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PREFACE

AN American student approaching the higher parts of mathe-

matics usually finds himself unfamiliar with most of the main facts
of algebra, to say nothing of their proofs. Thus he has only a
rudimentary knowledge of systems of linear equations, and he knows
next to nothing about the subject of quadratic forms. Students in
this condition, if they receive any algebraic instruction at all, are
usually plunged into the detailed study of some special branch of
algebra, such as the theory of equations or the theory of invariants,
where their lack of real mastery of algebraic principles makes it
almost inevitable that the work done should degenerate to the level
of purely formal manipulations. It is the object of the present
book to introduce the student to higher algebra in such a way that
he shall, on the one hand, learn what is meant by a proof in algebra
and acquaint himself with the proofs of the most fundamental facts,
and, on the other, become familiar with many important results of
~ algebra which are new to him.
) The book being thus intended, not as a compendium, but really,
as its title states, only as an introduction to higher algebra, the
attempt has been made throughout to lay a sufficiently broad founda-
tion to enable the reader to pursue his further studies intelligently,
rather than to carry any single topic to logical completeness. No
apology seems necessary for the omission of even such important
subjects as Galois’s Theory and a systematic treatment of invariants.
A selection being necessary, those subjects have been chosen for
treatment which have proved themselves of greatest importance in
geometry and analysis, as well as in algebra, and the relations of
the algebraic theories to geometry have been emphasized throughout.
At the same time it must be borne in mind that the subject primarily
treated is algebra, not analytic geometry, so that such geometric
information as is given is necessarily of a fragmentary and some-
what accidental character.

No algebraic knowledge is presupposed beyond a familiarity with

elementary algebra up to and including quadratic equations, and
v




vi PREFACE

such a knowledge of determinants and the method of mathematical
induction as may easily be acquired by a freshman in a week or
two. Nevertheless, the book is not intended for wholly immature
readers, but rather for students who have had two or three years’
training in the elements of higher mathematics, particularly in
analytic geometry and the calculus. In fact, a good elementary
knowledge of analytic geometry is indispensable.

The exercises at the ends of the sections form an essential part
of the book, not merely in giving the reader an opportunity to think
for himself on the subjects treated, but also, in many cases, by sup-
plying him with at least the outlines of important additional theories.
As illustrations of this we may mention Sylvester’s Law of Nullity
(page 80), orthogonal transformations (page 154 and page 173), and
the theory of the invariants of the biquadratic binary form (page 260).

On a first reading of Chapters I-VII, it may be found desirable
to omit some or all of sections 10, 11, 18, 19, 20, 25, 27, 34,35. The
reader may then either take up the subject of quadratic forms
(Chapters VIII-XIII), or, if he prefer, he may pass directly to the
more general questions treated in Chapters XI1V-XIX.

The chapters on Elementary Divisors (XX-XXII) form decid-
edly the most advanced and special portion of the beok. A person
wishing to read them without reading the rest of the book should
first acquaint himself with the contents of sections 19 (omitting
Theorem 1), 21-25, 36, 42, 43.

In a work of this kind, it has not seemed advisable to give many
bibliographical references, nor would an acknowledgement at this
point of the sources from which the material has been taken be
feasible. The work of two mathematicians, however, Kronecker
and Frobenius, has been of such decisive influence on the character
of the book that it is fitting that their names receive special men-
tion here. The author would also acknowledge his indebtedness
to his colleague, Professor Osgood, for suggestions and criticisms
relating to Chapters XIV-XVTI.

This book has grown out of courses of lectures which have been
delivered by the author at Harvard University during the last ten
years. His thanks are due to Mr. Duval, one of his former pupils,
without whose assistance the book would probably never have been
written.
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INTRODUCTION TO HIGHER ALGEBRA

CHAPTER 1

POLYNOMIALS AND THEIR MOST FUNDAMENTAL
PROPERTIES

1. Polynomials in One Variable. By an integral rational func-
tion of z, or, as we shall say for brevity, a polynomial in z, is meant
a function of z determined by an expression of the form

@ 0 2% + Cux®s + oo + 2%,

where the «'s are integers- positive or zero, while the ¢’s are any con-
stants, real or imaginary. We may without loss of generality
assume that no two of the «’s are equal. This being the case, the
expressions ¢z are called the terms of the polynomial, ¢; is called
the coefficient of this term, and «; is called its degree. The highest
degree of any term whose coefficient is not zero is called the degree
of the polynomial.

It should be noticed that the conceptions just defined — terms,
coefficients, degree — apply not to the polynomial itself, but to the
particular expression (1) which we use to determine the polynomial,
and it would be quite conceivable that one and the same function of
z might be given by either one of two wholly different expressions
of the form (1). We shall presently see (cf. Theorem 5 below)
that this cannot be the case except for the obvious fact that we
may insert in or remove from (1) any terms we please with zero
coefficients. !

By arranging the terms in (1) in the order of decreasing «’s and
supplying, if necessary, certain missing terms with zero coefficients,
we may write the polynomial in the normal form

2) ayz" + a 2"+ - + a2+ a,
B 1



2 INTRODUCTION TO HIGHER ALGEBRA

It should, however, constantly be borne in mind that a polynomial
in this form is not necessarily of the nth degree; but will be of the
nth degree when and only when a,= 0.

DEFINITION. Two polynomials, fi(z) and fy(z). are said to be
tdentically equal (fi=f,) if they are equal for all values of x. A
polynomial f(z) is said to vanish identically (f=0) if it vanishes for
all values of z.

We learn in elementary algebra how to add, subtract, and multi-
ply * polynomials; that is, when two polynomials f;(z) and f,(z) are
given, to form new polynomials equal to the sum, difference, and
product of these two.

THEOREM 1. If the polynomial
f@)=ayz"+ a;2" '+ - +a,

vantshes when x = «, there exists another polynomial
¢, (z)=ay2" 4+ afz" P+ - 4+ af_y,

such that S(2) =(z — a)¢,(z).

For since by hypothesis f(«) = 0, we have
J(2) = f(2) = fle) = ay(2" — ) + ay(e"t— o) 4 e ta, (2 — ).
Now by the rule of elementary algebra for multiplying together
two polynomials we have

P —df=(r— ) (#F 4 a4 oo oF ).
Hence

Sf(@)=(z - o) [ay(a" + ez P+ oo + @) 4 0y (27 w2 4 e
+a* )+ o @, ]
If we take as ¢,(2) the polynomial in brackets, our theorem is

proved.
Suppose now that Bis another value of # distinct from a for which

is zero. Tl
f(z) is zero hen FB) = (B— e)by(B) = 0

* The question of division is somewhat more complicated and will be considered
in §63.
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and since g-w £0, ¢ (B)=0. We can therefore apply the theo
rem  just proved to the polynomial ¢ (x) thus getting a new

Iyuomial R )
I)(’ A (f)')(.'.): "1.)1'" 2 + ll{'.l'” 3 + . + (I,I‘I_,g,
such that by (e B )py(r),

and therefore Sy (o ) (= B)dy( ).

Proceeding in this way, we get the following general result:

Turores Do 11w wy -y are k distinet constants, and if

A T T e e O N L (k)
and Sy ay) oo e oo fla) o2 0,
then Sy e e (e ) e (g ) (),
where Bloy g bt A e e b

Applying this theorent in particular to the case s== &, we see that
if the polypomial ) vanishes for ndistinet values e, @y, 0w, of 1,
then .
.,(-l‘) ll”(.l' ’ “1)("‘ ’ u.‘,)---(.l' “n)'
Aveordingly, if a, 7 0, there can be no value of o other than e, -«
for which fley 00 We have thus provd

"

Torowes S0 polynomial of the nth deyree 0 x ecannot vanish
Sor mere than nodistinet values of r,

Sinee the only polynomials which have no degree are those all ot
whose cocllicients are zero, and sinece such polynomials obviously
vanish identically, we get the fundamental result :

Tuwowes 4 A necersary and suffivient condition that a polyno-
mial in o vandish fdentically is that all ita coeflicients be zero.

Sinee two polynowials inoooare identically equal when and only
when their ditference vanishes identically, we have

Turorem 5. A wecessary and suflicient condition that two polyne
mials in x be identically equal is that they have the same cocflicients.

This theorem shows, as was said above, that the terms, coeflicients,
und degree of a polynomial depend merely on the polynomial itself
uot on the specinl way in which it is expressed.
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vanishes for all values of z;. Hence its coefficients must, by Theorem
4, § 1, all be zero: bi(ahy ) =0 (G=0,1, - m).

That is, the polynomials ¢, ¢y, ==+ &, vanish for all values of the
variables, since (24, <+ z,) was any set of values. Accordingly, by
the assumption we have made that our theorem is true for polyno-
mials in n — 1 variables, all the coefficients of all the polynomials
b b1 -+ b are zero. These, however, are simply the coefficients
of £ Thus our theorem is proved.

Since two polynomials are identically equal when and only
when their difference is identically zero, we infer now at once the
further theorem :

THEOREM 2. A necessary and sufficient condition that two poly-
nomials be identically equal i that the coefficients of their corresponding
terms be equal.

We come next to

THEOREM 3. Iff] and f, are polynomials in any number of vari-
ables of degrees my and mq respectively, the product f\fy will be of de-
gree my + my.

This theorem is obviously true in the case of polynomials in one
variable. If, then, assuming it tc be true for polynomials in n —1
variables we can prove it to be true for polynomials in n variables,
the proof of our theorem by the method of mathematical induction
will be complete.

Let us look first at the special case in which both polynomials
are homogeneous. Here every term we get by multiplying them
together by the method of elementary algebra is of degree m, + m,.
Our theorem will therefore be proved if we can show that there is at
least one term in the product whose coefficient is not zero. For
this purpose, let us arrange the two polynomials f; and f, according
to descending powers of z,,

ﬁ(%’ “es xn)_—_.._ ¢6(x2, een x") xlkl + ¢£(m2, e xﬂ)xlkl-l + ooy
f2(xl’ xn)E ¢6, (x'), xn)mlk" + ¢:{, (1‘2, e xn)xl"z‘l e pCUIN

Here we may assume that neither ¢} nor ¢{ vanishes identically.
Since f; and f; are homogeneous, ¢{ and ¢¢' will also be homogeneous
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of degrees m; —k; and m, — k, respectively. In the product f; f, the
terms of highest degree in z; will be those in the product

¢6 (Zz, U xn) ¢é,(x2s ) gy

and since we assume our theorem to hold for polynomials in n—1
R .
variables, ¢¢ 5 will be a polynomial of degree m, + m,—%k, — £,
Any term in this product whose coefficient is not zero gives us when
inli L N Y .
multiplied by z%*™ a term of the product f, f, of degree m,+ m,
whose coefficient is not zero. Thus our theorem is proved for the
case of homogeneous polynomials.
Let us now, in the general case, write f; and f; in the forms

j;l.(xl’ IE,,) = (f)rr)z,(xl’ xn) + ¢1,n1—1(x1’ zn) + bt
fz(xh xn) = ¢;I’lg(xl’ xn) + ¢7’1,22—1(x1’ xn) + e

where ¢/ and ¢/ are homogeneous polynomials which are either of
degrees ¢ and j respectively, or which vanish identically. Since,
by hypothesis, f; and f, are of degrees m; and m, respectively,

e and ¢/ will not vanish identically, but will be of degrees
my and mg.

The terms of highest degree in the product f; f; will therefore be
the terms of the product ¢}, ¢, , and this being a product of homo-
geneous polynomials comes under the case just treated and is there-
fore of degree m; +m,. The same is therefore true of the product
Jife and our theorem is proved.

By a successive application of this theorem we infer

CoROLLARY. If k polynomials are of degrees my, my, -+ my re-
spectively, their product is of degree my+ my =+ -+ + my.

We mention further, on account of their great importance, the
two rather obvious results :

TurROREM 4. If the product of two or more polynomials is identi-
cally zero, at least one of the factors must be identically zero.

For if none of them were identically zero, they would all have
definite degrees, and therefore their product would, by Theorem 3,
have a definite degree, and would therefore not vanish identically.

It is from this theorem that we draw our justification for cancel-
ling out from an identity a factor which we know to be not identi-
cally zero.
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THEOREM 5. If f(zy - 2,) 18 @ polynomial which is not identically
zero, and if ¢(wy, -+ @,) vanishes at all points where f does not vanish,
then ¢ vanishes identically.

This follows from Theorem 4 when we notice that f¢ =0.

EXERCISES
1. If fand ¢ are polynomials in any number of variables, what can be inferred
from the identity /2= ¢? concerning the relation between the polynomials fand ¢?

2. If £, and f, are polynomials in (), -- ,) which are of degrees m; and m,
respectively in zy, prove that their product is of degree m + m, in 2;.

3. Geometric Interpretations. In dealing with functions of a
single real variable, the different values which the variable may
take on may be represented geometrically by the points of a line;
it being understood that when we speak of a point # we mean the
point which is situated on the line at a distance of 2 units (to the
right or left according as z is positive or negative) from a certain
fixed origin O, on the line. Similarly, in the case of functions of
two real variables, the sets of values of the variables may be pictured
geometrically by the points of a plane, and in the case of three real
variables, by the points of space ; the set of values represented by a
point being, in each case, the rectangular codrdinates of that point.
When we come to functions of four or more variables, however, this
geometric representation is impossible. :

The complex variable z = & + 57 depends on the two independent
real variables £ and # in such 4 way that to every pair of real values
(&, ) there corresponds one and only one value of z. The different
values which a single complex variable may take on may, therefore,
be represented by the points of a plane in which (&, 5) are used as
cartesian coordinates. In dealing with functions of more than one
complex variable, however, this geometric representation is impos-
sible, since even two complex variables =&+, y=§ + 7% are
equivalent to four real variables (&, 9, &, ;).

By the neighborhood of a point z = a we mean that part of the
line between the points £ =a — « and = a + « (« being an arbitrary
positive constant, large or small), or what is the same thing, all
points whose codrdinates = satisfy the inequality [z —a|< a.*

* We use the symbol |Z | to denote the absolute value of Z, i.e. the numerical
value of Z if Z is real, the modulus of Z if Z is imaginary.



POLYNOMIALS AND THEIR FUNDAMENTAL PROPERTIES 9

Similarly, by the neighborhood of a point (@, ) in a plane, we
shall mean all points whose codrdinates (z, y) satisfy the inequalities

lz—al<e [y=b[<p,

where « and B are positive constants. This neighborhood thus con-
sists of the interior of a rectangle of which (a, d) is the center and
whose sides are parallel to the codrdinate axes.

By the neighborhood of a point (a, &, ¢) in space we mean all
points whose codrdinates (2, y, 2) satisfy the inequalities

o—aj<e ly—b|<B le—cl<r.

In all these cases it will be noticed that the neighborhood
may be large or small according to the choice of the constants
o B, 7.

If we are dealing with a single complex variable z= £+ 7, we
understand by the neighborhood of a point @ all points in the plane
of complex quantities whose complex coérdinate z satisfies the in-
equality |z — a| < @, « being as before a real positive constant. Since
|z — a] is equal to the distance between z and «, the neighborhood of
a now consists of the interior of a circle of radius « described about
@ as center.

It is found convenient to extend the geometric terminology
we have here introduced to the case of any number of real or
complex variables. Thus if we are dealing with » independent
variables (z,, z, -+ ®,), we speak of any particular set bf values
of these variables as a point in space of m dimensions. Here
we have to distinguish between real points, that is sets of values
of the z’s which are all real, and ¢maginary points in which
this is not the case. In using these terms we do not propose
even to raise the question whether in any geometric sense there
is such a thing as space of more than three dimensions. We
merely use these terms in a wholly conventional algebraic
sense because on the one hand they have the advantage of
conciseness over the ordinary algebraic terms, and on the other
hand, by calling up in our minds the geometric pictures of three
dimensions or less, this terminology is often suggestive of new
relations which might otherwise not present themselves to us so
readily.
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By the neighborhood of the point (a;, ay, -+ @,) we understand all
points which satisfy the inequalities

|7y — ay| <ep 23— @] <y |2, — an] < o,

where @), &y, -+ @, are real positive constants.

If, in particular, (@y, @y -+ @,) is a real point, we may speak of
the real neighborhood of this point, meaning thereby all real points
(1 7y, = 7,) Which satisfy the above inequalities.

As an illustration of the use to which the conception of the
neighborhood of a point can be put in algebra, we will prove the
following important theorem :

THEOREM 1. A necessary and sufficient condition that 4 poly-
nomial f(zy, ++ 2,) vanish identically 18 that it vanish throughowut the
neighborhood of a point (ay, ++ a,).

That this is a necessary condition is obvious. To prove that it
is sufficient we begin with the case n=1.

Suppose then that f(z) vanishes throughout a certain neighbor-
hood of the point 2= a. If f(2) did not vanish identically, it would
be of some definite degree, say k, and therefore could not vanish at
more than % points (cf. Theorem 8, § 1). This, however, is not the
case, since it vanishes at an infinite number of points, namely all
points in the neighborhood of z=a. Thus our theorem is proved
in the case n=1.

Turning now to the case n= 2, let

f(@, )= ¢o(9)2" + 1(y)2* 71+ o + ()

be a polynomial which vanishes throughout a certain neighborhood
of the point (4, ), say when

lz—a|<e, |y—b]<p.
Let y, be any constant satisfying the inequality
90— 8] <B.

Then f(2, y,) is a polynominal in z alone which vanishes whenever
lz—al<e Hence, by the case n=1 of our theorem, f(z, y,) = 0.

That is,
$o(%0) =)= - = $u(¥o) = 0.
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Thus all these polynomials ¢ vanish at every point y, in the neigh-
borhood of y =25, and therefore, by the case n =1 of our theorem,
they are all identically zero. From this it follows that for every
value of =z, f(z, y) vanishes for all values of y, that is f=0, and
our theorem is proved.

We leave to the reader the obvious extension of this method of
proof to the case of » variables by the use of mathematical induction.

From the theorem just proved we can infer at once the following:

THEOREM 2. A necessary and sufficient condition that two polyno-
mials in the variables (z,,---x,) be identically equal vs that they be
equal throughout the neighborhood of a point (ay,---a,).

EXERCISES

1. Theorem 3, § 1 may be stated as follows: If f is a polynomial in one
variable which is known not to be of degree higher than n, then if f vanishes at
n 4 1 distinct points, it vanishes identically.

Establish the following generalization of this theorem :

If #is a polynomial in (z, ) which is known not to be of higher degree than
n in z, and not of higher degree than m in y, then, if f vanishes at the

(n+ 1) (m+ 1) distinct points: ( i=1,2,. n+ 1)

(s ) j=1,2 m+1

it vanishes identically.

2. Generalize the theorem of Exercise 1 to polynomials in any number of
variables.

3. Prove Theorem 4, § 2 by means of Theorem 1 of the present section; and
from this result deduce Theorem 3, § 2.

4. Do Theorems 1 and 2 of this section hold if we consider only real polyno-
mials and the real neighborhoods of real points ?

4. Homogeneous Coérdinates. Though only two quantities are
necessary in order to locate the position of a point in a plane, it is
frequently more convenient to use three, the precise values of the
quantities being of no consequence, but only their ratios. We will
represent these three quantities by z, , ¢, and define their ratios by
the equations

4 z_x, =7,
t t
where X and Y are the cartesian codrdinates of a point in a plane.

Thus (2, 8, 5) will represent the point whose abscissa is 2 and whose
ordinate is 4. Any set of three numbers which are proportional to
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(2, 8, 5) will represent the same point. So that, while to every
set of three numbers (with certain exceptions to be noted below)
there corresponds cne and only one point, to each point there cor-
respond an infinite number of different sets of three numbers, all
of which, however, are proportional.

When t=0 our definition is meaningless; but if we consider
the points (2, 8, 1), (2, 8, 0.1), (2, 8, 0.01), (2, 3, 0.001), ..., which
are, in cartesian codrdinates, the points (2, 8), (20, 30), (200, 300),
(2000, 3000), -, we see that they all lie on the straight line through
the origin whose slope is §. Thus as ¢ approaches zero, z and y
remaining fixed but not both zero, the point (z, y, t) moves away
along a straight line through the origin whose slope is y/2. Hence
it is natural to speak of (z, y, 0) as the point at infinity on the line
whose slope is y/z. If ¢ approaches zero through negative values,
the point will move off along the same line, but in the opposite
direction. We will not distinguish between these two cases, but
will speak of only ome point at infinity on any particular line. It
can be easily verified that if a point moves to infinity along any line
parallel to the one just considered, its homogeneous cosrdinates may
be made to approach the same values (z, , 0) as those just obtained.
It is therefore natural to speak of the point at infinity in a cer-
tain direction rather than on a definite line. Finally we will agres
that two points at infinity whose codrdinates are proportional shall
be regarded as coinciding, since these codrdinates may be regarded
as the limits of the codrdinates of one and the same point which
moves further and further off.*

If = y=1t=0, we will not say that we have a point at all, since
the codrdinates of any point whatever may be taken as small as we
please, and so (0, 0, 0) might be regarded as the limits of the coér-
dinates of any fixed or variable point.

* It should be noticed that in speaking of points at infinity we are, considering
the matter from a purely logical point of view, doing exactly the same thing that we
did in § 3 in speaking of imaginary points, or points in space of » dimensions ; that is,
we are speaking of a set of quantities as a ‘¢ point’* which are not the cosrdinates of
any point. The only difference between the two cases is that the codrdinates of our
‘* point at infinity ** are the limits of the codrdinates of a true point.

Thus, in particular, it is a pure convention, though a desirable and convenient
one, when we say that two points at infinity shall be regarded as coincident when and
only when their codrdinates are proportional. We might, if we chose, regard all
points at infinity as coincident. There is no logical compulsion in the matter.
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The equation
AX?*+ BXY+CY?+ DX+ EY + F=0

becomes, in homogeneous codrdinates,
2 g% 0¥ L DZLEY L F=0
At2+Btﬂ+0t2 +Dt+Et+F— )

or . A2? + Bzy + Cy?+ Dat + Eyt + Ft* =0,

a homogeneous equation of the second degree; and it is evident that
if the codrdinates X, ¥ in any algebraic equation be replaced by
the codrdinates z, y, ¢, the resulting equation will be homogeneous,
and of the same degree as the original equation. It is to this fact
that the system owes its name, as well as one of its chief advantages.

The equation Az + By + Ct=0

represents, in general, a line, but if A =B =0, C'+0, it has no true
geometric locus. It is, in this case, satisfied by the codrdinates of all
points at infinity, and by the codrdinates of no other point. We shall
therefore speak of it as the equation of the line at infinity. The reader
may easily verify, by using the equation of a line in terms of its inter-
cepts, that if a straight line move further and further away, its homo-
geneous equation will approach more and more nearly the form ¢=0.

In space of three dimensions we will represent the point whose
cartesian codrdinates are X, ¥, Z by the four homogeneous codrdi-
nates z, ¥, 2, t, whose ratios are defined by the equations

T_x Y-y, =2z
¢ ¢ ¢

We will speak of (2, y, 2, 0) as “the point at infinity” on a line
whose direction cosines are
z y 2 .
'\/x2+y2+z2, \/xz+y3+z3, Va4 yd + 22

(0, 0, 0, 0) will be excluded, and ¢ =0 will be spoken of as the equa-
tion of the plane at infinity.

Extending the same terminology to the general case, we shall
sometimes find it convenient to speak of (2, z,, ::- z,) not as a point
in space of n dimensions, but as a point represented by its homo-
geneous codrdinates in space of m—1 dimensions. Two points
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whose coérdinates ave proportional will be spoken of as identical,
a point whose last codrdinate is zero will be spoken ~f us a point at
infinity, and the case # = =2,= 0 will not be spoken of as a
point at all. This terminology will be adopted only in connection
with homogeneous polynomials, and even then it must be clearly
understood that we are perfectly free to adopt whichever terminol-
ogy we find most convenient. Thus, for instance, if f(z, ,, zg) is
a homogeneous polynomial of the second degree, the equation f=0
may be regarded either as determining a conic in a plane (z, ,, z,
being homogeneous coordinates) or a quadric cone in space (z;, z,,
being ordinary cartesian codrdinates).

Homogeneous codrdinates may also be used in space of one
dimension. We should then determine the points on a line by two
codrdinates z,t whose ratio #/t is the non-homogeneous codrdinate
X, i.e. the distance of the point from the origin. It is this repre-
sentation that is commonly made use of in connection with the
theory of binary forms.

5. The Continuity of Polynomials.

DEFINITION. A function f(zy, --- z,) 18 said to be continuous at the
point (¢y, -+ ¢,) ify mo matter how small a positive quantity e be chosen,
a neighborhood of the point (ey, -+ ¢,) can be found so small that the dif-
ference between the value of the function at any prnt of this neighbor
hood and its value at the point (¢, -+ ¢,) 18 in absolute value less than e,

That is, f is continuous at (¢, -+ ¢,) if, having chosen a positive
quantity e, it is possible to determine a positive 8 such that

|l )= flen el <e
for all values of (z; --- ,) which satisfy the inequalities,
loy—e| <8 [m—al <8 |z, —e] <8

THEOREM 1. If two functions are continuous at a potnt, their
sum 18 continuous at this point.

Let £, and f; be two functions continuous at the point (e, - ¢,)
and let &, and £, be their respective values at this point. Then, no
matter how small the positive quantity e may be chosen, we may
take 8, and &, so small that

il <ie when |z; —¢;| < 8,
|fa—k|l < }e when |z, —¢| < &,
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Accordingly
=t +1fa—Fl<e Wh9nl$i—0il<3,
where 8 is the smaller of the two quantities & and §,; and, since
|A|+|B|z|A+ B|, we have
Vi— ko — k| =[(f1+/2) — (ky + k)| <e  when [z;—¢;|< &

Hence f, + 7, is continuous at the point (¢, *** ¢,).

COROLLARY. If a finite number of functions are continuous at a
point, their sum is continuous at this point.

THEOREM 2. If two functions are continuous at a point, their
product 18 continuous at this point.

Let f} and f, be the two functions, and %, and %k, their values at
the point (e;, - ¢,) where they are assumed to be continuous. We
have to prove that however small ¢ may be, § can be chosen so small
that

(1) |fifo —F kg <e when |z;— ¢;| <8
Let 5 be a positive constant, which we shall ultimately restrict to a
certain degree of smallness, and let us choose two positive constants
8, and §, such 1.;hat =yl <n when |z, — ¢ < &,

Ify — &gl <7m when |z; — ¢;| < &,
Now take 8 as the smaller of the two quantities §, and §. Then.
when |z; — ¢;| <,

fifa = Bileo| = 15,1 — B) + B (fa — Bo)|
SIAIA =kl + k|1 = ) S 34+ [ Rafd e

Accordingly since, when |z, — ¢;| <8,

ol = |Eeo + (fo = o)| | Beg| + | fy — Feo| < | 5| +
we may write
€) |f1fe = Fyko| < {1 By + |Ral} m + 92

If &, and %, are not both zero, let us take » small enough to satisfy
the two inequalities

€ €
<Lz <alz’
KTV AENATA V:

—
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If &, =k, =0, we will restrict o merely by the inequality
< Ve.

In either case, inequality (2) then reduces to the form (1) and our
theorem is proved.

COROLLARY. If a finite number of functions are continuous at a
point, their product is continuous at this point.

Referring now to our definition of continuity, we see that any
constant mag be regarded as a continuous function of (z,, --- z,) for
all values of these variables, and that the same is true of any one of
these variables themselves. Hence by the last corollary any function
of the form ('t ... 2%, where the k’s are integers positive or zero, is
continuous at every point. If we now refer to the corollary to
Theorem 1, we arrive at the theorem:

THEOREM 3. Ary polynomial i8 a continuous function for all
values of the variables.

Finally, we give a simple application of this theorem.

TrEOREM 4. If f(z), -+ 2,) 18 @ polynomial and f(ey, -+ e,) %0,
1t 18 possible to take a neighborhood of the point (cy, --- ¢,) 8o small that
f does not vanish at any point in this neighborhood.

Let & =f(ey, --- ¢,)- Then, on account of the continuity of f at
(1 ++ ¢a) & positive quantity & can be chosen so small that through-
out the neighborhood |2; — ¢, < 8, the inequality

|f— R <3|k

is satisfied. In this neighborhood / cannot vanish; for at any point
where it vanished we should have

|f — k| =k <]|Fl|,
which is impossible since by hypothesis % + 0.

6. The Fundamental Theorem of Algebra. Up to this point no
use has been made of what is often known as the fundamental
theorem of algebra, namely the proposition that every algebraic
equation has a root. This fact we may state in more precise form
as follows:
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TurorEM 1. If f() is a polynomial of the nth degree where
n 2 1, there exists at least one value of  for which f(z)=0.

This theorem, fundamental though it is, is not necessary for
most of the developments in this book. Moreover, the methods of
proving the theorem are essentially not algebraic, or only in part
algebraic. Accordingly, we will give no proof of the theorem here,
but merely refer the reader who desires a formal proof to any of the
text-books on the theory of functions of a complex variable. We
shall, however, when we find it convenient to do so, assume the
truth of this theorem. In this section we will deduce a few of its
more immediate consequences.

THEOREM 2. If f(z) is a polynomial of the nth degree,
fl@)=ay2" +a2" 1+ - +a,z+a, (ay#0).

there exists one and only one set of constants, &y, oy, +++ o, such that
f(2)=ag(z — a)(z — o) - (2 — &,).

This theorem is seen at once to be true for polynomials of the
first degree. Let us then use the method of mathematical induction
and assume the proposition true for all polynomials of degree less
than n. If we can infer that the theorem is true for polynomials of
the nth degree, it follows that being true for those of the first degree
it is true for those of the second, hence for those of the third, ete.

By Theorem 1 we see that there is at least one value of z for
which f(z)=0. Call such a value ¢;. By Theorem 1, § 1 we may

write
f(z)=(z— o)) p(2),
where d(z)=ayz* 1+ b2t 4 oo + b,y
Since ¢(z) is a polynomial of degree » —1, and since we are assum-

ing our theorem to be true for all such polynomials, there exist
n — 1 constants «,, «++ &, such that

$(z) = ag(z — &) -+ (2 — @)
Hence J(@)=ay(z— o) (z — ag) + (x — o).

Thus half of our theorem is proved.
c
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Suppose now there were two such sets of constants, «,, «+ «, and
By By We should then have

1) Fe)=ae— )@= a)=o(o= By @=L

Let z = «; in this identity. This gives
ag(ey — By)(ay — By) + (& — B,) = 0.

Accordingly, since @;#0, «; must be equal to one of the quan-
tities By, By *** B Let us suppose the B’s to have been taken in
such an order that ¢; =8;. Now in the identity (1) cancel out the
factor ay(z — &) (see Theorem 4, § 2). This gives

(=) = (2 — @)= (2= ) =+ (2 — Ba)-

Accordingly, since we have assumed the theorem we are proving
to be true for polynomials of degree n— 1, the constants By ++ B,
are the same, except perhaps for the order, as the constants a,, - a,,
and our theorem is proved.

DEerFINITION.  The constants ay, - o, determined tn the last theo-
rem are called the xoots of the polynomial f(z), oz:“"qf the equation
F2)=0. If k of these roots are equal to one another, but different
from all the other roots, this root is called a k-fold root.

It is at once seen by reference to Theorem 1, § 1 that these roots
are the only points at which f(z) vanishes.

TuroreM 3. If f(zy, - z,) %8 a polynomial which is not ident:-
cally equal to a constant, there are an infinite number of points (zy, - z,)
at which f#0, and also an infinite number at which f=0, provided
n>1.

The truth of the first part of this theorem is at once obvious, for,
since f is not identically zero, a poiut can be found at which it is not
zero, and then a neighborhood of this point can be taken so small
that f does not vanish in this neighborhood (Theorem 4, § 5). This
neighborhood, of course, consists of an infinite number of points.

To prove that f vanishes at an infinite number of points, let us
select one of the variables which enters into f to at least the first
degree. Without loss of generality we may suppose this variable
to be z;. We may then write

f(xl\ xn) = F0<x2’ ee xn)zf + Fl(xﬁ’ “es xn)xf"l + .-+ Fk(xz’ xn),
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where £>1 and F, is not identically zero. Let (e, --- ¢,) be any
point at which F;is not zero. Then f(z,, ¢, -+ ¢,) is a polynomial
of the kth degree in z, alone. Accordingly, by Theorem 1, there is
at least one value of z; for which it vanishes. If ¢ is such a value,
J(ey ¢y -+ ¢,) =0. Moreover, by the part of our theorem already
proved, there are an infinite number of points where F, = 0, that
is an infinite number of choices possible for the quantities ¢, -+« ¢,.
Thus our theorem is completely proved.

Finally, we will state, without proof, for future reference, a
theorem which says, in brief, that the roots of an algebraic equation
are continuous functions of the coefficients:

THEOREM 4. If a 48 a root of the polynomial

#*
QL + a2 4 -t a2+ (Z“jg
9

then mo matter how small a netghborhood |z — «| < e of the point o we
may consider, it 1s possible to take in space of n+ 1 dimensions a neigh-
&orhood of the point (ay ay, - a,) so small that, if (by, by, «-- b,) s any
point in this neighborhood, the polynomial

bo2" +byz" 14 + b, x4+ b,
has at least one root B in the neighborhood |z — «| < € of the point a.

For a proof of this theorem we refer to Weber's Algebra,
Vol. 1, § 44.

* The theorem remains true if we merely assume that the polynomial is of at least
the first degree. That is, some of the first coefficients ao, a3, +-- may be zero.




CHAPTER II
A FEW PROPERTIES OF DETERMINANTS

9. Some Definitions. We assume that the reader is familiar with
the determinant notation, and will merely recall to him that by a
determinant of the mth order

Ay % O
gy gy =+ Qgy

Apy  Qug  *or Qpy

we understand a certain homogeneous polynomial of the nth degree
in the n? elements a;. By the side of these determinants it is often
desirable to consider the system of the n? elements arranged in the
order in which they stand in the determinant, but not combined
into a polynomial. Such a square array of n? elements we speak
of as a matriz. In fact, we will lay down the following somewhat
more general definition of this term:

DrrFINITION 1. A system of mn quantities arranged in a rectangu.
lar array of m rows and n columns is called a matriz. If m=mn, we
say that we have a square matriz of order n.

It is customary to place double bars on each side of this array.
thus:
1 G13 " O
Qg1 Gy =+ Ggn

.

Amy Bmg ' Omn
20
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Sometimes parentheses are used, thus:

A3 Qg QA
gy dgg v Qgp

. . . . . . .

Ay amg e Ay,

Even when a matrix is square, it must be carefully noticed that
it is not a determinant. In fact, a matrix is not a quantity at all,*
but a system of quantities. This difference between a square ma-
trix and a determinant is clearly brought out if we consider the
effect of interchanging columns and rows. This interchange has no
effect on a determinant, but gives us a wholly new matrix. In fact.
we will lay down the definition:

DerINITION 2. Two square matrices

ay; v G, Ay e Ay

App  *v0 Oy Ain = Oy

of which either is obtained from the other by mterckangmg rows and
columns are called conjugate’r to each other.

Although, as we have pointed out, square matrices and deter-
minants are wholly different things, every determinant determines a
square matrix, the matriz of the determinant, and conversely every
square matrix determires a determinant, the determinant of the
matriz.

Every matrix contains other matrices obtained from it by strik-
ing out certain rows or columns or both. In particular it contains
certain square matrices; and the déterminants of these square
matrices we will call the determinants of the matrix. If the matrix
contains m rows and » columns, it will contain determinants of all
orders from 1 (the elements themselves) to the smaller of the two
integers and m and = inclusive.} In many important problems all

* Cf., however, § 21. t Sometimes also transposed.
t If m = n, there is only one of these determinants of highest order, and it was this
which we called above the determinant of the square matrix.
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of these determinants above a certain order are zero, and it is often
of great importance to specify the order of the highest non-vanish-
ing determinant of a given matrix. For this purpose we lay down
the following definition :

DEFINITION 8. A matriz is satd to be of rank r if it contains at
least one r-rowed determinant which 8 not zero, while all determinants
of order higher than r which the matriz may contain are zero.

A matriz is said to be of rank 0 if all its elements are zero.

For brevity, we shall speak also of the rank of a determinant,
meaning thereby the rank of the matrix of the determinant.

We turn now to certain definitions concerning the minors of
determinants; that is, the determinants obtained from the given
determinant by striking out certain rows and columns.

It is a familiar fact that to every element of a determinant
corresponds a certain first minor; namely, the one obtained by
striking out the row and column of the determinant in which
the given element lies. Now the elements of a determinant
of the nth order may be regarded as its (»— 1)th minors.
Accordingly we have here a method of pairing off each one-
rowed minor of a given determinant with one of its (» — 1)-rowed
minors.

Similarly, if M is a two-rowed minor of a determinant of the
nth order D, we may pair it off against the (n — 2)-rowed minor I
obtained by striking out from D the two rows and columns which
are represented in M. The two minors M and IV we will speak of
as complementary. Thus, in the determinant

@y Qg g Ay Ay

Gop Gop dog oy Qg5

(g Qgy Qgg dgy  Agyl

Qg Qgg Qg Qg Gy

@51 A2 A5z sy g
the two minors

Qg Ay g

Gg1  Qgg),

a a a
42 44 459
Qg Qgg)

are complementary.
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In the same way we pair off with every three-rowed minor an
(# — 3)-rowed minor; etc. In general we lay down

DeriNiTION 4. If D is a determinant of the nth order and M
one of ts k-rowed minors, then the (n— k)-rowed minor IN obtained by
striking out from D all the rows and columns represented tn M 1s called
the complement of M.

Conversely, M is clearly the complement of IV.

Let us go back now for a moment to the case of the one-rowed
minors; thatis to the elements themselves. Let a; be the element of
the determinant D which stands in the ith row and the sth column.
Let D; represent the corresponding first minor. It will be recalled
that we frequently have occasion to consider not this minor Dy but
the cofactor A; of a; defined by the equation A4,;=(—1)+/D;.

Similarly, it is often convenient to consider not the complement
of a given minor but its algebraic complement, which in the case just
mentioned reduces to the cofactor, and which, in general, we define
as follows:

DEFINITION 5.  If M is the m-rowed minor of D in which the rows
kyy -+ kyp, and the columns ly, --- 1, are represented, then the algebraic com-
plement of M is defined by the equation

alg. compl. of M= (— 1)+ +éntht+imfoompl. of M].

The following special case is important :

DErFINITION 6. By a principal minor of a determinant D is under-
stood a minor obtained by striking out from D the same rows as columns.

Since in this case, using the notation of Definition 5, we have
B+t =04+ 1,

it follows that the algebraic complement of any principal minor is equa’
to its plain complement.

We have so far assumed tacitly that the orders of the minors wo
were dealing with were less than the order n of the determinant
itself. By the n-rowed minor of a determinant D.of the nth order
we of course understand this determinant itself. The complement
of this minor has, however, by our previous definition no meaning.
We will define the complement in this case to be 1, and, by Definition 5,
this will also be-the algebraic complement.
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EXERCISE

Prove that, if M and N are complementary minors, either M and N are the
algebraic complements of each other, or — NV is the algebraic complement of
M and — M is the algebraic complement of V.

8. Laplace’s Development. Just as the elements of any row or
column and their corresponding cofactors may be used to develop a
determinant in terms of determinants of lower orders, so the Z-rowed
minors formed from any % rows or columns may be used, along with
their algebraic complements, to obtain a more general development
of the determinant, due to Laplace, and which includes as a special
case the one just referred to. In order to establish this develop-
ment, we begin with the following preliminary theorem :

TaEOREM 1. If the rows and columns of a determinant D be
shifted in such a way as to bring a certain minor M into the upper left-
hand corner without changing the order of the rows and columns either
of M or of its complement N, then this shifting will change the sign of
D or leave it unchanged according as — N or IV is the algebraic com-
plement of M.

To prove this let us, as usual, number the rows and columns of
D, beginning at the upper left-hand corner, and let the numbers of
the rows and columus represented in M, arranged in order of increas-
ing magnitude, be %y, -+ &, and Z;, --- 1, respectively. In order to
effect the rearrangement mentioned in the theorem, we may first
shift the row numbered %, upward into the first position, thus carry-
ing it over &, — 1 other rows and therefore changing the sign of the
determinant £; —1 times. Then shift the row numbered %, into the
second position. ' This carries it over %, — 2 rows and hence changes -
the sign &, — 2 times. Proceed in this way until the row numbered
k,, has been shifted into the mth position. Then shift the columns
in a similar manner. The final result is to multiply D by

(_ 1 )k,+ oot Byt s +Im—2(142+ o ) (__ 1>It1+ kel el

Comparing this with Definition 5, § 7, the truth of our theorem is
obvious. ‘

Lemma. If M is a minor of a determinant D, the product of M
by its algebraic complement s identical, when expanded, with some of
the terms of the expansion of D.
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1 G
Let D= )
a’nl e Ay,

and call the order of M, m, and its complement V. We will first
prove our lemma in the special case in which M stands in the upper
left-hand corner of D, so that V, which in this case is the algebraic
complement, is in the lower right-hand corner. What we have to
show here is that the product of any term of M by a term of IV is a
term of D, and that this term does not come in twice to the product
MN. Any term of M may be written

( - 1)"‘&111 a’% o amlmv

where the integers [;, ly, :+- [, are merely some arrangement of the
integers 1, 2, -+« m, and u is the number of inversions of order in this
arrangement. Similarly, any term of NV may be written

\ .o
(— 1) am+11 Im+1am+2, Im+2 a”y A

where 7,,,, =+ [, is merely some arrangement of the integers m -1,
-+« m, and v is the number of inversions of order in this arrangemwent.
The product of these two terms

( -1 )'L”alh Aoy *** iy

is a term of D, for the factors a are chosen in succession from tlLe
first, second, --- nth rows of D, and no two are from the same col-
umn, and p+ » is clearly precisely the number of inversions of order
in the arrangement Iy, l,, --+ ,, as compared to the natural arrange-
ment, 1, 2, --- n, of these integers.

Having thus proved our lemma in the special case in which M
lies in the upper left-hand corner of D, we now pass to the general
case. Here we may, by shifting rows and columns, bring M iato
the upper left-hand corner and &V into the lower right-hand corner.
This has, by Theorem 1, the effect of leaving each term in the
expansion of D unchanged, or of reversing the sign of all of them
according as IV or — IV is the algebraic complement of M. Accord-
ingly, since the product MN gives, as we have just seen, terms in
the expansion of this rearranged determinant, the product of M by
its algebraic complement gives terms in the expansion of D itself.
as was to be proved.
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Laplace’s Development, which may be stated in the form of the
following rule, now follows at once :

THEOREM 2. Pick out any m rows (or columns) from a determi-
nant D, and form all the m-rowed determinants from this matriz. The
sum of the products of each of these minors by its algebraic complement
is the value of D.

Since, by our lemma, each of these products when developed con-
sists of terms of D, it remains merely to show that every term of
D occurs in one and only one of these products. This is obviously
the case; for every term of D contains one element from each of the
m rows of D from which our theorem directs us to pick out m-rowed
determinants, and, since these elements all lie in different columns,
they lie in one and only one of these m-rowed determinants, say M.
Since the other elements in this term of D obviously all lie in the
complement IV of M, this term will be found in the prodact MN and
in none of the other products mentioned in our theorem.

EXERCISES
1. From a square matrix of order n and rank r, s rows (or columns) are selected.
Prove that the rank of the matrix thus obtained cannot be less than » + s — n.
2. Generalize the theorem of Exercise 1.

9. The Multiplication Theorem. ILaplace’s Development enables
us to write out at once the product of any two determinants as a
single determinant whose order is the sum of the orders of the two

iven determinants
g gy o agy 0w 0

. . . . . .

Qyy *+ Ay, bll v blm pyy = Ay 0.0
S N R R TRl oM bll .ee blm ,
Ay *** Ay bml oo bmm R

. . . . . . .

Pm1 " Pmn bml b blmn

whatever the values of the p’s may be. For, expanding the large
determinant in terms of the n-rowed minors of the first n rows, all
the terms of the expansion are zero except the one written in the
first member of the equation.



A FEW PROPERTIES OF DETERMINANTS

27

From this formula we will now deduce a far more importan
one for expressing the product of two determinants of the same
order as a determinant of that order.
the p’s in the last formula as follows:

Pi=0 when %7,

Pu=— 13

For this purpose let us choose

and let us consider for simplicity the product of two determinants

of the third order. We have

1 ) og 0 0 O

oy 0y 03l Ay Gy Qg Bi By B3 0 0 0
By By Byl |by by by ';1 gz zs 00 0f

- a; a, a

Y Yy Y. e C. e 1 A 3

1 T2 3 1 % Cg 0 -1 0 b b, B

0 0 —1 ¢ ¢ ¢

Let us now reduce this six-rowed determinant by multiplying
its first column by @, and adding it to the fourth column; then
multiply the first column by a, and add it to the fifth; then
multiply the first column by a; and add it to the sixth. In this
way we bring zeros into the last three places in the fourth row.
Next multiply the sécond column successively by b&;, b,, b3 and
add it to the fourth, fifth, and sixth columns respectively.
Finally multiply ‘the third column successively by e¢;, ¢, ¢; and
add it to the fourth, fifth, and sixth columns. The determinant
thus takes the form

a ay gy eatabitage; waytadytage, e agtaybyt+age

By Bz By Byay+Bybi+Byey Biag+Byby+Byey, Biag+Bady+ By

Yi Y2 s V1% +Yabitvsey Yigatvabatvse, via5+vaby+vscs),
-1 0 0 0 0 0

0 -1 0 0 0 0

0 0 -1 0 0 0

and this reduces at once to the three-rowed determinant
w0y + apby - age;  wyay+ ayby +ogey @y ag+ agby +ogey
Byay + By + Byey  Brag + Baby + Byey  Byag+ Byby+ Byeyl:
V181 +Yady + vgl1 Y199 +¥aby + 56 v1a3+ ¥aba + 50y
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We have thus expressed the product of two determinants of the
third order as a single determinant of the third order. The method
we have used is readily seen to be entirely general, and we thus get
the following rule for multiplying together two determinants of the
nth order :

TarEOREM. The product of two determinants of the nth order
may be expressed as a determinant of the nth order in which the
element which lies in the ith row and jth column is obtained by
multiplying each element of the ith row of the first factor by the
corresponding element of the jth colummn of the second factor and

adding the results. ,
z"

It should be noted that changing rows into columns in either or

both of the given determinants, while not affecting the value of the

product, will alter its form materially. For example, 3

3l 11 7 (20 41

: 5 T
Q ¢
g “ . == =66, &) .
g 4 5|76 9 |34 T3 _
1‘17/'
2 3| |1 6|_|[28 89|_,.
P 4 5|7 9| |39 69|
S
2 4 1 T_[26 50|_ 46
- 3 5 |6 9 [33 66|
2 4| |1 6|_[30 48|_...
3 5/ |7 9|38 63 ’

and similarly the product of any two determinants of the same order
may be written in four different forms.

10. Bordered Determinants. If to a determinant of the nth
order we add one or more rows and the same number of columns of
n quantities each and fill in the vacant corner with zeros, the result-
ing determinant is called a bordered determinant. Thus starting from
the two-rowed determinant
« B
[v )
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we may form the bordered determinants

Y4
e B u e« B u; w w

a B wu vy & wy, u; uj

Y 8 Ugs i 8 s 11,’2 s vy Uy 0 0 0 s .
vy vy O vp v 00 vp vy 0 0 0
v 00 o W 0 0 0

If in the second of these examples we use Laplace’s Develcpment
to expand the bordered determinant according to the two-rowed
determinants of the last two rows, we see that its value is

!
Uy U
!
Uy Uy

v U

U

a quantity into which the elements «, 3, v, & of the original deter-
minant do not enter. Similarly expanding the third of the above
bordered determinants according to the three-rowed determinants of
its last three rows, we see that its value is zero.

The reasoning we have here used is of general application and
leads to the following results:

THEOREM 1. If a determinant of the nth order i8 bordered with
n rows and n columns, the resulting determinant has a value which
depends only on the bordering quantities.

THEOREM 2. If a determinant of the nth order is bordered with
more than n rows and columns, the resulting determinant always has the
value zero.

The cases of interest are therefore those in which the deter-
minant is bordered with less than n rows and columns. Concerning
these we will establish the following fact:

THEOREM 3. If a determinant of the nth order be bordered by p
rows and p columns (p <n) of independent variables, the resulting
determinant s a polynomial of degree 2p in the bordering quantities,
whose coefficients are the pth minors of the original determinant; and
conversely, every pth minor of the original determinant is the coefficient
of ot least one term of this polynomial.
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Let us consider the special case where n =4 and p =2,
A % %3 Ay Yy U
Qg1 gy Aoz Aoy Uy U

D Uy @3z gz @y Uz U

Il

Gy Qgg dyg Qg Uy Uy

vy v, vg v, 0 0

o v, vk W 0 0
1 2 3 4

Developing this determinant, by Laplace’s method (§ 8), in terms
of the two-rowed determinants of the last two rows, we have

v Y

D=

P + --- to 6 terms.
vy Yy

If now we expand each of these four-rowed determinants, by
Laplace’s method, in terms of the two-rowed determinants of their
last two columns, and then arrange the result as a polynomial in
the #'s and o's, the truth of the theorem is apparent. We leave it
to the reader to fill in the details of the proof here sketched.

11. Adjoint Determinants and their Minors.
DEerINITION. If, in the determinant

all oo alﬂ

Any 0 gy

A, 8 the cofactor of the element ay, then the determinant

Ay - Ap

18 called the adjoint of D
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By corresponding minors of D and 2/, or indeed of any two
determinants of the same order, we shall naturally understand
minors obtained by striking out the same rows and columms from
D as from D'. These definitions being premised, the fundamental
theorem here is the following :

Tusoruz.  [f D' is the adjoint of any determinant D, and M and
M are corresponding m-rowed minors of D and D' respectively, then
M s equal to the product of D™V by the alyebraie complement of M.

We will prove this theorem first for the special case in which
the minors M and M lic at the upper left-hand corners of D and 2’
respectively.  We may then write

‘All vea _(llm e “ee Aln

c e e e e e e e e e
& .o ’ .w e 4
A m] * < lmm * < mn

M =0 e 01T 0 o0 .
0 e 00T e 0

. - . . . . . -

0 e 0 0 0 o 1

Let us now interchange the columns and rows of D,

dyy o Wy

a n LRE I ¢

and then form the product M D by the theorem of § 9. This gives

D 0 e 0 0 e 0
0 D e ) 0 e )
M'D =10 0 e D 0 e 0

“1. mi1 Qa,my 1 ver ‘Im.m [N} (" Lamyyp "t° au,m+1

. . . - - . . . . . . . . . - -

dyin Wy o Ayn QLpiem e Ay
oy lemt] 7" au. m+]
N S R N

“m+1.n e Uy
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Let us here regard ay;, -+ a,, as n? independent variables
Then the equation just written becomes an identity, from which I
since it is not identically zero, may be cancelled out, and we get

Uptl,m+1 " Pnmiy
(1) M = D1
am+1,n b an,n

Since the determinant which is written out in (1) is precisely the
algebraic complement of M, our theorem is proved in the special
case we have been considering. It should be noticed that this proof
holds even in the case m=mn; cf. Corollary 2 below.

Turning now to the case in which the minors M and M’ do not
lie at the upper left-hand corners of D and D', let us denote by a the
sum of the numbers which specify the location of the rows and
columns in M or M’, the numbering running, as usual, from the up-
per left-hand corner. Then by Definition 5, § 7,

(2) alg. compl. of M= (—1)* [compl. of M].

Let us now, by shifting rows and columns, bring the determinant
M into the upper left-hand corner of D. Calling the determinant
D, as thus rearranged, D;, we have (cf. Theorem 1, § 8)

®) D,=(~1yD.

The cofactors in D, are equal to (— 1)“4y, since the interchange of
two adjacent rows or columns of a determinant changes the sign of
every one of its cofactors. Accordingly the adjoint of D, which we
will call D, may be obtained from D' by rearranging its rows and
columns in the same way as the rows and columns of D were
rearranged to give D,, and then prefixing the factor (—1)* to each
element.

Let us now apply the specia! case already established of our
theorem to the determinant D, and its adjoint D}, the m-rowed
minors M, and M’ being those which are situated in the upper left-
hand corner of D; and D respectively. We thus get

“) Mi=Dpr-! [alg. compl. of M;].
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Now, since M is a principal minor, its algebraic complement is
the same as its ordinary complement, and this in turn is the same as
the ordinary complement of the minor Min D. Accordingly, using
(2), we may write

5) alg. compl. of M; =(—1) [alg. compl. of M].

Since the elements of M% differ from those of M’ only in having
the factor (— 1) prefixed to each, it follows that

(6) MY = (= 1y,
We may now reduce (4) by means of (3), (5), and (6). We thus

8ot qympyt = (— 1)xm-D DY (— 1)y [alg. compl. of M.

Cancelling out the factor (— 1)™* from both sides of this equation,
we see that our theorem is proved.

We proceed now to point out a number of special cases of this
theorem which are worth noting on account of their frequent occur-
rence.

COROLLARY 1. If a; 18 any element of a determinant D of the
nth order, and if «y i8 the cofactor of the corresponding element Ay in
the adjoint of D, then oy = D" ay,

This is merely the special case of our general theorem in which
m = n — 1, modified, however, slightly in statement by the use of
the cofactor «; in place of the (» — 1)-rowed minor (— 1) a;.

COROLLARY 2. If D is any determinant of the nth order and D’
it8 adjoint, then D = DL,

This is the special case m = n.

COROLLARY 8. If D is any determinant, and S s the second
minor obtained from it by striking out its ith and kth rows and its jth
and lth columns, and if we denote by A, the cofactor of the element
which stands in the ith row and the yth column of D, then

4; Ay
Alcj A,

This is the specié.l case m = 2.
D

= (— 1)+ DG,



CHAPTER III
THE THEORY OF LINEAR DEPENDENCE

12. Definitions and Preliminary Theorems. Two sets of con-
stants (ay, by, ¢;, dy,) and (ag, by, ¢y dy) are usually said to be propor-
tional to one another if every element of one set may be obtained
from the corresponding element of the other by multiplying by the
same constant factor. For example, (1, 2, 3, 4) and (2, 4, 6, 8) are
proportional. It is ordinarily assumed that either set may be thus
obtained from the other, and in most cases this is true; but in the
case of the two sets (1, 2, 3, 4) and (0, 0, 0, 0) we.can pass from
the first to the second by multiplying by 0, but we cannot pass from
the second to the first.

A more convenient definition, for many purposes, and one which
is easily seen to be equivalent to the above-mentioned one, is the
following :

DeriNiTION 1. The two 8ets of constants
xl'9 xés x,{,
o, all, o 2,

are said to be proportional to each other if two constants ¢y and ¢y not
both zero, exist such that

clxi-*- 02x£,= O (‘):= 1, 2, .es n)‘
If ¢;#0, we have
e
2= — —zx’l' xh = -z:v;’, o= — 2,
¢ 4 ¢y

and if e3 0, we have

C-.
o= — A, o = =2}, ... = — L g,
2 Cy 2
The two sets of constants [
4y 322, Ly
0, 0, 0,
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are evidently proportional, since if we take ¢, =0 and ¢; = any con-
stant not zero, we have a pair of ¢’s which fulfill the requirements
of our definition.

Linear dependence may be regarded as a generalization of the
conception of proportionality. Instead of two sets of constants we
wow consider m sets, and give the following :

DEFINITION 2. The m sets of n constants each,
41, o, .. 2l (=12, - m)

are said to be linearly dependent if m constants c,, ¢;y -+ ¢, not all zero,
exist such that

e gzl -+ eprfm =0 G=12, .. n)

If this is not the case, the sets of quantities are said to be linearly
independent.

In the same way we generalize the familiar conception of the
proportionality of two polynomials as follows:

DeriNiTiON 8. The m polynomials (in any number of independent
variables) fi, fy, -+ frn are said to be linearly dependent if m constants
Yy Coy +++ Cpy NOT all 2ero, exist such that

eofi+ afet+ o+ enfu=0.

If this is mot the case, the polynomials are said to be linearly inde-
pendent.*

The following theorems about linear dependence, while almost
self-evident, are of sufficient importance to deserve explicit state-
ment :

THEOREM 1. If m sets of constants (or if m polynomials) are lin-
early dependent,it is always possible to express one — but not necessarily
any one — of them linearly in terms of the others. This set of constants
(or this polymomial) is then said to be linearly dependent on the others.

This is seen at once if we remember that at least one of the ¢’s
is not zero. The relations (or relation) in which the ¢’s occur can.
then, be divided through by this e.

* We might clearly go farther and consider the linear dependence of m sets of n
polynomials each. The two cases of the text would be merely special cases from thiy
general point of view.
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THEOREM 2. If there exist among the sets of constants (or among the
polynomials)a smaller number of sets (or of polynomials) which are linearly
dependent, then the m sets (or the m polynomials) are linearly dependent.

For suppose there are ! sets of constants (or I polynomials)
which are linearly dependent (I <m), then we may take for our set
of m ¢’s, the I ¢'s which must exist for the [ sets(or polynomials) and
(m —1) zeros

THEOREM 3. If any one of the m sets of constants consists excly-
sively of zeros (or if any ome of the polynomials is identically zero), the
m sets (or the m polynomials) are linearly dependent.

For we may take for the ¢ corresponding to this particular set
(or polynomial) any constant whatever, except zero, and for the other
(m —1) ¢'s, (m — 1) zeros.

13, The Condition for Linear Dependence of Sets of Constants.
In considering m sets of n constants each,

1) 2t ol .. 2l (=12, . m),

it will be convenient to distinguish between the two cases m <7 and
m > n.

" (@) m<n. We wish here to prove the following fundamental
theorem :

THEOREM 1. A necessary and sufficient condition for the linear
dependence of the m sets (1) of n constants each, when m<n, is that all
the m-rowed determinants of the matriz

o af !

. j2 2 e gl
should vanish.

That this is a necessary condition is at once obvious; for if the
m sets of constants are linearly dependent, one of the rows can bs
expressed as a linear combination of the others. Accordingly if in
any of the m-rowed determinants we subtract from the elements of
this row the corresponding elements of the other rows after each row
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has been multiplied by a suitable constant, the elements of this row
will reduce to zero. The determinant therefore vanishes.

We come now to the proof that the vanishing of these deter-
minants i8 also a sufficient condition. We assume, therefore, that
all the m-rowed determinants of the above matrix vanish. Let us
also assume that the rank of the matrix is »>0* (cf. Definition 8,
§ 7). Without any real loss of generality we may (and will) assume
that the r-rowed determinant which stands in the upper left-hand corner
of the matriz does not vanish ; for by changing the order of the sets
of constants and the order of the constants in each set (and these
orders are clearly quite immaterial) we can bring one of the non-
vanishing r-rowed determinants into this position.

We will now prove that the first (» 4 1) sets of constants are lin-
early dependent. From this the linear dependence of the m sets
follows by Theorem 2, § 12.

Let us denote by ¢;, ¢y, -+ ¢, the cofactors in the (»+ 1)-rowed
determinant which stands in the upper left-hand corner of the matrix,
and which correspond to the elements of itslast column. If we remem-
ber that all the (r+1)-rowed determinants vanish, we get the relations

e+ ezl + -0 + e 2iti=0 (J=r+1,r+2, .--2).

Since the sum of the productsof the elements of any column of a
determinant by the cofactors of the corresponding elements of another
column is zero, this equation is also true whenj=1, 2, ... r.

This establishes the linear dependence of the first (» + 1) sets of
constants, since ¢, being the r-rowed determinant which stands
in the upper left-hand corner of the matrix, is not zero.

(6) m>n. This case can be reduced to the one already considered
by the following simple device. Add te each set of » constants m—n
zeros. Wethen have m sets of m constants each. Their matrix con-
tains only one m-rowed determinant, and this vanishes since one, at
least, of its columns is composed of zeros. Therefore these m sets of m
constants each are linearly dependent ; and hence the original m sets
of n constants each werelinearly dependent. Thuswe get the theorem :

THEOREM 2. m sets of n constants each are always linearly depen-
dent if m>n.
* In general we shall have » =m — 1, but  may have any value less than m. The

only case which we here exclude is that in which all the elements of the matrix are
zZero, a case in which the linear dependence is at once obvious.
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EXERCISES

INTRODUCTION TO HIGHER ALGEBRA

Determine whether the following sets of constants are linearly

dependent or not : 3q,

a,
0,
1,
1,
3,

1.[
|

5
3 {0
15,

14. The Linear Dependence of Polynomials.

fl’fz’ "'f;m

polynomials,

—25, —-8¢, 6d,
0, - ¢ 44,

- b, 0, -3a.

0, 0, 5

2, 69 7,

1, 3, 16

2, 1, 8, 4,

3 0, 0, 8,

7 3 9 7

-7, 0 1, -1,

- 3’ - 21 37 - 1’
0, 7, =9, 2.

Suppose we have m

in any number of independent variables. A necessary and sufficient
condition for the linear dependence of these polynomials is evidently
the linear dependence of their m sets of coefficients. Thus the condi-
tions deduced in the last section can be applied at once to the case of

polynomials.
EXERCISES
Determine whether the following polynomials are linearly depend-
ent or not: 162 +30z
1. 8z+2y + 5z— 4
152+ 9y —18.

[ Sz, +4xy—4z,+ 62,
+ 32+ T,
2z — x, -3,
(— 52,4+ 92y — x5+ 42,4+ 8.

72,

r 2224 8ay+ 632+ 14z2+12y — 4,
7 22 + ¥+ 6x— 4y,

322~ 6ay+ 83— bz + T,
5224 20xy +15y2+ 35z + 30y — 10.

.
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15. Geometric Illustrations. The sets of n constants with which
we had to deal in §§ 12, 18 may, provided that not all the constants
in any one set are zero, advantageously be regarded as the homoge-
neous codrdinates of points in space of n — 1 dimensions. It will
then be convenient to speak of the linear dependence or independ-
ence of these points. The geometric meaning of linear dependence
will be at once evident from the following theorems for the
case n = 4.

Two points will here be represented by two sets of four constants

ach
each, 2y Yy 2y by
Zgs Yo 290 Ly

which will be linearly dependent when, and only when, they are pro-
portional, that is, when the points coincide. Hence:

THEOREM 1. Two points are linearly dependent when, and only
when, they cotncide.

If we have three points in space, P;, P, P, whose codrdinates
are (Zy, Yy 2p b))y (@g Yoo 29 o)y (Zg Ys 25 B3), Tespectively, and
which are linearly dependent, there must exist three constants ¢, ¢,
eg, not all zero, such that

0,7y + ¢y %y + 37y =0,
Y1+ CYs+ Y3 =0,
€12 + ¢y2y + 523 =0,
ety + eyty + cgtg =0,
Let us suppose the order of the points to be so taken that ¢; %0, and

olve for z 2q, Lot
8 3 Yar %p Ug zg = ky 2, + kyzg,

Ys=ky1+kyy

1
( ) 2y = k121 -+ kzzz,
ty =ity + kot
where &, = — ¢,/eq, ky= —¢,/c;. Now if

Az+ By + Cz+ Dt =0

is the equation of any plane through the points P; and P,, we have
Az, + By, + Cz; + Dt,=0,
Azy+ By, + Cez+ Dty =0.
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Multiplying the first of these equations by %, the second by %,, and
adding, we have, by means of the equations (1),

Hence every plane through P; and P; passes through P, also, and
the three points are collinear.

Now, in order to prove conversely that any three collinear points
are linearly dependent, let us suppose the three points Py, P, Py
collinear. We may assume that these three points are distinct, as
otherwise their linear dependence would follow from Theorem 1.
We have seen that when three points are linearly dependent, the line
through two of them contains the third. Hence if we let

o = kyzy + kyz,,
Y =k, + ko,
2 =k + kyzy
t = kltl + kztz’

where %, and %, are two constants, not both zero, the point CR
2', t') or P’ lies on the line P, P,, and our theorem will be established
if we can show that the constants %, and %, can be so chosen that
the points P’ and P coincide. Now let az + by + ¢z + dt =0 be the
equation of any plane through the point Py but not through P, or P,
Thus Py is determined as the intersection of this plane with the line
P P,, so that if P', which we know lies on P, P,, can be made to lis
in this plane, it must coincide with P, and the proof is complete.
The condition for P’ to lie in this plane is az’ + 8y’ + ¢z’ + dt' = 0.
Substituting for 2/, ', 2/, ¢’ their values given above, we have

ky(az, + by, +cz, + dt,) + ky(az, + by, + cz, + dt,) =0.

But neither of these parentheses is zero, since the plane does not pass
through P, or P,, hence we may give to %, and %, values different
from zero for which this equation is satisfied. We have thus proved

THEOREM 2. Three points are linearly dependent when, and only
when, they are collinear.

The proofs of the following theorems are left to be supplied by
the reader. It will be found that some of them are readily proved
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from the definition of linear dependence, as above, while for others

it is more convenient to use the condition for linear dependence ob-
tained in § 18.

THEOREM 3. Four points are linearly dependent when, and only
when, they are complanar.

THEOREM 4. Five or more points are always linearly dependent.

Another geometric application is suggested by the following con-
siderations:

A set of n ordinary * quantities is nothing more nor less than a
complex quantity with n components (cf. § 21). Our first definition of
linear dependence is therefore precisely equivalent to the following:

The m complex quantities b g -+ O

are said to be linearly dependent if m ordinary quantities ¢, ¢y, --
not all zero, exist such that:

ey + ety + -+ + pa, =0,

* Cpy

Now the simplest geometric interpretation for a complex quantity
with » components is as a vector in space of » dimensions,} and we
are thus led to the conception of linear dependence of vectors. The
geometric meaning of this linear dependence will be seen from the
following theorems for the case n=3:

THEOREM 5. Two vectors are linearly dependent when, and only
when, they are collinear.

THEOREM 6. Three vectors are linearly dependent when, and only
when, they are complanar.

THEOREM 7. Four or more vectors are always linearly dependent.

In order to get a geometric interpretation of the linear dependence
of polynomials, we must consider, not the polynomials themselves,
but the equations obtained by equating them to zero. We speak of
these equations as being linearly dependent if the polynomials are

* Two different standpoints are here possible according as we wnderstand the term
ordinary quantity to mean real quantity, or ordinary complex quantity.

+ There are of course other possible geometric interpretations. Thus in the case
n=4 we may regard our complex quantities as quaternions, and consider the meaning
of linear dependence of two, three, or four quaternions.




42 INTRODUCTION TO HIGHER ALGEBRA

linearly dependent. If then we regard the independent variables as
rectangular codrdinates, these equations give us geometric loci in
space of as many dimensions as there are independent variables.
Thus, in the cases of two and three variables, we have plane curves
and surfaces respectively. The case of two loci is of no interest,
as they must coincide in order to be linearly dependent. In the case
of three linearly dependent loci it is easily shown that any one must
meet the other two in all their common points and in no others.
The following theorems will serve to illustrate the geometric mean-
ing of linear dependence :

(1) In the plane:

THEOREM 8. Three circles are linearly dependent when, and only
when, they belong to the same coazial family.

THEOREM 9. Four circles are linearly dependent when, and only
when, they have a (real or imaginary) common orthogonal circle.

THEOREM 10. Four circles are linearly dependent when, and only
when, the points of intersection of the first and second, and the points of
intersection of the third and fourth, lie on a common circle.

THEOREM 11. Five or more circles are always linearly dependent.

(2) Inspace(using homogeneous codrdinates):
THEOREM 12. Three planes are linearly dependent when, and only
when, they intersect in a line.

THEOREM 18. Four planes are linearly dependent when, and only
when, they intersect in a point.

THEOREM 14. Five or more planes are always linéarly dependent.



CHAPTER TV
LINEAR EQUATIONS

16. Non-homogeneous Linear Equations. In every elementary
treatment. of  determinants, howeyver brief, it is explained how to
solve by determinants a system of 2 equations of the first degree in
n unknowns, provided that the determinant of the coeflicients of
the unknowns is not zero.  Cramer’s Rule, by which this is done,

is this:
Cramer’s Rone.  If in the equations

a R OTER 'y, == kl'

the determinant

is not zero, the equations have one and only one solution, namely :
«a (44 a
r x:::'f~l -] ‘_3 oo T e
1 ma 7 e "al
where ag is the nopowed determinant obtained from a by replacing the
elements of the ith column by the elements key, ko < k,.
This rule, whose proof we assume to be known,® is of funda-
mental importance in the general theory of linewr equations to
which we now proceed.

* The proof as given in omost English and Awmerlean toxt books merely ontablinhes
the fact that if the cquations have o solution 1tis glven by Cratnes's formube, Tt
these formuliee really satbsfy the equations o all egaes I8 oot commondy proved, ot
way be casily estabished by direct substitution.  We lesve it for the reader toodo tlus

48
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Consider the system of m linear equations in n variables:

@z + o +ayz, +5,=0,
. . . . . . L] . .

. . . . .

A2y + -0 + a,,.,.x,,+bm =0,

where m and n may be any positive integers. Three cases arise:

(1) The equations may have no solution, in which case they are
said to be inconsistent.

(2) They may have just one solution.

(8) They mayhave more than onesolution, in which case it will pres-
ently appear that they necessarily have an infinite number of solutions.

Let us consider the two matrices:

LS R T @y A by

Apy Ay Ay 0 A bm

We will call a the matrix of the system of equations, b the aug-
mented matriz.

It is evident that the rank of the matrix a cannot be greater
than that of the matrix b, since every determinant contained in a
is also contained in b. We have, then, two cases:

1. Rank of a = Rank of b.

II. Rank of a < Rank of b.

We will consider Case II first.

Let » be the rank of b. Then b must contain at least one
r-rowed determinant which is not zero. Moreover, this determinant
must contain a column of b’s, since otherwize it would be contained
in a also, which is contrary to our hypothesis. Suppose for definite-
ness that this non-vanishing r-rowed determinant is the one situ-
ated in the upper right-hand corner of b. There is no loss of
generality in assuming this, since by writing the equations in a dif-
ferent order and changing the order of the variables z,, --- z, wo
can always bring the determinant into this position. Now for
brevity let us represent the polynomials forming the first members
of our given equations by F,, F,, --- F, respectively, and the
homogeneous polynomials obtained by omitting the constant terms
in each of these equations by f}, f, -+ fn- Then we have the

identities: F=f+b, (t=1,2,...m).
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Consider the first r of these identities. Since the rank of a is
less than », the polynomials fi, f,, --- f, are linearly dependent,

01f1+02f2+ +crfr—=—03
hence ey Fi+ - +e.Fo=cby+ - +eb.=C.

But since the rank of b is #, the polynomials F}, --- F, are linearly
independent and therefore ('« 0. Hence the given equations are in-
consistent, for if they were consistent all the #’s would be zero for
some suitably chosen values of z,, --- z,, and if we substitute thesa
values in the last written identity we should have

0= 0#0-

Let us now consider Case I. Let » be the common rank of a
and b, then there is at least one »-rowed determinant in a which
is not zero. This same determinant also occurs in b. Suppose it to
be situated in the upper left-hand corner of each matrix. Since all
(r +1)-rowed determinants of either matrix are zero, the first (»+ 1)
of the F’s are linearly dependent, and we have

ey Byt ey Byt e, Fotcoy Fpy=0;

and, since F}, --- F, are linearly independent, ¢,., cannot be zero ;
hence we may divide through by it and express F,,, linearly in
terms of ¥, --- F,. The same argument holds if instead of F,,, we
take F,., or any other one of the remaining #’s. Hence

Foy=kQF + ...+ kIF, (=12, ... m—r).

From these identities it is obvious that at any point (2, ---2,) where
F,, --- F, all vanish, the remaining F’s also vanish. In other words,
any solution which the first » equations of the given system may
have is necessarily a solution of the whole system.

Now consider the first » of the given equations. Assign to
Ty, ¢ - 2, any fixed values 2/, - - - 2}, and transpose all the terms
after the rth in each equation to the second member,

- ' /
Ay + -t B Zp = =y @y~ G — by,

.

U@y + oo & Q= — Gy 1 Tyyy — =+ — ), — b,
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Remembering that the right-hand sides of these equations are known
constants, and that the determinant of the coefficients on the left is
not zero, we see that we have the case to which Cramer’s Rule
applies, and that this system of equations has therefore just one
solution. Hence the given system of equations is consistent, and we
have the theorem:

TuroREM 1. A necessary and sufficient condition for a system of
linear equations to be consistent is that the matriz of the system
have the same rank as the augmented matriz.

From the foregoing considerations we have also

THEOREM 2. If in a system of linear equations the matriz of
the system and the augmented matriz have the same rank r, the values
of n—r of the unknowns may be assigned at pleasure and the others
will then be uniquely determined.

The n — r unknowns whose values may be assigned at pleasure may
be chosen in any way provided that the matriz of the coefficients of
the remaining unknowns 18 of rank r.

EXERCISES

Solve completely the following systems of equations:

2z~ y+82— 1=0,
1 4z -2y~ 2+ 3=0,
22— y—4z4+ 4=0,
102 - 5y~ 62+ 10 = 0.
[ 4z — y+ 2+5=0,
2 20 -8y +52+1=0,
z+ y—22+2=0,
5z - z+2=0.
22 -3y + 42— w=23,
3. 24+2y— z+2w=1,
3z — y+22-3w=4,
3r— y+ 2—-Tw=4.
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17. Homogeneous Linear Equations. We will now consider the
special case where the equations of the last section are homogeneous,
¢.e. where all the &’s are zero,

ay 2+ -+ ayz, =0,

. . .

Ay @1+ o+, =0,

The matrices a and b of the last section differ here only by a column
of zeros ; hence they always have the same rank and this is called
the rank of the system of equations. Theorems 1 and 2 of the last
section become .

THEOREM 1. A system of homogeneous linear equations always
has one or more solutions.

THEOREM 2. If the rank of a system of homogeneous linear equa-
tions in n variables is r, the values of n—r of the unknowns may be
assigned at pleasure and the others will then be uniquely determined.*

If the rank of the equations is n, there will therefore be only one
solution, and this solution is obviously z;=2, = ---= 2, = 0. Since
the rank can never be greater than n, we have

THEOREM 3. A necessary and sufficient condition for a system of
homogeneous linear equations in the n variables (zy, --- z,) to have a solu-
tion other than z, =zy = --- =z, = 0 18 that their rank be less than n.

COROLLARY 1. If there are fewer equations than unknowns, the
equations always have solutions other than z, =z, = --- =z, = 0.

COROLLARY 2. If the number of equations is equal to the number
of unknowns, a necessary and sufficient condition for solutions other than
Z) =&y = -+ = @, = 0 48 that the determinant of the coefficients be zero.

In the special case where the number of equations is just one less
than the number of unknowns and the equations are linearly
independent, we will prove the following :

THEOREM 4. Every set of values of z,---z, which satisfies a
system of n — 1 linearly independent,t homogeneous linear equations in

* Cf. also the closing lines of Theorem 2, § 16.
t The theorem is still true if the equations are linearly dependent, but it is then
trivial, since the determinants in question are all zero.
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n unknowns 1s proportional to the set of (n — lyrowed determinants
taken alternately with plus and minus signs, and obtained by striking
out from the matriz of the coefficients first the first column, then the
second, ete. i

Let us denote by «; the (n —1)-rowed determinant obtained by
striking out the ¢th column from the matrix of the equations. Since
the equations are linearly independent, there must be at least one
of the determinants a,, @, --- @, which is not zero. Let it be a,
Now assign to z; any fixed value, ¢, and transpose the ith term of
each equation to the second member and we have

U@y + ot @i @icy B T Tt G T = — Ay,
@y-1,171 + e Ay i1 Zieg By, i1 iy + -+ A, n%n = — Qy_q,;C.
~1 ik c-a
Hence : 7= D)™e o E=1,2 - n)
a,;

(3

from which it is clear that (2, --- ,) are proportional to the de-
terminants (a;, — @y, @g --- (—1)*"1a,), as was to be proved.

The theory of homogeneous linear equations has here been de-
duced from the theory of linear dependence. It can, however, in
turn be used to obtain further results in this last-mentioned theory.
As an example of this we will deduce the following theorem, which
we shall find useful later :

THEOREM 5. If a set of points (2, --- z,), finite or infinite in
number, have the property that k points can be found among them upon
which every other point of the set is linearly dependent, then any k + 1
potnts of the set will be linearly dependent.

Let (o, - )y (&, -+ 2l )y -+ (2%, --- 2}1) be the % points upon
which every other point of the set is linearly dependent, and let

(X!, - X0), (X’l’,‘--- XM, e (XD, .. XD

be any k& +1 points of the set. Then we may write
X =clla] + 2 + - + 2,
0 . S (=1, 2, e k4]

X = ez, + cflz] + - + cfiaih,
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This is true by hypothesis if (X, ... X!1) is not one of the first %
points, and if it is one of these points, it is obviously true. We
have then to prove that £ + 1 constants, C, Cy, -+ C,;, not all zero,
can be found such that

O X} + CX !+ o Gy X1 =0 (G=1,2, - n).

By substituting here the values of the X’s from (1), we see that
these equations will be fulfilled if

Ciel + Oyl + -+ + Chyq o1 =0,

Cich+ el + -+ + Cryq 1= 0,

and this is a system of fewer equations than unknowns, which is
therefore satisfied by a set of (’s not all zero. (Cf. Theorem 3.
Cor. 1.)

EXERCISES
Solve completely the following systems of equations:

11z+ 8y—224 3w=0,
1.] 22+ 3y— z+ 2w=0,
Te— y+ z— 3w=0,
4z-11y+52—12w=0.

2z~ 83y+5z+ 3w=0,
2 {4zx— y+ z+ w=0,
3z— 2y+32+ 4w=0.

18. Fundamental Systems of Solutions of Homogeneous Linear
Equations. If (23,---2}) is a solution of the system of equations

(anl + s + alnx,, = 0’

(1) .--a-otaotc.

-------- o o o

ATy + + + Aoy, = 0,

then (cz),---c2),) is also a solution, and by giving to ¢ different values
we get thus (except in the special case in which the z”s are all zero)
an infinite number of solutions. These may include all the solutions
of (1) (cf. Theorem 4 of the last section), but in general this will
not be the case.

]
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Suppose, again, that (2}, --- z,) and (2!, --- 2I]) are two solutions of
(1), then (eg@) + e}y -+ 1@y + ey2y) is also a solution. If the two
given solutions are proportional to each other, this clearly gives us
nothing more than what we had above by starting from a single
solution ; but if these two solutions are linearly independent, we
build up from them, by allowing ¢, and ¢, to take on all values, a
doubly infinite system of solutions; but even this system will
usually not include all the solutions of (1). Similarly we see
that, if we can find three linearly independent solutions, we can
build up from them a triply infinite system of solutions, ete. If,
proceeding in this way, we succeed in finding a finite number of
linearly independent solutions in terms of which all solutions can
be expressed, this finite number of solutions is said to form a
Sundamental system.

DerINITION.  If (2%, - 2[]) (i=1, 2, .- k) are a system of k
solutions of (1) which satisfy the following two conditions, they are said
to form a fundamental system :

(a) They shall be linearly independent.
(8) Bvery solution of (1) shall be expressible in the form

(Clx; + clell + e ckx[fl’ ...... clx’: + czx’;' + .. +ck1;[77‘i])'

TaEoREM 1. If the equations (1) are of rank r < n, they possess
an infinite number of fundamental systems each of which consists
of n — r solutions.

Suppose the r-rowed determinant which stands in the upper left-
hand corner of the matrix of the equations (1) does not vanish, and
let us consider the first » of these equations. Any solution of these
will be a solution of all the others. Transpose all terms after the
rth to the second members, and let (z,., --- ,) have any fixed set
of values (2}, --- 2,), not all zero; then these r equations will have
just one solution given by Cramer’s Rule. Call it (&, ..- 2f).
Now let (%,4y, *+- 2,) have any other fixed set of values (z/;, --- 2ll),
not all zero, and we get another solution, (2, --- z})). Continue in
this way until we have n—r solutions

/ / /
xl’ gy Tpypy ot z:u

2, ... a:;.”"],x[',‘;;],

aee x’[:""].
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If we have chosen these n — » sets of values for (.4, -+ 2,) so that
the determinant

(2

! !
Zryy ** Zn

x;{"’_'i"'] eee xg;”'"f]

is not zero,—and this may clearly be done in an infinite variety of
ways, — these n — r solutions will be linearly independent. That is
to say, we may thus obtain an infinite number of sets of n — 7 solu-
tions each, each of which satisfies condition () of our definition for
a fundamental system.

To prove that these sets of solutions also satisfy condition (3), let
us suppose that (X, --- X,) is any solution of the r equations we are
considering. The last » — r of these X’s are linearly dependent on
the n — r sets of values we have chosen for (z,,, --- 2,) since we have
here more sets of constants than there are elements in each set (cf.
Theorem 2, §18), and the determinant (2) is not zero. Thus

(®) Xi=e@j+ @+ + ¢, 2t (G=r+1,r+2, .- n).
Let us now solve the first  equations (1) by Cramer’s Rule, regard-
ing ., -+ @, as known. We thus get results of the form

z;= A}xr+1+AJ'~’Z,+2 + -+ A}""]xn (j =12, ... 7).

By assigning special values here to z,., :-- z,, we get

/ Iyl Myl ~rly
zj= Al + Al + -+ AP,

4) e e e e e e e e e (=12, 1)
xj[u-r] =4 ;xkﬁﬂ + A’j'x?ﬁ,}ﬂ 4 et A;”—']ng'—r],
Xj= 4 X+ Af X+ + APTX,
If we multiply the first » —r of these equations by e;, :+ ¢,—, re-
spectively and add, we get, by (3),

cli/"‘" --~+cn_,x}""] = Aj’.){M1 Heer A][”"]X,,.‘

Consequently, by the last equation (4),
(5) Xj=01xy"+ "'cn_ﬂ}n_r] (j_—: 1, 2, ves r)
Equations (8) and (5) together prove our theorem.
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We thus see that the totality of all solutions of the system (1,
forms a set of points satisfying the conditions of Theorem 5, §17.

Consequently,

TuroreM 2. IF the rank of a system of homogeneous linear equa-
tions in n variables is T, then amy nm—r+1 solutions are linearly

dependent.

Finally we will prove the theorem.

THEOREM 8. A mecessary and sufficient condition that a set of
solutions of a system of homogeneous linear equations of rank r in n
variables form a fundamental system is that they be

(@) linearly independent,
(8) m—r in number.

By definition, (a) is a necessary condition. To see that () alsa
is necessary, notice that by Theorem 2 there cannot be more
than n — r linearly independent solutions. We have, then,
merely to show that I linearly independent solutions never form
a fundamental system when !<n — 7. If they did, then by
Theorem 5, § 17, any set of !4 1 solutions would be linearly
dependent, and therefore the same would be true of any set of
n — r solutions (since n — =1+ 1). But by Theorem 1, this
is not true.

In order now to prove that conditions (a) and () are also

sufficient, let
(@t 2f), ... ff) GE=12..0n—7r)

be any system of » — » linearly independent solutions of our system
of equations, and let (z;, ... #,) be any solution of the system.
Then, by Theorem 2, we have n — » + 1 constants (61 +ov Chmpirds
not all zero, and such that

azi+ o + oo+ 2l N 40y 2y=0 (/=1,2, ... n)

But since the n — r given points are linearly independent, ¢, _,, ; # 0;
accordingly these last equations enable us to express the solu-
tion (2, ... 2,) linearly in terms of the n — # given solutions,
and this shows that these #» — » solutions form a fundamental
system.
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EXERCISES

1. Prove that all the fundamental systems of solutions of a system of homo-
geneous linear equations are included in the infinite number obtained in the
proof of Theorem 1.

2. Given three planes in space by their equations in homogeneous cosrdinates.
What are their relative positions when the rank of the system of equations is 3%
when it is 2? when it is1?

3. Given three planes in space by their equations in non-homogeneous cosrdi-
nates. 'What are their relative positions for the different possible pairs of values
of the ranks of the matrices and augmented matrices?



CHAPTER V
SOME THEOREMS CONCERNING THE RANK OF A MATRIX

19. General Matrices. In order to show that & given matrix
is of rank #, we have first to show that at least one r-rowed deter-
minant of the matrix is not zero, and secondly that all (r +1)-
rowed determinants are zero. This latter work may be considerably
shortened by the following theorem : '

THEOREM 1. If in a given matriz a certain r-rowed determinant
18 not zero, and all the (r+1)-rowed determinants of which this r-rowed
determinant 18 a first minor are zero, then all the (r+1)-rowed deter-
minants of the matriz are zero.

We will assume, as we may do without loss of generality, that
the non-vanishing 7-rowed determinant stands in the upper left-
hand corner of the matrix. Let the matrix be

a1+ Y

Ay == O

and consider the » 41 sets of n quantities each which lie in the first
r+ 1 rows of this matrix. These + 1 sets of quantities are linearly
dependent, as will be seen by reference to the proof of Theorem 1,
§13, for although we knew there that all the (r + 1)-rowed deter-
minants were zero, we made use of this fact only for those (r 41)-
rowed determinants which we now assume to be zero. Moreover,
since the 7 sets of constants which stand in the first » rows of our
matrix are linearly independent, it follows that the (r + 1)th row is
linearly dependent on the first ». Precisely the same reasoning
shows that each of the subsequent rows is linearly dependent on the
first » rows. . Accordingly, by Theorem 5, §17, any r+1 rows are
linearly dependent ; and therefore, by Theorem 1, §13, all the (r+1)-
rowed determinants of our matrix are zero, as was to be proved.
54 .
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Still another method of facilitating the determination of the rank
of a matrix is by changing the form of the matrix in certain ways
which do not change its rank. In order to explain this method, we
begin by laying down the following definition :

DEeriINITION 1. By an elementary transformation of a matriz we
understand a transformation of any one df the following forms :

(@) the interchange of two rows or of two columns ;

(8) the multiplication of each element of a row (or column) by the
same constant not zero ;

(¢) the addition to the elements of one row (or column) of the prod-
ucts of the corresponding elements of another row (or column) by one and
the same constant.

It is clear that if we can pass from a matrix a to a matrix b by one
of these transformations, we can pass back from b to a by an elemen-
tary transformation.

DeriNiTION 2. Two matrices are said to be equivalent if it 18 possi-
ble to pass from one to the other by a finite number of elementary trans-
Jormatzons.

THEOREM 2. If two matrices are equivalent, they have the same rank.

It is evident that the transformations («) and (d) of Definition 1
do not change the rank of a matrix, since they do not affect the van-
ishing or non-vanishing of any determinant of the matrix. In order
to prove our theorem, it is therefore sufficient to prove that the rank
of a matrix is not changed by a transformation (¢).

Supypose this transformation consists in adding to the elements of
the pth row of a matrix a % times the elements of the gth row,
thus giving the matrix b. Let » be the rank of the matrix a. We
will first show that this rank cannot be increased by the transforma-
tion, that is, that all (4 1)-rowed determinants of the matrix b are
zero. By hypothesis all the (» +1)-rowed determinants of the
matrix a are zero, and some of these determinants are clearly not
changed by the transformation, namely, those which do not contain
the pth row, or which contain both the pth and the gth row. The
other determinants, which contain the pth row but not the ¢th, take
on after the transformation the form A+%B where A and B are
(r +1)-rowed determinants of a, and are therefore zero. Thus we
see that the transformatmn (¢) never increases the rank of a matrix.
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Moreover, the rank of b cannot be less than that of a, for then the
transformation (¢) which carries b into.a would increase the rank of
b, and this we have just seen is impossible.

This theorem can often be used to advantage in determining the
rank of a matrix, for by means of elementary transformations it is
often easy to simplify the matrix very materially.

EXERCISES

Determine the ranks of the following matrices :

1. 4 12 6 8 2
6 1lo4 21 9 17

7 6 3 4 1

3% 80 15 20 b

2 I 75 0 116 — 39 0
171 —69 402 123 45
301 0 87 - 417 — 169
114 -—46 268 82 30

3. Prove that any matrix of rank r can be reduced by means of elementaxry
transformations to a form where the element in the ith row and ¢th column is 1
when i<r, while all the other elements of the matrix are zero.

4. Hence prove that two matrices with m rows and n columns each are always
equivalent when they have the same rank.

5. Prove that a necessary and sufficient condition that the matrix
an -+ Gy,

Aml *** Qmn
be of rank 0 or 1 is that there exist m + n constants as, see amy By +++ B, such that
ﬂ‘..; =aj; Bj.
20. Symmetrical Matrices.
DEFINITION.  The square matriz
Ay g +e+ Gy
Qg1 Qgg *** gn

anl ana Anp,
{and also its determinant) is said to be symmetrical if the pairs of terms

which are situated symmetrically with respect to the principal diagonal
are equal. That is, if 0, = a;.
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We will denote by M; an i-rowed principal minor of a. It is
our main object in this section to show how the rank of the symmet-
rical matrix may be determined by an examination of the principal

minors only. This may be done by means of the following three
theorems.

THEOREM 1. If an r-rowed principal minor M, of the symmetrical
matrixz a 18 not zero, while all the principal minors obtained by adding
one row and the same column, and also all those obtained by adding two
rows and the same two columns, to M, are zero, then the rank of a is r.

Let the non-vanishing minor be the one which stands in the upper
left-hand corner of a, and let B, denote the determinant obtained by
adding the oth row and the Bth column to M,. If we can show that
B, =0 for all unequal values of ¢ and 8 our theorem will be proved.
Cf. Theorem 1, §19. Give to the integers ¢ and 8 any two unequal
values, and let ¢ denote the determinant obtained by adding to M, the
«th and Bth rows and the oth and Bth columns of a.  Then we have,
by hypothesis, M, 0, B,,=0, By, =0, C=0. Let M} be the two-
rowed principal minor of the adjoint of ¢' which corresponds to the
complement of M; in C. Then by Cerollary 3, § 11, we have

M} = CM,=0.
But M} =B, By —B2.
Therefore B,z=0.

TuROREM 2. If all the (r+1)-rowed principal minors of the sym-
metrical matriz a are zero, and also all the (r+ 2)-rowed principal
minors, then the rank of a 18 r or less.

If =0, all the elements in the principal diagonal are zero and all
the two-rowed principal minors are zero.

1 2 =
That is, Ay Ay — A =0,

and therefore, since ay=a;=0, a;=0. That is, every element is
zero and hence the rank is zero, and the theorem is true in this
special case.

Now, assume it true when »="F%; that is, we assume that when all
(k+ 1)-rowed principal minors are zero and all (k+2)-rowed principal
minors are zero, the rank of a is less than £+1. Then it follows that
when all (% + 2)-rowed, and all (k+ 8)-rowed principal minors are zero.
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the rank of a is less than Z+ 2. For in this case, if all (k+ 1)-rowed
principal minors are zero, the rank is less than %+ 1, by hypothesis,
and if some (k4 1)-rowed principal minor is not zero, the rank is ex-
actly & + 1, by the last theorem. We see then that if the theorem is
true for =% itis true for r=%+ 1. But we have proved it true for
7= 0, hence it is true for all values of 7.

THEOREM 8. If the rank of the symmetrical matriz a is r >0, there
is at least one r-rowed principal minor of a which is not zero.

For all (r41)-rowed principal minors are zero, and, if all rrowed
principal minors were zero also, the rank of a would be r—1 or less,
by the last theorem.

We close with a theorem of a somewhat special character which
will be found useful later (cf. Exercises 4-6, § 50).

THEOREM 4. If the rank of the symmetrical matriz a is r >0, we
may shift the rows (at the same time shifting the columns in the same
way, thus keeping a symmetrical) in such a way that no consecutive two

of the set of quantities My, M, M, ... M, ‘

shall be zero and M, +0 ; M, being unity, and the other M’s being the
principal minors of a of orders indicated by their subscripts, which stand
in the upper left-hand corner of a after the shifting.

By definition we have M= 0. Leaving aside for the moment
the special case in which all the elements of the principal diagonal are
zero, let us suppose the element a; is not zero. Then by shifting the
ith row and column to the first place, we have M; 0. We have
tnus fixed the first row and column, but we ave still at liberty to
shift all the others. Now consider the two-rowed principal minor
obtained by adding to M, one row and the same column. Leaving
aside still the special case in which these are all zero, let us suppose
that the two-rowed determinant obtained by striking out all the rows
and columns except those numbered 1 and 4, is not zero. Then, by
shifting the 4th row and column into the second place, we have
M,+0. We next have to consider the three-rowed principal minors
of which M, is a first minor. We can evidently proceed in this way
until we have so shifted our rows and columns that none of the quan-
tities M, M,, ... M, are zero, unless at a certain stage we find that
all the principal minors of a certain order which we have to consider
are zero. In this case we should have so shifted our first £ rows and
columns that none of the quantities My, M, ... M; are zero. but we
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should then find that all (k+1)-rowed principal minors of which M,
is a first minor vanish, so that, however we may shift the last n — %
rows and columns, we have M;,;=0. Let us then examine the
(k+2)-rowed principal minors of which M, is a second minor.*
These can (by Theorem 1) not all be zero as otherwise the rank of a
would be £ <». That is, if M,,,=0, we can so arrange the rows
and columns that M, ,0. Thus we see that the rows and col-
mumns of a may be so shifted that no consecutive two of the M’s are
zero. Now, if M,_,=0, the above proof shows that we can make
M,+0. Buteven though M,_, = 0 we can still make M, =0, for by
hypothesis + all the determinants obtained by adding to M,_; two
rows and the same two columns vanish, and if all those obtained by
adding one row and the same column were zero also, the rank of a
would be » — 1, by Theorem 1.

A symmetrical matrix is said to be arranged in normal form when
no consecutive two of the M’s of Theorem 4 are zero and M, = 0.

EXERCISES
1. Determine the ranks of the following matrices :
2 1 11 2 0 4 10 1
1 0 4 -1 4 8 18 7,
11 4 56 5 10 18 40 17

2 -1 5 -6 1 7 17 3
1 0 0 1 4 0o 1 b d
0o 1 0 2 5 1 0 c e
0o o0 1 3 61, ||& ¢ 2bc cd+be
1 2 3 14 32 d e cd+be 2de
4 5 6 32 77

2. By a skew-symmetric determinant, or matrix, is meant one in which aq:-
— aj; (and therefore a;; = 0).

Establish for such matrices theorems similar to Theorems 1,2, 3 of this section,

3. By considering the effect of changing rows into columns, prove that a skew-
symmetric determinant of odd order is always zero.

4. Prove that the rank of a skew-symmetric matrix is always even.

*The tacit assumption is here made that when % = » —1, r <=, as otherwise M4
would have no meaning. The case » = n can, however, obviously not occur here, for
then we should have M .3 =a 5= 0.

t Here again we assume that » <n, for if r =n, M, =a=0.



CHAPTER VI

LINEAR TRANSFORMATIONS AND THE COMBINATION
OF MATRICES

21. Matrices as Complex Quantities. We have said in § 7 that a
matrix of m rows and n columns is not a quantity, but a set of mn
quantities. This statement is true only if we restrict the term
quantity to the real and complex quantities of ordinary algebra. A
moment’s reflection, however, will show that the conception of quan-
tity as used in arithmetic and algebra has been gradually enlarged
from the primitive conception of the positive integer by using tha
word quantity to denote entities which, at an earlier stage, would
not have been regarded as quantities at all, as, for instance, nega-
tive quantities. 'We will consider here only one of these extensions,
namely the introduction of complex quantities, as this will lead us to
look at our matrices from a broader point of view.

If we have objects of two or more different kinds which can be
counted or measured, and if we consider aggregates of such objects,
we get concrete examples of complex quantities, as, for instance,
5 horses, 8 cows, and 7 sheep. A convenient way to write such a
complex quantity is (5, 8, T), it being agreed that, in the illustra-
tion we are considering, the first place shall always indicate horses,
the second cows, and the third sheep. In the abstract theory of
complex quantities we do not specify any concrete objects such as
horses, cows, etc., but merely consider sets of quantities (couples,
triplets, etc.), distinguishing these quantities by the position they
oceupy in our symbol. Such a complex quantity we often find it
convenient to designate by a single letter,

a=(a, b, c)

just as in ordinary algebra we denote a fraction (% for instance),

which really involves two numbers, by a single letter. We speak

here of the simple quantities a, 8, ¢ of which « is composed as its first,
60
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second, third components ; and we call two complex quantities equal
when and only when the components of one are equal respectively to
the corresponding components of the other. Similarlya complex quan-
tity is said to vanish when and only when all of its components are zero.

What makes it worth while to speak of such sets of quantities as
complex quantities is that it is found useful to perform certain alge-
braic operations on them. By the sum and difference of two complex

quantities = (ay, by ¢), & = (ay by &)

we mean the two new complex quantities
oy + ay = (0,4 ay, b+ by ¢, +¢5), & — g =(a; —ay, by — b,, ¢, — &3).*

When it comes to the question of defining what we shall under-
stand by the product of two complex quantities, things are by no
means so simple. It is necessary here to lay down some rule accord-
ing to which, when two complex quantities are given, a third, which
we call their product, is determined. Such rules may be laid down
in an infinite variety of ways, and each such rule gives us a differens
system of complex quantities.

We come now to the subject of matrices. A matrix of m rows
and » columns being merely a set of mn quantities (which we
assume to be either real quantities or the ordinary complex quantities
of elementary algebra) arranged in a definite order, is, according to
the point of view we have explained, a complex quantity with mn
components; and it is only a special application of the theory of
complex quantities which we have sketched, when we lay down the
following definitions:

DErINITION 1. A matriz is said to be zero when and only when all
of its elements are zero. ' '

DEFINITION 2. Two matrices are said to be equal when and only
when they have the same number of rows and of columns, and every
element of one 8 equal to the corresponding element of the other.

#* That this is the natural meaning to be attached to the terms sum and difference
will be seen by reference to the concrete illustration given above.

1 If, in particular, we wish to introduce the ordinary system of complex quanti-
ties of elementary algebra, we use a system of couples, and define the product of two
couples, o = (ay, b1), 0 = (ag, bs),
by the formula o0t = (@102 ~ blbz, a1bz + asby).

For further details cf. Burkhardt’s Funktionentheorie, §§ 2, 8.
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DEFINITION 8. By the sum (or difference) of two matrices of m
rows and n columns each, we understand a matriz of m rows and n col-

umns, each of whose elements 1s the sum (or difference) of the corre-
sponding elements of the given matrices.

In order to distinguish them from matrices, we will call the
ordinary quantities of algebra (real quantities and ordinary complex

quantities) scalars. . .
Before proceeding, as we shall do in the next section, to the

definition of the product of two matrices, we will define the product
of a matrix and a scalar.

DerFINITION 4. If a is a matriz * and k a scalar, then by the prod-
uct ka or ak we wunderstand the matriz each of whose elements i3 k&
times the corresponding element of a.

As an obvious consequence of our definitions we state the
theorem:

THEEOREM. All the laws of ordinary algebra hold for the addition
or subtraction of matrices and their multiplication by scalars.

For instance, if a, b, ¢ are matrices, and %, ! scalars,
a+b=>b+a,
at+(b+c)=(a+b)+c,
ka + kb =k(a + D),
ka+la=(k+Da.t

EXERCISE

If r, and ry are the ranks of two matrices and R the rank of their sum, prove

that
R<r +r,.

22. The Multiplication of Matrices. Up to this point we have con-
sidered matrices with m rows and n columns. For the sake of sim-
plicity of statement, we shall confine our attention from now on to
square matrices, that is to the case m =n. This involves no real loss

* The notation here used, matrices being denoted by heavy-faced type, will be
systematically followed in this book.

t We add that, as a matter of notation, we shall write
(-Da=-a.
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of generality provided we agree to consider a matrix of m rows and
n columns, where m #mn, as equivalent to a s§uare matrix of order
equal to the larger of the two integers m, n and obtained from the
given matrix by filling in the lacking rows or columns with zeros.

The question now presents itself: How shall we define the prod-
uct of two square matrices of the same order ? It must be clearly
understood that we are logically free to lay down here such definition
as we please, and that the definition we select is preferable to others
not on any a prior: grounds, but only because it turns out to be more
useful. We select the following definition, which is suggested * by
the multiplication theorem for determinants:

DEFINITION 1. The product ab of two square matrices of the nth
order is a square matriz of the nth order in which the element which lies
in the ith row and jth column is obtained by multiplying each element of
the ith row of a by the corresponding element of the jth column of b and
adding the results.

Let us denote by a; and b; the elements in the sth row and jth
column of a and b respectively, or, as we will say for brevity, the
element (7, ) of these matrices. Then, according to our definition,
the element (¢, 5) of the product ab is
Y] @igdyj+ Aigdgit o+ + Wby,
while the element (%, 7) in the matrix ba is
@) ayjbiy + aybiy + - +ygbine

Since the two quantities (1) and (2) are not in general equal, we
obtain

THEOREM 1. The multiplication of matrices is not in general com-

mutative, that s, in general ab = ba.

Let us now consider a third matrix ¢ whose element (3, j) ise¥
and form the product (ab)c. The element (4, 5) of this matrix is

(@irbyy + @idgy + o + @inbuy)ey

+(aiyd1g + digbog + -+ + ubug)ey;

(3)
+(@oybpn + igbgn + <+ + Qidun)ense

* Historically this definition was suggested to Cayley by the consideration of the
composition of linear transformations; cf. § 28.
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On the other hand, the element (4, j) of the matrix a(bc) is
Ay(Byerj + brsast o+ bintns)
(4) + atz(b 1c1 i+b 202, 4o+ b2ncn])

+ a,,,(b,,lcu + b,,zem + o+ b,mcm)

Since the two quantities (3) and (%) are equal, we have established

THEOREM 2. The multiplication of matrices 18 associative, that ¢s,
(ab)c = a(bc).

Finally, since the element (4, 7) of the matrixa (b + c) isclearly

equal to the sum of the elements (4, 7) of the matrices ab and ac, we
have the result

THEOREM 3. The multiplication of matrices is distributive, that s,
a(b+c)=ab+ac.

Besides the commutative, associative, and distributive laws, there
is one other principle of elementary algebra which is of constant use,
namely, the principle that a product cannot vanish unless at least one
of the factors is zero. Simple examples show that this is not true in
the algebra of matrices. ‘We have, for instance,

ay @y O 0 0 0 0 0 0
(%) @y @y 0|0 0 0 =0 0 0|=0,
dgy g 0 by g Dy 0 0 0

whatever the values of the ¢’s and &’s may be. Hence

THEOREM 4. From the vanishing of the product of two or more
matrices, we cannot infer that one of the factors is zero. .

The process of cancelling out non-vanishing factors which enter
throughout an equation will, therefore, be inadmissible in the algebra
of matrices.

We next state a result which follows at once from the similarity
between the theorem for the multiplication of determinants and our
definition of the product of two matrices :

THEOREM 5. The determinant of a matriz which is obtained by

multiplying together two or more matrices i8 equal to the product of the
determinants of these matrices.
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The conception of the conjugate of a matrix, as defined in §7,
Definition 2, is an important one, and the following theorem concern-
ing it is often useful:

TaEOREM 6. The conjugate of the product of any number of
matrices 18 the product of their conjugates taken in the reverse order.

In order to prove this theorem we first notice that its truth in the
case of two matrices follows at once from the definition of the prod-
uct of two matrices. Its truth will therefore follow in all cases if,
assuming the theorem to be true for the product of » — 1 matrices,
we can prove that it is true for the product of » matrices. Let us

write
b=a,az -+ a,

Then, from what we have assumed,

I — o I gt
b'=a, - az ay

where we use accents to denote conjugates. Accordingly,
(a8, -+ a,) = (a;b) =bay=a, - azay,

and our theorem is proved.
In conclusion we lay down the following:

DEFINITION 2. A square matriz 18 said to be singular if its deter-
minant t8 zero.

According to the convention made at the beginning of this sec-
tion, it will be seen that all matrices which are not square are
singular. '

EXERCISES

1. DerINITION. A matriz a is called a divisor of zero if a matriz b different
Sfrom zero exists such that either ab = 0 or ba = 0.

Prove that every matrix one of whose rows or columns is composed wholly of
zeros is a divisor of zero.

2, If it is possible to pass from a to b by means of an elementary transforma-
tion (cf. § 19, Definition 1), prove that there either exists a non-singular matrix ¢
such that

ac =b,
or a non-singular matrix d such that

da=0.
P
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3. I all the elements of a matrix are real, and if the product of this matrix
and its conjugate is zero, prove that the matrix itself is zero.

4. If the corresponding elements of two matrices a and b are conjugate imagi-
naries, and, b’ being the matrix conjugate to b, if

ab’=0, then a=b=0.

23. Linear Transformation. Before going farther with the
theory of matrices we will take up, in this section and the next, the
closely allied subject of linear transformation, which may be regarded
as one of the most important applications of the theory of matrices.

In algebra and analysis we frequently have occasion to introduce,
in place of the unknowns, or variables, we had originally to deal
with, certain functions of these quantities which we regard as new
unknowns or variables. Such a transformation, or change of vari-
ables, is particularly simple, and for many purposes particularly
important, if the functions in question are homogeneous linear poly-
nomials. It is then called a homogeneous linear transformation, or,
as we shall say for brevity, simply a lenear transformation. If z;, - 2,
are the original variables, and z}, --- 2} the new ones, we have, as the
formule for the transformation,

!
Ty = Ay Ty F o Ay

r
Ty = A%y + -+ Gy

The square matrix gy o gy

Apy *** Ay

is called the matrix of the transformation, and the determinant of
this matrix, which we will represent by a, is called the determinant
of the transformation. Inasmuch as the transformation is com-
pletely determined by its matrix, no confusion will arise if we speak
of the transformation a.

In most cases where we have occasion to use a transformation itis
important for us to be able, in the course of our work, to pass back to
the original variables, and for this purpose it must be possible, not
merely to express z{, --- z, as functions of 2y, --- z,, but also to express
@y, - z, as functions of z}, ... z,. In the case of linear transforma-
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tions this can in general be done. For the equations of the transfor.
mation may be regarded as non-homogeneous linear equations in
Zy, - Zp and if the determinant @ of the transformation is not zero,
they can be solved and give

:c,,=%m x4 - +‘%'x:n
where 4,,, --- 4,, are the cofactors of ay;, --- a,, in a.
This transformation A is called the inverse of the transformation
a, but it must be remembered that it exists only if @ 0. A linear
transformation for which a=0 is called a singular transformation.
If a is non-singular, its inverse A is also non-singular, since the deter
minant of A is a7 (cf. Corollary 2, § 11).

DEeFINITION.  The special linear transformation

=2z, 2h=2,y - 2, =2,
whose matriz 8 1 0 .- 0
01 .. 0
I = . 9
0 0 .. 1

18 called the identical transformation.

The determinant of this transformation is 1.

We turn now to the subject of the composition of linear trans.
formations. If we introduce a new set of variables 2/ as functions
of the original variables z, and then make a second transformation
by introducing a third set of variables '/ as functions of the vari-
ables 2/, these two transformations can obviously be combined and
the variables 2// expressed directly in terms of the 2’s. If the two
transformations which we combine are linear transformations, it is
readily seen that the resulting transformation will also be linear.
The precise formul® are important here, and for the sake of simplic-
ity we will write them in the case of three variables, a case which
will be seen to be perfectly typical of the general case.
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Let
) = @332, + 15T, + A1y @] = byyy + big% + byg2l
al 2 = GgyTy + dggy + AgeTp, by 2 = by} + bash + byl
Tp = Qg% + AgyTp + ATy 2y = g2y + beo), +- by

be two linear transformations. Replacing the 2’s in b by theix
values from a, we get

(2 = (ay,byy + Gg1b1g + ag1b13)2y

+ (@1bq; + agebig + agebis) %y

+ (5011 + aggbig + agsdy15) %

2l = (@1,091 + Gg10g5 + @41055) %y
+ (@1Dg1 + Qggbag + Agabyg)%a
+ (@509, + Aaghoy + Ags0ss) %y,
g = (@10 + A9 b5y + @51055)7,
+ (ay9bg; + Ggpbgy + @godgs) 7y
+ (13031 + ggbsp + a330g5) 7.

L

It will be seen that the matrix of this transformation is ba.
Hence, '

THEOREM. If we pass from the variables x to the variables z' by a
linear transformation of matriz a, and from the variables 2’ to the vari-
ables 2/’ by another linear trangformation of matriz b, then the linear
trangformation of matriz ba will carry us directly from the variables x
to the variables z''.*

24. Collineation. We come now to an important geometrical
application of the subject of linear transformation. For the sake of
simplicity we begin with the case of three variables, which we will
regard as the homogeneous coérdinates of points in a plane.

The equations o' = az+ by + e,
@ Y = a+by + e,

t = agz + bgy + ¢yt

* This result may be remembered conveniently by means of the following symbolic
notation, which is often convenient. Let us denote the transformation a by the
symbolic equation 2’ =a(z), and the transformation b by «// =b(a’). The result of
combining these two transformations is then z// = b(a(x)) or simply 2/’ = ba(z)-
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may be regarded as defining a transformation of the points of the
plane; that is, if (2, y, t) is an arbitrarily given point, we can com-
pute, by means of (1), the codrdinates (2, ¥/, t') of a second point
into which we regard the first point as being transformed. The
only exception is when the computed values of 2/, 3/, ¢ are all three
zero, in which case there is no point into which the given point is
transformed. This exceptional case can clearly occur only when the
determinant of the transformation (1)is zero. Let us then confine
our attention to non-singular linear transformations. In this case,
not only does every point (z, y, t) correspond to a definite point
(', ¥, t'), but conversely, every point (/, &/, ¢') corresponds to a
definite point (z, g, t), since the transformation (1) now has an inverse

-A.
_All 2 0 Asl
xr = x4+ ¥+ t,
__‘Bl /I 'B2I Ba!
C C C,
t=ol 4 229" 4 Z8¢
Bx+ Dy+Et’

where D is the determinant of (1), and 4, B,, C; are the cofactors
in D.

The points (z, , t) of the line )
(3) gr+ By+qt =0 A

are transformed by means of the non-singular transformation (1)
into points of another line,

(4) “A1+/911)5’1+'701w1+°‘A2+B£2+'Yozy/+“As+ IBDBs+'708t'=O,

as we see by using formule (2). Conversely every point of the line
(4) corresponds, as we see by using (1), to a point on (3). That is,
the transformation establishes a one-to-one correspondence between
the points on the two lines (8) and (4), or, as we say, it transforms
the line (8) into the line (4). On account of this property of trans-
forming straight lines into straight lines, the transformation is called
a collineation. The transformation is also known as a projective
transformation, for it may be shown that it can be effected by pro-
jecting one plane on to another by means of straight lines radiating
from a point in space.
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What we have here said in the case of two dimensions applies
with no essential change to three dimensions. The transformation

2 =ax+by+ ez + dyt,
) Yy = a5z + by + ¢z + dyt,
2 = agx + byy + cgz + dyt,
t=ax+by+cz+dgt

gives us, provided its determinant is not zero, a one-to-one trans
formation of the points of space, which carries over planes into
planes, and therefore also straight lines into straight lines, and is
called a collineation or projective transformation of space. The same
idea can be extended to spaces of higher dimensions.

Quite as important is the case of one dimension. The transfor-
mation o' = a4+ bt
(6) = a2z + 62t

gives us, provided its determinant is not zero, a one-to-one trans.
formation of the points on a line. This we call a projective trans.
formation of the line, the term collineation being in this case
obviously inadequate. '

It is possible, although for most purposes not desirable, to express
the projective transformations (6), (1), (5) in one, two, and three
dimensions in terms of non-homogeneous, instead of homogeneous
-codrdinates. We thus get the formule

/—-a_lg_(_j-_él 'X/=a1X+b1Y+c1Z+d17

(7) X —a2X+ bz’ a4X+ [)4Y+c4Z+ d4
poaX4hThe (g |p_aX+b¥+aZ+d,

(8) 4, X + 5, Y + ¢ e, X +bY+eZ+d,
pr=BX+6V+e g X+ bV +eZ+dy

a3X+ bsy"l‘ 03’ | 61,4X+64Y-|-04Z+ d‘1

These fractional forms may, in particular, be used to advantage
in case their denominators reduce to mere constants. This special
case, which is known as an affine transformation, may clearly be char-
acterized by saying that all finite points go into finite points.*

* If we consider the still more special case in which the constant terms in the
numerators of (8) and (9) are zero, that is, affine transformations in which the origin
is transformed into itself, we see that our formule (8) and (9) hova the form (8) and
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These affine transformations are of much importance in mechanics,
where they are known as homogeneous strains; cf., for instance,
Webster’'s Dynamics (Leipzig, Teubner), pp. 427-444.

Although we propose to leave the detailed discussion of singular
transformations to the reader (see Exercise 1 at the end of this sec-
tion), we will give one theorem concerning them.

THEOREM 1. If the points Py, P,, «-- are carried over by a singu-
lar projective transformation into the points Pi, Ph, -+, then, tf our
transformation is in one dimenston, the points P' will all coincide ;
if in two dimensions, they will all be collinear ; if in three dimensions,
they will all be complanar, ete.

Suppose, for instance, that we have to deal with two dimensions.
Since the determinant of the collineation (1) is supposed to be zero,
the three polynomials in the second members of (1) are linearly de-
pendent; that is, there exist three constants, &y, %,, %;, not all zero,
and such that for all values of =, y, £,

(10) T + gy’ + Jegt! = 0.

Accordingly all points (2/, y, t') obtained by this transformation
lie on the line (10).

Similar proofs apply to the cases of one dimension and of three
or more dimensions.

THEOREM 2. Any three distinct points on a line may be carried
over respectively into any three distinct points on the line by one, and
only one, projective transformation.

Let the three initial points be Py, P,, Py with homogeneous coor-
dinates (zy, ty), (% &), (g, f3) respectively, and let the points into
which we wish them transformed be P}, P}, P} with coérdinates
(2, t)), (@ th) (2}, t;'). The projective transformation

o' = azx + Bt,
t' =gz + &t

(1) respectively. Thus (6) may be regarded either as the general projective transfor-
mation of a line (if x, ¢ are regarded as homogeneous codrdinates) or as a special
affine transformation of the plane (if x, ¢ are regarded as non-homogeneous codrdi«
nates). Similarly (1) may be regarded either as the general projective transformation
of a plane, or as a special affine transformation of space.
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carries over any given point (z, ¢) into a point (z/, ') whose position
depends on the values of the constants e, B, v, 8. Our theorem is
true if it is possible to find one, and, except for a constant factor
which may be introduced throughout, only one, set of seven con-
" stants — four, &, B, v, 8, and three others, p;, pyy p3 none of which is
zero — which satisfy the six equations

pizy=az + Bty [pyxp =0z, + Bty [pyrh =03+ Bty
pity =2+ O, Pty =z, + 8y |pgly = v25+ Oty

Since the z’s and ¢'s are all known, we have here six homogeneous
linear equations in seven unknowns. Hence there are always solu-
tions other than zeros, the number of independent ones depending on
the rank of the matrix of the coefficients. Transposing and rear-
ranging the equations, we have

s+ 1,8 —afpy =0,
zyy + 48 — tipy =0,
zye+ 1,8 —Zipy =0,
Tgy + t,0 —thoy =0,
zg0+ 18 — z5pg =0,
2y + £8 — typg=0.

. The matrix of these equations is of rank six. For consider the
determinant of the first six columns with its sign reversed,

z ¢t 0 0 2 0
z t, 00 0 g
0 0 =2 ¢ ¢ O
0 0 & t 0 #f
zg t, 0 0 0 0
0 0 =2 ¢ 0 0

Since P;, P, Py are distinct, there exist two constants ¢;, ¢,
neither of which is zero, such that

0%y + gy + 23 =0,
cltl -+ cﬂtﬂ +iy= 0.
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Hence, adding to the fifth row of D ¢, times the first row and ¢, times

the second, and to the sixth row ¢, times the third row and ¢, times
the fourth, we have

.t 0 0 2 0
Z, t, 0 0 0 4

Do 0 0 =2, ¢ ¢ 0 . z, t,|2| 2 2
0 0 =, ¢ 0 & | a4
0 0 O 0 ) o)
0o 0 o 0 ctf o]

and this is not zero, since P; and P) are distinct as well as P,
and P,.

In the same way we see that the determinants obtained by
striking out the sixth and the fifth columns respectively of the
matrix are not zero. Accordingly, by Theorem 4, §17, we see that
the equations have a solution in which none of the quantities
P1 Py Py are zero, and that every solution is proportional to this
one. All these solutions obviously yield the same projective trans-
formation of the line.

CoroLLARY. The transformation just determined is non-singular.

This follows, by a reference to Theorem 1, from the fact that it
does not carry Py, P,, P, into a single point.

EXERCISES

1. Discuss singular projective transformations in one, two, and three dimen-
sions ; noting, in particular, the effect of the rank of the matrix of the transfor-
mation, first, on the distribution of the points which have no corresponding points
after the transformation, and secondly, on the distribution of the points into which
no points are carried over by the transformation.

2. Prove that any four complanar points no three of which are collinear may
be carried over into any four points in the plane, no three of which are collinear,
by one and only one collineation.

3. State and prove the corresponding theorem in n dimensions.

4. Prove that the transformation from a first system of homogeneous cosrdi-
nates to a second is effected by a non-singular linear transformation. Consider
the case of one, two, and three dimensions.
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5. Prove that a projective transformation in space effects on every plane a
two-dimensional, and on every line a one-dimensional, projective transformation,
while at the same time the positions of the plane and line are changed.

[SveeesTioN. If p and p/ are any two corresponding planes, assume in any way a
pair of perpendicular axes in each of them, and denote by (x,, y), ¢,), and (!, v, 8
respectively the systems of two-dimensional homogeneous cosrdinates based on these
axes. Then show, by using the result of Exercise 4, that the transformation of one
plane on the other will be expressed by writing «/, ¥}, t{ as homogeneous linear poly-
nomials in 2, ¥, ¢;.]

25, Further Development of the Algebra of Matrices. We proceed
to establish certain further properties of matrices, leaving, however,
much to the reader in the shape of exercises at the end of the section.

The theory of linear transformations suggests to us at once certain
properties of matrices. The first of these is :

THEOREM 1. The matriz

0 0 ..o 1

has the property that if a is any matriz whatever
Ia =al =a.

For the linear transformation of which a is the matrix will evi-
dently not be changed by being either followed or preceded by the
identical transformation of which I is the matrix.

If we do not wish to use the idea of linear transformation, we may
prove the theorem directly by actually forming the products Ia and al.

This theorem tells us that I plays in the algebra of matrices the
same role that is played by 1 in ordinary algebra. For this
reason I is sometimes called the wnit matriz or idemfactor.

Let us now consider any non-singular linear transformation and
its inverse. These two transformations performed in succession in
either order obviously lead to the identical transformation. This
gives us the theorem :

TraEOREM 2. If Ayq - Ay
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i8 a non-singular matriz of determinant a, and if A denote in the ords
nary way the cofactors of the elements of a, the matriz

Ay Ay
a a
. L]
il
Aln Ann
a a

called the inverse of a, and denoted by a™t, 18 a non-singular matriz
which has the property that

aal=ala=1I

This suggests that we define positive and negative integral
powers of matrices as follows :

DerINITION 1. If p is any positive integer and a any matriz we
understand by aP the product aa --- a to p factors. If ais a non-
singular matriz, we define its negative and zero powers by the for-
mulee

a?=_a"y, a'=L
From this definition we infer at once
THEOREM 3. The laws of indices
ara? = aP*e, (ap)q = aP?
hold for all matrices when the indices p and q are positive integers, and

for all non-singular matrices when p and q are any integers.

We turn now to the question of the division of one matrix by
another. We naturally define division as the inverse of multiplica-
tion, and, since multiplication is not commutative, we thus get two
distinet kinds of division ; a divided by b being on the one hand a
matrix x such that a=bx,

on the other hand a matrix y such that
a=yb.

On account of this ambiguity, the term dévision is not ordinarily used
here. 'We have, however, as is easily seen, the following theorem :
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THEOREM 4. If a8 any matriz and b any non-singular matriz,
there exists one, and only one, matriz x which satisfies the equation

a = bx,
and one, and only one, matriz y which satisfies the equation
a=yb,
and these matrices are given respectively by the formulee
x=b"a, y=abL

A special class of matrices is of some importance ; namely, those
of the type

E 0 . 0
0 &k - 0
00 - &%

Such matrices we will call scalar matrices for a reason which will
presently appear.

If we denote by k the scalar matrix just written, and by a anv
matrix of the same order as k, we obtain readily the formula

€8] ka = ak = ka.

If now, besides the scalar matrix k, we have a second scalar matrix
1in which each element in the principal diagonal is 7, we have the
two formuls

2) k+l=1+k=(k+1)],
(3) kl =1k = KII.

Formula (1) shows that scalar matrices may be replaced by ordinary
scalars when they are to be multiplied by other matrices; while
formule (2) and (8) show that scalar matrices combined with one
another not only obey all the laws of ordinary scalars, but that each
scalar matrix may in such cases be replaced by the scalar which
occurs in each element of its principal diagonal provided that at the
end of the work the resulting scalar be replaced by the correspond-
ing scalar matrix.
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For these reasons we may, in the algebra of matrices, replace all
scalar matrices by the corresponding scalars, and then consider that
all scalars which enter into our work stand for the corresponding
scalar matrices.  If we do this, tho unit matrix I will be represented
by the symbol 1.

DemiNiTioN 2. By the adjoint A of a matriv a is understood
another matrie of the same order in which the element in the ith row
and jth column 8 the cafactor of the element in the Jth row and ith
column of a.¥

It will be seen that when a is non-singular,

(H A=uaal,

but it should be noticed that while every matrix has an adjoint, only
non-singular matrices have inverses.
Equation (4) may be written in the form

(5) Aa=aA =al,

a form in which it is true not merely when a is non-singular, but also,
as is seen by direct multiplication, when the determinant of a is zero.

Finally we come to a fow important theorems concerning the
rank of the matrix obtained by multiplying together two given
matrices.  In the first place, we notice that the rank of the product
is not always completely determined by the ranks of the factors.
This may be shown by numerous examples, for instance, in formula
(H) § 22, the ranks of the factors are in general two and one, and the
rank of the produet is zero, while in the formula

ay ag, O 10 0 0 0 0 ay
Uy gy O 10 0 T lH=]10 0 ay
tyy gy 0 00 0 0 0 ay

the ranks of the factors are in general the same, namely two and
one, while the rauk of the produet is one.

But though, as this example shows, the ranks of the factors (even
together with the order of the matrices) do not suflice to determine
the rank of the product, there are, nevertheless, important inequali-
ties between these ranks, one of which we now proceed to deduce.

# Notice the interchange of rows and columns here, which in the case of adjoint
determinants, being immaterial and sometimes inconvenient, was not made.



78 INTRODUCTION TO HIGHER ALGEBRA

For this purpose consider the two matrices

Qyq Qg bll eee b]n
a= L] b= L}
Qpy *** Ay bnl e bnn

and their product ab.

THEOREM 5. Any k-rowed determinant of the matriz ab is equal
to an aggregate of k-rowed determinants of b each multiplied into a
polynomial in the a's, and also to an aggregate of k-rowed determinants
of a each multiplied by a polynomial in the b’s.

For any krowed determinant of ab may be broken up into a sum
of determinants of the 4th order in such a way that each column of
each determinant has one of the &’s as a common factor.* After
taking out these common factors from each determinant, we have
left a determinant in the a’s which, if it does not vanish identically, is
a k-rowed determinant of a. Or, on the other hand, we may break
up the k-rowed determinant of ab into a sum of determinants of the
kth order in such a way that each row of each determinant has one
of the a’s as a common factor. After taking out these common factors
from each determinant, we have left a determinant in the &’s which,
if it does not vanish identically, is a k-rowed determinant of b.

From the theorem just proved it is clear that if all the k-rowed
determinants of a or of b are zero, the same will be true of all the
k-rowed determinants of ab. Hence

THEOREM 6. The rank of the product of two matrices cannot
exceed the rank of either factor.t

* The truth of this statement and the following will be evident if the reader
actually writes out the matrix ab.

t Thus if 14 and r; are the ranks of the two factors and R is the rank of the prod-
uct, we have Rgrl, R<rs This is one half of Sylvester’s ¢ Law of Nullity,” of
which the other half may be stated in the form RZrl + 72 — n, where n is the order
of the matrices ; cf. Exercise 8 at the end of this section. Sylvester defines the nullity
of a matrix as the difference between its order and its rank, so that his statement of
the law of nullity is : The nullity of the product of two matrices is at least as great
as the nullity of either factor, and at most as great as the sum of the nullities of the
factors.
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There is one important case in which this theorem enables us to
determine completely the rank of the product, namely, the case in
which one of the two matrices a or b is non-singular. Suppose first
that a is non-singular, and denote the ranks of b and ab by r and R
respectively. By Theorem 6, R <r. We may, however, also regard
b as the product of a-! and ab, and hence, applying Theorem 6
again, we have r < . Combining these two results, we see that
r = R.

On the other hand, if b is non-singular, and we denote the ranks
of a and ab respectively by » and R, we get from Theorem 6, R S
and, applying this theorem again to the equation

(ab)bl=a,

we have » S R. Thus again we get » = R.
We have thus established the result:

THEOREM 7. If @ matriz of rank r is multiplied in either order by
a non-singular matriz, the rank of the product is also r.

EXERCISES

1. Prove that a necessary and sufficient condition that two matrices a and b
of the same order be equivalent is that there exist two non-singular matrices
¢ and d such that dac=b

Cf. § 22, Exercise 2, and § 19, Exercise 4.

2. Prove that a necessary and sufficient condition that two matrices aand b
of the same order be equivalent is that there exist four matrices ¢, 4, e, f such

that dac = b, a = fbe.

3. Prove that every matrix of rank r can be written as the sum of » matrices
of rank one.*

[Succrsrion. Notice that the special matrix mentioned in § 19, Exercise 3, can be
80 written.]

* A matrix of rank one has been called by Gibbs a dyad, since it may (cf.
§ 19, Bx. 5) be regarded as a product of two complex quantities (a1, @g, -+ an) and
(1, bgy +++ by). The sum of any number of dyads is called a dyadic polynomial, or
simply a dyadic. Lvery matrix is therefore a dyadic, and vice versa. Gibbs’s theory
of dyadics, in the case n = 8, is explained in the Vector Analysis of Gibbs-Wilson,
Chap. V. Geometric language is used here exclusively, the complex quantities
(a1, @2, ag) and (by, ba, bg) from which the dyads are built up being interpreted as
vectors in space of three dimensions. This theory is equivalent to Hamilton’s theory
of the Linear Vector Function in Quaternions,
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4. Prove that a necessary and sufficient condition that a matrix be a divisor
of zero (cf. § 22, Exercise 1) is that it be singular.

[Sueeestion. Consider equivalent matrices. ]

5. Prove that the inverse of the product of any number of non-singular
matrices is the product of the inverses of these matrices taken in the reverse
order.

Hence deduce a similar theorem concerning the adjoint of a product of any
number of matrices, whether these matrices are singular or not.

What theorem concerning determinants can be inferred ?

6. Prove that the conjugate of the inverse of a non-singular matrix is the
inverse of the conjugate; and that the conjugate of the adjoint of any matrix
is the adjoint of the conjugate.

7. Prove that if a matrix has the property that its product with every matrix
of the same order is commutative, it is necessarily a scalar matrix.

8. If 7 and r, are the ranks of two matrices of order n, and R the rank of

their product, prove that R>r 47y —n*

[Succestion. Prove this theorem first on the supposition that one of the two
matrices which are multiplied together is of the form mentioned in Exercise 3, § 19,
using algo at this point Exercise 1, § 8. Then reduce the general case to this one by
means of Exercise 1 of this section. ]

26. Sets, Systems, and Groups. These three words are the
technical names for conceptions which are to be met with in all
branches of mathematics. In fact the first two are of such gener-
ality that they may be said to form the logical foundation on which
all mathematics rests.+ In this section we propose, after having
given a brief explanation of these three conceptions, to show how
they apply to the special subjects considered in this chapter.

The objects considered in mathematics — we use the word odject
in the broadest possible sense —are of the most varied kinds. We
have, on the one hand, to mention a few of the more important ones,
the different kinds of quantities ranging all the way from the posi-
tive integers to complex quantities and matrices. Next we have in
geometry not only points, lines, curves, and surfaces but also such

* Cf. the footnote to Theorem 6.

t For a popular exposition of the point of view here alluded to, see my address on
The Fundamental Conceptions and Methods of Mathematics, St. Louis Congress of
Arts and Science, 1904. Reprinted in Bull. Amer. Math. Soc., December, 1904.
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things as displacements (rotations, translations, etc.), collineations,
and, in fact, geometrical transformations in general. Then in vari-
ous parts of mathematics we have to deal with the Theory of
Substitutions, that is, with the various changes which can be made
in the order of certain objects, and these substitutions themselves
may be regarded as objects of mathematical study. Finally, in
mechanics we have to deal with such objects as forces, couples,
velocities, etc.

These objects, and all others which are capable of mathematical
consideration, are constantly presenting themselves to us, not singly,
but in sets. Such sets (or, as they are sometimes called, classes) of
objects may consist of a finite or an infinite number of objects, or
elements. We mention as examples :

(1) All prime numbers.

(2) All lines which meet two given lines in space.

(8) All planes of symmetry of a given cube.

(4) All substitutions which can be performed on five letters.

(5) Allrotations of a plane about a given line perpendicular to it.

Having thus gained a slight idea of the generality of the con-
ception of a set, we next notice that in many cases in which we have
to deal with a set in mathematics, there are one or more rules by
which pairs of elements of the set may be combined so as to give
objects, either belonging to the set or not as the case may be. As
examples of such rules of combination, we mention addition and
multiplication both in ordinary algebra and in the algebra of ma-
trices ; the process by which two points, in geometry, determine a
line ; the process of combining two displacements to give another
displacement, ete.

Such a set, with its associated rules of combination, we will call
a mathematical system, or simply a system.*

We come now to a very important kind of system known as a
group, which we define as follows :

% This definition is sufficiently general for our immediate purposes. In general,
however, it is desirable to admit, not merely rules of combination, but also relations be-
tween the elements of a system. In fact we may have merely one or more relations
and no rules of combination at all. From this point of view the positive integers with
the relation of greater and less would form a system, even though we do not introduce
any rule of combination such as addition or multiplication. It may be added that rules
of combination may be regarded as merely relations between three objects; cf. the
address referred to above.

e
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DEFINITION. A system consisting of a set of elements and one rule
of combination, which we will denote by o, 1s called a group if the follow-
ing conditions are satisfied :

(1) If a and b are any elements of the set, whether distinct or not,
aobis also an element of the set.*

(2) The associative law holds ; that s, if a, b, ¢ are any elements

of the set, (aob)oc=uao(boc).

(8) The set contains an element, 2, called the identical element,
which 18 such that every element is unchanged when combined with i,

ioa=aoi=a.

(4) If a is any element, the set also contains an element o', called the
inverse of a, such that doa=aoca =1.

Thus, for example, the positive and negative integers with zero
form a group if the rule of combination is addition. In this case
zero is the identical element, and the inverse of any element is its
negative. These same elements, however, do not form a group if
the rule of combination is multiplication, for while conditions (1),
(2), and (3) are fulfilled (the identical element being 1 in this case),
condition (4) is not, since zero has no reciprocal.

Again, the set of all real numbers forms a group if the rule
of combination is addition, but not if it is multiplication, since in
this case zero has no inverse. If we exclude zero from the set, we
have a group if the rule of combination is multiplication, but not if
it is addition.

As an example of a group with a finite number of elements we
mention the four numbers

+1, -1, + V=1, - v=1

with multiplication as the law of combination.

In order to get an example of a group of geometrical operations,
let us consider the translations of a plane, regarded as a rigid lamina,
in the directions of its own lines. Every such translation may be
represented both in magnitude and in direction by the length and

* A system satisfying condition (1) is sometimes said to have ‘‘the group prop-
erty.”” In the older works on the subject this condition was the only one to be
explicitly mentioned, the others, however, being tacitly assumed.
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direction of an arrow lying in the plane in question. Two such
translations performed in succession are obviously equivalent to a
translation of the same sort represented by the arrow obtained by
combining the two given arrows according to the law of the paral-
lelogram of forces. The set of all translations with the law of
combination just explained is readily seen to form a group if we
include in it the null translation, i.e. the transformation which leaves
every point in the plane fixed. This null translation is then the
identical element, and two translations are the inverse of each other
if they are equal in magnitude and opposite in direction.

All the groups we have so far mentioned satisfy, not only the
four conditions stated in the definition, but also a fifth condition,
viz. that the law of combination is commutative. Such groups are
called commutative or Abelian groups. In general, however, groups
do not have this property. As examples of non-Abelian groups,
we may mention first the group of all non-singular matrices of a
given order, the rule of combination being multiplication ; and
secondly the group of all matrices of a given order whose deter-
minants have the value +1, the rule of combination being again
multiplication. This second group is called a subgroup of the first,
since all its elements are also elements of the first group, and the
rule of combination is the same in both cases. A subgroup of the
group last mentioned is the group of all matrices of a given order
whose determinants have the value 4 1,* the rule of combination
being multiplication.

We add that non-Abelian groups may readily be built up whose
elements are linear transformations, or collineations. On the other
hand, Abelian groups may be formed from matrices if we take as our
rule of combination addition instead of multiplication.

27. Isomorphism.

DEFINITION.  Two groups are satd to be tsomorphict if it i8 possible
to establish a one-to-one correspondence between their elements of such a

* These are called unimodular matrices; or,more accurately, properly unimodular
matrices to distinguish them from the improperly unimodular matrices whose determi-
nants have the value — 1. It should be noticed that these last matrices taken by thems
selves do not constitute a group, since they do not even have the group property.

t Simply isomorphic would be the more complete term. We shall, however, not
be concerned with isomorphism which is not simple.
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sort that if a, b are any elements of the first group and a', 8 the corre
sponding elements of the second, then a' o' corresponds to aob.*

We proceed to illustrate this definition by some examples,
leaving to the reader the proofs of the statements we make. In each
case we omit the statement of the rule of combination in the case of
transformations, where no misunderstanding is possible.

First ExaMPLE. (&) The group of the four elements
L,vV-1 -1, -V -1,

the rule of combination being multiplication.

(5) The group of four rotations about a given line through angles
of 0°, 90°, 180°, 270°.

These two groups may be proved to be isomorphic by pairing the
elements against one another in the order in which they have just
been written.

SecoxD ExaMPLE. (a) The group of the four matrices

1 0\ /-1 0\ /1 0\ /[—1 0
6 2.Co -6 0.0 1)
the rule of combination being multiplication.

(6) The group of the following four transformations : the iden-
tical transformation ; reflection in a plane; reflection in a second
plane at right angles to the first ; rotation through 180° about the
line of intersection of these two planes.

(¢) The group consisting of the identical transformation and of
three rotations through angles of 180° about three straight lines
through a point at right angles to one another.

The two groups of Example 1 are not isomorphic with the three of
Example 2 in spite of the fact that there are the same number of ele-
ments in all the groups. This follows from the presence of two
elements in the groups of Example 1 whose squares are not the
identical element.

* This idea of isomorphism may obviously be extended to the case of any two sys-
tems provided merely that there are the same number of rules of combination in both
cases. Thus the system of all scalar matrices on the one hand and of all scalars on the
other, the rules of combination being in both cases addition and multiplication, are ob-
viously isomorphic. It is for this reason that no confusion arises if no distinction ig
made between scalar matrices and scalars.
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THIRD ExAMPLE. (a) The group of all real quantities; the rule
of combination being addition.

(6) The group of all scalar matrices of order % with real ele-
ments ; the rule of combination being addition.

(¢) The group of all translations of space parallel to a given
line.

FourtH EXAMPLE. (a) The group of all non-singular matrices
of order », with multiplication as the rule of combination.

(&) The group of all non-singular homogeneous linear transfor-
mations in » variables.

We might be tempted to mention as a group of geometrical trans-
formations isomorphic with the last two groups, the group of all
non-singular collineations in space of n —1 dimensions. This, how-
ever, would be incorrect, for the correspondence we have established
between collineations and linear transformations is not one-to-one;
to every linear transformation corresponds one collineation, but to
every collineation correspond an infinite number of linear transfor-
mations, whose coefficients are proportional to one another* In
order to get a group of geometrical transformations isomorphic with
the group of non-singular matrices of the nth order it is sufficient
to interpret the variables z;, --- z, as non-homogeneous coirdinates in
space of » dimensions, and to consider the geometric transformation
effected by non-singular homogeneous linear transformations of
these z’s. These transformations are those affine transformations of
space of n dimensions which leave the origin unchanged ; cf. the
footnote on p. 70. Thus the group of all non-singular matrices of
the nth order is isomorphic with a certain subgroup of the group
of collineations in space of n dimensions, not with the group of all
non-singular collineations in space of » —1 dimensions.

An essential difference between these two groups is that one

* This does not really prove that the groups are not isomorphic, since it is con-
ceivable that some other correspondence might be established between their elements
which would be one-to-one and of such a sort as to prove isomorphism. KEven the
fact, to be pointed out presently, that the groups depend on a different number of
parameters does not settle the question. A reference to the result stated in Exercise 7,
§ 26, shows that the groups are not isomorphic ; for, according to it, the only non.
singular collineation which is commutative with all collineations is the identica!
transformation, whereas all linear transformations with scalar matrices have this
property.
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depends on n? parameters (the n? coefficients of the linear transforma-
tion’ while the other depends only on n2—1 parametelb (the ratios
of the coefficients of the collineation).

We can, however, by looking at the subJect a little differently,
obtain a group of matrices isomorphic with the group of all non-
singular collineations in space of n —1 dimensions. For this purpose
we need merely to regard two matrices as equal whenever the ele-
ments of one can be obtained from those of the other by multiplying
all the elements by the same quantity not zero. When we take this
point of view with regard to matrices, it is desirable to indicate it
by a new terminology and notation. According to a suggestion of

. H. Moore of Chicago, we will call such matrices fractional
matrices, and write them

“ a @1 Qg Qg
11 %2 —_—

— Gyy gy dog ||, etc.
21 Qoo —_—
(hgy Qgg Qgg

Agreeing that fractional matrices are to be added and mul-
tiplied according to the same rules as ordinary matrices, we may now
say that the group of all non-singular collineations in space of n —1
dimensions is isomorphic with the group of all fractional matrices of
the nth order whose determinants are not zero.*

To take another example, the groups in the second example above
are isomorphic with the group whose elements are the four fractional

‘ [
’ 1 O

and where the law of combination is multiplication. These four
matrices, if regarded as ordinary matrices, would not even satisfy
the first condition for a group.

The reader wishing to get a further insight into the theory of
groups of linear transformations will find the following three treat-

1 0
0 -1

01
T |»
-1 0

=

* It should be noticed that we cannot speak of the walue of the determinant of a
fractional matrix unless this value is zero, for if we multiply all the elements of the
matrix by ¢ we do not change the matrix, but do multiply the determinant by c»,
There is in particular no such thing as a unimodular fractional matrix. We may.
however, speak of the rank of a fractinnal matrix.
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ments interesting and instructive. They duplicate each other to
only a very slight extent.

Weber, Algebra, Vol. II.

Klein, Vorlesungen iiber das Ikosaeder.

Lie-Scheffers, Vorlesungen iiber continuirliche Gruppen.

EXERCISES

1. DermnitioN. A group is said to be of order n if it contains n, and only n,
elements.

If a group of order n has a subgroup, prove that the order of this subgroup is
a factor of n.

[SuccestioN. Denote the elements of the subgroup by a; --- a;, and let b be any
other element of the group. Show that day, bas, --- bay are all elements of the group
distinet from each other and distinct from the g’s. If there are still other elements,
let ¢ be one and consider the elements cay, -+ cay, etc.]

2. Prove that if a is any element of a group of finite order, it is possible by
multiplying ¢ by itself a sufficient number of times to get the identical element.

DerFINITION.  The lowest power to which a can be raised so as to give the identical
element is called the period of a. :

3. Prove that every element of a group of order » has as its period a factor
of n (1 and » included).

4. DeriNxiTioN. A group s called cyclic if all its elements are powers of a
single element.

Prove that all cyclic groups of order n are isomorphic with the group of rota-
tions about an axis through angles 0, w, 2 0, .- (n —1) o, where w =2 r/n, and
that conversely every such group of rotations is a cyclic group.

5. Prove that every group whose order is a prime number is a cyclic group.

6. Prove that all groups of order 4 are either cyclic or isomorphic with the
groups of the second example above. A group of this last kind is called a fours
group (Vierergruppe).

7. Obtain groups with regard to one or the other of which all groups of
order 6 are isomorphic.

8. Obtain groups with regard to one or the other of which all groups of
order 8 are isomorphic.



CHAPTER VII
INVARIANTS. FIRST PRINCIPLES AND ILLUSTRATIONS

28. Absolute Invariants, Geometric, Algebraic, and Arithmetical.
If we subject a geometric figure to a transformation, we find that,
while many properties of the figure have been altered, others have
not. If we consider, not a single transformation, but a set of trans-
formations, then those properties of figures which are not changed by
any of the transformations of the set are said to be invariant prop-
erties with regard to this set of transformations. Thus if our set of
transformations is the group of all displacements, the property of
two lines being parallel or perpendicular to each other and the
property of a curve being a circle are invariant properties, since
after the transformation the lines will still be parallel or perpendicu-
lar and the curve will still be a circle. If, however, we consider,
not the group of displacements, but the group of all non-singular
collineations, none of the properties just mentioned will be invariant
properties. Properties invariant with regard to all non-singular
collineations have played such an important part in the development
of geometry that a special name has been given to them, and they
are called projective or descriptive properties. As examples of such
projective properties we mention the collinearity and complanarity
of points, the complanarity and concurrence of lines, etc.; or, on
the other hand, the contact of a line with a curve or a surface or
the contact of two curves or of two surfaces, or of a curve and a
surface.

DeriNiTION 1. If there 18 associated with a geometric figure a
quantity which is unchanged by all the transformations of a certain
set, then this quantity is called an tnvariant with regard to the trans-
formations of the set.

For instance, if our set of transformations is the group of dis-
placements, the distance between two points and the angle between
two lines would be two examples of invariants.

88
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The geometric invariants so far considered lead up naturally to
the subject of algebraic invariants. Thus let us consider the two
p;)lynommls Ax+ By + 0,

@) Ay + By + C
and subject the variables (&, ) to the transformations of the set
@) 2 = cos0 + Y sind 4

Y= —asinf+ ycos 0+ 8,

where a, 8, 6 are parameters which may have any values.  The trans.
formation (2) carries over the polynomials (1) into two new poly-
nomials :

3) A+ Bl + O,

Al 4 By + O

RO

The coeflicients of (3) may be readily expressed in terms of the coefli-
cients of (1) and the parameters «, 8, 6. Using these expressions,
we easily obtain the formulw

) Al’”:’z — ALB| = A B, ~ Ay By,
AI, .S+ 1)’{1)’."! == AIA.J + 11’1 B,.

We shall therefore speak of the two expressions
) A By~ Ay B, A A+ BB,

as invariants of the system of polynomials (1) with regurd to the set
of transformations (2) according to the following greneral definition

DeriNtetoN 2.0 If we have a system of polynomials in the variehles
(& gy 2, 0) and w wet of transformations of these variahles, then any
Sunction of the cocflicients of the polynomials i called an invariant (or
more acewrately an absolute invariant) with regard to these transforma.
tions if it iy unchanged when the polynomials are subjected to all the
trangformations of the set.

The relation of the example considered above to the suhject of
geometric invariants becomes obvious when we notice that the wlgree-
braic transformations (2) may be regarded as expressing the dis.
placements of plane figures in their plane when (y ) are rectangular
codrdinates of points in the plane. If now we consider, not the poly-
nowials (1), but the two lines determined by setting them equul ta
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zero, we have to deal with the displacements of these two lines.
The invariants (5) have themselves no geometric significance, but by
equating them to zero, we get the necessary and sufficient conditions
that the two lines be respectively parallel and perpendicular, and
these, as we noticed above, are invariant properties with regard to
displacements. ~Finally we may notice that the ratio of the two in-
variants (5) gives the tangent of the angle between the lines,—a
geometric invariant.

As a second example, let us consider, not two lines, but a line and
a point. Algebraically this means that we start with the system

] {Az + By + C,
®) (@3 1)

consisting of a polynomial and a pair of variables. We shall wish
to demand here that whenever the variables (2, y) are subjected to a
transformation, the variables (z;, ¥;) be subjected to the same trans.
formation, or as we say according to Definition 8 below, that (z, y)
and (2, y,) be cogredient variables. If we subject the system (6)
to any transformation of the set (2), we get a new system
{A’x’+B’y’+ ',
(7) / !
(@1 Y1k

and it is readily seen that

A'z{+ Byl + ("= Az, + By, + C.

Accordingly we shall call Az, + By; + C a covariant of the system (6)
according to Definition 4 below. This covariant has also no direct
geometric meaning, but its vanishing gives the necessary and suffi-
cient condition for an invariant property, namely, that the point
(2, yy) lie on the line Az 4+ By + C'=0.

In the light of this example we may lay down the following gen-
eral definitions:

DEFINITION 8. If we have several sets of variables
@y 2 ) (@p Yo 2p ) (T Yoo 2 o), oo

and agree that whenever one of these sets is subjected to a trangfor-
mation every other set shall be subjected to the same trangformation,
then we say that we have sets of cogredient variables.



INVARIANTS. FIRST PRINCIPLES AND ILLUSTRATIONS 91

DEFINITION 4. If we have a system consisting of a number of poly-
nomials in (@, ¥, 2, --) and of a number of sets of variables co-
gredient to (%, Y, 2, ---), then any function of the coefficients of the
polynomials and of the cogredient variables which is unchanged when
the variables (x, y, 2, ---) are subjected to all the transformations of a
certain set ts called a covariant (or more accurately an absolute cova-
riant) of this system with regard to the transformations of this set.

It will be seen that invariants may be regarded as special cases of
covariants.

Among the geometric invariants there are some which from their
nature are necessarily integers, and which we will speak of as arith-
metical tnvariants.  An example would be the number of vertices of
a polygon if our set of transformations was either the group of dis-
placements or the group of non-singular collineations. Another ex-
ample is the largest number of real points in which an algebraic
curve can be cut by a line, if our set of transformations is the group
of reac non-singular collineations.

These arithmetical invariants also play, as we shall see, an impor-
tant part in algebra. 'We mention here as an example the degree of an
n-ary form, which is an invariant with regard to all non-singular linear
transformations.*

EXERCISES
o 1

1. Prove that (x2—2)2+ (y2—y1)% and z2 32 1
are covariants of the system o ys 1
@1 1)y (2 Y2), (s, ¥s)
with regard to the transformations (2).

2. Prove that A+ de B1—AC
are invariants of the polynomial

Ax2+4+2 Bry+ Cy2+2Dx+2 Ey+ F
with regard to the transformations (2).
What geometric meaning can be attached to these invariants?

3. Prove that 4?2+ 3% is an invariant of the polynomial

Ax+ By+ C
with regard to the transformations (2).
Hence show that Axy -+ By + C
VA? 4 B

is a covariant of the systemn (6). Note its geometric meaning.

*1t is, in fact, an invariant with regard to all linear transformations except the
one in which all the coefficients of the transformation are zero
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29. Equivalence.

DeriNiTIiON 1. If A and B denote two geometric configurations
or two algebraic expressions, or 8ets of expressions, then A and B shall
be said to be equivalent with regard to a certain set of transformations
when, and only when, there exists a transformation of the set which car-
ries over A into B and also a transformation of the set which carries over
B into A.

To illustrate this definition we notice that the conception of equiv-
alence of geometric figures with regard to displacements is identical
with the Euclidean conception of the equality or congruence of fig-
ures.

Again, we see from Theorem 2, § 24, that on a straight line two
sets of three points each are always equivalent with regard to non-
singular projective transformations.

In both of the illustrations just mentioned the set of transforma-
tions forms a group. In such cases the condition for equivalence can
be decidedly simplified, for the transformation which carries 4 into
B has an inverse belonging to the set, and this inverse necessarily
carries B into 4. Thus we have the

THEOREM. A necessary and sufficient condition for the equiva-
lence of A and B with regard to a group of transformations 18 that a
trangformation of the group carry over A into B.

This theorem will be of great importance, as the question of
equivalence will present itself to us only when the set of transfor-
mations we are considering forms a group.

Let us consider, for the sake of greater definiteness, a group of
geometric transformations. If two geometric configurations are
equivalent with regard to this group, every invariant of the first
configuration must be equal to the corresponding invariant of the
second. Thus, for instance, if two triangles are equivalent with re-
gard to the group of displacements, all the sides and angles of the
first will be equal to the corresponding sides and angles of the second.
The same will be true of the altitudes, lengths of the medial lines,
radius of the inscribed circle, ete., all of these being invariants.
Now one of the first problems in geometry is to pick out from among
these invariants of the triangle as small a number as possible whose
equality for two triangles insures the equivalence of the triangles.
This can be done, for instance, by taking two sides and the included
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angle, or two angles and the included side, or three sid
of these three elements may be called o mmp{rt(' system
for a triangle with 1'(5gill:(l to f-hu group of displacemer
triangles having these 1‘nvzu'1'nut~s i common z),rrt-. eq
therefore have all other invariants in common. The «
have here illustrated may be defined in general terms a

DerINITION 2. A set of invariants of « geometric confi
algebraic expressinn are s«u‘;{.fn‘/«n-;n'ct t‘n))l[){c'(.r x.)/.v.h'm (3{
two configuratZonsg Or CXpressuons having these tnvariants ¢
necessarily equivalent.*

It will be scen from this definition that all the in
geometric configuration or of an algebraic expression
determined by any complete system of invariants.

Finally we will glance at an application to matrices
of invariants and cquivalence.  Let us consider matrie
order,t and consider transformations of thoe following
transform the matrix A into the matrix B:

e aAb = B,

where a and b are any non-singrular matrices of the nth
transformation may be denoted by the symbol (a, b), an
bols must obviously be combined by the formula

(agq b2>(al\ b1)1'-'7 (a,al, blb'J)'

By means of this formula it may readily be shown that
formations form a group.

According to our general definition of equivalence,
A and B must therefore be said to bhe equivalent whe
when, two mon-singular matrices a and b exist which
That this definition of equivalence amounts to the swme
earlier definition is scon by a reference to Exorcise 1, §:

*In the classical theory of algebraie invarlants this term I used in
much more restricted sense, There we hve todeal with integreal ration
riants (¢f. §31). By a complete system of sueh nvarianta of a nystem of
is there understood w set, of such invarinnts in terms of which vvery inva
of the system of forms can bho expreased integrally and ratjonully,
Clebsch, Bindre Formen, p, 109,

tWe may, if we choose, confine our attention throughont to
elements,
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30. The Rank of a System of Points or a System of Linear Forms
as an Invariant. Let (2, ¥y 2p &), (%9 Yo 20 G)s (T30 Ygo 250 B5) be
any three distinct collinear points, so that the rank of the matrix

Y1 # Y

Ty Yy % b

T3 Y % U
is two. Now subject space to a non-singular collineation and we get
three new points which will also be distinct and collinear, and hence the
rank of their matrix will also be two. Thus we see that in this special
case the rank of the system of points is unchanged by a non-singular
collineation.

Again, let az+by+ecz+dt=0,

g% + byy + oz + dyt =0,
agx + byy + cqz + dgt = 0,
a + by+cz+dt=0

be any four planes which have one, and only one, point in common,
so that the rank of their matrix is three. After a non-singular collin-
eation we have four new planes which will also have one, and only
one, point in common, and hence the rank of the matrix of their
coefficients will be three. The rank of this system of planes is
therefore unchanged by such a transformation.

We proceed now to generalize these facts.

THEOREM 1. The rank of the matriz of m points

(ng]’ x‘[z"']’ wg])’ ' (Z‘: 1, 2, “ee m)
is an invariant with regard to non-singular linear transformations.
Ilet 'Xl = cllzl + e + Clnxn,
1) e
Xn= 111x1+ cr o Cuny
be a non-singular linear transformation which carries the points
(2l - 2f]) over into t‘he points (X[, .- XI1).  Now sappose any k
of the points (21, --- 2{1), which for convenience we will take as the

first %, are linearly dependent. Then there exist % constants
(e +++ &) not all zero, such that

(2) o; + ey + o + e = 0, (G=1,2,..n)
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By means of the transformation (1) we have
Xg‘] = cjlx%ﬂ + e + cjnxg'],
hence ¢, Xj+ X + - + X =¢; (a2] + e + - +o2lfl) +
o e (g + ey + - o) =12 --n)

Since this vanishes on account of (2), the first % of the points
(X, ... X1) are linearly dependent. Since (1) is a non-singular
transformation, it is innnaterhl which set of points we consider as the
initial set. Thus we have shown that if any % points of either set
are linearly dependent, the corresponding % points of the other set
will be, also.

Now if the rank of the matrix of the 2’s is 7, at least one set of #
of the z-points is linearly independent, but every set of (r+ 1) of

them is linearly dependent. Consequently the same is true for the
X-points, and therefore their matrix must also be of rank 7.

THEOREM 2. The rank of the matriz of m linear forms
Ji(@py o 2,) = @) + o+ -+ ay2, (t=1,2,...m)
is an invariant with regard to non-singular linear transformations.

The proof of this theorem, which is very similar to the proof of
Theorem 1, we leave to the reader.

It will be noticed that the invariants we have considered in this
section are examples of what we have called arithmetical invariants.

31. Relative Invariants and Covariants. We will begin by con-
sidering a system of » linear forms in n variables

Ay T+ A Tyt ot Ay T
Aoy Ty + Qoo Ty + +++ + oy Ty

1

. .

anl 1?1 + an2 iL‘2 + b + arm :C“.
DErINITION 1. The determinant

all e alﬂ

aﬂl cen ann
18 called the resultant of the system (1).
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Let us now subject the system (1) to the linear transformation

— / !
Ty=0C Tyt - 4 CinTys
(2)

/
Zp=Cy Ty + - + cﬂnx;l'
This gives the new system of forms

! ] !
0y T+ o+ A

®)

! !
anl $1+ R a:m x;,

. .

l— o
where Qi = Qg Cpj+ A Coj + -+ + Ay €y

From these formule and the law of multiplication of matrices we

3 ! !
infer that aly ey Ay e Ay, e Crn
2 SR L R N
! !
Qpy +++ Qnp Qpy oy Cu1 " Cum

This result we state as follows :

THEOREM 1. If a system of m linear forms in n variables with
matriz a 18 subjected to a linear transformation with matriz c, the re-
sulting system has as its matriz ac.

Taking the determinants of both sides of (4), we see that the re-
sultant of (1) is not an absolute invariant. It is, however, changed
in only a very simple manner by a linear transformation, namely, by
being multiplied by the determinant of the transformation. This
leads us to the following definition :

DeFINITION 2. A rational function * of the coefficients of a form or
system of forms which, when these forms are suljected to any non-
singular linear trangformation, is merely multiplied by the uth power
(o an integer 1) of the determinant of the trangformation is called u relu-
tive invariant of weiyht w of the form or system of forms.t  The forms
themselves are called the ground forms.

* Besides these rational invariants we may also consider irrational ones (ct. § 90),
in which case the exponent x4 will not necessarily be an integer.

tThe condition that u be an integer need not be included as a part of our
hypothesis, since it may be proved. The proof that x cannot be a fraction is simple,

The proof that x cannot be irrational or imaginary would take us outside of the domain
2 M g

of algebra.
1 From this definition it is clear that every relative invariant is an absolute invariant
with regard to the group of linear transformations of determinant +1. Cf. Exercise 7, §81



INVARIANTS. FIRST PRINCIPLES AND ILLUSTRATIONS 97

It will be seen that absolute invariants are simply relative in-
variants of weight zero.

The fact pointed out above concerning the resultant may now be
stated in the following form :

THEOREM 2. The resultant of a set of n linear forms in n variables
s a relative tnvariant of weight 1.

We pass on now to relative covariants :

DerINtTION 8. If we have a system consisting of a number of n-ary
forms and of a number of points (Yys ... Yu)r (21, ++- 23), .oy the codr-
dinates of each of which are cogredient with the variables (z,....%,) of
the forms, then any rational function of the coefficients of the forms and
the codrdinates of the points which is merely multiplied by the uth power
(w an integer) of the determinant of the transformation when the x's are
subjected to any non-singular linear transformation is called a relative
covariant of weight u of the system of forms and points.*

We may regard an invariant as the extreme case of a covariant
where the number of points is zero. The other extreme case is that
in which the number of forms is zero. Here we have the theorem:

THEOREM 3. The determinant

o) ... gl

8 a relative covariant of weight — 1 of the system of points
(@ oo l)y (2 oo 2ll), e (2 oo ).
For applying the transformation
zy =y X) + o + X

2= 0y Xy + -

+ cnfl Xn’

#* In most books where the subject of covariants is treated, the same letters
(%1, « + - ) are used for one of the points as for the variables of the forms. There is
no objection to this, and it is sometimes convenient. We prefer to use a notation
which shall make it perfectly clear that the variables of the forms have no connection

with the codrdinates of the points except that they are cogredient with them.
"
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we have
oy
Ty 2y ey Xy + ey, Xy ey X 4+

Cun X

zan] . xg,) 6‘11X{n] 4 clnX};”J e Cyy Xl[ﬂ] 4 e cnan["]

, 4 7
eyl | | X XD

. . . . .

=
oy *** Cnn X%"] aee XT[."]
Of Xl, ...X'i cn...cln -1 z{ ...z"z
= il
Xl[n] cee XL"] cnl e Cun z&n] ‘e x%”]

as was to be proved.
Another extremely simple case arises when we have a single
form and a single point:

THEOREM 4. The system consisting of the form f(z, - z,) and
the point (Y1 -+ ¥n) has as an absolute covariant with regard to linear

transformations
f(yl’ T yn)'

For let us denote f more explicitly as
f(“p Qgy *+ 5 Ty “'xn)a

where a;, a,, --- are the coefficients of f. If the coefficients after the
transformation are af, aj, ---, we have

Pl s B al) = (a5 7o),

This being true for all values of the z’s, will be true if the 2’s are
replaced by the y’s. But when this is done, the z'’s will be replaced
by the y’s, since the 2’s and y’s are cogredient. Accordingly

Flay agy s g yn) =S (ap ag -5 Fu - va)s
as was to be proved.
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The three examples of invariants and covariants which have been
given in this section are all polynomials in the coefficients of the
forms and the coérdinates of the points. Such invariants we shall
speak of as integral rational invariants and covariants.*

THEOREM 5. The weight of an integral rational invariant cannot
be negative.t

Let ay, ag, -++ 5 byy bgyee+ 5 -+ be the coefficients of the system of
forms, and let ¢; be the coefficients of the transformation. It is clear
that the coefficients aj, ah,---; b}, b},---; --- after the transformation are
polynomials in the a’s, &’s, etc., and in the ¢;’s. Now let I be an
integral rational invariant of weight u,

I(a’l’ a’z’ ey b;’l’ b’2, ey ...)= c“I(al, a2’ cee s bl’ b2,...; -..)’

where ¢ is the determinant of the transformation. Suppose now
that u were negative, u= —w». Then

(5) ch(al,l’ e bi, ceey e )_-—_-I(al, cee s bl’ e ...).

This equality, like the preceding one, is known to hold for all
values of the ¢;'s for which ¢ 0. Hence, since the expressions on
both sides of the equality are polynomials in the a's, &’s, .- and the
¢y’s, we infer, by an application of Theorem 5, § 2, that we really
have an identity.

Let us now assign to the a’s, b’s, --- any constant values such that
I(ay--5 by -5 )#0.  Then I(a},--; 83, - ;-+) will be a poly-
nomial in the ¢;’s alone, which, from (5), cannot be identically zero.
The identity (5) thus takes a form which states that the product of
two polynomials in the ¢;’s is a constant, and since the first of these
polynomials, ¢%, is of higher degree than zero, this is impossible.

We will agree in future to understand by the terms nvariant and
covariant, invariants or covariants (absolute, relative, or arithmetical)
with regard to all non-singular linear transformations. If we wish to
consider invariants or covariants with regard to other sets of trans-
formations, for instance with regard to real linear transformations.
this fact will be explicitly mentioned.

* All rational invariants and covariants may be formed as the quotients of such ag
are integral and rational ; cf. Exercises 4, 5, § 78.
+ It cannot be zero either ; cf. Theorem 5, §79.
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Finally, let us note the geometric meaning to be associated with
the invariants and covariants which have been mentioned in thig
section., We confine our attention to the case of four variables.
The vanishing of the resultant of four linear forms gives a necessary
and sufficient condition that the four planes determined by setting
the forms equal to zero meet in a point. The vanishing of the co-
variant of Theorem 8 is a necessary and sutlicient condition that the
four points lie in a plane. The vanishing of the covariant of
Theorem 4 is a necessary and sufficient condition that the point
(¥ Yo Yg» ¥s) lie on the surface f=0. It will be seen that in all
cases we are thus led to a projective property ; cf. §§80, 81.

32. Some Theorems Concerning Lineatr Forms.

THEOREM 1. Two systems of n linear forms in n variables are
equivalent with regard to non-singular linear transformations if neither

resultant 18 zero.

Let a2y + -+ Ay by + - + by,
O A ONE D
T e by + o+ bany
be the two systems, whose resultants,
App -l bll"'bln
a=| " " s b= ,
gy, b"l . b”"

are, by hypothesis, not zero. Applying the transformations

A ! — "
xl = auxl + e alnxm r = blla’l + -+ blnxm
al * e b s s v s e s e
— _—
xﬁ = Ay 2y + Ay T = b”lxl + ot bfmxm

to (1) and (2) respectively, they are both reduced to the normal form
), y
®
z,.

Now, since neither a nor 4 is zero, the transformations a and b have
inverses, which when applied to (3) carry it back into (1) and (2)
vespectively. Hence the transformation b~'a carries (1) into (2).
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THEOREM 2. A system of n linear forms in n variables has mo
integral rational invariants * other than constant multiples of powers
of the resultant.

Let (1) be the given system and a its resultant, and let ¢ be the
determinant of a non-singular linear transformation which carries
(1) over into

@]+ e + AT
(4) e e e
;1;1:;’1 .|.. ....+ &;,,z.z,.
If we call the resultant of (4) o/, we have
a' = ac.

Let Z(ay. - a,,) be any integral rational invariant of the system
(1) of weight u, and write

I'=T (a:{lv T azm)‘
Then I'=cT.

Now let us assume for a moment that @ %0, and consider the speciat
transformation which carries over (1) into the normal form (3). In
this special case we have o/ =1; hence, as may also be seen directly,
ac=1. Calling the constant value which I’ has in this particular
case k, we have k= oT=a+L

or
(5) I=kar.

This equality, in which % is independent of the coefficients a, has
been established so far merely for values of the a;’s for which a 0.
Since p is not negative (cf. Theorem 5, § 81), we can now infer
that (5) is an identity, by making use of Theorem 5, § 2. Thus we
see that 7 is merely a constant multiple of a power of the resultant,
as was to be proved.

JOROLLARY. A system of m linear forms in n variables has no in-
tegral rational invariants (other than constants) when m < n.

For such an invariant would also be an integral rational invariant
of the system of » linear forms obtained by adding » — m new forms to
the given system; and hence it would be a constant multiple of a

* Tt has the arithmetical invariant mentioned in Theorem 2, § 30.
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power of the resultant of this system. This power must be zero,
and hence the invariant must be a mere constant, as otherwise it
would involve the coefficients of the added forms, and hence would
not be an invariant of the system of original forms.

EXERCISES

1. Prove that if we have two systems of n + 1 linear forms in n variables whose
matrices are both of rank n, a necessary and sufficient condition that these two
systems be equivalent with regard to non-singular linear transformation is that
the resultants of the forms of one set taken n at a time be proportional to the
resultants of the corresponding forms of the other set.

2. Generalize the preceding theorem.

3. Prove that every integral rational invariant of a system of m linear forms in
» variables (m > n) is 2 homogeneous polynomial in the resultants of these forms
taken n at a time.

4. State and prove the theorems analogous to the theorems of the present see.
tion, including the three preceding exercises, when the system of linear forms is re.
placed by a system of poiuts.

33. Cross-ratio and Harmonic Division. Let us consider any four
distinet points on a line

(1) (21 ty)s (Tgr By), (25, T3)s (2 Ty)-
We have seen, in § 31, Theorem 38, that each of the six determinants
(2) 2ty — Tyl 2yt — Zqly, 2ty — x4,

Zgly — 24l Zyty — Zolty, Zyty — Wgty,

is a covariant of weight — 1. The ratio of two of these determinants
is therefore an absolute covariant, and we might Le tempted, by
analogy with the examples of absolute covariants in Exercise 1, § 28,
to expect that it might have a geometric meaning. It will be readily
seen, however, that this is not the case, for the value of the ratio of
two of the determinants (2) will be changed if the two coirdinutes
of one of the four points are multiplied by the same constant, uad
this does not affect the position of the points.

It is easy, however, to avoid this state of affairs by forming such
an expression as the following:*
(2yty—aty) (2t — f,)
(fzts’"fa t,) (o4t, — 2 )

* The reversal of sign of the second factor in the denominator is not essential, bug
is customary for a reason which will presently be evident.

(3) 1, 2,8, 4)=—
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which is also an absolute covariant of the four points (1), and is called
their eross-ratio or anharmonic ratio. More accurately it is called the
eross-ratio of these four points when taken in the order written in (1).*

In order to determine the geometric meaning of the cross-ratio
of four points, let us first suppose the four points to be finite so that
titotst, # 0. Dividing numerator and denominator of (1, 2, 8, 4) by
this product, we find the following expression for the cross-ratio in
terms of the non-homogeneous coérdinates X; of the points,

(X, — X)) (X3 — XD_
(Xy— X3) (X, — X))

4) 1,2 8,4)=

Finally, denoting the points by Py, P,, P, P, we may write

p.pP, /PP, P,P, [P,P
! 9 —tats [t Ll 8,
(%) 1,23, 4) PP,/ PP, PP,/ PP,

In words, this formula tells us that the cross-ratio of four finite
points is the ratio of the ratio in which the second divides the first
and third and the ratio in which the fourth divides the first and
third; and that it is also the ratio of the ratios in which the first
and third divide the second and feurth.

In this statement, it must be remembered that we have taken the
ratio in which ¢’ divides the points 4, B as AC/ B, so that the ratio
innegativeif ¢'divides A B internally, positive if it divides it externally.

If we agree that the point at infinity on a line shall be said to
divide any two finite points A, B of this line in the ratio +1 (and this
is a natural convention since the more distant a point the more nearly
does it divide 4B in the ratio +1) it is readily seen, by going back
to formula (8), that the first statement following (5) still holds if the
second or fourth point is at infinity, while the second statement holds
if the first or third is at infinity. Thus we have in all cases a simple
geometric interpretation of the cross-ratio of four distinct points.

The special case in which four points Py, P,, Pg P, are so situ-
ated that (1, 2, 3, 4)= —1 is of peculiar importance. In this case
we have

(1,28 4)=(1,4,83,2)=(3,21,4)=(3,4,1,2)=(2, 1, 4, 8)
=(2,8,4,1)=(41,2 8)=(4 83,2 1)=—1

* If these four points are taken in other orders, we get different cross-ratios:
1,2, 4, %), (1, % 38, 2), etec. Cf. Exercise 1 at the end of this section
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The relation is therefore merely a relation between the two pairs of
points Py, Py and P, P, taken. indif?exl'ently in either order, and we
say that these two pairs of points divide each other harmonically.
From the geometric meaning of cross-ratio, we see that, if all four
points are finite, the pairs Py, Py and P,, P, divide each other har-
monically when, and only when, £y and P, divide Py, Py internally
and externally in the same ratio; and also when, and only when, P,
and P, divide P, P, internally and externally in the same ratio. If
P, or P lies at infinity, the first of these statements alone has a
meaning, while if £; or P, lies at infinity, it is the second statement
to which we must confine ourselves.

It is easily seen that the case in which three of the four points,
say Py, P, P, coincide, while P, is any point on the line, may be
regarded as a limiting form of two pairs of points which separate one
another harmonically. It is convenient to include this case under the
term harmonde division, and we will therefore lay down the definition:

DerINiTION.  Two pairs of points Py, Py and Py, P, on a line are
said to divide one another harmonically if they are distinet and their
eross-ratio taken in the order Py, Py, Py, Py i3 — 1, and also if at least
three of them coincide.

It will be seen that the property of two pairs of points dividing
each other harmonically is a projective property in space of one
dimension.

The most important applications of cross-ratio come in geometry
of two, three, or more dimensions where the points are not determined
as above by two codrdinates (or one non-homogeneous cosrdinate), but
by more. Suppose, for instance, we have four distinct finite points
on a line in space of three dimensions. Iet the points be P, P,,
Q1 @y and suppose the codrdinates of P, P, are (z,, Yp 21 &) an?i
(@ ¥g 2p By) respectively. Then the codrdinates of @, @, may be
written

(@1 + N2 Y1 + M2y, + N2go ty + M), (T + pigy Yy + 1Y g2+ 125, By + puty),
Now, let

(6) Az +By+ Cz+ Dt =0

be any plane through @, but not through P,, and we have

(42 + By, + Oz + Dt;) + M(Az, + By, + Cz,+ Dt;) = 0,
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or, since P, does not lie on (6),

Az + By, + C2, + Dt;
Az, + By, + Czy+ Dt,

_x.

Changing to non-homogeneous codrdinates, we have

AX, +BY,+ 02, + D _
AX,+BY, + OZ +D

—X
1

If P M, and P, M, are the perpendiculars from P, and P, on the
plane (6), we have
P PM AX,+BY,+0Z,+D __t,

B0~ P, - AX,+ BT, + 04, +D= " 'i

In exactly the same way we get

Pi@y_ _ b,

Po, "y
Consequently PQ /PQy M

PyQ/ Pyl

This is the cross-ratio of the four points taken in the order P, @,,
P,, Q,.

It is readily seen that if une of the two points @, or @, lies at in-
finity, all that is essential in the above reasoning remains valid, aud
the cross-ratio is still A/u.

The case in which one of the two points P, or P, is at infinity
may be reduced to the case just considered by writing for the codr-
dinates of @, and @,, (€}, ny, & 7y) and (&5, gy &, 7). The codrdi-
nates of P, and P, are then

(EI 52* m-— x"lzs §1“"§2a 71—,}"72)

=& m—mp 51— 8 T, — To):

Accordingly, from what has just been proved, we see that the
cross-ratio of the four points taken in the order @;, Py, Q,, P,is A/u.
But this change of order does not change the cross-ratio. Hence ir
all cases we have the result: ’
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TaroreM 1. The cross-ratio of the four distinet points

Py (2 Yo 20 29
P, (%gr Y 220 to)s
0, (m Aoy g1t Myp 2t hF Mok
Q, (zy+ Hy Y1+ FYp 21T Ko t, + ok
taken in the order Py, Qp Py Qo 18 M
From this theorem Wwe easily deduce the further result :

TagoreM 2. The eross-ratio of four points on @ line 18 tnvariant
with regard to non-gingular collineations of space.™

For the four points P, Py @ @Q, of Theorem 1 are carried over
by a non-singular collineation into the four points
P (v 7 )
(2 Y P o)
Q, @+ byt Ay, 2, A+ A2y )+ M),
0, (@ +pah Yt ey At Py B ),

whose cross-ratio, when taken in the order P}, @}, 4 Ly @ is also X/p.

Theorems similar to Theorems 1 and 2 hold in space of two, and in
general in space of n, dimensions and may be proved in the same way.

EXERCISES
1. Denote the six determinants (2) by

L2, @3 G G4, G2, @9

A=12)34Y, B=13H2) C=(1,4)( 3.

and write

Prove that six, and ouly six, cross-ratios can be formed from four points by
taking them in different orders, namely the negatives of the six ratios which can be
formed from A, B, ¢ taken two and two.

2. Prove that 4 + B + ¢ =0, and hence show that if A is one of the cross
ratios of four points, the other five will be

1, 1 A=1 _X
x1 LI s U WL P |

# This also follows from Exercise 5, §24.
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3. Prove that the six cross-ratios of four distinct points are all different from
each other except in the following two cases:

(@) The case of four harmonic points, where the values of the cross-ratios
are — 1,2, §.

(B) The case known as four equianharmonic points, in which the values of
the crossratios are — %43/ 3. - “y

4. Prove Theorem 2, § 24, by making'use of the fact that the cross-ratio of four
points on a line is unchanged by non-singular projective transformations of the
line.

5. By the cross-ratio of four planes which meet in a line is understood the
cross-ratio of the four points in which these planes are met by any line which
does not meet their line of intersection. .

Justify this definition by proving that if the equations of the four planes are

P1=0,p+Ap,=0,p, =0, p, + up, =0

(p and p, homogeneous linear polynomials in z, y,  t), the cross-ratio of the four
points in which any line which does not meet the line of intersection of the planes
is met by the planes is A/ u.

6. Prove that the cross-ratio of four planes which meet in a line is invariant
with regard to non-singular collineations.

34. Plane-Coérdinates and Contragredient Variables. If wu;, u,,
ug, 1, are constants, and z;, 2, 3, ¥, are the homogeneous coérdinates
of a point in space, the equation
(1 Uy + UgTy + Uy + Uz, =0
represents a plane. Since the values of the «'s determine the posi-
tion of this plane, the #’s may be regarded as coérdinates of the plane.
We will speak of them as plane-codrdinates, just as the z’s (each set
of which determines a point) are called point-codrdinates. And just
as we speak of the point (zy, 2, 25 z,) so we will speak of the plane
(uyy g ug u,). The u’s are evidently analogous to homogeneous
codrdinates in that if they be all multiplied by the same constant,
the plane which they determine is not changed.

Suppose now that we consider the 2’s as constants and allow the
u's to vary, taking on all possible sets of values which, with the fixed
set of values of the z’s, satisfy (1). This equation will now repre-
sent a family of planes, infinite in number, each one of which is de-
termined by a particular set of values of the u’s and all of which pass
through the fixed point (2, 2y 24 z,). The equation (1) may there-
fore be regarded as the equation of a point in plane-codrdinates, since
it is satisfied by the codrdinates of a moving plane which envelops
this point, just as when the 2’s vary and the «’s are constant, it is
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the equation of a plane in point-codrdinates, since it is satisfied by the
codrdinates of a moving point whose locus is the plane.*

In the same way, a homogeneous equation of degree higher than
the first in the w’s will be satisfled by the codérdinates of a moving
plane which will, in general, envelop a surface. The equation will
then be called the equation of this surface in plane-codrdinates.

Let us now subject space to the collineation

¢ 2= e@q + Cigy + €13 + €147, (=12 3,4)

We will assume that the determinant ¢ of this transformation is not
zero ; and we will denote the cofactors in this determinant by Ci
Then the inverse of the transformation ¢ may be written

o1 o= an'x; + chizzf + %azxg + Qcﬂx; (i=1,23,4)

Substituting these expressions, we see that the plane (1) goes over
into

(2) wha] + uhrh + wizl + wzh =0,
where
C; Ci C; C; .
d uj= "jlul + ’;2“2 + '0_3‘“3 + "6‘4“4 (t=1, 2, 8,4)

We thus see that the u's have also suffered a linear transformation,
though a different one from the z’s, namely, the transformation whose
matrix is the conjugate (cf. § 7, Definition 2) of ¢c=1.  This transforma-
tion d of the plane-coérdinates is merely another way of expressing
the collineation which we have commonly expressed by the transfor-
mation ¢ of the point-codrdinates. The two sets of variables zand
are called contragredient variables according to the following

DerINITION 1. Two sets of n variables each are called contragre-
dient if, whenever one 18 subjected to a non-singular linear transformation,
the other t8 subjected to the transformation which has as its matriz the
conjugate of the inverse of the matriz of the first.

* Similarly, in two dimensions, the equation
Uy + ks + Uzxy =0

represents a line in the point-codrdinate (%1, %, s) if uy, us, us are constants, or a
point in the line-codrdinates (u1, ue, us) if @1, %2, %3 are constants.
t An example of this will be found in § 68.
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Precisely the reasoning used above in the case of four variables
establishes here also the theorem :

THEOREM.* If the two sets of contragredient variables Ty oo T,
and, wuy, --- u, are carried over by a linear trangformation into i, --- 7,
ond wy, -+ uy, then

Uy + UgT g+ - + UT,
will go over into wi] + uhrh + -+ + ulzl.

In connection with this subject of contragredient variables it is
customary to introduce the conception of contravariants, just as the
conception of covariants was introduced in connection with the sub-
ject of cogredient variables. For this purpose we lay down the

DErFINITION 2. If we have a system of forms in (x;, - x,) and
also a number of sets of variables, (uy,--- u), (u), - wll), ---, contra-
gredient to the s, any rational function of the w's and the coefficients of
the forms which (s unchanged by a non-singular linear trangformation of
the ©'s except for being multiplied by the uth power (u an integer) of the
determinant of this trangformation is called a contravariant of weight w.

Thus the theorem that the resultant of » linear forms in » variables
is an invariant of weight 1 may, if we prefer, be stated in the form:
If we have n sets of m variables each, (uj, --- u}), - (uf, - w#l),
each of which is contragredient to the variables (z,, --- z,), the de-
terminant of the u’s is a contravariant of weight 1.1

It will be seen that the conception of contravariant, though
sometimes convenient, is unnecessary, since the contragredient vari-
ables may always be regarded as the coefficients of linear forms, and,
when so regarded, the contravariant is merely an invariant.

Similarly, the still more general conception of mized concomitants,
in which, besides the coefficients of forms and the contragredient
‘variables, certain sets of cogredient variables are involved,} reduces
to. the familiar conception of covariants if we regard the contra-
gredient variables as coefficients of linear forms.

#* This is really a special theorem in the theory of bilinear forms. Cf. the next
chapter. )

+ For other examples of contravariants in which coefficients also occur, see
Chap. XII.

t An example is %1% + %g%e + +-+ + U,Tn, the theorem above stating that this is an
absolute mixed concomitant.
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35. Line Coordinates in Space. A line is determined by twa
points (¥, Yo Y Yu)s (24 29 23 2,) Which lie on it. It is clear that
these eight codrdinates are not all necessary to determine the line ;
and it will be seen presently that the following six quantities deter-
mine the line completely, and may be used as line-coordinates,

Pias Pig P1e> P3er Pazs Pags
Yi Yi|,

2 2

where

1 | pi=

In other words, the p's are the two-rowed determinants of the matrix

Y1 Y2 Y3 Y
21 23 2 2

b

except that the sign of the determinant obtained by striking out
the first and third column has been changed. These six p’s are not
all zero if, as we assume, the two points y and z are distinct.

These six p’s are connected by the relation

2 P1aPss+ P13Pag + P1aPaz= 0,*

as may be seen either directly or by expanding the vanishing
determinant Y1 Yo Ys Ya

by Laplace’s method in terms of the minors of the first two rows.
That the p’s may really be used as line-codrdinates is shown by
the following two theorems:

THEOREM 1. When a line i8 given, tts line-codrdinates p; are com-
pletely determined except for an arbitrary factor different from zero by
which they may all be multiplied.

The definition (1) of the p’s shows that they may all be multi-
plied by an arbitrary factor different from zero without affecting
the position of the line, since the y’s (and also the 2's) may be multi-
plied by such a factor without affecting the position of the point.

* Cf. Exercise 2, § 38.
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In order to prove our theorem it is sufficient to show that, if
instead of the two points used above for determining the p’s we use
two other points of the line,

(Yl’ sz Y3’ Y4)’ (Zl’ Z2’ ZS’ Z4)’

Y, Y
zZ, z

the line-co6rdinates P

v

thus determined will be proportional to the p,’s. Since the points
Y and Z are collinear with the distinct points y, 2, they are linearly
dependent upon them and we may write

["1.= T X Z,<=k13/i+k2z,~ (7:= ]-a 2’ 39 4)
Accordingly C1 Gy \ Yv Yy
P.. = \! = .K £
PN (Y 2 Pu

where K= 0,as ¥ and Z are distinct points.

THEOREM 2. Any six constants p;; satisfying the relation (2) and
not all zero are the line-coordinates of one, and only one, line.

That they cannot be the coérdinates of more than one line may be
seen as follows: Suppose the p;’s to be the codrdinates of a line,
and take two distinct points y and z on the line. The coirdinates
of these points may then be so determined that relations (1) hold.
Let us suppose, for definiteness, that p;,50.* Now, consider the
point whose coordinates are e¢,y;+ ¢,2. By assigning to ¢; and ¢,
first the values — 2, and y,, then the values —z, and y,, we get the
two points

(3) (05 p12s P1g» Pre)s (Par> 05 Pogs Pas)

where, by definition, p,; = — p;;.

These two points are distinet, since for the first of them the first
covrdinate is zero and the second is not, while for the second the
second coordinate is zero and the first is not. These points ac-
cordingly determine the line, and since they, in turn, are deter-
mined by the p’s, we see that the line is uniquely determined
by the p’s.

* By a slight modification of the formule this proof will apply to the case in
which any one of the p’s is assuwmed different from zero.
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1t remains, then, merely to show that any set of p;’s, not all zero.
which satisfy (2) really determine a line. For this purpose we again
assume py, = 0* and consider the two points (3) which, as above, are
distinct. The line determined by them has as its codrdinates

Pl P1aPip PrePre —P13Ps2 — Praloy P12Pax PraPos:

Using the relation (2), the fourth of these quantities reduces to
PraPae SO that, remembering that the coordinates of a line may be
multiplied by any constant different from zero, we see that we
really have a line whose codrdinates are p,;.

In a systematic study of three-dimensional geometry these line-
coordinates play as important a part as the point- or plane-cogrdi-
nates; and in the allied algebraic theories we shall have to consider
expressions having the invariant property, into which these line-
codrdinates enter just as point-codrdinates occur in covariants and
plane-coordinates in contravariants. We may, if we please, regard
these expressions as ordinary covariants, since the line-codrdinates
are merely functions of the codrdinates of two points, but the co-
variants we get in this way are covariants of a special sort, since the
cosrdinates of the two points occur only in the combinations (1).

As an example, let us consider four points

(xfts Yir 2 tfi) (’i = ]a 2’ 31 4)-

The determinant of these sixteen codrdinates is, by Theorem 3, § 31,
a covariant of weight —1. Let us denote by pj; and pj} the coirdi-
nates of the lines determined by the first two and the last two points
respectively. Expanding the four-rowed determinant just referred
to by Laplace’s method according to the two-rowed determinants of
the first two rows, we get

(4) Plopiy + PlaPhs -+ PlaPls + PlsPia + P1aPhs + Py Ply-

This, then, is an expression having the invariant property and in-
volving only line-codrdinates.

Since the vanishing of the four-rowed determinant from which
we started gave the condition that the four points lie in a plane, it
follows that the vanishing of (4) gives a necessary and sufficient
condition that the two lines p’ and p'' lie in a plane, or, what
amounts to the same thing, that they meet in a point.

* By a slight modification of the formule, this proof will apply to the case in
which any one of the p’s is assumed different from zero.
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EXERCISES

. 1. Prove that, if the point-coérdinates are subjected to the linear transfor

mation .
z} = eaZy + Cas + CisT3 + Cuty (t=1,2,8,4),

the line-cosrdinates will be subjected to the linear transformation
pdi= (catp — citn) pr2 + (Cacjs — Ciscn) P13+ (ciCjs — cucn) Pu+ (CisCia — CuCss) Pau
+ (Cucsz — CiaCps) Paz + (CiaCss — CisCin) Pos-

2. A plane is determined by three points
(?/1’ Yoy Yss %), (zl, 22y 23, z4): (wly U'2y W,y w4)~
Prove that the three-rowed determinants of the matrix of these three points may

be used as codrdinates of this plane, and that these coérdinates are not distinct
from the plane-codrdinates defined in § 34.

3. A line determined by two of its points may be called a ray, and the line-
codrdinates of the present section may therefore be called ray-cosrdinates. A line
determined as the intersection of two planes may be called an axis. If (w1, uo,
ug, ug) and (v1, vs, Vg, v4) are two planes given by their plane-coérdinates, discuss
the axis-codrdinates-of their intersection,

Q125 Q135 14y Q34 Q42 Q23
where Qu = Uy — Usby.

4. Prove that ray-cosrdinates and axis-cosrdinates are not essentially differ-
ent by showing that, for any line, the ¢’s, taken in the order written in Exercise 3,
are proportional to the p’s taken in the order

P34y Pags P23y P12 P13y Pise

5. A point is determined as the intersection of three planes
(uy, uo, us, us), (v1, vg, va, V4), (w1, wa, ws, wy).

Prove that the three-rowed determinants of the matrix of these planes may be
used as codrdinates of this point, and that they do not differ from the ordinary
point-coérdinates.

Hence, show that all covariants may be regarded as invariants.




CHAPTER VIII
BILINEAR FORMS

36. The Algebraic Theory. Before entering on the study of
quadratic forms, which will form the subject of the next five chapters,
we turn briefly to a very special type of quadratic form in 2 » varia-
bles, known as a bilinear form, and which, as its name implies, forms
a natural transition between linear and quadratic forms.

DeriniTioN 1. A ‘p.olynon%ial m the Qn. variables (zy, - Z,),
(Y. = Yn) 88 called a bilinear form if each of its terms 43 of the first
degree in the z's and also of the first degree in the y’s.

Thus, for n =3, the most general bilinear form is
@y Ty Y1+ ApT1 Yy + Q1571 Y5
+ g Tel 1 + AggToY g + AggTolYg

+ g5y A ATl + AggTsYs.

. 3, )
This may be denoted, for brevity, by }faﬁxiyj ; and, in general, we
may denote the bilinear form in 2 » variables by

n
(1) %aiixif/i'

The mautrlx au i al"’
a= e s

Apy = Ay

is called the matrix of the form (1); its determinant, the determinant
of the form ; and its rank, the rank of the form.* A bilinear form
is called singular when, and only when, its determinant is zero.

* It should be noticed that the bilinear form is completely determined when its
matrix is given, so there will be no confusion if we speak of the bilinear form a. If
two bilinear forms have matrices a; and as, their sum has the matrix a; +a,. The
bilinear form whose matrix is a;a, is not the product of the two forms, but is sometimes
spoken of as their symbolic product.

114
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Let us notice that the bilinear form (1) may be obtained by
starting from the system of n linear forms in the y’s of matrix a,
multiplying them respectively by z;, z,, --- z,, and adding them
together. It can also be obtained by starting from the system
of » linear forms in the 2’s whose matrix is the conjugate of a,
multiplying them respectively by y, ¥, - ¥, and adding them
together.

Using the first of these two methods, we see (cf. Theorem 1, § 31)
that if the y’s are subjected to a linear transformation with matrix
d, the bilinear form is carried over into a new bilinear form whose
matrix is ad. Using the second of the above methods of building
up the bilinear form from linear forms, we see that if the z’s are
subjected to a linear transformation with matrix ¢, we get a new
bilinear form the conjugate of whose matrix is a'c, where accents
are used to denote conjugate matrices. The matrix of the form
itself is then (cf. Theorem 6, § 22) c/a.*

Combining these two facts, we have

THEOREM 1. If, in the bilinear form (1) with matriz a, we subject
the 2’s to a linear transformation with matrizc ¢ and the y's to a linear
transformation with matriz d, we obtain a new bilinear form with matriz
c'ad, where ¢’ is the conjugate of c.

Considering the determinants of these matrices, we may say:

THEOREM 2. The determinant of a bilinear form is multiplied by
the product of the determinants of the transformations to which the z’s
and y's are subjected.

We also infer from Theorem 1, in combination with Theorem 7,
§ 25, the important result:

TurOREM 8. The rank of a bilinear form is an invariant with re.
gard to non-singular linear transgformations of the z's and y’s.

DeriNiTION 2. A bilinear form whose matriz is symmetric is
called a symmetric bilinear form.

* These results may also be readily verified without referring to any earlier theorems.

+ This theorem tells us that the determinant of a bilinear form is, in a generalized
sense, a relative invariant. Such invariants, where the given forms depend on several
sets of variables, are known as combinants.

1 This result mav also be deduced from Theorem 2, § 30.
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Q0 A

THEOREM 4. A symmetric bilinear form remains symmetric if we
o : Y ‘ransformation.
subjeet the x's and the y's to the same linear transfe !
For if ¢ is the matrix of the transformation to which both the z’s
t 2 i -
nd the y's are subjected, the matrix of the transformed form will,
an é . . s
i)v Theorem 1, be c’ac. Remembering that a, being symmetric, is
’ . .
its own conjugate, we see, by Theorem 6, § 22, that cac is its own
conjugate. Hence the transformed form is symmetric.
S5
EXERCISES
1. Prove that a necessary and sufficient condition for the equivalence of two
bil‘ne-ar forms with regard to non-singular linear transformations of the 2's and
4's is that they have the same rank.
2. Prove that a necessary and sufficient condition that it be possible to factor
a bilinear form into the product of two linear forms is that its rank be Zero or one.
3. Prove that every bilinear form of rank r can be reduced by non-singular
linear transformations of the z’s and y’s to the normal form
Ty + ZaYa + o0 FZpYs
4. Do the statements in the preceding exercises remain correct if we confine
our attention to real bilinear forms and real linear transformations?
5. Prove that a necessary and sufficient condition that the form
T1yY1+ ZaYo + oo + XY,
should be unchanged by linear transformations of the z’s and of the ¥’sis that
these be contragredient transformations.

37. A Geometric Application. Let (zy, 25, 2;) and ¥ ¥» y;) be
liomogeneous coérdinates of points in a plane, and let us consider
the bilinear equation

(1) %a@w{y] = O-

If (41, 95 5) is a fixed point P, then (1), being linear in the 2%,
is the equation of a straight line ».  The only exception is when the
coefficients of (1), regarded as a linear equation in the z's, are all
zero, and this cannot happen if the determinant of the form is differ-
ent from zero. Thus we see that the equation (1) causes one, and
only one, line p to correspond to every point P of the plane, pro-
vided the bilinear form in (1) is non-singular.

Conversely, if

(2) Az; + Bxg + 028 =0
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18 a line p, there is one, and only one, point P which corresponds to it
by means of (1), provided the bilinear form in (1) is non-singular. For
if P is the point (5, ¥, ¥5), the equation of the line corresponding to it
is (1), and the necessary and sufficient condition that this line coincide

with (2) is 011Y1 + G1Ys + 215Ys = p4,

91Y1 + GgsYy + Gyys =pB,

g1y + AgYa + agys = pC,
where p is a constant, not zero. For a given value of p, this set of
equations has one, and only one, solution (y,, ¥, y3), since the deter-

minant a is not zero, while a change in p merely changes all the y's
in the same ratio. Hence,

THEOREM. If the bilinear equation (1)is non-singular, it establishes
@ one-to-one correspondence between the points and lines of the plane.
This correspondence is called a correlation.

EXERCISES

1. Discuss the singular correlations of the plane, considering separately the
cases in which the rank of the bilinear form is 2 and 1.

2. Examine the corresponding equation in three dimensions, that is, the equa-
tion obtained by equating to zero a bilinear form in which n= 4, and discuss it for
all possible suppositions as to the rank of the form.

3. Show that a necessary and sufficient condition for three or more lines,
which correspond to three or more given points by means of a non-singular corre-
lation, to be concurrent is that the points be collinear.

4. Show that the cross-ratio of any four concurrent lines is the same as that of
the four points to which they correspond by means of a non-singular correlation.

5. Let P be any point in a plane and p the line corresponding to it by means
of a noun-singular correlation. Prove that a necessary and sufficient condition for
the lines corresponding to the points of p to pass through P is that the bilinear
form be symmetrical.

6. State and prove the corresponding theorem for points and planes in space
of three dimensions, showing that here it is necessary and sufficient that the form
be symmetrical or skew-symmetrical *

* The correlation given by a symmetric bilinear equation is known as a reciproca-
tion. By reference to the formulee of the next chapter, it will be readily seen that in
this case every point corresponds, in the plane, to its polar with regard to a fixed conic ;
in space, to its polar plane with regard to a fixed quadric surface. The skew-symmetric
bilinear equation gives rise in the plane merely to a very special singular correlation,
In space, however, it gives an important correlation which is in general non-singular
and is known as a null-system. Cf. any treatment of line geometry, where, however,
the subject is usually approached from another side.
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CHAPTER IX

GEOMETRIC INTRODUCTION TO THE STUDY OF QUADRATIC
FORMS

38. Quadric Surfaces and their Tangent Lines and Planes. If
Ty, 7y, 75 are homogeneous codrdinates in a plane, we see, by reference
to §4, that the equation of any conic may be written

9.9 9 —
g 2+ Ug3 + Age23+ 2015717y + 20137175 + 2a557,75 = 0.

Similarly, in space of three dimensions, the equation of any quadrie
surface may be written
2 2 2
1178 + @92} + agg® + @47} + 219712 + 20,137,275 + 200217,
+ 2a34x3x4 =+ 2“422741'2 + 2(123.’1321!3 =0.

This form may be made still more symmetrical if, besides the
coefficients ayg, ttyg, @1y Qg (g gy We introduce the six other con-
stants agy, gy, Ay @4g Gggr Aag, defined by the general formula

= Qj;e

) Ji

The equation of the quadric surface may then be written
an@}  + A%y + a7 + Tz,
+ A%y + A3+ ApgTaTy + Apy Ty
+ g1 %g%y + AgoTaTy + AggTd A+ g, 7T,
+ ATy + ATy + @y ZyTy + agai =0,

or for greater brevity .
(1) % aiszwj —'_—-‘0.

DerINITION 1. — The matriz of the sizteen a’s taken in the order
written above ts called the matriz of the quadric surface (1), the deter-
minant of this matriz 18 called the discriminant of the quadric surface,
its rank 18 called the runk of the quadrw surface, and if the dzscmmz
nant vanishes, the quadric surface is said to be singular.

118
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A fundamental problem is the following: If (¥, ¥, ¥a 7o) and
(2> 29 23, 2;) are two points, in what points does the line yz meet the

surface (1)? .
The coérdinates of any point on yz, other than y, may be written

(21 + M 23+ MYy 25+ Mg 2, + Nyy)-
A necessary and sufficient condition for this point to lie on (1) is

4
Sag(a+ M) (2 + M) = 0,

or expanded, 4 ¢

(@) }l.aﬁzizj +2 X?%‘%@' + )‘2-? Y= 0.

If the point y does not lie on (1), this is a quadratic equation in A.
To each root of this equation corresponds one point where the line
meets the quadric. Thus we see that every line through a point »
which does not lie on a quadric surface, meets this surface either in
two, and only two, distinct points, or in only one point.

On the other hand, if y does lie on (1), the equation (2) reduces to
an equation of the first degree, provided Za,y2;% 0. In this case,
also, the line meets the surface in two, and only two, distinet points,
viz., the point y and the point corresponding to the root of the equa-
tion of the first degree (2).

Finally, if Za,y.y;=Za,y2 =0, the first member of equation
(2) reduces to a constant, so that (2) is either satisfied by no value
of A, in which case the line meets the surface at the point y only,
or by all values of A (if Za,22; = 0), in which case every point on the
line is also a point on the surface.

Combining the preceding results we may say:

Tueorem 1. Jf a quadric surface and a straight line are given,
one of the following three cases must occur :

(1) The line meets the quadric in two, and only two, points, in which
case the line is called a secant.

(2) The line meets the quadric in one, and only one, pornt, tn which
case it i3 called a tangent.*

(3) Ewery point of the line is a point of the quadric. In this case
the line is called a ruling of the quadric.t

* We shall presently distinguisk between true tangents and pseudo-tangents.
t Also called a generator, because, as will presently appear, the whole surface may
be generated by the motion of such a line.
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That all these three cases are possible is shown by simple exam
ples; for instance, in the case of the surface
Y2+ 2 —2t=0,
the three coordinate axes illustrate the three cases.
We shall often find it convenient to say that a tangent line meets

the quadric in two cotncident points.
From the proof we have given of Theorem 1, we can also infer

the further result:
THEOREM 2. If (Yp Yo Y Ys) 18 @ point on the quadric (1), then if

4
(3) %a,-jxiyj =0,*

every line through y 18 either a tcmgent or a ruling of (1), otherwise
every line through y which lies in the plane

€} ilaijzii'/i =0

is a tangent or ruling of (1), while every other line through y 1s a secant.

A theorem of fundamental importance, which follows immediately
from this, is:

THEOREM 3. If there exists a point y on the quadric (1) such that
the identity (3) 8 fulfilled, then (1) is a cone with y as a vertez ; and, con-
versely, if (1) 18 a cone with y as a vertex, then the identity (3) s fulfilled.

We pass now to the subject of tangent planes, which we define
as follows:

DEFINITION 2. A plane p is said to be tangent to the quadric (1)
at one of 1ts points P, if every line of p which passes through P i3 either a
tangent or a ruling of (1).

It will be seen that, according to this definition, if (1) is a cone, every
plane through a vertex of (1) is tangent to (1) at this vertex. We have
thus included among the tangent planes, planes which in ordinary
geometric parlance would not be called tangent. The same objection
applies to our definition of tangent Jines. We therefore now intro-
duce the distinction between true tangent lines or planes and pseudo-
tangent lines or planes.

DEerINITION 8. A line or plane which touches a quadric surface ot
a point which is not a vertezx is called a true tangent ; all other tangent
lines and planes are called pseudo-tangents.

* It should be noticed that, on account of the relation ay = au, Zayry; = Zaway
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EXERCISES

1. Prove that if P isa point on a quadric surface S, which is not a vertex,
and p the tangent plane at this point, one of the following three cases must occur :
(a) Two, and only two, lines of p are rulings of S, and these rulings intersect

at P.

(3) One, and only one, line of p is a ruling of S, and this ruling passes
through P.

(¢) Every line of p is a ruling of S.

2. Provethat

(a) When case () of Exercise 1 occurs, the quadric surface is not a cone;
and, conversely, if the quadric surface is not a cone, case (a) will always occur.

(b) If case (b) of Exercise 1 occurs, p is tangent to S at every point of the
ruling which lies in p.

(¢) If case (b) of Exercise 1 oceurs, S is a cone with one, and only one, vertex,
and this vertex is on the ruling which lies in p; and conversely, if S is a cone with
one, and only one, vertex, case (b) will always occur.

(d) If case (¢) of Exercise 1 occurs, there is a line [ in p every point of which
(but no other point) is a vertex of S; and S consists of two planes one of which
is p, while the other intersects it in .

39. Conjugate Points and Polar Planes. Two points are com-
monly said to be conjugate with regard to a quadric surface

1) a0, =0,

when they are divided harmonically by the points where the line
connecting them meets the surface. In order to include all limiting
cases, we frame the definition as follows:

DerINITION.  Two distinct points are said to be conjugate with re-
gard to the surface (1) of

(a) The line joining them is a tangent or a secant to (1), and the
points are divided harmonically by the points where this line meets (1) or

(0) Theline joining them is a ruling of (1).

Two coincident points are called conjugate if they both lie on (1).

Let the coordinates of the points be (yy, ¥5 ¥s ¥,) and (24, 25 25 2,),
and let us look first at the case in which the points are distinet and
neither of them lies on (1), and in which the line connecting them is
a secant of (1). The points of intersection of the line yz with (1)
may therefore be written

(21 + MYy 2 + Mo 25+ M Yp 24+ M Yy) (=1, 2)
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where A, and A, are the roots of Equation (2), § 38. A necessary
and sufficient condition for harmonic division is that the cross-ratio
N /Ng have the value —1; that is A; +2A;=0; or, referring back
to Equation (2), § 38,

(2) %ai’- ,-zj =O.

We leave it for the reader to show that in all other cases in which y
and z are conjugate this relation (2) is fulfilled ; and that, conversely,
whenever this condition is fulfilled, the points are conjugate. Thatis:

TreOREM 1. A necessary and sufficient condition that the points
y, 2 be conjugate with regard to (1) is that (2) be fulfilled.

This theorem enables us at once to write down the equation of
the locus of the point z conjugate to a fixed point y, namely,

3) ﬁla,.jx,-y,- =0.

Except when the first member of this equation vanishes identically,
this locus is therefore a plane called the polar plane of the point y.
We saw in the last section that the first member of (3) vanishes
identically when (1) is a cone and y is a vertex. This is the only
case in which it vanishes identicaliy ; for, if y is any point, not a
vertex, on a quadric surface, (3) represents the tangent plane at that
point; while if y is not on (1), the first member of (3) can clearly not
vanish identically, since it does not vanish when the z’s are replaced
by the y’s. Hence the theorem :

THEOREM 2. If (1)1 not a cone, every point y has a definite polar
plane (8); if (1) is a cone, every point except its vertices has a definite
polar plane (3), while for the vertices the first member of (3) is identi-
cally zero.

We note that the property that a plane is the polar of a given
point with regard to a quadric surface is a projective property, since
a collineation of space evidently carries over two conjugate points
into points conjugate with regard to the transformed surface.

THEOREM 3. If two points P, and P, are so situated that the
polar plane of P, passes through P,, then, conversely, the polar plane
of P, will pass through P,
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For, from the hypothesis, it follows that P; and P, are conjugate
points, and from this the conclusion follows.

40. Classification of Quadric Surfaces by Means of their Rank.
Theorem 2 of the last section may be stated by saying that a neces-
sary and sufficient condition that the quadric surface

(1 ) % a/ijxizj = 0

be a cone and that (g5, ¥ ¥s ¥.) be its vertex (or one of its vertices)
is that

4
(2) ?a,;jziyj-z 0.

This identity (2) is equivalent to the four equations

@33y + AyoYs +ay3Ys + @y, =0,
(3) An¥y + Ggols + Aoy + dpyy, =0,
U31Y1 + gl + Ag3Ys+ Ay, =0,
@Y1+ Cyols + Oysys+ ayy, = 0.

A necessary and sufficient condition for this set of equations to
have a common solution other than (0, 0, 0, 0) is that the determi-
nant of their coefficients be zero. We notice that this determinant
is the discriminant a of the quadric surface. Hence,

THEOREM 1. A mnecessary and sufficient condition for a quadric
surface to be a cone 18 that its discriminant vanish.

If, then, the rank of the quadric surface is four, the surface is not
a cone.

If the rank is three, the set of equations (3) has one, and, except
for multiples of this, only one, solution. Hence in this case the sur-
face is an ordinary cone with a single vertex.

If the rank is two, equations (8) have two linearly independent solu-
tions (cf. §18), on which all other solutions are linearly dependent.
Hence in this case the surface is a cone with a whole line of vertices.

If the rank is one, equations (8) have three linearly independent
solutions on which all other solutions are linearly dependent. Hence
we have a cone with a whole plane of vertices.

If the rank is zero we have, strictly speaking, no quadric surface ;
but the locus of (1) may be regarded as a cone, every point in space
being a vertex.
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It is clear that the property of a quadric surface being a cone is
a projective property ; and the same is true of the property of a point
being a vertex of a cone. Hence from the classification we have
just given we infer

TaeoreM 2. The rank of a quadric surface 13 unchanged by non-
singular collineations.

EXERCISES

1. DerinmrioN. If a plane p is the polar of a point P with regard to a quadric

surface, then P is called a pole of p- ' )
Prove that if the quadric surface is non-singular, every plane has one, and only

one, pole.
2. Prove that if the quadric surface is a cone, a plane which does not pass

through a vertex has no pole. '
What can be said here about planes which do pass through a vertex?

41. Reduction of the Equation of a Quadric Surface to a Normal
Form. Since cross-ratio is invariant under a non-singular collinea-
tion, a quadric surface &, a point P, not on &, and its polar plane
with regard to S, are carried over by any non-singular collineation
into a quadric surface &, a point P/, and its polar plane with regard

. 4
to 8. A point (¥4, ¥y ¥s ¥s) not on the quadric surface %aijxl.x;. =0,
cannot be on its own polar plane 20yl = 0 as we see by replacing

the z's in this last equation by the ’s. Now transform by a colline-
ation so that this point becomes the origin and its polar plane the
plane at infinity.* The quadric surface will now be a central quad-
ric with center at the origin, since, if any line be drawn through the
origin, the two points in which this line meets the surface are divided
harmonically by the origin and the point at infinity on this line.

The equation of the polar plane of the point (yi, y4, ¥} yi) with
regard to the transformed quadric

%a.{-,—zéz,’- =0
s Sajaiy) =0,

*Such a collineation can obviously be determined in an infinite number of ways
by means of the theorem that there exists a collineation which carries over any five
linearly independent points into any five linearly independent points ; cf. Exercises 2,
3, § 24.
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which reduces to the simple form
a1z + @y + @z + il =0
when the point is the origin (0, 0, 0, 1). For this equation to rep-
resent the plane at infinity, we must have
2y =ap =y =0, aj, +0.
Hence the quadric surface becomes
ay 2+ ey, v 7+ a2 7
+ al, zh 2+ aly T+ aly o 2
+ @y @+ 4y T 7 + gy @
-+ a"u :vj? =0.

A slightly different reduction can be performed by transforming
the point (¥y, Y5 ¥ ¥4) to the point at infinity on the z;-axis and its
polar plane to the z,z;-plane. It is easy to see that we thus get rid
of the terms containing 2, except the square term.

Similarly we can get rid of the terms containing z, and =,
Thus we see that any quadric surface can be reduced by a collineation
to a form where its equation contains no term in x; except the term im
a2 whose coefficient then 8 not zero.

According as we take for ¢ the values 1, 2, 3, 4, we get thus four
different normal forms for the equation of our quadric surface, and
inasmuch as each of these forms can be obtained in a great variety
of ways, the question naturally arises whether we cannot perform
all four reductions simultaneously. That this can, in general, be
done may be seen as follows: let y be a point not on the quadric
surface, and 2z any point on the polar plane of y, but not on the
quadric surface. Its polar plane contains y. Let w be any point on
the intersection of the polar planes of y and 2, but not on the quadric
surface. Then its polar plane passes through y and z. These three
polar planes meet in some point %, and it is readily seen that the four
points y,2z,w,u do not lie on a plane. The tetrahedron yzww is called
a polar or self-conjugate tetrahedron of the quadric surface, since it
has the property that any vertex is the pole of the opposite face.

If we transform the four points, ¥, 2, w, u to the origin and the
points at infinity on the three axes, the effect will be the same as that
of the separate transformations above, that is, the equation of the
quadric surface will be reduced to the form

! 12 ! 12 ! /: ! /2 e
ayy Tf + A 2 + agy 2@ + ay 22 =0.
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We have tacitly assumed that it is possible to find points y, 2z, w,
constructed as indicated above, and not lying on the quadric surface.
We leave it for the reader to show that, if the quadric surface is not
a cone, this will always be possible in an infinite number of ways.
A cone, however, has no self-conjugate tetrahedron, and in this case
the above reduction is impossible.

EXERCISES

1. Prove that if the discriminant of a quadric surface is zero, the equation of
the surface can always be reduced, by a suitable collineation, to a form in which
the codrdinate z, does not enter.

[Succestion. Show, by using the results of this chapter, that if the vertex of a
quadric cone is at the origin, @iy = das = a34 = a4 = 0.]

2. Show that, provided the cone has a finite vertex, the collineation of
Exercise 1 may be taken in the form

/—
Xy =2z, +az,

R
z=2,+ Bz,

‘_
Zy=2Ty+ YTy
=2z,

[Svearstion. Use non-homogeneous cosrdinates.]



CHAPTER X
QUADRATIC FORMS

42. The General Quadratic Form and its Polar. The general
quadratic form in n variables is
n
(1) ?a,-jmix,- =ay%  Faprzy+ ...+ a2,

2
+ aglxgxl + a22x2 + cse + agnxzxn

. . . . . . . . . . .

. . . . . . . . . . .

+ @2,y + ATy A+ ooe + W22,

where a; =a;.* The bilinear form %a,ﬁyizj is called the polar form of
(1). Subjecting (1) to the linear transformation

— ! !
= ¢p{ + ... + ezl

. . . . . . .

— ! !
Zp = Cp2y + et cmxxm

we get a new quadratic form

n
@) Sl

The polar form of (2) is Zaj;yjzj. If we transform the y’s and #'s of
the polar form of (1) by the same transformation ¢, we get a new

bilinear form %Eijy,fz}. We will now prove that @; = aj;.
‘We have the identities

n n
—_— 1 ol ool
(3) %a,;,,-x,.x = %aijx,-zj,

%) 2ayy 2= 20y ).

# Tt should be clearly understood that this restriction is a matter of convenience,
not of necessity. If it were not made, the quadratic form would be neither more not
less general.

127
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Each of these we may regard as identities in the z'’s, s, 2's, the
¥’s, y's, 2’s being merely abbreviations for certain polynomials in the
corresponding primed letters. The last written identity reduces,
when we let yi=2j=2{({=1, 2,...n), to

3 n
= 7. !
%a,,.jxixj = %a.,'jxixj .

Combining this with (8) gives
S ol Sl ot
%aijz,txj = %a,-jxgzj.
Hence Ty = af; and @y + a;=al;+ al;.

We have assumed that a;=a};, these being merely the coefficients of

a certain quadratic form, and we proved, in Theorem 4, § 36, that
a;=a, Hence we infer that @; = aj;.
From this fact and from (4) we get at once the further result:

n n
! gyl —
%aﬁ ,L-zj = lz,a,ijy{zj-

That is :
THEOREM. The polar form
. %’“ﬁyizj
i8 an absolute covariant of the system composed of the quadratic form
%aﬁx,-xj
and the two points (Y15 o+ Yu)s (21r 20 2,)
43. The Matrix and the Discriminant of a Quadratic Form.

DEerINITION. The matriz
Aypee Ay

Upy oo gy
18 called the matriz of the quadratic form
n
(1) %aqz‘xj.

The determinant of a is called the discriminant of (1); and the rank of
a, the rank of (1).  If the discriminant vanishes, (1) is called singular.
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The matrix of (1) is the matrix of its polar form. Moreover, as
was shown in the last section, if the z's in (1) are subjected to a
linear transformation, and the y’s and 2’s in the polar of (1) are sub-
jected to the same transformation, the matrix of the new quadratic
form will be the same as the matrix of the new bilinear form. But
we saw, in Theorem 1, §36, how the matrix of a bilinear form is
changed by linear transformations of the variables. Thus we have
the theorem :

TuroreM 1. If in the quadratic form (1) with matriz a we sub-
ject the z's to a linear transformation with matriz c, we obtain a new
quadratic form with matriz c'ac, where ¢’ is the conjugate of c.

From this there follow at once, precisely as in §36, the further
results :
THEOREM 2. The rank of a quadratic form 18 not changed by non-

singular linear transformation.

THEOREM 3. The discriminant of a quadratic form is a relative
invariant of weight two. '

44. Vertices of Quadratic Forms.
DEFINITION. By a vertex of the quadratic form

(1) % a::fxixjs

we understand a potnt (¢, -+ ¢,) where the ¢’s are not all zero, such that
(2) 12“,'7'%"0_'- = 0.

A quadratic form clearly vanishes at all of its vertices.
It is merely another way of stating this definition when we say:

THEOREM 1. A necessary and sufficient condition that (c;, -+ c,) be
a vertez of (1) s that it be a solution, not consisting exclusively of zeros,
of the system of equations

@10+ -+ Ay, =0,
( . . . . - - . L]
{3)

. . . . . . . .

A6+ o+ G0, =0,
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Since the resultant of (3) is the discriminant of (1), we may add:

THEOREM 2. A necessary and sufficient condition for a quadratie
Sform to have a vertex is that its discriminant be zero ; and if the rank
of the form is r, it has n —r linearly independent vertices, and every point
linearly dependent on these ts a vertez.

In particular, we note that if the discriminant of a quadratic
form is zero and if the cofactors of the elements of this determinant
are denoted in the ordinary way by A, then (4,, -+ 4,,) is a vertex,
provided all these A’s are not zero.

The following identity is of great importance (cf. formula

(2) § 38),
) %%‘ (2 2y (5 +My) = ?’aﬁzizj +2 ij%' 2y;+ Vil“ijya’/j'
This may be regarded as an identity in all the letters involved.

If (¢ - ¢,) is a vertex of the quadratic form E:aﬁxixj, and these
¢'s are substituted in (4) in place of the y’s, the last two terms of
the second member of this identity are zero, and we have

(%) %“‘v‘ (2i4+1e) (2 +2e) .——:§1 @525

and conversely, if (5) holds, (¢;, -++¢,) is a vertex; for subtracting
(5) from (4), after substituting the ¢’s for the y’s in (4), we have

2X§1aﬁz,~cj -+ Xﬁ%aﬁ cic;=0,
and, this being an identity in X as well as in the 2’s, we have
iaﬁzicj =0.
1

Thus we have proved the following theorem:

THEOREM 8. A necessary and sufficient condition that (e, - e,)
be a vertex of the quadratic form (1) is that 2y, ---2, and \ being in-
dependent variables, the identity (5) be fulfilled.

EXERCISES

1. Prove that if (c,...¢,) is a vertex of (1), and (y,,...¥n) is any point at
which the quadratic form vanishes, then the quadratic form vanishes at every
point linearly dependent on ¢ and .

2. State and prove a converse to 1.
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45. Reduction of a Quadratic Form to a Sum of Squares. If in
the quadratic form

(1) ¢ (‘”1’ ‘”n) = lzaijxizj

the coefficient a;; is not zero, we may simplify the form by the fol-
lowing transformation due to Lagrange.
The difference

¢ (2, o+ ,) — %(ailxl F et ayz,)?

(Y

is evidently independent of #;. Denoting it by ¢, we have
¢= al“(ailml + o 2,3,) o+ $y

If, then, we perform the non-singular linear transformation

!
Z) = Qi T+ A%y + o+ + a2,
I —

= Zy
@ ri= oz
= Tny

the quadratic form ¢ is reduced to the form
@) Lo+ $(ch L),
k13

in which all the terms in 2] are wanting except the term in 2/2.

It will be seen that this reduction can in general be performed in
a variety of ways. It becomes impossible only when the coefficients
of all the square terms in the original quadratic form are zero.

Unless, in the new quadratic form ¢,, the coefficients of all the
square terms are zero, we can apply the same reduction to this form
by subjecting the variables z}, --- 2; to a suitable non-singular linear
transformation. This transformation may also be regarded as a non-
singular linear transformation of all the 2’s : (24, 2}, - 2) if we write
2] =2{. We thus reduce (3) to the form

® St a4 gy (af, 2l
Gy A
Applying this reduction now to ¢,, and proceeding as before, we
see that by a number of successive non-singular transformations the

form ¢ can finally be reduced to the form:

(6) bt a4 +e R
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These successive transformations can now be combined into a single
non-singular linear transformation, and we are thus led to the

THEOREM. FEvery quadratic form in n variables can be reduced to
the form (5) by a non-singular linear transformation.

The proof of this theorem is not yet complete; for if at any
stage of the reduction the quadratic form ¢, has the peculiarity that
all its square terms are wanting, the next step in the reduction will be
impossible by the method we have used. Before considering this point,
we will illustrate the method of reduction by a numerical case.

Example.

2224+ =z 79+ 8274
p=1+ By, —32F +952 =422 +2+8%) +¢,
+ 8 ayzy + 9 252, + 2 2%
where

—%22 + S,z
¢>IE—%(x2v+8x3)2_3:v,2_,'+18x2x3+2x§E { +%$‘;$2~30ng 8]

=3 (= fa+ 5211400}
Accordingly, by means of the non-singular linear transformation
ry =22 +2, + 82,
Bm=  —izn+iz
zp = g,
the form ¢ reduces to } 2P — 222 — 18022
We have given here merely one method of reduction. Three differ.
ent methods were open to us at the first step and two at the second,
We proceed now to complete the proof of the general theorem,
Let us suppose that the coefficients of all the square terms in ¢ an
zero,* but that a;,# 0. Then
P2y -+ 20) = 20352125 + 22y (1525 + -+ + y2y)
+ 2 y(@gem + -+ + @907, )+ %%"”i‘”f
2
= a“(“u“’a + ayg@g + -+ 01%0) (Ag%y + Aggg+ 0 F Ayay)
12
+ ¢

where ¢, =— a—2-(a18x3 4 oo a3, (Aggg + o0+ Age2,) + %a.;jz,.:c]-.
12

* This method may be used whenever a;;=ase=0 whether all the other coef
ficients a;; are zero or not.
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The non-singular linear transformation

"
Y= %yt ATyt e+ 4,0,
| — vee
Zy =A%y +agg%g + o0+ Ay,
xé = a:a
. L] . . . . . L] L]
. . . . . L] - ° L] L]
z = ,
n n

thus reduces ¢ to the form

2 2l + byl 2l)-

—Z
1
%12
The further non-singular transformation
!
o] = 7] + 7,
1— ol ol
Ty = T] — Ty,
/1 — !
zg = T

- . - . .

/- 4
x, = Ty

reduces ¢ to the form
Gt g A+ a2l

The above reduction was performed on the supposition that a,,0,
It is clear, however, that only a slight change in notation would b
necessary to carry through a similar reduction if a;,=0 but a,;+ 0
The only case to which the reduction does not apply is, therefore,
the one in which all the coefficients of the quadratic form are zero,
a case in which no further reduction is necessary or possible.

‘We thus see that whenever Lagrange’s reduction fails, the method
last explained will apply, and thus our theorem is completely es-
tablished.

EXERCISES

1. Given a quadratic form in which n = 5 and a4y = |7 —~j|. Reduce to the
form (5).

2. Reduce the quadratic form

922 -6y —822+ 6zy — 1422+ 182w + 8yz + 123w — 42w
to the form (&).
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3. Prove that if (yy, ... y») is any point at which a given quadratic form is
not zero, a linear transformation can be found (and that in an infinite number of
ways) which carries this point into the point (0, .. 0, 1) and its polar into kz,;
and show that this linear transformation eliminates from the quadratic form all
terms in z, except the term in 22 which then has a coefficient not zero.

4. Prove that the transformations described in Exercise 3 are the only ones
which have the effect there described.

5. Show how the two methods of reduction explained in this section come as
special cases under the transformation of Exercise 3.

46, A Normal Form, and the Equivalence of Quadratic Forms.
In the method of reduction explained in the last section, it may
happen that, after we have taken a number of steps, and thus
reduced ¢ to the form

i+ -+ i+ P (xk+1s e Zy),

the form ¢, is identically zero. In this case no further reduction
would be necessary and the form (6) of the last section to which ¢ is
reduced would have the peculiarity that ¢, =¢,= - =¢,=0,
while all the earlier ¢’s are different from zero. It is easy to see just
when this case will occur.

For this purpose, consider the matrix

g 0 -0
0 ¢-0
0 0 ..oq,

of the reduced form (5) of § 45. It is clear that the rank of this
matrix is precisely equal to the number of ¢’s different from zero ;
and, since the rank of this reduced form is the same as that of the
original form, we have the result :

THEOREM 1. A necessary and sufficient condition that it be possi-
ble to reduce a quadratic form by means of a non-singular linear trans.
Jormation to the form

1) ez} 4+ -0 + ead,

where none of the ¢’s are zero, is that the rank of the quadratic form ber.
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This form (1)
these coefficients,

&)

where %, ... %, are arbitrarily given constants none of which, hoy.
ever, is to be zero. The transformation Q) is non-singular, and
reduces (1) to the form

(3) klx]’?_'_ e +k1x£2-

Thus we have proved

THEOREM 2. 4 quadratic form of rank r can be reduced by means
of a non-singular Lineaqr transformation to the form (8), where the values

of the constants kg ook, may be assigned ot Pleasure provideq none of
them are zero.

If, in particular, we assign to all the ks the value 1, we get
THEOREM 8. Bvery quadratic Jorm of rank r can 3, reduced to
the normal form
(4) 23+ o 22
by means of a non-sz;ngular linear trangformation.

From thig follows

THEOREM 4. 4 necessary and suffcient condition that two quad-
atie forms be equivalent with regard to non-singular linegy trans-
rmations is that they have the same rank.

That this is a necessary condition is evident from the fact that the
nk is an invariang, 1 hat it is a sufficient, condition follows from
e fact that, if the ranks are the same, both forms can be reduced
' the same normal form (4).

l
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The normal form (4) has no special advantage, except its sym-
metry, over any other form which could be obtained from (8) by
assigning to the &'s particular numerical values. Thus, for instance,
a normal form which might be used in place of (4) is

23+ - + 22— 2k

This form would have the advantage, in geometrical work, of giving
rise to a real locus.

Finally we note that the transformations used in this section are
not necessarily real, even though the form we start with be real.

EXERCISE
Apply the results of this section to the study of quadric surfaces.

47. Reducibility. A quadratic form is called reducible when it is
identically equal to the product of two linear forms, that is, when

1) % o dt; = (bywy + boy + -+ + b2, ) (01 + €% + -+ + CT,)-

Let us seek a necessary and sufficient condition that this be the case.
We begin by supposing the identity (1) to hold, and we consider in
succession the case in which the two factors in the right-hand mem-
ber of (1) are linearly independent, and that in which they are pro-
portional. In the first case the 8’s are not all proportional to the
corresponding ¢’s, and by a mere change of notation we may insure
by, b, not being proportional to ¢;, ¢, This being done, the trans-
formation

I
(2] = b2y + Dgzg + -+ + b2,
r_
2y = €% + CTy + -+ + €T
—
1T3= g
-
~2?,,— zﬂ

is non-singular and carries our quadratic form over into the form
! ol
zlah,

The matrix of this form is readily seen to be of rank 2, hence, the
original form was of rank 2.
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Turning now to the case in which the two factors in (1) are
proportional to each other, we see that (1) may be written

% azz; = C(byz, + - + b,2,) where '+ 0.

Unless all the &’s are zero (in which case the rank of the quadratic
form is zero) we may without loss of generality suppose 4,0, in
which case the linear transformation

2y =bx,+ -+ bz,
7y = Zy
x1:= Zy,
will be non-singular and will reduce the quadratic form to
12
which is of rank 1. Oz,

Thus we have shown that if a quadratic form is reducible, its
rank is 0, 1, or 2. We wish now, conversely, to prove that every
quadratic form whose rank has one of these values is reducible.

A quadratic form of rank zero is obviously reducible.

A form of rank 1 can be reduced by a non-singular linear trans-
formation to the form a;’lf that is,

n ,’
% A jExl.
If here we substitute for 2] its value in terms of the 2’s, it is clear

that the form is reducible.
A form of rank 2 can be reduced to the form :cl” + xf, that is,

% o =2, +aof =@ + vV =12p)(2, -V —=1}).

Here again, replacing 2] and zj, by their values in terms of the z’s,
the reducibility of the form follows. Hence,

THEOREM. A necessary and sufficient condition that a quadratic
Sform be reducible i8 that its rank be not greater than 2.

48. Integral Rational Invariants of a Quadratic Form. We have
seen that the discriminant a of a quadratic form is an invariant of
weight 2. Any integral power of @, or more generally, any constant
multiple of such a power, will therefore also be an invariant. We
will now prove conversely the

THEOREM. Every integral rational invariant of a quadratic form
18 a constant multiple of some power of the discriminant.
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Let us begin by assuming that the quadratic form
n

@) Zay2;2;
is non-singular, and let ¢ be the determinant of a linear transforma.
tion which carries it over into the normal form
2) ZR+ 2R+ - Faf2
Let I(ay, -+ @,,) be any integral rational invariant of (1) of weight u,
and denote by % the value of this invariant when formed from (2).

It is clear that £ is a constant, that is, independent of the coefficients
ay of (1). Then A

Moreover, the discriminant @ being of weight 2, and having for (2)
the value 1, we have 1 =%

Raising the last two equations to the powers 2 and u respectively,

we get B=cmI% 1=caw,
From which follows
(3) 12 =Fk2q~.

This formula has been established so far for all values of the
coefficients @z for which a=# 0. That it is really an identity in the
ag's is seen at once by a reference to Theorem 5, § 2. The poly-
nomial on the right-hand side of (8) is of degree u in a;;;* hence
we see that u must be an even number, since 12 is of even degree in
ay.  Letting p =2, we infer from (3) (cf. Exercise 1, § 2) that one
or the other of the identities

I= ko, I=—rLa

must hold, and either of these identities establishes our theorem.

A comparison of the result of this section with Theorem 4, § 46
will bring out clearly the essential difference between the two con-
ceptions of a complete system of invariants mentioned in §29. It will
- be seen that the rank of a quadratic form is in itself a complete sys-
tem of invariants for this form in the sense of Definition 2, § 29
while the discriminant of the form is in itself a complete system in
the sense of the footnote appended to this definition.

* We assume here that % =0, as otherwise the truth of the theorem would be
obvious.
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49. A Second Method of Reducing a Quadratic Form to a Sum of
Squares. By the side of Lagrange’s method of reducing a quadratic
form to a sum of squares, there are many other methods of accom-
plishing the same result, one of the most useful of which we pro-
ceed to explain. It depends on the following three theorems. The
proof of the first of these theorems is due to Kronecker and estab-
lishes, in a remarkably simple manner, the fact that any quadratic
form of rank r can be written in terms of # variables only, a fact
which has already been proved by another method in Theorem 1, § 46.

THEOREM 1. If the rank of the quadratic form
1) o -+ 2) = 2ay0.2;

18 > 0, and if the variables z, --- z, are so numbered that the r-rowed
determinant in the upper left-hand corner of its matriz is mot zero,*
new variables z), --- z,, can be introduced by means of a non-singular.
linear transformation such that

zh =7 (EF=r+1,.-n)
and such that (1) reduces to the form
lﬁaﬁ v}z

This, it will be noticed, is a quadratic form in 7 variables in which
the coefficients, so far as they go, are the same as in the given form (1).

In order to prove this theorem, we begin by finding a vertex
(¢gs - €,) of the form (1) by means of Equations (3), § 44. Since the
r-rowed determinant which stands in the upper left-hand corner of
the matrix of these equations is not zero, the values of ¢, --- ¢, may
be chosen at pleasure, and the other ¢’s are then completely deter-
mined. If we let ¢,y =c¢, = =¢,.;=0,¢,=1, we get a vertex

(e - €y 0, - 0, 1).
Using this vertex in the identity (5), § 44, we have
& (@ + Aoy o B+ Nepy Tpyyy -+ Ty, Tn + N) = (2, -+ B
If we let A = — ,, this identity reduces to
G (21— €1@ps *+* By — €Ty Tpigy ** Tyepy 0) = b (g +++ 2,).

* That such an arrangement is possible is evident from Theorem 3, § 20.
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Accordingly, if we perform the non-singular linear transformation *
{x£=xi—c.~:v,, (E=1,..7),
=z (GE=r+1,..m),
the quadratic form (1) reduces to
n=1
¢ (), 2,4, 0)= ?a,-jzﬁx’.

This, being a quadratic form in » —1 variables of rank  and so

arranged that the r-rowed determinant which stands in the upper

left-hand corner of its matrix is not zero, can be reduced, by the
method just explained, to the form

n—2
N /1
%aﬁxi xj )

where the linear transformation used is non-singular and such that
7zl =2l (E=r+1, - n=1)
By adding the formula 2] =2,
we may regard this as a non-singular linear transformation in the »

variables. This transformation may then be combined with the one
previously used, thus giving a non-singular transformation in which

zl =z, GE=r+1,...n),
and such that it reduces (1) to the form

A
Ellai,-z,- zy.

Proceeding in this way step by step, our theorem is at last
proved.

In the next two theorems we denote by A, in the usual way the
cofactor of a; in the discriminant a of the quadratic form (1).

THEOREM 2. If A,,# 0, new variables |, --- z) can be introduced
by a non-singular transformation in such a way that

T =2,

and that (1) takes the form

nila zhal + )
1 ':’ t j Ann "

* This transformation should be compared with Exercise 2, § 41.



QUADRATIC FORMS 141
To prove this we consider the quadratic form
5 a
%aij:v,-xj - Z;xﬁ
Its discriminant is

a1 e Qyn-1 n
a
¢ ¢ =a —A”nz— = O.
Bpet, 1 Onogin—1 Fpeqn a nn
Ay st Ay op-y Ay, —
' A,

Hence by means of a non-singular transformation of the kind used
in the last theorem, an essential point being that z! = z,, we get

S a oSl i
EIZaﬁx,-x,. — 5% = 2 a;%7),
nn

a
Aun

or

n n-1
- !
%a;‘,- T = ?aij z;%; + z{?.

TerorEM 3. If
A= -An—l,n—l =0, An.n—l #0,

new variables z}, --- z) can be introduced by a non-singular transgforma-
tion in such a way that . ,
ZTn-1 = Tp—1 Tp= Tpy

and that (1) takes the form

2a
An, n-1

[P}
TaZg_y-

a;whz)+
T A

Let us denote by B the determinant obtained by striking out the
last two rows and columns of a. Then (cf. Corollary 3, § 11) we

have Ay Ay,

2) aB = 4. A, =—A2, ,%0.
Consider, now, the quadratic form

(3) ila;jx{xj - Z2L TpTp—ye

n,n-1
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Its discriminant is

LT IR WY | T
4 a
( ) @n-1,1 """ Py, n-1 L a
7y n—1
a
Apy *** Oppoy1— 4 X (129
Ny N~

= —

2
An,n—l-ALl"'An,n~1Aa '_-B<Aa )a
Ny N nyn-1 7, n—1.

which has the value zero, as we see by making use of (2). Not only
does the determinant (4) vanish, but its principal minors obtained
by striking out its last row and column and its next to the last row
and column are zero, being 4,, and 4,_, ,_, respectively. The minor
obtained by striking out the last two rows and columns from (4) is
B, and, by (2), this is not zero. Thus we see (cf. Theorem 1, § 20}
that the determinant (4) is of rank » —2. Hence, by Theorem 1,
we can reduce (3) by a non-singular linear transformation in which
Ty =y, ¥, =2, to the form

n n—2
—_ |

%aﬁx‘-wj b xnzn_l = ?aijx,-xj.

ny n—-1
2 "2 2a
—_ !l !
Hence Elaija:ixj = Zayziz; + i xhxh .

Ny N—1

CorROLLARY. Under the conditions of Theorem 3, the quadratic
form (1) can be reduced to the form

2a

n, n—1

n=-2
xh ! 2 g
Saywiz; + (zy — =)

A

by a non-singular linear transformation.

To see this we have merely first to perform the reduction of
Theorem 3, and then to follow this by the additional non-singular

transformation .
b= al (=12, ..n—2),

! —_ ! "
Tp-1 = Ty_1 — T

ah=all_ + 2.
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Having thus established these three theorems, the method of
reducing a quadratic form completely is obvious. If the form (1) is
singular, we begin by reducing it by Theorem 1 to

-
213 Ay ;%)

where r is the rank of the form. Unless all the principal (r— 1)-
rowed minors of the discriminant of this form are zero, the order
of the variables z;, --- 2, can be so arranged that the reduction of
Theorem 2 is possible, a reduction which may be regarded as a non-
singular linear transformation of all » variables. If all the princi-
pal (r — 1)-rowed minors are zero, there will be at least one of the
cofactors A4; which is not zero, and, by a suitable rearrangement of
the order of the variables, this may be taken as 4, ,_,. The reduc-
tion of Theorem 3, Corollary, will then be possible. Proceeding in
this way, we finally reach the result, precisely as in Theorem 1, § 46,
that a quadratic form of rank r can always be reduced by a non-
singular linear transformation to the form

e2d+ - + 2l

It may be noticed that the arrangement of the transformation of
this section is in a certain sense precisely the reverse of that of §45,
inasmuch as we here leave at each step the coefficients of the unre-
duced part of the form unchanged, but change the variables which
enter into this part; while in §45 we change the coefficients of the
unreduced part, but leave the variables in it unchanged.



CHAPTER XI
REAL QUADRATIC FORMS

50. The Law of Inertia. @ We come now to the study of real
quadratic forms and the effect produced on them by real linear
transformations.

We notice, here, to begin with, that the only operations involved
m the last chapter are rational operations (¢.e. addition, subtraction,
multiplication, and division) with the single exception of the radicals
which come into formula (2), §46. In particular the reduction of
§ 45 (or the alternative reduction of § 49) involves only rational oper-
ations. Consequently, since rational operations performed on real
quantities give real results, we have

TaEOREM 1. A real quadratic form of rank r can be reduced by
means of a real non-singular linear trangformation to the form

/ / /2
€9 e 4 cpx + + ¢,
where ey, -+ ¢, are real constants none of which are zero.

Aswe saw in the last chapter, this reduction can be performed ina
variety of ways, and the values of the coefficients ¢, --- ¢, in the reduced
form will be different for the different reductions. The signs of these
coefficients, apart from the order in which they occur, will not depend
on the particular reduction used, as is stated in the following im-
portant theorem discovered independently by Jacobi and Sylvester
and called by the latter the Law of Inertia of Quadratic Forms:

THEOREM 2. If areal quadratic form of rank r is reduced by two
real non-singular linear transgformations to the forms (1) and
(2) ky2i? + kozg® + oo + R
respectively, then the number of positive c's in (1) is equal to the number
- of positive ks in (2).

In order to prove this, let us suppose that the z'’s and 2''’s have
been so numbered that the first x4 of the ¢’s and the first » of the %'s

are positive while all the remaining ¢’s and k's are negative. Our
144
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theorem will be established if we can show that u = ». If thisis
not the case, one of the two integers u and » must be the greater,
and it is merely a matter of notation to assume that u>». We will
prove that this assumption leads to a contradiction.

If we regard the z'’s and 2'”’s simply as abbreviations for certain
linear forms in the 2’s, (1) and (2) are both of them identically equal
to the original quadratic form, and hence to each other. This iden-
tity may be written

3) e @ + o el —ou gy — oo oz

=k22+ o+ E2E =k g2V — e =[R2

Let us now consider the system of homogeneous linear equations
in (2« )
(4) xi’:O,...x£’=O, a;"‘+1=0,..‘.a;:‘=0,

We have here v +n —u <n equations. Hence, by Theorem 8,
Corollary 1, §17, we can find a solution of these equations in which
all the unknowns are not zero. Let (¥, -+~ %,) be such a solution and
denote by i, y! the values of 2}, z when the constants y;, --- y, are
substituted in them for the variables z, --- 2,. Substituting the y’s
for the 2’s in (3) gives

oyt o teyld= =yt — - — |k, |yr2.

The expression on the left cannot be negative, and that on the right
cannot be positive, hence they must both be zero; and this is pos-
sible only if

y Yi= - =yl=0.

But by (4) we also have y.,, = ---=y,=0.

That is, (31, --¥,) is a solution, not composed exclusively of zeros, of
the system of » homogeneous linear equations in » unknowns,

1 — I I
2{=0, =0, - 2,=0.

The determinant of these equations must therefore be zero, that is,
the linear transformation which carries over the 2’s into the 2s must
be a singular transformation. We are here led to a contradiction.
and our theorem is proved.

L
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We can thus associate with every real quadratic form two in-
tegers P and IV, namely, the number of positive and negative coeffi-
cients respectively which we get when we reduce the form by any
real non-singular linear transformation to the form (1). These two
numbers are evidently arithmetical invariants of the quadratic form
with regard to real non-singular linear transformations, since two
real quadratic forms which can be transformed into one another by
means of such a transformation can obviously be reduced to the same
expression of form (1).*

The two arithmetical invariants P and IV which we have thus
arrived at, and the arithmetical invariant » which we had before, are
not independent since we have the relation

(5) P+N=r.

One of the invariants P and IV is therefore superfluous and either
might be dispensed with. It is found more convenient, however,
to use neither P nor IV, but their difference,

(6) s=P—N,

which is called the signature of the quadratic form.

DEFINITION. By the signature of a real quadratic form is under-
stood the difference between the number of positive and the number of
negative coefficients which we obtain when we reduce the form by any
real non-singular linear transformation to the form (1).

Since the integers P and IV used above were arithmetical invari-
ants, their difference s will also be an arithmetical invariant. Tt
should be noticed, however, that s is not necessarily a positive in-
teger. We have thus proved

THEOREM 8. The signature of a quadratic form ts an arithmetical
invariant with regard to real non-singular linear trangformations.

EXERCISES

1. Prove that the rank r and the signature s of a quadratic form are either
both even or both odd ; and that
—r<s<r.

N 2. Prove that any two integers r and s (r positive or zero) satisfying the con-
ditions of Exercise 1 may be the rank and signature respectively of a quadratic
form.

* P is sometimes called the {ndex of tnertia of the quadratic form.

TS T T T
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3. Prove that a necessary and sufficient condition that a real quadratic form
of rank r and signature s be factorable into two real linear factors is that

either r<2;
or r=2,8=0.

4. A quadratic form of rank r shall be said to be regularly arranged (cf. § 20,
Theorem 4) if the z’s are so numbered that no two consecutive A’s are zero in the set

@ a Qyy e Oy
A, = 1,A —an A, = 11 %12 A, = . . .
1 ) 2 3 ses =
0 u Ay Gy L O K
Qry ooe Qppr

and that 4, 0. Prove that if the form is real and any one of these 4’s is zero,
the two adjacent 4’s have opposite signs.

[SueceestioN. In this exercise and the following ones, the work of §49 should be
consulted.]

5. Prove that the signature of a regularly arranged real quadratic form is
equal to the number of permanences minus the number of variations of sign in the
sequence of the A’s, if the 4’s which are zero are counted as positive or as nega-
tive at pleasure.

6. Defining the expression sgn z (read signum z) by the equations
sgnz= +1 x>0,
sgnz= 0 z=0,
sgnz=—1 <0,
show that the signature of a regularly arranged real quadratic form of rank # is

sgn (Aod)) + sgn (4,4,) + - + sgn (Ar-14,)-

51. Classification of Real Quadratic Forms. We saw in the last
section that a real quadratic form has two invariants with regard to
real non-singular linear transformations, — its rank and its signa-
ture. The main result to be established in the present section
(Theorem 2)is that these two invariants form a complete system.

If in §46 the ¢’s and &’s are real, the transformation (2) will be
real when, but only when, each ¢ has the same sign as the corre-
sponding k. All that we can infer from the reasoning of that section
now is, therefore, that if a real quadratic form of rank » can be
reduced by a real non-singular linear transformation to the form

2} + - 42k

it can also be reduced by a real non-singular linear transformation te
the form ka3 + e+ Fyad,
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where the %’s are arbitrarily given real constants, not zero, subject
to the condition that each % has the same sign as the corresponding e.
Using the letters P and IV for the number of positive and negative ¢'s
respectively, the transformation can be so arranged that the first
P c's are positive, the last IV negative. Accordingly the first P ks
can be taken as + 1, the last Vas — 1. From equations (5) and (4)
of § 50, we see that P and IV may be expressed in terms of the rank
and signature of the form by the formule

=rts =r=8,
1) =75 V=

Thus we have the theorem:
TrEOREM 1. A real quadratic form of rank r and signature 8 can be
reduced by a ~eal non-gingular linear transformation to the normal form

(2) x%+...+x§,_z§,+1_.....x%
where P 18 given by (1).

We are now able to prove the fundamental theorem :

THEOREM 2. A necessary and sufficient condition that two real
quadratic forms be equivalent with regard to real non-singular lineur
transformations is that they have the same rank and the same signature.

That this is a necessary condition is evident from the invariance
of rank and signature. That it is sufficient follows from the fact
that if the two forms have the same rank and signature, they can
both be reduced to the same normal form (2).

DEFINITION. All real quadratic forms, equivalent with regard tu
real non-singular linemr transformations to a given form, and therefore tu
each other, are said to frrm a class.*

Thus, for instance, since every real non-singular quadratic form

in four variables can be veduced to one or the other of the five

normal forms
? z%+x§+1§+$§,

o] + af + 2% — 23,

@® SEEEE L
2} — 2% — af — 2,

— o} —af - af - o}

* This term may be used in a similar manner whenever the conception of equiva
Jence is involved.
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we see that all such forms belong to one or the other of five classes
characterized by the values

8=4,2,0,——2,—4, r = 4.

If, however, as is the case in many problems in geometry, we are
concerned not with quadratic forms, but with the equations obtained
by equating these forms to zero, the number of classes to be distin-
guished will be reduced by about one half, since two equations are
the same if their first members differ merely in sign.

Thus there are only three classes of non-singular quadric surfaces
with real equations, whose normal forms are obtained by equating
the first three of the forms (3) to zero. These equations written in
non-homogeneous codrdinates are

X2 V24 Z2=—1,
X2y V24221,
X4 ¥2-Z2=1

The first of these represents an imaginary sphere, the second a real
sphere, and the third an unparted hyperboloid generated by the revolu-
tion of arectangular hyperbola about its conjugate axis. It may readily
be proved that this last surface may also be generated by the revolution
of either of the lines Y=1X=+2

about the axis of Z. We may therefore say :

THEOREM 8. There are three, and only three, classes of non-singular
quadric surfaces with real equations. In the first the surfaces are imag-
wnary ; tn the second real, but their rulings are imaginary ; in the third
they are real, and the rulings through their real points are real.*

This classification is complete from the point of view we have
adopted of regarding quadric surfaces as equivalent if one can be
transformed into the other by a real non-singular collineation. The
more familiar classification does not adopt this projective view, but
distinguishes in our second class between ellipsoids, biparted hyper-
boloids, and elliptic paraboloids ; and in the third ¢lass between un-
parted hyperboloids and hyperbolic paraboloids.

*If, as here, we consider not real quadratic forms, but real homogeneous quadratic
equations we must use, not s, but |s| as an invariant. In place of |s| we may use what is
known as the characteristic of the quadratic form, that is the smaller of the two in-
tegera P XN This characteristic is simply §(r — |s|).
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EXERCISES
1. Prove that there are }(n + 1) (n + 2) classes of real quadratic forms in n
variables.

2. Give a complete classification of singular quadric surfaces with real equa-
tions from the point of view of the present section.

52. Definite and Indefinite Forms.

DEFINITION. By an indefinite quadratic form is understood a real
quadratic form such that, when it is reduced to the mormal form (2),
§ 51, by a real non-singular linear transformation, both positive and neg-
ative signs occur. All other real quadratic forms are called definite ; *
and we distinguish between positive and megative definite forms accord-
tng as the terms in the normal form are all positive or all negative.

In other words, a real quadratic form of rank r and signature s
is definite if s= &, otherwise it is indefinite.t

The names definite and indefinite have been given on account of
the following fundamental property:

THEOREM 1. Anindefinite quadratic form is positive for some real
values of the variables, negative for others. A positive definite form is
positive or zero for all real values of the variables; a negative definite,
Jorm, negative or zero.

The part of this theorem which relates to definite forms follows
directly from the definition. To prove the part concerning indefi-
nite forms, suppose the form reduced by a real non-singular linear
transformation to the normal form

(1) x?-}....-'—x’ﬁ—m’ﬁ_{_l __...._x:?

Regarding the 2/’s as abbreviations for certain real linear forms in
the 2’s, let us consider the system of n— P homogeneous linear equa-
tions

! —_ ! — ! —
(2) Tpi1=0, 2 y=0, 2, =0.

Since these equations are real, and their number is less than the
number of unknowns, they have a real solution not consisting

* Some writers reserve the name definite for non-singular forms, and call the
singular definite forms semidefinite.

T Otherwise stated, the condition for a definite form is that the characteristic be
zero. Cf. the footnote to Theorem 3, § 51.

.
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exclusively of zeros. Let (y;, --- ¥,) be such a solution. This
solution cannot satisfy all the equations

(3) 2 =0, - 2fp=0,

for equations (2) and (3) together form a system of » homogeneous
linear equations in # unknowns whose determinant is not zero, since
it is the determinant of the linear transformation which reduces the
given quadratic form to the normal form (1). Accordingly, if we
substitute (yy, --- ¥,) for the variables (z;, --- 2,,) in the given quad-
ratic form, this form will have a positive value, as we see from the
reduced form (1).

Similarly, by choosing for the z’s a real solution of the equations

#y=0,. =0, Ty =0, - 2, =0,

which does not consist exclusively of zeros, we see that the quad-
ratic form takes on a negative value.

We pass now to some theorems which will be better appreciated

by the reader if he considers their geometrical meaning in the
case n =+

THEOREM 2. If an indefinite quadratic form is positive at the real
point (yq, - Y,) and negative at the real point (¢, -+ 2,), then there
are two real points linearly dependent on these two, but linearly tnde-
pendent of each other, at which the quadratic Jform is zero, and neither
of which is @ vertez of the form.

The condition that the quadratic form
4) ?“vxﬂj
vanish at the point (y; + A2y, ++ ¥a + A2,) I8
%aijy,yj + 2 X%aijyizj + x2§:aijzizj = 0-

This quadratic equation in A has two real distinet roots, since,
from our hypothesis that (4) is positive at y and negative at 2, it
follows that

n 2 n n
(%“ﬁ.’%zj) - (%“ﬁyiyj) (%%’zizf) >0.
Let us call these roots ; and X, Then the points
(4) (yg + M2y o Yo+ M2a) (Gt Mg Ya Ag2,)
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are two real points linearly dependent on the pointsy and z at which
(4) vanishes.
Next notice that
Yi+ M2 Y+ Mz
Yo+ Nt Yi + A2

Yi Ys

2; 2

. -

“[i

(6)

Since the points y and z are linearly independent, the integers 7, j
can be so chosen that the last determinant on the right of (6) is not
zero. Then the determinant on the left of (6) is not zero; and,
consequently, the points (5) are linearly independent.

In order, finally, to prove that neither of the points (5) is a
vertex, denote them for brevity by

(-Yl’ Yn), (Zp Z”).

Letting X; — A, = 1/p, we have

2, =pY, — pZ (=12 ... n).
Therefore
) %a'ijzizj = .“2%% V.Y, -2 /‘2%“11 Y.Z; + /"2%:”'r'jzizj-

Since the points ¥ and Z have been so determined that (4) vanishes
at them, the first and last terms on the right of (7) are zero. If
either ¥ or Z were a vertex, the middle term would also be zero ;
but this is impossible since the left-hand member of (7) is, by
hypothesis, negative. Thus our theorem is proved.

For the sake of completeness we add the corollary, whose truth
is at once evident :

CorOLLARY. The only points linearly dependent on y and z at
which the quadratic form vanishes are points linearly dependent on one

or the other of the points referred to in the theorem; and mone of thear
are vertices.

We come now to a theorem of fundamental importance in the
theory of quadratic forms.

THEOREM 8. A necessary and sufficient condition that a real
quadratic form be definite s that it vanish at no real points except its
vertices and the point (0, 0, --- 0).
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Suppose, first, that we have a real quadratic form which vanishes
at no real points except its vertices and the point (0, 0, --- 0). If it
were indefinite, we could (Theorem 1) find two real points y, 2, at
one of which it is positive, at the other, negative. Hence (Theorem
2) we could find two real points linearly dependent on y and z, at
‘which the quadratic form vanishes. Neither of these will be the
point (0, 0, --- 0), since, by Theorem 2, they are linearly independ-
ent. Moreover, they are neither of them vertices. Thus we see
that the form must be definite, and the sufficiency of the condition
is established.

It remains to be proved that a definite form can vanish only at
its vertices and at the point (0, 0, --- 0).

Suppose (4) is definite and that (y,, --- y,) is any real point at
which it vanishes. Then,

%ab(x{ + Ay)(z + Ayy) = %aij-xixj + 2 l%aijx,-yj.

If y were neither a vertex nor the point (0, 0, --- 0), 2a,zy; would
not vanish identically, and we could find a real point (z,, -+ 2,) such

that n
k = ?a,jz(yj # O-

n
If we let c= %aijz,zj,
we have

n
(8 Sage + 20 +2g) = ¢ + 2k,

For a given real value of A, the left-hand side of this equation
is simply the value of the quadratic form (4) at a certain real point.
A ccordingly, for different values of X it will not change sign, while
the right-hand side of (8) has opposite signs for large positive
and large negative values of A. Thus the assumption that y was
neither a vertex nor the point (0, 0, ... 0) has led to a contradiction;
and our theorem is proved.

COROLLARY. A non-singular definite quadratic form vanishes,
Jor real values of the variables, only when its variables are all zero.

As a simple application of the last corollary we will prove

THEOREM 4. In a non-singular definite form, none of the coeffi
ctents of the square terms can be zero-
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For suppose the form (4) were definite and non-singularj and
that a;=0. Then the form would vanish at the point

Ty = =i =Ly = e =T, = 0’ z;= 1;
and this is impossible, since this is not the point (0,0, ---0).

EXERCISES

1. DeFINITION. By an orthogonal transformation * is understood a linear trans
formation which carries over the variables (Zyy-- x) into the variables (xf,--2,) in such
e way that

2342t +al=al W) e 2l

Prove that every orthogonal transformation is non-singular, and, in particular,
that its determinant must have the value + 1 or — 1.

2. Prove that all orthogonal transformations in n variables form a group; and
that the same is true of all orthogonal transformations in n variables of deter-
minant + 1.

3. Prove thata necessary and sufficient condition that a linear transforma-
tion be orthogonal is that it leave the ¢ distance ”

V=) F (s = @) o+ G =)
between every pair of points (y1, ++ ¥n), (21, +*- 2,) invariant.

4. Prove that if n =3, and if 21, 2o, 3 be interpreted as non-homogeneous
rectanglar codrdinates in space, an orthogonal transformation represents either a
rigid displacement which leaves the origin fixed, or such a displacement combined
with reflection in a plane through the origin.

Show that the first of these cases will occur when the determinant of the
transformation is + 1, the second when this determinant is — 1.

5. If the coefficients of a linear transformation are denoted in the usual way
by ¢y, prove that a necessary and sufficient condition that the transformation be
orthogonal is that g ch e =1 (=12 ..n),

t=12c0n. .
{ L5 ),

C1;C1y + C2;Cq5 ~+ o0 + CpiCry = 0 .

7=12,en

Show that these will still be necessary and sufficient conditions for an orthogonal
transformation if the two subscripts of every ¢ be interchanged.t

* The matrix of such a transformation is called an orthogonal matrix, and its deter-
minant an orthogonal determinant.

t We have here } n (n + 1) relations between the n? coefficients of the transforma~
tion. This suggests that it should be possible to express all the coefficients in terms of

D) _nm—1)
2 2

of them, or if we prefer in terms of }n (n—1) other parameters. For Cayley's dis-
cussion of this question cf. Pascal’s book, Die Determinanten, § 47. Cayley's formula
however, do not include all orthogonal transformations except as limiting cases.

T . e
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CHAPTER XII

THE SYSTEM OF A QUADRATIC FORM AND ONE OR MORE
LINEAR FORMS

53. Relations of Planes and Lines to a Quadric Surface. If the
plane

1) Uy + UgTy + Ugg + uyz, =0
is a true tangent plane to the quadric surface

4
(2) Ella,«jxixj = 0,

there will be a point (¥, ¥y ¥ ¥,) (namely the point of contact)
lying in (1) and such that its polar plane

)] %aijxiy,- =0

coincides with (1). From elementary analytic geometry we know
that a necessary and sufficient condition that two equations of the
first degree represent the same plane is that their coefficients be pro-
portional. Accordingly, from the coincidence of (1) and (3), we
deduce the equations

ay191 + @10Ys + 1Y + a1y, — pry =0,
4) Ag1¥1 + Uga¥s + agYs + gy — Uy =0,
Ag1Y1 + AgoYs + Ay + Aggyy — prz=0,
ag1Y; + WYy + Oy + ayy— puy=0.
From the fact that the point y lies on (1), we infer the further
relation
(5) Y, + Uy + UsYs + ugy, = 0.

These equations (4) and (5) have been deduced on the suppo-
sition that (1) is a true tangent plane to (2). They still hold if
it is a pseudo-tangent plane; for then the quadric must be a cone,
and a vertex of this cone must lie on (1). Taking the point y as
this vertex, equation (5) is fulfilled. Moreover, since now the first

166
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member of (8) is identically zero, equations (4) will also be fulfilled
if we let p=10. Thus we have shown in all cases, that if (1) is a
tangent plane to (2), there exist five constants, ¥y, yp ¥z yg P Of
which the first four are not all zero, and which satisfy equations (4)

and (5). Hence

gy Qg g Ay Uy

(g1 Qgg Cgg gy Uy

{6) Gy gy gy gy Uy =0.
Gy Qg Qg Ty Uy

wy Uy uy  uy 0

Conversely, if this last equation is fulfilled, there exist five
constants, ¥, ¥ Ya» Yo P> 00t all zero, and which satisfy equations
(4) and (5). We can go a step farther and say that y, ¥, yg ¥y
cannot all be zero, as otherwise, from equations (4) and the fact that
the w's are not all zero, p would also be zero. Thus we see that if
equation (6) is fulfilled, there exists a point (¥5, %y ¥s ¥4) in the
plane (1) whose codrdinates, together with a certain constant p,
satisfy (4). If p =0, this shows that the quadric is a cone with y
as a vertex, and hence that (1) is at least a pseudo-tangent plane.
If p # 0, equations (4) show us that the polar plane (3) of y coin-
cides with the plane (1). Moreover we see, either geometrically, or
by multiplying equations (4) by ¥4, ¥a ¥s ¥4 respectively and add-
ing, that the point y lies on the quadric; so that, in this case, (1) is
a true tangent plane.

We have thus established the theorem :

TrEOREM 1. Equation (6) is a necessary and sufficient conditiors
that the plane (1) be tangent to the quadric (2).

It will be seen that this theorem gives us no means of distinguish-
ing between true and pseudo-tangent planes of quadric cones. In
the case of non-singular quadrics, pseudo-tangent planes are impos-
sible, and therefore equation (6) may, in this case, be regarded as the
equation of the quadric in plane-cosrdinates.

In the case of a quadric surface of rank 3, that is, of a cone with
a single vertex, the codrdinates (uy, g ug w,) of every plane through
this vertex satisfy equation (6), so that in this case this equation
represents a single point, and not the quadric cone.*

* In fact a cone cannot be represented by & single equation in plane-cotrdinates.

e
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If the rank of (2) is less than 3, the codrdinates of every plane
in space should satisfy (6), since every such plane passes through a
‘vertex and is therefore a tangent plane. This fact may be verified
by noticing that equation (6) may also be written

4
%Auu,uj = O,

where the A’s are the cofactors in the discriminant of (2) according
to our usual notation.

We pass now to the condition that a straight line touch the
quadric (2). This line we will determine as the intersection of the
two planes (1) and
) v,y + VTy + Vgzs + vz, = 0.

If the line of intersection of these planes is a true tangent to (2),
there will be a point (¥q, ¥g ¥s ¥4)> namely the point of contact, lying
upon it, and such that its polar plane (3)contains theline. Itmustthere-
fore be possible to write the equation of this polar plane in the form

(8) 3 (uatg + ), = 05

and, in fact, by properly choosing the constants u and », the co-
efficients of (8) may be made not merely proportional, but equal to
the coefficients of (3):

ayYy + AroYa + Y5 + aygY, — puy — vo,=0,
(9) g1y + AgaYa + AasYs + Aoy — Bty — v, =0,

g1y + AapYs + Aggls + Al 4 — My — v =0,

ag1Y1 + QoY + gls + Ay — puy— v =0,

Since the point y lies on the line of intersection of the planes (1)

and (T), we also have the relations

(10) {u1y1+u2y2+u3y3+u4y4=0,
VY1 + VeYy + gy + 0y, =0.
Since the six equations (9) and (10) are satisfied by six constants
Yi» Ygo Y Yo B v DOL all zero, we infer finally the relation

@y @p Mg @y U Y
Ggy Qgg Qg Gy Uy Vg
(11) a3 Qgg (g Ay U3 Vgl _ .
Gy Qg Qg Qg U Yy
w, uy, ug uy 0 0
v, v, v v, 0 0
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We have deduced this equation on the supposition that the line of
intersection of (1) and (7) is a true tangent to (2). We leaveit to
the reader to show that (11) holds if this line is a pseudo-tangent,
and also if it is a ruling of (2).

We also leave it for him to show that if (11) holds, the line of
intersection of (1) and (7) will be either a true tangent, a pseudo-
tangent, or a ruling, and thus to establish the theorem:

THEOREM 2. A necessary and sufficient condition that the line of
intersection of the planes (1) and (7) be either a tangent or a ruling
of (2) is that equation (11) be fulfilled.

On expanding the determinant in (11), it will be seen that it is
a quadratic form in the six line-codrdinates g; (cf. Exercise 8, § 85).
Equation (11) may therefore be regarded as the equation of the
quadric surface in line-codrdinates if the surface is not a cone, or is
a cone with a single vertex. If the rank of (2) is 2, so that the
quadric consists of two planes, (11)is the equation of the line of
intersection of these planes. While if the rank is 1 or 0, (11) is
identically fulfilled.

EXERCISES

1. Two planes are said to be conjugate with regard to a non-singular quadric
surface if each passes through the pole of the other.

Prove that if (2) is a non-singular quadric, a necessary and sufficient con-
dition that the planes (1) and (7) be conjugate with regard to it is the vanishing
of the determinant ay ay 4y @y

G Gpy Qg3 Gy Uy 4

A3 @z Qg oy Yy | = — ?Aij“"”i'
Ay Qyp Qg Gy U,

vy, vy, vy v, O

How must this definition of conjugate planes be extended in order that this
theorem be true for singular quadrics also?

2. Prove that if (2) is a non-singular quadric, a necessary and sufficient con.
dition that the point of intersection of three planes lie on (2) is the vanishing ot
the seven-rowed determinant formed by bordering the discriminant of (2) with the
coefficients of the three planes.

8. Admitting it to be obvious geometrically that a necessary and sufficient con-
dition that a line touch a non-singular quadric is that the two tangent planes which
can be passed through this line should coincide, prove that, if (2) is non-singular,
a necessary and sufficient condition that the line of intersection of (1) and (7)

touch (2) is & 4 .
ouch (2) i (? Aguiug) (% Aijvivj) - (21 Aijuivj)z =0.

4. Show algebraically that the condition of Exercise 3 is equivalent to (11).




QUADRATIC AND LINEAR FORMS 159

54. The Adjoint Quadratic Form and Other Invariants. Passing
now to the case of »n variables, we begin by considering the system
consisting of a quadratic form and a single linear form

n
(1) % Q5T

(2) %u.,-xi.

The geometrical considerations of the last section suggest that we

form the expression MGy e a4y, U
n

(3) %AU U; uj = e

. Opy =+ OQupy Uy

w o u, 0

This, it will be seemn, is a quadratic form in the variables (u;, --- u,)
whose matrix is the adjoint of the matrix of (1). We will speak of
(3) as the adjoint of (1).

The invariance of (3) is at once suggested by the fact that in the
case n =4 the vanishing of (8) gave a necessary and sufficient con-
dition for a projective relation. In fact we will prove the theorem :

TurEoREM 1. The adjoint form (3) is an tnvariant of weight two of
the pair of forms (1), (2).

Inasmuch as the %’s are, as we saw in § 34, contragredient to the
z's, we may also call (3) a contravariant (cf. Definition 2, § 34).

In order to prove this theorem we must subject the 2’s to a linear
transformation,

4

=] + o+ e

_— ! !
Ty = Cpy®) + ** + CpnTny

whose determinant we will call e. Let us denote by af; and 4} re-
spectively the coefficients of the quadratic and linear form into which
this transformation carries (1) and (2).

Let us now introduce an auxiliary variable ¢, and consider the
quadratic form in @, .-+ z,, ¢,

(5) %aﬁ T2+ 2t (wzy + -+, 2,).

The discriminant of this form is precisely the determinant in
(8), that is, the negative of the adjoint of (1).
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Let us now perform on the variables z, .-+ z,, ¢ the linear trans
formation given by formule (4) and the additional formula

(6) t=t.
The determinant of this transformation is ¢, and it carries over the

form (5) into n
) 3 afle) + 20 ufa] + - +ula).

From the fact that the discriminant of (5) is an invariant of
weight 2, we infer the relation we wished to obtain :

/ T,
Qyy oo Q1n Uy @y v Qg Uy
- . . = c2 . . . . . -
! roal :
anl cee arm un anl eee ann un
) !
wy w0 Uy . 0

The method just used admits of immediate extension to the proot
of the following more general theorem :

THEOREM 2. If we have a system consisting of a quadratic form in
n vartables and p linear forms, the (n+ p)-rowed determinanrt formed by
bordering the discriminant of the quadratic form by p rows and p
columns each of which consists of the coefficients of one of the linear
JSorms is an invariant of weight 2

We leave the details of the proof of this theorem to the reader.

If the discriminant a of the quadratic form (1) is not zero, we may
form a new quadratic form whose matrix is the inverse of the matrix
of (1). This quadratic form, which is known as the <nverse or
reciprocal of (1), is simply the adjoint of (1) divided by the discrimi-
nant a. We will prove the following theorem concerning it:

TureoreM 8. If the quadratic form (1) is non-singular, it will be
carried over into tts inverse by the non-gingular transformation

(7) m{ = a:;]_ xl + e + a.mxn (’L‘-—'— 1, 2, veu n)_

For we have n n
E ayx; Ty = % .zl

But from (7) we have
;= ) § Z’ + oo o Zn Am zl

and therefore
2 ayrz; = E “—4—1 x’:c},

as was to be proved.
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It will be noticed that if (1) is a real quadratic form, the trans-
formation (7) is real; and from this follows

THEOREM 4. A real non-singular quadratic form and its inverse
have the same signature.

EXERCISES

1. Given a quadratic form Sayz;z; and two linear forms Ju;z; Jv;z;.
Prove that
an v Gn Y
? Ajupi=—
Ay Qup Up
. vy e Vg 0
is an invariant of the system of weight 2.

2. Generalize the theorem of Exercise 1 to the case in which we have more
than two linear forms.

3. Prove that if a first quadratic form is transformed into a second by the
linear transformation of matrix ¢, then the adjoint of the first will be transformed
into the adjoint of the second by the linear transformation whose matrix is the
conjagate of the adjoint of ¢.

4. Prove a similar theorem for bilinear forms.
5. State and prove a theorem for bilinear forms analogous to Theorem 3.

55. The Rank of the Adjoint Form. Suppose the discriminant a

of the quadratic form Ea-,-z,.x- is of rank », and that the discrimi-

nant A of its adjoint E Aju; is of rank R. Then, if r<n—1, all

the (n —1)-rowed dctel minants of a are zero; but these are the ele-
ments of 4, hence R=0. If r=n—1, at least one of the elements
of A is not zero, and all two-rowed determinants of 4 are zero (since
by § 11 each of them contains @ as a factor), hence R=1. Ifr=mn,
R=mn; for if R were less than n we should have A =0, and there-
fore a=0 (since A=qa""1). But this is impossible, since by hypothesis
r=mn. We have then:

TuroreM 1. IF the rank of a quadratic form in n variables and of
its adjoint are r and R respectively, then

if r=mn, R=n,
fr=n—1 R=1,
'y"r<n—-1, R=0.
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Let us consider further the case »r=n —1. Here we have seen
that R =1, that is, that the adjoint is the square of a linear form,

7 n n
2 Aty =(2 e, = 2 eiuty.

Comparing coefficients, we see that
’Aii == 6'1;6:’*-

All the ¢'s cannot be zero, as otherwise we should have R = 0. Let
¢, 0. Then since Ap=c2#0

we see that not all the quantities (4,;, .-+ 4,,) are zero. Accord-
ingly (cf. §44) the point (4,;, 4,y - 4,,), and therefore also the
point (¢, -+ ¢,), is a vertex of the original quadratic form. Thus we
have the theorem :

THEOREM 2. If the rank of & quadratic form in n variablesisn — 1,
its adjoint 18 the square of a linear form, and the coefficients of this
linear form are the codrdinates of a vertex of the original form.

Since, in the case we are considering, all the vertices of the
quadratic form are linearly dependent on any one, this theorem com-
pletely determines the linear form in question except for a constant
factor.




CHAPTER XIII
PAIRS OF QUADRATIC FORMS

56. Pairs of Conics. We will give in this section a short geomet-
rical introduction to the study of pairs of quadratic forms, confining
ourselves, for the sake of brevity, to two dimensions.

Let % and v be two conics which we will assume to be so situated
that they intersect in four, and only four, distinct points, 4, B, C, D.
Consider all conics through these four points. These conics, we will

say, form a pencil. It is obvious that there are three and only three
singular conics (i.e. conics which consist of pairs of lines) in this
pencil, namely, the three pairs of lines AB, CD; BC, DA; AC,BD
Let us call the « vertices” of these conics P, @, and R respectively.

From the harmonic properties of the complete quadrilateral* we
see that the secants PAB and P (D are divided harmonically by the

#* Cf. any book on modern geometry.
163
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line QR. Accordingly QR is the polar of P with regard to every
conic of the pencil. In a similar manner PR is the polar of @, and
P@Q the polar of B with regard to every conic of the pencil. Thus,
we see that the triangle PQR is a self-conjugate triangle (see §41)
with regard to every conic of the pencil. Accordingly, if we per-
form a collineation which carries over P, @, R into the origin and
the points at infinity on the axes of 2 and y, the equation of every
conic of the pencil will be reduced to a form in which only the
square terms enter. We are thus led to the result:

THEOREM. If two conics intersect in four and only four distinct
points, there exists a mon-singular collineation which reduces their
equations to the normal form

{Ap:% + At + Azt =0,
Ba? + Byg + By = 0.

If we wish to carry through this reduction analytically, we shall

write the equations of the two conics % and v in the forms

@) %“ﬁm’j =0, %b-ijxixf =0.

The pencil of conics may then be written
@) %(aij — Aoy = v,

or rather, to be accurate, this equation will represent for different
values of A all the conics of the pencil except the conic v. The
singular conics of the pencil will be obtained by equating the
discriminant of (2) to zero,

@y =My ap =My -2y
(8) g — Aby gg—Nbgy gy — Ny |=0.
@y —Nby Ay —Nby  ag— Ay

This equation we will call the A-equation of the two conics
When expanded, it takes the form

) — AN+ O\ - BN+ A =0,




PATIRS OF QUADRATIC FORMS 165

where A, A" are the disecriminants of » and v respectively, ana

8 ay g Dy ay b by ap ay
=lag Qg bag| @y by gyl 4 by Gy ay )
@y Az by Uy gy g by agy  ag

while ®' can be obtained from ® by an interchange of the letters a
and 8. It can readily be proved (cf. the next section) that the co-
efficients ® and ®' as well as A and A’ are invariants of weight two.

Except when the discriminant A'-of v is zero, the equation (4)
is of the third degree, and its three roots, which in the case we
have considered must evidently be distinct, give, when substituted
in (2), the three singular conics of the penecil.

We will not stop here to show how the theory of any two
conics, where no restriction as to the number of points of intersec-
tion is made, can be deduced from equation (8).* This will follow
in Chapter XXII as an application of the method of elementary
divisors. Our only object in this section has been to give a geo-
metrical basis for the appreciation of the following sections.

57. Invariants of a Pair of Quadratic Forms. Their A-Equation.
We consider the pair of quadratic forms

n
Boy 1) = Sy

@y, 2,)= ?bijzizj’
and form from them the pencil of quadratic forms
¢ - X’\II‘ = lz(a{j - Xb{j)z,'Zj-

The discriminant of-this pencil,
Ay — Ny a3 =Ny,
o e

Apy — xbnl A 7\-brm

is a polynomial in A which is in general of degree n, and which may
be written _F()\) = @0 — @1)‘ + et (_ 1)”@,,}.”.

* An elementary discussion of the \-equation of two conics (I'éguation en \)is
regularly given in French text-books on analytic geometry. See, for instance, Briot
et Bouquet, Legons de Géométrie analytique, 14th ed., p. 349, or Niewenglowski, Cours
de Géométrie analytique, Vol. X, p. 469.
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The coefficients of this polynomial are themselves polynomials in
the a;’s and &,’s, ®; and @, being merely the discriminants of ¢ and
+r respectively, while ®, is the sum of all the different determinants
which can be formed by replacing % columns of the discriminant of
¢ by the corresponding columns of the discriminant of .

THEOREM 1. The coefficients @, --- ®, of F(\) are integral rational
invariants of weight two of the pair of quadratic forms ¢, yr.*

In order to prove this, let us consider a linear transformation of
determinant ¢ which carries over ¢ and 4 into ¢'and 4 respec-
tively, where

¢ = Ea’ [ T
,‘PJ_E bl :L"x'

Let us denote by ®} the polynomial in the a/’s and b/s obtained by
putting accents to the a’s and &’s in @,. Our themem will then be
proved if we can establish the identities

0= 20, (E=0,1,..-m)

This follows at once from the fact that F(\), being the discriminant
of ¢ =My, is an invariant of weight two, so that if we denote by
F'(\) the discriminant of ¢/ — A+, we have

PN = 2 FQL).

This being an identity in A as well as in the a’s and 8’s, we can
equate the coefficients of like powers of A on the two sides, and this
gives precisely the identities we wished to establish.t

The equation F(A)=0 .

we will call the A-equation of the pair of forms ¢,+r. Since, as we
have seen, ¥ is merely multiplied by a constant different from zero
when ¢ and +» are subjected to a non-singular linear transformation,

* Cf. Exercise 18, § 90.

t The method by which we have here arrived at invariants of the system of two
quadratic forms will be seen to be of very general application. If we have an integral
rational invariant I of weight x of a single form of the Zth degree in n variables, we can
find a large number of invariants of the system ¢y, ¢, -+ ¢, of p forms of the kth degree
in n variables by forming the invariant I for the form Ny + -+ +\p¢pp. This will be
a polymonial in the N's, each of whose coefficients is seen, precisely as above, to be an
integral rational invariant of the systems of ¢'s of weight .
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the roots of the A-equation will not be changed by such a transfor-
mation. These roots, however, are irrational functions of the ®’s and
hence of the &'s and &’s.  We may therefore state the result:

TarorEM 2. The roots of the A-equation of a pair of quadratic
forms are absolute irrational invariants of this pair of forms with
regard to mon-singular linear transformations.

It is clear that the multiplicity of any root of the A-equation
will not be changed by a non-singular linear transformation. Hence

TaeoreM 8. The multiplicities of the roots of the h-equation are

arithmetical inmvariants of the pair of quadratic forms with regard to
non-singular linear transformations.

If ¢ =aa}+ - + a,23
Y= 23+ -+ 22,

the roots of the M\-equation are a,:--a, This example shows
that the absolute invariants of Theorem 2 may have any values,
and also that the arithmetical invariants of Theorem 8 are subject
to no other restriction than the obvious one of being positive in-
tegers whose sum is n.

58. Reduction to Normal Form when the A\-Equation has no Multi-
ple Roots. Although our main concern in this section is with the
case in which the A-equation has no multiple roots, we begin by estab-
lishing a theorem which applies to a much more general case.

TaEorREM 1. If N, 28 a simple root of the A-equation of the pair
1 P q p

o, Y of quadratic forms in n variables, then, by a non-singular linear

trangformation, ¢ and r can be reduced respectively to the forms

(D {Mﬁz% + ¢y (2 -+ 2)
2} +Yry(2g -+ 2,)

where ¢, is a constant not zero and ¢q, Yy are quadratic forms in the
n — 1 variables 2y, --- 2,.

To prove this, we will consider the pencil of forms

(2) ¢—Mp=¢ =Ny + (A — M)
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Since A, is a root of the A-equation of the pair of forms ¢, 4, the form
¢ —Ayr issingular,and can therefore, by a suitable non-singularlinear
transformation, be written in a form in which one of the variables, say

z}, does not enter, ¢ — M= (al, - ).

If this transformation reduces 4 to 4, we have
(3) b—Mp=¢/(2p, - zn) + (M — M) Y/ (21, -+ 2h).

The discriminant of the quadratic form which stands here on the
right cannot contain A; —\ as a factor more than once, since A, is, by
hypothesis, not a multiple root of the A-equation of ¢ and . It
follows from this that the coefficient of z;2 in the quadratic form y/
cannot be zero, for otherwise the discriminant of the right-hand side
of (3) would have a zero in the upper left-hand corner, and A, —
would be a factor of all the elements of its first row and also of its
first column ; so that it would contain the factor (A, — 1)

Since the coefficient of zj2 in ' is not zero, we can by Lagrange’s
reduction (Formule (2), (3), §45) obtain a non-singular linear trans-
formation of the form

2 ="%+ Va2t -+ YaZh
/

z2 = m2
2, = A
which reduces Y to the form
618 + Yy (2 - 3,) (e, 0).

This transformation carries over the second member of (3) into
¢’ (2 -+ 2a) + (M = M) Y2y - 2) + (A — M)y 2.
Combining these two linear transformations and writing
B (295 - 20) + My ¥y (2 - 20) = o2y -+ 20),

we have thus obtained a non-singular linear transformation which
effects the reduction,

(g -+ ) =N (Zgy ++ Tp) = By (2 +++ 20) =AYy (20, -+ 2,) + (M=) cl.zf.

If, here, we equate the coefficients of A on both sides, and the
terms independent of A, we see that we have precisely the reduec-
tion of the forms ¢, Y- to the forms(1); and the theorem is proved.
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Let us now assume that the form +yr is non-singular, thus insur-
ing that the A-equation be of degree n. We will further assume
that the roots Ay, Ay, -+ A, of this equation are all distinct. We can
then, by the theorem just proved, reduce the forms ¢, Y to the forms
(1) by a non-singular linear transformation. The A-equation of these
two forms is seen to differ from the A-equation of the pair of forms
in (n—1) variables ¢, Yo, only by the presence of the extra factor
A;—A.  Accordingly the A-equation of the pair of forms ¢,, ¥~ has
as its roots Ay -+ A, and these are all simple roots. We may there-
fore apply the reduction of Theorem 1 to the two forms ¢;, ¥, and
thus by a non-singular linear transformation of z,, --- z, reduce them
to the forms Nycyzi? + bo(2h, - 21),

ey’ + Va(2h - 25)-
This linear transformation may, by means of the additional formula
2y =2y,
be regarded as anon-singular linear transformation of z,, - 2, which
carries over ¢, ¥ into the forms
Aper2 + Ngey2? + dy(2h, - ),
ez + ez (2 o 2n)
Proceeding in this way, we establish the theorem:

TurROREM 2. If ¢,y are quadratic forms in (z,, --- z,) of which the
second i8 non-singular, and if the roots A, --- N, of their \-equation are all
distinet, there exists a non-singular linear transformation which carries

over ¢ and  into A 22 + A + o+ Ny0u 22,
/ /! /!
a2+ xR+ -+
respectively, where ¢,,--- ¢, are constants all different from zero.

Since none of the ¢'s are zero, the linear transformation
zll = Ve, 2 (t=12--n)
is non-singular. Performing this transformation, we get the further
result:

THEHEOREM 3. Under the same conditions as in Theorem 2, ¢ and
A may be reduced by means of a non-singular linear trangformation to

the normal forms AR+ Ng2d+ o + Mot

234+ a3+ -+ 2k
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From this we infer at once

THEOREM 4. If in the two pairs of quadratic forms ¢, ¥ and ¢/,
W' the forms r and ' are both non singular, and if the \-equations of
these two pairs of forms have no multiple roots, a nmecessary and suf-
fictent condition for the equivalence of the two pairs of forms is that
these two \-equations have the same roots ; or, what amounts to the same
thing, that the invariants @y, @, .- O, of the first pair of forms be pro-
portional to the invariants O, @1, --- @), of the second.

EXERCISE

Prove that, under the conditions of Theorem 3, the reduction to the normal
form can be performed in essentially only one way, the only possible variation
consisting in a change of sign of some of the z’s in the normal form.

59. Reduction to Normal Form when { is Definite and Non-
singular. We now consider the case of two real quadratic forms
¢, yr of which 4 is definite and non-singular. Our main problem is
to reduce this pair of forms to a normal form by means of a real
linear transformation. For this purpose we begin by proving

THEOREM 1. The A-equation of a pair of real quadratic forms
¢, Y can have no tmaginary root if the form p is definite and non-
singular.

For, if possible, let « 4+ B¢ (@ and B real) be an imaginary root of
this A-equation, so that 8% 0. Then ¢— ayr — By will be a singular
quadratic form, and can therefore be reduced by a non-singular
linear transformation

2 = (P +iq11) 21+ -+ + (Pra+9910) Two

. . . . . . . . . . . .

2= (Pn1 +19) 21+ + (P + qnn) Ta
to the sum of % squares, where k < n,

¢)) b—ap —iBY =22} + o +afd,
Let

(2) Y= pu2,+ - + PraZns

(8) zl= qllxl + P +qlnx”,

so that 2=y, + 12,.
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By equating the coefficients of ¢ on the two sides of (1) we thus get
4) —BYv=2y2+2y,2,+ - +2y,%.
Let us now determine z;, --- z, so as to make the right-hand side
of (4) vanish, for instance by means of the equations
Yi=Yp= - =y=0.

A reference to (2) shows that we have here a system of % real
homogeneous linear equations in » unknowns, so that real values of
2y, - z,not all zero can be found satisfying these equations. For
these values of the variables, we see from (4) that 4 vanishes; but
this is impossible (cf. the Corollary of Theorem 8, § 52), since - is by
hypothesis non-singular and definite.

THEOREM 2. If +r is a non-singular definite quadratic form and ¢
s any real quadratic form, the pair of forms ¢, \r can be reduced by a
real non-singular linear transformation to the normal form

) { b= £ Oualp & - +2,2),
y=2( ot o),
where Ny, -+ N, are the roots of the h-equation, and the upper or lower

8ign s to be used in both cases according as yr 8 a positive or a negative
Jorm.

The proof of this theorem is very similar to the proof of
Theorem 2, § 68. We must first prove, as in Theorem 1, §58,
that ¢, Y» can be reduced by a real non-singular linear transforma-

tion to the forms

{ Moy + by (o 2)
© oyt + Ve - 2)-
To prove this, we consider the pencil of forms
¢—=Mp=¢—NMY+ (A —N)Y

Since A, is real by Theorem 1, ¢ — A4y is a real singular quad-
ratic form, and can therefore by a real non-singular linear trans-
formation be reduced to a form in which one of the variables does

not enter
’ ¢ =My =¢'(25 -+ 2p).

(e, #0)
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1f this transformation reduces 4 to 4/, we have
M ¢—Mp=0' (2 - 2) + (M = M) (2y, - 20)-

At this point comes the essential difference between the case
we are now considering and the case considered in § 58, as A; may
now be a multiple root of the discriminant of the right-hand side
of (7). We need, then, a different method for showing that the
coefficient of 22 in 4’ is not zero. For this purpose it is sufficient
to notice that 4, and therefore also ¥, is a non-singular definite
form, and that accordingly, by Theorem 4, § 52, the coefficient of
none of the square terms in ' can be zero.

Having thus shown that the coefficient of zj2 in 4'is not zero,
we can apply Lagrange’s reduction to ', and thus complete the
reduction of the forms ¢, v+ to the forms(6) precisely as in the proof
of Theorem 1, § 58, noticing that the transformation we have to deal
with is real.

In (6), ¢ Yy are real quadratic forms in the n—1 variables
2y -+ 2,. Moreover, since

Y(zy - Ty) =02+ V(2 0 2,)

is non-singular and definite, it follows that the same is true of .
for, if yr; were either singular or indefinite, we could find values
of 2, ---2, not all zero and such that 4, =0; and these values to-
gether with the value 2; =0 would make 4»=0. This, however, is
impossible by the Corollary of Theorem 3, § 52.

The A-equation of the two forms ¢y, Y, evidently differs from
the A-equation of ¢, yr only by the absence of the factor A—2x;. The
roots of the A-equation of ¢y, Yr; are therefore A,, --- A, so that if we
reduce ¢, and 4, by the method already used for ¢,y (we have just
seen that ¢, 4, satisfy all the conditions imposed on ¢, ), we get

by (29 - 2a) =Ny 02 + Py(2p, -+ 211);
V(2 z) = g2 + g2, o 25)-

Proceeding in this way, we finally reduce ¢, 4» by a real non-singu-
lar linear transformation to the forms
(8) {¢E)‘lcly%+ "'+7\'ncn."/%’

v= cqyit -+ cyk
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Since 4 is definite, the constants ¢, --- ¢, ave all positive or all nega-

tive according as ¥ is a positive or a negative form. By means of
the further non-singular real linear transformation

‘d:\/m‘y' ('L‘=1, 27”‘)7

the forms (8) may be reduced to the forms (5), and our theorem is
proved.

EXERCISES

1. If ¢ is a real quadratic form in n variables of rank r, prove thas it can be
reduced by a real orthogonal transformation in n variables to the form

cx + el oo+ cp 22
Cf. Exercises, § 52.

2. Show that the determinant of the orthogonal transformation of Exercise 1
may be taken at pleasure as 41 or — 1.

3. Discuss the metrical classification of real quadric surfaces along the
following lines:

Assume the equation in non-homogeneous rectangular cosrdinates, and show
that by a transformation to another system of rectangular cosrdinates having the
same origin the equation can be reduced to a form where the terms of the second
degree have ome or the other of the five forms (the 4’s being positive constants)

A2l + Ap7f + Aqa3,

2 2 2
.A]_I]_ + Agxg - Aazg,

2 2
Ayxi + Ay,

2 2
Ayxy — Ag7
Allg.

Then simplify each of the non-homogeneous equations thus obtained by further
transformations of codrdinates; thus getting finally the standard forms of the
equations of ellipsoids, hyperboloids, paraboloids, cones, cylinders, and planes
which are discussed in all elementary text-books of solid analytic geometry.



CHAPTER XIV
SOME PROPERTIES OF POLYNOMIALS IN GENERAL

60. Factors and Reducibility. In the present section we will
introduce certain conceptions of fundamental importance in our
subsequent work.

DErINITION 1. By a factor or divisor of a polynomial f in any
number of variables is understood a polynomial ¢ which satisfies an
tdentity of the form f=di
yr being also a polynomial.

It will be noticed that every constant different from zero is a
factor of every polynomial; that every polynomial is a factor of a
polynomial which vanishes identically; while a polynomial which
is a mere constant, different from zero, has no factors other than
constants.

We note also that a polynomial in 2y, --- z, which is not identically
zero cannot have as a factor a polynomial which actually contains
any other variables.

The conception of reducibility, which we have already met in
a special case (§47), we define as follows:

DEFINITION 2. A polynomial vs said to be reducible if it is iden-

Acally equal to the product of two polynomials meither of which is a
constant.

In dealing with real polynomials, a narrower determination of
the conception of reducibility is usually desirable. We consider,
then, what we will call reductbility in the domain of reals, a cons
ception which we define as follows:

DEFINITION 3. A real polynomial i said to be reducible in the
domain of reals if it is identically equal to the product of two other
real polynomials neither of which 18 a constant.

174
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In many branches of algebra still another modification of the
conception of reducibility plays an important part. In order to
explain this, we first lay down the following definition:

DEFINITION 4. A set of numbers is said to form a domain of
rationality if, when a and b are any numbers of the set, a + b,
a—>b, ab, and, so far as b=+0, a/b are also numbers of the set.

Thus all numbers, real and imaginary, form a domain of ration-
ality, and the same is true of all real numbers. The simplest of all
domains of rationality, apart from the one which contains only the
single number zero, is what is known as the nataral domain, that is all
rational numbers, positive and negative. A more complicated domain
of rationality would be the one consisting of all numbers of the form
a+ bV —1, where a and b are not merely real, but rational. These
illustrations, which might be multiplied indefinitely, should suffice to
make the scope of the above definition clear.*

DEFINITION 5. A polynomial all of whose coefficients lie in a
domain of rationality R is said to be reducible in this domain if it is
identically equal to a product of two polynomials, neither of which is a
constant, whose coefficients also lie in this domain.

It will be noticed that Definitions 2 and 8 are merely the special
cases of this definition in which the domain of rationality is the
domain of all numbers, and the domain of all reals respectively. To
illustrate these three definitions, we note that the polynomial 2%+ 1
is reducible according to Definition 2, since it is identically equal to
(z+V—=1)(z— V' =1). It is, however, not reducible in the domain
of reals, nor in the natural domain. On the other hand, x2— 2 is
reducible in the domain of reals, but not in the natural domain.
Finally, 22— 4 is reducible in the natural domain.

Leaving these modifications of the conception of reducibility, we
close this section with the following two definitions:

DEFINITION 6. Two polynomials are said to be relatively prime i
they have no common factor other than a constant.

*By R (ay, a2, @) is understood the domain of rationality consisting of all
numbers which can be obtained from the given numbers @y, -+ @x by the rational pro-
cesses (addition, subtraction, multiplication, and division). In thisnotation the natural
domain would be most simply denoted by R (1); the domain last mentioned in the
text by R (1, V' —1) or, even more simply, by B (v —1). This notation would not apply
to all cases (e.g. the real domain) except by the use of an infinite number of arguments.
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DeriNiTION T. Two methods of factoring a polynomial shall be
said to be not essentially different if there are the same number n of
Factors in each case, and these factors can be so arranged that the kth
Sactors are proportional for all values of k, from 1 to n inclusive.

EXERCISES

1. Prove that every polynomial in (z, y) is irreducible if it is of the form

S(@) +3
where f () is a polynomial in z alone.
Would this also be true for polynomials of the form

F@) +y2?
2. If f, ¢,y are polynomials in any number of variables' which satisfy the
relation f=éy,

and if the coefficients of fand ¢ lie in a certain domain of rationality, prove that
the coefficients of ¢ will lie in the same domain provided ¢ == 0.

61. The Irreducibility of the General Determinant and of the Sym-
metrical Determinant.

THEOREM 1. The determinant

@1 % A1
« D= a1 Qg ‘ Agn
®ny Ang Ay,

28 an trreducible polynomial if its m? elements are regarded as inde-
pendent variables.

For suppose it were reducible, and let
D=f (all’ arm) ¢(a11’ arm)’

where neither f nor ¢ is a constant. Expanding D according to the
elements of the first row, we see that it is of the first degree in a;,.
Hence one of the two polynomials f and ¢ must be of the first
degree in a;, the other of the zeroth degree. Precisely the same
reasoning shows that if a; is any element of D, one of the polyno-
mials f and ¢ will be of the first degree in a,, while the other will
not involve this variable.

Let us denote by f that one of the two polynomials which involves
2., any element of the principal diagonal of D. Then ¢ does not
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involve any element of the ¢th row or the ¢th column. For if it did,
since f is of the first degree in a; and ¢ is of the zeroth, their product
D would involve terms containing products of the form a;a; or
a;a;, which, from the definition of a determinant, is impossible.
Consequently, if either one of the polynomials f and ¢ contains any
element of the principal diagonal of D, it must contain all the ele-
ments standing in the same row and all those standing in the same
column with this one, and none of these can occur in the other
polynomial.

Now suppose f contains a;; and that ¢ contains any other element
of the principal diagonal, say a;. Then a; and a; can be in neither f
nor ¢, which is impossible. Hence, if f contains any one of the ele-
ments in the principal diagonal, it must contain all the others, and
hence ail the elements, and our theorem is proved.

TeHEOREM 2. The symmetrical determinant

Ay o G
D=|- - - = (a5 = ay)
Bpy *** Cpp

18 an irreducible polynomial if its } n(n+ 1) elements be regarded as
tndependent variables. .

The proof given for the last theorem holds, almost word for word,
in this case also, the only difference being that while D is of the first
degree in each of the elements of its principal diagonal, it is of the
second degree in each of the other elements. The slight changes in
the proof made necessary by this difference are left to the reader.

EXERCISES
1. The general bordered determinant

Ay eee Ap UYL oee Upp

Qp) oo Qpp Upl oo o Unp
Vi) s ee Vi1 0...0
VploeoUpn  0...0
is irreducible if p < n, the a’s, w’s, and v’s being regarded as independent variables.

2. The symmetrical bordered determinant obtained from the determinant in
Exercise 1 by letting a; = aj, uy = vy is irreducible if p < n.
N
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3. If for certain values of 7 and j, but not for all, a; = ay, but if the o’s are
otherwise independent, can we still say that

Q11 o o0 Qin
. .
P

is irreducible ? Qul +++ Gun

4. Prove that a skew-symmetric determinant (cf. Exercises 2, 3, §20) is always
reducible by showing that, when it is of even order, it is a perfect square.

[Succesrion. Use Corollary 3, §11, and Theorem 6 and Exercise 1, § 76.]

Does this theorem require any modification if the elements are real and we
consider reducibility in the domain of reals?

62. Corresponding Homogeneous and Non-Homogeneous Polyno-
mials. It is often convenient to consider side by side two polyno-
mials, one homogeneous and the other non-homogeneous, which
bear to one another the same relation as the first members of the
equations of a plane curve or of a surface in homogeneous and non-
homogeneous codrdinates respectively. Such polynomials we will
speak of as corresponding to one another according to the following
definition:

DEFINITION. If we have a non-homogeneous polynomial of the kth
degree in any number of variables (xy, ---z,_,) and form a new poly-
nomial by multiplying each term of the old by the power of a mew
vartable x, necessary to bring up the degree of this term to k, the homo-
geneous polynomial thus formed shall be said to correspond to the given
non-homogeneous polynomial.

Thus the two polynomials
@) 223 + 322y — b2 —yz +222 +2 —3y =9,
(@) 228 + 3oy — bx2? — yat + 22% + 2t — Syt2 — 98
correspond to each other.

It may be noticed that if ¢ (zy, - 2,-,) is the non-homogeneous
polynomial of degree %, the corresponding homogeneous polynomial

may be written
%, T,
x“,(_l., &, .. .'_»_1>
xn xn xn

To every non-homogeneous polynomial therée corresponds one, and
only one, homogeneous polynomial. Conversely, however, to a
homogeneous polynomial in % variables there correspond in general
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7 different non-homogeneous polynomials which are obtained by set-
ting one of the variables equal to 1. For instance, in the example
given above, to (2) corresponds not only (1) but also

(3) 2 +8y —562%2 —yat+ 222412 —3yt2— 948,
4) 228 + 822 —Sxe2— 2t + 222t + 22 — 862 — 98,
%) 248+ 822y — bz —yt + 2t +a?—3yt2 — 9.

It should be noticed, however, that if one of the variables enters into
every term of a homogeneous polynomial, the result of setting this
variable equal to unity is to give, not a corresponding non-homo-
geneous polynomial, but a polynomial of lower degree. In fact, in
the extreme case in which every variable enters into every term of
the homogeneous polynomial, there is no corresponding non-homo-
geneous polynomial; as, for instance, in the case of the polynomial

22yz + zy% + zy22.

THEOREM 1. If one of two corresponding polynomials ts reducible,
then the other is, also, and the factors of each polynomial correspond to
the factors of the other.

For let ¢(zy, ---2,) be a homogeneous polynomial of degre:
(k+1), and suppose it can be factored into two factors of degrees
k and !, respectively,

(6) Gr+1(Tys o+ Tn) =VE(2y, - Za) X (T o T0)-

Now suppose the corresponding non-homogeneous polynomial in
question is the one formed by setting z,=1. We have

M e 1(Zp * Taagy D) =Y(Zs -+ Zaeps 1) X0(Zp -+ Tuys 1),

Since by hypothesis the degree of the polynomial on the left is
unchanged by this operation, neither of the factors on the right.
hand side of (6) can have had its degree reduced, hence neither
of the factors on the right of (7) is a constant. Our non-homo-
geneous polynomial is therefore reducible; and moreover the two
factors on the right of (7), being of degrees £ and ! respectively,
are precisely the two functions corresponding to the two factors on
the right of (6).
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Now, let ®,.,(z, -+ zay) be a non-homogeneous polynomial, and

suppose
PP q)k+l(x1’ e xn—l) = \I’k(xlv e zn—l) Xl(xl» e xn-l)’

where the subscripts denote the degrees of the polynomials. Let
Geis» Vet Xewo De the homogeneous polynomials corresponding to
®, ¥, X. Then when 2,0,

Z z Ty Z X,
(I)k+l<_1'a _n:1> = \If,‘<:1_, ..._;_1)}(,@1, _;_1)
n " (4 n

Multiplying this equation by zi* we have
Gerl(Zys -+ Tnoys Tn) = Yi( @1y +** Tngs Tu) Xo(T15 +* Ty Ty

an equation which holds whenever z, # 0, and, therefore, by Theorem
5, § 2, is an identity. Thus our theorem is proved.

As a simple illustration of the way in which this theorem may be
applied we mention the condition for reducibility of a non-homo-
geneous quadratic polynomial in any number of variables. By
applying the test of § 47 to the corresponding homogeneous poly-
nomial we obtain at once a test for the reducibility of any non-
homogeneous quadratic polynomial.

THEOREM 2. If f and ¢ arenon-homogeneous polynomials, and
F, ® are the corresponding homogeneous polynomials, a necessary and
suffictent condition that F and ® be relatively prime i that f and
¢ be relatively prime.

For if f and ¢ have a common factor 4+ which is not a constant,
the homogeneous polynomial ¥ which corresponds to 4 is, by
Theorem 1, a common factor of # and ®, and is clearly not a con-
stant. Conversely, if ¥ is a common factor of # and & which is
not a constant, f and ¢ will have, by Theorem 1, a common factor
which corresponds to ¥ and which therefore cannot be a mere
constant.

63. Division of Polynomials. We will consider first two polyno-
mials in one variable:

(1) SJ(@)=ay2"+ az* 1 + - + a,
¢ (2)=byz™+ bj2z™ 1+ - + by,
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We learn in elementary algebra how to divide £ by ¢, getting a
quotient @ (z) and a remainder R (z). What is essential here is
contained in the following theorem :

TueoreM 1. If f and ¢ are two polynomials in z of which ¢ s
not identically zero, there exists one, and only one, pair of polynomials
Q and R, which satigfy the identity ’
(2) Ff(2)=Q(2) $(z) + R (2),
and such that either R=0,* or thedegree of R is less than the degree of ¢.

We begin by proving that at least one pair of polynomials @, R
exists which satisfies the conditions of the theorem.

If £ is of lower degree than ¢ (or if f=0), the truth of this state-
ment is obvious, for we may then let @ =0, R= £,

Suppose, then, that fis of at least as high degree as ¢. Writing
S and ¢ in the form (1), we may assume

a#0, b#0, n>m.

LeMMA. If ¢ @8 not of higher degree than f, there exist two polyno-
mials Q, and R, which satisfy the identity
F (@)= 91(2) ¢ (2) + By(2),
and such that either Ry=0, or the degree of R, i8 less than the degree of f.

The truth of this lemma is obvious if we let
@ (z)= %o gn-m
by

These two polynomials @; and R, will serve as the polynomials @
and R of our theorem if B,=0, or if the degree of R, is less than the
degree of ¢. If not, apply the lemma again to the two functions R,

and &, Mg Ry ()= Q) $(2) + By(a)
where R, is either identically zero or is of lower degree than B;. We
may then Wiite, - f(z)=[ 01 (2) + @ (@)1 $ () + B )

If R,=0, or if the degree of R, isless than the degree of ¢, we may
take for the polynomials @, R of our theorem, @, + @, and R,. If
not, we apply our lemma again to R, and ¢. Proceeding in this way

* It will be remembered that, according to the definition we have adopted, a polyno-
mial which vanishes identically has no degree.
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we get a series of polynomials R;, R,, --- whose degrees are con-
stantly decreasing. We therefore, after a certain namber of steps,
reach a polynomial R, which is either identically zero or of degree
less than ¢. Combining the identities obtained up to this point, we

have F@)=[Q@) + - + &@)] ¢(2)+ Ri(z),

an identity which proves the part of our theorem which states that
at least one pair of polynomials @, R of the kind described exists.*

Suppose now that besides the polynomials @, R of the theorem
there existed a second pair of polynomials @', R’ satisfying the same
conditions. Subtracting from (2) the similar identity invelving

- @', R', we have

) 0=(¢— @) ¢ +(R—R).

From this we infer, as was to be proved,

Q= ¢Q, R=R.

For if @ and Q' were not identical, the first term on the right of (3)
would be of at least the mth degree, while the second involves no
power of z as high as m.

Turning now to polynomials in several variables :
4) {f(xl’ e 2) =ay( @y, oo 2)2] + ay(Tys o AT o (T, - ),
¢(x1’ ) = l’o(xz’ x,,)x’f + b1<x2’ xk)xl’"l + .- +bm(x2, ;[:k)’
the ordinary method of dividing f by ¢ would give us as quotient and

remainder, not polynomials, but fractional rational functions. In
order to avoid this, we state our theorem in the following form :

THEOREM 2. If f and ¢ are polynomials in (z, --- z;) of which ¢
is not identically zero, there exist polynomials @, R, P, of which the
last is not identically zero and does mot involve the variable z,, which
satisfy the identity,

(5) Py - 2)f(@y, -+ @) = Q2 - ) b(2y, -+ 20) + B(2y, - %),
and such that either R =0, or the degree in x, of R is less than the degree
in z, of ¢.

The proof of this theorem follows the same lines as the proof
of Theorem 1.

* The reader should notice that the process just used is merely the ordinary process
of long division.
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If f is of lower degree in ; than ¢ (or if f=0), the truth of the
theorem is obvious, for we may then let P=1, =0, R=f.

Suppose, then, that f is of at least as high degree in 2, as ¢.
Writing f and ¢ in the form (4), we may assume

4, %0, b,£0, n=m.

LeMMA. If ¢ is not of higher degree in z, than f, there exist two
polynomials @y, R, which satisfy the identity,

by(@g ++ @) f(@py - z1) = Q1(2p, - xk)d’(xp o zp)+ B2y o0 )

and such that either R, =0, or the degree of R, in x, is less than the
degree of f in ;.

The truth of this lemma is obvious if we let
Q1= ay(@y - z) 2"

The polynomials @,, R,, b, will serve as the polynomials @, R, P
of our theorem if R, =0, or if the degree of R, in 2, is less than the
degree of ¢ inz;. 1f not, apply the lemma again to the two functions
R, and ¢, getting

by(@y -+ ) By(@yy -+ B) = Qp(@yy o+ B)P(2yy o+ Tp) + By, - @)y

where R, is either identically zero or is of lower degree in z; than R,.
We may then write B =(b,Qy+ Q)b+ By

If R,=0, or if the degree of R, in z, is less than the degree of ¢ in
z;, we may take for the polynomials @, R, P of our theorem the
functions 5,Q; + @, R,, 82. If not, we apply our lemma again to R,
and ¢. Proceeding in this way, we get a series of polynomials
R,, R,, ---whose degrees in z; are constantly decreasing. We there-
fore, after a certain number of steps, reach a polynomial R; which is
either identically zero, or of degree in z; less than ¢. Combining
the identities obtained up to this point, we have

L= 10 + 8720+ - + Q)p + By,

an identity which proves our theorem, and which also establishes the
additional result:

CoroLLARY. The polynomial P whose existence i3 stated in our
theorem may be taken as a power of b,
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We note that it would obviously not be correct to add to the
statement of Theorem 2 the further statement that there is only
one set of polynomials @, B, P, since the identity (5) may be multi-
plied by any polynomial in (y, ---2,) without changing its form.
Cf., however, the exercise at the end of § 73.

64. A Special Transformation of a Polynomial. Suppose that
A&y Zgytgx,) is a homogeneous polynomial of the £th degree in
the homogeneous codrdinates (2, z, 5 #,), so that the equation
f = 0 represents a surface of the kth degree. If,in f, the term in
z§ has the coefficient zero, the surface passes through the origin;
and if the term in 2% (or z%, or 2f) has the coefficient zero, the
surface passes through the point at infinity on the axis of 2,
(or =z, or zg). It is clear that these peculiarities of the surface
can be avoided, and that, too, in an infinite variety of ways, by sub-
jecting the surface to a non-singular collineation which carries over
any four non-complanar points, no one of which lies on the surface,
into the origin and the three points at infinity on the codrdinate
axes. It is this fact, generalized to the case of n variables, whick
we now proceed to prove.

LemmA. If f(zy, -+ 2,) i3 a homogeneous polynomial of the kth
degree in which the term z% i3 wanting, there exists a mon-singular
linear transformation of the variables (zy, --- z,) which carries f into a
new form fy, in which the term in z,ﬁ,k has a coefficient different from
zero, while the coefficients of the kth powers of the other variables have
not been changed.

In proving this theorem there is obviously no real loss of gener-
ality in taking as the variable z,, the last of the variables z,.
Let us then consider the non-singular transformation

z, =z + ax) (=1, --n=-1)
z, =z
This transformation carries f into
/ Y\ — / ! !
f1(x1a zn) =f(9’1 +azy, 2y + an—lx:n :tf,),

and evidently does not change the coefficients of the terms in
b 2k
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Now, since every term in f}, except the term in 2/%, contains at least
one of the variables #}, --- z}, _;, the coefficient of the term in z’* will

be .
jl(o’ " 0’ 1)= f(ap tQpys 1)°

Our lemma will therefore be proved if we can show that the
constants a;, --- a,_, can be so chosen that this quantity is not zero.

Let us take any point (&, --- b,) for which 4, 0; and consider
a neighborhood of this point sufficiently small so that =z, does
not vanish at any point in this neighborhood. Then, since f
does not vanish identically, we can find a point (e, - ¢,) in this
neighborhood (so that ¢, 0) such that

Feg, ) #0.

If now we take for @y, ---a,_, the values ¢;/¢,, - ¢, 1/cp, We shall
have, since f is homogeneous,

Hagy -+ a1, 1) 0.
Thus our lemma is proved.

TreorEM 1. If f(z, -+ 2,) 18 a homogeneous polynomial of the kth
1 n 9 poty
degree, there exists a non-singular linear transformation which carries
; . . .k k .
[frinto a new form f; in which the terms in 'y, -- 2', all have coefficients
different from zero.

The proof of this theorem follows at once from the preceding
lemma. For we need merely to perform in succession the trans-
formations which cause the coefficients first of 2%, then of 2% etc.,
to become different from zero, and which our lemma assures us
will exist and be non-singular, to obtain the transformation we
want. To make sure of this it is necessary merely to notice that
the coefficient of 2% obtained by the first transformation will not
be changed Dby the subsequent transformations; that the same
will be true of the coefficient of 2% obtained by the second trans
formation; etc.

TuroreM 2. If f(zy, -+ z,) 18 a polynomial of the kth degree
which is mot necessarily homogeneous, there exists a mnon-singular
homogeneous linear transformation of (z,, --- z,) which makes this
polynomial of the kth degree in each of the variables xi, --- |, taken
separately.
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If f is homogeneous, this is equivalent to Theorem 1. If f is
non-homogeneous, we may write it in the form

Koy - 2p) = p(@y - @) + Py (Bp - 2R) + o0 + D1(2y 0 2a) + Py

where each ¢ is a homogeneous polynomial of the degree indicated
by its subscript or else is identically zero. We need now merely to
apply Theorem 1 to the homogeneous polynomial ¢, which is, of
course, not identically zero.

This theorem, and therefore also Theorem 1, which is merely a
special case of it, admits the following generalization to the case of a
system of functions:

THEOREM 3. If we have a system of polynomials
fl(zl’ xn)’ fZ(xl’ xn')’ ...... fm(xl’ F xn),

of degrees ky, ky. -+ k,, respectively, there exists a non-singular homo-
geneous linear transformation which makes these polynomials of degrees
kyy -+ ko in each of the variables xi. --- z), taken separately.

This theorem may be proved either by the same method used ir
proving Theorems 1, 2; or by applying Theorem 2 to the product

f1f2 fm



CHAPTER XV

FACTORS AND COMMON FACTORS OF POLYNOMIALS IN ONE
VARIABLE AND OF BINARY FORMS

65. Fundamental Theorems on the Factoring of Polynomials in
One Variable and of Binary Forms. Theorem 2, § 6 may be stated
in the following form:

TrEOREM 1. A polynomial of the nth degree in ome variable is
always reducible when n>1. It can be resolved into the product of n
linear factors in one, and essentially in only one, way.

By means of § 62 we can deduce from this a similar theorem in
the case of the binary form

(@5) agr} + a2t lz, + - + a,zh.

Let us first assume that @, 0. Then the non-homogeneous poly-
nomial
@) aget + agg + -+ a,

corresponds to (1), according to the definition of § 62. Factoring
(2), we get
a(zy — o)(y — o) -+ (B — @),

or, if we take n constants «f, of, --- @ whose product is a,,

(3) (efz) — of)(efzy — o) - (cnzy — o )

where for brevity we have written

oo = o (F=1,2,--n)
By Theorem 1, § 62, we now infer that the binary form (1) is identi-
cally equal to

(4) (g — oq@y)(@gy — 0zy) -+ (@ — ay).
187
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Moreover, there cannot be any way essentially different from this of
factoring (1) into linear factors, for if there were we should, by
setting z, = 1, have a way of factoring (2) into linear factors essen-
tially different from (3). Thus our theorem is proved on the suppo-
sition that a, + 0.

Turning now to the case a, = 0, let us suppose that

Ay = o0 = Uy = 0, akqbo,

where ¥ < n. The form (1) then has the form
®) W2~y + e+ azy

which is equal to the product of % factors z, and the binary form

D .

of degree n — k. Since the first coefficient in this form is not zero,
it can, as we have just seen, be factored into » — %k linear factors.
Thus, here also, we see that the binary form can be written in the
form (4), the only peculiarity being that in this case % of the con-
stants o'/ are zero. We leave it to the reader to show that this
factoring can be performed in essentially only one way. This being
done, we have the result:

THEOREM 2. A binary form of the nth degree is always reduc-
tble when n>1. It can be resolved into.the product of m linear
factors in one, and essentially only one, way.

EXERCISES

1. Prove that every real polynomial in one variable of degree higher than two
is reducible in the domain of reals, and can be resolved into irreducible factors in
one, and essentially only one, way.

2. Prove the corresponding theorem for real binary forms.

66. The Greatest Common Divisor of Positive Integers.* We
will consider in this section the problem of finding the greatest com-
mon divisor of two positive integers ¢ and b, which has the closest

*In this section we use the term divisor in the arithmetical sense, not in the
algebraic sense defined in §60. An integer b is said to be a divisor of an integer a if
an integer c¢ exists such that ¢ =be.
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analogy with the algebraic problem of the next section. The solu-
Yion of this problem, which was given by Euclid, is as follows:

If we divide @ by &* and get a quotient ¢, and a remainder 7y, We
may write a = qb + 7,
where, if the division is carried out as far as possible, we have ri<b.

Then divide & by r getting a quotient ¢, and a remainder Ty
which, if the division is carried out as far as possible, is less than .
Proceeding in this way, we get the following system of equations,
in which, since the remainders », r,, ... are positive integers which
continually decrease, we ultimately come to a point where the divi-
sion leaves no remainder :

a=gob+'r1 7’1<b,
b= qry i Ty Py < 74
1= ga"a T 73 o < 7
1) 8 <7y
170-2 = Go-1Tp-1 + 75 P < Tp_1s
To-1 = 97 0 < 7,

From the first of these equations we see that every common factor
of @ and b is a factor of r;; from the second, that every common
factor of & and 7, is a factor of 7,; etc.; finally, that every common
factor of 7,_, and »,_; is a factor of »,. Hence every common factor
of & and b is a factor of r,.

On the other hand, we see from the last equation (1) that every
factor of 7, is a factor of 7,_;; from the next to the last equation, that
every common factor of 7, and r,_, is a factor of »,_,; etc.; finally,
that every common factor of 7, and r; is a factor of 4, and that
every common factor of »; and b is a factor of a. Hence every factor
of r, 18 a common factor of @ and b.

Since the largest factor of r, is r, itself, we have the result :

THEOREM 1. In Buclid’s algorithm (1), the greatest common divisor
of @ and b is r,.

In particular, a necessary and sufficient condition that @ and & be
relatively prime is that r,= 1. ‘

* This is possible even if a < b, the only peculiarity in this case being that the
quotient is zero and the remainder equal to a.
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We will next deduce from the equations (1) an important formula
by means of which 7, is expressed in terms of a, b, and the ¢’s.
From the first equation (1) we have

ry=a— g,b.
Substituting this value into the second equation, we get for 7,
the value r3=— 18+ (g9 +1)b-

Substituting the values for »; and 7, just found in the third
equation, We get 1, = (g195+ 1) @ — (90105 + % + 20)5-

Proceeding in this way, we can express each of the #’s, and there-
fore ultimately 7, in terms of ¢ and 4. In order to express con-
veniently the general formula here, we introduce the following
notation :

' []1=1
(o] = ey,
[al, (12] = 0t 09 + 13
(2) 3 [“1’“2’ a3] = a1a2 053 + o5 + oy,
Ly 0] = Lo ey T [ty o 1.

It will be seen that the values of r,, r,, r3found above are included
in the formula

(3) 7e=(—=1"1[qp 9 = 1] @+ (— 1) [90: 91 @00 - 9k-1]5-

By the method of mathematical induction this formula will therefore
be established for all values of %< p if, assuming that it holds when
k< ky, we can show that it holds when k=%, + 1. This follows at
once when, in the formula

P11 = Tho—1— Qe ">
we substitute for 7, and . _; their values from (3) and reduce the

resulting expression by means of the definitions (2).
‘We have therefore established the formula

(4) r,= Aa + Bb,
where A =(—1F"[¢5,¢5 - gos], B=(—1Y[9091 - ¢o—1]-

Since the ¢’s are integers, it is clear that 4 and B will be integers.
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The most important application of the result just obtained is to
the case in which a and & are relatively prime. Here 7, =1, and we
have

(5) Ao+ Bb=1.

Conversely, if two integers A and B exist which satisfy (5), @ and &
are relatively prime, as otherwise the left-hand side of (5) would
have a factor greater than 1.

THEOREM 2. A necessary and sufficient condition for a and b to be
relatively prime 18 that there exist two integers A and B such that
Aa+ Bb=1.

EXERCISES
1. Prove that [a, &, - &tn] = [&n, tn—1, -+ 0t1]-
[SuacesTiON. Use the method of mathematical induction.]
2. Prove that the numerical values of the integers 4 and B found above are
respectively less than 45 and }a.
[SueGesTioN. Show that a/b =[qg, - ¢p]/[q1, - ¢o], and that this second
fraction is expressed in its lowest terms.]

3. Prove that there can exist only one pair of integers A4 and B satisfying the
relation da + Bb =1 and such that 4 and B are numerically less than b and }a
respectively.

67. The Greatest Common Divisor of Two Polynomials in One
Variable. In place of the integers @ and & of the last section, we
consider here the two polynomials:

@ {f (@)=aype"+ a2z 1+ - +a,

P(x)=bga™ + b1+ oo + by

By the greatest common divisor of these two polynomials is
meant their common factor of greatest degree.* It will turn out in
the course of our work that (except in the case in which fand ¢ are
both identically zero) this greatest common divisor is completely
determinate except for an arbitrary constant factor which may be
introduced into it.

* Many English and American text-books use the term highest common factor ; but
as there is not the slightest possibility that the word greatest, here, should refer to the
value of the polynomial, since the polynomial has an infinite number of values for dif-
ferent values of the argument, it seems better to retain the traditional term.
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We will assume that neither f nor ¢ is a mere constant, and that
the notation has been so introduced that f is of at least as high
degree as ¢ ; that is, we assume

a#0, b=0, n>m>0.

Let us apply Euclid’s algorithm to f and ¢ precisely as in § 66 we
applied it to @ and 5. We thus get the system of identities

f ()= Qu(2)$(2) + By(2),
. ¢ (2)= Q(2)Ey(2) + By2),
@ R \(z) = Q) By(2) + Ry(2),

Rp-l(x) = Qp(x)Rp<x) + Rp+1'
For the sake of uniformity we will write
P(2)= B (2)-
Then R, R,, R,, ---are polynomials of decreasing degrees, so that
after a finite number of steps a remainder is reached which is a con-
stant. This remainder we have indicated by R, ,.

From this algorithm we infer, as in § 66, that every common
factor of fand ¢ is a factor of all the R’s, and, on the other hand,
that every common factor of two successive R’s is a factor of all the
preceding R’s and therefore of f and ¢. Accordingly, if fand ¢
have a common factor which is not a constant, this common factor
must be a factor of the constant B, ., and therefore E,,;=0. Con-
versely, if B,,, =0, the polynomial R,(z) is itself a common factor
of R, and R,,,, and therefore of f and ¢. Hence the two theorems:

THEOREM 1. A necessary and sufficient condition that two poly-
nomials in one variable f and ¢, neither of which is a constant, be
relatively prime is that in Buclid’'s algorithm, (2), R,.,+0.

THEOREM 2. If in Buclid's algorithm, (2), R,,, =0, then R (z) 18
the greatest common divisor of f and ¢.

By means of this theorem we are in a position to compute the
greatest common divisor, not only of two, but of any finite number, of
polynomials in one variable. Thus if we want the greatest common
divisor of f(z), ¢(z), Y(z), we should first compute, as above, the
greatest common divisor R,(z) of f and ¢, and then, by the same
wmethod, compute the greatest common divisor of R, (z) and y«(z).
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From the identities (2) we can compute the value of each of the
remainders in terms of f, ¢, and the quotients @. The formule
here are precisely like those of § 66, and give for I, the value
©) Bor1=(=17[Q1(2), @y(2). -+ Q(2)]S(2)

+(=1p7 [Qy(@) Q@) -+ Qu(2)]4(2)-

Suppose, now, that f and ¢ are relatively prime. We may then
divide (3) by R,,, and get

4) F(2)f(z) + O(2)d(2) =1,
wher 1y
(5)e e F@)= (R—M){Ql(x), 02, - Qp(z)] ,

— 1)+t
2@)="Z 2 0o A - o)

From the definitions (2), § 66, we see that # and & are polyno-
mials in 2. The existence of two polynomials # and ® which satisfy
(4)is therefore a necessary condition that f and ¢ be relatively prime.
It is also a sufficient condition ; for from (4) we see that every com-
mon factor of f and ¢ must be a factor of 1, that is, must be a con-
stant. Thus we have proved the theorem:

THEOREM 3. A necessary and sufficient condition that the polyno-
mials f(z) and ¢(x) be relatively prime is that two polynomials F(z) and
O(z) exist which satisfy (4).*

We can make this statement a little more precise by noting the
degrees of ¥ and ® as given by (5). For this purpose let us first
notice that if @, ..- &, are polynomials of degrees %, --- &, respec-
tively, [e,, .- @] will, by (2), § 66, not be of degree greater than
ky+ - +k, Now let the degree of R(z) be m,;, and, as above, the
degrees of f and ¢, » and m respectively. Then (cf. (2)) the degrees
of @y @y @y --- Will be n — m, m — my, my —my, --- respectively. Ac-
cordingly, by (5), the degrees of ' and ® are respectively not greater

than (m —m)+ (my — my) + -+ (m, .y — M) =M —m,,
and (n—m)+ (m — my) + (m; — mp) + -+ + (m,_; — m,) = n—m,.

Hence, since m, >0, F is of degree less than m, and ® of degree less
than n.

* The proof we have given of this theorem applies only when neither fnor ¢ is a
constant. The truth of the theorem is at once obvious if f or ¢ is a constant.
o
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Conversely, we will now show that if | is a polynomial of degree
less than m, and P, a polynomial of degree less than n, and if

(6) Fy(z)f (2) + Py(2)d(2) =1,
then F(z)=F(z), P(z)= P(z).

To prove this, subtract (6) from (4), getting
(F— F)f=(2; - D).

If we resolve the two sides of this identity into their linear fac-
tors, we see that, since f and ¢ are relatively prime, f must be a
factor of &, —® and ¢ a factor of F— F,. This, however, is pos-
sible only if ®;, — ® and F— F; vanish identically, as otherwise
they would be of lower degree than f and ¢ respectively. We
have thus proved the theorem :

THEOREM 4. If f(z) and ¢(z) are relatively prime, and neither is
a constant, there exists ome, and only one, pair of polynomials F(z)
®(z), whose degrees are respectively less than the degrees of ¢ and f,
and which satisfy the identity (4).

Before proceeding to the general applications of the principles
here developed which will be found in the next section, the reader
will do well to familiarize himself somewhat with the ideas involved
by considering the special case of two polynomials of the second
degree: f@)y=ay22+ a2+ a, ay+ 0,

P(z)=0by2?+ bz + b, by 0.

If the condition that these two polynomials be relatively prime
be worked out by a direct application of Eueclid’s algorithm, it
will be found necessary to consider separately the cases in which
ayby — aghy is or is not zero. By collating these results it will be
found that in all cases the desired condition is:

(a58g — @gby)? + (@18 — @by X ayby — aby) # 0.
This condition may be found more neatly and quickly by obtaining
the condition that two polynomials of the form
F(@)=py+py
Q(z)=q+ ¢
exist which satisfy the identity (4).

It is this last method which we shall apply to the general case in
the next section.
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68. The Resultant of Two Polynomials in One Variable. Let
Sf@)=a2" + a2+ - +a,_z+a, ay =0, n >0,
¢ (2)=byz" + ba™ T+ .- +b, 240, by# 0, m>0.
The condition that these polynomials be relatively prime consists
as we see from Theorem 4, §67, in the existence of constants Po
D1 e+ Pmep 9o 91 -+ @ny Such that
(_pox’”‘l +p2" 24 o+ P @+ ATl ST ay)
+(g2" 7+ @2+ o )P + b +8,)=1.
Equating coefficients of like powers of z, we see that the following
system of equations is equivalent to the last written identity:

[ayp, +2090 =0
1Pyt 4Py +6190+bo‘.71 =0,
mPo + am—lpl + alpm—l + bm% + bm—lQI +-- + bOQm = Os

1)1 m+1100 + a’"pl -t a2pm_1 bmgl """""" + boq m+1 =0,
ﬂpO + aﬂ—1p1+ + an—m+1_pm—-1 + men—m‘*‘ """"" + blq,,_l = 0

nPl +---+ an—7n+2_pm— + bm N + e F 62(1,,__1 — 0:

L Ay Py +b,9,1=1

@y - . e « v e e o a0 . . . .0

0 g « « « ¢« ¢« ¢ ¢ . a0, . . .0

ao,a 0 . .. 0y .. e e e
R b>=0.....0060.......b,,,’
0 © v . 0B . .. b, 0

Be -« . o B0 L0

In writing these equations we have assumed for the sake of
definiteness that n =m, though the change would be immaterial if
this were not the case. This is a system of m +n linear equations
in the m 4+ n unknowns pg, *** Pr_1s 9> -+ gu_y» Whose determinant, after
an interchange of rows and columns and a shifting of the rows, is

a determinant which, it should be noticed, has m+n rows and columns
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If R+0, the set of equations (1) has one and only one solution,
and f and ¢ are relatively prime. If B =0, two cases seem at first
sight possible (cf. § 16): either the system of equations has no solu-
tion, or it has an infinite number of solutions. This latter alterna-
tive cannot, however, really arise, for we have seen in Theorem 4,
§ 67, that not more than one pair of polynomials F and ® can exist
which satisfy formula (4) of that section and whose degrees do not
exceed m—1 and n —1 respectively. Accordingly, if R=0, the
set of equations has no solution and f and ¢ have a common factor.

R is called the resultant of f and ¢.*

The term resultant has thus been defined only on the supposition
that f and ¢ are both of at least the first degree. It is desirable to
extend this definition to the case in which one or both of these
polynomials is a constant. Except in the extreme case m=n=20,
we will continue to use the determinant R as the definition of the
vesultant. Thus when m =0, >0 we have

R <a0, a,,) _ (— 1)n(n2—-l)bg.
b
If 5,0 we have R =0, and moreover in this case f and ¢ are
relatively prime since the constant ¢ has no factors other than
constants. If, however, ,=0, we have R =0, and every factor of
fis a factor of ¢, since ¢ is now identically zero.
Similarly when n= 0, m >0, we have

()
by ) O

and we see that a necessary and sufficient condition that f and ¢ be
relatively prime is that R =0.

Finally, when n =m = 0, we define the symbol R (Z°>, which we
still use to denote the resultant, by the formula 0

R (a0> _ {1 when a, and b, are not both zero,
b, 0 when a,=b,=0.

‘We may now say with entire generality:

THEOREM. A necessary and sufficient condition for two polynomials
in one variable to be relatively prime is that their resultant do not vanish.

For another method of approach to the resultant, cf. Exercise 4
at the end of § 76.

* It should be noticed that the resultant of ¢ and f may be the negative of the
resultant of f and ¢. This change of sign is of no consequence for most purposes,
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69. The Greatest Common Divisor in Determinant Form.
DEFINITION. By the ith subresultant R; of two polynomials in
ene variable ts understood the determinant obtained by striking out the

first © and the last © rows and also the first © and the last © columns from
the resultant of these polynomials.

Thus if the polynomials are of degrees 5 and 3 respectively, the
resultant B is a determinant of the eighth order, R, of the sixth,
R, of the fourth, and R; of the second, as indicated below :

@ a, a, ag a, ag 0 0
0 a, ay a, g a, ay 0
0 0 % ! % ay @y s
0 0 0 0 b, b, by by

R=| R=| R,=| BE;=
0 0 0 b, by b, by 0
0 0 by b, by by 0 0
0 b, by b, by 0 0 0
b, b, by by 0 0 0 0

We now state the following results, leaving their proof to the
reader:

Lemma. If fi(z) and ¢,(z) are polynomials, and
f@)=(@—af(=)  $@)=(z—a)p(2)
the resultant of f, and ¢, and their successive subresultants are equal

respectively to the successive subresultants of f and ¢.

THEOREM 1. The degree of the greatest common divisor of f(z)

and ¢(z) i3 equal to the subscript of the first of the subresultants
R,=R, R,, R,,---which does not vanish.

THEOREM 2. If i i8 the degree of the greatest common divisor of
two polynomials f(z) and ¢(x), then this greatest common divisor may
be qbtained from the ith subresultant of f and ¢ by replacing the last
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element in the last row of coefficients of f by f(z), the element just above
this by zf(z), the element above this by 2°f(z), ete.; and replacing
the last element in the first row of coefficients of ¢ by ¢(z), the element
below this by zd(z), ete.

If, for instance, the degrees of fand ¢ are 5 and 3 respectively,
and 7 =1, the greatest common divisor is

% 4 R a3 ay f(z)

0 % @ ay @3 Sf(=@)

0 0 0 by b, &(z)

0 0 by b, b, 2d(z) |

0 by by by by 2?¢(z)

b, b, b, by 0 25¢(z)
70. Common Roots of Equations. Elimination. Consider the
equations f@)=a@* + a1+ - 4a,=0 a,# 0,
H(z)=dz"” + bz 14 -+ 8,=0 by 0,

whose roots are e;, e, ---e, and By, B, ---B,, respectively; and
suppose f(z) and ¢(z) resolved into their linear factors:

f@)=a,(z— a2 — o)+ (z— @),

$(z) = bz — B2 — By) -+ (& — By)-
Since, by Theorem 1, § 65, these sets of factors are unique, it is
evident that the equations f(2)= 0 and ¢(z)= 0 will have a common
root when, and only when, f(z) and ¢(z) have a common factor,
that is, when, and only when, the resultant B of f and ¢ is zero.

To eliminate z between two equations f(z)=0 and ¢(z)=0, is
often taken in elementary algebra to mean: to find a relation between
the coefficients of f and ¢ which must hold if the two equations are
both satisfied; that is, to find a mecessary condition for the two
equations to have a common root. For most purposes, however,
when we eliminate we want a relation between the coefficients which
not only holds when the two equations have a common root, but
such that, conversely, when it holds the equations will have a
common root. From this broader point of view, to eliminate z
between two equations f(z)=0 and ¢(z)=0 means simply to find
a mecessary and sufficient condition that these equations have a
common root. Hence the result of this elimination is R=0. Let
us, however, look at this question from a little different point of view.
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In the equations
Q) a4y + a2t + a2 + 032  + a@ + a; =0 ay=+0,
(2) bo2® + bi2? + byx + by =0 by 0,
let us consider the different powers of z as so many distinet un-
knowns. We have, then, two non-homogeneous, linear equations in
the five unknowns z, 2% 27 2% 2°.  Multiplying (1) through by =
and then by 22, and (2) by =z, 2% 23, 2% in turn, we have
Ay + a2’ + a,2° + agzt + a @t + ag’ =0,
22® + 4,2 + a7t + a0 + 0,22 + az =0,
ag@® + a2t + ay2° + a2 + a@ + a, =0,
by + b2 + byz 4 by =0,

boxt + b12% + bya? + bz =0,

by2® + byt + bya® + ba? =0,

b2 + 812 + byt + by =0,

by + byaf + bya + byt =0,

a system of eight non-homogeneous, linear equations in seven
unknowns.

If a value of z satisfies both (1) and (2), it will evidently satisfy
all the above equations. These equations are therefore consistent,
so that by Theorem 1, § 16, we have.

a, ay Ay ag a, ag 0 0

0 a, a, a, ag a, ag 0

0 0 @y ay ay,  ag a,  ag

0 0 0 by by by by -0
0 0 0 b, b b b O ’
0 0 b, by by by 0 0

0 b b, b, by 0 0 0

by b, b, by 0 0 0 0

Hence the vanishing of this determinant is a necessary condition for
(1) and (2) to have a common root.

This device is known as Sylvester’s Dialytic Method of Elimina-
Lion.*

* For the sake of simplicity we have taken the special case where # =5 and m =3.
The method, however, is perfectly general.
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The above determinant is seen to be exactly the same as the
resultant B of (1) and (2), so that Sylvester’s method leads to the
same condition for two equations to have a common root as that
found above, namely B=0. It does not prove, however, that this
condition is sufficient, but merely that it is necessary. Thus Syl-
vester’s method, while brief, is very imperfect.

The number of roots common to two equations, f(z)=0 and
$(z)=0, and also an equation for computing the common roots,
may be obtained at once from § 69.

71. The Cases a,=0 and 6,=0. It isimportant for us to note
that according to the definitions we have given, the determinant

R (‘ZO’ %) will be the resultant of the two polynomials
v F(@)= a2 + 0,77 4 - 4y
$z) =By + by b e b
only when f and ¢ are precisely of degrees n» and m respectively,
that is, only when a,+0, b, 0. Thus, for instance, the resultant of
the polynomials F@)= a2 + a, @72 + - + a,
()= byz™ + bya™ 1+ - b,
is not the (m +n)-rowed determinant R (g’ r g'a"> but, if a; 0,
o B
bo# 0, the (m +n —1)-rowed determinant B (al’ a:> or, if @; or §;
is zero, a determinant of still lower order.* by -+

Let us indicate by R the (m + n)-rowed determinant B (;0’ : ”>
o B

and by r the resultant of f and ¢, and consider the case a,=0,
a;#0, by#0. Since every element of the first column of B except
the last is zero, we may write

R =(—1)y~1,r.
In a similar way we see that if the degree of fis n — 1, and b, 0, we

may write R=zbr,
and if the degree of ¢ is m — ¢, and a,+0, we have
R=djr.

Accordingly, except when a,=b,=0, R differs from » only by a
non-vanishing factor.
* As an illustration take the two polynomials f(z)=(a+pg)x?+x—8 and

¢@)=ax+1. If a4+B0 and a0, the resultant here is (a2—1)p. But if
a =~ g0, the resultant is 1 — a2,
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THEOREM. Although R <§°’ Z "> i8 the resultant of f and ¢ only
S

m-

when ay,%0 and by#0 (or when m=0 or n=0), nevertheless its
vanishing still forms a necessary and sufficient condition that f and &
have a common factor even when ay=0 or b,= 0, provided merely that
both ay and b, are not zero.

That this last restriction can not be removed is at once evident;
for, if ay=0,=0, every element in the first column of the determinant
is zero, and hence the determinant vanishes irrespective of whether
S and ¢ have a common factor or not.* All that we can say, if we
do not wish to make this exception, is, therefore, that in all cases the

vanishing of R forms a necessary condition that f and ¢ have a
common factor.

72. The Resultant of Two Binary Forms. Let us now consider
the binary forms

S(@p m) = a2} + a2z + o + a,23 (nz1)
b2y, 2) =027 + 01270y + -+ + by 27 (mz1).
By the side of these forms we write the polynomials in one
variable F(2)=ayz + a;z* 4 - +a,
O (z)=bp2™ +byjz™ 1+ -or + by,
The determinant R(ao’ a")
by +++ by

will be the resultant of # and ® only when neither o, nor 3, is zero.
‘We will, however, call it the resultant of the binary forms f and ¢
in all cases.

* By looking at the question from the side of the theory of common roots of two
equations (cf. §70), and by introducing the conception of infinite roots, we may avoid
even this last exception. An equation

a@® + a1zt oo +an =0
has n roots, distinct or coincident, provided apz0. If we allow g, to approach the value
zero, one or more of these roots becomes in absolute value larger and larger, as is seen
by the transformation 2/ =1/« Hence it is natural to say that if @; =0 the equation
has an infinite root. If then we consider two equations each of which has an infinite
root as having a common root, we may say:

A necessary and sufficient condition that the equations

a4+ @t 4 e +an =0 n>0,
bge™ + biam=1+4 - + b =0 m >0
Agy *+* An,

have a common root is in all cases the vanishing of B (bo» v-brm
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THEOREM. A necessary and sufficient condition for two binary
forms to have a common factor other than a constant is that their
resultant be zero.

If @, and b, are both different from zero, the non-homogeneous
polynomials # and & correspond to the forms f and ¢ according te
the definition of § 62. Accordingly, by Theorem 2 of that section,
a necessary and sufficient condition that f and ¢ have a common
factor other than a constant is, in this case, the vanishing of their
resultant.

On the other hand, if @, =5,=0, f and ¢ have the common factor
z,, and the resultant of f and ¢ obviously vanishes.

A similar remark applies to the case in which all the a’s or all
the b’s are zero.

There remain then only the following two cases to be considered,

(1) aoqeO; bo=61= oee =bk= 0, bk+1¢0 (k<m),
©)) by#0; ay=a,= -+ =, =0, a;,, %0 (k< n).

In Case (1), ¥ corresponds to f, and, if we write
H(2y, 2) =25 by(2y, 25)s

® corresponds to ¢;. Now we know in this case (cf. § 7T1) that
R+0 is a necessary and sufficient condition that # and ® be rela-
tively prime. Accordingly, by Theorem 2, § 62, it is also a necessary
and sufficient condition that f and ¢, be relatively prime. But since
7z, is not a factor of f, the two forms f and ¢ will be relatively prime
when and only when f and ¢, are relatively prime. Thus our theo-
rem is proved in this case.
The proof in Case (2) is precisely similar to that just given.



CHAPTER XVI
FACTORS OF POLYNOMIALS IN TWO OR MORE VARIABLES

73. Factors Involving only One Variable of Polynomials in Two
Variables. We have scen in the last chapter that polynomials in
one variable are always reducible when they are of degree higher
than the first.  Polynomials in two, or more, variables are, in gen-
eral, not reducible, as we have already noticed in the special case of
quadratic forms.

Let f(x, ) be any polynomial in two variables, and suppose it
arranged aceording to powers of =,

S gz ay(n)a+ a(p)@ =1+ o+ a1 ()7 + ay),
the a’s being polynomials in y.
Tuworem 1. A necessary and  sufficient condition that a poly-

nomial in y alone, Y(y), be a factor of f(x, y) i8 that it be a factor of
all the a's.

The condition is clearly sufficient. To prove that it is necessary,
let us suppose that () is a factor of f(z, y). Then

(N a(u)e + -+ a() =Py + -+ +2.(1)]s

where the &5 are polynomials in y.  IFor any particular value of g
we deduce from (1), which is then an identity in z, the following

equations :
ao(y) =¥ () by(#),
(i) =¥y (¥)

(1) =¥ (1))

Since these equations hold for every value of y, they are identities,

and Y(y) is a factor of all the a's.
203
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THEOREM 2. If f(z,y) and (2, y) are any two joolynomz'als n z
and y, and Y(y) s an irreducible polynomial in y alone* which is a

Sactor of the product fo, then v is a factor of f or of ¢.

Let  f(@ y)=ay(y)2"+ a(y)a" 1+ - + a,(y),
and d(2, y)=bo(y)2™ + by (y)z" "1+ - +0,()s
then
(@, ) (@, y) = agby 2™ ™ + (@b + aybo)z+ ™1
+(@yby + arby + ayb)2 T2+ e + by,

In order to prove that ) is a factor either of f or of ¢ we must
prove that it is either a factor of all the a’s or of all the &’s. If this
were not the case, we could find a first @ in the sequence ay, ay, --- a,
of which yris not a factor. Call this function ;. There would also
be a first b in the sequence of by, b,, --- b,, which is not divisible by .
Call this function ;. Our theorem will be proved if we can show
that this assumption, that @; and b, are not divisible by +» while all
the functions g - @;_q by -+~ bj_, are divisible by 4, leads to a
contradiction. For this purpose let us consider in the product f¢
the coefficient of 2~ 9+~ which may be written

Bybis+ o By bjag + Wb+ By by A+ e a5

provided we agree that the o’s and &’s with subscripts greater than
n and m respectively shall be identically zero. Since f¢ is by
hypothesis divisible by 4, it follows from Theorem 1 that the last
written expression must be divisible by 4. This being obviously
the case for all the terms which preceed and for all which succeed
the term a;b;, it follows that this term must also be divisible by
so that among the linear factors of the function a,;b; must be found
yr. But by Theorem 1, § 65, the function ;5; can be resolved into
its linear factors in essentially only one way, and one way of so re-
solving it is to resolve ¢; and ; into their linear factors. Since r is
not one of these factors, we are led to a contradiction, and our
theorem is proved.
An important corollary of our theorem is:

CoroLLARY. Let f(z,y) and ¢ (z, y) be polynomials in (z,y), and
let Y (y) be a polynomial in y alone. If yr is a factor of the product of
fo but s relatively prime to ¢, then r is a factor of f.

* That is, a linear polyno.aial.



FACTORS OF POLYNOMIALS IN TWO VARIABLES 208

If 4 is irreducible, this corollary is identical with the theorem.
Let us suppose ¥ resolved into its irreducible factors none of which
are constants, that is, into its factors of the first degree:

V() =V i(Y) Yaly) - Yuly)-
Now consider the identity which expresses the fact that y~ is a factor

of f:
(2) S (@ y)P@ Y=V GWy) - V) (=, ).

This shows that r1(#) is a factor of f¢ and hence, by Theorem 2,
it is a factor either of f or of ¢. Since ¢ and ¢ are relatively
prime, 4, cannot be a factor of ¢. It must then be a factor of £:

S )= () il y)-

Substituting this in (2), and cancelling ont ¥, as we have a right to
do since it is not identically zero, we get

(3) i@ )@ §)=Vo(y) - Vu(y) Gl ).
From this we infer that 4, being a factor of fi¢, must be a factor
of fi: S y) =)ol )

We substitute this in (3) and cancel out yr.  Proceeding in this way

VOB A, 1) = Vi) - Vi) 1) =W 7

an identity which proves our corollary.

EXERCISH
If f(x, ) and $(=, ¥) are polynomials, then any two sets of polynomials
P, Q(x, ), R (x, ),
Py(y) @l y), Ry(z, y),
will be proportional to each other provided,
(a) they satisfy the identities
Py () f(x DELACEITICEIED NE ¥,
Po (@) S (5 )= Q2 ) b, 1) + By(x, y);
() there is no factor other than a constant common to Py, @y, and also na
factor other than a'constant common to P, Qg

() R, and R, are both of lower degree in z than ¢.
(Cf. Theorem 2, § 63.)
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74. The Algorithm of the Greatest Common Divisor for Polyno-
mials in Two Variables. We will consider the two polynomials in

7Y fa g)=afy + a4+ oy

(@ y)=by(y)2" + by(y)e™ " + - + b(y),

and assume a0, 5,0, n =>m >0,

Theorem 1 of the last section in combination with the results of
§ 67 enables us to get all the common factors of fand ¢ which in-
volve y only; for such factors must be common factors of all the a’s
and all the §’s.

It remains, then, merely to devise a method of obtaining the com-
mon factors of f and ¢ which do not themselves contain factors in g
alone. We will show how this can be done by means of the algo-
rithm of the greatest common divisor.

Dividing f by ¢ (cf. § 63, Theorem 2), we get the identity

Py Sf(@ y)= @z, )b ) + By(2, y),

when R, is either identically zero, or is of lower degree in z than .
If R, 0, divide ¢ by R,, getting the identity

P(9)p( y)= Q2 )Rz, )+ Ryz, ),

where R, is either identically zero, or is of lower degree in 2 than
R,. If R,#0, divide R, by B,. Proceeding in this way, we get the
following system of identities in which the degrees in z of R, R,, .-
continually decrease, so that after a certain number of steps we reach
an R, say R,.,, which is independent of z :

Py f (@ y)= Qo ) y) + By(2, ¥),
Py(9)p(2 y)= Q2 ) By(, )+ By, y),
@ P 2(y)R1(x, Y) = Qo Y)By(z, y) + By, y),
13,,_1@'3 :2(9«:, Z/) = ‘Qp_.l(x; y).Rp-.l(xl, z/).+ ﬁp(w, ¥)
L Pp<y>Rp—l<x’ y)= Qp<x’ y)Rp(x’ y)+ Rp+1(y)'

TaEOREM 1. A necessary and sufficient condition that f and ¢ have
a common factor which involves x i

R,(y)=0.
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In order to prove this theorem we first note that, by the first of the
identities (1), any common factor of fand ¢ is a factor of R,, hence,
by the second of the identities, it is a factor of R,, ete. Finally we
see that every common factor of f and ¢ is a factor of all the R’s. But
£2,,, does not contain z. Hence if fand ¢ have a common factor
which contains z, R,,,(y)=0.

Now suppose conversely that R,,,(y)=0, and let

(2) By(2, y)=8(9)& (=, y),

where G has no factor in y alone.* The last identity (1) then tells
us that P,(y) is a factor of

Lz, 9)S(¥) G (2, y)

and since by hypothesis G has no factor in y alone, Pyy) must, by
the Corollary of Theorem 2, § 73, be a factor of @8, that is

(3) (=, )8 (y) = Py)H(=, y)-

Substituting first (2) and then (8) in the last identity (1), and cancel-
ling out the factor P,(y) from the resulting identity, as we have a
right to do since Py(y)== 0, we get the result

Ry(@ y)=Hz, )6z, 9).

That is, G is a factor not only of R, but also of R,_;. Accordingly
we may write the next to the last identity (1) in the form

Py (9)Bo—o(2, y)=J (2 y) G2, ¥)-

By the corollary of Theorem 2, § 78, we see that P, ,(y) is a factor
of J, so that P,_,(y) can be cancelled out of this last written identity,
and we see that G is a factor of B,_,.

Proceeding in this way, we see that G is a factor of all the R’s,
and therefore, finally, of fand ¢. Moreover, we see from (2) that
G- is of at least the first degree in z, as otherwise R, would not con-
tain z, while R,,, was assumed to be the first of the R’s which did
not involve z.

Thus our theorem is proved.

Since, as we saw above, every common factor of f and ¢ is also a
factor of all the R’s, it follows from (2) that, if Y is a common factor

of fand ¢, Gz, 1)S(y) = V(= y) K(=, ).

* If B, has no factor in y alone, S reduces to a constant,
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If then Y contains no factor in y alone, § must, by the Corollary of
Theorem 2, § 73, be a factor of K. Consequently by cancelling out
S from the last written identity, we see that - is a factor of @.

That is,

THEOREM 2. If in Euclid's algorithm R,., =0, the greatest com-
mon divisor of f and ¢ which contains no factor in y alone is the poly-
nomial G(z,y) obtained by striking from Ry z,y) all factors in y
alone.

We note that if R, is a constant different from zero, f and ¢
are relatively prime; but that the converse of this is not true as the

simple example PR b=z
shows.

Going back to the identities (1), we get from the first of these
identities, by mere transposition, the value of R, in terms of f and
¢ (and Py, ¢,). Substituting this value in the second identity, we
get a value for R, in terms of f, ¢, and certain P’s and Q's. Pro-
ceeding in this way, we finally get the formula

) R, (y)=F(z, ) f(z, y) + (2, y)(z, y)

where ¥ and @ are polynomials in (z, ).

75. Factors of Polynomials in Two Variables.

TaeorEM 1. If f(2, y) and ¢(z, y) are any two polynomials in
and y, and (z, y) is an irreducible polynomial which is a factor of
the product f$, then r is a factor of f or of .

If 4» does not contain both z and y, this theorem reduces to
Theorem 2, § 78. It remains, then, only to consider the case that yr
involves both variables. In this case, at least one of the polynomials
J, ¢ must be of at least the first degree in 2. Without loss of gener-
ality we may assume this to be f. If v is a factor of J, our theorem
is true. Suppose - is not a factor of £; then, since 4 is irreducible, #
and 4 are relatively prime, and if we apply the algorithm of the
greatest common divisor to f and y (as we did in the last section to
J and ¢) the first remainder R,.,(y) which does not involve z is not'
identically zero. The identity (4) of the last section now becomes

(1) Boii(y) = F(z, y)f(=, y) + V(@ y)(z, v).
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If we multiply this by ¢(z, 7), the second member becomes a poly-
nomial which has » as a factor, since, by hypothesis, f¢ has - as a
factor. We may therefore write

2) R,y (0)¥(zs y)=v(2, ¥)x(zs ¥).

Now no factor other than a constant of R,,; can be a factor of 4
since 4 is irreducible. Consequently, by the Corollary of Theorem
2,§ 73, R,y is a factor of y(z, ). Cancelling out R,,, from (2),
as we have a right to do since it does not vanish identically, we get
an identity of the form

oz y) =¥ (2, ¥) (2 ¥)s

that is, 4~ is a factor of ¢, and our theorem is proved.
By applying this theorem a number of times, we get the

CorROLLARY. If the product of any number of polynomials in two
variaples i 9)ffa 9) - Fl 9,

18 divisible by an trreducible polynomial (z, y), then {r 18 a factor of
at least one of the fs.

We come now to the fundamental theorem of the whole subject
of divisibility of polynomials in two variables.

THEOREM 2. A polynomial in two variables which is not identically
zero can be resolved into the product of irreducible factors mo ome of
which is a constant in one, and essentially in only one, way.

That a polynomial f(z, y) can be resolved into the product of
irreducible factors no one of which is a constant in at least one way
may be seen as follows. If fis irreducible, no factoring is possible
or necessary. If fis reducible, we have

S (@ ) =1z y)fol@ ¥)

where neither f; nor f, is a constant. If f, and f, are both irredu-
cible, we have a resolution of f of the form demanded. If not,resolve
such of these polynomials f; and f, as are reducible into the product
of two factors neither of which is a constant. We thus get fex-
pressed as the product of three or four factors. This is the resolu-
tion of £ demanded if all the factors are irreducible. If not, resolve
such as are reducible into the product of two factors, etc. This pro-
cess must stop after a finite number of steps, for each time we factor
r
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a polynomial into two factors, the degrees of the factors are lower
than the degree of the original polynomial. We shall thus ulti-
mately resolve f by this process into the product of irreducible
factors, no one of which is a constant.

Suppose now that f can be resolved in two ways into the product
of irreducible factors none of which are constants,

Sf(@ p)=file, sz ) - filz, y)
=¢1(2 ¥)Po(2 ¥) - bi(z, y).

Since ¢, is a factor of f, it must, by the Corollary of Theorem 1,
be a factor of one of the polynomials fi, fo -+ fi- Suppose the f’s so
arranged that it is a factor of f;. Then, since f] is irreducible, f, and
¢, can differ only by a constant factor, and since ¢;30, we may cancel
it from the identity above, getting

e fofs o Sr=babs -+ P

In the same way we see from this identity that £, and one of the

&’s, say ¢y, differ only by a constant factor. Cancelling ¢,, we get
63 Si=bg o b

Proceeding in this way, we should use up the ¢’s before the f’s if
I <k, the f's before the ¢’s if I > k. Neither of these cases is possible,
for we should then have ultimately a constant on one side of the
identity, and a polynomial different from a constant on the other.
Thus we must have k= 1. Moreover we see that the f’s can be
arranged in such an order that each f is proportional to the corre-
sponding ¢, and this is what we mean (cf. Definition 7, § 60) by
saying that the two methods of factoring are not essentially different.

Thus our theorem is proved.

THEOREM 8. If two polynomials f and ¢ in (z, y) are relatively

prime, there are only a finite number of pairs of wvalues of (z, y) for
which f and ¢ both vanish.*

For if fand ¢ both vanished at the points
(3) (2, 91)s (@ Yod s
and if these points were infinite in number, there would be among
them either an infinite number of distinct z’s or an infinite number of

* Stated geometrically, this theorem tells us that two algzebraic plane curves
f(x, ¥)=0, ¢(x, y)=0 can intersect in an infinite number of points only when they
have an entire algebraic curve in common.
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distinct ’s. By a suitable choice of notation we may suppose that
there are an infinite number of distinet y’s. Then it is clear that f
and ¢ must be of at least the first degree in 2, since a polynomial in y
alone which does not vanish identically cannot vanish for an infinite
number of values of y. We may then apply to f and ¢ the algorithm
of the greatest common divisor as in § T4, thus getting (cf. (4),
§ 74) an identity of the form

(#) Bz, ) (2, )+ (2, 9)$(z, y) = B,i(y) % 0.

Since the first member of (4) vanishes at all the points (3), R,,,(¥)
would vanish for an infinite number of distinct values of y, and this
is impossible.

An important corollary of the theorem just proved is that if £ and
¢ are two irreducible polynomials in (z, y), and if the equations
f=0and ¢ =0 have the same locus, then f and ¢ differ merely by
a constant factor. This would, however, no longer be necessarily
true if f and ¢ were not irreducible, as the example,

Sf=zy?, =2,
shows; for the two curves f=0 and ¢ =0 are here identical, since
the curve in each case consists of the two codrdinate axes, and yet f
and ¢ are not proportional. By means of the following convention,

however, the statement made above becomes true in all cases:
Let f be resolved into its irreducible factors,

S=rofe - fo,
where f}, --- f} are irreducible polynomials in (2, ¥), no two of which
are proportional to each other. The curve f= 0 then consists of the

k pieces, Si=0,£/=0, . f,=0.

To each of these pieces we attach the corresponding positive integer
@, which we call the multiplicity of this piece; and we then regard
two curves given by algebraic equations as identical only when they
consist of the same irreducible pieces, and each of these pieces has
the same multiplicity in both cases. With this convention we may
say :

CoroLLARY. Iff and ¢ are polynomials in (2, y) neither of which
18 tdentically zero, a necessary and sufficient condition that the two curves
f=0, ¢ =0 be identical is that the polynomials f and ¢ differ only by
% constant factor.
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EXERCISES
1. Let f(2), $(z), Y(x) be polynomials in 2 whose coefficients lie in a certain
domain of rationality. Then if ¢ is irreducible in this domain and is a factor of
the product f ¢, prove that ¢ is a factor of f or of ¢.

2. Let f(z) be a polynomial in x, which is not identically zero, and whose
coefficients lie in a certain domain of rationality. Prove that fcan be resolved
into a product of polynomials whose coefficients lie in this domain, which are
irreducible in this domain, and no one of which is a constant, in one and essen-

tially in only one way.
3. Extend the results of this section to polynomials in two variables whose
coefficients lie in a certain domain of rationality.

76. Factors of Polynomials in Three or More Variables. The re-
sults so far obtained in this chapter may be extended to polynomials
in three variables without, in the main, essentially modifying the
methods already used. We proceed therefore to state the theorems
in the order in which they should be proved, leaving the proofs of
most of them to the reader. The extension to the case of % variables
then presents no difficulty, and is left entirely to the reader (cf.
Exercise 1).

Let f(z, ¥, 2) be any polynomial in three variables, and suppose it
arranged according to powers of z,

S(@ g, 2)=ay(y, 2)2" + ay(y,2)2" 1 + -+ + a,(,2),
the a’s being polynomials in (y, 2).
Corresponding to Theorems 1, 2 of § 73 we have

THEOREM 1. A necessary and sufficient condition that a polynomial
in (y, 2) be afactor of f is that it be a factor of all the a's.

TarorREM 2. If f(2, ¥, 2) and &=, y, 2) are any two polyno-
mials in (z, y, 2) and Y (y, 2) is an irreducible polynomial in (y, 2) only
which is a factor of the product f¢, then r is a factor of f or of é.

CoroLLARY. Let f(z, y, 2) and ¢(z, y, 2) be polynomials in
(@, ¥, 2), and let Y(y, 2) be a polynomial in (y, z) alone. If Yisa
Sactor of the product of f, but is relatively prime to ¢, then it is a fac-
tor of f.

To find the greatest common divisor of two polynomials in three
variables we proceed exactly as in the case of two variables, getting
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a set of identities similar to (1), § 74, the P's and R,,; being now
functions of (y,2), while the other R’s and the @’s are functions of
(2, y,2). Corresponding to Theorems 1, 2 of § 74 we now have

THEOREM 3. A necessary and suffictent condition that f(z, y, z), and
&(z, y, 2) have a common factor which involves z is that R, (v, 2)=0.

TaeorEM 4. If R, (y, 2)=0, the greatest common divisor of
S, y, 2) and ¢p(z, y, 2) which contains no factor in (y, z) alone s
the polynomial G(z, y, z) obtained by striking out from Rz, y, z)
all factors in (y, z) alone.

From the algorithm of the greatest common divisor for the two
polynomials f(z, y, 2), $(2, y,2) we also deduce the identity

1) By 2)=F(2,9:2) f (2,9, 2) + (2,9, )(@> 9, 2)s
similar to (4), § 74.
Corresponding to Theorems 1, 2 of § 75 we have

TrEOREM 5. If f(2,y, 2) and ¢(z, y, 2) are any two polynomials
and (z, y, 2) 18 an irreducible polynomial which is a factor of the prod-
uct f'p, then 4 i3 a factor of f or of ¢.

CorOLLARY. If the product of any number of polynomials

Sz, ¥, 2) fo(z, y, 2) - fil2, 95 2),
18 divisible by an irreducible polynomial \(z, y, 2), then r 18 a factor
of at least one of the f’s.

THEOREM 6. A polynomial in three variables which i8 not identi-
cally zero can be resolved into the product of trreducible factors no one of
which 18 a constant in one, and essentially in only one, way.

When we come to Theorem 3, § 75, however, we find that it
does not admit of immediate extension to the case of three vari-
ables ; for R,,,(y), which came into the proof of that theorem,
becomes now R, (¥, 2), and we can no longer say that this does not
vanish at an infinite number of points (y,2). Not only is the proof
thus seen to fail, but the obvious extension of the theorem itself is
seen to be false when we recall that two surfaces intersect, in gen-
eral, in a curve.

This theorem may, however, be replaced by the following one:

THEOREM 7. If f(2, y,2) and ¢(z,y, 2) are any two polynomials in
three variables of which ¢ 18 irreducible, and if f vanishes at all points
(#, ¥, 2) at which ¢ vanishes, then ¢ is a factor of f.
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In proving this theorem we may, without loss of generality,
assume that ¢ actually contains one of the variables, say z; for
if ¢ contains none of the variables z, y, 2, the theorem is trivial
and obviously true.

Suppose ¢ were not a factor of f. Then, since ¢ is irreducible,
f and ¢ are relatively prime. Hence, in the identity (1) above,
R, ,(y,2)#0. Let us write

@) $@Ha=b(y )T +h(y 92+ (3,9 (m21),

where, without loss of generality, we may assume 3,(y,2)#0. Then

3) R, (¥, 2)by(y, 2) #0.
Accordingly we can find a point (y,, 2,) such that
(#) By (41 21)# 0, by (g1 21) # 0.

Consequently ¢(z, ¥y, 2) is a polynomial in 2 alone which is of at
least the first degree, and which therefore (Theorem 1, § 6) vanishes

for some value 2, of . That is
. é(21r ¥ 21) = 0.
Accordingly, by hypothesis,
S (@ g 2)=0.
Referring now to the identity (1), we see that
Bpsy (yp 7)=0.

This, however, is in contradiction with (4). Thus our theorem is

proved.
If to each part of a reducible algebraic surface we attach a multi-

plicity in precisely the same way as was explained in the last section
for plane curves, we infer at once the

CorROLLARY. Iff and ¢ are polynomials tn (2, y, 2) neither of which
is identically zero, a necessary and sufficient condition that the two sur-
Saces f=0,¢=0
be identical i8 that the polynomials f and ¢ differ only by a constant
Jactor.

Theorem 7 admits also the following generalization :

TrEOREM 8. If f(=2, y, 2) and ¢(z, y, 2) are any two polynomials in
three variables which both vanish at the point (x4, Y, 2,) and of which ¢
i8 trreducible, and if in the neighborhood N of (zy, Yy 2,) Jf vanishes at
all points at which ¢ vanishes, then ¢ is a factor of f.
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We assume, as before, that ¢ contains 2 and can therefore be
written in the form (2). Let us first consider the case in which
by(yg 20)* 0. Here the proof is very similar to the proof of
Theorem 7.

We obtain relation (3) precisely as above, and from it we infer

that a point (yy, 2;) i as small a neighborhood M of (yy, 2,) as
we please can be found at which the relations (4) are true.
Now consider the equation

(5) $(2, g1, 2)=0.

By. writing ¢ in the form (2), we see that by taking the neighbor-
hood M of (y, 2,) sufficiently small, we can make the coefficients
of (5) differ from the coefficients of

(6) &z, Yo 29)=0

by as little as we please (cf. Theorem 3, § 5). Now =z, is by hy-
pothesis a root of equation (6). Consequently by taking M suffi-
ciently small, we can cause (5) to have at least one root z; which
differs from z; by as little as we please (¢f. Theorem 4,§ 6). Thus
we see that a point (zy, ¥;,%2) in the given neighborhood N of
(2 Yo 2) can be found at which

&2y Y1 21)=0.

Accordingly, by hypothesis,
S (2, ¥y 2)=0.

From the identity (1) we have then
R, (91 2)=0,

which is in contradiction with (4). Thus our theorem is proved on
the supposition that d,(y,, 2,)# 0.*

* The proof just given will, in fact, apply to the case in which not all the d’s in (2)
vanish at the point (yo, 2o), if we use the extension of Theorem 4, § 6, which is there
mentioned in a footnote. It is only the extreme case in which all the b’s vanish at this
point which requires the special treatment which we now proceed to give. The readex
is advised to consider the geometrical meaning of this extreme case.



216 INTRODUCTION TO HIGHER ALGEBRA

In order to treat the case in which by(yy2,)= 10, let us denote by
k the degree of ¢(z, y,2), and let us subject this polynomial to a
non-singular linear transformation

z=o2 + By + v, 7
(M y= @ + Byy + 7,7
2 =30’ + Byy' + vg2

which makes the degree of ¢ in z equal to the total degree & of ¢
(cf. Theorem 2, §64).

Suppose that this transformation carries over the point (zy,,,2,)
into the point (), ) 25)- Then it is possible, since (7) is non-
singular, to take such a small neighborhood N of (z, yhs 2}) that
all points in this neighborhood correspond to points in the given
neighborhood IV of (2g, ¥, 2)-

Moreover, by means of (7), ¢ has gone over into

(8) o', o, 2 =Byt + B{(y", 2N e B, ),

where bj is a constant different from zero. Let us denote by
fi(#, y', 2') the polynomial into which f is transformed. Then it
is clear that, since, in the neighborhood X, f vanishes whenever ¢
does, in the neighborhood N' (which corresponds to a part of N'), f'
vanishes whenever ¢/ does. Accordingly we can apply the part of
the theorem already proved to the two polynomials f/ and ¢/, since
the first coefficient of @' in the form (8), being a constant different
from zero, does not vanish at (y{, 2;). We infer that ¢’ is a factor

!
of f/, F&, o, 2) =@, v, )W, o, 7).

If here we replace 2/, ¥', 2’ by their values in terms of z, y, 2z from
(T), we see that ¢ is a factor of f; and our theorem is proved.

EXERCISES

1. State and prove the eight theorems of this section for the case of polyno-
mials in n variables.

2. Extend the result of the exercise at the the end of §73 to the case of
polynomials in n variables.

3. Extend the results of the two preceding exercises to the case in which we
consider only polynomials whose coefficients lie in a certain domain of ration
ality.

i cr o —
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4. The resultant of two polynomials in one variable
S(@)=a@™ + a4 .. 4 ay,
¢ () =bgrm™+ bz 14 oo 4 by,

is sometimes defined as the polynomial R in the a’s and &’s of lowest degree which
satisfies an identity of the form
Ef +®¢=R,

Wherc? F' and & are polynomials in (ag, «+- @n; by, -+ ba; z), and the identity is an
identity in all these arguments. Prove that the resultant as thus defined differs
only by a constant factor different from zero from the resultant as we defined it
in § 68.



CHAPTER XVII

GENERAL THEOREMS ON INTEGRAL RATIONAL
INVARIANTS

77. The Invariance of the Factors of Invariants. Let as con.
sider the general m-ary form of the kth degree which we will rep-
resent by f(zy, -+ 2,3 @y, g ), the 2’s being the variables and the
@’s the coefficients. By suitably changing the a’s, this symbol may
be used to represent any such form. Hence, if we subject such a
form to a linear transformation, the new form, being n-ary and of
the same degree as the old, may be represented by the same func-
tional letter : f(z}, --- 2 ; @}, @}y ---). This new form will evidently
be homogeneous and linear in the a’s; that is, each of the a”sis a
homogeneous linear polynomial in the a’s. It is also clear that each
of the &”s is a homogeneous polynomial of the kth degree in the
coefficients of the transformation.

It follows from the very definition of invariants that if we have
a number of integral rational relative invariants of a form or system
of forms, their product will also be an integral rational relative in-
variant. It is the converse of this that we wish to prove in this
section. We begin by stating this converse in the simple case of a
+ingle form.

THEOREM 1. If I(ay, ay ---) s an integral rational invariant of

the n-ary form
Y J F@p 25 gy agy ),

and 18 reductble, then all its factors are invariaats.

It will evidently be sufficient to prove that the irreducible factors
of I are invariants. Let f}, f,, --- f; be the irreducible factors of 7.
Subjecting f to the linear transformation

— ! !
Zy = oy + o+ CppTm

—_— / o ol
z, = cn],xl + -+ CnnTns
218
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whose determinant we call ¢, and denoting the coefficients of the
transformed form by af, al, ---, we have

&) I(aly aly ) = AL(ay, ay --;
an identity which may also be written
fl(all’ “;* ) fl(ai’ a;’ ) = c)‘f1<a1’ gy ) "'ﬁ(ap Qg '").

We have here a polynomial in the ¢’s and a’s which, on the
second side of the identity, is resolved into its irreducible factors,
since by Theorem 1, §61, the determinant ¢ is irreducible. Hence
each factor on the first side is equal to the product of some of the
factors on the second. That is

@ Jiay, ap, )= i@y, ag, --) (=121
where the ¢’s are polynomials.
Now let
Ol = Copg = " = Cpp = 13

and let all the other ¢’s be zero. OQur transformation becomes the
identical transformation, the determinant ¢ = 1, and each o' is equal
to the corresponding @. The identities (2) therefore reduce to

.fi(ap 2% )E ¢i(”’15 Qgy ) ('1: = 1’ 2, .- l)_

Substituting this value of ¢; in (2), we see that f; is an invariant,
and our theorem is proved.
The general theorem, now, is the following :

THEOREM 2. If I (ay, ag -3 by, by« 5-+-) 18 an integral rational
invariant of the system of forms
fl(ml" ce T3 Ay, gy ...)

fz(xI’ — T3 61’ bzv )

and 8 reductble, then all its factors are invariants.

The proof of this theorem is practically identical with that of
Theorem 1.
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EXERCISE
If I(@y, gy 5 B1ybgyoeesvoes Uy oo Ynj 21500 25 000) is an integral rational co«
variant of the system of forms
Ji(zy e Ty a1y az, -0),
fZ(zly Ty bly b25 "'):

and the system of points (¥1,+¥n)s (21 2s); = and is reducible, then all its
factors are covariants (or invariants).

78. A More General Method of Approach to the Subject of Rela-
tive Invariants. We have called a polynomial 7 in the coefficients
of an n-ary form f a relative invariant of this form if it has the
property of being merely multiplied by a power of the determinant
of the transformation when f is subjected to a linear transformation.
It is natural to inquire what class of functions I we should obtain if
we make the less specific demand that I be multiplied by a poly-
nomial in the coefficients of the transformation. We should expect
to get in this way a class of functions more general than the invari-
ants we have so far considered. As a matter of fact, we get precisely
the same class of functions, as is shown by the following theorem:

THEOREM. Let I be a polynomial not identically zero in the co-
efficients (ay, ag, -++) of an n-ary form f, and let (ay, aj, ---) be the co-
efficients of the form obtained by subjecting f to the linear trangformation

Ty = 3@y + -+ + CaThs

T, = o) + -+ + Conn-
If I(aly ahy ) =Y(ergs -+ Cnn) I (@y, gy -+
where Y 18 a polynomial in the ¢’s, and this is an taentity in the a’s and
¢'s, then Y 18 a power of the determinant of the trangformation.

~ We will first show that Y= 0 when ¢ 0. If possible let dy;, - - d,,
be a particular set of values of the ¢;’s such that

11’(‘111‘ drm) =0,
while dyg dm

.....

-----
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Then the transformation

r —_ , ,
Zy=dyzy + - + dyah,

—_— !
\ Zp = dnlxl-}- et dnnz;n

—
has an thverse (@)= 8,1 + -+ + 8,2,

(2}, = 8,52, + - + 8,2,
Let us consider a special set of a’s such that I(a,, a,,---)# 0. Then
I(ay, ag, ) = Y(dyps -+ dun) I (ay. ag, ---) = 0.
Now apply the inverse transformation, and we have
I(a;, g -++) = Y811+ 8m) I (a}, ay---) =0,

which is contrary to our hypothesis.
Having thus proved that 4+ can vanish only when ¢=0, let us
break up 4 into its irreducible factors,

Yegp  eun) = Yi(Crpr -+ Cnn) YolCyps -+ Can) "+ YN(Cqps* Can)-

Since Yr vanishes whenever 4, =0, y; can vanish only when ¢= 0.
Hence by the theorem for n variables which corresponds to Theorem 7,
§ 76, Y, must be a factor of e. But ¢ is irreducible. Hence ; car
differ from ¢ only by a constant factor, and we may write

Y= Keh

It remains then merely to prove that the constant K has the value 1
For this purpose consider the identity

I(a), af, )= K (ay, ag ),

and give to the ¢;'s the values which they have in the identical
transformation. Then ¢=1, and the a’’s are equal to the correspond-
ing a’s. The last written identity therefore becomes

L(ay, ag, ---) = Kl(ay, ag---);
from which we infer that K= 1.
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EXERCISES

A. Prove thatif a polynomial I in the coefficients ay, as, -+ of an n-ary form and
the codrdinates (yi, - ¥n) of a point has the property of being merely multiplied
by a certain rational function ¢ of the coeflicients of the transformation when the
form and the point are subjected to a linear transformation, then y is a positive or
negative power of the determinant of the transformation, and I is a covariant.

2. Geueralize the theorem of this section to the case of invariants of a system
of forms.

3. Generalize the theorem of Exercise 1 to the case of a system of forms and
a system of points.

4. Prove that every rational invariant of a form or system of forms is the
ratio of two integral rational invariants.

5. Generalize the theorem of Exercise 4 to the case of covariants.

79. The Isobaric Character of Invariants and Covariants. In
many investigations, and in particular in the study of invariants and
covariants, it is desirable to attach a definite weight to each of the
variables with which we have to deal. To a product of two or more
such variables we then attach a weight equal to the sum of the
weights of the factors, and this weight is supposed to remain
unchanged if the product is multiplied by a constant coefficient.
Thus if z;, 2,, 25 are regarded as having weights w,, w,, wy respectively,
the term 52,2, zg
would have the weight wy + wy + 2wg.

If, then, having thus attached a definite weight to each of the vari-
ables, we consider a polynomial, each term of this polynomial will be
of a definite weight, and by the weight of a polynomial we understand
the greatest weight of any of its terms whose coefficient ¢s not zero. If
moreover all the terms of a polynomial are of the same weight, the
polynomial is said to be isobaric.

It may be noticed that, according to this definition, a polynomial
which vanishes identically is the only one which has no weight, while
a polynomial which reduces to a constant different from zero is of
weight zero. Moreover if two polynomials are of weights w, and w,,
their product is of weight w; + w,.*

* The conception of degree of a polynomial is merely the special case of the con.
ception of weight in which all the variables are supposed to have weight 1. The con
ception of being isobaric then reduces to the conception of homogeneity.
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We will apply this conception of weight first to the case in which
the variables of which we have been speaking are the coefficients
@y, Ay, - of the n-ary form

f(xl’ Ty 3 Gy Aoy ...).

We shall find it desirable to admit » different determinations of the
weights of these a’s; one determination corresponding to each of the
variables z, --- 2,.

DErFINITION 1. If a; is the coefficient of the term

a;xrahe - 2hn

in an n-ary form, we assign to a; the weights p,, py,--- p, respectively
with regard to the variables z,, z,, --- z,.

In the case of a binary form,
k -1 .. k
ayxy + a2 Zy + -+ 4 apZo,

the subseripts of the coefficients indicate their weights with regard
to z,, while their weights with regard to z, are equal to the differences
between the degree of the form and these subseripts.

As a second example, we mention the quadratic form

n
Elaﬁ z;7;

Here the weight of any coefficient with regard to one of the vari-
ables, say z;, is equal to the number of times j occurs as a subscript
to this coefficient.*

In connection with this subject of weight, the special linear
transformation , L
(1) {xi_w’l. ("ﬁ#.?)

—_ !
x; =k}
is useful. If a;is a coefficient which is of weight A with regard to
- . . . . A
z;, the term in which this coefficient occurs contains z;, and therefore
ai' = k'\ a,"-

# For forms of higher degree, a similar notation for the coefficients by means of
multiple subscripts might be used. The weight of each coefficient could then be at
once read off from the subscripts.
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That is

THEOREM 1. The weight with regard to z; of a coefficient of an
n-ary form is the exponent of the power of k by which this coefficient is
multiplied after the special transformation (1).

From this it follows at once that an isobaric polynomial of
weight A with regard to z; in the coefficients (a;, a,, ---) of an n-ary
form is simply multiplied by &* if the form is subjected to the linear
transformation (1). _

Moreover, the converse of this is also true. For if af, a},... are
the coefficients of the n-ary form after the transformation (1), and if
¢(ay, g -+)is a polynomial which has the property that

$(dhy a3, ) =B Play, a5, ),

this being an identity in the a’s and also in %, we can infer, as fol-
lows, that ¢ is isobaric of weight A. Let us group the terms of ¢
together according to their weights, thus writing ¢ in the form

B(ap ag )= by (ay ag, ) + By (@1 ags ) + -
where ¢, ¢, -+- are isobaric of weights Ay, Ay, ---.  We have then
d(ay, ap, ) =Eudy(ag ag, ) + Edy(ay agy ) + oo
But on the other hand
B(al, ag, ) =EAP(ay, ay, ) =By (ay, ag, ) + Erpy(ay, ag, =)+ -

Comparing the last members of these two identities, we see that
A= =2y = -

as was to be proved. We have thus established the theorem:

THEOREM 2. A mecessary and sufficient condition that a poly-
nomial ¢ in thé coefficients of an n-ary form be simply multiplied by k*
when the form is subjected to transformations of the form (1) is that ¢
be isobaric of weight N with regard to ;.

By means of this theorem we can show that the use of the word
weight introduced in §31 is in accord with the definition given in
the present section. For an integral rational invariant of an n-ary
form which, according to the definition of § 31, is of weight A will, if
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the form is subjected to the transformation (1), be merely multiplied
by %* and must therefore, according to Theorem 2, be isobaric of
weight A with regard to z;. That is:

TaeoreM 3. If I is an integral rational invariant of a form f
which according to the definition of §31 is of wetght N, @t will also be of
weight N with regard to each of the variables x; of f according to the
definitions of this section, and it will be isobaric with regard to each of
these variables.

Ag an illustration of this theorem we may mention the discrimi-
nant Ay — a2
of the binary quadratic form

ag2? + 202,70, + a,23

which is isobaric of weight 2 both with regard to #; and with regard
to z,.

The reader should consider in the same way the discriminant of
the general quadratic form.

All of the considerations of the present section may be extended
immediately to the case in which we have to deal, not with a single
form, but with a system of forms. We state here merely the
theorem which corresponds to Theorem 3.

THEOREM 4. If 118 an integral rational invariant of a system of
Jorms which according to the definition of § 381 is of weight N, it will also
be of wetght N with regard to each of the variables z; of the system, and
@t will be ts0baric with regard to each of these variables.

The reader may consider as an illustration of this theorem the
resultant of a system of linear forms, and also the invariants obtained
in Chapters XII and XIII.

We saw in Theorem 5, §31, that the weight of an integral rational
invariant cannot be negative. This fact now becomes still more
evident, since the weight of no coefficient is negative. Moreover,
we can now add the following further fact:

THEOREM 5. An integral rational invariant of a form or system
of forms cannot be of weight zero.

For consider any term of the invariant whose coefficient is not
zero. This term involves the product of a number of coefficients of
the system of forms. Since none of these coefficients can be of nega-

Q
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tive weight, the weight of the term will be at least as great as the
weight of any one of them. But any one of them is at least of
weight 1 with regard to some one of the variables. Hence the in-
variant is at least of weight 1 with regard to some one of the
variables, and hence with regard to any of the variables.

In order, finally, to be able to extend the considerations of this
section to the case of covariants, we must lay down the following
additional definition:

DEFINITION 2. If the sets of variables (41 - ), (2 -+ 2,), -
are cogredient with the variables (zy, -+ z,) of @ System of n-ary forms,
we will assign to y;, 2, - the weight —1 with regard to z; to all the
other y's, 2's, ete. the weight 0.

It will be noticed that here too, when we perform the transform-
ation (1), each of the variables is multiplied by a power of % whose
exponent is the weight of the variable. It is therefore easy* to
extend the considerations of this section to this case, and we thus
get the theorem:

THEOREM 6. If I is an integral rational covartant of a system
of forms and a system of points which is of weight N according to the
definition of §31, it will also be of weight X with regard to each of the
variables of the system, and it will be isobaric with regard to each of
these variables. :

As an example of this theorem we note that the polar
23121 + @y (§12% + Ya21) + 452

of a binary quadratic form is isobaric of weight zero. The reader
may satisfy himself that the same is true of the polar of the general
quadratic form.

80, Geometric Properties and the Principle of Homogeneity. It
is a. familiar fact that many geometric properties of plane curves or
surfaces are expressed by the vanishing of an integral rational func-
tion of the coefficients of their equations. Take, for instance, the
surface

@ A s 25 ag ag ) =0,

* Slight additional care must be taken here on account of the possible presence of
terms of negative weight.
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where s is a polynomial of the %th degree in the non-homogeneous
codrdinates @, ¥, 2, and aj, @,, --- are the coeflicients of this polyno-
mial ; and consider the relation

(2) (g, ag, - ) =0,

where ¢ is a polynomial, which we will assume to be of at least
the first degree, in the coelficients a;, @, ---. By Theorem 3, § 6,
there are an infinite number of polynomials of the kth degree in
(x, y» 2) whose cocllicients satisfy the relation (2) and also an infinite
number whose coeflicients do not satisfy this relation. In other
words, all polynowmials of the £th degree in (2, y, 2) may be divided
into two classes, A and B, of which the first is characterized by con-
dition (2) being fullilled, while the second is characterized by this
condition not being fulfilled.  We may therefore say that (2) is o
necessary and suflicient condition that f have a certain property,
vamely, the property of belonging in class A.

The simplest examples, however, show that this property of f
need not correspordd to a geometrie property of the surface (1).
To illustrate this, let =1, so that we have

Suapw a4+ agz+ ay

«nd consider lirst the polynomial in the a's
beza,.

The vanishing of ¢ gives a necessary and sufficient condition that f
belong to the class of homogencous polynomials of the first degree
in (&, ¥, 2), and thus expresses a property of the polynomial.  This
same condition, ay =0, also expresses a property of the plane f=0,
nawely, the property that it pass through the origin.

Suppose, however, that instead of the function ¢ we take the
polvnomial Azra,—1.
The vanishing of this polynowial also gives a necessary and sulli
cient condition that the polynomial f have a certain property, namely,
that its constant term have the value 1. It does not serve to dis
tinguish planes into two classes, since we may write the equation of
any plane (except those through the origin) either with the constant
term 1 or with the constant term different from 1 by merely multi
plying the equation through by a constant.
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From the foregoing it will be seen that saying that a surface has
a certain property amounts to the same thing as saying that it
belongs to a certain class of surfaces.*

THEOREM 1. The equation (2) expresses a mecessary and sufficient
condition for a geometric property of the surface (1) when, and onty
when, the polynomial ¢ is homogeneous.

For if ¢ is non-homogeneous, let us wrile it in the form
b=+ buyt -+ b+ Py

where ¢, is a homogeneous polynomial of the nth degree and each
of the other ¢’s which is not identically zero is a homogeneous poly-
nomial of the degree indicated by its subscript. Let al,aj, .- bea
set of values of the a’s for which ¢, and at least one of the other ¢,’s
is not zero, and consider the surface

(3) f(z, y, 2; cdl, cah, ---)=0.
The condition (2) for this surface is
¢, (al, ayy )+ 1, (A ahy )+ e (al, a;, )
+ ¢0(a;7 aé’ )= 0.

This is an equation of the nth degree in ¢, and since at least one
of the coefficients after the first is different from zero, it will have
at least one root ¢;#0. On the other hand, we can find a value
¢;# 0 which is not a root of this equation. Hence the surface (3)
satisfies condition (2) if we let ¢ =¢, and does not satisfy it if ¢ =,.
But a change in the value of ¢ merely multiplies the equation (8)
by a constant and does not change the surface represented by it.
Thus we see that one and the same surface can be regarded both as
satisfying and as not satisfying condition (2). In other words, if ¢
is non-homogeneous, (2) does not express a property of the surface (1).

Assume now that ¢ is homogeneous of the nmth degree, and
consider the class 4 of polynomials f whose coefficients satisfy equa-
tion (2) and the class B whose coefficients do not satisfy this equa-
tion. Our theorem will be proved if we can show that we have
hereby divided the surfaces (1) into two classes, that is, that 'if

* This brief explanation must not be regarded as an attempt to define the concep-
tion property, for no specific class can be defined without the use of some property.
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aj, aj, --- are the coeflicients of a polynomial of class A and oY, af, --
the coefficients of a polynomial of class B, then the two surfaces

J(@, y» 25 ay,y ay ) =0,
Sy, 25 af, a5, ) =0,
cannot be the same. If they were the same, the coefficients af, a}, ---
would be proportional to af, a¥, --- (cf. Theorem T, Corollary, § 76),
al = cdl, alf = cal, -

and therefore d(ay, ay, )= c"¢(al, ab, ).

But this is impossible since by hypothesis
$(al, ay, ) =0, ¢(af, af, ) %0.
Thus our theorem is proved.

This theorem admits of generalization in various directions.
Suppose first that instead of a single surface (1) we have a system
of algebraic surfaces, and that ¢ is a polynomial in the coefficients of
all these surfaces. Then precisely the reasoning just used shows that
the equation ¢ =10 gives a necessary and sufficient condition for a
geometric property of this system of surfaces when and only when ¢
is homogeneous in the coefficients of each surface taken separately.

On the other hand, we may use homogeneous codrdinates in
writing the equations of the surfaces, and the results so far stated
will obviously hold without change:

THEOREM 2. Let

Si# g 2 b5 ag, ag ) Sy (@ gy 2 85 by by ) e
t: a system of homogenmeous polynomials in (z, y, 2, t) whose coefficients
are gy Ay, -5 by, by, --- 5 ete.; and let
b (@ Ay -3 by by, s o)
bs a polynomial in the a’s, b’s, ete. Then the equation ¢ = 0 expresses
@ necessary and sufficient condition that the system of surfaces

fi=0, f,=0, ...

have a geometric property when, and only when, the polynomial ¢ is
homogeneous in the a’s alone, algo in the b’s alone, ete.

In conclusion we note that all the results of this section can be
extended at once to algebraic curves in the plane ; or, indeed, to the
case of space of any number of dimensions.

e
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EXERCISE

If, in Theorem 2, besides the surfaces f; =0, f2 =0, --- we also have a system

Of pomts (.1.’1, Y1, 21y tl)’ (xﬂy Y2, 22, 12): A

and if ¢ is a polynomial not merely of the a’s, ’s, etc., but also of the cosrdinates
of these points, prove that ¢ =0 expresses a necessary and sufficient condition
that this system of surfaces and points have a geometric property when and
only when ¢ is homogeneous in the a’s alone, in the &’s alone, etc., and also in
(21, ¥, 21, 1) alone, in (%3, ¥s, 22, 12) alone, ete.

81. Homogeneous Invariants. From the developments of the last
section it is clear that the only integral rational invariants which
will be of importance in geometrical applications are those which are
homogeneous in the coefficients of each of the ground-forms taken
separately.* Such invariants we will speak of as homogeneous in-
variants. It will be found that all the invariants which we have
met so far are of this kind.

An important relation between the weight and the various de-
grees connected with a homogeneous invariant is given by the follow:
ing theorem :

TueorREM 1. If we have a system of n-ary forms,
fl(xl’ eee x"; al‘ a‘l’ ...)'|
@ Fuo s By By )

. . . . . . . -

of degrees my, my, -+ respectively, and if .
I((ZD a2’ vee s ])1’ 1)2, ceey ...)

* This statement must not be taken too literally. It is true if in the geometrical
application in question we consider the variables as homogeneous codrdinates and if
we have to deal with the loci obtained by equating the ground-forms to zero. While
this is the ordinary way in which we interpret invariants geometrically, other inter-
pretations are possible. For instance, instead of interpreting the variables (x, y) as
homogeneous codrdinates on a line and equating the binary quadratic forms

N=wa? + 2 sy + agy?,
=012 + 2 baxy + bay?,
to zero, thus getting two pairs of points on a line, we may interpret (x, y) as non-

homogeneous codrdinates in the plane, and consider the two conics fi=1, fi=1. With
this interpretation, the vanishing of the invariant

@ az — ag + bibs — b,
which is not homogeneous in the a’s alone or in the b’s alone, has a geometric meaning



INTEGRAL RATIONAL INVARIANTS 231

is a homogeneous invariant of this system, of weight N, and of degree o
in the a’s, B in the b’s, ete., then

(2) Myt + MBS+ v = M.

Subjecting the forms (1) to the linear transformation
Ty =0yt ot A+ e
3
Ta= Oty o+ Gy

whose determinant we will denote by ¢, we get

Sy w5 ay, ap, ),

So(@ps - s Uy by ),

and, since by hypothesis I is an invariant of weight A,
) I(al, aby -5 85, By w5 o)=L (ayy gy +++ 3 by, byy +oo5 +=2)e

Every @ is a homogeneous polynomial in the ¢;’s of degree m,, every
b of degree m,, etc. ; and since I is itself homogeneous of degree «
in the a’s, B in the d’s, etc., we see that the left-hand side of (4)isa
homogeneous polynomial of degree mje+ myB+ ---in the ¢y's.
Equating this to the degree of the right-hand side of (4) in the ¢;’s,
which is evidently n\, our theorem is proved.

An additional reason for the importance of these homogeneous
invariants is that the non-homogeneous integral rational invariants
can be built up from them, as is stated in the following theorem:

THEOREM 2. If an integral rational invariant I of the system (1)

be written in the form I=L+ I+ -+ 1,

where each of the Is is a polynomial in the a's, b's, ete., which is
homogeneous in the a’s alone, and also in the b's alone, ete., and such
that the sum of mo two I's has this property, then each of the functions

I, I, 1,

isa homogeneous invariant of the system (1).
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This theorem follows immediately from the definition of an
invariant. For from the identity,
Il(”'i’ aé, . bi’ bIZ’ ey .)+ +_[L(ai, aé’ e s bi, bé’ s .,,)
—Ec)‘[_z-l(al’ az’ cee s 61’ 62, ey -..)
+ ere +Ik<a1, a2, ey bl’ bz’ see s ...)]’

we infer at once the identities,

T T ) — . .
I1(“1’ ay -3 bl’ 62’ cee ...)=g’\_[1(al’ Qgy =+ 3 bl’ b‘” cee s ...),

Ty @y e s by gy eee s ) = AL Ay Agy e by By e s ene),

In the case of a single n-ary form, but in that case only, we have
the theorem :

THEOREM 3. An integral rational invariant of a single n-ary form
18 always homogeneous.

Let. f(xl’ aen xn; al, a2’-..)
be the ground-form, and let I be the invariant. By Theorem 2 we
may write I=I+ I+ - +1,

where I, «- I, are homogeneous invariants. Let the degrees of these
homogeneous invariants in the a’s be «;, -+ a; respectively. Their
weights are all the same as the weight of 1, which we will call A.
If, then, we call the degree of f m, we have, by Theorem 1,

Moty = NNy Moty = NN, += Moy, = NN,

from which, since m > 0, we infer
121=a2= e = 0.

That is, I3, --- I, are of the same degree, and I is homogeneous.

TaeorEM 4. If we have a system of n-ary forms fi, f,, - and
a polynomial ¢ in their coefficients, the equation ¢ = 0 gives a necessary
and sufficient condition for a projective property of the system of loci n
space of n — 1 dimensions,

fi=0, f,=0, ,
when, and only when, ¢ 18 a homogeneous invartant of the system of

Jorms f.
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If ¢ is a homogeneous invariant, its vanishing gives a necessary
and sufficient condition for a geometric property (cf. § 80), and this
property must be a projective property since when we subject the
loci to a non-singular collineation, ¢ is merely multiplied by a nen-
vanishing constant.

On the other hand let ¢ =0 be a necessary and sufficient condi-
tion for a projective property. In order to prove that ¢ is an
invariant (it must be homogeneous by § 80) let a;, a, - be the
coefficients of fj; &y, by, -+ the coefficients of f,, etc.; and suppose
that the linear transformation,

—_ / /
Ty =op®y ot e F O
) e
/ !
z, = + oo+ T
1 . o T a1 3 / ! . 1 ! wr}
carries over f into f] with coefficients af, @} ---; f, into f} with coeffi-
cients 8, &}, ---; etc. The polynomial ¢ formed for the transformed
o 3 12 .
forms is B(aly aby o3 B, By ee s e,

and may, since the a'’s, 8'’s, «-- are polynomials in the a’s, &’s, --- and
the ¢’s, be itself regarded as a polynomial in the a’s, &’s, --- and the

¢'s. Looking at it from this point of view, let us resolve it into its
irreducible factors,

(6) ¢(a:ll’ aé, ...; b:’l’ bé, ...; "‘)E ¢1(a1, az, ...; bl’ b2’ ...; cee cll’ “es c,m)
...... ¢k(a1’ Ay, +-+ bl’ b2’ sy el e cﬂﬂ)_
It is clear that at least one of the factors on the right must con-

tain the ¢’s. Let ¢, be such a factor, and let us arrange it as a poly-
nomial in the ¢’s whose coefficients are polynomials in the a’s, b’s,

ete. Let Y(@y, dgy o5 by, by ooe s o)

be one of these coefficients which is not identically zero and which is
the coefficient of a term in which at least one of the ¢’s has an expo-
nent greater than zero. We can, now, give to the a's, &’s, --- values
which we will denote by A’s, B’s, --- such that neither ¢ nor +
vanish ; and consider a neighborhood IV of the point

(Ali Am ety Bl’ .B2, cees ...)
throughout which
(7) ¢(a1, a2, ey bl’ 62‘ ...I; ...>¢O,
(8) Y@y agy -5 by byy o5 )= 0.
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Let us now restrict the a’s, 8's, --- to the neighborhood N and ask
ourselves under what circumstances we can have ¢; =0. If this
equation is fulfilled, we see from (6) that ¢ vanishes for the trans-
formed loci, while, by (7), it does not vanish for the original loci.
Since, by hypothesis, the vanishing of ¢ gives a necessary and
sufficient condition for a projective property, a transformation (5)
which causes ¢ to vanish when it did not vanish before must be a
singular transformation. That is, if the a’s, 8's, --- are in the neigh-
borhood N, whenever ¢, vanishes the determinant ¢ of (5) vanishes.
Moreover, ¢, does vanish for values of the a’s, 8’s, --- in IV, for if we
assign to the a's, b’s, --- any such values, ¢, becomes a polynomial in
the ¢;’s, which, by (8), is of at least the first degree, and therefore
vanishes for suitably chosen values of the ¢;’s. We can therefore
apply the theorem for more than three variables analogous to Theorem
8, § 76, and infer that ¢, is a factor of the determinant ¢; and conse-
quently, since this determinant is irreducible (Theorem 1, § 61), that
¢, is merely a constant multiple of c.

The reasoning we have just applied to ¢, applies equally to any
of the factors on the right of (6) which are of at least the first degree
in the ¢;’s. Accordingly (6) reduces to the form

(_9) ¢(a’1, ag, e b’l, bé e "')ECAX(% g, , bv 1,2, ey

where y no longer involves the ¢;’s. To determine this polynomial
X, let us assign to the ¢;’s the values 0, 1 which reduce (5) to the
identical transformation. Then the a'’s, 3'’s, --- reduce to the a’s,
b’s ---, while ¢=1; so that from (9) we see that

9{’(“1* Qg -+ 3 bl’ 62 e s "')EX(al’ oy o+ 3 bl’ b:‘l’ ey ...).

Substituting this value of x in (9), we see that ¢ is really an in-
variant.

In order to avoid all misunderstanding, we state here explicitly
that if we have two or more polynomials, ¢;, ¢,, --- in the coefficients
of the forms f;, the equations ¢, =¢,= --- =0 may be a necessary and
sufficient condition for a projective property of the loci f;=0, even
though ¢,, ¢,, --- are not invariants. For instance, a necessa»v and
sufficient condition that the two lines

@12, + ayxy + agzy =0,

bizy + byzy + bgzg =0
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coincide is the vanishing of the three two-rowed determinants of
the matrix ” a a -
; |

a3
by b
none of which is an invariant. Or, again, a necessary and sufficient
condition that a quadric surface break up into two planes, distinct
or coincident, is the vanishing of all the three-rowed determinants
of its matrix, and these are not invariants. In this case we can also
express the condition in question by the identical vanishing of a
certain contravariant, namely, the adjoint of the quadratic form;
and this— a projective relation expressed by the identical vanish-
ing of a covariant or contravariant —is typical of what we shall
usually have when a single equation ¢ =0 is not sufficient to express
the condition. There are, however, cases where the condition is given
by the vanishing of two or more invariants; cf. Exercise 6, § 90.

EXERCISES

1. Prove that if in Theorem 1 our system consists not merely of the ground-
forms (1) but also of certain points

(yl’ e yn), (zl, e zn)’ weey
and we have not an invariant 7 but a covariant of weight A, and of degree a in the
a’s, B in the &’s, etc., n in the y’s, { in the 2's, ete., then
mio -+ m2,3+ ce=nd+n+ & eeel
2. Extend Theorem 2 to the case of covariants. Does Theorem 3 admit of
such extension ?
3. Extend Theorem 4 to the case of covariants.

4. Show that an integral rational invariant of a single binary form of odd
degree must be of even degree.

5. Show that the weight of an integral rational invariant of a single binary
form can never be smaller than the degree of the form.

6. Express the condition that (a) two lines, and (b) two planes coincide, in
the form of the identical vanishing of a covariant or contravariant.

7. Prove that a polynomial in the coefficients of a system of n-ary forms which
is homogeneous in the coefficients of each form taken by themselves, and which is
unchanged when the forms are subjected to any linear transformation of determi-
nant 4 1, is an invariant of the system of forms.

8. Generalize Exercise 7 to the case of covariants.
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82. Resultants and Discriminants of Binary Forms. If we inter-
pret (zy, z,) as homogeneous codrdinates in one dimension, the equa-
tions obtained by equating the two binary forms

J(@1.29) = a2} + a2 1y + oo + @, 23,
(2 2y) =gzl + by 2P 1wy + - + b2

to zero represent sets of points on a line. The points given by the
equation f= 0 are the points at which the linear factors of f vanish,
and the points corresponding to ¢ =0 are the points at which the
linear factors of ¢ vanish. Since two binary linear forms obviously
vanish at the same point when, and only when, these linear forms are
proportional, it follows that the loci of the two equations f=0,¢ =0
have a point in common when, and only when, f and ¢ have a common
factor other than a constant. Hence, by § 72, a necessary and suffi-
cient condition that the two loct f=0, ¢ =0 have a point in common 13
that the resultant R of the binary forms f, ¢ vanish.

The property of these two loci having a point in common is,
however, a projective property. Thus, by Theorem 4, § 81,

THEOREM 1.  The resultant of two binary forms is a homogeneous

invariant of this pair of forms.

From the determinant form of R given in § 68 it is clear that A
is of degree m in the a’s and of degree n» in the &’s. Hence by
formula (2), § 81, \ = mn.

THEOREM 2. The wetght of the resultant of two binary forms of
degrees m and n 18 mn.

The following geometrical problem will lead us to an important
invariant of a single binary form.

Let us resolve the form f, which we assume not to be identically
zero, into its linear factors (cf. formula (4), § 65),

(@ 29) = (o7 — 012,) (g7 — 043, -+ (03 %y— 0,)-

The equation f= 0 represents n distinct points provided no two of
these linear factors are proportional to each other. If, however, two
of these factors are proportional, we say that f has a multiple linear
factor, and in this case two or more of the » points represented by
the equation f= 0 coincide. Let us inquire under what conditions
this will occur.
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-

Form the partial derivatives :

a_ = of (g — 0y) -+ ()2 — 0, 7p)
+ of (o2 — ayzy) (i) — hzy) --- (el — e2zy)
1 + o e (efmy —emy) o (g — o 2y),
of — o) (effzy— dhzy) - (i) — hzy)
P 1 (O — %y 17— €Ty
— oy (o zy — ey z) (g my — apzy) - (o2 — ayzy)

= e = e (T — @) - (g — oy 2y).

From these formule we see that any multiple linear factor of
fis a factor of both of these partial derivatives.

Conversely, if these partial derivatives have a common linear
factor, it must be a factor of f on account of the formula,

a formula which follows immediately from the expressions,
J
5—;—; =na@; 1+ (n— Vazi 2z, + - + a,237,

@ af

7:6; =a.2} 14 2 ay27 22, + -+ + nazyll
But, by (1), no linear factor of f can be a factor of 3f/dz, unless

it is a multiple factor of f. Thus we have proved

THEEOREM 3. A necessary and sufficient condition that f have a
multiple linear factor is that the resultant of df/dz, and 9f/dx, vanish.

DEFINITION. The resultant of 9f/dz; and 3f/dx, is called the dis-
criminant of f.

From (2) we see that the discriminant of f may be written as a
determinant of order 27 — 2 whose elements, so far as they are not
zero, are numerical multiples of the coefficients ay, ay, :-- @, of f.
That is, this discriminant is a polynomial in the a’s. Moreover, its
vanishing gives a necessary and sufficient condition that the locus
f=0have a projective property (namely, that two points of this
locus coincide). Hence, by Theorem 4, § 81, this discriminant is a

#* This is merely Euler's Theorem for Homogeneous Functions.
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homogeneous invariant, whose degree and weight are readily deter-
mined. Thus we get the theorem :

TueoreM 4. The discriminant of a binary form of the nth
degree is a homogeneous invariant of this form of degree 2(n —1) and
of weight n(n — 1).

A slight modification in the definition of the discriminant is often
desirable. Let us write the binary form f, not in the above form
where the coefficients are ag @, ---@, but, by the introduction of
binomial coefficients, in the form )

- n(n—1 ~2, -1 n
Sy 25) = g2 + nay2i iz + _—2,—‘2“2‘”? 23+ -+ N Ty TG+ A

Then we may write

— —92
L3S gt + (n = Dty A= D) g a4

=T
=0yt
n 0z, 0

af

1 - -
== = a4 (n— Va2 22, +
n oz,

e + an_lxg‘l,
(n—1)(n—2)
21

We may then define the discriminant of f as the resultant of the two
binary forms just written. We thus get for the discriminant a
polynomial in the a’s which differs from the discriminant as above
defined only by a numerical factor, and for which Theorems 8 and 4
obviously still hold. If this last definition be applied to the case of
a binary quadratic form, it will be seen that it leads us precisely to
what we called the discriminant of this quadratic form in the earlier
chapters of this book.

- M-
agry 323 + - + axyl

EXERCISES

1. Prove that the resultant of two binary forms of degrees n and m respec-
tively is irreducible.

(Sucersrion. When b, =0, R is equal to @, times the resultant of two binary
forms of degrees n and m — 1 respectively. Show that if this last resultant is irredu-
cible, R is also irreducible, and use the method of induction, starting with the case
n=1, m=1]

2. Prove by the methods of this chapter that the bordered determinants of
Chapter XII are invariants of weight 2.

. 3. The following account of Bézout’s method of elimination is sometimes
given:

If fand ¢ are polynomials in z which are both of degree n, the expression

F(@) () — d(2).S()
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vanishes, independently of y, for a value of z for which both fand ¢ vanish, and
is divisible by z — y, since it is zero for zx =y. Hence

Fo,y) = J(=) P @) — $(2) /(%)
( —
is a polynomial of degree(n—1) in z which vanishes for all values of y when z is

a common root of f and ¢. Arranging F according to the powers of y, we have
the expression

F=cy+ cuz+ coa?+ o 4y 2ot
+y(Cro + T+ €%+ wr + )y zY)
+y? (c‘m-}- 0011 + L,oxe o tz . 1x”-1)
+ ¢ . -
+ y"- 1(0,, Lot Cat, 1% + Cuc, 2% + v + Cug, oy 271).

If this function is to vanish independently of y, the coefficient of each power
of y must be zero. This gives n equations between which we can eliminate the n
quantities, 1 z, 2% ... z»~1, obtaining the resultant in the form of the determinant,

€0 Copt Com-1

¢ ‘n*t CLmm

. . -

Cn-1,0 Cn-1,1 """ Cn-\,n-1

With the help of the auxiliary function I we have, in this case, reduced the
resultant to a determinant of the nth order, while that obtained by the method of
Sylvester was of order 2 n.

Criticise this treatment and make it rigorous, applying it, in particular, to the
case of homogeneous variables.

4. If fand ¢ are polynomials in (z, ) of degrees n and m vespectively and
are relatively prime, prove that the curves £ =0, ¢ = 0 cannot have more than mn
points of intersection.

[Stecesrion. Show first that the codrdinate axescan be turned in such a way that
no two points of intersection have the same abscissa, and that the equations of the two
curves are of degrees n and m respectively, after the transformation, tn y alone. Then
eliminate y between the two equations by Sylvester’s dyalitic method. ]

5. Prove that every integral rational invariant of the binary cubic is a con-
stant multiple of a power of the discriminant.
[Sucersrron. Show that if the diseriminant is not zero, every binary cubic can

be reduced by a nop-singular linear tra.nsformamon to the normal form %} — 3. Then
agin §48.]




CHAPTER XVIII
SYMMETRIC POLYNOMIALS

83. Fundamental Conceptions. 2= and § Functions.

DerINITION 1. A polynomial F(z,, ---z,) is said to be symmetric
if it is unchanged by any interchange of the variables (z,, --- z,).

It is not necessary, however, to consider all the possible permuta-
tions of the variables in order to show that a polynomial is sym-
metric. If we can show that it is unchanged by the interchange of
every pair of the variables, this is sufficient, for any arrangement
(%4 2y -+ ;) may be obtained from (zy, z, --- 2,) by interchanging
the #’s in pairs. Thus, if a+ 1, interchange z, with 2;; then in-
terchange the second letter in the arrangement thus obtained with
Z,; and so on. Hence we have the following theorem :

THEOREM 1. A necessary and sufficient condition for a poly-
nomial to be symmetric s that it be unchanged by every interchange of
two variables.

A special class of symmetric polynomials of much importance are
the =-functions, defined as follows:

DEFINITION 2. 2 before any term means the sum of this term and
of all the similar ones obtained from it by interchanging the subscripts.
Thus, for example,
2ot =2t + 25 + - + 25,
Sof2f = 2o + 2j2f + - + 252f
R R B O
+ x:xf-*' 1‘:@5 + -+ :z:;’:xﬁ_l,
Satzl = 2wy + 252y + - + 252
+ zyzg + -+ + 2575
+. . . .
+ 25,25,
It is clearly immaterial in what order the exponents a, 8, .- are
written. Thus, Zai28zy = Safayas.
240
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If we consider any term of a symmetric polynomial, it is evident
that the polynomial must contain all the terms obtained from this
one by interchanging the z’s. This aggregate of terms is merely a
constant multiple of one of the 2’s just defined. In the same way it
is clear that all the other terms of the symmetric polynomial must
arrange themselves in groups each of which is a constant multiple
of a . That is,

THEOREM 2. Hvery symmetric polynomial is a linear combination
with constant coefficients of a certain number of =’s.

Among these =’s the simplest are the sums of powers of the #'s.
For the sake of brevity the notation is used :

S=32b=ak+ak+ .- +2F (k=1,2,-..).
It is sometimes convenient to write Sy=mn. '

THEOREM 3. Any symmetric polynomial in the z’s can be ex-
pressed as a polynomial in a certain number of the S’s.

Since every symmetric polynomial is a linear combination of a
certain number of Z’s, in order to prove our theorem we have only
to show that every = can be expressed as a polynomial in the &’s.
Now S,=a2; +254+ - + 25,

’ Sp=25+ 25+ - + 25
Hence, if ¢,
S WSg= 2yt 425 P + - 4 2P 4 252 4 252l + oo
= Sop + 2 2525,

From this we get the formula:

1) ot = 8.8 — S.ys (e B).

If =B, we have

82 =a2* 4 22 + ... 422 + 22525 + 22505 +
=8, + 2 Zagas.
Hence
(2) S atwy =4 (8% — 8,0)-

Similarly, by multiplying 222§ by §,, we get the following
formule where the three integers a, 8, v are supposed to be distinct:
(3) Ex‘{xﬂzg = S SﬂS —_ Sm+ﬁSy - Sn-+ySﬁ —_ Sﬂ_,_.y S,,_ + 2 atB+>
€)) Saszgry =3 (828, — S5 Sy — 28,4y S+ 28504y)s
%) 3 afwgrs =3 (88 — 88,8, +28;,).

R
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The proof indicated in these two special cases may be extended
to the general case as follows:

If we multiply together the two symmetric polynomials
(6) Ex;zg ces Tfy S,\ = in‘, (k < n)
we get terms of various sorts which are readily seen to be all con-
tained in one or the other of the following polynomials, each of these
polynomials being actually represented :
(1) Sagah - af, Tafaf™ - afy oo Tagf e 2t Tatah - e
Consequently, since the product of the two polynomials (6) is sym-
metric, it must have the form

clEx;”‘xﬂ A S LT CTPPPPILD + ¢ a5z -
+ Cpyy 23] - Thry

where ¢;, --+ ¢, are positive integers.

Transposing, we may write

1
B = 8Lzt A +A
3 z5h ---xi‘ﬂ:c [ZBaizf - 2} - 22} — ;22 ef - 2
k+1

- BHA LK e ieieann — B ... A
¢y 2] x§ G2xial - ZEt].

Hence, if our theorem is true for =zf --- 2, it is also true for
S22 .-z}, But we know it is true for ¥=1 (by definition of the
§’s), hence it is true for k=2, hence for £=3, and so on. Thus

our theorem is completely proved.

84. Elementary Symmetric Functions. The notation Zz%f --- 2,
may be used to represent any 2 in n variables. IfB=qy=---=
v =0, this becomes 2z or S,; if y=...=v=0, it becomes S5l
and so on.

Let us now consider Za{zf ... 2 where &, B, -+- », are all 0 or 1.
The following n cases arise :

u=1, ,8='y=~-=v=0, 2.’2:1,

(l=/8=1, y= - =v= O, 2x1272,

o= ==/L=1, 1J=O, Exlxz--- Tp—1s

a=ﬁ= =v=1, x1x2 e Xy
The extreme case a=fB= .- =v=0 is of no interest. We will

represent these n symmetric polynomials by py, py, -+ pa, Tespectively.,
They are called the elementary symmetric functions.
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THEOREM 1. Any symmetric polynomial in the z’'s may be ex-
pressed as a polynomial in the p’s.

Since any symmetric polynomial in the z’s may be expressed as a
polynomial in the &’s, it is sufficient to show that every & may be
expressed as a polynomial in the p’s.

Let us introduce a new variable  and consider the polynomial

J (@5 2.2 - z)=(2— 2y M@ —79) -+ (2 — 2)

Exn_plxn—l +p2xn—2 — e 4 (_ 1>n >
Using the factored form of f, we may write
9
A S S
z T—z T—2, x——xn

Since f vanishes identically when z = z,, we may write

| F=—at) = pa =) + -
Accordingly,

T =t (o= )t (= it R ey

T — x;
g_zf =na""1 + (8 — npy)2" 2 + (S — pyS1+ npp)2" 2 + -
On the other hand, we have

g'_i‘ =n2" 1 —(n—1p;2" 2+ (n— 2)pya”3 —

Hence, equating the coefficients of like powers of z in these twa
expressions, we have

S —npy=—(n—1)py,
— S+ ”P‘z =(n— 2)?2’

911— P1Sn-2 +P2‘gn—3 + (=1 mpu == 1)Y"puy
or

(1) S P1S +~P2—-O
‘Sﬂ—l Pl‘gﬂ-z +P2‘gn—a <+ (=1)"(n—1)p,, =0.

Now consider the identities
x:‘ _plx:‘_l +pnm¢7" 2 ... +("" 1)” ,‘EO (i=]_, 2, “es n)'
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Multiplying these identities by 24, ... 2k respectively and adding

the results, we have

(2) Sy — 018+ PoSk—g— - H(=1YPuSia=0  (k=n,n+1,...).
Formule (1) and (2) are known as Newton’s Formule. By

means of them we can compute in succession the values of S, .S, -
as polynomials in the p’s:

S1=p;,
Sy = pt — 2p,,
(3) Sy = p§ — 3p1py + 3py

Thus our theorem is proved.

It will be noted that Newton’s formulse (1) cannot be obtained
from (2) by giving to % values less than n. The necessity for two
different sets of formule may, however, be avoided by introducing
the notation Pt =Prig = = 0.

Then all of Newton’s formule may be included in the following form:
(#) Se—p18p g+ + (= 1) S+ (= 1) kp =0 (k=1, 2, )

Using this notation, we see that the explicit formule (3) for
expressing the &’s in terms of the p’s are wholly independent of the
number # of the z’s.

Since the formule referred to in the last section for expressing the
2’s in terms of the &’s are also independent of n, we have established

THEOREM 2. If we introduce the notation p, = p,.,= - =0 and
use Newton’s Formule in the form (4), the formula for expressing
any X as a polynomial in the p's is independent of the number n of the z's.

When we have & polynomials in n variables

Fi@y - 2), Fa(@ps - T}y - S gy Ty
we say that there exists a rational relation between them when, and
only when, a polynomial in % variables
F(zl’ zk)
exists which is not identically zero, but which becomes identically

zero as a polynomial in the 2’s when each z is replaced by the
corresponding f, F(f, - f)=0.
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THEOREM 3. There exists no rational relation between the elemen-
tary symmetric functions in n variables py, -+ p,.

For let F(zy, --- 2,) be any polynomial in » variables which is not
identically zero, and let (a,, --- a,) be a point at which this polynomial
does not vanish. Determine (2, --- z,) as the roots of the equation

2" — 2"l 4 a2 — - + (= 1), =0.
For these values of the z’s, the p’s have the values ay, .- a,, and
therefore F(py, --- p,) does not vanish for these z’s, and is con-
sequently mnot identically zero as a polynomial in the zs. Thus
our theorem is proved.

CoroLLARY. There is only ome way in which a symmetric poly-
nomial in (zy, --- x,) can be expressed as a polynomial in the elementary
symmetric functions py, -+ Pn.

For if f is a symmetric polynomial,and if we had two expressions
for it —

? S(@p o 2) = dy( Py - Pa)s
S(@y o 22) = o Py - Pads

then by subtracting these identities from one another we should have
as an identity in the 2’s,

¢1(P1s + pu) — PPy - Pa) =0
This, however, would give us a rational relation between the p's.

unless by(20 -+ 2,) = b2y, 2u)

Thus we see that the two expressions for f are really the same.

EXERCISES

1. Obtain the expressions for the following symmetric polynomials in terms of
the elementary symmetric functions:

S xtay, Sl PEET
2. Prove that every symumetric polynomial in (21,---2a) can be expressed in
one, and only oue, way as a polynomial in Sy, -+ Sn.

85. The Weights and Degrees of Symmetric Polynomials. We
will attach to each of the elementary symmetric functions p; a weight
equal to its subscript, cf. § 79. _

TugorEM 1. A homogeneous symmetric polynomial of degree m n
the «'s, when expressed in terms of the p’s, 18 isobaric of weight m.



246 INTRODUCTION TO HIGHER ALGEBRA

Let
™ f(@y 2y - )= Py Po * Pa)

be such a polynomial. Since p, is a homogeneous polynomial of the
first degree in the z’s, p, of the second, etc., any term of ¢, when
written in the z's, must be a homogeneous polynomial of degree equal
to the original weight of the term. Thus, for example, the term
6 p2p,p} whose weight is 18, when written in the 2s will be a homo-
geneous polynomial of degree 13. Accordingly an isobaric group of
terms when expressed in terms of the z’s will, since by Theorem 3,
§ 84, it cannot reduce identically to zevo, be homogeneous of the
same degree as its original weight. If then ¢ were not isobarie,
f would not be homogeneous, and our theorem is proved.

COROLLARY. If f is non-homogeneous and of the mth degree, ¢ is
non-isobaric and of weight m.

THEOREM 2. A symmetric polynomial in (x4, - z,), when written
in terms of the elementary symmetric functions pq, - p,, will be of the
same degree in the p’s as it was at first in any one of the x’s.

Let f be the symmetric polynomial, and write

J(@p 25 - 2,) =S(Pys Pos -+ Pa)

and suppose f is of degree m in z; (and therefore, on account of the
symmetry, in any one of the 2’s), and that ¢ is of degree p in the p’s.
We wish to prove that m = u. Since the p’s are of the first degree
in z,, it is clear that m=Zu.

If ¢ is non-homogeneous, we can break it up into the sum of a
number of homogeneous polynomials by grouping together all the
terms of like degree. Each of these homogeneous polynomials in
the p’s can be expressed (by substituting for the p’s their values in
terms of the 2’s) as a symmetric polynomial in the z’s. If our theo-
rem were established in the case in which the polynomial in the p's
is homogeneous, its truth in the general case would then follow at
once.

Let us then assume that ¢ is a homogeneous polynomial. The
theorem is obviously true when n=1, since then p,= —2,. It will
therefore be completely proved by the method of mathematical in-
duction if, assuming it to hold when the number of z's is 1, 2, --- n—1,
we car. rrove that it holds when the number of z’s is n.
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For this purpose let us first assume that p, is not a factor of every
term of ¢. Then ¢(py, -+ p,_;» 0) is not identically zero but is still
a homogeneous polynomial of degree wu in (py, -+ p,—y). Now let
z,=0. This makes p, =0, and gives the identity

(2) f(xl’ s xn—p O)E ¢(p{ sec p:z-—-p O)a

where pj, --- p,_; are the elementary symmetric functions of
(wy, -+ @y)y and f(zyy - 2,_, 0) is a symmetric polynomial of
degree m; in z;, where m;<m. From the assumption that our
theorem holds when the number of 2’s is n—1, we infer from (2)
that w=m; <m; and since we saw above that u cannot be less than
m, we infer that u=m, as was to be proved.

There remains merely the case to be considered in which p, is a

factor of every term of ¢. ILet pf be the highest power of p, which
occurs as a factor in ¢. Then

qb(Pl’ “* Pa) Epﬁfbl(pl’ ot Pak

where ¢, is a polynomial of degree uw—%. Putting in for the p’s
their values in terms of the z's, we get

(3) Sy - @) =afef - 2 f1(2g o0 Tk
where
(4) Jil@y - 2)=¢i(pys - pa)-

From (3) we see that f; is of degree m — % in z;, and from (4), since
¢, doues not contain p, as a factor, that the degrees of f; in 2z, and
of ¢, in the p’s are equal,

® p q m—Tt=p—k
From which we see that m = u, as was to be proved.

The two theorems of this section are not only of theoretical
importance, they may also be put to the direct practical use of
facilitating the computation of the values of symmetric polynomials
in terms of the p’s.

In order to illustrate this, let us consider the symmetric function

J(zy, - z,) =2l z,74.

Since f is homogeneous of the fourth degree in the 2’s, it will, by
Theorem 1, be isobaric of weight 4 in the p’s. Since it ig of the
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second degree in z;, it will, by Theorem 2, be of the second degree in
the p’s. Hence
(%) Zatyry = Apips + Bpi+ Cpy

where 4, B, and C are independent of the number n (Theorem 2,
§ 84), and may be determined by the ordinary method of unde-
termined coefficients.

Take n = 38,50 that p,=0. Letting z; =0, z,=2;=1, we have
pi=2, p;=1, p;=0. Substituting these values in (5), we find B=0.

Letting ;= — 1, zy=23=1, we have p; =1, py = —1, py= -1,
which gives 4 =1.
Now let n=4 =z, =2,=2,=1.

From this we find p; =4, p, =06, p;=4, p,=1.
Substituting this in (5) gives ('= —4. Hence
2aizyzy = p1 Py — 4Py

EXERCISES
1. The symmetric function

F (21, - @n) = Satxems + Saird + Sw1zezsts

is homogeneous of the fourth degree in the z’s, and is of the second degree in 21;
hence, when written in terms of the p’s, it will have the same form, Apips + Bp}
+ Cpa, as the above example. Compute the values of 4, B, and C.

2. 1f f (21, x2y 3) = (21— 22) (21 — 73)X (%2 — 235)?, show that
S (@1, %2, 78) = — 27 p§ — 4 p§ + 18 p1paps — 4 pips + pivd.

86. The Resultant and the Discriminant of Two Polynomials in
One Variable. Let
Sf@)=2"+ a2 + az" 4+ - +a,

=(z —a)z— @) -+ (T — o),
P(@)=2"+ b + bt + - 4+ D,
=(z— Bz —RB) -+ (— Bn),

be two polynomials in z, and consider the product of the mn factors

(@ — By)ey — By) = (2, —Bn)
1) (g = By) (g — By) -+ (g —Bn)

(an‘ . /31)(an'_ /32) (an_ﬁm)'
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This product vanishes when, and only when, at least one of the «’s
is equal to one of the 8's. Its vanishing therefore gives a necessary
and sufficient condition that f and ¢ have a common factor. More-
over, the product (1), being a symmetrical polynomial in the «’s and
also in the B’s, can be expressed as a polynomial in the elementary
symmetric functions of the «’s and 8's, and therefore as a polynomial
in the a's and &’s. This will be still more evident if we notice that
the product (1) may be written

b(er) pag) -+ plazn)-

In this form it is a symmetric polynomial in the a«’s whose co-
efficients are polynomials in the &’s, and it remains merely to bring
in the a’s in place of the o’s.

We thus see that the product (1) may be expressed as a poly-
nomial F(ay, -+ a,; by, --- b,,) in the a’s and &’s whose vanishing gives
a necessary and sufficient condition that f and ¢ have a common
factor. In §68 we also found a polynomial in the a’s and &’s whose
vanishing gives a mnecessary and sufficient condition that f and ¢
have a common factor, namely the resultant B of f and ¢.

We will now identify these two polynomials by means of the
following theorem :

THEOREM 1. The product (1) differs from the resultant R of f
and ¢ only by a constant factor, and the resultant 18 an irreducible
polynomial in the a’s and b's.

In order to prove this theorem we will first show that this prod-
uct (1), which we will call F(ay, ---a,; by, - b,), is irreducible.
This may be done as follows: Suppose F is reducible, and let
F(ay - ays by bp)=Fy(ag - 5 by oo by) Foay, -+ a5 by, -2 by),
where F, and F, are polynomials neither of which is a constant.
Then, since the a’s and &’s are symmetric polynomials in the «'s and
B’s, Fy and F, may be expressed.as symmetric polynomials ¢; and ¢
in the «’s and B’s, and we may write

¢y, - @5 By - Bm) by - @5 By -+ Bim)
(2 — By) (&g — By) -+ (&g — Bm)
(g — By) (g — By) - (g — Bm)
(o — B2 (o — B2) (o = B
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The factors on the right-hand side of this identity being irreducible,
we see that ¢; must be composed of some of these binomial factors
and ¢, of the others. This, however, is impossible, since neither #
nor ¢, would be symmetric. Hence F is irreducible.

Now, since =0 is a necessary and sufficient condition for f(z)
and ¢(z) to have a common factor, and R=0 is the same, any set of
values of the a’s and &’s which make #=0 will also make R=0. Hence
by the theorem for n + m variables analogous to Theorem 7, § 76, F is
a factor of B. Also, since ¥ is a symmetric polynomial in the s
and B's of degree m in each of the «’s and n in each of the Bs, by
Theorem 2, § 85, it must be of degree m in the a’s and n in the 3.
But R is of degree not greater than m in the a’s and = in the 8’s, as is
at once obvious from a glance at the determinant in § 68. Hence 7,
being a factor of R, and of degree not lower than R, can differ from
it only by a constant factor. Thus our theorem is proved.

Let us turn now to the question: Under what conditions does
the polynomial f(z) have a multiple linear factor? Using the same
notation as above, we see that the vanishing of the product

(o — ) (g — ) - (o) — @)

(=) (=) | pla
(un—l - “11)

is a necessary and sufficient condition for this. P is not symmetric
in the o’s, since an interchange of two subscripts changes P into — P.
If, however, we consider P? in place of P, we have a symmetric
polynominal, which can therefore be expressed as a polynomial in
the a’s,

[P(ay, - a,)]2= F(ay, - a,)-

Moreover, F=0 is also a necessary and sufficient condition that f(x)
have a multiple linear factor.

On the other hand, it is easily seen that f(z) has a multiple linear
factor when and only when f(z) and f'(z) have a common linear
factor. A necessary and sufficient condition for f(=) to have a mul-
tiple linear factor is therefore the vanishing of the resultant of j{.,
and f'(z). This resultant we will call the discriminant A of f(=).
It is obviously a polynomial in the coefficients of f.
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TueoreM 2. The polynomials F and A differ only by a constant
Jactor, and are irreducible.

The proof of this theorem is similar to the proof of Theorem 1,
and is left to the reader.

EXERCISES
1. Compute by the use of symmetric functions the product (1) for the two
volynomials 2+ a1z + az,
2 + b1z + by,
and compare the result with the resultant obtained in determinant form.
2. Verify Theorem 2 by comparing the result of Exercise 2, § 85, with the
discriminant in determinant form of the polynomial

23 + a2? + agx + ag.



CHAPTER XIX
POLYNOMIALS SYMMETRIC IN PAIRS OF VARIABLES

87. Fundamental Conceptions. 2 and § Functions. The variables
(2, - ,) which we used in the last chapter may be regarded, if we
wish, not as the coérdinates of a point in space of n dimensions, but
rather as the codrdinates of #» points on a line. In fact this is the
interpretation which is naturally suggested to us by the ordinary
applications of the theory of symmetric functions (cf. §86). Looked
at from this point of view, it is natural to generalize the conception
of symmetric functions by considering » points in a plane,

1) (@1 Y1) (@ Ya)s -+ (%> Yn)-
DEFINITION. A polynomial,

B2y, Y15 T Ya5 " Tns Yn)

in the codrdinates of the points (1) s said to be a symmetric polynomial
in these pairs of variables if it is unchanged by every interchange of
these pairs of variables.

As in the case of points on a line, we see that it is not necessary
to consider all the possible permutations of the subscripts in order to
show that a polynomial # is symmetric. It is sufficient to show that
F is unchanged by the interchange of every pair of the points (1).

We will introduce the £ notation here precisely as in the case of
single variables. Thus, for example,

zxi‘xyfl =apyh + x;lygl 4+ o+ x:lyﬁl,
Exily%x;z‘q/zz = xity?x‘z‘zyga + x;xygxxgzygz + . .
and so on.
As in the case of single variables, it is clear that the order in
which the pairs of exponents «;, By; @, B,; ... are written is imma-
terial ; and also that every symmetric polynomial in the pairs of variables

(1) is a linear combination of a certain number of 's.
252



POLYNOMIALS SYMMETRIC IN PAIRS OF VARIABLES 253

We introduce the notation

. . k=0,1, ...
Su=Zalyi =2ly; +25ys+ - +oig (z—o’ 1 )
=0,1, ..
THEOREM. Any symmetric polynomial F(Zy Yy 3 «++ Tny Yn) may
be expressed as a polynomial in these Ss.

The proof of this theorem is exactly like that of Theorem 3, § 88,
and is left to the reader.

88. Elementary Symmetric Functions of Pairs of Variables.
Every 2 function of n pairs of variables may, by giving to the «’s
and B’s suitable values, be written in the form

(1) Exilyfxx;zyge oo qgn 75:..

DEeFINITION. The function (1) i8 said to be an elementary sym-
metric function of the pairs of variables (zy, y¥,), -+ (Zns Yn) when, and

only when, w+B=00r1 (i=1,2, - n),
but not all the «’s and B8 are zero.

We shall adopt the following notation for these elementary sym.
metric functions : =32, Pu=2 9

Doy = b3 1%y Pu=s 3 Z1Yas Pp= > Y1Ya

. . . . . . . - .

. . . . . .

Prg =TTy oo Ly =+ - pi,n—izle"'xﬁy#l“'ym e Pon=Y1Ys ot Yne

It is clear that there are a finite number, 3 n (» + 8), of p,’s, but
an infinite number of §,s.

We will attach to each p a weight with regard to the z’s equal to its
fivst subscript and a weight with regard to the y’s equal to its second
subscript. When we speak simply of the weight of p,; we will mean
its total weight, that is, the sum of its subscripts.

THEOREM. Any symmetric polynomial F(zy, yy3 =+ Zp Yn) Mmay be
expressed as a polynomial in the p;’s.

Since, by the theorem in § 87, any such polynomial may be
expressed as a polynomial in the §,s, it is sufficient to show that
the §,’s may be expressed as polynomials in the p,’s.

Let E1E Azy + pyy, Ey=hzy+ pyy - =020+ 1Y
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and form the elementary symmetric functions of these £’s :
m =28 =AZe + pZy, = py + WPg»
my =288, =2(\e; + pyy) A2y + 1Y)
SN2z + M2z, + 122y Y,
=Npgy + Mipy; + £ Pogs
7= 2§ £, E3 = N pgy + Nupyy + MiPpoy + 13,
Ty =E 6y Ea =N Py + N TPy 1+ N TPy g+ o+ WP,
Also let o, =28 (k=1,2, -
Let « and B be positive integers, or zero, but not both zero.
Then 0,4, =2 E3F=AHBTo3He L A=t~ 1uZ s +h-1y, 4 ..
E)\a+ﬁ,5’a+ﬂ’0 + 7\-”‘8"1#8”;3-1.1"' cee
But by Theorem 1, § 84, we may write
Gars = By T e T
where F is a polynomial. Hence
AP g o AP LS gy o =T Py o Pow Mo B),

where ¥ is a polynomial. Regarding this as an identity in (A, u)
and equating the coefficients of the terms containing A*uf, we get an
identity in the ’s and y’s,

Sas = P (P19 *+* Pon)s

where ® is a polynomial in the p’s. Thus our theorem is proved.

Theorem 3, § 84, does not hold in the case of pairs of variables,
as relations between the }n(n+ 38) p;’s do exist; for example, if
n = 2, the polynomial

4poy Pon — Poo Pl — PhoPoz + ProP1iPor — Ph

vanishes identically when the p’s are replaced by their values in
terms of the #’s. It does not vanish identically when n = 3.

In view of the remark just made, it is clear that the represen-
tations of polynomials in pairs of variables in terms of the p;’s will
not be unique.

For further information concerning the subjects treated in this
section, the reader may consult Netto’s Algebra, Vol. 2, p. 63.

[P p——
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EXERCISES

1. Prove that a polynomial symmetric in the pairs of variables (z; %) and
which is homogeneous in the «’s alone of degree n and in the 3’ alone of degree m
can be expressed as a polynomial in the py’s isobaric of weight n with regard to
the a’s, and m with regard to the y’s.

2. Express the symmetric polynomial

= ziyays
in terms of the p;’s by the method of undetermined coefficients, making use of
Exercise 1.

3. A polynomial in (z1, y1, 215 22, Y2, 223 =+ Zny Yu, 2u) Which is unchanged by
every interchange of the subseripts is called a symmetric polynomial in the «
points (2 i, 2:)-

Extend the results of this section and the last to polynomials of this sort.

89. Binary Symmetric Functions. The pairs of variables (z;, ¥,),
-+« (%, y,) may be regarded as the homogeneous codrdinates of =
points on a line as well as the non-homogeneous codrdinates of n
points in a plane. It will then be natural to consider only sym-
metric polynomials which are homogeneous in each pair of variables
alone. Such polynomials we will call binary symmetric functions.
Most of the p;’s of the last section are thus excluded. The last
n+ 1 of them (Pug Pu-1,10 " Pon)» however, are homogeneous of
the first degree in each pair of variables alone. We will call them
the elementary binary symmetric functions.

THEOREM 1. Any binary symmetric function in (24, Y13 == Tpy Yn)
can be expressed as a polynomial en (Prgs Puy, 1 =+ Pon)-

If we break up our binary symmetric function into X’s, it is clear
that each of these 2’s will itself be a binary symmetric function, or,
as we will say for brevity, a binary =. It is therefore sufficient to
prove that our theorem is true for every binary =. The general
binary = may be written

= apyhageyle - zonyhn (g 2= - Z o),

where, if we denote by m the degree of this 2 in any one of the pairs
of variables,

m=0€1+ﬁ1= 0(2+,82= =aﬂ+Bn-
Let us assume for the moment that none of the y’s are zero, and let
}{1=?_1&){2=Eg Tt 4l Za

= E‘.

Y1 Ys
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Now consider the elementary symmetric functions of these X’s:

Pl = EXI ='p———1' n-l,
Pon
P,=% X, X, =Pans
Pon
P,=XX, - X, =Lmn,
We may write Pon
) 010810298 ... Bn
(1) ZERTYY I s Xe X . Xo= O(Py - Py),
Pon

where, since we have assumed o; Z 0y 2 -+ Za,, P is a polynomial

of degree a, in the P’s (Theorem 2, § 85). Hence we may write

2) B(Py, - Py)= ¢(P0n~101.;:3, e Py
07

where ¢ is a homogeneous polynomial of degree ;.

We thus get from (1) and (2)
3) Sapyh - 2y, =P (Pow Pria-v + Prok
an equation which holds except when one of the y’s is zero. Since
each side of (3) can be regarded as a polynomial in the z’s and y's,
we infer, by Theorem 5, § 2, that this is an identity, and our theorem
is proved.

By Theorem 1, § 85, @ is isobaric of weight &, + @+ - +a, in
the P’s. Hence 2 afiyh --- 2;myh*, when expressed in terms of these
(n41) p;/’s, is isobaric of weight «; + ay+ -+ + &, provided we count
the weight of the p,’s with regard to the 2’s. Passing back now to
an aggregate of a number of such 2’s, we get

THEOREM 2. If a binary symmetric function is homogeneous in
the n 2’'s (or y’s) of degree k, it will, when expressed in terms of
Pagy Prq,1 " Powr b€ 180baric of weight k with regard to the 2’s (or y's).

We have seen in the proof of Theorem 1 that the polynomial ¢ in
(8) is a homogeneous polynomial of degree «; in the p’s; so that
Spmy Pt ... 22 y P i3 a homogeneous polynomial of degree a;+ 3,
=m in the p’s. Hence

THEOREM 3. Any binary symmetric function of degree m in each
pair of variables will, when written in terms of PupPy_1 1 = Py be a
homogeneous polynomial of degree m in these p’s.
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EXERCISES

1. Prove that no rational relation exists between puo, --- pos, and hence that a
nary symmetric function can be expressed as a polynomial in them in only one
ay. .

2. By a ternary symmetric function is meant a symmetric polynomial in n
ints (z; yi 2;) which is homogeneous in the cosrdinates of each point.

Extend the results of this section to ternary symmetric functions. Cf. Exer-
se 3, § 88.

90. Resultants and Discriminants of Binary Forms. It is the
bject of the present section to show how the subject of the re-
1ltants and diseriminants of binary forms may be approached from
ne point of view of symmetric functions.

Let Ay ) = a2l + a2t 1z, + -+ + a,28
= (0zy — iz, eym — ayzy) -+ (ofmy — ay)s
H(@ps 2g) = b} + bya lay + - + bz
= Bz, — Biz, X Bz, — Byzy) -+ (Brzy — Brzs)
e two binary forms. Each of these polynomials has here been
rritten first in the unfactored and secondly in the factored form.

)y a comparison of these two forms we see at once that the elemen-
ary binary symmetric fractions of the » points

(o o)y (opy 03), -+ (ony @)

re Qgy — Cyy gy -+ (—1)”a,,;
nd of the m points (,81, BI(Bo BYY)s +++ (Bims B
re 0’ - bla 9 " (— 1)mbm'

Let us now consider the two linear factors
) s !
a:;,xl — 0Ty jxl - Bsz.
\ necessary and sufficient condition for these factors to be propor-
ional is that the determinant

ol B} — i3]
apish. Let us form the product of all such determinants :

(oc” / allﬁrll) (agﬁll _ alzﬁll (aHBI - ',3")

P |8~ ) (el ) ey i) |

. . . . . . .

et~ iy (o — o) (0 — 4800
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The vanishing of this product is a necessary and sufficient con-
dition that at least one of the linear factors of f be proportional to
one of the linear factors of ¢, that is, that f and ¢ have a common
factor which is not a constant.

We may obviously reduce P to the simple form

P =f(By BY) f(By B3) - S (Brs Br)-

In this form it appears as a homogeneous polynomial of the mth
degree in the a’s, and as a symmetric polynomial in the m points
(B, B!). Moreover, it is obviously a binary symmetric function which
is of the nth degree in the coordinates of each point. Consequently,
by Theorem 3, § 89, it can be expressed as a homogeneous polynomial
of the nth degree in the elementary binary symmetric functions of
the points (B}, B/). that is, in the &’s. Thus we have shown that the
product P can be expressed as a polynomial in the a’s and b's which s
homogeneous tn the a’s of degree m and in the b’s of degree n.

In § 72 we found another polynomial in the o’s and &’s, whose
vanishing also gives a necessary and sufficient condition for f and ¢
to have a common factor, namely, the resultant B. We will now
identify these polynomials by means of the following theorem :

THEOREM 1. The product P differs from the resultant R of f and
¢ only by a constant factor, and the resultant is an trreducible poly-
nomial in the a’s and b's.

We may show, in exactly the same way as in the proof of Thzo
rem 1, § 86, that P, when expressed as a polynomial in the 2’ and
b’s, is irreducible. Since P =0 and R =0 each give a necessary and
sufficient condition for fand ¢ to have a common factor, any set of
values of the a’s and &’s which make P =0 will also make R =0.
Thus by Theorem 7, § 76, P is a factor of B. We have seen that P
is of degree m in the a’s and » in the &’s. The same is also true of
R, as may easily be seen by inspection of the determinant of § 68.
Hence, P being a factor of R, and of the same degree, can differ
from it only by a constant factor. Thus our theorem is proved.

Let us now inquire under what conditions the binary form f(z,, z,)
has a multiple linear factor. Using the same notation as above, we
see that the vanishing of the product

(G )(a’l'ag — ala3 (a laf, — aloc

/" // ! ol
— o o, — oot — PN, !
273 Oy %n 2 ) = Pl(txl, 0y 3 o Oy a,,’)

1! !
(an-lan - “n—1an
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is a necessary and sufficient condition for this. P, is not symmetric
in the pairs of ’s, since an interchange of two subscripts changes Py
into —P;. If, however, we consider P? instead of P;, we have a
binary symmetric function which can be expressed as a polynomial
in the a’s
[Py, o5 o ey en)]?= Fap - ).

Moreover, F vanishes when, and only when, P; does. Accordingly
F=0 is a necessary and sufficient condition for f(z,, z,) to have a
multiple linear factor.

But the vanishing of the discriminant A (cf. § 82) of f(z, =,)
is also a necessary and sufficient condition for this.

THEOREM 2. F and A differ only by a constant factor, and ars
trreducible.

The proof of this theorem, which is practically the same as that
of Theorem 1, is left to the reader.

If we subject the two binary forms f and ¢, which we may sup-
pose written in the factored form, to the linear transformation
(1) Ty = o132 + 15T,

Ty = Cy1%) + Copy
we get two new binary forms
(AYz} — Ao} (Afe} — Ayzl) - (AL} — diah),
(B ;.,x ;. 112)(B ” B /212) (B mz 1 — B fnx;),

n —_ /! !
where Al alle)y — «f c,,l, B! = ey, — Bleyys
! > — /! r
Al = — aley + ity B = — Be1y + Bleg,
so that AUB)~ A/B) = o(el8) — ),

where ¢ is the determinant of the transformation (1).

Since the linear transformation (1) may be regarded as carrying
over thee’s and B’s into the A’s and B’s, the last written identity
shows us that «/B;— «B] is, in a certain sense, an invariant of
weight 1. It can, however, not be expressed rationally in terms of
the o’s and &’s. Such an expression is called an drrational invariant

Since the resultant of f and ¢ is the product of mn such irra-
tional invariants of weight 1, it is evident that the resultant itself is
an invariant of weight mn. Thus we get a new proof of this fact,
independent of the proof given in § 82.

A similar proof can be used in the case of the discriminant of a
binary form.
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EXERCISES
Develop the theory of the invariants of the binary biquadratic
f(zp m)=agpt + iz, + 6 apjzl + 4ol + oz
= (ol — o) (W) — ofy) (lfz)— ofy) (e z, — ofg)
along the following lines:

1. Start from the irrational invariants of weight 2,
A = (afod — o)) (el o — o0t
B = (of'os — o) (@l — o),
C = (el — o) (e — e,
whose sum is zero, and the negatives of whose ratios are the crossratios of the
four points (¢, o), (e, &), (o 088), (o, ).
2. Form the further irrational invariants of weight 2
E,=B-C, E,=C-4, Es=A - B;
and prove that every homogeneous symmetric polynomial in E, Ep Ej is a
binary symmetric function of the four points (e, ei'), and therefore an integral
rational invariant of f.
3. In particular
Gy=E\E; + E:Es + E3E), Gs=E,E:Es
are homogeneous integral rational invariants of weights 4 and 6, and of degrees 2
and 3 respectively. Prove that
Go=— 36¢s, Gr=432gs,
where gr=a0as —4 araz + 3 @,
Ja=a0azas + 2 10203 — Aol — aias — af.
These expressions ¢g; and gs are the simplest invariants of f*

4. Prove that the discriminant A of fis given by the formula
A=g3 — 2743

5. If A=£0, prove that gs = 0 is a necessary and sufficient condition that the
four points =0 form a harmonic range; and that go=0 is a necessary and
sufficient condition that they form an equianharmonic range. (Cf. Exercise 3,

§ 33.)

6. Prove that g; = g3 =0 is a necessary and sufficient condition that # have
at least a threefold linear factor.t

* They are among the oldest examples of invariants, having been found by Cayley
and Boole in 1845.

t Notice that we here have a projective property of the locus f =0 expressed by
the vanishing of two integral rational invariants; cf. the closing paragraph of § 81
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7. If A is the absolute irrational invariant

A=— Er
i.e. one of the cross-ratios of the points f=0, prove that the absolute rational
invariant a

can be expressed in the form
roAOi=Ase
27 (A—1)2)%
8. Prove that a necessary and sufficient condition for the equivalence of two
biquadratic binary forms neither of whose discriminants is zero is that the inva-
riant I have the same value for the two forms.

9. Prove that a necessary and sufficient condition for the equivalence with
regard to linear transformations with determinant + 1 of two biquadratic binary
farms for which g and gs are both different from zero is that the values of g,
and gs be the same for one form as for the other.

10. Prove that if the discriminant of a biquadratic binary form is not zero, the
form can be reduced by means of a linear transformation of determinant + 1 to the
normal form 4 oy — gorh — garh

11. Prove that every integral rational invariant of a biquadratic binary form
is a polynomial in g» and gs.

12. Develop the theory of the invariants of a pair of binary quadratic forms
along the same lines as those just sketched for a single biquadratic form.

13. Prove that every integral rational invariant of a pair of quadratic forms
in n variables is an integral rational function of the invariants @, --- ®, of § 57.

[Sueerstion. Show first that, provided a certain integral rational function of
the coefficients of the quadratic form does not vanish, there exists a linear transfor-
mation of determinant + 1 which reduces the pair of forms to

ol + oo+ -+ a2,
B + Bor3 + - + Brle

Then show that every integral rational invariant of the pair of quadratic forms can be
expressed as a binary symmetric function of (&1, B1), (&2, B2), - (&%, Br), and that
the @'s are precisely the elementary binary symmetric functions. ]



CHAPTER XX

ELEMENTARY DIVISORS AND THE EQUIVALENCE OF
A-MATRICES

91. \-Matrices and their Elementary Transformations. The theory
of elementary divisors, invented by Sylvester, H. J. S. Smith, and,
more particularly, Weierstrass, and perfected in important respects
by Kronecker, Frobenius, and others, has, in the form in which we
will present it,* for its immediate purpose the study of matrices
(which without loss of generality we assume to be square) whose
elements are polynomials in a single variable A. Such matrices we
will call »-matrices.+ The determinant of a A-matrix is a polynomial
in A, and if this determinant vanishes identically, we will call the
matrix a singular A-matrix. By the rank of a A-matrix we under-
stand the order of the largest determinant of the matrix which is
not identically zero.

We have occasion here, as in § 19, to consider certain elementary
trangformations which we define as follows:

DerixiTION 1. By an elementary transformation of a A-matriz
we understand a transformation of any one of the following forms :

(@) The interchange of two rows or of two columns.

(8) The multiplication of each element of a row (or of a column) by
the same constant not zero.

(¢) The addition to the elements of a row (or column) of the products
of the corresponding elements of another row (or column) by one and
the same polynomial in .

* Various modifications of the point of view here adopted are possible and im-
portant. First, we may consider matrices whose elements are polynomials in any num-
ber of variables. Secondly, we may confine ourselves to polynomials whose coetlicients
lie in a certain domain of rationality. Thirdly, we may approach the subject from the
side of the theory of numbers, assuming that the coefficients of the polynomnals are
integers. The simplest case here would be that in which the elements of the matrix
are themselves integers ; see Exercise 2, §91, Exercise 3, §92, and Exercise 2, § 94.

t The matrix of a pencil of quadratic formsis an important example of a A-matrix
to which the general theory will be applied in Chapter XXII.

262
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If we pass from a first matrix to a second by an elementary trans-
formation, it is clear that we can pass back from the second to the

first by an elementary transformation. Thus the following defini-
tion is justified:

DEeFINITION 2. Two A-matrices are said to be equivalent if it is
possible to pass from one to the other by means of a finite number of
elementary trangformations.

We see here that all A-matrices equivalent to a given matrix are
equivalent to each other; and, as in §19, that two equivalent A-ma-
trices always have the same rank.

The rank of a A-matrix is not, however, the only thing which is
left unchanged by every elementary transformation. In order to
show this we begin with

LemMA 1. If the polynomial $(N\) is a factor of all the i-rowed
determinants of a A-matriz a, it will be a factor of all the i-rowed
determinants of every A-matrix obtained from a by means of an elemen-
tary transformation.

If the transformation is of the type (a) or (8) of Definition 1, this
lemma is obviously true, since these transformations have no effect:
on the z-rowed determinants of a except to multiply them by con-
stants which are not zero. If it is of the type (¢), let us suppose it
consists in adding to the elements of the pth column of a the corre-
sponding elements of the gth column, each multiplied by the poly-
nomial Y» (). Any ¢-rowed determinant of a which either does not
involve the pth column, or involves both the pth and the gth, will
be unaffected by this transformation. An drowed determinant
which involves the pth column but not the gth may be written after
the transformation in the form 4 £ y(\)B, where 4 and B are s-rowed
determinants of a; so that here also our lemma is true.

TurorEM 1. If a and b are equivalent N-matrices of rankr, and
D(\) is the greatest common divisor of the i-rowed determinants (ELr)
of a, then it is also the greatest common divisor of the i-rowed determz-
nants of b.

For by our lemma, D)) is a factor of all the ¢-rowed determi-
nants of b; and if these determinants had a common factor of higher
degree, this factor would, by our lemma, be a factor of all the
i-rowed determinants of a; which is contrary to hypothesis.
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The theorem just proved shows that the greatest common divisors
Dy(\), -+ D,(\) are invariants with regard to elementary transfor-
mations, or, more generally, that they are invariants with regard to
all transformations which can be built up from a finite number of
elementary transformations. In point of fact they form, along with
the rank 7, a complete system of invariants. To prove this we now
proceed to show how, by means of elementary transformations, a
A-matrix may be reduced to a very simple normal form.

LemMMaA 2. If the first element * f(\N) of ax-matriz is not identically
zero and s not a factor of all the other elements, then an equivalent
matriz can be formed whose first element i8 not identically zero and is of
lower degree than f.

Suppose first there is an element fi(\) in the first row which is
not divisible by f(\) and let j denote the number of the column in
which it lies. Dividing f; by f and calling the quotient ¢ and the

remainder 7, we have L) =g FN) 4+ ().

Accordingly, if to the elements of the jth column we add those of the
first, each multiplied by —g()\), we get an equivalent matrix in which the
first element of the jth column is (), which is a polynomial of degree
lower than f(A). If now we interchange the first and jth columns,
the truth of our lemma is established in the case we are considering.

A similar proof obviously applies if there is an element in the
first column which is not divisible by f(X).

Finally, suppose every element of the first row and column is
divisible by f(\), but that there is an element, say in the ¢th row and
jth column, which is not divisible by f(X). Let us suppose the ele-
ment in the first row and jth column is Y(A)f(\), and form an
equivalent matrix by adding to the elements of the jth column
— () times the corresponding elements of the first column. In
this matrix, f() still stands in the upper left-hand corner, the first
element of the jth column is zero; the first element of the ith row
has not been changed and is therefore divisible by f(\); and the
element in the i¢th row and jth column is still not divisible by f.
Now form another equivalent matrix by adding to the elements of
the first column the corresponding elements of the jth column. The
upper left-hand element is still f(\), while the first element of the

* By the first element of a matrix we will understand the element in the upper left.
band corner
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ith row is not divisible by A(A). This matrix, therefore, comes under
the case already treated in which there is an element in the first
column which is not divisible by f(\), and our lemma is established.

LeMMA 3. If we have a A-matrix whose elements are not all iden-
tically zero, an equivalent matriz can be formed which has the following
three properties :

(a) The first element f(\) 18 not identically zero.

(8) All the other elements of the first row and of the first column are
identically zero.

(¢) Every element neither in the first row nor in the first column is
divisible by f(\).

For we may first, by an interchange of rows and of columns,
bring into the first place an element which is not identically zero.
If this is not a factor of all the other elements, we can, by Lemma 2,
find an equivalent matrix whose first element is of lower degree and
is not identically zero. If this element is not a factor of all the
others, we may repeat the process. Since at each step we lower the
degree of the first element, there must, after a finite number of steps,
come a point where the process stops, that is, where the first element
is a factor of all the others. We can then, by using transformations of
type (¢) (Definition 1), reduce all the elements in the first row and in
the first column except this first one to zero, while the other elements
remain divisible by the first one. Thus our lemma is established.

Finally, we note that since f(\) in the lemma just proved is a
factor of all the other elements of the simplified matrix, it must, by
Theorem 1, be the greatest common divisor of all the elements of
the original matrix.

The lemma just proved tells us that the A-matrix of the nth order
of rank » >0

@

a4y 0 Am

an1 Ay

can be reduced by means of elementary transformations to the form
AR) 0 e 0
0 by - byam
2 T |
0 byyy b

a1, n~1
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where fj(A)# 0 and where fj(A) is a factor of all the &’s. The last
written matrix being necessarily of rank #, the matrix of the (n—1)th
order by

: bl, n-1

3 .
bn—l.l bn—l.n—l

is of rank r—1. Consequently, if #>1, (8) may be reduced by

means of elementary transformations to the form

AOY O w0

0 ey - epuqg
(€5) oL

0 Crg1 ** Coogyng

where f(A) % 0 and where fy(\) is a factor of all the ¢’s. By Theorem 1,

Jo(\), being the greatest common divisor of all the elements of (4),is also the

greatest common divisor of all the 8’s,and is therefore divisible by f,(}).
Now it is important to notice that the elementary transformations

which carry over (3)into (4) may be regarded as elementary transforma-

tions of (2) which leave the first row and column of this matrix unchanged.

Thus by a succession of elementary transformations, we have reduced

(1) to the form £ 0 0 ... 0

0 f(x) 0 « 0

0 0 ey - ng |,

®)

0 0 Cn-2,1 """ Cn—g,n-2

where neither f; nor f, vanishes identically, f; is a factor of f}, and
J» is a factor of all the ¢'s.

If » > 2, we may treat the (n — 2)-rowed matrix of the ¢’s, which
is clearly of rank r — 2, in a similar manner. Proceeding in this
way, we finally redvee our matrix (1) to the form

H) 0 e 0 00
0 f(A) - 0 0 -0

0 0 /N0 ... 0
(6) 0 0 ...f%)o...o
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where none of the f’s is identically zero, and each is a factor of the
next following one.

So far we have used merely elementary transformations of the
forms (a) and (¢), Definition 1. By means of transformations of the
form (8) we can simplify (6) still further by reducing the coefficient
of the highest power of A in each of the polynomials f(}) to unity.
We have thus proved the theorem :

THEOREM 2. [Ewery A-matriz of the nth order and of rank r can
be reduced by elementary transformations to the normal form

EN 0 . 0 0-.0
0" E() - 0 0.0

M 0 0 - EMX)O0 -0 |
0 0 o 0 0.0

where the coefficient of the highest power of N\ in each of the polynomials
E(\) is unity, and E(\) is a factor of B ,(\) for i=1, 2, --- r — 1.
By Theorem 1, the greatest common divisor of the ¢-rowed determi-
nants (< 7) of the original matrix is the same as the greatest common
divisor of the ¢-rowed determinants of the normal form (7)to which it is
reduced. These last mentioned z-rowed determinants are, however, alt
identically zero except those which are the product of 2 of the E’s. Let

®) B (\NE,(N) - By(N)

be any one of these, and suppose the integers %, %, --- k; to have
been arranged in order of increasing magnitude. We obviously
have &, =2 1,%k, 2 2, --- k; = 4. Consequently E| is a factor of %, , B,
of E,, etc. Thus EMNE) - E(\)

is seen to be a factor of (8), and, being itself one of the i-rowed de-
terminants of (7), it is their greatest common divisor. That is,

THEOREM 3. The greatest common divisor of the i-rowed determs-
nants of a N-matriz of rank r, when ¢ < r, 18
D) = E\(\)Ey(N) -+ B(N),
where the B’s are the elements of the normal form () to which the given
matriz 18 equivalent.

It may be noticed that this greatest common divisor is so deter-
mined that the coefficient of the highest power of A in it is unity.
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We come now to the fundamental theorem:

THEOREM 4. A necessary and sufficient condition for the equiva-
lence of two N-matrices of the nth order is that they have the same rank
r, and that for every value of © from 1 to r inclusive, the t-rowed deter-
minants of one matriz have the same greatest common divisor as the
i-rowed determinants of the other.

To say that this is a necessary condition is merely to restate
Theorem 1. To prove it sufficient, suppose both matrices to be
reduced to the normal form (7), where we will distinguish the
normal form for the second matrix by attaching accents to the
E'sin‘it. If the conditions of our theorem are fulfilled, we have, by

Theorem 3, E(\) = B,
1B = B (V) E, (M),
B (MEN EyN) = B (VN EMN)Ey(N),

and, since none of these E’s are identically zero, it follows that
.E:()\‘) = E,(X) (2‘ = 1, 2, ‘s r).
Thus the normal forms to which the two A-matrices can be reduced

are identical, and hence the matrices are equivalent, since two
A-matrices equivalent to a third are equivalent to each other.

EXERCISES
1. Reduce the matrix
A1 0 O 0
0O A0 O 0
00X O 0
000 A=1 O
000 0 A-1

by means of elementary transformations to the normal form of Theorem 2.
Verify the result by finding the greatest common divisors D,(\) first directly,
and secondly from the normal form.

2. By an elementary transformation of a matrix all of whose elements are
integers is understood a transformation of any one of the following forms:

(a) The interchange of two rows or of two columns.

(8) The change of sign of all the elements of any row or column.

(¢) The addition to the elements of one row (or column) of the products of the
corresponding elements of another row (or column) by one and the same integer.

Starting from this definition, develop the theory of matrices whose elements are
integers along the same lines as the theory of A-matrices was developed in thissection.
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92. Invariant Factors and Elementary Divisors. In place of the
invariants Dy\) of the last section, it is, for most purposes, more
convenient to introduce certain other invariants to which we will
give the technical name invariant factors. As a basis for the defini-
tion of these invariants we state the fOIIOWing theorem, which is
merely an immediate consequence of Theorem 38, § 91:

THEOREM 1. The greatest common divisor of the i-rowed determs-
nants (i=2, 8, - 7) of a A-matriz of rank r is divisible by the greatest
commion divisor of the (i — 1)-rowed determinants of this matriz.

DerINITION 1. If a 78 a A-matriz of rank r, and
D™ (=12, - 7)
the greatest common divisor of tts i-rowed determinants so determined
that the coefficient of the highest power of \ is unity; and if D(\)=1;
then the polynomial

(1) E(\)= ]—)% (t=1,2, - 7)

18 called the tth invariant factor of a.

This definition shows that these E’s are really invariants since
they are completely determined by the D's which we proved to be
invariants in § 91. Moreover, by multiplying together the first z of
the relations (1), we get the formula

@) DON=BMNEN) — B) (=12, - 7).

This shows us that the E's completely determine the D’s, and since
these latter were seen in § 91 to form, together with the rank, a
complete system of invariants, the same is true of the £’s. That is,

THEOREM 2. A necessary and sufficient condition that two \-ma-
trices be equivalent i that they have the same rank r, and that the inva-
r'ant factors of one be tdentical respectively with the corresponding
tnvariant factors of the other.

Since, in the case of a non-singular matrix of the nth order,
D,(\) differs from the determinant of the matrix only by a constant
factor, we see that in this case the determinant of the matrix is,
except for a constant factor, precisely the product of all the invari-
ant factors. This is the case which is of by far the greatest impor-
tance, and the term invariant factor comes from the fact that the E’s
are really factors of the determinant of the matrix in this case.



270 INTRODUCTION TO HIGHER ALGEBRA

A reference to Theorem 3, § 91, shows that our invariant factors
are precisely the polynomials E; which occur in the normal form of
Theorem 2, § 91; and, since in that normal form each Z is a factor
of the next following one, we have the important result,

THEOREM 8. If E(\), -+ E(\) are the successive invariant fac-
tors of a \-matriz of rank r, then each of these E’s is a factor of the next
JSollowing one.

This theorem enables us to arrange the invariant factors of a A-ma-
trix in the proper order by simply arranging them in the order of
increasing degree, two E’s of the same degree being necessarily
identical.

The invariant factors (like the D’s of the last section) may be
spoken of as rational invariants of our A-matrix since they are formed
from the elements of the A-matrix by purely rational processes,
namely the elementary transformations of § 91, which involve only
the rational operations of addition, subtraction, multiplication, and
divison. In distinction to these the elementary divisors, first intro-
duced by Weierstrass, are, in general, irrational invariants.* These
we now proceed to define.

DeriNITION 2. If a i8¢ a A-matriz of rank r, and D (\) is the
greatest common divisor of the r-rowed determinants of a, then the linear
factors A— e K-—-a', 7\.—-0:”, .

of D,(\) are called the linear factors of a.t

Since, by formula (2), D,(\) is the product of all the invariant
factors of a, itis clear that each invariant factor is merely the prod-
uct of certain integral powers, positive or zero, of the linear factors
of a. We may therefore lay down the following definition:

* German writers, following Frobenius, use the term elementary divisor to cover
both kinds of invariants. This is somewhat confusing, and necessitates the use of
modifying adjectives such as simple elementary divisors for the elementary divisors
as originally defined by Weierstrass, composite elementary divisors for the E's. On
the other hand Bromwich (Quadratic Forms and their Classification by Means of
Invariant-factors, Cambridge, England, 1906) proposes to substitute the term invari-
ant factor for the term elementary divisor. Inasmuch as this latter term is wholly
appropriate, it seems clear that it should be retained in English as well as in German
in the sense in which Weierstrass first used it.

t It will be noticed that if a is non-singular, the linear factors of a are simply the
linear factors of the determinant of a.
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DerINITION 3. Let a be a N-matriz of rank r, and

A—a, A—a/, A—ea!!, -

ite distinet linear factors. Then if

EN)=(A—a)(A—a/Yirn—al ) ... (=1, 2, - #),
are the invariant factors of a, such of the factors
A=), (A—a)z, e (A— ),
(A—a ), (A=), e (A— ')+,

(7\. —al! )ei', (x - al ! )eér, ..... ()\. —al! )e:_',

as are not mere constants are called the elementary divisors of a, each
elementary divisor being said to correspond to the linear factor of which
it is a power.*

Since the invariant factors completely determine the elementary
divisors and wice versa, it is clear that the elementary divisors are not
merely invariants, but that, together with the rank, they form a
complete system of invariants. That is,

THEOREM 4. A necessary and sufficient condition that two \-ma-
trices be equivalent i that they have the same rank and that the elemen-
tary divisors of one be identical respectively with the corresponding
elementary divisors of the other.

By means of Theorem 3 we infer the important result:

THEOREM 5. The degrees e; of the elementary divisors correspond-
ing to any particular linear factor satisfy the inequalities
=6 (t=2, 8, .. 7).
By means of this theorem we can arrange the elementary divisors
corresponding to any given linear factor in the proper order by simply
noticing their degrees.
* It will be seen that the definition just given is equivalent to the following one, in

which the conception of invariant factors is not introduced :

DeriNiTiON. Let A—o be a linear factor of the \-matrix a of rank r, and let l; be
the exponent of the highest power of N—w« which is a factor of all the i-rowed determi-
nants (1<r) of a. If the integers e; (which are necessarily posttive or zero) are defined
by the formula N ei=li—lioy (i=1, 2, - 1),
then such of the expressions A=), (A=), —o (N—e0)°r

as are not constants are called the elementary divisors of a which correspond to the
linear factor A—«.
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EXERCISES

1. If ¢ =0 and ¢y =0 are two conics of which the second is non-singular,
show how the number and kind of singular conics contained in the peucil
¢ — N = 0 depends on the nature of the elementary divisors of the matrix of the
quadratic form ¢ — Ay

2. Extend Exercise 1 to the case of three dimensions.

3. Apply the considerations of this section to matrices whose elements are
integers. (Cf. Exercise 2, §91).

93. The Practical Determination of Invariant Factors and Elemen-
tary Divisors. The easiest general method for determining the
invariant factors of a particular A-matrix is to reduce it by means of
elementary transformations to the normal form of Theorem 2, §91,
following out step by step the reduction used in the proof of that theo-
rem. From this normal form the invariant factors may be read off ;
and from these the elementary divisors may be computed,although only,
in general, by the solution of equations of more or less high degree.

There are, however, many cases of great-importance in which the
elementary divisors may more easily be obtained by other methods.
The most obvious of these is to apply the definition of elementary
divisors directly to the case in hand. As anillustration, we mention a
matrix of the nth order which has «—2X as the element in each place
of the principal diagonal, while all the other elements are zero except
those which lie immediately to the right of or above the elements of
the principal diagonal, these being all constants different from zero:

a—\ ¢ O 0 0
0 a—2A ¢ 0 0
O] .. . . (ey0q -+ eny #0).
0 0 0 «.a—2 Ch
0 0 0 0 a—2A

The determinant of this matrix is («—2A)"

The determinant

obtained by striking out the first column and the last row is

€169 *** Cpey-

Accordingly

D,\)=(Ar—a), D,_,(\)=1, EA)=A—a).

Thus we see that (A —«)"is the only elementary divisor of this
matrix, while the invariant factors are (A — «)* and n —1 1’s.
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This direct method may sometimes be employed to advantage in
oonjunction with the method of reduction by elementary transfor-
mations. Cf. Exercise 1 at the end of this section.

A further means of recognizing the elementary divisors in some
special cases is furnished by the following theorems whose proofs,
which present no difficulty, we leave to the reader:

THEOREM 1. If all the elements of a \-matriz are zeros except
those in the principal diagonal, and if each element of this diagonal f
which is not a constant & resolved into the product of a constant by powers I
of distinct linear factors of the form N — a, A — &, ---, then these powers |
of linear factors will be precisely the elementary divisors of the matriz.

THEOREM 2. If all the elements of a N-matriz are zeros except f
those which lie in a certain number of non-overlapping principal minors, I
then the elementary divisors of the matriz may be found by taking the "
elementary divisors of all these principal minors.

The proof of this theorem consists in reducing the given matrix

to the form referred to in Theorem 1 by means of elementary trans-
formations each of which may be regarded as an elementary trans-
formation of one of the principal minors in question.
-+ It should be noticed that this theorem would not be true if the
words invariant factors were substituted in it for elementary divisors;
cf. Exercise 3 below. The invariant factors may, however, be com-
puted from the elementary divisors when these have been found.

e e

EXERCISES !

1. Prove that the matrix
A—a 0 0 -1 0 0

0 A—=a 0 { 0 -1 0

0 0 X—a! 0 0 -1

g1 0 ix-a 0 0

0 Jed 1 ! 0 A—a 0 i

-1 0 0; 0 0 0
0 -1 0! 0 0 0 i
0 0 —1! 0 0 0
0 0 0! (\—a)2+p 1 0 ]
0 0 0 0 (\ — )2 + B2 1
0 0 0! 0 0 A—-—a)?+ B2
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and hence that its elementary divisors are
A = (e + B)]% [ — (e — B)]%
2. Generalize Exercise 1 to matrices of order 2n.
3. Find (a) the elementary divisors, and () the invariant factors of the

matrix A2\ — 1)2 0 0 0 |
0 AA=-1® 0 0
0 0 A=1 0|
0 0 0 A
4, Determine the invariant factors and the elementary divisors of the matrix
2 3 0 1 A
4N 3\ +2) 0 A+2 2)
0 6 A 2\ 0 |-
A-1 0 A-1 0 0

3(A—1) 1-x 20-1) 0 0
Is this matrix equivalent to the matrix in the exercise at the end of § 91?

5. Devise a convenient rational process for computing the invariant factors of
matrices of the kinds considered in Theorems 1 and 2.

94. A Second Definition of the Equivalence of \-Matrices. The
definition of equivalence of A-matrices which we have used so far
rests on the elementary transformations. These transformations are
of such a special character that this definition is not convenient for
most purposes. We now give a new definition which we will prove
to be coextensive with the old one.

DEFINITION. Two n-rowed A-matrices a and b are said to be equiv-
alent if there extist two nom-singular n-rowed A-matrices ¢ and d whose
determinants are independent of \, and such that
€Y b = cad.*

Since the matrices ¢ and d have, by hypothesis, constant determi-
nants, the inverse matrices ¢! and d~! will also be A-matrices, and not
matrices whese coefficients are fractional rational functions of x as would
in general be the case for the inverse of A-matrices. Consequently, if
we write (1) in the form
(2) a=cthd?,
we see that the relation established by our definition between the
matrices a and b is a reciprocal one, as is implied in the wording of
the definition.

* We use here and in what follows the sign = between two A-matrices to denote
tnat every element of one matrix is identically equal to the corresponding element of
the other,



ELEMENTARY DIVISORS AND )\-MATRICES 275

-

In order to justify the definition just given, we begin by estab-
lishing the

LEMMA. If a and b are n-rowed \-matrices, and the polynomial

@(N) is a factor of all the i-rowed determinants of a, it is a factor of all
the i-rowed determinants of ab and also of ba.

For, by Theorem 5, § 25, every ¢-rowed determinant of ab and
also of ba is a homogeneous linear combination of certain i-rowed
determinants of a.

THEOREM 1. If a and b are equivalent according to the definition of
this section, they are also equivalent according to the definition of § 9L

For in this case there exist two non-singular A-matrices, ¢ and
d, whose determinants are constants, such that relation (1) holds.
Consequently, by Theorem 7, § 25,* a and b have the same rank 7.
Let D)) be the greatest common divisor of the ¢-rowed determi-
nants of a, where ¢ <r. By our lemma, D)) is a factor of all
the ¢-rowed determinants of ca, and therefore, applying the lemma
again, it is a factor of all the ¢-rowed determinants of cad, that is, of b.

We can infer further that D(\)is the greatest common divisor
of the ¢-rowed determinants of b. For applying to relation (2) the
reasoning just used, we see that the greatest common divisor of the
i-rowed determinants of b is a factor of all the ¢-rowed determi-
nants of a, and cannot therefore be of higher degree than D()\).

A reference to Theorem 4, § 91, now shows us that a and b are
equivalent according to the definition of that section.

THEOREM 2. If a and b are equivalent according to the definition
of § 91, they are also equivalent according to the definition of the pres-
ent section.

We begin by showing that if we can pass from a matrix a to a
matrix a; by means of an elementary transformation, one of the fol-
lowing relations always holds:

(3) aj=ca or a =ad

where ¢ and d are non-singular matrices whose determinants are
independent of A. To prove this we consider in succession the
elementary transformations of the forms which were called (a), (3),
(¢), in Definition 1, § 91.

* How is it that we have a right to apply this theorem to A-matrices ?
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() Suppose we interchange the pth and gth rows. This cax
be effected by forming the product ca where the matrix ¢ may be
obtained by interchanging the pth and ¢th rows (or columns) in the
unit matrix 100 .. 0

010 -.. 0

000 -1
Similarly the interchange of the pth and ¢th columns of a may be
effected by forming the product ac, where ¢ has the same meaning
as before.

In each of these cases, ¢ may be regarded as a non-singular
A-matrix with constant determinant, since its elements are constants
and its determinant is — 1.

(8) To multiply the pth row of a by a constant %, we may form
the product ca, where ¢ differs from the unit matrix only in having
k instead of 1 as the pth element of the principal diagonal.

Similarly, we multiply the pth column of a by %, by forming the
product ac, where ¢ has the same meaning as before.

If we take the constant % different from zero, ¢ may be regarded
as a non-singular A-matrix with constant determinant.

(¢) We can add to the pth row of a ¢(\) times the gth row by
forming the product ca, where ¢ differs from the unit matrix only in
having ¢(\) instead of zero as the element in the pth row and ¢th
column.

Similarly we add to the gth column ¢(\) times the pth column
by forming the product ac where ¢ has the same meaning as before.

The matrix ¢, whose determinant is 1, is a non-singular
A-matrix.

It being thus established that one of the relations (38) holds
between any two A-matrices which can be obtained from one another
by an elementary transformation, it follows that two matrices a
and b which are equivalent according to the definition of § 91 will
satisfy a relation of the form

b=c,cpy e ¢iadyd; - d,

where each of the ¢’s and d’s is a non-singular A-matrix of constant
determinant which corresponds to one of the elementary transforma-
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tions we use in passing from a to b. This last relation being of the
form

b = cad,

where ¢ and d are non-singular A-matrices with constant determi-
nants, our theorem is proved.

We have now completed the proof that our two definitions of
the equivalence of A-matrices are coextensive.

EXERCISES

1. If a denotes the matrix in Exercise 1, § 91, and b the normal form of
Theorem 2, § 91, for this matrix, determine two A-matrices, ¢ and d, such that
relation (1) holds. :

Verify your result by showing that the determinants of ¢ and d are constants.

2. Apply the considerations of this section to matrices whose elements are
integers. Cf. Exercise 2, § 91, and Exercise 3, § 92.

95. Multiplication and Division of \-Matrices. We close this
chapter by giving a few developments of what might be called the
elementary algebra of A-matrices.

DEFINITION. By the degree of a N-matriz i3 understood the high-
est degree in \ of any one of its elements.

For a A-matrix of the kth degree, the element in the sth row and jth
column may be written A\ + a4 e 4 o)

and at least one of the coefficients of A* (¢.e. one of the g;’s) muso
be different from zero. If, then, we denote by a, the matrix of
which aff! is the element which stands in the ¢th row and jth col-
umn, we get the theorem

THEOREM 1. Every N matriz of the kth degree may be written in the form

€Y a N +a Nl g, (a,+0)
where ay, - &, are matrices with constant elements ; and conversely,
every expression (1) is a N-matriz of degree k.

THEOREM 2. The product of two N-matrices of degrees k and 1
ag\f +a Nl b e gy (8, 0)
boA + by AT 4 ]y (bp=0)

is a Amatriz of degree k+ I provided at least one of the matrices a, and
b, ¢8 non-singular.
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For this product is a A-matrix of the form
co)\'ki—l + Cl)\,lﬁ-l-l + e+ Crri

where ¢, has the value agb, or bya, according to the order in which
the two given matrices are multiplied together. By Theorem 7,
§ 25, neither agby nor bya, is zero if a; and by, are not both singular.

The next theorem relates to what we may call the division
of A-matrices.

THEOREM 8. If a and b are two A-matrices and if b, when written
in the form (1), has as the coefficient of the highest power of X a non-
singular matriz, then there exists one, and only one, pair of \-matrices

b
q, and r, for which a=q,b+r,
and such that either r; =0, or r; 18 a N-matriz of lower degree than b;
and also one and only one pair of N-matrices q, and r, for which

a=bq, + 1,
and such that either x,=0, or 1, is a \-matriz of lower degree than b.

The proof of this theorem is practically identical with the proof
of Theorem 1, § 63.

EXERCISE

DEFINITION. By a real matriz is understood a matriz whose elements are real;
by a real A-matriz, a mairiz whose elements are real polynomials in X; and by a real
elementary transformation, an elementary transformation in which the constant in (b)
and the polynomial in (c), Definition 1, § 91, are real.

Show that all the results of this chapter still hold if we interpret the words
matriz, A-matriz, and elementary transformation to mean real matriz, real A-matri,
and real elementary transformation, respectively.




CHAPTER XXI

THE EQUIVALENCE AND CLASSIFICATION OF PAIRS OF
BILINEAR FORMS AND OF COLLINEATIONS

96. The Equivalence of Pairs of Matrices. The applications of
the theory of elementary divisors with which we shall be concerned
in this chapter and the next have reference to problems in which
A-matrices occur only indirectly. A typical problem is the theory
of a pair of bilinear forms. The matrices aand b of these two forms
have constant elements, and we get our A-matrix only by consider-
ing the matrix a — Ab of the pencil of forms determined by the two
given forms. It will be noticed that this matrix is of the first
degree, and in fact we shall deal, from now on, exclusively with
A-matrices of the first degree.

By the side of this simplification, a new difficulty is introduced,
as will be clear from the following considerations. We shall subject
the two sets of variables in the bilinear forms to two non-singular
linear transformations whose coefficients we naturally assume to be
constants, that is, independent of . These transformations have the
effect of multiplying the \-matrix, a — Ab, by certain non-singular
matrices whose elements are constants (¢f. § 86) and therefore, by
§ 94, carry it over into an equivalent A-matrix which is evidently of
the first degree. The transformations of § 94, however, were far
more general than those just referred to, so that it is not at all ob-
vious whether every A-matrix of the first degree equivalent to the
given one can be obtained by transformations of the sort just re-
ferred to or not.

These considerations show the importance of the following
theorem :

TurorEM 1. If ay, a,, by b, are matrices with constant elements
of which the last two are non- smgular, and if the N-matrices of the ﬁrst
degree mi=a; —\b, my=a—2Ab,

279
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are equivalent, then there ewist two mon-singular matrices, p and q
whose elements are independent of A, and such that

@) m, = pm,q.

Since m, and m, are equivalent, there exist two non-singula
A-matrices, p, and qg, whose determinants are constants and such tha

(2) m, =p,m,q,.

The matrix q, has, therefore, an inverse, g1, which is also
A-matrix.

Let us now divide p, by m, and q;! by m; by means of Theore:
3, § 95, in such a way as to get matrices p;, p, s;, s which satisfy th
relations
®3) Po=m,p; + s g '=sm; +s,

p and s being matrices whose elements are independent of A. Fro
(2) we get pom, = m,q;™.

Substituting here from (3), we have
m,p,m; + pm; =m,s, m; + m,s,

or
) m,(p; — s;)m; =m,s — pm,.

From this identity we may infer that p, =s, and therefore
(5) m,s =pm,.

For if p,—s; were not identically zero, m,(p,—s,) would be

. A-matrix of at least the first degree (cf. Theorem 2, §95), and hen

the left-hand side of (4) would be a A-matrix of at least the secor

degree. But this is impossible, since the right-hand side of (
is a A-matrix of at most the first degree.

If we knew that p and s were both non-singular, our theore

would follow at once from (5); for we could write (5) in the form

(6) m, =pm,s~!

and p and s~ would be non-singular matrices with constant element
Moreover, we see from (5) that p and s are either both singular
both non-gingular. Our theorem will thus be proved if we e
show that s is non-singular.
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For this purpose let us substitute in the identity
I=q,q,!

for g, its value from (3),
(M I=qosym; + g8
Now divide q, by my by means of Theorem 38, §95, in such a way as
to get
) Qp=qm; +q
where q is a matrix with constant elements.

Substituting this value in (7), we have

I=qgs;m; + q;m,s + gs.

Referring to (5), we see that this may be written
(9) I—gs=(qes; + q,p)m;.

From this we infer that q,s, + q;p must be identically zero, and
therefore
(10) I=gs.

For if q,s; + q,p were not identically zero, the right-hand side of
(9) would be a A-matrix of at least the first degree, while the left-
hand side of (9) does not involve A.

Equation (10) shows that s is non-singular, and thus our theorem
is proved. It shows us, however, also that q is non-singular, and
that ¢ =s71, so that equation (6) becomes m, = pm,q.

We may, therefore, add the following

COROLLARY. The matrices p and q whose existence i8 stated in the
above theorem may be obtained as the remainders in the division of p,
and q, n (2) by m, by means of the formulce :

Po=myp, + P, 9 =q;m; +4q.

From this theorem concerning A-matrices of the first degree we
can now deduce the following theorem concerning pairs of matrices
with constant elements. It is this theorem which forms the main
foundation for such applications of the theory of elementary divisors
as we shall give.

We shall naturally speak of two pairs of matrices with constant
elements a,, b; and a,, by as equivalent if two non-singular matrices p
and q exist for which ‘

(11) a,=Dpa,q, by = pb,q.
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THEOREM 2. If a;, b, and a, b, are two pairs of matrices
independent of A, and if by and b, are mon singular, a necessary
and sufficient condition that these two pairs of matrices be equiva-
lent is that the two \-matrices

m; =a; — Aby, my,=a, — Ab,

have the same invariant factors, — or, if we prefer, the same elementary
divisors. '

For if the pairs of matrices are equivalent, equations (11)
hold; hence, multiplying the second of these equations by 2
and subtracting it from the first, we have

(12) m, =pm,q,

that is the A-matrices m; and m, are equivalent, and therefore have
the same invariant factors, and the same elementary divisors. On
the other hand, it follows at once from the assumption that b; and b,
are non-singular, that m; and m, are non-singular, and hence have
the same rank. Consequently if m; and m, have the same invariant
factors, or the same elementary divisors, they are equivalent. Since
they are of the first degree, there must, by Theorem 1, exist two
non-singular matrices p and q, whose elements are independent of A,
which satisfy the identity (12). From this identity, the two equa-
tions (11) follow at once ; and the two pairs of matrices are equivalent.
Thus the proof of our theorem is complete.

A case of considerable importance is that in which the matrices
b, and b, both reduce to the unit matrix I. In this case m; and m,
reduce to what are known as the characteristic matrices of a, and a,
respectively, according to the following definition :

DEerINITION. If a i8 a matriz of the nth order with constant ele-
ments and I the unit matriz of the nth order, the N-matriz

A=a—2I

18 called the characteristic matriz of a; the determinant of A is called
the characteristic function of a; and the equation of the nth degree in
N formed by setting this determinant equal to zero i8 called the char-
acteristic equation of a.
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We can now deduce from Theorem 2 the following more speci~'
result :

THEOREM 3. If a; and a, are two matrices independent of \, & neces-
sary and suffictent condition that a non-singular matriz p exist such that *

(13) a,=pa;p~!

ts that the characteristic matrices A, and A, of a; and a, have the same
invariant factors, — or, if we prefer, the same elementary divisors.

For if A; and A, have the same invariant factors (or elementary
divisors), there exist, by Theorem 2, two non-singular matrices p
and q such that a, = pa,q, I=plq.

The second of these equations shows us that q=p™; and this
value being substituted in the first, we see that p is the matrix whose
existence our theorem asserts.

That, on the other hand, A; and A, have the same invariant factors
and elementary divisors if equation (13) is fulfilled, is at once obvious.

97. The Equivalence of Pairs of Bilinear Forms. Suppose we
have a pair of bilinear forms in 2 n variables

n n
— ! — !
1= 225 Yy Y= 21b,~,~xiyj,
and also a second pair
(3 n
—_ " . 1l
by =2ay2iYp Yo =205y,

and let us assume that 4+ and v, are non-singular. We will in-
quire under what conditions the two pairs of forms are equivalent,
that is, under what conditions a first non-singular linear transforma-
tion for the 2’s and a second for the y’s,

Ty =)+ o o, yi=dyyi+ - +dunyn
oLl ol
wn=cn1x:,|_+ o +Cnnmzz yn=dnly'1+ +d1my1’|
can be found which together carry over ¢, into ¢, and r; into yr,.

* Two matrices connected by a relation of the form (13) are sometimes called
similar matrices. This conception of similarity is evidently merely a special case of
the general conception of equivalence as defined in § 29, the transformations considered
being of the form (18) instead of the more general form usually considered in this
chapter and the last.
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If we denote the conjugate of the matrix ¢ by ¢’ and the matrices
é15 Y1y D90 ¥y by a4, by, 85, b, respectively, we know, by Theorem 1,
6, that the transformations c,d carry over ¢, and + into forms
th matrices ca,d, c'b,d

spectively; so that, if these are the forms ¢, and yr,, we have
) a, = c'ad, b, = ¢'b,d.

Consequently, by Theorem 2, §96, the two A-matrices
a, — Aby, a,— b,

ve the same invariant factors and elementary divisors.

Conversely, by the same theorem, if these two A-matrices have
e same invariant factors (or elementary divisors), two constant
itrices ¢/ and d exist which satisfy both equations (1); and hence
ere exists a linear transformation of the z’s and another of the y's
ich together carry over ¢, into ¢, and +, into yr,. Thus we
ve proved the

THEOREM. If ¢y, Y and g, Y, are two pairs of bilinear formsin2n
riables of which \r, and ry are non-singular, a necessary and sufficient
vdition that these two patrs of forms be equivalent is that the matrices

the two pencils by — My by — M,

ve the same tnvartant factors,—or,if we prefer, the same elementary
yisors. *
EXERCISE
Prove that the theorem of this section remains true if the bilinear forms

Y1, P2, Y are real and the term equivalent isunderstood to mean equivalent with
ard to real non-singular linear transformations.

98. The Equivalence of Collineations. A second important appli-
tion of the theory of elementary divisors is to the theory of col-
eations. For the sake of simplicity we will consider the case of

o dimensions r_
Ty = Ay, Ty + Ay %y + A%,

& (% =y @) + Ay + Apg Ty,
Ty = gy Ty + Agy Ty + Ay T,
hough the reasoning will be seen to be perfectly general.

* For the sake of brevity, we shall, in future, speak of these invariant factors and
mentary divisors as the invariant factors and elementary divisors of the pairs of
‘ms ¢y, Y1 and ¢g, Y, respectively.

o
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We have so far regarded a collineation merely as a means of
transforming certain geometric figures. It is possible to adopt an-
other point of view, and to study the collineation in itself with
special reference to the relative position of points before and after
the transformation. Thus suppose we have a figure consisting of
the points A, 4,, -, finite or infinite in number, and suppose these
points are carried over by the collineation a into the points Aj,
A}, .--. These two sets of points together form a geometric figure.
It is the properties of such figures as this that we call the properties
of the collineation. Such properties may be either projective or
metrical. Thus it would be a metrical property of a collineation if
it carried over some particular pair of perpendicular lines into a pair
of perpendicular lines; it would be a projective property of the
collineation if it carried over some particular triangle into itself. We
shall be concerned only with the projective properties of collineations.

As an example, let us consider the fized points of the collineation,
that is points whose initial and final position is the same. In order
that (z;, Zy ¥3) be a fixed point it is necessary and sufficient that

! ! /
2y = AZy, Ty = AZy, Zg = A\Zy,

that is, substituting in a, that a constant A exist such that,

(ay; —N)zy + A9y + a323 =0,
(1) A%y + (g — N)2y + Ay 23 =0,
3% + 9%, + (Gg3 — M)z = 0.

The matrix of this system of equations is precisely what we have
called the characteristic matrix of the matrix a of the linear trans-
formation. The characteristic function is a polynomial of the third
degree in A which, when equated to zero, has one, two, or three dis-
tinct roots. Let A, be one of these roots. When this is substituted
in (1), these equations are satisfied by the codrdinates of one or more
points,—the fixed points of the collineation a. The number and
distribution of these fixed points give an important example of a
projective property of a collineation; and it is readily seen that
collineations may have wholly different properties in this respect,
one having three fixed points, another two, and still another an
infinite number.

Coming back now to the two sets of points A, 4, ---and A,
A}, --- which correspond to one another by means of the collinea-
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If we denote the conjugate of the matrix ¢ by ¢’ and the matrices
of ¢y, Yrys bgr Yry by @y, by 25 by respectively, we know, by Theorem 1,
§86, that the transformations ¢, d carry over ¢; and 4 into forms
with matrices c’ald, c/bld

respectively; so that, if these are the forms ¢, and ,, we have
(1) a,=c'a;d, b, = ¢'b,d.

Consequently, by Theorem 2, § 96, the two A-matrices
a.l i )\'bl’ a2 - Xb2

have the same invariant factors and elementary divisors.

Conversely, by the same theorem, if these two A-matrices have
the same invariant factors (or elementary divisors), two constant
matrices ¢/ and d exist which satisfy both equations (1); and hence
there exists a linear transformation of the z’s and another of the y's
which together carry over ¢, into ¢, and Y~ into 4. Thus we
have proved the

THEOREM. If ¢y, Yry and ¢y, Yry are two pairs of bilinear formsin2n
variables of which \r; and r, are non-singular, a necessary and sufficient
condition that these two pairs of forms be equivalent is that the matrices

of the two pencils by — My by — My

have the same invariont factors,—or,zf we prefer, the same elementary
divisors.*
EXERCISE
Prove that the theorem of this section remains true if the bilinear forms

b1, Y1, P2, Y2 are real and the term equivalent isunderstood to mean equivalent with
regard to real non-singular linear transformations.

98. The Equivalence of Collineations. A second important appli-
cation of the theory of elementary divisors is to the theory of col-
lineations. For the sake of simplicity we will consider the case of

two dimensions r__
Ty =y Ty + Q) Ty + Ay,

8 %= Ay By + gy Ty + Ay Ty
Ty = gy @ + gy Ty + Uy Ty,
although the reasoning will be seen to be perfectly general.

* For the sake of brevity, we shall, in future, speak of these invariant factors and
elementary divisors as the invariant factors and elementary divisors of the pairs of
forms ¢1, w1 and ¢, Y2 Tespectively.
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We have so far regarded a collineation merely as a means of
transforming certain geometric figures. It is possible to adopt an-
other point of view, and to study the collineation in itself with
special reference to the relative position of points before and after
the transformation. Thus suppose we have a figure consisting of
the points A, A,, ---, finite or infinite in number, and suppose these
points are carried over by the collineation a into the points Af,
Ab, -+-. These two sets of points together form a geometric figure.
It is the properties of such figures as this that we call the properties
of the collineation. Such properties may be either projective or
metrical.  Thus it would be a metrical property of a collineation if
it carried over some particular pair of perpendicular lines into a pair
of perpendicular lines; it would be a projective property of the
collineation if it carried over some particular triangle into itself. We
shall be concerned only with the projective properties of collineations.

As an example, let us consider the fized points of the collineation,
that is points whose initial and final position is the same. In order
that (zy, 74, 73) be a fixed point it is necessary and sufficient that

x) = Azy, zh = Ay, zh = Az,

that is, substituting in a, that a constant \ exist such that,

(@ — M)y + Ay9%, + a7y =0,
(1) g1y + (B9 — N)2y + A%y =0,
@7y + gy @y + (a5 — Ny = 0.

The matrix of this system of equations is precisely what we have
called the characteristic matrix of the matrix a of the linear trans-
formation. The characteristic function is a polynomial of the third
degree in A which, when equated to zero, has one, two, or three dis-
tinet roots.  Let A be one of these roots. When this is substituted
in (1), these equations are satisfied by the codrdinates of one or more
points,—the fixed points of the collineation a. The number and
distribution of these fixed points give an important example of a
projective property of a collineation; and it is readily seen that
collineations may have wholly different properties in this respect,
one having three fixed points, another two, and still another an
infinite number.
Joming back now to the two sets of points A,, 4,, ---and A,
by --- which correspond to one another by means of the collinea-
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tion a (which may be singular or non-singular), let us subject all these
points to a non-singular collineation ¢, which carries over 4,, 4,, -
into By, B,, --- and A}, 4}, --- into B}, B}, --- respectively. The fig-
ure formed by the B’s will have the same projective properties as
that formed by the A4’s; and consequently if we can find a collinea-
tion b which carries over By, B,, --- into B, Bj, ---, this collineation
will have the same projective properties as the collineation a. Such
a collineation is clearly given by the formula
(2 b = cac™!
since ¢~1 carries over the points B; into the points 4;, a then carries
over these into A4/, and ¢ carries over the points A} into the points Bl
Since two collineations a and b related by formula (2) are indis-
tinguishable so far as their projective properties go (though they
may have very different metrical properties), we will call them
equivalent according to the following

DEFINITION.  Two collineations a and b shall be called equivalent
of @ non-singular collineation ¢ exists such that relation (2) ts fulfilled.

A reference to Theorem 3, § 96, now gives us the fundamental
theorem:

THEOREM. A necessary and sufficient condition that two collinea-
tions be equivalent ts that their characteristic matrices have the same in-
variant factors,— or, if we prefer, the same elementary divisors.

EXERCISES

1. If Py, Py, --- Py are fixed points of a non-singular collineation in space of
n — 1 dimensions which correspond to £ distinet roots of the characteristic equa-
tion, prove that these points are linearly independent.

2. Discuss the distribution of the fixed points of a collineation
(a) in two dimensions,
(b) in three dimensions,
for all possible cases of non-singular collineations.

3. Discuss the distribution of
(a) the fixed lines of a collineation in two dimensions,
(d) the fixed planes of a collineation in three dimensions,
for all possible cases of non-singular collineations; paying special attention to their
relation to the fixed points.
4. Two real collineations, a and b, may be said to be equivalent if there exists
a real non-singular collineation ¢ such that b = cac—1.
With this understanding of the term equivalence, show that the theorem of the
present section holds for real collineations.
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99. C(lassification of Pairs of Bilinear Forms. We consider again
the pair of bilinear forms

¢ = %aﬁx{yj, '\If‘ = %bijziyj,
of which we assume the second to be non-singular, and form the

A-matrix.
@ a—b.

Using a slightly different notation from that employed in § 92, we
will denote the elementary divisors of (1) by

()\, - )\1)31, n— No)2, weeeee M=), (61 + eyt o+ e =),

so that the linear factors A —\; need not all be distinct from one
another. The most important thing concerning these elementary
divisors is, for many purposes, their degrees, e, 5, --- ¢,.  When we
wish to indicate these degrees without writing out the elementary
divisors in full, we will use the symbol [e, e, --- ¢;], called the char-
acteristic of the A-matrix (1), or of the pair of forms ¢, y». It will be
seen that this characteristic is a sort of arithmetical invariant of the
pair of bilinear forms, since two pairs of bilinear forms which are
equivalent necessarily have the same characteristic. The converse
of this, however, is not true, since for the equivalence of two pairs of
bilinear forms the identity of the elementary divisors themselves,
not merely the equality of their degrees, is necessary.

All pairs of bilinear forms which have the same characteristic are
said to form a category. Thus, for example, in the case of pairs of
bilinear forms in six variables we should distinguish between three
categories corresponding to the three characteristics,

1 1 1j, [2 13, 3],

which are obviously the only possible ones in this case. In fact, we
must inquire whether these three categories really all exist. This
question we answer in the affirmative by writing down the following
pairs of bilinear forms in six variables which represent these three
categories :
g I [111] {7\1‘”191 t MgZyYs + NeTsYs

Tt Yyt Y

0 A—r 0

0 0 Ag—2

i m’-ai";w. B TVR R HFR
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MZY 1+ MZoYs + 1Yy + NgZsYs

I [21] {

Y+ LY + T3y
0 ay—r 0
0 0 =2

M2y + MZoYo + MTsYs + 1Y, + TyYg

III1. [38
(3] { Y+ TaYst+  ZgYs

Am—r 1 0
0 0 a-—2

The pairs of bilinear forms we have just written down do more
than merely establish the existence of our three categories. They
establish the fact that not only the degrees of the elementary divisors
are arbitrary (subject merely to the condition that their sum be
three), but that, subject to this restriction, the elementary divisors
themselves. may be arbitrarily chosen. They are, moreover, normal
forms to one or the other of which every pair of bilinear forms in
six variables, of which the first is non-singular, may be reduced hy
non-singular linear transformations.

The general theorem here is this:

THEOREM. If Ny Ny, +++ A are any constants, equal or unequal, and
e}y g -+ € are anmy positive integers whose sum 8 n, there exist pairs of
bilinear forms in 2n variables, the second form in each pair being non-
singular, which have the elementary divisors

@ A (A e (=

The proof of this theorem consists in considering the pair of
bilinear forms

e e e+e, e+e,
¢= (%7\1‘”:;”/“ + %zi—lya) + (317\2%% + %2 xf—l.%‘)

G $ S
+ + n_22k+1)‘kxiyi + "_EH-’”;'-L% A

V=210 + By + o+ T
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of which the si?GOI}d is non-singular. These forms have a A-matrix
which may be indicated, for brevity, as

@ | 77 ,

'

where the letters My, --- M, represent not single terms but blocks of
terms ; M, standing for the matrix of order ¢,

ANi— A 1 0 .. 0

O 7\.,—)\. 1 b O
Mi. == . . . . . . D . . . H

0 0 0 «« N—2n

while all the terms of the matrix (4) are zero which do not stand in
one of the blocks of terms M, The elementary divisors of (4) are,
as we see by a reference to § 98 (Formula (1) and Theorem 2), pre-
cisely the expressions (2). Thus our theorem is proved.

A reference to §97 shows that formula (3)is a normal form to
which every pair of bilinear forms in 2n variables with the ele-
mentary divisors (2) can be reduced.*

* Many other normal forms might be chosen in place of (8). Thus, for instance,
we might have used in place of (3) the form
e—1 e te, e te,—~1
¢ = (Ex1c1x¢y¢1_5+1 + Edmyﬁ_c) + (2)\ 2091 2e,+e,—i+1 +Zd2xny2¢1+e )
+

n—1
+ - + (?)\kckxiy"n—ek-—:+1 + Edkmﬂhn-—q—t)

) b, n—eg+l n—ep+l
(CD) o oo, e, keyd e
Y= E('mye —i+1 + 262x(ykl+¢3—(+1 + 2o Y2e, +2e,+eg—it1
1 e tegtl

+ e+ E('kx{?hn-q—ﬁ-h

d n—ep+1

where the constants ¢y, «-- ¢, di, - dx may be chosen at pleasure provided, merely,
that none of them are zero. For instance, they may all be assigned the value 1.

123
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Let us now return to the classification of pairs of bilinear forms.
For a given number, 2 », of variables we have obviously only a finite
number of categories. We may subdivide these categories into
classes by noticing which, if any, of the elementary divisors corre-
spond to the same linear factor. This we can indicate in the char-
acteristic by connecting by parentheses those integers which are the
degrees of elementary divisors corresponding to one and the same
linear factor. Thus, in the case n = 8, the characteristic

[ 1)(111)2]

would indicate that the A-matrix has just three distinct linear fac-
tors; that to one of these there correspond two elementary divisors
of degrees two and one respectively, to another three elementary
" divisors of the first degree, and to the last a single elementary
divisor of degree two.

Two pairs of bilinear forms which are equivalent belong neces-
sarily to the same class, but two pairs of bilinear forms which be-
long to the same class are not necessarily equivalent.

To illustrate what has just been said, let us again consider the
case n=3. Here we have now, instead of three categories, six
classes, which are exhibited in the following table:

a b c

L [[111]|[@ 1)1]|[(111)]
IL | [21] | [(21)]
I | [3]

The A-matrix of this pair of forms may be written in the form (4), where, how-
ever, M; now stands for the matrix of order e;:

0 . 0 d‘ c;()\;-—)\)
0 o & (=) 0

M = e e e e e e e e e e e
G =2) - 0 0 0

It will be noticed that the matrices M;, and therefore also the bilinear forms (8/),
are symmetrical, a fact which will make this normal form important when we come ta
the subject of quadratic forms in the next chapter.

Constants similar to the constants ¢; and d; which we have introduced in (31
might also have been introduced in (3).
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The three classes Ia, 15, Ic form together the category I, and are
all represented by the normal form given for that category above,
the only difference being that in class Ia the three quantities Xy, Ay,
Ag are all distinet, in class 16 two, and only two, of them are equal,
while in class Ic they are all equal. Similarly category II is now
divided into two classes, Ila and 113, for both of which the normal
form of category IT holds good, A, and A, being, however, different
in that normal form for class IIa and equal for class I14. Finally
category III consists of only a single class.

For some purposes it is desirable to carry this subdivision still
farther. The second of our two bilinear forms, y», has been assumed
throughout to be non-singular. The first, ¢, may be singular or
non-singular; and it is readily seen that a necessary and sufficient
condition that ¢ be singular is that one, at least, of the constants A,
which enter into the linear factors of the A-matrix be zero. Thus it
will be seen that in a single class we shall have pairs of bilinear
forms both of which are non-singular and others one of which is
singular, and we may wish to separate into different sub-classes
the pairs of forms which belong to one or the other of these two
cases.

Let us go a step farther in this same direction, and inquire how
the rank of ¢ is connected with the values of the constants A, We
notice that the matrix of ¢ is equal to the matrix of the pencil ¢ — Ay
when A=0. Accordingly, if ¢ is of rank r, every (r+ 1)-rowed
determinant of the matrix of ¢ — Ay will be divisible by A, while at
least one r-rowed determinant of this matrix is not divisible by A.
It is then necessary, as we see by a reference to the definition of
elementary divisors (cf. the footnote to Definition 3, § 92), that just
n—r of the constants A; which enter into the elementary divisors
should be zero. Since the converse of these statements is also true,
we may say that a necessary and sufficient condition that the form ¢
be of rank r 1s that just n — r of the elementary divisors be of the form
A Let us, in the characteristic [e, ¢, --- €], place a small zero
above each of the integers e; which is the degree of such an elemen-
tary divisor; and regard two pairs of bilinear forms as belonging to
a single class 'when, and only when, their characteristics coincide in
the distribution of these zeros as well as in other respects. Here
again two equivalent pairs of forms will always belong to the same
class, but the converse will not be true.
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As an illustration, let us again take the case n=38. We have
now fourteen classes instead of six,

[11 1] ¢ 1)1] [ 1 1)] [2 1] [(@nj, (3l (r=3),
[1 1 1] [a 1) 1], [2 1], [2 1], [3J, (r=2),
[(1 1)1], [(2 1)], (r=1),
[iiy, (r=0).

We have indicated, in each case, the rank » of the form ¢. Thus
in the first six cases ¢ is non-singular; in the next five it is of rank
2, ete.

EXERCISES

1. Prove that there exist pairs of real bilinear forms in 2 n variables of which

the second is non-singular, and which have the elementary divisors

A=A)a,  (A=A)e, oo A=) (ey+eg+ o +ep=n),
provided that such of these elementary divisors as are not real admit of arrange-
ment in conjugate imaginary pairs. (Cf. Exercises 1, 2, § 93.)

2. Classify pairs of real bilinear forms in six variables (the second form
in each pair being non-singular), distinguishing between real and imaginary
elementary divisors.

100. Classification of Collineations. The classification of pairs
of bilinear forms which we gave in the last section may obviously
be regarded, from a more general point of view, as a classification
of pairs of matrices, the second matrix of each pair being assumed
to be non-singular. From this point of view it admits of applica-
tion to the classification of collineations, since, as we saw in § 98, to
every collineation corresponds a pair of matrices of which one is
non-singular, namely the unit matrix I and the matrix of the linear
transformation. Moreover, the normal form (3) of § 99 is precisely
adapted to the treatment of the more special kind of equivalence
which we have to consider here, since the matrix of the form + is
precisely the unit matrix. We may therefore state at once the
fundamental theorem :

THEOREM 1. If A, Ny, «-+ Ny are any constants, equal or unequal,
and ey, ey, -+ e, any positive integers whose sum ig n, there exists a col-
lineation in space of n -1 dimensions whose characteristic matriz has
the elementary divisors

- A% n— )y seeese aA- )%
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To this we may add

THEOREM 2.  Every collineation of the kind mentioned in Theorem
1 48 equivalent to the collineation whose matriz is-

[}
!
1
|
'
..... Je————
1
1
[l
)

B

where M, stands for the matriz of order e,

x" 1 0 b 0
0 7\,— 1 b O
Mi=\|. . :

0 0 0 - N
We thus get a classification of collineations into categories and
a subdivision of these categories into classes precisely as in § 99.

For instance, in the case n = 3 (collineations in the plane), we have
three categories whose characteristics and representative normal

forms we give: _
r g z] =Nz,
I. [111] zf= A%y

2= N2 + %
II. {21] z)= A%y
g = Mg

z] = M2z + 2
I1L. [8] zf= %y + g
7= A Zge

These categories we should then subdivide either into six classes
as on page 290 or into fourteen classes as on page 292. This latter
classification is the desirable one in this case. We proceed to give a
list of these fourteen classes with a characteristic property of each.
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That the normal forms of the collineations have these properties
will be at once evident, and from this it follows that all the collinea-
tions of the class have the property in question, since the properties
.mentioned are obviously all projective. That the properties men-
tioned are really characteristic properties, that is, serve to distin-
guish one class from another, can only be seen a posterior, by noticing
that no one of the properties mentioned is shared by two classes.
[111] Three distinct non-collinear fixed points.*

[(11)1] Every point of a certain line and one point not on
this line are fixed.

[(111)] The identical collineation.

[21] Two distinet fixed points.

[(21)] Every point of a certain line is fixed.

[3] One fixed point.

In all these cases the collineation is non-singular. The remain-
ing collineations are singular. In the next three, one point P of the
plane is not transformed at all, while all other points go over on to

a line p which does not pass through P, and every one of whose
points corresponds to an infinite number of points.

[11 01] There are two fixed points on p.

[11) i] Every point on p is fixed.

[2 i] One fixed point on p.

In the next two cases one point P is not transformed at all,
while all other points go over on to a line p which passes through P,

and every one of whose points corresponds to an infinite number of
points.

0
[21] One fixed point.
0
[8] No fixed point.
The remaining collineations are so simple that they are not merely
characterized, but completely described, by the property we mention.

[}
[(11)1] The points on a certain line are not transformed. All
other points go over into a single point which does
not lie on this line.

#* It should be understood here and in what follows that the fixed points which
are mentioned are the only fixed points of the collineation in question.
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The points on a certain line are not transformed. All
other points go over into a single point on this line.

No point in the plane is transformed.
;ase is of course not a transformation at all.

EXERCISES
in a similar manner, the projective transformations in one

the collineations in space of three dimensions.
the real projective transformations in space of one, two, and three
>1. Exercises 1,2, § 99.)




CHAPTER XXII

THE EQUIVALENCE AND CLASSIFICATION OF PAIRS OF
QUADRATIC FORMS

101. Two Theorems in the Theory of Matrices. In order to jus-
tify the applications we wish to make of the theory of elementary
divisors to the subject of quadratic forms, it will be necessary for us
to turn back for a moment to the general theory of matrices.

DerINITION. If ¢(2) 18 a polynomial :
d(z)=ay2™ + a2 1+ o Ay T Ay

then A X"+ x4 et a, X+ a,]
18 called a polynomial in the matriz x and is denoted by ¢(x).*

We come now to one of the most fundamental theorems in the
whole theory of matrices:

TuEOREM 1. If a i3 a matriz, and $(\) its characteristic func-
tion, then #(a) = 0.

This equation is called the Hamilton-Cayley equation.

Let ¢ be the characteristic matrix of a :

c=a— AL

This being a A-matrix of the first degree, its adjoint C will be a

A-matrix of degree not higher than n—1, if » is the order of the matrix a:

(1) € =Cop\™ 1 + Co A2 4 oo 4G,
We may also write
(2) : )=k + By D o -

Now referring to formula (5), § 25, we see that
aC — AC = ¢(\)L.

* It should be noticed that, according to this definition, the coefficients of a poly-
nomial in x are scalars. Contrast this with a A-matrix, in which the coefficients are
matrices and the variable a scalar. Both of these conceptions would be included in
expressions of the form :

a0x™by + a1X™1by + <ot + A1 XDy + A
296

RE
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3 here from (1) and (2), we have, on equating corre-

=s of A, aC, = k1,

aC, — Cy=Fk]I,
aC, — C, = k,I,

a-Cn -1 Cn B kﬂ—] I’
- Cn-l = ]‘"nI‘

iply these equations in succession by I, a, a3, ... a”,
first members cancel out, and we get

kX + ka + kpa?+ .- + k,a" =0.

sisely the equation

$(a)=10
od to establish.
v of deducing our second theorem, we next establish a
elates merely to sealar quantities.

I () ds a polynomial of the nth degree (n>0) whose
Px oot zero, there exists a polynomial x(x) of degree less
. 4

(X))~ =
W)
&=b, x—e¢, +-- be the distinet linear factors of (),
y write
5 G ) & (e LA (¢ +B+qy+ - =n).
constants @, b, ¢, - are zero, since, by hypothesis, the
of ¥ is not zero.  Let us, further, denote by s (@) the
btained from ++ by omitting the factor (z—a)y by

ruominl obtained from ¥ by omitting the factor (z—0bYy,
tly let us form, with undetermined coeflicients, the

Ay + A= a)+ Afe —aP+ o + A (2 —a),
B, +B(x—b)+ Bo=bP+ - + Bp_(x—b)yF,
(4 Cla—e)+ Cfe—cf4 o + Gz — ey,

- . - « . - . . . . . -
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From these polynomials we now form the polynomial
X(@) = A@yr(w) + BEi@) + Can(@) + -

whose degree can obviously not exceed n —1. We wish to show
that the coefficients 4;, B;, --- can be so determined that this poly-
nomial X(z) satisfies the conditions of our lemma.

Since Y, Yrg --- are all divisible by (z — a)?, a necessary and
sufficient condition that (y(z))? — z be divisible by this factor is that

the polynomial &(z) = (A(@) XYy (2) R — =

be divisible by (z — a)*>. We have
$a)= AFF(a—BP(a—cfr - —a.

In order that ¢(z) be divisible by z — a it is therefore necessary and
sufficient that

3) A3 =k2(a — b)2ﬂ(aa —C

Neither numerator nor denominator here being zero, we thus
obtain two distinet values for A, both different from zero. If we
give to A, one of these values, ¢() is divisible by z —a. A neces-
sary and sufficient condition that it be also divisible by (z — a)? is
that ¢/(a) = 0, accents here, and in what follows, denoting differentia-
tion. We shall see in a moment that this condition can be imposed
in one, and only one, way by a suitable choice of A4;. The condi-
tion that ¢(z) be divisible by (z — a)? is then simply ¢/'(a)=0. We
wish to show that this process can be continued until we have finally
imposed the condition that ¢(z) be divisible by (z —a)*. For this
purpose we use the method of mathematical induction, and assume
that A, --- 4, ; have been so determined that ¢(a)=¢/(a)= -
= ¢l U(a)=0. It remains then merely to show that A4, can be so
determined that ¢f(a)=0. For this purpose we notice that

*) $M(z) = 24%(2)A(z)( () + B ()

where R(z) is an integral rational function with numerical coeffi-
cients of Yoy, Y, -+ Y4, 4, A/, ... A-U. Since

A(a)= Ay, Al(a)= A, A'(a)=2!4,, - A" U(a)=(s—1)I4, ,,

it follows that R(a) is a known constant, that is, that it does not
depend on any of the still undetermined constants A, 4,.;, -+ dey
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a the Bj*j C, ete.  Consequently we see from (4) that a neces-
and sullicient condition that ¢i(a) =0 is that 4, have the value
A‘= 5 — R"’ a 3

2314, (¥(@))

‘mining the coefficients 4, 4, -+ A._; in succession by means
is formula, \ve finally determine the polynomial A() in such a
that ¢(w) is divisible by (z—a)*. For this determination,
2 — & will, 2is we saw above, be divisible by (z — a)=.

1 the same way we can now determine the coefficients of B(z) so
Ix(r)? — & is divisible by (x— 8)f; then we determine the coeffi-
s ol () so that (pe(x))? — x is divisible by (xz—¢); ete. When
e polynomials A, B, ¢, - are thus determined, (X(z))? — =z is
ible by Yr(a), and our lemma is proved.

meorEM 20 [fais anon-singular matrixc of order n, there exist ma-
b of order v (necessarily non-singular) with the following properties :
b’ =a,
b Z8 a polynomial in a of degree less than n.
inee a 18 non-singular, its characteristic function ¢(\) is a poly-
ial of the nth degree whose constant term is not zero. Hence, by
sreceding lenmma, a polynomial x(X) of degree less than n can be

rmined suelh that (M) = A = (M) F(N)
re f(\) is also a polynomial.  From this identity it follows that
(x(2))! — a = $(a)f(a)-
e, by Theorem 1, ¢p(a) = 0, the last equation may be written
(x(a)) = &,

hat b == y(a) is & matrix satisfying the conditions of our theorem,
ch is thus proved,

102. Symmetric Matrices. The application of the theory of ele-
itary divisors to the subject of quadratic forms rests on the fol-

ing proposition:
Turorkm 1. If a, and a, are symmetric matrices and if there
t two non-singular matrices p and q such that

a, = pa, q,
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then there also exists a non-singular matriz P such that
(2) a,="P'a P
where P! 18 the conjugate of P.*

Let us denote by p’ and q’ the conjugates of p and q respectively.
Taking the conjugates of both sides of (1), and remembering that
a, and a,, being symmetric, are their own conjugates, we get, by
Theorem 6, § 22,

(3) a, =q'a;p'.

By equating the values of a, in (1) and (38), we readily deduce the
further relation

) (a')'pay=a,p'q""

For brevity we will let

(5) U=(a)"p, U'=p'q7

and note that U’ is the conjugate of U ; cf. Exercise 6, § 25. Equa-
tion (4) may then be written

(6) Ua, =a,U’.
From this equation we infer at once the following further ones :
U%a, = Ua, U’ = a,U'3

Ula, = Ua, U = a,U’3,

M
Uka, = Ua, U ' = a, 0"

Let us now multiply the equations (6) and (7) and also the equa-
tion a; =a, by any set of scalar constants and add them together.
We see in this way that if , (U) is any polynomial in U,

(8) x(U)ay, =a;x(U').

* A proof of this theorem much simpler than that given in the text is the following :

From (1) we infer at once that a; and a, have the same rank. Hence the quad-
ratic forms of which a; and a, are the matrices are equivalent to each other by Theorem
4, § 46, If we denote by P the matrix of the linear transformation which carries over
the quadratic form a; into the form as, we see, from Theorem 1, § 43, that equation (2)
holds.

This proof would not enable us to infer that P can be expressed in terms of p and q
alone, and this is essential for our purposes.
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We will choose the polynomial
V=x(0)
so that V is non-singular and
V2 = Ua
as is scen to be possible by Theorem 2, § 101. Denoting by V' the

conjugate of V, we evidently have

V= x(U'),

so that we may write (%) in the form
— !
Va, =4a,V/,

or a, =V lagV.

We now substitute this value in (1) and get

(M a,=pV-la,V/q.

From the first equation (5) we infer the formula

pV-i=q'V.

Consequently pV-! is the conjugate of V'g, so that if we let

P=Vlq,
equation (4) may be written
8.2 == P’alp,
and our theorem is proved.
The proof just given enables us to add the

Conorrany. As the matrir P of the foregoing theorem may be
taken the matrir V'q where V' is the conjugate of any one of the square
roots, determined by Theorem 2, § 101, o/ (q')"1p.

In particular it will be seen that P depends on p and q but not on
a, or a,. IHence if a;, a, b, b, are symmetric matrices, and there
exist two non-singular matrices p and q such that

a, == pa,q, b, = pb,q,

then there exists a non-singular matrix P such that

a, = P'a,P, b, = P'b,P.
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From this and Theorem 2, § 96, we infer

THEOREM 2. If a;, a5 by, by, are symmetric matrices of which by, by
are non-singular, a necessary and sufficient condition that a non-singu-
lar matriz P exist such that

(10) a,=P'aP, b, = P'b;P,

where P' i3 the conjugate of P, 18 that the matrices
have the same invariant factors,— or, if we prefer, the same elementary
divisors.
If, in particular, b, =b,=1I, where I is the unit matrix, we have,
from the second equation (10), the formula
I=PP.

Such a matrix P we call an orthogonal matriz according to the defini-
tion, which will readily be seen to be equivalent to the one given in
the first footnote on page 154 :

DEFINITION. By an orthogonal matriz we understand a non-gingu-
lar matriz whose inverse is equal to its conjugate.

In the special case just referred to, Theorem 2 may be stated in the
following form:

THEOREM 3. If a; and a, are two symmetric matrices, a necessary
and sufficient condition that an orthogonal matriz P extst such that
a,=P'a,P
18 that the characteristic matrices of a, and a, have the same invariant
Jactors,— or, if we prefer, the same elementary divisors.

If this theorem is compared with Theorem 3, § 96, it will be seen
that it differs from it only in two respects, first that a, and a, are
assumed to be symmetric, and secondly that P is required to be
orthogonal.

103. The Equivalence of Pairs of Quadratic Forms. Let us con-
sider the two pairs of quadratic forms

n n
=% =1
¢, = Elaijxi‘”f’ Y= %%’ ;%

n n
and b, = ? aljz;z;, Yy = %bé,’-x‘xj,
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of which the two forms + and +y, are assumed to be non-singular.
"We will inquire under what con.ditious these two pairs of forms are
equivalent; that is, under what conditions a linear transformation
Zy= o2y + e+ o,
z, = cn]xg + -+ cnnx;u
exists which carries over ¢, into ¢, and, at the same time, v, into Yr,.
If we denote the conjugate of the matrix ¢ by ¢/, and the ma-
trices of the forms ¢, Y, ¢, Y, by a;, by, a,, b, respectively, we
know, by Theorem 1, § 43, that the transformation ¢ carries over ¢,
and v into forms with the matrices

! ’
c'ac, ¢’byc

respectively; so that, if these are the forms ¢, and +,, we have
(@) a, = c'ac, b, = ¢'byc.

Consequently, by Theorem 2, § 102, the two A-matrices
a, — Ab,, 8, — b,
Thave the same invariant factors and elementary divisors.
Conversely, by the same theorem, if these two A-matrices have
the same invariant factors (or elementary divisors), a matrix ¢, inde-
pendent of A, exists which satisfies both equations (1); and hence

the two pairs of quadratic forms are equivalent. Thus we have
proved

THEOREM 1. If ¢, ¥, and ¢, Yy are two pairs of quadratic
Jorms in n variables, in which \p; and \ry are non singular, a necessary
and sufficient condition that these two pairs of forms be equivalent 8
that the matrices of the two pencils

¢ — My, ba— My
have the same invariant factors, — or, if we prefer, the same elemen-
tary divisors.*
A special case of this theorem which is of considerable impor-
tance is that in which both of the forms 4, and +, reduce to
2} + 23+ - + 22

*For brevity, we shall speak of these invariant factors and elementary divisors as
the invariant factors and elementary divisors of the pairs of forms ¢1, Y1 and ¢g, ¥a
respectively.
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In this case we have to deal with orthogonal transformations (cf. the
Definition in Exercise 1, § 52), and our theorem may be stated in
the form *

THEOREM 2. If a; and a, are the matrices of two quadratic forms,
a necessary and sufficient condition that there exist an orthogonal trans-
Jormation which carries over one of these forms into the other is that the
characteristic matrices of a, and a, have the same invariant factors,
— or, if we prefer, the same elementary divisors.

To illustrate the meaning of the theorems of this section, let us
consider again briefly the problem of the simultaneous reduction of
two quadratic forms to sums of squares. In Chapter XIII we be-
came acquainted with two cases in which this reduction is possible ;
cf. Theorem 2, § 58. and Theorem 2, § 59. We are in a position now
to state a necessary and sufficient condition for the possibility of
this reduction, provided that one of the two forms is non-singular.

For this purpose, consider the two quadratic forms

b=k + k2l + - + k2l
Y =c2f + o + o + el

where we assume, in order that the second form may be non-singular,
that none of the ¢’s vanish. The matrix of the pencil ¢ — Ay is

ky—en 0 0 .. 0
0 ky—er 0 - 0

. . . . . ’
0 0 0 - Ek,—ec
and the elementary divisors of this matrix are

vk Ak .

3 Cq Cn

all of the first degree. Consequently, any pair of quadratic forms

equivalent to the pair just considered must have a A-matrix whose
elementary divisors are all of the first degree.

Conversely, if we have a pair of quadratic forms, of which the

first is non-singular, whose A-matrix has elementary divisors all of

* This theorem is, of course, essentially equivalent to Theorem 5, § 102, of which it
may be regarded as an immediate consequence.



PAIRS OF QUADRATIC FORMS 305

the first degree, we can obviously choose the constants % and e
in such a way that the A-matrix of the forms ¢ and y just con-
sidered has these same elementary divisors, and therefore the given
forms are equivalent to these special forms ¢ and y». Thus we have
Proved the theorem::

THEOREM 3. If ¢ and + are quadratic forms and r is non-singu-
Zar, a necessary and sufficient condition that it be possible to reduce ¢
and | simultancously by a non-sinyular linear trangformation to forms
Znto which only the square terms enter 18 that all the elementary divisors
Qf the pair of forms be of the first degree.

This theorem obviously includes as a special case Theorem 2 of
§ 58, since the elementary divisors are necessarily of the first degree
when the A-equation has no multiple roots.

Comparing the theorem just proved with Theorem 2, § 59, we see
that under the conditions of that theorem the elementary divisors
must be of the first degree. Hence

THEOREM 4. If \r i3 a non-singular, definite, quadratic form, and
b w8 a real quadratic form, all the elementary divisors of this pair of
Forms are necessarily of the first degree.

104. Classification of Pairs of Quadratic Forms. We consider
the pair of quadratic forms

(1) ¢ = %aﬁz{xj, ‘\ll‘ = %bq‘zizj,

and assume, as before, that 4 is non-singular. We denote the ele-
mentary divisors of these forms, as in § 99, by

=) (v=ng)n - (v=N)* (e + e+ -+ e, =n).

"The symbol [¢; e, ---¢,] we call the characteristic of the pair of
quadratic forms; and all pairs of quadratic forms which have the
same characteristic we speak of as forming a category.*

We have here, precisely as in the case of bilinear forms, the
theorem:

THEOREM. If Ay Ay -+ N\ are any constants, equal or unegqual,
and e, e,, --- e, are any positive integers whose sum 18 n, there ezist pairs

* Thus, for instance, all pairs of forms of which the second is non-singular and which
admit of simultaneous reduction to sums of squares, form a category whose character
isticis [11...1]. Cf. Theorem 8, § 103.

X
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of quadratic forms in m variables, the second form in each pair being
non-gingular, which have the elementary divisors

(2 A=), v =gy weee (0 — Ap)e.

The proof of this theorem consists in considering the following
pair of quadratic forms, analogous to the normal form (8") of § 99:

e +e, e+e,—1 )

e -1
( p= <2h1 O Z g+ 2 A 1270, ) + (E NoColiae rerisg+ = Boiorseni
1 1 e+1 e+1

n—1
+ .. +< p )\Lc,,z,xz,,_,, —ipy+ E d,c:vtxz,,_,k_t),

(3) ) n—ep+1 n—er+1
e‘ e1+e, e +? +?‘
Y= 201x Ley—1+1 + 2 2 CokiTge reg—r+1 T = 2 CgT T oe 1gerter-i+1
+1 ere+1

+ e+ 2 CrTi%on—e,—i+1’
n—ep+1

where ¢;, +++ ¢4, dy, -+ dj are constants which may be chosen at pleas-

ure, provided none of them are zero.

The A-matrix of this pair of forms is the same as the A-matrix of
the pair of bilinear forms (3') of § 99, and therefore has the desired
elementary divisors.

A reference to Theorem 1, § 103, shows that formula (3) yields a
normal form to which every pair of quadratic forms, of which the
second is non-singular and whose elementary divisors are given by
(2), can be reduced.

The categories, of which we have so far spoken, may be divided
into classes by the same methods we used in § 99 in the case of
bilinear forms. This may be done, as before, either by simply noting
which of the A/s are equal to each other, or by further distinguishing
between the cases where some of the \;’s are zero.

We are now in a position to see exactly in what way our elemen-
tary divisors give us a more powerful instrument than we had in the
invariants @, of § 57. These invariants @, being the coefficients of
the A-equation of our pair of forms, determine the constants X;, which
are the roots of this equation, as well as the multiplicities of these
roots. They do not determine the degrees ¢; of the elementary di-
visors, and the use of the ®,’s alone does not, in all cases, enable us
to determine whether two pairs of forms are equivalent or not.
Thus, for instance, we may have two pairs of forms with exactly the
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same invariants ®; but with characteristics [(11)11 .--1] and
[211 ... 1] respectively.* It will be seen, therefore, that the @,’s
form in only a very technical sense a complete system of invariants.

EXERCISES

1. Form a numerical example in the case n =3 to illustrate the statement
made in the next to the last sentence of this section.

2. Prove that if two equivalent pairs of quadratic forms have two elementary
divisors of the first degree which correspond to the same linear factor, there exist
an infinite number of linear transformations which carry over one pair of forms
into the other.

3. Prove the general theorem, of which Exercise 2 is a special case, namely,
that if two equivalent pairs of quadratic forms have a characteristic in which one
or more parentheses appear, there exist an infinite number of linear transforma-
tions which carry over one pair of forms into the other.

4. Prove that if two equivalent pairs of quadratic forms have a characteristic
in which no parentheses appear, only a finite number of linear transformations
exist which carry over one pair of forms into the other. t

How are these transformations related to each other?

105. Pairs of Quadratic Equations, and Pencils of Forms or Equa-
tions. In dealing with quadratic forms, the questions of equiva-
lence and classification do not always present themselves to us in
precisely the form in which we have considered them in the last two
sections. We frequently have to deal not with the quadratic forms
themselves but with the equations obtained by setting the forms
equal to zero. Two such pairs of equations we shall regard as
equivalent, not merely if the forms in them are equivalent, but also
if one pair of forms can be obtained from the other by multiplication
by constants different from zero.

Let us consider two quadratic forms ¢, Y, of which we assume,
as before, that the second is non-singular, and inquire what the
effect on the elementary divisors

1) A=) (A=), e (M= ApYe

* We may, in the case n = 3, put the same thing geometrically (cf. the next sec-
tion) by saying thatitis impossible to distinguish between the case of two conics having
double contact and that of two conics having simple contact at asingle point by the use
of the invariants ©; alone, whereas these two cases are at once distinguished by the use
of elementary divisors.

+ The exercise in § 58 is practically a special case of this.

t Questions similar to those treated in this section might have been taken up in
the last chapter for the case of bilinear forms.
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of these forms will be if the forms are multiplied respectively by the
constants p, ¢ which are both assumed to be different from zero.

Let us write
¢, =pP, Yy =

Then
©)) ¢ — My =p (@ —NY)
where A= I

P

Let A — @ be any one of the linear factors of the matrix of ¢ — Ay,
so that « is any one of the constants A;, Ay, --- A5 and let us denote,
as in the footnote to Definition 3, § 92, by /; the exponent of the
highest power of A — « which is a factor of all the i-rowed deter-
minants of this matrix. Then it is clear, from (2), that /; is the
exponent of the highest power of M’ — & which is a factor of all the
t-rowed determinants of the matrix of ¢; —Ayr;. In other words,

-

is the highest power of the linear factor A — pe/q which is a factor
of all the ¢-rowed determinants of the matrix of ¢; — Ayr;. Turning
now to the definition of elementary divisors as given in the footnote
to Definition 8, § 92, we see that the elementary divisors of the matrix
of ¢, — Ay, differ from those of the matrix of ¢ — Ay only in having
the constants A; replaced by the constants pA,/g. We thus have the
result :

THEOREM 1. If the pair of quadratic forms ¢, v, of which the
second i3 assumed to be nom-singular, has the elementary divisors

(=2 (A=) e (A=A
and if p, q are constants different from zero, then the pair of quadratic
Jorms pp, ¢ has the elementary divisors

Y A Y CRNEEEEES =D

where A= P A

In particular, it will be seen that these two pairs of forms have
the same characteristic, even when the conception of the character-
istic is refined not merely by inserting parentheses hut also by the
use of the small zeros.
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The theorem just proved shows that pairs of homogeneous
quadratic equations, of which the second equation in each pair is
non-singular, may be classified by the use of their characteristics
precisely as was done in the last section for pairs of quadratic forms.
We proceed to illustrate this in the case n =3, where we may con-
sider that we have to deal with the classification of pairs of conics
in a plane, one of the conics being non-singular.

We have here three categories represented by the following
normal forms:*
L [111] { b =€Mad 4 Ng2Z — N2

= 22422 — a2
V= 2%+ 2 z3.

¢ =2N 2,2, + 27 + N2}
L [21 {
[21] Y= 222, + 2%
1L [3] {4) =2\ 2y 25 + Ny 23 + 22,7,

Y= 22754 23

We next subdivide these categories into classes, and, by an ex-
amination of the normal form in each case, we are enabled at once to
characterize each class by certain projective properties which it has,
and which are shared by nc other class.t+ Since the conic 4 is non-
singular in all cases, this fact need not be explicitly stated.

[111] ¢ and 4 intersect in four distinet points.

[(11)1] ¢ and 4+ have double contact.

[(111)] ¢ and 4 coincide.

[21] ¢ and 4 meet in three distinct points at one of which
they touch.

[(21)] ¢ and 4 have contact of the third order.

[3] ¢ and » have contact of the second order.

In all of the above cases ¢, as well as 4, is non-singular.

In the next five cases, ¢ consists of a pair of distinct straight
lines.

* We assign to the constants ¢; and %, in formula (38) of the last section, values so
chosen that the loci ¢ =0, y =0 are real when the constants \; are real. This is, of
course, not essential, since we are not concerned with questions of reality.

t In order to verify the statements made below, the reader should have some
knowledge of the theory of the contact of conmics; cf. for instance Salmon’s Conis
Sections, Chapter XIV., pages 282-238.
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0
[111] ¢ and 4 intersect in four distinct points.
0
[(11)1] Both of the lines of which ¢ consists touch .
0

[21] One of the lines of which ¢ consists touches 4, while
the other cuts it in two points distinet from the point
of contact of the first.

0
[21] The two lines of which ¢ consists intersect on 4, and
neither of them touches 4.

0
[3] The two lines of which ¢ consists intersect on 4, and
one of them touches . '

In the next two cases, ¢ consists of a single line.
00

[(11)1] The line ¢ meets { in two distinct points.
00

[(21)] The line ¢ touches .

Finally we have the case:
000
[(111]) Here ¢ =0, and we have no conic other than +-.

Suppose finally that we wish to classify not pairs of quadratic forms
or equations but pencils of quadratic forms or equations. Consider the
pencil of quadratic forms ¢ — A

where ¢ and  are quadratic forms, and + is non-singular, and
suppose that the elementary divisors of the pair of forms ¢, y» are
given by formula (1) above. The question presents itself whether,
if, in place of the forms ¢, Y», we take any other two forms of the

pencil d=d—umh  W=p—h

the constants u, » being so chosen that w==» and that +, is non-
singular, the pair of forms ¢;, Yr, will have these same elementary
divisors (1). If this were the case, we could properly speak of (1)
as the elementary divisors of the pencil. This, however, is not the

case, and the pencil of quadratic forms cannot properly be said to have
elementary divisors.*

* We here regard the pencil as merely an aggregate of an infinite number of
quadratic forms, namely, all the forms which can be obtained from the expression
¢ — Ny by giving to A different values. In this sense we cannot speak of the elementary
divisors of the pencil. If, however, we wish to regard the polynomial in the «’s and \,
¢ — Ny, as the pencil, we may speak of its elementary divisors, meaning thereby simply
what we have called the elementary divisors of the pair of forms ¢, y. '
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There is, however, a simple relation between the elementary
isors of two pairs of forms taken from the same pencil. In order
show this, let us determine the elementary divisors of the pair of
ms ¢y, Yy, above. Tor this purpose consider the expression
— Ayr;, Which, when A == 1, may be written
¢, — A =1 =N[¢—ry]
m— VA

ere A = T

w suppose, as above, that A — « is any one of the linear factors of

matrix of ¢ — A, and that 7 is the exponent of the highest
ver of A — a which is a factor of all the 4-rowed determinants of
s matrix. Then any one of the z-rowed determinants of the ma-
¢ of ¢ — My may, when A= 1, be written in the form

(N = @)if(\")
ere f is a polynomia,l in A" of degree not greater than 7 — 1,
cordingly, by (8), the corresponding ¢-rowed determinant of the
trix of ¢; — Ay, may be written
[ —va — a(1—=N)]f(0)

ere f; is a polynomial in A. Thus we see that

o — u i
- -V

v factor of every z-rowed determinant of the matrix of ¢, — Ay,
ailar reasoning, carried through in the reverse order, shows that
3 is the highest power of 5\ B p

oV
ich is a factor of all these ¢-rowed determinants. Hence
THEOREM 2. If the pair of quadratic forms ¢, \r, of which the
md 18 non-singular, hAave the elementary divisors

A=), e (X = Np)k,

U of w, v are any two constunts distinet from each other and such
t v 28 destinet from all the constants Ay, Ny, -+ A, then the two forms

bri=p—pp  V=é—h
which the second well then be non-singular, will have the elementary
18078 (7& — Xi)’l, <>\' — xln)p,’ ...... (x___ )\L)’k

re Mﬁ%%* (i=1,2, - k).
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In particular, it will be seen that the two pairs of forms ¢, {» and
¢1, Y+, have the same characteristic [e; e, --- ¢,] even if we put in
parentheses to indicate which of the ¢’s correspond to equal A;’s.
The characteristics will not, however, necessarily be the same if we
put in small zeros to indicate which of the ¢’s correspond to vanish-
ing \/s, since A; and A} do not usually vanish together. Accord-
ingly, in classifying pencils of quadratic forms, we may use the
characteristic of any pair of distinet forms of the pencil, the second
of which is non-singular, but we must not introduce the small zeros
tnto these characteristics. This classification, of course, applies only
to what may be called non-singular pencils, that is, pencils whose
forms are not all singular.

It will readily be seen that what has just been said applies with-
out essential change to the case of pencils of homogeneous quadratic
equations. We may therefore illustrate it by the classification of
non-singular pencils of conics.* We have here six classes of pencils
which we characterize as follows:

[111]  The conics all pass through four distinct points.

[(11)1] The conics all pass through two points at which they
have double contact with each other.

[(111)] The conics all coincide.

[21] - The conics all pass through three points at one of
which they touch one another.

[(21)] The conics all pass through one point at which they

~ have contact of the third order.

[3] The conics all pass through two points, at one of

which they have contact of the second order.

EXERCISES
1. Determine, by the use of elementary divisors, the nature of each of the
following pairs of conics:
(@) {3z§+7x§ +8x1xs — 102225+ 4 2125 =0
22} + 823 —af+4z120 — 6z223+ 62123=0.
® {3x§ — 25—~ 823 — 8122 + 8 zezs + 21 23=0
22} 4 2i— 23— 2x120 —2 223+ 2 2173 =0.
2. Give a classification of pairs of binary quadratic equations, the second
equation of each pair being non-singular, and interpret the work geometrically.

* For a similar classification of pencils of quadrics we refer to p. 46 of Bromwich’s
book : Quadratic Forms and their Classification by Means of Invariant Factors.
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106. Conclusion. We wish, in this section, to point out some
of the important questions connected with the subject of elementary
divisors, which, in order to keep our treatment within proper limits,
we have been obliged to leave out of consideration.

If ¢, ¥, and ¢, Y, are two pairs of bilinear or quadratic
forms of which 4y, 4r, are non-singular, we have found a method
of determining whether these two pairs of forms are equiva-
lent or not. If we use the invariant factors instead of the ele-
mentary divisors, our method involves only the use of the rational

operations  (wddition, subtraction, multiplication, and division), .

and can, therefore, be actually carried through in any concrete
case. In fact we have explained in § 93 some really practical
methods of determining the invariant factors of a A-matrix, so
that the problem of determining whether or not two pairs of
bilinear or quadratic forms, the second form in eaclh pair being
non-singular, are equivalent, may be rvegarded as solved, not
werely from the theoretical, but also from the practical point of
view.

There is, however, another question here, which we have not
treated, namely, if the two pairs of forms turn out to be equiva-
lent, to find a linear transformation which carries over one into
the other.  This problem, too, we may consider that we have
solved from a theoretical point of view; for the proof we have
given that if two pairs of forms have the same elementary
divisors there exists a linear transformation which carries over
one pair of forms into the other, consisted, as will be seen on
oxamination, in actually giving a method whereby such a linear
transformation could be determined.  In fact, in the case of bilinear
forms, the processes involved are, here again, mercly the rational
processes; so that, given two equivalent pairs of bilinear forms, the
second form of each pair being non-singular, we are in a position to
find, in any concrete case, linear transformations of the 2’s and g's
which earry over one pair of forms into the other. Kven here the
arrangement of the work in a practical manner might require
further consideration.

In the case of quadratic forms the problem becomes a much more
difficult one, inasmuch as the processes involved in the determination
of the required linear transformation are no longer rational; cf. the
Lemma of § 101, That this is not merely a defeet of the method we
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have used, but is inherent in the problem itself, will be seen by a con
sideration of simple numerical examples. Let, for instance,

¢, =223+ 323, ¢, =223 — 32,

V= 21+ 23 Vo= 2§— 23
Here the pairs of forms ¢;, Y~ and ¢, Y, both have the elementary
divisors A —2 r—3

and are therefore equivalent. The linear transformation which
carries over one pair of forms into the other cannot, however, be
real (and therefore its coefficients cannot be determined rationally
from the coefficients of the given forms) since ¢, and , are definite,
¢, and 4, indefinite.

We have, therefore, here the problem of devising a practical
method of determining a linear transformation which carries over a :
first pair of quadratic forms into a second given equivalent pair. A
method of this sort, which is a practical one when once the elemen-
tary divisors have been determined, will be found in Bromwich’s
book on quadratic forms referred to in the footnote on p. 312.

Another point at which our treatment is incomplete is in the
restriction we have always made in assuming that, in the pair of
bilinear or quadratic forms ¢, 4, the form 4 is non-singular. Al-
though this is the case in many of the most important problems to
which one wishes to apply the method of elementary divisors, it is still
a restriction which it is desirable to remove. This may be done in
part by making use not, as we have done, of the pencil ¢—nyr, but
of the more general pencil u¢p — A, # and A being variable param-
eters, The determinants of the matrix of this pencil are binary
forms in (u, 1), and the whole subject of elementary divisors admits
an easy extension to this case, the elementary divisors being now
integral powers of linear binary forms. The only case which can-
not be treated in this way is that in which not only ¢ and +» are
both singular, but every form of the pencil u¢ — Ay is singular.
This stngular case, which was explicitly excluded by Weierstrass in
his original paper, requires a special treatment which has been given
by Kronecker. Cf., for the case of quadratic forms, the book of
Bromwich already referred to.

Still another question is the application of the method of ele-
mentary divisors to the case in which the two forms ¢, y» are real,
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and only real linear transformations are admitted. In the case of
bilinear forms, this question presents no serious difficulty; cf. the
exercises of §§ 97, 99.  In the case of quadratic forms, however, the
irrational processes involved in the proof of the Lemma of § 101
introduce an essential difficulty, since they are capable of introduc-
ing imaginary quantities. Moreover, this difficulty does not lie
merely in the method of treatment. The theorems themselves
which we have established do not remain true, as is seen by a refer-
ence to the numerical example given earlier in this section for an-
other purpose, where we have two pairs of real quadratic forms
which, although they bhave the same elementary divisors, are not
equivalent with regard to real lincar transformations.

We must content ourselves with merely mentioning this impor-
tant subject, and referring, for one of the fundamental theorems, to
p- 69 of the book of Bromwich.

For further information concerning the subject of elementary
divisors the reader is referred to Muth’s Theorie und Anwendung der
Flementartheiler, Leipzig, Teubner, 1899, In English, the book of
Bromwich already referred to and some sections in Mathews’ revision
of Scott’s Determinants will be found useful.
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Newton’s formule, 244.
Normal form o! a bilinear form, 116;
of a binary biquadratie, 261;
of a binary cubic, 239;
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matrix, A-matrix, elementary transformas
tion, 278 ;
quadratic forms, 144-154, 161, 170-173.
Reciprocal or inverse of a quadratic form,
160.
Reciprocation, 117.
Reducibility of a polynomial, 174 ;
in a domain, 174, 175;
of bilinear forms, 116;
of binary forms, 188;
of determinants, 176;
of polynomials in one variable, 187;
of quadratic forms, 136, 147.
Regularly arranged quadratic form, 147.
Resultant of linear forms, 93;
of two binary forms, 201, 236, 239, 257;
of two polynomials in one variable, 195,
239, 248.
Roots of a polynomial or equation, 18.
Ruling of a quadric surface, 119.

S-functions, 241, 253.
Z-functions, 240, 252.
Scalar, 62;
matrix, 76.
Self-conjugate tetrahedron, 125;
triangle, 164. .
Semi-definite quadratic form, 150.
Set of objects, 80.
Sgn, 147.
Signature of a quadratic form, 146.
Similar matrices, 283.
Simple elementary divisors, 270.
Singular matrix, 65;
bilinear form, 114;
conic, 163, 272;
linear transformation, 67;
quadratic form, 128;
quadric surface, 118.
Skew-symmetric determinant, 59;
bilinear form, 117;
matrix, 59.
Smith, H. J. S., 262.
Subgroup, 83.
Subresultant, 197.
Sylvester, 78, 144, 199, 262.
Symbolic product of bilinear forms, 114.
Symmetric determinant and matrix, 5
299;
bilinear form, 115;
binary function, 255;
polynomial, 240 ;
polynomial in pairs of variables, 252;
ternary function, 257.
System, 80.

langent
, tru
Ternary
Sy
Transfo;
deter
elem
ident
inver
linea
orthe
proje
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Tangent lines and planes to quadric surface, | Unimodular matrix, 83.
, true and pseudo, 119, 120. Unit matrix, 74.
Ternary form, 5;
symmetric function, 257.
Transformation, affine, 70;
determinant and nratrix of, 66; Vertex of a cone, 320' 12122’9123’ 156;
elementary (of a matrix), 55, 262; of a quadratic form, 129.
identical, 67;

inverse, 67;
linear, 66; ‘Weierstrass, 262, 270, 314.
orthogonal, 154, 173, 304 ; Weight of an invariant, 96, 225;
projective, 69; of a covariant, 97, 226;
singular, 67. of a polynomial, 222;
Transposed matrix, 21. of a symmetric polynomial, 245, 253.



