0_24 // expand 8-bit to 24-bit
COLORCONV_8_T0_32 // expand 8-bit to 32-bit
COLORCONV_15_T0_8 // reduce 15-bit to 8-bit
COLORCONV_15_TO_16 // expand 15-bit to 16-bit
COLORCONV_15_T0_24 // expand 15-bit to 24-bit
COLORCONV_15_T0_32 // expand 15-bit to 32-bit
COLORCONV_16_T0_8 // reduce 16-bit to 8-bit
COLORCONV_16_TO_15 // reduce 16-bit to 15-bit
COLORCONV_16_T0_24 // expand 16-bit to 24-bit
COLORCONV_16_T0_32 // expand 16-bit to 32-bit
COLORCONV_24_T0_8 // reduce 24-bit to 8-bit

COLORCONV_24_T0_15 // reduce 24-bit to 15-bit

Chapter 1: API 139

COLORCONV_24_TO0_16 // reduce 24-bit to 16-bit
COLORCONV_24_T0_32 // expand 24-bit to 32-bit
COLORCONV_32_T0_8 // reduce 32-bit RGB to 8-bit
COLORCONV_32_TO_15 // reduce 32-bit RGB to 15-bit
COLORCONV_32_TO_16 // reduce 32-bit RGB to 16-bit
COLORCONV_32_T0_24 // reduce 32-bit RGB to 24-bit
COLORCONV_32A_TO_8 // reduce 32-bit RGBA to 8-bit
COLORCONV_32A_TO_15 // reduce 32-bit RGBA to 15-bit
COLORCONV_32A_TO0_16 // reduce 32-bit RGBA to 16-bit
COLORCONV_32A_T0_24 // reduce 32-bit RGBA to 24-bit
COLORCONV_DITHER_PAL // dither when reducing to 8-bit
COLORCONV_DITHER_HI // dither when reducing to
// hicolor
COLORCONV_KEEP_TRANS // keep original transparency

For convenience, the following macros can be used to select common combina-
tions of these flags:

COLORCONV_EXPAND_256 // expand 256-color to hi/truecolor]]
COLORCONV_REDUCE_T0_256 // reduce hi/truecolor to 256-colorll
COLORCONV_EXPAND_15_T0_16 // expand 15-bit hicolor to 16-

bit

COLORCONV_REDUCE_16_T0_15 // reduce 16-bit hicolor to 15-

bit

COLORCONV_EXPAND_HI_TO_TRUE // expand 15/16-bit to 24/32-bit
COLORCONV_REDUCE_TRUE_TO_HI // reduce 24/32-bit to 15/16-bit

COLORCONV_24_EQUALS_32
COLORCONV_TOTAL
COLORCONV_PARTIAL

COLORCONV_MOST
COLORCONV_DITHER
COLORCONV_KEEP_ALPHA

//
//
//
//
//
/!
//
//

convert between 24- and 32-bitll
everything to current format

convert 15 <-> 16-bit and

24 <-> 32-bit

all but hi/truecolor <-> 256

dither during all color reductions|]
convert everything to current format]]
unless it would lose alpha information]]

If you enable the COLORCONV_DITHER flag, dithering will be performed
whenever truecolor graphics are converted into a hicolor or paletted format,
including by the blit() function, and any automatic conversions that take place
while reading graphics from disk. This can produce much better looking results,
but is obviously slower than a direct conversion.

If you intend using converted bitmaps with functions like masked_blit() or
draw _sprite(), you should specify the COLORCONV_KEEP_TRANS flag. It
will ensure that the masked areas in the bitmap before and after the conver-
sion stay exactly the same, by mapping transparent colors to each other and
adjusting colors which would be converted to the transparent color otherwise.
It affects every blit() operation between distinct pixel formats and every auto-
matic conversion.

140 Allegro Manual

See also:

See Section 1.9.1 [set_color_depth], page 105.

See Section 1.11.1 [load-bitmap]|, page 131.

See Section 1.32.1 [load_datafile], page 291.

See Section 1.32.9 [fixup_datafile], page 295.

See Section 1.13.6 [makecoll5_dither]|, page 151.
See Section 1.11.18 [get_color_conversion|, page 140.
See Section 3.4.32 [exalpha], page 416.
See Section 3.4.30 [exblend], page 414.
See Section 3.4.22 [exdatal, page 405.
See Section 3.4.24 [exexedat], page 408.
See Section 3.4.33 [exlights], page 417.
See Section 3.4.31 [exxfade|, page 415.

1.11.18 get_color_conversion

int get_color_conversion();
Returns the current color conversion mode.

See also:

See Section 1.11.17 [set_color_conversion|, page 138.

1.12 Palette routines

All the Allegro drawing functions use integer parameters to represent colors. In truecolor
resolutions these numbers encode the color directly as a collection of red, green, and blue
bits, but in a regular 256-color mode the values are treated as indexes into the current
palette, which is a table listing the red, green and blue intensities for each of the 256
possible colors.

Palette entries are stored in an RGB structure, which contains red, green and blue intensities
in the VGA hardware format, ranging from 0-63, and is defined as:

typedef struct RGB
{

unsigned char r, g, b;
} RGB;

It contains an additional field for the purpose of padding but you should not usually care
about it. For example:

RGB black = { 0, 0, 0 J};
RGB white = { 63, 63, 63 };
RGB green = { 0, 63, 0 };
RGB grey = { 32, 32, 32 };

Chapter 1: API 141

The type PALETTE is defined to be an array of PAL_SIZE RGB structures, where
PAL_SIZE is a preprocessor constant equal to 256.

You may notice that a lot of the code in Allegro spells ’palette’ as ’pallete’. This is
because the headers from my old Mark Williams compiler on the Atari spelt it with
two I’s, so that is what I'm used to. Allegro will happily accept either spelling, due
to some #defines in allegro/alcompat.h (which can be turned off by defining the ALLE-
GRO_NO_COMPATIBILITY symbol before including Allegro headers).

1.12.1 set_color

void set_color(int index, const RGB *p);
Sets the specified palette entry to the specified RGB triplet. Unlike the other
palette functions this doesn’t do any retrace synchronisation, so you should call
vsync() before it to prevent snow problems. Example:

RGB rgb;

vsync() ;

set_color(192, &rgb);
See also:
See Section 1.12.3 [set_palette], page 142.
See Section 1.12.5 [get_color], page 142.
See Section 1.12.2 [_set_color], page 141.
See Section 3.4.42 [ex12bit], page 429.
See Section 3.4.28 [exrgbhsv], page 412.

[

[

See Section 3.4.40 [exscroll], page 428.
See Section 1.2.13 [RGB], page 17.

1.12.2 _set_color

void _set_color(int index, const RGB *p);
This is an inline version of set_color(), intended for use in the vertical retrace
simulator callback function (retrace_proc, which is now deprecated).

If you really must use _set_color from retrace_proc, note that it should only be
used under DOS, in VGA mode 13h and mode-X. Some SVGA chipsets aren’t
VGA compatible (set_color() and set_palette() will use VESA calls on these
cards, but _set_color() doesn’t know about that).

See also:

See Section 1.12.1 [set_color]|, page 141.
See Section 1.9.7 [set_gfx_mode], page 107.
See Section 3.4.41 [ex3buf], page 428.

See Section 1.2.13 [RGB], page 17.

142 Allegro Manual

1.12.3 set_palette

void set_palette(const PALETTE p);
Sets the entire palette of 256 colors. You should provide an array of 256 RGB
structures. Unlike set_color(), there is no need to call vsync() before this func-
tion. Example:

BITMAP *bmp;
PALETTE palette;

bmp = load_bitmap(filename, palette);
if (!bmp)

abort_on_error("Couldn’t load bitmap!");
set_palette(palette);

See also:

See Section 1.9.7 [set_gfx_mode|, page 107.

See Section 1.12.4 [set_palette_range], page 142.
See Section 1.12.1 [set_color], page 141.

See Section 1.12.6 [get_palette], page 143.

See Section 1.12.15 [select_palette], page 146.
See Section 1.13.11 [palette_color|, page 154.
See Section 3.4 [Available], page 387.

See Section 1.2.12 [PALETTE], page 16.

1.12.4 set_palette_range

void set_palette_range(const PALETTE p, int from, int to, int vsync);
Sets the palette entries between from and to (inclusive: pass 0 and 255 to set
the entire palette). If vsync is set it waits for the vertical retrace, otherwise it
sets the colors immediately. Example:

PALETTE palette;

/* Modify the first 16 entries. */
change_first_16_colors(palette);

/* Now update them waiting for vsync. */
set_palette_range(palette, 0, 15, 1);

See also:

See Section 1.12.3 [set_palette], page 142.

See Section 1.12.7 [get_palette_range], page 143.
See Section 1.2.12 [PALETTE], page 16.

Chapter 1: API 143

1.12.5 get_color

void get_color(int index, RGB *p);
Retrieves the specified palette entry. Example:

RGB color;

get_color (11, &color);

See also:

See Section 1.12.6 [get_palette], page 143.
See Section 1.12.1 [set_color], page 141.
See Section 1.2.13 [RGB], page 17.

1.12.6 get_palette

void get_palette(PALETTE p);
Retrieves the entire palette of 256 colors. You should provide an array of 256
RGB structures to store it in. Example:

PALETTE pal;

get_palette(pal);

See also:

See Section 1.12.7 [get_palette_range], page 143.
See Section 1.12.5 [get_color], page 142.

See Section 1.12.3 [set_palette], page 142.

See Section 1.2.12 [PALETTE], page 16.

1.12.7 get_palette_range

void get_palette_range(PALETTE p, int from, int to);
Retrieves the palette entries between from and to (inclusive: pass 0 and 255 to
get the entire palette).

See also:

See Section 1.12.6 [get_palette], page 143.

See Section 1.12.4 [set_palette_range], page 142.
See Section 1.2.12 [PALETTE], page 16.

1.12.8 fade_interpolate

void fade_interpolate(const PALETTE source, const PALETTE dest, PALETTE
output, int pos, int from, int to);
Calculates a temporary palette part way between source and dest, returning it
in the output parameter. The position between the two extremes is specified by

144 Allegro Manual

the pos value: 0 returns an exact copy of source, 64 returns dest, 32 returns a
palette half way between the two, etc. This routine only affects colors between
from and to (inclusive: pass 0 and 255 to interpolate the entire palette).

See also:

See Section 1.12.13 [fade_in|, page 145.
See Section 1.12.14 [fade_out], page 145.
See Section 1.12.12 [fade_from], page 145.
See Section 1.2.12 [PALETTE], page 16.

1.12.9 fade_from_range

void fade_from_range(const PALETTE source, const PALETTE dest, int speed,
int from, int to);
Gradually fades a part of the palette from the source palette to the dest palette.
The speed is from 1 (the slowest) up to 64 (instantaneous). This routine only
affects colors between from and to (inclusive: pass 0 and 255 to fade the entire
palette).
Note that this function will block your game while the fade is in effect, and it
won’t work right visually if you are not in an 8 bit color depth resolution.

See also:
See Section 1.12.12 [fade_from]|, page 145.
See Section 1.2.12 [PALETTE], page 16.

1.12.10 fade_in_range

void fade_in_range(const PALETTE p, int speed, int from, int to);
Gradually fades a part of the palette from a black screen to the specified palette.
The speed is from 1 (the slowest) up to 64 (instantaneous). This routine only
affects colors between from and to (inclusive: pass 0 and 255 to fade the entire
palette).

Note that this function will block your game while the fade is in effect, and it
won’t work right visually if you are not in an 8 bit color depth resolution.

See also:
See Section 1.12.13 [fade_in|, page 145.
See Section 1.2.12 [PALETTE], page 16.

1.12.11 fade_out_range

void fade_out_range(int speed, int from, int to);
Gradually fades a part of the palette from the current palette to a black screen.
The speed is from 1 (the slowest) up to 64 (instantaneous). This routine only
affects colors between from and to (inclusive: pass 0 and 255 to fade the entire
palette).

Chapter 1: API 145

Note that this function will block your game while the fade is in effect, and it
won’t work right visually if you are not in an 8 bit color depth resolution.

See also:
See Section 1.12.14 [fade_out], page 145.

1.12.12 fade_from

void fade_from(const PALETTE source, const PALETTE dest, int speed);
Fades gradually from the source palette to the dest palette. The speed is from
1 (the slowest) up to 64 (instantaneous).

Note that this function will block your game while the fade is in effect, and it
won’t work right visually if you are not in an 8 bit color depth resolution.

See also:

See Section 1.12.13 [fade_in|, page 145.

See Section 1.12.14 [fade_out], page 145.

See Section 1.12.8 [fade_interpolate], page 143.
See Section 1.12.9 [fade_from_range], page 144.
See Section 1.2.12 [PALETTE], page 16.

1.12.13 fade_in

void fade_in(const PALETTE p, int speed);
Fades gradually from a black screen to the specified palette. The speed is from
1 (the slowest) up to 64 (instantaneous).

Note that this function will block your game while the fade is in effect, and it
won’t work right visually if you are not in an 8 bit color depth resolution.

See also:

See Section 1.12.14 [fade_out], page 145.

See Section 1.12.12 [fade_from]|, page 145.

See Section 1.12.8 [fade_interpolate], page 143.
See Section 1.12.10 [fade_in_range], page 144.
See Section 1.2.12 [PALETTE], page 16.

1.12.14 fade_out

void fade_out(int speed);
Fades gradually from the current palette to a black screen. The speed is from
1 (the slowest) up to 64 (instantaneous).
Note that this function will block your game while the fade is in effect, and it
won’t work right visually if you are not in an 8 bit color depth resolution.

See also:
See Section 1.12.13 [fade_in], page 145.

146 Allegro Manual

See Section 1.12.12 [fade_from]|, page 145.

See Section 1.12.8 [fade_interpolate], page 143.
See Section 1.12.10 [fade_in_range], page 144.
See Section 3.4.42 [ex12bit], page 429.

1.12.15 select_palette

void select_palette(const PALETTE p);

Ugly hack for use in various dodgy situations where you need to convert between
paletted and truecolor image formats. Sets the internal palette table in the
same way as the set_palette() function, so the conversion will use the specified
palette, but without affecting the display hardware in any way. The previous
palette settings are stored in an internal buffer, and can be restored by calling
unselect_palette(). If you call select_palette() again, however, the internal buffer
will be overwritten.

See also:

See Section 1.12.3 [set_palette|, page 142.

See Section 1.12.16 [unselect_palette], page 146.
See Section 3.4.33 [exlights|, page 417.

See Section 1.2.12 [PALETTE], page 16.

1.12.16 unselect_palette

void unselect_palette();
Restores the palette tables that were in use before the last call to
select_palette().

See also:
See Section 1.12.15 [select_palette], page 146.

1.12.17 generate_332_palette

void generate_332_palette(PALETTE pal);
Constructs a fake truecolor palette, using three bits for red and green and two
for the blue. The load_bitmap() function fills the palette parameter with this if
the file does not contain a palette itself (ie. you are reading a truecolor bitmap).

See also:

See Section 1.12.18 [generate_optimized_palette], page 147.
See Section 1.9.1 [set_color_depth], page 105.

See Section 3.4.27 [excolmap], page 411.

See Section 3.4.28 [exrgbhsv], page 412.

See Section 3.4.26 [extruec], page 410.

See Section 3.4.46 [exupdate], page 435.

Chapter 1: API 147

See Section 1.2.12 [PALETTE], page 16.

1.12.18 generate_optimized_palette

int generate_optimized_palette(BITMAP *bmp, PALETTE pal, const char

rsvd [PAL_SIZE]);
Generates a 256-color palette suitable for making a reduced color version of
the specified truecolor image. The rsvd parameter points to a table indicating
which colors it is allowed to modify: zero for free colors which may be set to
whatever the optimiser likes, negative values for reserved colors which cannot
be used, and positive values for fixed palette entries that must not be changed,
but can be used in the optimisation.

Returns the number of different colors recognised in the provided bitmap, zero if
the bitmap is not a truecolor image or there wasn’t enough memory to perform
the operation, and negative if there was any internal error in the color reduction
code.

See also:

See Section 1.12.17 [generate_332_palette], page 146.
See Section 1.9.1 [set_color_depth], page 105.

See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.12 [PALETTE], page 16.

1.12.19 default_palette

extern PALETTE default_palette;
The default IBM BIOS palette. This will be automatically selected whenever
you set a new graphics mode. The palette contains 16 basic colors plus many
gradients between them. If you want to see the values, you can write a small
Allegro program which saves a screenshot with this palette, or open the grabber
tool provided with Allegro and create a new palette object, which will use this
palette by default.

See also:

See Section 1.12.20 [black_palette], page 147.
See Section 1.12.21 [desktop_palette], page 148.
See Section 3.4.13 [exjoy], page 396.

See Section 1.2.12 [PALETTE], page 16.

1.12.20 black_palette

extern PALETTE black_palette;
A palette containing solid black colors, used by the fade routines.

See also:
See Section 1.12.19 [default_palette], page 147.

148

See Section 1.12.21 [desktop_palette], page 148.
See Section 3.4.3 [expal|, page 388.
See Section 1.2.12 [PALETTE], page 16.

1.12.21 desktop_palette

extern PALETTE desktop_palette;
The palette used by the Atari ST low resolution desktop. I'm not quite sure
why this is still here, except that the grabber and test programs use it. It is
probably the only Atari legacy code left in Allegro, and it would be a shame to

remove it :-)

Allegro Manual

The contents of this palette are 16 colors repeated 16 times. Color entry zero

is equal to color entry 16, which is equal to color entry 24, etc.

Index
0

© 00 ~NO O WN -

e e e
g W= O

See also:

Col
White
Red
Green
Yellow
Blue
Pink
Cyan
Grey
Light
Light
Light
Light
Light
Light
Light
Black

or

grey
red
green
yellow
blue
pink
cyan

RGB values

63
63

0
63

0
63

0
16
31
63
31
63
31
63
31

0

See Section 1.12.19 [default_palette], page 147.

See Section 1.12.20 [black_palette], page 147.

See Section 3.4 [Available], page 387.
See Section 1.2.12 [PALETTE], page 16.

1.13 Truecolor pixel formats

63

0
63
63

0

0
63
16
31
31
63
63
31
31
63

0

63
0
0
0

63

63

63

16

31

31

31

31

63

63

63
0

In a truecolor video mode the red, green, and blue components for each pixel are packed
directly into the color value, rather than using a palette lookup table. In a 15-bit mode there
are 5 bits for each color, in 16-bit modes there are 5 bits each of red and blue and six bits of
green, and both 24 and 32-bit modes use 8 bits for each color (the 32-bit pixels simply have
an extra padding byte to align the data nicely). The layout of these components can vary

Chapter 1: API 149

depending on your hardware, but will generally either be RGB or BGR. Since the layout is
not known until you select the video mode you will be using, you must call set_gfx_mode()
before using any of the following routines!

1.13.1 makecol8

int makecol8(int r, int g, int b);

int makecoll5(int r, int g, int b);

int makecoll6(int r, int g, int b);

int makecol24(int r, int g, int b);

int makecol32(int r, int g, int b);
These functions convert colors from a hardware independent form (red, green,
and blue values ranging 0-255) into various display dependent pixel formats.
Converting to 15, 16, 24, or 32-bit formats only takes a few shifts, so it is fairly
efficient. Converting to an 8-bit color involves searching the palette to find the

closest match, which is quite slow unless you have set up an RGB mapping
table (see below). Example:

/* 16 bit color version of green. */
int green_color = makecoll6(0, 255, 0);

Returns the requested RGB triplet in the specified color depth.

See also:

See Section 1.13.2 [makeacol32], page 149.

See Section 1.13.3 [makecol], page 150.

See Section 1.13.4 [makecol_depth], page 150.
See Section 1.13.6 [makecoll5_dither], page 151.
See Section 1.22.2 [rgb_map]|, page 226.

See Section 1.22.1 [bestfit_color|, page 225.

See Section 1.9.1 [set_color_depth], page 105.
See Section 3.4.28 [exrgbhsv], page 412.

1.13.2 makeacol32

int makeacol32(int r, int g, int b, int a);
Converts an RGBA color into a 32-bit display pixel format, which includes
an alpha (transparency) value. There are no versions of this routine for other
color depths, because only the 32-bit format has enough room to store a proper
alpha channel. You should only use RGBA format colors as the input to
draw_trans_sprite() or draw_trans_rle_sprite() after calling set_alpha_blender(),
rather than drawing them directly to the screen.

See also:
See Section 1.13.5 [makeacol], page 150.
See Section 1.21.12 [set_alpha_blender|, page 220.

150 Allegro Manual

See Section 1.21.13 [set_write_alpha_blender|, page 221.

1.13.3 makecol

int makecol(int r, int g, int b);
Converts colors from a hardware independent format (red, green, and blue
values ranging 0-255) to the pixel format required by the current video mode,
calling the preceding 8, 15, 16, 24, or 32-bit makecol functions as appropriate.
Example:

/* Regardless of color depth, this will look green. */
int green_color = makecol(0, 255, 0);

Returns the requested RGB triplet in the current color depth.

See also:

See Section 1.13.5
See Section 1.13.1
See Section 1.13.4 [makecol_depth], page 150.
See Section 1.13.6 [makecoll5_dither], page 151.
See Section 1.22.2 [rgb_map], page 226.

makeacol|, page 150.
makecol8], page 149.

See Section 1.9.1 [set_color_depth], page 105.
See Section 3.4 [Available|, page 387.

1.13.4 makecol_depth

int makecol_depth(int color_depth, int r, int g, int b);
Converts colors from a hardware independent format (red, green, and blue
values ranging 0-255) to the pixel format required by the specified color depth.
Example:

/* Compose the green color for 15 bit color depth. */
int green_15bit = makecol_depth(15, 0, 255, 0);

Returns the requested RGB triplet in the specified color depth.

See also:

See Section 1.13.5 [makeacol], page 150.

See Section 1.13.3 [makecol], page 150.

See Section 1.13.1 [makecol8], page 149.

See Section 1.13.6 [makecoll5_dither], page 151.
See Section 1.22.2 [rgb_map]|, page 226.

See Section 1.9.1 [set_color_depth], page 105.

Chapter 1: API 151

1.13.5 makeacol
int makeacol(int r, int g, int b, int a);

int makeacol_depth(int color_depth, int r, int g, int b, int a);

Convert RGBA colors into display dependent pixel formats. In anything less
than a 32-bit mode, these are the same as calling makecol() or makecol_depth(),
but by using these routines it is possible to create 32-bit color values that contain
a true 8 bit alpha channel along with the red, green, and blue components. You
should only use RGBA format colors as the input to draw_trans_sprite() or
draw_trans_rle_sprite() after calling set_alpha_blender(), rather than drawing
them directly to the screen.

Returns the requested RGBA quadruplet.

See also:

See Section 1.13.3 [makecol], page 150.

See Section 1.13.4 [makecol_depth], page 150.

See Section 1.21.12 [set_alpha_blender], page 220.

See Section 1.21.13 [set_write_alpha_blender|, page 221.

1.13.6 makecoll5_dither
int makecoll5_dither(int r, int g, int b, int x, int y);

int makecoll6_dither(int r, int g, int b, int x, int y);

Given both a color value and a pixel coordinate, calculate a dithered
15 or 16-bit RGB value. This can produce better results when re-
ducing images from truecolor to hicolor. In addition to calling these
functions directly, hicolor dithering can be automatically enabled when
loading graphics by calling the set_color_conversion() function, for
example set_color_conversion(COLORCONV_REDUCE_TRUE_TO_HI |
COLORCONV_DITHER).

Example:

int pixell, pixel2;

/* The following two color values MAY be different. */
pixell = makecoll6_dither(255, 192, 64, 0, 0);
pixel2 = makecoll6_dither(255, 192, 64, 1, 0);

Returns the RGB value dithered for the specified coordinate.

See also:

See Section 1.13.3 [makecol], page 150.

See Section 1.13.1 [makecol8], page 149.

See Section 1.11.17 [set_color_conversion], page 138.

152

1.13.7 getr8

int
int
int
int
int
int
int
int
int
int
int
int
int
int

int

getr8(int c);

getg8(int c);
getb8(int c);

getr15(int
getglb(int
getb15(int
getr16(int
getgl6(int
getbl6(int
getr24(int
getg24(int
getb24 (int
getr32(int
getg32(int
getb32(int

c);
c);
c);
c);
c);
c);
c);
c);
c);
c);
c);

c);

Allegro Manual

Given a color in a display dependent format, these functions extract one of the

red, green, or blue components (ranging 0-255). Example:

See also:
See Section 1.13.8 [geta32], page 152.

See Section 1.13.9 [getr], page 153.

See Section 1.13.10 [getr_depth], page 153.
See Section 1.13.3 [makecol], page 150.

See Section 1.9.1 [set_color_depth], page 105.

1.13.8 geta32

int r, g, b, color_value;

color_value = _getpixell5(screen, 100, 100);

r

g
b

int geta32(int c);
Given a color in a 32-bit pixel format, this function extracts the alpha compo-
nent (ranging 0-255).

See also:
See Section 1.13.7 [getr8], page 151.

getri5(color_value);
getglb(color_value);
getb15(color_value) ;

Chapter 1: API 153

1.13.9 getr

int getr(int c);
int getg(int c);
int getb(int c);

int geta(int c);
Given a color in the format being used by the current video mode, these func-
tions extract one of the red, green, blue, or alpha components (ranging 0-255),
calling the preceding 8, 15, 16, 24, or 32-bit get functions as appropriate. The
alpha part is only meaningful for 32-bit pixels. Example:

int r, g, b, color_value;

color_value = getpixel(screen, 100, 100);
r = getr(color_value);
g = getg(color_value);
b = getb(color_value);

See also:

See Section 1.13.7 [getr8], page 151.

See Section 1.13.10 [getr_-depth], page 153.
See Section 1.13.3 [makecol], page 150.

See Section 1.9.1 [set_color_depth], page 105.
See Section 3.4.32 [exalpha], page 416.

1.13.10 getr_depth

int getr_depth(int color_depth, int c);
int getg_depth(int color_depth, int c);
int getb_depth(int color_depth, int c);

int geta_depth(int color_depth, int c);
Given a color in the format being used by the specified color depth, these
functions extract one of the red, green, blue, or alpha components (ranging
0-255). The alpha part is only meaningful for 32-bit pixels. Example:

int r, g, b, color_value, bpp;

bpp = bitmap_color_depth(bitmap);
color_value = getpixel(bitmap, 100, 100);
r = getr_depth(bpp, color_value);
g = getg_depth(bpp, color_value);
b = getb_depth(bpp, color_value);

See also:
See Section 1.13.9 [getr], page 153.

154 Allegro Manual

See Section 1.13.7 [getr8], page 151.

See Section 1.13.8 [geta32], page 152.

See Section 1.13.3 [makecol], page 150.

See Section 1.9.1 [set_color_depth], page 105.
See Section 3.4.33 [exlights], page 417.

1.13.11 palette_color

extern int palette_color[256];
Table mapping palette index colors (0-255) into whatever pixel format is being
used by the current display mode. In a 256-color mode this just maps onto the
array index. In truecolor modes it looks up the specified entry in the current
palette, and converts that RGB value into the appropriate packed pixel format.
Example:

set_color_depth(32);

set_palette(desktop_palette);
/* Put a pixel with the color 2 (green) of the palette */
putpixel(screen, 100, 100, palette_color[2]);

See also:

See Section 1.12.3 [set_palette|, page 142.

See Section 1.13.3 [makecol], page 150.

See Section 1.9.1 [set_color_depth], page 105.

See Section 3.4 [Available], page 387.

1.13.12 MASK_COLOR_8

#define MASK_COLOR_8 O

#define MASK_COLOR_15 (5.5.5 pink)
#define MASK_COLOR_16 (5.6.5 pink)
#define MASK_COLOR_24 (8.8.8 pink)

#define MASK_COLOR_32 (8.8.8 pink)
Constants representing the colors used to mask transparent sprite pixels for
each color depth. In 256-color resolutions this is zero, and in truecolor modes
it is bright pink (maximum red and blue, zero green).

See also:

See Section 1.10.12 [bitmap_mask_color], page 124.
See Section 1.13.3 [makecol], page 150.

See Section 1.15.5 [draw_sprite], page 170.

See Section 1.15.3 [masked_blit], page 168.

Chapter 1: API 155

1.14 Drawing primitives

Except for _putpixel(), all these routines are affected by the current drawing mode and the
clipping rectangle of the destination bitmap. Unless specified otherwise, all coordinates for
drawing operations are inclusive, and they, as well as lengths, are specified in pixel units.

1.14.1 clear_bitmap

void clear_bitmap(BITMAP *bitmap) ;
Clears the bitmap to color 0.

See also:

See Section 1.14.2 [clear_to_color], page 155.
See Section 3.4 [Available], page 387.

See Section 1.2.2 [BITMAP], page 13.

1.14.2 clear_to_color

void clear_to_color (BITMAP *bitmap, int color);
Clears the bitmap to the specified color. Example:

/* Clear the screen to red. */
clear_to_color(bmp, makecol(255, 0, 0));

See also:

See Section 1.14.1 [clear_bitmap], page 155.
See Section 1.13.3 [makecol], page 150.

See Section 3.4 [Available], page 387.

See Section 1.2.2 [BITMAP], page 13.

1.14.3 putpixel

void putpixel (BITMAP *bmp, int x, int y, int color);
Writes a pixel to the specified position in the bitmap, using the current drawing
mode and the bitmap’s clipping rectangle. Example:

putpixel(screen, 10, 30, some_color);

See also:

See Section 1.14.5 [getpixel], page 156.

See Section 1.14.4 [_putpixel], page 156.

See Section 1.21.1 [drawing_mode], page 213.
See Section 1.13.3 [makecol], page 150.

See Section 3.4.42 [ex12bit], page 429.

See Section 3.4.32 [exalpha], page 416.

See Section 3.4.5 [exflame], page 390.

See Section 3.4.13 [exjoy], page 396.

156 Allegro Manual

See Section 3.4.37 [exstars], page 424.
See Section 3.4.47 [exswitch], page 436.
See Section 1.2.2 [BITMAP], page 13.

1.14.4 _putpixel

void _putpixel (BITMAP *bmp, int x, int y, int color);
void _putpixell5(BITMAP *bmp, int x, int y, int color);
void _putpixell6(BITMAP *bmp, int x, int y, int color);
void _putpixel24(BITMAP *bmp, int x, int y, int color);

void _putpixel32(BITMAP *bmp, int x, int y, int color);
Like the regular putpixel(), but much faster because they are implemented as
an inline assembler functions for specific color depths. These won’t work in
mode-X graphics modes, don’t perform any clipping (they will crash if you try
to draw outside the bitmap!), and ignore the drawing mode.

See also:

See Section 1.14.3 [putpixel], page 155.
See Section 1.13.3 [makecol], page 150.
See Section 1.2.2 [BITMAP], page 13.

1.14.5 getpixel
int getpixel(BITMAP *bmp, int x, int y);
Reads a pixel from point (x, y) in the bitmap.

Returns -1 if the point lies outside the bitmap (ignoring the clipping rectangle),
otherwise the value of the pixel in the color format of the bitmap.

Warning: -1 is also a valid value for pixels contained in 32-bit bitmaps with
alpha channel (when R,G,B,A are all equal to 255) so you can’t use the test
against -1 as a predicate for such bitmaps. In this cases, the only reliable
predicate is is_inside_bitmap().

See also:

See Section 1.14.3 [putpixel], page 155.

See Section 1.14.6 [_getpixel], page 156.

See Section 1.10.30 [is_inside_bitmap], page 130.
See Section 3.4.42 [ex12bit], page 429.

See Section 3.4.32 [exalpha|, page 416.

See Section 3.4.5 [exflame], page 390.

See Section 3.4.33 [exlights], page 417.

See Section 1.2.2 [BITMAP], page 13.

Chapter 1: API 157

1.14.6 _getpixel
int _getpixel (BITMAP *bmp, int x, int y);
int _getpixell5(BITMAP *bmp, int x, int y);
int _getpixell16(BITMAP *bmp, int x, int y);
int _getpixel24(BITMAP *bmp, int x, int y);
int _getpixel32(BITMAP *bmp, int x, int y);
Faster inline versions of getpixel() for specific color depths. These won’t work

in mode-X, and don’t do any clipping, so you must make sure the point lies
inside the bitmap.

Returns the value of the pixel in the color format you specified.

See also:
See Section 1.14.5 [getpixel], page 156.
See Section 1.2.2 [BITMAP], page 13.

1.14.7 vline

void v1line(BITMAP *bmp, int x, int y1, int y2, int color);
Draws a vertical line onto the bitmap, from point (x, y1) to (x, y2).

Note: vline() is implemented as an alias to another function. See ALLE-
GRO_NO_VHLINE_ALIAS in the ‘Differences between platforms’ section for
details.

See also:

See Section 1.14.8 [hline], page 157.

See Section 1.14.10 [line], page 158.

See Section 1.21.1 [drawing_-mode], page 213.
See Section 1.13.3 [makecol], page 150.

See Section 2.7 [Differences|, page 374.

See Section 3.4.28 [exrgbhsv], page 412.

See Section 3.4.40 [exscroll], page 428.

See Section 3.4.26 [extruec], page 410.

See Section 1.2.2 [BITMAP], page 13.

1.14.8 hline
void hline(BITMAP *bmp, int x1, int y, int x2, int color);
Draws a horizontal line onto the bitmap, from point (x1, y) to (x2, y).

Note: hline() is implemented as an alias to another function. See ALLE-
GRO_NO_VHLINE_ALIAS in the ‘Differences between platforms’ section for
details.

See also:
See Section 1.14.7 [vline], page 157.

158 Allegro Manual

See Section 1.14.10 [line], page 158.

See Section 1.21.1 [drawing_-mode], page 213.
See Section 1.13.3 [makecol], page 150.

See Section 2.7 [Differences|, page 374.

See Section 3.4.23 [exsprite], page 406.

See Section 1.2.2 [BITMAP], page 13.

1.14.9 do_line

void do_line(BITMAP *bmp, int x1, yl1, x2, y2, int d, void (*proc) (BITMAP

*bmp, int x, int y, int d));
Calculates all the points along a line from point (x1, y1) to (x2, y2), calling
the supplied function for each one. This will be passed a copy of the bmp
parameter, the x and y position, and a copy of the d parameter, so it is suitable
for use with putpixel(). Example:

void draw_dust_particle(BITMAP *bmp, int x, int y, int d)
{

¥

do_line(screen, 0, O, SCREEN_W-1, SCREEN_H-2,
dust_strength, draw_dust_particle);

See also:

See Section 1.14.16 [do_circle], page 161.
See Section 1.14.19 [do_ellipse|, page 162.
See Section 1.14.22 [do_arc]|, page 163.
See Section 1.14.10 [line], page 158.

See Section 1.2.2 [BITMAP], page 13.

1.14.10 line

void line(BITMAP *bmp, int x1, int y1, int x2, int y2, int color);
Draws a line onto the bitmap, from point (x1, y1) to (x2, y2).

See also:

See Section 1.14.11 [fastline], page 159.

See Section 1.14.8 [hline], page 157.

See Section 1.14.7 [vline], page 157.

See Section 1.14.9 [do_line], page 158.

See Section 1.21.1 [drawing_mode], page 213.
See Section 1.13.3 [makecol], page 150.

See Section 3.4 [Available], page 387.

Chapter 1: API 159

See Section 1.2.2 [BITMAP], page 13.

1.14.11 fastline

void fastline(BITMAP *bmp, int x1, int yl, int x2, int y2, int color);
Faster version of the previous function. Note that pixel correctness is not guar-
anteed for this function.

See also:

See Section 1.14.10 [line], page 158.

See Section 1.14.8 [hline], page 157.

See Section 1.14.7 [vline], page 157.

See Section 1.14.9 [do_line], page 158.

See Section 1.21.1 [drawing_mode], page 213.
See Section 1.13.3 [makecol], page 150.

See Section 3.4 [Available|, page 387.

See Section 1.2.2 [BITMAP], page 13.

1.14.12 triangle

void triangle(BITMAP *bmp, int x1, yl, x2, y2, x3, y3, int color);
Draws a filled triangle between the three points.

See also:

See Section 1.14.13 [polygon]|, page 159.

See Section 1.20.12 [triangle3d], page 205.
See Section 1.21.1 [drawing-mode], page 213.
See Section 1.13.3 [makecol], page 150.

See Section 3.4.41 [ex3buf], page 428.

See Section 3.4.37 [exstars|, page 424.

See Section 3.4.46 [exupdate], page 435.

See Section 1.2.2 [BITMAP], page 13.

1.14.13 polygon

void polygon(BITMAP *bmp, int vertices, const int *points, int color);
Draws a filled polygon with an arbitrary number of corners. Pass the number
of vertices and an array containing a series of x, y points (a total of vertices*2
values). Example:

int points[12] = { 50, 50, 100, 100, 100, 150,
50, 200, O, 150, O, 100 7};

clear_to_color(screen, makecol (255, 255, 255));
polygon(screen, 6, points, makecol(0, 0, 0));

160 Allegro Manual

See also:

See Section 1.14.12 [triangle], page 159.

See Section 1.20.11 [polygon3d], page 203.
See Section 1.21.1 [drawing_mode], page 213.
See Section 1.13.3 [makecol], page 150.

See Section 3.4.35 [excameral, page 421.

See Section 1.2.2 [BITMAP], page 13.

1.14.14 rect

void rect (BITMAP *bmp, int x1, int y1, int x2, int y2, int color);
Draws an outline rectangle with the two points as its opposite corners.

See also:

See Section 1.14.15 [rectfill], page 160.

See Section 1.21.1 [drawing_mode], page 213.
See Section 1.13.3 [makecol], page 150.

See Section 3.4.34 [ex3d], page 419.

See Section 3.4.35 [excameral, page 421.

See Section 1.2.2 [BITMAP], page 13.

1.14.15 rectfill

void rectfill(BITMAP *bmp, int x1, int y1, int x2, int y2, int color);
Draws a solid, filled rectangle with the two points as its opposite corners.

See also:

See Section 1.14.14 [rect], page 160.

See Section 1.14.1 [clear_bitmap], page 155.
See Section 1.21.1 [drawing_mode], page 213.
See Section 1.13.3 [makecol], page 150.

See Section 3.4.32 [exalpha], page 416.

See Section 3.4.27 [excolmap], page 411.
See Section 3.4.12 [exkeys]|, page 395.

See Section 3.4.15 [exmidi], page 398.

See Section 3.4.4 [expat], page 389.

See Section 3.4.40 [exscroll], page 428.

See Section 3.4.23 [exsprite], page 406.

See Section 3.4.37 [exstars|, page 424.

See Section 3.4.47 [exswitch], page 436.

See Section 3.4.25 [extrans], page 409.

See Section 1.2.2 [BITMAP], page 13.

Chapter 1: API 161

1.14.16 do_circle

void do_circle(BITMAP *bmp, int x, int y, int radius, int d, void

(*proc) (BITMAP *bmp, int x, int y, int d));
Calculates all the points in a circle around point (x, y) with radius r, calling
the supplied function for each one. This will be passed a copy of the bmp
parameter, the x and y position, and a copy of the d parameter, so it is suitable
for use with putpixel(). Example:

void draw_explosion_ring(BITMAP *bmp, int x, int y, int d)
{

}

do_circle(screen, SCREEN_W/2, SCREEN_H/2,
SCREEN_H/16, flame_color,
draw_explosion_ring);

See also:

See Section 1.14.19 [do_ellipse|, page 162.
See Section 1.14.22 [do_arc], page 163.
See Section 1.14.9 [do_line], page 158.
See Section 1.14.17 [circle], page 161.

See Section 1.14.18 [circlefill], page 162.
See Section 1.2.2 [BITMAP], page 13.

1.14.17 circle

void circle(BITMAP #*bmp, int x, int y, int radius, int color);
Draws a circle with the specified centre and radius.

See also:

See Section 1.14.20 [ellipse], page 163.
See Section 1.14.23 [arc], page 164.

See Section 1.14.18 [circlefill], page 162.
See Section 1.14.16 [do_circle], page 161.
See Section 1.21.1 [drawing_-mode], page 213.
See Section 1.13.3 [makecol], page 150.
See Section 3.4.42 [ex12bit], page 429.
See Section 3.4.30 [exblend], page 414.
See Section 3.4.17 [excustom], page 401.
See Section 3.4.13 [exjoy], page 396.

See Section 3.4.2 [exmem]|, page 388.
See Section 3.4.10 [exmouse], page 393.
See Section 3.4.36 [exquat], page 422.

162 Allegro Manual

See Section 3.4.23 [exsprite], page 406.
See Section 1.2.2 [BITMAP], page 13.

1.14.18 circlefill

void circlefill(BITMAP *bmp, int x, int y, int radius, int color);
Draws a filled circle with the specified centre and radius.

See also:

See Section 1.14.21 [ellipsefill], page 163.
See Section 1.14.17 [circle], page 161.
See Section 1.14.16 [do_circle], page 161.
See Section 1.21.1 [drawing_mode], page 213.
See Section 1.13.3 [makecol], page 150.
See Section 3.4.27 [excolmap], page 411.
See Section 3.4.17 [excustom], page 401.
See Section 3.4.6 [exdbuf], page 391.
See Section 3.4.7 [exflip], page 391.

See Section 3.4.33 [exlights|, page 417.
See Section 3.4.3 [expal], page 388.

See Section 3.4.44 [exspline|, page 432.
See Section 3.4.25 [extrans|, page 409.
See Section 1.2.2 [BITMAP], page 13.

1.14.19 do_ellipse

void do_ellipse(BITMAP *bmp, int x, int y, int rx, ry, int d, void

(xproc) (BITMAP *bmp, int x, int y, int d));
Calculates all the points in an ellipse around point (x, y) with radius rx and
ry, calling the supplied function for each one. This will be passed a copy of the
bmp parameter, the x and y position, and a copy of the d parameter, so it is
suitable for use with putpixel(). Example:

void draw_explosion_ring(BITMAP *bmp, int x, int y, int d)
{

¥

do_ellipse(screen, SCREEN_W/2, SCREEN_H/2,
SCREEN_H/16, SCREEN_H/32, flame_color,
draw_explosion_ring) ;

See also:
See Section 1.14.16 [do-_circle], page 161.
See Section 1.14.22 [do_arc], page 163.

Chapter 1: API 163

See Section 1.14.9 [do_line], page 158.
See Section 1.14.20 [ellipse], page 163.
See Section 1.14.21 [ellipsefill], page 163.
See Section 1.2.2 [BITMAP], page 13.

1.14.20 ellipse

void ellipse(BITMAP *bmp, int x, int y, int rx, int ry, int color);
Draws an ellipse with the specified centre and radius.

See also:

See Section 1.14.17 [circle], page 161.

See Section 1.14.23 [arc|, page 164.

See Section 1.14.21 [ellipsefill], page 163.

See Section 1.14.19 [do_ellipse|, page 162.
See Section 1.21.1 [drawing_mode], page 213.
See Section 1.13.3 [makecol], page 150.

See Section 1.2.2 [BITMAP], page 13.

1.14.21 ellipsefill

void ellipsefill(BITMAP *bmp, int x, int y, int rx, int ry, int color);
Draws a filled ellipse with the specified centre and radius.

See also:

See Section 1.14.18 [circlefill], page 162.

See Section 1.14.20 [ellipse], page 163.

See Section 1.14.19 [do_ellipse|, page 162.
See Section 1.21.1 [drawing-mode], page 213.
See Section 1.13.3 [makecol], page 150.

See Section 3.4.42 [ex12bit], page 429.

See Section 1.2.2 [BITMAP], page 13.

1.14.22 do_arc

void do_arc(BITMAP #*bmp, int x, int y, fixed al, fixed a2, int r, int d,

void (*proc) (BITMAP *bmp, int x, int y, int d));
Calculates all the points in a circular arc around point (x, y) with radius r,
calling the supplied function for each one. This will be passed a copy of the
bmp parameter, the x and y position, and a copy of the d parameter, so it is
suitable for use with putpixel(). The arc will be plotted in an anticlockwise
direction starting from the angle al and ending when it reaches a2. These
values are specified in 16.16 fixed point format, with 256 equal to a full circle,
64 a right angle, etc. Zero is to the right of the centre point, and larger values
rotate anticlockwise from there. Example:

164 Allegro Manual

void draw_explosion_ring(BITMAP *bmp, int x, int y, int d)
{

}
arc(screen, SCREEN_W/2, SCREEN_H/2,
itofix(-21), itofix(43), 50, flame_color,
draw_explosion_ring) ;

See also:

See Section 1.14.16 [do_circle], page 161.
See Section 1.14.19 [do_ellipse|, page 162.
See Section 1.14.9 [do_line], page 158.
See Section 1.14.23 [arc]|, page 164.

See Section 1.2.1 [fixed], page 12.

See Section 1.2.2 [BITMAP], page 13.

1.14.23 arc

void arc(BITMAP *bmp, int x, y, fixed angl, ang2, int r, int color);
Draws a circular arc with centre x, y and radius r, in an anticlockwise direction
starting from the angle al and ending when it reaches a2. These values are
specified in 16.16 fixed point format, with 256 equal to a full circle, 64 a right
angle, etc. Zero is to the right of the centre point, and larger values rotate
anticlockwise from there. Example:

/* Draw a black arc from 4 to 1 o’clock. */
arc(screen, SCREEN_W/2, SCREEN_H/2,
itofix(-21), itofix(43), 50, makecol(0, 0, 0));

See also:

See Section 1.14.17 [circle], page 161.

See Section 1.14.20 [ellipse], page 163.

See Section 1.21.1 [drawing_mode], page 213.
See Section 1.13.3 [makecol], page 150.

See Section 1.2.1 [fixed], page 12.

See Section 1.2.2 [BITMAP], page 13.

1.14.24 calc_spline

void calc_spline(const int points[8], int npts, int *x, int *y);
Calculates a series of npts values along a bezier spline, storing them in the
output x and y arrays. The bezier curve is specified by the four x/y control
points in the points array: points[0] and points[1] contain the coordinates of
the first control point, points[2] and points[3] are the second point, etc. Control

Chapter 1: API 165

points 0 and 3 are the ends of the spline, and points 1 and 2 are guides. The
curve probably won’t pass through points 1 and 2, but they affect the shape of
the curve between points 0 and 3 (the lines p0O-pl and p2-p3 are tangents to the
spline). The easiest way to think of it is that the curve starts at p0, heading in
the direction of pl, but curves round so that it arrives at p3 from the direction
of p2. In addition to their role as graphics primitives, spline curves can be
useful for constructing smooth paths around a series of control points, as in
exspline.c.

See also:
See Section 1.14.25 [spline], page 165.
See Section 3.4.44 [exspline|, page 432.

1.14.25 spline

void spline(BITMAP #*bmp, const int points[8], int color);
Draws a bezier spline using the four control points specified in the points array.
Read the description of calc_spline() for information on how to build the points
array.

See also:

See Section 1.14.24 [calc_spline], page 164.
See Section 1.21.1 [drawing_-mode], page 213.
See Section 1.13.3 [makecol], page 150.

See Section 3.4.44 [exspline|, page 432.

See Section 1.2.2 [BITMAP], page 13.

1.14.26 floodfill

void floodfill(BITMAP #*bmp, int x, int y, int color);
Floodfills an enclosed area, starting at point (x, y), with the specified color.

See also:

See Section 1.21.1 [drawing_mode], page 213.
See Section 1.13.3 [makecol], page 150.

See Section 1.2.2 [BITMAP], page 13.

1.15 Blitting and sprites

As far as Allegro is concerned, a bitmap and a sprite are the same thing, but to many
people the two words imply slightly different things. The function draw_sprite() is called
so rather than draw_bitmap() partly because it indicates that it uses a masked drawing
mode (if it existed, you could expect draw_bitmap() to be a simple block copy), and partly
for historical reasons. In Allegro 1.0 there were actually different structures for sprites and
bitmaps, each with their own set of abilities. Allegro 2.0 merged these into a single more
flexible structure, but retained some names like draw_sprite().

166 Allegro Manual

In wider (non-Allegro) terms, the two words can mean quite different things. Generally you
can say that sprites are a subset of bitmaps, but even that isn’t true in 100% of cases.

BITMAP: a widely accepted term that will be understood by anyone even remotely con-
nected with computer graphics. It simply means an image built up from a grid of pixels, ie.
just about any picture that you are likely to come across on a computer (vector graphics
formats are the exception, but those must be rendered into a bitmap format before they
can be displayed by most hardware). A more accurate term but slightly rarer term with
the same meaning is "pixmap" (pixel-map).

SPRITE: a particular usage of bitmapped images, restricted to video games (other types
of programmer probably won’t be familiar with this term). Originally on machines like the
C64, sprites were a hardware feature that allowed a number of small bitmap images to be
loaded into special registers, and they could then be superimposed over the main graphics
display and moved around just by modifying the position register. They were used for
the moving objects (player and enemy characters), and enabled the C64 to do much more
impressive things than would have been possible if all the drawing had to be done directly
by the puny CPU.

Later on, a lot of old C64 programmers upgraded to machines like the Atari ST, which
didn’t have any special sprite hardware, but they carried on referring to their main moving
objects as sprites (the routine to draw such a thing would obviously be called draw_sprite()).
A sprite is really just a bitmap graphic which is drawn onto the screen, but when you call
it a sprite rather than a bitmap, this suggests it is a gameplay element that can move freely
around the world rather than being a static part of the environment, and that it will be
drawn in a masked overlay mode rather than as a solid rectangle (there is also a strong
implication that a sprite will be animated by cycling through a number of frames, but that
isn’t always the case).

In recent years some people have started using "sprite" to refer to any character graphics,
even if they are not in fact drawn as 2d bitmaps, eg. "this game uses 3d polygonal player
sprites". This is a confusing misuse of the word (Doom uses sprites, Quake does not), but
it does happen.

The origin of the term "blit" is also rather interesting. This was originally BitBlt, an
abbreviation of BITmap BLock Transfer, which was a function designed (possibly) by the
people at Xerox who did so much of the pioneering work on graphics display systems,
and subsequently copied by virtually everybody doing computer graphics (the Microsoft
Windows GDI still provides a BitBlt function with identical functionality to the original).
This routine was a workhorse for all sorts of drawing operations, basically copying bitmap
graphics from one place to another, but including a number of different ROP modes (Raster
OPerations) for doing things like XOR, inverting pixels, etc. A whole family of related words
grew up around the BitBlt function, but "blt" is impossible to speak (try saying "bltter"
or "bltting" :-) so people added the vowel to make it easier to pronounce.

Thusly, the act of calling the BitBlt function came to be known as "doing a blit". The
obvious next step was to rename the function itself to blit(), which generally took place at
the same time as people decided to simplify the original, removing the different ROP modes
on the grounds that they aren’t needed for games coding and don’t work well with anything
higher than monochrome images in any case. This leaves us with a function called blit(),
which is an abbreviation for "block transfer". A strong case could be made for calling this
blot() instead, but somehow that just doesn’t sound the same!

Chapter 1: API 167

Anyway, all the routines in this chapter are affected by the clipping rectangle of the desti-
nation bitmap.

1.15.1 blit

void blit (BITMAP *source, BITMAP *dest, int source_x, int source_y, int

dest_x, int dest_y, int width, int height);
Copies a rectangular area of the source bitmap to the destination bitmap. The
source_x and source_y parameters are the top left corner of the area to copy from
the source bitmap, and dest_x and dest_y are the corresponding position in the
destination bitmap. This routine respects the destination clipping rectangle,
and it will also clip if you try to blit from areas outside the source bitmap.
Example:

BITMAP *bmp;

/* Blit src on the screen. */
blit(bmp, screen, 0, 0, 0, O, bmp->w, bmp->h);

/* Now copy a chunk to a corner, slightly outside. /*
blit(screen, screen, 100, 100, -10, -10, 25, 30);

You can blit between any parts of any two bitmaps, even if the two memory
areas overlap (ie. source and dest are the same, or one is sub-bitmap of the
other). You should be aware, however, that a lot of SVGA cards don’t provide
separate read and write banks, which means that blitting from one part of the
screen to another requires the use of a temporary bitmap in memory, and is
therefore extremely slow. As a general rule you should avoid blitting from the
screen onto itself in SVGA modes.

In mode-X, on the other hand, blitting from one part of the screen to another
can be significantly faster than blitting from memory onto the screen, as long
as the source and destination are correctly aligned with each other. Copying
between overlapping screen rectangles is slow, but if the areas don’t overlap,
and if they have the same plane alignment (ie. (source_x%4) == (dest_x%4)),
the VGA latch registers can be used for a very fast data transfer. To take
advantage of this, in mode-X it is often worth storing tile graphics in a hidden
area of video memory (using a large virtual screen), and blitting them from
there onto the visible part of the screen.

If the GFX_HW_VRAM_BLIT bit in the gfx_capabilities flag is set, the current
driver supports hardware accelerated blits from one part of the screen onto
another. This is extremely fast, so when this flag is set it may be worth storing
some of your more frequently used graphics in an offscreen portion of the video
memory.

Unlike most of the graphics routines, blit() allows the source and destination
bitmaps to be of different color depths, so it can be used to convert images
from one pixel format to another. In this case, the behavior is affected by
the COLORCONV_KEEP_TRANS and COLORCONV_DITHER* flags of the

current color conversion mode: see set_color_conversion() for more information.

168 Allegro Manual

See also:

See Section 1.15.3 [masked_blit], page 168.

See Section 1.15.2 [stretch_blit], page 168.

See Section 1.15.5 [draw_sprite], page 170.

See Section 1.9.13 [gfx_capabilities], page 111.

See Section 1.11.17 [set_color_conversion|, page 138.
See Section 3.4 [Available], page 387.

See Section 1.2.2 [BITMAP], page 13.

1.15.2 stretch_blit

void stretch_blit(BITMAP *source, BITMAP *dest, int source_x, source_y,

source_width, source_height, int dest_x, dest_y, dest_width, dest_height);
Like blit(), except it can scale images (so the source and destination rectangles
don’t need to be the same size) and requires the source and destination bitmaps
to be of the same color depth. This routine doesn’t do as much safety checking
as the regular blit(): in particular you must take care not to copy from areas
outside the source bitmap, and you cannot blit between overlapping regions, ie.
you must use different bitmaps for the source and the destination. Moreover,
the source must be a memory bitmap. Example:

BITMAP *bmp;

/* Stretch bmp to fill the screen. */
stretch_blit(bmp, screen, 0, 0, bmp->w, bmp->h,
0, 0, SCREEN_W, SCREEN_H);

See also:

See Section 1.15.1 [blit], page 167.

See Section 1.15.4 [masked_stretch_blit], page 169.
See Section 1.15.6 [stretch_sprite], page 171.

See Section 3.4.32 [exalpha|, page 416.

See Section 3.4.21 [exconfig], page 404.

See Section 3.4.20 [exscale], page 404.

See Section 3.4.25 [extrans], page 409.

See Section 1.2.2 [BITMAP], page 13.

1.15.3 masked_blit

void masked_blit(BITMAP *source, BITMAP *dest, int source_x, int source_y,
int dest_x, int dest_y, int width, int height);
Like blit(), but skips transparent pixels, which are marked by a zero in 256-color
modes or bright pink for truecolor data (maximum red and blue, zero green),
and requires the source and destination bitmaps to be of the same color depth.
The source and destination regions must not overlap. Example:

Chapter 1: API 169

BITMAP *hud_overlay;

/* Paint hud overlay on the screen. */
masked_blit(hud_overlay, screen, 0, 0, 0, O,
hud_overlay->w, hud_overlay->h);

If the GFX_HW_VRAM_BLIT_MASKED bit in the gfx_capabilities flag is set,
the current driver supports hardware accelerated masked blits from one part
of the screen onto another. This is extremely fast, so when this flag is set it
may be worth storing some of your more frequently used sprites in an offscreen
portion of the video memory.

Warning: if the hardware acceleration flag is not set, masked_blit() will not
work correctly when used with a source image in system or video memory so
the latter must be a memory bitmap.

See also:

See Section 1.15.1 [blit], page 167.

See Section 1.15.4 [masked_stretch_blit], page 169.
See Section 1.15.5 [draw_sprite], page 170.

See Section 1.10.12 [bitmap_mask_color], page 124.
See Section 3.4.42 [ex12bit], page 429.

See Section 3.4.4 [expat], page 389.

See Section 1.2.2 [BITMAP], page 13.

1.15.4 masked_stretch_blit

void masked_stretch_blit(BITMAP *source, BITMAP *dest, int source_x,
source_y, source_w, source_h, int dest_x, dest_y, dest_w, dest_h);
Like masked_blit(), except it can scale images (so the source and destination
rectangles don’t need to be the same size). This routine doesn’t do as much
safety checking as the regular masked_blit(): in particular you must take care
not to copy from areas outside the source bitmap. Moreover, the source must
be a memory bitmap. Example:

BITMAP *hud_overlay;

/* Stretch hud overlay over the screen. */

masked_stretch_blit(hud_overlay, screen, 0, O,
hud_overlay->w, hud_overlay->h,
0, 0, SCREEN_W, SCREEN_H);

See also:

See Section 1.15.1 [blit], page 167.

See Section 1.15.3 [masked_blit], page 168.
See Section 1.15.2 [stretch_blit], page 168.

170

Allegro Manual

See Section 1.15.6 [stretch_sprite], page 171.
See Section 1.2.2 [BITMAP], page 13.

1.15.5 draw_sprite
void draw_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y);

See also:

Draws a copy of the sprite bitmap onto the destination bitmap at the specified
position. This is almost the same as blit(sprite, bmp, 0, 0, x, y, sprite->w,
sprite->h), but it uses a masked drawing mode where transparent pixels are
skipped, so the background image will show through the masked parts of the
sprite. Transparent pixels are marked by a zero in 256-color modes or bright
pink for truecolor data (maximum red and blue, zero green). Example:

BITMAP *spaceship;

draw_sprite(screen, spaceship, x, y);

If the GFX_HW_VRAM_BLIT_MASKED bit in the gfx_capabilities flag is set,
the current driver supports hardware accelerated sprite drawing when the source
image is a video memory bitmap or a sub-bitmap of the screen. This is ex-
tremely fast, so when this flag is set it may be worth storing some of your more
frequently used sprites in an offscreen portion of the video memory.

Warning: if the hardware acceleration flag is not set, draw_sprite() will not
work correctly when used with a sprite image in system or video memory so
the latter must be a memory bitmap.

Although generally not supporting graphics of mixed color depths, as a special
case this function can be used to draw 256-color source images onto truecolor
destination bitmaps, so you can use palette effects on specific sprites within a
truecolor program.

See Section 1.15.7 [draw_sprite_v_flip|, page 171.

See Section 1.15.8 [draw_trans_sprite|, page 172.

See Section 1.15.9 [draw_lit_sprite], page 173.

See Section 1.15.10 [draw_gouraud_sprite], page 173.

See Section 1.15.6 [stretch_sprite], page 171.

See Section 1.15.12 [rotate_sprite], page 175.

See Section 1.15.11 [draw_character_ex|, page 174.

See Section 1.16.3 [draw_rle_sprite], page 179.

[
See Section 1.17.3 [draw_compiled_sprite], page 183.
See Section 1.15.3 [masked_blit], page 168.
See Section 1.15.1 [blit], page 167.

See Section 1.10.12 [bitmap_mask_color], page 124.
See Section 3.4.23 [exsprite], page 406.

Chapter 1: API 171

See Section 1.2.2 [BITMAP], page 13.

1.15.6 stretch_sprite

void stretch_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y, int w, int
h);
Like draw_sprite(), except it can stretch the sprite image to the specified width
and height and requires the sprite image and destination bitmap to be of the
same color depth. Moreover, the sprite image must be a memory bitmap.
Example:

/* Create tunnel like effect. */
for (step = 1; step
int width = SCREEN_W / f;
int height = SCREEN_H / f;
stretch_sprite(screen, image, SCREEN_W / 2 - width / 2,
SCREEN_H / 2 - height / 2, width, height);

See also:

See Section 1.15.5 [draw_sprite], page 170.

See Section 1.15.2 [stretch_blit], page 168.

See Section 1.10.12 [bitmap_mask_color], page 124.
See Section 1.2.2 [BITMAP], page 13.

1.15.7 draw_sprite_v_flip

void draw_sprite_v_flip(BITMAP *bmp, BITMAP *sprite, int x, int y);

void draw_sprite_h_flip(BITMAP *bmp, BITMAP *sprite, int x, int y);

void draw_sprite_vh_flip(BITMAP *bmp, BITMAP *sprite, int x, int y);
These are like draw_sprite(), but they additionally flip the image vertically,
horizontally, or both, respectively. Flipping vertically means that the y-axis is
reversed, while flipping horizontally means that the x-axis is reversed, between
the source and the destination. This produces exact mirror images, which is not
the same as rotating the sprite (and it is a lot faster than the rotation routine).
The sprite must be a memory bitmap. Example:

if (key[KEY_RIGHT])

draw_sprite(screen, hero_right, pos_x, pos_y);
else if (key[KEY_LEFT])

draw_h_sprite(screen, hero_right, pos_x, pos_y);
else

draw_sprite(screen, hero_idle, pos_x, pos_y);

See also:
See Section 1.15.5 [draw_sprite], page 170.

172 Allegro Manual

See Section 1.10.12 [bitmap_mask_color], page 124.
See Section 3.4.23 [exsprite], page 406.
See Section 1.2.2 [BITMAP], page 13.

1.15.8 draw_trans_sprite

void draw_trans_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y);
Uses the global color_map table or truecolor blender functions to overlay the
sprite on top of the existing image. This must only be used after you have
set up the color mapping table (for 256-color modes) or blender functions (for
truecolor modes). Because it involves reading as well as writing the bitmap
memory, translucent drawing is very slow if you draw directly to video RAM,
so wherever possible you should use a memory bitmap instead. Example:

/* Some one time initialisation code. */

COLOR_MAP global_trans_table;

create_trans_table(&global_trans_table, my_palette,
128, 128, 128, NULL);

if (get_color_depth() == 8)
color_map = &global_trans_table;
else
set_trans_blender (128, 128, 128, 128);

draw_trans_sprite(buffer, ghost_sprite, x, y);

The bitmap and sprite must normally be in the same color depth, but as a
special case you can draw 32 bit RGBA format sprites onto any hicolor or
truecolor bitmap, as long as you call set_alpha_blender() first, and you can
draw 8-bit alpha images onto a 32-bit RGBA destination, as long as you call
set_write_alpha_blender() first. As draw_sprite() this function skips transparent
pixels, except if the source sprite is an 8-bit image; if this is the case, you should
pay attention to properly set up your color map table for index 0.

See also:

See Section 1.15.5 [draw_sprite], page 170.

See Section 1.15.9 [draw_lit_sprite], page 173.

See Section 1.16.4 [draw_trans_rle_sprite], page 180.
See Section 1.21.5 [color_map], page 215.

See Section 1.21.11 [set_trans_blender], page 220.
See Section 1.21.12 [set_alpha_blender|, page 220.
See Section 1.21.13 [set_write_alpha_blender], page 221.
See Section 1.10.12 [bitmap_mask_color], page 124.
See Section 3.4.32 [exalpha], page 416.

See Section 3.4.30 [exblend], page 414.

See Section 3.4.33 [exlights|, page 417.

Chapter 1: API 173

See Section 3.4.25 [extrans], page 409.
See Section 3.4.31 [exxfade], page 415.
See Section 1.2.2 [BITMAP], page 13.

1.15.9 draw_lit_sprite

void draw_lit_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y, int color);
In 256-color modes, uses the global color_map table to tint the sprite image
to the specified color or to light it to the level specified by ’color’, depending
on the function which was used to build the table (create_trans_table or cre-
ate_light_table), and draws the resulting image to the destination bitmap. In
truecolor modes, uses the blender functions to light the sprite image using the
alpha level specified by ’color’ (the alpha level which was passed to the blender
functions is ignored) and draws the resulting image to the destination bitmap.
The ’color’ parameter must be in the range [0-255] whatever its actual meaning
is. This must only be used after you have set up the color mapping table (for
256-color modes) or blender functions (for truecolor modes). Example:

/* Some one time initialisation code. */

COLOR_MAP global_light_table;

create_light_table(&global_trans_table, my_palette,
10, 10, 60, NULL);

if (get_color_depth() == 8)

color_map = &global_light_table;
else

set_trans_blender (40, 40, 255, 255);

/* Lit the cape with a blueish light. */
draw_lit_sprite(buffer, colored_cape, x, y);

See also:

See Section 1.15.5 [draw_sprite], page 170.

See Section 1.15.8 [draw_trans_sprite], page 172.

See Section 1.15.10 [draw_gouraud_sprite], page 173.
See Section 1.16.5 [draw_lit_rle_sprite], page 180.
See Section 1.21.5 [color_map], page 215.

See Section 1.21.11 [set_trans_blender], page 220.
See Section 1.10.12 [bitmap_mask_color], page 124.
See Section 3.4.30 [exblend], page 414.

See Section 1.2.2 [BITMAP], page 13.

174 Allegro Manual

1.15.10 draw_gouraud_sprite

void draw_gouraud_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y, int ci,
int c2, int c3, int c4);
More sophisticated version of draw_lit_sprite(): the ’color’ parameter is not
constant across the sprite image anymore but interpolated between the four
specified corner colors. The corner values passed to this function indicate the
strength of the color applied on them, ranging from 0 (no strength) to 255 (full
strength). Example:

/* Some one time initialisation code. */

COLOR_MAP global_light_table;

create_light_table(&global_trans_table, my_palette,
0, 0, 0, NULL);

if (get_color_depth() == 8)
color_map = &global_light_table;
else
set_trans_blender(0, 0, 0, 128);

/* Enemies are in shadow unless lit by torch. */

draw_gouraud_sprite(buffer, menacing_spy, x, ¥y,
light_strength_on_corner_1,
light_strength_on_corner_2,
light_strength_on_corner_3,
light_strength_on_corner_4);

See also:

See Section 1.15.5 [draw_sprite], page 170.

See Section 1.15.9 [draw_lit_sprite], page 173.

See Section 1.21.5 [color_map], page 215.

See Section 1.21.11 [set_trans_blender], page 220.
See Section 1.10.12 [bitmap_mask_color], page 124.
See Section 3.4.29 [exshade], page 413.

See Section 1.2.2 [BITMAP], page 13.

1.15.11 draw_character_ex

void draw_character_ex(BITMAP *bmp, BITMAP *sprite, int x, int y, color,

bg) ;
Draws a copy of the sprite bitmap onto the destination bitmap at the specified
position, drawing transparent pixels in the background color (or skipping them
if the background color is -1) and setting all other pixels to the specified color.
Transparent pixels are marked by a zero in 256-color modes or bright pink for
truecolor data (maximum red and blue, zero green). The sprite must be an
8-bit image, even if the destination is a truecolor bitmap. Example:

Chapter 1: API 175

BITMAP *logo;

/* Draw the logo silhouette in red. */
draw_character_ex(screen, logo, SCREEN_W / 2, SCREEN_H / 2,
makecol (255, 0, 0), -1);

See also:

See Section 1.15.5 [draw_sprite], page 170.

See Section 1.10.12 [bitmap_mask_color], page 124.
See Section 1.2.2 [BITMAP], page 13.

1.15.12 rotate_sprite
void rotate_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y, fixed angle);

Draws the sprite image onto the bitmap. It is placed with its top left corner
at the specified position, then rotated by the specified angle around its centre.
The angle is a fixed point 16.16 number in the same format used by the fixed
point trig routines, with 256 equal to a full circle, 64 a right angle, etc. All
rotation functions can draw between any two bitmaps, even screen bitmaps or
bitmaps of different color depth.

Positive increments of the angle will make the sprite rotate clockwise on the
screen, as demonstrated by the Allegro example.

See also:

See Section 1.15.5 [draw_sprite], page 170.

See Section 1.15.14 [rotate_scaled_sprite], page 176.

See Section 1.15.13 [rotate_sprite_v_flip], page 175.

See Section 1.15.15 [rotate_scaled_sprite_v_flip], page 176.
See Section 1.15.16 [pivot_sprite], page 177.

See Section 1.15.17 [pivot_sprite_v_flip|, page 177.

See Section 1.15.18 [pivot_scaled_sprite|, page 177.

See Section 1.15.19 [pivot_scaled_sprite_v_flip], page 178.
See Section 1.33.1 [itofix], page 302.

See Section 1.33.11 [Fixed point trig], page 307.

See Section 3.4.23 [exsprite], page 406.

See Section 1.2.1 [fixed], page 12.

See Section 1.2.2 [BITMAP], page 13.

176 Allegro Manual

1.15.13 rotate_sprite_v_flip

void rotate_sprite_v_flip(BITMAP *bmp, BITMAP *sprite, int x, int y, fixed

angle);
Like rotate_sprite, but flips the image vertically before rotating it. To flip
horizontally, use this routine but add itofix(128) to the angle. To flip in both
directions, use rotate_sprite() and add itofix(128) to its angle.

See also:

See Section 1.15.12 [rotate_sprite], page 175.

See Section 1.15.15 [rotate_scaled_sprite_v_flip], page 176.
See Section 1.15.17 [pivot_sprite_v_flip], page 177.

See Section 1.15.19 [pivot_scaled_sprite_v_flip|, page 178.
See Section 3.4.23 [exsprite], page 406.

See Section 1.2.1 [fixed], page 12.

See Section 1.2.2 [BITMAP], page 13.

1.15.14 rotate_scaled_sprite

void rotate_scaled_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y, fixed
angle, fixed scale);
Like rotate_sprite(), but stretches or shrinks the image at the same time as
rotating it.

See also:

See Section 1.15.12 [rotate_sprite], page 175.

See Section 1.15.15 [rotate_scaled_sprite_v_flip], page 176.
See Section 1.15.18 [pivot_scaled_sprite], page 177.

See Section 1.15.19 [pivot_scaled_sprite_v_flip], page 178.
See Section 1.2.1 [fixed], page 12.

See Section 1.2.2 [BITMAP], page 13.

1.15.15 rotate_scaled_sprite_v_flip

void rotate_scaled_sprite_v_flip(BITMAP *bmp, BITMAP *sprite, int x, int y,
fixed angle, fixed scale);
Draws the sprite, similar to rotate_scaled_sprite() except that it flips the sprite
vertically first.

See also:

See Section 1.15.12 |
See Section 1.15.14 |
See Section 1.15.13 [rotate_sprite_v_flip], page 175.
See Section 1.2.1 [fixed], page 12.

See Section 1.2.2 [BITMAP], page 13.

rotate_sprite|, page 175.
rotate_scaled_sprite|, page 176.

Chapter 1: API 177

1.15.16 pivot_sprite
void pivot_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y, int cx, int
cy, fixed angle);
Like rotate_sprite(), but aligns the point in the sprite given by (cx, cy) to (x,
y) in the bitmap, then rotates around this point.

See also:

See Section 1.15.12 [rotate_sprite], page 175.

See Section 1.15.18 [pivot_scaled_sprite|, page 177.
See Section 1.15.17 [pivot_sprite_v_flip], page 177.
See Section 3.4.23 [exsprite], page 406.

See Section 1.2.1 [fixed], page 12.

See Section 1.2.2 [BITMAP], page 13.

1.15.17 pivot_sprite_v_flip
void pivot_sprite_v_f1lip(BITMAP *bmp, BITMAP *sprite, int x, int y, int cx,
int cy, fixed angle);
Like rotate_sprite_v_flip(), but aligns the point in the sprite given by (cx, cy)
to (x, y) in the bitmap, then rotates around this point.

See also:

See Section 1.15.12 [rotate_sprite], page 175.

See Section 1.15.13 [rotate_sprite_v_flip], page 175.
See Section 1.15.16 [pivot_sprite|, page 177.

See Section 3.4.23 [exsprite], page 406.

See Section 1.2.1 [fixed], page 12.

See Section 1.2.2 [BITMAP], page 13.

1.15.18 pivot_scaled_sprite

void pivot_scaled_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y, int cx,
int cy, fixed angle, fixed scale);
Like rotate_scaled_sprite(), but aligns the point in the sprite given by (cx, cy)
to (x, y) in the bitmap, then rotates and scales around this point.

See also:

See Section 1.15.12 [rotate_sprite], page 175.

See Section 1.15.14 [rotate_scaled_sprite|, page 176.

See Section 1.15.16 [pivot_sprite|, page 177.

See Section 1.15.19 [pivot_scaled_sprite_v_flip|, page 178.
See Section 1.2.1 [fixed], page 12.

See Section 1.2.2 [BITMAP], page 13.

178 Allegro Manual

1.15.19 pivot_scaled_sprite_v_flip

void pivot_scaled_sprite_v_flip(BITMAP *bmp, BITMAP *sprite, int x, int y,
int cx, int cy, fixed angle, fixed scale);
Like rotate_scaled_sprite_v_flip(), but aligns the point in the sprite given by
(cx, cy) to (x, y) in the bitmap, then rotates and scales around this point.

See also:

See Section 1.15.12 [rotate_sprite], page 175.

[
See Section 1.15.15 [rotate_scaled_sprite_v_flip], page 176.
See Section 1.15.13 [rotate_sprite_v_flip], page 175.

[

See Section 1.15.16 [pivot_sprite], page 177.

See Section 1.15.18 [pivot_scaled_sprite|, page 177.
See Section 1.2.1 [fixed], page 12.

See Section 1.2.2 [BITMAP], page 13.

1.16 RLE sprites

Because bitmaps can be used in so many different ways, the bitmap structure is quite
complicated, and it contains a lot of data. In many situations, though, you will find yourself
storing images that are only ever copied to the screen, rather than being drawn onto or
used as filling patterns, etc. If this is the case you may be better off storing your images
in RLE_SPRITE (read chapter "Structures and types defined by Allegro" for an internal
description of the RLE_SPRITE structure) or COMPILED_SPRITE (see next chapter)
structures rather than regular bitmaps.

RLE sprites store the image in a simple run-length encoded format, where repeated zero
pixels are replaced by a single length count, and strings of non-zero pixels are preceded by
a counter giving the length of the solid run. RLE sprites are usually much smaller than
normal bitmaps, both because of the run length compression, and because they avoid most
of the overhead of the bitmap structure. They are often also faster than normal bitmaps,
because rather than having to compare every single pixel with zero to determine whether
it should be drawn, it is possible to skip over a whole run of zeros with a single add, or to
copy a long run of non-zero pixels with fast string instructions.

Every silver lining has a cloud, though, and in the case of RLE sprites it is a lack of flexibility.
You can’t draw onto them, and you can’t flip them, rotate them, or stretch them. In fact the
only thing you can do with them is to blast them onto a bitmap with the draw_rle_sprite()
function, which is equivalent to using draw_sprite() with a regular bitmap. You can convert
bitmaps into RLE sprites at runtime, or you can create RLE sprite structures in grabber
datafiles by making a new object of type 'RLE sprite’.

1.16.1 get_rle_sprite

RLE_SPRITE *get_rle_sprite(BITMAP *bitmap) ;
Creates an RLE sprite based on the specified bitmap (which must be a mem-
ory bitmap). Remember to free this RLE sprite later to avoid memory leaks.
Example:

Chapter 1: API 179

RLE_SPRITE x*rle;
BITMAP *bmp;

/* Create RLE sprite from an existent bitmap. */
rle = get_rle_sprite(bmp);
if (!rle)

abort_on_error("Couldn’t create RLE sprite!");

/* We don’t need the bitmap any more.*x/
destroy_bitmap (bmp) ;

/* Use the RLE sprite. */

/* Destroy it when we don’t need it any more. */
destroy_rle_sprite(rle);

Returns a pointer to the created RLE sprite, or NULL if the RLE sprite could
not be created. Remember to free this RLE sprite later to avoid memory leaks.

See also:

See Section 1.16.3 [draw_rle_sprite], page 179.
See Section 1.16.2 [destroy_rle_sprite], page 179.
See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.3 [RLE_SPRITE], page 13.

1.16.2 destroy-_rle_sprite

void destroy_rle_sprite(RLE_SPRITE *sprite);
Destroys an RLE sprite structure previously returned by get_rle_sprite(). If
you pass a NULL pointer this function won’t do anything. Use this once you
are done with an RLE sprite to avoid memory leaks in your program.

See also:
See Section 1.16.1 [get_rle_sprite], page 178.
See Section 1.2.3 [RLE_SPRITE], page 13.

1.16.3 draw_rle_sprite

void draw_rle_sprite(BITMAP *bmp, const RLE_SPRITE *sprite, int x, int y);
Draws an RLE sprite onto a bitmap at the specified position. Example:

RLE_SPRITE *rle_sprite;

draw_rle_sprite(screen, rle_sprite, 100, 100);

See also:
See Section 1.16.1 [get_rle_sprite], page 178.

180

Allegro Manual

See Section 1.15.5 [draw_sprite], page 170.

See Section 1.17.3
See Section 1.16.4

draw_compiled_sprite], page 183.
draw_trans_rle_sprite|, page 180.

[
[
[
[

See Section 1.16.5 [draw_lit_rle_sprite], page 180.

See Section 1.10.12 [bitmap_mask_color], page 124.
See Section 1.2.2 [BITMAP], page 13.
See Section 1.2.3 [RLE_SPRITE], page 13.

1.16.4 draw_trans_rle_sprite
void draw_trans_rle_sprite(BITMAP *bmp, const RLE_SPRITE *sprite, int x,

int y);

See also:

Translucent version of draw_rle_sprite(). See the description of
draw_trans_sprite(). This must only be used after you have set up the color
mapping table (for 256-color modes) or blender functions (for truecolor
modes). The bitmap and sprite must normally be in the same color depth, but
as a special case you can draw 32-bit RGBA format sprites onto any hicolor or
truecolor bitmap, as long as you call set_alpha_blender() first. Example:

/* Some one time initialisation code. */

COLOR_MAP global_trans_table;

create_trans_table(&global_trans_table, my_palette,
128, 128, 128, NULL);

if (get_color_depth() == 8)
color_map = &global_trans_table;
else
set_trans_blender (128, 128, 128, 128);

draw_trans_rle_sprite(buffer, rle_ghost_sprite, x, y);

See Section 1.16.3 [draw_rle_sprite], page 179.

See Section 1.16.5 [draw_lit_rle_sprite], page 180.
See Section 1.15.8 [draw_trans_sprite], page 172.
[

See Section 1.21.5 [color_map], page 215.

See Section 1.21.11 [set_trans_blender], page 220.
See Section 1.21.12 [set_alpha_blender|, page 220.
See Section 1.10.12 [bitmap_mask_color], page 124.
See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.3 [RLE_SPRITE], page 13.

Chapter 1: API 181

1.16.5 draw_lit_rle_sprite

void draw_lit_rle_sprite(BITMAP *bmp, const RLE_SPRITE *sprite, int x, y,
color) ;
Tinted version of draw_rle_sprite(). See the description of draw_lit_sprite().
This must only be used after you have set up the color mapping table (for
256-color modes) or blender functions (for truecolor modes). Example:

/* Some one time initialisation code. */

COLOR_MAP global_light_table;

create_light_table(&global_trans_table, my_palette,
10, 10, 60, NULL);

if (get_color_depth() == 8)

color_map = &global_light_table;
else

set_trans_blender (40, 40, 255, 255);

/* Lit the cape with a blueish light. */
draw_lit_rle_sprite(buffer, rle_colored_cape, x, y);

See also:

See Section 1.16.3 [draw_rle_sprite], page 179.

See Section 1.16.4 [draw_trans_rle_sprite], page 180.
See Section 1.15.9 [

See Section 1.21.5 [color_map], page 215.

See Section 1.21.11 [set_trans_blender], page 220.
See Section 1.10.12 [bitmap_mask_color], page 124.
See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.3 [RLE_SPRITE], page 13.

draw_lit_sprite|, page 173.

1.17 Compiled sprites

Compiled sprites are stored as actual machine code instructions that draw a specific image
onto a bitmap, using mov instructions with immediate data values. This is the fastest way
to draw a masked image: on slow machines, up to and including a 486, drawing compiled
sprites can be about to five times as fast as using draw_sprite() with a regular bitmap. On
newer machines the difference is usually negligible.

Compiled sprites are big, so if memory is tight you should use RLE sprites instead, and
what you can do with them is even more restricted than with RLE sprites, because they
don’t support clipping. If you try to draw one off the edge of a bitmap, you will corrupt
memory and probably crash the system. You can convert bitmaps into compiled sprites at
runtime, or you can create compiled sprite structures in grabber datafiles by making a new
object of type '’Compiled sprite’ or ’Compiled x-sprite’.

182 Allegro Manual

1.17.1 get_compiled_sprite

COMPILED_SPRITE *get_compiled_sprite(BITMAP *bitmap, int planar);
Creates a compiled sprite based on the specified bitmap (which must be a
memory bitmap). Compiled sprites are device-dependent, so you have to specify
whether to compile it into a linear or planar format. Pass FALSE as the second
parameter if you are going to be drawing it onto memory bitmaps or mode 13h
and SVGA screen bitmaps, and pass TRUE if you are going to draw it onto
mode-X or Xtended mode screen bitmaps. Example:

COMPILED_SPRITE *cspr;
BITMAP *bmp;

/* Create compiled sprite from an existent bitmap. */
cspr = get_compiled_sprite(bmp, 0);
if (!cspr)

abort_on_error("Couldn’t create compiled sprite!");

/* We don’t need the bitmap any more.x/
destroy_bitmap (bmp) ;

/* Use the compiled sprite. */

/* Destroy it when we don’t need it any more. */
destroy_compiled_sprite(cspr);

Returns a pointer to the created compiled sprite, or NULL if the compiled
sprite could not be created. Remember to free this compiled sprite later to
avoid memory leaks.

See also:

See Section 1.17.3 [draw_compiled_sprite|, page 183.
See Section 1.17.2 [destroy_compiled_sprite|, page 182.
See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.4 [COMPILED_SPRITE], page 14.

1.17.2 destroy_compiled_sprite

void destroy_compiled_sprite(COMPILED_SPRITE *sprite) ;
Destroys a compiled sprite structure previously returned by
get_compiled_sprite(). If you pass a NULL pointer this function
won’t do anything. Use this once you are done with a compiled sprite to avoid
memory leaks in your program.

See also:
See Section 1.17.1 [get_compiled_sprite], page 181.
See Section 1.2.4 [COMPILED_SPRITE], page 14.

Chapter 1: API 183

1.17.3 draw_compiled_sprite

void draw_compiled_sprite(BITMAP *bmp, const COMPILED_SPRITE *sprite, int
X, int y);
Draws a compiled sprite onto a bitmap at the specified position. The sprite
must have been compiled for the correct type of bitmap (linear or planar).
This function does not support clipping.

Hint: if not being able to clip compiled sprites is a problem, a neat trick is to
set up a work surface (memory bitmap, mode-X virtual screen, or whatever) a
bit bigger than you really need, and use the middle of it as your screen. That
way you can draw slightly off the edge without any trouble...

See also:

See Section 1.17.1 [get_compiled_sprite], page 181.
See Section 1.15.5 [draw_sprite], page 170.

See Section 1.16.3 [draw_rle_sprite], page 179.

See Section 1.10.12 [bitmap_mask_color], page 124.
See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.4 [COMPILED_SPRITE], page 14.

1.18 Fonts

Allegro provides routines for loading fonts directly from GRX format .fnt files, 8x8 or 8x16
BIOS format .fnt files, from bitmap images, from datafiles or you can import a multiple-
range Unicode font by writing a .txt script that specifies a number of different source files
for each range of characters.

By default, Allegro can only use bitmapped (non-scalable) fonts. If you want to use True-
Type fonts, you will need to use an add-on library which allows you to load them on the
fly (like AllegTTF or Glyph Keeper, listed among others at http://www.allegro.cc/) and
render them directly, or generate a bitmapped version of a TrueType font with tools like
TTF2PCX (http://www.talula.demon.co.uk/ttf2pcx/index.html).

1.18.1 register_font_file_type

void register_font_file_type(const char *ext, FONT *(xload) (const char
*filename, RGB *pal, void *param));
Informs the load_font() functions of a new file type, providing a routine to
read fonts in this format. The function you supply must follow the following
prototype:

FONT *load_my_font(const char *filename, RGB *pal, void *param)]j
{

¥

The pal parameter can optionally be used to return a palette for the FONT. The
parameter param can be anything you like: you can use this to pass information

184

See also:

Allegro Manual

to your loading routine, such as for instance the font height, the character range
to load or the index number of a font in a datafile. If you choose to write your
own font loading code, your function should be prepared to deal with a value
of NULL for either of these parameters.

See Section 1.18.2 [load_font], page 184.
See Section 1.2.13 [RGB], page 17.
See Section 1.2.27 [FONT], page 22.

1.18.2 load_font

FONT #*load_font(const char *filename, RGB *pal, void *param);

See also:

Loads a font from a file. At present, this supports loading fonts from a GRX
format .fnt file, a 8x8 or 8x16 BIOS format .fnt file, a datafile or any bitmap
format that can be loaded by load_bitmap().

If the font contains palette information, then the palette is returned in the sec-
ond parameter, which should be an array of 256 RGB structures (a PALETTE).
The pal argument may be NULL. In this case, the palette data, if present, is
simply not returned.

The third parameter can be used to pass specific information to a custom loader
routine. Normally, you can just leave this as NULL. Note that another way of
loading fonts is embedding them into a datafile and using the datafile related
functions.

Example:

FONT *myfont;
PALETTE palette;

myfont = load_font("my_font.pcx", palette, NULL);
if (!myfont)
abort_on_error("Couldn’t load font!");

textout_centre_ex(screen, myfont, "This is my own pretty font!",J}

SCREEN_W / 2, SCREEN_H / 2, white, black);

destroy_font (bmp) ;
Returns a pointer to the font or NULL on error. Remember that you are re-
sponsible for destroying the font when you are finished with it to avoid memory
leaks.

See Section 1.18.1 [register_font_file_type], page 183.
See Section 1.11.1 [load-bitmap]|, page 131.
See Section 1.18.13 [load_dat_font], page 190.

Chapter 1: API 185

See Section 1.18.14
See Section 1.18.15
See Section 1.18.16
See Section 1.18.17 [load_bitmap_font], page 192.
See Section 1.18.19 [load-txt_font], page 193.
See Section 1.18.3 [destroy_font], page 185.

See Section 3.4.9 [exfont|, page 392.

See Section 1.2.13 [RGB], page 17.

See Section 1.2.27 [FONT], page 22.

load_bios_font], page 191.
load_grx_font|, page 191.
load_grx_or_bios_font|, page 192.

—_—— — —

1.18.3 destroy_font

void destroy_font (FONT *f);
Frees the memory being used by a font structure. Don’t use this on the default
global Allegro font or any text routines using it could crash. You should use
this only on fonts you have loaded manually after you are done with them, to
prevent memory leaks in your program.

See also:

See Section 1.32.4 [load_datafile_object], page 293.
See Section 1.18.2 [load_font], page 184.

See Section 3.4.9 [exfont], page 392.

See Section 1.2.27 [FONT], page 22.

1.18.4 is_color_font

int is_color_font (FONT *f)
This function checks if the given font is a color font, as opposed to a monochrome
font.

Returns TRUE if the font is a color font, FALSE if it is not.

See also:
See Section 1.18.5 [is_mono_font], page 185.
See Section 1.2.27 [FONT], page 22.

1.18.5 is_mono_font

int is_mono_font (FONT *f)
This function checks if the given font is a mono font, as opposed to a color font.
Returns TRUE if the font is a monochrome font, FALSE if it is not.

See also:
See Section 1.18.4 [is_color_font], page 185.
See Section 1.2.27 [FONT], page 22.

186 Allegro Manual

1.18.6 is_compatible_font

FONT *is_compatible_font (FONT *f1, FONT *£f2)
This function compares the two fonts, which you can use to find out if Allegro
is capable of merging them.

Returns TRUE if the two fonts are of the same general type (both are color
fonts or both are monochrome fonts, for instance).

See also:

See Section 1.18.12 [merge_fonts], page 189.
See Section 1.18.4 [is_color_font|, page 185.
See Section 1.18.5 [is_mono_font], page 185.
See Section 1.2.27 [FONT], page 22.

1.18.7 get_font_ranges

int get_font_ranges(FONT *f)
Use this function to find out the number of character ranges in a font.
You should query each of these ranges with get_font_range_begin() and
get_font_range_end() to find out what characters are available in the font.
Example:

FONT x*f;
int range;
int n;

range = get_font_ranges(f);
printf ("The font has Jd character ranges:\n", range);
for (n = 0; n < range; n++)
printf ("Range %d from 0x%03x - 0x%03x\n",
get_font_range_begin(f, n),
get_font_range_end(f, n));

Returns the number of continuous character ranges in a font, or -1 if that
information is not available.

See also:

See Section 1.18.8 [get_font_range_begin]|, page 186.
See Section 1.18.9 [get_font_range_end], page 187.
See Section 1.18.11 [transpose_font], page 188.

See Section 1.2.27 [FONT], page 22.

Chapter 1: API 187

1.18.8 get_font_range_begin

int get_font_range_begin(FONT *f, int range)

See also:

This function allows you to find out the start of a specific character range
for a font. You can pass -1 for the ‘range’ parameter if you want to know
the start of the whole font range, or a number from 0 to (but not including)
get_font_ranges(f) to get the start of a specific character range in the font.
Example:

printf ("The font has a character range of %d - %d\n",
get_font_range_begin(font, -1),
get_font_range_end(font, -1));

Returns the first character in the font range, or -1 if that information is not
available.

See Section 1.18.7 [get_font_ranges], page 186.

See Section 1.18.9 [get_font_range_end], page 187.

See Section 1.18.11 [transpose_font], page 188.
See Section 1.2.27 [FONT], page 22.

1.18.9 get_font_range_end

int get_font_range_end(FONT *f, int range)

See also:

This function allows you to find out the index to the last character of a character
range for a font. You can pass -1 for the range parameter if you want to know
the start of the whole font range, or a number from 0 to (but not including)
get_font_ranges(f) to get the start of a specific character range in the font. You
should check the start and end of all font ranges to see if a specific character
is actually available in the font. Not all characters in the range returned by
get_font_range_begin(f, -1) and get_font_range_end(f, -1) need to be available!
Example:

printf ("The font has a character range of %d - %d\n",
get_font_range_begin(font, -1),
get_font_range_end(font, -1));

Returns the last character in the font range, or -1 if that information is not
available.

See Section 1.18.7 [get_font_ranges], page 186.

See Section 1.18.8 [get_font_range_begin|, page 186.

See Section 1.18.11 [transpose_font], page 188.
See Section 1.2.27 [FONT], page 22.

188 Allegro Manual

1.18.10 extract_font_range

FONT #*extract_font_range(FONT *f, int begin, int end)
This function extracts a character range from a font and returns a new font
that contains only the range of characters selected by this function. You can
pass -1 for either the lower or upper bound if you want to select all characters
from the start or to the end of the font. Example

FONT *myfont;
FONT *capitals;
FONT *fontcopy;

/* Create a font of only capital letters */
capitals = extract_font_range(myfont, ’A’, ’Z’);

/* Create a copy of the font */
fontcopy = extract_font_range(myfont, -1, -1);

destroy_font(capitals);

destroy_font (fontcopy) ;
Returns a pointer to the new font or NULL on error. Remember that you
are responsible for destroying the font when you are finished with it to avoid
memory leaks.

See also:

See Section 1.18.8 [get_font_range_begin|, page 186.
See Section 1.18.9 [get_font_range_end], page 187.
See Section 1.18.12 [merge_fonts], page 189.

See Section 1.18.11 [transpose_font], page 188.

See Section 3.4.9 [exfont], page 392.

See Section 1.2.27 [FONT], page 22.

1.18.11 transpose_font

int transpose_font(FONT *f, int drange)
This function transposes all characters in a font, effectively remapping the font.
Example:

FONT *myfont;
FONT *capitals;

/* Create a font of only capital letters */
capitals = extract_font_range(myfont, ’A’, ’Z’);

/* Now transpose the characters in the font so that they will be used */|}
/* for the lower case letters a-z */

Chapter 1: API

transpose_font(capitals, ’a’-’A’);
textout_ex(screen, capitals, "allcaps",
100, 100, makecol(255,255,255), 0);

Returns 0 on success, -1 on failure.

See also:

See Section 1.18.8 [get_font_range_begin]|, page 186.

See Section 1.18.9 [get_font_range_end], page 187.

See Section 1.18.12 [merge_fonts], page 189.

See Section 1.18.10 [extract_font_range], page 188.
See Section 1.2.27 [FONT], page 22.

1.18.12 merge_fonts

FONT #*merge_fonts(FONT *f1, FONT *£f2)
This function merges the character ranges from two fonts and returns a new font
containing all characters in the old fonts. In general, you cannot merge fonts
of different types (eg, TrueType fonts and bitmapped fonts), but as a special
case, this function can promote a monochrome bitmapped font to a color font
and merge those. Example:

Returns a pointer to the new font or NULL on error.

FONT *myfont;

FONT *myfancy_font;
FONT *lower_range;
FONT *upper_range;
FONT *capitals;

FONT *combined_font;
FONT *tempfont;

/* Create a font that contains the capatials from */
/* the fancy font but other characters from myfont */
lower_range = extract_font_range(myfont, -1, ’A’-1);
upper_range = extract_font_range(myfont, ’Z’+1, -1);
capitals = extract_font_range(myfancy_font, ’A’, ’Z’);

tempfont = merge_fonts(lower_range, capitals);
combined_font = merge_fonts(tempfont, upper_range);

/* Clean up temporary fonts */
destroy_font (lower_range) ;
destroy_font (upper_range) ;
destroy_font (capitals);
destroy_font (combined_font) ;

189

Remember that you

are responsible for destroying the font when you are finished with it to avoid
memory leaks.

190

See also:

Allegro Manual

See Section 1.18.10 [extract_font_range|, page 188.

See Section 1.18.4 [is_color_font|, page 185.

See Section 1.18.5 [is_mono_font], page 185.
See Section 3.4.9 [exfont], page 392.
See Section 1.2.27 [FONT], page 22.

1.18.13 load_dat_font
FONT *load_dat_font(const char *filename, RGB #*pal, void *param)

Loads a FONT from an Allegro datafile. You can set param parameter to point
to an array that holds two strings that identify the font and the palette in the
datafile by name. The first string in this list is the name of the font. You can
pass NULL here to just load the first font found in the datafile. The second
string can be used to specify the name of the palette associated with the font.
This is only returned if the pal parameter is not NULL. If you pass NULL for
the name of the palette, the last palette found before the font was found is
returned. You can also pass NULL for param, which is treated as if you had
passed NULL for both strings separately. In this case, the function will simply
load the first font it finds from the datafile and the palette that precedes it.

For example, suppose you have a datafile named ‘fonts.dat’ with the following
contents:

FONT FONT_1_DATA

FONT FONT_2_DATA

FONT FONT_3_DATA

PAL FONT_1_PALETTE

PAL FONT_2_PALETTE
Then the following code will load FONT_1_DATA as a FONT and return
FONT_1_PALETTE as the palette:

FONT =*f;
PALETTE pal;
char #names[] = { "FONT_1_DATA", "FONT_1_PALETTE" }

f = load_dat_font("fonts.dat", pal, names);

If instead you want to load the second font, FONT_2, from the datafile, you
would use:

FONT x*f;
PALETTE pal;
char *names[] = { "FONT_2_DATA", "FONT_2_PALETTE" }

f = load_dat_font("fonts.dat", pal, names);
If you want to load the third font, but not bother with a palette, use:

Chapter 1: API 191

FONT *f;
char *names[] = { "FONT_3_DATA", NULL }

f = load_dat_font("fonts.dat", NULL, names);

Returns a pointer to the font or NULL on error. Remember that you are re-
sponsible for destroying the font when you are finished with it to avoid memory
leaks.

See also:

See Section 1.18.1 [register_font_file_type], page 183.
See Section 1.18.2 [load-font], page 184.

See Section 1.2.13 [RGB], page 17.

See Section 1.2.27 [FONT], page 22.

1.18.14 load_bios_font

FONT *load_bios_font(const char *filename, RGB #*pal, void *param)
Loads a 8x8 or 8x16 BIOS format font. You shouldn’t normally call this routine
directly.

Returns a pointer to the font or NULL on error. Remember that you are re-
sponsible for destroying the font when you are finished with it to avoid memory
leaks.

See also:

See Section 1.18.1 [register_font_file_type], page 183.
See Section 1.18.2 [load-font], page 184.

See Section 1.2.13 [RGBJ, page 17.

See Section 1.2.27 [FONT], page 22.

1.18.15 load_grx_font

FONT #*load_grx_font(const char *filename, RGB *pal, void *param)
Loads a GRX format font. You shouldn’t normally call this routine directly.

Returns a pointer to the font or NULL on error. Remember that you are re-
sponsible for destroying the font when you are finished with it to avoid memory
leaks.

See also:

See Section 1.18.1 [register_font_file_type|, page 183.
See Section 1.18.2 [load-font|, page 184.

See Section 1.2.13 [RGB], page 17.

See Section 1.2.27 [FONT], page 22.

192 Allegro Manual

1.18.16 load_grx_or_bios_font

FONT *load_grx_or_bios_font(const char *filename, RGB *pal, void *param)
Loads either a BIOS or GRX format font. You shouldn’t normally call this
routine directly.

Returns a pointer to the font or NULL on error. Remember that you are re-
sponsible for destroying the font when you are finished with it to avoid memory
leaks.

See also:

See Section 1.18.1 [register_font_file_type|, page 183.
See Section 1.18.2 [load-font|, page 184.

See Section 1.2.13 [RGB], page 17.

See Section 1.2.27 [FONT], page 22.

1.18.17 load_bitmap_font

FONT *load_bitmap_font(const char *filename, RGB *pal, void *param)
Tries to grab a font from a bitmap. The bitmap can be in any format that
load_bitmap understands.

The size of each character is determined by the layout of the image, which
should be a rectangular grid containing all the ASCII characters from space
(32) up to the tilde (126). The way the characters are separated depends on
the colordepth of the image file:

e paletted (8 bit) image file Use color 0 for the transparent portions of the
characters and fill the spaces between each letter with color 255.

e High (15/16 bit) and true (24/32 bit) color image file Use bright pink
(maximum red and blue, zero green) for the transparent portions of the
characters and fill the spaces between each letter with bright yellow (max-
imum red and green, zero blue).

Note that in each horizontal row the bounding boxes around the characters
should align and have the same height.

Probably the easiest way to get to grips with how this works is to load up the
‘demo.dat’ file and export the TITLE_FONT into a PCX file. Have a look at
the resulting picture in your paint program: that is the format a font should
be in.

Take care with high and true color fonts: Allegro will convert these to the
current colordepth when you load the font. If you try to use a font on a bitmap
with a different color depth Allegro will do color conversions on the fly, which
will be rather slow. For optimal performance you should set the colordepth to
the colordepth you want to use before loading any fonts.

Returns a pointer to the font or NULL on error. Remember that you are re-
sponsible for destroying the font when you are finished with it to avoid memory
leaks.

Chapter 1: API 193

See also:

See Section 1.18.1 [register_font_file_type|, page 183.
See Section 1.18.2 [load-font], page 184.

See Section 1.11.1 [load_bitmap], page 131.

See Section 1.9.1 [set_color_depth], page 105.

See Section 1.18.18 [grab_font_from_bitmap|, page 193.
See Section 1.2.13 [RGB], page 17.

See Section 1.2.27 [FONT], page 22.

1.18.18 grab_font_from_bitmap
FONT *grab_font_from_bitmap(BITMAP *bmp)

See also:

This function is the work-horse of load_bitmap_font, and can be used to grab
a font from a bitmap in memory. You can use this if you want to generate or
modify a font at runtime. The bitmap should follow the layout described for
load_bitmap_font.

Returns a pointer to the font or NULL on error. Remember that you are re-
sponsible for destroying the font when you are finished with it to avoid memory
leaks.

See Section 1.18.17 [load_bitmap_font], page 192.
See Section 1.2.2 [BITMAP], page 13.
See Section 1.2.27 [FONT], page 22.

1.18.19 load_txt_font
FONT *load_txt_font(const char *filename, RGB *pal, void *param)

This function can be used to load scripted fonts. The script file contains a
number of lines in the format "filename start end", which specify the source
file for that range of characters, the Unicode value of the first character in the
range, and the end character in the range (optional, if left out, the entire input
file will be grabbed). If the filename is replaced by a hyphen, more characters
will be grabbed from the previous input file. For example, the script:

ascii.fnt 0x20 Ox7F
- O0xAO OxFF
dingbats.fnt 0x1000

would import the first 96 characters from ascii.fnt as the range 0x20-0x7F,
the next 96 characters from ascii.fnt as the range 0xA0-OxFF, and the entire
contents of dingbats.fnt starting at Unicode position 0x1000.

Returns a pointer to the font or NULL on error. Remember that you are re-
sponsible for destroying the font when you are finished with it to avoid memory
leaks.

194 Allegro Manual

See also:

See Section 1.18.1
See Section 1.18.2
See Section 1.2.13
See Section 1.2.27

register_font_file_type], page 183.
load_font], page 184.

RGBJ, page 17.

FONT], page 22.

1.19 Text output

Allegro provides text output routines that work with both monochrome and color fonts,
which can contain any number of Unicode character ranges. The grabber program can create
fonts from sets of characters drawn in a bitmap file (see grabber.txt for more information),
and can also import GRX or BIOS format font files. The font structure contains a number of
hooks that can be used to extend it with your own custom drawing code: see the definition
in allegro/text.h for details.

1.19.1 font

extern FONT *font;
A simple 8x8 fixed size font (the mode 13h BIOS default). If you want to alter
the font used by the GUI routines, change this to point to one of your own
fonts. This font contains the standard ASCII (U+20 to U+7F), Latin-1 (U+A1
to U+FF), and Latin Extended-A (U+0100 to U+017F) character ranges.

See also:

See Section 1.19.5 [textout_ex], page 195.
See Section 1.19.9 [textprintf_ex], page 197.
See Section 3.4 [Available|, page 387.

See Section 1.2.27 [FONT], page 22.

1.19.2 allegro_404_char

extern int allegro_404_char;
When Allegro cannot find a glyph it needs in a font, it will instead output the
character given in allegro_404_char. By default, this is set to the caret symbol,
‘=7 but you can change this global to use any other character instead. Example:

/* Show unknown glyphs with an asterisk. */
allegro_404_char = ’%’;

See also:
See Section 1.19.1 [font], page 194.

1.19.3 text_length

int text_length(const FONT *f, const char *str);
Returns the length (in pixels) of a string in the specified font. Example:

Chapter 1: API 195

int width = text_length(font, "I love spam");

bmp = create_bitmap(width, height);

See also:

See Section 1.19.4 [text_height], page 195.
See Section 3.4.42 [ex12bit], page 429.
See Section 3.4.15 [exmidi], page 398.

See Section 3.4.4 [expat], page 389.

See Section 3.4.18 [exunicod], page 402.
See Section 1.2.27 [FONT], page 22.

1.19.4 text_height

int text_height (const FONT *f)
Returns the height (in pixels) of the specified font. Example:

int height = text_height(font);

bmp = create_bitmap(width, height);

See also:

See Section 1.19.3 [text_length], page 194.
See Section 3.4.42 [ex12bit], page 429.
See Section 3.4.15 [exmidi], page 398.

See Section 3.4.49 [expackf], page 438.
See Section 3.4.4 [expat], page 389.

See Section 3.4.23 [exsprite], page 406.
See Section 3.4.45 [exsyscur], page 434.
See Section 3.4.18 [exunicod], page 402.
See Section 1.2.27 [FONT], page 22.

1.19.5 textout_ex

void textout_ex(BITMAP *bmp, const FONT *f, const char *s, int x, int vy,

int color, int bg);
Writes the string ‘s’ onto the bitmap at position x, y, using the specified font,
foreground color and background color. If the background color is -1, then the
text is written transparently. If the foreground color is -1 and a color font is
in use, it will be drawn using the colors from the original font bitmap (the one
you imported into the grabber program), which allows multicolored text output.
For high and true color fonts, the foreground color is ignored and always treated
as -1. Example:

196 Allegro Manual

/* Show the program’s version in blue letters. */
textout_ex(screen, font, "v4.2.0-beta2", 10, 10,
makecol(0, 0, 255), -1);

See also:

See Section 1.19.1 [font], page 194.

See Section 1.19.6 [textout_centre_ex], page 196.
See Section 1.19.7 [textout_right_ex|, page 196.

See Section 1.19.9 [textprintf_ex], page 197.
See Section 1.19.4 [text_height], page 195.
See Section 1.19.3 [text_length], page 194.
See Section 3.4 [Available], page 387.

See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.27 [FONT], page 22.

[
[
[
See Section 1.19.8 [textout_justify_ex], page 197.
[
[

1.19.6 textout_centre_ex

void textout_centre_ex(BITMAP *bmp, const FONT *f, const char *s, int x, vy,
int color, int bg);
Like textout_ex(), but interprets the x coordinate as the centre rather than the
left edge of the string. Example:

/* Important texts go in the middle. */
width = text_length("GAME OVER");
textout_centre_ex(screen, font, "GAME OVER",

SCREEN_W / 2, SCREEN_H / 2,

makecol (255, 0, 0), makecol(0, 0, 0));

See also:

See Section 1.19.5 [textout_ex], page 195.

See Section 1.19.10 [textprintf_centre_ex], page 198.
See Section 3.4 [Available], page 387.

See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.27 [FONT], page 22.

1.19.7 textout_right_ex

void textout_right_ex(BITMAP *bmp, const FONT *f, const char *s, int x, int
y, int color, int bg);
Like textout_ex(), but interprets the x coordinate as the right rather than the
left edge of the string. Example:

textout_right_ex(screen, font, "Look at this color!",
SCREEN_W - 10, 10, my_yellow, -1);

Chapter 1: API 197

See also:

See Section 1.19.5 [textout_ex], page 195.

See Section 1.19.11 [textprintf_right_ex], page 198.
See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.27 [FONT], page 22.

1.19.8 textout_justify_ex

void textout_justify_ex(BITMAP *bmp, const FONT *f, const char *s, int x1,
int x2, int y, int diff, int color, int bg);
Draws justified text within the region x1-x2. If the amount of spare space is
greater than the diff value, it will give up and draw regular left justified text
instead. Example:

char *lines[] = {"Draws justified text",
"within the specified",
"x2-x1 area. But not",
"THIS!", NULL};
/* Show the justification marker. */
vline(screen, 200, 0, SCREEN_H-1, makecol(0, 0, 0));
/* Draw all the lines until we reach a NULL entry. */
for (num = 0, y = 0; lines[num]; num++, y += text_height(font))]]
textout_justify_ex(screen, font, lines[num], 0, 200,
y, 80, makecol(0, 0, 0),
makecol (255, 255, 255));

See also:

See Section 1.19.5 [textout_ex], page 195.

See Section 1.19.12 [textprintf_justify_ex], page 199.
See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.27 [FONT], page 22.

1.19.9 textprintf_ex

void textprintf_ex(BITMAP *bmp, const FONT *f, int x, int y, int color, int
bg, const char *fmt, ...);
Formatted text output, using a printf() style format string. Due to an internal
limitation, this function can’t be used for extremely long texts. If you happen to
reach this limit, you can work around it by using uszprintf() and textout_ex(),
which don’t have any. Example:

int player_score;

textprintf_ex(screen, font, 10, 10, makecol(255, 100, 200),
-1, "Score: %d", player_score);

198 Allegro Manual

See also:

See Section 1.19.1 [font], page 194.

See Section 1.19.5 [textout_ex], page 195.

See Section 1.19.10 [textprintf_centre_ex], page 198.
See Section 1.19.11 [textprintf_right_ex], page 198.
See Section 1.19.12 [textprintf_justify_ex], page 199.
See Section 1.19.4 [text_height], page 195.

See Section 1.19.3 [text_length], page 194.

See Section 1.3.58 [uszprintf], page 48.

See Section 3.4 [Available], page 387.

See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.27 [FONT], page 22.

1.19.10 textprintf_centre_ex

void textprintf_centre_ex(BITMAP *bmp, const FONT *f, int x, int y, int
color, int bg, const char *fmt, ...);
Like textprintf_ex(), but interprets the x coordinate as the centre rather than
the left edge of the string. This function shares the text length limitation of
textprintf_ex(). Example:

textprintf_centre_ex(screen, font, SCREEN_W / 2, 120,
makecol (0, 100, 243), -1,
"Your best score so far was %d!",
total_max_points);

See also:

See Section 1.19.9 [textprintf_ex]|, page 197.

See Section 1.19.6 [textout_centre_ex], page 196.
See Section 3.4 [Available], page 387.

See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.27 [FONT], page 22.

1.19.11 textprintf_right_ex

void textprintf_right_ex(BITMAP *bmp, const FONT *f, int x, y, color, bg,
const char *fmt, ...);
Like textprintf_ex(), but interprets the x coordinate as the right rather than
the left edge of the string. This function shares the text length limitation of
textprintf_ex(). Example:

textprintf_right_ex(screen, font, SCREEN_W - 10, 10,
makecol (200, 200, 20), -1,
"%d bullets left", player_ammo) ;

Chapter 1: API 199

See also:

See Section 1.19.9 [textprintf_ex], page 197.
See Section 1.19.7 [textout_right_ex|, page 196.
See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.27 [FONT], page 22.

1.19.12 textprintf_justify_ex

void textprintf_justify_ex(BITMAP *bmp, const FONT *f, int x1, x2, y, diff,
color, bg, const char *fmt, ...);
Like textout_justify_ex(), but using a printf() style format string. This function
shares the text length limitation of textprintf_ex(). Example:

char *lines[] = {"Line %02d: Draws justified text",
"Line %02d: within the specified",
"Line %02d: x2-x1 area. But not",
"Line %02d: T H I S !", NULL};
/* Show the justification marker. */
vline(screen, 300, 0, SCREEN_H-1, makecol(0, 0, 0));
/* Draw all the lines until we reach a NULL entry. */
for (num = 0, y = 0; lines[num]; num++, y += text_height(font))]j
textprintf_justify_ex(screen, font, 0, 300, y, 180,
makecol(0, 0, 0), makecol(255, 255, 255),1
lines[num], num);

See also:

See Section 1.19.9 [textprintf_ex], page 197.

See Section 1.19.8 [textout_justify_ex], page 197.
See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.27 [FONT], page 22.

1.20 Polygon rendering

All the 3d functions that accept a ‘type’ parameter are asking for a polygon rendering
mode, which can be any of the following POLYTYPE_* values. If the CPU_MMX flag of
the cpu_capabilities global variable is set, the GRGB and truecolor *LIT routines will be op-
timised using MMX instructions. If the CPU_3DNOW flag is set, the truecolor PTEX*LIT
routines will take advantage of the 3DNow! CPU extensions.

Using MMX for *LIT routines has a side effect: normally (without MMX), these
routines use the blender functions used also for other lighting functions, set with
set_trans_blender() or set_blender_mode(). The MMX versions only use the RGB value
passed to set_trans_blender() and do the linear interpolation themselves. Therefore a new
set of blender functions passed to set_blender_mode() is ignored.

200 Allegro Manual

1.20.1 POLYTYPE_FLAT

#define POLYTYPE_FLAT
A simple flat shaded polygon, taking the color from the ‘c’ value of the first
vertex. This polygon type is affected by the drawing_mode() function, so it can
be used to render XOR or translucent polygons.

See also:

See Section 1.20 [Polygon], page 199.

See Section 1.20.11 [polygon3d], page 203.
See Section 1.21.1 [drawing_mode], page 213.
See Section 3.4.34 [ex3d], page 419.

See Section 3.4.35 [excameral, page 421.

1.20.2 POLYTYPE_GCOL

#define POLYTYPE_GCOL
A single-color gouraud shaded polygon. The colors for each vertex are taken
from the ‘¢’ value, and interpolated across the polygon. This is very fast, but
will only work in 256-color modes if your palette contains a smooth gradient
between the colors. In truecolor modes it interprets the color as a packed,
display-format value as produced by the makecol() function.

See also:

See Section 1.20 [Polygon], page 199.

See Section 1.20.11 [polygon3d], page 203.
See Section 1.13.3 [makecol], page 150.
See Section 3.4.34 [ex3d], page 419.

See Section 3.4.38 [exscn3d], page 425.
See Section 3.4.39 [exzbuf], page 426.

1.20.3 POLYTYPE_GRGB

#define POLYTYPE_GRGB
A gouraud shaded polygon which interpolates RGB triplets rather than a single
color. In 256-color modes this uses the global rgb_map table to convert the
result to an 8-bit paletted color, so it must only be used after you have set
up the RGB mapping table! The colors for each vertex are taken from the ‘c’
value, which is interpreted as a 24-bit RGB triplet (0xFF0000 is red, 0x00FF00
is green, and 0x0000FF is blue).

See also:

See Section 1.20 [Polygon], page 199.

See Section 1.20.11 [polygon3d], page 203.
See Section 1.22.2 [rgb_map], page 226.

Chapter 1: API 201

See Section 3.4.34 [ex3d], page 419.

1.20.4 POLYTYPE_ATEX
#define POLYTYPE_ATEX

See also:

An affine texture mapped polygon. This stretches the texture across the poly-
gon with a simple 2d linear interpolation, which is fast but not mathematically
correct. It can look ok if the polygon is fairly small or flat-on to the camera, but
because it doesn’t deal with perspective foreshortening, it can produce strange
warping artifacts. To see what this means, run Allegro’s test program and see
what happens to the polygon3d() test when you zoom in very close to the cube.

See Section 1.20 [Polygon], page 199.
See Section 1.20.11 [polygon3d], page 203.
See Section 3.4.34 [ex3d], page 419.

1.20.5 POLYTYPE_PTEX
#define POLYTYPE_PTEX

See also:

A perspective-correct texture mapped polygon. This uses the ‘z’ value from
the vertex structure as well as the u/v coordinates, so textures are displayed
correctly regardless of the angle they are viewed from. Because it involves
division calculations in the inner texture mapping loop, this mode is a lot
slower than POLYTYPE_ATEX, and it uses floating point so it will be very
slow on anything less than a Pentium (even with an FPU, a 486 can’t overlap
floating point division with other integer operations like the Pentium can).

See Section 1.20 [Polygon], page 199.

See Section 1.20.11 [polygon3d], page 203.

See Section 1.20.4 [POLYTYPE_ATEX], page 201.
See Section 3.4.34 [ex3d], page 419.

1.20.6 POLYTYPE_ATEX_MASK

#define POLYTYPE_ATEX_MASK
#define POLYTYPE_PTEX_MASK

See also:

Like POLYTYPE_ATEX and POLYTYPE_PTEX, but zero texture map pixels
are skipped, allowing parts of the texture map to be transparent.

See Section 1.20 [Polygon], page 199.

See Section 1.20.11 [polygon3d], page 203.

See Section 1.20.4 [POLYTYPE_ATEX], page 201.
See Section 1.20.5 [POLYTYPE_PTEX], page 201.

202 Allegro Manual

See Section 3.4.34 [ex3d], page 419.

1.20.7 POLYTYPE_ATEX_LIT
#define POLYTYPE_ATEX_LIT

#define POLYTYPE_PTEX_LIT
Like POLYTYPE_ATEX and POLYTYPE_PTEX, but the global color_map
table (for 256-color modes) or blender function (for non-MMX truecolor modes)
is used to blend the texture with a light level taken from the ‘¢’ value in the ver-
tex structure. This must only be used after you have set up the color mapping
table or blender functions!

See also:

See Section 1.20 [Polygon], page 199.

See Section 1.20.11 [polygon3d], page 203.

See Section 1.20.4 [POLYTYPE_ATEX], page 201.
See Section 1.20.5 [POLYTYPE_PTEX], page 201.
See Section 1.21.5 [color_map], page 215.

See Section 1.21.10 [Truecolor transparency]|, page 219.
See Section 3.4.34 [ex3d], page 419.

1.20.8 POLYTYPE_ATEX_MASK_LIT
#define POLYTYPE_ATEX_MASK_LIT

#define POLYTYPE_PTEX_MASK_LIT
Like POLYTYPE_ATEX_LIT and POLYTYPE_PTEX_LIT, but zero texture
map pixels are skipped, allowing parts of the texture map to be transparent.

See also:

See Section 1.20 [Polygon], page 199.

See Section 1.20.11 [polygon3d], page 203.

See Section 1.20.7 [POLYTYPE_ATEX_LIT], page 202.
See Section 1.20.7 [POLYTYPE_ATEX_LIT], page 202.
See Section 3.4.34 [ex3d], page 419.

1.20.9 POLYTYPE_ATEX_TRANS
#define POLYTYPE_ATEX_TRANS

#define POLYTYPE_PTEX_TRANS
Render translucent textures. All the general rules for drawing translucent things
apply. However, these modes have a major limitation: they only work with
memory bitmaps or linear frame buffers (not with banked frame buffers). Don’t
even try, they do not check and your program will die horribly (or at least draw
wrong things).

Chapter 1: API 203

See also:

See Section 1.20 [Polygon], page 199.

See Section 1.20.11 [polygon3d], page 203.
See Section 3.4.34 [ex3d], page 419.

1.20.10 POLYTYPE_ATEX_MASK_TRANS
#define POLYTYPE_ATEX_MASK_TRANS

#define POLYTYPE_PTEX_MASK_TRANS
Like POLYTYPE_ATEX_TRANS and POLYTYPE_PTEX_TRANS, but zero

texture map pixels are skipped.

See also:

See Section 1.20 [Polygon], page 199.

See Section 1.20.11 [polygon3d], page 203.
See Section 3.4.34 [ex3d], page 419.

1.20.11 polygon3d
void polygon3d(BITMAP *bmp, int type, BITMAP *texture, int vc, V3D *vtx[]);

void polygon3d_f (BITMAP *bmp, int type, BITMAP *texture, int vc, V3D_f

*vtx[]);
Draw 3d polygons onto the specified bitmap, using the specified rendering mode.
Unlike the regular polygon() function, these routines don’t support concave or
self-intersecting shapes, and they can’t draw onto mode-X screen bitmaps (if
you want to write 3d code in mode-X, draw onto a memory bitmap and then
blit to the screen). The width and height of the texture bitmap must be powers
of two, but can be different, eg. a 64x16 texture is fine, but a 17x3 one is not.
The vertex count parameter (vc) should be followed by an array containing
the appropriate number of pointers to vertex structures: polygon3d() uses the
fixed point V3D structure, while polygon3d_f() uses the floating point V3D_f
structure. These are defined as:

typedef struct V3D

{
fixed x, y, z; - position
fixed u, v; - texture map coordinates
int c; - color

} V3D;

typedef struct V3D_f

{
float x, y, z; - position
float u, v; - texture map coordinates
int c; - color

204

See also:

Allegro Manual

} V3D_£;
How the vertex data is used depends on the rendering mode:
The ‘x’ and ‘y’ values specify the position of the vertex in 2d screen coordinates.

The ‘z’ value is only required when doing perspective correct texture mapping,
and specifies the depth of the point in 3d world coordinates.

The ‘u” and ‘v’ coordinates are only required when doing texture mapping, and
specify a point on the texture plane to be mapped on to this vertex. The texture
plane is an infinite plane with the texture bitmap tiled across it. Each vertex
in the polygon has a corresponding vertex on the texture plane, and the image
of the resulting polygon in the texture plane will be mapped on to the polygon
on the screen.

We refer to pixels in the texture plane as texels. Each texel is a block, not just
a point, and whole numbers for u and v refer to the top-left corner of a texel.
This has a few implications. If you want to draw a rectangular polygon and
map a texture sized 32x32 on to it, you would use the texture coordinates (0,0),
(0,32), (32,32) and (32,0), assuming the vertices are specified in anticlockwise
order. The texture will then be mapped perfectly on to the polygon. However,
note that when we set u=32, the last column of texels seen on the screen is the
one at u=31, and the same goes for v. This is because the coordinates refer to
the top-left corner of the texels. In effect, texture coordinates at the right and
bottom on the texture plane are exclusive.

There is another interesting point here. If you have two polygons side by side
sharing two vertices (like the two parts of folded piece of cardboard), and you
want to map a texture across them seamlessly, the values of u and v on the
vertices at the join will be the same for both polygons. For example, if they are
both rectangular, one polygon may use (0,0), (0,32), (32,32) and (32,0), and
the other may use (32,0), (32,32), (64,32), (64,0). This would create a seamless
join.

Of course you can specify fractional numbers for u and v to indicate a point
part-way across a texel. In addition, since the texture plane is infinite, you can
specify larger values than the size of the texture. This can be used to tile the
texture several times across the polygon.

The ‘¢’ value specifies the vertex color, and is interpreted differently by various
rendering modes. Read the beginning of chapter "Polygon rendering" for a list
of rendering types you can use with this function.

See Section 1.20.12 [triangle3d], page 205.
See Section 1.20.13 [quad3d], page 205.

See Section 1.14.13 [polygon], page 159.

See Section 1.20.15 [clip3d], page 206.

See Section 1.1.27 [cpu_capabilities], page 11.

See Section 3.4.35 [excameral, page 421.
See Section 1.2.2 [BITMAP], page 13.
See Section 1.2.14 [V3D], page 17.

Chapter 1: API 205

See Section 1.2.15 [V3D_f], page 18.

1.20.12 triangle3d

void triangle3d(BITMAP *bmp, int type, BITMAP *tex, V3D *vl, *v2, *v3);

void triangle3d_f (BITMAP *bmp, int type, BITMAP *tex, V3D_f *vil, *v2, *v3);
Draw 3d triangles, using either fixed or floating point vertex structures. Un-
like quad3d[_f](), triangle3d[_f]() functions are not wrappers of polygon3d[_f]().
The triangle3d[_f]() functions use their own routines taking into account the
constantness of the gradients. Therefore triangle3d[-f](bmp, type, tex, v1, v2,
v3) is faster than polygon3d[_f](bmp, type, tex, 3, v[]).

Read the beginning of chapter "Polygon rendering" for a list of rendering types
you can use with this function.

See also:

See Section 1.20.11 [polygon3d], page 203.
See Section 1.20.13 [quad3d], page 205.
See Section 1.14.12 [triangle], page 159.
See Section 1.20 [Polygon], page 199.

See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.14 [V3D], page 17.

See Section 1.2.15 [V3D_f], page 18.

1.20.13 quad3d

void quad3d(BITMAP *bmp, int type, BITMAP x*tex, V3D *vl, *v2, *v3, *v4);

void quad3d_f (BITMAP *bmp, int type, BITMAP *tex, V3D_f #*vl, *v2, *v3,

*v4) ;
Draw 3d quads, using either fixed or floating point vertex structures. These
are equivalent to calling polygon3d(bmp, type, tex, 4, v[]) or polygon3d_f(bmp,
type, tex, 4, v[]).

Read the beginning of chapter "Polygon rendering" for a list of rendering types
you can use with this function.

See also:

See Section 1.20.11 [polygon3d], page 203.
See Section 1.20.12 [triangle3d], page 205.
See Section 1.20 [Polygon], page 199.

See Section 3.4.34 [ex3d], page 419.

See Section 1.2.2 [BITMAP], page 13.
See Section 1.2.14 [V3D], page 17.

See Section 1.2.15 [V3D_f], page 18.

206 Allegro Manual

1.20.14 clip3d_f

int clip3d_f(int type, float min_z, float max_z, int vc, const V3D_f

*vtx[], V3D_f *vout[], V3D_f *vtmp[], int out[]);
Clips the polygon given in ‘vtx’. The number of vertices is ‘vc’, the result goes
in ‘vout’, and ‘vtmp’ and ‘out’ are needed for internal purposes. The pointers
in ‘vtx’, ‘vout’ and ‘vtmp’ must point to valid V3D_f structures.
As additional vertices may appear in the process of clipping, so the size of ‘vout’,
‘vtmp’ and ‘out’ should be at least vc * (1.5 ~ n), where ‘n’ is the number of
clipping planes (5 or 6), and ‘~’ denotes "to the power of".
The frustum (viewing volume) is defined by -z<x<z, -z<y<z, 0<min_z<z<max_z.
If max_z<=min_z, the z<max_z clipping is not done. As you can see, clipping
is done in the camera space, with perspective in mind, so this routine should
be called after you apply the camera matrix, but before the perspective projec-
tion. The routine will correctly interpolate u, v, and c in the vertex structure.
However, no provision is made for high/truecolor GCOL.

Returns the number of vertices after clipping is done.

See also:

See Section 1.20.11 [polygon3d], page 203.
See Section 1.20.15 [clip3d], page 206.

See Section 3.4.35 [excameral, page 421.
See Section 3.4.38 [exscn3d], page 425.
See Section 1.2.15 [V3D_f], page 18.

1.20.15 clip3d

int clip3d(int type, fixed min_z, fixed max_z, int vc, comnst V3D *vtx[],

V3D *vout[], V3D *vtmp[], int out[]);
Fixed point version of clip3d_f(). This function should be used with caution, due
to the limited precision of fixed point arithmetic and high chance of rounding
errors: the floating point code is better for most situations.

Returns the number of vertices after clipping is done.

See also:

See Section 1.20.11 [polygon3d], page 203.
See Section 1.20.14 [clip3d_f], page 206.
See Section 1.2.1 [fixed], page 12.

See Section 1.2.14 [V3D], page 17.

1.20.16 Zbuffered rendering

A Z-buffer stores the depth of each pixel that is drawn on a viewport. When a 3D object
is rendered, the depth of each of its pixels is compared against the value stored into the
Z-buffer: if the pixel is closer it is drawn, otherwise it is skipped.

Chapter 1: API 207

No polygon sorting is needed. However, backface culling should be done because it prevents
many invisible polygons being compared against the Z-buffer. Z-buffered rendering is the
only algorithm supported by Allegro that directly solves penetrating shapes (see example
exzbuf.c, for instance). The price to pay is more complex (and slower) routines.

Z-buffered polygons are designed as an extension of the normal POLYTYPE_* rendering
styles. Just OR the POLYTYPE with the value POLYTYPE_ZBUF, and the normal
polygon3d(), polygon3d_f(), quad3d(), etc. functions will render z-buffered polygons.

Example:

polygon3d(bmp, POLYTYPE_ATEX | POLYTYPE_ZBUF, tex, vc, vtx);
Of course, the z coordinates have to be valid regardless of rendering style.

A Z-buffered rendering procedure looks like a double-buffered rendering procedure. You
should follow four steps: create a Z-buffer at the beginning of the program and make the
library use it by calling set_zbuffer(). Then, for each frame, clear the Z-buffer and draw
polygons with POLYTYPE_* | POLYTYPE_ZBUF and finally destroy the Z-buffer when
leaving the program.

Notes on Z-buffered renderers:

e Unlike the normal POLYTYPE_FLAT renderers, the Z-buffered ones don’t use the
hline() routine. Therefore DRAW_MODE has no effect.

e The *LIT* routines work the traditional way - through the set of blender routines.

e All the Z-buffered routines are much slower than their normal counterparts (they all
use the FPU to interpolate and test 1/z values).

1.20.17 create_zbuffer

ZBUFFER *create_zbuffer (BITMAP *bmp) ;
Creates a Z-buffer using the size of the BITMAP you are planning to draw on.
Several Z-buffers can be defined but only one can be used at the same time, so
you must call set_zbuffer() to make this Z-buffer active.

Returns the pointer to the ZBUFFER or NULL if there was an error. Remember
to destroy the ZBUFFER once you are done with it, to avoid having memory
leaks.

See also:

See Section 1.20.18 [create_sub_zbuffer], page 208.
See Section 1.20.19 [set_zbuffer], page 208.

See Section 1.20.20 [clear_zbuffer], page 208.

See Section 1.20.21 [destroy_zbuffer], page 209.
See Section 3.4.39 [exzbuf], page 426.

See Section 1.2.2 [BITMAP], page 13.

See Section 1.2.28 [ZBUFFER], page 22.

208

Allegro Manual

1.20.18 create_sub_zbuffer
ZBUFFER *create_sub_zbuffer (ZBUFFER #*parent, int x, int y, int width, int

height) ;

See also:

Creates a sub-z-buffer, ie. a z-buffer sharing drawing memory with a pre-
existing z-buffer, but possibly with a different size. The same rules as for
sub-bitmaps apply: the sub-z-buffer width and height can extend beyond the
right and bottom edges of the parent (they will be clipped), but the origin point
must lie within the parent region.

When drawing z-buffered to a bitmap, the top left corner of the bitmap is
always mapped to the top left corner of the current z-buffer. So this function is
primarily useful if you want to draw to a sub-bitmap and use the corresponding
sub-area of the z-buffer. In other cases, eg. if you just want to draw to a sub-
bitmap of screen (and not to other parts of screen), then you would usually
want to create a normal z-buffer (not sub-z-buffer) the size of the visible screen.
You don’t need to first create a z-buffer the size of the virtual screen and then
a sub-z-buffer of that.

Returns the pointer to the sub ZBUFFER or NULL if there was an error.
Remember to destroy the ZBUFFER once you are done with it, to avoid having
memory leaks.

See Section 1.20.17 [create_zbuffer], page 207.
See Section 1.10.6 [create_sub_bitmap], page 122.
See Section 1.20.21 [destroy_zbuffer], page 209.
See Section 1.2.28 [ZBUFFER], page 22.

1.20.19 set_zbuffer
void set_zbuffer (ZBUFFER *zbuf) ;

See also:

Makes the given Z-buffer be the active one. This should have been previously
created with create_zbuffer().

See Section 1.20.17 [create_zbuffer], page 207.
See Section 1.20.20 [clear_zbuffer], page 208.
See Section 1.20.21 [destroy_zbuffer|, page 209.
See Section 3.4.39 [exzbuf], page 426.

See Section 1.2.28 [ZBUFFER], page 22.

1.20.20 clear_zbuffer
void clear_zbuffer (ZBUFFER *zbuf, float z);

Writes z into the given Z-buffer (0 means far away). This function should be
used to initialize the Z-buffer before each frame. Actually, low-level routines

Chapter 1: API 209

compare depth of the current pixel with 1/z: for example, if you want to clip
polygons farther than 10, you must call clear_zbuffer(zbuf, 0.1).

See also:

See Section 1.20.17 [create_zbuffer], page 207.
See Section 1.20.19 [set_zbuffer], page 208.

See Section 1.20.21 [destroy_zbuffer], page 209.
See Section 3.4.39 [exzbuf], page 426.

See Section 1.2.28 [ZBUFFER], page 22.

1.20.21 destroy_zbuffer

void destroy_zbuffer (ZBUFFER *zbuf) ;
Destroys the Z-buffer when you are finished with it. Use this to avoid memory
leaks in your program.

See also:

See Section 1.20.17 [create_zbuffer], page 207.
See Section 1.20.19 [set_zbuffer|, page 208.
See Section 1.20.20 [clear_zbuffer], page 208.
See Section 3.4.39 [exzbuf], page 426.

See Section 1.2.28 [ZBUFFER], page 22.

1.20.22 Scene rendering
Allegro provides two simple approaches to remove hidden surfaces:
e Z-buffering - (see above)

e Scan-line algorithms - along each scanline on your screen, you keep track of what
polygons you are "in" and which is the nearest. This status changes only where the
scanline crosses some polygon edge. So you have to juggle an edge list and a polygon
list. And you have to sort the edges for each scanline (this can be countered by keeping
the order of the previous scanline - it won’t change much). The BIG advantage is
that you write each pixel only once. If you have a lot of overlapping polygons you can
get incredible speeds compared to any of the previous algorithms. This algorithm is
covered by the *_scene routines.

The scene rendering has approximately the following steps:
e Initialize the scene (set the clip area, clear the bitmap, blit a background, etc.)
e (Call clear_scene().
e Transform all your points to camera space.
e Clip polygons.
e Project with persp_project() or persp_project_f().

e "Draw" polygons with scene_polygon3d() and/or scene_polygon3d_f(). This doesn’t
do any actual drawing, only initializes tables.

210 Allegro Manual

e Render all the polygons defined previously to the bitmap with render_scene().

e Overlay some non-3D graphics.

e Show the bitmap (blit it to screen, flip the page, etc).
For each horizontal line in the viewport an x-sorted edge list is used to keep track of what
polygons are "in" and which is the nearest. Vertical coherency is used - the edge list for
a scanline is sorted starting from the previous one - it won’t change much. The scene
rendering routines use the same low-level asm routines as normal polygon3d().
Notes on scene rendering:

e Unlike polygon3d(), scene_polygon3d() requires valid z coordinates for all vertices,
regardless of rendering style (unlike polygon3d(), which only uses z coordinate for
PTEX).

e All polygons passed to scene_polygon3d() have to be persp_project()’ed.

e After render_scene() the mode is reset to SOLID.

Using a lot of *MASK* polygons drastically reduces performance, because when a MASKed
polygon is the first in line of sight, the polygons underneath have to be drawn too. The
same applies to FLAT polygons drawn with DRAW_MODE_TRANS.

Z-buffered rendering works also within the scene renderer. It may be helpful when you have
a few intersecting polygons, but most of the polygons may be safely rendered by the normal
scanline sorting algo. Same as before: just OR the POLYTYPE with POLYTYPE_ZBUF.
Also, you have to clear the z-buffer at the start of the frame. Example:

clear_scene (buffer);
if (some_polys_are_zbuf) clear_zbuffer(0.);
while (polygons) {

if (this_poly_is_zbuf) type |= POLYTYPE_ZBUF;
scene_polygon3d(type, tex, vc, vtx);
}

render_scene();

1.20.23 create_scene

int create_scene(int nedge, int npoly);
Allocates memory for a scene, ‘nedge’ and ‘npoly’ are your estimates of how
many edges and how many polygons you will render (you cannot get over the
limit specified here). If you use same values in succesive calls, the space will be
reused (no new malloc()).

The memory allocated is a little less than 150 * (nedge + npoly) bytes.

Returns zero on success, or a negative number if allocations fail.

See also:
See Section 1.20.26 [scene_polygon3d], page 211.

[
See Section 1.20.27 [render_scene], page 212.
See Section 1.20.24 [clear_scene], page 211.

[

See Section 1.20.25 [destroy_scene], page 211.

Chapter 1: API

See Section 1.20.28 [scene_gap|, page 213.
See Section 1.20.17 [create_zbuffer|, page 207.
See Section 3.4.38 [exscn3d], page 425.

1.20.24 clear_scene
void clear_scene(BITMAP *bmp) ;

211

Initializes a scene. The bitmap is the bitmap you will eventually render on.

See also:

See Section 1.20.23 [create_scene], page 210.

See Section 1.20.26 [scene_polygon3d|, page 211.
See Section 1.20.27 [render_scene], page 212.
See Section 1.20.25 [destroy_scene], page 211.
See Section 1.20.28 [scene_gap|, page 213.

See Section 3.4.38 [exscn3d], page 425.

See Section 1.2.2 [BITMAP], page 13.

1.20.25 destroy_scene

void destroy_scene();
Deallocate memory previously allocated by create_scene.
memory leaks in your program.

See also:
See Section 1.20.23 [create_scene|, page 210.
See Section 1.20.26 [scene_polygon3d|, page 211.

[

[
See Section 1.20.24 [clear_scene], page 211.
See Section 1.20.27 [render_scene], page 212.
[

See Section 1.20.28 [scene_gap|, page 213.
See Section 3.4.38 [exscn3d], page 425.

1.20.26 scene_polygon3d

Use this to avoid

int scene_polygon3d(int type, BITMAP *texture, int vc, V3D *vtx[]);

int scene_polygon3d_f (int type, BITMAP *texture, int vc, V3D_f *vtx[]);
Puts a polygon in the rendering list. Nothing is really rendered at this moment.

Should be called between clear_scene() and render_scene().

Arguments are the same as for polygon3d(), except the bitmap is missing. The

one passed to clear_scene() will be used.

Unlike polygon3d(), the polygon may be concave or self-intersecting. Shapes
that penetrate one another may look OK, but they are not really handled by

this code.

Note that the texture is stored as a pointer only, and you should keep the actual

bitmap around until render_scene(), where it is used.

212

See also:

Allegro Manual

Since the FLAT style is implemented with the low-level hline() funtion, the
FLAT style is subject to DRAW_MODEs. All these modes are valid. Along
with the polygon, this mode will be stored for the rendering moment, and
also all the other related variables (color_map pointer, pattern pointer, anchor,
blender values).

The settings of the CPU_MMX and CPU_3DNOW flags of the cpu_capabilities
global variable on entry in this routine affect the choice of low-level asm routine
that will be used by render_scene() for this polygon.

Returns zero on success, or a negative number if it won’t be rendered for lack
of a rendering routine.

See Section 1.20.23 [create_scene|, page 210.
See Section 1.20.24 [clear_scene], page 211.
See Section 1.20.27 [render_scene], page 212.
See Section 1.20.25 [destroy_scene], page 211.
See Section 1.20.11 [polygon3d], page 203.

See Section 1.1.27 [cpu_capabilities], page 11.

See Section 3.4.38 [exscn3d], page 425.
See Section 1.2.2 [BITMAP], page 13.
See Section 1.2.14 [V3D], page 17.

See Section 1.2.15 [V3D_f], page 18.

1.20.27 render_scene

void render_scene();

See also:

Renders all the specified scene_polygon3d()’s on the bitmap passed to
clear_scene(). Rendering is done one scanline at a time, with no pixel being
processed more than once.

Note that between clear_scene() and render_scene() you shouldn’t change the
clip rectangle of the destination bitmap. For speed reasons, you should set the
clip rectangle to the minimum.

Note also that all the textures passed to scene_polygon3d() are stored as point-
ers only and actually used in render_scene().

See Section 1.20.23 [create_scene|, page 210.

See Section 1.20.24 [clear_scene|, page 211.

See Section 1.20.28 [scene_gap|, page 213.

[
[
See Section 1.20.25 [destroy_scene], page 211.
[
[

See Section 1.20.26 [scene_polygon3d], page 211.
See Section 3.4.38 [exscn3d], page 425.

Chapter 1: API 213

1.20.28 scene_gap

extern float scene_gap;
This number (default value = 100.0) controls the behaviour of the z-sorting
algorithm. When an edge is very close to another’s polygon plane, there is an
interval of uncertainty in which you cannot tell which object is visible (which
z is smaller). This is due to cumulative numerical errors for edges that have
undergone a lot of transformations and interpolations.

The default value means that if the 1/z values (in projected space) differ by
only 1/100 (one percent), they are considered to be equal and the x-slopes of
the planes are used to find out which plane is getting closer when we move to
the right.

Larger values means narrower margins, and increasing the chance of missing
true adjacent edges/planes. Smaller values means larger margins, and increas-
ing the chance of mistaking close polygons for adjacent ones. The value of 100
is close to the optimum. However, the optimum shifts slightly with resolution,
and may be application-dependent. It is here for you to fine-tune.

See also:
See Section 1.20.23 [create_scene|, page 210.
See Section 1.20.24 [clear_scene|, page 211.

[

[

See Section 1.20.25 [destroy_scene], page 211.

See Section 1.20.27 [render_scene|, page 212.
[

See Section 1.20.26 [scene_polygon3d], page 211.

1.21 Transparency and patterned drawing

1.21.1 drawing_mode

void drawing_mode(int mode, BITMAP *pattern, int x_anchor, int y_anchor);
Sets the graphics drawing mode. This only affects the geometric routines like
putpixel, lines, rectangles, circles, polygons, floodfill, etc, not the text output,
blitting, or sprite drawing functions. The mode should be one of the following

constants:

DRAW_MODE_SOLID - the default, solid color
drawing

DRAW_MODE_XOR - exclusive-or drawing
DRAW_MODE_COPY_PATTERN - multicolored pattern fill
DRAW_MODE_SOLID_PATTERN - single color pattern fill
DRAW_MODE_MASKED_PATTERN - masked pattern fill
DRAW_MODE_TRANS - translucent color blending

In DRAW_MODE_SOLID, pixels of the bitmap being drawn onto are simply
replaced by those produced by the drawing function.

214

See also:

Allegro Manual

In DRAW_MODE_XOR, pixels are written to the bitmap with an exclusive-
or operation rather than a simple copy, so drawing the same shape twice will
erase it. Because it involves reading as well as writing the bitmap memory, xor
drawing is a lot slower than the normal replace mode.

With the patterned modes, you provide a pattern bitmap which is tiled across
the surface of the shape. Allegro stores a pointer to this bitmap rather than
copying it, so you must not destroy the bitmap while it is still selected as the
pattern. The width and height of the pattern must be powers of two, but they
can be different, eg. a 64x16 pattern is fine, but a 17x3 one is not. The pattern
is tiled in a grid starting at point (x_anchor, y_anchor). Normally you should
just pass zero for these values, which lets you draw several adjacent shapes and
have the patterns meet up exactly along the shared edges. Zero alignment may
look peculiar if you are moving a patterned shape around the screen, however,
because the shape will move but the pattern alignment will not, so in some
situations you may wish to alter the anchor position.

When you select DRAW_MODE_COPY_PATTERN, pixels are simply copied
from the pattern bitmap onto the destination bitmap. This allows the use of
multicolored patterns, and means that the color you pass to the drawing routine
is ignored. This is the fastest of the patterned modes.

In DRAW_MODE_SOLID_PATTERN, each pixel in the pattern bitmap is com-
pared with the mask color, which is zero in 256-color modes or bright pink for
truecolor data (maximum red and blue, zero green). If the pattern pixel is
solid, a pixel of the color you passed to the drawing routine is written to the
destination bitmap, otherwise a zero is written. The pattern is thus treated as
a monochrome bitmask, which lets you use the same pattern to draw different
shapes in different colors, but prevents the use of multicolored patterns.

DRAW_MODE_MASKED_PATTERN is almost the same as
DRAW_MODE_SOLID_PATTERN, but the masked pixels are skipped rather
than being written as zeros, so the background shows through the gaps.

In DRAW_MODE_TRANS, the global color_map table or truecolor blender
functions are used to overlay pixels on top of the existing image. This must
only be used after you have set up the color mapping table (for 256 color modes)
or blender functions (for truecolor modes). Because it involves reading as well
as writing the bitmap memory, translucent drawing is very slow if you draw
directly to video RAM, so wherever possible you should use a memory bitmap
instead.

See Section 1.21.2 [xor_mode], page 215.

See Section 1.21.3 [solid_mode], page 215.

See Section 1.21.5 [color_map], page 215.

See Section 1.21.11 [set_trans_blender], page 220.
See Section 3.4.32 [exalpha], page 416.

See Section 3.4.27 [excolmap], page 411.

See Section 3.4.13 [exjoy], page 396.

Chapter 1: API 215

See Section 3.4.4 [expat], page 389.
See Section 3.4.25 [extrans|, page 409.
See Section 1.2.2 [BITMAP], page 13.

1.21.2 xor_mode

void xor_mode(int on);
This is a shortcut for toggling xor drawing mode on and off. Calling
xor_mode(TRUE) is equivalent to drawing.mode(DRAW_MODE_XOR,
NULL, 0, 0). Calling xor_mode(FALSE) 1is equivalent to draw-
ing_mode(DRAW_MODE_SOLID, NULL, 0, 0).

See also:

See Section 1.21.1 [drawing_mode], page 213.
See Section 3.4.44 [exspline|, page 432.

See Section 3.4.46 [exupdate], page 435.

1.21.3 solid_mode

void solid_mode();
This is a shortcut for selecting solid drawing mode. It is equivalent to calling

drawing_mode(DRAW_MODE_SOLID, NULL, 0, 0).

See also:

See Section 1.21.1 [drawing_mode], page 213.
See Section 3.4.32 [exalpha], page 416.

See Section 3.4.4 [expat], page 389.

1.21.4 256-color transparency

In paletted video modes, translucency and lighting are implemented with a 64k lookup
table, which contains the result of combining any two colors cl and ¢2. You must set up
this table before you use any of the translucency or lighting routines. Depending on how you
construct the table, a range of different effects are possible. For example, translucency can
be implemented by using a color halfway between c1 and ¢2 as the result of the combination.
Lighting is achieved by treating one of the colors as a light level (0-255) rather than a
color, and setting up the table appropriately. A range of specialised effects are possible, for
instance replacing any color with any other color and making individual source or destination
colors completely solid or invisible. Color mapping tables can be precalculated with the
colormap utility, or generated at runtime. Read chapter "Structures and types defined by
Allegro" for an internal description of the COLOR_MAP structure.

1.21.5 color_map

extern COLOR_MAP *color_map;
Global pointer to the color mapping table. You must allocate your own
COLOR_MAP either statically or dynamically and set color_map to it before

216 Allegro Manual

using any translucent or lit drawing functions in a 256-color video model!
Example:

color_map = malloc(sizeof (COLOR_MAP));
if (!color_map)
abort_on_error("Not enough memory for color map!");

See also:

See Section 1.21.8
See Section 1.21.7
See Section 1.21.6
See Section 1.21.9 [create_blender_table], page 219.
See Section 1.21.11 [set_trans_blender], page 220.
See Section 1.15.8 [draw_trans_sprite|, page 172.

create_color_table], page 218.
create_light_table|, page 217.
create_trans_table|, page 216.

See Section 1.15.9 [draw_lit_sprite], page 173.

See Section 1.15.10 [draw_gouraud_sprite], page 173.
See Section 1.21.1 [drawing_mode], page 213.

See Section 3.4.34 [ex3d], page 419.

See Section 3.4.27 [excolmap], page 411.

See Section 3.4.33 [exlights], page 417.

See Section 3.4.29 [exshade], page 413.

See Section 3.4.25 [extrans], page 409.

See Section 1.2.16 [COLOR_MAP], page 18.

1.21.6 create_trans_table

void create_trans_table(COLOR_MAP *table, const PALETTE pal, int r, g, b,
void (*callback) (int pos));
Fills the specified color mapping table with lookup data for doing translucency
effects with the specified palette. When combining the colors ¢l and ¢2 with
this table, the result will be a color somewhere between the two. The r, g,
and b parameters specify the solidity of each color component, ranging from 0
(totally transparent) to 255 (totally solid). For 50% solidity, pass 128.

This function treats source color #0 as a special case, leaving the destination
unchanged whenever a zero source pixel is encountered, so that masked sprites
will draw correctly. This function will take advantage of the global rgb_map
variable to speed up color conversions. If the callback function is not NULL,
it will be called 256 times during the calculation, allowing you to display a
progress indicator. Example:

COLOR_MAP trans_table;

/* Build a color lookup table for translucent drawing. */
create_trans_table(&trans_table, pal, 128, 128, 128, NULL);

Chapter 1: API 217

See also:

See Section 1.21.5
See Section 1.21.7
See Section 1.21.8
See Section 1.21.9
See Section 1.15.8
See Section 1.15.9
See Section 1.15.10 [draw_gouraud_sprite], page 173.

color_map|, page 215.
create_light_table], page 217.
create_color_table], page 218.
create_blender_table], page 219.
draw_trans_sprite|, page 172.

draw_lit_sprite|, page 173.

See Section 1.22.2 [rgb_map]|, page 226.

See Section 3.4.34 [ex3d], page 419.

See Section 3.4.25 [extrans], page 409.

See Section 1.2.12 [PALETTE], page 16.
See Section 1.2.16 [COLOR-MAP], page 18.

1.21.7 create_light_table

void create_light_table(COLOR_MAP *table, const PALETTE pal, int r, g, b,

void (*callback) (int pos));
Fills the specified color mapping table with lookup data for doing lighting effects
with the specified palette. When combining the colors c1 and ¢2 with this table,
cl is treated as a light level from 0-255. At light level 255 the table will output
color c2 unchanged, at light level 0 it will output the r, g, b value you specify to
this function, and at intermediate light levels it will output a color somewhere
between the two extremes. The r, g, and b values are in the range 0-63.

This function will take advantage of the global rgh_ap variable to speed up color
conversions. If the callback function is not NULL, it will be called 256 times
during the calculation, allowing you to display a progress indicator. Example:

COLOR_MAP light_table;

/* Build a color lookup table for lighting effects. x/
create_light_table(&light_table, pal, 0, 0, 0, NULL);

See also:
See Section 1.21.5 [color_map], page 215.
See Section 1.21.6 [create_trans_table], page 216.

[
[
See Section 1.21.8 [create_color_table], page 218.
See Section 1.21.9 [create_blender_table], page 219.
See Section 1.15.8 [draw_trans_sprite|, page 172.

See Section 1.15.9 [draw_lit_sprite], page 173.

See Section 1.15.10 [draw_gouraud_sprite], page 173.
See Section 1.22.2 [rgb_map]|, page 226.

See Section 3.4.34 [ex3d], page 419.

See Section 3.4.29 [exshade], page 413.

218 Allegro Manual

See Section 3.4.25 [extrans], page 409.
See Section 1.2.12 [PALETTE], page 16.
See Section 1.2.16 [COLOR_-MAP], page 18.

1.21.8 create_color_table

void create_color_table(COLOR_MAP *table, const PALETTE pal, void

(*blend) (PALETTE pal, int x, int y, RGB *rgb), void (*callback) (int pos));
Fills the specified color mapping table with lookup data for doing customised
effects with the specified palette, calling the blend function to determine the
results of each color combination.

Your blend routine will be passed a pointer to the palette and the two indices
of the colors which are to be combined, and should fill in the RGB structure
with the desired result in 0-63 format. Allegro will then search the palette for
the closest match to the RGB color that you requested, so it doesn’t matter if
the palette has no exact match for this color.

If the callback function is not NULL, it will be called 256 times during the
calculation, allowing you to display a progress indicator. Example:

COLOR_MAP greyscale_table;

void return_grey_color(const PALETTE pal,
int x, int y, RGB *rgb)
{

¥

/* Build a color lookup table for greyscale effect. */
create_color_table(&greyscale_table, pal,
return_grey_color, NULL);

See also:

See Section 1.21.5
See Section 1.21.7
See Section 1.21.6
See Section 1.21.9
See Section 1.15.8
See Section 1.15.9
See Section 1.15.10 [draw_gouraud_sprite], page 173.

color_map], page 215.
create_light_table|, page 217.
create_trans_table|, page 216.
create_blender_table], page 219.
draw_trans_sprite], page 172.

draw_lit_sprite|, page 173.

See Section 1.22.2 [rgb_map]|, page 226.

See Section 3.4.27 [excolmap], page 411.
See Section 1.2.12 [PALETTE], page 16.
See Section 1.2.13 [RGB], page 17.

Chapter 1: API 219

See Section 1.2.16 [COLOR_-MAP], page 18.

1.21.9 create_blender_table

void create_blender_table(COLOR_MAP *table, const PALETTE pal, void

(*callback) (int pos));
Fills the specified color mapping table with lookup data for doing a palet-
ted equivalent of whatever truecolor blender mode is currently selected. After
calling set_trans_blender(), set_blender_mode(), or any of the other truecolor
blender mode routines, you can use this function to create an 8-bit mapping
table that will have the same results as whatever 24-bit blending mode you have
enabled.

See also:

See Section 1.21.5
See Section 1.21.7
See Section 1.21.6
See Section 1.21.8
See Section 1.15.8
See Section 1.15.9
See Section 1.15.10 [draw_gouraud_sprite], page 173.
See Section 1.21.11 [set_trans_blender], page 220.
See Section 1.21.26 [set_blender_mode], page 224.
See Section 1.2.12 [PALETTE], page 16.

See Section 1.2.16 [COLOR_-MAP], page 18.

color_map], page 215.

create_light_table|, page 217.
create_trans_table|, page 216.
create_color_table|, page 218.
draw_trans_sprite], page 172.

draw_lit_sprite], page 173.

1.21.10 Truecolor transparency

In truecolor video modes, translucency and lighting are implemented by a blender function
of the form:

unsigned long (*BLENDER_FUNC) (unsigned long x, y, n);

For each pixel to be drawn, this routine is passed two color parameters x and y, decomposes
them into their red, green and blue components, combines them according to some mathe-
matical transformation involving the interpolation factor n, and then merges the result back
into a single return color value, which will be used to draw the pixel onto the destination
bitmap.

The parameter x represents the blending modifier color and the parameter y represents the
base color to be modified. The interpolation factor n is in the range [0-255] and controls
the solidity of the blending.

When a translucent drawing function is used, x is the color of the source, y is the color of
the bitmap being drawn onto and n is the alpha level that was passed to the function that
sets the blending mode (the RGB triplet that was passed to this function is not taken into
account).

220 Allegro Manual

When a lit sprite drawing function is used, x is the color represented by the RGB triplet
that was passed to the function that sets the blending mode (the alpha level that was passed
to this function is not taken into account), y is the color of the sprite and n is the alpha
level that was passed to the drawing function itself.

Since these routines may be used from various different color depths, there are three such
callbacks, one for use with 15-bit 5.5.5 pixels, one for 16 bit 5.6.5 pixels, and one for 24-bit
8.8.8 pixels (this can be shared between the 24 and 32-bit code since the bit packing is the
same).

1.21.11 set_trans_blender

void set_trans_blender(int r, int g, int b, int a);
Enables a linear interpolator blender mode for combining translucent or lit
truecolor pixels.

See also:
See Section 1.21.26 [set_blender_mode|, page 224.
See Section 1.21.12 [set_alpha_blender], page 220.
See Section 1.21.13 [set_write_alpha_blender|, page 221.
See Section 1.21.5 [color_map], page 215.
See Section 1.15.8 [draw_trans_sprite], page 172.
See Section 1.15.9 [draw_lit_sprite], page 173.
See Section 1.21.1 [drawing_-mode], page 213.
See Section 1.21.14 [set_add_blender], page 221.
See Section 1.21.15 [set_burn_blender], page 222.
See Section 1.21.16
See Section 1.21.17
See Section 1.21.18
See Section 1.21.19
See Section 1.21.20
See Section 1.21.21
See Section 1.21.22
See Section 1.21.23
See Section 1.21.24
See Section 1.21.25 [set_screen_blender|, page 224.
See Section 3.4.34 [ex3d], page 419.
See Section 3.4.30 [exblend], page 414.
See Section 3.4.29 [exshade], page 413.

[

[

set_color_blender|, page 222.
set_difference_blender|, page 222.
set_dissolve_blender|, page 222.
set_dodge_blender], page 223.
set_hue_blender|, page 223.
set_invert_blender|, page 223.
set_luminance_blender|, page 223.
set_multiply_blender], page 223.
set_saturation_blender], page 224.

— e e 1 — — — — — —— ——

See Section 3.4.25 [extrans], page 409.
See Section 3.4.31 [exxfade], page 415.

Chapter 1: API 221

1.21.12 set_alpha_blender
void set_alpha_blender();

See also:

Enables the special alpha-channel blending mode, which is used for drawing 32-
bit RGBA sprites. After calling this function, you can use draw_trans_sprite()
or draw_trans_rle_sprite() to draw a 32-bit source image onto any hicolor or
truecolor destination. The alpha values will be taken directly from the source
graphic, so you can vary the solidity of each part of the image. You can’t use
any of the normal translucency functions while this mode is active, though, so
you should reset to one of the normal blender modes (eg. set_trans_blender())
before drawing anything other than 32-bit RGBA sprites.

See Section 1.21.11 [set_trans_blender], page 220.
See Section 1.15.8 [draw_trans_sprite], page 172.

See Section 1.16.4 [draw_trans_rle_sprite], page 180.

See Section 1.21.13 [set_write_alpha_blender], page 221.
See Section 3.4.32 [exalpha], page 416.
See Section 3.4.25 [extrans], page 409.

1.21.13 set_write_alpha_blender

void set_write_alpha_blender();

See also:

Enables the special alpha-channel editing mode, which is used for drawing alpha
channels over the top of an existing 32-bit RGB sprite, to turn it into an RGBA
format image. After calling this function, you can set the drawing mode to
DRAW_MODE_TRANS and then write draw color values (0-255) onto a 32-
bit image. This will leave the color values unchanged, but alter the alpha to
whatever values you are writing. After enabling this mode you can also use
draw_trans_sprite() to superimpose an 8-bit alpha mask over the top of an
existing 32-bit sprite.

See Section 1.21.12 [set_alpha_blender|, page 220.

See Section 1.15.8 [draw_trans_sprite], page 172.

See Section 3.4.32 [exalpha|, page 416.

[

See Section 1.21.1 [drawing_mode], page 213.
[
[

See Section 3.4.25 [extrans], page 409.

1.21.14 set_add_blender

void set_add_blender(int r, int g, int b, int a);

See also:

Enables an additive blender mode for combining translucent or lit truecolor
pixels.

See Section 1.21.11 [set_trans_blender], page 220.

222 Allegro Manual

See Section 1.21.1 [drawing_mode], page 213.

1.21.15 set_burn_blender

void set_burn_blender(int r, int g, int b, int a);
Enables a burn blender mode for combining translucent or lit truecolor pixels.
Here the lightness values of the colours of the source image reduce the lightness
of the destination image, darkening the image.

See also:
See Section 1.21.11 [set_trans_blender], page 220.
See Section 1.21.1 [drawing_mode], page 213.

1.21.16 set_color_blender

void set_color_blender(int r, int g, int b, int a);
Enables a color blender mode for combining translucent or lit truecolor pixels.
Applies only the hue and saturation of the source image to the destination
image. The luminance of the destination image is not affected.

See also:
See Section 1.21.11 [set_trans_blender], page 220.
See Section 1.21.1 [drawing_mode], page 213.

1.21.17 set_difference_blender

void set_difference_blender(int r, int g, int b, int a);
Enables a difference blender mode for combining translucent or lit truecolor
pixels. This makes an image which has colours calculated by the difference
between the source and destination colours.

See also:
See Section 1.21.11 [set_trans_blender|, page 220.
See Section 1.21.1 [drawing_mode], page 213.

1.21.18 set_dissolve_blender

void set_dissolve_blender(int r, int g, int b, int a);
Enables a dissolve blender mode for combining translucent or lit truecolor pixels.
Randomly replaces the colours of some pixels in the destination image with
those of the source image. The number of pixels replaced depends on the alpha
value (higher value, more pixels replaced; you get the idea :).

See also:
See Section 1.21.11 [set_trans_blender], page 220.
See Section 1.21.1 [drawing_-mode], page 213.

Chapter 1: API 223

1.21.19 set_dodge_blender

void set_dodge_blender(int r, int g, int b, int a);
Enables a dodge blender mode for combining translucent or lit truecolor pixels.
The lightness of colours in the source lighten the colours of the destination.
White has the most effect; black has none.

See also:
See Section 1.21.11 [set_trans_blender], page 220.
See Section 1.21.1 [drawing_mode], page 213.

1.21.20 set_hue_blender

void set_hue_blender(int r, int g, int b, int a);
Enables a hue blender mode for combining translucent or lit truecolor pixels.
This applies the hue of the source to the destination.

See also:
See Section 1.21.11 [set_trans_blender], page 220.
See Section 1.21.1 [drawing_mode], page 213.

1.21.21 set_invert_blender

void set_invert_blender(int r, int g, int b, int a);
Enables an invert blender mode for combining translucent or lit truecolor pixels.
Blends the inverse (or negative) colour of the source with the destination.

See also:
See Section 1.21.11 [set_trans_blender], page 220.
See Section 1.21.1 [drawing_mode], page 213.

1.21.22 set_luminance_blender

void set_luminance_blender(int r, int g, int b, int a);
Enables a luminance blender mode for combining translucent or lit truecolor
pixels. Applies the luminance of the source to the destination. The colour of
the destination is not affected.

See also:
See Section 1.21.11 [set_trans_blender|, page 220.
See Section 1.21.1 [drawing-mode], page 213.

1.21.23 set_multiply_blender

void set_multiply_blender(int r, int g, int b, int a);
Enables a multiply blender mode for combining translucent or lit truecolor
pixels. Combines the source and destination images, multiplying the colours to

224 Allegro Manual

produce a darker colour. If a colour is multiplied by white it remains unchanged;
when multiplied by black it also becomes black.

See also:

See Section 1.21.11 [set_trans_blender], page 220.
See Section 1.21.1 [drawing_mode], page 213.
See Section 3.4.32 [exalpha], page 416.

1.21.24 set_saturation_blender

void set_saturation_blender(int r, int g, int b, int a);
Enables a saturation blender mode for combining translucent or lit truecolor
pixels. Applies the saturation of the source to the destination image.

See also:
See Section 1.21.11 [set_trans_blender], page 220.
See Section 1.21.1 [drawing_mode], page 213.

1.21.25 set_screen_blender

void set_screen_blender(int r, int g, int b, int a);
Enables a screen blender mode for combining translucent or lit truecolor pixels.
This blender mode lightens the colour of the destination image by multiplying
the inverse of the source and destination colours. Sort of like the opposite of
the multiply blender mode.

See also:
See Section 1.21.11 [set_trans_blender], page 220.
See Section 1.21.1 [drawing_-mode], page 213.

1.21.26 set_blender_mode

void set_blender_mode (BLENDER_FUNC b15, bl6, b24, int r, g, b, a);
Specifies a custom set of truecolor blender routines, which can be used to im-
plement whatever special interpolation modes you need. This function shares
a single blender between the 24 and 32-bit modes.

See also:

See Section 1.21.27 [set_blender_mode_ex]|, page 225.
See Section 1.21.11 [set_trans_blender|, page 220.
See Section 1.21.5 [color_map], page 215.

See Section 1.15.8 [draw_trans_sprite], page 172.

See Section 1.15.9 [draw_lit_sprite], page 173.

See Section 1.21.1 [drawing_-mode], page 213.

Chapter 1: API 225

1.21.27 set_blender_mode_ex

void set_blender_mode_ex (BLENDER_FUNC bi15, bl6, b24, b32, blbx, bl6x, b24x,

int r, g, b, a);
Like set_blender_mode(), but allows you to specify a more complete set of
blender routines. The b15, bl6, b24, and b32 routines are used when draw-
ing pixels onto destinations of the same format, while b15x, b16x, and b24x are
used by draw_trans_sprite() and draw_trans_rle_sprite() when drawing RGBA
images onto destination bitmaps of another format. These blenders will be
passed a 32-bit x parameter, along with a y value of a different color depth,
and must try to do something sensible in response.

See also:
See Section 1.21.26 [set_blender_mode], page 224.
See Section 1.21.12 [set_alpha_blender], page 220.

1.22 Converting between color formats

In general, Allegro is designed to be used in only one color depth at a time, so you will
call set_color_depth() once and then store all your bitmaps in the same format. If you
want to mix several different pixel formats, you can use create_bitmap_ex() in place of
create_bitmap(), and call bitmap_color_depth() to query the format of a specific image.
Most of the graphics routines require all their input parameters to be in the same format
(eg. you cannot stretch a 15-bit source bitmap onto a 24-bit destination), but there are
some exceptions:

e blit() and the rotation routines can copy between bitmaps of any format, converting
the data as required.

e draw_sprite() can draw 256-color source images onto destinations of any format.

e draw_character_ex() _always_ uses a 256-color source bitmap, whatever the format of
the destination.

e The draw_trans_sprite() and draw_trans_rle_sprite() functions are able to draw
32-bit RGBA images onto any hicolor or truecolor destination, as long as you call
set_alpha_blender() first.

e The draw_trans_sprite() function is able to draw an 8-bit alpha channel image over the
top of an existing 32-bit image, as long as you call set_write_alpha_blender() first.

Expanding a 256-color source onto a truecolor destination is fairly fast (obviously you must
set the correct palette before doing this conversion!). Converting between different truecolor
formats is slightly slower, and reducing truecolor images to a 256-color destination is very
slow (it can be sped up significantly if you set up the global rgb_map table before doing the
conversion).

1.22.1 bestfit_color

int bestfit_color(const PALETTE pal, int r, int g, int b);
Searches the specified palette for the closest match to the requested color, which
are specified in the VGA hardware 0-63 format. Normally you should call

226

Allegro Manual

makecol8() instead, but this lower level function may be useful if you need to
use a palette other than the currently selected one, or specifically don’t want

to use the rgb_map lookup table.

Returns the index of the palette for the closest match to the requested color.

See also:
See Section 1.13.1 [makecol8], page 149.
See Section 1.2.12 [PALETTE], page 16.

1.22.2 rgb_map
extern RGB_MAP *rgb_map;

To speed up reducing RGB values to 8-bit paletted colors, Allegro uses a 32k
lookup table (5 bits for each color component). You must set up this table
before using the gouraud shading routines, and if present the table will also
vastly accelerate the makecol8() and some create_*_table() functions. RGB
tables can be precalculated with the rgbmap utility, or generated at runtime

with create_rgb_table().

See also:
See Section 1.22.3 [create_rgb_table], page 226.
See Section 1.13.1 [makecol8], page 149.

See Section 1.21.6 [create_trans_table], page 216.

See Section 1.21.7 [create_light_table], page 217.

See Section 1.21.8 [create_color_table], page 218.

See Section 3.4.27 [excolmap], page 411.
See Section 3.4.28 [exrgbhsv], page 412.
See Section 3.4.29 [exshade], page 413.
See Section 3.4.25 [extrans], page 409.

[
[
[
[
[
See Section 3.4.34 [ex3d], page 419.
[
[
[
[
See Section 1.2.17 [RGB_MAP], page 18.

1.22.3 create_rgb_table

void create_rgb_table(RGB_MAP *table, const PALETTE pal, void

(*callback) (int pos));

Fills the specified RGB mapping table with lookup data for the specified palette.
If the callback function is not NULL, it will be called 256 times during the
calculation, allowing you to display a progress indicator. Example:

RGB_MAP rgb_table;

create_rgb_table(&rgb_table, palette, NULL);

rgb_map = &rgb_table;

Chapter 1: API 227

See also:

See Section 1.22.2
See Section 3.4.34
See Section 3.4.27
See Section 3.4.28
See Section 3.4.29
See Section 3.4.25
See Section 1.2.12
See Section 1.2.17

rgb_map], page 226.
ex3d], page 419.
excolmap]|, page 411.
exrgbhsv], page 412.
exshade|, page 413.
extrans|, page 409.
PALETTE], page 16.
RGB_MAP], page 18.

1.22.4 hsv_to_rgb
void hsv_to_rgb(float h, float s, float v, int *r, int *g, int *Db);

void rgb_to_hsv(int r, int g, int b, float *h, float *s, float *v);
Convert color values between the HSV and RGB colorspaces. The RGB values
range from 0 to 255, hue is from 0 to 360, and saturation and value are from 0
to 1. Example:

int r, g, b;
float hue, saturation, value;

/* Convert a reddish color to HSV format. */
rgb_to_hsv(255, 0, 128, &hue, &saturation, &value);

/* Now put our tin foil hat, and verify that. */
hsv_to_rgb(hue, saturation, value, &r, &g, &b);
ASSERT (r == 255);

ASSERT (g == 0);

ASSERT (b == 128);

See also:
See Section 3.4.33 [exlights|, page 417.
See Section 3.4.28 [exrgbhsv], page 412.

1.23 Direct access to video memory

Read chapter "Structures and types defined by Allegro" for an internal description of the
BITMAP structure. There are several ways to get direct access to the image memory of a
bitmap, varying in complexity depending on what sort of bitmap you are using.

The simplest approach will only work with memory bitmaps (obtained from cre-
ate_bitmap(), grabber datafiles, and image files) and sub-bitmaps of memory bitmaps.
This uses a table of char pointers, called ‘line’, which is a part of the bitmap structure and
contains pointers to the start of each line of the image. For example, a simple memory
bitmap putpixel function is:

228 Allegro Manual

void memory_putpixel (BITMAP *bmp, int x, int y, int color)
{

bmp->1line[y] [x] = color;
}

For truecolor modes you need to cast the line pointer to the appropriate type, for example:

void memory_putpixel_15_or_16_bpp(BITMAP *bmp, int x, int y, int color)

{
((short *)bmp->linely]) [x] = color;
+
void memory_putpixel_32(BITMAP *bmp, int x, int y, int color)
{
((long *)bmp->line[y]) [x] = color;
+

If you want to write to the screen as well as to memory bitmaps, you need to use some
helper macros, because the video memory may not be part of your normal address space.
This simple routine will work for any linear screen, eg. a VESA linear framebuffers:

void linear_screen_putpixel (BITMAP *bmp, int x, int y, int color)
{

bmp_select (bmp) ;

bmp_write8((unsigned long)bmp->linel[y]l+x, color);
3

For truecolor modes you should replace the bmp_write8() with bmp_writel6(),
bmp_write24(), or bmp_write32(), and multiply the x offset by the number of bytes per
pixel. There are of course similar functions to read a pixel value from a bitmap, namely

bmp_read8(), bmp_read16(), bmp_read24() and bmp_read32().

This still won’t work in banked SVGA modes, however, or on platforms like Windows that
do special processing inside the bank switching functions. For more flexible access to bitmap
memory, you need to call the following routines. They are implemented as inline assembler
routines, so they are not as inefficient as they might seem. If the bitmap doesn’t require
bank switching (ie. it is a memory bitmap, mode 13h screen, etc), these functions just
return bmp->line[line].

1.23.1 bmp_write_line

unsigned long bmp_write_line(BITMAP *bmp, int line);
Selects the line of a bitmap that you are going to draw onto.

Returns the address of the selected line for writing.

See also:
See Section 3.4.5 [exflame], page 390.
See Section 3.4.33 [exlights|, page 417.

Chapter 1: API 229

See Section 1.2.2 [BITMAP], page 13.

1.23.2 bmp_read_line

unsigned long bmp_read_line(BITMAP *bmp, int line);
Selects the line of a bitmap that you are going to read from.

Returns the address of the selected line for reading.

See also:
See Section 3.4.5 [exflame], page 390.
See Section 1.2.2 [BITMAP], page 13.

1.23.3 bmp_unwrite_line

void bmp_unwrite_line(BITMAP *bmp) ;
Releases the bitmap memory after you are finished with it. You only need
to call this once at the end of a drawing operation, even if you have called
bmp_write_line() or bmp_read_line() several times before it.

See also:

See Section 3.4.5 [exflame], page 390.
See Section 3.4.33 [exlights], page 417.
See Section 1.2.2 [BITMAP], page 13.

1.23.4 More on banked direct memory access

Although SVGA bitmaps are banked, Allegro provides linear access to the memory within
each scanline, so you only need to pass a y coordinate to these functions. Various x positions
can be obtained by simply adding the x coordinate to the returned address. The return
value is an unsigned long rather than a char pointer because the bitmap memory may not be
in your data segment, and you need to access it with far pointers. For example, a putpixel
using the bank switching functions is:

void banked_putpixel (BITMAP *bmp, int x, int y, int color)

{
unsigned long address = bmp_write_line(bmp, y);
bmp_select (bmp) ;
bmp_write8(address+x, color);
bmp_unwrite_line (bmp) ;

}

You will notice that Allegro provides separate functions for setting the read and write banks.
It is important that you distinguish between these, because on some graphics cards the banks
can be set individually, and on others the video memory is read and written at different
addresses. Life is never quite as simple as we might wish it to be, though (this is true even
when we _aren’t_ talking about graphics coding :-) and so of course some cards only provide
a single bank. On these the read and write bank functions will behave identically, so you

230 Allegro Manual

shouldn’t assume that you can read from one part of video memory and write to another at
the same time. You can call bmp_read_line(), and read whatever you like from that line, and
then call bmp_write_line() with the same or a different line number, and write whatever you
like to this second line, but you mustn’t call bmp_read_line() and bmp_write_line() together
and expect to be able to read one line and write the other simultaneously. It would be nice
if this was possible, but if you do it, your code won’t work on single banked SVGA cards.

And then there’s mode-X. If you've never done any mode-X graphics coding, you probably
won’t understand this, but for those of you who want to know how Allegro sets up the
mode-X screen bitmaps, here goes...

The line pointers are still present, and they contain planar addresses, ie. the actual location
at which you access the first pixel in the line. These addresses are guaranteed to be quad
aligned, so you can just set the write plane, divide your x coordinate by four, and add it to
the line pointer. For example, a mode-X putpixel is:

void modex_putpixel (BITMAP *b, int x, int y, int color)

{

outportw(0x3C4, (0x100<<(x&3))(2);

bmp_select (bmp) ;

bmp_write8((unsigned long)bmp->line[y]+(x>>2), color);
}

Oh yeah: the DJGPP nearptr hack. Personally I don’t like this very much because it
disables memory protection and isn’t portable to other platforms, but a lot of people swear
by it because it can give you direct access to the screen memory via a normal C pointer.
Warning: this method will only work with the DJGPP library, when using VGA 13h or a
linear framebuffer modes!

In your setup code:

#include <sys/nearptr.h>

unsigned char *screenmemory;
unsigned long screen_base_addr;

__djgpp_nearptr_enable();
__dpmi_get_segment_base_address(screen->seg, &screen_base_addr);

screenmemory = (unsigned char *)(screen_base_addr +
screen->line[0] -
__djgpp_base_address) ;

Then:

void nearptr_putpixel(int x, int y, int color)
{
screenmemory [x + y*VIRTUAL_W] = color;

Chapter 1: API 231

1.24 FLIC routines

There are two high level functions for playing FLI/FLC animations: play_fli(), which reads
the data directly from disk, and play_memory_fli(), which uses data that has already been
loaded into RAM. Apart from the different sources of the data, these two functions behave
identically. They draw the animation onto the specified bitmap, which should normally be
the screen. Frames will be aligned with the top left corner of the bitmap: if you want to
position them somewhere else you will need to create a sub-bitmap for the FLI player to
draw onto.

If the callback function is not NULL it will be called once for each frame, allowing you to
perform background tasks of your own. This callback should normally return zero: if it
returns non-zero the player will terminate (this is the only way to stop an animation that
is playing in looped mode).

The FLI player returns FLI_OK if it reached the end of the file, FLI_ERROR if something
went wrong, and the value returned by the callback function if that was what stopped it. If
you need to distinguish between different return values, your callback should return positive
integers, since FLI_OK is zero and FLI_ERROR is negative.

Note that the FLI player will only work when the timer module is installed, and that it will
alter the palette according to whatever palette data is present in the animation file.

Occasionally you may need more detailed control over how an FLI is played, for example
if you want to superimpose a text scroller on top of the animation, or to play it back at a
different speed. You could do both of these with the lower level functions described below.

1.24.1 play_fli

int play_fli(const char *filename, BITMAP *bmp, int loop, int
(*callback)));
Plays an Autodesk Animator FLI or FLC animation file on the specified BIT-
MAP, reading the data from disk as it is required. If ‘loop’ is not zero, the
player will cycle when it reaches the end of the file, otherwise it will play
through the animation once and then return. Read the beginning of chapter
"FLIC routines" for a description of the callback parameter. Example:

/* Let users skip looped animations. */
int check_escape_key(void)

{
if (key[KEY_ESC])
return 1;
else
return O;
}

int ret = play_fli("animlogo.fli", screen, 1,
check_escape_key) ;
if (ret == FLI_ERROR)
abort_on_error ("Error playing intro!");

232

See also:

Allegro Manual

The FLI player returns FLI_OK if it reached the end of the file, FLI_.ERROR if
something went wrong, and the value returned by the callback function if that
was what stopped it.

See Section 1.24.2 [play_memory_fli], page 232.
See Section 1.6.1 [install_timer|, page 77.

See Section 1.24.11 [fli_frame], page 235.

See Section 1.2.2 [BITMAP], page 13.

1.24.2 play_memory_fli

int play_memory_fli(const void *fli_data, BITMAP *bmp, int loop, int
(xcallback) () ;

See also:

Plays an Autodesk Animator FLI or FLC animation on the specified BITMAP,
reading the data from a copy of the file which is held in memory. You can
obtain the ‘fli_data’ pointer by mallocing a block of memory and reading an
FLI file into it, or by importing an FLI into a grabber datafile. If ‘loop’ is
not zero, the player will cycle when it reaches the end of the file, otherwise it
will play through the animation once and then return. Read the beginning of
chapter "FLIC routines" for a description of the callback parameter.

Playing animations from memory is obviously faster than cueing them directly
from disk, and is particularly useful with short, looped FLI’s. Animations can
easily get very large, though, so in most cases you will probably be better
just using play_fli(). You can think of this function as a wrapper on top of
open_memory_fli(), next_fli_frame() and close_fli(). Example:

int ret = play_memory_fli(anim_data, screen, 0, NULL);
if (ret == FLI_ERROR)
abort_on_error("Corrupted animation data?");
The FLI player returns FLI_OK if it reached the end of the file, FLI_ERROR if
something went wrong, and the value returned by the callback function if that
was what stopped it.

See Section 1.24.1 [play_fli], page 231.
See Section 1.6.1 [install_timer|, page 77.
See Section 1.24.11 [fli_frame], page 235.
See Section 1.2.2 [BITMAP], page 13.

1.24.3 open_fli

int open_fli(const char *filename) ;

int open_memory_fli(const void *fli_data);

Open FLI files ready for playing, reading the data from disk or memory re-
spectively. Information about the current FLI is held in the global variables

Chapter 1: API 233

See also:

fli_bitmap and fli_palette, which you can use if this function succeeds. However,
you can only have one animation open at a time. Example:

if (open_f1li("intro.f1li") == FLI_ERROR)
abort_on_error("Error playing intro");
Returns FLI_OK on success, FLI_ERROR if something went wrong, like trying
to open another FLI file without closing the previous one.

See Section 1.24.4 [close_fli], page 233.

See Section 1.24.5 [next_fli_frame], page 233.
[
[

See Section 1.24.6

fli_bitmap]|, page 234.

See Section 1.24.7 [fli_palette], page 234.

1.24.4 close_fli

void close_f1li();

See also:

Closes an FLI file when you have finished reading from it. Remember to do
this to avoid having memory leaks in your program.

See Section 1.24.3 [open_fli], page 232.

1.24.5 next_fli_frame

int next_fli_frame(int loop);

See also:

Reads the next frame of the current animation file. If ‘loop’ is not zero, the
player will cycle when it reaches the end of the file, otherwise it will return
FLI_EOF. The frame is read into the global variables fli_bitmap and fli_palette.
Example:

while (next_fli_frame(0) == FLI_OK) {
/* Do stuff, like play audio stream
or check keys to skip animation. */
/* Rest some time until next frame... */

}

Returns FLI_OK on success, FLI_LERROR or FLI_.NOT_OPEN on error, and
FLI_EOF on reaching the end of the file.

See Section 1.24.3 [open_{fli], page 232.

See Section 1.24.6 [fli_bitmap]|, page 234.
See Section 1.24.7 [fli_palette], page 234.
See Section 1.24.12 [fli_timer], page 236.
See Section 1.24.11 [fli_frame], page 235.

234 Allegro Manual

1.24.6 fli_bitmap

extern BITMAP *fli_bitmap;
Contains the current frame of the FLI/FLC animation. If there is no open
animation, its value will be NULL.

See also:

See Section 1.24.5 [next_fli_frame], page 233.

See Section 1.24.8 [fli_bmp_dirty_from], page 234.
See Section 1.24.7 [fli_palette], page 234.

See Section 1.2.2 [BITMAP], page 13.

1.24.7 fli_palette

extern PALETTE fli_palette;
Contains the current FLI palette.

See also:

See Section 1.24.5 [next_fli_frame], page 233.
See Section 1.24.9 [fli_pal_dirty_from]|, page 234.
See Section 1.24.6 [fli_bitmap|, page 234.

See Section 1.2.12 [PALETTE], page 16.

1.24.8 fli_bmp_dirty_from

extern int fli_bmp_dirty_from;

extern int fli_bmp_dirty_to;
These variables are set by next_fli_frame() to indicate which part of
the fli_bitmap has changed since the last call to reset_fli_variables(). If
fli_bmp_dirty_from is greater than fli_bmp_dirty_to, the bitmap has not
changed, otherwise lines fli_bmp_dirty_from to fli_bmp_dirty_to (inclusive)
have altered. You can use these when copying the fli_bitmap onto the screen,
to avoid moving data unnecessarily. Example:

if (fli_bmp_dirty_from <= fli_bmp_dirty_to)
blit(f1li_bitmap, screen, O, fli_bmp_dirty_from,
0, fl1i_bmp_dirty_from, fli_bitmap->w,
f1i_bmp_dirty_to - f1li_bmp_dirty_from + 1);

See also:
See Section 1.24.6 [fli_bitmap|, page 234.
See Section 1.24.10 [reset_fli_variables], page 235.

Chapter 1: API 235

1.24.9 fli_pal_dirty_from

extern int fli_pal_dirty_from;

extern int fli_pal_dirty_to;
These variables are set by next_fli_frame() to indicate which part of
the fli_palette has changed since the last call to reset_fli_variables(). If
fli_pal_dirty_from is greater than fli_pal_dirty_to, the palette has not changed,
otherwise colors fli_pal_dirty_from to fli_pal_dirty_to (inclusive) have altered.
You can use these when updating the hardware palette, to avoid unnecessary
calls to set_palette(). Example:

if (fli_pal_dirty_from <= fli_pal_dirty_to)
set_palette_range(fli_palette, fli_pal_dirty_from,
fli_pal_dirty_to, 1);

See also:
See Section 1.24.7 [fli_palette], page 234.
See Section 1.24.10 [reset_fli_variables], page 235.

1.24.10 reset_fli_variables

void reset_fli_variables();
Once you have done whatever you are going to do with the fli_bitmap and
fli_palette, call this function to reset the fli_bmp_dirty_* and fli_pal_dirty_*
variables.

See also:
See Section 1.24.8 [fli_bmp_dirty_from], page 234.
See Section 1.24.9 [fli_pal_dirty_from|, page 234.

1.24.11 fli_frame

extern int fli_frame;
Global variable containing the current frame number in the FLI file. This
is useful for synchronising other events with the animation, for instance you
could check it in a play_fli() callback function and use it to trigger a sample at
a particular point. Example:

while (next_fli_frame(0) == FLI_OK) {
if (fli_frame == 345)
play_sample (trumpet_sound, 255, 128, 1000, 0);
/* Rest some time until next frame... */

See also:
See Section 1.24.1 [play_fli], page 231.
See Section 1.24.2 [play_memory_fli], page 232.

236 Allegro Manual

See Section 1.24.5 [next_fli_frame], page 233.

1.24.12 fli_timer

extern volatile int fli_timer;
Global variable for timing FLI playback. When you open an FLI file, a timer
interrupt is installed which increments this variable every time a new frame
should be displayed. Calling next_fli_frame() decrements it, so you can test
it and know that it is time to display a new frame if it is greater than zero.
Example:

while (next_fli_frame(0) == FLI_OK) {
/* Do stuff, like play audio stream
or check keys to skip animation. */

/* Rest some time until next frame... */
while (fli_timer <= 0)
rest(0);

See also:
See Section 1.6.1 [install_timer|, page 77.
See Section 1.24.5 [next_fli_frame], page 233.

1.25 Sound init routines

Allegro allows you to use the sound hardware in two ways: automatic, or manual. Usually
you should try the automatic version first. This means calling install_sound() with the
autodetection parameters and using the rest of the sound functions to play samples or
music. In this situation, Allegro will handle the sound devices and mix the samples and/or
music the best way it can.

However, sound hardware has a limitation on the number of samples it may play all at the
same time (from now on, called hardware voices). When you exceed this limit, Allegro will
cut off one of the samples being played and reproduce the new one. Depending on the type
of sounds you are playing, how many of them you need at the same time and their nature
(e.g: vital audio feedback to the user or useless "ping" when some shrapnel hits a rock in
the scenary) you will want to specify more carefully how hardware voices are reserved and
which samples have priority over others.

The hardware voice reservation phase has to be done before the call to install_sound(), since
it directly affects how Allegro talks to the sound drivers.

1.25.1 detect_digi_driver

int detect_digi_driver(int driver_id);
Detects whether the specified digital sound device is available. This function
must be called _before_ install_sound().

Chapter 1: API 237

Returns the maximum number of voices that the driver can provide, or zero if
the hardware is not present.

See also:

See Section 1.25.5 [install_sound], page 239.
See Section 1.25.3 [reserve_voices|, page 237.
See Section 2.1.3 [DIGI_*/DOS], page 354.

See Section 2.2.3 [DIGI_*/Windows]|, page 359.
See Section 2.3.4 [DIGI_*/Unix|, page 368.

See Section 2.4.2 [DIGI_*/BeOS], page 370.
See Section 2.5.2 [DIGI_*/QNX], page 371.
See Section 2.6.2 [DIGI_*/MacOSX], page 374.

1.25.2 detect_midi_driver

int detect_midi_driver(int driver_id);
Detects whether the specified MIDI sound device is available. This function
must be called _before_ install_sound().
Returns the maximum number of voices that the driver can provide, or zero if
the hardware is not present.
There are two special-case return values that you should watch out for: if this
function returns -1 it is a note-stealing driver (eg. DIGMID) that shares voices
with the current digital sound driver, and if it returns OxFFFF it is an external
device like an MPU-401 where there is no way to determine how many voices
are available.

See also:

See Section 1.25.5 [install_sound], page 239.
See Section 1.25.3 [reserve_voices|, page 237.
See Section 2.1.4 [MIDI_*/DOS], page 354.

See Section 2.2.4 [MIDI_*/Windows|, page 359.
See Section 2.3.5 [MIDI_*/Unix], page 368.

See Section 2.4.3 [MIDI_*/BeOS], page 370.
See Section 2.5.3 [MIDI_*/QNX], page 372.
See Section 2.6.3 [MIDI_*/MacOSX], page 374.

1.25.3 reserve_voices

void reserve_voices(int digi_voices, int midi_voices);
Call this function to specify the number of voices that are to be used by the
digital and MIDI sound drivers respectively. This must be done _before_ call-
ing install_sound(). If you reserve too many voices, subsequent calls to in-
stall_sound() will fail. How many voices are available depends on the driver,
and in some cases you will actually get more than you reserve (eg. the FM
synth drivers will always provide 9 voices on an OPL2 and 18 on an OPL3, and

238

See also:

Allegro Manual

the SB digital driver will round the number of voices up to the nearest power of
two). Pass negative values to restore the default settings. You should be aware
that the sound quality is usually inversely related to how many voices you use,
so don’t reserve any more than you really need.

See Section 1.25.4 [set_volume_per_voice|, page 238.

See Section 1.25.5 [install_sound], page 239.

See Section 1.25.2 [detect_midi-driver|, page 237.

[
[
See Section 1.25.1 [detect_digi_driver], page 236.
[
[

See Section 1.26.6 [get_mixer_voices|, page 242.

1.25.4 set_volume_per_voice

void set_volume_per_voice(int scale);

By default, Allegro will play a centered sample at half volume on both the left
and right channel. A sample panned to the far right or left will be played at
maximum volume on that channel only. This is done so you can play a single
panned sample without distortion. If you play multiple samples at full volume,
the mixing process can result in clipping, a noticeable form of distortion. The
more samples, the more likely clipping is to occur, and the more clipping, the
worse the output will sound.

If clipping is a problem - or if the output is too quiet - this function can be
used to adjust the volume of each voice. You should first check that your
speakers are at a reasonable volume, Allegro’s global volume is at maximum
(see set_volume() below), and any other mixers such as the Windows Volume
Control are set reasonably. Once you are sure that Allegro’s output level is
unsuitable for your application, use this function to adjust it.

Each time you increase the parameter by one, the volume of each voice will
halve. For example, if you pass 4, you can play up to 16 centred samples at
maximum volume without distortion.

If you pass 0 to this function, each centred sample will play at the maximum
volume possible without distortion, as will all samples played through a mono
driver. Samples at the extreme left and right will distort if played at full volume.
If you wish to play panned samples at full volume without distortion, you should
pass 1 to this function. Note: this is different from the function’s behaviour
in WIPs 3.9.34, 3.9.35 and 3.9.36. If you used this function under one of these
WIPs, you will have to increase your parameter by one to get the same volume.

Note: The default behaviour has changed as of Allegro 4.1.15. If you would like
the behaviour of earlier versions of Allegro, pass -1 to this function. Allegro
will choose a value dependent on the number of voices, so that if you reserve n
voices, you can play up to n/2 normalised samples with centre panning without
risking distortion. The exception is when you have fewer than 8 voices, where
the volume remains the same as for 8 voices. Here are the values, dependent
on the number of voices:

Chapter 1: API 239

See also:

1-8 voices - set_volume_per_voice(2)
16 voices - set_volume_per_voice(3)
32 voices - set_volume_per_voice(4)
64 voices - set_volume_per_voice(5)

Of course this function does not override the volume you specify with
play_sample() or voice_set_volume(). It simply alters the overall output of the
program. If you play samples at lower volumes, or if they are not normalised,
then you can play more of them without distortion.

It is recommended that you hard-code the parameter into your program, rather
than offering it to the user. The user can alter the volume with the configuration
file instead, or you can provide for this with set_volume().

To restore volume per voice to its default behaviour, pass 1.

See Section 1.25.3 [reserve_voices|, page 237.

See Section 1.25.7 [set_volume], page 240.

See Section 1.25.1 [detect_digi_driver|, page 236.

[
[
See Section 1.25.5 [install_sound], page 239.
[
[

See Section 1.25.2 [detect_midi_driver|, page 237.

1.25.5 install_sound

int install_sound(int digi, int midi, const char *cfg_path);

See also:

Initialises the sound module. You should normally pass DIGI_ AUTODETECT
and MIDI_AUTODETECT as the driver parameters to this function, in which
case Allegro will read hardware settings from the current configuration file.
This allows the user to select different values with the setup utility: see the
config section for details. Alternatively, see the platform specific documentation
for a list of the available drivers. The cfg_path parameter is only present for
compatibility with previous versions of Allegro, and has no effect on anything.

Returns zero if the sound is successfully installed, and -1 on failure. If it fails
it will store a description of the problem in allegro_error.

See Section 1.25.6 [remove_sound], page 240.

See Section 1.25.3 [reserve_voices|, page 237.

See Section 1.25.2 [detect_midi_driver], page 237.

[
[
See Section 1.25.1 [detect_digi_driver], page 236.
[
[

See Section 1.25.7 [set_volume]|, page 240.
See Section 1.27.11 [play_sample], page 246.
See Section 1.27.14 [Voice control], page 247.
See Section 1.28.4 [play_midi], page 256.

See Section 1.29.1 [play_audio_stream|, page 261.

See Section 1.30.1 [install_sound_input], page 263.

240 Allegro Manual

See Section 1.1.6 [allegro_error|, page 3.

See Section 1.4.23 [Standard config variables|, page 60.

See Section 1.26.1 [set_mixer_quality], page 241.

See Section 2.1.3 [DIGI_*/DOS], page 354.

See Section 2.2.3 [DIGI_*/Windows]|, page 359.

See Section 2.3.4 [DIGI_*/Unix], page 368.

See Section 2.4.2 [DIGI_*/BeOS], page 370.

See Section 2.5.2 [DIGI_*/QNX], page 371.

See Section 2.6.2 [DIGI_*/MacOSX], page 374.

See Section 2.1.4 [MIDI_*/DOS], page 354.

See Section 2.2.4 [MIDI_*/Windows]|, page 359.

See Section 2.3.5 [MIDI_*/Unix], page 368.

See Section 2.4.3 [MIDI_*/BeOS], page 370.

See Section 2.5.3 [MIDI_*/QNX], page 372.

See Section 2.6.3 [MIDI_*/MacOSX], page 374.

See Section 3.4.15 [exmidi], page 398.

See Section 3.4.14 [exsample|, page 398.

See Section 3.4.23 [exsprite], page 406.
[

See Section 3.4.48 [exstream], page 437.

1.25.6 remove_sound

void remove_sound();
Cleans up after you are finished with the sound routines. You don’t normally
need to call this, because allegro_exit() will do it for you.

See also:
See Section 1.25.5 [install_sound], page 239.
See Section 1.1.3 [allegro_exit], page 2.

1.25.7 set_volume

void set_volume(int digi_volume, int midi_volume);
Alters the global sound output volume. Specify volumes for both digital samples
and MIDI playback, as integers from 0 to 255, or pass a negative value to leave
one of the settings unchanged. Values bigger than 255 will be reduced to 255.
This routine will not alter the volume of the hardware mixer if it exists (i.e.
only your application will be affected).

See also:
See Section 1.25.5 [install_sound], page 239.
See Section 1.25.8 [set_hardware_volume], page 240.

Chapter 1: API 241

1.25.8 set_hardware_volume

void set_hardware_volume(int digi_volume, int midi_volume);
Alters the hardware sound output volume. Specify volumes for both digital
samples and MIDI playback, as integers from 0 to 255, or pass a negative value
to leave one of the settings unchanged. Values bigger than 255 will be reduced
to 255. This routine will use the hardware mixer to control the volume if it
exists (i.e. the volume of all the applications on your machine will be affected),
otherwise do nothing.

See also:
See Section 1.25.5 [install_sound], page 239.
See Section 1.25.7 [set_volume]|, page 240.

1.26 Mixer routines

1.26.1 set_mixer_quality

void set_mixer_quality(int quality);
Sets the resampling quality of the mixer. Valid values are the same as the
‘quality’ config variable. Please read chapter "Standard config variables" for
details. You can call this function at any point in your program, even before
allegro_init().

See also:
See Section 1.26.2 [get_mixer_quality], page 241.
See Section 1.4.23 [Standard config variables], page 60.

1.26.2 get_mixer_quality

int get_mixer_quality(void);
Returns the current mixing quality, as specified by the ‘quality’ config variable,
or a previous call to set_mixer_quality().

See also:
See Section 1.26.1 [set_mixer_quality], page 241.
See Section 1.4.23 [Standard config variables], page 60.

1.26.3 get_mixer_frequency
int get_mixer_frequency(void) ;

Returns the mixer frequency, in Hz.

See also:
See Section 1.4.23 [Standard config variables]|, page 60.

242 Allegro Manual

1.26.4 get_mixer_bits
int get_mixer_bits(void);
Returns the mixer bitdepth (8 or 16).

See also:
See Section 1.4.23 [Standard config variables|, page 60.

1.26.5 get_mixer_channels

int get_mixer_channels(void);
Returns the number of output channels. 2 for stereo, 1 for mono, 0 if the mixer
isn’t active.

See also:

See Section 1.4.23 [Standard config variables], page 60.

1.26.6 get_mixer_voices
int get_mixer_voices(void);
Returns the number of voices allocated to the mixer.

See also:
See Section 1.25.3 [reserve_voices|, page 237.

1.26.7 get_mixer_buffer_length

int get_mixer_buffer_length(void);
Returns the number of samples per channel in the mixer buffer.

See also:

See Section 1.4.23 [Standard config variables], page 60.

1.27 Digital sample routines

1.27.1 load_sample

SAMPLE *load_sample(const char *filename) ;
Loads a sample from a file, supporting both mono and stereo WAV and mono
VOC files, in 8 or 16-bit formats, as well as formats handled by functions
registered using register_sample_file_type(). Example:

SAMPLE *sample = load_sample(user_input);
if (!sample)
abort_on_error("Couldn’t load sample!");
Returns a pointer to the SAMPLE or NULL on error. Remember to free this
sample later to avoid memory leaks.

Chapter 1: API 243

See also:

See Section 1.27.8 [destroy_sample], page 245.

See Section 1.27.4 [load-voc], page 244.

See Section 1.27.2 [load_-wav], page 243.

See Section 1.27.11 [play_sample], page 246.

See Section 1.27.6 [save_sample], page 245.

See Section 1.27.10 [register_sample_file_type], page 246.
See Section 1.27.14 [Voice control], page 247.

See Section 3.4.14 [exsample], page 398.

See Section 1.2.29 [SAMPLE], page 22.

1.27.2 load_wav

SAMPLE *load_wav(const char *filename);
Loads a sample from a RIFF WAV file. Example:

SAMPLE #*sample = load_wav("scream.wav");
if (!sample)
abort_on_error("Couldn’t scare user!");
Returns a pointer to the SAMPLE or NULL on error. Remember to free this
sample later to avoid memory leaks.

See also:

See Section 1.27.1 [load_sample], page 242.

See Section 1.27.10 [register_sample_file_type], page 246.
See Section 1.2.29 [SAMPLE], page 22.

1.27.3 load_wav_pf

SAMPLE *load_wav_pf (PACKFILE *f);
A version of load_wav() which reads from a packfile. Example:

PACKFILE *packfile;
SAMPLE *sample;

packfile = pack_fopen("sound.wav", F_READ);
if (1packfile)
abort_on_error("Couldn’t open sound.wav");

sample = load_wav_pf (packfile);
if (!sample)
abort_on_error ("Error loading sound.wav");
Returns a pointer to the SAMPLE or NULL on error. Remember to free this
sample later to avoid memory leaks.

244 Allegro Manual

See also:

See Section 1.27.2 [load-wav], page 243.
See Section 1.2.29 [SAMPLE], page 22.
See Section 1.2.32 [PACKFILE], page 24.

1.27.4 load_voc

SAMPLE *load_voc(const char *filename);
Loads a sample from a Creative Labs VOC file. Example:

SAMPLE *sample = load_wav("alarm.wav");
if (!sample)
abort_on_error("Couldn’t alert user!");
Returns a pointer to the SAMPLE or NULL on error. Remember to free this
sample later to avoid memory leaks.

See also:

See Section 1.27.1 [load_sample|, page 242.

See Section 1.27.10 [register_sample_file_type], page 246.
See Section 1.2.29 [SAMPLE], page 22.

1.27.5 load_voc_pf

SAMPLE *load_voc_pf (PACKFILE *f);
A version of load_voc() which reads from a packfile. Example:

PACKFILE *packfile;
SAMPLE *sample;

packfile = pack_fopen("sound.wav", F_READ);
if (1packfile)
abort_on_error("Couldn’t open sound.wav");

sample = load_wav_pf (packfile);
if (!sample)
abort_on_error ("Error loading sound.wav");
Returns a pointer to the SAMPLE or NULL on error. Remember to free this
sample later to avoid memory leaks.

See also:

See Section 1.27.4 [load_voc], page 244.
See Section 1.2.29 [SAMPLE], page 22.
See Section 1.2.32 [PACKFILE], page 24.

Chapter 1: API 245

1.27.6 save_sample

int save_sample(const char *filename, SAMPLE *spl);
Writes a sample into a file. The output format is determined from the file-
name extension. At present Allegro does not natively support the writing of
any sample formats, so you must register a custom saver routine with regis-
ter_sample_file_type(). Example:

if (save_sample("sound.wav", sample) != 0)
abort_on_error("Couldn’t save sample!");

Returns zero on success, non-zero otherwise.

See also:

See Section 1.27.1 [load_sample], page 242.

See Section 1.27.10 [register_sample_file_type], page 246.
See Section 1.2.29 [SAMPLE], page 22.

1.27.7 create_sample

SAMPLE #*create_sample(int bits, int stereo, int freq, int len);
Constructs a new sample structure of the specified type. Read chapter "Struc-
tures and types defined by Allegro" for an internal description of the SAMPLE
structure. The ‘bits’ parameter can be 8 or 16, ‘stereo’ can be zero for mono
samples and non-zero for stereo samples, ‘freq’ is the frequency in hertz, and
‘len’ is the number of samples you want to allocate for the full sound buffer.

Returns a pointer to the created sample, or NULL if the sample could not be
created. Remember to free this sample later to avoid memory leaks.

See also:

See Section 1.27.1 [load_sample], page 242.
See Section 1.27.8 [destroy_sample], page 245.
See Section 1.2 [Structures|, page 12.

See Section 1.2.29 [SAMPLE], page 22.

1.27.8 destroy_sample

void destroy_sample (SAMPLE *spl);
Destroys a sample structure when you are done with it. It is safe to call this
even when the sample might be playing, because it checks and will kill it off if
it is active. Use this to avoid memory leaks in your program.

See also:

See Section 1.27.1 [load_sample], page 242.
See Section 3.4.14 [exsample], page 398.
See Section 1.2.29 [SAMPLE], page 22.

246 Allegro Manual

1.27.9 lock_sample

void lock_sample (SAMPLE *spl);
Under DOS, locks all the memory used by a sample. You don’t normally need
to call this function because load_sample() and create_sample() do it for you.

See also:

See Section 1.27.1 [load_sample], page 242.
See Section 1.27.7 [create_sample], page 245.
See Section 1.2.29 [SAMPLE], page 22.

1.27.10 register_sample_file_type

void register_sample_file_type(const char *ext, SAMPLE *(xload) (const char
xfilename), int (*save) (const char *filename, SAMPLE *spl));
Informs the load_sample() function of a new sample file type, providing rou-
tines to read and write samples in this format (either function may be NULL).
Example:

SAMPLE *load_mp3(const char *filename)
{

}
register_sample_file_type("mp3", load_mp3, NULL);

See also:

See Section 1.27.1 [load_sample], page 242.
See Section 1.27.6 [save_sample], page 245.
See Section 1.2.29 [SAMPLE], page 22.

1.27.11 play_sample

int play_sample(const SAMPLE *spl, int vol, int pan, int freq, int loop);
Triggers a sample at the specified volume, pan position, and frequency. The pa-
rameters ‘vol’ and ‘pan’ range from 0 (min/left) to 255 (max/right). Frequency
is relative rather than absolute: 1000 represents the frequency that the sample
was recorded at, 2000 is twice this, etc. If ‘loop’ is not zero, the sample will
repeat until you call stop_sample(), and can be manipulated while it is playing
by calling adjust_sample(). Example:

/* Scream from the left speaker, twice the freq. */
int sound = play_sample(scream, 255, 0, 2000, 0);

Returns the voice number that was allocated for the sample or negative if no
voices were available.

Chapter 1: API 247

See also:

See Section 1.25.5 [install_sound], page 239.
See Section 1.27.1 [load_sample], page 242.
See Section 1.27.12 [adjust_sample], page 247.
See Section 1.27.13 [stop_sample], page 247.
See Section 1.27.14 [Voice control], page 247.
See Section 3.4.14 [exsample], page 398.

See Section 3.4.23 [exsprite], page 406.

See Section 1.2.29 [SAMPLE], page 22.

1.27.12 adjust_sample

void adjust_sample(const SAMPLE *spl, int vol, int pan, int freq, int

loop);
Alters the parameters of a sample while it is playing (useful for manipulating
looped sounds). You can alter the volume, pan, and frequency, and can also
clear the loop flag, which will stop the sample when it next reaches the end of
its loop. The values of the parameters are just like those of play_sample(). If
there are several copies of the same sample playing, this will adjust the first
one it comes across. If the sample is not playing it has no effect.

See also:

See Section 1.27.11 [play_sample], page 246.
See Section 3.4.14 [exsample], page 398.
See Section 1.2.29 [SAMPLE], page 22.

1.27.13 stop_sample

void stop_sample(const SAMPLE *spl) ;
Kills off a sample, which is required if you have set a sample going in looped
mode. If there are several copies of the sample playing, it will stop them all.

See also:
See Section 1.27.11 [play_sample], page 246.
See Section 1.2.29 [SAMPLE], page 22.

1.27.14 Voice control

If you need more detailed control over how samples are played, you can use the lower level
voice functions rather than just calling play_sample(). This is rather more work, because you
have to explicitly allocate and free the voices rather than them being automatically released
when they finish playing, but allows far more precise specification of exactly how you want
everything to sound. You may also want to modify a couple of fields from the SAMPLE
structure. Read chapter "Structures and types defined by Allegro" for its definition.

248 Allegro Manual

See also:

See Section 1.25.5 [install_sound], page 239.

See Section 1.27.15 [allocate_voice|, page 248.

See Section 1.27.16 [deallocate_voice], page 248.
See Section 1.27.17 [reallocate_voice], page 249.
See Section 1.27.18 [release_voice], page 249.

See Section 1.27.19 [voice_start], page 249.

See Section 1.27.21 [voice_set_priority], page 250.
See Section 1.27.22 [voice_check], page 250.

See Section 1.27.24 [voice_set_position], page 250.
See Section 1.27.25 [voice_set_playmode], page 251.
See Section 1.27.27 [voice_set_volume], page 252.
See Section 1.27.31 [voice_set_frequency], page 252.
See Section 1.27.35 [voice_set_pan], page 253.

See Section 1.2.29 [SAMPLE], page 22.

1.27.15 allocate_voice

int allocate_voice(const SAMPLE *spl);
Allocates a soundcard voice and prepares it for playing the specified sample,
setting up sensible default parameters (maximum volume, centre pan, no change
of pitch, no looping). When you are finished with the voice you must free it
by calling deallocate_voice() or release_voice(). Allegro can manage up to 256
simultaneous voices, but that limit may be lower due to hardware reasons.

Returns the voice number, or -1 if no voices are available.

See also:

See Section 1.27.14 [Voice control], page 247.
See Section 1.27.16 [deallocate_voice], page 248.
See Section 1.27.17 [reallocate_voice|, page 249.
See Section 1.27.18 [release_voice], page 249.
See Section 1.27.1 [load_sample], page 242.

See Section 1.2.29 [SAMPLE], page 22.

1.27.16 deallocate_voice

void deallocate_voice(int voice);
Frees a soundcard voice, stopping it from playing and releasing whatever re-
sources it is using.

See also:
See Section 1.27.15 [allocate_voice], page 248.
See Section 1.27.20 [voice_stop], page 249.

Chapter 1: API 249

1.27.17 reallocate_voice

void reallocate_voice(int voice, const SAMPLE x*spl);
Switches an already-allocated voice to use a different sample. Calling reallo-
cate_voice(voice, sample) is equivalent to:

deallocate_voice(voice);
voice = allocate_voice(sample);

See also:

See Section 1.27.15 [allocate_voice], page 248.
See Section 1.27.16 [deallocate_voice], page 248.
See Section 1.27.1 [load_sample|, page 242.

See Section 1.2.29 [SAMPLE], page 22.

1.27.18 release_voice

void release_voice(int voice);
Releases a soundcard voice, indicating that you are no longer interested in
manipulating it. The sound will continue to play, and any resources that it is
using will automatically be freed when it finishes. This is essentially the same
as deallocate_voice(), but it waits for the sound to stop playing before taking
effect.

See also:
See Section 1.27.15 [allocate_voice|, page 248.
See Section 1.27.16 [deallocate_voice], page 248.

1.27.19 voice_start

void voice_start(int voice);
Activates a voice, using whatever parameters have been set for it.

See also:

See Section 1.27.14 [Voice control], page 247.
See Section 1.27.15 [allocate_voice], page 248.
See Section 1.27.20 [voice_stop], page 249.
See Section 1.27.18 [release_voice], page 249.
See Section 3.4.48 [exstream], page 437.

1.27.20 voice_stop

void voice_stop(int voice);
Stops a voice, storing the current position and state so that it may later be
resumed by calling voice_start().

250 Allegro Manual

See also:

See Section 1.27.19 [voice_start], page 249.

See Section 1.27.16 [deallocate_voice], page 248.
See Section 1.27.18 [release_voice], page 249.
See Section 3.4.48 [exstream|, page 437.

1.27.21 voice_set_priority

void voice_set_priority(int voice, int priority);
Sets the priority of a voice (range 0-255). This is used to decide which voices
should be chopped off, if you attempt to play more than the soundcard driver
can handle.

See also:
See Section 1.27.14 [Voice control], page 247.

1.27.22 voice_check

SAMPLE *voice_check(int voice);
Checks whether a voice is currently allocated.

Returns a pointer to the sample that the voice is using, or NULL if the voice
is inactive (ie. it has been deallocated, or the release_voice() function has been
called and the sample has then finished playing).

See also:

See Section 1.27.15 [allocate_voice], page 248.

See Section 1.27.19 [voice_start], page 249.

See Section 1.27.23 [voice_get_position], page 250.
See Section 1.2.29 [SAMPLE], page 22.

1.27.23 voice_get_position

int voice_get_position(int voice);
Returns the current position of a voice, in sample units, or -1 if it has finished
playing.

See also:
See Section 1.27.14 [Voice control], page 247.
See Section 1.27.24 [voice_set_position], page 250.

1.27.24 voice_set_position

void voice_set_position(int voice, int position);
Sets the position of a voice, in sample units.

Chapter 1: API 251

See also:

See Section 1.27.14 [Voice control], page 247.

See Section 1.27.23 [voice_get_position], page 250.
See Section 1.27.25 [voice_set_playmode], page 251.

1.27.25 voice_set_playmode

void voice_set_playmode(int voice, int playmode) ;
Adjusts the loop status of the specified voice. This can be done while the voice
is playing, so you can start a sample in looped mode (having set the loop start
and end positions to the appropriate values), and then clear the loop flag when
you want to end the sound, which will cause it to continue past the loop end,
play the subsequent part of the sample, and finish in the normal way. The
mode parameter is a bitfield containing the following values:

e PLAYMODE_PLAY
Plays the sample a single time. This is the default if you don’t set the loop
flag.

e PLAYMODE_LOOP
Loops repeatedly through the sample, jumping back to the loop start po-
sition upon reaching the loop end.

e PLAYMODE_FORWARD
Plays the sample from beginning to end. This is the default if you don’t
set the backward flag.

e PLAYMODE_BACKWARD
Reverses the direction of the sample. If you combine this with the loop
flag, the sample jumps to the loop end position upon reaching the loop
start (ie. you do not need to reverse the loop start and end values when
you play the sample in reverse).

e PLAYMODE_BIDIR
When used in combination with the loop flag, causes the sample to change
direction each time it reaches one of the loop points, so it alternates between
playing forwards and in reverse.

See also:
See Section 1.27.14 [Voice control], page 247.

1.27.26 voice_get_volume

int voice_get_volume(int voice);
Returns the current volume of the voice, range 0-255. Otherwise it returns -1
if that cannot be determined (because it has finished or been preempted by a
different sound).

See also:
See Section 1.27.14 [Voice control], page 247.

252 Allegro Manual

See Section 1.27.27 [voice_set_volume], page 252.

1.27.27 voice_set_volume
void voice_set_volume(int voice, int volume) ;

Sets the volume of the voice, range 0-255.

See also:

See Section 1.27.14 [Voice control], page 247.

See Section 1.27.26 [voice_get_volume], page 251.
See Section 1.27.28 [voice_ramp_volume|, page 252.

1.27.28 voice_ramp_volume

void voice_ramp_volume(int voice, int time, int endvol);
Starts a volume ramp (crescendo or diminuendo) from the current volume to
the specified ending volume, lasting for time milliseconds. The volume is a
value in the range 0-255.

See also:
See Section 1.27.14 [Voice control], page 247.
See Section 1.27.27 [voice_set_volume], page 252.

1.27.29 voice_stop_volumeramp

void voice_stop_volumeramp(int voice);
Interrupts a volume ramp operation.

See also:
See Section 1.27.28 [voice_ramp_volume], page 252.

1.27.30 voice_get_frequency

int voice_get_frequency(int voice);
Returns the current pitch of the voice, in Hz.

See also:
See Section 1.27.14 [Voice control], page 247.
See Section 1.27.31 [voice_set_frequency], page 252.

1.27.31 voice_set_frequency

void voice_set_frequency(int voice, int frequency);
Sets the pitch of the voice, in Hz.

See also:
See Section 1.27.14 [Voice control], page 247.

Chapter 1: API 253

See Section 1.27.30 [voice_get_frequency], page 252.
See Section 1.27.32 [voice_sweep_frequency|, page 253.

1.27.32 voice_sweep_frequency

void voice_sweep_frequency(int voice, int time, int endfreq);
Starts a frequency sweep (glissando) from the current pitch to the specified
ending pitch, lasting for time milliseconds.

See also:
See Section 1.27.14 [Voice control], page 247.
See Section 1.27.31 [voice_set_frequency], page 252.

1.27.33 voice_stop_frequency_sweep

void voice_stop_frequency_sweep(int voice);
Interrupts a frequency sweep operation.

See also:
See Section 1.27.32 [voice_sweep_frequency], page 253.

1.27.34 voice_get_pan

int voice_get_pan(int voice);
Returns the current pan position, from 0 (left) to 255 (right).

See also:
See Section 1.27.14 [Voice control|, page 247.
See Section 1.27.35 [voice_set_pan], page 253.

1.27.35 voice_set_pan

void voice_set_pan(int voice, int pan);
Sets the pan position, ranging from 0 (left) to 255 (right).

See also:

See Section 1.27.14 [Voice control], page 247.
See Section 1.27.34 [voice_get_pan], page 253.
See Section 1.27.36 [voice_sweep_pan], page 253.

1.27.36 voice_sweep_pan

void voice_sweep_pan(int voice, int time, int endpan);
Starts a pan sweep (left <-> right movement) from the current position to the
specified ending position, lasting for time milliseconds.

254 Allegro Manual

See also:
See Section 1.27.14 [Voice control], page 247.
See Section 1.27.35 [voice_set_pan], page 253.

1.27.37 voice_stop_pan_sweep

void voice_stop_pan_sweep(int voice);
Interrupts a pan sweep operation.

See also:
See Section 1.27.36 [voice_sweep_pan], page 253.

1.27.38 voice_set_echo

void voice_set_echo(int voice, int strength, int delay);
Sets the echo parameters for a voice (not currently implemented).

See also:
See Section 1.27.14 [Voice control], page 247.

1.27.39 voice_set_tremolo

void voice_set_tremolo(int voice, int rate, int depth);
Sets the tremolo parameters for a voice (not currently implemented).

See also:
See Section 1.27.14 [Voice control], page 247.

1.27.40 voice_set_vibrato

void voice_set_vibrato(int voice, int rate, int depth);
Sets the vibrato parameters for a voice (not currently implemented).

See also:
See Section 1.27.14 [Voice control], page 247.

1.28 Music routines (MIDI)

Allegro allows you to play MIDI files. MIDI files basically contain notes and the type of
instrument that is meant to play them, so they are usually very small in size. However, it’s
up to the soundcard of the end user to play the notes, and soundcards have been historically
known to have poor MIDI performance (at least those oriented to the consumer market).
Few consumer cards feature decent MIDI playback. Still, as a game creator you can never
be sure if the music of your game will be played as you meant it, because it totally depends
on the hardware of the user.

Chapter 1: API 255

For this reason Allegro also provides a DIGMID driver. This is a software implementation
of the so called Wavetable synthesis. Soundcards featuring this store digital samples of real
instruments at different pitches, interpolating those that are not recorded, thus achieving
a high sound quality. Implementing this in software makes you sure that the quality you
hear on your computer is that which will be heard by end users using the same driver.
The disadvantage of the DIGMID driver is that it uses more CPU than simple MIDI play-
back, and it steals some hardware voices from the soundcard, which might be more crit-
ical for the end user experience than the background music. At the Allegro homepage
(http://alleg.sourceforge.net/) you can find more information about DIGMID and where to
download digital samples for your MIDI files.

1.28.1 load_midi

MIDI *load_midi(const char *filename);
Loads a MIDI file (handles both format 0 and format 1). Example:

MIDI *music;
music = load_midi("backmus.mid");
if (!'music)
abort_on_error("Couldn’t load background music!");
Returns a pointer to a MIDI structure, or NULL on error. Remember to free
this MIDI file later to avoid memory leaks.

See also:

See Section 1.28.2 [destroy_midi], page 255.
See Section 1.28.4 [play_midi], page 256.

See Section 1.28.10 [get-midi_length], page 258.
See Section 3.4.15 [exmidi], page 398.

See Section 1.2.30 [MIDI], page 23.

1.28.2 destroy_midi

void destroy_midi(MIDI *midi);
Destroys a MIDI structure when you are done with it. It is safe to call this
even when the MIDI file might be playing, because it checks and will kill it off
if it is active. Use this to avoid memory leaks in your program.

See also:

See Section 1.28.1 [load-midi], page 255.
See Section 3.4.15 [exmidi], page 398.
See Section 1.2.30 [MIDI], page 23.

1.28.3 lock_midi

void lock_midi(MIDI *midi);
Under DOS, locks all the memory used by a MIDI file. You don’t normally
need to call this function because load_midi() does it for you.

256

See also:

Allegro Manual

See Section 1.28.1 [load-midi], page 255.
See Section 1.2.30 [MIDI], page 23.

1.28.4 play_midi
int play_midi(MIDI *midi, int loop);

See also:

Starts playing the specified MIDI file, first stopping whatever music was pre-
viously playing. If the loop flag is set to non-zero, the data will be repeated
until replaced with something else, otherwise it will stop at the end of the file.
Passing a NULL pointer will stop whatever music is currently playing.

Returns non-zero if an error occurs (this may happen if a patch-caching
wavetable driver is unable to load the required samples, or at least it might in
the future when somebody writes some patch-caching wavetable drivers :-)

See Section 1.25.5 [install_sound], page 239.
See Section 1.28.1 [load-midi|, page 255.

See Section 1.28.5 [play_looped_midi], page 256.

See Section 1.28.7 [midi_pause], page 257.

[
[
[
See Section 1.28.6 [stop-midi], page 257.
[
[

See Section 1.28.9 [midi-seek], page 257.

See Section 1.28.13 [midi-pos|, page 259.

See Section 1.28.14 [midi-time], page 259.

See Section 1.28.16 [midi-msg_callback], page 260.
See Section 3.4.15 [exmidi], page 398.

See Section 1.2.30 [MIDI], page 23.

1.28.5 play_looped_midi

int play_looped_midi(MIDI *midi, int loop_start, int loop_end);

See also:

Starts playing a MIDI file with a user-defined loop position. When the player
reaches the loop end position or the end of the file (loop-end may be -1 to only
loop at EOF), it will wind back to the loop start point. Both positions are
specified in the same beat number format as the midi_pos variable.

The return value has the same meaning as that of play_midi(): non-zero if an
error occurs, zero otherwise.

See Section 1.28.4 [play-midi|, page 256.

See Section 1.28.13 [midi-pos|, page 259.

See Section 1.28.15 [midi_loop_start], page 259.
See Section 1.2.30 [MIDI], page 23.

Chapter 1: API 257

1.28.6 stop_midi

void stop_midi();
Stops whatever music is currently playing. This is the same thing as calling
play_midi(NULL, FALSE).

See also:
See Section 1.28.4 [play-midi|, page 256.
See Section 1.28.7 [midi_pause], page 257.

1.28.7 midi_pause

void midi_pause();
Pauses the MIDI player.

See also:
See Section 1.28.4 [play-midi|, page 256.
See Section 1.28.6 [stop_midi|, page 257.

See Section 1.28.9 [midi_seek], page 257.

[
[
See Section 1.28.8 [midi_resume], page 257.
[
See Section 3.4.15 [exmidi], page 398.

1.28.8 midi_resume

void midi_resume();
Resumes playback of a paused MIDI file.

See also:
See Section 1.28.7 [midi_pause], page 257.
See Section 3.4.15 [exmidi], page 398.

1.28.9 midi_seek

int midi_seek(int target);
Seeks to the given midi_pos in the current MIDI file. If the target is earlier
in the file than the current midi_pos it seeks from the beginning; otherwise it
seeks from the current position.

Returns zero if it could successfully seek to the requested position. Otherwise,
a return value of 1 means it stopped playing, and midi_pos is set to the negative
length of the MIDI file (so you can use this function to determine the length of
a MIDI file). A return value of 2 means the MIDI file looped back to the start.

See also:
See Section 1.28.4 [play_midi], page 256.
See Section 1.28.13 [midi_pos]|, page 259.

258 Allegro Manual

1.28.10 get_midi_length

int get_midi_length(MIDI *midi);
This function will simulate playing the given MIDI, from start to end, to de-
termine how long it takes to play. After calling this function, midi_pos will
contain the negative number of beats, and midi_time the length of the midi, in
seconds.

Note that any currently playing midi is stopped when you call this function.
Usually you would call it before play_midi, to get the length of the midi to be
played, like in this example:

length = get_midi_length(my_midi);
play_midi(my_midi);
do {
pos = midi_time;
textprintf_ex(screen, font, 0, 0, c, -1, "%d:%02d / %d:%02d\n",[}
pos / 60, pos % 60, length / 60, length % 60);
rest (100) ;
} while(pos <= length);

Returns the value of midi_time, the length of the midi.

See also:

See Section 1.28.1 [load-midi], page 255.
See Section 1.28.14 [midi-time], page 259.
See Section 1.28.13 [midi_pos|, page 259.
See Section 3.4.15 [exmidi], page 398.

See Section 1.2.30 [MIDI], page 23.

1.28.11 midi_out

void midi_out(unsigned char *data, int length);
Streams a block of MIDI commands into the player in realtime, allowing you
to trigger notes, jingles, etc, over the top of whatever MIDI file is currently

playing.

See also:

See Section 1.25.5 [install_sound], page 239.

See Section 1.28.12 [load-midi_patches|, page 258.
See Section 1.30.12 [midi-recorder|, page 267.

1.28.12 load_midi_patches

int load_midi_patches();
Forces the MIDI driver to load the entire set of patches ready for use. You will
not normally need to call this, because Allegro automatically loads whatever

Chapter 1: API 259

data is required for the current MIDI file, but you must call it before sending
any program change messages via the midi_out() command.

Returns non-zero if an error occurred.

See also:
See Section 1.25.5 [install_sound], page 239.
See Section 1.28.11 [midi-out], page 258.

1.28.13 midi_pos

extern volatile long midi_pos;
Stores the current position (beat number) in the MIDI file, or contains a neg-
ative number if no music is currently playing. Useful for synchronising anima-
tions with the music, and for checking whether a MIDI file has finished playing.

See also:

See Section 1.28.4 [play_midi], page 256.

See Section 1.28.16 [midi_msg_callback], page 260.
See Section 3.4.15 [exmidi], page 398.

1.28.14 midi_time

extern volatile long midi_time;
Contains the position in seconds in the currently playing midi. This is useful if
you want to display the current song position in seconds, not as beat number.

See also:

See Section 1.28.4 [play_midi], page 256.

See Section 1.28.13 [midi_pos]|, page 259.

See Section 1.28.10 [get_midi_length], page 258.
See Section 3.4.15 [exmidi], page 398.

1.28.15 midi_loop_start

extern long midi_loop_start;

extern long midi_loop_end;
The loop start and end points, set by the play_looped_midi() function. These
may safely be altered while the music is playing, but you should be sure they
are always set to sensible values (start < end). If you are changing them both
at the same time, make sure to alter them in the right order in case a MIDI
interrupt happens to occur in between your two writes! Setting these values to
-1 represents the start and end of the file respectively.

See also:
See Section 1.28.5 [play_looped_midi|, page 256.

260 Allegro Manual

1.28.16 midi_msg_callback
extern void (*midi_msg_callback) (int msg, int bytel, int byte2);

extern void (*midi_meta_callback) (int type, const unsigned char *data, int
length);

extern void (*midi_sysex_callback) (const unsigned char *data, int length);

Hook functions allowing you to intercept MIDI player events. If set to anything
other than NULL, these routines will be called for each MIDI message, meta-
event, and system exclusive data block respectively. They will execute in an
interrupt handler context, so all the code and data they use should be locked,
and they must not call any operating system functions. In general you just
use these routines to set some flags and respond to them later in your mainline
code.

See also:
See Section 1.28.4 [play_midi], page 256.

1.28.17 load_ibk

int load_ibk(char *filename, int drums);
Reads in a .IBK patch definition file for use by the Adlib driver. If drums is set,
it will load it as a percussion patch set, otherwise it will use it as a replacement
set of General MIDI instruments. You may call this before or after initialising
the sound code, or can simply set the ibk_file and ibk_drum_file variables in the
configuration file to have the data loaded automatically. Note that this function
has no effect on any drivers other than the Adlib one!

Returns non-zero on error.

See also:
See Section 1.25.5 [install_sound], page 239.

1.29 Audio stream routines

The audio stream functions are for playing digital sounds that are too big to fit in a regular
SAMPLE structure, either because they are huge files that you want to load in pieces as the
data is required, or because you are doing something clever like generating the waveform
on the fly.

You can think of an AUDIOSTREAM structure as a wrapper around two audio buffers.
The first thing you do is fill both buffers with sound data and let Allegro play them. Once
the first buffer has been played, the second starts, and Allegro lets you know you have to fill
the other one (i.e. graphics double buffering applied to sounds too big to fit into memory).

The implementation of the sound buffers uses normal SAMPLE structures, so you can use
all the voice_*() functions to modify the audio streams. Read chapter "Digital sample
routines", section "Voice control" for a list of additional functions you can use. Read
chapter "Structures and types defined by Allegro" for the internals of the AUDIOSTREAM
structure.

Chapter 1: API 261

1.29.1 play_audio_stream

AUDIOSTREAM #*play_audio_stream(int len, int bits, int stereo, int freq, int
vol, int pan);

See also:

This function creates a new audio stream and starts playing it. The length is
the size of each transfer buffer in sample frames (not bytes), where a sample
frame is a single sample value for mono data or a pair of interleaved sample
values (left first) for stereo data. The length should normally be (but doesn’t
have to be) a power of 2 somewhere around 1k in size. Larger buffers are more
efficient and require fewer updates, but result in more latency between you
providing the data and it actually being played.

The ‘bits’ parameter must be 8 or 16. ‘freq’ is the sample rate of the data
in Hertz. The ‘vol’ and ‘pan’ values use the same 0-255 ranges as the regular
sample playing functions. The ‘stereo’ parameter should be set to 1 for stereo
streams, or 0 otherwise.

If you want to adjust the pitch, volume, or panning of a stream once it is
playing, you can use the regular voice_*() functions with stream->voice as a
parameter. The format of the sample data is described in the SAMPLE entry
of the "Structures and types defined by Allegro" chapter. The formula to get
the size of the buffers in bytes could be:

bytes = length * (bits / 8) * (stereo 7 2 : 1)

Example:

/* Create a 22KHz 8bit mono audio stream. */
stream = play_audio_stream(1024, 8, FALSE, 22050, 255, 128);
if (!stream)

abort_on_error("Error creating audio stream!\n");

This function returns a pointer to the audio stream or NULL if it could not be
created.

See Section 1.25.5 [install_sound], page 239.

See Section 1.29.2 [stop-audio_stream], page 261.

[

See Section 1.29.3 [get_audio_stream_buffer], page 262.
[
[

See Section 1.2.31 [AUDIOSTREAM], page 24.
See Section 1.27.14 [Voice control], page 247.
See Section 3.4.48 [exstream], page 437.

See Section 1.2.31 [AUDIOSTREAM], page 24.

1.29.2 stop_audio_stream
void stop_audio_stream(AUDIOSTREAM *stream) ;

Destroys an audio stream when it is no longer required.

262 Allegro Manual

See also:

See Section 1.29.1 [play_audio_stream|, page 261.
See Section 3.4.48 [exstream], page 437.

See Section 1.2.31 [AUDIOSTREAM], page 24.

1.29.3 get_audio_stream_buffer

void *get_audio_stream_buffer (AUDIOSTREAM *stream) ;
You must call this function at regular intervals while an audio stream is playing,
to provide the next buffer of sample data (the smaller the stream buffer size,
the more often it must be called). This function should not be called from a
timer handler. Example:

void *mem_chunk;
while (TRUE) A{

mem_chunk = get_audio_stream_buffer(buffer);
if (mem_chunk != NULL) {
/* Refill the stream buffer. *x/
}
}

If it returns NULL, the stream is still playing the previous lot of data, so you
don’t need to do anything. If it returns a value, that is the location of the next
buffer to be played, and you should load the appropriate number of samples
(however many you specified when creating the stream) to that address, for
example using an fread() from a disk file. After filling the buffer with data, call
free_audio_stream_buffer() to indicate that the new data is now valid.

See also:

See Section 1.29.1 [play_audio_stream], page 261.
See Section 1.29.4 |

See Section 3.4.48 [exstream], page 437.

See Section 1.2.31 [AUDIOSTREAM], page 24.

free_audio_stream_buffer], page 262.

1.29.4 free_audio_stream_buffer

void free_audio_stream_buffer (AUDIOSTREAM *stream) ;
Call this function after get_audio_stream_buffer() returns a non-NULL address,
to indicate that you have loaded a new block of samples to that location and
the data is now ready to be played. Example:

mem_chunk = get_audio_stream_buffer (buffer);
if (mem_chunk != NULL) {
/* Refill the stream buffer. */

Chapter 1: API 263

free_audio_stream_buffer(buffer) ;

See also:

See Section 1.29.3 [get_audio_stream_buffer|, page 262.
See Section 3.4.48 [exstream], page 437.

See Section 1.2.31 [AUDIOSTREAM], page 24.

1.30 Recording routines

Allegro provides routines to capture sound from the soundcard, be it digital samples or
MIDI notes. Ideally this would allow you to create games where basic speech recognition
could be implemented, or voice messages in multiplayer games over a network. However,
many old sound cards are not full duplex. This means, that the sound device can only be
playing or recording, but not both at the same time.

Any Windows 2000 or better machine comes with a full duplex soundcard and updated
drivers. All MacOS X machines allow full duplex recording. Under Unix your mileage may
vary: you can have the right hardware for the task, but the drivers might not support this
feature. Under DOS you should forget about full duplex altogether.

To find out if your system allows this feature, use the akaitest program, distributed along
with Allegro, in the ‘tests’ directory.

1.30.1 install_sound_input

int install_sound_input(int digi, int midi);
Initialises the sound recorder module. You must install the normal sound
playback system before calling this routine. The two card parameters
should use the same constants as install_sound(), including DIGI_.NONE and
MIDI_NONE to disable parts of the module, or DIGI_AUTODETECT and
MIDI_AUTODETECT to guess the hardware.

This function returns zero on success, and any other value if the machine or
driver doesn’t support sound recording.

See also:

See Section 1.25.5 [install_sound], page 239.

See Section 1.30.8 [start_sound-input], page 266.
See Section 1.30.12 [midi_recorder|, page 267.
See Section 1.4.23 [Standard config variables], page 60.
See Section 2.1.3 [DIGI_*/DOS], page 354.

See Section 2.2.3 [DIGI_*/Windows]|, page 359.
See Section 2.3.4 [DIGI_*/Unix], page 368.

See Section 2.4.2 [DIGI_*/BeOS], page 370.

See Section 2.5.2 [DIGI_*/QNX], page 371.

See Section 2.6.2 [DIGI_*/MacOSX], page 374.

264 Allegro Manual

See Section 2.1.4 [MIDI_*/DOS], page 354.
See Section 2.2.4 [MIDI_*/Windows]|, page 359.
See Section 2.3.5 [MIDI_*/Unix]|, page 368.
See Section 2.4.3 [MIDI_*/BeOS], page 370.
See Section 2.5.3 [MIDI_*/QNX], page 372.
See Section 2.6.3 [MIDI_*/MacOSX], page 374.

1.30.2 remove_sound_input

void remove_sound_input();
Cleans up after you are finished with the sound input routines. You don’t
normally need to call this, because remove_sound() and/or allegro_exit() will
do it for you.

See also:

See Section 1.30.1 [install_sound_input], page 263
See Section 1.25.6 [remove_sound], page 240.

See Section 1.1.3 [allegro_exit], page 2.

1.30.3 get_sound_input_cap_bits

int get_sound_input_cap_bits();
Checks which sample formats are supported by the current audio input driver,
returning one of the bitfield values:

= audio input not supported

eight bit audio input is supported

16 = sixteen bit audio input is supported

24 = both eight and sixteen bit audio input are supported

0
8

Example:

cap = get_sound_input_cap_bits();
if (cap == 0) {
/* Ugh, no audio input supported? */
} else {
if (cap & 8) {
/* We have eight bit audio input. */
}
if (cap & 16) {
/* We have sixteen bit audio input. */

}

See also:
See Section 1.30.8 [start_sound_input], page 266.

Chapter 1: API 265

See Section 1.30.6 [get_sound_input_cap_parm], page 265.
See Section 1.30.5 [get_sound_input_cap_rate|, page 265.
See Section 1.30.4 [get_sound_input_cap_stereo], page 265.

1.30.4 get_sound_input_cap_stereo
int get_sound_input_cap_stereo();
Checks whether the current audio input driver is capable of stereo recording.

Returns non-zero if the driver is capable of stereo recording.

See also:
See Section 1.30.8 [start_sound_input], page 266.

[
See Section 1.30.6 [get_sound_input_cap_parm], page 265.
See Section 1.30.3 [get_sound_input_cap_bits], page 264.

[

See Section 1.30.5 [get_sound_input_cap_rate|, page 265.

1.30.5 get_sound_input_cap_rate

int get_sound_input_cap_rate(int bits, int stereo);
Returns the maximum possible sample frequency for recording in the specified
format, or zero if these settings are not supported. The bits parameter is the
number of bits of the audio, and stereo is a boolean parameter. Pass zero for
mono, non-zero for stereo input. Example:

int max_freq;

/* What frequency can we record 8 bits mono at? */
max_freq = get_sound_input_cap_rate(8, 0);
if (max_freq > 22000) {
/* 0k, 22KHz and above is good enough. */
}

See also:
See Section 1.30.8 [start_sound_input], page 266.

See Section 1.30.3
See Section 1.30.4 [get_sound_input_cap_stereo], page 265.

[

See Section 1.30.6 [get_sound_input_cap_parm], page 265.
[get_sound_input_cap_bits], page 264.
[

1.30.6 get_sound_input_cap_parm

int get_sound_input_cap_parm(int rate, int bits, int stereo);
Checks whether the specified recording frequency, number of bits, and
mono/stereo mode are supported (and how) by the current audio driver.

The function returns one of the following possible values:

266 Allegro Manual

0 = It is impossible to record in this format.

1 = Recording is possible, but audio output
will be suspended.

2 = Recording is possible at the same time as

playing other sounds (full duplex soundcard).
-n = Sampling rate not supported, but rate ’n’
would work instead.

See also:

See Section 1.30.8 [start_sound_input|, page 266.

See Section 1.30.3 [get_sound_input_cap-_bits], page 264.

See Section 1.30.5 [get_sound_input_cap_rate|, page 265.
[

See Section 1.30.4 [get_sound_input_cap_stereo], page 265.

1.30.7 set_sound_input_source

int set_sound_input_source(int source);
Selects the audio input source. The parameter should be one of the values:

SOUND_INPUT_MIC
SOUND_INPUT_LINE
SOUND_INPUT_CD

The function returns zero on success, or -1 if the hardware does not provide an
input select register (ie. you have no control over the input source).

See also:
See Section 1.30.8 [start_sound_input], page 266.

1.30.8 start_sound_input

int start_sound_input(int rate, int bits, int stereo);
Starts recording in the specified format, suspending audio playback as necessary
if the card is not full duplex.

Returns the buffer size in bytes if successful, or zero on error.

See also:

See Section 1.30.1 [install_sound_input], page 263.
See Section 1.30.10 [read_sound_input], page 267.

See Section 1.30.9 [stop_sound_input|, page 267.

See Section 1.30.11 [digi_recorder]|, page 267.

See Section 1.30.7 [set_sound_input_source], page 266.

[
See Section 1.30.6 [get_sound_input_cap_parm], page 265.
See Section 1.30.3 [get_sound_input_cap_bits], page 264.

[

See Section 1.30.5 [get_sound_input_cap_rate|, page 265.

Chapter 1: API 267

See Section 1.30.4 [get_sound_input_cap_stereo], page 265.

1.30.9 stop_sound_input

void stop_sound_input();

See also:

Stops audio recording, switching the card back into the normal playback mode.

See Section 1.30.8 [start_sound-input], page 266.

1.30.10 read_sound_input

int read_sound_input(void *buffer) ;

See also:

Retrieves the most recently recorded audio buffer into the specified
location. The buffer size can be obtained by checking the return value from
start_sound_input(). You must be sure to call this function at regular intervals
during the recording (typically around 100 times a second), or some data will
be lost. If you are unable to do this often enough from the mainline code, use
the digi_recorder() callback to store the waveform into a larger buffer of your
own.

Note: many cards produce a click or popping sound when switching between
record and playback modes, so it is often a good idea to discard the first buffer
after you start a recording. The waveform is always stored in unsigned format,
with stereo data consisting of alternate left /right samples.

The function will return non-zero if a buffer has been copied or zero if no new
data is yet available (you were too fast checking the input).

See Section 1.30.8 [start_sound_input], page 266.

1.30.11 digi_recorder

extern void (*digi_recorder) ();

See also:

If set, this function is called by the input driver whenever a new sample buffer
becomes available, at which point you can use read_sound_input() to copy the
data into a more permanent location. It runs in an interrupt context, so it must
execute very quickly, the code and all memory that it touches must be locked,
and you cannot call any operating system routines or access disk files. This
currently works only under DOS.

See Section 1.30.1 [install_sound_input], page 263.

See Section 1.30.8 [start_sound_input], page 266.

268 Allegro Manual

1.30.12 midi_recorder

extern void (*midi_recorder) (unsigned char data);
If set, this function is called by the MIDI input driver whenever a new byte of
MIDI data becomes available. It runs in an interrupt context, so it must execute
very quickly and all the code/data must be locked. This currently works only
under DOS and Windows.

See also:
See Section 1.30.1 [install_sound_input], page 263.
See Section 1.28.11 [midi-out], page 258.

1.31 File and compression routines

The following routines implement a fast buffered file I/O system, which supports the reading
and writing of compressed files using a ring buffer algorithm based on the LZSS compressor
by Haruhiko Okumura. This does not achieve quite such good compression as programs like
zip and lha, but unpacking is very fast and it does not require much memory. Packed files
always begin with the 32-bit value F_ PACK_MAGIC, and autodetect files with the value
F_NOPACK_MAGIC.

The following FA_* flags are guaranteed to work: FA_RDONLY, FA_HIDDEN,
FA_SYSTEM, FA_LABEL, FA_DIREC, FA_ARCH. Do not use any other flags from
DOS/Windows or your code will not compile on another platform. Flags FA_SYSTEM,
FA_LABEL and FA_ARCH are valuable only on DOS/Windows (entries with system flag,
volume labels and archive flag). FA_RDONLY is for directory entries with read-only flag
on DOS-like systems or unwritable by current user on Unix-like systems. FA_HIDDEN is
for entries with hidden flag on DOS-like systems or starting with *.” on Unix (dotted files -
excluding ’.> and ’.."). FA_DIREC represents directories. Flags can be combined using ’|’
(binary OR operator).

When passed to the functions as the ’attrib’ parameter, these flags represent an upper set
in which the actual flag set of a matching file must be included. That is, in order for a file
to be matching, its attributes may contain any of the specified flags but must not contain
any of the unspecified flags. Thus, if you pass 'FA_DIREC | FA_RDONLY’, normal files
and directories will be included as well as read-only files and directories, but not hidden
files and directories. Similarly, if you pass 'FA_ARCH’ then both archived and non-archived
files will be included.

Functions which accept wildcards as file names support the meta characters “*’ (which
means, zero or any quantity of characters) and ‘?” (which means any character, but only
one).

1.31.1 get_executable_name

void get_executable_name(char *buf, int size);
Fills ‘buf’ with the full path to the current executable, writing at most ‘size’
bytes. This generally comes from ‘argv|[0]’ but on Unix systems it tries to get the
information from the ‘/proc’ filesystem first, searching the directories specified
in ‘SPATH’ if necessary. If this fails too, it tries to find the executable name

Chapter 1: API 269

from the output of the ‘ps’ command, using ‘argv[0]” only as a last resort if all
other options fail. Example:

char name[200];

get_executable_name (name, sizeof (name));
allegro_message ("Running ‘%s’\n", name);

1.31.2 fix_filename_case

char *fix_filename_case(char *path);
Converts the filename stored in ‘path’ to a standardised case. On DOS plat-
forms, they will be entirely uppercase. On other platforms this function doesn’t
do anything. Example:

get_executable_name(name, sizeof (name));
fix_filename_case(name);
allegro_message ("Running ‘%s’\n", name);

Returns a copy of the ‘path’ parameter.

See also:
See Section 1.31.3 [fix_filename_slashes|, page 269.
See Section 1.31.4 [canonicalize_filename|, page 269.

1.31.3 fix_filename_slashes

char *fix_filename_slashes(char *path);
Converts all the directory separators in the filename stored in ‘path’ to a stan-
dard character. On DOS and Windows platforms, this is a backslash. On most
other platforms this is a slash. Example:

char buf[200] = "c:/dos\\backup/weirdo\\test";

fix_filename_slashes(buf);
/* Under DOS we would have c:\dos\backup\weirdo\test.
Under Unix we would have c:/dos/backup/weirdo/test. */

Returns a copy of the ‘path’ parameter.

See also:
See Section 1.31.2 [fix_filename_case], page 269.
See Section 1.31.4 [canonicalize_filename], page 269.

1.31.4 canonicalize_filename

char *canonicalize_filename(char #*dest, const char *filename, int size);
Converts any filename into its canonical form, i.e. the minimal absolute filename
describing the same file and fixing incorrect forward/backward slashes for the

270 Allegro Manual

current platform, storing at most ‘size’ bytes into the ‘dest’ buffer. You can use
the same buffer both as input and output because Allegro internally works on
a copy of the input before touching ‘dest’. Example:

char buf [256];

canonicalize_filename(buf, "~/../s22/..\\t3st///hi.c",
sizeof (buf));
/* Running this under Unix would
return: /home/t3st/hi.c */

Note that this function won’t work as expected if the path to canonicalize
comes from another platform (eg. a "c:\something" path will canonicalize into
something really wrong under Unix: " /current/path/c:/something").

Returns a copy of the ‘dest’ parameter.

See also:
See Section 1.31.2 [fix_filename_case], page 269.
See Section 1.31.3 [fix_filename_slashes|, page 269.

1.31.5 make_absolute_filename
char *make_absolute_filename(char *dest, const char *path, const char
*filename, int size);

Makes an absolute filename from an absolute path and a relative filename,

storing at most ‘size’ bytes into the ‘dest’ buffer. This is like calling re-
place_filename() and then canonicalize_filename(). Example:

char buf[256];

make_absolute_filename(buf, "/usr/games/",
"../temp.txt", sizeof (buf));
/* This would create /usr/temp.txt */

Returns a copy of the ‘dest’ parameter.

See also:

See Section 1.31.6 [make_relative_filename], page 270.
See Section 1.31.7 [is_relative_filename], page 271.
See Section 1.31.8 [replace_filename], page 271.

See Section 1.31.4 [canonicalize_filename], page 269.

1.31.6 make_relative_filename

char *make_relative_filename(char *dest, const char *path, const char
*filename, int size);
Attempts to make a relative filename from an absolute path and an absolute
filename, storing at most ‘size’ bytes into the ‘dest’ buffer. This function won’t

Chapter 1: API 271

work if the paths are not canonical under the current platform (see canon-
icalize_filename()). Also, ‘dest’ cannot be used as input value for ‘path’ or
‘filename’. Example:

char base[] = "/long/absolute/path/program.exe";
char user_input[] = "/nice/and/short.txt";

make_relative_filename(buf, base, user_input, sizeof (buf));
/* Under Unix buf would contain:
../../../nice/and/short.txt */

Returns a copy of the ‘dest’ parameter if it succeeds or NULL if it fails (eg.
under DOS, one path starts with "C:\" and another with "A:\").

See also:

See Section 1.31.5 [make_absolute_filename], page 270.
See Section 1.31.7 [is_relative_filename], page 271.

See Section 1.31.4 [canonicalize_filename], page 269.

1.31.7 is_relative_filename

int is_relative_filename(const char *filename);
Returns TRUE if the filename is relative or FALSE if it is absolute. Note that
an absolute filename under DOS (with a device separator) will be considered
as relative under Unix, because there absolute paths always start with a slash.

See also:
See Section 1.31.5 [make_absolute_filename], page 270.
See Section 1.31.6 [make_relative_filename], page 270.

1.31.8 replace_filename

char *replace_filename(char *dest, const char *path, const char *filename,
int size);
Replaces the specified path+filename with a new filename tail, storing at most
‘size’ bytes into the ‘dest’ buffer. You can use the same buffer both as input and
output because Allegro internally works on a copy of the input before touching
‘dest’. Example:

char name[200];

get_executable_name (name, sizeof (name));
replace_filename (name, name, "sound.dat", sizeof (name));

Returns a copy of the ‘dest’ parameter.

See also:
See Section 1.31.11 [get_filename|, page 272.

272 Allegro Manual

See Section 1.31.9 [replace_extension], page 272.
See Section 1.31.10 [append_filename|, page 272.
See Section 3.4 [Available], page 387.

1.31.9 replace_extension

char *replace_extension(char *dest, const char *filename, const char *ext,
int size);
Replaces the specified filename+extension with a new extension tail, storing at
most ‘size’ bytes into the ‘dest’ buffer. If the filename doesn’t have any extension
at all, ‘ext’ will be appended to it, adding a dot character if needed. You can
use the same buffer both as input and output because Allegro internally works
on a copy of the input before touching ‘dest’. Example:

replace_extension(buf, "C:\\game\\prog.exe",
"dat", sizeof(buf));

Returns a copy of the ‘dest’ parameter.

See also:
See Section 1.31.12 [get_extension|, page 273.
See Section 1.31.8 [replace_filename], page 271.

1.31.10 append_filename

char *append_filename(char *dest, const char *path, const char *filename,
int size);
Concatenates the specified filename onto the end of the specified path, storing
at most ‘size’ bytes into the ‘dest’ buffer. If ‘path’ doesn’t have a trailing path
separator, the function will append one if needed. You can use the same buffer
both as input and output because Allegro internally works on a copy of the
input before touching ‘dest’. Example:

append_filename(buf, "/home/user",
"prog.bin", sizeof (buf));

Returns a copy of the ‘dest’ parameter.

See also:
See Section 1.31.8 [replace_filename]|, page 271.

1.31.11 get_filename

char *get_filename(const char *path);
Finds out the filename portion of a completely specified file path. Both ‘\” and
¢/’ are recognized as directory separators under DOS and Windows. However,
only ‘/’ is recognized as directory separator under other platforms. Example:

Chapter 1: API 273

get_executable_name(name, sizeof (name));
allegro_message ("Running ‘%s’\n", get_filename(name)) ;

Note that Allegro won’t perform any 1O operations during the verification. This
means that if you have ‘/a/path/like/this/’, which doesn’t have a filename, the
function will return a pointer to the trailing null character. However, if you
have ‘/a/path/like/this’, Allegro will return a pointer to ‘this’, even if it is a
valid directory.

Returns a pointer to the portion of ‘path’ where the filename starts, or the
beginning of ‘path’ if no valid filename is found (eg. you are processing a path
with backslashes under Unix).

See also:

See Section 1.31.12 [get_extension|, page 273.
See Section 1.31.13 [put_backslash|, page 273.
See Section 1.31.8 [replace_filename], page 271.
See Section 3.4.15 [exmidi], page 398.

1.31.12 get_extension

char *get_extension(const char *filename) ;
Finds out the extension of the filename (with or without path information).
Example:

get_executable_name (name, sizeof (name));
allegro_message("The binary has the extension ‘%s’\n",
get_extension(name)) ;

Returns a pointer to the portion of ‘filename’ where the extension starts, or a
pointer to the trailing null character if there is no filename or it doesn’t have
extension.

See also:

See Section 1.31.11 [get_filename|, page 272.
See Section 1.31.13 [put_backslash], page 273.
See Section 1.31.9 [replace_extension], page 272.

1.31.13 put_backslash

void put_backslash(char *filename);
If the last character of the filename is not a ‘\’, ¢/’, ‘#’ or a device separator
(ie. ‘> under DOS), this routine will concatenate either a ‘\’ or ‘/’ on to it
(depending on the platform). Note: ignore the function name, it’s out of date.

See also:
See Section 1.31.12 [get_extension|, page 273.

274 Allegro Manual

See Section 1.31.11 [get_filename], page 272.

1.31.14 file_exists

int file_exists(const char *filename, int attrib, int *aret);
Checks whether a file matching the given name and attributes (see beginning
of this chapter) exists. If ‘aret’ is not NULL, it will be set to the attributes of
the matching file. Example:

/* Check for a normal file. %/
if (file_exists("franken.dat", O, NULL))
allegro_message ("It is alive!\n");

Returns non-zero if the file exists, or zero if it doesn’t or the specified attributes
mask it out.

See also:

See Section 1.31.15 [exists]|, page 274.
See Section 1.31.16 [file_size], page 274.
See Section 1.31.17 [file_time], page 275.

1.31.15 exists

int exists(const char *filename);
Shortcut version of file_exists(), which checks for normal files, which may have
the archive or read-only bits set, but are not hidden, directories, system files,
etc.

Returns non-zero if the file exists, or zero if it doesn’t.

See also:

See Section 1.31.14 [file_exists|, page 274.
See Section 1.31.16 [file_size|, page 274.
See Section 1.31.17 [file_time], page 275.

1.31.16 file_size

long file_size(const char *filename);
Returns the size of a file, in bytes. If the file does not exist or an error occurs,
it will return zero and store the system error code in errno.

See also:

See Section 1.31.14 [file_exists|, page 274.
See Section 1.31.17 [file_time], page 275.
See Section 3.4.49 [expackf], page 438.

Chapter 1: API 275

1.31.17 file_time

time_t file_time(const char *filename);
Returns the modification time (number of seconds since 00:00:00 GMT
1/1/1970) of a file. If the file does not exist or an error occurs, it will return
zero and store the system error code in errno.

See also:
See Section 1.31.14 [file_exists], page 274.
See Section 1.31.16 [file_size|, page 274.

1.31.18 delete_file

int delete_file(const char *filename);
Removes a file from the disk. You can’t delete directories, though.

Returns zero on success, non-zero on failure.

1.31.19 for_each_file_ex

int for_each_file_ex(const char *name, int in_attrib, int out_attrib, int

(*callback) (const char *filename, int attrib, void *param), void *param);
Finds all the files on disk which match the given wildcard specification and file
attributes, and executes callback() once for each. Basically, this is a convenient
wrapper around al_findfirst(), al_findnext() and al_findclose(). ‘in_attrib’ is a
bitmask specifying the attributes the files must carry, ‘out_attrib’ is a bitmask
specifying the attributes the files must not carry; attributes which are not
specified in either bitmasks are not taken into account for deciding whether
callback() is invoked or not.

The callback function will be passed three arguments: the first is a string
which contains the completed filename (exactly the same string you passed to
for_each_file_ex() but with meta characters), the second is the actual attributes
of the file, and the third is a void pointer which is simply a copy of ‘param’ (you
can use this for whatever you like). The callback must return zero to let the
enumeration proceed, or any non-zero value to stop it. If an error occurs, the
error code will be stored in ‘errno’ but the enumeration won’t stop. Example:

int show_name(const char *filename, int attrib, void *param)
{
allegro_message("Caught ‘%s’, attribs %d\n",
filename, attrib);
return O;

count = for_each_file_ex("data/levelx", FA_DIREC,
0, show_name, 0);
allegro_message("%d game directories\n", count);
Returns the number of successful calls made to callback(), that is, the number
of times callback() was called and returned 0.

276

See also:

Allegro Manual

See Section 1.31.20 [al_findfirst], page 276.
See Section 1.31.21 [al_findnext|, page 276.
See Section 1.31.22 [al_findclose|, page 277.

1.31.20 al_findfirst

int al_findfirst(const char *pattern, struct al_ffblk *info, int attrib);

See also:

Low-level function for searching files. This function finds the first file which
matches the given wildcard specification and file attributes (see above). The
information about the file (if any) will be put in the al_ffblk structure which
you have to provide. The al_ffblk structure looks like:

struct al_ffblk

{
int attrib; - actual attributes of the file found
time_t time; - modification time of file
long size; - size of file
char name[512]; - name of file
};

There is some other stuff in the structure as well, but it is there for internal use
only. Example:

struct al_ffblk info;

if (al_findfirst("*.pcx", &info, 0) != 0) {
/* Tell user there are no PCX files. */
return;

}

The function returns non-zero if no match is found or if an error occurred and,
in the latter case, sets ‘errno’ accordingly. It returns zero if a match is found,
allocating some memory for internal use in the structure. Therefore you have to
close your search when you are finished to avoid memory leaks in your program.

See Section 1.31.21 [al_findnext], page 276.
See Section 1.31.22 [al_findclose], page 277.
See Section 1.2.18 [al_ffblk], page 19.

1.31.21 al_findnext
int al_findnext(struct al_ffblk *info);

This finds the next file in a search started by al_findfirst(). Example:

if (al_findfirst("*.pcx", &info, 0) != 0)

Chapter 1: API 277

return;

do {
/* Do something useful here with info.name. */
} while (al_findnext(&info) == 0);

al_findclose(&info);

Returns zero if a match is found, non-zero if none is found or if an error occurred
and, in the latter case, sets errno accordingly.

See also:

See Section 1.31.20 [al_findfirst], page 276.
See Section 1.31.22 [al_findclose|, page 277.
See Section 1.2.18 [al_ffblk], page 19.

1.31.22 al_findclose

void al_findclose(struct al_ffblk *info);
This closes a previously opened search with al_findfirst(). You need to call this
on all successfully opened searches to avoid memory leaks in your program.

See also:

See Section 1.31.20 [al_findfirst], page 276.
See Section 1.31.21 [al_findnext], page 276.
See Section 1.2.18 [al_ffblk], page 19.

1.31.23 find_allegro_resource

int find_allegro_resource(char *dest, const char *resource, const char

*ext, const char *datafile, const char *objectname, const char *envvar,

const char *subdir, int size);
Searches for a support file, eg. ‘allegro.cfg’ or ‘language.dat’. Passed a resource
string describing what you are looking for, along with extra optional information
such as the default extension, what datafile to look inside, what the datafile
object name is likely to be, any special environment variable to check, and
any subdirectory that you would like to check as well as the default location,
this function looks in a hell of a lot of different places :-). Pass NULL for the
parameters you are not using.

Check the documentation chapter specific to your platform for information
on additional paths this function might search for. Also, don’t forget about
set_allegro_resource_path() to extend the searches. Example:

char path[256];

int ret;

ret = find_allegro_resource(path, "scores.cfg", NULL, NULL,
NULL, NULL, NULL, sizeof(path));

278

See also:

Allegro Manual

if (ret == 0) {
/* Found system wide scores file. x/
} else {
/* No previous scores, create our own file. */

}

Returns zero on success, and stores a full path to the file (at most size bytes)
into the dest buffer.

See Section 1.31.24 [set_allegro_resource_path|, page 278.

1.31.24 set_allegro_resource_path

int set_allegro_resource_path(int priority, const char *path);

See also:

Sometimes Allegro doesn’t look in enough places to find a resource. For those
special cases, you can call this function before loading your resource with ad-
ditional paths to search for. You set up the priorities, higher numbers are
searched for first. To modify an already setup path, call this function with
the same priority and the new path. To remove an already setup path, call
this function with the priority of the path and NULL as the path parameter.
Example:

set_allegro_resource_path(10, "my_game/configs");
set_allegro_resource_path(0, "users/configs/");
set_allegro_resource_path(-45, "temp");

These custom paths will be valid until you call allegro_exit(). You can call this
function before install_allegro(), but after set_uformat() if you want to use a
text encoding format other than the default.

Returns non-zero on success, zero if the path could not be added or you wanted
to remove a path and the priority used didn’t have any associated path. Mod-
ification of existing paths always succeeds.

See Section 1.31.23 [find_allegro_resource], page 277.

1.31.25 packfile_password

void packfile_password(const char *password);

Sets the encryption password to be used for all read/write operations on files
opened in future using Allegro’s packfile functions (whether they are compressed
or not), including all the save, load and config routines. Files written with an
encryption password cannot be read unless the same password is selected, so
be careful: if you forget the key, nobody can make your data come back again!
Pass NULL or an empty string to return to the normal, non-encrypted mode.
If you are using this function to prevent people getting access to your datafiles,
be careful not to store an obvious copy of the password in your executable: if

Chapter 1: API 279

See also:

there are any strings like "I'm the password for the datafile", it would be fairly
easy to get access to your data :-)

Note #1: when writing a packfile, you can change the password to whatever
you want after opening the file, without affecting the write operation. On the
contrary, when writing a sub-chunk of a packfile, you must make sure that the
password that was active at the time the sub-chunk was opened is still active
before closing the sub-chunk. This is guaranteed to be true if you didn’t call
the packfile_password() routine in the meantime. Read operations, either on
packfiles or sub-chunks, have no such restriction.

Note #2: as explained above, the password is used for all read/write oper-
ations on files, including for several functions of the library that operate on
files without explicitly using packfiles (e.g. load_bitmap()). The unencrypted
mode is mandatory in order for those functions to work. Therefore remember
to call packfile_password(NULL) before using them if you previously changed
the password. As a rule of thumb, always call packfile_password(NULL) when
you are done with operations on packfiles. The only exception to this is custom
packfiles created with pack_fopen_vtable().

See Section 1.31.26 [pack_fopen], page 279.
See Section 1.32.1 [load_datafile], page 291.
See Section 1.31.27 [pack_fopen_vtable], page 280.

1.31.26 pack_fopen

PACKFILE *pack_fopen(const char *filename, const char *mode);

Opens a file according to mode, which may contain any of the flags:

e ‘v’ - open file for reading.

e ‘w’ - open file for writing, overwriting any existing data.

e ‘p’ - open file in packed mode. Data will be compressed as it is written
to the file, and automatically uncompressed during read operations. Files
created in this mode will produce garbage if they are read without this flag
being set.

‘I’ - open file for writing in normal, unpacked mode, but add the value
F_NOPACK_MAGIC to the start of the file, so that it can later be opened
in packed mode and Allegro will automatically detect that the data does

not need to be decompressed.

Instead of these flags, one of the constants F_READ, F_WRITE,
F_READ_PACKED, F_-WRITE_PACKED or F_-WRITE_NOPACK may be
used as the mode parameter.
The packfile functions also understand several "magic" filenames that are used
for special purposes. These are:
e ‘#’ - read data that has been appended to your executable file with the
exedat utility, as if it was a regular independent disk file.

280

See also:

Allegro Manual

e ‘filename.dat#object_name’ - open a specific object from a datafile, and
read from it as if it was a regular file. You can treat nested datafiles
exactly like a normal directory structure, for example you could open ‘file-
name.dat#graphics/levell /mapdata’.

e ‘#object_name’ - combination of the above, reading an object from a
datafile that has been appended onto your executable.

With these special filenames, the contents of a datafile object or appended file
can be read in an identical way to a normal disk file, so any of the file access
functions in Allegro (eg. load_pcx() and set_config_file()) can be used to read
from them. Note that you can’t write to these special files, though: the fake file
is read only. Also, you must save your datafile uncompressed or with per-object
compression if you are planning on loading individual objects from it (otherwise
there will be an excessive amount of seeking when it is read).

Finally, be aware that the special Allegro object types aren’t the same format
as the files you import the data from. When you import data like bitmaps
or samples into the grabber, they are converted into a special Allegro-specific
format, but the ‘#’ marker file syntax reads the objects as raw binary chunks.
This means that if, for example, you want to use load_pcx() to read an image
from a datafile, you should import it as a binary block rather than as a BITMAP
object.

Example:

PACKFILE *input_file;

input_file = pack_fopen("scores.dat", "rp");
if (!input_file)
abort_on_error("Couldn’t read ‘scores.dat’!");
On success, pack_fopen() returns a pointer to a PACKFILE structure, and on

error it returns NULL and stores an error code in ‘errno’. An attempt to read
a normal file in packed mode will cause ‘errno’ to be set to EDOM.

See Section 1.31.28 [pack_fclose], page 281.

See Section 1.31.46 [pack_fopen_chunk], page 286.

See Section 1.31.25 [packfile_password], page 278.

See Section 1.31.32 [pack_getc], page 283.
See Section 1.36.51 [file_select_ex], page 346.

[
[
[
See Section 1.31.42 [pack_fread], page 285.
[
[
[

See Section 1.31.27 [pack_fopen_vtable], page 280.
See Section 3.4.49 [expackf], page 438.
See Section 1.2.32 [PACKFILE], page 24.

Chapter 1: API 281

1.31.27 pack_fopen_vtable

PACKFILE *pack_fopen_vtable(const PACKFILE_VTABLE *vtable, void *userdata) ;
Creates a new packfile structure that uses the functions specified in the vtable
instead of the standard functions. The data pointer by ‘vtable’ and ‘userdata’
must remain available for the lifetime of the created packfile.

While the created packfile structure can be used with other Allegro functions,
there are two limitations. First, opening chunks using pack_fopen_chunk() on
top of the returned packfile is not possible at this time. And packfile_password()
does not have any effect on packfiles opened with pack_fopen_vtable().

On success, it returns a pointer to a PACKFILE structure, and on error it
returns NULL and stores an error code in ‘errno’.

See also:

See Section 1.31.26 [pack_fopen], page 279.

See Section 1.31.46 [pack_fopen_chunk], page 286.
See Section 1.31.25 [packfile_password], page 278.
See Section 3.4.49 [expackf], page 438.

See Section 1.2.32 [PACKFILE], page 24.

See Section 1.2.33 [PACKFILE_VTABLE], page 24.

1.31.28 pack_fclose

int pack_fclose(PACKFILE *f);
Closes the stream ‘f° previously opened with pack_fopen() or
pack_fopen_vtable(). After you have closed the stream, performing
operations on it will yield errors in your application (e.g. crash it) or even

block your OS.

Returns zero on success. On error, returns an error code which is also stored in
‘errno’. This function can fail only when writing to files: if the file was opened
in read mode, it will always succeed.

See also:

See Section 1.31.26 [pack_fopen], page 279.

See Section 1.31.27 [pack_fopen_vtable], page 280.
See Section 1.31.25 [packfile_password], page 278.
See Section 3.4.49 [expackf], page 438.

See Section 1.2.32 [PACKFILE], page 24.

1.31.29 pack_fseek

int pack_fseek(PACKFILE *f, int offset);
Moves the position indicator of the stream ‘f’. Unlike the standard fseek()
function, this only supports forward movements relative to the current position
and in read-only streams, so don’t use negative offsets. Note that seeking is

282 Allegro Manual

very slow when reading compressed files, and so should be avoided unless you
are sure that the file is not compressed. Example:

input_file = pack_fopen("data.bin", "r");
if (!input_file)
abort_on_error("Couldn’t open binary data!");
/* Skip some useless header before reading data. */
pack_fseek(input_file, 32);

Returns zero on success or a negative number on error, storing the error code
in ‘errno’.

See also:

See Section 1.31.26 [pack_fopen], page 279.

See Section 1.31.46 [pack_fopen_chunk], page 286.
See Section 3.4.49 [expackf], page 438.

See Section 1.2.32 [PACKFILE], page 24.

1.31.30 pack_feof

int pack_feof (PACKFILE *f);
Finds out if you have reached the end of the file. It does not wait for you
to attempt to read beyond the end of the file, contrary to the ISO C feof()
function. The only way to know whether you have read beyond the end of the
file is to check the return value of the read operation you use (and be wary of
pack_*getl() as EOF is also a valid return value with these functions).

Returns non-zero if you are at the end of the file, zero otherwise.

See also:

See Section 1.31.26 [pack_fopen], page 279.

See Section 1.31.46 [pack_fopen_chunk], page 286.
See Section 1.31.31 [pack_ferror|, page 282.

See Section 1.2.32 [PACKFILE], page 24.

1.31.31 pack_ferror

int pack_ferror (PACKFILE *f);
Since EOF is used to report errors by some functions, it’s often better to use
the pack_feof() function to check explicitly for end of file and pack_ferror() to
check for errors. Both functions check indicators that are part of the internal
state of the stream to detect correctly the different situations.

Returns nonzero if the error indicator for the stream is set, meaning that an
error has occurred during a previous operation on the stream.

See also:
See Section 1.31.26 [pack_fopen], page 279.

Chapter 1: API 283

See Section 1.31.46 [pack_fopen_chunk], page 286.
See Section 1.2.32 [PACKFILE], page 24.

1.31.32 pack_getc

int pack_getc(PACKFILE *f);
Returns the next character from the stream ‘f’, or EOF if the end of the file
has been reached.

See also:

See Section 1.31.26 [pack_fopen], page 279.

See Section 1.31.46 [pack_fopen_chunk], page 286.
See Section 1.2.32 [PACKFILE], page 24.

1.31.33 pack_putc

int pack_putc(int c, PACKFILE *f);
Puts a character in the stream f.

Returns the character written on success, or EOF on error.

See also:

See Section 1.31.26 [pack_fopen], page 279.

See Section 1.31.46 [pack_fopen_chunk], page 286.
See Section 1.2.32 [PACKFILE], page 24.

1.31.34 pack_igetw

int pack_igetw(PACKFILE *f);
Like pack_getc, but reads a 16-bit word from a file, using Intel byte ordering
(least significant byte first, a.k.a. little-endian).

See also:
See Section 1.31.32 [pack_getc], page 283.
See Section 1.2.32 [PACKFILE], page 24.

1.31.35 pack_iputw

int pack_iputw(int c, PACKFILE *f);
Like pack_putc, but writes a 16-bit word to a file, using Intel byte ordering
(least significant byte first, a.k.a. little-endian).

See also:
See Section 1.31.33 [pack_putc], page 283.
See Section 1.2.32 [PACKFILE], page 24.

284 Allegro Manual

1.31.36 pack_igetl

long pack_igetl(PACKFILE *f);
Like pack_getc, but reads a 32-bit long from a file, using Intel byte ordering
(least significant byte first, a.k.a. little-endian).

See also:
See Section 1.31.32 [pack_getc|, page 283.
See Section 1.2.32 [PACKFILE], page 24.

1.31.37 pack_iputl

long pack_iputl(long c, PACKFILE *f);
Like pack_putc, but writes a 32-bit long to a file, using Intel byte ordering (least
significant byte first, a.k.a. little-endian).

See also:
See Section 1.31.33 [pack_putc|, page 283.
See Section 1.2.32 [PACKFILE], page 24.

1.31.38 pack_mgetw

int pack_mgetw(PACKFILE *f);
Like pack_getc, but reads a 16-bit word from a file, using Motorola byte ordering
(most significant byte first, a.k.a. big-endian).

See also:
See Section 1.31.32 [pack_getc|, page 283.
See Section 1.2.32 [PACKFILE], page 24.

1.31.39 pack_mputw

int pack_mputw(int c, PACKFILE *f);
Like pack_putc, but writes a 16-bit word to a file, using Motorola byte ordering
(most significant byte first, a.k.a. big-endian).

See also:
See Section 1.31.33 [pack_putc|, page 283.
See Section 1.2.32 [PACKFILE], page 24.

1.31.40 pack_mgetl

long pack_mgetl (PACKFILE *f);
Like pack_getc, but reads a 32-bit long from a file, using Motorola byte ordering
(most significant byte first, a.k.a. big-endian).

See also:
See Section 1.31.32 [pack_getc|, page 283.

Chapter 1: API 285

See Section 1.2.32 [PACKFILE], page 24.

1.31.41 pack_mputl

long pack_mputl(long c, PACKFILE *f);
Like pack_putc, but writes a 32-bit long to a file, using Motorola byte ordering
(most significant byte first, a.k.a. big-endian).

See also:
See Section 1.31.33 [pack_putc], page 283.
See Section 1.2.32 [PACKFILE], page 24.

1.31.42 pack_fread

long pack_fread(void #*p, long n, PACKFILE *f);
Reads ‘n’ bytes from the stream ‘f’, storing them at the memory location pointed
to by ‘p’. Example:

unsigned char buf [256];

if (pack_fread(buf, 256, input_file) != 256)
abort_on_error("Truncated input file!");

Returns the number of bytes read, which will be less than ‘n’ if EOF is reached
or an error occurs. Error codes are stored in errno.

See also:

See Section 1.31.26 [pack_fopen], page 279.

See Section 1.31.46 [pack_fopen_chunk], page 286.
See Section 1.31.30 [pack_feof], page 282.

See Section 3.4.49 [expackf], page 438.

See Section 1.2.32 [PACKFILE], page 24.

1.31.43 pack_fwrite

long pack_fwrite(const void *p, long n, PACKFILE *f);
Writes ‘n’ bytes to the stream ‘f” from memory location pointed to by ‘p’.

Returns the number of bytes written, which will be less than n if an error occurs.
Error codes are stored in errno.

See also:

See Section 1.31.26 [pack_fopen], page 279.

See Section 1.31.46 [pack_fopen_chunk], page 286.
See Section 1.31.30 [pack_feof], page 282.

See Section 1.2.32 [PACKFILE], page 24.

286

Allegro Manual

1.31.44 pack_fgets
char *pack_fgets(char *p, int max, PACKFILE xf);

See also:

Reads a line from the stream ‘f’, storing it at location po