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PREFACE

The chief purpose of this book is the development for
the first time of a general theory of the arithmetics of
algebras, which furnishes a direct generalization of the
classic theory of algebraic numbers. The book should
appeal not merely to those interested in either algebra
or the theory of numbers, but also to those interested in
the foundations of mathematics. Just as the final
stage in the evolution of number was reached with
the introduction of hypercomplex numbers (which make
up a linear algebra), so also in arithmetic, which began
with integers and was greatly enriched by the introduc-
tion of integral algebraic numbers, the final stage of its
development is reached in the present new theory of
arithmetics of linear algebras.

Since the book has interest for wide classes of readers,
no effort has been spared in making the presentation
clear and strictly elementary, requiring on the part of
the reader merely an acquaintance with the simpler
parts of a first course in the theory of equations. Each
definition is illustrated by a simple example. Each
chapter has an appropriate introduction and summary.

The author’s earlier brief book, Linear Algebras
(Cambridge University Press, 1914), restricted attention
to complex algebras. But the new theory of arithmetics
of algebras is based on the theory of algebras over a
general field. The latter theory was first presented by
Wedderburn in his memoir in the Proceedings of the
London Mathematical Society for 19o7. The proofs of

vii



viii PREFACE

some of his leading theorems were exceedingly com-
plicated and obscured by the identification of algebras
having the same units but with co-ordinates in different
fields. Scorza in his book, Corpi Numerici e Algebre
(Messina [1921], ix+462 pp.), gave a simpler proof of
the theorem on the structure of simple algebras, but
omitted the most important results on division algebras
as well as the principal theorem on linear algebras.
An outline of a new simpler proof of that theorem was
placed at the disposal of the author by Wedderburn,
with whom the author has been in constant correspond-
ence while writing this book, and who made numerous
valuable suggestions after reading the part of the manu-
script which deals with the algebraic theory. However,
many of the proofs due essentially to Wedderburn have
been recast materially. Known theorems on the rank
equations of complex algebras have been extended by
the author to algebras over any field. The division
algebras discovered by him in 1go6 are treated more
simply than heretofore.

Scorza’s book has been of material assistance to the
author although the present exposition of the algebraic
part differs in many important respects from that by
Scorza and from that in the author’s earlier book.

But the chief obligations of the author are due to
Wedderburn, both for his invention of the general theory
of algebras and for his cordial co-operation in the present
attempt to perfect and simplify that theory and to
render it readily accessible to general readers.

The theory of arithmetics of algebras has been sur-
prisingly slow in its evolution. Quite naturally the
arithmetic of quaternions received attention first;
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the initial theory presented by Lipschitz in his book of
1886 was extremely complicated, while a successful
theory was first obtained by Hurwitz in his memoir
of 1896 (and book of 1919). Du Pasquier, a pupil of
Hurwitz, has proposed in numerous memoirs a definition
of integral elements of any rational algebra which is
either vacuous or leads to insurmountable difficulties
discussed in this book. Adopting a new definition, the
author develops at length a far-reaching general theory
whose richness and simplicity mark it as the proper
generalization of the theory of algebraic numbers to the
arithmetic of any rational algebra.

Acknowledgments are due to Professor Moore, the
chairman of the Editorial Committee of the University
of Chicago Science Series, for valuable suggestions
both on the manuscript and on the proofsheets of the

chapter on arithmetics.
L. E. DicksoN

UNIVERSITY OF CHICAGO
June, 1923
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CHAPTER 1

INTRODUCTION, DEFINITIONS OF ALGEBRAS,
ILLUSTRATIONS

The co-ordinates of the numbers of an algebra may
be ordinary complex numbers, real numbers, rational
numbers, or numbers of any field. By employing a general
field of reference, we shall be able to treat together
complex algebras, real algebras, rational algebras, etc.,
which were discussed separately in the early literature.

We shall give a brief introduction to matrices, partly
to provide an excellent example of algebras, but mainly
because matrices play a specially important role in the
theory of algebras.

1. Fields of complex numbers. If ¢ and b are real
numbers and if ¢ denotes l/--I, then a+5d7 is called a
complex number.

A set of complex numbers will be called a field if the
sum, difference, product, and quotient (the divisor
not being zero) of any two equal or distinct numbers
of the set are themselves numbers belonging to the set.

For example, all complex numbers form a field C.
Again, all real numbers form a field ®. Likewise, the
set of all rational numbers is a field R. But the set of all
integers (i.e., positive and negative whole numbers and
zero) is not a field, since the quotient of two integers is
not always an integer.

Next, let a be an algebraic number, i.e., a root of
an algebraic equation whose coefficients are all rational
numbers. Then the set of all rational functions of a

I



2 INTRODUCTION, DEFINITIONS [cHAP. 1

with rational coefficients evidently satisfies all the
requirements made in the foregoing definition of a field,
and is called an algebraic number field.

The latter field is denoted by R(a) and is said to
be an extension of the field R of all rational numbers
by the adjunction of a. It has R as a sub-field.

Similarly, the field C of all complex numbers is the
extension R(z) of the field R of all real numbers by the
adjunction of 7.

All of the fields mentioned above are sub-fields of C.
For such fields the reader is familiar with the algebraic
theorems which will be needed in the development of the
theory of linear algebras. However, that theory will
be so formulated that it is valid not merely for a sub-
field of C, but also for an arbitrary field (occasionally
with a restriction expressly stated). Mature readers
who desire to interpret the theory of algebras as applying
to an arbitrary field are advised to read first chapter
xi, which presents the necessary material concerning
general fields.

2. Linear transformations. The pair of equations

a b

t: x=at+by, y=ct+dy, D= c d #o,

with coefficients in any field F, is said to define a linear
transformation ¢, of determinant D, from the initial
independent variables x, y to the new independent
variables £, 7.

Consider a second linear transformation

o B

r: ¢=aX+BY, n=yX+4sV, A= R #o,
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from the variables £, # to the final independent vari-
ables X, Y. If we eliminate £ and 5 between our four
equations, we obtain the equations

t: x=a,X+b,Y, y=cX+d,Y,
in which we have employed the following abbreviations:
(1) ar=aa+by, b=af+bs, c=catdy, d,=cB+ds,

whence

(2)

a; b

6 d =DAso.

Instead of passing from the initial variables x, y to
the intermediate variables £ 7 by means of trans-
formation ¢, and afterward passing from &, 9 to the final
variables X, ¥ by means of transformation r, we may
evidently pass directly from the initial variables x, y
to the final variables X, ¥ by means of the single trans-
formation #. We shall call ¢ the product of ¢t and =
taken in that order and write ;=¢r. This technical
term ‘‘product” has the sense of resultant or compound.
Similarly, we may travel from a point 4 to a point B,
and later from B to C, or we may make the through
journey from 4 to C without stopping at B.

By solving the equations which define ¢, we get

£=%x—%y, n=7)fx+%y-
If we continue to regard x, y as the initial variables and
¢, n as the new variables, we still have the same trans-
formation ¢ expressed in another form. But if we regard
£, 5 as the initial variables and «, ¥ as the new variables,
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we obtain another transformation called the znverse of ¢
and denoted by ¢~*. It will prove convenient to write
X, ¥ for z, y; then

d b —c a
E-'-"I)X—*bY, ﬂ—-l—)—X’*’E Y.

I

Eliminating £ and n between the four equations defin-
ing ¢t and #7*, we find that the product #7* is

I: x=X, y=Y,

which is called the identity transformation I. As would be
anticipated, also ¢t~*¢t=1.

While ¢:~*¢=#"*, usually two transformations ¢ and =
are not commuiative, tr>~7i, since the sums in (1) are
usually altered when the Roman and Greek letters are
interchanged. However, the associative law

)T =t(+T)

holds for any three transformations, so that we may write
irT without ambiguity. For, if we employ the foregoing
general transformations ¢ and 7, and

T: X=Au+Bv, YV =Cu+ Do,

we see that (#7)T is found by eliminating first £, # and
then X, ¥ between the six equations for ¢, =, T, while
t(rT) is obtained by eliminating first X, ¥ and then
£, n between the same equations. Since the same four
variables are eliminated in each case, we must evidently
obtain the same final two equations expressing # and y
in terms of # and .

The foregoing definitions and proofs apply at once to
linear transformations on any number p of variables:
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xt=dn£x+‘aufz+ « e +d,p£‘,,
A

. .

xp=ap1&+dp:£3+ e e e +d”Ep,

except that the cquations of the inverse A~ are now
more complicated (§ 3).

3. Matrices. A linear transformation is fully defined
by its coefficients, while it is immaterial what letters
are used for the initial and the final variables. For
example, when we wrote the equations for ¢ in § 2,
we replaced the letters x, y which were first employed
to designate the new variables by other letters X, V.

Hence the transtormations ¢, 7, and 4 in § 2 are fully
determined by their matrices:

o b o B Qrry Q125 0 o o o 5y Qrp
m= , M= , B R
¢ d Yy &

Qpr; pzy o o o o 5 App
the last having p rows with p clements in each row.
Such a p-rowed square matriz is an ordered set of p?
elements each occupying its proper position in the symbol
of the matrix. The idea is the same as in the notation
for a point (x, y) of a plane or for a point (x, ¥, 2) in
space, except that these one-rowed matrices are not
square matrices. The matrix

_ ( aa-+by aﬁ+bs)
M=\ catdy cB+ds

of the transformation #,=¢r is called the product of the
matrices m and u of the transformations ¢ and . Hence
the element in the sth row and jth column of the product
of two matrices is the sum of the products of the succes-
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sive elements of the 7th row of the first matrix by the
corresponding elements of the jth column of the second
matrix,

For example, the element ¢34+ 54§ in the first row and
second column of mpu is found by multiplying the ele-
ments a, b of the first row of m by the elements B, 6,
respectively, of the second column of u, and adding the
two products.

The determinants D and A of the transformations
¢ and 7 are called the determinants of their matrices
m and p. By (2), the determinant of their product
mu is equal to the product DA of their determinants.

We shall call the matrices m and u equal, and write
m=up, if and only if their corresponding elements are
equal:

¢=a, b=g, c=vy, d=3¢.

In §2, we employed only transformations whose
determinants are not zero. This restriction is necessary
if we desire that the initial variables shall be independ-
ent, as well as the new variables. For, if D=0 and
a#oint, then y=a~%x. But let us employ also degener-
ale transformations (of deteiminant zero), i.e., linear
relations between two sets of variables, the variables in
one or both sets being dependent. Then the product
of any two linear transformations, whether degenerate
or not, is found as before by elimination of the inter-
mediate set of variables. Hence we may apply our
rule of multiplication to any two matrices, and con-
clude from § 2 that this multiplication obeys the associ-
ative law.
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In particular, m/=Im=m for every two-rowed
matrix m if
(22)
o1

is the identity mairix, or unit matrix. If the determinant
D of m is not zero, m has the inverse

m"‘=< _‘Zg Zg ), m-m=mm-*=I.
The corresponding matrix without the denominators D
is called the adjvint of m and designated by “‘adj. m.”

If m is a p-rowed square matrix, the element in the
¢th row and jth column of its adjoint is the cofactor
(signed minor) of the element in the jth row and ith
column of the determinant D of m. In case Dso,
the element in the ith row and jth column of the inverse
m™" of m is the quotient of that cofactor by D.

Given two matrices m and u such that the determi-
nant |m| of m is not zero, we can find one and only one
matrix £=m ~*u such that mx =y, and also one and only
one matrix y=pum ~* such that ym=pu.

But if |m| =0, there is no matrix x for which mx =1,
since this would imply o-|x|=1. Likewise there is no
matrix y for which ym=1.

Hence each of the two kinds of division by m is
always possible and unique if and only if |m|so.

The sum of the foregoing two-rowed matrices m and u
is defined to be

m+”=( ata b+p )

ety d+5
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Hence the matrix all of whose elements are zero plays
the role of zero in addition.

Denote by S, the scalar matrizx whose diagonal ele-
ments arc all e and whose remaining elements are all
zeroj; if there are only two rows,

e o
se(2°)
If ¢ and b are any two numbers of the field F,

Set+Se=Ssts,  SeS6=Su.

Hence there is evidently a one-to-one correspondence
between the scalar matrices S, and the numbers e of
the field F such that this correspondence is preserved
under both addition and multiplication. In other words,
the set of all scalar matrices is a field simply isomorphic
with F. Moreover,

_[ea eb _[a b
S,m—mS,—( ec ed )’ m=< c d )
Hence from any relation between matrices, some of
which are scalar, we obtain a true relation if we replace

each scalar matrix S, by the number ¢ and make the
following definitions:

. [ea e - _ [ ate b
em—-me—( ), et+m m+e—<c dte )

ec ed

The first relation defines the scalar product of a number e
and a matrix m to be the matrix each of whose elements
is the product of e by the corresponding element of m.
In particular, el=I¢=S, Use is rarely made of the
notation e+m, which is generally written el 4-m.
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If m is a matrix whose determinant D is not zero,
then adj. m=Dm™* by the foregoing definitions. Hence
the product of m and adj. m in either order is DI. This
result holds true also if D=o.

Important theorems on matrices are proved in chap-
ter vii.

4. Definition of an algebra over any field. According
to the definition to be given, the set of all complex
numbers ¢+57 is an algebra over the field of all real
numbers. Again, the set of all p-rowed square matrices
with elements in any field F is an algebra over F (§ 8).
In this algebra, multiplication is usually not commuta-
tive, while division may fail.

The foregoing discussion of matrices and operations
on them provides an excellent concrete introduction to
the following abstract definition of algebras.

The elements of an algebra will be denoted by small
Roman letters, while the numbers of a field F will be
denoted by small Greek letters.

An algebra A over a field F is a system consisting of a
set S of two or more elements a, b, ¢, . . . . and three
operations @, O, and O, of the types specified below,
which satisfy postulates I—V. The operation @,
called addition, and the operation ©, called muliiplica-
tion, may be performed upon any two (equal or distinct)
elements @ and b of S, taken in that order, to produce
unique elements a®b and a®b of S, which are called
the sum and product of a and b, respectively. The
operation O, called scalar multiplication, may be per-
formed upon any number a of F and any element ¢ of .S,
or upon ¢ and a, to produce a unique element aQa or
aQa of S, called a scalar product.
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For simplicity we shall write a+b for a®b, ab for
aQ®b, aa for aOa, and aa for aOa, and we shall speak
of the elements of S as elements of A4.

We assume that addition is commutative and associ-
ative:

L a+-b=b+a, (a+b)+c=a+(b+0),

whence the sum a,+ . ... 4a;, of @, « v 0oy ais
defined without ambiguity.
For scalar multiplication, we assume that

II. ao=aa, o(Ba)=(aBla, (aa)(Bb)=(aB)(ad),
III.  (a+pB)a=aa+Ba, a(a+b) =aa+ab.

Multiplication is assumed to be distributive with
respect to addition:

IV, (e+b)c=ac+bc, c(a+b)=ca+ch.

But multiplication need not be either commutative
or associative. However, beginning with chapter iv,
we shall assume the associative law (ab)c=a(bc), and
then call the algebra associative.

The final assumption serves to exclude algebras of
infinite order:

V. The algebra 4 has a finite basis.

This shall mean that 4 contains a finite number of
elements v;, . . . ., v, such that every element of 4
can be expressed as a sum a,%:+ . . . . +auv, of scalar
products of v, . . .., v, by numbers a;,. ..., a,of F.

The reader who desires to avoid technical discussions
may omit the proof below that postulates I-V imply
property VI, and at once assume VI instead of V.
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VI. The algebra A contains elements %, - . . . , %,
such that every element x of 4 can be expressed in one
and only one way in the form

(3) x=£1u1+ RN +E,,u,,,

where &, . . .., £, are numbers of the field F.
This implies that if x is equal to

(4) y=mtt . ... T,

then &=mn, . ..., &=n, Adding the » terms of
% to those of y, and applying I and III,, we get

(5) x+y=(EI+’71)ul+ ) +(£ﬂ+"l»)un‘

An element z such that x+z=x for every x in 4 is
called a zero element of A. Comparing (3) with (s),
we see that x+y=x if and only if 7,=0, . . . ., 9,=0.
Hence the unique zero element is

z=0+tUt . ... F0-u,.
It will be denoted by o in the later sections.

We shall now deduce certain results from I-V which
will enable us to prove VI. We first prove that 1 - x=x
for every x in A. By V, x=Za;. Then, by III, and
I1,,

Ie2=21" (q;5)=2(1 * ap)v;=Za;0;=%.

Write z=0-9 for z=1, . ., m, and 2=3+
.... %4z, BylIll fora=o0,8=1,we have a=0"+a+a.
Take a=a,v; and note that, by IL,,

6) o a;=(0-a;)5;=0-1;=2;.

Hence aj9;=2%+a;9;, Summing for i=r, . ..., m, we
get x=2+x. Suppose that also x=w+« for every x in
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A, whence z=w-+32. By the former result with x=1w,
we have w=z+w, whence w=w+z by I. Hence
w=3. Hence A contains a unique zero element z such
that x=2z+x for every x in 4.

By summing (6) for =1, . . .., m, and applying
IIT,, we get o+ x=z for every x in 4. Next, by II;,

zix=(0 - g)x=(0+ ) (1 - x)=(o - 1)(v;%) =0(v;x) =3.

Summing for =1, . . . ., m, and noting that z+z=3,
we get zx=3z. Similarly, xz;=2z, whence xz=z. TFor
any number p in F,

pzi=plo-5)=(p:0)v;=0 0=z, pz=z.

Define —x to be the scalar product of —1 by =.
By III, for a=1, B=—1, we get z=a+(—a).
Define x—y to mean x+(—y) and call it the result
d of subtracting y from x. By adding y to each member
of x—y=d, and applying the preceding conclusion, we
get
x—y+y=x+z=x=d+y.

Conversely, if x=d+y, add —y to each member;
then
x—y=d+y+(—y)=d+z=d.

Hence any term of one member of an equation may be
carried to the other member after changing the sign of
the term.

We are now in a position to prove VI. Either the
v; in V will serve as the desired u,, or there exists at
least one relation Zvv;=Z3; in which v;7B8; for some
value Z=m of 7. Since we may permute the z;, we
may assume without loss of generality that v, O.
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Then there exists a number p of the field F such that
p(Bm—2m)=1. We transpose terms, apply III,, multiply
on the left by p, apply II,, and get

Ep(%'—ﬁj) S U=
j=1

If *m> 1, we may therefore eliminate ,, from Za;»; and
obtain a linear function of vy, . . . . , v,_, with coeffici-
ents §; in F. If two such linear functions are equal
without being identical, a repetition of the argument
shows that we may eliminate one of v, . . .., 9,_;
from Zé;. Evidently this process ultimately leads to
a set of elements %, . . . . , %, having property VL

This.definition of an algebra, with V replaced by the
much stronger assumption VI, is due to G. Scorza.f
However essentially the same definition of an algebra
over the field of real numbers had been given in Encyclo-
pédie des Sciences Mathématiques, Tome I, Volume I
(1908), pages 369-78.

5. Linear dependence with respect to a field. Ele-
ments e, . . . ., e of an algebra 4 over F are said
to be linearly dependent with respect to F if there exist
numbers a,, . . . ., az not all zero, of F such that
o+ . ... +agg=0. If no such numbers a; exist,
the e¢; are called linearly independent with respect to F.
An example is given in § 8.

*If m=1, we proved that z=v. Hence, by V, every element of 4
is the form a,9:=a:5=2, whereas A was assumed to contain at least two

elements. This contradictiou shows that »; in V serves as %; in VI and
that n=1.

t Corpi Numerici ¢ Algebre (Messina, 1921), p. 180; Rendiconti
Circolo Matematico di Palermo, XLV (1921), 7.
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TeEOREM. Ifwy, . ..., u,arelinearly independent
with respect to a field F, the n linear functions

(7) li=ﬁilul+ LRI +I3inun (i=I, “ o 0 0y n),

with coefficients in F, are linearly independent or dependent
according as the delerminant 8=|B;| is not zero or is zero
in F.

For, if a;, . . . ., a, are numbers of F,

Za,l Ea,ﬂ,xu,-l- oo +Zazﬁmun

i=1

is zero if and only if

®) ZB,,O., =0, .., Zﬁ,,,a. =o.

i=1

The determinant of the coefficients of a;, . . . . , a, in
equations (8) is 8. Hence the ordinary rule for solving
linear equations by determinants gives fa,=o, . . . .,
Bas=o0. If B0, a;, .. .., a, are all zero, so that
by . . .., l,are linearly independent. Butif 8=o0, the
n linear homogeneous equations (8) have solutions*
@y, . . .., 0, not all zero, whence I, . ..., I, are
linearly dependent.

6. Order and basal units of an algebra. In view
of VI, in § 4, the algebra 4 over F is said to be of order n,
and %, . ..., u, are said to form a set of »n basal
units of A.

* Dickson First Course in the Theory of Equations (1922), p. 119.
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The last name is given also to any set of » linearly
independent linear functions (7) of u,;, . . . . , u, with
coefficients in F. Then the determinant of those
coefficients is not zero, and (7) can be solved for
Uy .« . ., Uy in terms of L, . . . ., l,. Hence every
element Za;u; of A can be expressed as a linear function
of l,, . ..., I, with coefficients in F.

This replacement of one set of basal units %,, . . . . ,
#, by another setl;, . . . . , [, is called a transformation
of units. The work will be carried out in full detail
in § 61.

THEOREM. Any n-+1 elements of A are linearly
dependent wilh respect to F.

For, I, . ..., l,4. are evidently dependent if
Ly . ..., 1, are. In the contrary case, we saw that
ln+, can be expressed as a linear functionof ,, . . . . , J,
with coefficientsin F,so that/,, . . . ., l,+, are dependent.

7. Modulus. An algebra 4 may have an element
e, called a modulus (or principal unit), such that ex=
xe=x for every element x of 4. For example, the unit
matrix 7 (§ 3) is a modulus for all square matrices having
the same number of rows as I.

If there were a modulus s other than e, then se=e,
while se=s by taking x=s in the earlier relations.
Hence s=e, so that there is at most one modulus. It
is often designated by 1 since it plays the réle of unity in
multiplication.

If an algebra A4 over F has the modulus e, the totality
of elements ae, where a belongs to F, constitutes an
algebra of order 1. Since ae+a’e=(a+a')e, ae-a'c=
aa’e, this algebra of order 1 is called simply isomorphic
with the field F.
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8. Examples of associative algebras. The totality
of p-rowed square matrices with clements in any field F
is an associative algebra of order p* over F, when addi-
tion, multiplication, and scalar multiplication are defined
as in §3. We may choose as a set of p* basal units
e;(i, =1, . ..., p), where e; denotes the matrix
whose elements are all zero except that in the sth row
and jth column, while that element is 1. For p=2,

I O o I o O o O
€u= y €1z = y €u= y €22= .
o O o O I © o 1

Then

( : i ) = aeu+ Beratyent €z

is zero only when a=pB=y=08=o0, whence the four e;
are linearly independent with respect to F (cf. § 9, end).

Second, the field C of all complex numbers &+7i
may be regarded as an algebra of order 2 with the basal
units %, =1, #,=1, over the field F of all real numbers.
For, the assumptions I-IV are satisfied when the Roman
letters denote any numbers of the field C and the Greek
letters denote any real numbers.

Third, any field F may be regarded as an algebra,
over F, of order 1, whose basal unit is 1 (or any chosen
number o of F).

9. An algebra in terms of its units. Choose any set
of basal units %,, . . . ., %, of an algebra 4 of order »
over the field F. By VI, any elements x and y of 4
can be expressed in one and but one way in the respective
forms
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” ”
(9) x= z b,  y= z nithi
i=1 i=I

where &, . ..., & are numbers of F called the co-
ordinates of x (with respect to the chosen units). By § 4,

(1) wty= > (Gtmdm,  w—y= D (—n)u.

i=1 i=1

By IV and II;, we have

I
(11) xy= Zfiﬂj - Wiy,
i,7=1
By VI,
(12) uiu,-=?_:w;kuk (G,j=1,....,n),
=1

where the #* numbers v;; belong to F and are called the
constants of multiplication of the algebra 4 (with respect
to the units %, . . . ., #,). The »? relations (12) are
said to give the table* of multiplication of A (with respect
to the units #;, . . . ., u,).

From (11) and (12), we get, by ITI, and II,,

(13) xy= mej‘wk <.

i,j, k=1

From (9,) we obtain, by III, II,, and II,,

(14) pr=xp= > (ot  (pin F).

1=

* We may use an actual table as in § 25.
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The set of elements (g,) form an algebra 4 over F
with respect to addition, multiplication. and scalar
multiplication, defined by (10,), (13), and (14), respec-
tively, since postulates I-V of § 4 are easily seen to be
satisfied. Hence we may operate concretely on the
elements of an algebra by the rules of this section without
recourse to § 4.

To illustrate these rules for the algebra of all two-
rowed square matrices with elements in F, we write
the matrices m, u, m—+p, and mu of § 3 in terms of the
basal units e; defined in § 8 and obtain

m=aey,~+be,+centde,,
p=aey,+ Be+veau+de,
m+p=(a+a)eu+ (b+ B)ent+(c+v)eat(d+b)es,
mu=(aa+by)ex+(aB+bd)ew+ (catdy)ext (cB+dd)es..

The last equation may also be verified by means of the
following table of multiplication of the units:

(13) ' €k =6k,  €;€}x=0 (E)N

10. New form of the foregoing matric algebra.
Consider the complex matric algebra of all two-rowed
square matrices whose elements are complex numbers.
We employed above the set of basal units e, €2, €., €2,
Then eé,;+¢,, is the unit matrix or modulus, which will
here be designated by 1.

We shall introduce the new set of basal units,

(16) 1=€y+ea 3 U= 1/—0.(6”—8“) y U =€, ..,

u3= V '_ﬂ-(eu"‘ Bcu) 3
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where a0, 0. We have

o =V o) w5 0)

By actual multiplication of matrices we readily get

—a o
u§=< o _a>=—a, w=—08, uwy=-—afl, WU, =u;.

Since matric multiplication is associative, we get

Uty = Uyl = — Q5 , U, = Ul = — Py,
—afu,=1du,=us(— ;) or uu,=an,,
QU Uy =130y~ Uy =1Uy(~a) , Uty = — U, = Uyl =Bt .

Hence the multiplication table of the units 1, u,, #,, #; is

wi=—a, Up=—0, U= —af, U, =t,, Ul=—Us,
(18) 4 sty = —au,, Usthy=al,, Uslh;= Ptbs, Ushs=— iy,
IU=u 1=, (r=1, 2, 3).

The linear combinations of 1, %,, #,, #; with complex
coefficients constitute an algebra which is merely another
form of the complex matric algebra with the units
€11y €12y €214 €220

But if we restrict the co-ordinates of o+ &u,+nu,+
{u; to be numbers of any field # which contains a and 8,
we obtain an associative algebra over F.

11. Quaternions. If in (18) we take a=pf=1 and
write 4, 7, k for u,, %,, u;, we obtain the multiplication
table

' P=fp=k=—1, =k, ji=—k, ki=j,
(x9) {ik=“j, jk=i, kj=—1i, 1i=i1=1, etc.
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of the basal units of quaternions g=o+Eti+nj+$k.
The totality of elements ¢ with o, . . . ., { in any
field F is the associative algebra of quaternions over F.
When o, . ..., { are all complex, real, or rational,
g is called a complex, real, or rational quaternion,
respectively.

Define the conjugate ¢’ and norm N(q) of ¢ to be

¢=o—ti—nj—tk, N(Q=g¢'=¢'q=+E+n+.

The conjugate of a product ¢¢, is readily verified to
be equal to the product ¢;¢” of the conjugates in reverse
order. Thus N(¢q:) =9¢q.q:¢’. Since ¢:¢; is a number
N(g:) of F it may be moved to the right of ¢". Hence
N(gq:)=N(q):N(g:). In other words the norm of a
product of any two quaternions is equal to the product
of their norms.

Let F be a field composed only of real numbers.
Then a sum of squares is zero only when each square is
zero. Thus if g0, then N(¢) o and ¢ has the inverse

P

T TNt

Hence, if g0, gx=¢, has the unique solution x=¢""¢,,
and yg=g¢; has the unique solution y=g¢,¢~*. Thus
each of the two kinds of division by g#o is always
possible and unique in the algebra of quaternions over
any real field. In particular, a product of two real
quaternions is zero only when one factor is zero.

12. Equivalent and reciprocal algebras. Two alge-
bras A4 and 4’ over the same field F are called equivalent
(or simply isomorphic) if it is possible to establish
between their elements a (1, 1) correspondence such that
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if any elements x and v of 4 correspond to the elements
x’ and v’ of A’, also the elements x+v, xy and ax of 4
correspond to the elements x'+9’, *’y" and ax’ of 4’, for
every number a of F.

Equivalent algebras have the same order, and their
elements zero correspond. If one of two equivalent
algebras has a modulus, so does the other, and the
moduli correspond.

Any algebra A over F is equivalent to itself under
any linear transformation of units with coetlicients in
F (§6).

For example, if we take a=F=1 in § 10, we sce that
the algebra of all two-rowed matrices whose elements
are complex numbers is equivalent, by means of the
transformation (16) on the units. to the algebra of all
complex quaternions. But since that transformation
has imaginary coefficients, it does not set up a corre-
spondence between real matrices and real quaternions.
The two real algebras are in fact not equivalent; various
products e,e,(r=1, 2; s=1,2) of real matrices are
zero, although each factor is not zero, while the product
of two real quaternions, each not zero, is never zero.

Two algebras A and A’ over F are called reciprocal
if it is possible to establish a (r, 1) correspondence .
between their elements such that x4y, xy, ax now corre-
spond to x'+y’, y'x’, ax’.

If in the multiplication table (x2) of the units of an
algebra 4 over F, we replace each product wu; by
wiui, we obtain the multiplication table of the units
Uz . ..., u,of an algebra A’ over F which is reciprocal
to 4. For example, from (15) we get

erey=¢eh, ege;=o (7).
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From these relations we obtain again (15), aside from
the lettering of the subscripts, if we write ¢, for ey, i.e., if
we interchange the rows and columns of our matrices.
Hence the algebra of all p-rowed matrices over F is self-
reciprocal under the correspondence which interchanges
the rows and columns of its matrices.

Two algebras which are either both equivalent or
both reciprocal to the same algebra are equivalent to
each other.

13. Second definition of an algebra. Each element
x=3fu; of an algebra A over F, defined in § 4, has a
unique set of co-ordinates &, ...., £ in F with
respect to a chosen set of basal units #, . ..., #,
Hence with x may be associated a unique #-tuple*
6, . . .., &] of n ordered numbers of F. Using
this #-tuple as a symbol for x, we may write equations
(101), (13). (14) in the following form:

(20) [Elr s e e ey En]+[’7!) ses ey 17»]
=[£|+7717 e e e ey £n+77n}y

(21) [, eeees &lolm, oo vnyml

" n
O @
= D v, Z«fiﬂj')’i;’nJ ,
5j=1 i,j=1

(22) plEry e oo vy E)=[E, . - . ., Elp
=[p£lr"'°1pfn]y PinF

These preliminaries suggest the following definition
by W. R. Hamilton of an algebra 4 over F: Choose
any 3 constants v;; of F, consider all n-tuples [£,, . . . .,
£,] of n ordered numbers of F, and define addition and

* For an algebra of two-rowed matrices, the numbers of each quad-
ruple were written by twos in two rows.
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multiplication of n-tuples by formulas (20) and (21),
and scalar multiplication of a number of p of F and an
n-tuple by formula (22). To pass to the definition in
§ 4, employ the particular n-tuples

(23) w=[1,0,....,0], %;=[0,1,0,.000,0].00.,
Up=[0,....,0,1]

as basal units. By (20) and (22), [&, . ..., &]=
L+ . ... +Em,. Then (20), (21), (22) take the
form (10,), (13), (14), and, as noted in § o9, all of the
assumptions made in § 4 are satisfied. Hence an algebra
of n-tuples is an algebra according to § 4 and conversely.

Hence there exists an algebra over F having as con-
stants of multiplication any given #»3 numbers v;; of F.
The algebra will be associative if the 4’s satisfy the con-
ditions (§ 58) obtained from (u;u;)us = u;(uju).

14. Comparison of the two definitions of an algebra.
Under the definition in § 4, an algebra over a field F is
a system consisting of a set of wholly undefined elements
and three undefined operations which satisfy five postu-
lates.

Under Hamilton’s definition in § 13, an algebra of
order # over F is a system consisting of #® constants 4,j
of F, a set of partially* defined elements [£,, . . . ., &,
and three defined operations, while no postulates are
imposed on the system other than that which partially
determines the elements. This definition really implies
a definite set (23) of basal units. A transformation of
units leads to a new algebra (equivalent to the initial
algebra) with new values for the 73 constants ;.

* Each element is an #n-tuple of numbers of F. In particular, if F
is a finite field of order p, there are evidently exactly p” elements.
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But under the definition in §4, no specific set of
basal units is implied,* and we obtain the same algebra
(not merely an equivalent one) when we make a trans-
formation of units with coefficients in F. That definition
by wholly undefined elements is well adapted to the
treatment of difference algebras (§ 25) which are abstract
algebras whose elements are certain classes of things.
The same definition without postulate V is convenient
in the study of algebras of infinite order (not treated in
this book), an example being the field of all real numbers
regarded as an algebra over the field of rational numbers.

* To emphasize this point, we may understand postulate V (that a

finite basis exists) to mean that there is an upper limit to the number of
linearly independent elements which can be chosen in the algebra.



CHAPTER 1II
LINEAR SETS OF ELEMENTS OF AN ALGEBRA

In the later investigation of an algebra A4, we shall
often find it necessary to consider a “linear set” of its
elements which is closed under both addition and scalar
multiplication. Hence we shall develop here the
calculus of linear sets, including their addition and
multiplication.

15. Basis, order, and intersection of linear sets.
Ifo,,.... , Xm are any elements of an algebra 4 {not
necessarily associative) over a field F, the totality of
their linear combinations Z\xx;, whose coefficients \;
are numbers of F, is called the linear set* with the basis
Xey .+« . ., Xy and is designated by (%, - . . . , T

The linear set with the basis o is composed only of the
element o and is called the zero set and is designated by
(o) oro.

The order of a linear set o is the maximum number
of linearly independentf elements which can be chosen in
the set. The zero set is said to be of order zero. Hence
if %, . ..., %, are linearly independent, the linear set
(®:, . ..., %n) is of order m. The set (x) is of order
I or o, according as x#o0 or £ =o0.

For example, let A be the algebra of all real quater-
nions (§ 11). The quaternions a+B7, in which a and B
range over all real numbers, form the linear set S=(z, 7)

* Called complex by Wedderburn and system by Scorza.

1 With respect to the field F, as will be understood throughout.
Compare § s.

25
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of order 2. The quaternions ai+ fj form another linear
set T'=(z, 7) of order 2.

Lemma 1. If %, . ..., s are n linearly inde-
pendent elements of a linear set S of order m(o<n<m),
we can find elements Xptr, « « o oy Xm of S such that
S=@, . ..., Xm), Where %1, « o o . , Xm are linearly
independent.

For, S contains elements e linearly independent of
Xy, o o . ., Xy, selectany e as x,4,. Unless m=n+1,
S contains elements f linearly independent of 2, . . . .,
Xntrs Select any fas x,4,; etc.

If a linear set T contains all of the elements of a
linear set S, we shall write 7725, S<7. If T contains
S and also elements not in S, we shall write 7>,
S<T.

If S and 7 are two linear sets of an algebra 4, all
elements (including certainly o) which are common to
S and T evidently form a linear set. The latter is
called the éntersection of S and T, and is denoted by
either SAT or TAS.

In the preceding example, S=(z, ), T=(z,7), whence
SAT=().

16. Sum. The unique linear set of smallest order
which contains all the elements of S and all those of T
is called the sum of S and T, and is denoted by either
S+TorT+S. If

(1) S=(5cyuve, Sm), T=(y.uu.,ty), then
SH+T=(5y ety Sm, by oo ooy by

Hence S+T is composed of all of the elements Za;s;+
Zrjt;, where the o; and 7; are numbers of the field F.
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Since Za;s; gives all the numbers of S, and Z7jt; all of T,
it follows that S+7 is the totality of those elements of
A each of which is the sum of an element of S and an
element of 7.

If T<S, then S+T=S and conversely.

For the linear sets S=(1, 2) and T=(3, j) of quater-
nions, S+7 = (1, , 7).

THEOREM 1. Each element of S+ T is expressible in a
single way as a sum of an element of S and an element of T
if and only if the intersection of S and T is zero.

For, if s+i=s"+14, where s and s’ are clements of
S, and ¢ and ¢’ are elements of T, then s—s'=¢ —¢ is in
the intersection SAT of .S and 7.

We readily verify that

(2) (S+HD)+U=S+(T+U), (SAT) AU=S A(TAU).

THEOREM 2. If two linear sets S and T are of orders
m and n, while their intersection C=S~T is of order I,
then the order of S+T is m+n—I.

Let ¢, . . .., ¢ be linearly independent elements*
of C. By Lemma 1, we may write

S=(Cry e oo vy ClySitty ooy Sm

T=(6;, e e ey Oy t1+1, « e e sy In),

in which the indicated elements of S are linearly inde-
pendent, and likewise those of 7. Hence

SHT=(Cry v e v vy Cy Sttty e o o oy Sm bitry <o o oy )

The indicated elements of S+ T are linearly independent.
For, if

¥ If C=o0, the proof holds if we suppress ¢r, « « « « , €1
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ZWHr Zomr Zmlro (i, 0j, 7 in F),

1= Jj=+1 k=l+1
the element —Zr4# of T would be equal to the element
Zvici+Zo;s; of S and hence would be an element Zéic;
of their intersection C. But, by the assumption on T,
the % and ¢; are linearly independent, whence each r,=o0
and each §;=o. Then the displayed equation becomes
Zvyici+Zajsi=0, so that, by the hypothesis on .S, each
v;=o0 and each oj=o0.

The result proved for S+T shows that its order is

m+n—1I.
17. Linear sets supplementary in their sum. If,
forr>2,8,...., , Sy are linear sets of an algebra 4,

we define the sum S,+ « « « « +S; by induction on r
by means of
@ St s FS=SH LRSS

Let m; denote the order of S;, and m the order of
S+ . ... +S,. By the preceding theorem, m=
m+ . ... +m,, and the equality sign holds if and
only if zerc is the only element in common with
S+ ....+S5- and S; for j=2,....,r and
hence, by Theorem 1, if and only if each element of
S:+ . . .. 4S5, can be expressed in a single way in the
form s;+ ... . s, where s; is an element of S;.
In this case m=m,+ .... +m, the linear sets
S ..., S are said to be supplementary in S,+

cee +S,.

In particular, S; and S, are supplementary in S;+S,
if and only if S;~S,=o0. For example, (7,7} and (1, &)
are supplementary in their sum (1, 1, 7, ).
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Lemma 2. If S and T are linear sets of an algebra
A and if TZS, we can find a linear set X such that T and
X are supplementary, ie., S=T+X, T~AX =o.

This follows from Lemma 1 by taking

T=(%y 0 eouy @)y X=nt1y oo, Zn).

However, if T<S, X is not uniquely determined by
S and T since we may replace the foregoing special X by

(ntstlatry o o ooy Tmtlm),

where the ¢’s are any elements of T, while x,4,. . . . . ,
%, are any m—n linearly independent elements of X.

18. Product of linear sets. If S and 1' are any
linear sets of an algebra A4, the linear set of minimum
order, which contains all elements obtained by multi-
plying each element of S by each element of T, is called
the product of S by T, and is denoted by S7T. Hence,
in the notation (1),

(4) (Sx,-oo-,sm)(tly' "';tn)
=Sty o oo oy Sibuy Sabiy o o v vy Smin),

and the order of ST is <m#n. From (1),
(5) (S+T)U=SU+TU, US+T)=US+UT.

Usually ST=TS. When A4 is an associative algebra,
STYU=S8(TU).

Consider the special case in which S'=(s) is composed
of the scalar products of s by the various numbers of the
field F. Then

ST=()(try oo ooy t)=(ty oo, sty
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coincides with the products of s by the various elements
Zrit; of T. Hence we shall often write s7" in place of

(s)T. By (s),
P=[()+WIU=@x)U+(y)U=2U+yU.

Since the elements of (x+y)U occur in P,

(6) (x+y)ULaU+yU.

This becomes o<xU when y= —x, whence yU=xU.
Hence in (6) the sign may be < and not =.

LemMmaA 3. If the order of sT (or Ts) is less than that
of T, there exists an element x7o of T such that sx=o (or
xs=0), and conversely.

For, we may write T=(, ...., I, where
t, ...., !l are linearly independent with respect
toF. Ifsx#oforeveryx=Z27i;inwhichr,, . ..., 7,
are numbers not all zero of F, then s, . . . ., sl, are
linearly independent, and sT is of the same order n as T.

Conversely, if sx=o0 for at least one such x, then
sty, ..., Sty are linearly dependent, and sT is of
order <n.

Denote the intersection A ~B of two linear sets 4
and B by T, and consider the product ST given by (4).
Since each element ¢4 of T is in both 4 and B, each
product si#; is in both S4 and SB and hence is in their
intersection. Hence

() S(AA~B)<SAASB.
For example, let 4 =(1,1,7, k) be the algebra of
real quaternions, and S=(1,7), T=(3,7). Then

§'=S8,ST=TS=4, S~T=(@G), T*=(@,k)=T(A~T)
=1SAT2



CHAPTER III*

INVARIANT SUB-ALGEBRAS, DIRECT SUM, REDUCI-
BILITY, DIFFERENCE ALGEBRAS

In the later development of the theory of algebras,
we shall need certain tools and concepts which are analo-
gous to processes and ideas employed in the theory of
groups and were in fact borrowed from that theory.
However, we shall explain them fully without reference
to groups.

19. Sub-algebra. A linear set S of elements of an
algebra A over a ficld £ is called a sub-algebra of A if
S=o, §2<8. If also S<4, S is called a proper sub-
algebra of 4. Note that S?<S implies that S is closed
under multiplication.

For example. the totality of elements of 4 which are
commutative with a given element e>o0 of 4 is a sub-
algebra if A is associative. If 4 contains elements
which are commutative with every element of 4, all
such elements form a sub-algebra, called the central of 4.
The only quaternions commutative with 7 are a-+ (i,
which form a proper sub-algebra S. Those commutative
with % are a+Bk. Hence the central is composed of the
scalar multiples a of the unit 1.

20. Invariant sub-algebra. If B is a linear set of
elements of an algebra A4 such that Bs>o, ABZBH,
BA £ B, then B is an algebra which is called an invariant
sub-algebra of 4. That B is an algebra follows from
BzA, B*<BAZRA.

* The associative law of multiplication is ot assumed in chap. iii.

31
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An invariant proper sub-algebra B of 4 is called
maximal if there does not exist in 4 an invariant proper
sub-algebra which contains B and is distinct from B.

For example, B=(u,) is an invariant proper sub-
algebra of

(1) A=(ur,u5u):  wi=w;,  wuj=upi=o (j=i).

But B is not maximal since it is contained in the (maxi-
mal) invariant proper sub-algebra (u,, u,) of A.
THEOREM 1. If B, and B, are invariant sub-algebras
of an algebra A, then B,+B, is an invariant sub-algebra
of A.
For,

A(Bi+B,)=AB+AB,<B:+B,, (BitB.)A<B:+B,.

If also B; is maximal, then either B,+B,=4 or
else B;+B, is an invariant proper sub-algebra (of A4)
which contains B, and hence coincides with B,, so that
B,<B,.

CororrarY. If B, and B, are distinct maximal
invariant sub-algebras of A, then B,+B,=A

THEOREM 2. If B and B, are invariant sub-algebras
of A, their intersection C 1is either zero or an invariant sub-
algebra of A.

For,CA<B,A<B;andCA<B A <B,imply C4 <C.
Similarly, AC =C.

21. Direct sum, reducible algebras. If an algebra
A is expressible as the sum of two proper sub-algebras
B and C, such that

BC=o0, CB=o, BAC=o0,
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then A is said to be the direct sum of B and C, and to be
reducible into the componenis B and C. We shall then
write A=B®C=C®B.

Let A have the modulus #. Then #=e¢+f, where
eisin B, and fis in C. Then e is the modulus of 5.
For, if b is any element of B, then 6f=0=/b, whence
b=bu=be, b=ub=e¢b. Similarly, f is the modulus of C.

For example, algebra (1) with the modulus u,+u,+u;
is the direct sum of (u,) and (u,, »,) with the moduli
u, and #,+u;. It is also reducible into the components
(u;) and (u,, u;). Moreover, A = (u,) ®(u, u,).

LemMA. If B and C are sub-algebras, either of which
has a modulus,* and if BC=0=CB, then B~C=o0, so
that the sum of B and C is their direct sum.

For, if B has the modulus ¢, denote by I the inter-
section BAC of Band C. Since e is a modulusand I £ R,
el =1, whileel =osinceeisin Band I £C. Hence I =o.

22. Theorem. If any algebra A has an invariant
proper sub-algebra B which possesses o modulus & satisfy-
ing the associative relations

(2) bexy=bx-y, x-yb=xy:b, x-by=xb-.y,

for all elements z and y of A, then A is reducible and has B
as one component.

For, by Lemma 2 of § 17, we can find a linear set C’
such that A=B+C’, BAC'=0. let %, ...., ¥
form a basis of C” and write

Vi=9i—byi—yib+byib  (@G=1,....,71).
*If neither B nor C has a modulus, we may bave BC'=0=CB,

BACy#o, asin the case B==(us, u,), C= (s, u3), where i =0, uj=uj=1;,
ugthy=o(i#j).
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We shall prove that 4 reduces into the component alge-
bras B and C, where C is the linear set (y, . . . . , ).
Since 4 is in the invariant sub-algebra B of 4, byi, etc.,
belong to B. Hence if a; is any number of the field
over which 4 is defined, Za;v;=Za;y;+0b’, where b’
belongs to B. Thus

B+C=B+C'=A.
If x is any element of B,
xy;=2xy;—xb « yi—xy/b+xb - yib=0,

since «b=x. Similarly, yx=0. Hence BC=0, CB=o.
The theorem will therefore follow from the preceding
lemma if we prove that C is an algebra. For that
proof consider any element z=x-+7y of 4, wherc z is in B
and y is in C. Since

yb=o0=by, ab=x=bx,

we find that
Z=z—bz—2b+bzb

cancels to y and hence is in C. If we replace z by 1y,
where ¢ is any element of C, we find that Z reduces to its
first term ye. This proves that the product of any two
elements y and ¢ of C is in C, which is therefore an
algebra.

23. Lemma. If A=B®C and if B has a modulus
b, then b is commulative with every element of A and the
associative relations (2) hold.

Let x=u-+v, and y=w+2z be any elements of 4,
where # and w are in B, and v and z are in C. Then

bx="bu+by=bu=u, xb=ub+vb=ub=u,
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so that b is commutative with every . Next,

b- xy—:—‘b . (u-|~v)('w+z) =b(uw+7)z) =y,
bx » y:uy:u(w+z) =uw,

which proves the first relation (2). The remaining two
are proved similarly.

24. Theorem. Any reducible algebra A with a
modulus™® m can be expressed as a direct sum of irreducible
algebras, each with a modulus, in one way and only one
way apart from the arrangement of the component algebras

Since A4 is reducible, A =B®C. Then m is the sum
of the moduli of B and C (§ 21). 1If either B or C is
reducible we replace it by the direct sum of two com-
ponents. This process terminates since A is of finite
order. Hence 4 is a direct sum of irreducible algebras
Ay, . ..., A, each with a modulus.

If possible, let 4 be also the direct sum of the irre-
ducible algebras By, . . . ., B,. Let a;be the modulus
of A;, and b; that of B;. Then m=2u;=2b; is the
modulus of 4. Letj be any chosenoneof 1, . . .., n.
Since Bj=mB;=2a;B;, there is a value of ¢ for which
P=qg;B; is not zero. Since 4; is invariant in 4, P<4,.
If x is in Bj, we see by § 23 with B=4; that

a;x + abj=ajxb;=a;xb; = a;x,

whence P has the modulus a4;b;. Since B; is invariant in
4,
A;P=~a,~A,-B,«§_a,B,~=P, PA,‘éP.

*1f A has no modulus, it may be expressibie m more than one way
as a direct sum of irreducible algebras. ¥or example, if 4A=(u, v),
where #w?=uv=1u=12=c, then 4= (x) ®(y), where x and y are any two
linearly independent elements of 4.
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Hence A4; has the invariant sub-algebra P which has
amodulus. If it were a proper sub-algebra, 4; would be
reducible* (§ 22), contrary to hypothesis. Hence P=4..
But P is invariant also in Bj, which is irreducible. As
before, P=B;. Hence each algebra B; is identical with
oneof thed,, .. .., 4Apm

For further theorems on reducible algebras, see
Appendix III.

25. Difference algebra. This abstract concept is
analogous to that of quotient-groups in the theory of
finite groups. To provide a preliminary illustration,
consider the (associative) algebra 4 over a field F with
the multiplication table

U Uz U3 Uy
Uy Uy Us U3 Uy
Uz U, [o] (o] Uz
Uy #; O O 1
u, Uy —U2 Uy Uy

The product #;u; is found in the body of the table at the
intersection of the line through the left hand label #; and
the column having the label #; at its top. For example,
UMy =Wz UM,=—1u, It has the invariant sub-algebra
B=(u,, u,).

To each number x=~&u,+ . ... +&u, of 4 we
make correspond the number #'=¢9,+£9, of the
(associative) algebra

D= (v, 1y): %=1, 0, =17,, V=1, =1,

*By § 23 with B=B, bj s xy=b.x +y. Letxandybeanyelements
of 4;, whose modulusis ¢;, Hence tljle foregoing formula gives bj « a;(xy)
=b;(a,x) - y and hence also bia; - xy= (bjai)x +y. But bja;=ad; is the
modulus of P. This proves the first formula (2) for algebra 4;. The
other two follow similarly,
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over the same field F. To the sum of any two numbers
x and y=mu.+ . ... +nu, of A evidently corre-
sponds the sum of their corresponding numbers " and
v =no+n2, of D. To px, where p is in F, corre-
sponds px’. To

xy= (Ex’lt'*‘ £4774)ux+ (Er'l:+£2ﬂz+‘ Ezm - Eﬂ):)u:
+ (&5t Exmt Esngt Emy)ust+ (51774"' 54")1)“4

corresponds
(Ex"?x"" 54774)”1"*" (51774+ fﬂh)i& = x’y’.

Hence our correspondence (which amounts to suppressing
all scalar multiples of the units #, and u; of B) is pre-
served under addition, scalar muluphcatlon and multi-
plication.

The algebra D so determined by 4 and B is called
their difference algebra and is designated by 4 — B.

Next, let us employ, in place of B, the algebra
S = (u:, u.), over F, which is not invariant in 4 since
uu=u;is not n S. To x we now make correspond the
number x,=§;w,+£w, of the algebra

D,=(w;,w,): wi=o, ww,=w; wWw;=w; wi=o,

so that in effect we suppress all scalar multiples of the
units #; and #, of S. To xy now corresponds

(EmstEamc t Esmgt+ Emy)wst (Emyt Emijw, ’

which is not equal to x,¥o—=(£m,+&m;)w;, so that the
correspondence is not preserved under multiplication.
Nor is D, an associative algebra since

ww;=o0, Wi, * Wy =WyW,=W;.
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To treat the general case, let B be a linear set of
elements of an algebra 4 over a field F. Two elements
x and y of A are called congruent or incongruent with
respect to B as modulus (or briefly, modulo B), according
as x—y is or is not an element of B. In the respective
cases, we write

z=y (mod B), x=y (mod B).
If x=y and x=2z (mod B), then
y—a=—(x—y), y—z=(x—2)—(x—y)

are elements of B, so that y=x, y=z (mod B). The
first shows that the members of a congruence may be
interchanged. The second shows that all those elements
of A which are congruent to a given element x modulo B
are congruent to each other; they are said to form a
class [x] modulo B. Hence all elements of A may be
distributed into non-overlapping classes modulo B.

If a is any number of F, and if x=y, x’=y" (mod B),
then

ax=xa=ay=ya, x+x'=y+y (mod B).

Hence the product, in either order, of a and any element
vy of the class [x] is in the class [ax]=][xa], while the
sum of any element y of class [«] and any element " of
class [«'] is in the class [x+2']. Accordingly, we define
the scalar product a[x]=[x]a of the number a of F and
the class [x] to be the class [ax], and define the sum of the
classes [x] and [x'] to be the class [x+x']. Hence the
linear function Za;[x;] of the classes [x;j with coefficients
@; in F is the class [Za;x;].

Let T be a linear set supplementary to B in 4, so
that I’AB =0 and every element a of 4 is expressible
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in one and only one way as a sum of an element b of 4
and an element ¢ of T (§§ 16, 17). If also a,=b,+4
and if ea=a, (mod B), then f={ {mod B), and t—4 is
common to B and T and hence is zero. Hence if a=b-41
and a,=0b,+1¢, are in the same class, {=¢. Thus there is
a (1, 1) correspondence between the classes of 4 modulo
B and the elements of 7.

If a;=0b;+1;, where b; is in B and ¢; is in T, the class
Ya;la;] corresponds to Zai; in 7. The number of
linearly independent 4 is #n—m if B is of order m and 4
is of order n. Hence we may select n--m classes of A
modulo B such that every class of 4 modulo B is expres-
sible in one and only one way as a linear function of
those #n —m classes with coefficients in F.

We now assume that B is an invariant sub-algebra of
A. Again let x=y, '=y" (mod B), whence y=x+b,
y' =x"+b', where b and 0’ are elements of B. Then

vy =xx'+xb' by =xx" (mod B),

since b’ and by’ are elements of the invariant sub-
algebra B of A, whence their sum is i B. Hence the
product of any element y of class [x] by any element y’
of class [x'] is an element of the class [xx”]. Accordingly,
we define the product [«] [x'] of the class [#] by the class
[x] to be the class [xx'].

THEOREM 1. If B is an invariant proper sub-algebra
of order m of an algebra A of order n over o field F, the
classes of A modulo B are the elements of an algebra of
order n—m over F when addition. scalar multiplication, and
multiplication of classes [x] are defined by

[x]+[&T=[x+2"], afz]=[x]a=(ax], [x][+]=[x2]], ainF.
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For, postulates T-1V of § 4 are seen to hold, and, as
shown above, n—m classes serve as a finite basis.

The resulting algebra of classes is called the Jdéfference
algebra A—B, and also the algebra complementarr to
B in A. Evidently A—B is an associative algebra
when A4 is one.

Let T be any linear set supplementary to B in A.
We saw above that the elements of T are in (1, 1)
correspondence with the classes of A modulo B, and this
correspondence is preserved under addition and scalar
multiplication, but not in general under multiplication
since T need not be closed under multiplication. How-
ever, we may regard the elements of T as the elements of
an algebra 7" in which addition and scalar multiplication
are defined as in T, while the product in 7" of any two
elements x and y of 77 (i.e., the same elements of 7°) is
defined to be the element of 7' which belongs to the
class modulo B containing the product in 4 of x and y.
This algebra 7" is therefore equivalent to 4 —B and is
said to be obtained by taking 7 modulo B. Since
A =B+T, this amounts to taking 4 modulo B.

In our introductory example, A = (u:, #,, #;, u,),
B=(u,, u;). Then T=(u,, u,) is supplementary to B
in A. By chance, T is itself an algebra and plays the
réle of 77. Thus A —B is equivalent to T, as is implied
in the discussion of the example. As a generalization
of this example, we have the following

THEOREM 2. If A is the divect sum of algebras Band T,
then T is equivalent to A — B, and B is equivalent to A —T.

For, BA=B(B+T)=B*<B, AB=B*<B, so that
B (and similarly T) is an invariant sub-algebra of 4.
Moreover, the product (in 4) of any two elements x and
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y of T is in the sub-algebra T, which therefore plays the
ole of T’ above.

A better illustration of 7" is furnished by the associa-
tive algebra

A =ty Uy U3) wa ==, (1=1, 2, 3),
Uity = Ul =1U; =0, Uy=1u;.

Then B = (u;) is evidently invariant in 4. The simplest
T is (., u.), which is not an algebra since #2 =#;. Then
T’ = (v, v,), where

05 =00 =0 (j'—'I: 2)’ 75=0,

the final equation replacing u,-—us when we take T
modulo B=(u;).

26. Theorem. If B, and B, are invariant proper
sub-algebras of A and if B,<B,, then A ~B, contains an
snvariant proper sub-algebra which 1s equivalent to B, —~

For, B, is evidently invariant in B;. Elements of
B, congruent modulo B, are elements of 4 congruent
modulo B,, whence each class of B; modulo B, is con-
tained in a unique class of 4 modulo B,. Hence those
classes of 4 modulo B, which contain the various classes
of B; modulo B, constitute (in 4—B,) a proper sub-
algebra S equivalent to B;—B,.

To prove that S is invariant in 4 ~ B,, let x and y be
any elements of 4 and B,, respectively. Then xy and yx
are elements of B; since it is invariant in 4. Passing to
the corresponding classes [x] and [y] of A modulo B,, we
see that [#] is an element of 4 —B,, and that [y], [#] [y],
and [y] [x] are elements of S, whence S is invariant in
A—B,.
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27. We next prove the converse of the last theorem:

TuEOREM. If B, and S are invariant proper sub-
algebras of A and A — B,, respeciively, then A has an
invariant proper sub-algebra B, such that B,<B; and
B, — B, 1s equivalent to S.

For, all those elements x of 4 which belong to
classes [#], of A modulo B,, giving elements of S constitute
a sub-algebra B; of A. Since S is a proper sub-algebra
of A-B, B,<A. Since [o]=B,, we have B,<B,.
If [«x] is an element of S, and [y] is an element of 4 — B,,
the invariance of S in A —B, shows that [xy] and [yx]
are elements of S. Hence if x is in B,, and y is in 4,
then xy and yx are in B;, which is therefore invariant
in 4.

28. Simple algebras. An algebra having no invari-
ant proper sub-algebra is called simple. Every algebra
of order 1 is simple since it has no proper sub-algebra.

The theorem of § 26 evidently implies

CoroLLARY 1. If B, is an invariant proper sub-
algebra of A and if A— B, is simple, then B, is a maximal
invariant proper sub-algebra of A.

We readily prove the converse:

CoROLLARY 2. If B, is a maximal invariant propey
sub-algebra of A, then A — B, is simple.

For, if A -- B, were not simple, it would have an invari-
ant proper sub-algebra .S and, by the theorem of § 27,
4 would have an invariant proper sub-algebra B, >B,,
whereas B, is maximal.



CHAPTER 1V

NILPOTENT AND SEMI-SIMPLE ALGEBRAS;
IDEMPOTENT ELEMENTS

We shall develop here the properties of important
special types of algebras which play leading réles in the
theory of general algebras. That theory depends also
upon a knowledge of the properties of various kinds of
idempotent clements each of which is equal to its own
square.

29. Index. If A4 is any associative* algebra, A?< A4,
whence A-A4°<A4-A4, or A3<A? and similarly A4*+*<A*
for every positive integer k. If the inequality sign held
for every %k, the orders of 4, 42, 43, . . . . would form
an infinite series of decreasing positive integers. Hence
there exists a least positive integer a such that 4%t =4¢°,
and therefore

A>A>A3> .. .. >4 >4, At=A(>a).

This a is called the éndex of A4.
For example, consider the associative algebra,

A=, u,): U= U, = Uty = U= Bu,

over a field F containing B. If Bsfo, A*=(u,) =A43;
if B=0, A*=0=A43. In either case, 4> A4? and 4 is of
index 2.

30. Nilpotent algebras. If A*=o, A is called nil-
potent. In particular, if A?=o0, 4 is called a zero algebra;
the product of any two of its elements is zero.

* Henceforth in the book, multiplication is assumed to be associative,
unless the contrary is expressly stated.

43
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The algebra in the preceding example is nilpotent. if
and only if 8=o0. The algebra

B=(1)1, 1)3): v:=vz, vxvz=v3vx=7}:=0

is nilpotent and of index 3.

THEOREM. If an algebra A has a maximal nilpotent
invariant sub-algebra N, every wmilpotent invariant sub-
algebra Ny of A is contained in N.

For, by Theorem 1 of § 20, N+N; is an invariant
sub-algebra of 4. To prove that it is nilpotent, let
N, denote the intersection of N and N,, and let P be
any product formed of two or more factors N and N,
but not a power of either. Since N is invariant in 4
and occurs as a factor of P, we have P<N. Similarly,
P=N, Hence PN, Thus

(N+N)*SN+N+N,, a=2.

If a is the greater of the indices of the nilpotent algebras
N and N,, we have

Ne=Ne=o, (N+N):SN., (N+N)*SNs<Ne=o,

so that N+ N, is nilpotent. It was seen to be invariant
in 4. But N is a maximal nilpotent invariant sub-
algebra of 4. Hence N.=N.

31. Idempotent elements. An element eso such
that ¢*=¢ is called idempotent. Since every power of ¢
reduces to e, e is not nilpotent. In an algebra having a
modulus m, m is idempotent.

THEOREM. Every algebra P whick is not nilpotent
contains an idempotent element.

Let a denote the index of P, so that 4=P*s<o,
Peti=pP+, ThusA*=A. Since every number of algebra
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A is in P, the theorem will follow if we prove that 4
contains an idempotent element. We shall establish
this by induction, assuming that every non-nilpotent
algebra whose order is less than the order of 4 contains
an idempotent element. Note that the theorem holds
when P is of order 1 since P is then composed of the
scalar products of an element # such that #*=Bu, B0,
whence #/ is idempotent.

First, let A contain an element a such that da=A4.
Then every element y of 4 is in Aa and is therefore
expressible as a product za of an clement z of 4 by @
and, in fact, in a single way. For, if also y=3a, then
(2—2")a=o0, whence z—z'=0 by the converse of the
lemma in § 18 with s=a, x=23—3', T=4.

In particular, the element @ of 4 is expressible in a
single way in the form wa, where w is in 4 and wso.
Since wa=w-wa, ¢=w?e and hence w*=w. Hence 4
contains the idempotent element w.

Second, let A contain no element a such that 4ea=4,
whence Ax <A for every xin A. For a fixed x, Ax is an
algebra since

Ax + Ax=Ax4 - x<Ax.

If Ax is not nilpotent, it contains an idempotent element
e by the assumption for the induction, and e belongs to 4.

Finally, let Ax be nilpotent for every x in A. Hence
(Ax)'=o0 for I sufficiently large. From A*=A4, we see
by induction on % that

(AxA)t=(Ax)*4,

which is zero if k=I]. Hence AxA is nilpotent and is an
algebra since its square is AxA4 - xA SAxA, and is evi-
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dently invariant in 4. Hence by the theorem in § 30,
AxA =N, where N is the maximal nilpotent invariant
sub-algebra of 4. When x ranges over all elements of
4, the totality of elements in the algebras AxA4 consti-
tutes A3=A. Hence 4 <N, whereas 4 is not nilpotent.
Since our final case is excluded, the theorem is proved.

COROLLARY. An algebra is nilpotent if all its elements
are nilpotent.

32. Properly nilpotent elements. Let A be an
algebra with a (unique, § 30) maximal nilpotent invari-
ant sub-algebra N. If @ isin N, ax and x¢ are in N and
hence are nilpotent for every x in A4, since N is invariant.

We shall call an element a0 of A properly nilpotent
in 4 if ax and xa are nilpotent for every x in A. Taking
x=a, we see that ¢* and hence a itself is nilpotent. As
noted above, all elements 0 of NV are properly nilpotent
in 4.

But not every nilpotent element is properly nilpotent.

For, if .
_fo o _(a B\ _[o o
"”(r o>’ x—(v o)’ P‘(a B)’

then a*=o0 and ¢ is nilpotent. Butax=p, and, for 8=1,
p*=p#o, so that p is idempotent. Hence ax is not
nilpotent for every x. Thus a is nilpotent, but not
properly nilpotent, in the algebra* of all two-rowed
matrices.

If ax is nilpotent, there exists a positive integer »
such that

(ex)" =0, (xa)*+*=x(ax)a=o0,

* It is simple (§ 52) and hence, by the theorem of this section, has
no properly nilpotent element. By means of the quadratic equation
(8§ 50) w—(a+8)w+ad—By=o0 satisfied by x, it follows that x is nil-
potent if and only if its determinant is zero and a+é=o0.
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whence also x¢ is nilpotent, and conversely. Hence
an element as%o is properly nilpotent in 4 if either ax
or xa is nilpotent for every x in 4.

THEOREM. An algebra A contains properly nilpotent
elements if and only if it possesses a maximal nilpolent
invariant sub-algebra N, and then the properly nilpotent
elements of A coincide with the elements =0 of N.

The proof falls into four steps.

i) If a is properly nilpotent in A4, and if b is any
element of A, then each of ba and ab is o or properly
nilpotent in 4.

For,if x is any element of 4, % - ba= (xb)a and ab + x =
a(bx) are nilpotent by the definition of a. Hence ba
and ab are o or properly nilpotent.

ii) If a is properly nilpotent in 4, and if b and ¢
are any elements of 4, then bac belongs to V.

For, suppose that bac is not zero and hence is properly
nilpotent by (i). Then Aa4 is not zero and is evidently
an invariant sub-algebra of 4. Since Aa4 is also nil-
potent, it is contained in N by the theorem of § 30.

iii) If @ and b are properly nilpotent in A4, then a+b
is o or properly nilpotent.

For, let a+b>0. Since

(a+0)3=a’+aba+ba*+ba+a*b+ ab*+ bad+- 53

is a sum of elements belonging to N by (ii), (a+5)3 is in
N. Thus a+b is nilpotent. Next, let z be any element
of A. By (i), each of az and bz is o or properly nilpotent.
Hence their sum (a+5)z is o or nilpotent by the result
just proved. By definition, a+b is properly nilpotent.

iv) In view of (i) and (iii) and the evident fact that
anv scalar product of any properly nilpotent element is o
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or properly nilpotent, it follows that, if an algebra 4
possesses properly nilpotent elements, the totality of
them, together with o. constitute a sub-algebra which
is nilpotent and invariant in 4. It is contained in N
by the theorem of § 30. It coincides with N since we
noted above that all elements >0 of N are properly
nilpotent.

33. Decomposition relative to an idempotent element.
Let A be an algebra containing at least one idempotent
element e. Write

¥ =x—ex—xetexe,  X,=ex—exe,  X;=xe—exe,
I=Zx,, B=XZ(ex—xe),

where the summations extend over all elements x of 4.
Then

eB=3x,, Be=Z3(—x;)=2Zx;, eAe=Zexe,
(1) el=o, Ie=o, eBe=o.

Since
x=x,+x,4-x;-+exe,

(2) A =I+eB+Betede,

where those of these four linear sets which are not zero
are supplementary in their sum 4. For, if

x=a+b+c+d,

where @, b, ¢, d are elements of I, eB, Be, ede, respectively,
we see from (1) that ex=>b+d, xc=c+d, exe=d, whence
d=exe, c=2%;, b=x,, a=ux,;, and are uniquely determined
by x.
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Hence xe=o0 implies c¢=d=o0, x=a+b. Thus
R=1I+e¢B is composed of all those elements x of A for
which xe=o0. Similarly, L=I+Be is composed of all
those elements y of 4 for which ey=0. We express
these results by

(3) R=I+eB, Re=o, L=I+Be, eL=o.
Evidently eR=eB, Le=Be. Hence (2) implies
4) A=I+eR+ Letede,

which is called the decomposition of A relative to the idem-
potent element e.

Note that I is the intersection of R and L, being
composed of all those elements # of A for which both
ex=o0 and xe=o. We shall call I the part of 4 annihi-
lated by e. By (2),

Ae=Be+tede, ed =eB+ede,
whence -

(s) A=R+Ade, A=L+ed.

34. Principal idempotent elements. An idempotent
element e of an algebra 4 is called a principal idempotent
(for A) if there does not exist in 4 an idempotent u
such that ex=ue=o0. In other words, e is a principal
idempotent for A if and only if the part I annihilated
by e has no idempotent element and hence (§ 31) if
and only if I is o or a nilpotent algebra.

If A has a modulus m, evidently m is a principal
idempotent of 4, and is the only one. For, if ¢ were a
principal idempotent sm, then #=m—e is idempotent
and ew=wue=0, whence e would not be principal.
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THEOREM. If an algebra A contains an idempolent
element e, either e is a principal idempotent or A conlains
at least one principal idempotent element e+u, where u is
idempotent and eu =o =ue.

For, if e is not principal, we have (4), where I con-
tains an idempotent # which (like every element of I)
has the property eu=wue=o. Then ¢'=e¢+u is idem-
potent since

e*=e+teutuetuwr=ctu=e¢, e=e"=e¢, e€'o.

Let I’ be the part of 4 annihilated by ¢’. If I’ is o or
nilpotent, ¢’ is the desired principal idempotent for A.
In the contrary case, we repeat the discussion with e’
in place of e. The process terminates since I>1'>1"
. ... For, if w is any element of I’, we’=¢'w=o0 by the
definition of I’. Then

o=we' - e=w(e+u)e=we, o=¢-cw=ew,

so that wis in I. Also, u is in I, but is not int I’ since
ue' =usto.

35. Lemma. If e is a principal idempotent element
of A, every element 0 of I, L, and R in (4) is properly
nilpotent.

By (3), each element of LR is annihilated by e and
hence belongs to I. Since e is a principal idempotent,
I is o or nilpotent. Hence there exists a positive
integer k& such that

(LR}*=o, (RL)*'=R(LR)}*L=o,
so that also RL is o or nilpotent.

Since R is composed of all those elements of 4 for
which Re=o0, we have AR-e=o0, whence ARZR,
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A+ RL=ZRL. Similarly, LASL, RL-A=<RL. Hence
RL is o or a nilpotent invariant sub-algebra of 4. By
(5) and (3),

AL=RL+A4 -eL=RL, RA=RL+Re-A=RL.

Hence AL and RA, like RL, are o or nilpotent, so that
each element of L and R is o or properly nilpotent. The
same is true of their intersection I.

Now ARZR implies eR=<R. Similarly, Le<L.
This proves the

COROLLARY. If e is a principal idempotent element,
each clement of the first three parts I, eR, Le of (4) is zero
or properly nilpotent. If all are zero, A=eAe has the
modulus e. .

36. Theorem. Every algebra without a modulus
has a nilpotent invariant sub-algebra.

Let A be an algebra which is not nilpotent. By
§ 31, A contains an idempotent element and hence,
by § 34, contains a principal idempotent element e.
By the preceding corollary, either e is a modulus for 4,
or A contains properly nilpotent elements and therefore
(§ 32) has a nilpotent invariant sub-algebra.

37. Semi-simple algebras. An algebra having no
nilpotent invariant proper sub-algebra is called semi-
simple. Hence (§ 28) a simple algebra is semi-simple.

For example, a direct sum of two or more simple
algebras 4;, no one being a zero algebra of order 1, is
not simple since each A; is invariant, but is semi-simple
(§ 40).

Consider a semi-simple algebra 4 which is nilpotent.
If the index of 4 exceeds 2, then 4> A4%>0, and 4% is a
nilpotent invariant proper sub-algebra of 4, whereas 4
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is semi-simple. Hence 4 is a zero algebra (i.e., 4*=0).
Then any element e¢s¥0 of A determines a nilpotent
invariant sub-algebra (a) of order 1. Since the latter
is not a proper sub-algebra, it coincides with A, which is
therefore of order 1.

THEOREM 1. A semi-simple algebra is nilpotent if
and only if it is a zero algebra of order 1.

Consider a semi-simple algebra A without a modulus.
By § 36, it has a nilpotent invariant sub-algebra, which
is not proper and hence coincides with 4. Hence the
preceding theorem yields

THEOREM 2. Any semi-simple algebra has a modulus
unless it is a zero algebra of order 1.

38. Theorem. If an algebra A is neither semi-simple
nor nilpotent, and if N is the maximal nilpotent invariant
sub-algebra of A, then A—N is semi-simple and has a
modulus.

For, suppose 4 —N has a nilpotent invariant proper
sub-algebra S of index ¢. By § 27 (with N in place of
B,), A then has an invariant proper sub-algebra B,>N
such that B;— N is equivalent to .S and hence is nilpotent
and of index ¢. We recall that the elements of 4 - N
are the classes [x] modulo N, each determined by an
element x of A. In particular, let b be an element of
B,. Then class [b] is in B,—N, whence [b]° =[] =][0],
so that &° is in N. Let a be the index of the nilpotent
algebra N. Then b°*=o0, and B, is nilpotent, contrary
to the definition of .

If A—N has no modulus, it is a zero algebra Z of
order 1 (§ 37), whence Z*=o0. Then, if x be any element
of 4, [x*]=[x]*=[o], so that x* and hence also x would
be nilpotent, whereas 4 is not nilpotent.
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39. Theorem. A semi-simple ulgebra A, which is
not simple, is reducible.

For, 4 has an invariant proper sub-algebra B and has
a modulus by Theorem 2 of § 37. Hence AB=B=BA.
Suppose that B has a nilpotent invariant sub-algebra
I<B<A. Evidently BIB is invariant in A; it is a
proper sub-algebra since BIBSIB<J]. Thus BIB is o
or nilpotent. But 4 is semi-simple and has no nilpotent
invariant proper sub-algebra. Hence BIB=o.

Since A has a modulus, 474 is not zero and is evi-
dently invariant in 4. Also, A/A<ABA=BA=B<A.
Thus

(AIA)»=AIA -1+ AIA<BIB=o.

Hence 474 is a nilpotent invariant proper sub-algebra
of A, whereas A4 is semi-simple. This contradiction
proves that B has no nilpotent invariant sub-zlgebra
and (§ 36) hence has a modulus. Our theorem now
follows from § 22.

40. Theorem. A semi-simple algebra A, which is
not simple, is a direct sum of simple algebras no one a
zero algebra of order 1, and conversely.

For, A has a modulus and by §§ 39, 24 is a direct
sum of irreducible algebras A4; each having a modulus
(and hence not a zcro algebra of order 1). By the proof
in § 39 with B=A4;, A; is semi-simple. Since 4; is
irreducible, it is simple (§ 39).

Conversely, if each A4; is simple and is not a zero
algebra of order 1, then A=4,0A4.® ... . is semi-
simple. For, if I is an invariant sub-algebra of 4, then
I=1,01,® ...., where ;S 4;. Since

AI=AxIl+'AJz+ * s e e éIJ
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we have A;I;<I;. Similarly, I;4;<I;. Hence I; is
invariant in the simple algebra 4; and hence is zero or A;.
Let I be nilpotent and of index a. Then o=I*=ZI}.
Hence each I; is nilpotent, while 4; is not. Thus I=o.

41. Theorem. If e is an idempotent element of a
semi-simple algebra A, then eAe is semi-simple.

Since (ede)*=e - AeA - esede, ede is an algebra con-
taining eee=e, which is a modulus of it. Suppose it is
not semi-simple, but has a nilpotent invariant (proper)
sub-algebra V. Since N is invariant in ede, which has
the modulus ¢, N - eAe=N. Hence

NAN=Ne+-A4 -eN=Nede+ N=N?,
NAN=N'-*+- NAN =Nt

Since A has a modulus by Theorem 2 of § 37, 4*=A4.
Thus

(ANA)=ANANA=ANA ,
(ANAY=A+NAN - A=AN3A,

and, by induction, (ANA)'=AN’A. Since N is nil-
potent, we see that, for r sufficiently large, (ANA) =o.
Since A has a modulus, ANA contains N and hence is
not zero. Thus ANA is a nilpotent invariant sub-
algebra of A. This is impossible, since 4 is semi-simple
and not nilpotent.

CoroLLARY. If A is simple, also ede is simple.

For, if NV is invariant in ede, which has the modulus e,

eANAe=ede+ N - eAeZS N<ede, ANA<A.

Thus ANA is an invariant proper sub-algebra of 4,
which is impossible since 4 is simple.
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42. Primitive idempotent elements. An idempotent
element e of an algebra A4 is called primitive if there
exists in 4 no idempotent element u(us%e) for which
eu=u=ue.

LeMMA. An idempotent element e of A is primi-
tive if and only if ede contains no idempotent element
#e.

For, if u=eaese is idempotent, where ¢ is in 4, then
eu=u=ue, so that e is not primitive for 4. Conversely,
if e is not primitive, so that 4 contains an idempotent
element #7e¢ such that eu=wue=wu, then ede contains
the idempotent element exe=wus<e.

For example, let 4 = (u., #,), where w2 =u,, uz=u,,
Ut =0=wuu,. If au,+ Pu, is idempotent, it is equal to
its square a’#;+ (., whence a=o0 or 1, f=o0 or 1.
Hence the only idempotent elements are #;, #, and the
modulus m=u,+u, of A. Now m is not primitive, since
A contains idempotent elements #%;>m having m as
modulus (or since mAm=A has idempotent elements
w;=m). But u, is primitive, since w%,=0#u,, um=
u; %“m [or since u,Au, = (u,) has no idempotent except «,].
Similarly, u, is primitive. By § 34, m is the only princi-
pal idempotent.

THEOREM 1. If an algebra A contains an idempotent
element, it conlains at least ome primitive idempotent
element.

For, if A contains an idempotent element e which is
not primitive, the lemma shows that ede contains an
idempotent element u#e. Since e is a modulus for
ede, eu =ue=u, whence

uAu=e- udu-eSede.
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Here the equality sign is excluded since
ule—u)u=(u—u)u=o, u-ede-u<lede,

by Lemma 3 of §18. Also, udus£o since ud=uso.
Hence uAu is a proper sub-algebra of ede.

If the idempotent element % of A is not primitive,
the lemma shows that w4 contains an idempotent ele-
ment vu# such that (by the preceding argument)
vAv is a proper sub-algebra of #Au. Since the orders
of the algebras ede, uAu, vAv, . . . . form a series of
decreasing positive integers, the process terminates and
leads to a primitive idempotent element of A.

In the preceding example, m is not primitive, but is
the sum of two primitive idempotent elements %, and »,
such that wu,=o=wu,u,. This illustrates the following

THEOREM 2. A non-primitive idempotent element ¢
of A is a sum of primitive idempolent elements whose
products in pairs are all zero.

For, by the proof of Theorem 1, P=ede contains
an idempotent element e, which is primitive for 4,
whence e;7e. Note that e>=¢ is in P and is a modulus
for P. Thus d=e--¢; is in P and de, =0, e;,d=o0. Since
&*=(e—e)d=d, d is idempotent. Also, d4d<P by
the proof of Theorem 1 with « replaced by d. If d
(like e,) is primitive for 4, the theorem is proved, since
e=e+d, e,d=de,=o0.

But if d is not primitive for 4, a repetition of the
argument shows that dAd contains an idempotent
element e, which is primitive for 4, such that d,=d-e,
is idempotent, d,e, =0 =e.d,, and d,Ad; <dAd <P. Thus
e=e;+e,+d,. Multiplying this on the right and left by
4, and e; in turn and recalling that d; and ¢, arein #, which
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has e as a modulus, we find that d, =e,d;+d? or ed,=o0,
die; =0, e,6,=0, e,¢,=0. Hence all products of ¢,, ¢,, d, in
pairs are zero. If d, (like ¢; and e,) is primitive for 4,
the theorem is proved.

If d, is not primitive for A, we argue with d, as we
did with d. But the series of algebras ede, dAd,
d.Ad,, . . . . of decreasing orders must terminate.

kemark. 1 wu, ....,u, are p=2 1dempotent
elements all of whose products in pairs are zero, their
sum s is idempotent, but not primitive. For, each %
has s as a modulus and is distinct from s, since #%=s
implies o=wu; = u;s =u,i+j ;.

THEOREM 3. If wy . . . ., w (1S1) are primitive
idempotent clements of A all of whose products in pairs
are zero, and if e=2u; is not a principal idempotent
clement of A, there exists in A a principal idempotent
element which is the sum of more ihan t primitive idem-
potent elements all of whose products in pairs are zero.

For, by the theorem of § 34. 4 contains a principal
idempotent element e¢+wv, where v is idempotent and
ev=ve=o. Evidently ewu;=u;=we, whenie wu;=eue
is in the algebra ede. But v-ede=ve-Ae=o0 and simi-
larly eAe-v =o, whence vu; =o=wu,5. Hence the theorem
is proved if » is primitive. Ip the contrary case, we
know by Theorem 2 that v=v+ . ... +97,, where
Py . . .., Vr>1) are primiitve idempotent elements
of 4 all of whose products in pairs ate zero.  Fvidently
vp=v;=v0;, whence v;=mz is in the algebra z4v. But
u;+v4v=0, vAv-u;=o0, since #w=o=vu;. Hence up;=o,
ViU; =0.

By combining the case ¢==1 of this theorem with
Theorem 1, we obtain the important
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CoroLrArRY. Every algebra which is not nilpotent
contains a principal idempotent element whick is either
primitive or a sum of primitive idempotent elements all
of whose products in pairs are zero.

For the example above, m is a principal idempotent
element and is not primitive, but is the sum of the primi-
tives #, and u,, for which w4, =o0=wu,u,. For the algebra
(1,4) over the field of reals, ¢*=¢ implies e=o0 or 1,
whence 1 is the only idempotent and it is therefore
both principal and primitive.



CHAPTER V
DIVISION ALGEBRAS

It was proved in § 11 that the algebra of real quater-
nions has the property that each of the two kinds of
division (except by zero) is always possible and unique.
Algebras having this property are called division algebras;
they play a leading réle in the general theory of algebras
as well as in their arithmetics. We shall prove very
simply that the only division algebras over the field
of all real numbers are that field, the field of complex
numbers, and the algebra of real quaternions. We shall
also exhibit a remarkable division algebra of order »*
over any field.

43. Criteria for a division algebra. An algebra A4
with a modulus e is called a division algebra if every
element a0 has in 4 both a right-hand inverse and a
left-hand inverse, viz., elements x and y of 4 such that
ax=e, ya=e¢. By Theorem 5, y=2.

As noted above, the algebra of real quaternions is a
division algebra. The same is true of the algebra (e)
of order 1 over any field F, where ¢*=e, since either
inverse of a=ae is a~¢ if a is any number o of F.

THEOREM 1. If an algebra A has a single idempotent
element e, an element as“o, which does not have a right-
hand (or left-hand) inverse with respect to e, is properly
nilpotent.

For, the linear set a4 (or Aa) is o or a sub-algebra
of 4 not containing e, since no element x makes ax=e

59
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(or za=e), and hence has no idempotent element and
is nilpotent (§ 31). Thus ¢ is properly nilpotent (§ 32).

THEOREM 2. If A has a single idempotent element e
and no properly nilpolent element, then A is a division
algebra with the modulus e.

For, the unique idempotent element ¢ is a principal
idempotent by definition (§ 34). Thus e is the modulus
of A by the corollary in § 35. Hence A is a division
algebra by Theorem 1.

THEOREM 3. If ¢ is a primitive element of a semi-
simple algebra A, then P=eAe is a division algebra.

For, by the lemma in § 42, P has no idempotent ele-
ment ¢, while P is semi-simple (§ 41). Hence P is a
division algebra by Theorem 2.

Since P=A if ¢ is the modulus of 4, we deduce

COROLLARY 1. If a semi-simple algebra has o modulus,
but has no further idempotent element, it is o division
algebra.

If x#o0, y#0, and xy=o0, x and y are called divisors
of zero, x being a left-hand divisor and y a right-hand
divisor of zero. This is illustrated by the matrices

=(° @ __cd) x—°°>--
“ob: y“‘oo: y"oo—“o'

THEOREM 4. If A is a division algebra, it contains no
divisors of zero, and conversely.

First, if a division algebra A4, with the modulus e,
contained elements x>0, y>o such that xy=o, there
would exist an element z of 4 for which

yz=e, O=XYy - Z=X - YI=xC=4,

Conversely, let an algebra 4 contain no divisor of
zero. Then A4 contains no nilpotent element x3o,
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since x*=o and x* >0 imply =x-x*"'=o0. Hence
(§ 36) A has a modulus m. If A contains another idem-
potent element e, the product of e by m—e is zero,
while each factor is not zero. Thus A is a division
algebra by Theorem 2.

CorOLLARY 2. A division algebra has no nilpotent
element o and hence is semi-simple, and contains no
idempotent clement other than the modulus.

This is the converse of Corollary 1.

COROLLARY 3. FEvery sub-algebra of a division algebra
A is itself a division algebra whose modulus is that of A.

THEOREM 5. In a division algebra the lwo inverses
of an element a 7o are identical.

For, ax=e implies x(ax)a=xca=xa, whence xa is
equal to its square. If xa=o, o=(xa)x=wxe=1rs0.
Hence xa is idempotent, so that xa =¢ by Corollary 2.
This and ya =¢ imply (y—%x)a=0, y—x=o0.

44. Polynomials in a single element x. Consider an
identity
(1) flw)glwj=p(w)
between polynomials in an indeterminate w with coeffi-
cients in a field #. If each polynomal lacks a constant
term (free of w), then (1) implies
(2) Sx)gx) = p(x)
for every element x of an associative algebra 4 over F.
For, the term involving «* in f(w)g(w) is obtained by
multiplying the term in o' of f(w) by the term w*~* of
g(w) and summing the products fori=1, . . . ., k—i.
By the associative law, a's* *=x*. Hence (1) lmphea (2).

Next, let 4 have the modulus e. 1{

flo)=qw+ . ... tawta,
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we shall write
f®)=apx*+ . .o . Faxtoe,

in which the constant term a, of f(w) has been multiplied
by e in defining f(x). Under this convention, identity
(1) always implies (2).

Since a'x*=a’x" by the associative law, two poly-
nomials in a single element x are commutative.

45. Real division algebras. Let D be a division
algebra of order n over the field R of all real numbers.
Denote the modulus of D by 1. No discussion is needed
for the case »=1, since D is then equivalent to .

By the theorem in § 6, any n-+1 elements of D are
linearly dependent with respect to fR. In particular,
if ¥ is any element of D, then 1, %, 2%, . . . . , 4" are
dependent, so that x is a root of an equation p(w)=o0
with real coefficients. By the fundamental thcorem of

algebra, p(w) is a product fi(w)f.(w) . . . . of linear or
quadratic factors with real coefficients. Hence (§ 44)
fi(x)f.(x) . ... =o, so that at least one factor is zero

by Theorem 4 of § 43. In case that factor is linear, its
square is quadratic. Hence every element of D is a
root of a quadratic equation with real coefficients.

Let 1,e, ...., es— be a set of basal units of D.

Then
e+2pet+0i=0,  (et+p)=pi—o;,

where the p; and g; are real. Hence after adding a real
number to each e;, we may assume that the square of
each new unit ¢; is a real number. If the latter were
=0, it would be the square of a real number a;, whence

o=e—a=(g—w)(g+a)=0, g=zaq,
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whereas the units 1 and ¢ are linearly independent.
Hence ef=—(?, where f; is real. Write E;=e¢/8:.
Then E?= —1.

If n=2, the algebra (1, E,) is equivalent to the field
of all complex numbers. Henceforth, let #>2, and
denote the basal units by 1, 7, J, . ..., where

3) P=—1, J'=—1,.....

Since I4J is a root of a rcal quadratic equation,
(I+T)=—2+1J+JI=a(I+J)+8,
(I—-J)y=—2—1]—JI=~(I-J)+3,

where a, B, v, 8 are real numbers. Adding, we get
(at+VI+(a—v)J+p+é+4=0.

Thus a=v=o0 since I, J, 1 are linearly independent.
Hence

(4) IJ+JI=2¢, I+JT)=2e—2, I—-J)=—2e—2,
where € is a real number. Asabove, +2¢é—2<o. Thus

1—¢€ is positive and has a real square root. Write

i=I, J___'_’j_f[_

Vi—e

Then
P=—1, Ji=-—1, ij+ji=o.

The product 4 is linearly independent of 1, 7, j and
hence may be taken as the fourth unit 2. For, if

127.=>\+I~"i+'ﬁ7‘:
we multiply by 7 on the left and get
—j=N—p+v(\+pitv),
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whence —1=1? whereas \, u, » were real. Then
=k, ji=—k, k2=ij(—ji)=i*=—1.
By the associative law,
ih=i-ij=—j, ki=—ji-i=j],
K=ijj=—i,  jk=j(=j)=i.
We have now proved that 1, 7, 7, £ are the units of
the algebra Q of real quaternions (§ r1).

Finally, let #>4. Then D contains a fifth unit /
such that /?= —1 and, by the proof which led to (4),

atli=¢,  jlt+ly=n, k+ik=¢,
where £, 9, { are real numbers. Then
lk=li-j=(¢—il)j=Ej—i(n—jl) = &j —ni+kl.
Adding /& to each member, we get
2lk=&j—mi+{.

Multiplying each term by £ on the right, we get
—2l=ti+nj+k,

whereas / is linearly independent of 1, 7, 7, k.

THEOREM. The only division algebras over the field
of all real numbers are that field, the field of all complex
numbers, and the algebra of real quaternions.

46. Derivation of division algebras from known ones.
For example, consider the field R(p) obtained by extend-
ing the field R of all rational numbers by the adjunction
of a root p of a quadratic equation whose coefficients
belong to R and which is irreducible in R and has a real
root p. Then the algebra of quaternions over the real



§ 471 DIVISION ALGEBRAS OF ORDER n? 65

tield R(p) is a division algebra which may be regarded
as an algebra over R with the eight basal units

I, p, 1, ip:pi:j’jp::pjy k, kp=pk.

In what precedes we may replace R by any sub-field
S of the field of all real numbers for which there is a
quadratic equation with coefficients in S, irreducible in
S, and having a real root p. If that equation is of degree
r, we obtain a division algebra over S whose 47 basal
units are 1, p, . ..., p" and their products by
i, 7, and k.

Similarly, from each division algebra of order »?
obtained in the next section we may deduce division
algebras of order rn2.

47. Division algebras of order n2. We shall define
a type of division algebras D of order »* over any field ¥
such that they, together with those derived from them
by the process of § 46, give all known division algebras
other than fields.

By way of introduction, note that if £ is one root of
w—sw+p =0, the second root is (&) =s —£, since the
sum of the two roots is s. For the same reason, if we
subtract the second root from s, we get the first root,
whence

0[0(8)|=0(s— & =s—(s—&)=¢.

The first member is denoted by 62(£), a notation not to
be confused with the square [§(£)]* of 6(&).

As a generalization of the quadratic equation, con-
sider an equation ¢{w) =o of degree », with coefficients in
a field F, having the roots

() & 6(5), (), (E)=06[6(B)], . . . ., 6*7(8),
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where 0(£) is a polynomial with coefficients in F such
that 6*(§) =¢£.  Then if also ¢(w) is irreducible in F, we
shall call ¢(w)=o0 a cyclic equation in F. The case n=2
was discussed above. A numerical example for =3 is
furnished by (15) below. :
Consider the algebra* D over F with the #* basal units

(6) Y% (4,7=0,1y 40«0, n—I),

such that

(7) ¢(x)=o, ¢[6(x)]=0, . ..., ¢[0"*(x)]=0, "(x)=2=,
(8) xy=y6(x), "=y (yinF).

First, let =2, and let F be a field not having the
modulus 2. By adding to x a suitably chosen number of
F, we may evidently assume that 2*=4§, where § is in F,
but is not the square of a number of F. Then 6(x) = —x,
andt

(9) D=(1,x,9,9x): a*=8, @wxy=—yx, y=7v.

The linear functions of x with coefficients in F form
an algebra of order 2 equivalent to the field F(x). Hence
the general element of D may be designated by z=u-+yv,
where # and v are in F(x). If v=o, u>o0, z has the
inverse #—* in F(x). If vso, then z=wv, where w is of
the form w=g+y, where ¢=a+px, with a and 8 in F.
Write ¢'=a—@x. Then

y=y¢, O+)Oy—g)=r—97.
Hence w has an inverse if vqq’.

* Discovered by the author and called a “Dickson algebra” by
Wedderburn.

t We may identify D with algebra (18) of § 10 by taking a=—3,
B=—v, =21, u,=y, uy=xy. Then uj=—1"y*=—af. We saw there
that the associative law now yields the complete multiplication table
(18). Conversely, since (18) is a matric algebra, it is associative.
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THEOREM 1. For n=2, D is a division algebra if v
is not the norm qq' =a*— 383 of a number q of F(x).

This condition on 4 and the foregoing condition
that § is not the square of a number of F are evidently
both satisfied when F is the field of all real numbers and
v and § are both negative. In particular, if y=6=—1,
D is then the algebra of real quaternions and is a
division algebra.

For any #, the associative law and (8,) imply

wy=xy0(x)=3[0(x))%, . . . ., &y=2[0(x)]".
Multiplication by numbers of F and summation give
(10) J@)y=3f[6(x)],

for every polynomial f with coefficients in F. By
induction,

(11) f@)y =y7lo"@)].

Hence, if f(x) and k(x) are any polynomials in x of
degree <z with coefficients in F,

(12) Y1) - yh(x) =y 118 (x)]h(z) .

Conversely, it is readily verified that the associative
law holds for the algebra D over F for which multiplica-
tion is defined by (12) under the agreement that y°* is
to be replaced by yy**"~* if s4+r=#, and that the final
product f% is found as in ordinary algebra with a subse-
quent reduction of the degree in x to #—1 by use of the
equation ¢(x)=o0 of degree n. In this sense, relations
(7) and (8) define an associative algebra D over F with
the #? units (6).
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THEOREM 2. For n=3, D is a division algebra over
F if v is not equal 1o the norm of any element of the cubic
field F(z).

Here the norm of f(x) means f(x)f(6)/(6%), where
6 =6[0(x)).

First, /=yA(x)+u(x) has an inverse if it is not zero.
For, if A(x) =0, u(x) is not zero and has an inverse in the
field F(x). If A(x)so, it has an inverse. Write k(x)
for —uX~*. Then !=(y—k)\ will have an inverse if
y—k has one. By (11) and (8,),

by—k(@)] [y*+yk(6°)+k(0)k(6°)] =y —k(x)k(6)%(6)

is a number 50 of F, so that y—#% has an inverse.

Second, we are to prove that z=y*+ya(x)+ B8(x) has
an inverse. Write w=vy—a(f). Then, by (11), (8,),
and 63(x) ==,

wz=ypto, p=px)—al)a(®), o=r—a(6)B).

If p=0=o0, then y=a(0)a(6?)a(x) would be the norm of
a(6). Hence yp+o is not zero and has an inverse v
by the first case. Then v-wz=1, so that z has the
inverse vw.

48. Division algebras of order 9. To show that there
actually exist division algebras of order g of the foregoing
type D, note that any seventh root 1 of unity satisfies
the equation

§1—1

(13) o et et et et =o.

Dividing the terms by {3 and rearranging, we get

Pttt r=o.

gy
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Making the substitution

1 2 I - {2 I —
(14) §'+§t'~=fa §'+?f—5 -2, §'3+'§:3—$’—3£,

we get
(15) P4 28 —1=0.

If eis a root #1 of {7=1, also € and e are roots of
it and hence of (13). By (14), the roots of {(15) are

I I I
Elzf'*'e", £2=€2+E=g—2) 532641_6_4—'8-—2’

b=t y=f-2.
Hence, in accord with (5), the roots of {15) are
L=f, L=0E=F—2, §-008)-000)]=6048),

while 6(¢;) =65(¢)=¢ Hence (15) will be a cyclic
equation for the field R of all rational numbers if it is
showrr to be irreducible in R.  But if the function (15)
were reducible, it would have a linear factor £-—7,
where 7 i m R and hence is the quotient a/b of two
integers without a common factor >1. Since r=a/b
would be a root of (15)

a3

= —a*+20b+5*

would be an integer. But a3 has no factor > 1 in common
with b. Hence b=1, r=zza. Since 7 is therefore an
integral root of (13),

ritri—or—=g,
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so that » must divide 1, whence r=-1. By trial, neither
41 nor —1is a root. Hence (15) is irreducible in R.

Our next step is to compute the norm N(f) of a poly-
nomial f(£) with rational coefficients. Let m denote
their positive least common denominator. Then f({,)
is equal to the quotient of

)= pE+qbtr

by m, where p, ¢, r, m are integers having no common
divisor >1. Thus

(16) mN(f)=N()=¢(E)5(E)E(E) .

The last product will be obtained from the constant
term of the cubic equation having the roots {(&),
¢(£), t(¢,). This cubic will be found by a simple

device.
When ¢£ is any root of (15), we seek the cubic satisfied

by
$=p&+qt+r.

From £¢ we eliminate £ by means of (15) and get

E=(q—p)+(r+2p)+p.
Similarly,
Ee=(rt+3p—@)F+(2g—p)t+g—».

Transposing the left members, we conclude that the
determinant of the new coefficients of 1, £, £ is zero:

r—{ q 4

p  rt2p—¢ g—p =o.
g—p 2q—p r1H+3p—g—¢
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Its expansion is of the form —{34 .. .. +N({)=o.
Hence N({) is the value of the preceding determinant
for { =0, whence

N()=p'—2p°g+6p*r — pg— pgr+5pr*+ ¢ — 2gr —gr*+-13.
Since —p=+p=p*=p® (mod 2), etc., we have

N(&)=p+pg+per+pr+q+gr+r
=1+(p+1)(¢+1)(r+1)  (mod 2).

Hence if any one of p, ¢, 7 is =1, then N({)=1 (mod 2).
But if p, ¢, 7 are all even, and hence m is odd, N({) is
divisible by 8 since each of its terms is of the third degree
in p, g, . Hence, by (16), N(f) is never equal to an
even integer not divisible by 8.

THEOREM. If v is an even integer not divisible by 8,
the algebra over the field of rational numbers defined by

vtar—2x—1=0, 2xy=y(r—2), =1,

is a division algebra of order g.

49. Summary. We have obtained non-commutative
division algebras of orders 4, 8, and 9, each over appro-
priate fields. It is proved in Appendix II that, besides
these and fields, there are no further types of division
algebras of order =9. It is shown in Appendix I that
the algebra defined by (7) and (8) is a division algebra
for every n» when v is suitably restricted.



CHAPTER VI

STRUCTURE OF ALGEBRAS

We shall prove Wedderburn’s important theorem
that every simple algebra is the direct product of a
division algebra and a simple matric algebra, and con-
versely. Also general theorems on the structure of
any algebra which are needed in particular for the proof
of the principal theorem on algebras (chap. viii).

so. Direct product. 1f B and M are linear scts of
an algebra such that every element of B is commutative
with every element of M and such that the order of the
product BM is equal to the product of the orders of B
and M, then BM is called the direct product of B and M
and designated by either BXM or M XB. We assume
henceforth that B and M are algebras. Then BM:BM =
B:M?*<BM, whence BXM is an algebra.

The elements of BXM can be expressed as linear
combinations of the basal units of M whose coefficients
are arbitrary elements of B, or vice versa.

For example, the direct product of the algebra
(1, 2, 4, k, of real quaternions and the real algebra
(1, 1/~1) can be expressed as the algebra of complex
quaternions.

Since every element of 4 =BXM can be expressed
as a sum of products of an element of B by an element
of M, A has the modulus dm if B and M have the
moduli & and m.

72
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As in the example, suppose that B and M are sub-
algebras of 4 and have the moduli b and m, respectively.
Then the latter coincide with the modulus a=bm of 4.
For,

a—m=a{a—m)=bm(bm—m)=bm?*—bm>*=bm—bm=o,

whence m=a. Similarly, mb(mb ~b) =0, whence b=a.

51. Structure of simple algebras. Let A be a simple
algebra over a field F such that 4 is neither a division
algebra nor a zero algebra of order 1. By Theorem 2
of §37, A has a modulus #. By Theorem 3 of § 43,
u is not a primitive idempotent element of 4. Hence
by Theorem 2 of § 42,

(1) u=u+ . ... +tu, (n=2),

where %, . . . ., u, are primitive idempotent elements
all of whose products in pairs are zero. For brevity,
write

A,-,-=u,-Au,-.

Evidently Au;4 is invariant in 4 and is not zero
since it contains #;, and hence coincides with the simple
algebra A. Thus

A,',A,-k=u; . A'ltjA . uk=u,~Auk=A,-,. ,
(2) A;,'Ah],—':O(j?fh) , A;,Ajk=A,'k .
Next, A =ZA;; since

A =uAu§ ZA,_;éA N
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To prove that the linear sets Aj; are supplementary in
their sum A, suppose that A4, has an element 0 in
common with the sum of the remaining 4

Uy == St U (%, %,;in 4),

summed for 7, =1, . . . . , # with [i, j/]#[r, s]. Then,
multiplying by #%, on the left and by %, on the right, we
get u,xus=o0.

By Theorem 3 of § 43, A;i=u;Au; is a division algebra
with the modulus #;. Since 4;4;;=A4;7o0, each A;5o.
For i#4, A% =0, so that 4,; is a zero algebra.

LEMMA 1. If a5 is any element of Ay, then P=ux;A,;
is zero or Aj.

For, by (2), 4s4;=A4;, whence P=<A; Also,

by (2),
PA,«,-=x,-,- . A,-;A,-,~=x;jA,-;=P.

If P30, let p=#0 and x be any elements of P and 4,
respectivelv, whence px is in PAu;=P. If P<A;
and if # is in A, but not in P, then px = is not solvable
for # contrary to the fact that 4, is a division algebra.

A similar proof gives

LeMMA 2. If x; is any element of Ay, then Ajxy is
zero or Aj.

LeMMmA 3. If xy; and x are elements o of Ay and
Ajr, respectively, then xyxps=o.

For, suppose that the product is zero. Then

(3) xppAri=o0,

since otherwise xdi=Ay; by Lemma 1, whence Ay
would contain an element x; for which

XjpXpi = Uj OFE Xjj = XijUj = XijXjaXej =0
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Let y,; be an arbitrary element o of 4. By (3),
Zipyri=0, xjp7%0. Hence the argument just made shows
that y,d=o0, whence Az djp=o. Then, by (2),
Am=o0, contrary to an earlier result.

From the three lemmas we evidently have

LEMMA 4. If x; is any element 0 of Ay, then

(4) %idji=Au,  Adjxi;=Ag.

By (4) and Lemma 3 of §18, 4; has the same
order as either A; or Ay, since Lemma 3, with k=1,
shows that no element xj; 70 of Aj; makes x;x; =0, and
similarly no element y;#o of 4; makes y;x;=o0.

Since the A; are supplementary in their sum, we
have

LemMA 5. The w* algebras A;; all have the same order
t, and A itself is of order tn?.

Write e; for w; (i=1,....,n). Lete,, ....,
en be elements 20 of Ay, . . . ., A, respectively.
By (4.) for i=1 and x,;=e¢,j, we have e,j4;,=A4,,. Thus,
if 7> 1, Aj; contains an element e, such that

(5) €15€j: =611 (j=I, e e e ey ﬂ),

which holds also for j =1 since e;, is idempotent. Define
an element ey, of 4,, by

6) €p=Eprfrq By q=2, . «..,0 p=qQ.

Hence we now have #? elements e;(7, =1, . « « . , ).
If j=h, AjAm=o0 by (2,), whence

(7) eiem=o0  (j=h).

Since #=2Xey is the modulus of 4, and eue,;=0 for
k>1 by (7),
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(8) €1;= Eekkexj =€nfij, €1 =€y Zep, =€jnln ’

which also follow from the definition of 4;; as e;Aej;.

By their definition above, ¢;;#0, e;%0. By Lemma
3, €i€yi IS DOt zero; it is an element of 4; by (2,). By
(5) and (81);

(eixen')z:eil * €161 ¢ €1 =C€jr * €nl1; = €16y,

whence e;.e;; is idempotent. Since A; is a division
algebra having the modulus e;, we have e,e;=e; by
Corollary 2 of § 43. Combining this result with (6)
and (8), we have

(9) ei=ener;  (4,7=1,....,n).
We conclude from (9) and (5) that
€756k = €j1 * €15€1 * €1p = €i1€01C1k = €i1€1f = iy
(10) €;i€ir=Ei} .

The #* elements e; are linearly independent® since
each is not zero and since they belong to #* algebras A4
which are supplementary in their sum.

Since the e; satisfy relations (7) and (10) and are line-
arly independent, they are the basal units of an algebra M
of order »* over F which is equivalent to the algebra of
all #n-rowed square matrices with elements in ¥ (§ 5, § o,
end). Such an algebra M shall be called a simplet
matric algebra of order »2,

* Also since egn Zases e =ankeg by (7) and (10), for ay in F.

t The word “simple” is justified by § 52, and is needed since there
are further algebras whose elements are matrices.
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To cach element a,; of A, corresponds the element

n
(11) b= Z(,-,a“eli .

1=sg

Conversely, b uniquely determines a,, since, by (7) and

(10),

€101 = €1101:€10= 01y s

¢,;; being the modulus of A,. This one-to-one corre-
spondence is evidently preserved under addition and
scalar multiplication, and also under multiplication
since

’ ’ S ’
(I 2) Zcilaueu' . Eeizaueli = Zeizaueudnezi = Zfeil(auau)eu' .

Hence when a,, ranges over A,,, the totality of elements
(11) form an algebra B cquivalent to 4,,. Hence Bis a
division algebra. If in (12) we take a;, to be the modulus
en of Ay, we see that the modulus Ze;=Ze; e of M
is the modulus of B. Since

(13) bejlz =€;:10ulrk =ejbb ,

cach element (11) of B is commutative with each element
e of M. Let a®, . ..., a be a set of basal units of
Ay. By (11), they correspond to elements 4%, . . . . |
b which evidently form a basis of B. Now A4 is of
order {n* by Lemma 5. It will follow that 4 has a
basis composed of the #? products 6% if we prove the
latter are linearly independent. But, by (13),

E BijabPep = E 8ineiaVew .

igk ijik
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If this sum is zero when the &’s are in F, we multiply it on
the left by e;, and on the right by ¢, and get

E Sipg0D =0,  8ypg=0.
:

Hence A4 is the direct product of B and M.

At the outset we assumed that A4 is not a division
algebra. If it be such, we may evidently regard 4 as
the direct product of 4 itself by the algebra M, of order 1
whose single unit is the modulus # of 4. To each element
au of M,, where a is in the field F, we make correspond
the one-rowed matrix (a); hence M, is equivalent to the
algebra of one-rowed matrices with elements in F.

THEOREM. Awny simple algebra A over a field F, not a
zero algebra of order 1, can be expressed* as the direct
product of a division algebra B over F and a simple matric
algebra M over F.

The moduli of the sub-algebras B and M of 4 coin-
cide with the modulus # of 4. It may happen that
either B or M is of order 1, the single unit being «.

When F is the field of real numbers, all division alge-
bras were found in § 45. Hence we have the

COROLLARY. Apart from a zero algebra of order 1,
cvery simple algebra over the field of all real numbers is a
simple malric algebra, or the direct product of the latter
by either the binary algebra equivalent to the field of all
complex numbers or by the algebra of all real quaternions,
and hence is of order n?, 212, or 4n2.

* In a single way in the sense of equivalence. For, if also 4 =B; X M,
where B; is a division algebra and M, is a simple matric algebra, then

B, is equivalent to B, and M; with M. The proof communicated by
Wedderburn to the author is too long to insert here.
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52. Converse theorem. If A is the direct product
of a division algebra B over F and a simple mairic algebra
M over F, then A is a simple algebra over F, not a zero
algebra of order 1.

For, M has a set of basal units e; satisfying relations
(7) and (10). Let D be any invariant sub-algebra of 4,
and 4 any element 20 of D. Then d=2Xbye; where
the b; are elements of B. Let b denote the modulus of
B. Since each element of B is commutative with each
element of M, the invariant sub-algebra D contains

be,q -d- be,s= beijbepqe,'jeﬂ= grCps »
i
Hence D contains b,M. Since do, we may choose
¢ and 7 so that b,>o0. Given any element b’ of the
division algebra B, we can find an element x of it such
that xb,, =b’, whence Bb, =B. Since D is invariant in 4
and contains b, M, it contains

Bm + byM =Bby, « mM=BM=A4,

where m=2e; is the modulus of M. Hence D=4, so
that A is simple.

Moreover, an element x of A is commutative with
every element of M if and onlv if x belongs to the sub-
algebra Bm.

For, x=2b;e;;, where each b;; is in B. Then

€pX = Z:epqeijbij: z:%bqi: Xepg= E:e,-qb,-,.
7 3

3

These sums are equal for all values of p and ¢ if and only
if by=byy (by the coefficients of ) and b,;=0(jq),
whence x =b,,Z¢; =b.,m.
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The special case B=(b) of the theorem and this sup-
plement shows that M is simple and that an element of M
which is commutative with every element of M is a scalar
multiple of its modulus m.

The special case M =(m) shows that any division
algebra B is simple.*

53. Idempotent elements of a difference algebra.
Let A be an algebra, over the field F, which is neither
nilpotent nor semi-simple. Thus A has a maximal
nilpotent invariant proper sub-algebra N. By § 38,
A—N is semi-simple and has a modulus. Write [x]
for the class, containing x, of 4 modulo N.

THEOREM 1. If e is an idempotent element of A, then
le] is an idempotent class of A—N.

For, [e]*=][¢*] =[e] and [e] #]o] since ¢ is not in N.

THEOREM 2. Every idempotent class [u] of A—N
conlains idempotent elements of A.

For, [o]#[u]l=[u*]= . ... =[w). Hence ' =0 for
every positive integer 7, so that « is not nilpotent. The
linear set S=(u, #?, . .. .) is cvidently closed under
multiplication and hence is an algebra. But S is not
nilpotent since # is not, and hence contains an idempotent
element e (§ 31). Thus

e=autanwr+ . ... +taout (a; in F),
[el=adul+ . . . . +arlut]=alu], a=a+ . ... +a.
a[u]=[e]=[e]*=a’[ul*=alu] , a=a?.
But a=0 would imply [e]=[o] and hence that e is nil-
potent, whereas it is idempotent. Hence a=1, [e] =[u],
so that e is an idempotent element of 4 belonging to [u].

*To give a direct proof, let >0 and b; be any elements of B.
There exists an element x of B such that xb’=5,. Hence if 5’ belongs to
any invariant sub-algebra D, also xb’=b, belongs to D, whence D=B.
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THEOREM 3.* If u is a primitive idempotent element
of A, then [u] is a primitive idempolent element of A —N.

In view of the lemma in § 42, it suffices to prove that,
if [v] is any idempotent element of [u] (4 —N) [«], then
{v] coincides with [#]. We have

(o] = (o] [x] [20] =[],
where x isin 4. By the proof of Theorem 2, the algebra
Y=(y:y2;°"')’ y=uxsu,

contains an idempotent element = of 4 belonging to
[y]. Since ¥ is an clement of u4u, the element w of ¥ is
in uAdu. By the hypothesis that # is primitive, w=u.
Hence

[ =D]=[w]=[x].

THEOREM 4. If e is a principal idempotent element of
A, then le] is a principal idempolent element of A~ N and
is identical with its modulus.

For, in the decomposition of 4 relative to e,

A=I+eR+Le+ede,

each element of the first three parts is o or properly nil-
potent by the corollary in § 35, and hence is in N.
Hence we obtain all classes [x] of 4 -~ N by restricting x
to ede. Each element of 4 ~N is therefore of the

* We make no use of the converse that if # is an idempotent of 4
such that {«] is a primitive idempotent element of A—N, then « is a
primitive of A. For, if v=wuxu is an idempotent of udu, [v] is one of
[#] (A—N) [%) and coincides with the given primitive idempotent |u] of
A—N. Thus u—v is in N. But u—v is equal to its square. Hence
u—v=0,
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form [e] [a] (], whence [e] is the modulus of 4 —N and
therefore a principal idempotent of it (§ 34).
54. Condition for a simple matric sub-algebra.
THEOREM. If A has the maximal nilpotent invariant
sub-algebra N and if A—N contains a simple matric
algebra M, then A conlains a sub-algebra equivalent to M.
By hypothesis, M has the basal units [e;], each a
class of A modulo N, such that

(14) el [eje] =len], [es5] [en]=0
G#L 4,5, L k=1, .44 ., n).

The class [e.] contains an idempotent element e;; of
A by Theorem 2 of § 53 or by (18) with r=1. We shall
prove that A contains idempotent elements ey, . . . . , €un
all of whose products in pairs are zero, and such that e;
is in the class [e;].

To prove this by induction on %, let 4 contain idem-
potent elements €, . . .., €—i ;. Whose products
in pairs are zero and such that ¢; is in the class [e;].
Let s denote the sum of these ¢;. Then

(15) eiS=ez=se€;, s*=s  (1=1,....,7—I).
Select any element b, of class [e,] and write*
a,=(1—5)b,(1 —5)=b,—sb,—b,s+5sb,s .
By (15), we evidently have
(16) City=0=a,6; (i=1,....,r—I).
Since s and b, are in the classes [en]+ . ...+
[€—z, r—:] and [e,], respectively, whose product in either

order is zero by (14), we see that [a,] =[b,] =[en]. Hence

* The use of the abbreviation (1—s)b for b—sb does not imply that
4 has a modulus. ‘
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[a,P=]a,], so that a}—a, is an element z of N, whence
z*=o. Evidently z is commutative with a,. By (16),

(17) ez =0=12¢; (=1, ¢ ¢o.,r—1I).
Employing series* which stop with the term in z*~7,
write

(18) e,,=ﬂc—l—+%sa,(1—22+12z’— cees)
4%

2V 1+
+z—-624+ ... ..

Then €, =¢,. By means of (16) and (17), we find
that

iy =0 =6,,;; (=1, ....,7r—1).

Since @,z is in the invariant sub-algebra N, ¢, is in the
class [a,]=[e,]. This completes the proof by induction
of the foregoing italicized result.

For p>#q, choose any element 7,, of.the class [e,] and
write @y for epplp€q. Then

(19)  €pppgleq=0ypq,
(9] =epp] [epg] lega] =epq] 5
[ovan]=lev][en]=[en]=leal,  lanay]=[en],
by (14), so that
Gy =Eu+2y , I o P
where z,, and z,, are in N. From (19), we get

* By the binomial theorem the inverse of l/;_l-; is
(1+42) =1 —4an) H—D(— =14+ . ... =1—2strat—. ...
But if the field has the modulus 2, we replace (18) by
err=apt+s+2+at+s24 oo L
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(20) €pp0pg=0pq » @pgaq = Qpg -
Thus e,a.,4,, =08, , G116, =a,a,, . Whence
(21) Oy =¢n(1+2y), Ay = (142 C0 .

By (20) and (21),

Oyt * Q1ylyy =0+ 02y GGy * Aoy = Ayt 224Gyr o

Since these are equal by the associative law,
(22) Ap%1y =220y Ap2ly =240, .

If zis IV, so that z* =0, the product of a(1+2) by

(142)'=1—2+22— . ... +(—1)2" g

is a. Hence by (22),
(23) {1+ 20) " = (1424) "0, .

For r> 1, write
(24) €y =0y, , €y = arx(l+zu)_‘ .
Then by (21,) and the case 8., =a,, of (20), we get
(25) 14601 = 01,0, (1+5y) "=ty , €y =2, .

Now e, of (24) is equal to the second member of (23).
Hence by the case a,.ex=a. of (20) and by (21,), we get

(26) €1l = (I +zzr) T8l =Cy €181y = (1 +zzy) kY 0

=€ .

Finally write e, for eye,, when p>1, ¢>1, ps<q.
This and (25,) and (26) give

€;j=€ney; Gij=1,....,n).
By this and (25,), we get

€ijCjk = €161 * €161k = €jx * €11 * €1} =CiCip =Cj} .
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Finally, if j =4,
€;jChk = €i1€1j * €p1Cik = €1 * €1j€;; * CppChr * €1 =0,

since e;jem=o0. Hence the ¢; are basal units of a simple
matric sub-algebra of 4.

55. Structure of any algebra. By § 40, a semi-simple
algebra is either simple or is a direct sum of simple
algebras no one of which is a zero algebra of order 1.
The structure of each such simple algebra is known by
§ 51. Hence we know the structure of all semi-simple
algebras.

THEOREM. Let A be an algebra over a field F such that
A kas a modulus a and is not semi-simple. Hence A has a
maximal nilpolent invariant proper sub-algebra N. Sup-
pose™® that A— N is simple. Then A is the direct product
of a simple matric algebrat M over F by an algebra B over
F having a modulus, but no further idempotent element.

By § 51, A—N is a direct product [B] X[M], where
[B] is a division algebra and [M] is a simple matric
algebra, and their moduli coincide with the modulus
[a] of A—N. By §54, A contains a sub algebra M
equivalent to [M]. Denote the basal units of M by
€ij. Write e=Ze;. Then

e=e, ea=c¢=ae, (e—a)’=a—e.
By induction,
(27) (e—a)*=(—1)*t(e—a).
* The general case is reduced to this in § 57.

t Any two determinations of M are equivalent by the final footnote
in § 51.
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This implies e=a since [¢]=[a], so that e—a is in N
and hence is nilpotent.
Let x be any element of 4 and write

(28) Hpg=Z;pXEqi «

Then

(29) E Xpglpg= E €ipXCgiCpg = E €ppXeg=eXe=axXa=2%,
b q i 7.9

XpgCij = CipXqj = €;j€jpXeqj = €ijXpq 5

so that x, and e; are commutative for all values of
#, ¢, 1, 7. The proof of the second theorem in § 52
shows that x is commutative with every e; if and only
if x=x,e. Bute=a is the modulus of 4. Hence the
¥, are the elements of a sub-algebra B of 4 which is
composed of all those elements of A which are commuta-
tive with every element of M. Thus B has modulus e.

Since every x, is commutative with each unit e;
of M, it belongs to B. Hence, by (29), every element
of A is expressible in the form

(30) Zbpgep (bpq in B).

If two such sums are equal, they are identical. For,
their difference can be expressed as such a sum. Hence
let (30) be zero. Multiply it on the left by e; and on the
right by e,;, and note that b,, may be permuted with e;.
We get djei=o. Summing as to ¢, and noting that
e=a, we get bj,=o for all values of j and 7.

Hence 4=BXM. Further, we have proved that
B and M have the same modulus ¢ as 4. Since [B] is a
division algebra, it has no idempotent element other than
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its modulus by Corollary 2 of § 43. Hence if ¢ is any
idempotent element of B, [¢] =[a], and we have (27) and
therefore e=a.

56. 1f A is semi-simple, its N is zero. Then if
A —N is simple, also 4 is simple. Hence we may com-
bine the preceding theorem with that in § 51 as follows:

THEOREM. If A has a modulus and A —N is simple,
where N is the maximal nilpotent invariant sub-algebra
if it exists, but is zero in the contrary case, then A is the
direct product of a sub-algebra B having a modulus, but
no further idempotent element, by a simple matric sub-
algebra M.

The converse is true. In the proof we may assume
that B has a maximal nilpotent invariant sub-algebra
N, since otherwise B is a division algebra by Theorem 2
of § 43 and 4 is simple (§ 52), whence the converse holds
with N =o.

The Nof A=BXM is N, XM. For, if xisin N, also
(28) is in the invariant algebra N and, being also in B,
is in N, (§ 32). Conversely, if x, is in N, and hence
in NV, then Zxyep, is in N.

Hence A—N=(B—N,;)XM., But B—N, is semi-
simple and its single idempotent element is its modulus;
hence it is a division algebra by Corollary 1 in §43.
Thus 4 — N is simple (§ 52).

57. Let A be any algebra which is neither semi-
simple nor nilpotent. Then A4 has a maximal nilpotent
invariant proper sub-algebra N. By the corollary in
§ 42, 4 contains a principal idempotent element » which
is either primitive (and we then write #=u,) or else is a
sum of primitive idempotent elements u;, . ..., %,
whose products in pairs are all zero.
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The semi-simple algebra 4 —N is either a simple
algebra (4 —N), or a direct sum of simple algebras

(31) (A=N):, . ..., (A=N);.

By § 53, the idempotent element [u] of A —N is its
modulus and is a sum of primitive idempotent elements
lu, - . .., [#s] of A—N whose products in pairs are
all zero.

Each [#;] belongs to one of the algebras (31). For,
if [uz]=Zv;, where v; is in (4 —N);, then

wwi=o(i%)), [ml=[wlP=2#, u=9.

Hence those of the 2; which are not zero are idempotent.
But if two or more of the 7; are idempotent, [u;] would
not be primitive by the Remark in § 42.

The subscripts 1, . . . . , » may be chosen so that

[#), . . .., [up] belong to (4—N),,
Wpt1)y « « + « 5 [Up+p] belong to (4 —N),, etc.

Write

e=w+ . ... Fp, G=tp it ..o FUptpy e,
ag=u~+ . ...+ u,,

where r=p.+ . ... +p—+1. Then e, ...., ¢
are idempotent elements of 4 whose products in pairs
are all zero and whose sum is #.

Since [e;], . . . ., [e] belong to the respective alge-
bras (31) and since their sum is the modulus [«] of the
direct sum 4 —N of those algebras, they are the moduli
of those algebras (§ 21). Also,
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(32 [6lA=Nel=[e] D, (A=Nhlef=0  (i%)).
k=1

In the decomposition of A relative to » (§ 33):
A=I14+uB+Bu+tuAdu,

the first three linear sets belong to N by the corollary
in § 35, whence

(33) A=N,+udu, N,=N.
We shall employ the abbreviations
Ajj=ede;, Ni=eNe;j, N:=ZN;,-.

By (32) and the fact that N is invariant in 4, we
have ¢;de; <N (i=j), so that every element p=e¢ae; of
A is in N, whence e;pej=p, and 4;=N; (i#j). Hence

(34) uAu=2A4;;=N,+ZA4;,
(35) A=N’+2A,‘,’, N’=N;+N¢§N.

If an element g; of A4 is properly nilpotent for A4,
it is properly nilpotent also for A. For, by (35), each
element x of 4 is of the form x'+2x;, where 2’ is in
N’and x;is in 4. Since A;4:=0(j#1), ajx = a;jx’ +ax;.
Since «’ is in the invariant sub-algebra N of 4, g’ is
in N. Hence [ajx]=[ajx]. Since q; is properly nil-
potent for Ay, a;x; is nilpotent, and the same is therefore
true of class [a;x;] and hence of [gjx]. Thus powers of
a;x with sufficiently large exponents are elements of N,
whence ¢;x is nilpotent. Since ¥ was arbitrary in 4,
this proves that g; is properly nilpotent for 4.
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The same argument® shows that if an element @ of
uAwu is properly nilpotent for it, @ is such for A. For,
by (34), a=v+Za;, where v is in N, and ¢; is in A
For x; in A, Zx; is in udwu, and aZx;=u+Za;x; is nil-
potent, where u is in N. This sum differs from ax
by an element of N. Hence [ax] and therefore ax is
nilpotent, whence a is properly nilpotent for A.

Let N; denote o or the maximal nilpotent invariant
sub-algebra of Aj, according as there is not or is such a
sub-algebra. As proved above, N;SN. Next, if Ny
is not zero, it is a nilpotent invariant sub-algebra of A4;.
For, since N is invariant in 4,

Ni=N,  AjNji=ej- AeiN - e;se;Ne;SNj;,

and similarly NjA;<N;. Moreover, A;~N=Nj.
For, if an element » of IV is in Aj;, so that v =e¢jac;, then
evej=v, and » is in N;. Hence Nj; is the foregoing
maximal NV;.

Similarly, #Nw is the intersection of #Au and N,
and is evidently invariant in #4A%. Hence uNu is zero
or the maximal nilpotent invariant sub-algebra of uAu,
according as there is not or is such a sub-algebra.

The distribution of the elements of 4;; into classes is
the same modulo Nj; as modulo N. For, if # and y are
elements of 4;; belonging to the same class (or different
classes) of 4 modulo N, then x—v is in A and is in

* To give another proof, let I be any nilpotent invariant sub-algebra
of uAu. Then I8=o0 for a certain positive integer 8. Hence (/+N)8<

N, since N is invariant in A. Thus I+4N is nilpotent. To prove it is
invariant in 4, use (33). Then

A(I+N)=(N:+uAu)(I+N)sSudu-I+NSI+N.
Similarly, (I+N)A SI+N. Since I+N is a nilpotent invariant sub-
algebra of A4, it is contained in N (§ 30). Hence ISN.
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(or not in) N and therefore is in (or not in) Ny, whence
x and y belong to the same class (or different classes)
of Aj; modulo N, and conversely.

The class of A modulo N which is determined by an
element exe; of Ay is

(36) le;] [«] [e;]

Now [x] is in A —N which is the direct sum of algebras
(31). Also,

[612(4 —N)ilejl=[e] (A —N)jlej]=(A—N);.

Hence (36) is an element of (4 —N);. Conversely, any
element of the latter is of the form (36) with x in 4,
and hence is in a class of 4 modulo N determined by
an element ejxe; of 4.  Thus, by the preceding para-
graph, (4 —N); is equivalent to A;— N;;, which is there-
fore simple. Applying § 56, with A replaced by Ay,
we obtain the )

THEOREM. Let A be any algebra whick is neither
semi-simple nor nilpotent and let N be its maximal nil-
potent invariant sub-algebra. Then A—N is a direct
sum of ¢ simple algebras (12 1), and A contains a principal
idempotent element u=e.+ . ... +e, where the ¢
are idempotent elements whose products in pairs are. all
zero. Then A=N'+S, where N'SN and S is the direct
sum of the t algebras ejde(j=1,....,1t) and each
e;Ae; is the direct product of a simple mairic algebra by an
algebra having the modulus ej, but no further idempotent
element. Moreover, ejAe; (or uAu) has the maximal
nilpotent invariant sub-algebra e;Ne; (or uNwu) or no such
sub-algebra, according as e;Ne; (or ulNu) is not or is zero.
Also, N =N'+ZeiNe;.



CHAPTER VII

CHARACTERISTIC MATRICES, DETERMINANTS, AND
EQUATIONS; MINIMUM AND RANK EQUATIONS

We shall prove that every associative algebra is
equivalent to a matric algebra and apply this result to
deduce important theorems on characteristic, minimum,
and rank equations from related theorems on matrices.
In § 66 we shall establish a criterion for a semi-simple
algebra which will be applied both in the proof of the
principal theorem on algebras (chap. viii) and in the
study of the arithmetics of algebras.

58. Every associative algebra is equivalent to a
matric algebra. The essential point in the proof of
this equivalence is brought out most naturally by explain-
ing the correspondence, first noted by Poincaré, between
the elements of any associative algebra A over a field F
and the linear transformations of a certain set (group).

Let the unitsu,, . . . . , %, of A have the multiplica-
tion table

n
(I} U= Z‘Y,'Jkuk ('l,j‘—‘-!, e e e ey n)

Then A4 is associative if and only it u;(u,) = (wu,)u,
for all values of 4, s, 7, and hence, by (1), if and only if

" n
(23 ZV:(i'Yijk=Z'Yisj'erk @ s,rk=1,....,n).
g

=1

02
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Let x be a fixed element and z, g’ variable elements

x=Zku;, 2=3{p, 2 =3{u;

of A. By (1}, z=x3" is equivalent to the n equations

(3 T,: i’k=z&‘7ﬁk§‘," (k=1,....,n),
i,

which define a linear transformation T, from the initial
variables ¢, . . . ., {xto the new variables {7, . .. .,
¢n. The determinant of T, is

n

L
Z Evije
1=1

Given the numbers {; and &(k, i=1,...., n) of
F such that A(x)s€o, we can find unique solutions {;
of the # equations (3). In other words, there exists a
unique element 2z’ of 4 such that xz' =z, when z and %
are given and A(x)>o.

Similarly, the equation 2z’ =yz"" between the ioregoing
z° and v=Znu,, 2" =2{'u,, Is equivalent to the »
equations

TZV'. {;=zn:7srj§£' (j=1, o s e ony n),
s

(4) Alx)= Gy k=1, « v e v, n).l

which define a transformation T, from the variables
¢, . <. ., ¢, to the final variables ¢/, . ..., ¢ .
By eliminating the ¢;, we get the equations of the product

§2):
T.Ty: L= z EnsYipyoitsy  (B=I, . .44, M)

PGS
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This transformation will be proved to be identical
with T,, where p=xy. This becomes plausible by
elimination of 2z’ between z=xz" and z’'=yz"”, whence
z=2x - yz” = pz" by the associative law. To give a formal
proof, note that to p=Zmu; corresponds the trans-
formation

Ty: Gr= Z TYinlr s W= Z EmsYisi
i

g

in which the value of m; was computed from p=wxy
by use of (1). Then T,.T,=T,, since the coefficients
of £n,¢) are the sums (2).

Hence the correspondence (3) between any element
x of the associative algebra A and the transformation
T, has the property that to the product xy of any two
elements corresponds the product 7.7, of the corre-
sponding transformations. Thus the set of these trans-
formations is such that the product of any two of them is
one of the set.*

There is a second correspondence between any ele-
ment ¥ of A and the transformation obtained from
z=z'x:

(5) by §'k=z&7jib§'f (k=1,....,mn).

iJ

* Such a set is called a group if it contains the identity transforma-
tion I and the inverse of each T'x. If 4 has a modulus e, then Te=1 since
s=ez’ =7 gives (k={p(k=1, . . .., n). If A(x) 5o, we saw that there
exists a unique element w of A such that xw=e. Then T:Tw=1I, so
that Twis the inverse of Tx. Hence all the transformations T’z for which
A(x) %0 form a group. Then also TwIx=1I and wx=e for a unique w,
whence A’(x), defined below (s), is not zero. Conversely, A’(x)o
implies A(x) #0 if 4 has a modulus.
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Similarly, rrom z'=2"y we obtain 4. Then z=2"¢,
g=yx. This makes it plausible that #¢,={,. A formal
proof follows from (2) as before. The determinant of
(5) is denoted by A’(x). If it is not zero, there exists a
unique element 3" such that z'x =z,

We shall denote the matrix of transformation (3) by
R, and that of (5) by S., whence

©) Re=(o)s = > kv (Bj=1, e en., ),

having the element p;; in the kth row and jth column;

(7)  Sa=(0s)), Ukj=z&’Yﬁk k,j=1, .. v, m).

We shall call R, and S, the first and second matrices of x
(with respect to the chosen units u,, . ..., %).
Since the matrix of a product of two transformations is
equal to the product of their matrices (§ 3), we have

8) R.Ry=R.y,  S:S,=Sy.

The determinants A(x) and A’(x) of R, and S, are
called the first and second determinants of x (with respect
tO 2y, o v v ., Uy).

Since R, is the matrix of transformation (3), R.=o0
implies that {; is zero identically in the {7, and hence
that o=xz’ for every 3’ in 4. Similarly, S;=o0 implies
that o=2z"x for every z’ in A. In particular,

THEOREM 1. If A has a modulus, either R:=o0 or
S:=o0 implies x=o0.
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Since each element of R, or S, is linear and homo-
geneous in the co-ordinates & of x by (6) or (7), we have

(9) R.;=aR, y R;+R;,=Rx+y ,

for every number a of F, and the similar equations in S.

By (8,) and (9), the correspondence betwcen elements
Z, 9, ....ofalgebra 4 and matrices R,. Ry, . . . . Is
such that xy, ax, and x4y correspond to R.R,, aR,, and
R.+R,, respectively. Moreover, if 4 has a modulus,
this correspondence is one-to-one. For, if R,=R,, then
o=R,—R,=R,_,, whence x—y=o0 by Theorem 1.
Hence by § 12 we have

THEOREM 2. Awny assoctative algebra A with a modulus
is equivalent to the algebra whose elements are the first
matrices R, of the elements x of A, and is reciprocal lo
the algebra whose elemenis are the second matrices Sx of
the elements x of A.

For example, let A be the algebra of two-rowed
matrices

_f{a b _f[a B8 [ B:
o ) S G B
Then p,=mp and u,=um lead to transformations

T, on the variables a, v, 8,9, and /» on a, 3, v, §, having
the matrices

ab oo ac oo
cd oo bd oo
R"‘_oo ab)’ S"'_oo acl’
oo c¢d oo bd

where R, is with respect to the units e, €., €1, €;, of
§ 8, and S, is with respect to ey, €1, €u, €,2. By inspec-
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tion A is equivalent to the algebra with the elements
R,, and is reciprocal to that with the elements S,,.

If A does not have a modulus, we employ the associa-
tive algebra A4* over F with the set of basal units
Uo, U1, « + + « 5 U, Where the annexed unit u, is such
that

(ro) w=u,, Ul = 10; = U (i=1,....,mn),
and hence is the modulus of A*. Write
(11) a*=tuctx, *={utz, M={u+7,

where z, z, 2’ are the elements of 4 displayed above (3).
Then

a*z¥ =g bt af i+ E2 a2
Equating this to z*, we obtain the transformation
o)
=680, GRS ETE D G
i
(k=1,....,n).

(12)

The matrix of the coefficients of {5, ¢1, . - . ., & is
R;». Thelatter are the elements of an algebra equivalent
to A* by Theorem 2. Now x*isin 4 if £,=0. Hence
the elements ¥ of 4 are in one-to-one correspondence
with the matrices

(13) R;gz E Pu... . P

..........
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Note that (13) is obtained by bordering matrix R,
in (6) with a front column of £’s and then a top row of
zeros. Write &' =Z¢u;. Then

xx' =Zpyuy , n= z prsth
J

We verify at once that the product R}R} is R#- since
it is obtained by bordering matrix R,,=R,R, with a
front column of p’s and a top row of zeros. Again,
(9) imply the corresponding equations in R¥,

THEOREM 3. Any associative algebra A (without a
modulus) is equivalent to the algebra whose elements are
the bordered first matrices (13) of the elements x of A, and is
reciprocal to the algebra whose elements are the bordered
second matrices S¥ of the elements x of A.

Here S¥ is obtained by bordering matrix S, with a
front column of £’s and a top row of zeros, and hence
may be derived from (13) by replacing each p; by 0.

THEOREM 4. Every transformation T, is commutative
with every transformation t,. Hence

(14) RSy=S,R,

for all elements x and vy of A if and only if A is associative.
For, if we apply first transformation z=xz’ and
afterward transformation z’=z""y, we obtain

Taty: z=x.3"y.
But if we apply first # : z=2"y and afterward T, : 2'=

xz”, we get
t,T.:  z=x3" -y,

The group of the transformations T; and the group
of #, are said to be a pair of reciprocal groups in Lie’s
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theory of continuous groups. This was the origin of
the term “reciprocal algebras” (§ 12).

59. Characteristic determinant and equation of a
matrix. Let x be an m-rowed square matrix with
clementsin a field F. Let wbe an indeterminate. Write

(r5) Jw)=|x—wI|
for the determinant of matrix x—wl. Thus f(w) is a

polynomial of degree # in w with coefficients in F.
It was proved at the end of § 3 that

(16) (x—wladj. (x—owl)=f(w)I.

Each member may be expressed as a polynomial in w
whose cocfficients are matrices independent of w. Hence
the coefficients of like powers of w are equal. Thus, if
m is any matrix commutative with x, the corresponding
polynomials obtained by replacing w by m are identical,
and the same is true of the members of (16). But if
we take m =« and replace w by x in the left member of
(16), we obtain the matrix o. Hence f(x)I =o.

We shall call f(w) and f(w)=o0 the characteristic
determinant and characteristic equation of matrix x.

THEOREM. Any matrix x is a root of its characteristic
equation. It is undersiood that when w is replaced by x
the constant term ¢ of f(w) is replaced by cl.

60. Characteristic matrices, determinants, and equa-
tions of an element of an algebra. Let g(w) be any
polynomial with coefficients in F which has a constant
term c>o only when the associative algebra 4 over F
has a modulus e and then the corresponding polynomial
g(x) in the element x of 4 has the term ce. Then the
first and second maltrices of g(x) are

(17) Ry=¢g (R2) ’ Sen=¢ (Sa).
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For, if % is any positive integer, (8) imply
Rx=Rt,  Sa=5%.

Multiply each member by the coefficient of «* in g(w),
sum as to &, and apply (g9) and the similar equationsin S.
We get (17).

First, let A have a modulus. Choose in turn as
g(x) the characteristic determinants §(w) and &'(w) of
matrices R, and S;, respectively. Then, by (17) and

§ 59,
R,s(x) =5(.Rx) =0, Sy(x) = BI(S,) =0.

Hence 8(x) =o, 8’(x) =0 by Theorem 1 of § 58.

Second, let 4 lack a modulus and extend it to an
algebra A* with a modulus %, defined by (10). Choosein
turn as g(x) the characteristic determinants of matrices R
and S, which by (13) are evidently equal to —wd(w) and
—wd’(w), respectively. By the facts used in the proof
of Theorem 3 of § 58, equations (17) hold when R and S
are replaced by R* and S*, respectively. Hence (§ 59),

.Rf.xa(,) =0, S’._‘xa'(x)=0 .

Since A* has a modulus, Theorem 1 of § 58 shows that
the subscripts are zero.

THEOREM.* For every element x of any associative
algebra A, x6(x) =0, x8'(x) =o. If A kas a modulus, also
3(x)=o0, & (x)=o.

* For another proof, with an extension to any non-associative
algebra, see the author’s Linear Algebras (Cambridge, 1914), pp. 16-19.
Tkat proof is based on the useful fact that if we express xu; as a linear
function of u;, . ..., us and transpose, we obtain # linear homo-
geneous equations in #:, . . .., un the determinant of whose co-
efficients is 6(x). Similarly, starting with #jx we obtain &'(x). Com-

pare § 9s.
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Let x be an element of any algebra 4 which need not
be associative nor have a modulus. The matrices

R,,—wl= (ij— wakj) y Sx--w1= (ok,-—wak,-) y

in which §,=1, 8=o0(k=j), are called the first and
second characteristic matrices of x, while their determinants
3(w) and 8" (w) are called the first and second characteristic
determinants of x. Thus the first characteristic matrix
of x is obtained by subtracting w from each diagonal
clement of the first matrix R, of x.

When A4 is associative, §(w)=0 or wd(w)=o and
§'(w)=0 or wd’(w)=o0 are called the first and second
characteristic equations of x, according as A has or lacks
a modulus.

These terms are all relative to the chosen set of basal
units «,, . . . ., us of A. However, we shall next
prove that §(w) and &'(w) are independent of the choice
of the units,

61. Transformation of units. This concept was
introduced in § 6, But we now need explicit formulae.

Let #,, . ..., u, be a set of basal units of any
algebra A, not necessarily associative, over a field F.
We may introduce as new units any # lincarly independ-
ent elements of 4:

(18) W=D my =1, .. .., ),

=1

where the 7;; are numbers of F of determinant |7 =o.
Then equations (18) are solvable for the #;; let the solu-
tion be
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(19) u,= Z)\,,-u,‘ t=1,....,mn),
where the A\; are numbers of F. Elimination of the
u; between (18) and (19) gives

. oif 1] .
(20) g)\u"fij:[l ift=:;' ti=1,....,n).

By means of (19), any element x=Zfm of A can
be expressed in terms of the new units #%; as follows:

(21) x= zgt)‘huz Z Eiui ’ E:= i)‘tift .

t,i=1 t=1

By (18) and (1),

utuj = § Terjsurus E TirTisYrshUh o
7,5, h=1

Replacing #; by its expression from (19), we get

” ”
1,/ ’ ’ ’
(22)  wiuj= E YViiEtk Yije= E TirTisYrshNik »

k=1 r, s, h=1
sy

which gives the multiplication table of the new units.

62. Characteristic determinants are invariants. Let
R; and S; be the first and second matrices of x with respect
to the new units u,, . . . . , u, defined by (18). We
seek the sum analogous to (6), but written in the accented
letters ¢, 4" defined by (21) and (22):

”
i/ ]
phi= E Eiviin=ZNaTirTisYrhMas

i=1
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summed for ¢, ¢, 7, 5, k=1, . ..., n. Applying first
(20) and afterward (6), we get

p/,?.i = z TjsYrshMhkEr = Z T jsPhs Mik -

r, S, 0k S, h

Write lus for M, and 4 for 7;,. Let T be the matrix
having #; as the element in the sth row and jth column.
By (20), Ztuly=o0 or 1 according as j#¢ or j=¢ Hence
T-* is the matrix having /; as the element in the 7th
row and fth column. Then p;;j=Zluputs; gives

R:=T—*R, T, S;=T-S,T,

the second being derived similarly by using (7) instead
of (6). Thus, if w is an indeterminate,

Ri—wl=T"*(R,—wI)T, Si—wl=T-*S;—I)T.
Passing to determinants, we get
| Ri—wl |=| Ry;—wI |, | Si—ol |=|S;—wI].

THEOREM. Eack characteristic determinant of an
element x of an algebra, not necessarily associative, over a
field F, is invariant under every linear transformation of
units with coefficients in F. The same is therefore true of
their constant terms A(x) and A'(x).

63. Lemma on matrices. If a;, . ..., a, are the
roots of the charactesistic equation f(w)=o of an n-rowed
square matrix m whose elements belong to a field F, and if
g(w) is any polynomial with coefficients in F, then the
roots of the characteristic equation of the matrix* g(m) are:
g(as), « « . ., glaa).

* With the term cI if the constant term of g(w) is ¢
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By chapter xi, we may extend F to a field ' in which
f(w)-g(w) decomposes into linear functions of w:

fl@)=(u=—w)....(0—w), gw=Buw=8)....(0=8"
If I is the n-rowed unit matrix, we have in F’
gm)=Bm—@GI) . ... (m—B1I).
Passing to dcterminants, we get
lg(m) |[=B*|m—=BI| .. ..|;m—=BI|=BY(B) ....[(B.
But, by the initial formulae,
1B =(az—B)) « « o . (=8,

glag)=Blar—B) « « . . (z—5).
Hence

(23) lg(m) |=glas) . . . . glas).

Let £ be a variable in the field F’ and write 4 (w, £)
for glw)--¢ Then h(m, &) =g(m) &I, so that the
characteristic determinant of g(m) is the determinant
of h(m, £1. Applying (23) with the polynomial g(m)
replaced by 4(m, £), we see that the determinant of the
latter is equal to the product

has, &) « . . . oy, §)=[gla)—8] . . . . [g(as)—§].

Equating the latter to zero, we therefore obtain the char-
acteristic equation of matrix g(m).» Hence its roots are
glas), . . . ., glaw.
64. Roots of the characteristic equation of g(x).
THEOREM. Let g{w) be a polynomial of the type in
§ 60. Let F, be an extension of the field F such that the
first (or second) characteristic equation of the element x of
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the algebra is solvable in F, and has the rootsay, . . . . , an.
Then the roots of the first (or second) characteristic equation
of g(x) are g(ar), . . . ., glan).

For, the first characteristic equation of x is
|R:—wl|=o0, which is the characteristic equation of
matrix R, and has the roots a,, . . .., a,. Hence
by §63 with m=R,, the roots of the characteristic
equation of matrix g(R.) are g(a), « .« .., glan).
By (17.) they are the roots of

] Ry —wl l=° ’

which is the first characteristic equation of g(x).

CoROLLARY*. An element x is nilpotent if and only
if every root of either characteristic equation of x is zero.

For, if 27=0 and if there be a root p=o, the corre-
sponding characteristic equation of &” would have the
root p’ 7o, whereas either characteristic equation of the
element o is evidently w"=o0.

Conversely, if every root of either characteristic
equation is zero, that equation is evidently o”=o,
and by the theorem in § 6o « is a root of the latter or of
its product by w.

65. Traces, properly nilpotent elements. The sum
of the diagonal elements of the first matrix R, of x is
called the (first) trace of x, and is denoted by 4.

The first characteristic equation of x is

| Rz—ol |=(—1)Yw"—tw* "+ . . . . ]=o0.

Hence ¢, is equal to the sum of the roots, and (§ 62) is
independent of the choice of the basal units of the
algebra.

* This follows at once from the theorem in § €8.
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In the proof of the next theorem it will be seen that
we must exclude fields F having a modulus p, i.e., an
integer p such that px=o for every x in F. When p
is a prime, one such field is composed of the classes of
residues of integers modulo p, as explained in detail in
§ 110. Any sub-field of the field of all complex numbers
has no modulus.

THEOREM. An element x of an associative algebra A
over a non-modular field F is zero or properly nilpotent
if and only if t.y=o0 for every v in A.

First, let x be zero or properly nilpotent, so that xy is
nilpotent. Then all the roots of the first characteristic
equation of xy are zero by the corollary in § 64, whence
their sum i,y is zero.

Conversely, let f,y=o0 for every y in 4. Since

(xy) =2y,  y=(x)",

t,=o, where z=(xy)", for every positive integer . In
the theorem of § 64 take g(w)=w" and replace x by xy,
hence the roots of the first characteristic equation of
z=(xy)" are the rth powers of the roots of that of xy.
The sum # of the former roots was seen to be zero.
Hence the sum s, of the rth powers of the roots of the
first characteristic equation

Jw)=w*+vw* ™+ . ... Fys=0

of xy is zero for every positive integer . For any field F,
we have Newton’s identities,

Sit¥sSj—tYasj—at « o FyimsHiv=o

..

U=1,..0.,mn).



§ 66] SEMI-SIMPLE ALGEBRAS 107

Since each s,=o, we have jyj=o. Hence vj=o,
since F has no modulus. Thus f(w)=w"=o0. Since
every root of this characteristic equation of wxy is zero,
the corollary in § 64 shows that xy is nilpotent for every
v, whence x is zero or properly nilpotent.

But if F has a modulus the prime #, v, need not be
zero, although yj=o(j<n). Take y,=—1. Then

flw)=wt—1=(w—1)" (mod ),

so that all the roots are 1 and s,=o (mod #) for every r.

To show that not merely our proof, but also the
theorem itself, may fail for a modular field, take n=2 in
what precedes and consider the algebra (1, ) where e?=o,
over the field of classes of residues of integers modulo 2.
The first matrix of x=£-+7e has the diagonal elements
£, £&. Hence the trace of every xis 2£=o0 (mod 2). The
elements 1 and 1+-¢ are not nilpotent, although the traces
of their products by every y were seen to be zero.

66. To make an important application of the pre-
ceding theorem, consider

x= Z&ui, y= Zn,-u;, xy= Z&n,ﬂm;.
H f] i

Relations (9) evidently imply
(24) bay=0aly,, bepry=ttty.
Hence if the trace of wu; is 75,

(25) by= z 155Eim4

i, )=1
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This is zero for every y in A4 if and only if

n

(26) ZTij$i=o G=1, ..., n).

i=1

Hence x=Z%u; 50 is properly nilpotent in 4 if and
only if relations (26) hold (with &, . ..., & not all
zero).

THEOREM. Let the n-rowed square matrix (1), in
which Ty is the trace of uu;, be of rank® r. An algebra A
over a non-modular field has no properly nilpotent elements
(and hence is semi-simple) if and only if r=n. Also, A
has a maximal nilpotent invariant sub-algebra N of order
v if and only if v=n—r>o. Thevalue of r depends solely
upon the constants of multiplication of A.

The reader is now in a position to follow the proof in
chapter viii of the principal theorem on algebras.

For an important application to the arithmetic of
algebras, we shall need the explicit expression for
which is the trace of uu;=2v;u; and hence is the sum
of the diagonal elements of the first matrix of the element
obtained from x=Zfwu; by replacing & by v A
diagonal element of the first matrix of x is given by (6)
withj=%. Hence

"
(27) Tj= Z VsjiYikh «
k=1

* A matrix is said to be of rank r if at least one r-rowed minor is
not zero, while every (r+1)-rowed minor is zero. Then r of the & in
(26) are expressible uniquely in terms of the remaining #»—7, which are
arbitrary. See Dickson’s First Course in the Theory of Equations (1922),
p. 116.
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67. Minimum equation of a matrix. Any square
matrix m with elements in a field F is a root of its char-
acteristic equation (§ 59) and hence is a root of a unique
equation ¢(w)=o of lowest degree whose coefficients
belong to F, the leading cocfficient being unity. This
equation is called the minimum (or reduced) equation
of m. It is understood that when w is replaced by m,
the constant term of ¢(w) is multiplied by the unit
matrix /.

LeEMMA. If Nm)=o, where Nw) is a polynomial
with cocfficients in F, then N w) is exactly divisible by ¢(w).

For, let ¢(w} and 7(w) denote the quotient and re-
mainder from the division of Mw) by ¢(w), where r(w)
is either zero identically or is of degree less than that of
¢(w). Then

Mw)=qlw)p(w)+7(w).

Hence 7(m)=o0, so that 7(w) is zero identically.

THEOREM 1. The manimum equation of an n-rowed
square matrix m is ¢(w) =0, where q(w) is the quotient of
the characteristic determinant f(w) of m by the grealest
common divisor g(w) of ils (n--1)-rowed minors.

Denote the adjoint matrix (§3) of m—wl by
(m—wl),. Each of its elements is divisible by g(w).
Hence

(m—wl)o=g(w)M,

where M is a matrix whose elements are polynomials in
w without 2 common factor other than a number of F.
Hence {16) with x =m becomes

g)M(m—wl)=f(w)[=g(w)glw)] .
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We may delete the common factor g(w) from this identity
in matrices since it is equivalent to #? equations between
elements of the n-rowed matrices. Thus

(28) Mm—ol)=g(w)I.

As in § 59 this identity holds true after w is replaced by
any matrix commutative with m, say m itself. Hence
g(m)=o0. By the lemma, ¢g(w) is divisible by ¢(w).

If p is another indeterminate, we have

¢(w)—¢(p)=y(w, p)(p—w),

where ¥/(w, p) is a polynomial in w and p with coefficients
in F. We may replace p by m and, since ¢(m)=o,
obtain

() =y(w, m)(m—uwl).

From this and (28), we deduce
g(w)¥(w, m)(m—ol)=¢(w)M(m—wl).

We may delete the common factor m — wl whose deter-
minant is not zero identically in w. Since the elements
of M have no common factor, ¢(w) must divide ¢(w).

Our two results show that ¢(w) and ¢(w) differ only
by a factor belonging to the field F. Hence the theorem
is proved.

THEOREM 2. Every root of the characteristic equation
f(w)=0 of a matrixz is a root of its minimum equation
o(w) =0, and conversely.

For, if we pass from (28) to determinants, we have

[M] - f(w)=[d(w)]".

The converse is true by Theorem 1.
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68. Minimum equation of an element of an algebra.
Let x be an element of an associative algebra A over F.
If A has a modulus, any polynomial g(w) with coefficients
in F which vanishes when w = R, vanishes for w=xby (17)
and Theorem 1 of § 58, and conversely. Hence the
minimum equation of R, is the minimum equation of x.
By the preceding Theorem 2, every root of the formerisa
root of the characteristic equation of R, which is the
first characteristic equation §(w)=o0 of x by § 6o, and
conversely. The same holds for S, and §'(w)=0. If
A lacks a modulus, we employ R instead of R, and note
(§ 60) that (17) still hold.

THEOREM. Every root of the minimum equation of an
element x of amy associalive algebra is a root of either
characteristic equation of x and conversely.

69. Rank equation. By § 11 the quaternion

g=o+&i+nj+k,

in which o, £ 7, ¢ are independent real variables, is a
root of

w*—200+(o*+E41°4+ %) =0,

and is evidently not a root of an equation of the first
degree. This quadratic equation is called the rank
equation of the general real quaternion ¢ since its coeffi-
cients are polynomials in o, £ 7, { and the coefficient
of «? is unity, and since ¢ is not the root of an equation
of lower degree whose coefficients have these properties.
Consider any associative algebra 4 over a field F.
Letu,, . ..., u,be aset of basal units of 4. Let £,
-+« , & be variables ranging independently over F.
By § 60, the element x =ZEu; of A is a root of wé(w)=o0,
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where 8(w) is the first characteristic determinant of x
and is a polynomial in w whose coefficients are poly-
nomials in &, . . . ., &, with coefficients in F.

Hence there exists a least positive integer 7 such that
x is a root of an equation of degree 7,

(29) Cow' w4 . ... =0,

with or without a constant term according as A has or
lacks a modulus, where each ¢ is a polynomial in &,
.« .., £, with coefficients in F, while ¢, is not zero
identically.

When &, . ..., & areindeterminates, ¢, €1y « . .
have a greatest common divisor g by Theorem V of
§ 114. Write ¢;=g¢gi. Then (29) becomes gR(w)=o,
where

(30) R(w)=qow'+qlw"’+ s e e e

Here ¢o, ¢r, . . . . have no common divisor other than
a number of F, and ¢, is not zero identically. These
properties remain true when we interpret £, . . . ., £,
as independent variables of F, provided F be an infinite
field as we shall assume henceforth.*

By means of x=2£u; and the muluplication table
(1) of the units %;, we may express R(x) in the form
Zfu; , where f; is a polynomial in &, . . . . , &, with co-
efficientsin F. Since gR(x)=o0, each gfi=o. ByIII of
§ 112, the corresponding function gf; of indeterminates
&, ....,& is zero identically, so that one factor is

*For, if f, g, k are polynomials in &, . . . ., & with coefficients
in F, and if f=gh when the #’s are indeterminates, evidently f=gk

when the £’s are independent variables in ¥. What we need is the
converse, and it is true by IIT of § 112,
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zero by the theorem in § 111. Since g is not zero identi-
cally, each f;=0 and R(x)=o0.

LemMA. If Nx)=o0, where NMw) is a polynomial in
w whose coefficients are polynomials in &, . . .., &
with coefficients in F, then NMw) is exactly divisible by
R(w) when &, . . . . , & are indeterminales.

For, let g(w) denote the greatest common divisor
of Mw) and R(w). By V of § 114, there exist poly-
nomials s(w) and #(w) whose coefficients are poly-
nomials in &, . ..., £ with coefhcients in F and a
polynomial p in &, ...., & with coefficients in F
such that

s(@)h(w)+i(w)R(w) =pg(w) .

Hence pg(x)=o. By the paragraph preceding the
lemma, g(x)=o0. Hence the degree of g(w) in w is not
less than the degree of R(w) in view of the definition of
the latter. But the degree of the divisor g(w) is not
greater than that of the dividend R(w). Hence the
degrees are equal. Then by IV of §114 with p=1,
K =1, R(w) is the product of g(w) by an element of F.
Since A(w) is divisible by g(w), it is divisible by R(w).

As noted above, wé(w) is a polynomial having the
properties assumed for A(w) in the lemma, and hence is
divisible by R(w). Since the coefficient of the highest
power of w in wé(w) is ==1, we conclude that that of R(w)
is a divisor of +1. Hence ¢, is a number of F and
may be made equal to unity by dividing the terms of
R(w) by it.

THEOREM. Let A be any associative algebra over an
infinite field F. If &, . . .., & are independent vari-
ables of F, the element x=Z&u; is a root of a wuniquely
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determined rank equation R(w)=o0 in which the coefficient
of the highest power o is wunity, while the remaining
coefficients are polynomials in &, . . . . , & with coeffi-
cients in F. Also, x is not a root of any equation of degree
<r all of whose coefficients are such polynomials.

The integer 7 is called the rank of algebra 4.

CoroLLARY. If A has a modulus e, the constant term
¢ of R(w) s not zero identically.

For, R(w) divides 6(w), so that ¢ divides §(c) =A(x).
But A(e) =1 by the footnote in § 58.

The theorem fails for finite fields. Consider the
algebra A = (4., u,, u;) over the field composed of the
two classes of residues of integers modulo 2, where
wi=u;, umu;=0(7j#1). The modulus of 4 is e=Zu;.
Either characteristic determinant is

A=(t—w)(f2—w) (fs_w) .

Evidently every element x of 4 is a root of w*=w.
Now
A=(w—o?)(wt+1+&+E+E)+p  (mod 2),

where
p=sw—&&¢;, s=1+Z&+284,.

Thus sx—£.E.E,e=0 for every x in A. Another such
linear equation satisfied by # is cx=0 where e=(1—-§,)
(1—&)(1-&).

70. Let x be an element of 4 whose co-ordinates
&, . ..., & are independent variables in F. As in
§ 68, the rank equation R(w)=o of x is the minimum
equation of matrices R, and S; (or of R¥ and S¥ if 4 has
no modulus). The discussion® in § 67 is seen to hold

* An indirect proof of the lemma consists in seeing that it is a trans-
lation of that in § 6.
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when m is interpreted as one of the preceding four
matrices, say R., since the leading coefficient of ¢(w)=
R(w) is unity, while the remaining coefficients are now
polynomials in &, . . . . , &, with coefficients in F.

THEOREM. The distinct factors irreducible in an
infinite field F of the left member of either characteristic
equation of x coincide with the distinct irreducible factors of
the rank function R(w).

71. Rank equation of a simple matric algebra. By
§ 59, any n-rowed square matrix x = (x;) with elements
in F is a root of

Let the x;; be #* independent variables of an infinite
field F. We shall prove that R(w)=o is the rank
equation. This will follow from the lemma in § 69 if
we prove that R(w) is irreducible in F. It suffices to
prove that its constant term =|x;| is irreducible in F.
In view of the footnote in § 69, this follows from the

LEMMA. The determinant |xi;| of w* indelerminates
xi(i, j=1, . . . ., n)is a polynomial f(Xys, Zsay « « « . ,
Xun) Whick is irreducible in every field F.

Suppose that f is a product of two polynomials g and
h with coefficients in F. Since f is of degree 1 in each
indeterminate, we may assume that g is of degree o and
# of degree 1 in #;;. No term of the expansion f of |x;|
contains the product of x;; by an element x,, of the first
column. Hence g is of degree o in x,, since otherwise
%%y would occur in a term of gh=f. Thus % is of
degree 1 in %,,. Since x,%,, does not occur in a term of
gh=f, g is of degree o in every %,.
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TrEOREM. The rank equation of the algebra of all
n-rowed square matrices (x;) with elements in any infinite
field is its characteristic equation (31).

Hence by § 70 the characteristic determinant of x is
the nth power of R(w) apart from sign.

72. Rank equation of a direct sum. If an associative
algebra A with the modulus*® e over an infinilet field F is a
direct sum of algebras A., . . . ., Ai, and if R(w)=o0is
the rank equation of A, and Ri(w)=o0 is that of Ai, then
Rw)=R,(w) . . .. R(w).

The co-ordinates &; (j=1, . . . ., n) of the general
element x; of A4; are independent variables in F. The
general element x=2x; of 4 has as co-ordinates the
independent variables §&; (j=1,....,n,; i=1,
e e..,)inF. If also y=2Zy; then xy=Zx;y;, whence

2k=Zx¥, o=R(x)=ZR(x).

Hence each R(x;)=o0. By the lemma and the footnote
in § 69, R(w) is divisible by the R;(w) and hence by their
least common multiple L(w) when the &; are indetermi-
nates. Write L(w)=R;(w)Q:i(w). Then L(x;) =0, whence
L(x)=ZL(x;)=o0, so that L(w) is divisible by R(w)
by the same lemma. The two results show that R(w)
is the least common multiple of the R;(w).

The theorem will therefore follow if we prove that no
two of the R;(w) have a common divisor of degree >o.
Suppose that R;(w) and R,(w) have a common divisor
D(w) of degree >o. Since R;(w) is of degree o in the

* The theorem may fail if there is no modulus since the rank equation
of a zero algebra is always w*=o.

t The theorem fails for the algebra (u:) ®(u.) ® (%;), ui=wu,; over
the field of order 2, since its rank equation is linear (end of § 69), while
that of (u,) is w—&:=o.
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¢, and R,(w) is of degree o in the £, D(w) is of degree
oin both sets and hence involves the single indeterminate
w. But

R(w)=w'+co"+ . ...,

where ¢, . . . . are homogeneous polynomials in the
£; and hence vanish when ecach £;=0. Hence D(w)
is a divisor ' of w". This is impossible since 4, has a
modulus and hence R,(w) has a constant term not zero
identically by the corollary in § 69.

73. Rank equation unaltered by any transformation
of units. For an associative algebra A with the con-
stants of multiplication v, let R(w; &, vix) =0 be
the rank equation which is satisfied by w=x, where
x=Z&u, is the general clement of 4 Under a trans-
formation of units (§ 61), let x become x'=Z¢/;, and
let R become p(w; &, vix). For w=2x', both p and R(w;
&, vip) are zero; unless they are identical, their differ-
ence is zero for w=xa'. Passing back to the initial units,
we obtain a function of degree <r which is zero for w=uz,
contrary to the definition of r. Hence the rank equation
is independent of the choice of basal units.*

* Another proof follows from the theorems of §§ 62 and 70 and the

fact that each irreducible factor of an invariant is an invariant Com-
pare Bocher, Introduction to Higher Algebra (1907), p. 218.



CHAPTER VIII
THE PRINCIPAL THEOREM ON ALGEBRAS

74. Introduction. We shall prove that any associ-
ative algebra over a non-modular field F is either semi-
simple or the sum of its maximal nilpotent invariant
sub-algebra and a semi-simple algebra, each over F.
For the special case in which F is the field of all complex
numbers, a more elementary proof is given in § 79.

We shall need to employ extensions of the given field
F. In this connection, note that the theorem of § 66
implies the

COROLLARY. Let A be an algebra over a non-modular
field F. Let F, denote any field containing F as a sub-
field. Denote by A the algebra over F; which has the same
basal units* (and hence the same constants of multiplica-
tion) as algebra A over F. Then A, is semi-simple if and
only if A is semi-simple. But if A has a maximal nil-
potent invariant sub-algebra N, that of A, is the algebra over
F. which has the same basal units as N.

75. Direct product of simple matric algebras. Let 4
be a simple matric algebra over F with the m* basal
units a; such that (§ 51)

(1) a@jos=o0 (j#r), aii=as (5,7,7,5=1,....,m).
Let B be a simple matric algebra over F with »* basal
units by(r,s=1,...., n), satisfying relations of

* They may be assumed to be linearly independent with respect to
Fi by §13.
118
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type (1), such that each b, is commutative with every
a;; and such that the m®s?® products a;b,; are linearly
independent with respect to F.

Then those products are the basal units of the direct
product A XB (§ 50). Take them as the elements of a
matrix (e,) which is exhibited compactly as the com-
pound matrix

(8:)br: (@i)bra v o o« (@i)b1n
(2) e e e e e ,
(@i7)bus (@ij)ona o o o - (0i)bpn

in which the entries themselves are matrices:

anbn alzbn [ a,,,,b,, )

(3) (aij>brs= <

Aibys  Auabys « o o . Qb

From our two notations for the same element, we
have

P=ajbrs = it mir—v); jrmis=1
O=aubu=ertmu—1), 14+mu—1) -

Evidently PQ=o0 unless k=j, ¢t=s, and then
PQ=0ubp = €itmir—v); t4miu—1) -

But k=j, t=s imply j+m(s—1)=k+m(t—1) and con-
versely, since 7 and k are positive integers <m. Hence
the e’s satisfy relations of type (1) and are therefore the
basal units of a simple matric algebra.

TueorREM. The direct product of two simple mairic
algebras of orders m* and n* is a simple mairic algebra of
order m*n®.
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76. Division algebras as direct sums of simple matric
algebras.

I THEOREM. If D is a division algebra over o mon-
modular field F, there exist a finite number of roots of equa-
tions with coefficients in F whose adjunction to F gives a
field F; such that the algebra D, over F., which has the same
basal units as D, is a direct sum of simple matric algebras
over F..

Select any element xz°of D not the product of the
modulus e by a number of F. By § 6o, x is a root of
either characteristic equation, and hence of a certain
equation ¢(w)=o of minimum degree s>1 having
coefficients in F.

Let F’ be the field obtained by adjoining to F all the
Toots Ay, « .« . . , \s of ¢(w)=o0. Let D' be the algebra

over F’ having the same basal units as D. Then
x—Ne) . ... (x—Ne)=0(x)=0

in D’. Since x is not the product of e by a number \;
of F’ (footnote in § 74), no one of the x—X\e is zero, and
yet their product is zero. Hence D’ is not a division
algebra by Theorem 4 of § 43.

The division algebra D is simple (§ 52). Hence by
§ 74 D’ is semi-simple and (§ 40) is either simple or a
direct sum of simple algebras over F’. Each such simple
algebra is the direct product of a division algebra D; by
a simple matric algebra, each over F’ (§ s1). The order
of each D; is less than that of D’; this is evident for the
second case in which D’ was a direct sum, and also for
the first case in which D’ was simple, provided the matric
factor is of order >1; but the remaining case i=1,
D’ =D,, is excluded since D’ is not a division algebra.
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If each D; is of order 1, our theorem holds for F, =F’,
In the contrary case, we employ an extension F”’ of
F’ such that the algebra over F’/, having the same
ni(n;>1) basal units as D;, is not a division algebra.
To it we apply the argument just made for D’.

Since the division algebras introduced at any stage
are all of orders less than those of the preceding stage,
the process terminates, so that we reach a final stage in
which the division algebras are all of order 1. Each
division algebra of the prior stage is therefore a direct
sum of simple matric algebras. Our theorem now follows
from that in § 75.

77. Theorem.* If A is an algebra huaving a single
idempotent element e over a non-modular field F, then A can
be expressed in the form A=B-+N, where B is a division
algebra and N us zero or the maximal nilpotent invariant
sub-algebra of A.

The theorem is obvious when A4 is of order 1, since
then A =A4+o0 and 4 is a division algebra.

To prove the theorem by induction, assume it for ali
algebras of type A which are of orders less than the order
of 4.

We first show that we may take N*=o. Let N*>o
and write

(4) A=B'+N, B'AN=o, N=N+N:, N,~AN‘=o.

Since AN*=AN - NN - N and N*4A<N?* N?is an in-
variant sub-algebra of 4.
The classest (x) of A modulo N*? are the elements of
A—N?. 1In particular, the classes (n;), each uniquely
*In § 79 there 1s a tar simpler proof for the case of algebras 4 over

the field of ali complex numbers.
1 The notation (%) marks the distinction from classes [x] modulo N.
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determined by an element #, of ,, form the maximal
nilpotent invariant sub-algebra (¥,)=N —N? of 4 —N=.
Let (B’) denote the set of classes modulo N? determined
by the elements of B’. Then, by (4),

A—N*=(B")+(N,).

Since N*s%0, the order of 4 —N? is less than that of
4 and hence, by the hypothesis for the induction, we can
choose a division sub-algebra (B”) of 4 —N* such that

A—N*=(B")+(N)).

Write C=B’+N,. Then, by (3), A=C+N?,
CA~N?=0. Those elements ¢ of C, for which classes
(¢) modulo N*? belong to (B”’), form a linear set B” of 4.
But we saw that, when either (B’) or (B”) is added to
(N.), we get A—N? whence (B"”)=(B’) modulo (N,).
Hence B”’=B’ modulo N, so that A =B” +N by (4).

We had (B”)*=(B’') in 4—N*. Hence B'*=B"
modulo N?in 4. Since N*is invariant in 4,

(B"+ N3 )< B"+N2.

Hence A’=B"+N? is an algebra. It is a proper sub-
algebra of 4, since A’<B"+N =4 by N*<N.

Finally, N* is a maximal nilpotent invariant sub-
algebra of A’. For, if B” had a properly nilpotent ele-
ment, (B"") would contain a properly nilpotent element,
whereas it is a division algebra. Hence by the hypothe-
sis for the induction, there exists a division sub-algebra
B of A’ (and hence of 4) such that A’=B+N*. But
A'=B"+N*. Thus B=B" modulo N* and hence also
modulo N. Hence 4 =B”+N implies A =B+N.
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It remains to prove the theorem when N?=o0, a
property utilized only at the end of the proof.

By § 38, D=A —N is semi-simple and has a modulus.
It has no other idempotent element since 4 has a single
one. Hence by Corollary 1 of §43, D is a division
algebra.

By § 76, we may extend the initial field to a field F,
such that the algebra D, over F,, which has the same
basal units as D, is a direct sum of simple matric algebras.
Denote by A4, and N, the algebras over #, which have
the same basal units as 4 and N, respectively. By
§ 74, N, is the maximal nilpotent invariant sub-algebra
of A,. Hence A,—N,=D..

By § 54, 4, contains a sub-algebra C equivalent to
A.—N,, whence A,=C+N,,C~AN,=0. Lete, ....,
e: be a set of basal units of C. Since 4 —N s of order
¢, the basal units of N (or N,) together with certain ¢
elements a,, . . . . , @, of A form a set of basal units of
A (or A;). Hence we may write

(s) ¢i=zaijaj+ni (1=1, « « o « ,C),

i=1

where the #; are elements of Ny, and the a,; are numbers
of F, whose determinant is not zero (otherwise, as in
§ 5, a linear combination of e, . . . . , ¢, would belong
to N,, contrary to CAN,=0). Solving (s5), we get

(6) ai=zt3ij(ej“”j) (=1, ....,0),

j=1

where the 8; are in F; and their determinant is not
zero. Write
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c

(7) wi’:ZBijcj (i=1,....,0).

j=1

Since the ¢; are basal units of algebra C,
(8) wiwk=27iktwt (i, k=1, . ..., 0).
t=1

We may express (6) in the form
(9) ai=witv; (=1,....,0),
where »; is in N,. Since N, is invariant in 4,,
a0, = wiwptni ,

where n;; and #;, below are in N;,. Hence, by (8) and (9),

c [
4 !’
= E Yin@+nik, Mg =N — E YikeVe -

t=1 t=1

But the product a;a; of two elements of 4 can be
expressed in one and only one way as a linear combina-
tion, with coefficients in F, of the basal units of 4, which
are composed of those of N and ay, . . . . , a.. Hence
the v; are numbers of F.

But F,; was derived from F by the adjunction of a
finite number of roots of equations with coefficients in
F. Hence F,=F(&, &, .. . ), where 1, &, &, . .
are linearly independent with respect to F. We may
therefore write

_V,‘=Vio+l’ix£[+v¢'3£z+ s o 00y
where the »;; are in N. Write

2,'=a¢+11,'°, B=(Z]’ 22y o« ¢ 0 4y zg),
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where z; is in 4 and B is a linear set of elements of 4 over
F. Hence A=B~+N. Using also (9), we get

wi=2;+n;, ni"_'—l':‘_l’io:”hfx"'l’wsz"' e v s s

Substituting in (8), we get
(zitm) (ztm) = Z Yir(z )
=1

Since nm, =0 by N?=o, the left member is the sum of

zz+ (which is in 4 and hence is free of &, &, . . . .)
and the lincar homogeneous function zg,+nz: of
R Equating the parts free of &, &2, - . . .,
we have

c
Zizp = ZWZ, , B*=B.
t=1

Hence A is the sum of the algebras B and N. It was
noted above that 4 — N =23 is a division algebra.

78. Principal theorem. Any associative algebra A
over a non-modular field F, which is neither semi-simple
nor nilpolent, can be expressed as the sum of its maximal
nilpotent invariant sub-algebra N and a semi-simple sub-
algebra K over F, whick is not a zero algebra of order 1.
While K is not unique, any two determinations of it are
equivalent.

By § 57, 4 has a principal idempotent element % and

A=N+udu, N.2N,

while if there is a maximal nilpotent invariant sub-algebra
of udwu, it is contained in N. Hence our theorem will
follow for 4 if proved for 4, which has the modulus w.
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It remains to prove the theorem for algebras A
having a modulus. By § 38, A N is semi-simple and
has a modulus.

First, let A—N be simple. By §55, A=MXB,
where M is a simple matric algebra and B is an algebra
having a modulus, but no further idempotent element.
By § 77, B=D+N,, where D is a division algebra and
N; is zero or the maximal nilpotent invariant sub-
algebra of B. By §56, N=M XN, By §52, MXD
is simple and is not a zero algebra of order 1. Hence
A=MX(D+N,) is the sum of the simple algebra
M xD and N.

Second, let 4 —N be semi-simple, but not simple.
By § 57, A=N'+S, where N'<N and S is the direct
sum of algebras 4,, ... ., 4, where each 4; is of
the type M X B just discussed and hence is the sum of a
simple algebra K; and V;, where N; is zero or the maximal
nilpotent invariant sub-algebra of 4; if it exists. More-
over, N=N'+ZN;. Hence A=K+N, where K=2K;
is a direct sum of simple algebras, no one a zero algebra
of order 1, and hence is semi-simple and not a zero algebra
of order 1 (§ 40).

79. Complex algebras. Any algebra over the field
C of all complex numbers a+ b is called complex.

A complex division algebra D is of order 1 and is
generated by its modulus. For, if f(w) =0 is the equation
of lowest degree satisfied by an element x of D, f(w) is
not a product of polynomials f;(w) and f,(w) each of
degree 21, since f(x)f,(x) =0 implies that one of f;(x)
and f,(x) is zero in the division algebra D. But if f(w)
is of degree >1, it is a product of two or more linear
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factors in C. Hence f(w) is of degree r and x is the
product of the modulus by a complex number.

Every complex simple algebra, not a zero algebra of
order 1, is a simple matric algebra. For, by § 51, it is
the direct product of a division algebra (here of order 1)
by a simple matric algebra.

A complex semi-simple algebra which is not simple
is a direct sum of simple matric algebras (§ 40).

The characteristic and rank equations of any semi-
simple complex algebra are known by §§ 71, 72.

We are now in a position to give an elementary proof
of the principal theorem that every complex algebra with
a modulus is either semi-simple or is the sum of its maxi-
mal nilpotent invariant sub-algebra and a semi-simple
sub-algebra. In the proof in § 78 of a more general
theorem, use was made of the theorem in § 77 which
may be proved far more simply for a complex algebra 4.
We may assume that the order of 4 is r>x. Then 4
is not simple since a simple matric algebra of order
r>1 contains idempotent elements e; other than its
modulus Ze;,. In a semi-simple algebra which is not
simple, the modulus of each component simple algebra
is 1dempotent. Since A4 is not semi-simple, it has a
maximal nilpotent invariant sub-algebra N. But 4—N
is a complex division algebra (middle of § 77), which is
therefore of order 1. 'Thus N is of order » ~1. Hence
A is the sum of N and the division algebra generated by
the modulus of 4.

For normalized basal units of any complex algebra,
see chapter x.



CHAPTER IX
INTEGRAL ALGEBRAIC NUMBERS

8o. Purpose of the chapter. We shall develop those
properties of algebraic numbers which are essential in
providing an adequate background for the theory of the
arithmetic of any rational algebra to be presented in the
next chapter. The latter theory will there be seen
to be a direct generalization of the theory of algebraic
numbers.

In order to make our presentation elementary and
concrete, we shall develop the theory of quadratic
numbers before taking up algebraic numbers in general.

81. Quadratic numbers. Let d be an integer, other
than 41, which is not divisible by the square of any
integer >1. As explained in § 1, the field R(V d) is
composed of all rational functions of 1”'d with rational
coefficients. Such a function can evidently be given
the form

_etfvd

B g+h1/¢—l ’
where e, f, g, k are rational numbers, and g and % are not
both zero. Multiplying both numerator and denomina-
tor by g— %V d, in order to rationalize the denominator,
we obtain ¢=a+b1"d, where a and b are rational. Evi-
dently ¢ and a--bV d are the roots of

(1) a?—2ax+(a*—db*) =o,

whose coefficients are rational. For this reason, ¢ is
called a gquadratic algebraic number.
128
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We shall assume that the coefficients of (1) are in-
tegers, and in that case call the root ¢ a guadratic integer.

Then 2¢ and 4(a*--db?) are integers. Thus 4db*
is an integer. But d is an integer not divisible by a
perfect square > 1. Hence 46* has unity as its denomina-
tor, so that it and 2b are integers. Thus ¢=3a, b=30,
where o and 3 are integers. Since a*—db* shall be an
integer, a® —d* must be a multiple of 4.

If d is even, a* must be even and hence a multiple of
4. Thus also df* must be a multiple of 4. But d is
not divisible by the square 4. Hence 8 is even. Thus
a and B are both even. Hence, if d is even, ¢ is a quad-
ratic integer if and only if ¢ and b are both integers.

If d is of the form 4k+3, then a*--dfB* and hence
also a?+4 (3% must have the remainder zero on division
by 4. According as an integer is even or odd, its square
has the remainder o or 1. Hence a and 8 are both even.

If d is of the form 4k+1, then a*—dB? and hence
also a?--- 3%, must have the remainder zero on division
by 4, so that a and 3 are both even or both odd. Hence
g=a+bV'd is now a quadratic integer if and only if
a and b are both integers or both halves of odd integers.
These two cases may be combined by expressing ¢ in
terms of the quadratic integer 6 defined by

(2) 0=3+Vv4d), d=4k+1,

instead of in terms of V/d itself. First, if ¢ and b are
integers, then x=a—b and y=2b are integers and
g=x+y0. Second, if a=%(2r+1) and b=3(2s5+1)
are halves of odd integers, then x=r—s and y=2s+1 are
integers and g¢=x+y6.



130 INTEGRAL ALGEBRAIC NUMBERS [cHAP. IX

TaEOREM 1. If d is an integer #1, not divisible by
a square > 1, all quadratic integers of the field R(V d) are
given by x+y8, where x and y are rational integers and
8=V d when d is of one of the forms ak+2, 4k+3, while
0 is defined by (2) when d is of the form 4k+1.

The quadratic integers of R(V d) are said to have the
basis 1, 6 since they are all linear combinations of 1 and
with integral coefficients x, y. Note that every number
of the field is expressible as a linear combination 7 - 1+
s0 with rational coefhcients 7, s.

THEOREM 2. The sum, difference, or product of any
two quadratic integers of the field R(V'd) is a quadratic
integer.

For, if x, v, 2, w are all integers, the sum of ¢ =x+78
and t=z+wlisr+s0, where r=x+zand s =y-+w are inte-
gers. Likewise, ¢—¢ is a quadratic integer. Finally, the
product ¢¢ is the sum of xz+ (xw+ vz)8 and ywt?, and,
by the previous result, will be a quadratic integer if
6, and hence also yw#?, is one. The latter is evident
iff= 1/2, and is true also for case (2) since then 8*=60+£,
where k=}(d—1) is an integer.

82. Algebraic numbers. We shall generalize the
preceding concepts and theorems. When the coefficients
of an algebraic equation are all rational numbers, the
roots are called algebraic numbers. For an equation

(3) 2"+ 4 .. .. +a,=0
with integral coefficients, that of the highest power of

x being unity, the roots are called integral algebraic
numbers.
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Note that any integer ¢ is the root of the equation
x—a=o0 of type (3) and hence is an integral algebraic
number.

THEOREM 3. If an integral algebraic number a is a
rational number, it is an integer.

For, if a=0b/d, where b and d are integers without a
common factor >1, and if a is a root of (3), then, by
multiplying its terms by d*~*, we get

e —abri—adir— L L =g

Since the right member is an integer, we conclude that
d==1. Hence a==0 is an integer.

We have the following generalization of Theorem 2:

THEOREM 4. Any polynomial f(a, 8, . . . . , x) with
integral coefficients in any integral algebraic numbers a, 8,

., Kk is itself an integral algebraic number.

For, let a be a root of equation 4(a)=o0 of degree a,
B a root of B(B)=o0 of degree b, . . . . , and « a root
of K(k) =o of degree k, where each equation has integral
coefficients, and the leading coefficient is unity. Write
n=ab . ...k and denote by w;, ...., wy the
numbers

asfh ...k (e=0,1,....,0a—1;
b1=0,1,....,b—‘1;.-¢o),

arranged in any fixed order. By means of 4(a) =0, we
can express a®,a®**, . . . . as polynomials in a of degree
<a. Hence by means of A(a)=o0, . ..., K(k)=o,
we can express the products w;f in the form

wif =cawrtCiawat o o o o FCinwy G=1,.... 'l),
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where each c¢; is a polynomial with integral coefficients
in the coefficients of f, 4, . . . ., K, so that each ¢,
is an integer. Transposing the left members, we obtain
n linear homogeneous equations in w;, . . . . , wy, the
first step in the solution of which by determinants gives
Dw,=o0, . ..., Dw,=0, where

l Cn—f C12 e oo Ciy
p=| = Caz—f o o v o Cap

Cpx Cna e o s . 6,,,,'—/

Hence D=o. Multiplying the expansion of D by
(—1)", we get an equation /"+ . . . . =o with integral
coefficients and leading coefficient unity. Thus [ is
an integral algebraic number.

83. Reducible polynomials. If we have an identity

) f@)=f.(x)f(x)

between three polynomials with rational coefficients
such that f; and f, are of degrees less than the degree of f,
we call f(x) reducible. If no such identity exists, f is
called srreducible.

THEOREM 5. A reducible polynomial f(x) with integral
coefficients and leading coefficient unily is a product of
two polynomials with inlegral coefficients and leading
coefficient unity.

By hypothesis, we have an identity (4). Let a be
the coefficient of the highest power of x in f; and write
fi=ag(x), fi=a""h(x). Then f(x)=g(x)h(x), where g
and % have rational coefficients and have unity as the
coefficient of the highest power of x.
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The roots a; of f(x) =o are integral algebraic numbers.
Certain of them, say a; . ..., a, are the roots of
£(x) =0, whence

gX)=@x—a)(x—a;) . ... (x—a,).

Computing the product of the factors, we see that the
coefficients of g are equal to

1, —(axt . ... +ta), wataet ... . Fa,a,,

e e (=D)'aa; . . .. a,

which are therefore integral algebraic numbers by
Theorem 4. But the coefficients of g are rational num-
bers. Hence by Theorem j these coefficients are integers.
Similarly for the coethicients of 4.

Theorem 5 is evidently equivalent to

GAUSS's LEMMA.  Ifx"4a.x" ™"+ . . . . has integral
coefficients and is divistble by «"+cx’""+ . . .. +¢
in which ¢, .. .., c are rational numbers, then

Cry « « . ., Coareintegers

84. Normal form of the numbers of an algebraic
field. Consider the field R(a) composed of all rational
functions with rational coefficients of a root a of an alge-
braic equation A(x)=o with rational coefficients. In
case A(x) is reducible, it has an irreducible factor which
vanishes when x=a. Hence a satisfies an irreducible
equation f(x) =0 of degree » with rational coefficients.

Any number of R(a) is by definition of the form

_g(a)
(5) r(a)—m), h(a)7o,

where g(x) and k(x) are polynomials with rational coeffi-
cients. The usual process for finding the greatest com-
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mon divisor d(x) of /(x) and A(x) involves only multipli-
cations and subtractions. Hence d(x) has rational
coefficients.  Since d(x) is a factor of the irreducible
function f(x), either d(x) is a constant c¢>o or else is
¢f(x). The latter alternative is here excluded, since
it would imply that a is a root of d(x) =0 and hence of
h(x)=o0, contrary to (5). Hence we may take d(x) to
be 1. By I of § 113, the greatest common divisor d(x)
of f(x) and k(x) is expressible linearly in terms of them,
whence

1=0(x) - f(x)+7(x) - h(x),

where o(x) and r(x) are polynomials with rational
coefficients. Taking x=a in this identity, we get
1=7(a)k(a). Hence (5} gives r(a)=g(a)r(a). From
this product we may eliminate a”, a"**, . . . . by means
of f(a) =0 and obtain

(6) r(e) =r,+ratr.a®>+ . ... +r,—a* T,

in which the coefficients 7; are rational numbers.

If there were two such expressions (6) for r(a), the
-coeficients of like powers of a must be equal. For, if
not, a would satisfy an equation /4(x)=o with rational
coefficients whose degree is <# —1. Then the greatest
common divisor d{x) of f and % is not a constant (in
view of the common root a) and hence would be ¢f(x),
as shown above. But ¢f(x) is of degree # and is not a
divisor of A(x). :

‘THEOREM 6. If a is a root of an irreducible equation
of degree n with rational coefficients, every number of the
field R(a) can be expressed in one and but one way in the
normal form {6). The field is said to be of degree n.
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For n=2, this theorem was proved very simply in
§ 81.

The final step in the foregoing proof led to the useful
result:

THEOREM 7. If two equations h(x)=o0 and f(x)=o0
with rational coefficients have a root in common, and if
J(x) s irreducible, then f(x) is an exact divisor of h(x).

COROLLARY. An irreducible equalion f(x)=o with
rational coefficients has no multiple root.

For, it would then have a root in common with
['(x)=o.

85. Normal form of the integral algebraic numbers
of a field. Consider any algebraic field R(a), where a
is a root of an irreducible equation

x"-aga 4 . ... to,=0

with rational coefficients. We may express @y, . . . . , Gn
as fractions with the common denominator d, where d
and the numerators are all integers. Then

(do)*+da,(da)*"+ . . . . +d"a,=o0,

so that §=da is a root of an equation f(x) =o with integral
coefficients da.. d%a,, . . . . , d"a,, and leading coeffi-
cient unity. Hence 8 is an integral algebraic number
belonging to R(a). Evidently our field is identical
with R(6,.

By § 84, each number of R(f) may be given the form

(7) P=ro+rx0+"aoz+ " o o e +’n—xa"-x,

where the r; are rational numbers,
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Let 6, .. .., 6, be the remaining roots of the
foregoing irreducible equation f(x)=o satisfied by 4,
and write

pr =rotrbitrbit .. Fr 67T,
® {

Prn—1=Tot by 10+ . ... Fra—.00T1.

The coetlicients of the polynomial form ¢(y) of the

product

=pO—p) - . .. (y—pu—r)
are symmetric functions, with rational coefficients,
of theroots 8, 6y, . . . . , Bs— of f(x) =0, having integral
coefficients, and hence are equal to rational numbers.

Let A(y) =0 be the irreducible equation with rational
coefficients and leading coefficient unity which has the
root p. By Theorem 7, (v} 1s divisible by A(y). Unless
¢=N\, the quouent ¢(y} of ¢ by N\ vanishes for one of p,
P, « - « « , Pn— and hence for p itself as we shall next
prove. For, if ¢(p;) =0, gre+r2+r2*+ . . .. ) van-
ishes for z=6; and hence by Theorem 7 has the factor
f(2) and therefore vanishes for z=0. This proves that
¢(y) vanishes for y=p, and hence has the factor A(y).
Proceeding as before with the present quotient, we see
in this way that ¢(y) is an exact power of A{y).

We now assume that p is an integral algebraic num-
ber, so that it satisfies an equation u(y) =o with integral
coefficients and leading coethcient umty. Then, by
Theorem %, u(y) is divisible by the irreducible function
A{y) which also vanishes for y=p. By Gauss’s lemma
(§ 83), the coefficients of A(y) are all integers. The
same is therefore true of its exact power ¢(y). The
latter vanishes for p, p;, . . . . , ps—1, Which are there-
fore integral algebraic numbers.
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The determinant of the cocfficients of 7,, 7, .. . .,
Yy W (7; and (8) is

1 6 6> e .. Ot
72 =T
() A= 1 6, g e e .. O

I Opey O ... 07

By the interchange of any two of 6, 6, . . . ., On_y,
the corresponding two rows of A are interchanged, so
that A becomes —A, and A* is unaltered. In other
words, A%is a symmetric function of the roots ¢,6,, . . . .
of the equation f(x) =o haviug integral coefficients and
leading coefficient unity. Hence* A? is an integer d.

It is casy to factor the determinant A in which, for
the moment, we regard 6, 6,, . . . . as independent
variables. If §=6,, the first two rows are alike and A
vanishes, whence A has the factor 6 -6,. In this way,
and by counting the total degreein 6, 6,, . . . . , we see
that A? is the product of the squares of the differences
of 6, 6, . ..., 04—y, so that d is the discriminant of
f(x) =0. Hence, by the corollary in § 84, the integer d is
not zero.

We now solve equations (7) and (8} for r, by the
usual method of determinants. Denote by A, the deter-
minant obtained from A by replacing the elements ¢*,
&, . . .. of the (s41)th column by the left members
O, Pry o v o o Hence, Ar,=A;, Thus dr,=AA,=c,.
Since ¢; is a rational number dr;, and is also a polynomial
AA; with integral coefficients in the integral algebraic
numbers 6, 6, .. ., 6u.n, P, Pr, - . . -, Pu-g and
hence is itself an integral algebraic number by Theorem 4,

* Dickson’s Firsi Course in the Theory of Equations (1922), p. 130.
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it follows from Theorem 3 that ¢, is an integer. From
1s=¢;/d and (7), we get

(10) p=(cotcif+tc.+ . ... Feuibr)/d.

TaEOREM 8. Every algebraic field of degree n is
identical with the field R(6) defined by one of its integral
algebraic numbers 0. Every integral algebraic number of
R(6) can be expressed in one and only one way in the
normal form (10), where ¢y, . . . . , Cu—y are inlegers,
while d is a fixed integer #o determined by 0. In fact,
d is the discriminant of the irreducible equation satisfied
by 0 and having inlegral coefficients and leading coefficient
unity.

86. Basis. We shall prove the following generaliza-
tion of Theorem 1:

THEOREM ¢. In any algebraic field R(0) of degree n
there exist n integral algebraic numbers w, =1, w,, . . . .
wx Such that every integral algebraic number p of the ﬁeld
is expressible in one and only one way in the form

(II) P=qﬂ-l’x+ PR +q,,w,,,

where qx, . . . ., gn are integers. Then w;, . . ., Ws
are said to form a basis of the integral algebraic numbers
of the field.

Since the proof* applies also to the analogous question
for a rational algebra in place of our field (§ 95), we shall
employ a notation suitable to both situations. Accord-
ingly, we write u,=1, u,=0, u;=6°, . . . ., Uy=0""".
Then every integral algebraic number (10) of the field
may be given the notation

* For a geometric proof see Minkowski, Diophantische Approxima-
tionen (1907), p. 123.
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(12) p=(a+au+ . ... +au,)/d,

where a,, . . . . , a, are integers.

First, the integral algebraic numbers (12) having
¢,=0, . ..., a,=0 are rational numbers a,/d and
hence are integers by Theorem 3. Thus they are prod-
ucts of w, =1 by integers ¢, and hence are of the form (11).

Second, the integral algebraic numbers* (12) having
a,#o and a;=o0, . ..., a,=0 may be denoted by

(13) w,=2tbta o, duttu,
3) w=—to—, ! +ou,
”_ a u1+b”
2 y 2o o 00

The greatest common divisor of b, b, 8", ... .1is a
function cb+¢'d'+ . . . . of them with integral coeffi-
cients ¢, ¢’y . . . . (I, § 113). Hence cw,+c' w4+ .

is an integral algebraic number of the field and therefore
is one of the numbers (13) lacking u;, . . . ., u,. We
may assume that it is the first one w,, since the arrange-
ment of the numbers (13) is immaterial. Hence b is a
divisor of &', b”, . . . . in (13).

Similarly, for any  <#, the integral algebraic numbers
(12) having a;%0, @it:=0, . ..., as=0 [including
certainly all numbers (12) in which also a;, . . . ., @
are integral multiples of d] may be denoted by

wi=(blux+ c e e +biui)/dr

w$=(b;u1+ “ o s e +b,,u|')/d, e o o o 0
As before, we may assume that b; is the greatest common
divisor of &;, b;, . . . ..

* There exist such numbers, for example, r+s6, where r and s are
integers, which is obtained by taking a:=rd, a.=sd, ai=0 (i>2).
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The resulting numbers w,, . . . . , w, form a basis.
For, every integral algebraic number p of the field is of
the form {12). 'Then, if

wn—-l=(gxuz+ o e v +g,,_,u,,_,)/d,
wp=(hu+ . ... +h,ﬂ¢,,)/d,

Iy is a divisor of a,,; let g, be the quotient. Hence
P1= P~ Gnton
lacks #, and is therefore of the form
o=+ ... Fl—tty)/d.

Similarly, g.—. is a divisor of /,.; let ¢, be the quotient.
Hence p, =p; - @u—rwn--; lacks both #,-; and u,. Proceed-
ing in this manner, we see that

p—qnw,,—q,,_,w,,_l— « o e . —(IIO.’x

lacks#,, . . . ., uyand henceiszero. Thisproves (11).

COROLLARY.  Every number a of the field is expressible
in one and only one way in the form (11), where ¢, . . . . ,
gn are mow merely rational numbers.

For, by the first part of § 85, the product of a by a
suitably chosen integer is an integral algebraic number,
so that the product is a linear function of the w’s with
integral coefficients.



CHAPTER X
THE ARITHMETIC OF AN ALGEBRA

We shall develop a simple theory of the integral
elements of any algebra, thereby generalizing the classic
theory of integral algebraic numbers. The older defini-
tions of the integral elements of an algebra are shown to
be wholly unsatisfactory; not a single general theorem
was obtained irom them.

We shall develop early Hurwitz’ theory of integral
quaternions in a much simplified form in order that the
reader may understand from a concrete example the
nature and properties of the arithmetic of an algebra.
We shall then develop the remarkable new theory for
any algebra, an outline of which is given in § ¢2.

This theory furnishes a new method of solving com-
pletely various types of Diophantine equations, which
have not been solved by other methods; lack of space
restricts us to a single typical illustration (§ 106).

87. Integral elements, case of algebraic numbers.
Let 4 be any associative algebra, having a modulus
designated by 1, over the field of rational numbers.
Each element of a set of elements of A shall be called an
integral element if the set has the following four properties:

R (rank equation): For every element of the set, the
coefficients of the rank equation® are all integers

C (closure): The set is closed under addition, sub-
traction, and multiplication.

* The coefficient of the highest power of the unknown is always 1
(§69). By an integer is meant a whole number.

141
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U (unity): The set contains the modulus 1.

M (maximal): The set is a maximal (i.e., it is not
contained in a larger set having properties R, C, U).

Some reasons are indicated in the footnote of § 96
why it might be desirable to require also the property
that each set shall be of the same order as A, this
property is actually assumed only in § 97.

We proceed to illustrate this definition for the impor-
tant case in which the algebra is any algebraic field
R(6) of degree n. By the theorem and corollary of
§ 86, that field contains # integral algebraic numbers
U=1,U%, . ..., #,such that every integral algebraic
number x of the field is expressible in one and but one
way in the form

(I) x=fxu1+ v e e +E,,M”,

where £, . . . ., &, are integers, while every number x
of the field is expressible in one and only one way in
the same form (1), where now the £; are merely rational
numbers.

By Theorem 4 of § 82, the product of two integral
algebraic numbers #; and %; is an integral algebraic
number. Hence by the preceding result,

L]
(2) ;= Z'y;jbul, ('i,j=I, e e e ey ﬂ),

k=1

where each v is an integer. The field R(6) is therefore
an algebra of order # over the field R of all rational
numbers with the set of basal units #%,, . . . . , %, and
multiplication table (2).
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By § 60, # is a root of the first characteristic equation
8(w)=o0 of degree n. When the co-ordinates & of x
in (1) are arbitrary rational numbers, §(w) has rational
coefficients and is irreducible in R. For, if reducible,
it would continue to be reducible when we give to the
the values of the co-ordinates of 8, whereas 6 was assumed
to satisfy an equation of degree # irreducible in R and
hence, by Theorem 7 of § 84, 6 satisfies no equation of
degree <# with rational coefficients. This proves that
the rank equation is (—1)"8(w)=o.

The coefficients of §(w) are polynomials in the £ and
the < with integral coefficients and hence are integers
when the £; are all integers, i.e., when x in (1) is an integral
algebraic number.

Hence the set .S of all integral algebraic numbers
of any algebraic field R(f) has property R. It has
property U since #,=1. It has property C by Theorem 4
of § 82.

Next, any set of numbers x of the field R(6) which
has properties R, C, U is either S or a sub-set of it.
For, by R, the ccefficients of the rank equation of x
are integers and the coefficient of the highest power of
the unknown is unity (§ 6g). Hence x is an integral
algebraic number.

Thus S is the unique maximal set.

THEOREM. If an algebra is an algebraic field, its
unique maximal set of integral elements is composed of all
the integral algebraic numbers of the field.

88. Units, associated elements, and arithmetics. Two
integral elements of an algebra A whose product is the
modulus 1 are called units of A. Any product of units
is a unit. For, uw, =vw, =ww, =1 imply www - wou,=1.
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If x is an integral element and if # is a unit, then xu
and ux are called right and left associates of x, respectively.
If also %' is a unit, x is said to be associated with uxu’.
Associated elements play equivalent roles in questions
of divisibility. For instance, if also v and w are units
whose product is 1, x=yz implies wxu’=wuyv - wzu’.

For example, if =1 —1, the field R(7) is a rational
algebra of order 2 whose integral elements are x=a+0b,
where ¢ and b are integers (§ 81). Then x is a unit if
its product by «--b7 is unity. There are exactly four
units, viz., #=1, =¢. The four associates of ¥ are #+x
and +ix=F(b--ai).

If in an algebra A the integral elements whose
determinant® is not zero may be associated in the fore-
going sense with the various integral elements of a sub-
algebra, we shall say that the latter elements form an
arithmetic associated with the arithmetic of 4.

89. Example. Consider the rational algebra 4 with
two basal units 1 and e, where e=0. The rank equation
of x=a+be is (x—a)*=o0, whose coefhicients are integers
if and only if ¢ is integral. The unique maximal set of
elements having properties R, C, U is evidently composed
of the x=a+be in which ¢ is integral and & is rational.
Every such « is therefore an integral element of 4.

For any rational &, u = 1 +%e is a unit since its product
by another integral element 1 — ke is 1.

Let a0 and take k= —b/a. Then au==a. Hence
if the determinant a® of x is not zero. x is associated with
the integer a. Thus x can be decomposed into primes
in only one way apart from unit factors.

* Either A(x) or A’(x) may be understood since both are simultane-
ously not zero or both zero by the footnote in § 58.
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Hence the arithmetic of algebra A4 is associated with
the ordinary arithmetic of integers.

This result illustrates the fundamental theorem
(§ 104) that the arithmetic of A4 is associated with that
of the sub-algebra whose elements are derived by sup-
pressing the components (here be) which belong to the
maximal nilpotent invariant sub-algebra of 4.

go. Failure of earlier definitions of arithmetics. Du
Pasquier®* defined a set of integral elements of a
rational algebra 4 to be one having properties C, U, M,
and (in place of R)

B. The set has a finite basis (i.e., it contains elements
i, « « . -, gesuch thatevery element of the set is expres-
sible in the form Z¢;q;, where each ¢; is an integer)

We shall test this definition by the special algebra
in §89. Then any sct having properties B, C, U is
readily seen to have a basis 1, ¢=7r-+se, where 7 and s
are fixed rational numbers and s>o. Since ¢* is in the
set by property C, we must have ¢*=a+bg, where a
and b are integers. This equation is equivalent to

r*=q-br, 2rs=bs.

Hence 2r=10, ¥*= —a. If the rational number » were not
integral, its square would not be equal to the integer
—a. Since r is integral, the basis 1, ¢ may be replaced
by 1, ¢g—7. Hence every set has a basis of the form
1, se, where s is rational and #o.

This set, designated by (1, se), is evidently contained
in the larger set (1, 3se), which in turn is contained in the
still larger set (1, }se), etc. Hence there is no maximal

* Vierteljahrsschrift Naturf Gesell. Ziirich, LIV (190g), 116—48;
L'enseignement math., XVII (1915), 340-43; XVIII (1916), 201-60.
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set. Inother words, the algebra does not possess integra!
elements.

Suppose we omit the requirement M and define the
integral elements of our algebra to be those of any chosen
one of the infinitude of non-maximal sets. It has been
proved by the author* that factorization into indecom-
posable integral elements is not unique and cannot be
made unique by the introduction of ideals however
defined.

The same insurmountable difficulties arise for sets
having properties B, C, U’, M, where t U’ requires that
the set shall contain all the basal units, one of which is
the modulus (1 and e in our example). This definition
was employed by A. Hurwitz for the arithmetic of quater-
nions (§ 91). Since now e shall occur in the set (1, se), s
must be the reciprocal of an integer. Then also 3s, s,

. . are reciprocals of integers. Hence (1, 3se) is a
set containing (1, se), and as before there is no max-
imal set.

Note that the aggregate of the elements in the infini-
tude of sets (1, se) obtained by the definition given by
either Du Pasquier or Hurwitz is the set of integral
elements obtained in § 89 by the new definition. This
suitable enlargement of each of their sets enabled us to
overcome their serious difficulties. This is analogous
to the gain by each of the successive enlargements of the
primitive set of positive integers to the set of positive

¥ Journal de Mathématiques, Series 9, Vol. II (1923). Also that
similar insurmountable difficulties arise for many other algebras under
the definition by Du Pasquier.

t Unlike properties R, C, U, B, property U’ is not preserved under
-every transformation of the basal units. Hence U’ is not a desirable
assumption.
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and negative integers, then to the field of all rational
numbers, then to the field of all real numbers, and finally
to the field of all complex numbers.

o1. Arithmetic of quaternions.* By §11, ¢=
oc+£&i+n7+ ¢k and its conjugate ¢’ =0 —&i—nj—tk are
the roots of

(3) w'—200+N(g)=o, N(Q=g¢'=0"+&+7r+{.

Since the coefficients of the rank equation (3) are
integers when o, £ 7, { are integers, the set 7 of all
quaternions having integral co-ordinates has the proper-
ties R, C, U.

We seek every set S of rational quaternions ¢ which
has properties R, C, U and which contains / and hence
1,%,7, k. By R and (3), N(¢) and the double 20 of the
scalar part o of ¢ are both integers. By C, the set con-
tains g, jq, kg, whose scalar parts are —§, —n, —{. As
before, their doubles are integers. Hence 4V is the sum
of the squares of four integers. That sum is divisible
by 4 since N is an integer. But the square of an even
or odd integer has the respective remainder o or 1 when
divided by 4, and a sum of four such remainders is a
multiple of 4 only when they are all o or all 1. Hence
the co-ordinates of g are either all integers or all halves
of odd integers. In either case the difference of any two
co-ordinates is an integer. Thus every quaternion in S is
of the form

g=o+(o+x)i+(o+x)j+ (e +x)k,

* A much more complicated theory, based on an earlier definition
(§ 90), was given by A. Hurwitz, Géttinger Nachrichien (1896), pp. 311~
40; and amplified in his book, Vorlesungen iber die Zahlentheorie der
Quaternionen (Berlin, 1919).
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where each x; is an integer. Write x, for the integer 20.
Then

(4) q=x0p+x1i+xzj+x3k) p=%(1+l+j+k)«

Conversely, all such quaternions ¢ in which x,.
. ..., x; are integers form a set S having properties
R, C, U. Thisis true as to R by what precedes, and as
to U since (4) becomes 1 for x,=2, &, =x,=21,=--1.
To prove C, it suffices to prove that the squares and
products by twos of p, %, 7, k all belong to S. By (3),
p*—p+1=0, so that p*isin S. Next,

ip=3(—1+i—j+k),  pi=i(—1+itj—k)

have all co-ordinates equal to halves of odd integers
and hence are in S. The same is true of jp, o/. kp, pk,
as shown by permuting ¢, 7, £ cyclically, which leaves
unaltered the multiplication table of Z, j, £ given in
§11.

Hence this set S is the unique maximal of all sets
having properties R, C, U, and containing 7, j, .. This
set S will be shown to give such a remarkably simple
arithmetic that we shall call its quaternions integral
without inquiring whether there exist further maximal
sets.

TrEOREM 1. The integral quaternions are given by
(4) for integral values of %o, . ..., %, Expressed
otherwise, they are the qualernions whose four co-ordinates
are either all integers or all halves of odd integers.

LemMMA 1. Given any real gquaternion h and any
positive integer m, we can find an integral quaternion q
such that N(h-~mq) <m?.



§ o1] ARITHMETIC OF QUATERNIONS 149

Express ¢ in the form (4) and likewise write
h=hop+hi+hj+hk.

Inserting the value of p from (4), we see that % has the
co-ordinates 3h,, §(h,+2k) for t=1, 2, 3. Similarly,
the co-ordinates of /1—mqg are

Lh,—mx,), 3 hot-2hy— mx,— 2max,} (t=1, 2, 3).

These can be made numerically <im, im, respectively,

by choice of integers #,, 4. Then
N(h—mq) < (Gm)*+3(3m)*=13m*<m?.

LEMMA 2. Given any inlegral quaternions a and b,
b0, we can find inlegral quaternions q, ¢, Q, C such that

(5) e=gbtc, N()<N(b),
6) a=b0+C, N(C)<N@®).

To obtain (5), apply Lemma 1 for h=ab’, m=>0b,
where b’ is the conjugate of 5. Then h—mq=(a—gb)d’
has the norm N(a—gb) - N(b)<m?. Writing ¢ for the
integral quaternion a—gb, we get (5).

To obtain (6), apply Lemma 1 for A=b'a, m=0b'b,
¢=0, and write C for a—bQ.

If a, b, and ¢ are integral quaternions such that
a=gb, then a is said to have b as a right divisor and ¢ as a
left divisor. 1f also b=hc has the right divisor ¢, then
a=gh - ¢ has the right divisor c.

Two integral quaternions ¢ and b are said to have a
greatest common right divisor D if D is a right divisor of
both @ and b and if every common right divisor of them
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is a right divisor of D. The word right may be replaced
by left throughout.

THEOREM 2.* Amny two integral quaternions a and b,
not both zero, have a greatest common right divisor D which
is determined uniquely wup to a wunit left factor, and
D=Aa+Bb, where A and B are integral quaternions.
Similarly, there exists a greatest common left divisor §,
unique up lo a unit right factor, and 8 =aa-+0p0.

For, if c>#o0 in (5), we may apply Lemma 2 to b and ¢
in place of a and b, and get b=gq,c+d, where ¢, and d are
integral quaternions for which N(d) <N(c). If d=o,
we repeat the process on ¢ and d. Since N(b), N(c),
N(), . ... form a series of decreasing integers o,
the process terminates and we reach a quaternion whose
norm is zero and hence is itself zero. To simplify the
notations, let this happen at the fourth step, so that

(7) a=¢b+c, b=qc+d, c¢=qd+D, d=g¢D, Dso:

These equations, taken in reverse order, evidently
imply that D is a right divisor of d, ¢, b, and a.

Conversely, let § be any right divisor of both ¢=aé
and b=p6. Then (7) show that § is a right divisor of
¢, d, and D.

*In Proceedings of the London Mathematical Society, Series 2, Vol.
XX (1921), pp. 225-32, Dickson called a quaternion integral if and only
if its co-ordinates are all integers and proved Theorem 2 under the restric-
tion that at least one of ¢ and b is of odd norm, after proving Lemma 1
with m odd. The further theory holds unchanged. The object was to
avoid the troublesome denominators 2 in applying the theory to the
solution of equations in integers (§ 106). The same definition of integral
quaternions had been used by R. Lipschitz in his very complicated theory
based on quadratic congruences, Untersuchungen dber die Summen von
Quadraten (Bonn, 1886); French translation in Journal de Mathématiques,
Sér. 4, Tome II (1886) 393-439.
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Hence by definition D is a greatest common right
divisor of @ and b. As to the uniqueness of D, let E
be another greatest common right divisor of ¢ and b.
Then D and E are right divisors of each other, so that
D=rE, E=sD, where r and s are integral quater-
nions. Then D=rsD, 1=rs, so that r and s are units
(§ 88).

Writing / for 1+4¢.¢:;, we obtain from (7)

D=c¢c—qd=lc—g.b=I(a—qb)—gb=lo+(—lg—q.)b.

This completes the proof of the first part of Theorem 2.

Two integral quaternions ¢ and 6 are called right-
handed relatively prime if and only if their greatest com-
mon right divisor is a unit, the condition being the exist-
ence of integral quaternions 4 and B such that
Aa+Bb=1.

LeMMmA 3. An integral quaternion a whose norm is
divisible by an integer p> 1 has in common with p a right
(and a left) divisor not a unit.

For, if there be no such common divisor, a and p would
be relatively prime, so that there would exist integral
quaternions 4 and B satisfying A¢+Bp=1. Then

N(A)N(@)=N(r —Bp)=(1--Bp; .1 - B'p)
=1—(B+B)p+ BB p:=141p,

where ¢ is an integer. But N(a) is divisible by p.
LeEMMA 4. If p is a prime there exist integral solutions

of
®) 1+x+9'=0  (mod p).
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For p=2, we may take x=1, y=0. Let p>2. If
—1 is a quadratic residue of ¢, so that —1=x? (mod p),
we may take v=o. Next, let —1 be a quadratic non-
residue of p, and let a denote the first quadratic residue of
p in the series p—1, p—2,p—3, . . . ., thefinal term 1
being certainly a quadratic residue. Then b=a+1 is
a quadratic non-residue. The product of any two quad-
ratic non-residues is known to be a quadratic residue.
Hence —b, as well as q, is a quadratic residue. In other
words, there exist integers ¥ and y for which e=a?,
—a—1=—b=%* (mod p). These imply (8).

An integral quaternion, not a unit, is called a prime
quaternion if it admits only such representations as a
product of two integral quaternions in which one of
them is a unit. If x is a prime quaternion and if » and v
are any units, then wmv is a prime quaternion, since if it
were a product ab, then m=u'a - bv'.

LeMMA 5. A prime p is not a prime quaternion.

For, by Lemma 4, there exists an integral quaternion
g=1-+xi+7yj whose norm is divisible by p. Hence by
Lemma 3 there exists a common right divisor d, not a
unit, of p=Pd and ¢=Qd. If P were a unit, so that
P'P=1,theng=(QP’)p. Butthisproductof the integral
quaternion QP’ by p has all co-ordinates multiples of p,
whereas the first co-ordinate of ¢is 1. This contradiction
shows that P is not a unit, so that p =Pd is a product of
two integral quaternions neither of which is a unit.

LemMmA 6. If the norm of an integral quaternion = is @
prime, then w is a prime quaternion.

For, if 7=ab, N(a)N(b)=N(r) is a prime, so that
either N(a)=1 or N(b)=1, whence either @ or b is a
unit.
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THEOREM 3. Every prime quatcrnion v arises from the
factorization p=wn" of a prime p. Conversely, every
prime p is a product of two conjugate prime gualernions.

For, if 7 is a prime quaternion, and p is a prime divid-
ing the integer N(r)>1, there exists by Lemma 3 an
integral quaternion d, not a unit, such thatr =ud, p = Pd.
Here u is a unit by the definition of a prime quaternion
m, so that w'u=1. Hence

w'r=d, p=Pu'm, p*=N(P)N(x), N(m)#1.

Either p=N(r)=mn’, as desired, or p*=N(r), N(P)=1
Then P and v=Pu’ are units, so that p=vr is a prime
quaternion, contrary to Lemma 5.

To prove the second part of Theorem 3, note that,
by the proof of Lemma 5, p=Pd, where neither P nor
d is a unit. Thus N(P)=N(d)=p. By Lemma 6, P
is a prime quaternion.

LeMMmA 7. Given any integral quaternion a, we can
find a unit* w such that au has integral co-ordinales.

For, if a itself has integral co-ordinates, take u=1.
In the contrary case, a=3(a+ai+ . ... ), where
each ¢ is an odd integer by Theorem 1. Thus
ay=4gn;+n, wherer,=10r —1. Then

a=2n+r, n=ntnit ...., r=3rtra+ ... ).
Since 7 is an integral quaternion whose norm is 4(3)*=1,
r is a unit. We take u=7+". Then au=2nr+1, whose
co-ordinates are all integers.
* The twenty-four units, obtained from N{u)=1, are
=1, 1, =j, =k, HEIESEIETIR

This enumeration will be used only to distingwish the arithmetic of
quaternions from that of an algebra discussed later.
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THEOREM 4. Everv posilive integer is a sum of four
integral squares.

This will follow if proved for primes since the product
of any two sums of four integral squares is expressible as
a sum of four integral squares in view of N(¢)N(Q)=
N(gQ). If p is a prime, Theorem 3 shows that p=PP’,
where P and P’ are conjugate prime quaternions. By
Lemma 7, P=0Qu, where Q has integral co-ordinates and
# is a unit. Then P'=4'Q’, uu’=1, whence p=0QQ’ is
a sum of four integral squares.

Lemma 8. If q is an integral quaternion whose norm
is even, then q=(1-+1)h, where h is an integral qualernion.

For, the square of half an odd integer is of the form
1(8m+1) and the sum of four such squares is odd.
Hence the four co-ordinates ¢; of ¢ are all integers such
that

o=Zg=3y, (mod 2).

Thus ¢;4¢. and ¢;+¢. have an even sum and are there-
fore both even or both odd. In the respective cases,
the co-ordinates of

h =%(q:+%)+%(q: -Qo)i+%(qs+92)j+%(q3—Q2)k

are all integers or all halves of odd integers, whence %
is an integral quaternion. But (1—:)g=2k, whence
g=(1+17)h.

THEOREM 5. Awny integral quaternion can be given
the form (1+1)"mcv, where m is an integer, v is @ unit, and
¢ is a quaternion of odd morm whose co-ordinales are
integers without a common factor >1. Let N(c)=pql
e «..,Where p, q, 1, ... . are the prime factors, not

necessarily distinct, of N(c) arranged in an arbitrarily
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chosen order. Thenc=mk\ . ..., wherew,k, N\, . . . .
are prime quaternions of norms p,q,1,. . . . , respectively.
Here m may be chosen as any one of a certain set of right-
hand associated quaternions, and then k may be chosen
as any one of another such set, etc. There are no further
decompositions of ¢ into prime quaternions whose norms
are p, q, b, . . . . in that order.*

For, by Lemma 8, we may express the given quater-
nion in the form (1-+2)'e, where a is an integral quater-
nion whose norm is odd. By Lemma 7, we can choose
a unit # such that au=» has integral co-ordinates,
whence a=0bv, where v=u" is a unit. Let m be the
greatest common divisor of the co-ordinates of b, and
write b=mc. This proves the first statement in the
theorem.

By Lemma 3, ¢ and p have a common left divisor
not a unit. Hence by Theorem 2 they have a greatest
common left divisor = which is not a unit, = being
uniquely determined up to a unit right factor. If p
were the product of = by a unit, p would divide ¢ and
hence divide each of its co-ordinates, contrary to the
definition of ¢. Hence p=wd, where neither = nor d
is a unit, whence p=N(r)=N(d), so that 7 is a prime
quaternion by Lemma 6.

Write c=mnc,. Then N(c,)=N(c)/p=ql . . . .. As
before, ¢, and ¢ have a greatest common left divisor «
which is determined uniquely up to a unit right factor,
while « is a prime quaternion whose norm is ¢. Write
¢c:=xc;, and proceed with ¢, and I as before. Hence

* But each prime factor of the integer m can usuvally be expressed
in many ways as a product of two conjugate prime quaternions.
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Let ¢c=m«:\: . . . . be any factorization of ¢ into
prime quaternions my, k;, . . . . of norms p, ¢, . . . .,
respectively. Since p=m,m, and since ¢ is not divisible
by the integer p, m, is a greatest common left divisor of
cand p. Hence m,=mu, where # is a unit. Now c=mux,

. and c=mw¢, imply ¢;=wkA. . . .. Also,

¢=N (k) =N (ux,) = urucsu’ .

Hence u«, is a greatest common left divisor of ¢, and ¢,
and .hence is equal to xu,, where », is a unit. Thus
Ky =u'Kut,.

The two expressions for ¢, imply c,=u,\. . . . .
This with I=N(u,\,) shows that u\, is a greatest com-
mon left divisor of ¢, and /, and hence is equal to Au..
where #, is a unit. Thus

m=Tu,  K=u'ku, M=UNLL, o« o ooy

where u, u,, u,, . . . . are units and «, u}, . . . . are
their conjugates as well as reciprocals.

92. Outline of the general theory. First, let 4 be
a rational algebra which is not semi-simple and has a
modulus. Then 4 =S+N, where N is the maximal
nilpotent invariant sub-algebra of 4, and S is a semu-
simple sub-algebra of 4. It will be proved in §§ g9-104
that the arithmetic of 4 is associated with that of S.
This theorem was illustrated by an example in § 8.

Second, let S be a semi-simple rational algebra and
hence a direct sum of simple algebras S;. By § 93 the
arithmetic of S is known completely when we know the
arithmetic of each S;. We shall prove in § 95 the impor-
tant theorem that for a semi-simple algcbra (and no
other algebra) of order # each set of integral elements of
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order » has a basis, so that the new definition of integral
elements essentially coincides with the definitions by
Hurwitz and Du Pasquier for the case of semi-simple
algebras and only in that case.

Third, let A be a rational simple algebra and hence
a direct product of a simple matric algebra and a division
algebra D. Then (§97) the integral elements of A4
are known when those of D are known, and conversely.
The arithmetic of 4 is treated in § 98 for several algebras
D by generalizing the classic theory of matrices whose
elements are integers.

In brief, the problem of arithmetics of all algebras
reduces to the case of simple algebras and finally in
large measure to the case of division algebras.

93. Arithmetic of a direct sum. Let the rational
algebra 4 having a modulus a be a direct sum of two
algebras B and C, called component algebras of A.
As proved in § 21, B and C have moduli 8 and y whose
sum is a.

THEOREM 1. The first components of the elements of
any (maximal) sei of integral elements, with properties
R, C, Uof § 87, of a direct sum B®C constitute a (maximal
sel of inlegral elements of the first component algebra B,
and similarly for the second components. Conversely,
given a (maximal) set [b] of integral elements b of a rational
algebra B and a (maximal) set [c] of integral elements ¢ of
another rational algebra C, such that B and C have moduli
B and v and have* a direct sum, then if we add every b to
every ¢ we oblain sums forming a (maximal) set of iniegral
elements of the direct sum B@C.

* We can always replace B and C by equivalent algebras which have
a direct sum (§ 13).
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i) Let [a] be any set of integral elements e=b+c,
a’=b'+c,....of A=B®C, having properties R, C, U,
where b, %', . . . . arein B, and ¢, ¢/, . . . . are in C.
By the closure property C, az=a’= (b==d")+(c=x¢’) and
ad’=bb'+cc’ are in [a]. Hence the first components
b,¥, ... . forma set [b] having the closure property C.
Since the modulus a =34+ of 4 is in [a] by property U,
the set [8] contains the modulus @ of B.

By property R, for every element a of [a] the coeffi-
cients of the rank function R(w) of A are integers. By
§ 72, R(w) is the product of the rank functions R,(w)
and R,(w) of Band C. By § 83 the R;(w) have integral
coefficients, when R(w) has integral coefficients. Hence
for every element of [b], the coefficients of R,(w) are
integers.

This proves the first half of the theorem when both
words maximal are omitted. It is proved in (iii) when
those words are retained.

ii) Conversely, let [0] and [c] be any sets of integral
elements of B and C, respectively. Then all sums
a=b-+c form a set [a] containing the modulus B+
of A=B@®C, having the closure property C, as well as
property R, since for any b and any ¢ in those sets the
rank functions of B and C have integral coefficients,
whence their product (the rank function of 4) has integral
coefficients for any a of [a]. '

Next, let [5] and [c] be maximal sets of B and C,
respectively. Then, if the above [a] were not a maximal
set of A4, it would be contained in a larger set [a] of 4.
By (i), the first components &’ of the ¢’ =¥ +¢’ form a
set [b] of elements of B having properties R, C, U, and
likewise for the second components ¢’. Either [§'] is
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larger than [] and contains it, or else [¢] is larger than
[c], contrary to hypothesis.

This proves the second half of the theorem.

iii) Let [a] of case (i) be a maximal set of 4. Then if
(6] were contained in a larger set [6] of integral elements
of B, case (ii) shows that [0'] and [¢] would determine a
set [a’] of elements @’ =b"+c¢ of A which have properties
R, C, U, such that [a’] contains the smaller set [a],
whereas [a] is a maximal by hypothesis. This completes
the proof of the first half of the theorem.

THEOREM 2. If the element a=b+-c of a set [a] of
integral elements of A=B®C is a unit, then b and c are
units of B and C, respectively, and conversely.

For, there exists an element @’ =b"+¢’ of [a] such that
aa’ =a=fB+v, whence bb'=p, cc’=4.

An integral element not a unit is called a prime if it
admits only such representations as a product of two
integral elements of the same algebra in which one of
them is a unit.

THEOREM 3. If the integral elements of determinant
=0 of the component algebras B and C possess factoriza-
tion into primes in a single way apart from unit factors, the
same is true of the integral elements of determinant #o
of B&C.

For example, consider the direct sum

(@)®(e)P(e)): e=e, eej=o  (jFi).

The rank equation of x=Z%e; is I(w—£;)=0. Hence
the integral elements x are those having integral co-
ordinates &. The latter are all Zo in the product of x
by a suitably chosen one of the units =e,e,+te;.
We may therefore restrict attention to integral elements
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x of determinant £&,£,70 and having positive co-
ordinates. Denote x by (£, &, &). Then xy=(fm,,
527721 53’73)- Since

(a, B, v8)=(a, B, 7) (1, 1, 8), (a, B, V)=(a, B, 1) (1, 1, 7),

one of the co-ordinates of a prime element is a prime
number and the remaining two are unity, and con-
versely every such element is prime. Hence if the
a;, B, v are all prime numbers, we have the following
unique factorization into prime elements:

(Haiy 118;, H‘Y[;)=H(a.', I, I) 'H(I, Bi, I) - H(Iy I, 'Yk)-

94. Sets of order n. Let S be a set of elements
of a rational algebra 4 of order #» having a modulus, such
that S has properties C and U and is of order ». Then
S contains # linearly independent elements vy, . . . . v,
which may therefore be taken as the basal units of 4.
By property U the modulus of 4 belongs to .S. With-
out loss of generality we may evidently assume that v,
is the modulus. Let therefore

n
UY,=0;, VL=V, LU= E Yipts (5,7=2, 0 44.,n).
k=1

The v’s are rational numbers. Bring the fractions
v to a common denominator § and write ;i =w;/9,
where & and the » are all integers. By property C, the
set S contains #,=1v,, #;=07;(:>1). We have

U; =0,00;=00;=u;, Uith, = 8V;0, = 6V =1 ,

” ”
Ugn ;= 5’<'Yijxvx+ Z 'Yijkvk> = dvijut z Vijkte

k=2 k=2



§ 05 BASIS FOR SEMI-SIMPLE ALGEBRA 161

for 4>1, j>1. The constants of multiplication of
Uy . . . ., Uy are all integers.

THEOREM. If a set S of clements of a rational algebra
A of order n having a modulus has properties C and U
and is itself of order n, we can choose basal units u,, . . . . ,
us of 21 belonging to S such that the constants of multiplica-
{ton are all integers and u, is the modulus.

95. Existence of a basis for the integral elements of
any rational semi-simple algebra A. Let A be of order
n and S be any set of elements having properties R, C, U,
and order #. By 8§94, we can choose basal units
Usy .« . - -, us of A which belong to § such that w,
is the modulus and such that the 4's in

n
(9) Uin; = Z'Yijkuk G j=1,ce..,n)
k=1

are all integers. Let x=Zfu, be any element of S.
By property C, S contains x%;. By (g},

n n
X = z Pijii s  Pi= Z £V »

=1 §=x
The first characteristic matrix of x is obtained by
subtracting « from each diagonal element of matrix
(pij). Apart from sign, the coefhicient of w*~*in the first
characteristic equation of x is therefore

Prk = 2 Evin

k=1 k=1
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Apart from sign, the coefficient ¢; of «"~" in the first
characteristic equation of the element xu; is obtained
from the preceding sum by replacing & by pi; and
hence is

n
(10) Zfs')’sji’)’ikk:cj G=1, ¢« v e e, n).

ik, s=1

By § 70 the distinct irreducible factors of the char-
acteristic determinant §(w) of any element X coincide
with those of R(w), where R(w) =0 is the rank equation
of X. When X is in S, property R shows that the
coefficients of R(w) are integers, that of the highest power
of w being 1. Hence, by Gauss’s lemma in § 83, the
same is true of each factor and hence of the product
d(w) of powers of such factors. This proves that each
¢ in (10) is an integer.

Let d denote the determinant of the coefficients of
£, . - - ., & in the n equations (10). Thus d& =d;,
where d; is the determinant obtained from d by replacing
the elements of the sth column by the constant terms

€y - -« «, Cs. Inserting the valued,/d of & inx=Z&wu,,
we get
(11) x=d-"Zdu, .

The elements of d are the sums (27) in § 66, where it
was proved that ds%o if and only if 4 is semi-simple.

Since the v4’s and the ¢; are all integers, d and the
d; are all integers. Hence every element x of .S is of the
form (11), where the integer d is independent of the par-
ticular x, being a function of the y's alone. The proof
in § 86 shows the existence of a basis wy, » . . ., W,
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of S such that the elements of S coincide with the
linear homogeneous functions of the w’s with integral
coefficients.

THEOREM. Let A be any rational semi-simple algebra
of order n having a modulus. Let S be any set of elements
of A having properties R, C, U and of order* n. Then S
has a basis wy, . . . ., W, Where w, 1S the modulus.

But if a rational algebra A is not semi-simple, no
maximal set of its elements having properties R, C, U
has a basis. For, some of the basal units of 4 may be
taken to be properly nilpotent and we shall find in
§ 104 that the co-ordinates of those units are arbitrary
rational numbers in the general element of a maximal
set, so that there is evidently no basis (see the example
in § 89).

96. A converse of the theorem above is the case
m=n of the

THEOREM. If for any rational algebra A of order n
a set S of elements has the closure property C and the
property B,, of possessing a basis composed of m inde-
pendent elements, then S has property R.

First, let m=n. Then we may take the elements
Uy . . . ., Uy of the basis of S as new basal units of the
algebra. By property C, uu; belongs to.S. By property
B, uiu; is equal to a linear function (9) of #,, . . . ., ua
with integral coefficients v;4. Also the co-ordinates of
any element x=ZXZu; of S are integers by property B..

* The theorem may fail for sets of order <n. Start with a rational
algebra 2 having properly nilpotent elements. By § 58, = is a sub-
algebra of a simple matric algebra 4. By the text below the theorem,
the integral elements of T have no basis. The set S of those elements

has,5 properties C and U and also R for 4 by the second case of the proof
in § 96.
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Hence the characteristic equation 8(w)=o0 of x has
integral coefficients. The same is true of its divisor the
rank function by Gauss's lemma (§ 83). Hence S has
property R. ‘

Second, let m<n. By property C, the elements
forming the basis of S are basal units of a rational sub-
algebra ¥ of order m of 4. By the first case, S has
property R for £, so that the rank equation p(w)=o0
for £ has integral coefficients when x is in S. Since
p=o0 Is invariant under transformation of the units
(§ 73) and since S has the same order m as £, p=o0 is the
minimum equation of the general element x of S. By
§§ 67, 68, the first characteristic determinant §(w) of
x for A divides a power of p(w) and hence has integral
coefficients when x is in S. For any x in 4, §(w) is
divisible by the rank function R(w) of x for 4 by § 69.
Hence for x in S, R(w) has integral coefficients by § 83.
Thus S has property R for 4.

Hence any set of integral elements of a rational
algebra A4 .according to the definition of either Hurwitz
or Du Pasquier (§ go) is a set of integral elements under
the new definition. Only in the case of a semi-simple
algebra 4 of order # is it true conversely that a set of
integral elements of order* » having the properties
R, C, U required by the new definition has the property
B of possessing a finite basis and hence is a sct of integral

* Assumed explicitly by Hurwitz and implicitly by Du Pasquier
for the only algebra of which he gave details of finding maximal sets.
It might be desirable to add to the new list of postulates for a maximal
set of integral elements the assumption (if it be not redundant) that the
set shall have the same order as the algebra. Only such sets are treated

in § 97. The inclusion of this further assumption would not alter any
of the discussions of the entire chapter.
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elements according to Du Pasquier’s definition, and
has a properly chosen set of # basal units and hence has
the further property U’ required by Hurwitz.

97. Integral elements of any simple algebra. The
theory of arithmetics of semi-simple algebras was reduced
to that of simple algebras in § 93. By § 51 a rational
simple algebra is the direct product P of a rational
division sub-algebra D and a rational simple matric
sub-algebra M with »* basal units ¢; each commutative
with every element of D. Furthermore, the modulus
Yeii of M comcides with the moduli of D and P.

Each element p of P may be expressed in the form

(12) p= Zdiieii,

i,j=1

where the d;; are elements of D. We may express p as
the matrix (d;;). a notation to be used in our study
(§ 98) of the arithmetic of P. It is desirable that the
matrices which are to be called integral shall include
the matrices whose elements are all integers, and hence
include the basal units* ¢;.

If D is of order §, P is of order dn2.

THEOREM. If II is a (maximal) set of elements (12)
of P having properties R and C. and containing all the
matric unils e;; and having the same order dn* as P, then the
dij range independently over a (maximal) set S of elements
of D having properties R, C, U and having the same order
8 as D, and conversely.

* If it were desired to omit this assumption in the definition of a

set IT of integral elements of P, we would start with a basis of IT (§ 95).
Sec the concluding remark of § 97.



166 ARITHMETIC OF AN ALGEBRA [cHAP. X

i) Let II be a set of elements (12) having properties
R and C, and containing every e; and hence the com-
mon modulus Ze; of M, P, and D. Then II contains

€grpesg =0y5€qq -

Summing for ¢=1, . ..., n, we see that d,, is in II.
Property R of II shows that, if in the rank equation of
the general element Z&u; of P we replace the & by the
co-ordinates of d,, we obtain an equation A (w)=o0
satisfied by d,s; and having integral coefficients and lead-
ing coefficient unity.

Let f(w) =0 be the equation of least degree satisfied
by d,s having rational coefficients and leading coefficient
unity. Itisirreducible in the field R of rational numbers
since a product of two elements of a division algebra
is zero only when one of them is zero (§ 43, Theorem 4).
Then A(w) is divisible by f(w) since otherwise the
remainder from the division would vanish for w=d,; and
yet be of smaller degree than f(w). Hence by Gauss’s
lemma (§ 83), f(w) has integral coefficients.

Let R(w)=o0 be the rank equation of the general
element x of D and let it become ¢(w)=o0 for x=d,;.
By § 70, the distinct irreducible factors of R(w) coincide
with those of the first characteristic determinant of x.
Hence the distinct roots of ¢(w) =o are the same as those
of the first characteristic equation §(w)=o0 of d.. The
same is true of f(w)=o0 and §(w)=o0 by §68. As above
(or by Theorem 7 of § 84), ¢ is exactly divisible by f
and the quotient is either a constant or is divisible by f,
etc. Thus ¢ is a power of f and hence has integral
coefficients. This proves that the set S,, composed of
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the coefficients of ¢, in the various elements (12) of II
is a set of elements d,; of D having property R.

Further, S,, evidently has property U since 1 - ¢, is
in II. It also has the closure property C. For, if
dys be the coefficient of e, in another element (12) of
II, then as above d;; is in II.  Also the products of d,; and
dys by e,s are in II. By the closure property C for II,

(drs‘*‘d:s)en , dys + dysers

are in IT, whence the sum and product of the d,’s is in
Ss.

Next, if d,; is in Sy, its product by e; is in II, whence
dy is in S;;. Hence the #? sets S, (r, s=1, .. .., n)
are identical and may be designated by S. Hence
IT is composed of the Zdje; in which the dj range
independently over S.

This proves the first part of the theorem with both
words maximal omitted. When they are retained proof
is made in (iii).

ii) Conversely, let S be any set of elements of D
having properties R, C, U and having the same order
8 as D. By §09s5, S has a basis @, . . . ., ws, where
w; is the modulus. Let II be the set of all Zdje; in
which the d;; range independently over S. Then II has
the basis we; (=1, . ... ,8; ¢ j=1,....,n).
Also, II has property C since S does. By § 96, II has
property R. This proves the converse theorem with
both words maximal omitted.

Next, let S’ be a maximal of the sets S. Then the
corresponding II’ is a maximal of the sets II having the
properties assumed in the theorem. For, if II, is such a
set which contains II’ and is larger than I, the set S;
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which corresponds to II, as in (i) is larger than S, con-
tains S’, and is one of the sets S, whereas S’ is a maxi-
mal by hypothesis. This completes the proof of the
converse.

iii) Let IT* be a maximal of the sets I1; then its $*
is a maximal of the sets S having properties R, C, U and
having the same order as D. For, if $* is contained in a
larger S, the corresponding IT in (ii) is Jarger than II*
whereas the latter is a maximal. This completes the
proof of the first part of the theorem.

CoROLLARY. We know the integral elements of anmy
simple algebra D XM if we know those of the division alge-
bra D.

For the case in which D is of order 1, our theorem
shows that the set of all matrices whose elements are
integers is a maximal of all sets of matrices with rational
elements having properties R and C and containing the
n? units e;. But if we do not require the presence of
the ¢;, we find an infinitude of maximal sets. For, any
set of matrices with rational elements having properties
R, C, U (and M) is transformed into another such set
by any matrix with rational elements of determinant o.

08. Arithmetics of certain simple algebras. By §97,
the integral elements of a rational simple algebra
D XM are the n-rowed square matrices d= (d;;) in which
the d; range independently over a maximal set .S of
elements of the rational division algebra D having proper-
ties R, C, U.

The product dd’ of d by a second such matrix (d};) is
defined as in § 3 to be the matrix d"’ i which the element
in the 7th row and jth column is

g=di1d{j+ [ +d,'kd1',j+ e e ey
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with attention to the order of multiplication. Hence
each dj isin S.

The constant term of the rank equation of the
general element x of D is called the norm of x and denoted
by N(x). It is a divisor of the first determinant A(x)
of x (§69). If xs#0, x has an inverse y in D by the
definition of D. By § 58, A(x)A(y) =1, whence A(x) 0,
N(x)#o. Hence N(x)=o0 implies x=o.

We shall restrict our attention to maximal sets S
of elements of rational division algebras [ which possess
the following further property:

P. If a and 0(b>0) are any two elements of S,
there exist elements ¢, ¢, Q, C of .S such that

a=gb4c, o=00+C,

where the norms of the remainders ¢ and C are numeri-
cally less than the norm of the divisor b.

Evidently property P holds for the mmportant case
in which D 1s of order 1 when the elements of D may be
taken to be the rational numbers, so that the ele-
ments of S are integers, each being its own norm.
Then the following investigation becomes a study of
the arithmetic of matrices whose elements are all
integers.

Property P was seen in Lemma 2 of §91 to hold
when D is the algebra of rational quaternions. 1t will
be seen in § 105 to hold also for two division algebras
which are direct generalizations of the algebra of qua-
ternions.

Two matrices d and d’ with elements in .S shall be
called equivalent if and only if d'=pdg, where p and ¢
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are products of matrices of the types next displayed for
the typical case n=2:
=<u o
o 1/’

o ant ) nefs 9 (0 D)

where £ is any element of S and # is any unit (§ 88) of S.
For any #», the types are defined as follows. For each
pair of distinct positive integers ¢ and j not exceeding #,
we employ a matrix derived from the identity matrix
by replacing the element o in the 7th row and jth column
by k; for m=2, it is a; when ¢=1, j=2, and is & when
i=2, j=1. We employ also a matrix (which is ¢ for
n=2, =1, j=2) derived from I by replacing the four

elements of
<I )
o I

which occur at the intersections of the 7th and jth rows
with the 7th and jth columns by the corresponding ele-
ments of ¢. Finally, we employ e, which is derived from
I by replacing the element 1 in the first row and column
by .

The matrices (13) and hence also p and ¢ are units
since

apa—p=1I, bpb_p=1, a=], euer=I(uv=1) .

The product a;d may be obtained from 4 by adding
to the elements of the first row the products of & (as
left factor) into the corresponding elements of the second
row. The product da; may be obtained from d by adding
to the elements of the second column the products of
the corresponding elements of the first column into &
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(as right factor). To find 5d and dby we have only
to interchange the words first and second in what pre-
cedes.

The product ¢d (or dc) may be obtained from d by
interchanging the two rows (or columns) of d.

The product e.d may be obtained from d by inserting
the factor # before each element of the first row of d.

The product de, may be obtained from d by inserting
the factor u after each element of the first column of d.

Hence for any #, matrix d is equivalent to those
and only those matrices which may be derived from it
by any succession of the following elementary transforma-
lions:

i) The addition to the elements of any row of the
products of any element £ of the set S into the corre-
sponding elements of another row, k& being used as a
left factor.

ii) The addition to the elements of any column of the
products of the corresponding elements of another
column into any element & of .S, & being used as a right
factor.

iii) The interchange of any two rows or of two
columns.

iv) The insertion of the same unit factor before each
element of any row.

v) The insertion of the same unit factor after each
element of any column.

We shall call the element d,; of matrix d its first
element. If d=o there exists by (ii) an equivalent
matrix whose first element is not zero.

LemMA 1. If the first element of a matrix d is not
zero and is a left divisor of every element of the first row and
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is a right divisor of every element of the first column, then
d is equivalent to a matrix having the same first element and
whose further elements in the first row and first column are
all zero.

For, if dy=d.qi;, we apply the transformation (ii)
which adds to the elements of the 7th column the products
of those of the first column by k= —¢; and find that the
new sth element of the first row is zero. Similarly, if
div=Qidy, we apply (i) with 2= --Q; and find that the
new ith element of the first column is zero.

LemMa 2. If the first element di; of a matriz d is not
zero and either is not a left divisor of every element of the
first row or else is not a right divisor of every element of
the first column, then d is equivalent to a maitrix for
which the first element is not zero and has a norm numer-
ically less than the norm of d.,.

For, if d;; does not have d,, as a left divisor, property
P shows that we can find elements ¢ and 7 of .S such
that d.;=d.q+r, where r>¥0 and N(r) is numericaliy
<N(d.). By (ii) we may add to the elements of the
ith column the products of those of the first colunn
by —g¢ and obtain an equivalent matrix having » as the
ith element of the firstrow. By (iii) we obtain an equiva-
lent matrix having r as its first element.

Similarly, if d;; does not have d;; as a right divisor,
we may write di;=Qd,+p, where ps£o, and N(p) is
numerically <N(d,,). We then use (i) with k= —Q.

Bearing in mind that the norm of any element of S
is an integer by property R which is zero only when the
element is zero, we see that a finite number of applica-
tions of Lemma 2 leads to an equivalent matrix satisfving
the hypothesis of Lemma 1. Hence any matrix d;<o is
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equivalent to a matrix d’ whose first element is not zero
and whose further elements in the first row and first
column are all zero. If the matrix obtained from d’
by deleting the first row and first column is not zero, we
may apply to it the result just proved for d. Repetitions
of this argument show that d is equivalent to a diagonal
matrix whose clements outside the main diagonal are all
zero, while those in the diagonal are g;y, . . . ., gus, €ach
of the first r of which are #£0 and the lust n—r are all
zero (1<r=<mn). Denote thismatrixby (gu, « - - . , Znn)
and call 7 its rank.

If g., is not both a right and a left divisor of all the
remaining gj=o, suppose to fix the ideas that g, 1
not a left divisor of gi=0. We add the elements of the
ith row to those of the first row and by (i) obtain an
equivalent matrix having g;; as the ith element of the nirst
row. ‘Then.by the first part of the proof of Lemma 2
we obtain an equivalent matrix whose first element g;, 1s
not zero and has a norm numerically <N(g,). As
before we can find an equivalent diagonal matrix whose
first element is g;;. After a finite number of repetitions
of this process, we reach a diagonal matrix (ky, . . . .
Itns) in which /%, is not zero and is both a right and a Ieft
divisor of each #; Treating similarly the matrix
(Bazy « « « + y huw), we obtain an equivalent matrix
(lazy « « « +, lus) in which /,, is not zero and is both a
right and a left divisor of each /;;, Morevoer, 4;,isboth a
right and a left divisor of /., . . . . , lux since they are
linear combinations of /., . . . . , & with coefficients
in S. Proceeding similarly, we obtain the

THEOREM. Every matrix d of rank r>o, whose
clements helong to a maximal set S of elements of a division
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algebra D for which properties R, C, U, P hold, is equiva-
lent to a diagonal matrix (d,, . . .., dr,0,....,0),
where eack d; is both a right and a left divisor of diy,,
Bitay « - « - . Here d; may be replaced by udp, where u
and v are any units of S.

The final remark follows from (iv) and (v).

Weshallcall (u,, . . .., us)aunitifou, . ..., ts
are any units of S. Employing only matrices whose
elements are in S, we shall call a matrix d a prime matrix
if it is not a unit and if it admits only such representations
as a product of two matrices in which one of them is
a unit.

By definition any matrix equivalent to d is of the
form pdg where the matrices p and ¢ are units of the
algebra. In other words any matrix d is associated
(§ 88) with a diagonal matrix.

First, let S be the set of integers so that the elements
of our matrices are integers. Then any matrix & of
rank # will be expressible as a product of prime matrices
in one and only one way apart from unit factors if the
like property is proved for diagonal matrices. The
latter is proved essentially* as at the end of § 93. Hence
unique factorization into prime matrices holds.

Second, let S be the set of integral quaternions.
The uniqueness of factorization of diagonal matrices
and hence of any matrices whose elements are integral
quaternions is subject to the same limitations as in
Theorem 5 of § g1.

* We now need consider (a, 8, v3) only when a divides 8 and when
a and B both divide y6. For example, if y=p3, we employ
(ay Bs BB)=(a; B, 6) (I’ I, 6)"
While we there employed (a, 8, 1), we would now use the equivalent
matrix (1, a, 8).
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99. The fundamental theorem on arithmetics of
algebras. The proof (§ 104) for any rational algebra
depends upon that for the complex algebra with the same
basal units. Hence we shall first deduce from the
general theory of algebras a set of normalized basal
units of any complex algebra and derive its characteristic
determinants by a method far simpler than that employed
by Cartan.* Moreover, our notations are more explicit
and hence more satisfactory.

It is only incidental to the goal of rational algebras
that we find the integral elements of a normalized
complex algebra. That result alone would not dispose
of the question for all rational algebras since not all
types of the latter are rational sub-algebras of complex
algebras in canonical forms obtained by applying trans-
formations of units with complex coefficients.

100. Normalized basal units of a nilpotent algebra.

LeMMA. Any associative algebra A of index a is a
sum of a linear sets By, . . .., Ba, no two with an
element =0 in common, such that

(14) BpBi=Byigt+Bpigtst « o o . +Ba (p+9<a),

(15) BpB;<Ba (p+q2a).
For, we may select in turn linear sets By, B,, . . . .

such that

A=B+ 42 A*=B,+43,....,4° *=B,+A4° A°=B,,

where B;~"A"*'=0in A'=B;+A4't, Thus B;SA'. For
i<j=a, o
Bj§ AIS 4ite , B,'/\Bj=0 .
* Annales Fac. Sc. Toulouse, Vol. XII (1898). See the author’s
Linear Algebras (1914), pp. 44-53.
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Evidently,

A=Bi+B.+ . ... +B., B,B<A?41,
Now A?*7is B, if p+¢=a; but, for p+g<a,

A’)'H=Bt’+q‘*'A"'*_q-'_x Bp+q+Bp+q+1+AP+q+’
= . _Bp+q+ e e 0 e +Ba~

We now assume that 4 is nilpotent and of index a.
so that B,=o. Let n, . ..., m be a basis of B,,
i.e., linearly independent elements of B; such that every
element of B; is a linear combination of them with
coefficients in the field # over which A is defined. Let
My 41, - - - - » Mb +b, De a basis of B,, etc.

First, let p<q and p+g<a. Then in the bases of
B, and B,, each #» has a subscript b4+ . ... +b,.
The latter sum is less than the minimum subscript
b+ . ... +bpyg+1 of an n in Byy, Hence by
(14), every product nin; is a linear combination with coeffi-
cients in F of those n’s whose subscripts exceed both i and .

The same result holds also if #; is in B, and #; is in
B,, where now p-+g=a, since ByB,==0 by (15), so that
nin; =0.

A set of basal units #,, #n, . ... of a nilpotent
algebra is called a normalized set if it has the property
expressed in italics.

101. The two categories of complex algebras. By
§ 79, every complex algebra 4 with a modulus e is the
sum of its maximal nilpotent invariant sub-algebra N
and a semi-simple sub-algebra S, while S is a direct sum
of simple matric algebras S;. Here N must be replaced
by o if 4 itself is semi-simple. According as the orders
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of the S; are all 1 or not all 1, 4 is said to be of the first
or second calegory, respectively,

This separation of the two cases is nowise necessary
in the present theory, but is a convenient one since the
notations in the first case are much simpler than in
the second case. Although the later treatment of the
second case applies to both cases, the prior simple dis-
cussion of the first case will greatly clarify that of the
second case.

102. Complex algebras A4 of the first category. We
have A=S5+4+N, where S is a direct sum of algebras
(e), « v « -, (es) of order 1, and

(16) e=e;, eiej=0(1%j), Zei=e,

e being the modulus of both 4 and S. Thus

&
N=eNe= ZeiNe,-.

i,)=1

If ¢;Ne; is not zero, its elements are all linear com-
binations of certain of its elements #,, #,, . . . . , which
are linearly independent. Since #n,=exe;, where x is
in N, we have

{17) em,=m,, em,=o(k=i), mej=n,, mn,e=o (I£j),

fork,t=1, .. .., h Any element n,0 which satis-
fies these conditions (17) is said to have the character
(z,7). Butif ¢Nej=o0, N has no elements of character
(¢,7). Write

e;Ne,-= C.-,--i—e;N'e,- ,
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where the two linear sets on the right have only zero in
common. Every element o of Cj is of character
(,7). Then

N>=¢N2e=Z¢;N%;, N=B,+N?, B,=ZC;;,

summed for 7, /=1, . . . ., k. Hence the elements of
B, are linear combinations of elements each having a
definite character. The same is true of B, in
N?=B,+N3, etc. In view also of § 100 we may there-
fore choose a normalized set of basal units of NV each
having a definite character.

THEOREM 1. Any complex algebra A of the first
category has a set of basal units e, . . . ., €p Ny o ...,
n,, where each n, is nilpotent and has a definite character,
while

(18) €i=e¢,, en,=mn,, ne;="n,, NNy =ZY pgrllr

summed for r=1,...., & >p, T>0; such that
n,, n,, n. have the respective characters (1, ), (7, 1), (i, 1).
All further products of two units are zero.

To find the first characteristic determinant §(w) of
the general element z=x+y of A, where

x=8a+ ... e, y=vm+ . ... v,

we proceed as in the footnote to § 6o. If #, is of char-
acter (7, —),

ze; = Eje;+lin. func. of my, . 0 o L, M, s
M= Em.+lin. func. of #oqry Bogay o o o o -

Transposing the left members after replacing z by w,
we obtain linear equations in the units such that the
elements below the main diagonal of the determinant of
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the coefficients are all zero, while each diagonal element
isa &—w. Hence 6(w) is a product of powers of &—w
(j=1,...., k) with exponents =1. By §70, the
same is true of the rank function R(w), in which the
coefficient of the highest power of w is unity.

We are now in a position to investigate the sets of
elements of A with rational co-ordinates which have
properties R, C, Uof §87. Tosecure the closure property
C, we assume that the v’s in (18) are rational. By prop-
erty R, each coefficient of R(w)=o0 is an integer. Since
its roots £; are all rational, they are integers. The maxi-
mal set is composed of all elements z in which the &; are
integers, while the »; are merely rational. All such
2’s therefore give the integral elements of 4.

We shall prove that #=1+42Za,n, is a unit (§ 88) for
all rational values of the @,. First,

u(1—am) =1—amit+l=14+am,+l=u,,

where /; denotes a linear function of #;, #;44, . . . . With
rational coefficients. Similarly,

Us(1—aaz) = 1— aimi4-li=1+a;m,+1, .

Proceeding in this manner, we finally reach the product
1. Hence

w=1, v=(1—am)(1—am)(1—m;) .... =1+Zbn;,

where the b; are rational. Hence » and v are units.
If n, is of character (7, j), and &, . ..., & are
all o,

xu=x+ Zapsm‘,=x+y=s
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provided a,=v,&™*. Multiplybyv. Hencezv=«. This
proves that, if A(z) 0, so that each &30, 2 is associated
with its abridgment x. Recalling the definition of
associated arithmetics (§ 88), we have

THEOREM 2. If the v’s are rational for the algebra
A=8+N in Theorem 1, the arithmetic of A is associated
with the arithmetic of the sub-algebra S having the basal
unils e, . . . . , €.

103. General complex algebra. Any complex algebra
A with a modulus ¢ is the sum of its maximal nilpotent
invariant sub-algebra N and a semi-simple algebra S
which is a direct sum of ¢ simple matric algebras S;.
Then S; has the basal units éig (a, 8=1,.. .., pi),
with
(19) e;Be§7=ei7, eiﬁei‘S:o(ﬁ?é'Y) » 6:56;5=0(i¢j) ’
(20) e= Ze;a, N=¢eNe= Ze;aNe;{ﬂ.

ia i, a8
If v is an element of NV such that
n=e¢, vez7#o,
then
(21) {e;a?z=n, etn=o0  (unless k=z:, v=ua),
neg=mn, nes =o (unless k=7, y=p),

and # is said to have the character

i
(22) . 2)
Let 7 and j be fixed integers such that ¢;,ve7, is not

zero for every » in N and let v, v,, . . . . be elements of
N such that
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(23) [1 ]] =ewveh  (p=1,2,....)
1 I,

form a complete set of linearly independent elements of

N of character

(24) (11 i>,

whence every element of that character is a linear func-
tion of the elements (23). By (23),

N S L i ot
Po=e;x[l I]pexjﬂ"eaakpe};ﬂ=[a B]p’ kp=8;,l’,,e,3,

whence P, is of character (22). Since N is invariant in
A, k, belongs to N. We shall prove that the P,. with
1,7, a, B fixed, form a complete set of linearly independent
clements of N of character (22). First, if they were
dependent, =c,P,=o0 for complex numbers ¢, not all
zero, we multiply by e;, on the left and by €3, on the right

and get
St 1] -,
I Ijp

P

whence each ¢,=o, contrary to hypothesis. Hence the
number of elements in a complete set of character (22)
is not less than the number in a complete set of char-
acter (24). To prove the reverse, note that if a set of
P, are linearly independent, the corresponding elements
(23) will be linearly independent, since we saw how to
deduce P, from (23) by multiplying by e, on the left
and by €5 on the right.
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In view of (20), the aggregate of the elements in the
complete sets just described for the various values of
i, J, a, B gives a set of basal units of V, each having a
definite character.

By (19), the product of €},v,el; by €} v.ei, is zero if
7=k, while if j=Fk it is €}, * v,e},v, - €,, which is zero or
of character

Hence
o (=),
e [L 7] -]k Il]={oZv]Ti . a-».

From this we shall deduce

o (j#=k or B=N),

] R e

For, the left member denotes the product

i Bl
oA AT L

which is zero if either j#% or B>\. In the remaining
case, the product of the juxtaposed e’s is e, which pro-
duces no effect on (23) when used as a right-hand multi-
plier. To evaluate our expression, it therefore remains
to multiply (25) on the left by ¢, and on the right by
¢i,; the result is the sum in (26).

The complete multiplication table of 4 is given by
(19), (26), and
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o (k5 )
o [ -l e

We arrange our basal units of N in the order #,,
M2 . . .., wheren, . . .., m_ are those of our units
of N which are not in N*, while 7 41, . « o+, %4,
are those of N* which are not in N3, etc.

The general element of 4 is z=x+7y, where

(is2k or B=N).

2 I
(27) 3::.‘9[)\ ”]c= [f ;f] (i=Fk, B=M\),
o

. [ g
=250, y=2n’:.a.p[a é]p

We seek the first characteristic determinant 6(w)
of z. First,

(29) gel,= Zs:.’eﬁs-i-(n,, Moy oo v o)y

where the final symbol denotes a linear function of »,,
Bay o o o v Next, let

[k l] =”I(t§b!)y [k l] =”.H
N ule a ule

so that #; is in N, but not in N2. The same is true of #,
and of any basal unit obtained from »; by varying only
\ and u, as shown by comparing (25) with (26). Hence
by (27),

(0) = > Bt (ats, Mokay e s
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For the next step, let
k1 k1
|:>‘ #]a"”ﬁ (5:<p=bi+0s), [a ﬂJa""M

so that n, is in N?, but not in N3. The same is true of
n, as before. Hence

(31) MNpy= E E:)\"q+("b.+b,+x, Noitbitay o o o .).
a

Replacing z by w and transposing the left members
of (29), (30), (31), . . . ., we see that the determinant
8(w) of the coefficients of the €’s and #’s is a product of
powers (with exponents =1) of the determinants

fi—w Eiz PR E;Pz'
D,-(w)= e e e e e s e .
E'ﬁil Etf'z? e ‘E}iﬁl_—w

Thus 6(w) is independent of the co-ordinates 7 of y.
The same is therefore true of the rank function R(w)
which is a divisor of §(w).

We are now in a position to investigate the sets of
elements of A with rational co-ordinates which have
properties R, C, U of § 87. To secure the closure prop-
erty C, we assume that the 4’s in (25) are rational.
The maximal set of integral elements of 4 is composed
of the z=x4y in which co-ordinates of y are arbitrary
rational numbers, while the x’s form a maximal set of
integral elements of the sub-algebra S.

If the @, are rational, 14+2a,n, is a unit (§ 102).

If the determinant A(z) =6(o0) of z is not zero, we
can find a unit
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L
wert 2y ]

koA B s

such that xu=x+y=2z. In fact,
= 7 'A‘/ i 7.
xu x+2$axa,‘5‘,[a ﬂ]p’
summed for A, 4, 7, a, B8, p. This sum will be identical

with y if
E :Sixa;§n=n%p
A

for all 7, 7, @, B, p. The determinant of the coefficients
of the a’s having 7, 7, B, p fixed and A=1, . . . . , p;, is

Di(°)=lfi)\| (@, A=1, . ..., p),

which is zero for no value of 7 since (o) was shown to be
a product of powers (with exponents 1) of the D;(o).
There exists a unit z such that wv=3. Hence zv=x1,
so that z is associated with «.

THEOREM. Any complex algebra A=S+N with a
modulus has a set of basal units eack with a definite char~
acter and having the multiplication table (19), (26), (27),
and (28). If the v’s are rational, the arithmetic of A is
associated with the arithmetic of its semi-simple sub-
algebra S.

104. Arithmetic of any rational algebra. Let A4
be any algebra with a modulus over the field of all
rational numbers, such that 4 is not semi-simple. Let
N denote 1ts maximal nilpotent invariant sub-algebra.
By § 78, A =S+N, where S is a semi-simple sub-algebra,
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Let 47,8, N’ denote the algebras over the field of all
complex numbers which have the same basal units as
4, S, N, respectively. Then S’ is semi-simple and N’ is
the maximal nilpotent invariant sub-algebra of A'=
S’+N’ (§ 74). Introduce the basal units of A’ which
were employed in §§ 102-3. As there proved, the first
characteristic determinant and rank function of 4’ does
not involve the co-ordinates of the basal units belonging
to N'. Hence the rank equation R(w)=o0 of 4 does not
involve the co-ordinates of the basal units {, belonging
to N, which are therefore arbitrary rational numbers in
any integral element of 4. Denote the basal units of §
by si. Then every element of 4 is of the form

z=x+y, x=2X;s;, y=2V,¢,,
where X; and Y, are rational. Let
A(z)#0, u=1+Za,l,.
Then
xu=1x-} Z Xiaysio.
ip
Since N, of order g, is invariant in 4,
4
$i§p= z Viok$k 5
k=1
where the v’s are rational. Hence xu=x-+y=z if
Z'Yikaiap= Yb (k=11 s ey g)'
i p

These g linear equations in g unknowns a, with
rational coefficients are consistent and have unique
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solutions a,, which are therefore rational. In fact,
after introducing the basal units of 4’ employed in
§§ 102-3, we proved that there exists one and only
one set of co-ordinates of # such that xu =z, so that the
same is true when we return to the present basal units.

We can determine rational numbers B; such that
(§ 102, end)

uy=1, v=1+2Z8:i.

Hence » and v are units, and x» =z implies zv =2, whence
z is associated with its abridgment x if A(z) #o.

FuNDAMENTAL THEOREM. The arithmeticof A=S+N
is assoctated with the arithmetic of its semi-simple sub-
algebra S.  In other words, we may suppress the properly
nilpotent elements of an algebra when studying its arithmetic.

105. Generalized quaternions. Consider the algebra
D whose elements are X =x+yE, where x and y range
over all complex numbers with rational co-ordinates,
such that

(32) E:=—8, Ex=xE,

where x’= g —¢i is the conjugate of* x=0+¢&. If —f
is not a sum of two rational squares, 0 is a division alge-
bra (§ 47, where x, y, v are now replaced by i, E, —8,
and we have taken §=--1). We restrict 8 to integral
values.

* Writing y=9-+{7, we see that X is the general element of the
algebra (18) of § 10 with a=1, =14, w,=E, u;=iE, so that D is a
generalization of the algebra of quaternions (the case 8=1). As proved
there, D is associative. The arithmetic of algebra (18} for any « and 8
is being studied by other methods by Latimer in his Chicazo thesis.
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The product of X by Z=z+4wE is
(33) XZ=2xz— Byw'+ (vw+yz) E

which is an element of D, so that D is an associative
algebra. We shall call X =x"—yE the conjugate of X,
and

(34) N(X)=XX=XX=axx'+Byy'

the norm of X. The conjugate of XZ in (33) is seen to
be equal to the product ZX of the conjugates of the
factors taken in reverse order. Hence

(35)  N(XZ)=XZZX=XXZZ=N(X) - N(Z),

since éz is a rational number and hence is commutative
with X. Note that X and X are the roots of

(36) w*—20w+N(X)=0 (x=0+¢&0).

Consider the set I of all elements X =x-+yE in which
x and y are complex integers (i.e., complex numbers
with integral co-ordinates). Then the coefficients of
the rank equation (36) are integers. In view also of
(33), we see that the set I has the closure property C.

We shall now determine every set S of elements X
of D which has properties R and C and contains I.
For the moment give X, x, v the foregoing notations and
call o the rational part of X. Since ¢, E, and E7 belong
to I and hence to S, the closure property C shows that
S contains X, X7, XE= - By+xE, and XEi, whose
rational parts are evidently o, —£, - 87, 8¢, respectively.
The negatives of their doubles are therefore coefficients
of the rank equations of X, X7, etc., and hence are integers
by property R. In other words, 2« and 28y are complex
integers, say # and w. Then
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X= %(u-l—%wE) , NX)= i(uu’-}-éww’) .
By (36) and property R, N(X) must be an integer, so
that ww’ must be divisible by 8.

If ¢ is a complex integer o, the introduction of
¢7'E as a new unit in place of E has the effect of dividing
B8 by ¢¢’. Hence we may assume that 8 is not divisible
by a sum of two integral squares. It is known that
every prime of the form 4n + 1 and every product of such
primes is a sum of two integral squares. Also, 2 =1*41°
Hence we may assume that =4=f is either unity or a
product of distinct primes of the form qn+4-3.

LeMMA  If such a B divides v*+ 8, where v and 6 are
integers, then B divides both v and 8.

For, if p=4n+ 3 is a prime factor of 8 and hence
of y*+4%, either p divides v and hence also 6, or we
can find (§ 110, end) an integer e such that ye=1 (mod
#). Then

o=(y"+8)e=14+(%e)*  (mod p),

whereas —1 is known to be not congruent to a square
modulo p=4n+3. Hence p divides ¥ and 8. Thus
B=pB,: divides p*s, where

s=(v/p)*+(8/p)

Since B has no square factor, B; divides s. As before,
any prime factor ¢ of B; divides both v,p and &/p.
Proceeding similarly, we conclude that B=pq . . ..
divides both 4 and 4.

We proved above that 8 must divide wuw’ =48,
if we writew =+ +6:. Hence 8 divides v and § and hence
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also w. Write w=pv. Thus every element of .S is of
the form X =1(u+vE), where u and v are complex
integers. Then

37) N(X)=1(uu'+ ')

must be an integer.

First, let B=1 (mod 4). By (37), uu’+w’, which
is a sum of four integral squares, must be divisible by 4.
They must all be even or all odd since the square of an
even or odd integer has the remainder o or 1, respectively,
when divided by 4. The maximal set S is therefore
composed of all elements 3(#+vE) in which the four
co-ordinates of the complex integers # and v are either
all even or all odd integers. If in the latter case we
subtract

(38) G=3;(1+i+E+iE),

we obtain a linear combination of 1, ¢, E, 1E with integral
coefficients. Since ¢E=2G—1—i7--E, the set S has
the basis 1, 7, E, G. Since E=(1—7)G—1, S is com-
posed of the elements x+(, where x and y are complex
integers. This set S is closed under multiplication since

Gi=—1+i—iG, G'=G—}(u+p).

This completes the proof of the first part of the theorem
below. /777

Second, let B=3 (mod 4). By (37), the integers
uw’ and v’ must be congruent modulo 4. Write u=
k+N, v=p~+vi. Then ¥+N=u*+»* (mod 4). Hence
the values of «, N, u, v are congruent modulo 2 to those
in one of the six sets

(39) (oo0o0), (o110), (oro1), (1010), (3001), (11I1).
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For the first of these sets, X =3 (#+vE) is of the form
x+yE, where x and y are complex integers, and hence
belongs to the set I of all such elements. If from the
half of any complex integer we subtract a suitably chosen
complex integer x, we obtain 3, where # = k+\z, k=0 or
1, A=o or 1. Hence any element of S is the sum of a
suitably chosen element x+yE of I and an element
H =%(u+9vE) for which (k, N\, g, ») is identical with one
of the sets (39) and not merely congruent to it. Hence
S is derived from I by annexing one or more of the ele-
ments H,, . . . ., He defined by the second, . . . .,
sixth set (39), respectively.

Let S, be the set obtained by annexing either of

(40) H,=3(i+E), H=3(1+iE)
to I. It contains both of them since
H.E=H~31+8), HE=H,—i(1+p),

while 14 is an even integer.
Let S, be the set obtained by annexing either of

(41) Hy=3i(1+E), H,=3(0+E)
to I. It contains both of them since
iE « Hy=H,~}(1+8), iE-H,=H,—%%(1+8).

If we annex all of the elements (40) and (41), we
obtain a set containing H,+H,—E=%(1+1), whose
norm is %, so that the set does not have properties
R and C.

If to 7 we annex Hs=G, given by (38), we obtain a
set containing G=H,+H;=H;+H,, so that the set is
a sub-set of both S, and S..
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Hence the only maximal sets containing I are S,
and S,. In view of their origin they have properties
R and U. It remains to verify that they have the
closure property C.

Note that S; has the basis 1, ¢, H,, H, since from the
first two and the doubles of the last two we deduce E
and ZE and hence the basis of I. Since Hy=:H,+1,
the elements of S; are all of the form x+yH,, where x
and y are complex integers. Thus S; is closed under
multiplication since

Hi=—1—iH,, Hi=—31(1+8§).

Similarly, S, has the basis 1, ¢, H,=:H,, H,, and is
closed under multiplication since

Hi=i—iH,, H:=H,—1(1+8).

THEOREM. Let D be the algebra composed of the ele-
ments x+yE, where x and y range over all complex num-
bers with rational co-ordinates, while E>= — 8, Ex=x'E,
and B is an integer. Without loss of generality we may
take B to be =1 or a product of distinct primes of the form
4n—+3 or the negative of such a product. Then every maxi-
mal set of elements having properties R and C, and con-
taining the basal units 1, i, E, iE, is formed of all the
elements x+yB, where x and y range over all complex
integers, while B is given by (38) if B=1 (mod 4), but B is
either H, or H,in (40) or (41) if B=3 (mod 4). Hence in
the latter case, D has two such maximal sets. Except for
B=--1, D is a division algebra.

It remains only to prove the final remark in the
theorem. As noted above, D is a division algebra if — 3
is not a sum of two rational squares. Suppose that

—B=(v/e)*+(8/¢)?,
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where ¥, 8, ¢ are integers and e has no factor > in
common with both 4 and &  Then £ divides
—Be=v*+6* and hence divides both v and § by the
lemma. Write y=+,8, 6=6:8. Then —é&=8{(yi+4).
Hence § divides €+o0* and hence also ¢ by the lemma.
Since € has the factor 8 in common with both v and 8,
B==1. For f=+1, —f is not a sum of two rational
squares. Hence D is a division algebra unless f=—1.

The case B=—3.—~We saw that S has the basis
1,1, E, G, with G defined by (38). Hence every integral
element is of the form

g=xF 21+ x.E+x,G,

where the x; are integers. Let h=k+ . ... +hG
be any element of D. Then if m 1s a positive integer,
the coefficients of 1, Z, E, iE in h--mq are

do=ho+1hy - m(x+3x;), di=h+3hy m(x+ix,),
di=h,t Shy—m(x,+1x,), dy=1(h;—max;).

By choice of integers x;, ¥., %, %o, we see thatd,, . . . .,
d; can be made numerically =im, im, im, im,
respectively. But

N=N(h—mq)=di+d+Bd+d).

For 8= -3, B{d:+d:) lies between —31§m* and 0. Also,
d;+d: lies between o and 3m*. Hence N lies between
—m? and +m?. Then as in Lemma 2 of § g1 we can
always perforin the two kinds of division each with a
remainder whose norm is numerically less than the norm
of the divisor. From N(g) =zt1, we see that the number
of units is infinite,
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The case §=+3.—Employing the set S; with the
basis 1, 7, H,, Hy, we obtain as in Lemma 1 of § 91

N(h=mg) S (m)-+ Gm)3(bm)+3(m)= 1 <ot

Then Lemma 2 of § 91 holds. From the integral solu-
tions of 4V(q) =4, we obtain at once the 12 units of D:

1, i, £H, £(H,—i), *H, =£H—1).

Thus D is not equivalent to the algebra in the preceding
case, while neither is equivalent to the algebra of rational
quaternions which has 24 units.

The reader acquainted with the elements of the
theory of numbers will find no difficulty in developing
for algebra D with 8==3 an arithmetical theory analo-
gous to that for quaternions in § g1.

106. Application to Diophantine equations. By way
of example consider i+ . . .. +a;=x;. By factoring
x;—3, we reduce this equation to

(42) 2?44t wr=uy,
Since the norm #*+3*+22+u? of the product
(43) x+yi+z+wk=AB
of two quaternions
(44) A=a+bi+c¢j+dk, B=a+Bi+vj+ok

is equal to the product of their norms, (42) has the
solutions .

x=aa—bB~cy—ds, y=aB+ba+co—dy,
(a5)

2=ay—bé+cat+df, w=aé+by—cB+da,
u=a’+b’+c’+d’ s = a:+ Bz+.yz+6z .
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We shall first find all rational solutions of (42).
If v¢0, we may evidently write

y_ b z_¢ _
? v a7 v a’ ’

QIR

x_-
v

ERR)
<8

where a, a, b, ¢, d are integers without a common factor
>71. Then
LBV (Bt

v v a?
Denote the rational number v/a* by f. Then

(46) x=faa, y=fba, z=fca, w=fda,
4 u=fa+b+ctd),  v=for.

The rational solutions of (42) with v=0 have x=y=
z=w=o0 and hence are given by (46) with a=o. The
products of an arbitrary rational number f by the six
numbers (45), in which a, . . . . , § are integers without
a common factor >1, give all the rational solutions of
(42). In fact, we just proved that they arc all given
by (46) to which the products of / by the numbers (45)
reduce when B=y=éd=o.

To prove that we obtain all integral solutions when
we restrict the multiplier / to integral values, we have
merely to show that, when the products of the numbers
(45) by an irreducible fraction n/p are equal to integers,
so that the numbers (45) are all divisible by p, then the
quotients are expressible in the same form (45) with new
integral parameters in place of @, .. .., 48 It is
sufficient to prove this for the (equal or distinct) prime
factors of p, since after each of them has been divided
out in turn p itself has been divided out.
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Hence let p be a prime which divides the six numbers
(45). In particular, p divides the norm « of the quater-
nion A having integral co-ordinates. By Lemma 3 of
§ o1, 4 has in common with p a right divisor not a unit.
By Theorem 4, p is a product PP'=P'P of two con-
jugate prime quaternions with integral co-ordinates.
After choice of the notation between P and P’, we have
A =QP, where Q is an integral quaternion.

i) Let p>2. Then (Q has integral co-ordinates.
Otherwise Q =3¢, in which the four co-ordinates of ¢
are all odd integers, and

AP'=QPP'=3qp=3%p-q

does not have integral co-ordinates in contradiction with
the fact that 4 and P’ and hence also AP’ have integral
co-ordinates.

Since %, ¥, 2z, w are divisible by p by hypothesis,
(43) shows that AB=pC, where the quaternion C has
integral co-ordinates. Either B has P’ as a left divisor
and B =P’q, where as above ¢ has integral co-ordinates,
or else the greatest common left divisor of B and P’ is
unity, so that 1=BD+P’E, where D and E are integral
quaternions. In the latter case,

A=A + BD+A - PE=pC - D+Q « PP' - E=p(CD+QE),

where CD+(QE is an integral quaternion, so that its
double is a quaternion R having integral co-ordinates.
Hence 24 =pR, whereas the co-ordinates of 4 may be
assumed to be not all divisible by p. For, if a, b, ¢, d
are all divisible by #, then a, 8, v, & are not all divisible
by  and we may employ from the outset the conjugate
B’A’ of AB in place of AB in (43). Hence the second
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of the foregoing cases is excluded and we have B=P'q.
Thus
A=QP, O=a,+bi+tcj+d.k,

u=N(A)=p(@i+ . ... +d)
B=P'g, g= o+ Bui+vy+8:k,

v=N(B)=plait+ . ... +8).

where @y, . . . . , 0; are integers. Then by (43),

AB=QPP'g=pQq,  SHit3it k=00

—

Just as equations (45) were obtained from (43), we now
see that the expressions for x/p, v/p, z/p, w/p, u/p, v/p
are derived from the expressions in (45) by replacing
a ....,0 by the eight new integral parameters
@y, . . « ., 6. This completes the proof for any odd
prime p.

ii) Let p=2. Since « is divisible by 2, e+b+c+d
is even. Hence at least one of a+b, a+c¢, a+d is even.
These three cases differ only in notation since the substi-
tution T = (bed)(Bvy0)(vzw), which permutes b, ¢, d
cyclically, etc., leaves unaltered* the system of equations
(45). Hence we may assume that a4-b is even, whence
c+d is even. Then

A=a—b+b(1+14)+(c—d)j+dk(1+17)

is evidently the product of a quaternion Q having integral
co-ordinates by P=1+1%, since 2=(1—2)P. Similarly,
if a+pB is even, B=P’q and the last part of case (i)

* This is due to the fact that T corresponds to the cyclic substitu-

tion (ijk) on the units, which leaves unaltered their multiplication
table (§ 11). ‘
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leads to the same conclusion when p=2. But if a 48
is odd, v+6 is odd and either a+v or a6 is even.
These two sub-cases are interchanged when we replace
a by b, b by —a, ¥y by —6, and & by v, whence z and w
in (45) remain unaltered, while x is replaced by ¥,
and y by —x. Hence let a+v be even. Since ¢+b and
c¢+d are even, while a4+ 8 and v+4 are odd,

o=x=aa+ala+1)—cy+c(y+1)=a+c (mod 2).

Applying the inverse substitution 7~* to a+4c and a+.
we are led to the former case in which ¢+b and a48
are even.

THEOREM. All integral solutions of x*+y*+2*+w*=
uy are given by the products of the numbers (45) by an
arbitrary integer and hence are given by the formula which
expresses the fact that the norm of the product of two quater-
nions 1s equal to the product of their norms.

This simple method due to the author® has led to the
complete solution in integers of various Diophantine
equations not previously solved completely. It is
evidently applicable to x*+3°%3(2°4+w*)=wuv since
there exists a greatest common left (or right) divisor of
any two integral elements of the algebra D of § 105
with B==3.

In his book (cited in § g1), Hurwitz employed quater-
nions to prove classic theorems on the number of ways
of expressing a positive integer as a sum of four integral
squares and to prove that every real linear transformation

Yi=au%+ . .. . +ox, (t=1, 2,3, 4)

* Comples Rendus du Congrés International des Mathématiciens
(Strasbourg, 1920) pp. 46-52. Further developed in Bulletin of the
American Mathematical Society, XXVII (1921), 353-05.



§ 106] DIOPHANTINE EQUATIONS 199

of positive determinant for which Zy!=cZx* may be
obtained from the equation y=axb between real quater-
nions. In particular, for ¢=1, every real orthogonal
transformation of determinant 41 on four variables
is obtained from y=axb where the norms of the quater-
nions ¢ and & are unity. To obtain corresponding
results for three variables, take y,=x,=o0, b=ad/.



CHAPTER XI
FIELDS

107. Examples. In § 1 we gave several examples of
fields of ordinary complex numbers. There exist also
fields of functions; one example is the set of all rational
functions of a variable x with rational coefficients; a
more general example is the set of all rational functions
of the independent complex variables x, . . . ., x
having as coefficients numbers belonging to any chosen
field of complex numbers.

Still further types of ficlds are obtained if we adopt
the purely abstract definition next explained.

We shall treat only those properties of fields which are
required to make the theory of algebras presented in
the preceding chapters valid for algebras over an arbi-
trary field.

108. Postulates™® for a field. A field F is a system
consisting of a set 'S of elements a, b, ¢, . . . . and
two operations, called addition and multiplication,
which may be performed upon any two (equal or dis-
tinct) elements ¢ and b of S, taken in that order, to pro-
duce uniquely determined elements a®b and a©b of S,
such that postulates I-V are satisfied. For simplicity,
we shall write a+b for a®b, and ab for a©b, and call
them the sum and product, respectively, of a and b.
Moreover, elements of S will be called elements of F.

* Essentially the second set by Dickson, Transactions of the Amer-
ican Mathematical Society, IV (1903), 13-20. For other definitions by
him and by Huntihgton, see ibid., VI (1905), 181-204.

200
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I. If ¢ and b are any two elements of F, a+b and
ab are uniquecly determined elements of F, and

b+a=a+b, ba=ab.
II. If g, b, ¢ are any three elements of F,
(a+b)+c=a+(b+c), (ab)c=albc), a(b+c)=ab+ac.

II1. There exist in F two distinct elements, denoted
by o and 1, such that if a is any element of F, a4-o0=a,
a - 1=a (whence o+a=ga,1-a=a by I).

IV. Whatever be the element a of F, there exists in
F an element x such that a4-x =0 (whence x+a =0 by I).

V. Whatever be the element a (distinct from o) of F,
there exists in F an element y such that ey=1 (whence
ya=1 by I).

109. Simple properties; subtraction and division.

VI. The elements denoted by o and 1 in III are
unique and will be called the zero and the unity of F.

For, if a4+2=a and au=a for every a in F, we have
in particular o+z=o0, 1 - #=1. But, by III, o+2=3,
1-u=u. Hencez=o,u=1.

VIL If g, b, ¢ are elements of F such that a+b=a+c,
then b=c.

For, by IV, there exists an element x of F such that
x+a=o. Using also II;, we get

b=o+b=(x+a)+b=x+(a+b)=x+(a+¢)
= (x+a)+c=o+c=c.

In particular, if a4+b=0 and a4c=o0, then b=c.
Hence the element x in IV is uniquely determined by
a; it will be designated by —a.
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VIII. If ¢ and b are any elements of F, there exists
one and (by VII) only one element x of F for which
a+x=b, viz., x=—a+b. For,

a+[—a+bl=[a+(—a)]+db=0+b=b.

The resulting element x will be written d—a and called
the result of subtracting a from b.

IX. If a, b, ¢ are elements of F such that ab=ac and
a#o, then b=c.

For, by V, there exists an element y of F such that
ya=1, Using also II,, we get

b=1.b=(ya)b=y(ab)=y(ac)=(ya)c=1 - c=c.

In particular, if ab=1 and ac=1, then b=c. Hence
the element y in V is uniquely determined by a; it is
called the reciprocal (or inverse) of a and designated
by 1/a or a™*.

By II; with ¢=0 and VII, ao=0. Taking ¢=o0 in
IX, we see that ab=o0, a0, imply b=o.

X. If @ and b are elements of F and aso, there
exists one and (by IX) only one element x of F such
that ax =5, viz., x=a""b.

For,

a(a~b)=aa~* - b=1-0=0b.

The resulting element x will be designated by b/a
and called the guotient of b by a, or the result of dividing

b by a.
110. Example of a finite field. Let p be a prime
number >1. All integers ¢, azp, azt2p, . . . . which

differ from e by a multiple of p are said to form a class
of residues [a] modulo p, and this class may also be
designated by [a+kp], where & is any integer. Hence
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there are exactly p distinct classes: [o], [1], . ...,
{p--1]. We shall take them as the p elements of a
finite field F in which addition and multiplication are
defined by

lal+lal=la+a], la]le]=[adT].

To justify these definitions, note that if 2 and [ are any
integers, the sum and product of a+%p and a’+Ip are,
respectively, a4a’+mp and aa’+ip, where m==~k+I,
t=al+a’k+klp. In other words, whichever number of
class [a] we add to whichever number of class [a'], we
always obtain a number of the same class [a+a']; and
similarly for multiplication.

For these p elements and for addition and multiplica-
tion just defined, it is easily seen that the postulates
I-1V for a field are all satisfied. Classes [o] and [1] are
the zero and unity elements, respectively. Postulate
V states that if [a] is any class o], there exists a class
[v] such that [a] [y]=[1], and is another statement of the
well-known theorem that, if @ is any integer not divisible
by the prime p, there exist integers y and z such that ay =
1+pz. For example, if p=35,a=2, 3, or 4, then

2'3=I+5°I=3°2, 4'4=I+5'3.

To prove the last theorem, assign to v the values 1, 2,
. ., p—1, and divide each product ay by p to obtain
a remainder >o0 and <p. Since the p—1 remainders
are distinct, they must be 1, 2, . . . ., p—1 in some
order. Hence one remainder is 1, as desired.

111. Indeterminates and polynomials in them. We
shall first define a single indeterminate x and polynomials
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(1) ataxt . ... +a”
in x having as coefficients elements a5, . . . . , a, of
any field F.

We consider simultaneously for n=o0, 1, 2, . . . . all

sets
a=(00, A1y « « » . , Gp)

of n+1 ordered elements a, af ...., a, of F.
The set
b=(Bo, Bty o . 5 Buw), Mm=Zn,

shall be called equal to the set a if and only if
Bi=0; (i=o0,1,....,mn), Bi=o (J=nit1,....,m).
The sum a+b of a and b is defined to be the set
(aotBoy « « v oy @ntBuy Butry « + « + 5 Bum)e

The product ab is defined to he (Yo, Y1y « « « « » Yntm),

where
k

iy
Yo=0oBo, Y1i=0aBita:ifs, - « o ., ‘Yk=24046k—i, -----

In particular, for sets composed of single elements,
()+(B=(a+8), ()(B)=(aB).

Hence these sets form a field which is abstractly identical
with F, so that no contradiction can arise if we identify
(a) with a. Accordingly, if p is any element of F we
define (p) to be p. Then

pa=ap=(p)a=a(p)=(pto, . . . . , Poy).
Denote the set (o, 1) by‘ x2. Then

x=(,0,1), #*=(,....,0, 1),



§ 111} INDETERMINATES 205

in which 1 is preceded by % zeros. Hence

(ao, ax, o« e e sy an)=(ao)+(°) 0.1)+(O, 0, a=)+ A
=a,+a,(0, 1)+a,(0,0, 1)+ .. ..

takes the form (1) above, which is called a polynomial
in the indeterminate x = (o, 1) with coefficientsa,, . . . . ,
a, in F.

Two such polynomials are therefore equal only when
corresponding coefficients are equal, while their sum and
product are found exactly as in elementary algebra.

If a,o0, polynomial (1) is said to be of degrce » in x.
No degree is assigned if a,=o0, . ..., an=0. The
degree of the product of two polynomials in x is evi-
dently the sum of their degrees. Hence the product is
zero only when at least one polynomial factor is zero.

To define polynomials in two indeterminates x and
y, consider sets s=[a,, @1, - « « . , ay] Oof #4+1 ordered
polynomials

= CooF Cor¥+Coct®™+ . o o L,
<y A =CpoFCmxtCd®+ . ...

in x with coefficients ¢;; in . Define equality, addition,
and multiplication of sets exactly as above. Write y
for the set [0, 1]. As above,

n

s=aetayt - ... Fey= D (Gotamtart ... )

i=o

The final sum is called a polynomial in the two indeter-
minates « and y with coefficients c¢,; in F.

The method just employed to define polynomials in
two indeterminates by means of those in one may be
used to define polynomials in 2 (commutative) indeter-
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minates %;, . . . . , % by means of thosein;, . ...,
Xp-:. By induction on & we obtain the

THEOREM. Two polynomials in the indeterminales
Xev o o o ., X with coefficients in F are equal only
when corresponding coefficients are equal. Their sum and
product are found as in elementary algebra. Their product
is zero only when at least one of them is zero.  All operations
on polynomsials in indeterminates are in their last analysis
operations on sets of ordered elements of the given field F.

If /, g, & are polynomials in #, . ..., x with
cocfficients in F such that f=gh, then f is said to be
divisible by gand 2. Then if neither g nor % is an element
of F, f is called reducible with respect to F. But if f
has no divisor other than a and af, where a is an element
=0 of F, f is called érreducible with respect to F.

For example, x;—4x; is reducible and «—3«; is
irreducible with respect to the field of rational numbers.

112. Polynomials which vanish throughout F. We
shall consider first a polynomial f(x) of degree »> o in one
indeterminate x with coefficients in the field F. If e
is an element of F, we have

b= (xh—1d-gh—2ef ph—3e24- | | | Fxet—r4cb-1) (x—e)t-e .

Multiply by the coefficient az of #* in f(x) and sum as
to k. We get f(x) =Q(x)(x—e)+f(e), where Q(x) is a
polynomial of degree z—1 in x with coefficients in F.
When the element f(e) of F is zero, we shall say that f(x)
vanishes for e and has the divisor x—e.

Let f(x) vanish for two distinct elements e, and e, of
F. From

f@)=(x—e)Q(x), o=(ea—e:)Q(es)=0,
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we have Q(e,) =0, so that Q(x) has the divisor x—e,.
Thus f(x)=(x—e)(x—e,)0:(x). A repetition of this
argument shows that, if f(x) =a,x"+ . . . . vanishes for
n distinct elements e,, . . . . , €5 of F, then

f(x)=ao(x—ex)(x_ez) c e e (x-e,,).

If f(x) vanishes also for e which is distinct from
€, - . . ., 6, then a,=0. Repeating the argument on
ax"*+ . ..., etc, we obtain the following con-
clusion:

1. If a polynomial aix*+ . . . . + a, with coefficients
in F vanishes for more than n elements of F, each coefficient
a; is zero.

II. In any infinite field F, a polynomial in x with
coefficients in F is zero (identically) if it vanishes for all
elements of F.

But II need not hold for a finite field. For example,
if F is the field of the classes of residues of integers modulo
p, a prime (§ 110), the polynomial ¥? —x is not zero, but
vanishes for every element of F since, by Fermat’s
theorem, e? —e is divisible by p when e is any integer.

III. A polynomial f(x:, . ..., x,) in n indeter-
minates with coefficients in an infinite field F is zero
(¢dentically) if it vanishes for all sets of n elements of F.

To give a proof by induction, let IIT be true for poly-
nomials in %, . . . ., %s—;. Then III is true for f if
it lacks x,. Hence let

=8y « o v vy X0 oo g, ey X)),
8070, m=1.

In view of the hypothesis for the induction, we may
assign elements &, . . . ., £&-; of F such that g(&,
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., ti—r) 0. Then f becomes a polynomial in
the single indeterminate x,, which, by II, does not
vanish for a certain element e of #. But this contra-
dicts the assumption that f vanishes for the set of ele-
ments &, . ..., &y e

113. Laws of divisibility of polynomials in x. It
is to be understood that all the polynomials employed
have their coefficients in any fixed field F.

We shall first prove that there exists a greatest com-
mon divisor of any two polynomials f(x) and A(x), the
latter being of degree n>o0. The process employed in
elementary algebra to divide f(x) by %(x) is purely rational
and hence leads to a quotient ¢.(x) and a remainder
r.(x), each being a polynomial with coefficients in F,
such that either 7,(x) is zero (and then f is exactly divisible
by %) or r,(x) has a degree n,(n, <n). In either case,

J@x)=h(x)q:(x)+r(x).

If r,(x)>0, we divide #(x) by 7.(x) and obtain a
quotient ¢,(x) and a remainder 7,(x) which is either zero
or has a degree #,(n,<#n,), whence

h(x) =r.(x)ga(x)+7:(%).
If 7,(x) 0, we repeat the process on 7, and 7,, and get
r(x)= ’z(x)gs(x)+rs(x)-

Since #, #:, #,, . . .. form a series of decreasing
integers =o, the process must terminate and ultimately
lead to a remainder 7,4+, which is zero, while r,>0. The
final equations of the series are therefore

Ton—2(2%) =Pp—y (x)qm(x)+fm(x),
Tm—1(%) =T (%) gm+1 ().
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Employing these equations in reverse order, we see
that 7,(x) divides 7,— (%), rm-2(2), . . . . . r3(x), 7r.(x),
r.(x), h(x), f(x), and hence is a common divisor of the
given polynomials f and 4.

Conversely, employing the equations in their original
order, we see that any common divisor of f and % is a
divisor of 7, 72, . . . ., Tm—2, Tm—x, "

Hence the common divisors of f and % coincide with
the divisors of 7,(x), which is therefore called a greatest
common divisor of f and A Let g(x) be any greatest
common divisor of f and %, ie., a common divisor
which is divisible by every common divisor. Then
g(x) and r,(x) divide each other, whence g(x) =arn(x),
where a is an element 20 of the field 7.

From the first two equations above, we get

n=f—qh,  r:=—qf+a+qg)h
Inserting these values into the third equation, we get
r3=(14¢:05)f — [+ ¢;(1+¢:g5) 1.

It follows by induction on j that 7; is a linear homo-
geneous function of f/ and % whose coefficients are poly-
nomials in ®. The same is therefore true of g(x)=
ary(x).

We have now proved the following theorem:

1. If f(x) and h(x) are any polynomials in an indeter-
minate x with coefficients in any field F, such that f and
h are mot both zero, they have a greatest common divisor
g(x), with coefficients in F, which is uniquely determined
up to a factor %o belonging to F. There exist two poly-
nomials s(x) and t(x) having coefficients in F such that

(2) g(x) =s(x)f(x)+1(x)h(x).
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In case g(x) reduces to an element v #o of F, we shall
call f(x) and k(x) relatively prime. In that case, we
multiply the terms of (2) by 8, where y6=1, and write
o(x) =0s(x), 7(x) =0t(x). Hence if f and % are relatively
prime, there exist polynomials ¢ and 7 with coefficients
in F such that

(3) 1= o(x)f(x)+ r(x)h(x).

Multiplying (3) by k(x), we deduce

II. If f(x) and h(x) are relatively prime, and if the
product f(x)k(x) is divisible by h(x), then k(x) is divisible
by h(x).

If both f(x) and I(x) are relatively prime to k(x), we
have (3) and 1=s(x)l(x)+1(x)k(x). By multiplication,

1=osfl+(aft+rsi4Tht)h,

which shows that fI is relatively prime to k& This
implies

IIT. If two or more polynomials in x are each relatively
prime to h(x), their product is relatively prime lo h(x).

A polynomial is evidently either divisible by an
irreducible polynomial or else is relatively prime to it.
Hence IIT implies

IV. If the product of two or more polynomsials is divisible
by an irreducible polynomial h(x), at least one of them is
divisible by h(x).

A reducible polynomial f(x) is by definition the prod-
uct of two polynomials f,(x) and f,(x) each of degree =1.
If fi(x) is reducible, we replace it by a product of two
polynomials each of degree =1. Proceeding in this
manner, we obtain a factorization

@ =p.®)p.(x) . ... ;alx)
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of f(x) into irreducible polynomials each of degree 21
and having all coefficients in F. If there were a second
such factorization

f@)=q@)g.(x) . . .. g),

the latter product of irreducible polynomials ¢;(x) would
be divisible by #.(x), whence, by [V, a certain ¢;(x) would
be divisible by p.(x). After relabeling the g¢’s, we
may take 7=1. Then ¢ (x)=a:p,(x), where a; is an
element o0 of F. Thus

Pi(@)[pa(x) . ... (@) —aiga(z) . ... g(x)]=0.

Hence the second factor is zero. As before, p,(x) would
divide one of the ¢;, 7=2, say ¢, whence g.=a.p..
Proceeding similarly, we obtain

V. Any polynomial reducible in F can be expressed as
a product of polynomials irreducible in F; apart from the
arrangement of the polynomials and the association of
multipliers belonging to F, this factorization can be effecled
in a single way.

The theorems of this section are illustrated in § 116
for the case of congruences with respect to a prime
modulus.

114. Laws of divisibility of polynomials in several
indeterminates. The theorems of this section are
stated explicitly for polynomials in two indeterminates
xz and y. However, if we interpret ¥ to mean a set of
indeterminates , . ..., %, the theorems concern
polynomials in #;, . ..., %, ¥y and are established
by induction from 7 to n+1 variables by the proofs as
written,* if we assume that Theorems V, VII, VIII hold

* Provided the citations to I, IV, V of § 113 be replaced by citations
to the analogues of V, VII, VIII below for polynomialsin %, . . . . , 2.
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for polynomials in «;, . ..., x,. Since the latter
theorems were proved in § 113 when # =1, the induction
will be complete.

If pi(x) and o;(x) are polynomials in x with coefficients
in F, '

@) 1@ 3)= > m@y,  pulx)o;

s(x, 3’)= Z o'i(x)y‘9 om(x)#0

1=0

are of degrees n and m, respectively,iny. ByTof § 113,
po(x), . . . ., pa(x) have a greatest common divisor
o(x). In case p(x) reduces to an element of F, we call
r(x, v) primitive in y. Let o(x) be a greatest common”
divisor of o,(x), . . . . , om(x). Then

(s) r(x, y)=p()R(x,y), s(x,y)=0c(x)S(x,y),

where R and S are primitive in y.

1. If the product of r(x, y) and s(x, y) is divisible by a
polynomial P(x) which is irreducible in F, either r or s is
divisible by P(x).

Since this is evident if every p;(x) or every oi(x) in
(4) is divisible by P(x), let p,(x) and o,(x) be relatively
prime to P(x), and pi(x) and o;(x) be divisible by P(x)
for i>p,7>q. Then

» ¢
r= > m@y D o)y +P@Q, ).
Since 7s is divisible by P(x), the coefficient ps(x)o4(x) of
¥?T¢ must be divisible by P(x), contrary to IV of § 113.
IL. If two polynomials r(x, v) and s(x, y) are primitive
in vy, their product is primitive in y.
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For, if 7s is not primitive in y, then rs=1(x)T(x, y),
where 7(x) is not an element of F and hence, by V of
§ 113, has a factor P(x) which is irreducible in . Then,
by I, either 7 or s is divisible by P(x), whereas each is
primitive in y.

IIL. If, in (5), R and S are primitive in y and if r is
divisible by s, then R is divisible by S, and p(x) is divisible
by o(x).

For, if r=sk, where k= k(%) K (x, y) and K is primitive
in y, then

r=axSK, r=pR.

Since SK is primitive in y by II, a greatest common
divisor of the coefficients of the powers of v in 7 is ok
by the first equation and is p by the second. Hence,
by I of § 113, ok=ap, where a is in F. Then R=aSK.

COROLLARY  Amny divisor of a polynomial primitive
in v is itself primitive in y

This proof establishes also

IV. If p(x)R is equal to the product of o(x)S by k(x)K,
where R, S, K are primitive wn vy, then R=aSK and
gk=ap, where a is an element of F.

V. Two polynomials r(x, v) and s(x, y} with coefficients
in F have a greaiest common divisor [r, s| which is uniquely
determined apart from a factor belonging to F. The prod-
uct* ry of [r, s| by a certain polynomial in x is expressible
as a linear combination of r and s, while |r, s| itself may
not be so expressible.

* For example, let r=(x+1)y—1, s=2(y+1), and let F be the
field of rational numbers. Evidently [r, s]=1, which is not a linear com-
bination of r and s since they are both zero when x= —2, y=—1. This
holds also if F is the field of the three classes of residues of integers

modulo 3 (§ 110). Hence we cannot prove VI by the method employed
for II of § 113.
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For, let s=v(x)y"+ . ... be of degree n>o0 in y.
If 7 is of degree n+k—1 in y, the algebraic division of
?*r by s yields a quotient ¢; and remainder r, which is
either zero or has a degree n,(n, <n) in y, whence

hr=sq,+r:.

But if 7 is of degree <# in y, we take k=0, ¢;=o0, r,=7,
and see that the preceding equation continues to hold.
If n,>o0, we write r,=v(x)y"+ ....and find
similarly that
vhs=rgitra,

where 7, is either zero or has a degree n,(n,<#,) in ¥.
Since #, n;, #,, . . . . form a series of decreasing integers
Zo, the process terminates and ultimately leads to a
remainder 7,4, which is zero, while 7,>0. The final
two equations of the series are

ko I3
U s =Tm—rGm+Tm s U Tm—1=TmGm+1 -

Employ (5) and r,=7(x)T(x, y), where R, S, T are
primitive in y. Any common divisor of R and S divides
r and s by (5) and hence divides 71, 7,, . . . ., 74 in
view of our equations. Such a divisor of R and S is
primitive in y by the corollary to III. Since it divides
rm=7T, it divides T by IIIL.

Conversely, any divisor of T is primitive in y by
the corollary. Since it divides #*mr,_,, it divides rm—..
Similarly, it is a divisor of #p—2, . . . . , 72, 74, 5, 7, and
hence of R and S.

The two results show that T'=[R, S]. Then, by III,

[’7 s]= [Py U]T-
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In case [r, s] is an element of F, r and s are called
relatively prime.

VI. If r(x, y) and s(x, y) are relatively prime and if
r « k(x, v) is divisible by s, then k is divisible by s.

For, s is a divisor of both 7k and sk, and hence of

[rk, sk]=[r, slk=ak, ainF.

VIL. If the product of two or more polynomials in
x and vy is divisible by a polynomial s(x, y) which is irre-
ducible in F, at least one of them is divisible by s.

For, if rk is divisible by s, and 7 is not, then r and s
are relatively prime. Then, by VI, % is divisible by s.

VIII. Unique factorization into irreducible polynomials
follows as in V of § 113.

115. Algebraic extension of any field. In §1 we
employed a root a of an algebraic equation having
rational coefficients and noted that the rational functions
of a with rational coefficients form the algebraic number
field R(a), which may be regarded as the algebraic
extension of the field R of all rational numbers by the
adjunction of a. We may replace R by any other sub-
field S of the field of all complex numbers, employ a
root a (existing as a complex number) of an algebraic
equation with coefficients in S, and conclude that the
rational functions of a with coefficients in S form a
field S(a).

But the preceding method cannot be applied directly
to a field F not of type S, since we have, as yet, attached
no meaning to the term root of an equation with coeffi-
cients in F (apart from special cases in which there is a
root in F). We shall reach the corresponding goal by a
different method.
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Let P(x) be a polynomial of degree =1 in the inde-
terminate x. This and all further polynomials to be
employed are understood to have all their coefficients in
the (arbitrary) field F.

Two polynomials g,(x) and g,(x) are called congruent
modulo P(x) if g,—g, is divisible by P(x); we then
write g;=g, (mod P). All polynomials which are con-
gruent to a given one g are said to form the class [g].
The zero class [o] is composed of all polynomials, includ-
ing o, which are divisible by P.

If also A.(x)=h,(x) (mod P), then

gt+hx—=-g:+hz y gxthgzhz (mod P).

Hence the sum of an arbitrary polynomial g;(x) of a class
G and an arbitrary polynomial %;(x) of a class H belongs
to a class uniquely determined by G and H, and is desig-
nated by either G+H or H+G. Also their product
belongs to a definite class designated by GH or HG. In
other words, addition and multiplication of classes are
defined by

©) [gl+la=1rl+gl=[g+Al,  [gllk]=[Allg]=[gh].

We assume henceforth that P(x) is irreducible with
respect to F. If G[o], any polynomial g(x) of G is not
divisible by P(x) and hence is relatively prime to the
irreducible polynomial P(x). Hence by (3) there exist
polynomials o(x) and 7(x) such that og+7P=1. But
TP=o (mod P), so that [go]=[1]. Let S denote the
class containing ¢. Hence GS=[1].

The postulates (§ 108) for a field are seen to be satis-
fied by our classes as elements under addition and
multiplication as defined by (6), with [o] and [1] as the
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zero and unity elements. Since each number a of F
is a polynomial lacking x, it determines a class [a], and
these special classes form a field simply isomorphic
with F.

THEOREM 1. If P(x) is a polynomial irreducible in
F, the classes modulo P(x) of polynomials with coefficients in
F form a field F, having a sub-field simply isomorphic
with F.

Each class (o] is determined by the unique reduced
polynomial of degree < in the class, while the class
[o] is determined by the polynomial o. We may there-
fore employ these reduced polynomials, including o,
as the elements of F,. Then the sum of two such
elements g(x) and A(x) is an element of F,, but their
product is the element obtained as the remainder of
degree <z from the division of g(x) - (x) by P(x)
This remainder may also be obtained by the elimination
of the powers of x with exponents =# by means of the
recursion formula P(x)=o. In other words, we may
regard the element x of F; as a root of P({)=o0; this
agreement is merely a convenient mode of expressing
the fact that x is a root of the congruence

) P(§)=(E—2)Q(§, x)=0 |mod P(x)],

in which the polynomial Q(£, x) is the quotient obtained
by dividing P(¢) by £—=x, the remainder being P(x).

We have therefore solved the problem to extend a
given field ¥ to a field F, containing a root of a given
equation P(x)=o which is irreducible in F.

For various applications we need an extension F’
of a given field F such that any given polynomial f(x),
having coefficients in F, shall decompose into a product



218 FIELDS [cuap. x1

of linear factors with coefficients in F’. In case there
is such a decomposition in F, we may take F'=F. In
the contrary case, f(x) has an irreducible factor P(x) of
degree >1. In the field F,=F(x) obtained above, we
have P(£)=(£—x)Q(¢, %), whence* f(£)=(£—x)fi(8),
where f,(£) is a polynomial in £ with coefficients in F;.

In case fi(§) is a product of linear functions of £
with coefficients in F;, we may take F, as the desired
field F’. In the contrary case, f;(y) has a factor P,(y)
which is irreducible in F; and of degree > 1 in the new
indeterminate y. As above, y is a root of P,(¢)=o0 in
an extension F,=F,(y) of F,, so that P,({) has the
factor £—y in F, Thust fi(§)=(£—y)f.(£), where
f2(£) has coeflicients in F,.

If f,(¢) is a product of linear functions of £ with
coefficients in F,, we may take F'=F,. In the contrary
case, we employ a non-linear factor P,(£) irreducible in
F,, and extend F, to F;=F,(z), where P,(z) =o.

Proceeding similarly, we ultimately} obtain a field
F’ in which f(£) is a product of linear functions of £.

THEOREM 2. Given any field F and any polynomial
f(x) with coefficients in F, we can determine an extension
F' of F such that f(x) is a product of linear functions with
coefficients in F'.

116. Applications to congruences; Galois fields.
Although not required for our exposition of the theory of
e )"This and the preceding equation are really congruences modulo

x).
 This is really a congruence modulis P(x), P:(y), viz.,

[:(O—(£—9) fa(§) =AP(x)+BPi(y),
where 4 and B are polynomials in x and y with coefficients in F.

1 Or by adjoining a single root of the Galois resolvent of f(¢)=o,
as proved by J. Konig (Algebraische Grészen [Leipzig, 1903], pp. 150-55).
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algebras, an excellent illustration of the preceding theory
is furnished by the case in which F is the field of classes
of residues of integers modulo p, where p 1s a prime
>1 (§ 110).

By a polynomial in an indeterminate x we shall here
mean one having integral coefficients. Two such
polynomials are called congruent modulo p if anc only
if the coefficients of like powers of x are congruent
modulo p (i.e., their difference is divisible by p).

A polynomial %(x), not congruent to o, is said to be
of degree » modulo p if the coefficient of 2" is prime to p
and the coefficients of all higher powers of x are divisible
by p. Given also any second polynomial f(x), we can
readily determine three polynomials g, 7, s, such that

(8) J(@®)=h(x)q(x)+r(x)+ps(x),

where 7(x) is either o or of degree <z modulo p. In case
r(x)=o (mod p), we shall say that f(x) is divisible by
h(x) modulo p.

Theorem I of § 113 now states that any two poly-
nomials have a greatest common divisor modulo p which
is congruent to a linear combination of the two. Again,
Theorem V now states that a polynomial in x which is
reducible modulo p is congruent to a product of poly-
nomials each irreducible modulo p, and such a factoriza-
tion is unique apart from the arrangement of the factors
and apart from multipliers which are integers prime to .
It is unnecessary to restate similarly the remaining
theorems of §§ 113-14.

Each coefficient of r(x) in (8) can be expressed in the
form g+ pb, where ¢ and b are integers and oZa<p.
The terms having the factor p may be combined with
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ps(x). Also replace /(x) by a polynomial P(x) of degree
n irreducible modulo . Then (8) becomes

(9) f(@)=R(x)+pt(x)+P(x)q(x),
where
(10) R(x)=aptax+ . ... +a-"t (0=2ai<p).

We shall say that f(x) has the ultimate residue (10)
modd p, P(x). All polynomials having the same ulti-
mate residue R(x) are said to form a class [R(x)] modd p,
P(x). Hence there are p* classes. By Theorem 1 of
§ 115, they form a field of order *, called a Galois field and
designated by GF[p"]. Its elements may be taken to
be the p" ultimate residues (10), where now the par-
ticular residue « is regarded as a (Galois imaginary)
root of P(x) =o in the GF[p"], as explained in § 115.

It can be proved* that, if p is any given prime and »
is any given integer, there exists a polynomial P(x) of
degree » which is irreducible modulo P, so that the
GF[p"] exists. It is uniquely determined by p and z.
Every tinite field is a Galois field, a theorem due to
E. H. Moore.

* Dickson, Linear Groups (Leipzig, 1901), pp. 13-19.
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APPENDIX I
DIVISION ALGEBRAS OF ORDER #2

TuaeOREM.* If no power of « less thaw the nth is the
norm. of a polynomial in x with coefficients in F, algebra D
defined by (7) and (8) of § 47 is ¢ dwwsion algebra.

We arrange the roots of ¢(w)=o0 given by (5) of § 47 in
the following order:

(I) E!’—'Ey £2=0”_1(£)’ coe ey &..;On—i-i-X(f)’ LR |
‘ E=0(8),

whence
(2) 0(£i+x)=gi, £n+1521 (i=1, s e e ey n).

Let F(¢) be the field obtained by adjoiniug 10 F one
root, and hence every root (1), of ¢(w)=o0. Let A be the
algebra over F(£) which has the same basal units as D.
Then

o) ={—&) . ... (x—&)=o0
in 4. Write

) e"=(x_fx) R G o R o IR Gt Y
PUE-E) o EEe)E b . i)

@G=1,. ..,n).

If we replace x by a variable w of the field F(£), the sum
of the resulting fractions is equal to 1 for w=§;, since then
ei=1, ey =0(k>41). Since the sum is a polynomial of degree

* Announced by the author, Bulletin of the American Mathemasical
Society, XII (1906), 442. The proof by Wedderburn, Trasuactions of
the American. Mathematical Society, XV (1914), 16266, has been ampli-
fied here by the addition of (1)-(10).

221
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n—1 in w, which is equal to 1 for the » values £&(i=1, . . . .,
n) of w, it is identically equal to 1 (I, § 112). Hence

(4) entent . ... Fe,=I1

Since e;;e;;(i77) has the factor ¢(x), it is zero. Multiply-
ing (4) on the right by e;;, we get (5.):

(s) eigji=o  (i%#f),  €;=¢;.
From xy=y6(x) and (2), we get
(x—£)y=910(x) —0(i0) } =y(x— i) i,
in which the quotient g; is a polynomial in x. By (3),

en=Fk 'I”I (x—%&),

1=2

where & is independent of x. Hence
8uy=yPQ(x) , P= .H (x—f,-_,_,) , Q(x) =k ‘H g

Writing j for i+4-1, we see that P is the product of the x—§;
having j#2, whence P is the product of e;; by a number of
F(£). By division,

Q) =@—=E)h(x)+r,  r=Q(&).
But P(x—¢£,)=¢(x)=0. Hence
ey =yPr=ye.c, ey = y€3:6°,

whence ¢?=¢, ¢c=1, and e y=7ye,,.
If we permute &, . . . ., &, cyclically, also ey, . 4 o .,
€nn in (3) are permuted cyclically. Hence

(6) €iiY = YCitr, itz (1:=I’ ) ")»
with the agreement that e,4;, ,+; denotes e;. By induction,

(7 ey =y i, hi o
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We employ the following new elements of D:
8) ei=y"le;, e;x=i mti-ig, (=2, . .4, n).
Then, by (7),
enei=1y""e; * €i=¢éi, e,,'e,-,=’—1y =1, ynti-ip cep=e,,
eneu=§y"+"" CY e ei=ei,  eien=¢i.

Introduce the elements e,,=e¢.e;, for rs<1, s=1, r=s.
ITence

€;j = €i161j (i,j=I, “ o e sy n),

€ijCjk = €i181j * €j1€1p = €jr * €11 * €1p =E€i1€1p =€j},

€ijOR = €irCyj * €416y =Eir * 15657 * Culhs * ey=0  (j=k),

by (5:). Hence the ¢; obey the multiplication table of the
simple matric algebra (§ 51).

BY (8)’ €13=Y€22, Ylnr =Yl . ror I<’i<n,
I nt1—4§ i
€iy i+1=€irly, €+z=; *ln) * Citay i1 =YCitr, itr,

by (7). Summing and applying (4), we get

(9) y=euteyte,t ...t atvem.
As by the proof of (4), we have
(IO) r=bent . ... +f,,€m..

Since, conversely, the e; were expressed above as poly-
nomials in x and y, this completes the proof that algebra 4
is the simple matric algebra having the »? basal units e;;.

By (10), *=2¢le;. Multiply by a number a; of the
field F(¢) and sum as tos. Hence if f(x) is any polynomial
with coefficients in F(§),
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n

(1) f@=> fedea.

=1

From (9) we find by induction that

n-—r r
(12) y= z e,-,,.,.,-—l-'yE €n—rtir § »
i=1 Jj=1

By way of check, note that y»=+. Hence
(13)  yf(x)= Z & 1) e, y+i+'}’z [(£)en—rt5«
i=1 Jj=1

The matrix of (12) for r<# is composed of zero elements
except in two lines parallel to the main diagonal, that above
the diagonal (on it if »=0) having #—r elements 1 and that
below it having » elements 4. Hence the determinant of
the matrix (12) is (—1)®~"74". The matrix of (13) is of the
preceding type except that each element is now multiplied
by a factor f(&).

Hence in the matrix form of the general element

a= E yfo(x)

of algebra A4, each element below the main diagonal has the
factor y. For its determinant |a| we therefore have

(14) [a]ymo=fo(&) . . . . fo(§&s)=norm fi(&) .

We are now in a position to determine the conditions
which ¥ must satisfy in order that D shall be a division
algebra. For any given polynomials #; in x with coefficients
in D, we desire that

z=y+y "ht oo oo Fyhe-thy
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shall have an inverse. Write
="y " L. Ry,
where the k; are polynomials in . Then

zz=y+y " (I4y~"ky )+ (bt
YRy Ty TRy L.

The sums in parenthesis will be zero if
k==Yhy™",  ki=—yhyT =ykyT Yy, L.

These are polynomials in x with coefficients in F since

(15) y /@)y~ =f[6""* ()],
by (11) of §47 with r=n—s. Hence we can determine
ke, . .. ., ky_, sothat z:z2=2, where z, is of degree <7 in v.

If z, has an inverse w, so that wz,=1, then wzz=1 and
z has the inverse wz;. Let y'i(x) be the term of 2, of highest
degree in y. Then ¢<r and % has an inverse / in the field
F(x) and hence in D. Thus 2, will have an inverse if z,/=
y'4 . ... hasaninverse. The latter will have an inverse,
by the argument just employed for 2, if the next polynomial
of degree <? has an inverse.

It follows in this manner that z has an inverse unless we
reach a pair of consecutive polynomials whose product does
not involve y. Give them the foregoing notations, 2, 2.
Then z,z2=+-+6, where § is independent of v, since by (15)
the coefficients of k;, k,, . . . . of 2 are independent of ¥
and since in forming the product zz we obtain the term
y*=+ only once. For the moment, regard v as a variable
in F. If 6 involves x, ¥+46 is not zero and hence has an
inverse in F(x), so that z has an inverse in D. Hence let 8
be a number of F.

Employing the matric forms of the 2’s, we have

(16) zz=(y+06)I,
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where I is the n-rowed unit matrix. By the remark below
(13), the determinant |z| of z is a polynomial in v:

[z|=(=1)" "+ . ..., |a|=(—0)"""y" "4+ ..cu..

Each is a factor of (y+36)" by (16). Hence
|z]=(=1)"="(y+0).

When v =0, | 2| becomes norm #, by (14). Hence
(=1)"=r§"=norm A,.

If y+650, 2z has an inverse. If y+8=o0, the last result
shows that 4" is the norm of (—1)"4,. This proves our
theorem.

APPENDIX II

DETERMINATION* OF ALL DIVISION ALGEBRAS OF
ORDER 9; MISCELLANEOUS GENERAL THEOREMS
ON DIVISION ALGEBRAS

THEOREM 1. If an algebra A of order a has a modulus e
and contains a division sub-algebra B of order B whose modulus
is also e, there exists a linear set C of order vy (of elements of A)
such that A=BC, a=py.

For, if a, is an element of 4 which is not in B, the linear
set B+ Ba, is of order 28, since otherwise there would exist
elements b, and b,(b,70) of B for which &,+b.a,=0, whence
b;*b,+ea,=o, or a;= —>b;'b;, whereas a, is not in B. Then
if a=28, we have 4 =B(1, a.) and the theorem is proved.

But if a>23, A contains an element a; which is not in
B+Ba, The linear set B+ Ba,+Ba; is of order 38, since
otherwise B would contain elements b;, b., ;70 for which
b+b.a,4b0; =0, whence

a;= _b;r(bx"‘l'b?az) =b4+b5a«, y

* Amplification of the article by Wedderburn, Transactions of the
American Mathematical Society, XXII (1921), 129-35.
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whereas @; is not in B+Ba.. Then if a=38, we have
A=B(1, a,, a;) and the theorem is proved. If a>3B, we
repeat the argument.

CorOLLARY 1. The order of a division aigebra A is a
multiple of the order of any sub-algbera.

For, the sub-algebra is a division algebra with a modulus
u. If e be that of 4, then

w=u,ue=u, ulu—e)=o, u—e=o0.

THEOREM 2. Given a division algebra A over a non-modular
field F, let the alsebra B be com posed of all those elemems of A
which are commutative with every element of A. We can find an
extension F' of F such that the algebra A’ over F', which has the
same units as A, is the direct product of a simple matric algebra
and the commutative algebra B’ over F', which has the same
units as B.

For, by §76, there exists a field F’ obtained from F
by adjoining a finite number of irrationalities &, &, . . . .,
where 1, &, &, . . . . are linearly independent with respect
to F, such that algebra 4’ over F’ is a direct sum of simple
matric algebras 4,, . . . ., 4;. Let e be the modulus of
A;. If f=3f; g=3g;, where f; and g; are in 4;, and f is
commutative with g, then

fwi=fe=ef=2gfi, fmi=gli.

By § 52 the products of ¢; by numbers of F’ are the only
elements of A4; which are commutative with every element
of 4;. Hence all those elements of A’ which are commuta-
tive with every element of 4’ form an algebra B’ with the
basal units e, . . . . , é.

Since each e¢;, and therefore also any element y=o of B/,
is a linear function of the basal units of 4 with coefficients
in F', we may write y=Z¢x;, where the x; are elements, not
all zero, of 4, while &=1, and &, &, . . . . are the fore-
going irrationalities.
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If x is any element of 4 (and hence in 4’), xy=yx by
the definition of B’. Hence

o=xy—yx =2t {xx;—x:x) .

Since each xx;—x;x is a linear function of the units of 4 with
coefficients in F, and since the & are linearly independent
with respect to F, we have xx;=x;x for every 4, and for
every x in 4. Hence the elements of the sub-algebra B
(of A) generated by the x; are commutative with every
element of A. If x, is any element of 4 commutative with
every element of A, then #, is in B, since «, is evidently
commutative with every element of 4’ and hence is an element
of B’ of the special form y=x4of+o0k+ ... .. Thus
B is the algebra defined in the theorem.

Since every element of B’ is of the form y=Z¢x;, B’ has
the same basal units as B, although the two algebras are
over different fields F’ and F.

The commutative division algebra B is a field. We may
regard A as an algebra 4; of order /b over this field B. As
above we extend the latter field to a field F; such that the
algebra A; over F,, with the same units as 4,, is a simple
matric algebra or a direct sum of simple matric algebras.
The latter alternative is excluded since otherwise B would
not contain all elements commutative with every element of
A. Since A; is a simple matric algebra, 4’ over F’ is the
direct product of B’ and a simple matric algebra.

A division algebra 4 over F is called normal if the prod-
ucts of its modulus by numbers of £ are the only elements
of A which are commutative with every element of 4, i.e.,
if the B of Theorem 2 is of order 1.

CoroLLARY 2. The order of any normal division algebra
is a square.

COROLLARY 3. Amny division algebra A whose order is
the square of @ prime p is either normal or is equivalent o a
feeld.
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For, p*=>bg?, where b is the order of its B. Hence b=1
or $°. In the first case, 4 is normal. In the second case,
4 =B is a commutative division algebra and hence is a field.

Polynomials over an algebra. Let 4 be any algebra
having a modulus which will be designated by 1 Poly-
nomials a,+ax+ . ... 4a,x* in an indeterminate «x,
having coefficients a,, . . .., a, in 4, may be defined
as in § 111, with the modification that, when p is an element
of A and @ denotes the set (a, ar, - . . . , a,), pa=(pao,

., pay) and ap=(ap, . . . . , azp) mMay now be dis-
tinct since 4 need not be a commutative algebra. However,
x=(o, 1) is commutative with every element of A and hence
with the foregoing polynomial in x over 4.

Two such polynomials are equal only when corresponding
coefficients are equal. The sum and product of the two are
found as in elementary algebra, provided care is taken in
multiplication to preserve the order of factors belonging to
A. Let

A=g0™ . ... 40y, B=bo"+ ....+b, (b0)

be two polynomials in the indeterminate w over a division
algebra D. If n<m, we can determine unique polynomials
Q and R in w over D such that 4 =QB-+R, where R is o
or has a degree <n. In fact, we find

Q______aobo—-twm“n_'_(al_aobo—'lbl)b:lw"i"ﬁ-(_}_ e o 0 o

by the udsual division process, taking care to multiply the
divisor B on the left by the successive terms of 0. I R=o,
A is said to have B as a right {right-hand) divisor and Q as a
left divisor.

As in § 113, there exist greatest common right and left
divisors C; and C, of 4 and B, and polynomials L,, M,,
L,, M, over D such that

LxA+M;B=C1, AL:+BM3=C1.
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Lemma. If A=BC, B and C are polynomials in o over a
division algebra D, and if w—x is a right divisor of A, but not
of C, where x is in D, so that C=Q(w—x)+ R, where R0 is
independent of w, then w—1yis a right divisor of Bif y=RxR™'is
the transform of x by R.

For, by multiplying the expression for C by B on the left,

we get
A=BQ(w—2x)+BR.

Hence w—x is a right divisor of BR=Q'(w—x). Thus
B=Q'R~*(w—y).

TeEOREM 3. If D is a mormal division algebra over F,
and if ¢(w)=o is the equation of least degree p with coefficients
in F which is satisfied by the element x; of D, there exist further
elements %, . . . . , %p of D such that

(I) ¢(°’)E(w_xﬁ)(w'—xp—x) e e e (w_xz)(w_x!)-

Also ¢(w) is the product of the same linear factors permuted
cyclically.

Any element d of D is commutative with the coefficients
(belonging to F) of ¢(w) and also with w. Since ¢(x;)=o0,
¢(w) has the right divisor C=w—x,. Transform each mem-
ber of the identity ¢(w)=B(w—=x,) by d. We get

¢(w)=dBd~* « (w—dx,d™Y),

so that, if ¢ is any transform of «,, then w—¢ is a right divisor

of ¢(w).
Let «’ be a transform of x; which is not equal to z..
Write ¢(w)=BC. Since

C=w—2+R, R=x'—x,0,

we may apply the lemma with x=x«" and conclude that B
has the right divisor w—x, where xz,=Rx'R™* Write
B=B'(w—x,). Then ‘

¢lw)=B'C", C(C'=(o—2)(0—1).
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Either we have (2) for m =2, or there exists a transform x”/

of x; such that w—x" is not a right divisor of C’(w). The
lemma shows that B’ has the right divisor w—zx;, where x; is
the transform of ' by C’(#"") 0. Continuing, we finally get

(2) o(w)=LM, M=(w0—2p)(0—%p_y) . . ..
(w—2)(w—2%1),

where m=<p and, if y is any transform of x,, then w—y is
a right divisor of M. Write M=w™+ . ... +a, Then

(3) Y tay™ i+ L ... tap=o0

for every transform y of ;.

Suppose the a’s are not all in F.  Since D is normal, there
is an element z of D which is not commutative with at least one
a. Write af=z20;2"*. Transforming (3) by 2, we get

(zyz~ )" ai(zyz~ )™ 4 . ., . +ap=o0.
Hence every transform y of x, satisfies not only (3) but also
(4) y"apy™ i .. .. +aen=o0,

in which at least one coefficient differs from the corresponding
coefficient of (3). Subtracting (3) from (4), we get an equa-
tion of degree <m which is not identically zero and is satisfied
by every transform of #;:

y"+5;y"”'+ « s e e +Bq=0.

If the B’s are not all in F, the degree can be reduced again
by the preceding process. We finally obtain an equation
with coefficients in F which is satisfied by every transform
of x, and hence by x, itself. But of such equations, ¢(w) =0
is the one of least degree p. Hence m=p. Thus m=p and
¢(w)=M. This proves (1).
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Finally, we can permute the linear factors of (1) cyclically
if p>1. Write ¢=P(w—x;). The unique division process
yields ¢=(Q(w—=x;), where Q is a polynomial in w and =z,
with coefficients in F. Hence Q=P is commutative with
w—2x;, whence ¢= (w—ux,) P, as desired.

THEOREM 4. If A is an algebra over @ non-modular field F
and if y is an element for which the rank equation of A has no
multiple roots, then awny element of A which is commutative
with y is @ polynomial in y with coefficients in F.

For, let x be the general element x=Z2¢ie; of an algebra 4
over a non-modular field F. Let the rank equation of 4 be

f(x; £)=ao(£)xr+a!(£)xr~r+ o e ne +a4(£) =0,

where £ denotes the set of co-ordinates &, . . .., £, of x.
Let y=Zn;e; be a particular element of 4 such that f(y, n) =0
has no multiple roots. We seek the elements x which are
commutative with y.

Let N be a variable in F. Then f(y+Ax, n+\) =o.
The coefficient of each power of A in its expansion must be
zero. If we write

ai(ﬂ‘l‘)‘g):ai(ﬂ)"')\au(ﬂ; E)+A‘(L,’;(17, $)+ s s e ey

and equate to zero the coeflicient of A* in f, we get

r
f'(y, mx+ z air(n, £y~ =0,

i=o0

where f’ denotes the derivative with respect to y and is not
zero. Hence f’ has an inverse which is-a polynomial in y
(§ 84).

THEOREM 5. Every normal division algebra D of order ¢
over ¢ non-modular field F is generated by elements x and vy
such that xy=y6(x), ¥ =+, where v and the coefficients of the.
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polynomial 0(x) belong to F, while* x, 6(x) and 6*(x)=066(x)]
are the roots of a cubic equation irreducible in F.

For, by Theorem 2 in which B is now of order 1, D is a
simple matric algebra over an extended field. Hence the
rank equation of D is of degree 3 (§ 71). Thus the equation
of lowest degree with coefficients in F satisfied by an element
x; not in F is of the form{

(5) ¢(w)= w’+a,0* +a,0+a;=o0.

i) If D contains an element x; not in F which is commuta-
tive with a transform ¢=y~*x;y of x; (¢>x,), Theorem 4 shows
that ¢ is a polynomial 6(x;) in x, with coefficients in F. By
the foreguing, w—¢is a right divisor of ¢(w) and hence ¢ is
a root of (5). Since the latter is irreducible, and has a root
%, in common with ¢(f)=¢[f(x;)]=o0, all of its roots satisfy
the latter, by Theorem 7 of § 84, whence 62(x,) is a root of (5)
and 63(x;) is equal to the root x;. By the two expressions
for ¢,

xy=y0(x), X =y0(x),  XyP=y36(x)=yx,,

whence 33 is commutative with ¥, and by Theorem 4 is ex-
pressible as a polynomial in «;:

P =N+ ux;+v,

with \, g, »in F. If A and u are not both zero, 43 is not in F
and its adjunction extends F to the algebra (1, x;, 21) of order
3 over F. But y3 extends F to a sub-algebra of (1, v, ¥*) and
hence to the latter itself. Thus ¥ is a polynomial in x; and
hence is commutative with x,, whereas y transforms x, into
t>=x,. This contradiction proves that 43=». Hence
Theorem 5 is true for case (i).

* By (10), § 47. The algebra is of the type treated in §§ 47, 48.
t By Corollary 1, it is not of degree 2.
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ii) Let D contain an element x, which is not commutative
with any of its transforms other than «;, itself. By Theorem
3 there exist transforms x, and x; of #; such that

(6) d(w)=(0—x5)(w—=x) (0 —x),

in which the three factors may be permuted cyclically. We
proceed as in the proof of Theorem 3 with now

o = (w—x,) 02— ;) 77,

which is distinct from «,, since otherwise x,x;=2x;x,, contrary
to the hypothesis on ;. Hence

%, =Rx’'R™*=SxS5"1, S=(x"—x)(0;—x;),
S=a'(2:—x;) —x: (X — ;) = (2, — )0, — 2, (%, —x3)

(1) xa= (2 — 22 %, (B —2320) 7

Comparing (5) with (6), we have

X%+ 220422 =a,.
Permuting x;, x,, x; cyclically, we get
XXt XX+ 20 =a,, XXy X =aa.
By subtraction,
V= Loy — Xy = Xy — K3y = K30 — X555

Then (7) becomes
® =YXy~

Permuting #;, x., x; cyclically, we see that the three
preceding values of y are permuted cyclically. Hence (8)
gives

(9) xm=yxy™*, x=yxyi=yUy"?, m=)uy3,

whence 33 is commutative with #; and by Theorem 4 is
expressible as a polynomial in #,. As shown above, either y
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itself is commutative with x,, in contradiction with (8), or
y* is an element of F.

If any transform (other than y) of y is commutative with
v, we have case (i). If no such transform is commutative
with y, we take y as the x, employed at the beginning of
case (ii). Thus our discussion of case (ii) holds with the
simplification x} =+, where v is in ¥. Write

(10) =%y, %=X, 2, X P =akyx, T,

Then
2482 — 2,2 = X, VeyxT — aly? =, (yxly — 7)) %7t

Since (6) is now identical with w3—7v, a}=~y=2x2x;, whence
o=ul—x0: =y aly P —yxy " e =y(yaly—x,y°%:) /v,

by (8), (9), and y3=». Hence z,2,—2z,2,=0, so that z is a
polynomial 6(z;) with coefficients in . By (10},

222 =22, =%,0(22), B=7.

Replacing z, by x, and «, by y, we obtain Theorem 5.
Hence by Corollary 3 every division algebra of order g
is either a field or is of the type in Theorem §.

APPENDIX III

STATEMENT OF FURTHER RESULTS AND
UNSOLVED PROBLEMS

. If 4., ...., A, is a series of algebras such that
each A, is a maximal invariant proper sub-algebra of its pred-
ecessor A,_,;, while 4; is simple, the series is called a series
of composition of A,. The series of simple algebras 4;—4.,
A,—A; . ..., Asi—A,, A is called a series of differences
of A..

Algebra (1) in § 20 has the series of composition 4 =
(14, U, uy), (%s, w2), (u,), as well as that derived by any per-
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mutation of 1, 2, 3. For each of these six series of composi-
tion of 4, the series of difference algebras is composed of three
algebras of order 1, each generated by an idempotent element.
Since all such algebras of order 1 are equivalent, this illus-
trates the theorem* that two series of differences of the same
algebra contain the same number of algebras, and the
algebras of one series are equivalent to those of the other
series when properly rearranged. If A4 is an algebra of
index a and if the order n of A exceeds that of A¢ by r, each
series of differences of 4 can be so arranged that the first »
terms are zero algebras of order 1. Hence, if a>1, 4 has an
invariant sub-algebra of order n—1.

2. An associative algebra 4 with a modulus e over a
field F is reduciblet with respect to F if and only if it con-
tains an idempotent element e which is commutative with
every element of 4.

3. Iff an associative algebra A has no modulus, but
contains an invariant sub-algebra having a modulus, then 4
can be expressed in one and only one way as a direct sum of
an algebra B with a modulus and an algebra C which has no
modulus and no invariant sub-algebra which has a modulus.

4. The author§ has recently found all associative algebras
with a modulus of order # and rank # or 2 over any non-
modular field, and deduced all algebras of orders 2, 3, 4.
If 4 is of order and rank #, it contains an element x such that
I, % %% ...., a" ! are dependent, while x is a root of
an equation f(w)=o of degree » with coefficients in F.

* Wedderburn, Proceedings of the London Mathematical Society,
Series 2, Vol. VI (1907), pp. 83-84, 89.

t Scheffers, Mathematische Annalen, XXXIX (1891), 319; Linear
Algebras, pp. 26-27.

} Communicated by Wedderburn. B is an invariant sub-algebra
which has a modulus and is contained in no other invariant sub-algebra
having a modulus. Then A=B&C by § 22.

§ Proceedings of the London Mathematical Sociely, 1923.
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Then A is irreducible with respect to F if and only if f(w)
is irreducible or is a power of a polynomial irreducible in F.

5. Consider* algebra C in which multiplication is defined
by

(g+Qe)(r+Re)=t+Te, t=gr—R'Q, T=Rq+Qr,

where ¢, Q, r, R are any real quaternions, and 7/, R’ are the
conjugates of », R. Taking r=¢’, R=—Q, we get

N(g+Qe)=(g+Qe) (¢’ —Qe) =q¢'+QQ".

The norm of a product is the product of the norms of the
factors. Each of the two kinds of division except by zero is
always possible and unique, so that C is a division algebra;
it is not associative. The authort has discussed the
arithmetic of C at length.

6. If} a division algebra 4 over F contains a normal sub-
algebra B, A can be expressed as the direct product of B
and another algebra C over F. Further results on division
algebras have been obtained by the author§ and O. C.
Hazlett.|| Every associative division algebra over a finite
field is a field.q

* Dickson, Transactions of the American Mathematical Society,
XIIT (1912), 72; Annals of Mathematics, XX (1919), 155-71, 207; Linear
Algebras, p. 15. An cequivalent real algebra of order 8 had been given by
Cayley.

t Journal de Mathématiques, Sér. g, Tome II (1923).

1 Wedderburn, Transactions of the American Mathematival Society,
XXII (1921), 132. The proof is by the corollary to Theorem 2 in Linear
Algebras, pp. 28, 29.

§ Transactions of the American Mathematical Societv, VII (1906),
370, 514; XIII (1912), 50; XV (1914}, 39; Bulletin of the American
Mathematical Society, XIV (1907-8), 160; Gottinger Nachrichten (1905),
Pp. 358-93; Linear Algebras, pp. 69, 71.

|| Transactions of the American M athematical Society, XVIII (1917),
167-76.

9 Wedderburn, op. cit., VI (1905), 349; Dickson, Géttinger Nach-
richten (1905), p. 381.



238 APPENDIX 111

7. Invariantive characterizations of algebras and certain
vector covariants of them have been given by Hazlett* and
MacDuffeet. The author} deduced the algebra of quater-
nions from relations between algebras and continuous groups.

8. There are papers§ dealing with the relations between
linear algebras and finite groups, and others dealing with
analytic functions of hypercomplex numbers.

9. Among the unsolved problems are the determination
of all division algebras, the classification of nilpotent alge-
bras, the discovery of relations between an algebra and its
maximal nilpotent invariant sub-algebra (cf. §§ ro1-3 for
the case of complex algebras), theory of non-associative alge-
bras, theory of ideals in the arithmetic of a division algebra,
and the extension to algebras of the whole theory of algebraic
numbers.

* Annals of Mathematics, XVI (1914), 1-6; XVIII (1916), 81-08;
Transactions of the American Mathematical Society, X1X (1918), 408-20.

t Transactions of the American Mathematicar Society, XXIII (1922),
135-50.

L Bulletin of the American M athematical Socrety, XXII (1915),
53-01; Proceedings of the National Academy of Sciences, VI (1921),
109~14.

§ Linear Algebras, pp. 63, 73; or Encyclopédie des Sciences Mathé-
matiques, Tome I, Vol. I (1908), pp. 436, 441.
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section of, 26; order of, 23,
product of, 29; sum of, 20;
supplementary, 28

Linear transformations: corre-
sponding to elements of an

gebra, 93; defined, 2; de-
generate, 6; determinant of, 2;
mverse of, 4; not commutative,
4; orthogonal, 199; product of,
3; product associative, 4

Linearly dependent, 13, 15; inde-
pendent, 13

Matrices: adjoint, 7, 9; algebra
of, 16, 18, 22, g2; determinant
of, 6; diagonal, 173; division
by, 7; equal, 6; equivalent,
169-74; first and second, 95,
8, 99; first element of, 171;
identity, 7; inverse of, 7; prime,
174; product of, 5; product

INDEX

associative, 6; rank, 108, 173;
scalar, 8; sum of, 7; unit, 7;
with elements in a division
algebra, 165-74; with integral
elements, 168, 174. See Char-
acteristic, Minimum, Simple

Maximal invariant sub-algebra.
32, 42, 51

Maximal nilpotent invariant sub-
algebra, 44, 52, 108, 118, 121-27,
238

Minimum equation of element,
111; of matrix, 109-10

Modulo, 38, 202, 216

Modulus, 15, 33, 38, 97; of field.
106

Nilpotent, 43, 105, 175-76, 238
See Maximal, Properly

Norm, 20, 67, 63, 70, 109, 188, 224

Normal, 228

n-tuple, 22

Order of algebra, 14

Polynomials in an element, 61,
229; in indeterminates, 203-15.
See Class, Greatest, Irreducible,
Primitive, Reducible, Relatively
prime, Vanishing

Postulates for algebras, g, 23; for
arithmetics, 141; for fields, 200

Prime element, 159; matrix, 174;
quaternion, 152

Primitive idempotent, 55-58, 81

Primitive polynomial, 212

Principal idempotent, 49-s1, 57—
58, 81

Principal theorem on algebras,
118-27

Principal unit, 15

Product of linear sets, 29. See
Direct, Scalar

Proper sub-algebra, 31

Properly nilpotent, 46, 59, 60,
89. 9o, 105-8, 187



INDEX

Quadratic integer, 129
Quadratic number, 128

Quaternions, 19, 64, 67, 194-99,
237--38; arithmetic of, 147-56;
generalized, 187-94, 198

Rank of algebra, 114, 236, of
matrix, 108, 173

Rank equation, r11-17

Reciprocal algebras, 21, 96, 98, 99

Reciprocal groups, 98

Reducible algebras, 33-35, 53, 236

Redu6cible polynomials, 132, 135,
20

Relatively prime polynomials, 210;
quaternions, 151

Scalar multiplication, g

Scalar product, 8, 9

Semi-simple, 51-54, 60, 108, 118,
161-64, 187

Series of composition, 235

Series of differences, 233

Simple algebras, 42, 53, 54, 73--80,
127, 165-74

Simple matric algebras, 76, 78-8o,
82-91, 115, 118~20, 127, 223,
227

Sub-algebra, 31

Sub-field, 2

241

Subrraction, 12, 202
Sum of four squares, 154, 198

Sum of sets or algebras, 26. See
Direct

Supplementary, 28

Symbols: W,'jl for the determinant
whose general element is ag;
+, 26, 5, 2, 26, @, 33;
X, 72 (x,,....,xm), 255 A—B.
37; [#], 38, x=y (mod B), 38,
216, N(g), 20, 169, 788; A(x),
93; A'(x), R,, S,, y5; &(2),
§'(x), 101

Table of multiplication, 17

Trace, 105-8

Transformation of units, 15, 101,
117. See Linear

Units, 143-44, 153, 159, 170, 174,
179, 185, 194. See Basal,
Transformation

Unity of field, 201
Unsolved problems, 238

Vanishing of polynomial, 206-8

Zero algebra, 43
Zero element, 11, 201
Zero set, 25
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