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This text offers a unified and self-contained treatment
of basic topology. Both point-set and algebraic methods
are presented in some detail. The book is intended for a
first course in the subject of two semesters in length, at
the graduate level. A wealth of exercises, examples and
counterexamples, illustrations, and references for further
study enhances its value as a text.

The goal of the authors has been to present the funda-
mentals of topology needed by every professional mathe-
matician and at the same time to erect a broad framework
upon which the student of topology may build. This
double goal has resulted in the méntion of almost every
topic of interest in topology. Although many important
topics are necessarily discussed only briefly, a compre-
hensive index and bibliography will make this a valuable
reference for the mathematical worker in fields other than
topology.

The first half.of the book is primarily set-theoretic and
contains much inaterial not found in other texts. The sec-
ond half is algebraic and is particularly noteworthy for its
detailed trealmérjt-"of the elementary homotopy and ho-
mology theory of-*s:_imp]icial complexes. Among topics cov-
ered are the tlleori!__!of continua, Peano continua, inverse
limit sequence, relatiye homology and cohomology, the
Eilenberg-Steelrod axioms for simplicial theory, degree,
homotopy groups, the elements of topology of the n-
sphere.
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PREFACE

We have designed this book as a text for a one-year first course in
topology. As we have used it ourselves, the first four chapters cover the
material presented in the first semester, and the second semester is taken
from the last four chapters. The core of the first half-year has been the
following: Sections 1-1 through 1-12, Sections 2~1 through 2-10, Sections
3-1 through 3-7, and Sections 4-1 through 4-6. The second half-year
usually continues with Sections 4-7 through 4-10, Chapter 5, Chapter 6,
Sections 8-1 through 8-3, and as much as possible of the remaining
material.

Many important topics in topology are passed over with no more than
a brief mention. It is hoped that such mention will stimulate the reader
to follow the indicated paths to new ideas. Also, these digressions are
planned so as to give a broad, if ill-defined, framework upon which the
reader may build as he progresses. This is part of our deliberate intent to
leave the book “open” at the far end. That is, while we present the begin-
nings of topology, we point out that there is much beyond the confines
of this book. And in many instances we attempt to show the direction in
which further material may be found.

A few words about prerequisites for a successful study of this book are
in order. It has been our experience that the student should have had the
elements of set theory and should have had, or be studying concurrently,
courses in group theory and the theory of functions. A knowledge of
higher geometry is also desirable. It is not that this much “mathematical
maturity” is necessary, although it is decidedly advantageous. But we
do draw examples and motivation from analysis and geometry and depend
heavily upon group-theoretic results in the later chapters.

We use the conventional square brackets in referring to the numbered
bibliography. Thus, for instance, [14] refers to item number fourteen in
the bibliography. For purposes of internal reference, theorems, lemmas,
and corollaries are numbered consecutively within each chapter. A
reference such as Theorem 4-11 refers to the eleventh theorem of Chapter
4. The exercises are also numbered consecutively within each chapter.
Sections are numbered, too; Section 2-11 refers to Section 11 of Chapter
2, for example.

We have adopted two conventions that should be mentioned. An
equivalence class is always denoted by special heavy brackets; [ f] denotes
the equivalence class of which f is a representative. The other convention
is a modification of a space-saving device due to Halmos. We use a hollow

square, [_], to indicate the end of the proof of a theorem.
ii
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A NOTE ON SET-THEORETIC CONCEPTS

Throughout this book, and all of mathematics, certain ideas from the
theory of sets are fundamental. We review these basic concepts here and
introduce notation that will be used in our subsequent developments.
The reader who is unfamiliar with set theory is advised to consult a stand-
ard work on the foundations of mathematics, for example Wilder [43].

In set theory, there are two undefined or primitive concepts. The first
of these is set itself. This word is used more or less as a synonym for such
words as collection, class, family, system, or aggregate. The second primitive
concept is the phrase ¢s an element of as used in the statement “r is an
element of the set S.” We also use such synonyms as “zisin S,” “z belongs
to 8,” “xlies in S,” ete.

A set U is a subset of a set S if every element of U is also an element of
S. Then U is a proper subset of S if there are elements of S that are not
elements of U but not conversely. Given a subset U of the set S, the
complement of U in S, denoted by 8 — U, is the set of all elements of S
which are not elements of U. If U is a subset but not a proper subset of
S, then § — U contains no elements. The set containing no elements is
called the empty set and is denoted by @. The definition of a subset implies
that @ is a subset of every set.

Two sets S and T are identical, 8§ = T, if every element of S is an ele-
ment of T and conversely. This is equivalent to saying that S is a subset
of T and that T is a subset of S.

Given two sets S and T, two new sets may be formed. The union
S U T of Sand T is the set composed of all elements that are in S or are
in T. The infersection S N T is the set of all elements that are in S and
are in T. The two sets S and 7T are said to be disjoint if SN T = .
These definitions provide two binary operations U and N on sets, and
these operations satisfy certain basic logical equations. Some of these
are as follows: Let 4, B, and C be any sets, then the commutative laws are

AUB=BudAd and ANB=BnA, 1)
the associative laws are

AUBUC)=(AUBUC and ANBNC)=(ANB)NC, (2

v



vi A NOTE ON SET-THEORETIC CONCEPTS

and the distributive laws are

AuUBNO)=(AUB NAUD
and
ANBUC) =ANBUANOC.

If U and V are subsets of a set S, then
S—8—-U)=U,
U—-—U—-V)=UnYV,
and, de Morgan’s laws,

S—(AuB)= (S — A4A)n(S— B
and
S—(ANB) = — A) U (S — B).

®3)

€
©)

(6)

These and other properties will be used more or less implicitly as the
need arises. The reader may prove these laws himself or may consult
Wilder and the references given there. In Section 1-9 we also mention
another important concept in set theory, the axiom of choice and its

logical equivalents.
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CHAPTER 1
TOPOLOGICAL SPACES AND FUNCTIONS

1-1 Introduction. Topology may be considered as an abstract study
of the limit-point concept. As such, it stems in part from a recognition of
the fact that many important mathematical topics depend entirely upon
the properties of limit points. The very definition of a continuous func-
tion is an example of this dependence. Another example is the precise
meaning of the connectedness of a geometric figure. To exaggerate, one
might view topology as the complement of modern algebra in that to-
gether they cover the two fundamental types of operations found in
mathematics.

In applying the unifying principle of abstraction, we study concrete
examples and try to isolate the basic properties upon which the interest-
ing phenomena depend. In the final analysis, of course, the determination
of the “correct” properties to be abstracted is largely an experimental
process. For instance, although the limit of a sequence of real numbers
is a widely used idea, experience has shown that a more basic concept is
that of a limit point of a set of real numbers.

DEerinition 1-1. The real number p is a limit point of a set X of real
numbers provided that for every positive number ¢, there is an element
x of the set X such that 0 < |p — 2| < e

As an example, let X consist of all real numbers of the two forms 1 /n
and (n — 1)/n, where n is an integer greater than 2. Then 0 and 1 are
the only limit points of X. Thus a limit point of a set need not belong to
that set. On the other hand, every real number is a limit point of the
set of all rational numbers, indicating that a set may have limit points
belonging to itself.

Some terminology is needed before we pursue this abstraction further.
Let S be any set of elements. These may be such mathematical entities
as points in the Euclidean plane, curves in a given class, infinite sequences
of real numbers, elements of an algebraic group, etc., but in general we
take S to be an abstract undefined set. To reflect the geometric content
of topology, we refer to the elements of S by the generic name point.
We may now name our fundamental structure.

DEeriniTION 1-2. The set S has a topology (or s topologized) provided
that, for every point p in S and every subset X of S, the question ‘“‘Is
p a limit point of X?” can be answered.

This definition is so extremely general as to be almost useless in prac-
tice. There is nothing in it to impose certain desirable properties upon
the limit-point relation (more on this point shortly), and also nothing in

1



2 TOPOLOGICAL SPACES AND FUNCTIONS [cnap. 1

it indicates the means whereby the pertinent question can be answered.
An economical method of accomplishing the latter is to adopt some rule
or test whose application will answer the question in every case. For the
set of real numbers, Definition 1-1 serves this purpose and hence defines
a topology for the real numbers. [The use of the word topology here dif-
fers from its use as the name of a subject. Loosely speaking, topology
(the subject) is the study of topologies (as in Definition 1-2).]

A set S may be assigned many different topologies, but there are two
extremes. For the first, we always answer the question in Definition 1-2
in the affirmative; that is, every point is a limit point of every subset.
This yields a worthless topology: there are simply too many limit points!
For the other extreme, we assume that the answer is always “no,” that
is, no point is a limit point of any set. The resulting topology is called
the discrete topology for S. The very fact that it is dignified with a name
would indicate that this extreme is not quite so useless as the first.

Those factors that dictate the choice of a topology for a given set S
should become more apparent as we progress. In many cases, a “natural”
topology exists, a topology agreeing with our intuitive idea of what a
limit point should be. Definition 1-1 furnishes such a topology for the
real numbers, for instance. In general, however, we require only a struc-
ture within the set S which will define limit point in a simple manner and
in such a way that certain basic relations concerning limit points are
maintained. To illustrate this latter requirement, it is intuitively evident
that if p is a limit point of a subset X and X is contained in another sub-
set Y, then we would want p to be also a limit point of ¥. There are many
such structures one may impose upon a set and we will develop the more
commonly used topologies in this chapter. Before doing this, however,
we continue our preliminary discussion with a few general remarks upon
the aims and tools of topology.

The study of topologized sets (or any other abstract system) involves
two broad and interrelated questions. The first of these concerns the
investigation and classification of the various concrete realizations, or
models, which we may encounter. This entails the recognition of equiva-
lent models, as is done for isomorphic groups or congruent geometric
figures, for example. In turn, this equivalence of models is usually defined
in terms of a one-to-one reversible transformation of one model onto an-
other. This equivalence transformation is so chosen as to leave invariant
the fundamental properties of the models. As examples, we have the rigid
motions in geometry, the isomorphisms in group theory, ete.

One of the first to perceive the importance of these underlying trans-
formations was Felix Klein. In his famous Erlanger Program (1870),
he characterized the various geometries in terms of these basic trans-
formations. For instance, we may define Euclidean geometry as the
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study of those properties of geometric figures that are invariant under
the group of rigid motions.

Insofar as topology is an abstract form of geometry and fits into the Klein
Erlanger Program, its basic transformations are the homeomorphisms (which
we will define shortly).

The second broad question in studying an abstract system such as our
topologized sets involves consideration of transformations more general
than the one-to-one equivalence transformation. The requirement that
the transformation be one-to-one and reversible is dropped and we retain
only the requirement that the basic structure is to be preserved. The
homomorphisms in group theory illustrate this situation. In topology,
the corresponding transformations are those that preserve limit points.
Such a transformation is said to be continuous and is a true generalization
of the continuous functions used in analysis. It follows that second aspect
of topology finds many applications in function theory.

Since we are to be dealing with very general sets, we must give precise
meaning to the word transformation.

DermniTion 1-3. Given two sets X and Y, a transformation (also called
a function or a mapping) f:X — Y of X into Y is a triple (X, Y, @),
where G itself is a collection of ordered pairs (z, %), the first element of
each pair being an element of X, and the second an element of Y, with
the condition that each element of X appears as the first element of
exactly one pair in G.

If each element of Y appears as the second element of some pair in G,
then the transformation f is said to be onto.

If each element of ¥ which appears at all, appears as the second ele-
ment of exactly one pair in G, then f is said to be one-to-one. Note that a
transformation can be onto without being one-to-one and conversely.

As an aid in understanding Definition 1-3, consider the equation y = z2,
z a real number. We may take X to be the set of all real numbers and then
the collection G is the set of pairs (z, 22). From this alone, we cannot
determine the set ¥, however. Certainly ¥ must contain all nonnegative
real numbers since each such number appears as the second element of at
least one pair (z, z?). Taking Y to be just the set of nonnegative reals
will cause f to be onto. But if ¥ is all real numbers, or all reals greater
than —7, or any other set containing the nonnegative reals as a proper
subset, the transformation is not onto. With each new choice of ¥, we
change the triple and hence the transformation.

Continuing with the same example, we could assume that X is the set
of nonnegative reals also. Then the transformation is one-to-one, as is
easily seen. Depending upon the choice of Y, the transformation may or
may not be onto, of course. Thus we see that we have stated explicitly
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the conditions usually left implicit in defining a function in elementary
analysis. The reader will find that the seemingly pedantic distinctions
made here are really quite necessary.

If f:X — Y is a transformation of X into Y and z is an element of the
set X, then we let f(x) denote the second element of the pair in G whose
first element is x. That is, f(x) is the “functional value” in Y of the point
x. Similarly, if Z is a subset of X, then f(Z) denotes that subset of ¥ com-
posed of all points f(z), where z is a point in Z. If y is a point of Y, then
by f~(y) is meant the set of all points x in X for which f(x) = y; and if
* W is a subset of Y, then f~}(W) is the set-theoretic union of the sets
f~Yw), win W. Note that f~! can be used as a symbol to denote the
triple (¥, X, @), where G’ consists of all pairs (y, ) that are reversals of
pairs in G. But f~! is a transformation only if f is both one-to-one and onto.
If A is a subset of X and if f:X — Y, then f may be restricted to 4 to
yield a transformation denoted by f|A: A — Y, and called the restriction
of fto A.

We can now define the transformations that underlie the study of
topology. Let S and T be topologized sets. A homeomorphism of S onto
T is a one-to-one transformation f:S — T which is onto, and such that a
point p is a limit point of a subset X of S if and only if f(p) is a limit point
of f(X). This last condition means that a homeomorphism preserves
limit points, a econdition that is certainly natural enough if we expect to
study limit points. Note that since a homeomorphism f is both one-to-
one and onto, its inverse f~! is also a transformation. Furthermore the
“f and only if” condition implies that f~! is also a homeomorphism
f~L.T — 8.

One might consider the homeomorphism as the analogue of an isomor-
phism in algebra, or a conformal mapping in analysis, or a rigid motion
in geometry. The less restricted class of continuous transformations
mentioned earlier are then analogous to the homomorphisms in algebra,
or analytic functions in analysis, or projections onto a lower-dimensional
subspace in geometry. A transformation f:S — T is continuous provided
that if p is a limit point of a subset X of S, then f(p) is a limit point or a
point of f(X).

By introducing a new symbol, we can express continuity more con-
cisely. If X is a subset of the topologized set S, we let X denote the set-
theoretic union of X and all its limit points and call X the closure of X. The
continuity requirement on f then may be expressed by assuming that if p
is a point of X, then f(p) is a point of f(X).

ExEercisE 1-1. Show that if S is a set with the discrete topology and f:S — T
is any transformation of S into a topologized set T, then f is continuous.

ExEercise 1-2. A real-valued function y = f(z) defined on an interval [a, b]
is continuous provided that if @ < zo < b and € > 0, then there is a number




1-2] TOPOLOGICAL SPACES 5

6 > 0 such that if [x — zo| < §, z in [a, b], then [f(z) — f(z0)] < e. Show
that this is equivalent to our definition, using Definition 1-1.

1-2 Topological spaces. In attempting to formulate a rule to use in
answering the pertinent question in Definition 1-2, we should be guided
by the properties of limit points and their relationships as found in analysis,
where this abstraction began. For instance, we would not welcome a
situation in which a point p is a limit point of the set of limit points of a
set X and yet p is not a limit point of X itself. The structure we present
first to accomplish our aims is widely adopted.

Consider a set S. Let {O.} be a collection of subsets of S, called open
sets, satisfying the following axioms:

0. The union of any number of open sets is an open set.
Os. The intersection of a finite number of open sets is an open set.
O3. Both S and the empty set @ are open.

With such a collection {O.} we now determine the limit points of a
subset as follows. A point p is a limit point of a subset X of S provided
that every open set containing p also contains a point of X distinct from
p. This definition yields a topology for S and, with such a topology, S
is called a topological space.

Note that not every set with a topology is a topological space. If S
is a topologized set, then for S to be a topological space, it must be possible
to obtain the given topology by selecting certain subsets of S as open sets
satisfying Oy, O3, and O3 and to recover the given limit-point relations,
using these open sets.

We now suppose that we have a topological space S with open sets
{O«}. We define a subset X of S to be closed if S — X is open.

TuEOREM 1-1. If X is any subset of S, then X is closed if and only if

X = X.

Proof: Suppose X = X. Then no point of § — X is a point or a limit
point of X. About each point p in S — X, then, there is an open set O,
containing no point of X. By Axiom 0, the union of all the sets Op, pin
S — X, is an open set. Clearly this union is § — X.

Conversely, if X is closed, then S — X is open. If p is any point of
S — X, then S — X itself is an open set containing p but no point of X.
Hence no point of S — X can be a limit point of X.[]

TueorEM 1-2. The closed subsets {C.} of a topological space S satisfy
the following properties:

C1. The intersection of any number of closed sets is closed.
(2. The union of a finite number of closed sets is closed.
C3. Both S and the empty set @ are closed.
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Proof: Let {C}} be any subcollection of {C,}. For each set Cg, S — Cj
is open. Hence by 01, Us(S — Cj) is open and therefore S — Us(S — Cp)
is closed. But S — Us(S — Cp) = NgCh by de Morgan’s law. This
proves C.

Let C4, ..., C% be any finite subcollection of {Cy}. Then each 8 — ('
is open and by O, Ni=; (S — C!) is open. Again applying de Morgan’s
law, we see that N'—; (S — C{) = S — Ui—; Ci. Thus Ui—; C; is closed,
proving Cy. Property C3 follows immediately from Os. []

This result is actually a theorem in pure set theory, not in topology.
It depends only upon de Morgan’s law, which asserts that if S is any set
and {X,} is any collection of subsets of S, then N.Xo = S — Ua(S — X.).
A proof of this property is rather easy and is available in any treatise on the
theory of sets. For example, see Fraenkel [8].

We might point out the obvious formal duality between Properties
(4, (5, C5 and Axioms Oy, Oz, O3. One may always pass from true state-
ments about open sets to true statements about closed sets by interchanging
“open set” with “closed set” and “union” with “intersection” throughout.
This would be much too formal an approach, however, and defining a
topological space via its closed sets lacks certain advantages which we will
bring out in the next section.

1-3 Basis and subbasis of a topology. One justification for considering
open sets is a desire to reduce the number of subsets that one must study
in order to define a topology. If ¢ is the cardinal number of the set of real
numbers, for example, then the set of all subsets of the real numbers has
cardinal number 2°, a “larger” infinity than c¢. To decide set by set and
point by point which points are to be limit points of which sets would
require ¢ - 2° = 2° decisions. But the collection of open sets in the topology
determined by Definition 1-1 has only cardinal number ¢. A proof of this
is presented later.

It is natural to ask if we can select a still smaller collection of subsets
and use these to define the open sets. The answer is often affirmative,
and the following definition provides such a collection.

A collection of subsets {B,} of a given set S is a basis for a topology in S
provided that

(1) UB. = S and that

(2) if p is a point of B, N Bg, then there is an element B, of {B.} which
contains p and which itself is contained in B, N By.

We note that the collection of open sets satisfying Axioms O;, Os, and
O3 is a basis according to this definition.

Suppose that ® = {B,} is such a basis in a set S. We define “open
set,” and hence a topology, by agreeing that a subset of S is open if it is
a union of elements of ® We may either agree that the empty set is a
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union of no elements of ®, or explicitly include the empty set in ®. The
resulting collection of open sets satisfies Axiom Oj, for by (1) 8 is open,
and by agreement @ is open. Also, the satisfaction of Axiom 0, is obvious,
for a union of unions of basis elements is a union of basis elements. To
establish Axiom O,, we first point out that condition (2) can be formulated
as follows:

(2') I pisa point of B,y NBe, N... N B,,, then there is an element of
® that contains p and is contained in N}—; B.,. (The proof is by induction,
of course.) Now if {B,,, ..., B.,} is any finite collection of basis elements,
then for each point p in N}_; B, there is a basis element B, (py containing
p and lying in the intersection. It follows that UpBapy, the union of all
such basis elements, must be contained in N, B,,. But since B,,, con-
tains p for each point p, we also know that UpBap) contains Ni—y B,,.
Thus this intersection is a union of basis elements and is open. The same
kind of argument will also show that the intersection of a finite number of
open sets is a union of basis elements and hence is open. We may there-
fore state the following result.

TueoreM 1-3. If ® is a basis for a topology in S, then the collection of
open sets defined by ® satisfies the axioms for a topological space.

Given a set S and some intuitive idea of what its topology should be,
it is usually much easier to find a basis that agrees with the intuition than
it is to describe the open sets in general. However, there may be many
choices for a basis, all giving the same topology. For example, in the
Euclidean plane we can take as a basis the collection of all interiors of
circles or the set of all interiors of squares. Since any union of interiors of
circles is a union of interiors of squares and conversely, it is obvious that
both collections define the same open sets in the plane. Either of these
collections defines the Euclidean topology for the plane. We also could have
used as a basis the collection of all interiors of ellipses, or all interiors of
triangles, or all interiors of crescents, and achieved the same topology.
This is an example of the equivalence of different bases.

Two bases are equivalent if they determine identical collections of open
sets.

THEOREM 1-4. A necessary and sufficient condition that two bases ®
and ®' for topologies in a set S be equivalent is that if p is a point of an
element B of ®, then there is an element B’ of ®’ containing the point p
and contained in B and ¢onversely.

Proof: If ® and ®’ are equivalent, then the condition is obviously sat-
isfied. Suppose that the condition holds, and let O be a union of elements
of B. Then each point of O lies in an element of ®’, and this element is
contained in 0. Thus O is also a union of elements of ®. A converse
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argument shows that the open sets defined by ®’ are the same as those
defined by ®. [ ]

Of course, it is also possible to choose nonequivalent bases, but this
will lead to different topologies. For instance, the set of all half-planes
x > zo for all real numbers x, satisfies the two conditions for a basis
for a topology of the plane. It is easy to see that the only nonempty open
sets of this topology are the plane itself and the elements of the basis. It
is true that each such “open set” is open in the Euclidean topology, but
the Euclidean topology has many open sets that are not open in this new
topology. Thus the two topologies are not equivalent, although in a sense
to be discussed shortly, they are comparable.

Another example of a different basis for the plane is the set of all hori-
zontal open line segments. It is left as an easy exercise to show that every
Euclidean open set is open in this new topology but not conversely. That
is, there are more open sets in this new topology than in the Euclidean
topology.

It is often the case that we have a topological space S but still find it
convenient to select a basis for S. That is, we choose a particular sub-
collection of the open subsets of S as a basis, in such a way that the new
basis is equivalent to the basis of all open sets of S. A subcollection ® of
open sets of a topological space S is a basis for S if and only if every open
set in S is a union of elements of ®. (This is a slightly different use of the
word “basis” than that given by the previous definition, but we will not
discriminate between them.) The concept of a countable basis illustrates
this situation. A countable basis for a space S is a basis that contains only
countably many sets. This term is used almost always in the sense of a
basis for a topology already given in S.

Exercisk 1-3. The collection of all circles in the plane with rational radii
and with centers having rational coordinates is a countable collection. Show that
the interiors of such circles form a basis for the Euclidean topology of the plane.

Now suppose we have a set S and any collection {X,.} of subsets of S
such that U,X. = S. Can we define a topology for S in which each X,
is an open set? The answer is “yes” because we may always assign to S
the discrete topology in which there are no limit points. In the discrete
topology, every set is closed and hence every set is open. It appears that
our question should have been, “Is there a topology for S in which each
X, is open, and in which there are no ‘extraneous’ open sets?” By this
we mean that no proper subcollection of the open sets contains all of the
sets X, and satisfies Axioms Oy, Os, and Oz. The answer is still “yes.”
Any collection of sets satisfying Axiom O, and containing all the sets Xq
must also contain all finite intersections of sets in {X.}. Then if the same
collection satisfies Axiom Oj, it contains all unions of such finite inter-
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sections. Thus the collection ® of all finite intersections of sets in {X.}
(each X, is such an intersection) satisfies the conditions for a basis and
hence determines a collection © of open sets for a topology in S. The
topology so determined answers our question affirmatively, and this sit-
uation motivates our next definition.

A subcollection ®& of all open sets of a topological space S is a subbasis
of § provided that the collection of all finite intersections of elements of
® is a basis for S.

ExErcise 1-4. Show that the collection of all open half-planes is a subbasis
for the Euclidean topology of the plane.

ExErcisk 1-5. Let 8 be any infinite set. Show that requiring every infinite
subset of S to be open imposes the discrete topology on 8.

Let {0.} and {Rg} be two collections of subsets of a set S, both satisfying
Axioms 01, Oz, and Os. That is, 8 has two topologies. We will say that the
topology 31 determined by {0,} is a finer topology than the topology 32 deter-
mined by {Rg} if every set Rg is a union of sets O,, that is, each Rgis open in
the 31 topology. We will denote this situation with the symbol 31 = J2. We
easily see that the two topologies are equivalent if we have both 31 = 32 and
32 = 31. We now consider the collection of all possible topologies on a given
set S. As an exercise, the reader may prove the following result due to Birk-
hoff [63]: the collection of all topologies on a given set S constitutes a lattice
under the partial ordering defined above.

1-4 Metric spaces and metric topologies. In this section, we give the
most direct generalization of the topology used in real numbers in analysis.
Let M be a set of points, and assume that there exists a real-valued func-
tion d(z, y) on pairs of elements of M satisfying the following conditions:

1. d(z,y) =2 0.
2.d(x,y) =0 ifandonlyif z = y.
4. d(z,y) + d(y,2) 2 d(z,2) (the triangle inequality).

We say that M is a metric space with metric d, or with distance function d.

The spaces that are most familiar to the reader are metric spaces. For
example, if we define the distance between two real numbers = and y by
setting d(z,y) = |z — y|, we have converted the real numbers into
a metric space.

A metric provides an easy way to define a topology in a metric space.
For let = be any point of a metric space M with metric d, and let r be a
positive number. The spherical neighborhood S(x, r) of the point z is the
set of all points y in M such that d(z, y) < 7, the number r being the
radius of the neighborhood.

The set of all spherical neighborhoods in M satisfies the conditions for a
basis. The first condition is satisfied trivially, of course. To prove that
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the second condition holds, let p be any point in an intersection S(z1, 71) N
S(zs, 72). Let r be the smaller of the two numbers r; — d(p, z1) and
ro — d(p, z2). Since p is in both spherical neighborhoods, it follows that
r is positive. Now suppose ¢ is a point in S(p, r). Then for ¢ = 1 or 2,
we have

d(g, z;) < d(p, @) + d(p, ) < r+ d(p, z)

<
< (r; — dp,x)) + d(p, ) = 130

Thus ¢ lies in S(z; 73), 4 = 1,2, and hence S(p, r) is contained in the
intersection S(z1, r1) N S(xe, 72).

The topology defined in a metric space M by the basis of all spherical
neighborhoods in M is the metric topology of M.

As an important example we define Euclidean n-dimensional space E™.
The points of E™ are all ordered n-tuples (x4, X3, - . - , Tn) Of real numbers.
Ifox= (1,...,%)andy = W1, ..., Un), then we define

n 1/2
d(z, y) = [Z (@i — yi)z] :
=1

Tt is left as an exercise for the reader to prove that this is indeed a metric.
(It is evident that we are using nothing more than the usual formula for
the distance between two points as we find it in analytic geometry.)

One may consider a metric space from two standpoints. To the topol-
ogist, the particular metric used on a space is merely a convenient way to
define open sets. For instance, we may use the metric

d(z,y) = D lei — i
7=1

for E™ and obtain exactly the Euclidean topology. The metric is often a
convenience in proving theorems and, to the topologist, the choice between
equivalent metrics is merely a question of expediency.

On the other hand, to a metric geometer the metric is important in
itself. A change in the metric changes the metric space. As we pointed out
earlier, the natural equivalence relation between topological spaces is the
homeomorphism. For the geometer, the corresponding transformation on
metric spaces is the ¢sometry, a one-to-one distance-preserving transforma-
tion of one metric space onto another. A question that might interest a
metric geometer is this: does a certain type of metric space M with metrie
d have the midpoint property, i.e., for each two points z and y in M is
there a point z such that d(z,2) = d(y, 2) = Ld(z,y)? This is not a
topological question at all. To see this, we note that the closed interval
[0,1] in E! and the closed semicircle p = 1, 0 < 8§ < (in polar co-
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ordinates) are homeomorphic under the homeomorphism f(z) = 1, wz).
Then in the Euclidean metrics the first example has the midpoint property
and the second does not. A topologist might be interested in knowing
whether a certain type of space has at least one metric with the midpoint
property or if the space were such that every metric has the midpoint
property.

We will use the term “metric space” to mean a topological space that
has a metric such that the basis of spherical neighborhoods yields the
original topology. Of course, any set may be assigned a distance function.
We simply let the distance between distinct points equal unity in every
case, and the axioms for a metric will be satisfied. This metric will impose
the discrete topology on the set, however. The crux of the matter here is
the requirement that the metric topology be the original topology. In
this sense, a metric space is often called a metrizable space.

As an example of the topological power of a metric, we give the follow-
ing result. First, a set X of points in a space S is said to be dense in S if
every point of S is a point or a limit point of X, that is, if $ = X. A
space is separable if it has a countable dense subset. For instance, E™
is separable since the set of all points whose coordinates are all rational is
countable and dense.

THEOREM 1-5. Every separable metric space has a countable basis.

Proof: Let M be a metric space with metric d(z, y) and having a count-
able dense subset X = {z;}. For each rational number » > 0 and each
integer ¢ > 0, there is a spherical neighborhood S(zi, r), and the set ® of
all these is countable. We will show that ® is a basis. Let p be any point
of M and let O be an open set containing p. Then there is a positive num-
ber € such that S(p, €) is contained in O, by definition. There is a point
z; of X such that d(z;, p) < €/3 since X is dense. Let r be a rational
number satisfying €/3 < r < 2¢/3, and consider S(z;,r). Certainly
S(xi, r) contains p, and if y is any point of S(z;, r), then

2¢ €
d(y, p) < d(y, x;) + d(xi, p) < Ttg=¢€
Thus y is in S(p, €) and so S(x;, 7) is an element of ® that contains p and
lies in 0. Tt follows that O is a union of elements of ® and that @ is a
basis for the topology of M. []

Without the assumption of metricity, Theorem 1~5 is not true. In E?, con-
sider the set P of all points (z, y) with ¥y = 0. Let a basis for P consist of (1) all
interiors of circles in P but not touching the z-axis, and (2) the union of a point
on the z-axis and the interior of a circle tangent from above to the z-axis at that
point. The set of points in P both of whose coordinates are rational is both
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countable and dense in P. But no element of the basis just defined contains
two points on the z-axis. If there were a countable basis ® for P, then each
basis element above would be a union of elements of 3. This would imply that
there is a subcollection of & such that each point of the z-axis lies in one and
only one element of that subcollection. This contradicts the fact the real num-
bers are uncountable.

ExercrsE 1-6. In E*, let 2 = (21,...,%:) and ¥y = (y1, ..., ¥x), and de-
fine d'(z,y) = Yi=1 |xi — yi| and d”(z, y) = max; |z; — ys|. Show that both
d’ and d”’ give the same topology as the Euclidean metric. What do the basis
elements look like?

1-5 Continuous mappings. The definition of a continuous transforma-
tion given in Section 1-1 is not easy to apply. A more useful eriterion for
continuity is contained in Theorem 1-6. In fact, this condition is usually
given as the definition of continuity.

TrrorEM 1-6. Let fi:S — T be a transformation of the space S into
the space T. A necessary and sufficient condition that f be continuous
is that if O is any open subset of T', then its inverse image f~(0) is open
in S.

[Note that to speak of f71(0), it is not necessary that each point of O
be the image of a point of 8. Indeed, f~!(0) may very well be empty.]

Proof: Suppose first that f is continuous, and let O be open in T. If
f~1(0) is not open, then S — f~!(0) is not closed. Hence there is some
point p in f~1(0) that is a limit point of & — f~!(0). By the definition of
continuity, f(p) is a limit point or a point of f[S — f~(0)]. It is cer-
tainly possible that disjoint sets have intersecting images in general, but
not if one of these is an inverse set. That is, we can assert that f[f1(0)] C O
and f[S — f~1(0)] are disjoint. This implies that f(p) cannot be a point of
fIS — £~Y0)), so it must be a limit point of this set. But O is an open set
of T that contains f(p) but no point of f[S — f~!(0)]. This contradicts
the definition of limit point, and hence f~!(0) must be open.

The argument in the other direction is even easier. Suppose p is a
limit point of a subset X of S. If f(p) is not in f(X), then T — f(X) is
an open set containing f(p). Hence f'[T — f(X)] is an open set contain-
ing p but not intersecting X, another contradiction. [ ]

TaEOREM 1-7. A necessary and sufficient condition that the trans-
formation f:S — T of the space S into the space T be continuous is
that if = is a point of S, and V is an open subset of T containing f(x), then
there is an open set U in S containing z and such that f(U) liesin V.

Proof: To establish the sufficiency, we show that if O is an open set in
T, then f~1(0) is open in S. To do so, let  be a point of f~'(0). Then O
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is an open set containing f(z) so that there is an open set U, containing x
and such that f(U,) lies in 0. It follows that U, is in f~1(0) and that
f7Y0) = U,U,. Hence f~1(0) is open. For the necessity, take U —
S7n.Od

ExErcist 1~7. Show that a one-to-one transformation 7:S — T of a space S
onto a space 7' is a homeomorphism if and only if both f and f~! are continuous.

A rewording of Theorem 1-7 for metric spaces strongly resembles the
classic definition of continuity in analysis.

TaEOREM 1-8. Let f:M — N be a transformation of the metric space
M with metric d into the metric space N with metric p. A necessary and
sufficient condition that f be continuous is that if e is any positive
number and z is a point of M, then there is a number 6 > 0 such that
if d(z,y) < ¢, then p[f(x), f(y)] < e.

Proof: The sufficiency of the condition is easily established. Let V be
an open set in N and y be a point of V. There is a spherical neighborhood
S(y, € lying in V. The given condition implies that the neighborhood
S(z, 8), z in f~1(y), in M is such that JI8(z, 6)] is contained in S(y, €)
and hence lies in V. Thus the condition of Theorem 1-7 is satisfied.
Again a proof of necessity is easy and is left as an exercise. ]

At an early stage in his study of topology, the student may not recall
whether Theorem 1-6 says that the inverse of an open set is open or that
the image of an open set is open. Both conditions seem equally sensible.
It may help to give a name to the second possibility, which is, moreover,
an important type of transformation.

A transformation f:S§ — T of the space S into the space T is said to be
tnlerior if f is continuous and if the image of every open subset of S is
open in 7.

Some writers discuss transformations that carry open sets into open
sets but that are not necessarily continuous. Such transformations are
usually called open.

We will refer to a continuous transformation as a mapping from now on.

THEOREM 1-9. A necessary and sufficient condition that the one-to-one
mapping f:S — T of the space S onto the space T be a homeomorphism
is that f be interior.

Proof: According to Exercise 1-7, we need only show that f~! is con-
tinuous. But this follows from Theorem 1-6, for if O is open in S, then
(f=)710) = f(0) is open in T. Thus fis a homeomorphism. The neces-
sity also follows immediately from Theorem 1-6. O

It is now easy to give examples of one-to-one mappings that are not
homeomorphisms. Let S be the set of all nonnegative real numbers with
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their metric topology, and let T be the unit circle in its metric topology.
For each z in S, let f(z) = (1, 2m22/(1 + z2)), a point in polar coordinates
on 7. It is easily shown that f is continuous and one-to-one. But the set
of all z in S such that x < 1 is open in S while its image is not open in 7.
Hence f is not interior and is not a homeomorphism.

1-6 Connectedness. Subspace topologies. Perhaps the reader feels
that some examples of wuseful topological results are overdue. One im-
portant example of the usefulness of our development is embodied in this
section.

A topological space is separated if it is the union of two disjoint, non-
empty open sets. A space is connected if it is not separated. It should be
obvious that either property is invariant under a homeomorphism.

We may leave the proofs of the following lemmas as exercises:

LemMa 1-10. A space is separated if and only if it is the union of two
disjoint, nonempty closed sets.

LemMma 1-11. A space S is connected if and only if the only sets in S
that are both open and closed are S and the empty set.

TueorREM 1-12. The real line E! is connected.

To prove such a theorem, we must use some properties of the real num-
ber system. We have assumed implicitly that the reader already knows a
good deal about the real numbers, and we do not intend to make a detailed
study here. We do state one important property, however, and take it to
be an axiom.

DepekiND cur axiom. Let L and R be two subsets of E' with the
three properties that (1) neither L nor R is empty, (2) R U L = E',
and (3) every number in L is less than any number of E. Then there is
either a largest number in L or else a smallest number in R, but not both.

Proof of Theorem 1-12. Suppose E! is not connected. Then it is the
union of two disjoint nonempty open sets, U and V. Let u be some point
in U and v be some point in V. It is, at most, a renaming of the sets to
assume that v < v. Let L consist of (a) all numbers, whether in U or V,
that are less than u, together with (b) all numbers z such that every point
in the closed interval [u, x] belongs to U. Let R be all other numbers.
Certainly L is nonempty, and since » must lie in R, R is also nonempty.
By definition, every number is in L or in B. Also, by construction, every
number in L is less than every number in B. Thus L and R form a Dede-
kind cut, and there is a number m that is either the largest in L or the
smallest in R. The number m must lie in U or in V'; suppose first that m
is in U. Then there is an open interval (a, b) containing m and lying in
the open set U. We may assume that a and b are alsoin U. If misin L,
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is in L, although m < b. Hence m cannot be in L. If m is the smallest
number in R, there must be a point y of V between « and m. But then y
must be in R, although y is less than m, another contradiction. Thus m
cannot be in U. If m belongs to V, we can choose [a, b] to lie in V with
a <m <b Ilfmisin R, then aisin R and is less than m. If m lies in L,
then b is also in L and is greater than m. Hence m cannot be in V. This
means we have a contradiction in any case, so E' must be connected. [ ]

We have defined a connected space, but it should be obvious that there
are separated spaces that contain connected sets. For instance, consider
the union of two parallel lines. There is a general principle for changing a
definition so that it applies to a subset of a space.

Let S be a topological space and X be a subset of S. The subspace topology
of X is that obtained by defining a subset U of X to be open in X if it is
the intersection of X with some open subset of S. That is, we take for
open sets of X all sets of the form X N O, where O is open in S. Tt is easy
to prove that, with this topology, X is a topological space, a subspace of
S. This implies that we have here a general method for constructing many
topological spaces.

Furthermore, we can now say that a property defined for spaces is a
property of a subset X if X has the property as a subspace. Thus X is a
connected subset of a space S if X is a connected subspace of S. Expressed
without using subspace topology, this says that a subset X of S is connected
if there do not exist two open sets U/ and V in S such that U N X and
¥ N X are disjoint and nonempty, and such that U U V = X.

The subspace topology is also called the relative topology. We speak of
a subset A of a subset X of a space S as being open relative to X or as being
closed relative to X, etc., if A is open, closed, etc., in X in the subspace
topology.

then m > u, and we have v < m < b. But then [u, b] lies in U, so b

A subset X of a space S is separated, we have implied, if there exist two open
sets U and V of S such that U N X and ¥V N X are disjoint and nonempty, and
such that U U V D X. We cannot assume that U and V are disjoint in S, how-
ever. Consider a space S consisting of three points @, b, and ¢, with the open sets
being 8, 0, a U ¢, and a U b. Then b U ¢ is not a connected subset of S, but there
are no disjoint open sets in S, one containing b and the other containing c.

THEOREM 1-13. A subset X of a space S is connected if and only if
there do not exist two nonempty subsets_ A and B of X such that X =
A U B and such that (A N B) U (4 N B) is empty.

Proof: 1f two such subsets exist, then S — A is an open set containing
B, and S — B is an open set containing 4. Thus we have that (S — 4) N
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X and (S — B) N X form a separation of X. Therefore if X is connected,
the two sets A and B cannot exist, and if these sets do not exist, X cannot
be separated. [ ]

TueoreEM 1-14. Suppose that C is a connected subset of a space S
and that {C.} is a collection of connected subsets of S, each of which
intersects C. Then S’ = C U (U.C.) is connected.

Proof: There is no loss in supposing that 8’ = S, since we may take S’
as a subspace. Suppose to the contrary that S = U U V, where U and
V are disjoint, open, nonempty sets. Then for each «, C, must lie entirely
in U or entirely in V. For if C, meets both U and V, we would have
Co=(Can U) U (CanV), which gives a separation of C,, although
C, is connected. Similarly, C lies entirely in U or in V. But if C' isin V,
say, then each C, meets V, and hence, for each o, C, lies in V. Then
C U (Uale) isin V,and U is empty, which is a contradiction of the assump-
tion that U and V were nonempty. [ ]

CoroLLAaRY 1-15. For each n, E™ is connected.

Proof: Let x = (x1, ..., %) be a point of E”. For each real number ¢,
let tx = (tzy, txs, . . ., tx,), the ordinary scalar product of the vector z
by a scalar f. Let I, denote the set of all such points ¢x. The mapping
f:l, — E' defined by f(txr) = ¢ is a homeomorphism of the subset I, onto
E'. Hence by Theorem 1-12, I, is connected. Each set I, contains the
origin, and E™ = U,l,, so by Theorem 1-14, E™ is connected. [_]

Connectedness is not only a fopological invariant, preserved by homeo-
morphisms, but it is also preserved by continuous mappings.

THEOREM 1-16. Every continuous image of a connected space is
connected.

Proof: Suppose that S is any space, that f:.8 — T is continuous and onto,
and that 7' is separated. If 7 = U U V, where U and V are disjoint, non-
empty, open sets, then f~'(U) and f~!(V) are open (Theorem 1-6) and
are clearly disjoint and nonempty. Hence S is separated. If S were con-
nected, this would provide a contradiction. [ ]

Lemma 1-17. For » > 1, the complement of the origin in E™ is con-
nected.

Proof: The hyperplane P whose equation is z, = 1 in E" is homeo-

morphic (indeed isometric) to E"~!. Let x = (xy,...,z,). If z is not
the origin, at least one coordinate z; is not zero. If j # n, the line con-
sisting of all points (zy,..., % ..., %,_1,1), t a real number, contains

the point 2, intersects the plane P, and does not pass through the origin.
(This line is normal to P.) If x, is the only nonzero coordinate of the
point x, the line of points joining « and the point (1,0, ..., 0, 1), that is,
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points [£,0,...,t + (1 — ¢)x,], does not pass through the origin, does
intersect P, and does contain x. The union of P and all these lines is
connected, by Theorem 1-14, and obviously fills up E® — 0. []

The n-dimensional sphere S™ is defined to be the set of all points x =
(x1, T2, - - ., Tny1) in E*H! satisfying a3 + -+ + 224y = 1. S° consists
of the two points 41 in E!.

TaeoreM 1-18. For each n > 0, S” is connected.

Proof: The mapping f carrying each point (21, 3, ..., 2nq1) of
E™t! — 0 onto the point (v1/]z|% ..., Tay1/|2|?) is easily shown to be
continuous (see Exercise 1-8). By Lemma 1-17, E"*! — 0 is connected,
and hence Theorem 1-16 proves this theorem. []

It is clear that in Theorem 1-16 and Lemma 1-17 we are assuming some
properties of the “analytic geometry” of E® that we have not proved. In
Chapter 5 we give a more detailed treatment of this topic.

As an example of the use of the fact that connectedness is preserved by
a continuous function, consider the following familiar situation. Let
y = f(z) be a real-valued function continuous on the closed interval
la,b] in E'. Assume that f(a) - f(b) < 0. Then there is a point z¢ in
(a, b) such that f(zo) = 0. To prove this, we note that [a, b] is connected
(see Exercise 1-9) and that, by Theorem 1-16, f([a, b]) is connected.
Since f(a) - f(b) < 0, it follows that f([a, b]) contains the point 0. Hence
771(0) is not empty.

Another situation familiar from analysis may be generalized in our
present context. Suppose f:S — T and ¢:T — X are transformations.
Then the transformation 2:S — X defined by h(z) = g(f(2)) for each
point z in S is called the composition of f and g, denoted by k = gf.

TurEorEM 1-19. If both f:S — T and g:T — X are continuous, then
the composition gf is also continuous.

Proof: Let O be an open set in X. By Theorem 1-6, g~1(0) is open in
T, and then f~'(¢g™*(0)) is open in 8. Hence (gf) ~1(0) is open in 8, im-
plying that gf is continuous. []

ExEgrcise 1-8. Show that the mapping f used in Theorem 1-18 is continuous.

ExErcisE 1-9. Given any closed interval [a, b] in E?, find a continuous map-
ping of E?! onto [a, b], thereby proving that [a, b] is connected.

ExErcise 1-10. Show that E*+! — 8" is the union of two disjoint open con-
nected sets.

Exzercise 1-11. Let P be a hyperplane in E*, given by

Al.’vl—{— + Anx" = B.

Show that £” — P is the union of two disjoint open sets.
Exgrcise 1-12. Show that the torus (the surface of a doughnut) is the con-
tinuous image of E? and is therefore connected.
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1-7 Compactness. As we progress, we shall see that the concept of a
covering becomes increasingly important. A collection of sets {X,} is
said to cover a set X, or is said to be a covering of X, if the union U,X,
contains X. Thus the collection of all vertical lines in E? covers E? and,
indeed, covers any subset of E2. Most often, we will be concerned with
coverings whose individual elements are open sets or, as we shall say,
open coverings. An important instance of the use of open coverings is to
be found in the following definition.

Let S be a topological space. Then S is compact provided that, if {0.}
is any open covering of S, then some finite subcollection {O.,, ..., O.,}
of {O.} covers 8. The reader will perhaps recognize this as being related
to the Heine-Borel theorem for closed intervals in E! (see below).

A subset X of a space S is a compact subset of S if X is a compact sub-
space. We note that this says that compactness of a subset is defined in
terms of relatively open sets. Our first result indicated that we could have
used open subsets of S instead.

LEmMa 1-20. A subset X of a space S is compact if and only if every
covering of X by open sets in S contains a finite covering of X.

Proof: If X is compact, and {O.} is a collection of open sets of S cover-
ing X, then {O. N X} is a collection of relatively open sets covering X.
A finite subcollection {O., N X, ..., O, N X} covers X by definition,
and hence the collection {O,, ..., Oa,} covers X. Conversely, if {U,}
is any collection of relatively open sets covering X, for each « there is an
open set O, such that O, N X = U,. The collection {O.} covers X, so
some finite number O, ..., O, covers X. Then U,, =0, N X, ...,
Ua, = Oa, N X covers X. [ ]

It may clarify matters if we prove the Heine-Borel theorem.

TaEOREM 1-21. A closed interval [a, b] in E! is compact.

Proof: Let {O.} be a collection of open sets in E' covering [a, b]. We
construct a Dedekind cut (L, R) of E! as follows. A point p is put into L
if (1) xz <a,orif (2) a £ 2 = b and a finite number of open sets O,
covers the closed interval [a, z]. A point is in R otherwise. It is easy to see
that this defines a cut. Hence there is a point m that is either the largest
in L or the smallest in R. In either case, m is in [a, b], s0 some open set
O, contains m. Because all open intervals constitute a basis for E!, there
is an interval [u, v] in O, (we may assume [u, v] to be closed) such that
a < u < m < v. Regardless of whether m is in L or in R, u is in L, so
a finite number O, . . ., O,, of open sets in {O.} covers [a, u]. The sets
Qs - - -, Oa,, On therefore cover [a,v], so v is also in L. But v > m,
contradicting either of the two possibilities for m. ]

We mentioned earlier the duality between open and closed sets. One
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place where this duality is put to use is in describing a condition dual to
compactness. A space S has the finite intersection property provided that if
{C,} is any collection of closed sets such that any finite number of them
has a nonempty intersection, then the total intersection N.C,. is non-
empty. A family of closed sets, in any space, such that any finite number
of them has a nonempty intersection, will be said to satisfy the finite
intersection hypothests.

TreorEM 1-22. Compactness is equivalent to the finite intersection
property.

Proof: Suppose that S is compact and that {C,} is a family of closed
sets with an empty intersection. Then each point of S is in the comple-
ment of at least one set C,. Thus the open sets {S — C.} cover S, and
some finite number of these, 8§ — C,,,..., S — C.,, covers 8. It follows
that Ni—; C.; is empty. Hence if {C,} satisfied the finite intersection
hypothesis, we would have a contradiction.

On the other hand, suppose that S has the finite intersection property,
and let {O.} be an open covering of S. If no finite subcollection of {O0,}
covers S, then given any such subcollection O,,, .. ., O.,, there is some
point of S not in any of these. In other words, Ni—; (S — O;) is not
empty. Hence the sets {§ — 0.} satisfy the finite intersection hypothesis,
and the intersection N,(S — 0,) is not empty. But this implies then that
U0, is not S, contradicting the assumption that {O.} covers S.[]

Closely related to compactness is the notion of countable compactness.
A space S is countably compact if every infinite subset of S has a limit
point in S. (The reason for using the word “countable” here is that if
every countably infinite set has a limit point, then every infinite set does,
because every infinite set contains a countably infinite subset.) In general
topological spaces, this property is not equivalent to compactness, al-
though we do have this equivalence in metric space. (See Section 2-8.)
The following implication holds in general, however.

THEOREM 1-23. A compact space is countably compact.

Proof: Suppose that S is a compact space and that X is any subset. If
X has no limit point, then each point z of S lies in an open set O, contain-
ing at most one point of X. The sets {0,} cover S, and hence some finite
number O,, . . ., O, covers S. But then there are at most n points in X.
It follows that any infinite subset must have a limit point. []

Suppose that S is a compact space and that f:S — T is a continuous
mapping of S onto a space T. If {O,} is a covering of T by open sets, then
the sets {f7'(0.)} are nonempty and cover S. Hence some finite subcol-
lection {f7'(0a)}, i =1, ..., n, covers S. Then f[f~(0.,)] = O,
covers T, and T is also compact.
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If S is countably compact, and f:S — T is continuous and onto, con-
sider an infinite subset X of 7. For each point x in X, select a point y in
S such that f(y) = z. The set of all such points y is an infinite set ¥ in S
and hence has a limit point p. Continuity, in the form given by Theorem
1-7, then implies that every open set in 7' containing f(p) also contains
infinitely many points of X. Thus X has a limit point in 7. Both of these
situations may be summed up as follows:

THEOREM 1-24. Compactness and countable compactness are both in-
variant under continuous transformations.

The above result is a generalization of the following well-known situation
in the calculus.

Let y = f(x) be a continuous real-valued function on a closed interval
[a,b]. Then f([a, b]) is connected, by Theorem 1-16, and compact, by
Theorem 1-24. It follows that f([a, b)) is also a closed interval, and hence
we find: a real-valued function continuous on a closed interval attains both a
maxtmum and a minimum value.

The reader may be familiar with the strong form of the Heine-Borel
theorem, which states that every open covering of a closed and bounded
subset of E! contains a finite subcovering. This situation generalizes
completely.

THEOREM 1-25. A closed subset of a compact space is compact.

Proof: Let C be a closed subset of a compact space S. Recalling Lemma
1-20, let {O.} be a collection of open sets of S covering C. Then 8§ — C
and the sets {O,} constitute an open covering of S, so some finite number
of them forms a covering of S. Those elements of this finite covering that
contain points of C' are all in {O,}, and these form a finite subcovering
of C.[]

We point out that, in the very general spaces now under consideration,
a compact subset of a compact space need not be closed. For example, let
S consist of two points a and b, with open sets S and @ only. Then as a
subset, the point a is compact, but it is not closed.

The word “compact” has been defined in so many (related) ways that
one must be quite careful in reading the literature. For a long time, a
space was said to be compact if it were what we have called countably
compact. And a subset X of a space S was said to be compact if every in-
finite subset of X had a limit point in S. In metric spaces, which were
then the most widely studied, our compactness for spaces was proved as
a theorem, and our compactness for subsets was shown to be equivalent
to the old compactness for subsets plus closure. In more general spaces,
however, it was found that countable compactness does not give the
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“right” theorems, whereas covering compactness does. A new term bi-
compact was introduced and used for a while to mean our covering com-
pactness, but the prefix was later dropped. The terms countably compact
and sequentially compact were coined to replace the older notion of com-
pactness for spaces; for subsets, the terms conditionally compact and pre-
compact are sometimes used to mean that a subset is compact in the older
sense. All these terms are in current use, but the terminology we have
adopted is the most common.

Exgrcise 1-13. Show that countable compactness is equivalent to the fol-
lowing condition. If {C,} is a countable collection of closed sets in S satisfying
the finite intersection hypothesis, then N;=; C; is nonempty.

Exgercise 1-14. Prove that a compact subset of a metric space is closed.

Exercise 1-15. Find a space in which every uncountable subset has a limit
point but no countable subset has a limit point.

Exercisi 1-16. Is the open interval (a, b) compact?

1-8 Product spaces. Kuclidean n-space is defined as n-tuples of real
numbers or, in other words, by taking n-tuples of points of E 1, This is
one instance of another general process for constructing new spaces from
old. (The first such process was that of taking subspaces.) For another
example (see Fig. 1-1), we may consider the torus obtained by rotating
about the z-axis the circle C; in the zz-plane whose equation is (x — 2)2 +
22 = 1. The circle z? -+ y2 = 1 in the zy-plane lies on this torus. We
call this circle C5. We may now assign to each point on the torus a pair of
“coordinates” consisting of a point p; on C; and a point pg on Cz. The
point (p1, pz) on the torus is found by rotating C'; about the z-axis until
it lies in a vertical plane containing p, and letting (p1, p2) be the image of
py under this rotation.

)

Ficure 1-1
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Exercise 1-17. Show that the plane set consisting of all points (z, y) satisfy-
ing 1 = 224 y? £ 4 can be given coordinates consisting of a point on the
circle 2 4+ y2 = 1 and a point on the interval [0, 1] in EL.

These considerations lead to the concept of a product space, which we
will formulate initially for the case of a finite number of factors. Let
Si1, Sa, ..., S, be n spaces, not necessarily distinct. We first form the
product set Pi—; S;, the collection of all ordered n-tuples (x4, 7o, . . ., Z,),
each z; being a point of S;. We topologize this collection so as to obtain
the product space of Sy, ..., Sy, for which we use either the same symbol
Pi_; S; or the symbol 8; X Sz X -+ X S,. A basis for the topology in
Pi—; S; is the collection of all sets of the form P}_; U, where each U is
open in S;. It should be evident that we obtain an equivalent basis if, for
each 7, we restrict the set U, to be in a basis for 8;. For instance, consider-
ing E? as E' X E', we might take the basis elements for £ to be all open
rectangle regions, the products of pairs of open intervals.

An alternative phrasing of this topology may be made as follows. For
each j, there is a “natural” mapping 7;:P;—; S; — S;, called a projection,
defined by m;(xy, ..., 25 ..., 2.) = z;. For w; to be continuous, it is
necessary that if U is an open set in S;, then m;'(U) be open in P?_; S;.
Suppose that we wish to have no more open sets in P!, S; than are re-
quired to make each m; continuous. Then we must take all sets 7; ' (U)
as a subbasis for a topology. This requires that we take all finite inter-
sections of sets of the form ;' (U) as basis elements. Thus the require-
ment that each projection be continuous imposes precisely the same topol-
ogy as we introduced.

We wish now to extend the definitions above to the case of an infinite
number of factors. To prepare for this, let us analyze the concepts used.
In the first place, the integers 1, 2, . . . , n used as subscripts for the spaces
S; were functioning not as numbers but as labels. We had several spaces,
and to enable us to distinguish them we appended subscripts. Looking at
this properly, to each integer we assigned a space, thus forming an index-

ing function from the numbers 1,2, ..., n to the collection of spaces.
Next we formed n-tuples (21, 2, ..., &), 2; in S;. But these n-tuples
are again functions, functions f from the integers 1,2,...,n into the

union of the sets S;. We imposed the restriction that f(z) must be a point
of S;, so as to have “ordered” n-tuples.

In the general case, we utilize this new approach. We start with a
collection G of spaces and a set A = {a}, an indexing set. We select some
definite indexing function ¢:A — @ and designate ¢(a) by S.. As points
of the product space P48, we take all functions f:A — U4S, with the
restriction that f(a) be a point in ¢(a) = S.. We now wish to topologize
P 48.. We have two natural choices, which correspond to the two methods
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used for the finite case. Unfortunately, the two are not equivalent in the
infinite case, and the first one does not yield the “correct” results. That is,
we do not say that sets of the form P4U,, U, open in S., constitute a
basis. The proper definition, yielding the so-called Tychonoff topology [126],
is to take a set P, U, to be a basis element if each U, is open in S, and,
for all but a finite number of values of a, Uy = 8S..

As justification for the Tychonoff topology, we note that it is precisely
the one giving a topological space and defined by requiring projections to
be continuous. If we define the projection mg:P4S. — S by setting
ms(f) = f(8), and require each 4 to be continuous, we immediately see
that for every finite number of elements in 4, ay, . . . , an, the intersection
M1 7r.,T,.1(Ua,.), where Ul is open in S,, must be open. But this is pre-
cisely the same as the set P4V,, where for « = a; we have Ve = U,
and for @ 3¢ o; we have V, = S,. It follows that the Tychonoff topology
yields the “smallest” number of open sets in terms of which the projec-
tions are all continuous. Further discussion of this point will be found in
Section 1-10.

1-9 Some theorems in logic. In dealing with product spaces that have
infinitely many factors, we are led inevitably to certain results in pure
logic. These results form the content of this section, which is a digression
from the main interests of the book.

It was Zermelo who first recognized that, without explicit formulation
or proof, mathematicians were constantly making use of the following
proposition.

AxioMm OF cHOICE. Let G be a collection of disjoint, nonempty sets.
Then there exists a set 4 such that for each element G of G, ANnG
is precisely one point.

There are cases, of course, in which we can define such a set 4 explicitly.
For example, let G be the collection of all vertical lines in the plane. Then the
z-axis is a set A. On each line we can tell exactly which one point belongs to A.
Again, consider a collection G of disjoint closed intervals in E2. We can form A
in several ways. One way is to note that on each interval in G there is a point
nearest the origin, and to take A to be the set of all such points. Another
method would be to note that if an interval in G is not horizontal, it has a point
with largest ordinate, but if the interval is horizontal, it has a point with largest
abscissa. We could then take A to be the union of the points thus singled out.
On the other hand, to give a famous example, we may form disjoint sets of real
numbers by the following criterion. Two real numbers z and y are in the same
classif z — y is rational. This is actually an equivalence relation on E!, and the
resulting equivalence classes are disjoint and nonempty sets. (In fact, these
sets are all congruent.) We may assert, using the axiom of choice, that there
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is a set A consisting of one point from each of these sets. Unlike the previous
two cases, however, no one has ever constructed such a set A. By this we mean
that, given one of the sets, no way of telling which point of this set is in A is
known. This last example, incidentally, is of a set that is not Lebesgue-
measurable. No nonmeasurable set is known which does not depend upon the
axiom of choice for its definition.

From the axiom of choice we can establish the Zermelo proposition.

TrEOREM 1-26. Let G be a collection of nonempty sets, G. Then there
is a set B of pairs (@, z), where G is an element of G and z is a point of
@, and where each element of G is the first element of exactly one pair
in B.

Proof: Even though the elements of G may intersect, the collection
G* = {8*} of sets S* where S* is the set of all pairs (S, y) for all choices
of y in S, is a collection of disjoint nonempty sets. We then apply the
axiom of choice to G*. []

We have already made implicit use of the Zermelo proposition in one
of its formulations. Suppose that we have a collection G = {S.} of sets,
indexed by means of an indexing function ¢ from the index set A = {a}.
The collection B = {(S., %)}, where z. is in S, given by Theorem 1-26,
determines a function c:4 — U4S., defined by ¢(a) = z.. This cer-
tainly satisfies the condition that ¢(a) is a point of S,. Such a function is
called a choice function. It is evident that the existence of such choice
functions is equivalent to the Zermelo proposition. Thus the points in the
infinite product P 4S, are precisely the choice functions for the collection
{S.}, and the existence of such “points” depends in general upon the
Zermelo proposition.

Several other forms of the axiom of choice can be given, but first we
need some definitions. Suppose that we have a set A and a binary relation
<, defined between elements of A. The relation < is a simple-order rela-
tion, and A is simply-ordered by <, provided that

(1) for each two elements x, y of 4, eitherx < yory < z,
(2) if z < y, then y < =z is false, and
3) ifz < yandy < 2, then 2z < 2.

If (1) is not satisfied for each pair z, y, then < is called a partial-order
relation, and A is partially-ordered by <. A simply-ordered set A is well-
ordered if every nonempty subset A’ of A has a first element; that is, there
is an element @ of A’ such that if a’ is any other element of 4’, thena < a'.
For instance, the positive integers, ordered according to size, are well-
ordered.
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The axiom of choice is equivalent to the well-ordering theorem of
Zermelo.

THEOREM 1-27. Every set can be well-ordered.

We do not prove this. We merely observe that this theorem means that
into every set a simple-order relation can be introduced, using the axiom
of choice, in such a way that the set is well-ordered under this order rela-
tion. The real numbers are not well-ordered by size; there is no smallest
positive number, for example. But by Theorem 1-27, there exists an order
relation in which the reals are well-ordered although no such relation has
ever been explicitly defined.

The last proposition that is equivalent to the axiom of choice and that
we will need is the following.

MAXIMAL PRINCIPLE. Let A be a set partially-ordered by a relation <.
Let B be a subset of A4, and assume that B is simply-ordered by <.
Then there is a subset M of A that is simply-ordered by <, contains B,
and is not a proper subset of any other subset of A with these properties.

For instance, we may partially-order the set A of all points on lines
x = m, n a positive integer, by saying that (n,y;) < (m,ys) if m — n
is positive. The points (p, 5), p a prime number, form a simply-ordered
subset. One maximal subset M is the set of all points (n,5), n > 0.
Another is the set (n, y), where y = 5if nis a prime and y = 3 otherwise.

For a more complete discussion of the various forms of the axiom of
choice, the reader is referred to Wilder [43], or to Fraenkel-Bar Hillel [8(a)].

1-10 The Tychonoff theorem. A principal justification for adopting
the Tychonoff topology in product spaces is the following result.

TueorEM 1-28. If {8.} is any collection of compact spaces, indexed
by an index set 4, then the product space P 43S, is compact.

Before proving this result, let us examine the chief difficulty. Suppose
we want to prove that 7' X I', where I! is the unit interval [0, 1] in E?,
has the finite intersection property. Let {Cs} be a family of closed sub-
sets of I' X I' satisfying the finite intersection hypothesis. It would
seem natural to proceed as follows. Let 7, denote the projection of 7! X I'!
onto its first factor, and let 75 denote the same for the second factor. The
closed sets C'g are compact, hence the images m;(Cs) are compact and, by
Exercise 1-14, are closed. The closed sets m;(Cj) satisfy the finite inter-
section hypothesis and, by the compactness of I, there is a point x; in
Nsmi(Cg). Then, one might hope, the point (z;, z5) should be in NgCs.
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But this need not be the case. In Fig. 1-2, ignore the circles temporarily,
and consider the pairs of closed square regions Cy, Cy,C3,.... We see
that z{ is in Nm1(C;), and z3 is in Nw(Cj). But (21, 5) is not in NC;. If
we could know a priori, we might have picked z; and zs, or zj and 23,
but in any case some careful choosing is obviously needed.

Given a closed subset C of P 48., it may be possible to add it to the col-
lection {C.} in such a way that the new collection still satisfies the finite
intersection hypothesis. If so, then it may be possible to add another
closed set C’, etc. We could hope to continue, finally enlarging the col-
lection of closed sets until it could not be further enlarged. The point of
such a procedure can be seen in Fig. 1-2. If the collection {C;} of pairs of
closed square regions were enlarged to include either one of the circular
regions, we would have a new family satisfying the finite intersection hy-
pothesis. Whichever disk we add, we eliminate the possibility of selecting
“extraneous” pairs of points. It is true that the construction of a maximal
family of closed sets in P48, will require the use of the maximal principle,
for there are very many closed sets in P4S,, and a constructive proof
would, in general, be impossible.

Lemma 1-29. Let S be a space and § = {C.} be a collection of closed
subsets of S satisfying the finite intersection hypothesis. Then there
exists a collection ¥ of subsets of S such that ' contains &, F’ satisfies
the finite intersection hypothesis, and ¥’ is not a proper subcollection
of any other collection of sets having the first two properties.

Proof: Let @ = {Fs} be the family of all collections of subsets, not
necessarily closed, of S, such that & satisfies the finite intersection hypoth-
esis. Partially order Q by defining . < Fs to mean that every set in &,
is a set in 5 but not conversely. The single collection  is a trivial simply-
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ordered subfamily of @. Hence the maximal principle states that there is
a maximal simply-ordered subfamily @’ of Q containing §. The desired
collection § will turn out to be the largest element of @/, which we must
prove exists. A standard technique is used here for the first time. Let g
be the union of all elements in £’. We wish to show that G is in Q’. If this
is done, then G is certainly the largest element of @/, for every other ele-
ment of Q' is contained in G. Also if G is in @/, then G is not a proper subset
of any other element of Q, for any element containing § would be in @’
since such an element would be comparable to every element of Q.

Suppose that Cy,...,C, are sets in §. For each j,1 = j = n,C;
is a set in some collection §; in Q'. Since @ is simply-ordered, some one
of these, say Fi, contains all the others and hence contains all the sets
Cy, ..., Cy. Then, since F satisfies the finite intersection hypothesis, we
have M;—; C; as a nonempty set. It follows that G satisfies the finite inter-
section hypothesis and is in the family Q. Also, G is comparable with every
element of @', so it is in ©’. Thus G is the collection ¥’ claimed by the
lemma. [ ]

CororLrary 1-30. If § = {C.} is a collection of subsets of a space S,
and F is maximal with respect to satisfying the finite intersection hy-
pothesis, then (a) each intersection of a finite number of elements of
F isin §, and (b) every set that intersects each C, is in &.

Proof: Let Cy, ..., Cpbein G, andlet C=Cyn---NC,. IfCY, ...,
CiareinF, then C; NCanN---NC, NCL N --- N Cf is nonempty. But
this is precisely the set C N Ci N - -+ N Cf, which proves part (a). Next,
if K is a set that intersects every element of ¥, and C'y, . . . , C,, are elements
of §,then KNCyn---NC, = KN (Ni=1 ), and this is nonempty
because NC; is in F, by (a). []

The reader may be surprised that we did not prove the existence of a
maximal collection of closed subsets of S containing . We could have done
so earlier, but a difficulty would have arisen in the proof of Theorem
1-28. That theorem may now be proved.

Proof of Theorem 1-28: Suppose that § = {C.} is a collection of closed
subsets of P48, satisfying the finite intersection hypothesis. By Lemma
1-29, there is a collection ¢ = {Djg} of subsets of P 4S,, such that g con-
tains ¥ and is maximal with respect to the finite intersection hypothesis.
For each «, the collection {r.(Dg)} satisfies the finite intersection hypoth-
esis. However, these sets are not necessarily closed. (Incidentally, this is
conceivable even if we had required the Dj to be closed. For instance,
the graph of y = 1/z is closed in E?2, but its projection onto the z-axis is
not closed.) The collection m,(Djs) still satisfies the finite intersection
hypothesis, so there is a point z, common to each 7,(Dj), by the compact-
ness of S.. Now let U, be an open set in S, containing z,. Since U, N
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To(Dg) is nonempty for each B, it follows that w2 1(U,) meets each Dg.
Hence, by Corollary 1-30, 75 *(U,) is an element of G. (This is where the
fact that the elements of G need not be closed first comes in.) Let p be the
point of P4S, whose coordinates are the points z., and let P4V, =V
be a basis element containing this point. Only a finite number Vo, ...,
Va, of the sets V, are proper subsets of their corresponding spaces, and for
those we have that Nj—; r;}I(Vaj) = V. Each W,le(Vaj) is in G, and hence
their intersection is in G, by Corollary 1-30(b). But this means that V
is in G, so that V meets each C,. Since V is arbitrary, p must be a limit
point of each C,.. Each C, is closed, hence p is in each C,; that is, NeCle
is nonempty. []

This proof is a fine example of one of Pélya’s principles (see his book
[25]), which we paraphrase here: “The greater the generality, the easier
the proof.” In the proof above, it would seem that adding closed sets to
the collection & should make things more difficult, whereas adding sets
that are not even closed should be pure insanity. But this unlikely pro-
cedure has just the right amount of generality.

The extensive use of the logical propositions of Section 1-9 in the proofs
above is unavoidable. Indeed, it has been proved by J. L. Kelley [89] that
the Tychonoff theorem is actually equivalent to the axiom of choice. Not
only is the Tychonoff theorem implied by the axiom of choice (through the
maximal principle), but it in turn implies the axiom of choice.

For each « in some index set 4, let S, denote a space consisting of two points
T and Yy, with the discrete topology.

Exercise 1-18. Show that if A is infinite, then P48, has limit points al-
though none of its factor spaces has limit points.

Exgrcise 1-19. Show that P48, has no nondegenerate connected subsets.

Exercise 1-20. The (middle-third) Cantor set is composed of all points in the
closed interval [0, 1] whose triadic expansion (base 3) contains no units. Show
that if A denotes the positive integers, then P48, is homeomorphic to the
Cantor set.

1-11 Function spaces. We have seen two methods of constructing new
spaces from known ones, i.e., by taking subspaces and by making product
spaces. A third method, one of particular importance in analysis, is in-
troduced here. This method makes a space out of a collection of functions
of one known space into another. We begin the discussion with several
well-known examples that present some standard procedures.

ExampLE 1. Let I denote a closed interval [a, b] in E*, and let C(I) be the
collection of all real-valued continuous functions defined on I. We topologize
C(I) by means of the following metric. For two functions f and g in C([), de-
fine d(f, g) = maxr|f(z) — g(z)|. It is left as an easy exercise for the reader
to verify that this is indeed a metric.
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ExamprLE 2. Let I = [a, b] again, and let R(I) be the collection of all bounded
real-valued functions on I, continuous or not. We use the metric d(f, g) =
supr [f(z) — g(x)|. Note that C(I) is a subspace of R(I).

ExampLE 3. Let S be any space, and let (E1)S denote the set of all bounded
real-valued continuous functions defined on S with the metric d(f, g) =
supgs |f(x) — g{z)[. Observe that this yields a metric space, no matter what the
space S may be. Observe also that there always are such functions, even if only
constant functions.

ExampLE 4. Let S be any space, and let M be a metric space with a bounded
metric 8(z, y). Let M5 be the collection of all continuous mappings f:S — M,
which we metrize by setting d(f, g) = supg d[f(x), g(x)]. This is a general
procedure and has many applications.

ExampLE 5. Let f and g be two real-valued functions on I! = [0, 1], such
that f, g, 2, and g2 are all integrable in the sense of Lebesgue. If two functions I
and f* differ only on a set of measure zero, then the integral [} [f(z) — f'(z))2 dz
is zero, and we say that f and f’ are equivalent. We may then form the corre-
sponding equivalence classes [f]. (We use here for the first time our generic
symbol [] for an equivalence class.) Let L2 denote the space of all such equiv-
alence classes using the metric

WL = [[ 0@ — ¢@rF @],

where f" and ¢’ are any representatives of the classes [f] and [g], respectively. A
proof that this is indeed a metric is somewhat harder than the previous examples;
the triangle inequality presents the chief difficulty. (For the reader who has not
yet studied Lebesgue integration, it will be quite permissible to think of ordinary
Riemann integration here, although the resulting space will be a proper subspace
of L2, not L? itself.)

We may abstract the situations given in these examples as follows.
Let F = {f} be a family of transformations of a space S into a space T.
Then F is certainly contained in the product set PgT,, where for each
in 8, T; = T. The topology introduced into F by means of the metrics
used in the first four examples is essentially that subspace topology induced
by the topology of the product space Pg7,.

There is another method of introducing a topology into the family F
of transformations. This method stems from the following consideration.
Given a mapping f:S — T, we know that the functional value f(z) is a
continuous function of 2. Can we so choose a topology for F that f(z) is a
continuous function of f? The answer is “yes,” and the development which
follows is largely due to R. H. Fox [78]. For each compact subset C of S
and each open subset U of T, let F(C, U) denote the collection of all map-
pings f in F, such that f(C) is contained in U. The family of all such col-
lections F(C, U) is taken as a subbasis for the compact-open topology of F.
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Thus each member of the basis of the compact-open topology is of the form
Ni—: F(C;, U;), where each C; is compact in S and each U, is open in 7.

We will not derive properties of function spaces at this point. Some iso-
lated results will appear as we encounter further topological concepts
that make such results meaningful. For a detailed treatment of function
spaces, the reader is referred to Chapter 7 of Kelley [17] where, of course,
further references will be found.

1-12 Uniform continuity and uniform spaces. A well-known result in
analysis is the theorem that a continuous real-valued function on a closed
interval is uniformly continuous. We generalize this result and then
briefly describe an abstraction of the situation, which leads to the concept
of a uniform space.

Let M and N be metric spaces with metrics d and p, respectively. A
transformation f:M — N is continuous provided that for each point x
in M and each positive real number ¢, there exists a positive real number
8(z, €), in general depending on both z and ¢, such that p[f(z), f(z')] < e
whenever d(x, ') < 6(x, €). Then if the number &(x, €) can be chosen to
be independent of the point x, we say that the transformation f is uni-
Sformly continuous.

TueoreM 1-31. Let M be a compact metric space, and let f be a con-
tinuous mapping of M into a metric space N. Then f is uniformly
continuous.

Before proving Theorem 1-31, we present an auxiliary result that has
many applications elsewhere.

TueoreM 1-32. Let M be a compact metric space, and let U = {U,}
be a finite open covering of M. Then there exists a positive number
d(a), such that each subset of M of diameter less than d(A) is contained
in at least one element of A. [The number d() is called the Lebesgue
number of the covering U.]

Proof: Suppose that the theorem is false. Then for each positive integer
n, there exists a subset A, of diameter < 1/n in M, such that 4, does not
lie entirely in any element of U. Let 2, be a point of A, for each n. Since
M is compact, there is a point x in M such that each open set containing z
also contains infinitely many points x,. (This is true even if the z, are
not all distinct.) Let U; be an element of U containing x, and take d =
glb d(z, 2), zin M — U;. Choosing an integer n such that n > 2/d and
such that d(z, x,) < d/2, we have for each point y in 4,,

d(z,y) = d(y, zn) + d(za, z) < %_i_% < d.
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Hence y is also in U;. This then implies that A4, lies in U;, which is a
contradiction. [ ]

Proof of Theorem 1-31: Given € > 0, consider the spherical neigh-
borhoods S(y, €/2) for each point y in N. Since f is continuous, each
inverse set fY[S(y, €/2)] is open. The collection of all such sets is an
open covering of M, and by the compactness of M, a finite subcollec-
tion U = {7 8(yi, €/2)]} covers M. Take 8(¢) = d(U), where d(U) is
the Lebesgue number of U. For any two points z and 2’ in M, for which
d(z, z') < 8(€) the set x U 2’ lies in some open set f~![S(y;, €/2)], by
Theorem 1-32, hence f[x U 2'] lies in S(y;, €/2). It follows that

plf(2), F(z] < e

Therefore f is uniformly continuous. [ ]

The concept of uniform continuity is not strictly of a topological nature.
By this we mean that if f is a uniformly continuous mapping from M to
N, and if A is a homeomorphism of N onto N/, it need not follow that the
composite mapping hf of M into N’ is uniformly continuous. Nor, if A’
is a homeomorphism of M’ onto M, does it follow that fh’ is uniformly
continuous from M’ to N. The reader may easily construct counter-
examples by observing that if 4 (or #’) is not a uniformly continuous homeo-
morphism, then the composite mapping need not be uniformly continuous.

Theorem 1-31 actually proves that the topological property of com-
pactness has nontopological consequences. A similar but converse situa-
tion occurs frequently, too. For instance, the concept of a Cauchy sequence
is not topological, and yet it has topological significance (see Section 2-13).
A recent generalization of a metric space has proved to be valuable in
studying such properties. This is the concept of a uniform space and the
resulting uniform topology. We describe this briefly.

Let S be a set, and let S X S be the cartesian product set of S with
itself, that is, S X § is the set of all ordered pairs (r,y), z and y in S. If
U is a subset of S X S, then by U~! we mean the set of all pairs (y, z)
where (z, y) isin U. If U and V are subsets of S X S, then by U - V is
meant the set of all pairs (z, z), such that for some point ¥ we have that
(z,y) isin V and (y, 2) is in U. The set of all pairs (z, z), x in S, is the
diagonal set A.

A uniformity for a set S is a nonempty collection U of subsets of S X S
satisfying the properties

(1) each member of U contains the diagonal A,

(2) if Uisin U, then U™ tisin

(3) if U is in U, there is a V in U such that V - V is contained in U,
(4) if U and V are in U, then U N V isin U, and

(6) if U is in U and the subset V contains U, then V is in U.

The pair (S, ) is called a uniform space.
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We might observe that (1) is a condition derived from the property of
a metric d that d(z, z) = 0 for each z. Condition (2) reflects the sym-
metry of the metric d. Condition (3) is a very primitive form of the tri-
angle inequality and says that there are “small” sets in U. Conditions (4)
and (5) are the analogues of properties of spherical neighborhoods in a
metric space and play a similar role in proving theorems about the uniform
topology.

If (S, ) is a uniform space, C is any subset of S, and U is any element
of U, we denote by U[C] the set of all points y in S such that (z, ) isin U
for some point z in C. Then the uniform topology of S for the uniformity au
is obtained by defining a subset O of S to be open if for each point z in O,
there is an element U in U such that U[z] lies in 0. We must verify that
this does give us a topological space. But Axiom O is satisfied by the very
definition of an open set here. If O and O’ are open by this definition, then
let  be a point in O N O’. By definition, there are elements U, V of U,
such that Ulx] lies in O and V[z] lies in 0’. By condition (4), U N Visin
U and, clearly, (U N V)[z) lies in O N O’. Hence Axiom O, is satisfied.
Finally, Axiom O3 is satisfied trivially, which proves that the uniform
topology does indeed yield a topological space.

We will not use the uniform topology in this book and therefore will
not develop any of its properties. The interested reader, and this should
include every student of analysis, is referred to Chapter 6 of Kelley [17].

1-13 Kuratowski’s closure operation. Another method of introducing
a topology into a set has been given by Kuratowski[18]. The resulting
space is not quite so general as was defined in Section 1-2 (see Section 2-2).

Consider a set 8, and suppose that there is an operation which assigns
to each subset X of S another subset X, called the closure of X. With
Kuratowski, we assume three axioms concerning this closure operation.:

K. For any two subsets X and Y, X UY =X U Y.
K. If X is either empty or consists of only a single point, then X = X.
Ks. For any set X, X = X.

The reader may follow the scheme given below and write out a com-
plete proof of the following basic rules of calculation.

1. If X liesin Y, then X liesin Y. 5. UaX, lies in UpX o
22.XNYliesinXnNnY. 6. If X is finite, then X = X.
3. X — Yliesin X — Y. 7. X liesin X.

4. N.X, lies in N.X. 8. 8§ =4
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These rules may be proved in the following order. Rule 1 is implied by
Axiom K applied to the fact that if X liesin ¥, then X U ¥ = V. Rule 2
follows from Rule 1 and the fact that X N ¥ is a subset of both X and Y.
Rule 3 may be proved by using the identity X UY = (X — Y)U Y
and taking the intersection of X U ¥ with S — ¥. Rule 4 follows from

the fact that N.X, lies in X, for each o and hence, by Rule 1, N. X, lies
" in X, for each «. Rule 5 comes from the fact that for each «, X, lies in
UaXa, and hence, by Rule 1, X, lies in U,X. for each «. Rule 6 is an
immediate consequence of Axioms K, and K,. Rule 7 follows from Rule 1
and Axiom K,. For if z is any point of X, then z is a subset consisting of a
single point. By Axiom Ko, T = z and by Rule 1, Z lies in X. Thus each
point of X lies in X. Finally, Rule 8 is immediately obvious from Rule 7.

TureoreMm 1-33. Let S be a set with a closure operation satisfying
Axioms Ky, K, and K3. Then S is a topological space.

Proof: Define a subset X of S to be closed if X = X. Axioms C;, Cs
and C; for closed sets (see Theorem 1-2) may be verified as follows. Axiom
C, follows immediately from Axiom K;. Axiom Cj is explicitly given by
Axiom K, and Rule 8. Axiom (', is implied by Rules 4 and 7. For if
{X.} is any collection of closed sets, then N,X. = N.Xa contains
NeXo = NeX. and is a closed set. []

The reader will observe that Axiom K, says explicitly that “a point is
a closed set” of the space S. This property is not necessarily shared by the
general topological spaces of our Section 1-2. We postpone further dis-
cussion of this point until it arises again in Section 2-2.

1-14 Topological groups. A topological group G is a collection of ele-
ments on which there are two interrelated structures. First, G is a group
under an operation which we will designate by “-.” Then @ is a topological
space having a collection of distinguished subsets satisfying Axioms 0y, O,
and O3z. Finally the two structures are interrelated by assuming that the
function m:G X @ — G given by w(g1, g2) = ¢1 > g5 is continuous.

We observe that by setting g; = e (the identity element of the group @),
m(e, g2) = g5 ' is continuous and one-to-one and, indeed, is a homeo-
morphism of G onto itself. Similarly, the mapping carrying (g;, g2) onto
g1 ° g2 is continuous on G X @ to G. In fact, these two conditions are
equivalent to the one condition given in the definition above.

With such a composite concept as a topological group, we may apply
both group-theoretical and topological ideas. Thus a topological group
may be abelian (an algebraic concept) or may be connected, compact, etc.
(topological concepts), or any mixture of these.

Examples come to mind readily. The real numbers constitute both a
group under addition and a space (metric), and the function sending the
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pair (x, %) into * — y is continuous. The additive group of real numbers
modulo 27 constitutes a group and a space (unit circle S') with the de-
sired continuity of the group operations. Many of the classical groups such
as the general linear group (all nonsingular n X n matrices with complex
elements) are also topological groups. Finally, any group whatsoever may
be assigned the discrete topology and be considered as a topological group.

If H is a subgroup of the topological group @, then we may apply the
subspace topology to H and obtain a topological subgroup. This permits us
to speak of open or closed (or compact, etc.) subgroups of a topological
group. The following result will be of value in Section 7-16.

TueorEM 1-34. Let ® denote the additive group of real numbers
modulo 1, and let H be a closed proper subgroup of ® Then H is a
finite cyclic group.

Proof: For any point r of ®, there is an interval U containing r and
containing at most one point of H. If this were not true, then H would
contain elements in the intervals (0, 1/n) for all n. This implies that H
has arbitrarily small elements. If k; is an element of H such that 0 <
h; < 1/n, then the set of all multiples of &; has an element in each interval
of length 1/n in & Hence H would be dense in & and, being closed,
H = @a.

Since ® is compact, a finite number of intervals U, each containing just
one point of H, covers ®. Therefore H is finite. Assuming that H contains
an element other than 0, let A; be the element of H such that d(0, k;) is
a minimum. Then H consists of all multiples of 2;. For if there were an
element ks in H that was not a multiple of h;, then for some integer n,
nhy — hy would be closer to zero than h;. Therefore H is cyclic. []

A product of topological groups is again a topological group. We
utilize the usual direct product for the group operation and the Tychonoff
topology. Precisely, if {G.} is a collection of topological groups indexed
by a set A = {a}, then the product P4G, has the group operation
gog = {ga} o {92} = {ga-gt}. Since the mapping of the product
P4G, X P4G, into P4G, given by (g,h) = g-h~! has continuous
coordinates g, - ha ', we satisfy the conditions for a topological group.

We have as an example the product of the real numbers with them-
selves » times, which yields a topological group whose underlying space is
Euclidean n-space, E”. Also, since the topological group ®;, of real num-
bers modulo 27 has S! as its underlying space, it follows that ®a, X Ra,
is a topological group whose underlying space is S! X S!, the two-dimen-
sional torus. Similarly, the product ®s, X - -+ X ®Rg,, n factors, has the
n-dimensional torus T™ as its underlying space.

Given a fixed element a of a topological group @, each of the mappings
g—a-g and g — g-a is a homeomorphism of G (as a space) onto
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itself. These homeomorphisms are, respectively, the left translation of G
by a, and the right translation of G by a. If U is a subset of G, then we
define the left and right translates of U by the element a as a - U and
U - a, respectively.

If U is an open set containing the identity element e of G, then for any
element g of @, the translates g - U and U - g are both open sets con-
taining the element g. Conversely, if U is an open set containing an
element g, then both g~! - U and U - g~! are open sets containing the
identity element e. This implies that knowing only the open sets con-
taining the identity e, we know the entire topology of G' and conversely.
It also follows that all the local properties (see Section 2-10, for example)
may be determined by studying the identity element alone. We will make
use of this fact later.

For references that develop the theory of topological groups in greater
detail than we can do in this work, the reader may consult Chevalley [6],
Pontrjagin [26], and Chapter II of Lefschetz [20].

Exercist 1-21. Let E, consist of all sequences £ = {z.} of real numbers
with the metric

I N Nl N

First prove that this is a metric. Then show that a necessary and sufficient
condition for the sequence p; = {pn;} to converge to p = {p,} is that pa:
converge to p, for each n.

ExEercIsE 1-22. Let M and N be metric spaces, and let f:M — N be a trans-
formation. Show that fis continuous if and only if the convergenze of a sequence
{z,} to a point z in M implies the convergence of {f(z,)} to f(z) in N.

ExErcise 1-23. Suppose that M is a separable metric space and {a.} is a
countable dense subset of M. If ais any point of 3, let f(a) = (z1, z2, .. .,
Zn, . . .), Where

21 = d(az, a) — d(az, a1)
z9 = d(asz, a) — d(as, a1)
Tn = d(@ny1, @) — d(@ny1, @1)

Prove that f is a homeomorphism of 3 into the space E, of Exercise 1-21.

ExercisE 1-24. Let X be a compact metric space, and let Y have a countable
basis. Let the function space YX be assigned the compact-open topology, and
prove that YX also has a countable basis.

Exercise 1-25. Prove that (I')? is not compact.

Exercise 1-26. If X consists of n points with the discrete topology, prove that
YX is homeomorphic to ¥» = ¥ X -+ X Y, n factors.
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ExercisE 1-27. If d(z, y) is a metric on a set M, show that

__dx
plx, y) = 1T de 9

is a metric on M and that the two metric topologies are equivalent.
ExercisE 1-28. Let M and N be metric spaces with metrics d and p, respec-
tively. Show that the product set M X N is metrized by

8[(x1, y1), (x2, y2)] = [d3(x1, z2) + p2(y1, y2)]V/2.

(This is called the product metric.)
ExEeRrcisE 1-29. Prove the following results.

TrEorEM 1-35. If S is a separated space and is the union of the two disjoint
sets A and B, then any connected subset C of S must lie in either 4 or B.

CoroLLARY 1-36. If X is a connected subset of a space S, and Y is a subset
containing X and contained in X, then Y is connected.

ExEerciseE 1-30. Prove the following theorem as a consequence of Theorem 1-7.

TrEoREM 1-37. Let P4X, and P,Y, be two product spaces over the same
index set 4, and let f,: X, — Y, be continuous for each o in A. Then the
mapping f(z) = y, z = {24}, y = {ra(ze)} is continuous.

Exercise 1-31. Let M be a metric space, and let A be a closed subset of M.
If U is an open set in M X I! containing A X I!, prove that there exists an
open set ¥V in M such that V X I! contains 4 X I! and is itself contained in U.




CHAPTER 2
THE ELEMENTS OF POINT-SET TOPOLOGY

2-1 Introduction. Suppose that a mathematician is confronted by
some concrete collection of objects into which he wishes to introduce a
topology so that, for example, he may define continuous functions on the
collection. There may be many ways to do this, but it is usually con-
venient to introduce a topology that is as “strong” as possible in the
sense that much is known about the particular topology. For instance,
if it were possible to topologize the collection as a compact metric space,
our mathematician would probably do so. One reason for this choice is
that compact metric spaces have been studied very extensively, and
another reason is that it is relatively easy to prove new theorems in
such spaces.

A similar problem is to find a new and equivalent topology for a space
that is already given. Again, the ideal perhaps is a compact metric
topology. Unfortunately, not every space can be assigned a metric,
equivalent to its original topology. Still, there are many stages between
the most general topological space and a compact metric space and, fail-
ing to achieve the ideal, there is yet a chance to choose some well-studied
topology for the given collection. Some of these topologies are given in
this chapter.

2-2 Separation axioms. A widely used set of successively stronger
conditions to be placed upon a topological space are the “trennungsaxioms”
of Alexandroff and Hopf [2], the so-called T;-axioms. The first three of
these are

Axiom Ty. Given two points of a topological space S, at least one of
them is contained in an open set not containing the other.

Axrtom T'1. Given two points of S, each of them lies in an open set not
containing the other.

Axiom Ty (Hausdorff axiom). Given two points of S, there are dis-
Jjoint open sets, each containing just one of the two points.

These axioms are obviously in increasing order of strength in the sense
that T implies 7; and T, implies 7. If we add Axiom T;, 1= 0,1,
or 2, to Axioms Oy, O, and O3 for a topological space, we obtain a
T'i-space. There are Tg-spaces that are not T';-spaces and T1-spaces that
are not T';-spaces, so these axioms are indeed successively stronger.

37
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The first axiom, T, may be rephrased to say that in a set consisting
of two points, at least one of the points is not a limit point of the other.
It does not follow that a set consisting of a single point is closed. For,
let S consist of all integers, with the open sets containing a given integer
n, defined to be the set of all integers k, with &k = n. It is easy to see that
S is a To-space and that each integer n is a limit point of each integer
larger than n. Thus a single integer % cannot be a closed set, since each
integer less than k is a limit point of k. The following exercise is about
all we can say for Ty-spaces in this direction.

ExERcISE 2-1. Show that no To-space contains a finite set of points pi,
P2, ..., pa such that for each k¥ < n, pr+1 is a limit point of p; and p; is a
limit point of p,.

Axiom T'; readily implies that each point is a closed subset. For each
point in the complement of any particular point p lies in an open set that
does not contain the point p. Hence the complement of p is a union of
open sets and, by Axiom O, is open. It follows by induction and Axiom Q2
that in a T'i-space every finite set is closed. This is sometimes taken as a
definition of the T';-spaces.  Since the requirement that points be closed
seems very natural, spaces that are more general than the T';-spaces are
rarely studied.

ExEercisk 2-2. Find a finite space that is a To-space but not a T'1-space.

In many ways the Hausdorff axiom is the most interesting of the three.
The term Hausdorff space is usually used for T's-spaces in the literature,
and we follow this usage here. Hausdorff spaces will be discussed at
some length.

TueoreM 2-1. In a Hausdorff space S, let p be a point, and let C be a
compact subset not containing p. Then there exist disjoint open sets,
one containing p and the other containing C.

Proof: For each point x in C, by Axiom T’y there are two disjoint open
sets U, and V,, such that U, contains p, and V, contains z. Since C is
covered by the collection of open sets {V,}, there exists a finite sub-
collection {V,, ..., V. } of {V.}, which covers C. Let V be the union
Ui—1 Vs, and let U be the intersection N;—; U,;. Clearly, V contains C,
and U contains p, and these two sets are disjoint by construction. Then
U is open by Axiom Oj, and V is open by Axiom O;.[]

CoroLLARY 2-2. In a Hausdorff space, compact sets are closed.

Proof: If C is a compact set in a Hausdorff space S, then each point p
in the complement S — C lies in an open set not meeting C, by Theorem
2-1. Hence S — C is a union of open sets and so is open. [ ]
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This corollary states one of the important properties enjoyed by the
Hausdorff spaces and not by more general spaces (see Exercise 2—4 below).
In fact, this property is so useful as to make the Hausdorff spaces the
most general topological spaces usually studied.

Our Theorem 2-1 is a special case of the following result.

TuEOREM 2-3. In a Hausdorff space S, let H and K be two disjoint
compact sets. Then there exist two disjoint open sets, one containing
H and the other containing K.

Proof: In view of Theorem 2-1, for each point z in H, there are disjoint
open sets U, and V,, with z in U,, and K contained in V,. The col-
lection of all sets {U,} covers the compact set H, and hence a finite sub-
collection U,,,..., U, covers H. Let U; = U} U, and V; =
Ni=1 Vs, Clearly, U, contains H, and V; contains K, and also U; N V,
is empty. []

An interesting property of Hausdorff spaces, a property which is some-
times taken as a definition, is stated in the following exercise. First,
though, let S be any space, and let S X S be the product of S with itself.
The diagonal set A in 8 X S is the collection {(x,2)} of all points of
S X 8 with equal coordinates.

Exercise 2-3. Show that a necessary and sufficient condition that a topo-
logical space S be a Hausdorff space is that the diagonal set A in S X S be
closed in the Tychonoff topology.

The Hausdorff axiom is a separation axiom in this sense: given distinet
points x and y in a Hausdorff space S, there are disjoint open sets U and
Vin S, with xin U and y in V. The set S — (U U V) is closed. Now
a subset X of a space S is said to separate the nonempty sets H and K if
8 — X is the union of two disjoint sets A and B, where A contains H,
and B contains K and A N BUB N 4 = 0 (see Section 1-6). We see
that the Hausdorff axiom may be rephrased as: each two points of the space
can be separated by a closed set. Similarly, Theorem 2-3 says that each two
disjoint compact sets in a Hausdorff space can be separated by a closed set.

The following example shows that Theorem 2-3 cannot be strengthened
to yield a separation of noncompact disjoint closed sets by a closed set
in an arbitrary Hausdorff space. In this example, “most” such pairs
cannot be separated.

Exampre. Let S consist of the real numbers, with the topology given by a
basis of all sets consisting of a number x together with all the rational numbers
in an open interval (open in the usual topology) containing z. Since in the
usual topology of E!, each two points lie in disjoint open intervals, the new
topology is readily shown to be Hausdorff. But no set of irrational numbers
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now has a limit point, because no basis element contains more than one ir-
rational number. Hence if X is a subset of the irrational numbers J, then X
and J — X are disjoint closed subsets of S. Since there are c¢ irrational num-
bers (c is the cardinal number of the reals), there are 2¢ subsets of J and hence
2¢ pairs of disjoint closed subsets of S. Suppose that each such pair can be
separated by a closed set. Then for each subset X of J, there exist disjoint
open sets of S, U(X), and V(X), with X in U(X) and J — X in V(X). If
we let R denote the set of rational numbers, the sets U(X) N R and
[El — U(X)] N R give us a partition of the rationals. Furthermore, if X and
Y are subsets of J, and Y is neither X nor J — X, then the sets U(X) N R
and U(Y) N R are distinct. For if X — Y contains a point z, then the set
U(X) N R will contain a sequence of rationals converging to the point r, and
all but a finite number of points of this sequence will not be in U(Y). Thus as
to each subset X of irrationals, this assumption that X and J — X can be
separated allows us to assign a subset U(X) N R of the rationals in such a way
that if X = ¥, then U(X) N R and U(Y) N R are distinct. But there are 2¢
subsets of the irrationals and only ¢ subsets of the rationals. Since ¢ < 2¢,
we have a contradiction that shows that the separation of disjoint closed subsets
in 8 is not always possible.

Exercise 2-4. Construct an example of a T'1-space in which not all compact
sets are closed.

ExErcise 2-5. A property of a space S is hereditary if every subspace of S
also has the property. Show that for¢ = 0, 1, and 2, the T; property is hereditary.

ExErcisE 2-6. Is there a Tg-space S such that S X 8 is not a T¢-space?

ExErcisE 2-7. For ¢ = 1 or ¢ = 2, prove that the product of any number
of T;-spaces is a T;-space.

ExEercisE 2-8. If f:X — Y is continuous and one-to-one, and if ¥ is Haus-
dorff, then prove that X is also Hausdorff.

2-3 T3- and T4-spaces. The next two trennungsaxioms of Alexandroff-
Hopf are merely the conclusions of Theorems 2-1 and 2-3 stated as
axioms for the case of closed sets (rather than compact sets).

Axiom T3. If C is a closed set in the space S, and if p is a point not in
C, then there are disjoint open sets in S, one containing C' and the other
containing p.

This axiom could be satisfied vacuously if there were no proper closed
subsets in the space S. Therefore, in order that there be a large number
of closed sets and that we obtain a condition stronger than the Hausdorff,
a space is defined to be a T'z-space if it satisfies both Axiom 7'; and
Axiom T'3. A T3-space is usually called a regular space. The following
theorem states a condition that is often used as the definition of a regular
space.




2-3] T3- AND T4-SPACES 41

TueoreM 2-4. A T;-space S is regular if and only if for each point p
in S and each open set U containing p, there is an open set V containing
p whose closure V is contained in U.

Proof: If S is regular and the point p lies in an open set U, then Axiom
T3 states that there exist disjoint open sets V and W, with pin V, and W
containing the closed set S — U. Since V N (S — U) is empty, V lies
in U.

On the other hand, if p is a point of S, and C is any closed set not con-
taining p, then § — C'is an open set containing p. By assumption, there
is an open set V containing p, with V contained in S — €. Thus V is
an open set containing p, and § — V is an open set containing C. The
two open sets V and S — V are disjoint. Therefore S is regular. []

TreorEM 2-5. If S is a regular space, p is a point of S, and C is a closed
set not containing p, then there exist open sets with disjoint closures,
one containing p and the other containing C.

Proof: By Theorem 2-4, there is an open set V containing p, such
that V lies in § — C. By the same theorem, there is an open set V' con-
taining p, with the closure V' contained in V. Then V' and S — V are
the desired open sets. [ ]

Axiom T'4. If H and K are disjoint closed sets in the space S, then there
exist disjoint open sets, one containing H and the other containing K.

Again, a T 4-space, or a normal space, is one that satisfies both Axiom 7T,
and Axiom T'4. Returning to the example at the end of Section 1-4, we
may easily see by a cardinality argument like that at the end of Section 2-2
that this is not only a Hausdorff space that fails to be normal, it is actually
a regular space that is not normal.

Since every closed subset of a compact space is compact, Theorem 2-3
can now be reworded to say that every compact Hausdorff space is normal.
Indeed, it seems to say more in that it states that the open sets found
there have disjoint closures—a property not assumed in Axiom 7';. The
next result shows that this greater strength is only apparent, not actual.

TreoreM 2-6. If H and K are disjoint closed subsets of a normal space
S, then there exist open sets with disjoint closures, one containing H
and the other eontaining K.

Proof: Let U and V be disjoint open sets, U containing H and V contain-
ing K. The set § — U is closed, and does not meet H, so that there exist
by normality two disjoint open sets U* and V*, U* containing H, and V*
containing S — U. Then the sets U* and V are the desired open sets. [ ]
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Let us see whether these separation axioms hold in a metric space.
First we note that every metric space is regular; for if z is a point and U
is an open set containing x in a metric space M, then by definition there
is a spherical neighborhood of z with a positive radius, say r, which is
contained in U. Then the spherical neighborhood of 2 with radius r/2
is certainly closure-contained in U, and Theorem 2-4 applies to show
that M is regular.

To show that every metric space is normal requires more effort, but
this will be simplified by introduction of the notion of distance between
sets. If H and K are subsets of a metric space M with metric d, we define
the distance between H and K, d(H, K), as the greatest lower bound of
the numbers d(z, y) for all z in H and y in K. This is not a metric on the
subsets of M. FYor example, if H and K are distinct but not disjoint,
then d(H, K) = 0.

The topologist often finds use for the Hausdorff metric defined on the
continua in a metric space. If C'; and C; are continua in a metric space
M with metric d, then we may define

p(Cy, C3) = maxd(z, y),

where the maximum is taken over all pairs z in C'; and y in Cs. It is an
interesting exercise to prove that this is a metric on the set of continua
in M.

Our proof will actually show that a metric space is completely normal.
A space S is completely normal provided that it is 7; and if H and K are
any two separated subsets of S (that is, (H N K) U (H n K) = §), then
there are disjoint open sets, one containing H and the other containing K.
This property is the 7’5 axiom of Alexandroff-Hopf. Obviously, com-
plete normality implies normality.

TaEOREM 2-7. Every metric space is completely normal.

Proof: Let M be a metric space with metric d, and let H and K be
any two separated subsets of M. Let U be the set of all points z for
which d(z, H) < d(z, K), and let V be the set of all points v for which
d(y, H) > d(y, K). Since d(h, K) > 0 for all points h in H [while
d(h, H) = 0], we see that U contains H; similarly, V contains K, so
neither U nor V is empty. The two sets are disjoint because d(z, H) >
d(z, K) and d(z, H) < d(z, K) cannot hold simultaneously. It remains
to show that U and V are open. Let z be any point of U. Let d(x, K) —
d(z, H) = ¢, and let y be an arbitrary point in the spherical neighbor-
hood S(z, 8/2). Then from the triangle inequality, d(y, H) < d(zx, H) +
6/2. Also, d(y, K) + 8/2 > d(z, K), or d(y, K) + 8/2 > d(z, H) + 4,
or d(y, K) > d(z, H) + 8/2. Therefore the point y lies in U and, since
y was taken to be an arbitrary point of S(z, §/2), all of this spherical
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neighborhood lies in U. TFinally, U is the union of all such spherical
neighborhoods S(z, §/2) as « ranges over U, so by Axiom 04, U is open.
The proof that V is open is identical. [ ]

In view of Theorem 2-7, it is apparent that a T;-space, ¢ = 0, 1, 2,
3, 4, or 5, is a valid generalization of a metric space. The reader might
well ask how far we must go in this direction before obtaining a metric
space. More precisely, he might ask for conditions to be placed upon
a topological space S which permit us to introduce a metric on S in such
a way that the resulting metric topology is equivalent to the original
topology of S. This is the metrization problem, which we discuss again
in Sections 2-9 and 2-13.

Exgercisk 2-9. Construct a normal space that is not completely normal.

ExEercisk 2-10. Show by means of an example that complete normality doecs
not always permit the inclusion of two separated sets in open sets with disjoint
closures.

ExEercise 2-10(a). Show that in a regular space the conclusion of Theorem 2-3
can be strengthened to require the two open sets to have disjoint closures.

2—4 Continua in Hausdorff spaces. A compact connected set is called
a continuum. Many important spaces such as I" = I' X --- X I},
n factors, and 8", n > 0, are themselves continua. Also, problems con-
cerning the structure of a space often find their natural expression in
terms of the continua in the space. We note that, since both compactness
and connectedness are continuous invariants, any conlinuous image of a
continuum is a conttnuum.

LeMMmA 2-8. Let a and b be distinet points of a compact Hausdorff
space S, and let {H,} be a collection of closed set with index set @,
and suppose that {H,} is simply-ordered by inclusion. If each H,
contains both a and b but is not the union of two separated sets, one
containing a and the other containing b, then the intersection MyH,
also has this property.

Proof: Let H = NgH,, and suppose that H is the union of two sepa-
rated sets 4 and B, with a in 4 and b in B. Since H is closed (Axiom (),
and A and B are closed in H, it follows that A and B are closed in the
space S and hence are compact. By Theorem 2-3, there are disjoint
open sets U and V in S, with A lying in U and B in V. For each a in @,
H,NnU and H,NV are nonempty sets. If the set K, = H. N
(8 — (U U V)) were empty, then H, = (H, N U) U (H. N V) would be
a separation of H, of the prohibited type. Hence K, is not empty. Also
the sets K, are simply-ordered by inclusion; for, given any subset X, if
H, is contained in Hpg, then H, N X lies in Hg N X. The subsets K,
therefore satisfy the finite intersection hypothesis and, since S is com-
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pact, the intersection NgK, is not empty. But this intersection lies in
NeHa, which implies that H meets S — (U U V), a contradiction. [ ]

TrEOREM 2-9. If @ and b are two points of a compact Hausdorff space
S, and if § is not the union of two disjoint open sets, one containing a
and the other containing b, then S contains a continuum containing
both a and b.

Proof: Let {H,} be the collection of all closed subsets of S, each of
which contains ¢ U b but in none of which are ¢ and b separated. The
collection {H,} is not empty, because the entire space S is one such closed
set. Let {H,} be partially-ordered by inclusion. Using the maximal
principle, we extract a maximal simply-ordered subcollection {K,.} of
{H,}. In view of Lemma 2-8, the set K = NK,. also is in the collection
{H,}. Suppose that K is not connected, that is, K is the union of two
separated sets K; and Ko. One of these, say K;, must contain a U b.
Hence K is also an element of {H,} and is a proper subset of K. This
contradicts the maximality of {K,} and proves that K is connected.
Then, as an intersection of closed sets, K is closed and hence compact.
Therefore K is a continuum containing a U b. []

A continuum C is said to be ¢rreductble between two disjoint sets if C
intersects each set but no proper subcontinuum of C intersects both sets.

TaeoreM 2-10. If a continuum is a Hausdorff space, then each two of
its points lie in a subcontinuum irreducible between the two points.

Proof: The set K of the previous proof is such an irreducible continuum.
For if it contained a proper subcontinuum K’ containing a U b, then K’
would be in the collection {H,} and this would contradict the maximality
of {K.}.[]

A related idea is that of a continuum C’s being drreducible about a set A,
which means that C' contains A, but no proper subcontinuum of C con-
tains A. Note that if 4 = a U b, the two concepts “irreducible about
a U b” and “irreducible between a and b” coincide. In Hausdorff spaces,
there is no loss of generality in assuming the set A to be closed. For in
any space, if a closed set H contains a set A4, then H also contains 4.
In a Hausdorff space, a continuum is closed and so if the continuum C
is irreducible about A4, then C is a fortiori irreducible about 4.

TreoreM 2-11. If A is any subset of a Hausdorff continuum S, then S
contains a subcontinuum irreducible about A.

Proof: Let {H,} be the collection of all continua in S that contain the
set 4. This collection is not empty, because S itself is such a continuum.
Partially-order {H.} by inclusion and, using the maximal principle, extract
a maximal simply-ordered subcollection {K,}. We let K = NK,.. As
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in the proof of Theorem 2-9 above, we show that K is a continuum con-
taining A. If K were not irreducible about A, the same proper subcon-
tinuum K’ of K would contain A, thus contradicting the maximality of
{Ko}. (I

The complete reliance upon the maximal principle in these proofs is
apparently unavoidable. No proof is known as yet, but it may be true
that these theorems imply the axiom of choice, as does the Tychonoff
theorem. We remark that in a compact metric space, constructive argu-
ments can be given for these results. The essential distinction, and this
is a hint to aid the reader in Exercise 2-14 below, is that a compact
metric space has a countable basis, whereas a compact Hausdorff space
need not.

Even in a metric space, however, the conclusions of Theorems 2-9 and
2-11 may be false if the space is not assumed to be compact. Figure 2-1
shows a plane set K consisting of disjoint closed intervals converging
upon a limit interval [a, b] whose midpoint ¢ is deleted. Consider K as
a (metric) subspace of £2. There is no separation of K which separates
the points @ and b, but still no connected subset of K contains a U b.

We notice that the set K in Fig. 2-1 is neither compact nor connected.
For an example that fails only to be compact, see the set M, shown in
Fig. 2-2. This set M is a connected subset of E2 for which Theorem 2-9
fails. For any closed connected subset of M that contains @ U b must
contain all of M except perhaps for a half-open arc beginning at the
point ¢. But any such half-open arc can be deleted, and the result is a
closed connected subset containing a U b. Hence there is no minimal

- C R b

Freure 2-1
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Ficure 2-2

subset with these properties. The reader should apply the proofs of
Theorems 2-9 and 2-11 to these examples to see where the arguments
break down.

A study of Theorem 2-9 leads to a useful concept. A subset C of a space
S is a component of S, provided that C is connected, but is not a proper
subset of another connected set in S. In Fig. 2-1, for example, each of
the closed intervals above the limit interval is a component of K, as is
each half-open interval {a, ¢) and (¢, b]. It is true that no separation of K
separates the points a and b, but still @ and b do not lie together in a
connected set. Such examples as this have led to another definition.
A subset § of a space S is a quasicomponent of S provided that, for any
separation S = A U B with A and B separated, @ lies in either 4 or B
but @ is not a proper subset of another set in S with the same property.
In the space K of Fig. 2-1 again, the union [a, ¢) U (c, b] is a quasicom-
ponent that is not a component.

Our next result is an existence theorem.

Tueorem 2-12. Every point of a space 8 lies in a component and in a
quasicomponent of S.

Proof: Given any point z in S, consider the set of all points y in S such
that z and y lie together in some connected subset of S. This set is con-
nected by virtue of Theorem 1-14 and is maximal by construction. Hence
z lies in a component of S.

Next consider the set of all points y in S such that no separation

= A U B, with A and B separated, has  in 4 and y in B. This set is
easily seen to be a quasicomponent. [ |

TueoreMm 2-13. Every component and every quasicomponent of a
space is closed. Each component is a subset of some quasicomponent.
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Proof: Let C be a component of a space S. By Corollary 1-36, C is con-
nected because C is. Thus if C' does not equal C, we contradict the
maximality of C. Therefore every component is closed.

Next, given any separation § = 4 U B, both 4 and B are open and
closed subsets in 8. A quasicomponent @ of S is the intersection of all
such sets 4 that contain @ in each such separation. As an intersection of
closed sets, Q is closed.

Since no separation of a space S can separate a connected subset of S,
it follows that each component lies in some quasicomponent. []

In this new terminology we may rephrase Theorem 2-9 as follows.

THEOREM 2-14. In a compact Hausdorff space, every quasicomponent
is a component.

And this result can be reworded again to read: given a component C of
a compact Hausdorff space S and a point p in S — C, C and p are sepa-
rated by the empty set. The technique expressed in Theorem 2-3 permits
us to replace the point p by any closed set in S — € and still have a
separation by the empty set.

Another definition will carry us a step further in this direction. The
boundary of a set X, B(X), in a space S is the collection of all points p of S
such that every open set containing p intersects both X and S — X. It
is easy to see that the following formula holds:

BX)=XnE@-XUXnE®—X)]=XnE -X.
The proof of the following theorem is left as an exercise.

THEOREM 2-15. Let C be a component of a compact Hausdorff space,
and let U be any open set containing C. Then U contains an open set V
containing C, such that V has an empty boundary.

This last result permits us to prove one of the most useful results in
the theory of connected spaces.

THEOREM 2-16. Let S be a Hausdorff continuum, let U be an open
subset of S, and let C be a component of U. Then U — U contains a
limit point of C.

Proof: Suppose that U — U does not contain a limit point of C. Then
C is closed. The subspace U of § is also compact and Hausdorff. Hence
by Theorem 1-13, there are two dls;|01nt relatively open sets, D and E,
of U, D containing €' and E  containing U — U. Then D lies entirely in
U, and C is a component of D. Applying Theorem 2-15 to D, we see that
there is an open set D’ in D that contains € and that has an empty bound-
ary. Then D’ is both open and closed in S, so S is not connected. []
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It is interesting to note that there are connected (but not compact)
subsets of the plane E? that do not have the property given in Theorem
2-16. F. B. Jones [87a] has given an example of a solution of the linear
functional equation

fla +b) = fla) + f(b) 1)
whose graph is connected but which is not of the form
J(@) = mz. 2)

[It is known that if a solution of (1) is bounded over an interval, then
the solution must be of the form (2)]. Now let U be a bounded open set
in E?, and consider the points of the graph G of Jones’ function that
liein U. If (z1, y1) and (xe, y2) are points of G N U, there is some point
(Z,7) in G such that z; < T < z2 and such that (Z,7) is not in U.
Otherwise, G is bounded over [z, 3]. Hence there is a separation of
U N @ into those points for which z < T and those points for which
x > %. It follows that the components of U N G are single points. In
other words, every bounded open subset of G is totally disconnected,
although G is connected!

We now go on to investigate certain structural properties of continua.
These properties lead to the topological characterizations of the arc and
the simple closed curve to be found in the next section. Let .S be a con-
nected space. A point p of S is called a cut point of S provided that
S — p = A U B, where A and B are separated; otherwise p is a non-cut
point of S. As examples, we may point out that every point of E! is a
cut point, while the end points of the interval I' are its only non-cut
points. On the other hand, E” for n > 1 and S” for » = 1 have no cut
points at all. Note that the property of being a cut point is a topological
invariant but is not a continuous invariant. To prove the last of this
statement, consider the continuous real-valued function f(z) = 1 — 22
This carries the interval [—1, 1] onto I! with the cut point 0 of [—1, 1]
mapped onto the end point 1 of I'. Similarly, the property of being a
non-cut point is a topological invariant but not a continuous invariant.
For every point of the square I? is a non-cut point, while a projection
of I? onto I' yields a continuous image with cut points. There is a sort
of a converse result here, however.

TueoreM 2-17. Let f:8 — T be a continuous mapping of a space S
onto a connected space T. If p is a cut point of 7', then the inverse
set f~1(p) separates S.

Proof: By definition, T — p = T1 U T3, where T'; and T'; are disjoint

nonempty open subsets of 7. The continuity of f says that f~*(T;) and
F~YT5) are open, and they are certainly disjoint. By easy computation
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we have
FUT —p) = YD) — 7' @) = 8 — 7 (p) = f~1(T1) Uf~Y(To),

which is the desired separation of S.[]

TreoreEM 2-18. Every nondegenerate T'; continuum S has at least two
non-cut points.

Proof: Let N be the set of all non-cut points of .S, and suppose that N
consists of at most one point. Let zo be a point of § — N. Then S — 2y =
U U V, where U and V are disjoint nonempty open sets with N contained
in, say, V. For each point z in U, select a fixed separation 8 — z =
U, U V,, where 2¢ liesin V. Now U, U z is connected, by Theorem 1-16,
since the map f:8 — U, U z defined by f(y) = y for y in U, U z and by
f(y) = z for z in V, is continuous. Since xo is in V,, we must have
U.: U z contained in U. Order the sets U, by inclusion and, using the
maximal principle, extract a maximal simply-ordered subcollection {U. o)
of {U,}.

Now NU,, = N[U,, U x.]. For if z4 lies in U,,, then Vo U 24 lies
wholly in either Uszg or Vg Since zo is in V,, N Vg, 2o lies in Vg Then
Uz U x5, as a connected subset of S — z,, must lie in Uz,

Each set U,, U . is closed and hence compact. Since these sets satisfy
the finite intersection hypothesis, there is a point p in the intersection
NU,,. But then if ¢ is a point of U,, then p is not in Uy, and also U,
lies in NU,,. Hence {U,,} is not maximal, a contradiction that proves
that N contains more than one point. []

TueoREM 2-19. A T continuum &S is irreducibly connected about the
set of all of its non-cut points.

Proof: Let N be the set of all non-cut points of S. Suppose that there
is a proper subcontinuum $’ containing N. Let z be a point in S — .
Then z is a cut point of S, and S — z = U U V, where U and V are
disjoint nonempty open sets and S’ lies in one of these, say U. Then
V U is connected and closed and hence is a continuum. Hence by
Theorem 2-18, V U z has at least two non-cut points, one of which, call
it y, is not the point z. Then (V U x) — y is connected, U U z is con-
nected, and these sets have the point z in common. Thus S — y =
(U U =) U[(VuU=z) — y]is connected, and ¥ is a non-cut point of S that
is not in ', a contradiction. []

CoroLLaRY 2-20. If z is a cut point of a continuum S, and 8§ — z =
U U V, then U and V each contain at least one non-cut point of S.

Let p and ¢ be points of a connected space S. We denote by E(p, q) the
subset of S consisting of the points p and ¢ together with all cut points of
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S that separate p and ¢. [There may be no cut points in S separating p
and ¢, in which case E(p, q) = p U ¢.] The separation order in E(p, q)
is defined as follows. Let z and y be two points in E(p, q). Then z pre-
cedes y, x < y, in E(p, q) if either 2 = p or if = separates p and y in S.

TrEOREM 2-21. The separation order in E(p, q) is a simple order.

Proof: For each point z in E(p, ¢), x # p or g, there is a separation
S —z = A, U B, where p is in A, and ¢ is in B,. We use this nota-
tion throughout this proof. By virtue of Corollary 1-36, both the sets
Az Uz and B, U x are connected. We need the following remark.

Remark. Let r and s be two points of E(p,q) — p — ¢. If sisin B,,
then A, contains 4, U r, and B, contains B, U s;if sisin 4,, then 4, U s
isin A,, and B, contains B, U r. To see this, note that in the first case, the
connected set A, U r contains p but not s, and so lies entirely in A;. The
set (Bs U s) N (4, U r) is then empty, so B; U smust liein B,. The second
case is similar.

To return to the proof of the theorem, let » and s be two points of
E(p,q) — p — q. Then either sis in B, or sisin 4,. If sisin B,, then
r < sin E(p,q). If sisin A,, then risin By, so s < r. Hence any two
elements of E{p, q) are ordered.

No element of E(p, q) precedes itself. And if r < sand s < ¢, then by
the above remark we know that B, contains B; U s, and B, U s contains
B;, which in turn contains B; U t. It follows that » < ¢, so that we have
a simple order. The case E(p, ¢) = p U ¢ is trivial. []

Consider now the set A of positive integers ordered by size and the
set B of fractions %, %, %,...,n/(n -+ 1),..., ordered by size. The
transformation f:A — B, defined by f(n) = n/(n + 1), is one-to-one and
order-preserving; that is, if @ < b, then f(a) < f(b). Insofar as their
orders are concerned, then, there is no way to distinguish between the
sets A and B. More generally, two ordered sets A and B are of the same
order type if there is a one-to-one, order-preserving transformation be-
tween them. We might point out that even if A and B are subspaces of
E! with the natural order, such an order-isomorphism between them need
not be continuous. For instance, let A be the set of all real numbers z
satisfying either —1 < z < 0O or 1 < z < 2, and let B be the set of
all numbers z satisfying either —1 £ 2z £ O0or 1 < z £ 2. It is easily
shown that A and B are order-isomorphic, but there is no continuous
order-isomorphism between them.

We next give an example of a metric continuum M, such that one
set E(p, q) is of the order type of the set of rational numbers in I'. We
form M by erecting a perpendicular of length 1 at each point of the
Cantor set on I!, and then joining the midpoint of each interval comple-
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Ficure 2-3

mentary to the Cantor set to the upper ends of the two nearest perpen-
diculars, as indicated in Fig. 2-3. The set M consists of I! and all the
segments just described.

The set of points separating 0 and 1 in the continuum M above is
exactly the set of midpoints of the complementary intervals. To prove
that this set is order-isomorphic to the rationals, we appeal to the follow-
ing theorem, which we also use in the next section.

TueoreM 2-22. If A is a countable simply-ordered set such that
(1) A has no least element and no greatest element in its order and
(2), given two elements @ and b of A with a < b, there is an element ¢
such that @ < ¢ < b, then A4 is of the same order type as the rationals.

Proof: We will actually prove that A4 is order-isomorphic to the set
of proper dyadic fractions, i.e., the set of all numbers k/2", where k is
an integer satisfying 0 < k < 2". Having done so, we will have proof
that any two sets that satisfy our hypotheses are order-isomorphic, this
being a transitive relation. Since the rationals satisfy the conditions,
this will prove the theorem.

Let A = {ay, a3, as, . . .} be a counting of A, a; # a; for ¢ % j. Let
f(a1) = 3. Let n; be the first integer such that a,, < a, in the order
of A, and let n; be the first integer such that a; < a,, in 4. That these
exist follows from condition (1). Let f(an,) = 1/2% and f(a,,) = 3/22
Let n3, n4, ns, and ng be the first integers such that a,; < a,, < a,, <
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a1 < @py < Gy, < ang. The existence of n3 and ng comes from condi-
tion (1) again, while the existence of n4 and ns comes from condition (2).
Let f(ans) = 1/23; Jlans) = 3/23a f(any) = 5/23: and f(an,) = 7/23
The remainder of the construction should now be clear. We require each
time that the first possible subscript be chosen in order to be certain
that we use up all of A in this process. [ ]

Exercise 2-11. Construct three continua, each containing two points p and
g, such that E(p, ¢) is order-isomorphic to (a) the Cantor set, (b) the set of
numbers {0,1,3,...,n/(n-+1),...}, and (c) the set of numbers {0;...,
Un oo bbb 88, n/ it 1),... ;1)

ExErcis 2-12. Let A be the set obtained from the Cantor set by deleting
the points that are right-hand end points of complementary intervals. Prove
that A is order-isomorphic to I1.

ExErcist 2-13. Let A be the set of all points in the Cantor set that are not
end points of complementary intervals. Prove that A is order-isomorphic to the
set of irrational numbers.

ExEercise 2-14. Give constructive proofs for Theorems 2-9 and 2-11 in the
case of a compact melric space.

2-5 The interval and the circle. In this section, we give topological
conditions which when imposed upon a space make it homeomorphic to
the interval or to the circle. We begin by defining still another method
of introducing a topology into a set.

Let A be a simply-ordered set. The order topology in A is the topology
given by a basis whose elements are (1) the set A, (2) for each element
z in A, the set of all y < z, (3) for each z in A4, the set of all y > =z,
and (4), for each pair z and y in 4 with z < y, the set of all z satisfying
r <z <y (Some of these sets may very well be empty.) We need
(1) to take care of the case where A has only one element.

TrEOREM 2-23. In its order topology, a simply-ordered set is a Haus-
dorff space.

Proof: Let x and y be two points of the simply-ordered set A, and sup-
pose that z < y. If there is a point z such that + < z < y, then the
basis elements U consisting of all points w < 2, and the basis elements V
consisting of all points w > ¢, are disjoint and contain z and y respec-
tively. If no such point z exists, then the basis elements U consisting
of ‘all points w < y, and the basis elements V consisting of all points
w > z, satisfy the needed conditions. []

Any set E(p, ¢) in a space S has a simple order, and this order defines
an order topology for E(p, q). Is this order topology the same as the
subspace topology? We have already seen an example (that following
Theorem 2-23) where it is not. Figure 2-4 shows an example in which
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E(p, ) is connected. Let S be the set of all points (a) on the closure of the
graph of y = sin7/x, 0 < z £ 1, and (b) on the interval [—1, 0] of the
z-axis. For p = (—1,0) and ¢ = (1, 0), the set E(p, ¢) is the union of
the interval [—1, 0] and the graph of y = sin 7/z. In the order topology,
we have a space homeomorphic to the interval.

THEOREM 2-24. Let S be a connected space, and let p and ¢ be two
points of S such that p U ¢ is a proper subset of E(p, q). Let E(p, q)
have the subspace topology and let E* denote the set E(p, q) with its
order topology. Then the mapping ¢:E(p, ) — E*, defined by i(z) = x,
is continuous.

Proof: It will suffice to prove that every basis element for the order
topology in E* is open in the subspace topology of E(p, q). Reverting to
the notation used in the proof of Theorem 2-21, for a point z in L(p, q) —
p—qlet §S— 2= A, U B,, where 4, and B, are disjoint open sets
with p in A; and ¢ in B,. A basis clement for E* of type (2), determined
by the point z, is the intersection of 4, and E(p, q); a basis element of
type (3), given by z, is B, N E(p, g); and a basis element of type (4) is
of the form (B, N 4,) N E(p, q). All these are open in E(p, q). []

TrEOREM 2-25. Let S be a compact connected Hausdorff space with
just two non-cut points, @ and b. Then S = E(a, b) and the order
topology defined by the order in E(a, b) is the same as the topology
in S.
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Proof: Suppose that there is a point z in S that does not separate a
from b. Since x is a cut point, S — z = U U V, where U and V are dis-
joint nonempty open sets with, say, U containing @ U b. Recall that
Corollary 2-20 states that ¥ must contain a non-cut point of S. Thus S
must have three non-cut points, a contradiction that proves S = E(a, b).

Since open sets in the order topology were shown to be open in S
(Theorem 2-24), we need only show that open sets in S are unions of
basis elements of the order topology. If this is not so, there is an open
set U in S and a point z in U, such that no order-basis element that
contains z lies in U. For verbal simplicity, suppose that z is neither a
nor b, so that we need consider only basis elements of type (4). If y < 2,
let (y, 2) denote the order-basis element of the type (4) determined by
y and z. Using the maximal principle, we obtain a collection of sets
(Yay 22), Which is simply-ordered by inclusion, and which has only z as
their intersection. The same is true of the sets [yq, 2o] = (Yo, 2a) U Ya U 24,
and these are closed sets in 8. For each o, [y4, 2] N (S — U) is nonempty,
and these sets are closed in S and simply-ordered by inclusion. Hence
there is a point w in N[Ya, 2o N (S — U). But then w is also in N[ye, 24,
which is a contradiction. [_]

TaHEOREM 2-26. If S is a connected Hausdorff space which is a set
E(a, b), then the Dedekind cut theorem holds in S.

Proof: Let L and R be two nonempty subsets of S such that (1) § =
L U Rand (2),iflisin Land risin R, then! < 7 in the cut-point ordering
of S. Suppose there is no greatest element in L and no least element in R.
Then L is the union of basis elements of type (2), and R is the union of
basis elements of type (3) (see the beginning of this section). By Theorem
2-24, L and R are then open in S and give a separation of S. []

The next result is a characterization of the arc.

Taeorem 2-27. If M is a metric continuum with just two non-cut
points, then M is homeomorphic to the unit interval I'.

Proof: We know that M contains a countable dense subset C, and we
can assume that C' does not contain the non-cut points, a and b, of M.
As a subset of E(a, b), C has an order that satisfies the hypotheses of
Theorem 2-22, and hence there is an order-isomorphism A of C onto the
set R of rationals in I!. It is easy to see that A is also a homeomorphism
of C onto R.

Let z be a point of M other than the two non-cut points. Let Cy, be all
points of C' less than z, and let C'r be all points of C greater than z. The
sets h(Cr) and h(C'g) constitute a partition of B that can be extended to a
partition of I'. Such a partition of I! determines a unique number y, by
the Dedekind cut theorem. We let h*(z) = y. It is easy to show that
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R*:M — I" is one-to-one and continuous and hence is a homeomorphism
(see Theorem 2-103). []

We recall that any homeomorph of the unit circle S! is called a stmple
closed curve (some authors call it a Jordan curve). It is clear that the
omission of any two distinct points of S! separates S, and the following
theorem proves that this property characterizes a simple closed curve.

THEOREM 2-28. If M is a metric continuum such that for each two
points z and y of M, M — z — y is not connected, then M is a simple
closed curve.

Proof: (1) No point separates M. For suppose that M — z = U U v,
where U and V are disjoint nonempty open sets. Then U U z and V U
are both continua, and hence there exist points y in U and z in V such that
y does not separate U U z, and z does not separate V U z. Then we have
M—-—y—2z=({UuUz—y) UV Uz — 2), which is the union of two
connected sets, each containing the point z. Thus M — y — 2 is con-
nected, contrary to hypothesis.

@ IfM-—a—b=UUYV, where U and V are disjoint nonempty
open sets, then U Ua U b and V U a U b are both connected sets. For
suppose that U Ua U b = X U Y, where X and Y are disjoint relatively
open nonempty sets. If X contains the point a but not b, then the boundary
of X is the point @, so M — a = (X — q) U[Y U (V — a)] is a sepa-
ration. This contradicts (1).

(3) Either UUa Ubor VUauUbisan are. For if not, then each of
these contains a point, say x in U Ua Uband yin VUa U b, distinct
from a and b, that is not a cut point of the set. Then we have that
M—-—z—y=[Uuaub) —z]U[(VUaUD) — yl is a union of
two connected sets having a point in common, which is a contradiction.

(4) Both UuauUband V UaUb are arcs. For by (3) one of them
is, say, VUauUb If UUaUbisnot an arc, then it contains a point
z # a, b such that z is a non-cut point of U U a U b. Let y be any point
of V. Then V Ua Ub — yis the union of two connected sets X and ¥
with, say, ain X andbin Y. Thus M — 2z — y = [(UUaub) —2ju
X U Y is a connected set. This proves that M is the union of two arcs
having only their end points in common. []

One of the most instructive examples in topology, the “long line,” is of interest
here. Consider any uncountable set A and well-order A into a well-ordered
sequence a1, az, . . ., g . . . Either every element of A is preceded by at most
a countable number of elements, or some element has an uncountable number
of predecessors. If the second possibility occurs, then the set of all those ele-
ments with an uncountable number of predecessors has a first clement, say @,
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by the well-ordering principle. In this case we let A’ denote the set of all prede-
cessors of @, and in the first case we let A” = A. In either case, A’ is a well-
ordered set with the property that every element has at most countably many
predecessors but A’ itself is uncountable. (If this seems paradoxical, recall that
the positive integers constitute an infinite well-ordered set such that each
element has only finitely many predecessors.) Now each element of A’ has
an immediate successor, but some elements do not have an immediate prede-
cessor. For example, the first element that has infinitely many predecessors has
no immediate predecessor.

Now consider a collection {I,} of open intervals indexed by the set A’, that
is, I, is an open interval paired with the element a of A’. (How do we know
that such a collection exists?) Speaking intuitively, we will insert an open in-
terval between each two elements of A’. More precisely, let L = A’ U (Us-1,),
and order L by the following five conditions. Let x and y be points of L. Then
z < yif (1) zandyarein A’,andz < yin A’, (2) zisin A’, and y is in a set I,
andz = aorz < ain A’, (3) zisinaset I,, and yisin 4/, and a < yin 4’,
(4) zisinaset I,, and yisin aset Is,and a < bin A’, or (5) z and y are in the
same set I,, and ¢ < y in I,. We topologize L by means of the order topology
and the resulting space is the long line. (It should perhaps be called the long ray
because it does have a first point.) We leave as an exercise the proof that L
satisfies the Dedekind cut theorem. Assuming this, we see that it follows that
L is connected in precisely the same way that we proved that the real line
is connected.

We note that L is not compact, because the set of all open sets, each of which
consists of all predecessors of a point of L, contains no finite subcollection
covering L. But, surprisingly, L is countably compact. For suppose that
X = {b1, bs, ...} is a countable subset of L consisting entirely of elements
of A’. If there is a first element @ of A’ that follows infinitely many elements of
X, then a is a limit point of X. If there is no such element, then given any
element a of A’, there is an integer n, such that b, follows a. Then A’ is the
union of the sets B, of all elements of A’ preceding b,. But each B, is countable,
so A’ = UB, is countable, contrary to hypothesis. Hence X has a limit point.
The cases in which X contains infinitely many points not in A’ will be left as an
exercise. It now follows that the long line is a Hausdorff space that is countably
compact but not compact and, as we shall see, is not metric. If we add one more
point at the open end of L, we get a compact space with exactly two non-cut
points, which is not an arec. This proves the need for metricity in Theorems 2-27
and 2-28.

The reader who is interested in geometry may find it noteworthy that the
long line is an example of a non-Archimedean line. That is, each closed interval
in L is actually homeomorphic to a straight-line interval, but there is no count-
able collection of closed intervals that intersect only in end points and fill up L.

We remark for later use that the long line has the fixed point property [134].

2-6 Real functions on a space. Given any space, we can always define
real-valued continuous functions over the space, even if only the constant
functions. But are there enough such functions to provide useful informa-
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tion about the space? In Example 3 of Section 1-11 we saw that, for
any space, the collection of bounded continuous real-valued functions on
the space can be made into a metric space whether or not the original
space is metric. This might suggest that questions about a given space
with some weird topology perhaps can be answered by investigating a
rather nice function space. An obvious requirement here would be to
have enough continuous real functions to be able to distinguish between
the points of the given space. To be precise, if x and y are distinet points
of a space S, and if there is a real-valued continuous function f:S — E?!,
such that f(z) # f(y), then f serves to distinguish between x and y. In
fact, the set of points z in S for which f(z) = 3[f(z) + f(y)] separates z
from y in S (see Theorem 2-17), so that #f each two points can be so dis-
tinguished by a function, then the space is a Hausdorff space.

We may also ask for conditions to be placed upon a space S which will
allow us to distinguish between closed sets in the same way. If, for each
pair of disjoint closed sets A and B in a space S, there is a real-valued con-
tinuous function F:S — E', such that f(A) = a %= b = f(B), then S is
normal. The same argument serves to show this. The converse of this
result is also true; that is, the result, together with the following theorem,
constitutes a complete characterization of normal spaces.

TrEoREM 2-29 (Urysohn’s lemma). If Sis a normal space and A and
B are two disjoint closed subsets of S, then there is a real-valued
continuous function f:8 — I! of S into the unit interval I! such that
f(A) = O0and f(B) = 1.

Proof: Since S is normal, there is a closed set C(3) separating S into
two disjoint open sets U(3) and V (%), with A in U(3) and B in V(3).
We will eventually define f in such a way that f(z) < % for z in U®}),
f@) = 3 for z in V(3), and f(z) = % for z in C(3).

Next we find two closed sets C(%) and C(£), on which we will later have
f(x) = 1 and f(z) = £, respectively, as follows. The sets A and
C(3) U V(3) are disjoint closed sets in S, so normality gives us a closed
set C(3) separating S into disjoint open sets U(%), containing A, and
V(2), containing C(3) U V(4). Also the sets U(%) U C(3) and B are
disjoint closed sets, so there is a closed set C(3) separating S into disjoint
open sets U(2) and V(3), with U(F) UC(3) in U} and B in V(3).
Note that the sets C(3), C(3), and C(3) are all disjoint and that U(2) lies
in U(3), which lies in U(%), while V(3) is in V(%), which lies in V{}).
For uniformity of notation, we set C(%) = C(2), ete.

In general, suppose that we have defined the sets C(r/2"), U(r/2"), and
V(r/2") for a fixed value of n, and for each r = 1,2, ..., 2" — 1, and
that these sets have the properties generalized from those above, that is,
U(1/2") lies in U(2/2"), etc., and V((2" — 1)/2") lies in V((2" — 2)/2™),
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ete. Nowforafixedk < 2" — 1, thesetsC((k — 1)/2") U U((k — 1)/2™)
and C(k/2™) U V(k/2") are disjoint closed sets in S, so there is a closed set
C((2k — 1)/2"*1) separating S into disjoint open sets U((2k — 1)/2»+1),
containing C((k — 1)/2™) U U((k — 1)/2"), and V((2k — 1)/2"T1), con-
taining C(k/2™) U V(k/2™). Again we agree to take C(k/2") = C(2k/2"*1).
This procedure may be carried on to define the sets C(k/2" 1), U(k/2"*1)
and V(k/2"*1), for each k = 1, 2,...,2""! — 1, with the properties
that no two sets C'(k/2"*!) intersect, and if 7, and r, are two dyadic
rationals, r; = k;/2™ and ro = ko/2"2, with k; and ks both less than
2"+ and n, and ny both less than n 4 2, and if r; < 75, then U(r;)
is contained in U(ry), while V(ry) is contained in V(ry).

We will now define the function f as follows. If a point z in S is in a
set U(ky/2™) but is not in a set U(ky/2"2), then it must be true that
ki1/2™ < ko/2"z2, and we would want f(z) to lie between these two dyadic
rationals. To achieve this condition for all points x at once, we set

f(x) = greatest lower bound of k/2" taken over all sets U(k/2")
that contain x

and

f(x) = 1, if z lies in no open set U(k/2").

Since A is in every set U(k/2"), it follows that f(A) = 0. Similarly,
the set B lies in no U(k/2"), so f(B) = 1. All that is left is to show that
f is continuous. For the closed unit interval I', there is a basis consisting
of all intervals of the three forms [0, k/2"), (k1/2™, k3/2"2), and (k/2", 1].
The inverse under f of the first type is an open set U(k/2"), the inverse
of the second type is a set U(ks/2"2) — U(k,/2™), and the inverse of
the third type is S — U(k/2"). Each of these is open in S. Thus the
inverse of any open set in I! is open in S, and f is continuous. [_]

Remark: The definition of the function f given above does yield the value
f(z) = k/2" for points x in C'(k/2"), but it may happen that f has the value, say,
of % elsewhere as well as in C(3). In Fig. 2-5, the sets C are selected so that
C(3 — 1/2") approaches the broken segment, which is not in the space. In
such a case, f(z) = % for all points « between the broken segment and C(}).

It is easy to give what appears to be greater generality to Theorem 2-29.
Suppose that we want a function g mapping S onto the closed interval
[a, b], with f(4) = a and f(B) = b. The function h:I' — [a, b], defined
by h(z) = a + (b — @)z, is a homeomorphism. Hence the composite
mapping hf, where f is the function given in Theorem 2-29, has the de-
sired property. We state this result explicitly in a theorem equivalent to
Theorem 2-29.
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TuEOREM 2-30. If A and B are disjoint closed subsets of a normal
space S, then there is a continuous function f of S onto the linear interval
[a, b], with f(4) = a and f(B) = b.

We may view Theorem 2-29 intuitively as claiming that a normal space
S has a topology enough like that of I' to permit a very large collection
of nonconstant mappings of S onto 7. On the other hand, the existence
of nonconstant mappings of I' into S is an entirely different matter!
Even if S is quite reasonable, no such mappings need exist. For instance,
let S consist of the rational numbers with the subspace topology of E!.
Since I' is a continuum, every continuous image of I' is a continuum.
But the components of S are all single points. Therefore any continuous
mapping of I' into S must be constant. These considerations will crop
up again when we study arcwise connectivity in Section 3-2.

2-7 The Tietze extension theorem. Another way of looking at Theorem
2-29 requires a new definition. Let S and T be spaces, and let 8’ be a sub-
space of S. Suppose that f':8’ — T is continuous. Then a continuous
mapping f:§ — T is an extension of f’ if f(z) = f'(@) for all points x
in §’. Rewording Theorem 2-29, we define the mapping " of A U B
into I' by setting f'(x) = 0 for all points z in 4 and f'(y) = 1 for all
points y in B. Clearly f’ is continuous in A U B if A U B is considered
as a subspace of S. Theorem 2-29 now asserts that we may extend f’
to a mapping f of all of S into Il

Such extensions of mappings need not exist even for simple cases. For
instance, let S = E' and §' = E' — 0. The function f/:8' — EY
defined by f’(z) = z/|x, is continuous on S’ but cannot be extended so
as to be continuous at z = 0in S. Several more such situations will occur



60 THE ELEMENTS OF POINT-SET TOPOLOGY [caar. 2

later, and extension of mappings will be discussed at some length. For
now, we give a train of results that lead to a metrization theorem.

TreorEM 2-31 (Tietze’s extension theorem). Let S be a normal space,
and let C be a closed subset of S. Let f':C — [a, b] be a continuous
mapping of C into the linear interval [a, b]. Then there exists an ex-
tension of f’ to a mapping f of S into [a, b].

Before proving this result, we consider infinite series defined on a
general space. Suppose S is any topological space and that, for each nat-
ural number n, f,(z) is a real-valued function defined on S. We may form
the infinite series Y ,—; fo(z) just as in the calculus. Convergence of
such a series for a fixed point « of 8 is defined to mean that the partial
sums Y ¥_, fo(z) form a convergent sequence of real numbers, and the
value of Y o—; fa(x) is taken to be the limit of these partial sums if such
exists. The topology of S becomes important here when each f,(x) is as-
sumed to be continuous and we investigate the continuity of the limit
function. FEven in this general situation, however, we have access to
standard results, such as the following statement of the Weierstrass
M-test.

TuroreM 2-32. Let S be a topological space and, for each positive
integer n, let f,:S — E' be a real-valued continuous function. Suppose
there exists a convergent series of positive numbers, S m—i M,, such
that for each point z in S and each n, |f.(x)] £ M,. Then for each
point z in S, the infinite series >, fa(x) converges to a number f(x),
and the function f so defined is continuous.

Proof: For any particular point z in S, the series 3_n—; fa(2) is absolutely
convergent by the well-known comparison test from the caleculus. Thus
for each z, f(z) exists. We remark that (a) if € is any given positive
number, then there is an integer N such that for any point x in S and
any integer k > N,

k e
CEDWCIRS S
For we know that
@ - Nh@l=| 3 A< X Wl < Y M
n=1 n=k+1 n=k+1 n=k+1

and since Y.o—; M, converges, we are able to choose N sufficiently large
that Yw—z11 M, < €/3 whenever k > N. Continuing, we assume that
each function f,(z) is continuous. Thus we may remark further that
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(b) for each point x in S, there is an open set U, in S, such that for any
point y in U,,

N N ¢
gjlfn(x) - nZ::lf,,@) <3
where N and € are as above. Now consider
N 0 ©
@) —f@)l = | 22 @ — @+ Y ful@) — D fuly)
n=1 n=N-1 n=N -1
N © ©
n=1 n=N-+41 n=N+41
€ € ¢ ,
<gtztz=¢

Of course this is a standard proof from analysis (see Kaplan [16], p. 342)
and proves that f is continuous. [ ]

Proof of Theorem 2-31 (see Urysohn [127]). We may assume that the
interval [a, b] is the interval [—1, 1], without loss of generality. For the
mapping h:[a, b] — [—1, 1], given by h(z) = (22 — a — b)/(b — a), is
a homeomorphism and if the mapping hf’ of C into [—1, 1] can be extended
to a mapping f:8 — [—1, 1], then A~ is the desired extension of .

We prove the theorem by constructing an infinite series that con-
verges to f” on the set C' and to some continuous function fon all of S.
To start this, let H, be the subset of C' on which f'(x) = %, and let K,
be the subset of C on which f’(z) < —35. Since H, and K are the inverse
mmages of closed intervals under a continuous function f’, they are closed
in C and hence closed in S. Also H; and K 1 are obviously disjoint. By
Urysohn’s lemma in the form of Theorem 2-30, there is a continuous
function f,:8 — [—4%, 4] which has the value —3%on K, and 4% on H;.
For this function, we have that |f/(z) — f, (x)| < £ for all points z in C.

Next let H; be the subset of € on which f’(z) — f1(x) = %, and let K,
be the subset of ' on which f’(z) — fi(@) = —%. Again Urysohn’s
lemma yields a continuous function f2:8 — [—%, 3], with value Z on H,
and —% on K,, and this function satisfies the inequality

lf'@ — fi(@) — fo(@)] < %

for each point x in €. Continuing this process with the numbers
o 80 -, 2" 1/3", ..., we obtain a sequence of continuous functions
Jai8 — [—2"71/3" 2"~1/3"] with the property that

/'@ — fie) — - — fu@] = G)"
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for each point z in C. Letting M, = 2"~1/3" in Theorem 2-32, we see
that the functions f,(z) satisfy the hypothesis of 2-32 and hence have
a continuous sum f:S — E!. Since Y.no—; 2°71/3" = 1, it follows that
[f(x)| < 1, as required, for all z. Also, |f'(x) — f(z)] = O for each point z
in C, so f is the desired extension of f’.[]

A number of important conclusions may be drawn from the Tietze
theorem. First, we note that the hypothesis that f’ be bounded in this
theorem is not necessary. For we know that E! is homeomorphic to,
say, the open interval (0,1). Thus almost identical arguments suffice to
give an extension of any real-valued continuous function on C. Another
application of Theorem 2-31 proves that we can also extend some map-
pings that are not real-valued. We recall that I™ denotes the unit cube
in E® consisting of all points z = (x4, ...,,) for which 0 £ z; £ 1.

TaeoreM 2-33. Let S be a normal space, and let f':C — I™ be a con-
tinuous mapping defined on the closed subset C' of S. Then there is
an extension f of f/ to all of S.

Proof: For each point z in C, we have f'(z) = (y1, ..., ¥»), & point
in I". Define fi(x) = y;. Clearly f; = m,f’, where m; is the projection
of the product space I™ onto its ¢th factor. As the composition of two
continuous functions, f; is certainly continuous. Hence by the Tietze
theorem, f; can be extended to obtain a continuous mapping f;:8 — I L
Tor each point z in 8, define f(z) = (f1(x), ..., fa(x)). The mapping f
so defined certainly agrees with f’ on C, and f is continuous by virtue of
Theorem 1-37. Hence f is the desired extension of f’. []

This last result might suggest that for most spaces X, a mapping f’
of a closed set ' in a normal space S into X can be extended to a mapping
f:8 — X. This conjecture is not true! Such an extension depends as much,
or more, upon the topology of X as it does upon the topology of S. In
fact, a space X which always permits such extensions is of a highly re-
stricted category known as absolute retracts. For instance, the circle does
not have this property. We will prove later (Section 6-16) that if D?
denotes the closed disk in E? bounded by the unit circle S*, then even
the identity mapping 7:S' — S?, defined by 7(x) = z, cannot be extended
to a continuous mapping f:D? — S!. We may follow this line of thought
further by means of several new definitions.

A subset R of a space S is a retract of S provided that there is a con-
tinuous mapping r:S — R, such that r(z) = z for each point z in R.
Such a mapping r is called a retraction. Equivalently, R is a retract of S
if the identity mapping i:R — R can be extended to all of S. A space 4
is an absolute retract (often abbreviated AR) provided that if S is any
normal space and A’ is a closed subset of S that is homeomorphic to 4,
then A’ is a retract of S. (See the definitive paper by Borsuk [67].)
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TaEOREM 2-34. The unit cube 77 is an absolute retract.

Proof: Let S be any normal space for which there is a homeomorphism
h of I" into S. Since A(I™) = A’ is compact, it is a closed subset of S.
By virtue of Theorem 2-33, the mapping A~ ':4’ — I"™ can be extended
to yield a mapping f:S — I™. Then the composite mapping Af:S — A4’
is continuous, and hf(z) = hh~!(z) = z for each point z in A’. []

Although it was said in a different way, we mentioned above that the
circle S' is not a retract of the disk D2 However, all the spheres S™
do have an extension property, which is formulated precisely in the
following result.

THEOREM 2-35. If C is a closed subset of a normal space S, and
f':C — 8" n = 0, is a continuous mapping of C into the n-sphere,
then there is an open subset U of S, such that U contains C, and such
that there exists an extension f:U — 8™ of f' to all of U.

Proof: The n-sphere S™ may be considered as the boundary of the cube
I"*1, so Theorem 2-33 applies to give an extension g:S — I of £/,
Now let p denote the point (4, %,...,4) in I"*'. Then there is a re-
traction » of I"*!' — p onto the boundary of I"*1 defined by radial
projection from the point p. Now we have that gl — p) =
S — ¢~ (p) is an open set U in S such that U contains C and the com-
posite mapping rg is defined and continuous on U. That rg(z) = rf’'(z) =
S’(z) for any point z in C is immediate, and hence rg is the desired exten-
sion of f/. []

The extension property of S™ expressed in Theorem 2-35 is formulated
in retract language as follows. A subset N of a space S is a neighborhood
retract of S if there is an open set U in S containing N, such that N is a
retract of U. Again an equivalent definition is obtained by requiring that
the identity mapping :N — N be extendable to the open set U. Then
a space B is an absolute neighborhood retract (often abbreviated ANR) if,
for each normal space S and each closed subset B’ of S that is homeo-
morphic to B, B’ is a neighborhood retract of S. The reader may follow
the proof of Theorem 2-34 to translate Theorem 2-35 into the following
form.

TurEOREM 2-36. The n-sphere S™ is an absolute neighborhood retract.
Two more theorems on the extension of mappings will be of use later.

THEOREM 2-37. Let A be a closed subset of a normal space S. Let U
be an open set in S containing 4, and suppose that there is a con-
tinuous mapping f(x, t) defined on the subset (UXIYH U (S X 0) of
S X I' and throwing this subset into an arbitrary space Y. Then
there exists a mapping f:8 X I' — Y that agrees with f on (4 X I') U
(S X 0).
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FiGUure 2-6

Proof: The sets A and S — U are disjoint closed subsets of the normal
space S. Urysohn’s lemma (2-29) provides a mapping u:S — [ 1 such
that u(4) = 1 and u(S — U) = 0. Define the mapping

J@, &) = f(, t - u(2)).

Clearly f is defined if z lies in U, for then the number ¢ - u(z) satisfies the
inequality 0 < ¢-u(z) < 1. If z is not in U, then f(z,t) = f(z,¢-0) =
f(z,0) and is defined. Thus f is defined on all of S X I', and f is cer-
tainly continuous. Moreover, if z lies in A4, then f, t) = flz, t-1) =
f(z, t) while f(z,0) = f(z, 0) regardless of where z may lie. []

TaroreEM 2-38. Let A be a retract of a space X. Then any mapping
f:A — Y, where Y is arbitrary, can be extended to all of X.

Proof: By definition, there is a retraction mapping r:X — A, such that
r(z) = =z for each point x in A. The composite mapping fr:X — Y is
clearly an extension of f. []

Exercrse 2-15. Let A be an arc in E3 tied in a simple overhand knot as in
Fig. 2-6. Find a retraction of E3 onto A.

2-8 Completely separable spaces. Many theorems may be extended
and improved if we limit consideration to spaces with a countable basis.
Such a restriction is in line with our successive specialization of the gen-
eral topological space, of course, and furthermore it is on the road to a
metrization theorem (Section 2-9).

As was remarked in Section 2-4, the existence of a countable basis
permits constructive proofs of theorems which require the axiom of
choice in more general cases. Before illustrating this, we will need some
results about spaces with a countable basis. We recall that a space that
contains a countable dense subset is called separable. We now introduce
the term completely separable for a space with a countable basis. (The
term second-countable is also used for such a space. First-countable means
that at each point of the space there is a countable basis for the open
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sets containing that point.) Our first result is merely a restatement of
Theorem 1-5.

THEOREM 2~-39. Every separable metric space is completely separable.
TurEOREM 2-40. Every completely separable space is separable.
Proof: Take one point from each element of a countable basis. N

TaeoREM 2-41. If S is a completely separable space, then every sub-
space of S is completely separable, and hence every subspace is separa-
ble. (In other words, the property of being completely separable is
hereditary.)

Proof: 1f {B,} is a countable basis for S, and X is any subset of S, then
the collection {B, N X} is a countable basis for the subspace topology
of X. The remainder follows from Theorem 2-40. []

In Theorem 2-41 we have reason for using the term “completely”
separable. 'The property of separability alone is not hereditary. At the
end of Section 1-4 we gave an example of a separable space having an
uncountable subset having no limit point at all. This certainly serves as
an example to show that not all subspaces of a separable space are sep-
arable. Indeed, the subset given in the example just cited cannot occur
in a completely separable space, as the next, slightly startling result
shows.

THEOREM 2-42. In a completely separable space, every uncountable
subset contains uncountably many limit points of itself.

Proof: If X is an uncountable subset of the completely separable space
S, then by Theorem 2-41, X contains a countable dense subset ¥ of itself.
Each point of X is either a point or a limit point of Y. But X — YV is
uncountable and, since each point of X — Y is a limit point of ¥, the
theorem is true. [ ]

Again we point out that the example in Section 1-4 shows that the
hypotheses of Theorem 2-42 cannot be weakened to separability (unless
something else, like metrizability, is added). We next give an example
to prove that the converse of Theorem 2-42 is not true. That is, we
construct a space in which every uncountable subset contains a limit point
of utself, but the space is not completely separable.

Let S be the union of the unit interval I' and a point p not on I
A basis for a topology in S will consist of all relatively open subsets of I*
in the usual topology of E!, together with all sets that are the union of
the point p and the complement in I' of any finite set. Since in its usual
topology I'! itself has a countable basis, every uncountable subset of S con-
tains a limit point of itself. Suppose that S had a countable basis. Given
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any countable number of elements Uy, Uy, . . . of that basis, all containing
the point p, the set I — (I — U;) — (I — Usy) — - - - is nonempty (in
fact, is uncountable) and, for any point ¥ in this set, S — ¥ is an open set
containing p but not containing any of the sets Uy, Uy, ... This con-
tradicts the assumption that we have a countable basis for S.

The above example is certainly separable. Since it is not completely
separable, it cannot be a metric space (Theorem 2-39). In fact, adding
the hypothesis that the space be metric allows us to prove a converse
of Theorem 2-42.

THEOREM 2-43. If M is a metric space in which every uncountable
subset has a limit point, then M is completely separable.

Proof: In view of Theorem 2-39, it suffices to prove that M is separable.
The scheme of the proof will be to choose for each integer n a subset X,
in M, with the property that every point in M is at most a distance 1/n
away from a point of X,, while no two points of X, are less than a dis-
tance 1/n apart. Such a set X, obviously has no limit points and hence
cannot be uncountable by hypothesis. Then the union U,—; X, will be
dense in M and, as the countable union of countable sets, will be
countable.

To prove that such sets X, exist, let » be a positive integer, and con-
sider all subsets X, of M having the property that each two points of X,
are not less than 1/n apart. Such sets obviously exist, at least for all
sufficiently large values of n. Partially-order the collection of all such
sets X, by inclusion. Starting with any fixed X,, there is a maximal
simply-ordered subcollection { X3}, each X containing X., by the maximal
principle. We let X, = UsXs. We note that X, is also a set X, for each
pair of points 2 and y of X, belongs to some Xz and hence = and y are not
less than 1/n apart. Furthermore, X, includes each Xz Now if there
were a point p of M at a distance not less than 1/ from each point of X,
then the set X, U p would be an Xj containing X,, which would con-
tradict the maximality of X,. []

This is a convenient place to insert two results that will be valuable
later.

TaroreM 2-44 (Lindelof’s theorem). Let X be a subset of a completely
separable space S, and let { U,} be a collection of open sets covering X.
Then some countable subcollection of {U,} also covers X.

Proof: For each point z in X, there is at least one open set U.(z) con-
taining z. Given a countable basis {B.} for S, the definition of a basis
says that there is a basis element B; containing x and contained in Ua().
Let {B;} be the subcollection of {B,} consisting of all such sets B;, each
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contained in an element of {U,}. The collection {B;} covers X. Then
for each By, let U; be any one of the sets U, that contain B;. 1t is clear
that the countable collection {U;} also covers X. ]

The use of open coverings of a space becomes progressively more impor-
tant as we go deeper into topology. Sections 2-11 and 2-12 and large
parts of Chapter 8 will exemplify this.

THEOREM 2-45. A completely separable regular space S is completely
normal and hence is normal.

Proof: Let A and B be two separated sets in S. Since A N B is empty,
each point z in 4 has an open set U, containing x, such that U, is con-
tained in S — B (this follows from the regularity of S). The collection
of all such sets U, covers A and, by Theorem 2-44, there is a countable
subcovering {U;} of {U,}. In the same way, we find a countable collection
{Vi} covering B, such that V; N 4 is empty for each 7. Now let W, = U,
X, =V, - U, and, inductively, Woipr = Unyr — [U; V4] and
Xn =7V, —[U-1 U]. The two open sets U — Ui W, and V =
Un=~1 X, are then disjoint open sets containing 4 and B respectively. []

ExErcise 2-16. Prove that the product of two separable spaces is separable.

ExErcise 2-17. Prove that the product of two completely separable spaces
is completely separable.

ExErcisE 2-18. Give a proof of Theorem 2-43 using well-ordering. _

ExERrcise 2-19. Prove that a subset of a completely separable Ts-space is
compact if and only if it is countably compact.

(We note that in view of Theorem 2-39, Exercise 2-19 shows that compact
sets and countably compact sets are identical in a separable metric space. The
following exercises pursue this further.)

Exercise 2-20. Prove that if the metric space M of Theorem 2-43 is count-
ably compact, then the sets of points X, are finite.

ExErcise 2-21. Prove that every countably compact metric space is separa-
ble.

ExErcise 2-22. For subsets of any metric space, show that compact sets and
countably compact sets are identical.

2-9 Mappings into Hilbert space. A metrization theorem. In Sec-
tion 2-7 we were concerned with extensions of mappings of a normal
space into E". As we pointed out then, the theorems in Section 2-7 assure
us of a large collection of nonconstant mappings of a normal space into
E™. But if we ask for more than this, the situation changes quite dras-
tically. A natural desire would be to ask for a homeomorphism of a space
S into E*. For such a homeomorphism to exist, a number of conditions
on S are easily seen to be necessary. Since S would be homeomorphic to
a subset of E", it follows that S must have been metrizable, must have
had a countable basis, and so on. However, conditions on S that are
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both necessary and sufficient for S to be homeomorphic to a subset of E™
are not yet known.

In certain special instances, questions about the existence of homeo-
morphisms of a particular space into E™ have been answered. For in-
stance, if m > n, then there is no homeomorphism of E™ into E™. This
is the Brouwer theorem on the invariance of domain, which will be met
again in Section 6-17. Such a result is intuitively obvious but, although
E827 and E®', say, are defined differently, it is not easy to show that
E827 cannot be parametrized with 819 coordinates. As another example,
we state in Section 3-9 that if a separable metric space has dimension =,
in a sense to be defined, then it can be mapped homeomorphically into
E2n+ l.

As a natural generalization of Euclidean space, we define next the
Hilbert coordinate space. The points of this space are sequences x =
{z1, T3, ...} of real numbers satisfying the condition that S22t is
convergent. This collection is topologized by means of the metric

iz, y) = [g (s — Wz]“?.

This is the natural generalization of the Euclidean metric.

Intuitively, Hilbert space is a Euclidean space of infinitely many
dimensions and has more room in it than any space E™. It is true that
every separable metric space can be mapped homeomorphically into
Hilbert space. In fact, we show next that an apparently larger class of
spaces can be so imbedded in Hilbert space, namely, the class of all normal
spaces with a countable basis. We say “apparently larger ” because, as is
obvious, if a space may be imbedded in Hilbert space, then we can utilize
the imbedding homeomorphism to apply the Hilbert metric to the origi-
nal space. In this sense, our next result is a metrization theorem, and
proves that every normal space with a countable basis may be assigned a
metric equivalent to the original topology. We should point out that the
existence of nonseparable metric spaces proves that the conditions used
here are sufficient but not necessary for metrizability. Such necessary
and sufficient conditions are stated in Section 1-12.

TuEOREM 2-46. Every completely separable normal space S can be
imbedded in Hilbert coordinate space. (See Urysohn [127].)

Proof: Let By, By, ..., By, ... be a countable basis for S. In view of
Theorem 2—4, there are pairs B;, Bj, such that B; is contained in Bj; in
fact, each point of S lies in infinitely many such pairs, or is itself an open
set. However, there are at most a countable number of pairs for each point
of 8. For each pair B;, B; with B; contained in Bj, Urysohn’s lemma
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(Theorem 2-29) provides a function f, of S into I' with the property that
fu(B:) = 0 and f,(S — B;) = 1. (If the point p forms an open set, then
we take f, = O for Jarge n.) Letting H denote Hilbert coordinate space,
we define a mapping f of S into H by setting

f@ = {fl(x), LW, &, ko, }

for each point z in 8. Since the series Y7, (fa(x)/n)? is dominated by
the convergent series > 2_; 1/n2, this definition of f(x) does yield a point
of H. It remains to prove that the function f so defined is continuous, one-
to-one, and interior (see Theorem 1-9).

To establish continuity, let p be any point in f(8S), and let S(p, €) be
a spherical neighborhood of p in H. We show that F~H(S(p, €)) is open.
First, it is easily seen that there exists an integer N sufficiently large so
that if y is any point in S, then we have

() — L@ _ €
Z n2 < 2
=N
Since the functions f, are continuous, there is an open set U; in S for each
integer j < N such that U; contains p and, if y is any point in U},
) — iw))* _ e
72 2N
The intersection NY_; U, is an open set containing p and such that, if
¥ is any point in this intersection, we have

w[fn)_n]z N_In — Jn 2 > n — Jn 2
n;l (» an @I _ ,;1 [fn(p) n2f )] 1 n; [fa(p) n2f @)
(N — e

< Tow

This implies that f(n}_, U ;) is contained in S(p, €) so that n?;l U; lies
in f71(S(p, €)).

That f is one-to-one is also easy to prove. For if z and y are distinct
points of S, then there is a pair B;, B, with z in B;, B; contained in B;,
and y in § — B;. This comes from the normality of S, of course. Thus
there is an integer n such that fa(@) = 0 and f,.(y) = 1, so f(x) and biE))
are distinet also.

It remains to show that f is interior. To this end, let & be a point in
an open set U in S. There is a pair B;, Bj; such that x lies in B;, B; is
contained in Bj, and B; is contained in U. Therefore there is an integer
n for which f,(x) = 0, while fn(8 — U) = 1. Tt follows that for any

€
+§<€.
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point y in 8 — U, we have d(f(z), f(y)) = 1/n. For
— 2\1/2
d(f(@), 1) = (M) _ 1

n

3

Thus the spherical neighborhood S(f(z), 1/2n) lies entirely in f(U), and
f(U) is open. []

In view of Theorem 2-45, we may give the following generalization of
Theorem 2-46.

TueoREM 2-47. Every completely separable regular space can be
imbedded in Hilbert coordinate space.

Since we know that a metric space is normal (Theorem 2-7), we may
state the following characterization of metrizable spaces with a countable
basis.

THEOREM 2-48. A necessary and sufficient condition for the metriza-
bility of a completely separable space is regularity.

Several comments deserve mention at this point. In the above proof
of Theorem 2-46, the space S was actually mapped into the subset I“
of Hilbert space consisting of all points = (1, %2, ..., s, ...) sat-
isfying the inequality 0 < z; < 1/j for each integer j. The subset I¢
is called the Hilbert cube or the Hilbert parallelotope. Next we note that
Theorem 2-46 is a weaker result than we may have been led to expect
from analogy to the theorems in Section 2-7. A strictly analogous result
would be concerned with the extension of a homeomorphism of a closed
subset of S into H. In general, however, no such extension is possible.
For example, the set X of all points in H whose first coordinate is 0 is
clearly homeomorphic to H by a homeomorphism h:X — H. Consider-
ing X as a closed subset of H, there is no extension of the homeomorphism
h to a homeomorphism k*:H — H, since k is already a map onto H.

It is perhaps more important to discuss the motivation behind such im-
bedding theorems. Theorem 2-46 may be considered as an example of a
very general technique (the method of representations) found throughout
mathematics. A representation theorem permits the study of certain in-
variant properties by noninvariant means. For instance, the basic con-
cepts of “coordinates,” “slope of a line,” and “equation of a curve” in
analytic geometry are not invariant under rigid motions. Still we use
these tools to prove propositions in Euclidean geometry. Another ex-
ample is found in the representation of an abstract group as a group of
matrices. In a similar way, Theorem 2-46 allows us to prove topological
theorems about completely separable normal spaces by utilizing coordi-
nates, straight lines, etc., in Hilbert coordinate space, although all these
concepts are of a nontopological nature.
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Exercise 2-23. Prove that Hilbert coordinate space is separable.

Exrrcise 2-24. Prove by some direct method that I« is compact.

Exercise 2-25. Prove that [ is homeomorphic to Pg_; I,, where each
I, = I'. (Note that this affords an indirect solution to Exercise 2-24))

ExErcise 2-26. The unit sphere in H is the set of all points z for which
2_z? = 1. Is this subset compact? If 80, prove it, and if not, show why it is not.

2-10 Locally compact spaces. We exhibit here one form of a general
concept called localization. Speaking loosely, localization of a topological
property, such as compactness or connectedness, is the requirement that
“small” open sets have the desired property even though the space as a
whole may not.

A space is said to be locally compact at a point p if there is some open set
U containing p whose closure U is compact. The space is locally compact
if it is locally compact at each of its points. Notice that any other open set
in U will also have compact closure, and hence no space can be locally
compact at just one point unless that point is an isolated point. (This is
in contradistinction to the local connectivity property in Section 3-1.)

If the reader returns to the examples in Section 2-4, he will find that
although the spaces given there (particularly in Fig. 2-3) are not compact,
they are locally compact. Hence, if we restrict our attention to locally
compact spaces, we are certain to lose some of the power of compactness.
But much still remains, and we establish some important results here.
The first theorem simply shows that we are dealing with a valid generaliza-
tion of compactness.

TurEOREM 2-49. Every compact space is locally compact.

Proof: Every point is contained in an open set, namely the entire space,
with compact closure. []

THEOREM 2-50. Each closed subspace of a locally compact space is
locally compact.

Proof: Let S be a locally compact space and C be a closed subset of S.
Every open set in .S which intersects ¢ yields an open set in the subspace
topology of C. Thus if z is a point of ¢, and U is an open set in S with
compact closure containing x, then U N € is open in C, and U NC is
a closed subset of U and is therefore compact. [ ]

We know that Euclidean n-space E™ is not compact; however, E” is
locally compact, because every spherical neighborhood S(z,r) in E™ has a
closure homeomorphic to the compact cube I”. Indeed, any open subset
of E™ is locally compact, for each point of such an open set lies in a spheri-
cal neighborhood whose closure is contained in the open set. From this,
one sees that the locally compact spaces include some special cases of
importance in analysis.
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(1,I 0)

FiGURE 2-7

Compactness is a continuous invariant, but this is not true of local
compactness. For consider the space S consisting of the point —1 and the
open interval 0 < x < 1 in E' with the subspace topology of E'. Let
T be the subspace of E? consisting of the point (0, 0) and the graph of the
function y = sin (1/z), 0 < z < 1. Define the mapping f:8 — T that
carries the point —1 onto (0, 0) and that carries a point z, 0 < z < 1,
onto the point (x, sin (1/x)). Figure 2-7 illustrates the space 7. It is
easy to see that no open set containing (0, 0) has compact closure in T'
and hence that 7 is not locally compact. Certainly S ¢s locally compact,
so this is an example of a continuous function destroying the local com-
pactness property.

The mapping f in the above example has the property that the open
set in S consisting of the single point —1 is mapped onto the nonopen
set (0,0) in T. In brief, the mapping f is not open. For open mappings
we have the following result which, incidentally, proves that local compact-
ness is a topological invariant.

TaroreM 2-51. Local compactness is invariant under open mappings.

Proof: Let S be a locally compact space, and let f be an open mapping
of S onto a space T. For any point p in S, there is an open set U containing
p and having compact closure. Then the image f(U) is an open set in T
containing f(p). Now f(T) is compact since f is continuous. Hence the
interior of f(U) is an open set containing f(p) and having compact closure.
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Since every point of T is the image of some point of S, this proves that 7
is locally compact. []

The next pair of theorems are in analogy to the Tychonoff theorem
(1-28).

TaEOREM 2-52. The product of finitely many locally compact spaces
is a locally compact space.

Proof: Let 81, Sz,..., and S, each be locally compact, and let
P = (p1,..., px) be any point in 83 X Sz X --- X 8,. In each space
S; there is an open set U; containing p, and having compact closure.
Then the basis element U; X Uy X - -+ X U, contains p and has closure
U, X Uy X -+ X U,, which is compact by the Tychonoff theorem.
Hence 81 X Sz X -+ X 8, is locally compact. [] (Why does this proof
fail for an infinite product?)

TueoREM 2-53. If a product space P48, is locally compact, then each
factor space S, is locally compact, and all but a finite number of factors
are compact.

Proof: We know that the projection mappings m.: P4S, — S, are open.
Hence Theorem 2-49 applies to prove that each factor S, is locally com-
pact. But furthermore, if p is any point of P4S,, and U is an open set
containing p and having compact closure, then there is an element P, U,
of the basis which contains p and lies in U. Hence each U, has compact
closure. By definition, all but a finite number of sets U, are the entire
spaces S., s0 U, = S, for all but a finite number of factors S,. ]

It is usually easier to deal with a compact space than with a noncompact
space. For this reason the topologist often imbeds a noncompact space in
a compact space as an aid to proving theorems. (A homeomorphism of a
space S info a space T is called an imbedding of S in T, and 8 is said to be
tmbedded in T.) For locally compact Hausdorff spaces, this can be done in
a very simple manner. The process is a generalization of the familiar
process in which we add a “point at infinity” to the plane of complex
numbers to obtain the complex sphere.

Let S be a T)-space that is not compact, and let w be any abstract
element not in 8. The one-point compactification S of the space S consists
of the points of S U {w} with a basis for a topology of § consisting of
(a) all open sets of S and (b) all subsets U of S such that § — U is a closed
compact subset of S. Of course, a single point of any space whatsoever is
a compact set, but a single point need not be closed. Hence we make this
definition only for T';-spaces, so that (b) is not satisfied vacuously.

THEOREM 2-54. The one—pomt compactification S of a Tq-space S is
a compact T';-space. And S is Hausdorff if and only if S is Hausdorff and
locally compact.
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Proof: We first show that S is a T;-space by proving that pomts of § are
closed. That the point w is closed follows immediately because S—w=3_8
is open in 8 by definition. If z is any point of S, then z has no limit points
in 8, for the topology in S has not been changed. Since z is a closed com-
pact set in S, § — z is an open set in S that contains w but not z. There-
fore w is not a limit point of x, either. Each point of S is closed, and S is a
T1-space.

To prove that S is compact, let U be any covering of S by open sets.
Then there is at least one element U, of U containing w. By definition,
there is an element of the basis, say V, that contains w and lies in U.,.
Then S — V is a compact set in S that is covered by U. Hence there is a
finite subcovering {U;, Ua, .. U,,} in U such that Uj—; U; contains
S — V. It follows that {U.,, U 1, - - -y Un} is a finite covering of S. This
proves the first part of the theorem.

Next suppose that S is a Hausdorff space. We show that S is locally
compact. Given any point z in S, there are disjoint open sets U and V
in 8, with z in U and w in V. There is no loss of generality in assuming V'
to be an element of the basis so that S — V is compact. Thus U is an
open set in S contained in the compact set 8 — V, and hence U is com-
pact. Therefore S is locally compact. To see that S is Hausdorff, we need
only note that S is a subspace of a Hausdorff space.

Finally, suppose that S is a locally compact Hausdorff space. Let
and y be two points of S. If 2 and y both lie in S, then there are disjoint
open sets U and V containing = and y respectively, and U and V are also
open in S. If y, say, is the point w, then we know that there is an open set
U in 8 such that U contains z and U is compact. The set S — Uisan
open set V in § that contains w, and U and V are disjoint open sets con-
taining « and w respectively. []

We give some important properties of locally compact Hausdorff spaces
as examples of the usefulness of the one-point compactification. The first
of these is a direct generalization of Theorem 2-1.

THaEOREM 2-55. Every locally compact Hausdorff space is regular.

Proof: Let 8 be a locally compact Hausdorff space, and let S be its one-
point compactification. Then S is regular by Theorem 2-1 and, as a sub-
space of a regular space, S is also regular. [ ]

A space S is said to be completely regular (also called a Tychonoff space)
if for every point p of S and for any open set U containing p, there is a
continuous function of S into I' such that f(p) = 0 and f(z) = 1 for all
points z in § — U.

TarorEM 2-56. Every locally compact Hausdorff space is completely
regular.
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Proof: Again let S be the one-point compactification of a locally com-
pact Hausdorff space S. Then 8§ is normal by Theorem 2-3. Let p be any
point of S, and let U be an open set in S containing p. Since S is locally
compact, there is an open set W in S containing p, such that W is compact.
Then § — W is an open set V in §. Now V and p are disjoint closed sets
in the normal space S, and Urysohn’s lemma applies to give a real-valued
function f:8 — I, such that f(p) = 0 and f(V) = 1. Since V contains
S — U, this completes the proof. [ ]

Then, in analogy to Theorem 2-14, the reader may apply the same sort
of argument to prove the next result.

TrEOREM 2-57. In a locally compact Hausdorff space, every compact
quasicomponent is a component, and every compact component is a
quasicomponent,.

TreoreM 2-58. If the space S is a locally compact, completely sepa-
rable Hausdorff space, then the one-point compactification S of S is
metrizable.

Proof: Let {U,} be a countable basis for S. Clearly there is no loss of
generality in assuming that each set U, is compact. Let V, = 8 —
Uj=: U;. If V is an open set in S that contains w, then S — V is compact
and so is covered by a finite number of basis elements Up,, . . ., Uy,; let
n = max (ny,...,n;). Then § — V is contained in Uj—; Uj, so V,
liesin V. This (and the fact that { U, } is a basis for S) establishes that the
collection of all sets V, and of all sets U, is a countable basis for the
normal space S. []

CoroLLARY 2-59. Every locally compact, completely separable Haus-
dorff space is metrizable.

Proof: A subspace of a metrizable space is metrizable. []

Euclidean n-space E™ is the union of all spherical neighborhoods S(0, n)
of the origin with positive integral radii. Clearly, the closure of each S(0, n)
is compact and is contained in S(O, n + 1). This situation is not peculiar
to E"; it actually characterizes the locally compact separable metric spaces.

TeEOREM 2-60. A separable metric space M is locally compact if and
only if M is the union of a countable number of open sets U;, U,, . ..
such that for each n, U, is a compact subset of U, ;.

Proof: Clearly, if M has such a sequence of open sets, then every point
of M lies in some set U, with compact closure, and hence M is locally
compact. Conversely, if M is a locally compact separable metric space,
then /7 is a compact metric space by Theorem 2-58. Define U, = M —
S(w,1/n),n = 1,2,3,... Then each U, is open in M, and U, is com-
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pact both in M and in M. The set U, — U, is contained in S(w, 1/n), so
Uy, 1 contains not only U, but also U,. It is possible that if m happens
to have a small diameter, the sets U, may be empty for the first few values
of n, but this does not change the statements. []

Euclidean spaces have the property that every bounded set has com-
pact closure. This is not true of every locally compact separable metric
space. That is, it may not be true of such a space in its given metric. For
instance, if we use the subspace metric, the open interval is a locally com-
pact separable metric space that is itself bounded but not compact. How-
ever, every locally compact separable metric space has a metric such that
each set bounded in this new metric has a compact closure. This is the
essence of the next result.

TaroreEM 2-61. Let M be a locally compact separable metric space.
Then M may be imbedded in Hilbert coordinate space H in such a way
that every subset of M that is bounded in the Hilbert space metric has
a compact closure.

Proof: From Theorem 2-58, M is contained in a compact metric space
4 , such that # — M is a single point w. From Theorem 2-46, we know
there is a homeomorphism % of M into H. Now H is a vector space over
the real numbers (see Chapter 5), and the translation ¢ of H onto itself,
defined by ¢(p) = p — h(w), is a homeomorphism. Clearly ¢ carries
h(w) onto the origin in H, so the composite mapping ¢h is an imbedding
of M into H such that ¢h(w) = O, the origin in H. We next define an
“inversion” in H. Given any point p = (pi, P2, - ..) in H — O, there
is a real number ¢, such that 2 Yot p2 = 1. Let j be the mapping of
H — O onto itself, defined by

. 1
](p)zt_.pz(%, 22)
4 i4

tp

Then 7 is a homeomorphism of H — O onto itself that cannot be extended
to be continuous at the origin. The composite mapping joh|M (joh re-
stricted to M) of M into H — O is the desired imbedding of M in H. The
reader may prove this last statement as an exercise. []

One might suppose that if M is any locally compact metric space, then
the one-point compactification M could also be taken to be metric. This
is not true for nonseparable metric spaces (which is why we considered only
the separable case in Theorem 2-60 and 2-61). For if M were a compact
metric space, then it would be completely separable, as is easily seen.
Since complete separability is hereditary, this would imply that the sub-
space M of M would be separable, counter to hypothesis. The space M in
this case would be compact and Hausdorff but not metric.
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The one-point compactification is only one of many ways of compacti-
fying a space. In general a compactification of a space S may be defined
to be a palr (S, f) where 8 is a compact space and f is a homeomorphism
of S into S. We mention briefly the Stone-Cech compactification. This is
currently finding application in functional analysis, rings of continuous
functions, and similar studies. It is defined as follows. For a given topo-
logical space S, let C' denote the collection of all continuous functions of S
into the closed unit interval I'. Consider the product space PoI !, the
indexing set being the collection C; that is, we have one factor I' for each
mapping fin C. This is a compact space by the Tychonoff theorem. Next,
the evaluation mapping e of S into P¢I} is the mapping that carries each
point  of S onto the point e(z) in P¢I}, where the coordinate in I} of
e(x) is the functional value f(z). It can be shown that e is continuous and
that, if Sis a completely regular T';-space, then e is a homeomorphlsm of
S into PcI}. If we take S to be the closure of e(S) in P I} 4, then the pair
(S, e) is the Stone-Cech compactification of S. We leave the topic with
this definition and a reference to the recent book by J. L. Kelley [17].

2-11 Paracompact spaces. The concept of a paracompact space was in-
troduced in 1944 by Dieudonne [73] as a generalization of certain compact
spaces. We insert mention of this topic here for two reasons. First, it af-
fords another example of the widespread use of open coverings of a space.
Second, a most definitive work on the metrization problem (see Section
2-12) is couched in the language of paracompactness.

A covering {Vj} of a space S is said to be a refinement of a covering
{Ua} if for each element Vg of {Vs} there is an element U, of {U,} such
that U, contains V5. We write this as {U.} < {Vs}. It is readily proved
that the collection of all coverings of S is a partially-ordered system under
this relation.

A covering {U,} of a space S is a locally finite covering if for each point
z in S there is an open set in S containing z and intersecting only a finite
number of elements of {U,}.

A space 8 is paracompact if S is a Hausdorff space and if every open
covering of S has an open, locally finite refinement.

First, notice that paracompactness is a topological invariant. As usual,
this means that any homeomorphism on a paracompact space yields a
paracompact image space. Second, since every open covering of a com-
pact space contains a finite open covering (which is a refinement by defini-
tion) and since a finite covering is a fortior: locally finite, we see that every
compact Hausdorff space is paracompact. The converse is not true, but
paracompactness has some of the force of compactness, as the following
two results of Dieudonne will indicate. The first of these is an analogue of
Theorem 2-1 and the second of Theorem 2-3.
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TrareorREM 2-62. Every paracompact space S is regular.

Proof: Let p be any point of S, and let C be a closed subset of S not
containing the point p. Because S is Hausdorff, for every point z in C
there are disjoint open sets U, and V,, with p in U, and z in V,. Consider
the covering of S consisting of S — C and all the sets V,, v in C. By para-
compactness, there is an open, locally finite refinement {V.} of this cover-
ing. Let V be the union of all those elements of {V,.} that intersect C so
that V is an open set containing C. By hypothesis, there is an open set W
in S such that W contains p and meets only a finite number V4, ..., Vi
of elements of {V,}. Each such V; that meets C must lie in some V.,
z; in C. If we now take the intersection W N (N}=; U.,) of W and the sets
U.; corresponding to the points z;, we obtain an open set U containing p
that does not meet the sets V,, and hence does not meet the set V. []

TrEOREM 2-63. Every paracompact space S is normal.

Proof: Let A and B be disjoint closed subsets of S. For every point z in
A, the regularity of S established in Theorem 2-62 provides disjoint open
sets U, and V,, with z in U,, and B contained in V.. Consider the open
covering of S consisting of § — A and of all sets U, z in A. Paracompact-
ness yields an open, locally finite refinement {U.,} of this covering. Let U
be the union of all members of {U,} that intersect 4; certainly U is an
open set containing A. Then for each point y in B, there is an open set
W (y) that meets only a finite number U1(y), . . ., Un(,)(y) of elements of
{U.}. Each of these sets U;(y) that meets A is, by definition, contained
in some set Uy, for a point z; in A. Let X, = W(y) N V, be the inter-
section of W(y) and the finitely many V., corresponding to the points z;.
Then X, is an open set containing the point y and not meeting U. Letting
V be the union of all such sets X,, ¥ in B, we have an open set containing
B and not meeting U. [] '

We know that compact spaces have noncompact subspaces, and a simi-
lar remark is true of paracompactness, i.e., neither compactness nor para-
compactness is hereditary. However, we do have the following analogue
of Theorem 1-25.

TurEorEM 2-64. Every closed subspace of a paracompact space is
paracompact.

Proof: Let A be any closed subset of a paracompact space S, and apply
the subspace topology to A. By definition, an open set in the subspace A
is the intersection of A with some open set of 8. Thus if {V.} is an open
covering of A (by subsets of A that are open in the subspace topology),
then each V, = A N U,, where U, is open in S. The open covering of S
consisting of S — A and the sets U, has a locally finite refinement {Xs}.
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Then the collection {4 N Xg} is a locally finite refinement of {V.} by
sets that are open in A. ]

Local compactness relates to paracompactness with the following two
results.

TaeoreEM 2-65. Any locally compact Hausdorff space that is the union
of a countable number of compact sets is paracompact.

Proof: Let the locally compact Hausdorff space S be the union of count-
ably many compact sets C,. We may assume that each C, lies in Cp 4
(for if not, we can set C, = Uj—, C,). We first show that S is a union of
open sets W, such that each W, is compact and lies in W,;. For each
point z of Cy, let U, be an open set containing x and such that U, is com-
pact. The compact set C; is covered by this collection, and we have a
finite number of sets Us,, ..., Us, that cover C;. Let W, = Ui Uy,
Then suppose W,, has been defined for each m < n such that Cy, lies in
W, and such that W, is compact and lies in W,,41. Cover the compact
set Wn_1 U C, as we just did for C; and so obtain an open set W, con-
taining W,_; U C, and having compact closure.

Letu = {U,} be any open covering of S, and define the compact sets
K, = W, — Wn_;. For each point 2 in K,, there is an open set V,
containing = and lying in one of the open sets U, containing z. Also V,
can be chosen to lie in W, (since W, does) and can be chosen so as to
be disjoint from W,_s (since W,_s lies in W,_;). Then K, may be cov-
ered by a finite number of these sets V. Doing the same for each integer
n, we let U be the covering of S so obtained. Now U refines ‘U by construc-
tion. If y is any point of S, then there is a smallest integer » such that y
lies in W,. Since y is not in W, _;, there is an open set V in U containing
y, and V can only meet the finite number of elements of U that cover
K, 9, K, 1, Ky, and K, ;. Hence 9 is locally finite. [ ]

TuEOREM 2-66. Any locally compact completely separable Hausdorff
space is paracompact.

Proof: Clearly, the countable basis of such a space may be taken to be
composed of open sets with compact closures. Then the space is a count-
able union of compact sets and Theorem 2-65 applies. [ ]

One might conjecture that every locally compact space is the union of
a countable number of compact sets, but this is false. Every discrete space
is locally compact and metrie, but only the countable discrete spaces are
unions of a countable number of compact sets. More complicated examples
can be given, for example by taking the product of a discrete space and any
locally compact space. The “long line” of Section 2-5 is an example of a
connected nonmetric locally compact space without this property. It is
a theorem of Alexandroff [47] that a locally separable connected metric
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space has a countable basis and that local compactness implies local
separability. (Also see Jones [87] and Treybig [125(a)].)

Unlike compact spaces, the product of two paracompact spaces need
not be paracompact. A space may be normal and first-countable (see
Section 2-6), and even more, and still fail to be paracompact. A surprising
result of A. H. Stone [124] is that every metric space is paracompact. This
last holds whether or not the metric space is separable. We finish this
section by remarking that paracompactness is still under intensive in-
vestigation, as one may discover by consulting the current literature.

Exgrcise 2-27. Prove that the product of a paracompact space and a com-
pact Hausdorff space is paracompact.

ExErciseE 2-28. Construct an example to prove that the product of two
paracompact spaces need not be paracompact.

ExEercise 2-29. Find a normal first-countable space that is not paracompact.

2-12 A general metrization theorem. In Theorem 2-48 we saw the
classic metrization theorem of Urysohn, which characterizes those com-
pletely separable spaces that are metrizable as being the regular spaces.
In 1951, Smirnov [123] gave a complete characterization of metric spaces,
separable or not. We review his results very briefly in this section.

Smirnov begins by defining any system ¥ of sets in a space S to be a
locally finite system if every point of S lies in an open set that meets at most
a finite number of sets in v. (This is only a slight generalization of a locally
finite covering.) His principal result is stated next.

TaEOREM 2-67. A space S is metrizable if and only if it is regular
and has a basis that is the union of at most countably many locally finite
systems of open sets.

As was remarked in Section 2-11, Stone had already proved the neces-
sity of the conditions given in Theorem 2-67 by showing that every
metric space is paracompact (a simple argument is needed here). The
sufficiency of the conditions depends upon proving that the space S is
normal and then imbedding S in a generalized Hilbert space H”, where 7
is an infinite cardinal number. The method is analogous to the proof of
Theorem 2-46, and the details are available in the translation of the
Smirnov paper cited above. This paper also gives a succinct historical
review of the metrization problem. (Also see Bing [57].) We close this
section with a statement of another result from the same paper.

A space is said to be locally metrizable if every point of the space lies in
an open set that, as a subspace, is metrizable. Combining the result of
Dieudonne, which we stated as Theorem 2-63, with his own work, Smirnov
gives the most natural metrization theorem we have seen. (See also
Stone [125].)
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TaeoreM 2-68. A locally metrizable Hausdorff space is metrizable if
and only if it is paracompact.

2-13 Complete metric spaces. The Baire-Moore theorem. We conclude
this chapter with several special topics, of which this section is the first.
Our considerations here are limited to metric spaces. The results find
frequent application in analysis.

Let M be a metric space with metric d. Precisely as is done in the theory
of real numbers, a sequence {z,} of points in M is called a Cauchy sequence
provided that for any positive number ¢, there is an integer N sufficiently
large that d(z,, ,) < € whenever m and n exceed N,. In the real numbers,
this Cauchy condition is necessary and sufficient for the convergence of the
sequence {z,}.

A metric space M is complete if every Cauchy sequence of points in M
has a limit point in M. Thus the real numbers are complete (in the usual
metric), but the rational numbers are not. (Indeed, the reals are often
defined as a completion of the rationals in the sense of Theorem 2-72
below.) It should be noted immediately that completeness s not a topo-
logical invariant; it depends upon the chosen metric in the space M. For
instance, let |t — y| be the usual metric for the reals E', and define the
new (but equivalent) metric

|z — yl
pxr,y) = R r— T

Each sequence {x,} that satisfied the Cauchy condition in terms of the
old metric still does, but the sequence of numbers > ;_; 1/k forms a
Cauchy sequence in terms of the new metric and, of course, does not con-
verge. A space that is homeomorphic to a complete metric space is called
topologically complete by some authors.

Our first few theorems relate the property of completeness to matters
already familiar.

TuEOREM 2-69. Every compact metric space is complete.

Proof: By Theorem 1-23, every infinite subset of a compact space has
a limit point. []

TureoreM 2-70. Every closed subspace of a complete metric space is

complete.

Proof: Let X be a closed subset of a complete metric space M. Then
every Cauchy sequence of points in X has a limit point in M but, since X
is closed, the limit point must be in X. []

TueoreM 2-71. If M and N are complete metric spaces, then the
product M X N is complete in the product metric.



82 THE ELEMENTS OF POINT-SET TOPOLOGY [caAR. 2

Proof: Let dy and ds be the metrics in M and N, respectively. Then if
(x1,y1) and (z3, ys), z; in M, y; in N, are two points in M X N, the
product metric is given by

dl(z1, ¥1), (@2, y2)] = [d3(x1, 22) + di(ys, yo)]'/2

Now let {(zn, yx)} be a Cauchy sequence in M X N (in terms of the
product metric). It is easily seen that this implies that {z,} and {y,} are
Cauchy sequences in M and N respectively and hence converge to points
x and y. The point (2, y) in M X N is then the limit point of the sequence
{(Zn, yn)}. The details are left as an exercise. [ ]

A metric space M is said to be sometrically tmbedded in a metric space N
if there is a distance-preserving homeomorphism of M into N. In this
language, we can state a generalization of the process of completing the
rationals by means of Cauchy sequences.

THEOREM 2-72. Any metric space M can be isometrically imbedded
in a complete metric space N in such a way that M is dense in N.

Proof: Consider the collection of all Cauchy sequences {zr,} in M.
Two such sequences {z,} and {y,} will be said to be equivalent if
lim, e d(2a, yn) = 0. (It is easy to see that this is a true equivalence
relation.) The equivalence classes of Cauchy sequences in M so obtained
form the points of the space N, and we denote such a class by [{z.}]. A
metric for N may be defined as

p([{xn}], [{yn}]) = Ji_l’g d(xny yn);

where {z,} and {y,} are any representatives of [{z,}] and [{y.}] respec-
tively. To prove that this definition of p is independent of the choice of
these representations, let {z,} and {z,} represent [{z,}], and let {y,} and
{y,} represent [{y.}]. Then

lim d(zn, yn) £ lim [d(zn, 22) + d(20, Yn) + d(Yn, ¥a)] = Lim d(zz, y2)
n-—»00 n—oo

n-—»00
and

lim d(x7, yn) < lim [d(x7, 2n) + d(2a, Yn) + d(Yn, y2)] = lim d(2a, yn).
n—w n—0 n—rw0

A verification that p is indeed a metric is left as an exercise.

Next, define the mapping k that carries a point z in M onto the equiva-
lence class of all Cauchy sequences in M that converge to . This class is
not empty, for if we set x, = z for all n, then {x} is such a sequence. It
is easily seen that h is an isometry of M into N, as required. That h(M)
is dense in N will follow from the arguments below.
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We show that N is complete. To do so, let {[{Zmn}]n} be a Cauchy
sequence in N, and choose a representative {Zm,n} for each “point” of the
sequence. We obtain an array of sequences

r1,1, T1,2, 1,3 .- -
T2,1 X2,2, 2,3, - - -

3,1, £3,2, 3,3y - -« «

For the kth sequence there is, by definition, an integer nj such that
d(Tk,ny, Tk,i) < 1/k whenever ¢ > n;. We can then define a Cauchy
sequence {¥,}x in M where each y, = @r,,. From the definition of p we
see that

o), [did) < 7
Therefore
,}I_I)Iulo P([{Ik.n}], [{yn} k]) =0,

and the two sequences are equivalent in V.

But since {[{y.}z]} is a Cauchy sequence in N, it follows that, given ¢,
there is an integer K such that p([{ys}x], [{¥n}:]) < € whenever k and !
exceed K. But this implies that d(zg s, 21,,;) < € Whenever k,1 > K.
Thus the sequence {zx .} is a Cauchy sequence in M. That the sequences
{Zk,n; )k of constants converge to this diagonal sequence is immediate.
Therefore the sequence [{zk n,}]x in N has a limit point in N, and so does
the equivalent sequence {[{zm rn}]n}. This proves that N is complete and
moreover that every point of N is the limit of a Cauchy sequence (in N)
of constant sequences (in M). It follows that A(M) is dense in N. [ ]

Most of the results of this section find their primary use in analysis.
However, the next result, together with Theorem 2-79, provides the basis
for an important imbedding property in topology (see Theorem 3-62).

TareoreM 2-73. If M and N are metric spaces, and if N is bounded
and complete, then the function space N* of all continuous mappings
of M into N is complete in the metric p(f, g) = sup, d(f(x), g(x)), where
d is the metric in N.

Proof: Let {f.} be a sequence of continuous mappings of M into N that
have the property that, given € > 0, there is an integer K such that
P(fu, fm) < € whenever m,n > K. For a fixed point = in M, the sequence
of points {f,(z)} then forms a Cauchy sequence in N since d(f,(z), fn(z)) =
0(fr, fm). Because N is assumed to be complete, there is a point f(z) in N
such that lim,_,, f,(x) = f(z). Therefore we have a function f of M into
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N defined by
f(@) = lim f,(x)

for all z in M. o

To complete the proof, we must show that f is continuous. To do so,
we use the customary (¢ — K)-argument. That is, given € > 0, there
is an integer K such that p(fs,f) < €/3 whenever n > K. For such
a value of n, there is a positive number such that d(f,(z), f.(%)) < €/3

whenever d;(z, y) < 6 (d, is the metric in M). Hence we have

d(f(), f(y) = d(f(@), fa(@)) + d(fa(2), fa(®)) + d(Ff2(¥), f(¥))
P(f, ) + d(fa(@), fa@)) + p(fa, f) < €

whenever d;(z, y) < 8. This proves that f is continuous. []

IIA

The requirement that N be bounded in Theorem 2-73 is needed only
to show that p(f, g) exists. Our argument above actually proves the
following.

CoROLLARY 2-74. If N in Theorem 2-73 is complete (but not neces-
sarily bounded), then the space of bounded continuous mappings of
M into N is complete.

We remark that every metric space with metric d has a metric d’ that s
bounded and that does not alter Cauchy sequences. One such metric may be
obtained by replacing the original values d(z, y) by values d’(z, y), defined
by d'(x,y) = d(z,y) if d(z,y) < 1 and by d'(z,y) = 1 if d(z,y) = 1.
We leave it to the reader to verify that d’ is a metric.

A metric space M with metric d is said to be totally bounded if, given
any positive number r, M is the union of finitely many sets of d-diameter
less than r.

THEOREM 2-75. A metric space is compact if and only if it is complete
and totally bounded.

Proof: From Theorem 2-69 we know that a compact metric space is
complete. And such a space must also be totally bounded or else the
covering by open spherical neighborhoods of some radius r would not
have a finite subcovering. Hence the condition is necessary.

To prove sufficiency, we take advantage of Exercise 2-21 and prove that
a complete and totally bounded metric space M is countably compact.
To do so, let {z,} be any sequence of points of M. Now M is a union of a
finite number of sets X;,1, ..., X1, of diameter < 1. At least one of
these sets, say X1,1, contains an infinite number of points x,. Let xx, be
the first point of {x,} in X, ;. Again, M is a union of a finite number of
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sets X5,1, - . ., Xa.n, of diameter < %, and one of these, say X5 1, has the
property that X;,; N X»,; contains infinitely many points of the sequence
{z,}. Choose zx, as the first point of {z,}, with k3 > k, and lying in
X1.1 N X3,1. In general, we consider M as a finite union of sets of diameter
< 1/i and choose a new point xx, k; > ki_y > -+« > ko > ky, of
the sequence {z,} lying in Ni—y X;,1. Since for any k; > ki, the points
xzx; and zx; lie together in a set of diameter < 1/7, the subsequence {zr;}
which we have extracted is a Cauchy sequence. Since M is assumed to be
complete, this subsequence converges to a point of M and hence the
sequence {z,} has a limit point. []

Some new (to us) terminology is often seen in analysis. A subset of a
space S is called a Gs-set if it is the countable intersection of open sets, and
is called an F,-set if it is the countable union of closed sets. It is obvious
that a subset is a Gj-set if and only if its complement is an F,-set. As a
point of interest, the genesis of these terms is as follows. The G in G;
stands for the German word Gebiet (open set), and the 8 means Durch-
schnitt (intersection). The F in F, comes from the French word fermé
(closed), and the ¢ stands for sum, which many authors use in place of
union.

TueorEM 2-76 (Alexandroff). Every Gj-set in a complete metric space
is homeomorphic to a complete space (or is topologically complete).

Proof: Let Q be a Gs-set in the complete metric space M. We show that a
new (but equivalent) metric can be placed upon @ so that @ is complete in
terms of the new metric. By definition, @ = Nj—; U;, where each U;
is open in M. As in Section 2-3, we consider the distance d(z, M — U;)
for each point z in U; and define a function f;: U; — E’ by

1
fi(x) = Az, M — Uy :

Now let ¢;i(z, y) be the real function defined on U; X U; by

| __fi@) = fiy)|

The function ¢; will in general not be a metric for U;, because it is possible
to have ¢;(z, y) = 0 without having x = y. However, we do have

ei(x, y) + ¢i(y, 2) 2 iz, 2),
for all z, y, zin U;. Since

Ifilx) — fi| + |fily) — fi@)| 2 |f:(2) — f:(3)],
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the inequality will follow if we can show that a + b = ¢ > 0 implies

[cHAP.
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a b c
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1 1 1
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1 1 1
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From a + b = ¢, we have
1 1
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which proves the inequality.
The desired metric for @ is defined by

p(x,y) = dx,y) + D 2 en(x, y),
n=1

z, y in . The series for p converges uniformly in @, and it is easy to verify
that p is indeed a metric for Q. To see that @ is complete in this metric,
note first that if {z,} is a Cauchy sequence in the metric p, then it is a
Cauchy sequence in the metric d. Hence it has a limit, z, in the metric d
for M. If x belongs to @ it is easy enough to verify that x, — z in the
metric p. It follows that every p-Cauchy sequence converges, and also
that the topologies for @ given by the metrics p and d are the same.

If 2 does not belong to Q, there is an integer N such that for alln > N,
zisin M — U,. Select a term z; of the sequence {z,}, and consider
ei(Zx, Tkt ), © > N. As j increases ¢;(Tk, Tkt ;) — 1, since xx4; — , SO
that d(zx+j, M — U;) — 0. But then p(zi, x4 ;) has a limit not less
than 3°%_, 27", and {z,} cannot be a Cauchy sequence. [_]

It will follow from Theorem 2-79 below that the rationals cannot be
assigned an equivalent metric in which they form a complete space. In-
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tuitively, this seems quite plausible, since there are so many “holes,”
dense in the rationals. But the irrationals also have many “holes,” dense
in the irrationals. However, the irrationals form a Gs-set (the rationals
are an F,-set), and hence, by Theorem 2-76, there is a metric in which the
irrationals form a complete space.

We continue this section with a theorem due to Baire [51], which we
will give in several forms. The first form is due to R. L. Moore [105].

TaEOREM 2-77. Let S be a compact Hausdorff space. Then S is not
the union of a countable number of closed subsets, no one of which
contains an open subset of S.

Proof: If S is a union Uj—, C;, where each C; is closed and contains no
open set, then each C; liesin § — C;. For if C; contains no open sets, each
point of C; is a limit point of its complement. Let p; be a point of S — Cy,
and let U; be an open set containing p; whose closure does not meet C;
(Theorem 2-1). Let n; be the first integer such that C,, N U; is not
empty.

There is a point p, in U; — Cy,, for otherwise C,, would contain the
open set U;. Let Uz be an open set containing ps whose closure does not
meet the closed set (S — U;) U Cn,. Let ny be the first integer such that
Cy, meets Uz. In general, if Cy;, Uj, and p; have been defined, let pj4q
be a point of U; — Cp,. Let U, be an open set containing p;,; whose
closure does not meet (S — U,) U Cy;, and let n;4; be the first integer
such that C,;,, meets U, ;.

Now consider the sets U;, Uy, Us, ... We have that for each n, U,
contains U,, and U, contains U, 1, so these sets have the finite inter-
section property and the set N;—; U; is not empty. But if p is a point in
this intersection, then p must lie in some set C;. However Uy, cannot
meet Ck, which contradiction proves the theorem. [ ]

THEOREM 2-78. Let S be a compact Hausdorff space, and let {U,} be
a countable collection of open sets, each U, being dense in S. Then
the intersection N,—; U, is not empty. Indeed, N7—; U, is dense in S.

Except for the last sentence, this result is a dual to Theorem 2-77, as
is easily seen. The details of the duality, and hence a proof, are left as an
exercise. The last sentence follows from applying the rest of the theorem
to the closures of open sets.

Our next result relates the Baire-Moore theorems above to the property
of completeness.

TueorEM 2-79. Let M be a complete metric space. Then M is not the
union of a countable number of closed subsets, no one of which contains
an open subset of M.
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Proof: In the proof of Theorem 2-77, we put no condition of size upon
the sets U,. However, if M is metric and we apply the construction of
Theorem 2-77, we could obviously require that each U, satisfy the addi-
tional condition that its diameter be less than 1/n. If for each n we select
a point ¢, in U,, then {g,} is a Cauchy sequence, since for any two integers
m and n, with m < n, ¢, and ¢, are both in U, s0 d(¢s, gm) < 1/m. It
follows that {¢,} converges to a point ¢. For each n, all but a finite num-
ber of points of this sequence belong to Uy, so ¢ is in U,. This shows that
Mn—; U, is not empty, which is all we need to reach the contradiction of
Theorem 2-77. ]

This last result, combined with Theorem 2-73, provides some interest-
ing existence proofs. For instance, it is possible to show [52] that the col-
lection of all real-valued continuous functions on the unit interval I* that
have a derivative at at least one point of I consists of a countable number
of closed sets, each containing no open set in the complete metric space C
of all real-valued continuous functions on I'. Therefore it follows from
Theorem 2-79 that there are real-valued continuous functions on I!
having no derivative anywhere.

A subset X of a space S is said to be perfect if X is closed and if every
point of X is a limit point of X. This latter property is sometimes called
(misleadingly) dense in itself. Restating Theorems 2-77 and 2-79 in these
terms, we have the next result.

TreoreM 2-80. No compact Hausdorff space and no complete metric
space is both countable and perfect.

CoroLLARY 2-81. No compact Hausdorff space is countable and
connected.

Note. There exist countable connected Hausdorff spaces. One example has
been given by Bing [61].

ExampLE. We construct a closed, totally disconnected set K in I! such that
K has Lebesgue measure % (see below). To begin with, let Uy,1 be the open
interval centered at the point % and having length ($)(7). About the mid-
point of each closed interval in I — Uy,1, take open intervals Uz,1 and Ug,z,
each of length (3)(i%). Then I' — Uy — Uz;1 — Uszz2 consists of four
closed intervals, and about the midpoint of each we take an open interval of
length (3%)(i%). At the (n - 1)th step, we will have 2" closed intervals about
whose midpoints we take open intervals of length (1/22**+1)(¢5). We then define

K=1I"—Ui1—Uz1 —Uz2—Us1r — - — Uga —

Now the Lebesgue measure u(U) of an open set U in E! is defined to be the sum
of the lengths of the disjoint open intervals composing U, and the measure
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#(X) of a closed set in any interval |a, b] is defined by

u(X) = b —a — p(la, b — X).
1t is readily seen that

o(Um) = 2(2) 2 () (2) 4 (2) () + -
+ o2 (22,{+1)(_1%>+...

1 (1, 1 1 1
—o(§+z+§+"'+27+7+"')=m’

and hence u(K) = % as claimed. The set K is totally disconnected, for it can
contain no interval whatsoever A startling remark is that I! is not a countable
union of such closed sets as K, for no such set contains an open interval, and
Theorem 2-77 applies!

The results above are often expressed in other terms, with which the
reader should be acquainted. A set X in a space S is said to be of first
category in S if X is the union of a countable number of sets, no one of
which is dense in any open subset of S. (A set that is dense in no open set
is said to be nowhere dense.) A set is of second category if it is not of first
category. We may rephrase Theorem 2-79 in these terms.

TrEOREM 2-82. No compact Hausdorff space and no complete metric
space is of first category.

In a sense, the notion of category is not topological. That is, we can
have a set X of first category in E!, say, and a set ¥ in E! of second
category, and have a homeomorphism of X onto ¥. On the other hand,
there is no homeomorphism of E* onto itself carrying a set of first category
onto one of second category. To prove the first statement, let the points of
I be given in ternary notation (to the base 3). Let X be all points of I!
that have a ternary expansion involving only the digits 0 and 2, but that
do not end in all 0 or all 2. The set X is the subset of the Cantor set con-
sisting of all points that are not end points of deleted intervals. In the
expansion of an element z of X, replace each digit 2 by a digit 1, and
consider the resulting number in the binary scale. The mapping thus de-
fined maps X homeomorphically onto the set ¥ of all numbers on I! that
are not of the form k/2™, k and m positive integers. The complement of
Y is of first category, and clearly the union of two sets of first category is
of first category. Thus if Y were of first category, so would I! be. The
reason for the existence of such examples is that the sets in the definition
of first category are not required to be closed. If they were, and S were
compact, then the property would be topological in every sense.
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If we consider a set to be “important” only if it is dense in some open
set, then a set of first category is a countable union of “unimportant” sets.
In some sense, a set of first category is analogous to a set of measure zero
in measure theory. Indeed, Oxtoby and Ulam [112] have proved, assum-
ing the continuum hypothesis, that for each set of first category in I™
there is a homeomorphism of I™ onto itself carrying that set onto a set of
measure zero, and that each set of measure zero may be so obtained. One
also finds such statements as, “Almost all continuous functions are not
polynomials,” meaning that, although the polynomials are dense in the
function space (EV)!' by the Weierstrass approximation theorem, the set
of polynomials is of first category.

Our final result in this section concerns the extension of mappings and
has been a motivating result in the study of wniform spaces (see Sec-
tion 1-12). We will not follow in this direction, however.

TraeoreM 2-83. If fis a uniformly continuous function on a subset 4
of a metric space M into a complete space N, then f has a unique uni-
formly continuous extension to the closure 4 of 4.

Proof: For each point x in 4, select a sequence {z,} of pointsin A such
that d(z,, ) approaches zero as n increases indefinitely. If x is in A, we
agree to let each z, = z so that we have a constant sequence in this case.
Now by the uniform continuity of f, given € > 0, there is an integer K
such that p[f(xm), f(xx)] < € whenever m,n > K (p is the metric in N).
It follows that {f.(z)} is a Cauchy sequence in N and hence converges to
a point in N. We define

Jx) = lim. f(z).

To show that f(z) is actually independent of the sequence used in its
definition, let {y,} be another sequence in A converging to the point z.

Then clearly the sequence zy, ¥1, 2, Y2, - - - » &n, Yn, - - - alS0 converges
to z. It follows that f(z1), f(y1), f(z2). f(y2), . . . converges to f(x). There-
fore f(x) does not depend upon the sequence.

To prove that f is uniformly continuous on 4, let € > 0 be given, and
choose & > 0 by the uniform continuity of f on A in such a way that
plf(x), f(¥)] < €/3 whenever d(z, y) < & (d is the metric in /). Let z and
y be points of 4 such that d(z, y) < 8/2. Choose an integer K sufficiently
large that d(z,, ) < 8/4 and d(yn, y) < 8/4 whenever n > K, where
{x,} and {y,} are sequences in A converging to x and y, respectively.
Then d(@n, ¥n) < 8, and p[f(zn), f(¥n)] < €/3. Hence we have

plf@), Fa)] < plf @), fxa)] + plf(xn), fyn)] + plf(a), FW)] < €.

Thus f is uniformly continuous on 4, and uniqueness of f follows from its
continuity since A is dense in 4. []
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ExEercisE 2-30. Use the Baire-Moore theorem to show that the real numbers
are uncountable.

Exercise 2-31. Prove that the set of irrational numbers is not the union
of a countable number of closed sets.

ExERcISE 2-32. Prove that if X is a set of first category in a compact Haus-
dorff space S and if X is a countable union of closed sets, then no one of these
closed sets contains an open set.

Exercisk 2-33. Prove Theorem 2-76 for the case of a countably compact
Hausdorff space.

ExEercise 2-34. Construct a function that is continuous at each irrational
point of E! and is discontinuous at each rational point. Prove that there is
no function that is continuous at each rational and discontinuous at each ir-
rational. More generally, prove that the set of points of discontinuity of a real-
valued function on a space is an F,-set.

2-14 Inverse limit systems. The concepts discussed in this section
are of recent importance in topology. Applications of these ideas are
found in the next section and in Chapter 8. We begin with a special case
of an inverse limit system, study that special case, and then indicate how
the general concept is defined.

Let Xy, X3, X5, ... be a countable collection of spaces, and suppose
that for each n > 0, there is a continuous mapping f,:X, — X,._;. The
sequence of spaces and mappings {X,, f.} is called an snverse limst sequence
and may be represented by means of the diagram

.fn+1 Xn’._fi"Xn—lfn_l"' f3 X, fa Xl—fi-»Xo.

Clearly, if » > m, there is a continuous mapping Fam:Xn — X, given
by the composition fu,m = fmi1*Fmt2*** a1 * fa

Consider a sequence (g, 21, . . ., Zn, - - .) such that each z, is a point
of the space X, and such that z, = fat1(@ny1) for all n = 0. Such a
sequence can be identified with a point in the product space Py—o X, by
considering the function ¢ from the nonnegative integers into UZ_, Xy,
given by ¢(n) = z,. The set of all such sequences is in this way a subset
of Py—o X» and has a topology as a subspace. This topological space is
the inverse limit space of the sequence {X, f,}. We will denote it by X..

Our first result concerns a condition that permits us to specify some of
the coordinates of a point in X, and to “fill in” the rest.

Lemma 2-84. If {X,, f,} is an inverse limit sequence, if each f, is a
mapping onto, and if Za,, Zn,, - . ., Tn,, - . . is a set of points with Zp,; In
Xa;for i =1,2,3,... and such that if ¢ < j, then Jnj ni(Zn;) = Zny
then there is a point in X, whose coordinate in X,;is 2n,, 2 = 1,2, 3, . ..

Proof: There are two cases, the first in which the set {x,,} is infinite,
and the second in which it is finite. The infinite case is easy. For arbi-



92 THE ELEMENTS OF POINT-SET TOPOLOGY [cHaP. 2

trary n, there is a least integer n; with n; = n. If n; = n, set , = 2;
if n; > n, define 2, = fr;a(2s;). Clearly the sequence (zo, 1, . .., Zn,
...) so defined is a point of X..

In the finite case, there is a greatest n;, say ni. For n < ng, we may
define z, = fn,n(zn,). Now suppose that for some m = n, we have
already defined z,,. Since f,41 is onto, there is at least one point z in
X 41 such that fy(x) = o, Choose any such point as 2,4;. The
existence of our desired sequence now follows by induction. []

Lemma 2-84 is an existence theorem. It illustrates a characteristic
feature of an inverse limit space, namely, from any coordinate z, toward
the “front” of the sequence, the coordinates of a point are controlled
absolutely by z,, but there is room for some choice from z,; on in the
sequence. In fact, if the mappings f, are not onto, the space X, may be
empty. This is true even if each f, is a homeomorphism into. For instance,
consider a sequence of countable discrete spaces X, = Unei Tn.my B =
0,1,2,.... Define the mappings fn:X, — X 1 bY fo@n,m) = Ta—1,m+1-
Then we have an inverse limit sequence. But if we begin with a point zo,;
of X, and attempt to form a point of X.,, we can only construct the first j
coordinates and then are forced to stop. Therefore X, has no points in it
at all.

We can prove another existence theorem also, in case all the spaces Xy,
are compact.

TaEOREM 2-85. Suppose that each space X, in the inverse limit sequence
{Xn, fn} is a compact Hausdorff space. Then X is not empty.

(po, P1, - - -) such that for 1 < j < n, pj—1 = fi(pj). Each Y, is a sub-
set of P*_o X, and we will show that ¥, is closed in P7_o X,. Suppose
that for a given n, ¢ is not a point of Y. If ¢ = (g0, - - -, qn, - - .), then for
some j < n, we have ¢; # fi11(gj+1). Now X; is a Hausdorff space, so
there exist disjoint open sets U; and V; in X, with ¢; in U; and f;+1(g;+1)
in V,. Define Vi, = f;74(V;). Let U, denote any basis element in
P>_, X, containing ¢ and having U; and V4, as factors. Then no point
of Y, liesin U,. Forif p = (po, P1,-- - Pn, - - .) Were in Y, and in Uy,
then p;,; liesin V;4, and p;in V7, and not in U, as required. Thus the
complement of Y, is a union of such open sets U,, and hence ¥, is closed.
Since the collection {Y,} obviously satisfies the finite intersection hypothe-
sis and Pi_, X, is compact, the intersection MNp—; Y, is not empty. But
also each point in Nj—; Yo, satisfies the condition for being a point in X,.
Hence X, is not empty. []

Closely related to the concept of an inverse limit sequence of spaces is
an tnverse limit sequence of algebraic groups. This is a sequence of groups
Gy, G4, Gg, . . . and homomorphisms on:Gn — Gu_y, n = 1. The inverse

Proof: For each integer n 2 1, let ¥, be the set of all sequences p =
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limit group G, of such a sequence is the collection of all sequences (go, g1,
g2, . . .) with g; in G; and such that g; = ¢;1(gi41) for all 2. The product
of two such elements, say (fo, f1, f2, - . .) and (go, g1, g2, . - .), is given by
the formula

{£i} - {9} = {fi- g4},

where the dot on the right indicates the group operation in G;. The reader
may prove that G, is indeed a group. Note that G, always contains at
least one element, namely (eo, €y, g, . . .), where e; denotes the identity
element of G;.

There is a natural way to map one inverse limit sequence into another.
Let {An, f.} and {B,, g.} be two inverse limit sequences of spaces. A
mapping ®:{A,, fn} — {Ba, ga} is a collection {¢,} of continuous map-
pings ¢n:A, — B, satisfying the condition gnep = ¢n_; fa, » = 1. This
condition may be given by saying that we have commutativity in the
diagram below.

'—’An-fi'Aann—_l’An—z—’”'——'Ali’Ao
lson 1%—1 lson—z lw l«’o
"‘"_‘Bn“g_n'Bn—lgn—_l’Bn—2"_""_’Bl‘g_l‘BO

This means that we may pass from A, to B,_; in two ways but the result
is the same. Such a mapping & induces a mapping ¢:4, — B, of the
inverse limit spaces as follows. For each point a = (ao, a4, ...) in A,
let p(a) = (po(ao), ¢1(a1), . ..). That ¢(a) is indeed a point of B, follows
immediately from the equations

gulen(an)] = en—1lfn(an)l = en—1(an_1).

THEOREM 2-86. The mapping ¢:4. — B, induced by the mapping
®:{An, fa} — {Bn, gn} is continuous.

Proof: The mapping ¢ may be regarded as a mapping of A, into P>_, B,
since B, is contained in P,y B,. Now if a is any point of A., each co-
ordinate of ¢(a) = (¢o(ag), ¢1(ay), . ..) is defined by a continuous map-
ping of A, into B,. By Theorem 1-37, this implies the continuity of ¢. [ ]

Rather than give an application of this result here, we merely refer to
Section 1-15 and go on to a brief discussion of a generalization of the
inverse limit sequence. Consider a set T partially-ordered by a relation <.
If for any pair of elements «, 8 in T' there exists an element ¥ in I such that
both & < 7 and 8 < v, then T is called a directed set.

Suppose that for each element « of T there is a unique set A, in a col-
lection @ of sets (we say that G is indexed by T'), and suppose that when-
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ever a < B in T, there is a transformation feg:As — A. of Ag into A,.
Note that f.s acts against the order relation. Assume further that these
transformations satisfy

@) faa is the identity transformation for each « in T,
and
(ii) foy fag = fay whenever o < 8 < 7.

If F denotes the collection {f.s} of all such transformations, the pair
{@, F} is called an inverse limit system over the directed set T'. It is clear
that an inverse limit sequence is merely an inverse limit system over the
directed set of all nonnegative integers.

We are interested in two particular instances of such systems. The
first of these is the case where each A, in @ is a topological space and each
fapin F is a continuous mapping. Just as for an inverse sequence, we define
the inverse limit space A, of the system {@, F} as follows. Let {z.} be a set
consisting of one point z, from each space 4. in @ and satisfying the con-
dition that if @ < Bin T, then f.s(zs) = Za Such a set {z,} may be identi-
fied with the point ¢ in the product space PrA, having coordinates
¥(a) = z.. Hence the collection of all such sets {x.} constitutes a sub-
space of PrA., and this subspace is the inverse limit space A., of {@, F}.

We use only an inverse limit sequence of spaces (in Section 2-15). There-
fore we merely quote a few results. For a comprehensive treatment, the
reader is referred to Chapter VIII of Eilenberg and Steenrod [7]. Before
quoting results, note that if A, is the limit space of an inverse system
{@, F}, then for each 8 in T' there is a natural projection mp:4. — Asg,
defined by ms({z.}) = s

Lemma 2-87. If A, is the inverse limit space of an inverse limit system
{@, F'}, then each projection 7, of A, into 4. is continuous.

Lemma 2-88. The inverse limit space A, of the system {@, F} is a
closed subspace of the product space Prd..

In analogy to Theorem 2-85 we have the existence theorem.

TueoreM 2-89. The inverse limit space of an inverse limit system of
compact Hausdorff spaces is a compact Hausdorff space, and if each
space of the system is nonempty, then the limit space is also nonempty.

The second instance of an inverse limit system we will consider requires
some algebraic preparation. Let each set A, in the collection @ be either
a module over a ring with unit or a topological group, and let each fas
in F be a homomorphism or a continuous homomorphism. The inverse
limit group A, of the system {@, F} is that subgroup of the direct sum
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Y rA. consisting of all sets {z.}, one element from each group A,, for
which f.s(zs) = 2. whenever @« < 8 in I'. The group operation in A,
is defined naturally by the formula

{Za} + (Yo} = {2 + ¥al,

where the sum on the right indicates the group operation in each A..
Again we have the projections ms: 4, — A given by ms({z.}) = 5.

Note that the direct sum Y_rA, is used above. We use the weak direct
sum shortly.

LemMa 2-90. If A, is the inverse limit group of a system of topological
groups or modules over a ring (or of topological spaces), each projection
T, is & homomorphism (or a continuous homomorphism).

Here there is no question about the existence of A, because the element
{eq} consisting of the set of all identities e, in A, is obviously an element
of A,. We will see this concept in use in Section 8-3.

Let {@, F} and {@’, F’} be inverse limit systems over directed sets
T and IV, respectively. We define a transformation ® of {@, F} into
{@’, F'} to consist of an order-preserving transformation ¢ of I into T
(note the direction) and for each o in I, a transformation ¢, of Ay
into A%.. Furthermore, we require that whenever o/ < g’ in IV, we have
the commutative relation

Cu' ooy = fasop

Again, this is more easily envisioned by requiring “commutativity in the
diagram”

Foaed
sy — A
Pa’ pp’
Al Ag

fap

Such a transformation ® of {®, F} into {@’, F'} induces a transformation
¢» of the inverse limits A, into A% as follows. If {z.} is an element of
A, and o in T is given, set T, = ¢u(Tsay). Note that if o/ < B, the
above commutative relation tells us that

fop(h) = xb.

Thus {x’,} is an element of A,. We define ¢.({z.}) = {za}. It is not
difficult to show that the induced transformation ¢, also commutes with the
projections. Of course, in the case where we have two inverse limit systems
of groups, we would require the ¢_.’s to be homomorphisms and show that
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the induced ¢, is a homomorphism too. This idea will also be found in
Section 8—4.

While we are about it, we will also mention another concept, which will
be of use in Chapter 8. Let @ be a collection of sets A« indexed by a di-
rected set T, and for each a« < 8 in T let g*® be a transformation of A=«
into Af. Note that now g°# acts with the order relation. Again we will
assume that

) g** 1is the identity for each «
and that
(ii) gf7g®® = g** whenever o < 8 < 7.

If we let the collection of all such g be denoted by G, the pair {@, G} is a
direct limat system over the directed set T. Our interest here will be confined
to the case in which each A~ in @ is a module, all over the same ring with
unit, and where each ¢** is a homomorphism.

Let 3./ A« denote the weak direct sum of the modules in @, that is, all
sets {z}, one element x* from each A<, where only a finite number of z=*
are different from the identity element e*. Note that Y/ A« is a sub-
group of the direct sum > r A2 Now if zf is an element of A#, there is an
element {x2} in ¥/ A= with coordinates

xe = 2f if a = 4,
™ = e if a # L.

This obviously defines an isomorphism g, called an <njection of A# onto a
subgroup of Z{, A< and allows us to identify xf with an element of the
weak direct sum. Hence we can and do retain the same notation for z°
as an element of Af and as an element of 3.7 A=

Whenever o < 8 in T, there is an element g*¥(z*) — z* in Z{. A
[Actually this is 75[g*f(x*)] — 7.(x*), but we are using the identification
just mentioned.] Such an element g*#(x*) — x= is called a relation. Now
the collection of all relations generates a subgroup B of 3.1 A< as is
easily verified. Then the (additively written) factor group (Zl{ AY) — B
is the direct limit group A® of the system {@, G}. The canonical homo-
morphism of >} A% onto the factor group A= clearly defines projection
homomorphisms w*:A* — A> for each « in T

LemMma 2-91. If @ < B, then mhg¥ = 7.

The next lemma is important in that it claims that elements of a direct
limit group are easily constructed, which is not necessarily true of an in-
verse limit group.

LemMma 2-92. If x is any element of A%, then there is an @ in T and an
z*in A* such that r*(z*) = z.
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Again we point out that this material is a bare introduction to topics of
importance in our Chapter 8 and is to be found in detail in Chapter VIII
of Eilenberg and Steenrod.

ExERcisE 2-35. Modify the example following Lemma 2-84 to show that
all the spaces X, can be taken to be connected and still have X, be empty.

ExErcisE 2-36. Modify the same example again to show that each X, can
be infinite and compact and have X, consist of a single point.

2-15 A characterization of the Cantor set. We recall that the Cantor
set (or the Cantor ternary set; or the Cantor middle-third set; or the Cantor
discontinuum) consists of all points in the closed unit interval 7' that, when
expressed to the base 3, have no units in their ternary expansion. We know
that the Cantor set is totally disconnected, compact, perfect, and metric.
We will make use of the results of Section 2-14 to prove that every two
such totally disconnected compact perfect metric spaces are homeomorphic
and hence will have a topological characterization of the Cantor set.

LEmma 2-93. If AU is any covering by open sets of a metric space M,
and if n is any integer, then there is a refinement U of U composed of
open sets of diameter < 1/n. If M is compact, then U can be taken
to be finite.

The proof is left as an exercise.

THEOREM 2-94. Let M be a compact totally disconnected metric space.
Then M has a sequence Uy, Uy, . . . of finite coverings, each U, being a
collection of disjoint sets of diameter < 1/n that are both open and
closed and U, being a refinement of U, for each n.

Proof: From Theorem 2-15 we know that if C is a component (a single
point in this case) of M, and if U is any open set containing C, then there
is an open and closed set V lying in U and containing C. Begin with a
covering Uo of M. Each point z of M lies in an open set U, of U,; there is
an open and closed set V, of diameter < 1 containing z and lying in U,.

By compactness, a finite number V', . . ., V,, of these sets covers M. How-
ever, the set V; need not be disjoint. Consider the sets Uy = Vy, Uy =
Vo— Vy,..., Uj= V; — (UZ] V). Each of these is an open set

minus a closed set and is open, but also each is a closed set minus an open
set and is closed. No two intersect, for given U and Uj, ¢ < j, U;is a sub-
set of V;, and Uj is a subset of M — V,;. We have diameter U; < diam-
eter V; < 1. Welet U; = {U;}. The general inductive step should now
be obvious. []

Next let us take a sequence Uj, s, . . . of coverings of the space M as
described in Theorem 2-94 and construct an inverse limit sequence. We

take each covering U, to be a space, with the “points” being the open sets
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in U, and using the discrete topology. The exact process is described in
the next proof. These spaces U, are examples of a more general concept,
the nerve of a covering, to be found in Section 5-7 and again in Chapter 8.

Tuareorem 2-95. Let M be a compact, totally disconnected metric space.
Then M is homeomorphic to the inverse limit space of an inverse limit
sequence of finite, discrete spaces.

Proof: Let Uy, Uy, ... be a sequence of coverings of M as given in
Theorem 2-94. For each n, let U} denote the space whose points are
the open sets of U, and which has the discrete topology. We will use
the same notation for an element of U, and the corresponding point of
af. A continuous mapping f,:U¥ — Ur_;, n > 1, may be defined as
follows. If Uy, ;is an element of U,, then there is a unique element U,_; ;
of U,_; containing U, ; because the elements of U,_; are disjoint. We
set fn(Un) = Un_y,;, thinking now of these sets as points in U} and
}_;. The mappings f,, are continuous in a trivial manner since each U}
is discrete. With these definitions, it is obvious that {uy, f,} is an inverse
limit sequence of compact spaces. Hence by Theorem 2-85, the inverse
limit space U, is nonempty.

We next define a mapping h:Uy = M. If p = (Uyny, Usjny, .- .) is
a point of U,, then the sets Uy n,, Ugony, - .. in M form a sequence of
closed sets, each containing the succeeding one. Thus the compactness of
M assures us that the intersection N~y Uj »; is not empty. Since diam-
eter Uj,; < 1/j, there can be at most one point ¢ of M in this inter-
section, and we let h(p) = ¢q. Our proof will show that A is a homeo-
morphism onto.

First, h is one-to-one, for if p is a point of U, then h(p) is in each of the
point sets in M that are coordinates of p. Hence if two points p and p’
of U, differ in the nth coordinate, then h(p) == h(p’) because the elements
of U, are disjoint. Second, h is onto, for each point ¢ of M lies in the inter-
section of such a sequence of sets. Third, h ¢s continuous. To see this,
note first that the collection of all sets U; ; is a basis for the topology of
M. Thus if we prove that for each U; ; in U;, h~(Uj,;) is open in U,,
we are finished. But A~*(U;,;) consists of all points of U, having U;,;
for their jth coordinate, and the point U;,; of U} is open in .

Hence ~1(U; ;) is open in U,,.

From Theorem 2-85 we know that U, is a compact Hausdorff space,
and hence from Exercise 2-43 we know that A is a homeomorphism. [“]

Concerning Theorem 2-95, we should point out that this is a case in
which the statement of the theorem is inadequate. A complete statement
of the theorem would include most of the proof in that it would not only
state that M is homeomorphic to an inverse limit of discrete spaces but
would also tell just which discrete spaces and how the homeomorphism
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is defined. In applications, it is these facts, not merely the existence,
that are used. The reader will find that this is a common occurrence in
mathematical writing.

We are now ready to prove the characterization of the Cantor set.
We have seen how to obtain compact, totally disconnected metric spaces
as the inverse limits of nerves of coverings. Our next task is to show that
if two such spaces are perfect, then the two inverse limit sequences can
be chosen so that their inverse limit spaces are homeomorphic.

TreorEM 2-96. If U is an open set in a totally disconnected perfect
topological space, and 7 is an integer, then U is a union of n disjoint
nonempty open sets.

Proof: For n = 1, U itself satisfies the condition. Suppose that for
n =k we have U = U; U+ -+ U Uy, where the U; are open, disjoint,
and nonempty. The set Uy is not connected because the space is totally
disconnected, and a single point is not open. Thus Uy = Uy,1 U Uy,s,
where Uj,; and Uy o are disjoint. Each of these sets is open in Uy and
hence in the space. Then Uy, ..., Ur_i1, Uk,1, U,z is a desired decom-
position of U forn = k + 1.[]

TuaeoreM 2-97. Any two totally disconnected, perfect, compact metric
spaces are homeomorphic.

Proof: Let 8 and T be two such spaces, and let U;, Uy, ... and Uy,
Vg, ... be sequences of open coverings of S and 7, respectively, where
W = {Uk,1y -+, Uk} and Or = {Vi,1, ..., Vi,m), as produced in
the proof of Theorem 2-95. If U; and U; have the same number of ele-
ments, we set U = U; and V] = V;. If n; > m,y, then by Theorem
2-96, Vy,, is the union of ny — m; -+ 1 disjoint open (and closed) sets.
Take U; = Uy, and let Vf consist of V3, ..., Vi,m together with the
sets into which V,; has been decomposed. If m; > n,, then the roles of
a1, and U, are interchanged.

Now suppose that U} and U; have been defined so as to have the same
number of elements. Since the elements of Uj = {Uj,1,..., Uj.,;} are
disjoint closed sets, there is an integer m > j such that no set of diameter
< 1/m intersects any two U}, and there is a similar integer m’ for ;.
Let m denote the larger of these two integers. Then U,, refines U, and U,
refines V;. Consider the elements of U, in Uj,; and the elements of V.,
in U} ; for each 7. If there are the same number of these elements for a

- given 7, we leave them unaltered. If, for example, there are more elements
of U, in Uj,; than elements of U, in V;; then we use Theorem 2-96
again to decompose one of the elements of V,. Carrying out this process
for each ¢ < n; yields coverings Uj,; and V}41, which refine U} and U},
respectively, and which have the property that for each 7, U} ; and V;} ;
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contain the same number of elements of U/, ; and U},;, respectively.
The inductive definition of sequences Ui, U3, . . . and V], Uy, . . . is com-
plete, and we let UT, U3, ... and 0}, UV}, . .. be the associated sequences
of discrete spaces as defined in the proof of 2-95. We define a mapping
®:{ur} — {U%} by induction also. For n = 1, let ¢,:uf — V¥ be any
arbitrary one-to-one correspondence. Supposing that ¢,_; has been
defined, let ¢,: U5 — U be given by assigning to each U¥ ; in U} an ele-
ment of Uy in ¢,_1(f~1(U;, ;)), where f is the projection of U/ into U/_;.
This assignment is made in such a way that ¢, is a one-to-one correspond-
ence also. It is now easy to verify that ® = {¢,} is a mapping of the
inverse limit sequences {u}, f,} and {U} f.} and that each ¢, is a
homeomorphism onto. Then the inverse limit space U, is mapped onto the
inverse limit space V, by the induced mapping ¢. It is easily seen that ¢
is a homeomorphism of U, onto V., and since, by Theorem 2-95, U, and
V. are homeomorphic to S and T, respectively, it follows that S and T
are homeomorphic. [ ]

CoroLLARY 2-98. Any compact totally disconnected perfect metric
space is homeomorphic to the Cantor set.

Exercist 2-37. Show that the homeomorphism A of Theorem 2-97 can be
required to have the property that if z1,..., 2, and yi, ..., y» are points of
S and T, respectively, and if we define a one-to-one correspondence f(z;) = y;,
then the homeomorphism # is an extension of f. This points up the fact that the
Cantor set is homogeneous. A space S is called homogeneous provided that if we
are given any two points @ and b in S, then there is a homeomorphism 4 of S
onto itself such that A(a) = b. In other words, the apparent distinction between
those points of the Cantor set that are end points of deleted intervals and those
that are not is not an intrinsic topological property but is merely an accidental
result of the particular imbedding of the Cantor set in the real line.

A further corollary can also be proved.

CoroLLARY 2-99. Any compact totally disconnected metric space is
homeomorphic to a subset of the Cantor set.

Proof: Let C be the Cantor set, and let M be a compact totally discon-
nected metric space. The space M X C is compact, totally disconnected,
perfect, and metrie, so there is a homeomorphism A of M X C onto C.
Let 7 be the homeomorphism of M into M X C, defined by i(z) = (z, 0).
Then hi:M — ( is the desired homeomorphism. [ ]

2-16 Limits inferior and superior. Suppose that {X,} is a sequence of
subsets of a space S. The set of all points  in S such that every open set
containing x intersects all but a finite number of the sets X, is called the
limit inferior of the sequence {X,} and is abbreviated “lim inf X,”; the




2-16] LIMITS INFERIOR AND SUPERIOR 101

X, X,

}lim inf X, ¢lim sup Xn

Figure 2-8

set of all points y in S such that every open set containing y intersects
infinitely many sets X, is called the limit superior of {X,} and is abbrevi-
ated “lim sup X,.” If these two sets coincide (so that lim inf X, = L =
lim sup X,), we say that {X,} is a convergent sequence of sets and that L
is the limit of {X,}, which is abbreviated “L = lim X,.”

It is obvious from the definition that lim inf X, is contained in lim sup
X,. But the two need not coincide. The sequence of sets in E? shown in
Fig. 2-8 is an example in which lim inf X, # lim sup X,.

ExERrcisE 2-38. Give an example in which lim sup X, = ¢.

ExErcisE 2-39. Give an example in which lim inf X, = ¢ # lim sup X,.

ExEercisk 2-40. In Fig. 2-8, cvery subsequence of {X,} contains a con-
vergent subsequence. Give an example with lim inf X, 5 ¢ which lacks this
property.

Lemma 2-100. If {X,} is a sequence of sets in a space S, then lim inf
X, = lim inf X,, and lim sup X, = lim sup X,. Furthermore, both
lim inf X, and lim sup X, are closed, and so is the set U7, X, U
lim sup X,.

The proof is left as an exercise.

There is a high probability that the example that the reader produced
for Exercise 2-39 has the property that each X, is connected but that
lim sup X, is not. (If this is not the case, try again!) We next give a theo-
rem that will control this situation.

TueoreEM 2-101. If {X,} is a sequence of connected sets in a compact
Hausdorff space S, and if lim inf X, is not empty, then lim sup X, is
connected.
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Proof: Suppose to the contrary that lim sup X, is the union of two
separated sets M and N; each is closed by 2-100. Since S is normal
(Theorem 2-3), there exist disjoint open sets U and V containing M and N,
respectively. Then there is an integer j such that for n > j, X, lies in
U u V. For if not, then there would be an infinite sequence z,,, Zp,, . - .
of points such that @, lies in X,; — (U U V). The set {Uz,,} is either
finite or has a limit point, so there is a point z such that every open set
containing x contains infinitely many of the points z,,. It follows that x is
in lim sup X,, and this contradicts the fact that zisin § — (U U V).

The set lim inf X, intersects one of the sets U and V; suppose that it
intersects U. Then all but a finite number of the sets X, intersect U.
But if X, N U is not empty, then X, N V is empty; otherwise X, is
not, connected. Therefore only a finite number of the sets X, meet V, so
¥V N lim sup X, is empty, a contradiction. |

Next we are interested in giving an analogue to the theorem that com-
pactness implies countable compactness. The analogy is not quite per-
fect, for in a compact Hausdorff space, a point may be a limit of a set X
but not be the limit of any sequence of points in X. An example of such
a space 1s the long line, at the end of Section 2-5.

TuroreMm 2-102. If M is a compact metric space, then every sequence
of subsets of M contains a convergent subsequence.

Proof: By Exercise 2-21, there is a countable basis {B,} for M. Let
{X.} be a sequence of subsets of M. We will define a collection of sub-
sequences {X*} of {X,}, one for each integer k, such that {X:*!} is a
subsequence of {X%}. Let {X:} = {X,}. Now if {X!} contains a sub-
sequence whose limit superior contains no point of B, we take {X2} to
be such a subsequence; if there is no such subsequence, we set {X2} =
{X%}. If {X2} contains a subsequence whose limit superior contains no
point of By, let {X2} be such a subsequence; if no such exists, let {X3} =
{X?Z}. The general inductive step in the definition is now easy to formulate.
We have the array

Xi, X3 X3 Xi...

2 2 2 2
le X2; XS; X4)--'

3 3 3 3
Xl) X2) X3; X47"'

where each row is a subsequence of the row above. Now consider the
“diagonal sequence” X}, X3, X3, ... For each m, the terms from X7, on
constitute a subsequence of {X7'}.

We assert that the sequence {X;;} converges. Suppose to the contrary
that there is a point p in lim sup X7, — lim inf X7. Then there is an open
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set U containing p, and a subsequence {Y,} of { X7} such that no Y, inter-
sects U. In U there is a basis element B; containing p. Then, the first few
terms excepted, {¥,} is a subsequence of {X3} such that (lim sup Y,) N B;
is empty. Since such a subsequence exists, {XZ,,“} is such a subsequence.
But since {Xj}, m = j+ 1, is a subsequence of (X7}, we have that
lim sup X% contains lim sup X7, which therefore cannot contain the
point p, a contradiction. [_]

The reader will notice the resemblance between Theorem 2-102 and the
familiar theorem in analysis that states that every bounded sequence of

real (or complex) numbers contains a convergent subsequence.

ExERCISE 2-41. Prove that the intersection of all open sets containing a subset
X of a Ti-space is X itself.

ExXERCISE 2-42. Prove that the Kuratowski closure operation (Section 1-13)
yields a T'1-space and conversely.

EXERCISE 2-43. Show that a subset A is nowhere dense in a space S if and
only if § — A is dense in S.

ExERCISE 2-44. Prove the following theorem.

TaeoreM 2-103. Let X and ¥ be compact Hausdorff spaces and f:X — Y be
a one-to-one continuous mapping of X onto Y. Then f is a homeomorphism.

ExERcISE 2-45. Prove the following theorem.

TueEoREM 2-104. Let Y be a Hausdorff space and Y¥ be assigned the compact-
open topology. Then Y7Z is also a Hausdorff space.

ExERcISE 2-46. Prove that every perfect set in a complete metric space
contains a compact perfect set.

ExEercise 2-47. If S is a normal space that is separable, then show that every
subset of cardinality ¢ (the power of the continuum) has a limit point. (See
Jones [88].)

ExERCISE 2-48. A transformation f:X — Y is said to be arc-preserving if the
image of every arc in X is either an arc or a point. Show that if X is a space
such that every infinite subset of X intersects some arc in X in an infinite set
and if f:X — X is an arc-preserving transformation of X into itself, then f is
continuous. (See Hall and Puckett [81].)

ExEeRcISE 2-49. Prove the following theorems concerning topological groups.
(See Section 1-14.)

TarorEM 2-105. If a topological group @ satisfies Axiom T, then it also
satisfies Axiom T'a.

TueoreEM 2-106. A T topological group is completely regular (is a T'ychonoff
space).

TaeorEM 2-107. A topological group @ is locally compact if and only if there
is an open set U containing the identity e such that U is compact.
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ExERrcise 2-50. A space is rim-compact, or locally peripherally compact if
each point has “arbitrarily small”’ open sets containing it with compact bound-
aries. Show that if S is a rim-compact Hausdorff space, Theorem 2-1 holds with-~
out the requirement that C be compact. Are there other theorems in this chapter
which can be altered in a similar way?

ExEeRrcisE 2-51. A space S is pseudo-compact if every continuous real-valued
function defined on it is bounded. Show that the “long line” is pseudo-compact.
Show that a metric space is pseudo-compact if and only if it is bounded.

Exercise 2-52. Find a connected metric space that contains an open set U
such that no component of U has a point of U — U as limit point.




CHAPTER 3
FURTHER TOPICS IN POINT-SET TOPOLOGY

Many interesting and useful topics were necessarily omitted from the
first two chapters. Now that a background has been given, further de-
velopments may be made. Some of these may be considered as “classic,”
and others touch upon the frontier of our current knowledge.

3~1 Locally connected spaces. In Section 2-10 we exhibited one tech-
nique for localizing a topological property. This may be stated in general
terms as follows. Let P denote a topological property. Then a space has
property P at a point z if there is an open set containing x and having
property P (or whose closure has property P). This gives a useful mean-
ing to local compactness, for instance, but is not satisfactory for some
other properties. To truly “localize” a given property, we should ask for
“arbitrarily small” open sets with this property. That is, we want an
“epsilon-delta” definition without restricting ourselves to metric spaces.
This is precisely the content of the following formulation of local con-
nectivity.

A space S is said to be locally connected at a point x if for every open set
U containing = there is a connected open set V containing z and con-
tained in U. The space S is locally connected if it is locally connected at
each point. A few words about this property are in order before the
precise study begins. First, a space may be locally connected at all but
one point. (This is in contradistinction to local compactness.) For, con-
sider the graph of the function y = sin (1/z), 0 < z = 1, together with
the origin, in E? (see Fig. 3-1).

Any small circle, such as C in the figure, defines an open set containing
the origin. But the only connected set containing the origin and lying
within C is the origin itself, and this one-point set is not open. (Why?)
Any other point in this space lies in arbitrarily small open ares, however,
so the space fails to be locally connected at just the one point. Where is
the space locally compact?

Every compact space is locally compact, but not every connected space
18 locally connected. Indeed, the example just given above is connected.
A more widely used example is the compact, connected, but not locally
connected, set often called “the topologist’s sine curve.” It is the graph of
the function y = sin (1/x),0 < xz < 1, together with the interval
—1 £ y = 1 on the y-axis in E? (Fig. 3-2). Again, a small circle C about
a point p on the segment —1 < y < 1 defines an open set containing p.

105



106 FURTHER TOPICS IN POINT-SET TOPOLOGY [cuaP. 3

TR a0

Ficure 3-1 F1c. 3-2. The topologist’s sine curve.

The only connected set lying within C' and containing p is the segment on
the interval —1 < y < 1 which lies within C. But this open segment is
not open in the space. (Why?) It follows that the topologist’s sine curve
fails to be locally connected at each point of the interval —1 < y =< 1.
The reader may supply the arguments to show that this set is compact
and connected.

We may now re-examine the “one-neighborhood” definition of local
compactness for comparison purposes. The use of just one set is possible,
for if U is an open set containing a point p and having a compact closure,
then any open set contained in U also has a compact closure. Thus the
“two-neighborhood” type of definition would follow as an easy theorem.
Other local properties that may be given in a one-neighborhood definition
are “locally separable,” “locally countable,” and “locally perfect.”

The proof of the first result is left as an easy exercise.

Lemma 3-1. An open subset of a locally connected space is locally
connected.

TrarorEM 3-2. For a space to be locally connected, it is necessary and
sufficient that each component of an open set be open.

Proof: Suppose that S is a locally connected space, U is an open set in
S, and C is a component of U. For each point z in C, there is an open
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connected set V, containing z and lying in U. Then C' U V. is connected
and lies in U, and V, lies in C, by the maximality of C. It follows that
C = Uc¢V,, so C is a union of open sets.

Conversely, if U is an open set containing a point x and C is the com-
ponent of U that contains z, and if every component of an open set 1s open,
then C itself is the set V of the definition. []

We note that a space is locally connected if it has a basis of connected open
sets. This is in contradistinction to the higher-dimensional local con-
nectivity properties to be seen in Sections 4-9 and 8-7.

A frequently used abbreviation for the phrase locally connected are the
letters “lc.” We shall often use it, too.

TuroreM 3-3. If S is a connected le space, and C is a component of
an open set in S such that S — C is not empty, then C — C is not
empty and separates C and S — C in S.

Proof: If C — C is empty, then C is closed. We know from Theorem
3-2 that C is open, so S — C = § — C is also both open and closed. It
follows that S is not connected, counter to hypothesis. Therefore C — C
cannot be empty. Since 8 — (C — C) = C U (8 — 0), it also follows
that C — C separates S as asserted. [ ]

This result is not true without the assumption of local connectedness,
but it should be compared with Theorem 2-16, where under the alternative
hypothesis that S be compact, it is shown that each component of an open
set has limit points in its boundary.

Given two points a and b of a space S, a collection 44, ..., A, of setsisa
simple chain from a to b provided that 4, (and only 4,) contains a, A, (and
only A,) contains b, and 4; N A4; is nonempty if and only if |1 — j| £ 1;
that is, each link intersects just the one before it and the one after it (and
itself). Figure 3-3(a) illustrates a simple chain of regions from a to b.

Figure 3-3
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THEOREM 3-4. If a and b are two points of a connected space S, and
{U.} is a collection of open sets covering S, then there is a simple chain
of elements of {U,} from a to b.

Proof: Let X denote the set of all points z in S such that there is a
simple chain of elements of {U,} from a to . Then X is open. For if z
is a point in X, and Uy, ..., U, is a simple chain of elements of {U,]}
from a to x, then for each point y in U,, either U, ..., U, or Uy, ...,
Un,—1 is a simple chain from a to y (it may happen that yisin U,_; N U,).
It follows that y is in X, and hence all of U, is in X. Thus X is a union of
open sets.

Now X is also closed. For suppose that y is a point of X — X. Then
there is an element Ug of {U,} that contains y. Since y is a limit point of
X, Ug also contains a point « of X. There is a simple chain U;, ..., U,
from a to z, and the collection Uy, U, ..., U,, Us contains a simple
chain from a to y. (Figure 3-3b indicates that this simple chain may have
less than n + 1 links.) Since S is connected and X is both open and closed
in S, we have X = S.[]

The above result is based upon Cantor’s first definition of connectedness for
metric spaces. A metric space M is connected in the sense of Cantor, provided
that given two points ¢ and b and any positive number ¢, there is a sequence
@ = 1,2, ...,2%, = b of points of M such that d(z;, z;41) < et =1,...,
n — 1. This definition agrees with the more general definition that we have
adopted in compact metric spaces. But the rationals in E! are connected in the
sense of Cantor, and the reader will easily see that Theorem 3—-4 does not hold
for the rationals.

A simple consequence of Theorem 3—4 is a theorem that may be familiar
to the reader from his studies in analysis.

TureoreEM 3-5. Each two points of a connected open set U in E* can
be joined by a polygonal are in U.

Proof: Let {S(xq, 7o)} be a collection of spherical neighborhoods covering
U and such that each S(z., r.) lies in U. (Such a covering of U exists be-
cause the collection of all spherical neighborhoods is a basis for E.) If
a and b are two points of U, then by Theorem 3-4 there is a simple chain
S(xy, 71), - - ., 8@y, 1) from a to b. Then the union of the straight-line
segments azx;, £1Zs, . . ., Tn_1Zn, Tb certainly contains a polygonal arc
from a to b. ]

It is interesting to note that if U is the open set of Theorem 3-5, it is
not true that each two points of the closure U can be joined by a polygonal
arc. Even if U is a plane region bounded by a simple closed curve so that
U is homeomorphic to the unit disc under a conformal mapping (the
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Ficure 3—4 Figure 3-5

Riemann mapping theorem), the conclusion of Theorem 3-5 may be false.
Figure 3—4 shows such a region. Indeed, the spiral can be made “infinitely
long,” so that no rectifiable arc in U joins a to b.

There is a useful property called cutting, which is a weak form of sepa-
ration. A set X in a connected space S cuts S between two points a and
b of § — X if X intersects every closed connected subset that contains
both @ and b. Clearly, if X separates a and b, then X cuts S between
a and b, but the converse may fail to hold. In Fig. 3-5, the point ¢ cuts
the set between a and b but does not separate these points. For locally
connected spaces, however, the two concepts, separation and cutting, agree.

TueoreM 3—6. A closed set X cuts a connected lc regular space S
between points a and b if and only if X separates a from b.

Proof: Suppose X cuts S between a and b. The components of § — X
are all open in view of Theorem 3-2, so that if a lies in a component U,
and if b does not liein U, then S — X = U U (S — X — U) is a separa-
tion of @ and b. Suppose, then, that a and b both lie in the same component
U of S — X. Each point x of U lies in an open connected set U, whose
closure lies in U (Theorem 2—4). If we now apply Theorem 3-4 to U
as a subspace of S and take the covering {U.}, we find a simple chain
Ui, ..., Uy, of setsin {U,} from a to b. The set U}—; U; is then a closed
connected subset of S — X that contains @ and b. Hence X could not cut
S between a and b. []

If the set X in Theorem 3-6 is not required to be closed, the conclusion may
be quite false. Indeed we have the following modification of a theorem due
to E. Bernstein [54].
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TuroreM. The plane E? is the union of two disjoint sets each of which cuts
E? between each two points of the other.

We will only indicate the proof. First we remark that there are only ¢ open
sets in E? (c is the cardinal number of the real numbers). For if {V1, Vs, ...}
is a countable basis for E2, then each open set U is the union of all basis ele-
ments that are contained in U. Different open sets are composed of different
collections of basis elements, so the number of open sets is the same as the
number of subcollections of { V1, Vg, ...}. There are only ¢ such subcollections.
By complementation there are ¢ closed subsets in E2 and hence only ¢ closed
connected subsets. We well-order the collection of all nondegenerate closed
connected sets into a sequence C1,Ce, ..., Cq, ... such that each element has
less than ¢ predecessors. Let A1 be a set consisting of one point of C1, and let
B be a set consisting of some other point of C1. Suppose that Ag and Bg have
been defined for all 3 < a. Then Ug<a(A4s U Bg) has less than ¢ points, whereas
Cq has ¢ points. Hence there are many points in Co — U(Ag U Bg). Let
aq and b, be two of these points, and define 4, = @, UUs<adp and B, =
ba UUp<aBg. This defines A, and B, for all . Now let 4 = U,4, and
B = E?2 — A. Then B contains U.B,. By construction, any closed connected
set C meets both A and B. It follows that any closed connected set containing
two points of A (or B) meets B (or 4).

Bernstein’s statement was that the plane is a union of two disjoint connected
sets, etc. Our sets have this property. Suppose that A, for instance, were not
connected, thatis, 4 = A’ U A", where A’ and A" form a separation. By the
complete normality of £2, there would be a closed set X separating A’ from A”’.
We will see later that X must contain a nondegenerate closed connected set C
separating some point in A’ from some point in A”’. But €' meets A and eannot
lie in E2 — A. Thus A is connected. O

As a corollary to the proof of Theorem 3-6, we have the following result.

TuroreMm 3-7. If S is a locally connected regular space, and if U
is a connected open set in S, then each two points of U lie in a closed
connected subset C of S such that C is contained in U.

ExEercise 3-1. Show that if S is Ic and Hausdorff, every quasicomponent is a
component.

ExErcisk 3-2. Show that if @ and b are two points in an lc Hausdorff space
S, then a necessary and sufficient condition that a point p separate a from b is
that every simple chain of open sets from a to b have a link containing p.

TaeorEM 3-8. If a and b are two points in a connected le Hausdorff
space S, then the set E(a, b) of cut points separating @ and b is closed
(see Theorem 2-21).

Proof: Suppose that there is a limit point p of E(a, b) that is not in
E(a, b). Since p does not separate a from b, the points a and b lie in the
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(b)
Ficure 3-6

same component U of 8 — p. Applying Theorem 3-7, we find a closed
connected subset C of U that contains a and b. But C must contain each
point of E(a, b) by Theorem 36, and p is not a limit point of C. This is a
contradiction. ]

Figure 3-6 gives two examples of non-locally connected plane continua
for which the conclusion of Theorem 3-8 is false. In Fig. 3-6(a) the point
p is a limit point of E(a, b) but is not in E(a, b). Figure 3-6(b) pictures
an even more drastic case, for there we have only a countable number of
points in E(a, b), but every point on the Cantor set cuts the continuum
between a and b.

A useful criterion for local connectedness is stated next.

TaeorEM 3-9. A necessary and sufficient condition that a locally
compact connected Hausdorff space S be locally connected is that if
C is a compact subset of S and U is an open set containing C, then all
but a finite number of components of S — C lie in U.

Proof: We prove sufficiency first. Suppose that S is not locally connected
at a point p. Then there is an open set V containing p, such that the
component K of ¥ that contains p is not open. There is no loss of gen-
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erality in supposing that V is compact. Since K is not open, it contains
a limit point ¢ of the union of the remaining components of V, but of no
finite number of these. By Theorem 2-56, there is an open set U con-
taining V. — V, such that U does not contain q. Every component of V
is a component of 8 — (V — V), so all but a finite number of these lie
in U by the condition we are assuming. This is a contradiction, since
infinitely many of these components intersect every open set containing
¢ and, in particular, the open set S — U.

The necessity part is somewhat easier. Suppose that C is a compact
subset of S, and that V is an open set containing C. Let {O,} be the
collection of all components of 8§ — C that intersect S — V. Since S
is le, each such component is open, and they are clearly disjoint. By
Theorem 3-3, each O, meets C. Now in V, there is an open set U with
compact closure, and each O, meets U — U. Also each point of U — U
is in some O.. By compactness of U — U, a finite number of sets O,
covers U — U. But this means that there are only a finite number of
the O, altogether. []

For a metric space, the above theorem may of course be formulated in
terms of distance.

TureoreEM 3-10. A necessary and sufficient condition that a locally
compact connected metric space M be locally connected is that if C is
a compact subset of M and {x,} is a sequence of points from different
components of M — C, then lim,_,, d(z,, C) = 0.

The modifications required to prove Theorem 3-10 are left as an exercise.

One might suppose at first that Theorem 3-10 is equivalent to saying
that the diameters of the components of M — C approach zero. Figure
3-7 shows that this is not true, even in the plane.

If C were locally connected as well as compact, the conjecture that
the components of E2 — C have diameters approaching zero would be
true. But even adding local connectedness to C' does not establish the

Figure 3-7
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Ficure 3-8

conjecture in general. Figure 3-8 is a locally connected continuum P in
E3 that is separated by an arc C. Each set D, has the same diameter.
If one imagines that each D, is a hollow pipe tapering to a point as it
approaches C, then removing this modified continuum P’ from E3 gives
an example in E3 the diameters of the components of E® — P’ not
approaching zero.

Closely related to local connectedness is the concept of connectedness
im kleinen. A space S is connected im kleinen at a point x provided that
for each open set U containing z, there is an open set V containing z and
lying in U, such that if y is any point in V, then there is a connected subset
of U containing U y. It is obvious that local connectedness at the point
z implies connectedness im kleinen, but a space may be connected im
kleinen at a point z and yet not be locally connected at . For example,
consider the point z in the set illustrated in Fig. 3-9.

Ficure 3-9
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Despite this example, however, we do have the following result.

TuaeoreM 3-11. If a space S is connected im kleinen at each point,
then it is locally connected.

Proof: Let U be an open subset of S, and let C be a component of U.
Let z be a point of C. Then there is an open set V, containing z and
lying in U, such that each point y of ¥V, is in a connected set C,, lying in
U. Then C,, is a subset of C, so V; lies in C. Thus C = U,V is open,
and Theorem 3-2 applies. []

The next result is allied to Theorem 3-9 and is a useful criterion for the
fazlure of the local connectivity property.

TaeoreM 3-12. If a locally compact connected metric space M is not
connected im kleinen at a point p, then there exist an open set U con-
taining p, a continuum K that contains p, lies in U, and meets U — U,
and a sequence of distinct components {C,} of U such that K = lim C,.

Proof: Suppose that V is an open set containing p, such that V is com-
pact and such that there is no open set U containing p and lying in V,
with the property that every point in U can be joined to p by a connected
subset of V. In particular, for any positive n, we can choose an open set
U, with diameter < 1/n and a point z, in U, so as to obtain a sequence
x4, Za, . . . of points of ¥V converging to p, none of which lies in the same
component of V as does p. Let K, be the component of V' containing z,.
By Theorem 2-16, the closure of K, meets V — V. It should be evident
that no component of ¥ can contain more than a finite number of points
T,, SO we may assume that the K, are all distinct. Now by Theorem
2-102, some subsequence of {K,} converges to a continuum K. Let
C4, Cs, . . . be that subsequence. Then K contains p, and the conclusion
is satisfied. [ ]

The chief reason for our introducing this other form of local connected-
ness is that it lends itself most readily to being altered into a uniform local
connectedness analogous to uniform continuity. We will do this only for
metric spaces and hence will first rephrase the definition of connected im
kleinen as follows. A metric space is connected im klesnen at a point x
provided that, given € > 0, there is a number § = &(z, €) > 0 such that
if d(z,y) < 8, then = U y lies in a connected set of diameter < e. (It
follows that & < e) We now say that a metric space is uniformly con-
nected tm kleinen or uniformly locally connected provided that, given € > 0,
there is a number & = &(€), independent of position, such that any two
points « and y, with d(z, y) < 8, lie in a connected set of diameter < e.

In analogy to Theorem 1-31, we have the final result of this section.

TaEOREM 3-13. If a compact metric space M is locally connected, then
it is uniformly locally connected.
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Proof: Given € > 0, each point z of M lies in a connected open set V.
of diameter < ¢, since M is locally connected. A finite number of these
sets Vo, say Vi, ..., Va, covers M. Let § be the Lebesgue number of
this covering (see Theorem 1-32). Then if d(z, y) < §, x and y lie in some
V;. This V; is the desired connected set. [ ]

Exercise 3-3. Prove that the two definitions of connected im kleinen agree
on metric spaces.

ExEeRCISE 3—4. Define uniform local connectedness for topological spaces, and
use your definition to prove the analogue of Theorem 3-13.

EXERCISE 3-5. Show that a uniformly locally connected metric space is
locally connected.

ExERCISE 3-6. A metric space has property S if, for every e > 0, it is the union
of a finite number of connected sets, each of diameter < e. Prove that a space
having property S is connected tm kletnen at each of its points and hence ie
locally connected.

ExErcisE 3-7. Show that if a metric space has property S, each of its points
lies in arbitrarily small open sets having property S.

ExEercisE 3-8. Show that property S is not equivalent to uniform local
connectedness.

Exercise 3-9. Prove that a compact locally connected metric space has
property S.

3-2 Arcs, arcwise connectivity, and accessibility. In this section, we
give some further characterization of the unit interval and show that
locally connected spaces with a compactness or a completeness condition
have the added property that each two points can be joined by an arc
in the space.

A locally connected and connected space has the property that each
two points can be joined by a simple chain of connected sets (Theorem
3—4). Such a simple chain may be regarded as a sort of approximation to
an arc. By joining two points with finer and finer simple chains, we should
come closer and closer to an arc. There are three reasons why such a con-
struction may fail. If the simple chains are not related in some way, their
“limit” may be almost any kind of a continuum. To avoid this, we can
require that the links of each successive chain be contained in the links
of its predecessor. Even with this precaution, however, we will see in
Section 3-8 that the intersection of all the chains need not be an arc. This
kind of behavior will have to be ruled out. And finally, even after doing
this, it may happen that the intersection of the simple chains may lack
some of the points necessary to form an arc. To illustrate this last point,
let S denote the set of all points in E2 except those on the z-axis having
rational coordinates. The sequence of simple chains indicated by Fig.
3-10 will have an intersection in S that is not an arc because of the omission
of the rational points.
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Let Cl = {Ully Sy Ulnl} and 02 = {U21; ey U2ng} be simple
chains from a point a to a point b in a space S. The chain C3 will be said
to go straight through C; provided that (a) every set Up; is contained
in some set Uy, and (b) if Ug; and Ugg, ¢ < k, both He in a set Uy, then
for every integer j,7 < j < k, Uy; also lies in U,,. The finer chain in
Fig. 3-10 goes straight through the other, for example. To see a counter-
example, look at Fig. 3-21.

TuroreM 3-14. Suppose that S is a locally connected and connected
Hausdorff space and that C is a simple chain of connected open sets
Ui, ..., U, from a point a to a point b. Suppose that U is a collection
of open sets such that each link U; is a union of elements of 0. Then
there is a simple chain of elements of U from a to b that goes straight
through C.

Proof: Let g = a,2, = b,andfor: = 1,2,...,n — 1, take z; to be
a point of U; N U;4y. Each U; is connected and is a union of elements
of U, so by Theorem 34 there is a simple chain C; of elements of U from
x;_1 to z;, all links of C; lying in U;. The collection of all links of all simple
chains C; is a chain from a to b, but it need not be a simple chain; for
instance, the situation pictured in Fig. 3-11 might arise. However, this
collection of all links contains a simple chain going straight through C.
In C,; there is a first link (U; in Fig. 3-11) that intersects a link of C3, and
there is a last link of Cy (V; in Fig. 3-11) that meets U;, We omit the
links of C; following U; and those of Cy preceding V;. Repeating this
process for each 7, we easily obtain the desired simple chain. []

TureorEM 3-15. Each two points of a compact, connected, and locally
connected metric space S can be joined by an arc in S.

Proof: Let a and b be two points of S. There is a simple chain of con-
nected open sets, C; = {Uyy, ..., Un,}, joining a to b, each Uy; having
diameter < 1. About each point of each Uj; there is a connected open set
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Figure 3-11

of diameter < % with its closure lying in Uy;; if the point in question lies
in two sets Uy; and Ujsyy, the open set of diameter < % can be chosen
so that its closure is in Uy N Uyi41. By Theorem 3-14, there is a simple
chain Cy = {Uy;, ..., Ugn,} of these open sets of diameter < % joining
a to b and going straight through C;. Similarly, we construct a simple
chain C3 = {Ugzy, ..., Usn,} from a to b such that each Us; has diameter
< % and has closure lying in a link of 5 and such that C'3 goes straight
through Cs. It is now evident how we will construct Cy,C5,.... Let
Ki=Uju---U Uj"j. For each j, K; is a continuum containing
a U b and also containing K;,;. By Theorem 2-8, K = nj—; K; is also
a continuum containing ¢ U b. Note that each point of K is also in
Ni=1 Ujpvu---u anj)'

Now let = be a point of K — a — b. For each integer j, let P; be the
union of all links Uj; in C; that precede the one or two links in C; that
contain z, and let F; be the union of all links U j; in C; that follow the one or
two links containing z. Let P = U7—; P; N K, and let F = U7_; F; N K.
Then P and F are disjoint relatively open nonempty subsets of K, and
each point of K — =z lies in one or the other. Therefore x is a cut point
of K, and K has only two non-cut points, a and b. In view of Theorem
2-27, K is then an arc from a to b. []

Two definitions will shorten our statements as well as introduce two
commonly used terms. A compact, connected, and locally connected
metric space is called a Peano space or a Peano continuum. A space S is
arcwise connected if each two points of S are the end points of an arc in S.
In these terms, Theorem 3-15 may be stated as follows. Every Peano space
s arcwise connected.



118 FURTHER TOPICS IN POINT-SET TOPOLOGY [cHAP. 3

We will profit by a few comments upon the hypotheses of Theorem
3-15. First, it is evident that if any one of the sets K; above is compact,
then all its successors will also be compact, and the proof will go through
without alteration. This means that the requirement of compactness for
S may be replaced by local compactness. In particular, an open subset
of a compact 7'y space is locally compact, so we may state the following
generalization of Theorem 3-15.

THEOREM 3-16. A connected open subset of a Peano space is arcwise
connected.

A second comment on Theorem 3-15 is this: the primary use of com-
pactness in the proof of Theorem 3-15 is to establish that NK; is a con-
tinuum. This can also be established by requiring only that the connected
and locally connected space S be complete and metric. The construction
is exactly the same in this case; the only change occurs in the proof that K
is an are. We prove first that K is countably compact. Suppose that X is
an infinite subset of K. Some set Uy;, then contains an infinite subset X
of X such that diameter X; < 1. That part of K lying in U;, also lies in
only a finite number of sets Usj, so some set Usg;, contains an infinite sub-
set Xo of X; with diameter X, < %. Similarly, we obtain X3, X3, ...,
with X, contained in X; and diameter X; < 1/j. It follows from the
completeness of S that NX; is not empty and hence that X has a limit
point. To see that K is connected, we proceed as follows. Suppose that
K = A U B, where A and B are disjoint, closed, and nonempty subsets
of K. Then the distance d(A4, B) is a positive number e. Now there is a
subchain €} of C; connecting A and B; there is a subchain C3 of Cp con-
necting A and B, each link of C3 lying in a link of Cy; there is a subchain
C} of C3 connecting A and B, each link of C3 lying in a link of C3; ete.
The argument used to prove that K is compact also shows that if Ui,
contains Uy;, contains Usi,, ete., then NUj;; is not empty, and hence
each Uj,-j meets K. But if n is so large that 1/n < €/2, there is a link of
C! whose closure does not meet A or B. This link then fails to meet K,
and this contradiction proves that K is connected. Then the same argu-
ment as before applies to show that K is an arc. We have proved the
following result.

TareoreM 3-17. A connected, locally connected complete metric space
is arcwise connected.

The hypothesis of completeness in Theorem 3-17 is vital. R. L. Moore
[107] has given an example of a locally connected subset S of the plane
such that each two points of § lie in a continuum in S but S contains no
arcs. On the other hand, Knaster and Kuratowski [92] have given an
example of a connected and locally connected subset of the plane that
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Ficure 3-12

contains no continuum whatsoever. The example following Theorem 3-6
is actually another such subset, although we do not prove this.

Exercist 3-10. Prove that in a locally compact, but not compact, connected
and locally connected metric space, each point is the end point of a closed set
that is homeomorphic to a closed half-line (ray). [Hint: There is a very short
proof.]

In Theorem 3-16, we have seen that connected open sets in a Peano
space are arcwise connected. Now consider such an open set U. Is the
closure U necessarily arcwise connected? The answer to this question must
be negative. For example, the spiral region depicted in Fig. 3-12 does
not have in its closure an arc joining the indicated points a and b.

It is even less reasonable to expect that each point on the boundary
of a connected open set U of a Peano space is arcwise accessible from U;
that is, it is not always true that given a point x on U — U there is an
arc lying in U U z and having z as an end point. Figure 3-13 shows an
open set U in the plane such that U is arcwise connected, but the point
a is not arcwise accessible from U.

In analogy to the definition of local connectedness, one says that a
space S is locally arcwise connected if S has a basis of arcwise-connected
open sets. Adding this property to a space permits us to give the following
result concerning accessibility of boundary points.

TaeoreEM 3-18. In a locally connected and locally arcwise-connected
space S, the set of all points on the boundary of an open set U that are
accessible from U is dense in the boundary of U.
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Proof: Let x be a point on the boundary of U, and let W be an open set
containing . In W there is an open set V that contains z and that is
arcwise connected. Let y be a point of V' N U. There is an arc A from
y to zin V. Let z be the first point of the closed set A N (U — U) in
the natural ordering of A from y to . Then the segment [y, z] of A lies
in U U g, so z is accessible from U. This shows that x is a limit point of
accessible points. []

Suppose that U is a bounded open set in E2, or more generally, in E*. Then
the family of all lines parallel to a given line has uncountably many lines meeting
U. For each such line [, each component of N U is an interval, both end points
of which are accessible from U. Therefore, the boundary of U contains un-
countably many points that are accessible from U and by disjoint arcs. This
is not true in general. Figure 3-14 depicts a Peano space and a connected open
set U with uncountable boundary, each point of which is accessible from U.
But any set of disjoint arcs in U is countable. Note, incidentally, that U is
locally connected but that the boundary of U is not.

The last example has uncountably many accessible boundary points. The
next example, Fig. 3-15, is a connected open set in a Peano space with an un-
countable boundary, and in fact, both U and U — U are Peano continua.
However, only a countable number of points of the boundary of U are accessible
from U. Note that this is the same example as pictured in Fig. 3-8.

ExEercise 3-11. Construct an example of a connected open set whose closure
is a Peano continuum, but whose boundary, while connected, is not locally
connected.
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Vam U — U is a Cantor set

Ficure 3-14

Ficure 3-15
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Of interest to the analyst is such a property as accessibility by rectifiable arcs.
It may easily happen that a point is accessible from an open set but not accessible
by an arc of finite length. A spiral region similar to Fig. 3—4 can be constructed
by imagining the polar coordinate curve r = e~ expanded into a long tapering
region. It was remarked earlier that there will be no rectifiable arc from an
interior point to the center of the spiral.

Exercise 3-12. Show that an arc with the same end points as a straight-line
interval can intersect that interval in a set of points of positive Lebesgue measure
but containing no interval.

ExERcIsE 3-13. Is the boundary of a connected open subset of a locally
connected space necessarily connected? locally connected? compact? locally
compact?

3-3 Mappings of the interval. As was pointed out in Section 2-6,
there are always nontrivial mappings of a normal space into the unit
interval I'. We now want to look in the other direction and investigate
the question of what kind of a space is a continuous image of the unit
interval. Since I' is both connected and compact, it is obvious that any
such continuous image will be a continuum (Theorems 1-16 and 1-24).
But there are continua so “pathological” (we shall see one in Section 3-8)
that the only mappings of I! into these continua are the (trivial) constant
mappings. The missing property in such continua is local connectedness.
We will show in this section that, in the class of Hausdorff spaces, every
continuous image of the unit interval I' is a locally connected metric
continuum. Then in Section 3-5, we will establish the converse, namely,
every locally connected metric continuum is a continuous image of I L
This characterizes the Peano spaces. Incidentally, instead of Peano space
many authors use the term continuous curve, which is a more logical name
but is less often used.

The Peano spaces have an interesting history. During the last century,
when mathematicians were first formulating concepts with a careful
regard for rigor, the notion of a “curve” caused considerable difficulty.
A curve in E? was taken to be the graph of a pair of parametric functions,
z = f(t) and y = ¢(t), with, say, 0 < ¢ £ 1. The question arises as to
what conditions should be placed upon the functions f and g. To require
differentiability would be too much; it would bar such configurations as
a polygon, for instance. Jordan proposed that only continuity be required
of the functions f and g. This definition seemed acceptable until Peano
found a pair of continuous functions f and g whose graph is 2-dimensional,
filling up the square and its interior. This example, surprising and almost
paradoxical at the time, is commemorated in the term Peano space. It is
of interest to examine Peano’s example.
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Fig. 3-16. Three stages in constructing a Peano space-filling curve, with
graphs of the equations that generate each stage.

In Fig. 3-16 we show three stages in the construction of a Peano
“space-filling curve,” together with graphs of the parametric equations
® = fn(f), ¥y = ga(t), which generate each stage. Irom the form of these
functions, it is not difficult to see that they have continuous limit func-
tions f(¢) = lim, . fu(t) and g(f) = lim,_, g.(f) and that the graph of
the pair 2 = f(¢), y = ¢(¢) does indeed fill the unit square. This construc-
tion is due to Hilbert.

The modern theory of curves has absorbed this phenomenon and
carried on. For a comprehensive treatment of the subject, see Rado’s
Length and Area [28].
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We point out that local connectedness is obviously a topological in-
variant. On the other hand, the local connectedness property is not
invariant under all continuous mappings; even those that are one-to-one
may fail to preserve this property. For instance, consider a mapping f
of the half-open interval 0 < ¢ < 1 onto the curve shown in Fig. 3-17.
The image fails to be locally connected at p = f(1) although the half-
open interval is locally connected. This example shows that we can
expect very little from the general continuous function on lc spaces.
However, there is a type of mapping, more general than homeomorphisms,
which preserves the lc property.

A mapping is said to be closed if it carries closed sets onto closed sets.
This is in analogy to the open or interior mappings (see Section 1-5). One
might ask, if closed sets are carried onto closed sets, why are not open sets
carried onto open sets? That is, why is not a closed mapping also open
and vice versa? An answer to this question is furnished by the following
example.

Map the line E' onto the circle S' by sending each point z onto the
point (coswz, sinmz). Geometrically, we are simply wrapping the line
around the circle infinitely many times. Clearly, this mapping is open.
The set of points {2n + 1/n} in E! is closed, for it has no limit point.
But the image set {(cosw(2n + 1/n), sinw(2n 4 1/n)} has (1,0) as a
limit point, so is not closed. And for a converse situation, consider the
mapping of the closed unit interval —2 < ¢ < 2 onto itself, given by
f() = (% + 7t — 26t), whose graph is shown in Fig. 3-18. This
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mapping is closed, as we shall see shortly, but it is not open. The
(relatively) open interval 0 < ¢ < 2 maps onto the closed interval
—1=ts2

The following sequence of results yields the theorem that we mentioned
was our goal in this section.

LemMaA 3-19. Any mapping of a compact space into a Hausdorff space
is closed.

Proof: A closed subset of a compact space is compact. Therefore its
continuous image is compact. Being in a Hausdorff space, the continuous
image is closed (Corollary 2-2). ]

Lemma 3-20. If f:S — T is continuous, and if C is a component of T,
then f~1(C) is a union of components of S.

Proof: Let B be a component of S. Then f(B) is connected, and if f(B)
meets C, it must lie entirely in C. []

Lemma 3-21. If S is a locally connected space, and if f is a closed map-
ping of S, then the image f(S) is locally connected.

Proof: Let f(S) = T, and suppose that C is a component of an open
set U of T. Since f is continuous, f~!(U) is open and, by Lemma 3-20,
f7(C) is a union of components of f~'(U). The components of f~1(U)
are open by Theorem 3-2, so f~!(C) is open. Since ff~1(C) = €, and
since f is closed, it follows that ff~}(T — () is closed, and hence that C
is open. Then, by Theorem 3-2, T is locally connected. [ ]

Combining Lemmas 3-19 and 3-21, we immediately state the following
result.
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TareorREM 3-22. The continuous image in a Hausdorff space of a com-
pact locally connected space is again a compact locally connected space.

The next theorem could have been proved in Section 2-9, but we did
not need it until now.

TureorEM 3-23. The continuous image of a compact metric space in a
Hausdorff space is a compact metrizable space.

Proof: Let f:S — X be a mapping of a compact metric space S into a
Hausdorff space X, and let f(8) = 7. Since f is continuous, 7' is compact
and, as a compact Hausdorff space, T is normal (Theorem 2-3). We need
only show that 7T is completely separable for Theorem 246 to apply to
give metrizability. To this end, let {U;} be a countable basis for S. This
exists by virtue of Theorem 1-5. Each set S — U; is closed, so f(S — U;)
is closed by Lemma 3-19. We show that {T — f(S — U,)} forms a
countable basis for T'.

Given any point z in T and an open set V containing z, then f~'(z) is
a closed set contained in the open set f~1(V). Since f~'(x) is also compact,
it is covered by a finite number of sets U; whose union we may call U.
Thus f~!(z) lies in U, and U lies in f~*(V). Taking complements, we have
that 8 — f~!(z) contains S — U, which contains S — f~!(V). Since
for any set X in T, we have § — f~1(X) = f~ (T — X), it follows that
f~YT — z) contains 8 — U, which contains f~ YT — V). Application
of f tells us either that T — z contains f(S — U), which contains 7 — V,
or that V contains T — f(S — U).[]

To obtain the final result, we may combine Theorems 3-22 and 3-23.

TaroREM 3-24. The result of mapping the closed unit interval I' into

a Hausdorff space is a compact connected, locally connected metric

space.

In Theorem 3-24 we could of course replace I by any locally connected
metric continuum. Our reason for stating Theorem 3-24 in this way lies
in the remarkable fact that its converse is also a true theorem, as we will
prove in Section 3-5.

3-4 Mappings of the Cantor set. To prove the main theorem of this
section, we need two lemmas. The first of these is an easily established
result on product spaces, whose proof is left as an exercise.

Lemma 3-25. If S is a space, and if for each « in an index set A4,

S, = 8, then the diagonal in P48, consisting of all constant functions

¥:A — US, is homeomorphic to S.

Lemma 3-26. Let So, S1, Sg, . . . each be the same space S, and let

fn:Sn — Sn_1,n > 0, be the identity mapping. Then the inverse limit

space S, of the sequence {S,, f»} is homeomorphic to S.
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Proof: The points of S, are sequences (z,z,z,...), £ in S, and
there is an obvious one-to-one transformation A:S, — 8, defined by
h(z,z,z,...) = z. The only question that remains is whether the
topologies of S and S, are equivalent. But S, is the diagonal in PS,,
so Lemma 3-25 applies. [ ]

Tueorem 3-27. Let {A,, f.} and {B,, g.} be two inverse limit se-
quences of compact T’y spaces, and let ® = {¢,} be a mapping of {4, f.}
into {By, gn»} such that each ¢,:4A, — B, is onto. Then the induced
mapping ¢:4. — B, is also onto.

Proof: Let (by, by, . ..) be a point in B,. For each n, let A, be the set
@n '(b,). The subsets A, exist since ¢, is onto. Define the mappings
Jn = falAs (fu restricted to A,). Then {4, f,} is an inverse limit sequence
of compact spaces, for if a, is in A, then fi(a,) is in ¢p21 gnon(@n) =
oty gu(bn) = oty (bn_y) = A._,. Hence Al exists (Lemma 2-85)
and any point in A is mapped by ¢ onto (bg, by, ...). []

Exercise 3-14. If the spaces A4, in Theorem 3-27 are not required to be
compact, show that the theorem may be false.

The chief result of this section is somewhat startling.

TaroreEM 3-28. If S is any compact metric space, there is a continuous
mapping of the Cantor set onto S.

Proof: There is a sequence Uy, Uy, ... of coverings of S, each U,
being a finite covering of S by closures of open sets of diameter
< [1/(n + 1)], and each U, being a refinement of its predecessor. Let
Up = {Un,1, ..., Unj,}. Our method is this: we form spaces V,, closely
related to the coverings U,, forming an inverse limit system of compact
spaces, the inverse limit space V., being totally disconnected. Also we
will have a mapping of the system {V,} onto the system {S,, i,}, where
S, = 8 and each 7, is the identity. The preceding results can then
be applied.

Consider ;. We will form disjoint compact sets Vy,y,..., Vy,j,
each V), ; being homeomorphic to the corresponding U, ; As a useful
device, consider for each U, ; all pairs (u, ¢), where u is a point of Uy ;.
Let Vi be the collection of all such pairs. Then no two V' /s intersect.
We topologize V; = U{'V,; by requiring that the natural mapping
hy,i:V1: — Uy, defined by hy (4, 7) = w, be a homeomorphism and by
requiring that each V; ; be open in V;. Let the mapping ¢,:V; — S;
be defined by <p1lV1,1; = hl,i-

Now go on to Up. Each element Us ; of Uz lies in at least one element
Uy,jof Uy. For each such U, j, let V3,;,; be the collection of triples (u, 1, 7),
where u is a point in Us,;. We let Vy = U; V4,5, again topologizing



128 FURTHER TOPICS IN POINT-SET TOPOLOGY [caP. 3

the set by requiring that each V5 ; ; be open in V3 and that each natural
mapping ks ;;:Va,:; — Uy, defined by hs s i(u, 2, j) = u, be a homeo-
morphism. We define a mapping f2:V, — Vi by setting fo(u, 7, j) = (u, j).
Letting ¢2:Vy — Sy = S be defined by ¢3|Va:i; = has,; and letting
g2:Ss — S; be the identity mapping, we see that ¢1fs = ga¢s, and we
have the necessary commutativity in the first rectangle.

Consider U;. Each element Us, ; of U3 lies in at least one element Uy ;
of ALy, which is in turn contained in an element U, of U;. For each such
choice of j and k, let V3,,;x be the set of all quadruples (u, 1, j, k), where
u is in Us; and let V3 = U;,;,kV3,,5,k Topologize V3 by means of
the natural homeomorphisms %3,,;,%:V3,:,7.c — Us,: as before. Define
f3:Vs — Va by fa(u, 1,4, k) = (4,7, k), and define ¢3:Vs — S3 = S by
e3|V3.0.5.6 = ha,ijk Letting g3:S3 — Sg be the identity, we have the
desired commutativity in the second rectangle. Although it is complicated
notationally, the general inductive step should now be clear.

The inverse limit sequence {V,,f,} has an inverse limit space V..
Since the mapping ®:{Vn, fa} — {S», g»} defined by & = {p,} is onto,
Theorem 3-27 tells us that the induced continuous mapping ¢:Ve, — S,
is also onto. Then by Lemma 3-26, there is a homeomorphism A of S,
onto S. If we knew that V., were totally disconnected and perfect, then
by Theorem 2-100 there would be a homeomorphism k' of the Cantor
set onto V., and heh’ would be the desired mapping. It is not difficult
to show that although V., is totally disconnected, it need not be perfect.
Consider, for instance, the case in which S is a single point and in which
V., turns out to be a single point also. This difficulty is circumvented as
follows. If V., is totally disconnected and C is the Cantor set, then V, X C
is both totally disconnected and perfect. There is then a homeomorphism
B:C — V, X C, and if we let 7:V,, X C — V be the projection mapping,
hewh':C — S is the desired mapping. It only remains to show that V.
is totally disconnected.

Consider two points « = [(u, 1), (u,%,4), (, 4,5, k),...] and y =
(v, ), @, 7,5, @ ¢,5,k),...] of Vo. Since the points of S having
their nth coordinate in a set Vi, ;... form an open and closed set in S.,
if we can show that = and y have coordinates in different sets Vi, s,... for
some n, it will follow that x and y lie in different components of V.. If
u # v, there is an integer n such that no element of U, contains both
u and v. In this case, certainly  and y have nth coordinates.in different
sets Vn.i,.... If u = v, then the only way x and y can be different points
is to differ in some nth coordinate, meaning that their nth coordinates lie
in different sets V, ;,.... Hence V, is totally disconnected. []

An instructive example of a mapping of the interval I' onto the unit
square I follows from Lemma 3-20. First, there is a continuous mapping
f of the Cantor set C onto the unit square. Now let (a, b) be an open
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interval in I' — C. In IZ there is a straight-line interval L joining f(a)
to f(b). We map the closed interval [a, b] onto L by a similarity trans-
formation sending a into f(a) and b into f(b). This provides an extension
of f to the open interval (a, b). The mapping f*:I' — I? obtained by so
extending f over all complementary intervals is certainly onto and can
easily be shown by the reader to be continuous. We observe that f* has
a derivative everywhere but at a set of measure zero, namely the Cantor
set. This shows that the attempt to avoid this sort of pathology cannot
be successful even by requiring a mapping to be differentiable almost
everywhere.

3-5 The Hahn-Mazurkiewicz theorem. We are now in a position to
prove the converse of Theorem 3-24, that every Peano space is a con-
tinuous image of the unit interval I'. Our proof is modeled upon the
construction given in the example at the end of the previous section.
That is, we will use Theorem 3-28 to obtain a mapping of the Cantor set
onto the Peano space and the use of the arcwise connectivity of the Peano
space to extend this mapping over the intervalsin I' — C. In the example
of Section 3—4, we joined images of adjacent end points of the Cantor set
by straight-line segments, and this made continuity of the extended map-
ping very easy to see. We must do something similar here.

Lemma 3-29. If P is a Peano space and € > 0 is given, there is a number
6 such that if a and b are any two points with d(a, b)) < 8, then there
is an arc 4 from a to b of diameter < e.

Proof: By Theorem 3-13, P is uniformly locally connected. Hence given
€ > 0, thereisa 6 > O such that if d(a, b)) < 6, then there is a connected
set B of diameter < €/2 containing a and b. About each point z of B there
is a connected open set U, of diameter < ¢/4. Then U = UU, is a
connected open set of diameter < €, and U contains B. In U there is an
arc A from ¢ to b, by Theorem 3-16. [ ]

The property established in Lemma 3-29 is usually expressed by saying
that a Peano space is uniformly locally arcwise connected.

TrEOREM 3-30 (Hahn-Mazurkiewicz). For a space P to be compact,
connected, locally connected, and metric, it is necessary and sufficient
that P be the image of the unit interval under a continuous mapping
into a Hausdorff space.

Proof: Theorem 3-24 is proof of the sufficiency part of this theorem, so
it remains to establish the necessity of the condition. Let C' denote the
middle-third Cantor set on I', and let the components of I' — (' be
Iy, I, . ... Let the left- and right-hand end points of I,, be denoted by
Pn and g, respectively. Using Theorem 3-28, let f:C — P be onto. If
f(n) = f(gn) for any n, define f* on I, by f*(z) = f(pn).
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Next let €, €5, ... be a sequence of positive numbers approaching
zero. There is a number n; > 0 such that any two points of P at a distance
< n, apart can be joined by an arc of diameter < €; by Lemma 3-29, and
by uniform continuity there is a number §; > 0 such that if z and y are
points of C' with |z — y| < &1, then d(f(z), f(¥)) < #1. Thus there is
only a finite number of values of n, say nq, . .., ng, such that if n is one
of these, then d(f(p,),f(gs)) = n1. There are arcs Ay, ..., Ay, with
Ay, joining f(pn,) to f(gn;), but we can make no claim about the diameter
of the arcs. We define the desired extension f* over each closed interval
Pn; U In; U gn; to be a homeomorphism onto An,.

Now there is a number n, > 0 such that any two points of P at a
distance < 7o apart can be joined by an arc of diameter < €3, and there
is a number 8, such that any two points of C at a distance < &, apart
have images at a distance < 5o apart. There is only a finite number of
intervals I, ..., Im, such that ny > d(f(pm,), flgm)) = 72 Then
f(pm;) and f(gn) can be joined by an arc An,; of diameter < €;. We
extend f over each closed interval pm; U Im; U ¢m; by 2 homeomorphism
onto A,

There is a number 53 > 0 such that any two points of P less than 73
apart can be joined by an arc of diameter < e3. Then there is a number
83 > 0 such that any two points of C less than 83 apart have images less
than n3 apart. There is only a finite number of intervals Iy, ..., I,
such that ny > d(f(p1), f(q1)) = m3. Then f(pi) and f(g1;) can be
joined by an arc A, of diameter < €. Extend f over p;; U I1; U qi; by a
homeomorphism onto Ay,

Continuing this process indefinitely, we obtain a function f*:1 lp
such that (a) f*|C = f, (b) on each Iy, f* is a homeomorphism onto an
arc A,, and (c) the diameters A, converge to zero. This last makes it
easy to show that f* is continuous, and f* is onto because f is onto. |

There is a theorem that, had we given it, would have considerably shortened
the proof of Theorem 3-30. The result we have in mind here is that every Peano
space P has a metric in which it is convex. That is, there is a metric p(z, y) for
P such that for each two points a and b of P, the set of points 2 for which

pla, z) + p(x, b) = p(a, b)

is isometgic to an interval. This theorem, long a conjecture, was proved by
Bing [56). A detailed treatment is given in Hall and Spencer [9]. Note that it
is not asserted, nor is it true, that these “convex paths” are unique.

We remark that we could reproduce the situation of the example at
the end of the previous section more closely in a proof of Theorem 3-30.
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The technique for doing so is useful in other problems, so we will indicate
the method. Let f:C — P be the mapping with which we started in
Theorem 3-30, and let f*:I' — P be the extension of f given by Theorem
3-30. Let [a, b] be the closure of an interval complementary to C, and let
C’ be the middle-third Cantor set in [a, b]. There is a monotone-increasing
continuous function my; of [a, b] onto [a, b] that is constant on the intervals
complementary to C”; this is sometimes called the Cantor function, and we
show its graph in Fig. 3-19. We define f**:I! — P by setting f**(z) =
f*(@@) = f(x) if z is in C. If z is in a complementary interval [a, b], we
define f**(z) = f*mqp(x). The same argument as before shows that f**
is continuous. But now having put a middle-third Cantor set in each
complementary interval in 7' — €, we have still only a Cantor set in I.
The function f**, however, is constant on each interval complementary
to this new Cantor set.

As a technique for proving facts about Peano spaces, the Hahn-Mazurkiewicz
theorem and its proof have not been very successful. Suppose, for example,
that we want to use this result to prove the arewise connectivity theorem (3-15).
The difficulty is that, although we know little about the mapping of I! onto
a Peano space P, we must somehow identify a set on I' that will be mapped
onto an arc in P joining two given points, and then prove that its image is
indeed an arc. This particular problem has been done in an elegant way by
J. L. Kelley (see p. 39 of Whyburn [40]).
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3-6 Decomposition spaces and continuous transformations. Let S and
T be topological spaces, T also being a T space, and let fi:S — T be a
continuous mapping. For each point ¢ in 7, the set f71(?) is closed in S,
and for two distinct points, ¢ and #, the inverse sets f~!(¢) and Fi() are
disjoint. It follows that the collection of all point-inverses fI, tin T,
is a covering of S by disjoint closed sets, a decomposition of S into closed
sets. Our interest lies in this question: given a decomposition of a space S
into closed sets, how can we tell that the decomposition was induced by a
continuous mapping? We will restrict our attention to mappings of com-
pact Hausdorff spaces into Hausdorff spaces.

It must be pointed out first that not every decomposition can be in-
duced by a continuous mapping. Suppose, for example, that S is the
union of the vertical unit intervals in EZ with the lower end points on the
z-axis at the points 0,1, %, %, ... The collection whose elements are the
individual points on the interval over zero and the remaining complete
intervals constitutes a decomposition G of S into closed sets. There is no
mapping f:8 — T (T is a Hausdorff space) that induces this decomposition
g. For suppose there were such a mapping, say f. Clearly f(@0, 0) and
(0, 1) would have to be distinet points of 7' and hence would lie in disjoint
open sets U, and U, respectively. Since (0, 0) is the only limit point, of
the set of points (1/n,0) in S, every open set in S that contains 0, 0)
also contains all but a finite number of the points (1/zn, 0). By continuity,
there is an open set V, containing (0, 0), such that V, is mapped by f
into U,. Similarly, there is an open set V; containing (0, 1) and all but
a finite number of points (1/n, 1) that is mapped by f into U;. But the
definition of G requires that f(1/n, 0) = f(1/n, 1). Hence for sufficiently
large values of n, U, and U; both contain f(1/n, 0), contradicting the
statement that U and V are disjoint.

ExERCISE 3-15. Show that there is a space Z (not Hausdorff, of course) and
a mapping f:S — Z (S is the example above), such that f induces the above
decomposition G as point-inverses.

In view of the example above, it is evident that we require some condi-
tion for a decomposition to be that induced by a eontinuous mapping.
We now define this condition. Let S be a space, and let G = {C.} be a
collection of disjoint compact sets filling up S (covering S). The collection
G is said to be upper semicontinuous provided that, for each o, if U is an
open set containing C., there is an open set V containing C, and lying in
U, such that every element Cs of G that intersects V lies in U. (The
decomposition G given in the example above is not upper semicontinuous,
as the reader will verify easily.)

TugoreEM 3-31. If S and T are compact Hausdorff spaces, and if

f:8 — T is continuous, then the decomposition { f7L(#)} of S, induced

by f, is upper semicontinuous.
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Proof: Let U be an open set in S containing a set f~1(f). Then § — U
is compact, and f(S — U) does not contain ¢. The set T — f(S — U) is
open, so V = f~4T — f(S — U)) is open. Clearly V is a subset of U.
The set V is a union of point-inverses, and hence V satisfies the desired
conditions. [ ]

The above theorem shows that upper semicontinuity is a necessary
condition on a decomposition of a compact Ty space if it is to be induced
by a mapping. We next prove a converse. If we have an upper semi-
continuous decomposition G of a Hausdorff space S, then we define a space
T and a mapping f:S — T such that f induces the decomposition G. As
the points T, we take the elements of G. Precisely, the decomposition space
of G is the topological space D(G) whose points are the elements of G and
wherein a set U of points of D(G) is open if the union in S of those elements
of Gin U is an open set in S.

There is a natural mapping f:S — D(G), defined by letting f(x) be that
element of G which contains 2 (in S). We prove the results needed to
show that the decomposition space and this natural mapping f provide
the converse of Theorem 3-31.

TurorEM 3-32. Let S be a Hausdorff space, and let G be an upper
semicontinuous decomposition of S into closed sets. Let U be an open
set in 8. Then the union of all elements of G that lie in U is also an
open set in S.

Proof: Let T denote the union of all elements of G contained in U. If
I' is empty, the theorem is true. If T is not empty and is not open, there
is an element X of G in ' which contains a limit point of S — T. It follows
that every open set that contains X intersects elements of G that do not
lie entirely in U. But this contradicts the definition of upper semi-
continuity. [ ]

ExErcise 3-16. Show that Theorem 3-32 is false if the phrase “that lie
in U” is replaced by “that intersect U.”

THeorEM 3-33. If § is a compact Hausdorff space, and if G is an upper
semicontinuous decomposition of S, then the decomposition space D(g)
is Hausdorff.

Proof: This follows immediately from the normality of S and Theorem
3-32.7

THEOREM 3-34. If S is a compact Hausdorff space, and if G is an
upper semicontinuous decomposition of S, then the natural mapping
J:8 — D(G) of S onto the decomposition space of G is continuous.

Proof: This is an immediate consequence of the “two-open-set” definition
of continuity (see Section 1-5). []
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A real-valued function y = f(z) of a real variable is said to be upper
semicontinuous in the sense of analysis provided that, for each fixed zo

in the domain of f,
lim sup f(z) < f(zo)-

X0

The reason for the topologist’s choice of the term upper semicontinuous
collection is that if f(x) is a nonnegative bounded upper semicontinuous
function defined over an interval, then the ordinate sets, defined for
each z as being the set of all points (z, y) satisfying 0 < y < f(z), form
an upper semicontinuous collection. The proof of this is left as an exercise.

Using the notion of limits of sequences of sets, as in Section 2-16, we
can formulate the definition of an upper semicontinuous collection in a
metric space in another way.

TuEOREM 3-35. Let G be a collection of disjoint closed sets filling up a
compact metric space M. Then a necessary and sufficient condition
that G be upper semicontinuous is that if {X,} is a sequence of elements
of G and if (liminf X,) N X is not empty, where X is an element of
g, then lim sup X, is contained in X.

Proof: Let G be upper semicontinuous. Suppose that {X,} is a sequence
of elements of G, that (lim inf X,) N X is not empty, where X is an
element of G, and that lim sup X, contains a point p not in X. Now p
lies in an open set D whose closure does not meet X. Let U = S — D,
and take the corresponding open set V containing X from the definition
of upper semicontinuity. Then every element of G that intersects V lies
in U. In particular, all but a finite number of the elements of {X,} inter-
sect V, so only a finite number of elements can intersect D. Then p is
not in lim sup X, a contradiction.

To prove the sufficiency of the condition, let X be an element of G,
and let U be an open set containing X. For each n, let V, denote the open
set of all points p, with d(p, X) < 1/n. Suppose that for each =, there
is an element X, of G intersecting V, but not lying in U. Let p, be a
point of X, N V,. Then some subsequence {pn;} of {pn} converges to a
point of X. The corresponding sets {X,;} have, therefore, a nonempty
limit inferior that intersects X. Accordingly, lim sup Xy, is contained in
X. But each X, contains a point ¢; in 8§ — U. Every open set containing
some point ¢ of S — U then contains infinitely many points ¢; by count-
able compactness. Thus ¢ lies in lim sup X,;, whereas ¢ is not in X, a
contradiction. []

We have limited the discussion of upper semicontinuity to compact
spaces. The following example gives one reason for this limitation. In
the plane, let f:E2 — E* be given by f(z,y) = z, the projection on the
z-axis. The collection of point-inverses is as smooth as one could wish,
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'

Frcure 3-20

but it is not upper semicontinuous in the sense of our original definition.
For let X be the y-axis, f~1(0), and let U be the set of all points enclosed
by the graph of 22 = (1 — y® 2, as shown in Fig. 3-20. Then no point-
inverse other than X lies in U, so there is certainly no open set V as re-
quired. However, if we take the condition of Theorem 3-35 as the defini-
tion of upper semicontinuity in a metric space, then this collection of point-
inverses s upper semicontinuous. The definition is not quite perfect, for
there exist such collections wherein the decomposition space is not
metric [118].

An upper semicontinuous collection G of disjoint compact sets filling
up a Hausdorff space S is said to be continuous provided that if C is any
element of G, if p and ¢ are points of C, and if U is an open set containing
D, then there is an open set ¥V containing g, such that every element of G
that intersects V also intersects U.

TaEOREM 3-36. A necessary and sufficient condition that a collection
G of disjoint closed sets filling up a compact metric space be continuous
is that if {X,} is a sequence of elements of G, and if X is an element
of G such that X N lim inf X, is not empty, then X = lim X,,.

The proof is left as an exercise.
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The term identification space is often used for decomposition space, but
usually with a slight change in emphasis. In this usage, the term implies
that most of the elements of the upper semicontinuous collection are
points and, frequently, that only a finite number are nondegenerate.
Thus if we identify the end points of an interval, we get a circle.

ExERrcISE 3-17. Show that the space obtained by identifying all the points
on the boundary of the n-cube is an n-sphere.

3-7 Monotone and light mappings. We really did not prove the com-
plete equivalence between an upper semicontinuous decomposition and
a continuous mapping in the previous section. One further result is
required, namely, a theorem to the effect that the decomposition space
of the collection {f~!(¢)} is homeomorphic to the image space f(S) in T.
This is the content of the next result.

THEOREM 3-37. Let S and T be compact Hausdorff spaces, and let
f:8 — T be continuous. Let G be the collection of all point-inverses
f7i@), tin T, and let ¢:S — D(G) be the natural mapping of S onto
the decomposition space of G. Then there is a homeomorphism
h:D(g) — T such that f = he.

Proof: For each element f~'(f) in G, we define h(f~'(t)) = ¢. Clearly
then, if z is any point of f~1(t), we have ¢(x) = f71(t) in D(g), and then
h(e(x)) = R(f71(t)) = t = f(z) by definition. It remains to show that
h is a homeomorphism of D(G) into 7. Since there is an obvious one-to-one
correspondence between inverse sets f~1(¢) and the point ¢ in T', the trans-
formation A is one-to-one. In view of Exercise 243, it only remains to
show that % is continuous. To this end, let U be an open set in 7. Then
f~Y(U) is open in S, and by Theorem 3-32 the collection of all inverses
f7X(t) in f~Y(U) is open in S and hence in D(G). []

If we remove the requirement that S and 7' be compact, then exactly
the same argument also proves the following result.

TurorEM 3-38. Let S and T be Hausdorff spaces, and let f:S — T
be continuous with the further property that for each point ¢ in T,
1) is compact. Let G, ¢, and D(G) be as defined in Theorem 3-37.
Then there is a continuous one-to-one mapping ¢:D(G) — T, such that

f = veo.

To illustrate this result, consider the mapping f:E? — S', defined by
setting f(z, y) equal to the point on S' with polar coordinates

(1 27r(ac2 4 y2)>.
14 22+ y2
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Clearly each circle with center at the origin in E? is a point-inverse. The
decomposition space is homeomorphic to a closed ray, and the mapping
¥ of Theorem 3-38 wraps this ray once around the circle.

We have seen several examples of the factorization of a mapping, that
is, the writing of a mapping as the iteration of two or more mappings.
The term factorization is not intended to suggest the existence of algebraic
properties, such as a unique factorization theorem, although we shall see
something vaguely related. Our chief example will be the monotone-light
factorization of a continuous mapping of a compact space.

A mapping m:S — T is said to be monotone provided that, for each
point ¢ in T, the inverse f~1(f) is connected. A mapping :S — T is said
to be light provided that, for each ¢ in 7T, the inverse I~1(¢) is totally dis-
connected, that is, has no component bigger than a point. We will prove
that if S is a compact Hausdorff space and if f:S — T is continuous, then
there exist a space M (the middle space), a monotone mapping m:S — M,
and a light mapping I:M — T, such that f = Im. Furthermore, M, m,
and [ are “unique up to homeomorphisms.” (We will define this later.)
The method of our proof consists of forming the collection of all components
of point-inverses f~'(¢). This turns out to be an upper semicontinuous
collection, 9. The natural mapping m:S — D(9M) is monotone, and
finding a light mapping I:D(91) — T is easy.

THEOREM 3-39. Let S be a compact Hausdorff space, and let G be an
upper semicontinuous decomposition of S. Let 91 be the collection of
all components of elements of . Then 91 is also upper semicontinuous.

Proof: Let M be an element of 91, and let G be the element of G hav-
ing M as a component. Let U be an open set containing M. By Theorem
2-3, there is an open set U’ lying in U and containing M, such that
(U —U)NG is empty. Let U* = U’ U (S — U’), and take the
corresponding open set V given by the upper semicontinuity of G. Let
V' =V n U’. If a component }’ of some element G’ of G intersects V’,
then it lies in U* since then G’ intersects V. Since U’ and 8 — U’ are
disjoint open sets and M’ lies in their union, M’ can lie only in U’. This
shows that V' has the desired property. [ ]

THEOREM 3-40. Let S and T be compact Hausdorff spaces, let f:S — T
be continuous, and let 91U be the upper semicontinuous collection of
components of point-inverses f~1(f). Let m:S — D(9N) be the natural
mapping, and define I:D(9N) — T by I(p) = f(m~ (p)). Then m is
monotone, and [ is light. Furthermore, if m’ and I’ are any other map-
pings, monotone and light respectively, such that f = I'm’ and
m’(S) = M’, then there is a homeomorphism a:M’ — D(91) such that
m = hm' and | = I'h~L.
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Proof: Tt is obvious that m is monotone. To see that [ is continuous,
we note first that if U is an open set in T, then f~!(U) is open in S. The
set f~1(U) is the union of elements of 9, so m(f~1(U)) is open in D(M).
Now suppose that [ is not light. Then for some ¢, in 7, there is a com-
ponent C' of 17 (ty) that is nondegenerate. By the definition of I, each
point of C is a component of f~'(tp). If z and y are two points of C, we
can find an open set U* in S, precisely as was done in the proof of Theorem
3-39, such that U* contains f~'(t¢), and U* = V, U V,, where V, con-
tains m~!(z), and V, contains m~'(y), and V, N V, is empty. The set U,
of all elements of 9 lying in V is an open set in D(IM), and so is the set
U, of all elements of 9 lying in V,. But C lies in U, U U, and intersects
each, contradicting the connectedness of C. Hence [ is light. That f = Im
is obvious for Im(p) = f(m~1(m(p))) = f(p).

Only the uniqueness part of the theorem remains to be proved. This is
a consequence of the statement that the collection of point-inverses
m~(z), x in D(IN), is identical with 9N, IM being the collection of point-
inverses (m')™!(z), so that Theorem 3-37 applies. That the collection
{m~1(z)} = 9N is left as an exercise. []

The power of this result lies in the fact that the middle space D(31) can
often be characterized, or put into a known class of spaces. For example,
if the space S is the 2-sphere S2, the middle space D(9M) is always a
cactoid. This is a fairly simple type of space, the monotone image of S 2
(see [40]). Then to discover all about mappings of S 2 we need study only
light mappings of cactoids. This process is in constant use in the study of
Lebesgue area [28]. Unfortunately, the complications (already more
severe than we have made them appear) increase rapidly with increased
dimension. There is a theorem [84] to the effect that if M is any compact
metric space, then there is a monotone mapping m of the unit cube I 3
onto a space S which contains M. The nature of this mapping m can be
indicated. In I3, let C be a Cantor set. There is a continuous mapping
f:¢ — M of C onto M. It is possible to weave disjoint ares through the
sets f~1(z), « in M, in such a way that the resulting collection G of arcs
is upper semicontinuous. Then add to G’ the collection of all points in 7 3
not in any element of §’. The result is an upper semicontinuous collection
g of continua filling up I3. The space S is D(G), and m is the natural
mapping.

ExEeRcISE 3-18. Prove that if X is a closed subset of the Hausdorff space S
and if ¢’ is an upper semicontinuous collection filling up X, then the collection
G consisting of the elements of G’ and of the individual points of § — X is also
upper semicontinuous.

Exrrcise 3-19. Apply Exercise 3-18 to the special case of the Cantor set in
I1 to show that every compact metric space can be imbedded in a Peano space.
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ExEercistE 3-20. Show that if f:S — T is an interior mapping of one compact
Hausdorff space into another, then (a) the monotone factor need not be interior,
but (b) the light factor is always interior.

ExErcist 3-21. Under the same hypotheses as in Exercise 3-20, show that
the union of all sets f~1(f) having at least n components is open in S.

ExercisE 3-22. Is there an interior mapping of I? into I2 such that each
point-inverse consists of exactly two points?

3-8 Indecomposable continua. There are two quite different types of
continua, the decomposable and the indecomposable. Although they
were originally considered primarily as pathological examples, the inde-
composable continua have gained importance in recent years. We give
the chief results of this topic here. Our attention is limited to Hausdorff
continua, i.e., compact connected Hausdorff spaces.

A continuum is decomposable if it is the union of two proper subcontinua;
otherwise it is tndecomposable. We will obtain a few results before giving
an example of the latter.

Tueorem 3-41. If a Hausdorff continuum P contains a proper sub-
continuum C with interior points, then P is decomposable and conversely.

Proof: If P — C is connected, then P — C is not all of P, so P =
C U P — C is a decomposition of P. If P — C = U U V, where U and
V are disjoint open sets, then both U U C and V U C are proper subcon-
tinua of P and give a decomposition.

Conversely, if P is the union of two proper subcontinua C; and Cs, then
C; — C3 is an open set in P, and hence C; has interior points. [ ]

CoroLLARY 3-42. Every Peano continuum is decomposable.

Proof: Every point of a Peano continuum lies in arbitrarily small open
connected sets because such a space is locally connected. The closure
of such an open connected set is a proper subcontinuum with interior
points. [ ]

A subset C of a continuum K is a composant if, for some point p, C' is
the set of all points z such that K is not irreducible between p and z.
For example, an arc ab has three composants, namely, ab, ab — b, and
ab — a, corresponding to p # a,b, or p = @, or p = b. A circle S!
has just one composant.

THEOREM 3-43. Every decomposable continuum K is a composant for
some point.

Proof: Suppose that K = A U B, where 4 and B are proper subcontinua
of K. Let p be any point in A N B (which is not empty since K is con-
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nected). Then K is a composant for p. For if z is any point of K, then
K contains a proper subcontinuum (either A or B) containing both p
and z, and hence K is not irreducible between p and z. []

TuroreEM 3-44. Every point of a nondegenerate Hausdorff continuum
K is a limit point of any composant C of K.

Proof: We show that every open set intersects C. Let U be open, and
let V be an open set whose closure lies in U (K is regular by Theorem 2-1).
If the defining point p of the composant C is in V, then C N U is not
empty. If the defining point is not in V, then consider the component
of 8 — V that contains p. The closure of this component is a proper
subcontinuum of K that contains p and so must lie in C. By Theorem 3-11,
this closure meets V — V, so some point of C is in V and hence in U. []

TuaeoreM 3-45. If K is a metric continuum, then every composant of
K is the union of a countable number of proper subcontinua of K.

Proof: Let C be the composant determined by a point p; the open set
K — p has a countable basis {U;}. For each ¢, let C; denote the com-
ponent of K — U; that contains p. Then C; is a proper subcontinuum
of K that contains p and so lies in C. Suppose that z is any point of C.
There is a proper subcontinuum K’ of K such that K’ contains both p
and z. Let ¢ be a point in K — K’. Then there is an integer j such that
gisin U; and U; lies in K — K’. Thus K’ is a subset of C;, so the point
z is in C;. Hence C = UC;. []

TueoreM 3-46. If K is a metric continuum which is indecomposable,
then K has uncountably many composants.

Proof: Suppose that K contains only countably many composants. By
Theorem 3-45, every composant of K is a union of countably many proper
subcontinua of K. This implies that K is a union of countably many of
its subcontinua. But no proper subcontinuum of K can contain an interior
point, or else K would be decomposable, by Theorem 3-41. Hence we
have a contradiction of Theorem 2-79. []

TuroreM 3-47. If K is an indecomposable continuum, then the com-
posants of K are disjoint.

Proof: Let C; and Cz be composants of K, and suppose that there is a
point z in C; N Cs. Let p; and p2 be the defining points of C'; and Cj,
respectively, and let ¥ be any point in Cs. There is a continuum K, in C;
containing p; and z and a continuum K, in C; containing p; and x. Also
there is a continuum K3 in (s containing ps and y. Now K; U Ko is a
proper subcontinuum of K, or else K = K; U K, is decomposable.
Similarly (K; U K3) U K3 is a proper subcontinuum of K. But K; U
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K, U K3 contains both p, and y; hence y is a point of ;. Therefore Cy
lies in C'; and, similarly, C, lies in C5. []

CoroLrLARY 3-48. Every indecomposable metric continuum is irre-
ducible between each two points of an uncountable set.

Proof: Take one point from each composant of such a continuum, and
apply Theorems 3-46 and 3-47. [ ]

CoROLLARY 3—-49. If a metric continuum is not irreducible, then it is
not indecomposable.

TaeoreM 3-50. No decomposable continuum is irreducible between
each two of three points.

Proof: Let K = A U B be the union of two proper subcontinua A
and B, and let a, b, and ¢ be three points of K. At least two of these
points lie in A (or two lie in B). Then K is not irreducible between these
two. []

Combining Corollary 3-49 and Theorem 3-50 yields a necessary and
sufficient condition for indecomposability.

THEOREM 3-51. A necessary and sufficient condition that the metric
continuum K be indecomposable is that there exist three points of K
such that K is irreducible between each two of these three points.

Ficure 3-21



142 FURTHER TOPICS IN POINT-SET TOPOLOGY [cHap. 3

This result suggests a construction of the “easiest” indecomposable con-
tinuum. Let a, b, and ¢ be three points of E2. Consider simple chains of
connected open sets as follows. Let C'; be a simple chain from a to ¢ through
b, that is, one set in C'; contains b; then let C2 be a simple chain from b to ¢
through a and such that C, lies in C;; let C3 be a simple chain from a to
b through ¢ and lying in Cs. In general, '3, is a simple chain from a to ¢
through b, C3, 2 is a simple chain from b to ¢ through a, and C3,43 is a
simple chain from a to b through ¢. And for any integer k, Cy lies in Cg4 ;.
The intersection NC3nyy is a continuum irreducible between a and ¢,
NC3ny2 1S a continuum irreducible between b and ¢, and NC3, is a con-
tinuum irreducible between a and b. But these intersections are all the
same, and by Theorem 3-41 constitute an indecomposable continuum.
Figure 3-21 gives the first three stages of this construction.

A famous example of an indecomposable continuum is the pseudo-arc.
This set was first described by Knaster [91] in a different context. Moise
[103] named the set and first investigated its properties. In Fig. 3-22 the
first three stages of Moise’s construction are given. We have five open
sets Uy 1, ..., Uy s with U, ; meeting only Uy s, U;,. meeting Uy 3, ete.,
and a point @ in U;,; and a point b in Uy,s5. Next there are forty-five
open sets Us,1, ..., Us g5 as pictured, etc. The pseudo-arc is the inter-
section N2y U;, where U; = U; U; ;. There is nothing special about
the number 5 here. We could use any integer larger than 4 and obtain
a pseudo-arc.

Ui Ui,z Uiz Uie ULs

AP

RD

F1¢. 3-22. Three steps in constructing the pseudo-are.
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Moise proved that every two pseudo-arcs are homeomorphic and that
the pseudo-arc is indecomposable. His surprising result is this: if N is a
nondegenerate subcontinuum of a pseudo-arc M, then N is homeomorphic
to N. That is, the pseudo-arc is hereditarily indecomposable. Bing [55]
showed that the pseudo-arc is homogeneous. [A space S is homogeneous
provided that for every pair of points a, b in S there is a homeomorphism
h of S onto itself such that h(a) = b and h(b) = a.] It was known previ-
ously that the simple closed curve is the only homogeneous nondegenerate
bounded locally connected plane continuum (see Mazurkiewicz [101]). In
a subsequent paper [59] Bing also showed that “almost every continuum is
a pseudo-arc” in the following sense. If the collection of all continua in a
Euclidean space or in Hilbert space is topologized by means of the Haus-
dorff metric, then the pseudo-arcs constitute a dense Gs-set.

ExEercisk 3-23. Use the properties of the pseudo-arc to show that the plane
E? contains uncountably many disjoint nondegenerate continua, no one of
which contains an arc. (Also see R. L. Moore [108], Roberts [117], and Ander-
son [49].)

Another interesting example of an indecomposable continuum is known
as the Lakes of Wada (see Yoneyama [133]). We construct a modification
of this example by considering a double annulus, as shown in Fig. 3-23(a).
To preserve the poetic flavor of the original, we take this to be an island
in the ocean with two lakes, one having blue water and the other green.
At time t = 0, we dig a canal from the ocean, which brings salt water to
within a distance of 1 unit of every point of land. At time ¢t = 3, we dig
a canal from the blue lake, which brings blue water to within a distance
1 of every point of land. At time ¢t = 2, we dig a canal to bring green
water to within a distance of 4 of every point of land. At time ¢ = %, we
dig a canal from the end of the first canal to bring salt water to within a
distance 1 of every point of land, and so forth. If we think of these canals
as open sets, at time { = 1 the “land” remaining is a plane continuum
which bounds three open domains in the plane.

If any plane continuum is the common boundary of three open sets,
then it is either indecomposable or is a union of two indecomposable con-
tinua (see Kuratowski [93]). In E3, this last statement is not true. Indeed,
there is an absolute neighborhood retract in E3 which is the common
boundary of three open sets (see [99]).

The Lakes of Wada raise an interesting question about double integrals.
Making the construction in the unit square I2, we obtain three open sets
Uj, U,y, and Ug, which are disjoint and have a common boundary. Further-
more, each open set U, is dense in 1%, and by making each successive canal
very narrow, we can adjust the areas of the canals so that the area of
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(a) (b)

F1a. 3-23. Three stages in constructing the Lakes of Wada.

each U; is i%5. Now given any real-valued integrable function f(z, y) on

I2, can we say that
J[1=[1+[fs+][s
I U, Uz Us

No! Forif f =1 on I?, then

Ifsz=1 while ,l{_[f—:l—l(), and 1?513—0-
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On the other hand, the boundary of each U; has measure 5. Thus
[[r=[[r+[[r+][1
12 7, 0, Us

Tor, again taking f = 1, we obtain 1 # % + 15 + 10!

An often-quoted example of an indecomposable continuum is the
solenoid. Let K, = S!, the unit circle, for each positive integer n, and
let k., be the mapping of K, onto K,, given by the complex function
w = 22. The inverse limit space K of the inverse limit sequence {K, hn}
is the solenoid. Further, each space K,, = S! is a topological group, and
h. is a continuous homomorphism. Therefore K is also a compact top-
ological group, the solenoid group.

Remark. There exist indecomposable continua of any positive dimension
(See Bing [60].)

Remark. A clan is a continuum on which there is defined a continuous multi-
plication with a two-sided identity element. If the continuum is indecomposable,
then the clan is a group! For a discussion of this and similar results about
topological semigroups, see A. D. Wallace [130].

ExERcISE 3-24. Show that if p is a point of an indecomposable continuum
K, the set of all points x of K such that K is irreducible between p and z is dense
in K.

ExEerciseE 3-25. Show that the union of a countable number of proper sub-
continua of an indecomposable metric continuum K cannot separate K.

ExEeRcisE 3-26. Show that if p is a point of a decomposable continuum K,
then the set of all points z of K such that K is irreducible between p and z does
not have p as a limit point.

Exercise 3-27. Let A be an indecomposable continuum and ab be an arc
having only the point b in common with A. Let K = A U ab. Show that the
set of points z of K such that K is irreducible from a to z is not closed.

ExERcisE 3-28. A continuum C is unicoherent provided that if C = H U K,
H and K subcontinua, then H N K is connected. A continuum is hereditarily
unicoherent if every subcontinuum is unicoherent. Show that if a continuum C
is hereditarily unicoherent and contains a subset R that is the continuous image
of a straight-line ray and which is such that every point of C is a limit point of R,
then C is indecomposable.

3-9 Dimension theory. The study of dimension theory is extensive,
and only a brief introduction to the topic can be given here. Once again
our purpose is to provide merely an indication of an important unifying
concept in topology that is aside from the major interests of this book.
Hurewicz and Wallman’s Dimension Theory [15] is an excellent reference
for the interested reader.
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Assigning an integer to every space in such a way as to satisfy our
intuitive geometric idea of dimension is far from being a trivial problem.
Indeed, it does not seem to have a solution. By this, we mean that while
the inductive definition given below applies to any space, a satisfactory
theory of dimension has not been developed for arbitrary spaces. In this
section, all spaces are assumed to be separable metric spaces.

A space X has dimension zero at a point p (dim (X at p) = 0) if there are
arbitrarily small open sets with empty boundaries containing the point p.
Then X has dimension zero (dim X = 0) if dim X at p = 0 for all points
pin X. :

As an example of a 0-dimensional space, consider the rational numbers
F as a subspace of E'. Each rational number r lies in an arbitrarily small
interval I in E' with irrational end points. The relative open set ¥ N I
contains r and has an empty boundary. Thus dim F = 0. Indeed, any
countable (separable metric) space is 0-dimensional. Furthermore, a similar
argument shows that the set R of irrational numbers is a 0-dimensional
subspace of E!. Thus the 1-dimensional space E! is the union of two
0-dimensional subspaces. This is a special case of Theorem 3-57.

Consider the following three subsets of E2. Let F? be the set of all points
in E? both of whose coordinates are rational, let R? be the set of all points
both of whose coordinates are irrational, and let X = E? — (F? U R?).
All three of these sets are 0-dimensional. Since F? is countable, it is
O-dimensional. Let p be any point in R?. Then there is an arbitrarily small
rectangle I in E? containing p and bounded by lines x = fy, x = f,,
Yy = f3,y = f4, where each f; is rational. No such line meets R2 and
hence the relative open set RZ N I has an empty boundary, and R? is 0-
dimensional. Finally, let ¢ be any point of X. Then there is an arbitrarily
small rectangle I in E? containing ¢ and bounded by lines y = = + fy,
y=2a+ fo,y = —a -+ f3,y = —x + f4, where each f; is rational. Any
point on such a line either has both coordinates rational or has both co-
ordinates irrational. Since X consists of all points having just one co-
ordinate rational, it follows that no such line meets X. Hence X N I has
an empty boundary, and X is 0-dimensional. This proves that E? is the
union of three 0-dimensional subspaces. (Again see Theorem 3-57 below.)

Other examples of 0-dimensional spaces are the Cantor set and the set
F4 of all points in the Hilbert cube ¢ all of whose coordinates are rational.
Oddly enough, the set F* of all points in Hilbert space H all of whose
coordinates are rational is not 0-dimensional but 1-dimensional [76].

The following result is easily proved and explicitly states one of our
intuitive ideas of the properties that “dimension” should have.

LemMa 3-52. A nonempty subset of a 0-dimensional space is 0-dimen-
sional.
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TuroREM 3-53. A space that is a countable union of closed 0-dimen-
sional subsets is 0-dimensional.

THEOREM 3-54. Among compact spaces, the 0-dimensional spaces and
the totally disconnected spaces are identical.

For proofs of Theorems 3-53 and 3-54, see Chapter I of Hurewicz and
Wallman [15].

The following inductive definition is due essentially to Menger. The
empty set @ and only this set has dimension —1. A space X has démension
< n(n > 0)atf apoint p (dim (X at p) < n) if p lies in arbitrarily small
open sets whose boundaries have dimension < (n — 1). Then X has
dimension n at p (dim (X at p) = n) if dim (X at p) < nbut dim (X at p)
= (n — 1) is false. The space X has dimension < n (dim X < n) if
dim (X at p) < mforall points p in X ; and X has dimension n (dim X = n)
if dim X < nbutdim X < (n — 1) is false.

A space may be n-dimensional, without having dim (X at p) = n at
each point. For example, the union of an arc and a disk with one point in
common has dimension 2, but is 1-dimensional at some points.

It is easy to show that E! and I'! have dimension 1. Also any polygon
has dimension 1. An inductive argument showing that Euclidean n-space
has dimension < n is left as an easy exercise. Also an inductive proof of
the following “desirable” property is quite easy to construct.

LreMMma 3-55. A subspace of a space of dimension < n has dimension < 7.
As a generalization of Theorem 3-53, we have the following result.

THEOREM 3-56. A space that is a countable union of closed subsets of
dimension < 7n has dimension < n.

Generalizing the examples wherein E2 and E? were decomposed into a
union of 0-dimensional (nonelosed) subsets, we have the next result.

TureoreM 3-57. A space X has dimension < n, n finite, if and only if
X is a union of n 4 1 subspaces of dimension zero.

Again the reader is referred to Hurewicz and Wallman, Chapter II [15],
for proofs of these theorems. Another interesting situation arises from the
next result.

TueoreMm 3-58. If one of the two spaces X and Y is nonempty, then
dim (X X Y) £ dim X + dim Y.

One might expect equality to hold in the relation dim (X X Y) =
dim X + dim ¥. Indeed, this is such an intuitively appealing property
that one is tempted to require it for “dimension.” Unfortunately, equality
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need not hold. As was mentioned above, the subset F* of Hilbert space
has dimension 1. It is easy to prove that F* X F* is homeomorphic to F*
and hence dim (F* X F®) = 1! Pontrjagin [114] has given an example
of two compact 2-dimensional spaces whose product is only 3-dimensional.

Perhaps the three most important results concerning dimension of
Euclidean spaces are the following. The first of these is by way of being
a justification for the definition of dimension.

TrEOREM 3-59. E™ has dimension n (Brouwer [70]).
TaeorREM 3-60. Every n-dimensional subset of E™ has interior points.

TaEOREM 3-61. E™ cannot be separated by a subset of dimension
= (n — 2).

Two last theorems are of conceptual interest.

TrHEOREM 3-62. Let X be an arbitrary separable metric space of dimen-
sion < n, when n is finite. Then X is homeomorphic to a subset of
I?"*1  (See Menger [102] and Nobeling [109].)

TarorEM 3-63. Let X be an arbitrary separable metric space. Then X
is homeomorphic to a subset of the Hilbert cube 1.

A special case of Theorem 3-62 is proved in Section 5-8. Also, we may
point out that some results to be found in Section 6-17 are intimately
connected with dimension theory, as will be explicitly stated.

A systematic study of dimension theory embodies many important
concepts in topology and will well reward the reader whose interests are
primarily in topology itself. It would be difficult to recommend a better
source than the Hurewicz and Wallman book, which certainly should be
in every topologist’s personal library.




CHAPTER 4
THE ELEMENTS OF HOMOTOPY THEORY

4-1 Introduction. In this chapter we strive for two goals, the presenta-
tion of the basic concept of homotopy and an introduction to the extremely
broad topic called algebraic topology. Since the usefulness of homotopy will
become apparent in this and succeeding chapters, we will say a few words
only about the latter goal. A typical process in algebraic topology is to
associate certain algebraic groups with a given topological space. These
associated groups turn out to be topological invariants in the sense that
to homeomorphic spaces our processes always associate isomorphic groups.
Then, in some way, the structure of these groups yields information about
the structure of the space with which they are associated.

Our reason for approaching algebraic topology via homotopy is found
in the strongly geometric flavor of the theory of homotopic mappings.
Speaking intuitively, two mappings are homotopic if one can be deformed
continuously into the other. Or we may view homotopic mappings as
being members of a one-parameter family of mappings with a continuous
parameter. Since precision lies in this direction, we may begin with a
general definition, which will be specialized to give the concept we desire.

A parametrized family of mappings of a space X into a space Y is a con-
tinuous function A:X X C — Y, where C is any space and is called the
parameter space. Given any fixed point p in C, the subset X X p of X X C
consisting of all pairs (z, p), z in X, is a cross section of the product space
X X C. Then for each point p in C, the mapping h|X X p (h restricted
to the cross section X X p) is a member of the parametrized family.

The generality of the above definition incorporates many situations, and
we will not attempt a theory covering all of them. Rather, we mention a
few examples and go on to homotopy. First, let C be the positive integers
with the discrete topology. In this case, our parametrized family is simply
a sequence of mappings of X into Y. Or take the parameter space C to be
a linear interval [a, b]. The resulting family is that which one usually
calls a 1-parameter family. Of course, with C taken as a parallelotope in
E", we have an n-parameter family, etc. One finds the spheres 8" being
used as parameter spaces, and many other examples. As we remarked, a
unified theory covering all such cases cannot be developed here. We
might mention that mapping theorems on product spaces, fibre spaces,
and fibre bundles all incorporate similar considerations. (See Steen-
rod [35].)

149
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4-2 Homotopic mappings. For our purposes, the most important in-
stance of a parametrized family of mappings (continuous understood) is
obtained by taking the parameter space to be the closed unit interval I'.
As a first example, let X be the unit circle S!, and let ¥ be the Euclidean
plane E2. Then any mapping h:S! X I' — E? is such a family. Each
member hlS? X ¢, 0 < ¢t < 1, may be considered as a mapping of S!
into E? and, in particular, the two members h|S! X 0 and A|S' X 1 may be
viewed as continuous deformations of each other. Figure 4-1 is a simple
example of such a family.

To be precise, two mappings f and ¢ of a space X into a space Y are
homotopic (and we write f ~ g) if there is a mapping h:X X I' - ¥V
such that for each point z in X,

h(z,0) = f(z) and  h(z,1) = g(2).

This is just another way of saying that A|X X 0 = fand A|X X 1 = g,
and hence we have the connection with 1-parameter families. The mapping
h is called a homotopy between f and g and the product space X X I!is the
homotopy .cylinder.

In.these terms, the mappings A/ X! X 0 and /X! X 1 shown in Fig. 4-1
are homotopic mappings of S! into E2. As we shall see later, any mapping
of S! into E? is homotopic to any other such mapping, so our example is
rather trivial. Such a statement is not true for every space Y, of course.
For instance, let Y be the punctured plane E> — (0, 0). Then a constant
mapping ¢ of S* onto a single point p of ¥ cannot be homotopic to a map-
ping of f of S! onto a simple closed curve J passing around the (missing)
origin (see Fig. 4-2). Intuitively, it is impossible to deform J continuously
onto the point p while remaining in the space Y.

The question of the existence of a homotopy between two mappings
f,9:X — Y can be very difficult. The answer depends upon f and g,
certainly, and also upon the structure of the spaces X and Y. It is evident
that this question is one of extending a given mapping. For if f and ¢ are

A op
(81, 0)

h(S1, D) /
> —
|

Figure 4-1 FiGURE 4-2

h(S1, 1)

“hst x 1Y
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two mappings of X into Y, then we have a mapping 2’ on the closed sub-
set (X X 0) U (X X 1) of X X I'given by #'(z,0) = f(z) and #'(z, 1) =
g(z). Then f and g are homotopic if and only if A’ can be extended to a
mapping & of the entire product space X X I! into Y. Thus it would
seem that theorems about homotopy are but special cases of more general
theorems on the extension of mappings. Indeed such is the case, but the
general extension problem is far from being solved, and also the special
case of homotopy plays an important role in the more general problem.

It might appear at first glance that too much importance is being at-
tached to the interval I in the definition of homotopy. Why not use a
2-sphere, for example, in place of 7'? Part of the reason is this: if A is an
arcwise-connected space and fy and f, are mappings of a space X inlto a
space Y, and if f1 and f5 are members of a parametrized family with param-
eter space A, then f1 and fs are homotopic. To see this, let A:X X A — Y
be the parametrized family, and let a;, a; be the points of 4 such that
h(x, a1) = fi(z) and h(z, az) = fs(x). There is an arc aj;as in A. The
mapping h|X X a;az is not quite a homotopy between f; and fs, but only
because of the use of I' in the definition. A “coordinatization” of the arc
a105 gives the homotopy. [ ]

ExErcise 4-1. Use the fact that I' is an absolute retract to show that the
converse of this result is true.

If C'is a connected space that is not arcwise-connected, and if X and ¥
are spaces, then there may be no relationship between “homotopy” and
“being in a parametrized family with parameter space C.” For example, if
X is a Peano space, and Y is a continuum that contains no arc (e.g., the
pseudo-arc, Section 3-8), then the only continuous mappings of X into ¥
are constants. Two such mappings would be homotopic only if they were
identical. But if we take C = ¥, any two such mappings lie in the same
parametrized family. We can say this: if X and C are metric continua and
Y is an absolute neighborhood retract, then if f and g are mappings of X into
Y that lie in a family parametrized by C, then f and g are homotopic. For
we can imbed C in a Peano space P (Exercise 3-19). The mapping k:X X C'
— Y can be extended to a neighborhood U of X X Cin X X P. For each
point ¢ in C, there is an open set U, in P containing ¢ and such that X X U,
lies in U. This last is easily seen from compactness. Now let ¢y, ¢, be the
points of C such that h(z, ¢;) = f(z) and h(z, ¢3) = g(x). The component
of the union UU, that contains C also contains an arc ¢;cs, by Theorem
3~16. The set X X c¢;c0 liesin X X UU, and so lies in U. Thus the exten-
sion of h to U can be restricted to X X c;c, to give a homotopy between
fandg. ]

We saw in Section 1-11 that the collection of all continuous mappings
of a space X into a space Y can be topologized (in several ways) so as to
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obtain a function space YX. In our work here, we will assume that the
compact-open topology has been assigned to YX.

TarorEM 4-1. The homotopy relation between mappings of a space X
into a space Y is an equivalence relation on YX. That is, the relation
“~” satisfies

(1) f ~ f for each mapping f in ¥YX (reflexive law),
(2) f ~ g implies g ~ f (symmetry law),
and
(3) f ~ g and g ~ k implies f ~ k (transitive law).
Proof: (1) For any mapping f in Y%, define h:W X I' — Y by
h(z,t) = flx) (0 <t<1).

It is evident that % is continuous and that h(x, 0) = f(zx) = h(z, 1) for
all points z in X.

(2) If f~ g, then there is a homotopy A:X X I' — Y such that
h(z,0) = f(z) and h(z, 1) = g(z) for all points z in X. We define

Rz, t) = h(z,1 — 1).

Again £ is obviously continuous and k(z, 0) = ¢(z), while h(z, 1) = f(2).
Thus g ~ f.

(3) If f ~ g and g ~ k, then there are homotopies k; and hs, with
hi(z, 0) = f(z), hi(z,1) = g(), ha(z,0) = g(z), and ha(z, 1) = k(z).
We define a homotopy h between f and k by setting

h(z,t) = hy(x, 2t) 0<Lt< %)
= he(x, 26 — 1) (GF<t< D).

Then h(z, 3) = g(z) by both definitions, so & is well-defined and con-
tinuous on X X I'. Clearly h(x,0) = hi(z, 0) = f(z), while h(x, 1) =
ho(z, 1) = k(z). Thusf~ k. []

The following result should be familiar, and is quoted without proof.

TaroreM 4-2. Let A be any set, and let R be an equivalence relation
on A. Then A is decomposed by R into disjoint subsets called equiva-
lence classes.

In view of Theorems 4-1 and 4-2, the function space Y is decomposed
by the homotopy relation into disjoint homotopy classes. Although one
does not attempt to visualize these homotopy classes, they are easily
characterized.
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TuroreM 4-3. The homotopy classes of Y* are precisely the arcwise-
connected components of YX.

Proof: This is merely a matter of checking definitions. For if f ~ g,
then the homotopy k(z, t) between f and g defines a mapping F:I! — ¥X
given by

F@t) = fi(z) = h(z, ).

Then F(I') is a Peano continuum in Y%, and as such contains an arc
between f and g. Conversely, an “arc” of mappings between f and ¢
provides a homotopy between the two. []

We will close this section with an interesting result, due to Borsuk [69],
which associates homotopy and the extension of mappings.

TarorEM 4-4. Let A be a closed subset of a separable metric M,
and let f' and g’ be homotopic mappings of A into the n-sphere S".
If there exists an extension f of f’ to all of M, then there also exists an
extension g of g’ to all of M, and the extensions f and g may be chosen
to be homotopic also.

Proof (we follow Dowker {74]): Let h':A X I' — 8" be the assumed
homotopy between f’ and ¢’, and let f be the given extension of f’ to all of
M. Let D be the set in M X I! given by

D= (AXIY)YuU M xD0).

Clearly D is a closed subset of M X I', and on D we may define the map-
ping F':D — 8" given by

F'(z,0) = f(x) for all z in M,
and
F(z,t) = K(z,1) forallzin Aand 0 < ¢ < 1.

Since A'(z,0) = f’(z) = f(z) for all points z in A, this mapping F’ is
well-defined and continuous.

Theorem 2-35 states that there is an open set U in M X I! such that
U contains D and such that F’ can be extended to a mapping F on U.
It is easy to show that there is an open set V in M such that V contains A
and such that V X I'liesin U (see Exercise 1-31). Therefore the mapping
F is defined on the subset (V X I') U (M X 0). Theorem 2-37 now applies
to give a mapping H(z, t) which agrees with F on (4 X I') U (M X 0).
Defining g(z) to be H(x, 1) gives the desired extension of g’. The details
here are easily checked. []

An important feature of this result is that not only can the mapping ¢’
be extended (if f* can), but also the connecting homotopy can be extended.
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4-3 Essential and inessential mappings. A mapping f: X — YV of a
space X into a space Y is said to be inessential if f is homotopic to a con-
stant mapping ¢(X) = y,, a single point of Y; otherwise, f is essential.
QOur results deal with inessential mappings because the very existence of
an essential mapping of X into Y may be very difficult to prove. For in-
stance, given n > m, is there an essential mapping of S" into S™? (More
on this later.)

As a corollary to the Borsuk theorem (4—4), one easily proves the fol-
lowing result.

THEOREM 4-5. Any inessential mapping of a closed subset of a separable
metric space M into S” can always be extended over all of M in such a
way that the resulting extension is also inessential.

Proof: A constant mapping can always be extended. []

We may characterize inessential mappings if we introduce a new defini-
tion. Given a space X and a point p not in X, we form the join pX of X
and p as follows. Consider the (disjoint) union p U (X X I 1 of the point
p and the product space X X I'. Define the identification mapping w on
p U (X X I'Y) by

m(p) = P,
w(x,1) = p for all zin X,
w(z, ) = (z,0) forallzin X and 0 < ¢ < 1.

The image of p U (X X I') under 7 is the join pX. The identification
topology is used in pX, which means that a set U in pX is open if and only
if #~Y(U) is open in X X I'. Essentially then, pX is obtained by assign-
ing a new topology to X X I' in which any open set that meets X X 1
actually contains X X 1. If X is imbedded in a linear subspace L of Hil-
bert space or E", and p is not in L, the join pX can be geometrically
realized as the union of all intervals pz, x in X.

THEOREM 4-6. A mapping f:X — Y is inessential if and only if f may
be extended to all of a join pX.

Proof: Suppose first that f;pX — Y is an extension of f. Define the
mapping g on X X I' by

g(z, ) = fx,t) forallzinXand0 <t <1
and

g9(z, 1) = f(p).

Since every open set in pX is open in X X I', it follows that if U is an
open set in Y, then f~1(U) is open in pX, and hence g~'(U) is open in
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X X I'. Therefore g is continuous. But now g(z, 0) = f(z, 0) = f(z),
by definition, while g(z, 1) = f(p) is a constant mapping. That is, g is
a homotopy between f and a constant mapping.

Conversely, let f be homotopic to a constant mapping ¢(X) = y,, where
Yo is some fixed point of Y. By definition, there is a homotopy A:X X I'!
— Y such that A(z, 0) = f(z) and h(z, 1) = y, for all points = in X.
Define the mapping f on pX by setting

f(x,t) = h(xr,t) forallzinXand0 <t < 1
and

Now f is continuous, for if U is an open set in Y, then f~1(U) will be open
in X X I', and if ~'(U) meets X X 1, then it contains X X 1; in short,
J7(U) is open in pX. Thus f is the desired extension of f. []

As we said earlier, the existence of a homotopy between two mappings
fand g of X into Y depends upon the spaces X and Y as well as on the
mappings themselves. For certain spaces Y, all mappings f:X — Y are
homotopic. A space Y is said to be contractible to a point p in Y, or simply
contractible, if the identity mapping #(y) = y of ¥ onto itself is homo-
topic to the constant mapping ¢(Y) = p.

Tueorem 4-7. If Y is contractible to a point, then every mapping f
of a space X into Y is inessential. (Hence all mappings f:X — Y are
homotopic.)

Proof: Given f:X — Y, the composite mapping if, where 7 is the identity
mapping of Y onto itself, certainly coincides with f. If, as assumed, 3 is
homotopic to a constant mapping ¢(¥Y) = p, then the composite mapping
¢f carries X onto the point p. By definition, there is a homotopy #’:¥ X I*
— Y such that A'(y, 0) = y and A'(y, 1) = p for all points y in Y.
Define the mapping h:X X I' — Y given by

Certainly A is continuous, and we have
h(z, 0) = K[f(z), 0] = f(z)

h(z, 1) = K[f(2), 1] = p.

and

Therefore A is a homotopy between f and a constant mapping. []
To obtain some examples of contractible spaces, consider the following
definition. A metric space M with metric d is starlike in that metric if
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there is a point p in M such that each other point z in M can be joined to
p by a unique arc congruent in the metric of M to a line segment.

TueoreM 4-8. If M is a metric space and has a metric in which M is
starlike, then M is contractible.

Proof: Let p be the point and d the metric on M such that from each
point x in M there is a unique arc px congruent to an interval. Define a
mapping h:M X I' — M by taking h(z, t) to be the unique point y on
px such that d(p,y) = t-d(p,z). Then h(z,0) = p for all points z,
and h(x, 1) = z for all z. Thus if % is continuous, then & is a homotopy
between the identity and a constant mapping. A proof that h is con-
tinuous may easily be given if the reader uses Theorem 1-37. ]

From Theorem 4-8 it follows that any Euclidean cube I", and the Hil-
bert cube I°, is contractible. Hence as a corollary to Theorems 4-7 and 4-8,
we have the following result.

COROLLARY 4-9. Any mapping of a space X into I™ or I* is inessential.

COROLLARY 4-10. Any mapping of a compact space into E™ or Hilbert
space H is inessential.

Proof: Since the continuous image of any compact space in E™ or in H
will be compact, it may be taken to lie in some sufficiently large cube in
E™(H), and such a cube is contractible. []

This gives a proof of the statement made at the beginning of Section 4-2
to the effect that every pair of mappings of S ! into E? are homotopic.

We may use the next result to obtain other contractible spaces.

TaroreM 4-11. Any retract of a contractible space is contractible.

Proof: Let X be a contractible space, and let r:X — A be a retraction
of X onto a subset A. By definition, the identity mapping i:X — X is
homotopic to a constant mapping ¢(X) = zo via a homotopy h’. Define
the mapping h:4 X I' — A, given by

hiz, &) = rlh’(z, D).
Then  is certainly continuous on A X I', and

h(z,0) = r[k'(z,0)] = r(x) = x
and
h(z, 1) = r[h'(z, 1)] = r(zo) for each point = in A.

Thus & is a homotopy between the identity mapping r|A (r restricted to 4)
of A onto itself and the constant mapping ¢'(4) = r(zo). []

THEOREM 4-12. Any compact metric absolute retract is contractible.
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Proof: We stated, in Theorem 3-63, that every separable metric space
can be imbedded in the Hilbert cube I*. Thus if A is a compact metric
absolute retract, it is homeomorphic to a subset A’ of 7. The subset A’
is a retract of ¢, by the definition of absolute retract, and so by Theorem
4-11, A’ is contractible. Since contractibility is a topological property,
4 is also contractible. [ ]

The converse of Theorem 4-12 is false. For example, the join of a
Cantor set and a point, the Cantor star, is compact metric and contractible
but is not an absolute retract.

The next result, which will be cited in Section 6-14, may be proved as
an exercise.

THEOREM 4-13. If f:X — S™ is a mapping of a space X into the n-
sphere such that S® — f(X) is not empty, then f is inessential.

4—4 Homotopically equivalent spaces. This brief section introduces a
concept that becomes important in our later discussions. Two spaces X
and Y are of the same homotopy type (are homotopically equivalent) if there
exist mappings f:X — Y and ¢g:¥ — X such that the composite mappings
J9:Y > Y and gf:X — X are homotopic, respectively, to the identity
mappings 7:Y — Y and 7:X — X. All the forthcoming algebraic groups
to be associated with a space fail to distinguish between two homotopically
equivalent spaces. It is obvious that homeomorphic spaces are of the same
homotopy type, but the converse is not necessarily true. To give an ex-
ample of a general procedure for obtaining two homotopically equivalent
spaces that are not homeomorphic, we prove a theorem.

Let f:X — Y be continuous. In the (disjoint) union (X X I Huy,
identify each point (x, 1) with the point f(x) in Y. Using the identification
topology, the resulting space Y;x, is called the mapping cylinder of f.
As a special case, if ¢:X — p is a constant mapping of X onto a space with
only one point p, then the mapping cylinder of ¢ is homeomorphic to the
join pX.

THEOREM 4-14. Let f:X — Y be any continuous mapping of a space
X into a space Y. Then the mapping cylinder Y, xy is homotopically
equivalent to Y.

Proof: Define a mapping ¢:Y;x, — Y by setting

gz, ) = f(x) for (z, ) in X X I!
and
9») =y foryin Y.

This mapping is well-defined and continuous on Yx, because it is con-
tinuous on each of two closed subsets of Y, x, and agrees on the inter-
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section of these subsets. Next let h:Y — Y;x, be the identity injection
h(y) = y. Clearly we have

gh(y) = g(y) = v,

so the composite mapping gh:Y — Y s the identity mapping.
Considering the composite mapping kg of Y x, into itself, we have

hg(y) = h(y) = y for all points yin ¥
and
hg(z, t) = h(f(x)) = f(x) for all points (z, t) in X X I'.

We define a mapping H:Y;x, X I' — Y, by setting

H(y,s) =y forallyin Yand0 < s <1
H((x, t),s) = &, (1 —)t+s  for(x,f)inX X I'and0 < s < L.

When ¢ = 1, we have
H((z, 1),8) = (x,1) = f(z) = H{@),s) (0 <s< D),

so the two definitions agree on those points identified in Y;x,. Hence H
is well-defined and continuous. But now

H(y,0) = v,
H((x; t): 0) = (x) t):

or H(z, 0) is the identity mapping on Yx,, while

H@y, 1) =y
and

H((z,1),1) = (1) = f(2),

so H(z, 1) = hg(2) for all points z in Y;x). Therefore H is a homotopy
between the identity mapping on Yyx, and the composite mapping hg. []

We can state a corollary to Theorem 4-14 by giving another definition.
A subset D of a space X is a deformation retract of X if there is a retraction
r of X onto D which is homotopic to the identity mapping of X onto itself
under a homotopy that leaves D fixed. That is, there is a homotopy
h:X X I' — X such that

h(z,0) = 2 for all z in X,
h(z, 1) = r(x) for all x in X,

and
hiz,t) = z forallzin Dand 0 < ¢ < 1.
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CoroLLARY 4-15. The space Y is a deformation retract of the mapping
cylinder Yy x).

Proof: Consider the mapping g:Y s x) — ¥ given in the proof of Theorem
4-14. Clearly g(y) = y for each point y in Y, so g is a retraction of Y x,
onto Y. The homotopy H(z, s) given in Theorem 4-14 has the property
that

H(z,0) = 2
and H(z, 1) = g(2).

Thus H is a homotopy between the identity mapping on Y,x, and the
mapping g. Finally, for any point y in ¥, we have

H(y,s) =y,
by definition. []

ExERcISE 4-2. Show directly and by Theorem 4-14 that the circle S! is of
the same homotopy type as the cylinder S X I

ExERcISE 4-3. Assume that S” is not contractible, and show that it is not a
mapping cylinder.

Exercise 4-4. Show that there are two continua, one locally connected and
the other not, that are of the same homotopy type.

4-5 The fundamental group. Here for the first time we construct an
algebraic group that is a topological invariant of the space Y to which it
is associated. This so-called fundamental group, a conception of H. Poin-
caré, was possibly suggested to him by a study of plane regions as used in
the theory of funections. In that study the concept of simply-connected
and multiply-connected regions plays an important role in complex integra-
tion. The very definition of a simply-connected region in terms of “shrink-
ing” simple closed curves should strongly suggest homotopy to the now-
sophisticated reader. We will clarify this matter in a subsequent remark.

Let Y be a topological space, and let y¢ be a point in Y. Then the y,-
netghborhood of curves in Y, C(Y, y,), is the collection of all continuous
mappings f:I' — Y of the unit interval into Y such that f(0) = y, =
f(1). Note that C(Y, y,) is a subspace of the function space ¥’ " and is not
a neighborhood in Y in the usual sense.

Let f and g be two mappings in C(Y, yo). Then f is homotopic to ¢
modulo yo (abbreviated f 75 ¢) if there exists a homotopy h:I* X I' —» Y
such that

h(z,0) = f(z) and h(z, 1) = g(x) for all z in I!
and h(0,t) = yo = h(1,1t) for all ¢in I,

This is illustrated by TFig. 4-3.
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Maps
onto
Yo

L h(z, 0) = fx)

Ficure 4-3

LemMa 4-16. Homotopy modulo y, is an equivalence relation on
C( Ya yO)-

It has to be shown that homotopy modulo ¥, is reflexive, symmetric,
and transitive. Since the details are so very similar to the proof of Theorem
4-1, we leave the proof of this lemma as an exercise.

Now, in accord with Theorems 4-2 and 4-3, Lemma 4-16 tells us that
C(Y,yo) is decomposed by the relation 37 into disjoint equivalence
classes, which are the arcwise-connected components of C(Y, yo). We let
m1(Y, yo) denote the collection of these equivalence classes. By intro-
ducing a suitable group operation, this collection becomes the fundamental
group of Y modulo yo (or the Poincaré group of Y or the first homotopy
group of Y modulo y,).

Let [f] denote the homotopy class of which the mapping f in C(Y, yo)
is a representative. That is, [f] denotes the collection of all elements g of
C(Y, yo) such that f 57 g. We will define a “multiplication” [f] - [¢] of
two such elements of (Y, yo). This operation will yield another element
of m1(Y, yo) and will satisfy the group axioms. Let f and g be two mappings
in C(Y, yo). The juxtaposition fxg of f and ¢ is a new element of C(Y, yo)
given by

(fxg) () = f(2x) for0 < z < 3,
(fxg)(x) = g@2x — 1) foryi <z <1
Since (f*g)(3) = f(1) = ¢(0) = yo, the mapping f+g is a well-defined

element of C(Y, y¢). Then if [f] and [¢] are two elements of 71(Y, yo),
we define their product by means of the formula

[/1- 9] = [r*g]).

Our first task is to show that the operation “-” is well-defined. That is,
we must show that we obtain the same equivalence class [f*g] regardless
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of what representatives f and ¢ of [f] and [g] are used. This is done by
proving that if f; 37 f2 and g1 37 g2, then fi*g; 57 fa*gs, and is purely a
matter of calculation. By definition, there are homotopies h; and kg
such that

hl(x) 0) = fl(x)) h’l(x) 1) = f2(x)y hl(Oy t) = Yo = hl(ly t):
ho(z, 0) = g1(x),  ha(z, 1) = g2(z),  h2(0,8) = yo = ha(L, 0).

Define a homotopy & between fi*g; and fa2*gs as follows:

h(z, ) = h1(2z, ¢) for0 < z < %
= hy(2x — 1,t) for3 <z<1

Since at z = %7 h(%) t) = h’l(l’ t) = Yo, OT h(%; t) = h2(07 t) = Yo, the
mapping h is well-defined and continuous. Also

h(z, 0) = h1(2z, 0) = f1(2) 0©<z<d
—h@r— 1,00 =g —1) G<z<Df (f1*g1) (z)
and
h(z, 1) = h1(2z, 1) = f2(22) 0<Lz<9P
= ha(2x — 1,1) = ¢5(2x — 1) F<Lz<L]) = (2#02) @)

(e
o

This proves that the operation is well-defined and single-valued. Cer-
tainly 71(Y, yo) is closed under this operation. We now set out to prove
that this operation satisfies the axioms for a group. This requires some
manipulation, and we have included several diagrams to assist in the
necessary careful study.

It should be apparent that the desired associative law for the operation
“s” follows at once if we can show that

(f1*f2)*f3 o Fi*(fo*f3).

Let us analyze these juxtapositions. It is not difficult to see that

[(f1¥f2)#fa](x) = f1(4x) 0<Lz<3
= fo(dx — 1) G@G<z<3
= f3(2x — 1) CB Y]
and that
[f1*(f2#f3)](x) = f1(2%) 0z P
= fo(4z — 2) G<Lz<L)P
= fa(4x — 3) GF<z< ).
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(z, t)
h here/”"f ——~A here
has the ! has the
same value ,' same value
as fi(4xg) | as f3(2z9—1)
where 2, I’ where g
is here I is here
(g, 0)
|
)
|
P (o, 0) (20, 0)
| P <
P
I 1! In this strip,
| | /I h is constant
| " ! on segments
|y Il parallel to
I 1y this line
1
1l ,f/
111
1/
i
i
)
FI1GURE 4-4
A homotopy & between these two mappings may be given as follows
4x . .
hiz,t) = fi ) for pairs (x, ) with¢ = 42 — 1
=t=z4r — 2

= fodx — ¢t — 1) for pairs (x, ) with4x — 1 =

= f3 (%#) for pairs (z, t) with4z — 2 > &.

Elementary analytic geometry applied to Fig. 4—4 will show how these

expressions were obtained.




4-5] THE FUNDAMENTAL GROUP 163

It is a simple matter to check that % is the desired homotopy modulo
Yo. For

h(z,0) = f1(4x) for0 > 4z — 1
or0 <z < %
= fol4x — 1 forde — 1 >0 > 4z — 2
e =1y ok 13 — (oo
= f3(2x — 1) fordr — 2 >0
ori<z<1
while
h(z, 1) = f1(2x) forl = 4 — 1
or0 <z< %
= fo(4x — 2 fordar — 1212z 42— 2
Rlle=2 ot 5 = fx(fafo).
= f3(4x — 3) fordr — 2 =2 1
ori<z<1

Since for ¢t = 4x — 1, we have h(z, t) = fi(x), etc., the continuity of
h is assured and the associative law has been proved.

Next, let j denote the constant mapping j(x) = ¥y for each point z in
I'. We claim that the equivalence class [j] is the identity element of
m1(Y, yo). To prove this, it will suffice to show that f+j 3= f for any func-
tion f in C(Y, yo). This is done by constructing the homotopy

h(z, 1) = f(l ij t) for pairs (z, £) with ¢

= Yo for pairs (z, t) with¢ < 2¢ — 1.

2t — 1

v

(To see where we got this, examine Fig. 4-5.) The continuity of A is only in
question where { = 2z — 1, but for any such point, h(z, t) = yo, so h is
continuous as required. A check of the boundary conditions shows that

h(z, 0) = f(2x) for0 > 2xr —1or 0<z< 3 .
= %o for0<or—1ord<a<1 oY
and
h(z, 1) = f(x) for1 >2x — 1 or 0 <z <1

The other boundary conditions are obvious, and we know that [7] is the
identity element of 74(Y, yo)-
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h here |

has the

same value

as f(2q) h(z, ) = yo
where z, for any point

is here (z, t) In here

FicGURrRE 4-5

Finally we must show the existence of inverses. To do so, let f be any
mapping in C(Y, yo), and define a new mapping f by setting

@) = 1 — a).

Clearly, f(0) = f(1) = yo = f(1) = f(0), so f is an element of C(Y, yo).
We show that f+f 5% j. By definition,

(f+) (@) = f(2x) 0 <
=fer -1 =f2—-21) <

%)

z
T 1).

INIA

We may construct a homotopy between f+f and j by setting

h(z, 1) =f(12_’c t) for ¢

£1—2,0<z<1%
= o fort 21 —22,0=<z = 3%
tz2x—1,3=z=1

2r — 2 < 1 < <
=f 1 fort =2xr— 1,31 22=1

Notice that at £ = 1 — 2z we have

hz, t) = f<_1———(?—z——2xj> = f(1) = yo
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Ficure 4-6

and that for ¢t = 2z — 1,
2r — 2
Wz ) = f (%‘fﬁ) =/ = o

Thus h has the necessary continuity. The only question here concerns
continuity at ¢ = 1, but we need only insert the limiting values of the
arguments to complete the argument. Checking the boundary conditions,
we see that

h(z, 0) = f(2z) for0 <1 —2z0r0 <2z < 4
= Yo for2e -1 <0< 1—2¢z0orz=1% = fxf
=f(2x__12)=f(2—2x) for0 <2z —1lori <z <1

while

hiz, 1) = yo for all x satisfying the inequalities,

and we note that the various limiting values agree. This suffices to show
that the class [f] is the inverse under the operation “=” of the class [f]
and completes the proof that w,(Y, y,) is a group. []

We notice that the fundamental group as defined seems to depend upon
the base point yo in Y, and in general this is true. If, for instance, Y is
the union of an annular region in E? and a disjoint disc in E? (see Fig. 4-6),
then for yo (any point in the annular region), (Y, yo) is infinite cyclic,
whereas if ¥, is any point in the disc, 7;(Y, y;) consists only of the identity
element. One notes that this example fails to be connected and might
conjecture that for a connected space, the groups m(Y, yo) and 71(Y, y,),
Yo # Y1, would necessarily be isomorphic. It is easy to modify the above
example by simply adding a sin (1/x) curve as the broken line in Fig. 4-6,
and so disprove this conjecture.
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We do have the desired isomorphism in the case of an arcwise-connected
space.

TueorEM 4-17. If Y is an arcwise-connected space, then for any pair
of points y¢ and y; in Y, the groups 71(Y, yo) and 7i(Y, y;) are iso-
morphic.

Proof: We give a brief sketch of the proof, leaving the details to be
checked by the reader. Because Y is arcwise-connected, there is a homeo-
morphism p of I'! into Y such that p(0) = yo and p(1) = y;. Define
p(x) = p(1 — z). It is easily shown that

[p+p]1 = Lol
where [jo] is the identity element in (Y, yo), and that
[7+p] = [51],

where [7,] is the identity in 7,(Y, y1).
Now consider any element [f] in m;(Y, yo). Define the algebraic trans-
formation N1 (Y, yo) — 71 (Y, y1) given by

MDD = [p*f+p]-

One easily sees that P+f*p is an element of the y;-neighborhood of curves,
C(Y, y1). To complete the proof, it must be shown that

(1) N s single-valued, which entails proving that if f ’fo' g, then
Drf*p 5 D*G*P;

(2) \ s one-to-one, which is shown by proving that if P*fxp ;Nl“ P*g*p,
then f 77 g;

(3) X is onto, which can be done by showing that any element [f] of
71(Y, y1) has a representative of the form A(p*f*p); and finally,

(4) X\ is a homomorphism, which means that

MIS1- gD = MISD - MIgD,

which is merely an exercise in the use of the definitions.

The details of the proof are largely routine, but they should be com-
pleted as a valuable exercise. [ ]

In view of this result, we may suppress the role of the base point yo
in discussing arcwise-connected spaces Y and simply refer to the funda-
mental group 7,(Y). In general, this is not the case, and we have an
entire system of groups m1(Y, y), one for each point y in Y. For now we
only note that if €y, is the arcwise-connected component, of space Y,
which contains yo, then our proof of Theorem 4-17 shows that (Y, yo)
is w1 (Cyp)-
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Although Theorem 4-17 states that m,(Y, yo) and m1(Y, y;) are iso-
morphic if Y is arcwise-connected, there is no canonical (uniquely defined)
isomorphism between the two in the general case. It can be shown that
there is such a canonical isomorphism if the fundamental group of the
space is abelian (we will not do this). An arcwise-connected space whose
fundamental group is abelian is called 1-simple. We will give examples of
this concept shortly, but one important class of 1-simple spaces comprises
the arcwise-connected topological groups. This is a corollary of our next
result.

A space X is called a Hopf space if there exists a mapping ¢:X X X —» X
and a point p of X such that ¢(p, p) = p and such that both ¢(p, 2): X — X
and ¢(z, p):X — X are homotopic to the identity mapping, the homotopy
leaving p fixed.

TuEOREM 4-18. An arcwise-connected Hopf space has an abelian
fundamental group.

Proof: Let [f] and [g] be two elements of m;(X, p). If we show that
f*g is homotopic to g#f, the homotopy leaving end points fixed at p, the
theorem will be established. Consider the cube I®. Define a mapping F
on the base and sides of I into X X X as follows. On the base, let

Fz,y,0) = o(f(z), g(v)).

Then on the four edges of the base, we have mappings as indicated in
Fig. 4-7.

Next let Ay and hy be the homotopies between ¢(x, p) and ¢(p, ) and
the identity. That is,

hl(x; 0) = (p(.’L', P), hl(x; 1) = T,
ho(z, 0) = o(p, x), ho(z, 1) = x;

F(z, 1,0) = sa({‘(x), 9(1)) = o(f(z), p)

C B
o(p, g(y))\ /<p(p, 9))
D —~ A
e(f(2), p)

Ficure 4-7
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F(x,\l, ) = i(fl@), 1) = fl)

FO,y, 1) F(l,y, 1)
= holg(®), 1) = holg(y), 1)
=90 = g(y)
/
F,0,1) = iy(f(x), 1) = f(z)
Ficure 4-8
and hi(p,t) = ho(p,t) = p for all .

Then we can define F on the sides of I3 by setting
F(x; 07 z) = hl(f(x)> z))

F(xy ly Z) = hl(f(x), 2),
F(Oy Y, Z) = h2(g(y)7 2),

and

F(1,y,2) = ha(g(y), 2).

[cHAP, 4

It is clear that these agree with F(z, y, 0) on the bottom edges of I® and
that all are constant and equal to p on the vertical edges. Thus F is well-
defined and continuous on the base and sides of I3. Now the base and
sides of I® obviously constitute a closed subset of I3 which is homeo-
morphic to 2. Since I2 is an absolute retract, the base and sides of I3
constitute a retract of I®. Hence by Theorem 2-38, the mapping F can
be extended to all of I, in particular, to the top of I3. Let this extension

still be denoted by F.

On the top edges of I3, we have mappings as shown in Fig. 4-8. Now
we want a mapping H(z, £) on I* X I' such that

H(z, 0)

and
H(z, 1)

= f(2x) 0O<z<3
=g@z—1) (G<z<)
= g(2x) 0<z< 3
=f2z—1) Gz,

The above square suggests that H might be obtained as follows. The de-
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g S

(a) (b)
Ficure 4-9
sired homotopy square in Fig. 4-9(a) can be squeezed down to form that

in Fig. 4-9(b), which is the square we have above. A mapping that carries
this out may be given by

H(z,t) = F(2xt, 2x(1 — t), 1) for0 <z
=Fl+@2—1DA—2x),1 —2t(1 — z),1) forf <=z

It is easy to see that with = in the appropriate interval, the arguments
of F are in the correct range. Also

F(Q2xt, 2x(1 — t),1) = F({t,1 —t, 1) when z = {
and

Fz+ @ — 1)1 —2),1 —2((1 —x)=F(@,1—1t1) when z =

I\?lv-l

Thus H is well-defined and continuous. Finally,

H(z,0) = F(0, 2z, 1)

= ha(g(22), 1) = ¢(22) 0<z< 3
=FQ2z—1,1,1)
= hi(f@x — 1,1) = f2x — 1) GF<z<L
and
H(z,1) = F(2z,0,1)
= h(f(22), 1) = f(22) 0O<z<9P

= F(1,2z — 1,1)
= ho(g(2xr — 1),1) = g2x — 1)  (

(S
IA
53

IA

1).
This completes the proof. [ ]
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CoroLLARY 4-19. Every arcwise-connected topological group has an
abelian fundamental group.

Proof: We show that every arcwise-connected topological group @ is
a Hopf space. Let e be the identity element in G and define ¢:G X G — G
by ¢(r,y) = z-y. Then ¢(e,e) = ¢, and ¢(e,z) = e-x = z, and
o(r,e) = x-e = z. Since the group multiplication is continuous, ¢ is
continuous and G is a Hopf space. [ ]

We claimed earlier that the fundamental group somehow reflects the
connectivity structure of the underlying space. It will be difficult to en-
vision this concept without a number of examples. We give examples
without proof.

ExampLE 1. Spaces for which m; is trivial, i.e., consists only of the identity
element:
(a) any contractible space; hence E*, I*, and any compact metric absolute
retract,
(b) any sphere 8, n > 1, and
(¢) E® — p (punctured 3-space).

ExampLE 2. Spaces for which 7y is infinite cyclic:
(a) 8,

(b) E2 — p (punctured plane),

(c) any annular region in E2, and

(d) E3 with a line removed.

ExampLE 3. Spaces whose fundamental group has two generators:

(a) The torus T. w1(T) is the direct sum of two infinite cyclic groups (see
Theorem 4-23).

(b) The figure-8 curve and the doubly punctured plane. Each of these has
the same fundamental group m1(X) which is a “free group” on two generators in
the algebraist’s meaning of the term ‘‘free group.” To the algebraist a free
group on the two generators a and b consists of all “words” of the form

a™bmam2b 2 ., . . a™kb™k

where m; and n; are integers and k is a natural number. Note that the only free
group which is abelian is that on one generator. (In Section 6-5 we use another
and different definition of the term “free group.”)

It begins to seem that the number of “holes” in the space has some
bearing upon the structure of its fundamental group. But note that the
punctured 3-space does not have a hole as far as the fundamental group
can determine! We might note here that a simply-connected domain R,
as used in analysts, 1s precisely a domain whose fundamental group ts trivial.

The above examples [except 3(a)] are all of 1-simple spaces. As another
example of a space that is not 1-simple, having a nonabelian fundamental
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group, let J be a simple closed curve in E3 which has been tied in an over-
hand knot (see Fig. 4-10, in Section 4-6). Consider the space E* — J.
As an exercise, the reader may compute the generators of w{(E3 — J)
and find relations between those which imply that this group is not
abelian.

There is just one other algebraic group used in topology which is not
always abelian. This is a relative homotopy group, and we will consider
it briefly in Section 7-8.

We arrive next at a concept of immense importance throughout alge-
braic topology. It is the idea that a homomorphism on groups of a space
can be induced by a continuous mapping of a space. This will arise time
and again as we progress. Thus the following development is an introduc-
tion to an extensive area of study.

If A is a closed subset of a space X, then we speak of the pair of spaces
(X, A). By a mapping f:(X, A) — (Y, B) of the pair (X, A) into the pair
(Y, B), we mean a mapping f:X — Y such that f(4) is contained in B.

TuEoOREM 4-20. A mapping h:(X, z¢) — (Y, yo) induces a homo-
morphism k7 (X, o) — 71(Y, yo).-

Proof: Define a mapping hy4 of the z¢-neighborhood of curves C(X, z¢)
into C(Y, yo) which takes each fin C(X, z¢) into an element h#f in C(Y, y)
given by

(hef)(&) = R(f(D)).

To prove that A4 is continuous on the function space C(W, z,), let f be
any element of C(X, z4), and let U be any basis element in the compact-
open topology of C(Y, yo) which contains hsfy. Now by definition, U is
the collection of all functions in C(Y, yo) that carry a compact set K into
an open set 0. So consider the basis element U™! of C'(X, x,) consisting
of all functions carrying K into A~1(0). Now f, lies in this basis element
since [hyf](K) lies in O, and so h(f(K)) lies in O and f(K) lies in A~1(0).
On the other hand, if g lies in U™!, then g(K) lies in A~1(0) and [h4g](K) =
h(g(K)) lies in O, so hsg is an element of U. Thus hy is continuous.
We define the induced homomorphism h, by

he (7)) = [hsef]

Since kg is continuous, it certainly carries arewise-connected components
of C(X, z¢) into arcwise-connected components of C(Y, yo), so hy is well-

defined.
To prove that hy is a homomorphism, we need only to show that

by (Lf1 = [gD = R (LfD = P« (gD,
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and this will follow if we show that

ha(f*g) = hafrhyg.

But this is immediate, for

the (f+)](x) = h(f(22)) = [hsf](22) 0O<z<3
=h(g2z — 1)) = [hgglCz — 1) (F <2<
= [hyS*hyg] ().

Passing to equivalence classes yields the homomorphism. []
Among the important properties of the induced homomorphism, we
have those stated in the next result.

TueoreMm 4-21. If f and ¢ are homotopic mappings of (X, ) into
(Y, yo), then the induced homomorphisms coincide. If f:(X, z¢) —
(Y, yo) and g:(Y, yo) — (Z, 20), then (gf)x = gufs.

Proof: To show that the induced homomorphism depends only upon
the homotopy class of the mapping, we need only point out that if f and
¢ are homotopic, leaving the point z fixed, then the mappings f(¢(f)) and
g(e(1)) are also homotopic leaving the point yo fixed. Thus fse and gy
are homotopic and, by definition, fx = gx.

To prove the composition rule, let ¢ be any element of C(X, x). Then

(@D #el(®) = @) (@) = glf(e(®))]
= g4lf(e@)] = g4lf#(e(®)]
= [(gfp)e)®).

This obviously implies that (gf)x = g«fs. [

CoroLLARY 4-22. If (X, zo) and (Y, yo) are homotopically equivalent,
then 7(X, z¢) and 7,(Y, yo) are isomorphic.

Proof: By definition, there exist mappings f:X — Y and ¢:Y —- X
such that both fg and gf are homotopic to the identity mappings 2:Y — Y
and 7:X — X, respectively. Hence both (fg)x = figx and (gf)x = g«fs
are isomorphisms onto. Consider fi. Since fyg« is onto, f, must be onto,
and since g4 fx is an isomorphism, f, must be an isomorphism. Therefore
f« is an isomorphism of m;(X, z¢) onto 71 (Y, ¥o). []

This corollary has a corollary, too. Namely, it is obvious from Corol-
lary 4-22 that two homeomorphic spaces have isomorphic fundamental
groups. Here we have our first example of an algebraic group associated
with a space which is a topological invariant of that space. We must add
however that Corollary 4-22 also proves that the fundamental group can-
not characterize a topological space. By this we mean that two non-
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homeomorphic spaces may well have isomorphic fundamental groups.
This we have already seen by example, but it is worth pointing out here
because we will see similar statements again in more complicated situ-
ations.

We quote one last result to be used as a comparison later on.

TarEorREM 4-23. Let (X, z¢) and (Y, yo) be pairs. Then the funda-
mental group 7, (X X Y, 9 X yo) is isomorphic to the direct product
7!'1(X, xO) ® WI(Y! yO)

Proof: Let mx and 7wy denote the projections of X X Y onto X and Y
respectively. Then for any mapping f in C(X X Y, o X ¥o), the mappings
wxf and wyf are in C(X, zo) and C(Y, y,) respectively. We define a trans-
formation T of 7,;(X X Y, z¢ X yo) into the direct product m(X, zo) ®
71(Y, yo) by setting

(5D = (rxf}, [xvfD.

We show that 7 is the desired isomorphism as follows.

(1) T is well-defined. For suppose that fo %—: fi. Then by defini-
tion, there is a homotopy H:I' X I' — X X Y such that H(t, 0) = fo(t),
H(, 1) = f1(t), and H(0,s) = z¢o X yo = H(l,s), 0 < s < 1. Con-
sider the mappings Txfo and mxf; and the mapping mxH:I' X I' — X.
It is clear that we have

TXH(t, O) = WXfo(t), TXH(t) 1) - rXfl(t))
and

mxH(0,8) = wxH(l,8) = wx(xo X yo) =20 (0 <z < 1)
Thus 7mxH is a homotopy modulo z, between wxf, and mxf;, and hence
the class [rxf] is well-defined. A similar argument holds for [ryf].

(2) T is onto. For if (g, h) is any pair in C(X, z¢) X C(Y, y,), then the
element f of C(X X Y, zy X yo) defined by

@) = (9(28), yo) 0 <
= (@, h(2t — 1) (&<

clearly has the property mxf Z¢ g and wyf 3, h. That f is well-defined
and continuous follows from the fact that f(3) = (xo, ¥o) by each defi-
nition.

(3) T is one-to-one. For if mxfo 3o mxf1 and wyfo 3, wyf1 via homo-
topies h1(t, s) and ha(t, s), then we may define a homotopy H:I' X I! —
X X Yby

H(ty 8) = (hl(t7 8), h2(t; 8))
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Certainly H is continuous, being continuous into each factor of X X Y.
Also we see that

H(, 0) = (rxfo(®), mvfo®)) = fo(®)

and

H(t, 1) = (wxf1(1), mvf1()) = f,(D),
while

H(O; S) = (hl(oy 8)7 h‘2(07 ,5‘)) = (x07 yO)
and

H(1,s) = (hi(1, 8), ha(1, 8)) = (%o, Yo)-

(4) T is a homomorphism. For if [f] and [g] are elements of
T (X X Y, z9 X yo) then

T({1- gD = TS *g) = (rx(f*9)], [r¥(f+a)D
= ([rxfsmxgl, [Tyf*mygl)
= ([rxf]- [rxg), [7vf] - [x¥g)]). []

4-6 Knots and related imbedding problems. Two simple closed curves
in E® may be said to be equivalent if there is an orientation-preserving
homeomorphism of E? onto itself which throws one curve onto the other.
Then a simple closed curve J is unknotted if it is equivalent to the plane
circle in E® with equation 23 -+ 25 = 1, 23 = 0; otherwise J is knotted
or is a knot. These definitions lead to equivalence classes of knots in the
obvious way, and the chief problem of knot theory is to find topological
properties that will serve to classify these equivalence classes.

Since each knot, as a subspace of E3, is a simple closed curve, we see
that the knots themselves are all homeomorphic. They only differ in the
manner in which they are imbedded in E®. This observation leads one to
a study of the complement of a knot. Let J be a knot in E®. The funda-
mental group m1(E® — J) of the complement of J is called the group of
the knot J. WIill this group serve to classify knots? The answer must be
negative. For consider the knots J; and J in Fig. 4-10. It should be

Fre. 4-10. Right- and left-hand trefoil knots.
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obvious that their groups are isomorphic, and yet there is no orientation-
preserving homeomorphism of E3 onto itself which carries J; onto J.

One is tempted by this example to eliminate the “orientation-preserving”
requirement and try again. But this does not help either. There exist
nonequivalent knots having isomorphic groups even without the orienta-
tion requirement. This means that the group of a knot cannot fully char-
acterize the equivalence class of that knot. In practice, a knot theorist
uses topology, combinatorial analysis, differential geometry, and anything
else he finds applicable. Such attacks have produced a wealth of informa-
tion but no complete solution. The reader is referred to Reidemeister [30},
whose book Knotentheorie contains the basic work. Then recent surveys
by Fox [79] and Seifert and Threlfall [119] will carry the interested reader
up to the point of studying the current literature.

When first confronted with the problem of knots in E3, one rarely sees
its significance and may tend to dismiss the topic as being of limited in-
terest. We give the ensuing discussion to place knot theory in its properly
important place. In essence, we are faced here with the problem of ex-
tending a given mapping. TFor if J, and J, are two knots in E3, there is a
homeomorphism h:J; — J;. Indeed there are many such homeomor-
phisms. The question of the equivalence of J, and J, is then, does there
exist a homeomorphism % of E® onto itself such that h|J, = h? Viewed in
this light, the general problem (of which knot theory is a part) may be
considered to have been initiated by Schoenflies [32].

In 1908, Schoenflies proved the following result (which is paraphrased
here): let J be a simple closed curve in the plane E*, and let h be a homeomor-
phism of J onto the unit circle St in E2. Then h may be extended to a homeo-
morphism h of E? onto itself. In other words, there are no knots in the
plane. The very existence of knots in E3 constitutes a major hurdle in
generalizing any result from E2? to E3. For instance, the Schoenflies
theorem above cannot be generalized by replacing E? by E3.

There is another natural way in which we might try to generalize the
Schoenflies theorem, and this attempt leads to further problems. Let S
be a simple closed surface in E2, that is, S is a homeomorph of $2, and let
h be a homeomorphism of S onto the unit sphere S2 in E3. Is there an
extension % of h such that % is a homeomorphism of E? onto itself? In the
special case that S is a finite polytope (see Chapter 5) in E3, Alexander [46]
was able to give an affirmative answer to this question. At the same time,
however, he gave a famous example, the Alexander horned sphere, showing
that the answer must be “no” in the general case. This example is pic-
tured in Fig. 4-11. We can see from the picture alone that it is quite
obvious that the complement of the horned sphere is not simply con-
nected. Since the complement of S? in E3 is simply connected, it follows
that no homeomorphism of E? onto itself will throw the horned sphere
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Fig. 4-11. The Alexander horned sphere.

onto S2. Note that there is a Cantor set of “bad” points on the horned
sphere.

Alexander’s work was published in 1924. The problem has been revived
recently, and further results have been obtained. In 1948, Artin and
Fox [50] were led to the following definition. Let P be a homeomorph of a
finite polytope P’, both imbedded in E”. If there is a homeomorphism of
E"™ onto itself which carries P onto P’, then P is said to be tamely imbedded
(or tame) in E™; otherwise P is wildly tmbedded (or wild) in E™. In these
terms, the Schoenflies theorem may be paraphrased as, “Every homeo-
morph of a polytope in E? is tame.” And, of course, the Alexander horned
sphere is wild in E3.

Artin and Fox then proceeded to give a number of surprising examples.
In Fig. 4-12 we picture one of these, a wild arc in E*. This shows that even
the most simple polytope, the closed interval, may be wildly imbedded
in E3! We remark that by “swelling” the arc in Fig. 4-12 into a tube
tapering to the two points p and ¢, we obtain another wild sphere, this
example having only two bad points.

The examples of Artin and Fox inspired a renewed attack upon the dif-
ficult problem of extending the Schoenflies theorem. Recent papers by
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SN

Fi1e. 4-13. First stage in constructing Antoine’s necklace.

Bing [62], Harrold [82], Moise [104], Mazur [100], Brown [72a], and many
others have contributed much new knowledge, particularly regarding wild
sets in E3. A theorem due to Klee [90], for instance, may be used to prove
that any simple closed curve in E3 is tame in E°®,

Another wild set, Antoine’s necklace, deserves mention before we leave
this subject if only for historical interest. Let T be a solid torus, and let
T4, Ty, T3, and T4 be four solid tori imbedded in 7" and linked as shown in
Fig. 4-13. In each T, let T;;, Tis, Tis, and T4 be four solid tori im-
bedded and linked in T; as the T; are imbedded and linked in 7. This
imbedding of tori is done for each positive integer k. At the kth step, we
will have 4% tori, whose union we denote by Ay. Antoine’s necklace is the
intersection Ny—; A of all the sets A;. Since each Aj is compact and Ay
contains Az, for each k, these sets satisfy the finite intersection hypoth-
esis and their intersection is nonempty. By construction, it is obvious
that the components of the necklace are single points. In fact, it is not dif-
ficult to prove that this set is a totally disconnected, compact, perfect
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metric space. Hence by Corollary 2-98, Antoine’s necklace is homeomor-
phic to the Cantor set. One easily sees that the complement of the necklace
in E3 is not simply connected. For such a simple closed curve as J in
Fig. 4-13 cannot be deformed to a point in the complement. And there are
infinitely many simple closed curves in the complement which are not
deformable into each other [65]!

We leave this topic with the observation that it is among the most
active of the current research problems in topology. In particular, the
study of dimensions greater than three is practically untouched.

4-7 The higher homotopy groups. The consistent use of the symbol 7
for the fundamental group should have suggested that s, 73, . . . , must be
defined. These so-called higher homotopy groups were invented by Hure-
wicz [85] in 1935. We give a brief introduction to this concept here and
return to it again in Section 7-8.

Again we consider a space Y and a particular base point y,. In a gener-
alization of the yy-neighborhood of curves C(Y, yo), we consider mappings
f:I" — Y of the n-cube into Y such that f throws the boundary of I"
onto the point yo. We recall that I™ is taken to be the collection of all n-
tuples (zy, Z2, . . ., Tp) of real numbers such that 0 < z;, < 1,7 = 1,2,
..., n. The boundary 8I"™ of I" consists of all such n-tuples such that the
product II’—; z;(1 — x;) = 0. This simply says that at least one coordinate
in the n-tuple equals either zero or one. Thus we consider the collection
C.(Y, yo) of all mappings f:I* — Y such that f(8I") = yo. Clearly,
Co(Y, yo) is a subset of Y7 n, and we may topologize it with the compact-
open topology.

To define a homotopy relation in C,(Y, yo), we say that f and g are
homotopic modulo y,, f ;No- g, provided there is a continuous mapping
h:I™ X I' — Y such that

Mz, 0) = f(z) for all z in I",
h(z, 1) = g(z) for all z in I™,
and h(BI™, t) = Yo for0 <t < 1.

It is easily shown that this is an equivalence relation on Cy(Y, yo). Details
of this proof are very similar to that of Lemma 4-16 and may be carried
out as an exercise. It follows that C,(Y, yo) is decomposed into disjoint
equivalence classes, which are the arcwise-connected components of
Cﬂ(Y: yO)-

The juxtaposition of two mappings f and g in C(Y, o) is similar to that
in Section 4-5. We define

(f*g)(xly T2y o« oy xn) = f(2151, T2y oo vy xn) (0 S Zy S %)
=g(2x1_ 17x2)"')xn) (%le < 1)




4-7] THE HIGHER HOMOTOPY GROUPS 179

Since at x; = %, we have f(1,23,...,2s) = yo = ¢g(0, 22, ..., z,), the
mapping fxg is a well-defined element of C,(Y, yo).

The nth homotopy group of Y at the point yo, mo(Y, yo), is defined as
having elements that are the arcwise-connected components of C,(Y, yo)
and having the group operation given by

[71- Ig] = [f+g],

the heavy brackets again denoting equivalence classes. Of course, it is
necessary to prove that this operation is well-defined, the result depending
only upon the equivalence classes and not upon the representatives used,
and that this operation satisfies the axioms for a group.

We show only that if f 35 f1 and g 37 g1, then fxg 57 fi*gy. This will

prove that the operation “-” is well-defined. By definition, there are homo-
topies h; and hg such that

hi(z, 0) = f(2), ha(z, 0) = g(),
hl(x’ 1) = fl(x)) hz(x, 1) = gl(x)y
ki (BI, t) = yo, he(BI™ 1) = yo.

Define the mapping

h(xly T2y .oy Tny t) = hl(ley X2y o vy Xn, t) (O S (3% S %)
= h2(2x1 - 1} L2y« « vy Tn,y t) (% < z; < 1)
At z = %, we have hy(1,22,...,2Zn,8) = Yo = h2(0, 22, ..., 2, 1), 50
h is well-defined and continuous. Furthermore,
h(xl) L2, .., Xn, O) = h1(2x1y T2y« ooy Tn,y 0)
=f(2x1;x2;"')x‘n) (Osxls%)
= h2(2.’171 - 1; L2y - -5 Tn, 0)
=g(2x1_1)x2)"')xn) (%le S 1)’
which is the definition of fxg, and
h(xly T2y« ooy Tn, 1) = hl(ley T2y ... Tn, 1)
= f1(2x1, T3, . . ., Tn) 0<Lz <3
= hz(le - l, X2y ooy Ty, 1)
= gl(le - 1; Loy . .- ,Zn) (% S (31 S 1)’

which is fy*g;. Thus & is a homotopy between fxg and f *g;.
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The remainder of the group axioms are established in the same way as
was done for 7{(Y, yo). The associative law will hold if it is shown that (1)

(f1#f2)*fs 37 f1*(faxf3).

The constant mapping c¢(I") = y¢ is proved to represent the identity

element by showing that (2) f¥c 37 f. The mapping f(zy, z3, . .+, Za) =
Sl — x4, xs, ..., x,) represents the inverse of [f], and this is proved

by showing that (3) f+f 37 ¢. Details are again left as an exercise.
There is one further property of m,(Y, o), » > 1, not necessarily
shared by 71(Y, yo).

TueoreMm 4-24. m,(Y, yo), » > 1, is an abelian group.

Proof: This may be established by showing that for any pair f and ¢
in C,(Y, yo), n > 1, we have

f*g 5 9*f.

We indicate a proof as follows. Consider the zjzs-face of I™. The mappings

f and g in f*g are arranged as in Fig. 4-14. Of course (f*g)(z1, 2) = Yo

for every point on the four edges and on the vertical center line of this face.
Consider the mapping

hl(xl: Loy .- -y Ty t)

21)2 1 < < 1
=f 2x1,—2-Ti;x3,...,xn (OSZISQ_) (0_2‘52 l_gt)
= Yo 0< 2 <3) 1—3t<2<1

2x9 — 1
= g(le 1, 22 ¢ ) T3, ,.’12">
<2 <1 B <2< 1D
= Yo F<n <Y 0 < 2y <30
Az
J g
—

Figure 4-14
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It is readily seen that h; is well-defined and continuous. Also
hl(xl) L2, ..., %n, 0)

= f(2z1, 22, ..., Ts) 0<% 0Lz

= g(2r; — 1,23, ..., 2s) FLz 1) (0L 2 <L
which is fxg, and
hl(xly L2y ...y T, 1)

=f(2x1,2x2,x3,...,xn) (O le S %) (0 ng S

= Yo 0<z <3 (G

=92z — 1,2r; — Lixs,...,2)) (3 <251 (32 <

= Yo <z, L1) 0Lz <
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1)
D),

%)
1)
1)
1).

Therefore h, is a homotopy between f*g and a new mapping, which on the
zx9-face of I™ is as in Fig. 4-15. Working now on the z;-coordinates
only, it should be intuitively clear that we can construct a homotopy ks
to yield the picture in Fig. 4-16. Then there are similar homotopies hs
and hy, which yield the diagrams in Fig. 4-17. It is a simple application
of analytic geometry (albeit tedious) to construct those homotopies, and
the reader should do so. We give a more sophisticated proof of this result
shortly. []
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We now have defined the higher homotopy groups, but the problem of
determining these groups for a given space has not been touched here.
In fact, this determination of homotopy groups is very difficult. For in-
stance, it is only very recently that many of the groups m,(S¥, o), n > k,
of the k-sphere have been determined. We will not attempt the calcula-
tion of homotopy groups, but will give some examples of known groups
later.

The yo-neighborhood of curves C(Y, yo), in the compact-open topology,
is a space in its own right, the space of loops at yo. In general, it will not
be connected. If Y is a torus, for example, each homotopy class in C(Y, y,)
will be a component, of the loop space. These homotopy classes are arcwise
connected (why?), and in fact are sets in C(Y, yo) maximal with respect
to the property of being arcwise connected.

Let ¢(IY) = y, be the constant mapping in C(Y, yo), and consider the
pair (C(Y, yo), ¢). Again we may consider the space of curves C(C(Y, yo), ¢)
consisting of all mappings ¢: I' — C(Y, yo) such that ¢(0) = (1) = ¢,
the constant mapping. Given any element ¢ in C(C(Y, yo), ¢), each func-
tional value o({) is itself a mapping ¢(t): I' — Y such that [¢(£)](0) = yo
and [¢()I(1) = yo.

On 12, we may consider the mapping defined for each point (x,, ¥2) as
[o(z1)](x2). Clearly, [¢(x1)](x2) carries 12 into ¥ and has the property that

[e(0)](z2) = c(x2) = Yo,
le(Mx2) = c(x2) = Yo,
le(@)]0) = yo,

and le(z)](1) = yo.

It is easy to see that [¢(x1)](z2) is continuous on I 2. Hence to each element
of C(C(Y, yo), ¢), there corresponds an element of C3(Y, yo). It should
not be too surprising that we have the following result.

TurOREM 4-25. T5(Y, yo) is isomorphic to 71(C(Y, yo), ¢).

Proof: Consider the transformation N which carries an element [¢] of
m1(C(Y, yo), ¢) onto the element of wo(Y, yo) given by

MleD = [le(@n](z2)]:

To show that A is well-defined, let ¢1 =2 92 in C(C(Y, o), ¢). This
means that there is a homotopy h(z, t): I' X I' — C(Y, yo) such that

h(xy O) = ‘Pl(x))
h((l?, 1) = ‘PZ(x)y
and h0,t) = h(1,t) = c.
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Define the mapping
Kz, y,t) = [h(z, D)](Y).
Then one checks that

W(z,y,0) = [h(z,0)](x) = [L1(2)])

and
K(z,y, 1) = [h(z, D) = [e2(2)](y)
and that
K0, y,m) = [0, )]{y) = c(¥) = yo,
hl(lr Y, 7‘) = [h(ly t)](y) = C(y) = Yo
h,(x) 0; t) = [h(xy t)](O) = Yo,
and

h,(xi ly t) = [h(x) t)](l) = Yo.

Therefore we have [¢1(2)](y) 57 [¢2(2)](y), which shows that N 7s well-
defined.

A reversal of the above construction will prove that \ is one-fo-one.
Thus if [¢;(x)](y) ,,zo [e2(x)](y), there is a homotopy A'(z, y, t) such that

h'(x7 Y, O) = [‘Pl(x)](y))

Kz, y, 1) = [e2(2))(y),
and

W(I% 1) = yo.
We define the mapping
bz, 8) = K(z,y,t) (O0O<y<D.
For every pair (z, t), this is a mapping of I! into Y. Then

h(xy 0) = h,(x) Y, 0) = [<p1(x)](y),

hz, 1) = W (z,y,1) = [e2(2)](®),
and also

RO, 1) = K (0,y,1) = yo = K (1,y,8) = h(L, ).

That is, h(0, ¢) and A(1, ¢) are constant mappings. Thus A is a homotopy
between ¢; and ¢, in C(Y, yo).
Given F(x, y) in C3(Y, yo), we simply define

(@) = f=,y) O=<y<I.

This is certainly a mapping of z X I* for each x so that ¢ is a mapping of
I' into C(Y, yo), and clearly [¢(2)](y) = f(x, ). Thus \ s onto.
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Tinally, consider ¢,*¢ps. By definition,

(p1*02)(2) = ¢1(27) 0<z2<9)
= @222 — 1) GF<z<L 0.
Therefore
[(e1%02) () ](y) = [¢1(22)](¥) 0Lz P
= [p2(2z — DI(y) C-S )

= [e1(@)](¥) *le2(2)](¥),

and we have shown that \ is an isomorphism. []

CoroLLARY to Theorem 4-25. The group m.(Y, yo) is isomorphic to
Wn—l(C(Y7 yO); C), n > 1.

We leave the proof as an exercise; it is very much like that for Theorem
4-25.

This suggests that we can give an alternative definition of the higher
homotopy groups. We begin with the pair (Y, yo), let Q; be the space of
loops C(Y, yo), Q2 be the space C(C(Y), ¢), Q3 be the loop space over Q,
ete. Then our corollary implies that 7, (Y, yo) is isomorphic to m1(Qp—1).
We could have taken this as our definition of ,, which, historically, is
what Hurewicz did in his original papers [85]. There are advantages in
this approach, as the next two proofs show. Still another approach to the
definition, due to Serre {120], will be discussed in Section 4-8.

TuEOREM 4-26. For any pair (¥, yo), C(Y, yo) is a Hopf space.

Proof: We consider the product space C(Y, yo) X C(Y, yo) and the con-
stant mapping ¢. Define a mapping ¢ of the product space onto C(Y, yo)
by setting

o(f, 9) = f*g.
Clearly, e(c, €) = ¢xc = ¢,

elc, 9) = c*g 52 9,
and o(f, ) = frc 5 f.

Therefore C(Y, yo) will be shown to be a Hopf space if we show that ¢ is
continuous. To do this, let U be a member of the basis in C(Y, yo). By
definition, U is the collection of all mappings in C(Y, yo) that carry a
compact set K in I' into an open set O in Y. Thus ¢~ '(U) is the set of
all pairs f, g such that f+g carries K into O. But if f*g carries K into O,
then either f or g carries K into O, and conversely, if either f or g carries K
into 0, so does fg. Therefore ¢~ (U) = U X C(Y, yo) U C(Y,yo) X U,
and this is a basis element in the product space C(Y, yo) X C(Y, yo). []
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CoroLLARY 4-27. Forn > 1, m,(Y, yo) is abelian.

Proof: Using the new loop-space definition of the higher homotopy
groups, for n > 1, m,(Y, yo) is the fundamental group of a Hopf space
and Theorem 4-18 applies. [ ]

We state the following important theorem without proof. It may be
proved by techniques quite similar to those used in Theorems 4-20 and
4-21.

TrEOREM 4-28. Let h:(Xi, z9) — (Y, yo) be continuous. Then h
induces a homomorphism hy:m,(X, o) — 7.(Y, yo) such that (1) if
h is the identity mapping ¢, then 4, is the identity isomorphism, (2) if &
and A’ are homotopic mappings, then hy = hy, and (3) if h:(X, xo) —
(Y, yo) and A':(Y, yo) — (Z, 20), then (K'h)x = hihy.

As we will note in Section 7-8, this result tells us that homotopy theory
satisfies some of the Eilenberg-Steenrod axioms for homology. In analogy
to Corollary 4-22, we have the immediate corollary below.

CoroLrary 4-29. If (X, 20) and (Y, yo) are homotopically equivalent,
then 7, (X, z¢) and 7,(Y, yo) are isomorphic for each n > 1.

Of course it follows that homeomorphic pairs have isomorphic homotopy
groups and hence that the homotopy groups are topological invariants. One
further remark is in order before examining a few examples. In defining
the fundamental group, we considered mapping f:I! — Y such that
f(0) = f(1) = yo. It is easy to see that this is equivalent to studying
mappings f:S' — Y such that a fixed point sy of S* always maps onto Yo-
That is, we could identify the (two) points in the boundary of I' first,
thus obtaining 8', and then map into the pair (¥, y0). In the general case,
too, mappings of the pair (1", 3(I™)) into (Y, yo) are equivalent to map-
pings of (8", s¢) into (Y, yo), where s, is some fixed point of S™. For,
identifying the points of 8(I™) to a single point yields a space homeomor-
phic to 8™ (see Section 3-6). Such a formulation of the homotopy groups
is sometimes more convenient than that which we have given. It may be
found in detail in a paper by Eilenberg [44].

Let us now examine a few examples. Theorem 4-7 clearly applies to
give us the fact that for any contractible space Y, all homotopy groups
ma(Y, yo) are trivial, i.e., consist of the identity element only. This applies
to Euclidean cubes 1", the Hilbert cube I, and in view of Theorem 4-11,
to any retract of a contractible space.

It is fairly easy to compute the homotopy groups mi(S™, so), k < n.
In particular, for £ < n, wx(S", sp) is trivial, while 7,(S™, so) is infinite
cyclic. These facts will be established in Section 6-14. On the other hand,
it has been a difficult and important problem in homotopy theory to de-
termine the groups mx(S", sp) for & > n. (Henceforth, we suppress the
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base point sq in our symbol.) By definition (see Section 6-4), the higher
homology groups of 8™ are trivial, and it is natural to ask if this might not
be the case for mx(S™), k > n. Equivalently, is every mapping of S* into
S™ inessential for k¥ > n? The following example, due to -H. Hopf [83],
provides a negative answer to this question.

Let S® be the unit sphere in E* referred to rectangular coordinates, and
let S2 be the unit sphere in E® referred to spherical coordinates. For each
point (1, &, B), B8 # 0, of S?, there is a unique 2-plane in E* having the
equations

X3 = 21 - cos a - cot 3/2 — 2xs - sin a - cot /2
and
T4 = 227 - sin a - cot B/2 + 2x5 - cos a - cot /2.

The “north pole” (1, a, 0) of S? corresponds to the plane z; = 0 = 3.

Each of these 2-planes intersects S® in a circle S'(a, 8). These circles
are disjoint, for if either a; ¥ ay or B; # B2, then the 2-planes cor-
responding to the points (1, a1, 81) and (1, ag, 82) intersect only at the
origin in E*. Indeed, it is possible to show that these circles constitute an
upper semicontinuous collection of continua filling up S3. We define the
(monotone) mapping f[S*(a, 8)] = (1, , 8). This is an essential mapping
of S onto S2.

For suppose that f is homotopic to a constant mapping c¢(S%) =
(1, @, Bo) Via a homotopy h:8% X I' — 8% Given a point (1, a, 8) of
82, we choose the point of S'(«, 8) in which this circle intersects the 3-
dimensional half-space x; = z3 > 0. In particular, this point has co-

ordinates
. __( 1+ cos B )”2
1= T2 = \2(5 — 3cos f) ’
. 1/2
23 = 2 (cos a — sin a) <2(51—_%> )
and s
i . 1 — cos B ) .
z4 = 2 (sin @ + cos a) (————2(5 3 c0s B)

Let this point be denoted by y(a, 8). We define a mapping of SZx It

onto S2 by setting
M1, a, 8), 1] = Rly(e, B), t].

It is easy to show that X is continuous [one need only show that y(e, 8)
is a continuous function of the point (1, &, 8)]. Then we have

N1, &, B8), 0] = Rly(e, B), 0] = fly(e, B)] = (1, , B)
and
N1, &, B8), 1] = Rly(e, B), 1] = cly(e, B)] = (1, o, Bo)-
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That is, A is a homotopy between the identity mapping on S2 and a con-
stant mapping. This means that S2 is contractible, which is false. Thus h
cannot exist, and f is not inessential.

For some years the bulk of the information concerning the higher homo-
topy groups of spheres came from the application of the Freudenthal sus-
pension homomorphism. We will not use this operation, but we will
describe it and quote two results. The description will be somewhat
simplified if we adopt the following conventions. In E"*2 let S**! denote
the set of points (zy, ..., Zn4s) such that 73227 = 1, and let S™ be
the subset of S"*! for which z,,; = 0. Let H3™ and H**! be the sub-
sets of S**! for which z,,, = 0 and z,,, < 0, respectively. Each of
these “hemispheres” is an (n + 1)-cell and may be taken to be a join
over 8", H%'' having vertex (0,...,0,1) and H"*? having vertex
©,...,0,—1). Clearly, 8"*' = "' y H**' while 8" = HY' n
H™H,

Given any mapping f:8" — S™, we may extend f to a mapping
f+:HY — H3™ by mapping the vertex of H%'! onto that of H7H!
and extending radially. Similarly we obtain f_:H™™ — H™*' 1In this
way we can associate with f its suspension E(f):8"t! — S§™t!. If f and
g are homotopic mappings of S” onto 8™, then the connecting homotopy
can also be suspended to provide a homotopy between E(f) and E(g).
Thus with each element [f] of m,(8™), we have associated a unique element
[E(N] of mny1(S™F!), and hence have a well-defined transformation of
T (8™) into mny1(S™HY) given by E([f]) = [E(f)]. For proofs of the
following results, see Freudenthal [80].

TrEOREM 4-30. E is a homomorphism of m,(S™) into 7n4 1 (S™*1).

TrEoREM 4-31. For n < 2m, E is a homomorphism onto, and for
n < 2m — 1, E is an isomorphism onto.

More than this is known about the Freudenthal suspension homomor-
phism E, but we have not yet developed the machinery needed to describe
all its properties. The homomorphism E, together with certain specialized
constructions which are too involved to be duplicated here, accounted for
most of our knowledge of the groups 7,(8™), n > m, until recently. For
a listing of this information, the reader may consult Section 21 of Steen-
rod’s The Topology of Fibre Bundles[35]. In 1951, Serre [120], utilizing
newly developed methods, gave a method whereby ,(S™) can be calcu-
lated for many values of n > m. His methods are beyond the scope of
this book but are currently being used extensively. We will mention the
problem of homotopy groups of spheres again, giving examples when we
have the necessary developments to do so.
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4-8 Covering spaces. Let X be an arcwise and locally arcwise-connected
space. A mapping p:B — X of a space B onto X is a covering mapping if
for each point z in X there is an arcwise-connected open set U containing
z such that each component of p~!(U) is open in B and is mapped homeo-
morphically onto U by p. The space B is called a covering space of X.

As an example, consider the mapping p:E' — S' defined by p(f) =
(cos 2mt, sin 27t). Given any point (z,y) on S, its antipodal point is
(—z, —y). Let U = 8' — (—z, —y). It is readily seen that p~'(U)
consists of the union of all open intervals of unit length centered at the
points 1/2w arccos z. Also each such interval maps homeomorphically
onto U under p. Therefore E! is a covering space of S*.

Now let {U,} be a covering of X by open sets satisfying the conditions
of the above definition. For any point b in p~1(U.), let U.(b) denote that
component of p~*(U,) containing b. Suppose that we have a path in U,
from a point zo to a point z,. That is, we have a mapping f:I' — U, such
that f(0) = zo, f(1) = ;. Let by be any (fixed) point in p~'(zo). Apply-
ing the homeomorphism [p|U.(bo)]™", we have the path in U.(bo) given
by the mapping [p|Ua(bo)]~Yf:I' — Ua(by). It is obvious that this path
covers the path in U,. Since U.(by) is open in B, it follows that this path
is the only one in B which covers the given path and emanates from the
point by.

It is now an easy matter to give greater generality to the last statement.
For let P = f(I') be any path in X from a point z, to a point z;. Since
I' is compact, we may subdivide I' into a finite number of closed intervals,
I' = I,U - - - Ul}, such that each f(I;) lies entirely in some open set
of the covering {U,}. Then if by is any point in p~Y(zo), a step-by-step
construction as above provides a unique path P’ in B such that P’ covers
P and emanates from b,.

Suppose next that P; and P; are two paths in X from x4 to z, given by
mappings fi, f2:I' — X. If f; and f; are homotopic modulo the set
Ty U z1, then there is a homotopy h:I' X I' — X with h(t, 0) = f1(?),
h(t, 1) = fo(t), h(0, u) = z0, and h(1l,u) = z;. Since the unit square
I' X I'is compact, there exists an integer N sufficiently large so that each
square i/N <t < G+ 1)/N, j/N=uw=(G+1/N, 4,j=0,...,
N — 1, is mapped by A into an open set in the covering {U,} of X. If we
again apply the local homeomorphisms [p|U4(b)]™" one at a time, the
homotopy k can be “lifted” into the space B. Filling in the details of this
construction provides a proof of the following result.

THEOREM 4-32. Let p:B — X be a covering mapping onto the arcwise
and locally arcwise-connected space X. Let P; and P; be homotopic
paths from a point 2o to a point z; in X. Then for each point b in
p~!(zo), there exist unique paths P{ and P; in B covering P, and Py,
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respectively, and emanating from the point b. Furthermore, the paths
P{ and P; are homotopic in B.

As an application of Theorem 4-32, we may prove a result that affords
one means of obtaining precise information about the fundamental group.

TrEOREM 4-33. Let p: B — X be a covering mapping onto the arcwise
and locally arcwise-connected space X, let b be any point in B, and set
p(b) = x. Then the induced homomorphism py: 7;(B, b) — (X, )
is an isomorphism into.

Proof: The fact that py is an isomorphism into follows immediately from
Theorem 4-32. For p4 is defined by setting p«([f]) = [pf], and if the
two paths pf; and pfs are homotopic modulo the base point x, then Theo-
rem 4-32 says that we may construct a covering homotopy between f,
and f; in B. Therefore py([f]) is the identity element of m,(X, z) if and
only if f is homotopic to a constant, that is, [f]is the identity in 7, (B, b).[]

Utilizing similar procedures, we can also prove the following generaliza-
tions of Theorem 4-33 to higher dimensions.

THEOREM 4-34. If B is a covering space of X, and if p(b) = z, then the
induced homeomorphism py: 7, (B, b) — m,(X, ), n = 2, is an isomor-
phism onto.

From the example at the beginning of this section and Theorem 4-34,
one easily sees the fact that m,(S!) is trivial for all » > 1. Another
example is obtained by recalling the mapping p: 82 — P of the 2-sphere
onto the projective plane where p identifies antipodal points of S2. It is
not hard to show that this is a covering mapping. Hence, from Theorem
4-34, it follows that the higher homotopy groups =,(P), n > 1, of the pro-
Jective plane P are isomorphic to those of the 2-sphere.

One further concept may be developed in this setting. Let 2 be a fixed
point of the arcwise and locally arcwise-connected space X. For each
point x of X and each path f:I' — X from z, to z, we have a pair (z, f).
Two such pairs (z, f) and (¢/, f') are equivalent if and only if z = 2’ and
f is homotopic to f’ modulo zo U 2. The corresponding equivalence classes
[(z, /)] constitute the points of a new space, R(X). A topology is assigned
to R(X) as follows. Each point z of X lies in an arcwise-connected open
set U. For any point 2’ in U, there is an arc g:I! — U from z to 2. Con-
sider the equivalence class [(z/, f+g)], where f is a path from z, to z and
fxg is the juxtaposition of f and g. The union over U of all such equivalence
classes is a set @, in R(X). The collection of all such sets {Q,} is taken to
be a basis for a topology in R(X). Then the space R(X) is the universal
covering space of X. The meaning of the word universal is explained by
the following lemma.



190 THE ELEMENTS OF HOMOTOPY THEORY [cHAP. 4

Lemma 4-35. If B is any covering space of X and X is locally simply
connected, then R(X) is a covering space of B.

However, unless X is locally simply connected, the universal covering
space of our definition may fail to be a covering space. The natural map
of R(X) onto X is locally one-to-one, but may not be a local homeomor-
phism. The reader should find an example of one such space X. For this
reason, it is frequently required in the definition that X be locally simply
connected.

We quote three results here that are of interest. The first of these may be
proved by the reader as an exercise.

THEOREM 4-36. R(X) is simply connected.
THEOREM 4-37. R(S') is the real line E'.

TuaeoreM 4-38. S? is the universal covering space of itself and of the
projective plane.

Theorems 4-33, 4-34, and 4-35 provide the motivation for the defini-
tion of the higher homotopy groups given by Serre [120]. Begin with the
pair (X, zo). We define =;(X, zo) as usual. Let T'; denote the universal
covering space of C(X, x¢), and define m2(X, o) to be =1(T1, t), ¢ a point
in T'; mapped onto the constant loop c. It should be clear how to proceed.

4-9 Homotopy connectedness and homotopy local connectedness. If
we examine the property of arcwise connectedness (see Section 3-2) in
the light of our knowledge of homotopy, it becomes apparent that the
definition may be rephrased as follows. A space Y is arcwise connected
if every mapping f:8° — Y of the O-sphere into Y is homotopic to a con-
stant. To see that this is equivalent to the original definition, we note
that S° consists of the two points 1 in E'. Hence S° X I' is a pair of
line segments. Any mapping which is constant on S° X 1 identifies these
upper end points in Y. Hence a homotopy between a mapping f of S° and
the constant mapping of S° is equivalent to a mapping of the interval
[—1, +1]into Y. That the resulting Peano continuum is arcwise connected
(Theorem 3-16) then shows that the new definition implies the original.
A proof of the implication in the other direction is even easier, but the
reader should write out the details.

This new point of view leads to an immediate generalization of arcwise
connectedness. A space Y is said to be connected in dimension n in the
sense of homotopy (abbreviated “n-C”) if every mapping of the n-sphere
S™ into Y is homotopic to a constant. This means that the nth homotopy
group ma(Y, o) is trivial for any base point yo in Y. A space which is
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k-Cforall k < n will be called a C"-space, and if it is k-C for all k, the space

is a C*-space. It is easy to see that 0-C = C° = arcwise connected.
Our first theorem is an immediate consequence of Theorem 4-7.

THEOREM 4-39. Any contractible space is a C“-space.

By Theorem 4-12 then, any compact metric absolute retract is a C*-
space.

We apply the standard procedure for localizing a topological property
to obtain the following definition. A space Y is locally connected at the point
y in dimension n in the sense of homotopy (abbreviated “n-LC at y”) if
every open set U containing y contains an open set V containing y such
that every mapping of S™ into V is homotopic to a constant mapping with
the image of the homotopy cylinder contained in U. (This is a homotopy
over U.) The space is n-LC' if it is n-LC at every point, and it is LC™ (or
LC?) if it is k-LC for all k < n (or for all k).

A space is locally contractible at a point x if every open set U containing
x contains an open set V containing x such that V is contractible over U
to a point y in U. The space is locally contractible if it has this property at
every point.

A simple application of Theorem 4-7 also proves the next result.

TaEOREM 4-40. A locally contractible space is LC.

TaeoREM 4-41. Convex subsets of a Euclidean cube I™ or the Hilbert
cube I¢ are both contractible and locally contractible. Hence such sets
are both C» and LC«.

Proof: A subset of I" or I is convex if every pair of points in the subset
are end points of a line segment that lies entirely within the subset. This
immediately implies that such a convex set is starlike and hence Theorem
4-8 applies to give contractibility. Furthermore, any spherical neighbor-
hood in I™ or I is obviously convex, and the intersection of convex sets
is convex, so every point of a convex subset of I™ or I“ lies in arbitrarily
small convex open sets. This implies local contractibility, and the present
theorem follows from Theorems 4-39 and 4-40. []

THEOREM 4-42. Any neighborhood retract of a locally contractible
space is itself locally contractible. Hence a compact metric absolute
neighborhood retract is locally contractible.

Proof: Let X be locally contractible, and let A be a neighborhood
retract of X. Then there exists an open set W in X such that W con-
tains A and there is a retraction r:W — A. Now let = be any point of
4, and let U be an open set in A containing x. By definition, there is
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an open set U’ in X, and we might as well say W, such that U’ contains
zand U N A = U. Since X is locally contractible, there is a second
open set V' in W such that V' contains z and is contractible over U’ to
z. Let f be the mapping which does the c¢ontraction so that f(V') = y,
a point of U’. Then the set V = V' N R is an open set in A containing
z and the mapping rf|A contracts V over U into the point »(y). Thus 4
is locally contractible. The remainder of the theorem is proved just as
was Theorem 3-8. [ ]

COROLLARY 4-43. Every compact metric absolute neighborhood retract
is LC®.

We state the last result of this section without proof. For a proof and
for a development of the ideas which are embodied in this section, the
reader is referred to Lefschetz’s Topics in Topology [21].

THEOREM 4-44. Every finite polytope (see Section 5-4) is locally con-
tractible and, indeed, is an absolute neighborhood retract.




CHAPTER 5
POLYTOPES AND TRIANGULATED SPACES

5-1 Introduction. The word polytope has become a generic term used
to denote those subsets of a Euclidean space, such as polygons, polyhedra,
etc., which are constructed with rectilinear elements. The reader will
recoghize that many of our examples have been spaces which are homeo-
morphie to some polytope. We refer here to such things as arcs, spheres,
tori, and so on. In the succeeding chapters, we develop algebraic mecha-
nisms (homology and cohomology theory) to aid in our study of these
important spaces. In this chapter, we will study the basic geometry of
polytopes.

5-2 Vector spaces. Throughout this chapter, we will use the algebraic
properties of vector spaces to prove geometric theorems. This implies
that the fundamental properties of vector spaces should be familiar, so
we state these properties in this section, largely without proofs. Insofar
as the statement of theorems is concerned, this section is self-contained.
However, the reader who lacks preparation is strongly recommended to
consult either Halmos [10] or Thrall and Tornheim [36].

A vector space V over a field F is an abelian (additively written) group
for which a multiplication on the left by members of F has been defined
with the usual associative and distributive properties. The additive
identities of V" and F will be denoted by 0 and 0, respectively.

A finite collection vy, v, . . ., v of vectors (i.e., elements of V) is said
to be linearly independent provided that if

k
Zfi'vizﬁy fiinF)
i_—-l

then, for each 7, f; = 0.

LeMMA 5-1. A finite set of vectors in V is linearly independent if and
only if every subset of this finite set is linearly independent.

An arbitrary set K of vectors is said to be linearly independent if every
finite subset of K is linearly independent.

A subset B of a vector space V is a basis for V if (1) B is linearly inde-
pendent and (2) for every vector w in V — B, the set B U {u} is not
linearly independent.

193
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The following is an existence theorem.
TrEOREM 5-2. Every vector space over a field has a basis.

THEOREM 5-3. If by, by, ..., br and b, by, ..., b, are two bases for
the same vector space V, than n = k.

If the vector space V has a basis of n elements, then we say that the
dimension of V is n. Theorem 5-3 implies that dimension does not depend
upon a particular basis. Note also that Theorem 5-2 says nothing about
the cardinality of the basis. It is a fact that given any cardinal number ¥,
there is a vector space with a basis of cardinality W.

If B= {by, by, ...,b,} is a basis for a vector space V, and if v is a
vector in V — B, then since B U {v} is not linearly independent, there
exist elements fo, f1, . . ., fa, not all 0, in F such that

fO'v+fib1+"°+fnbn=6.

Now fo cannot be zero, for this would contradict the linear independence
of B. Thus we may write

v = — Zfb—lfi'bi-

=1
This implies the following.

TaEOREM 5-4. If V is a vector space of dimension n over a field F,
and if B = {by, ..., by} is a basis for V, then for any element v of V
there exist unique elements f1, . . . , f» of F such that

vV = Zi;f,bt

The uniqueness claimed in Theorem 5-4 is easy to prove, for if v were
also expressed as

v= ), gib;, giinF,
=1
then
O=v—v=D firbi— D gi-bi= D (fi— g9 ba
- i1 i1

The independence of B then implies that f; — g; = 0 for each 1.
The dimension of a vector space characterizes the vector spaces. More
precisely, we have the following result.

TaeoREM 5-5. Two vector spaces over the same field are isomorphic
if and only if they have the same dimension.
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5-3 E™ as a vector space over E'. Barycentric coordinates. Perhaps
the most common example of a vector space is that obtained from Euclidean
n-space. We defined E™ as the set of all ordered n-tuples of real numbers
(with the usual metric topology). To consider E™ as a vector space, we
must give an addition of vectors and a scalar multiplication. This is done
by setting

(alyazy""an)—l'(blyb2)"'ybn)= (al+b1)a2+b2:'--;a’n+bn)

and
c-(ay az, ..., a,) = (cay, cas, . . ., cay),

where the a;’s, the b.’s, and ¢ are real numbers. It is easily verified that
with these definitions, E™ becomes a vector space over the field of real
numbers E'. It has a basis of the form (1,0, ...,0),(0,1,0,...,0), ... ,
©,0,...,0,1). More briefly, if §;; is the Kronecker delta, given by
d;; = land §;; = 0,7 5= 7, this basisis (814, 024, -+, 0ny), 7 = 1,2,. .. , M.
Hence as a vector space, E™ has dimension n.

A set of points H* in E™ is a k-dimensional hyperplane if there is a linearly
independent set of vectors (points) {a;}, ¢ = 1,2,...,k < n, and a
vector ag such that H® is exactly the set of all points A which may be
expressed as

k
h=ag -+ Z i+ a;, t; real numbers.

t=1

We remark that if ap = 0 = (0,0,...,0), then H* is a k-dimensional
vector subspace of E”, so in general each hyperplane is a “translation” of
some vector subspace. The reader should see that this definition reduces
to that of a line in E? (k = 1,n = 2), to a line in B3 (k = 1,n = 3),
and to a plane in B3 (k = 2, n = 3).

In geometry, one says that a set of k¥ + 1 points in E" is geometrically
independent if no (k — 1)-dimensional hyperplane contains all the points.
The algebraic equivalent of this condition is as follows. A set {ag, ay, ...,
ax} of vectors in E" is pointwise independent provided that the &k vectors
a1 — @g, @2 — Qo, ..., ax — g are linearly independent.

THEOREM 5-6. The set A = {ag, ay, ..., a;} in E" is pointwise inde-
pendent if and only if the two conditions (1) Y% 4g;-a; = 0 and
(2) %0 9: = 0 imply that (3) g; =0foralls =0,1,...,k.

Proof: Suppose that A is pointwise independent and that conditions
(1) and (2) hold. Then

k k k
> giai — aj) = D gira; — <Z gh-) a; = 0.
1=0 =0

i=0
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Since for j fixed, the vectors a; — a; are linearly independent, condition (3)
follows.

On the other hand, if conditions (1) and (2) imply (3), and if there
exist real numbers gy, gz, . . - , gk such that

k

2 9i (@i — ao) =0,

i=]

then
k k
Do gicai= | g:) o
i=1 i=1
Letting
k
do=— D i
i=1
we have

k k
Zgi‘ai‘l‘(Z gi)'ao =0
=0 =0

Clearly, (1) and (2) are satisfied. Hence each g; = 0 by (3), and this
implies that the vectors {a; — ao} are linearly independent. []

Turorem 5-7. If A = {ag, a1, ..., ak}, kK = n, is a pointwise inde-
pendent set in E”, then there exists a unique k-dimensional hyperplane
H* containing A and having the property that a vector h is in H"* if
and only if h = a¢ + % 1 gia; — ap), the g; being unique if A 0.

Proof: Let H* be the set of vectors of the form

k
h=ao+ Y giai — ao).
i—_—-l
Then by definition, H” is a hyperplane. That H* contains the set A follows
from the equations

k
aj = ao + Z di5(a; — ao),
im1

where §;; is the Kronecker delta. The uniqueness of the numbers g;
follows from Theorem 54, since the set of all vectors {h — ao}, h in HY,
is a k-dimensional vector subspace of E™ with basis {a; — @o}.

It only remains to show that the hyperspace H k is unique. Suppose
that there exists another k-dimensional hyperplane F* containing A. By
definition, there must be a linearly independent set B = {by, ..., by}
and a vector by such that p lies in F*if and only if p = by + Sk fi b
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Since F* contains A, for each a; there are coefficients fij such that

k
a;j=1bo+ > fibi (G=0,1,...,k).

=1

In particular, ag = by + %_; fio - bs, s0 we have
k
a; — ao = Y (fij — fio) - bs.
im1

Since B and the set of vectors {a; — ao},7 = 1, ..., k, are both assumed
to be linearly independent sets, there are unique solutions

k
bi= > gila; —a0)  G=1,2...,k.
j=1

Substituting these solutions into the characterizing equation for elements
of F*, we see that F* = H*. Thus H* is unique. []

We have already observed that any hyperplane H* is a “translation”
of a k-dimensional vector space p* imbedded in £*. Since such a transla-
tion is an ¢sometry (i.e., a one-to-one, distance-preserving mapping onto),
we expect H* to be homeomorphic to p*. Now by Theorem 5-5, the sub-
space p” is isomorphic to E*. By some means, then, a vector of H* should
be determined uniquely by a vector in E*, that is, by an ordered k-tuple
of real numbers. The preceding theorem showed that each vector in H*
has a unique expression as a linear combination of k - 1 pointwise inde-
pendent vectors. If we can find a dependence among the k -+ 1 coeffi-
cients in this combination, then giving a k-tuple of real numbers, i.e., a
vector in E¥, would prescribe the k + 1 coefficients determining a vector
in H*. In this way, a specific mapping of E* onto H* could be defined.

THEOREM 5-8. Let A = {ag, a1, ..., a;} be a pointwise independent
set in E". Then the k-dimensional hyperplane H* containing A4 is
characterized by the condition

(1) hisin H*if and only if
k k
@ k=2 fie: and (D) D fi=1,
7=0 =0
where for each % in H¥, the coefficients f; are unique.
Proof: By Theorem 5-7 we know that % is in H” if and only if

k k k
h=ao+ ) gia; — ap) = > g+ (1 — Zgi)a(]-
im1 i=1

i=1
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If weset go = 1 — Y¥_; g;, then h is of the form (i), and (ii) is obviously
satisfied. The field elements (real numbers) g; are unique for each A so
that the f; are also.

Moreover, suppose that a vector v satisfies (i) and (ii). Then we have

k k k
D fias = D filas — ao) + <Z fi) ao = ao + ) fila; — ao),
1=0 1 i=0 i—1

and hence v belongs to H*.

In the other direction, we have already shown above that conditions (i)
and (ii) are equivalent to condition (1) and then Theorem 5-7 applies to
show that H* is the k-dimensional hyperplane containing A.[]

This result seems to be merely a slightly different restatement of Theo-
rem 5-7, and so it is. But the difference is significant. Using the dependence
(ii) among the coefficients fi, we have, for a given pointwise independent
set A = {ag, ay,...,ar} and the hyperplane H* containing A, the
following fact. For each point p = (py, ..., px) of E*, there is one and
only one vector A in H* such that b = Y %_, p.a;, where we take po =
1 — Yk . p. Our results above show that this gives us a one-to-one
transformation of E* onto H*. By means of lengthy, but direct, argu-
ments the reader can prove that this transformation preserves both

k
v

I

T==

(f0>01f1<0) (f0>0,_f1>0) R (fo<0,f1>0)
ag ay

(a)

(fo<0,f1<0,fy>0)

(fo>0,f1<0,f3>0) (f0<0,f1f0,f2>0)

(f0>07f1>07f2>0)

ag a;

o> 0,11 < 0, fo < 0) fo<0 /170 12<0)

(fo>0,f1>0,72<0)

(b)

Fic. 5-1. Barycentric coordinates. (a) One-dimensional. (b) Two-dimensional.
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linear and pointwise independence. It can also be shown to preserve dis-
tance so that E* and H* are homeomorphic. That is, we may say that the
transformation b4:E* — H* defined for a vector » = (vy, v, .. ., vs) in

E* by
k k
ba() = <1 - v¢> ag + Y via;
=1 1=1

is one-to-one, onto, and preserves all linear relations.

Let A = {ao,a1,...,ax} be a pointwise independent set of k -+ 1
vectors. Then the real numbers fy, f1, . . . , fi are the barycentric coordinates
of a vector h with respect to A if and only if

k
@) h=if,~a,. and (i) D fi= 1
=0

i=0

Thus the totality of vectors in E™ having barycentric coordinates with
respect to A is the unique k-dimensional hyperplane H* containing A.
There is a more intuitive approach to barycentric coordinates. The
real numbers f; can be considered as weights (both positive and negative
weights being permitted) which are assigned to the points of A. The
resulting system of k - 1 particles has a centroid which is precisely the
point A for which the numbers f; are the barycentric coordinates with
respect to A. For examples, look at Fig. 5-1, which is self-explanatory.

5—4 Geometric complexes and polytopes. Let A = {ag, ay, ..., a}
be a set of k + 1 pointwise independent points in E*. The geometric k-
sumplex in E™ determined by A is the set of all points of the hyperplane
H* containing A for which the barycentric coordinates with respect to A
are all nonnegative. It is quite easy to see that a geometric 0-simplex is a
single point, a geometric 1-simplex is a closed line segment, a geometric
2-simplex is a closed triangular plane region, a geometric 3-simplex is a
solid tetrahedron, and so on. At times, it is convenient to use an open
geomelric k-simplex which is the set of points whose barycentric coordinates
are all positive. Here again the set is simple, a point, an open line segment,
etc. If the k£ + 1 points pg, py, . . ., pr determine a geometric k-simplex,
then we will denote that simplex by the symbol {(pop; - - - px) and call the
points p; the vertices of the simplex. When we wish to speak about k-
simplexes in general, we will use the generic symbol s*; that is, s* will
denote any geometric k-simplex, whereas (pop; - * - px) denotes the partic-
ular simplex with vertices py, . . ., Pk.

Another geometric concept is of value in dealing with simplexes. A
subset B of E™ is said to be convez if, given any two points z and y of B,
the line segment joining z and y is entirely contained in the set B. It is
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easily seen that the infersection of any number of convex sets is again a
convex set. Given any subset A of E™, the convex hull of A is the intersec-
tion of all convex subsets containing A. By the remark above, the convex
hull of any subset A of E™ is convex.

LemMma 5-9. The geometric k-simplex (popp - - - pr) determined by a
set A = {po, p1,.--,pr} of k-4 1 pointwise independent points of
E™ is the convex hull of the set 4.

Proof: The hyperplane H* containing A is a convex set, and the k-
simplex {pg - - - px) clearly lies in H ¥ Each half-plane of H* determined
by taking the barycentrie coordinate f; to be nonnegative is also a convex
subset of E™. The intersection of these k + 1 half-planes of HF is pre-
cisely the simplex (po - - - px), which is therefore a convex set.

Next let 0 < r < k. For each point z in (p¢ - - - p&), there are points
2’ in (po - - - Py, & in {Pryy - - Pr), such that x lies on the segment 'z’
To see this, let + be written in vector notation as x = Sk o 2ipi, where
2 =0 and Y oa;=1. Set o/ = Xi2; and @’ = S gz If
either ' = 0 or a”’ = 0, the statement is obviously true. If both fail to
be zero, then we set

r k
x; X4
= E <y> i and 2 = E <?> D

1=0 1=r+1

These are obviously points of (po - - - p,) and (pr41 - - - Px), respectively,
and

r = a/xl + al/xll’
witha' + o’ = 1.

To finish the proof, let B be any convex set containing A. We use in-
duction to prove that (po - - - px) also lies in B. This is easily seen for
k = 0. Suppose that it is true for & — 1, and let x be a point in {(po - - - P&)-
Then z is on a line segment from py to a point &/ in (py - - - px). By the
induction hypothesis, 2’ lies in B. Since po and 2’ lie in B, and since B is
convex, it follows that x lies in B. Hence B contains (po - + - pr), and the
lemma is immediate. [_]

The geometric simplexes are the basic building blocks from which we
will construct spaces. As a simple instance, we may glue four 2-simplexes
together along their edges so as to form a tetrahedral surface (a homeo-
morph of the 2-sphere). For reasons that will become clear later, we have
some rules about the way in which simplexes can be joined together.
Roughly speaking, we cannot be haphazard about placing our bricks; we
must be expert bricklayers and “line up the edges.” To be precise, we say
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(a)

N

/
\

\.\
W
\

(b)

Fic. 5-2. (a) Proper joining. (b) Improper joining.

that two geometric simplexes, s™ and s*, m < n, are properly joined if
either

1) s"Ns*=20 (the empty set)
or

2) s"ns" = s, k= m,

where s* is a subsimplex of both s™ and s*. In Fig. 5-2, we show examples
of both proper and improper joining of simplexes.

This joining can be more easily expressed if we introduce a natural
concept. Let (po - - pn) be a geometric n-simplex. By Lemma 5-1 and
the definition of pointwise independent vectors, it follows that any subset
of the vertices po, . . ., pn is itself the set of vertices of a geometric simplex.
Each such subsimplex is called a face of (pg - - - p,). In particular, we will
use the simplex (pg -« p;- - - p,) to denote that face of (pg - - - p,) ob-
tained by deleting the vertex p; from the collection of vertices Doy -y Pne
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It is clear that if (po - - - pn) is in E", then (pg - - Dj- - - pa) is a closed
geometric (n — 1)-simplex in the point-set boundary of {po -+ * pn) rela-
tive to E™.

We may now say that two geometric simplexes are properly joined if
they do not meet at all, or if their intersection is a face of each of them.
Note that a simplex is a face of itself.

This leads to the chief concept of this chapter, the geometric complezx.
What we would like to say is that a geometric complex K is a (countable)
collection of properly joined geometric simplexes with the property that
if s* is any simplex of K, then every face of s" also belongs to K. This is
the customary definition, but we will have to say more for reasons to be
explained.

Since a simplex is defined as a certain subset of some Euclidean space
E™, two simplexes cannot be properly joined unless they lie in the same
Euclidean space. The “components” of a complex, then, would all have to
lie in the same Euclidean space. This would mean that a configuration
consisting of a 1-simplex having a vertex in common with a 2-simplex,
which has a vertex in common with a 3-simplex, which has a vertex in
common with a 4-simplex, etc., could not be in a complex. But we do
not want to bar this possibility. One way out of this difficulty would be to
re-do the several preceding sections in terms of finite-dimensional linear
subsets of Hilbert space (which is an infinite-dimensional vector space).
This would imply, however, that we could not consider a complex with
more than ¢ simplexes (¢ being the cardinality of the real numbers). In
this book, we do nothing with a geometric complex that would force us
out of Hilbert space or countable complexes. But we do want to make
the definition sufficiently general to permit easy extension to such cases.

We want to arrive at the idea of considering simplexes from different
Euclidean spaces, taking them away somewhere and joining them together.
We define now a fopological geometric simplex, a term we will abandon
later. A topological geometric n-simplex ™ is a pair (4, h) consisting of a
topological space 4 and a definite homeomorphism h between A and
some geometric n-simplex s%. The space A is said to be the carrier of this
simplex. The topological geometric simplex ¢™ = (B, 1) is a face of o™
if B is a subset of A and B = h|B (h restricted to B). Two topological
geometric simplexes (4, h) and (B, ') are properly joined (1) if A N B is
a face of each simplex and, (2) if s; is the face of s4 = h(A) corresponding
to A N B under the homeomorphism h and if s; is the face of sp = W (B)
corresponding to A N B under &/, then there is a linear mapping [:s; — 8g
such that 2~14 N B = (WY 4 n B)l. A topological geometric complex K
is a (countable) collection of properly joined topological geometric sim-
plexes with the property that every face of a simplex in K is a simplex
in K.
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/
Q /
Figure 5-3

To illustrate this rather complicated definition, consider the two sets
A and B in Fig. 5-3. These are closures of plane regions. There are
homeomorphisms h:4 — s, h':B — s} such that the pairs (zy, hlzy),
(y2, hlyz), and (xz, hlzz) are faces of A and (zy, h'|xy), (zw, H'|zw), and
(yw, k'|yw) are faces of B. To show that (4, k) and (B, ') are properly
joined, we must show that there is a linear mapping [ from the face s} of
s corresponding to xy onto the face s; of s% corresponding to zy such that
(hlsk)™' = (W|sk)~Y. There are only two possible choices for I, so
there is very little room for flexibility in picking the homeomorphisms A
and &’. The slightest variation in one or the other, under our definitions,
would change the simplexes from properly joined to improperly joined
simplexes. It would be possible to include still more machinery in our
definitions and give more flexibility here. But the difficulty is not really
a practical one. It is usually quite clear that the desired mappings exist.

Now let K be a topological geometric complex, and consider the set S
that is the union of all of its simplexes. It may happen that the sets carry-
ing the simplexes of K all lie in some topological space T. In such a case,
8 is a subspace of 7' and so has a topology. This topology may or may not
be a “natural” one. For example, let K be the infinite complex composed
of all closed intervals [n, n + 1], where n is a nonnegative integer, and
their vertices. In the union of the simplexes of K, that is, the nonnegative
real numbers, only sets intersecting [0, 1] in an infinite set can have O as
a limit point. This is very natural in terms of the structure as a com-
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plex. But consider the several spaces in Fig. 54 with the indicated struc-
ture as complexes. As complexes, these all have the same structure as
does K ; as subspaces of EZ, they are quite different.

We will next define a topology for a particular class of complexes, the
star-finite complexes. These are complexes with the property that each
simplex is a face of only a finite number of simplexes. The name comes from
the definition of the star of @ simplex @, which consists of all simplexes of
which o is a face. This is denoted by St(e), and we note specifically that
¢ is contained in St(¢). The term star is often applied to the union of the
carriers of St(o) instead of the collection of simplexes, but the meaning is
usually obvious from context.

The star topology of a star-finite complex K is defined by taking as a
basis all subsets X that intersect at most a finite number of simplexes of
K and intersect these in relatively open sets, that is, in sets that are open
in each simplex. The space so obtained is denoted by the symbol |K| and
is called the geometric carrier of the complex K.

Our next results indicate the nature of the spaces obtained as the geo-
metric carriers of star-finite complexes. First, we will need the concept
of the open star of a simplex. Given a simplex o in K, the open star of g,
St(o), is the open subset of the geometric carrier |K|, which is the interior
of the carrier of the star of o. That is, we consider the star of a simplex in
the complex K, look at the carrier of these simplexes in |K|, and, using the
star topology, take the interior of this carrier to be the open star. Observe
that the open star is a subset of the carrier |K|, while the star is a sub-
collection of simplexes of the complex.

TaroREM 5-10. The geometric carrier of a star-finite topological geo-
metric complex K is a locally compact Hausdorff space.

Proof: Each point of the carrier |K| lies in the carrier of some simplex of
K. Taking the star of this simplex, we have a finite number of simplexes
whose carriers obviously form a compact union containing the given point
of |K| as an interior point. Hence |K]| is locally compact.

Given two points z and y of |K|, consider first the case in which z and y
lie in the carrier of the same simplex of K. The existence of disjoint open
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subsets U and V, with zin U and y in V, clearly follows from the fact that
a geometric simplex is Hausdorff (and more). If there is no simplex of K
whose carrier contains both z and ¥, then the two points must lie in dif-
ferent open stars of vertices, say U and V. Letting z be in U and y be
in V, we know that xisin U — Vand yisin V — U (else z and y would
necessarily be in the same simplex). These two open sets satisfy the
Hausdorff condition. []

CoroLLARY 5-11. The geometric carrier of a star-finite topological geo-
metric complex K is metric.

Proof: First, each such carrier |K| is paracompact by Theorem 2-67.
Then since |K| is obviously locally metrizable, Theorem 2-69 applies to
complete the proof. [ ]

The outline of an alternative proof is as follows. Let each simplex o
that is not a proper face of any other simplex be assigned a metric dg. If
two points p and ¢ lie in different components of |K|, define the distance
between p and ¢ to be unity. If p and g lie in the same component of |K]|,
then there exist many sequences p = g, 2y, ..., 2, = g of points such
that for each 7, z; and x;,, lie in the same maximal simplex. Let

d(p, @) = glb Y, do(zs, Tig1).

=0

There are two major categories of complexes, the finite and the infinite
complexes. These terms refer to the number of simplexes in the complex
and not to the dimension of the complex. The dimension of a complex K
is the largest integer n such that K contains an n-simplex. If no such
integer exists, then K has infinite dimension. We leave the proofs of the
following lemmas as simple exercises.

LemMma 5-12. Every finite complex has finite dimension.
Lemma 5-13. A complex of infinite dimension is infinite.

It is not hard to see that the carrier of a finite complex may be taken to
be a subset of some Euclidean space and hence that the carrier of a finite
complex is a compact metric space. (In Section 5-8, we show that the
carrier of a finite complex of dimension n is homeomorphic to a subset of
E**t1) 1In this context, we may easily prove the following result.

THEOREM 5-14. Let K be a finite complex with vertices V1, V2, . .., Up.
Then the collection of open stars {St(v;)} is a finite open covering of the
carrier |K|.

Proof: We need only point out that each point of |K]| lies in the open
star of some vertex since each simplex of K lies in the star of some vertex. O
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It might be hoped that a “good” topology could be found for the com-
plexes which are not star-finite, that is, a topology in which they would be
locally compact Hausdorff spaces, but this is not possible. There is no
Hausdorff topology for the Cantor star, the join of a Cantor set and a
point, such that (1) the interior of a 1-simplex is open, (2) the carrier is
connected, and (3) the carrier is locally compact.

The geometric carrier of a star-finite complex K is called a polytope. A
topological space X that is homeomorphic to a polytope |K| is called a
triangulated space and the complex K is a triangulation of the space X.
Although much of the remainder of this book is devoted to a study of this
important class of spaces, we cannot characterize the class. That is,
necessary and sufficient topological conditions that a space have a tri-
angulation are not known. This “Triangulation Problem” has only been
partially answered to date, but many widely studied and useful spaces are
known to have triangulations. (Among these are all 3-dimensional mani-
folds and all differentiable manifolds.) At present, we consider only a few
elementary properties of the triangulated spaces.

Two simplexes s, and s; of a complex K are connected in K if there
exists a chain of 1-simplexes in K joining s; and sg in the following sense.
There are simplexes s;, 1 = 1,2, ..., k, such that (1) s N st is a vertex
of 81, (2) s2 N sk is a vertex of sp, and, (3) foreachs =1,2,...,k — 1,
st N sty is a vertex of each simplex. We leave to the reader the easy
proof of the fact that we may add a fourth condition, (4) forj # ¢ — 1,
i,ori-+ 1,8 Nns = 0. A chain of 1-simplexes satisfying conditions (3)
and (4) is ealled a simple chain. The above connectedness relation between
simplexes of a complex K can be shown to be an equivalence relation, and
the resulting equivalence classes of K are called its combinatorial compo-
nents. The complex is connected if it has just one combinatorial component.
The proofs of the next results are left as simple exercises.

TueorEM 5-15. The geometric carrier of a connected complex is arc-
wise connected.

TurorEM 5-16. In a finite polytope, components and the carriers of
the combinatorial components are identical.

5-5 Barycentric subdivision. This section introduces a standard tech-
nique used for producing a triangulation of a given polytope such that the
new triangulation is “finer” than the original. This subdivision is presented
first for a complex consisting of a single simplex s* = (pop1 - * Pn) to-
gether with all of its faces. Such a complex is called the closure of a simplex
and is denoted by Cl(s™).

We recall that the vertices p; of s, are assumed to be pointwise inde-
pendent and that the points of s™ are those points of E” which have non-
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negative barycentric coordinates with respect to the vertices p;. In par-
ticular there is a point, which we will denote by §", whose barycentric
coordinates with respect to the vertices p; are all equal. Similarly, for each
face s* = (pi, - - - Pi,) of s", there is a point §* whose barycentric coordi-

nates with respect to the subset of vertices pj, ..., p; are all equal.
Note that s? = (p;) has the corresponding point §? = p;. The collection
of all points 8%, k = 0,1,...,n,7 = 1,2, ..., ar, where oy is the number

of k-simplexes in Cl(s"), will be the vertices of a new complex K’, the
first baryceniric subdivision of K = Cl(s"). We must say how the simplexes
of K’ are formed. To do so, we introduce a definition.

Let K be any geometric complex, and let s; and sg be simplexes of K.
Then we will write s; < s if and only if s; is a proper face of so. It is
easily verified that under this relation “<,” the complex K is a partially
ordered set.

Now returning to the vertices §¥, we will take a subset of these points to
be vertices of a simplex in K’, (§;85 -+ - &), if and only if 8; < 85 < s3 <
--- < s; in K. Figure 5-5 indicates the essentially simple construction
that has been described above.

The point §" is called the barycenter of the simplex s” and is the centroid
of the vertices p; with equal weights assigned to each.

This subdivision may now be done for each simplex of any geometric
complex K and defines a new complex K’, the first barycentric subdivision
of K. It is evident that the geometric carriers of K and K’ are identical.

LemMma 5-17. The diameter of the convex hull of any set A is equal
to the diameter of A itself.

Proof: Let & be any number such that if  and y are two points of A4,
then d(z, ¥y) < 8. Let a and b be any two points of the convex hull of A.
We will show that d(a,b) < 8. To do so, consider any point z of A.
Clearly, the spherical neighborhood S(z, §) contains A. The closure
S(z, 8) is a closed convex set containing A and hence contains the convex
hull of A, by definition. Thus d(z, @) < §. Conversely, then, the point 2
lies in S(a, 8). This is true for each point z of A; hence A lies in S(a, §).
It follows that the convex hull of A lies in S(a, §), so d(a,b) < 4. The
lemma, is now immediate. {]

CoroLLARY 5-18. The diameter of a geometric simplex is the length
of its longest edge (or 1-face).

For a geometric complex K, we define the mesh of K to be the supremum
of the diameters of all simplexes of K. In view of Corollary 5-18, this
supremum may be taken over all 1-simplexes of K. The principal result
of this section may be expressed in these terms.
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Fiec. 5-5. Barycentric subdivisions. (a) One-dimensional. (b) Two-dimen-
sional. (c¢) Three-dimensional. For simplicity’s sake, only one of the twenty-four
3-simplexes in the subdivision of s3 is shown.

TuroreM 5-19. If a geometric complex K has finite dimension n and
has a finite mesh A, then the mesh of its first barycentric subdivision K’
does not exceed the number n/(n + 1) - A.

Proof: Let s* be any k-simplex of K. The barycenter s* of s* has bary-
centric coordinates (with respect to the vertices of s*), each equal to
1/(k + 1). Let (s's*) be any l-simplex of K’ in the subdivision of s*.
Recall that, by definition, s is a face of s* in K. Let the length of (s's*)
be u. If the vertices pg, pi, ..., p; of s* form &, then the remaining
vertices in s, say pit1, . . ., Dr, form a face s*~"~! opposite s°. Now the
line segment from §* to s¥ 77! clearly contains the simplex (§°¢*). The
barycenter §' may be considered to have weight (¢ + 1)/(k -+ 1), while
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§*~~! has weight (k — 2)/(k -+ 1) (as centroids of the vertices). Then
the barycenter §* is the centroid of these two particles. If the length of
the line segment from §' to §~! is p, then we may apply the elementary
law of levers to obtain

(e~ (oo

i+ 1 @—5 k=1
Pl kr P T F T e

or

Since p does not exceed the diameter of s*, we have

k—1 k n
FErTINER TN E AT
Hence no 1-simplex of K’ has diameter exceeding n/(n + 1) - A, and hence
the mesh of K’ cannot exceed n/(n + 1) - X\. []

Having one barycentric subdivision K’ of a complex K, we may continue
the process and subdivide K’, ete. Making k successive subdivisions, we
arrive at the kth baryceniric subdivision of K, which is denoted by K®.

A

TaEOREM 5-20. If the mesh X of an n-dimensional geometric complex K
is finite, then the mesh of K® approaches zero as k increases indefinitely.

Proof: From the proof of Theorem 5-19, we note that the mesh \* of
K® must satisfy the inequality

k
(k)< n
> =(n+1> .

But [n/(n - 1)]* approaches zero as k increases indefinitely. [ ]
We observe that, since the mesh of a finite complex is obviously finite,
the results of this section automatically apply to finite polytopes.

ExgrcisE 5-1. Construct an infinite star-finite complex whose mesh remains
unchanged by barycentric subdivision.

ExercisE 5-2. Construct an infinite star-finite geometric complex K whosc
finite mesh is not the diameter of any simplex in K.

5-6 Simplicial mappings and the simplicial approximation theorem. We
next look at a special class of continuous mappings of one polytope into
another, namely, those mappings which carry simplexes linearly onto
simplexes. Let |K| and |L| be two polytopes with triangulations K and L,
respectively. Denote by f a (possibly many-to-one) transformation from
the vertices of K into those of L, satisfying the condition that if {(pg - « - pn)
is a simplex of K, then the points f(py), . . . , f(pn) (not all necessarily dis-
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tinet) are the vertices of a simplex of L. We make use of a standard device
called baryceniric extension to extend this correspondence into a continuous
mapping, still called f, of the polytope |K| into the polytope |L|.

Let s = (pg - - - pn) be a simplex of K. Each point = of s™ is referred
to (nonnegative) barycentric coordinates with respect to the vertices p;.
Thus we can represent z as (xg, %1, ..., Z,) O, in vector notation (see
Section 5-3), as

n
T =Y % pi Sai=1,
i=0

The continuous extension f can now be defined by setting

(1%

0.

F@ = 7 fpa).
1=0

That is, we use the barycentric coordinates of the point z as the coordi-
nates of its image point f(x) by assigning x; to the vertex f(p;). If it happens
that f(p;) = f(p;), © # j, then the barycentric coordinate of f(x) with
respect to the vertex f(p;) is z; + z;, and so on.

It is easy to verify that the extended mapping f is well-defined at every
point of the polytope |K|. And since the barycentric coordinates of a
point are continuous functions of that point, it follows that the extended
mapping is continuous. The mapping f is called a simplicial mapping and,
as we shall see shortly, such mappings constitute an important class.

In the arguments to follow, we will use the following lemmas, the proofs
of which are left as exercises.

LemMa 5-21. In a Euclidean space EF, let {p,} and {¢.} be two se-
quences of points converging to points p and ¢ respectively. Denote
by Png» the length of the line segment between p, and ¢,. For each n,
let z, be a point on [pn, ¢,). I the limit of d(z,, p.) as n — oo exists,
then there is a point  on Pg such that (1) lim,_ ., d(z,, p,) = d(z, p)
and (2) the sequence {z,} converges to x.

LeEmMMa 5-22. Let vy, vy, . . ., vx be vertices of a star-finite complex K,

and let $t(v;) be the open stars of these vertices in |[K|. Then the vertices

Vo, ¥1, - - ., Vg form a simplex of K if and only if the intersection

Nf_o St(v;) is not empty.

The chief result of this section is stated next, but its proof will be the
end product of several steps.

TuroreM 5-23 (Simplicial approximation). Let |K| and |L| be two
finite polytopes with triangulations K and L respectively, and let f be
a continuous mapping of |K| into |L|. Then, given any positive number
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¢, there exist barycentric subdivisions K* and L* of K and L respec-
tively, and a continuous mapping s of |K| into |L| such that

(1) s is a simplicial mapping of |K*| into |L*|,
(2) for every point z of |K|, d(f(x), s(z)) < € and
(3) sis homotopic to f.

This result will be seen to have important consequences as we proceed.
For the present, we observe that this theorem implies that the simplicial
mappings are dense in every homotopy class of one finite polytope into another.
Use will be made of this property shortly.

If K and L are triangulations of the polytopes |K| and |L| respectively,
and if f is a continuous mapping of |K| into |L|, then we say that K is
star-related to L relative to f provided that for every vertex p; of K there is
a vertex v; of L such that the image f(St(py)) is contained in St(v,-).

TreoreM 5-24. Let |K| and |L| be finite polytopes with triangulations
K and L respectively, and let f be a continuous mapping of |K| into |L|.
If K is star-related to L relative to f, then there exists a mapping s of
|K] into |L| such that

(1) sis a simplicial mapping of K into L,

(2) if = is any point of |K]|, there is a vertex v; of L such that both
f(x) and s(z) lie in St(vj), and

(3) s is homotopie to f.

Proof: Tt is assumed that for each vertex p; of K there is at least one
vertex vj of L such that F(St(py)) lies in St(vj(i)). We may thus define a
correspondence s between the vertices of K and those of L by setting

8(ps) = vjca)-

By assumption, each vertex of K has an image under s [we choose any one
of the possible vertices v;;].

Now let (py - - - pr) be any simplex of K. By Lemma 5-22, the inter-
section Ni—o St(p,) is not empty. Since f(St(ps)) lies in St(s(p;)) by our
definition of s(p,), it follows that Nf—o St(s(p;)) is not empty. Again
from Lemma 5-22, the vertices s(pg), ..., s(px) are those of a simplex
of L. Thus s is simplicial, and by barycentric extension we obtain a
continuous mapping, still called s, of |K| into |L|. It is claimed that this
mapping s also satisfies conditions (2) and (3) of the conclusion of the
theorem.

First, every point z in |K| lies in the interior of some simplex s* of K,
s* taken to be of minimum dimension. This implies that every barycentric
coordinate of z with respect to the vertices of s* is positive, while the
other coordinates of = are zero. If p is any vertex of s¥, then z lies in the
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open star of p. By definition, the image point f(x) i isa point of f (St(p)),
and this lies in $t(s(p)). Therefore f(x) is a point of St(s(p)). But also s(z)
lies in St(s(p)), for the barycentric coordinate of s(x) with respect to the
vertex s(p) is nonzero. Thus the mapping s satisfies condition (2).

It remains to show that s is homotopic to f. That is, we must define a
mapping k:|K| X I' — |L| such that h(z,0) = f(z) and h(z, 1) = s(z),
for each point z of |[K|. Let z be a point of a simplex s* = (pg - - - pk) in
K. Since s is simplicial, s(po), ..., 8(px) are vertices of a simplex s* in L.
Having that f(x) lies in St(s(py)) for each vertex of s*, it follows that f(z)
is a point of Nf_, St(s(p,)), which is premsely the s1mplex s* of L. Having
both f(z) and s(z) in the same simplex s* of L, we make use of the con-
vexity of s* and join f(z) to s(x) by a (unique) line segment in s*. Properly
metrized, this line segment will be the image under a homotopy % of the
line segment x X I' in the homotopy cylinder |K| X I'. In particular,
letting d(f(z), s(x)) = 1, we write in vector notation

h(z,t) = (1 — t) - f(x) + t- s(z).

The continuity of A as defined here is a consequence of Lemma 5-21. [ ]

To prove the simplicial approximation theorem (5-23), we need only
remove the hypothesis in Theorem 5-24 that K and L are star-related
relative to f. To do this, we next replace the triangulations K and L by
barycentric subdivisions K* and L*, L* being chosen to yield the desired
accuracy of approximation and K* being chosen so as to be star-related
to L* relative to f.

Proof of Theorem 5-23: Given any positive number €, Theorem 5-20
assures the existence of an integer n such that the mesh of the nth bary-
centric subdivision L™ of L is less than €/2. This implies that each
St(v), v a vertex of L™, has diameter <e. The collection of open stars
{St(v)} of vertices of L™ is a finite open covering of the compact metric
space |L|. By Theorem 1-32, there is a positive number 5 such that if A
is any subset of |L| of diameter less than n, then A lies in St(v) for some
vertex v of L™.

Next, |K| is a compact metric space, and hence the mapping f is uni-
formly continuous. Thus there exists a positive number & such that,
whenever d(z, y) < 8§, we have d(f(z), f(¥)) < 9. Again using Theorem
5-20, we find that there is an integer m such that K has mesh < /2.
Every star St(p) of a vertex of K™ therefore has diameter <3 and, by
construction, the diameter of f(St(p)) is less than 5. Hence f(St(p)) is con-
tained in ét(v) for some vertex v of L™, That is, K and L™ are star-
related to f. Taking K* to be K and L* to be L™, the proof of Theo-
rem 5-23 follows immediately from Theorem 5-24. [ ]
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5-7 Abstract simplicial complexes. One of the chief reasons for the
introduction of simplicial complexes will be found in the next chapter.
Briefly, a simplicial complex supports an algebraic structure (homology
theory) that has proved to be very valuable. Therefore, with the goal in
mind of utilizing this powerful mechanism in situations not involving a
polytope, topologists were led to a definition of an abstract simplicial
complex. We will not use this concept until Chapter 8, but because we
can and must do so, much of the development of the next two chapters
will be phrased in terms of abstract simplicial complexes.

An abstract simplicial complex K is a pair (U, Z) where U is a set of
(abstract) elements called vertices, and Z is a collection of finite subsets of
U with the property that each element of U lies in some element of = and,
if o is any element of =, then every subset of ¢ is again an element of Z.

Again we distinguish between finite and infinite abstract simplicial
complexes, depending upon whether the set U is finite or infinite. The
dimension of a simplex ¢ is one less than the number of vertices in 6. The
dimension of the abstract simplicial complex K is defined to be the maxi-
mum dimension of the elements of X if such exists; otherwise, K is of
infinite dimension.

We may define the star of a stmplex a, St(g), to be the collection of all
elements in Z of which o is a subset. Hence we again speak of star-finite
complexes. The reader may encounter definitions of a complex (not
usually considered as “simplicial”) in which the elements of the collection
Z are not assumed to be necessarily finite. If this is the case, then one
usually defines a closure-finite complex as follows. The closure of a simplex
o, denoted by Cl(0), is the subcomplex of K consisting of ¢ and all the
faces of ¢. Then a complex K is closure-finite if each closure Cl(o) of a
simplex of K is finite. A complex which is both closure-finite and star-
finite is said to be locally finite. We will not need these latter terms with
our definition (except for star-finite).

The reader will easily prove that every geometric simplicial complex
satisfies the above definition. And a sort of converse theorem may also be
established. To state it, we need a definition. Two (abstract) simplicial
complexes are said to be isomorphic complexes if there is a one-to-one
simplicial mapping ¢ of one onto the other such that the inverse mapping
¢! is also simplicial.

TaEOREM 5-25. Every finite abstract simplicial complex is isomorphic

to a geometric simplicial complex (called a geometric realization).

Proof: Let K = (U, %) be a finite abstract simplicial complex with
vertices vg, ¥1, . . ., Vn. In Euclidean n-space E”, let py denote the origin
and p; denote the unit point on the 7th axis. Clearly, the points py, .. ., p»



214 POLYTOPES AND TRIANGULATED SPACES [cHAP. 5

are pointwise independent and any subcollection of these points forms a
geometric simplex, indeed forms a face of what we might call the standard
n-simplex in E™,

Consider the one-to-one correspondence v; <> p;, 2 = 0,...,n. If a
subcollection vy, . . ., v; of vertices of K forms a k-simplex in Z, then
there corresponds a geometric k-simplex with vertices piy, ..., Py In

this way we build in E™ a complex which is easily seen to be isomorphic to
K by its very construction. [ ]

ExampLE. Let X be a compact Hausdorff space, and let U be a finite covering
of X by open sets. Define K = (U, Z) by taking U to be the collection U and
by saying that a subset Ug, U1, ..., Up of elements of U is a simplex in T
if and only if the intersection Nf—¢ U; is not empty. Then K is an abstract
simplicial complex. (Actually K is not “abstract,” it is quite concrete.) To see
this, we need only note that if Nf—g U; is not empty, then any subcollection
Ujgy - - ., Uy, of the open sets Ug, ..., Up also have a nonempty intersection
and, by definition, must constitute an element of Z. This is not a contrived
example, the idea here is at the base of the Cech homology theory (see Chapter 8).

ExErcise 5-3. Let M be a compact metric space with metric d, and let e
be a positive number. Define K. = (U, 2), where the elements of U are the
points of M and where a finite subset of such points constitutes a simplex in =
if and only if the diameter of the finite subset is less than e. Show that K¢ is a
simplicial complex. This example is also useful and will be seen in Vietoris
homology theory (again see Chapter 8).

5-8 An imbedding theorem for polytopes. We prove here that any
n-dimensional polytope may be imbedded rectilinearly in Euclidean
(2n + 1)-space. This is a special case of the imbedding theorem for
n-dimensional separable metric spaces which we quoted in Section 3-9.

A set of points is said to be in general position in E™ if no r 4+ 2 of the
points lie on an r-dimensional hyperplane, r = 1,2, ..., m — 1. That is,
every subset with less than m 4+ 2 points is geometrically independent.

TreorEM 5-26. Let {xy, x5, . . .} be any finite or countably infinite set
of points in E™, and let € be any positive number. Then there is a set
{y1, Y2, . . .} of points in general position in E™ such that, for each
1= 1,2, ..., the distance d(z;, ;) < e

Proof: Take y; = x;. Suppose that y1, ¥, . . ., yx—1 have been chosen
to satisfy the desired conditions. Then one may choose yi to be any point
in the spherical neighborhood S(xx, €) such that y; does not lie on any of
the finitely many hyperplanes determined by all subsets of

{yy, y2, - -y ye—1}. O

ExErcist 5-4. Prove that there exists a dense set of points in general posi-
tion in E™.
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The following lemma, is needed in our ensuing argument, but we may
leave the proof as an easy exercise.

Lemma 5-27. If two star-finite geometric complexes K; and K, are
isomorphic, then their polytope carriers |K;| and |K;| are homeomorphic.

TaeorREM 5-28. Let |K| be an n-dimensional polytope with a triangula-
tion K. Then |K| may be imbedded rectilinearly in E?**1. Further-
more, |K| may be imbedded as a closed subset of E2"1,

Proof: In view of Lemma 5-27, it suffices to construct in E?**! g geo-
metric complex isomorphic to K. If this is done in such a way that no
bounded region in E?""! contains more than a finite number of vertices
of the new complex, then the resulting polytope will be closed in E2*t1,

Let vy, 05, . .. be an arbitrary ordering of the vertices of K. To each
vertex v, we assign the point (k, 0, ..., 0) in E***1 Applying Theorem
5-26 with € = 3, we obtain a set {yy, ¥s, . . .} in general position in E?**1!,

These points will be the vertices of a complex isomorphic to K, and the
manner in which they are chosen clearly implies that at most a finite
number of these vertices lies in any bounded region.

Now if {vs - - - v;,) is a p-simplex of K, p < n, we form the p-simplex
Wi =+ Yi,) in E 2nt1 " If we show that the resulting collection of simplexes
forms a complex, then the argument will be complete, for the isomorphism
will be obvious. To this end, let

ST = (Yip* * " Yip_1Yip " * * Yip)
and

r

S = (Yo" * * Yip_1¥ip " * " Yir)

be two simplexes with the face

7= (Wio Yipy)

in common. Suppose that there is a point in s N s* — s?~!. Then z is
not in the hyperplane containing s? ! because the intersection of a simplex
with the hyperplane containing one of its faces is that face alone. Hence
we may construct the p-dimensional simplex (zy,, - - - Yi,_,) Which, by
convexity, must lie in both s? and s". The hyperplanes containing s? and
s", which are g-dimensional and r-dimensional respectively, contain in
their intersection the p-dimensional hyperplane determined by (xys, *

Yip_y). Hencethe (g + 1) + (r + 1) — ppoints iy, . . ., Yiyy Yipr - - - » Y
all lie on a hyperplane with dimension not exceeding ¢ + r — p. Then,
since g +7r+2 —p < qg+7r+2 < 2n+ 2 we have a contradiction
of the fact that the vertices y; were taken to be in general position. []
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(a) (b)

Fie. 5-6. Primitive skew curves.

Flores [77] has shown that the complex consisting of all faces of dimen-
sion < n of a (2n + 2)-simplex s2"*2 (the n-skeleton of s?"*2) cannot be
imbedded in E2*. This example indicates that the dimension 2n -+ 1 in
Theorem 5-28 cannot, in general, be reduced.

In this connection, it is of interest to note that Kuratowski [94] has
shown that a polytope may be imbedded in the plane if and only if it does
not contain a subset homeomorphic to either of the primitive skew curves
which we picture in Fig. 5-6. Note that Fig. 5-6(a) is precisely Flores’
example for n = 1.

Exzereisk 5-5. If the points po, ..., px are pointwise independent in E",
then show that every subset of these points is also pointwise independent.

ExERcISE 5-6. Show that the points p; = (x’i, xg, L2, 1=0,1,...,
k < n, are pointwise independent if and only if the following matrix has rank

k4 1:

0 0
21, ...y, Zn 1
k k
i, cevy, Zmy 1
ExErcise 5-7. Let s* be a k-simplex with vertices po, ..., px. Letao, ..., ax

be distinct points of E", and let f:s* — E™ be the barycentric extension of the
correspondence p; — @;. Show that f is an imbedding if and only if the points
ag, . . ., a are pointwise independent.

ExERCISE 5-8. Prove that the intersection of two finite polytopes in some
Euclidean space is again a finite polytope.

ExERCISE 5-9. Prove that the convex hull of the difference of two finite
polytopes in some Euclidean space is again a finite polytope.

Ex©ercisE 5-10. Let 4 and B be convex regions in E™ and E", respectively.
Show that A X B is a convex region in Em+",
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ExEerorse 5-11. Show that a minimum triangulation of I* contains n!
n-simplexes.

ExErcise 5-12. Show that the 3-sphere S3 is a union of two solid tori.

ExERrcisE 5-13. Prove that the barycentric subdivision of a pseudomanifold
(see Exercise 6-15) is a pseudomanifold.

Exercise 5-14. Prove that every nonempty open set in E™ is an infinite
complex.

Exercisk 5-15. Apply the simplicial approximation theorem to prove that
there is only a countable number of homotopy classes of mappings of one
finite polytope into another.



CHAPTER 6
SIMPLICIAL HOMOLOGY THEORY

6-1 Introduction. Homology theory is essentially an algebraic study
of the connectivity properties of a space. In Chapter 4, we introduced
one such device, the homotopy groups, 7,(Y). Although they are appeal-
ing intuitively, the homotopy groups are difficult to calculate even for
comparatively simple spaces. The simplicial homology groups developed
in this chapter permit us to answer questions about connectivity similar
to those answered by means of homotopy groups. And the simplicial
homology groups are computed by almost mechanical methods. On the
other hand, the difficulties in homology theory are found in the under-
lying structures and the combinatorial approach which, for the beginning
student, seems to disguise the motivation for an inordinate length of time.
We try to alleviate this situation with this lengthy introduction.

Historically, the study of topology developed in two major branches,
the point-set topology, which we have examined already, and the com-
binatorial study of connectivity, which we are about to begin and which
was originated by Poincaré [113]. The unification of the two areas of
interest has been under way for a generation and is still not complete.
Even today, one hears of point-set topologists as distinguished from
algebraic topologists.

This book follows a pattern derived from history. Having a background
in point-set topology, we now introduce a radical change in our approach.
Where we have studied certain point-set invariants of topological map-
ping, we now turn to algebraic invariants. For a brief and well-organized
history of this topic, the reader is referred to “The sphere in topology”
by R. L. Wilder [132].

To help the beginner keep sight of the forest, we will discuss at some
length the 2-dimensional torus 7' pictured in Fig. 6-1. Our aim in this
discussion is to explain the geometric significance of the purely algebraic
concepts to be formulated shortly. First, look at T from the point-set
standpoint. Clearly, this surface is a compact, connected and locally
Euclidean metric space. It is also locally connected, etc. Of course, all
such information above does not characterize the torus. All of these facts
are also true of the 2-dimensional sphere as well. Suppose that our goal
is modest, namely, that it is to distinguish topologically between T and S2.
How might it be done?

An immediate answer can be given by computing the fundamental
groups of 7' and S%. It turns out that the group m1(S?) is a trivial group
whereas m1(T) is not (such a curve as Z in Fig. 6-1 cannot be shrunk to a
point in T). Thus we already have knowledge that suffices to distinguish

218
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Ficure 6-1

between a torus and a 2-sphere. Let us proceed, however, to give further
study to the torus.

Envisioning a 2-sphere, it is intuitively obvious that any closed curve
on the surface forms the boundary of a portion of the sphere. Or in equiv-
alent terms, any closed curve on S? disconnects S2. The same is not
true of the torus. For cutting along the curve Z in Fig. 61 does not dis-
connect the torus. This implies that the curve Z is not the boundary of a
portion of T. Of course, there are closed curves, such as B in Fig. 6-1,
which are boundaries. The curve B may be considered as the boundary
of either the shaded disc or of the complement of that disc in 7'

Because the intuitive idea of a closed curve includes the notion that it
“goes around something” and because it is 1-dimensional, we will tempo-
rarily and imprecisely refer to any closed curve such as B or Z in Fig. 6-1
as a I-dimensional cycle on T. Note that while we have pictured only
simple closed curves on 7', we do not so restrict our cycles. Those special
cycles, such as B, that bound a portion of the torus 7' do not tell us much
about the structure of the torus in the large. We will merely call them
bounding 1-cycles and ignore them. It is the nonbounding 1-cycles, such
as Z, that interest us.

There is obviously an uncountable number of such nonbounding 1-cycles
on the torus. By utilizing simple notions, we will reduce this cardinality
drastically. First, the two cycles Z; and Z, shown in Fig. 6-2 are not

Ficure 6-2



220 SIMPLICIAL HOMOLOGY THEORY [cuap. 6

intrinsically different since they both go around the torus once latitudinally.
More to the point, however, is the fact that taken together they form the
boundary of a portion of the torus (e.g., the shaded cylinder).

The idea of taking two cycles together should suggest that we can
introduce an operation of addition of cycles. For our temporary purposes,
then, let us extend the definition of a I-cycle to include the point-set
unions of finitely many closed curves. In this way the operation of union
gives us a well-defined addition of two cycles. Looking at Fig. 6-2 in this
light, we see that Z; + Z, is a bounding 1-cycle. We are led to a natural
method of expressing such a relation between two 1l-cycles, namely, by
means of an equivalence relation. We will say that a cycle Z, ts homologous
to a cycle Z, (abbreviated Z; ~ Z,) if Z, + Z 1s a bounding cycle.
The reader will find it difficult to do precisely, but forgetting rigor he may
verify that this is indeed an equivalence relation.

Tt should be noted that this definition of the addition of cycles implies
that for any l-cycle Z, Z + Z is a bounding 1-cycle. For having two
copies of such a cycle Z, as in Fig. 6-3, we may use one as the boundary
of each “side” of the cut made along Z in the torus, as in Fig. 6-3. The
reader is warned that this situation is not true in the general definition given
in Section 6—4.

Furthermore, a closed curve such as Z; in Fig. 64, which passes around
the torus twice, is a bounding cycle in the present situation. And if Z is
any l-cycle passing around (latitudinally) just once, then we have
Z, ~ Z + Z. To see this, look at the 1-cycles Z’ and Z", both homologous
to Z, in Fig. 6-4.

All this implies that any purely latitudinal cycle on the torus is either a
boundary (if it passes around 7' an even number of times) or is homologous
to Z in Fig. 6-1 (if it passes around T an odd number of times). Similar
reasoning applies to the purely longitudinal cycles, so we now have two
major equivalence classes of cycles (three, if we wish to include the trivial
class of all boundaries). But as the cycle Z in Fig. 6-5 illustrates, a cycle
can pass around the torus both latitudinally and longitudinally.

Such a cycle, however, is not new. It is homologous to the sum of
two cycles, Z, and Z,, one from each of the previously discussed classes.
To show this, we have cut the torus along a latitudinal cycle Zy and a
longitudinal cycle Z; to form a rectangle as in Fig. 6-6. The cycle Z
of Fig. 6-5 now appears as the diagonal labeled Z. We readily see that
7 ~ 71 -+ Zy since the sum Z + Z; + Zs is a boundary (of the shaded
triangle, for instance).

Arguments such as these show us that we need consider but two essen-
tially different 1-dimensional cycles on the torus, a result which implies
that the 1-dimensional Betti number of the torus is 2. This corresponds to
the intuitive notion that there are two “holes” in a torus.
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Ficure 6-7

It might be well to note that apparently the “generators” of the homology
classes of cycles discussed above are among those of the homotopy classes
of the fundamental group of the torus. Indeed, this is true. However,
the two types of equivalence classes, homotopy and homology, are not
equivalent in general. To see this, consider the following example. In
Fig. 6-7, we picture a torus from which an open disc has been removed.
Now, as far as our homology classes are concerned, that “hole” is in-
visible. That is, there are still just two homology classes of 1-cycles.

The 1-cycle Z bounding the hole is actually the boundary of the rest
of the torus as well. Hence Z is a bounding cycle. On the other hand,
this hole is visible from the homotopy standpoint. For, although it is not
easy to visualize, it is impossible to deform the simple closed curve Z in
Fig. 6-7 to a point, while staying on the torus. It should be clear then
that, in some way, the homotopy groups are more discerning than are the
homology groups. More precise relations between the homotopy and the
homology groups will be mentioned in Section 8-5.

In our development in this chapter, homology theory will be based upon
an algebraic structure placed upon a simplicial complex. This seems to
limit us to a consideration of polytopes only. For the present this will
be the case, but the restriction is not so severe as it may seem. Many
interesting spaces admit of a triangulation, and for many others we have
suitable limiting processes (e.g., Cech homology, Chapter 8) that yield
a homology theory.

6-2 Oriented complexes. As we know from analytic geometry, the
concept of a directed (oriented) line segment allows the introduction of
algebraic methods into geometry. In an analogous manner, the oriented
stmplex permits the use of algebraic tools in our study of complexes. We
will gain generality by phrasing our definitions in terms of abstract simpli-
cial complexes, but most of our early examples will be taken from the
geometric complexes. This is done to attain our double goal of explaining
the geometry underlying homology theory while being sufficiently general
to permit the necessary extensions later.
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An oriented simplex is obtained from an abstract p-simplex
(o« vp) = o7

(see Section 5-7) as follows. We choose some arbitrary fixed ordering of
the vertices vg, vy, . ..,v,. The equivalence class of even permutations
of this fixed ordering is the positively oriented stmplex, which we denote
by —+o7?, and the equivalence class of odd permutations of the chosen
ordering is the negatively oriented simplex, —a®. For example, if (vgv;) =
40!, then (v1vo) = —o!. For a geometric simplex s' = (pp;), orienta-
tion is equivalent to a choice of a positive direction on the line segment.
Again, if we have chosen to let (vov;vs) represent 402, then (v,v50¢) and
(vovov1) also represent o2, while (v,vgvs), (ovov1), and {vevyvy) each
represents —o2. For a geometric simplex s = (pop1ps), orientation is
equivalent to choosing a positive direction of traversing the three 1-faces
of s2. We note that (pop;p2) and (p1pop2) are opposite cyclic orderings
of the vertices py, p1, and ps and correspond to opposite directions of
traversing the boundary of the 2-simplex.

An oriented simplicial complex is obtained from an abstract simplicial
complex by choosing an arbitrary fixed orientation for each simplex in
the complex. This may be done without considering how the individual
simplexes are joined or whether one simplex is a face of another. One
automatic method of orienting a complex (which is not necessarily the
most efficient method) is to decide upon a fixed ordering of the vertices
of the complex and let this ordering induce the positive orientation of
the simplexes in the natural way. We will use this method in several
examples.

Basic assumption. Every complex we consider henceforth will be
assumed to be oriented whether or not the adjective oriented is used.

6-3 Incidence numbers. Given an oriented simplicial complex K, we
associate with every pair of simplexes ¢™ and ¢™ !, which differ in dimen-
sion by unity, an sncidence number [6™, 6™ '] defined as follows:

™ ™11 =0 if ¢™!is not a face of ¢™ in K
[e™ 0™ 11 = 1 if o™ !isaface ofe™in K.

To decide between +1 and —1 in the case where 6™ ! is a face of 6™, we
note that if 6™ = (vg -+ - - v,), then +a™ ! = £ {vg---0;--v,,) (recall
that the circumflex accent denotes the omission of the vertex v;), where
the orientation of ¢™~! determines the sign. If 4o™ ! = +{vg---
#;+ + + vm), consider the oriented simplex (v« - d;- - - v,,). This is either
+6™ or —o™; if it is +0™, we take the incidence number {¢™, 6™ !] to be
+1, and if {iwg -+ 0;+ - vm) = —0™, we take [6™,6™ ] = —1. Again,
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if (ogvy B vmy = —a™ L then [6™ 6™ 1 = —1 if (wg---
fivoevpmy = +o™ and [6™, 6™ ] = +1if g+« Di-+-vp) = —a™.

If [o™, 0™ 1] = -1, then 6™ ! is a positively oriented face of 6™, and if
the incidence number is negative, then 6™~ ! is a negatively oriented face
of 6. The choice of a positive ordering of the vertices of ¢™ clearly
induces a natural ordering of the vertices in each face of ¢™. Thus an orien-
tation of ¢™ induces a natural orientation of its faces. The definition
above amounts to this: if 6™ ! is a face of ¢™, then the incidence number
o™, d™~!] is positive or negative depending upon whether the chosen
orientation of ¢™~! agrees or disagrees with the orientation of ™!
induced by that of ¢™.

ExampLe. If +02 = (voviv2) and +o! = {(v1v2), then it is easily verified that
[{vovive), (vive)] = +1. But if +o! = (vav1), then we have [{vovive),{vov1)] =
—1. For, inserting the missing vertex vo in front of ¢, we have {vov1v2) = 02
in the first case and (vovve) = —o?2 in the second. The reader should work out
a number of similar examples for higher-dimensional simplexes.

The oriented simplicial complex K, together with the system of incidence
numbers [¢™, 6™ 1], constitutes the basic structure supporting a simplicial
homology theory. We develop this next. First, however, note that for
each dimension m, we may associate with K a matrix ([o]", a7~ ]) of
incidence numbers, where the index 7 runs over all m-simplexes of K and
the index j runs over all (m — 1)-simplexes. A study of this system of
incidence matrices would yield the connectivity properties we wish to
investigate. This technique was commonly used in the early days of
“combinatorial” topology, but we do not develop it. The group-theoretic
formulation to be introduced below evolved slowly during the decade
1925-1935 and seems to have been first suggested by E. Noether.

One basic property of the incidence numbers is needed.

TaeorEM 6—1. Given any particular simplex o of an oriented simplicial
complex K, the following relationship among the incidence numbers
holds:
>l or Y e 0 = 0.
¥
Proof: Every (m — 2)-simplex (vg-«-0g-- By vn) in ¢™ is a face
of exactly two (m — 1)-faces of ™. Hence the sum

m

Z[(L'O"‘v'm>: (o Di--vm)] - [Wo- 05+ vm), Wor=-Bp-v0p++ )]

i=0
= [vo+vm), Wor* B vm)] - [(or - r-vm), Vo~ -"

e

'ﬁl"'vm>]

>
=

+ [o- - omdy o B0 o] o=+ B0+ ), (oo Do+ B0+ o).
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There are several cases to be considered. First, if

A

—.l_(vo...ﬁk...vm):<vlvo...f)k...vl...vm>
and
+<vo...vm> — (vkvlvo...ﬁk...ﬁl...vm>’

then the first term of the above sum is (4+1)(-+1). Then there are two sub-
cases:
G) If

oo B vm) = (kg By o),

then we have
<vlvkvo"'ﬁk"'ﬁl“'vm> — _<vo...vm>

and the second term in the sum is (—1)(+1).
(i) If
<vk00"°ﬁk”'ﬁl"'vm> —_— _<U0"’ﬁl"'vm>;

then the second term in the sum is (-+1)(—1).
Thus in either subease the sum is zero. The remaining cases are handled
similarly. []

6-4 Chains, cycles, and groups. Let K denote an arbitrary oriented
simplicial complex, finite or not, and let G denote an arbitrary (additively
written) abelian group. (There will be no essential loss of generality if
the reader always thinks of the additive group Z of integers whenever we
say “arbitrary abelian group.”) We make the following definitions. An
m-dimenstonal chain on the complex K with coefficients in the group G is a
function c,, on the oriented m-simplexes of K with values in the group
@ such that if ¢,,(+0™) = ¢, g an element of G, then ¢, (—0™) = —g. If
K is infinite, then ¢,,(6™) = 0, the identity element of G, for all but a finite
number of m-simplexes of K. The collection of all such m-dimensional
chains on K will be denoted by the symbol C,,(K, G).

We introduce an addition of m-chains by means of the usual functional
addition. That is, we define

(em + em)(0™) = cn(@™) + ca(d™),
where the addition on the right is the group operation in G.

TueoreM 6-2. Under the operation just defined, C,,(K, &) is an
abelian group, the m-dimensional chain group of K with coefficients in G.

The reader may prove Theorem 6-2 merely by verifying the axioms for
an abelian group.

If the complex K has no m-simplexes, we take C,, (K, G) to be the trivial
group consisting of the identity element 0 alone and write C,,,(K, G) = 0.
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An elementary m-chain on K is an m~chain ¢,, such that ¢,,(&07) = 2=go
for some particular simplex g5 in K and ¢,,(¢™) = 0 whenever o™ £ =407
Such an elementary m-chain will be denoted by a formal product g¢ - g7
Then an arbitrary m-chain ¢,, on K can be written as a formal linear com-
bination X g; -6}, where g; = cn(+07) and all but a finite number of
the coefficients g; are zero. This notation explains the use of the word
coefficient. Actually, this notation conveniently tabulates the function
¢ in such a way that the addition of such functions is the addition of
linear combinations. We use this presentation of chains throughout our
subsequent development.

TueoreEMm 6-3. If K is a finite complex and «,, is the number of m-
simplexes in K, then the chain group Cn, (K, G) is isomorphic to the
direct sum of a, groups, each isomorphic to the coefficient group G.
If K is infinite, then C,,(K, ) is isomorphic to the weak direct sum of
infinitely many isomorphic copies of G.

Proof: If K is finite, then the correspondence

Egi'o'rin(—) (giy- . "g&m)

i=1
is the desired isomorphism, as is readily checked. A similar argument will
handle the infinite case, simply recalling the definition of a weak direct
sum. [_]

The result describes the chain groups completely, but so far there seems
to be little if any geometric meaning in our development. This will be
corrected shortly, both by the subsequent definitions and by examples.
First, we introduce an algebraic mechanism that corresponds to determin-
ing the boundary of a portion of a complex. The boundary operator 9 is
defined first on elementary chains by the formula

3go- o) = Y, lo5, 0™ - go- 0™,

m—1
o

where [67', 0™~ !] is the incidence number. We note that d(go - 07) is an
(m — 1)-chain which has nonzero coefficients only on the (m — 1)-faces
of the simplex 6. The above definition of 9 is extended linearly to arbi-
trary m-chains by setting

3 <; gi a’?) = Zi:a(gi' o).

It is easy to see that the boundary of an m-chain is an (m — 1)-chain
which depends only upon the m-chain itself and not upon the complex
on which the m-chain is taken. (The situation here is just opposite to that
found in cohomology theory, as we point out in Section 7-9.)
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The fundamental property of this boundary operator is expressed in
the next result.

TaEOREM 6—4. For any chain ¢, in C,,(K, @), d(dcy,) = 0. That is,
3(dcy,) is the (m — 2)-chain with value zero on each (m — 2)-simplex.

Proof: It suffices to prove the theorem for an arbitrary elementary
m-chain gq - 65. For such a chain,

a(a<go-a’3>>=a<2[oa",o,~ . go- o *)

T

= 23[00, a7 go- 07!
Z(Z[‘TO; |l 2] go- 07 2)
= 2 (08, 07 Mo, 07 " go - 7R

Then Theorem 6-1 applies to complete the proof. []
The reader may prove the next result easily.

TaeoreEM 6-5. The boundary operator o defines a homomorphism,
which we still denote by 9, of the group C,(K, @) into the group
Cn—1(K, G).

This result holds for each dimension m > 0 if we take @ to be the
obvious trivial homomorphism in dimensions for which K has no simplexes.
The case m = 0 will be treated later in Section 6-6.

In analogy to the intuitive discussion of eycles in Section 6-1, we now
define for m > 0 an m-demensional cycle on K with coefficients in G to be a
chain z,, in C,, (K, @) with the property that d(z,,) = 0, the (m — 1)-chain
30-07"". The collection of all such m-cycles is precisely the kernel of
the homomorphism 9 in the group C,,(K, G) and hence is a subgroup of
Cn(K, @). This subgroup is the m-dimensional cycle group of K with co-
efficients in G and is denoted by Z,(K, ). Also we define a chain b,
in C(K, G) to be an m-boundary if there is an (m 4 1)-chain ¢,,; in
Cm+1(K, @) such that d(cm41) = bm. The collection of all m-boundaries
is the image dC, 1 (K, G) of the group Cp,4+1(K, @) in C,,(K, G) under the
homomorphism 8. This subgroup of C,,(K, @) is denoted by B, (K, @), the
group of m-boundaries of K with coefficients in G.

Since, for any chain ¢,,11, the (m — 1)-chain 9(dcm41) = 0, it follows
that any m-boundary b,, has boundary d(b,) = 0 and hence b,, is an
m-cycle. This implies that B, (K, G) is a subgroup of Z,(K, G). As sub-
groups of the abelian group C,.(K, G), both B, (K, @) and Z,(K, Q) are
abelian groups. Therefore we may define the (additively written) factor
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group Zn(K, G) — B,(K, G), which is called the mth homology group
of K over G and is denoted by H..(K, G).

Each element of H,(K, @) is an equivalence class [2,] of m-cycles
where z}, and 22, are in the same class if and only if the chain 2, — 22 s
an m-boundary This equivalence relation is called homology and is written
2L ~ 22,. (We could have defined this equivalence relation first and then
taken H,(K, G) to consist of the collection of equivalence classes under
the natural addition.)

We have reached our first goal in this section, namely the general defini-
tion of the homology groups of a complex K. Next, we give examples to
illuminate the geometric content of these algebraic formulations. We will
be quite precise in these examples.

ExampLE 1. Let K be the complex consisting of a single 3-simplex o together
with all of its faces. [This is the closure of a simplex o3 and is denoted by “Cl(a3).”]
We will orient the complex K by choosing a fixed ordering of its vertices, vo, v1, v2,
and v3, and letting this induce the positive orientation of the simplexes. In this
way, we have the following list of (representatives of) the oriented simplexes
of K:

tol = (aws),  +ol = uaws),  +0° = (vovivavs),
+ob = (ows), 405 = (vovzvs),

+oi = (wovs), o3 = (voviva),

toi = (iv2),  +oi = (vovva),

+o3 = (vova),

—{—0'2; = (1)01)1>~

(We omit consideration of dimension zero temporarily.)

Now let G be any abelian group. The only 3-chains on K are the elementary
chains ¢ - 3, hence the chain group C3(K, @) is isomorphic to G. Since there are
no 4-simplexes in K, C4(K, G) = 0, and hence B3(K, @) = 9[C«(K, G)] =
It follows that H3(K, @) = Z3(K, @). Butlet g - ¢ be any 3-chain. Computing
its boundary we have

4
ag- o) =D [o° ol g ol
i=1

Il

I

2
=g 0 —g-ob+g-os —g- i

[It is easy to show that, in the present case, (08, af] = (—1)¥*t1] This chain
is the zero 2-chain if and only if ¢ = 0. Therefore, the only 3-cycle on K is the
trivial 3-cycle 003, Hence Z3(K, @) = H3(K, G) is trivial. This illustrates
one situation in which we obtain a trivial homology group, namely, by having
no cycles except the trivial cycle.

Another situation that results in a trivial homology group occurs when every
eyele is a boundary. For if Z.(K, @) = Bx(K, G), then Z,, — By = Hyn =
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This situation can be illustrated with this same example. Suppose that the
2-chain Z?=1 gi* a% is a 2-cycle. Computing its boundary, we have

4 4
] (Z g:- cr?) Ea(gi o?)
=1 7=1

4 6
= > > ot o3lgi- o)

T j=

1
4
1
( ‘71; ‘TJJg > j'
1 1=1

If this is to be the zero 1-chain, then for each fixed index j the sum

4
§ : ‘71,: G'J] gi
1=1

must be zero. For instance, for 7 = 1 we have

I’
-

Mc:

)

(o1, ollgr + 03, allgz + (03, ollgs + [03, oilgs = O.

But al is not a face of 03 and 04, so the last two terms are zero. Furthermore,
(o3, ol] = +1 and [02, o1] = +1, and hence this cquation reduces to nothing

more than g1 + g2 = 0 or g2 = —g;. Similarly, working with 06 we obtain
g4 = —¢3 and working with 03 we show that g3 = g2. This means that
Zf_l g,a2 can be a 2-cycle only if g1 = g3 = —g2 = —g4; that is, the only

2-cycles are of the form ¢ - "1 —g- 02 +g- 03; —g- ai But we have already
seen that such a 2-cycle is the boundary of the 3-chain g-¢3. Hence every
2-cycle on K is a 2-boundary, and it follows that He(K, @) =

By an analogous but much longer method, the reader may prove that
Z1(K, @) = B1(K, @) and thereby show that Hi(K, @) is also trivial. [We
will consider Ho(K, @) in Section 6-6.] Geometrically, the complex K is carried
by a homeomorph of the 3-cube I3 and is a 3-cell. Granting that the homology
groups are topological invariants, we have found that the homology groups of a
3-cell are trivial for dimensions greater than zero.

ExampLE 2. Consider the complex consisting of all 2-simplexes, 1-simplexes
and 0-simplexes that are faces of a single 3-simplex (which is not in our complex).
Geometrically, this is the surface of a tetrahedron, a homeomorph of the 2-sphere,
and we will denote it by S2. The complex S2 is precisely the 2-skeleton of the
complex K in Example 1, and we orient it just as we did before, simply omitting
o3. Since the property of being a 2-cycle does not depend upon the existence of
3-simplexes at all, the work in Example 1 shows that the only 2-cycles on S2 are
chains of the form

2 2 2 2
g:-o1-—g-o2+g-03 —g-o4.

This implies that Z2(S?, @) is isomorphic to G. Since there are no 3-simplexes
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in 82, the chain group C3(S2, @) = 0, and hence B2(S?, @) = 3[C3(S%, @)] = 0.
Therefore H2(S2, @) = Z2(S?, @) is isomorphic to G.

It has already been pointed out that Hi(K, ¢) = 0 in Example 1. Now
any l-chain on S2 is certainly a l-chain on K, and the boundary relations
are the same in both cases if we deal with dimension 1. Hence we have also
Hi(82, @) = 0. (Again we temporarily omit dimension zero.) We have proved,
then, that for m = 0 or 2, H,(S%, @) = 0, while for m = 2, H,(82, G) is iso-
morphic to G. The cases for m > 2 follow from the fact that the chain groups
are trivial for dimensions above two.

ExaMpPLE 3. We return to the torus and make rigorous the intuitive discussion
of Section 6-1. First, the surface must be triangulated. That is, we must con-
struct a geometric simplicial complex 7' whose carrying polytope |T'| is homeo-
morphic to a torus. We make use of the process of identification here. If we
identify a pair of opposite edges of a rectangle as shown in Fig. 6-8, we
obtain a cylinder (Fig. 6-8b). Then we identify the opposite ends of the cylinder,
maintaining orientation of these circles as we do so (Fig. 6-8c). Then, as in
Fig. 6-8, we obtain a torus.

This leads us to construct the complex T as a plane rectangle and to so label
the vertices that this identification process is clearly indicated. Figure 6-9 is
such a complex T'.

(a) (b)

(o) ()

FiGure 6-8
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L) U1 ) %
g U7 U8 g
vy U4 U5 U3

Yo U U2 Yo
Ficure 6-9

Remark: The above is not a minimal triangulation of the torus. (See Exer-
cise 6-36.)

To proceed with our example, let T have the orientation induced by the given
ordering of the vertices. There are eighteen 2-simplexes, which we number
as follows:

+ol = (vovwvs),  +o3 = (wovsvs), Foi = {vivavs),
+oi = (wava),  +oi = (uwsvs), -+ = (vovavs),
+o7 = (vaverr), o8 = (vavave), +o5 = (vavrs),
+ofo = (vavsvs),  tol1 = (svevs), otz = {vavsve),
+ols = (vovwve),  +oia = (uvevr),  tois = (vevrvs),
+ole = (vars),  +oir = (vovavs),  +ois = {vovevs).

Now suppose that the 2-chain Y 12, g;- o7 is a cycle. Then it must have zero
boundary, and computing the boundary we have

18 18
) (z: " ) 3 0. o
i=1 =1

gi- {viva) — gi- {vova) + g1+ {vov1) 4 - - -
+ g13 - (v1ve) — g1 - {vove) + g1 - wov1) + - - -

Since the 1-simplex (vov1) is a face of only the 2-simplexes o3 and o3, its co-
efficient in this sum is precisely g; + g13. But for the 2-chain to be a cycle, its
boundary must assign coefficient zero to each 1-simplex. Therefore, we must
have g13 = —g1. In a similar way, we can show that each g;, ¢ ¥ 1, is either
—+g1 or —g1. It follows that Zo(T, @) is isomorphic to G. Since there are no
3-simplexes in T, we have Bo(T, G) = 0, and hence Ho(T, @) = Zo(T, @) = G.

A computation of Z1(T, @) and Bi(T, @) is tediously long and we will omit it.
The reader may easily verify the following facts, however. (1) All chains of the
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U3

Y2
Yo

Uy

Ficure 6-10

form g - (vov1) -+ g - (vive) — g - (vov2) are nonbounding l-cycles, and (2) all
chains of the form g - (vovs) -+ g - (vsve) — ¢ - {vove) are nonbounding 1-cycles.
A more difficult exercise involves proving that (3) a cycle of the form (1) is not
homologous to one of the form (2) and that (4) every nonbounding 1-cycle on T
is homologous to a sum of two 1-cycles, one of the form (1) and the other of the
form (2). As will be seen in Section 6-5, these facts imply that H1(T, &) is
isomorphic to the direct sum ¢ @ G.

Before studying the structure of homology groups, we may profitably
examine a particular coefficient group. The use of Z5, the group of integers
modulo 2, as the coefficient group permits a strongly geometric interpreta-
tion of homology theory. To retain this geometric flavor, let us temporarily
limit our consideration to a geometric complex K. As it turns out, we need
not orient K for mod 2 homology theory.

As should be expected, a p-chain mod 2 on K is a function on the
p-simplexes of K with values 0 and 1, the value 1 occurring only for a finite
number of p-simplexes. But now we may picture such a p-chain simply
as the point-set union of those p-simplexes of K that are assigned the
value 1 by the p-chain. For instance, Fig. 6-10 corresponds to the 1-chain
1ogv1) + 1{vevz) + 0{weva) + 0(u1va) + 0vyw3) + 0(vovs), the heavy seg-
ments being the 1-simplexes which have the coefficient 1 in this chain.

Addition of p-chains is again done componentwise, the addition of the
coefficients taken modulo 2. This operation has a geometric interpretation,
too. For example, if ¢; and ¢f are 1-chains mod 2 and correspond to point
sets C and €’ in the 1-skeleton of K, then the sum c¢; + ¢ of the two 1-
chains corresponds to the closure of the symmetric difference of the sets
C and C’. [The symmetric difference of two sets A and B is theset
(A —B)u(B— A) = (AUB) — (ANB)] In Fig. 6-11, we show
a pictorial equation illustrating this addition.

Since —1 is congruent to 41 modulo 2, the incidence numbers [s?, s?7!
may be taken to have only the values 0 and 1, the value 1 occurring if
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Figure 6-11
s?~! is a face of s? and the value 0 occurring otherwise. More simply
yet, the boundary operator d can be defined directly without using the
incidence numbers. (This is why we need not have oriented the complex
K.) For an elementary p-chain mod 2 we set

30-s") =0 and a(l-s? Z noi L,

where 7; = 1 only if s? " is a face of s?. It is easily seen that the chain
d(1 - sP) corresponds geometrically to the point-set boundary of the simplex
s?.  Extending this definition linearly to arbitrary p-chains mod 2, a
boundary d(c,) corresponds to the point-set boundary of the union of
p-simplexes corresponding to c,.

The required property d9 = 0 of this boundary operator is even easier
to establish than for the general boundary operator. Each (p — 2)-
simplex s?72 in a p-simplex s? is a face of exactly two (p — 1)-simplexes,
say s?! and s?71. In a(1 - s?), both s~ ' and s,_ are assigned coefficient
1. Thus in 93(1 - s?), s*»~2 is assigned the value 1 from s?~! and from

?~1 The coefficient of s* 2 is therefore 1 + 1 = 0 mod 2. Geometrically,
this corresponds to the fact that the (point-set) boundary of a boundary
is empty.

We proceed as before to define the mod 2 cycle group Z,(K, Z,) to be
the kernel of @ and the mod 2 boundary group B,(K, Z5) to be the image
A[Cp41(K, Z5)]. Since 90 = 0, By(K, Z,) is a subgroup of Z,(K, Z5),
and hence we may define the mod 2 homology group H,(K,Z3) =
Zp(Ky Z2) - Bp(Kr Z2)

It might well be asked why, if mod 2 homology theory is so very geo-
metric, we do not use this theory exclusively. The reasons for not limiting
ourselves to coefficients mod 2 will appear in remarks and examples in the
next section. Meanwhile, the reader may verify that our intuitive dis-
cussion in Section 6-1 is precisely mod 2 homology theory. Exercises on
mod 2 homology theory will appear in Section 6-5.

ExEercise 6-1. Let S! denote the complex consisting of all 1-simplexes and
0-simplexes in a given 2-simplex. Determine H,(S!, @) for all p > 0.
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Exgerciskt 6-2. Let € be a finite cylinder formed by identifying a pair of
opposite edges of a rectangle (as was done in Fig. 6-8 for the torus). Compute
H,C, @) forallp > 0.

Exgrcise 6-3. Let K denote the complex consisting of a tetrahedral surface
meeting two triangular simple closed curves in a common vertex, as in Fig. 6-12.
Compute H,(K, @) for all p > 0.

6-5 The decomposition theorem for abelian groups. Betti numbers and
torsion coefficients. The structure of the homology groups and the de-
pendence of that structure upon the connectivity properties of the complex
must be investigated. We will assume throughout this section that our
homology groups are taken over the additive group Z of integers. We will
write O (K) for Cp(K, Z), Zu(K) for Z,(K, Z), etc. We must use the
decomposition theorem for finitely generated abelian groups. In fact, we
paraphrase this theorem as our first result. For a proof, the reader may
consult Lefschetz’s Algebraic Topology [20], Chapter 2.

Let K be a finite complex with a,, m-simplexes. Then Theorem 6-3
says that C,,(K) is (isomorphic to) the group Z @ -+ ® Z (ap sum-
mands). Such a direct sum of infinite cyclic groups is known as a free
group. Since any subgroup of a free group is again a free group, both
Za(K) and B,(K) are free groups with a number of generators not ex-
ceeding a,,. Finally, the factor group (or difference group) Hn(K) =
Zw(K) — B,(K) is known to be an abelian group with a finite number
of generators. In such a factor group, there may be relations among the
generators so that in general H,,(K) is not a free group. The decomposi-
tion theorem for finitely generated abelian groups applies, however, and
yields the following result.



6-5] THE DECOMPOSITION THEOREM FOR ABELIAN GROUPS 235

THEOREM 6-6. For finite complex K, the integral homology group
H.,.(K) is isomorphic to a direct sum Go ® G1 @ -+ @ Gy, vhere
Gy is a free group and each G;, 7 = 1,2, ..., ky, i3 a finite cyclic group.

The number of generators of the free group Gy (the rank of Gy) in the
above decomposition of H,,(K) is called the mth Bettt number of K and is
denoted by p,(K). The number of elements (the order) of the finite cyclic
group G;, ¢ > 0, is an mth forsion coefficient and may be denoted by
t.(K),7=1,2,...,kn Itisknown that the groups G; can be arranged
in such an order that #,(K) divides &' (K), 0 < ¢ < kn. The direct sum
G ® G ® -+ ® Gy, is frequently called the torsion group of K. This
group tells us something about the manner in which the complex K is
“twisted.” More of this idea will appear in an example shortly.

If we were to use an arbitrary (abelian) coeflicient group G, the de-
composition of H,,(K, G) would yield a direct ssm G @ --- @ G ® H,
where there are p,,(K) summands G and where the group H depends upon
@ in a manner to be determined later. As we shall indicate in Section 6-9,
if we know the integral groups H,,(K), we can always obtain the groups
H,. (K, G) for any group . For this reason, the integers Z are known
as a universal coefficient group.

The Betti number p,,(K) may be considered intuitively as the numbers
of “m-dimensional holes” in the complex K. Or, in other words, p,,(K) is
the number of (m + 1)-dimensional chains which must be added to K
so that every free m-cycle on K is a boundary. (A free cycle is one that is
not due to torsion.) Thus p,,(K) can often be ascertained nonrigorously
simply by inspecting the complex. For instance, consider the torus again.
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If we add the 2-simplex (vov1v2) (see Fig. 6-13), every longitudinal 1-cycle
will bound, and if we add a 2-simplex (vovsve), every latitudinal 1-cycle
will bound. Thus we can conclude that p(7) = 2. Similarly, we may
think of adding 3-simplexes to fill in the interior of 7' and have intuitive
reason for believing that po(T) = 1.

ExampLe 1. To envision something of the geometry underlying the torsion
group, let us examine the projective plan P2. This may be taken to be a 2-sphere
with antipodal points identified. A triangulation of P2 may be obtained if we
think of P2 as the ordinary plane with opposite directions identified (Fig. 6-14).
Let the orientation of P2 be that induced by the given ordering of the vertices,
and consider the integral 2-chain
ca = L{vov1vs) — 1{v1vava) -+ 1{v1vava) + 1{v3vavs) — 1{vovavs)

— 1{vovava) + 1{vovivs) — 1{vovavs) + 1{vivavs) + 1{vavsvs).
The boundary of cg is easily computed to be the 1-chain
2vov1) + 2(v1v2) — 2{viwe) = 2(1{vov1) + 1{vive) — 1{vove)).
A routine calculation proves that
21 = Wwovr) + 1{v1w2) — 1{vov2)

is a l-cycle. But z; is not a boundary! For the only 2-chain that z1 can bound
is Lc2, which is not an integral 2-chain at all.
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A lengthy computation is needed but it can be shown that every integral
1-cycle on P? is either a boundary or is homologous to a multiple of z;. But if
2y ~ 2kz1, then z; = d(kc2); that is, z; ~ 0. And if 2] ~ (2k + )21 = 2kz1 +
21 = 21 -+ d(kc2), then 2] ~ z1. These facts imply that the integral homology
group H1(P2) is isomorphic to Zs, the integers mod 2. Thus the first Betti
number of P2 is zero, and the only nonbounding 1-cycles on PZ are torsion cycles.

We leave as an exercise the verification that the only 2-cycle on P2 is the
trivial one and that hence Hz(P2) is trivial.

ExampLE 2. The Kletn botile is obtained from a finite eylinder by identifying
the opposite ends with the orientation of the two circles reversed. It cannot be
constructed in 3-space without self-intersection, in which case it appears as in
Fig. 6-15.

A triangulation B of the Klein bottle may be given as we did for the torus. In
Fig. 6-16, the labeling of the vertices indicates the identification of the opposite
edges of a rectangle used to obtain the Klein bottle. We will give merely the
results of the calculations, namely, the integral homology groups are

Hy(B) = 0 and HiB) = 7Z & Z>.

Fre. 6-15. The Klein bottle.
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Thus, in dimension 1, we have cycles of two types, free cycles and torsion cycles.
Such a cycle as m{vov1) + m{viwve) — m{vove) is a free cycle, while m{vovs) +
m{vave) — m{vove) is a torsion cycle such that if m is even, this cycle bounds
and if m is odd, it does not bound.

It is easily verified that the mod 2 homology group H1(B, Z2) of the Klein
bottle is isomorphic to Z2 @ Z2. And herein lies the reason for not using co-
efficients mod 2 exclusively! There is no torsion group, or at least no way to
recognize it as a part of the homology group, if we use coefficients mod 2. (See
Exercise 6-7 below.)

ExERCISE 6-4. The Mabius band is constructed by identifying opposite ends
of a rectangle after giving it a twist of 180°. This can be done with a strip of
paper. A triangulation M of the Mébius band is shown in Fig. 6-17. Compute
the integral homology groups Hao(M) and H1(M). Compare these with the mod 2
homology groups Ha(M, Z2) and H1(M, Z2).

ExEeRCISE 6-5. Use the device of inserting additional simplexes to give the
Betti numbers of the surface of genus 2 pictured in Fig. 6-18.

ExErcise 6-6. Compute the mod 2 homology groups of the projective plane
P2,

ExEercisk 6-7. For any finite complex K, prove that H,(K, Z2) is always a
direct sum of eyclic groups of order 2.

6—6 Zero-dimensional homology groups. We have delayed considera-
tion of the 0O-dimensional homology groups until now because there are
two different ways to define the boundary of a 0-chain. Introducing these
earlier would only have added to the difficulties.

Since there are no simplexes of dimension —1 in a complex K, the
natural definition of the boundary of a 0-chain is given by setting

agi o) =0
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for every elementary O-chain. This clearly implies that every 0-chain
is a 0-cycle and hence that Zy(K, @) = Co(K, @). Since every 0-boundary
is certainly a 0-chain, By(K, ) = 9[C(K, @)] is a subgroup of Co(K, @).
Thus, in this case, we define

Hy(K, G) = Co(K, @) — Bo(K, G).

This is called the nonaugmented Oth homology group. (The reason for the
term nonaugmented will be obvious shortly.)

Another method of defining the boundary of a 0O-chain is obtained as
follows. In dimension theory (see Section 3-9), we consider the empty
set to have dimension —1, and to be a subset of every set. Analogously,
we may augment the complex K by adding the single (—1)-dimensional
simplex ¢ and take it to be a face of every vertex. If this is done, we define
a new boundary of an elementary 0O-chain by setting

agi- oY) = gi- &,

and we use linear extension as usual to define the boundary of an arbitrary
0-chain. Thus we have

3(Xgi- 0% = Ta@gi- o)) = (Tgi)e.

It follows that in the augmented case a 0-chain > g; - ? is a O-cycle if and
only if the sum Y g; of its coefficients is zero. The sum Y g; of the coeffi-
cients of a O-chain is sometimes called its Kronecker index. The group
Z (K, G) is now defined as the kernel of the new homomorphism 3, and
By(K, G) = 9[C1(K, @] as usual. It must be shown that By(K, @) is a
subgroup of this new cycle group. But this is easily done, forif ¢! = (v0;)
and g-o' is an elementary l-chain, then d(ge!) = g- (v;) — g- (s).
Hence the sum of the coefficients in the boundary of any elementary 1-
chain is zero, and the same is true for any 1-chain, by linear extension.
This means that we can define the augmented 0th homology group

Ho(K, @) = Zy(K, G) — Bo(K, G).

We investigate the relation between the augmented and the nonaugmented
groups shortly.

Recalling the definition of a combinatorial component of a complex K
(see Section 5-4), we may state the following result.

TaEOREM 6-7. Let K be a finite complex with % combinatorial com-
ponents, Ky, K, ..., K;. Then, for any group G, Hy(K, @) is iso-
morphic to the direct sum ¢ @ - -+ @ G (k summands).

Proof: Choose a particular 0-simplex 0?0 in each component K; of K.
We will show that every 0-chain on K is homologous to a chain of the form
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>gi- 0'1 To do this, let o¥; be any 0-simplex in K;. Given an element
g of the group G, we ﬁrst prove that the elementary O-chain ¢ - o‘, is
homologous either to g - o’ or to —¢g - 0', By assumption, there exists in
K; a sequence of 1-s1mplexes connecting a,] to 0?0 We construct a 1-chain
which assigns ¢ or —¢g to each of these l-simplexes (depending upon
their orientations) such that this 1-chain has boundary either g °0'?j —
g- mo org-oy,+g- cn

Now suppose that we have a O-chain >, ; gi; - cr,], a,, a vertex of K
for each j. Let g; = ZJ gi;; Then from the argument above, >; ; gi; * a,]
is homologous to 2_g; - alo, which is the first and crucial fact we need.

We showed that a 0-chain is a boundary only if the sum of its coefficients
is zero. It remains to be proved that a 0-chain 3 g; - a'?o is a boundary only
if all the coefficients ¢; are zero. To do so, suppose that there exists a

1-chain ¢, such that dc; = 30 ¢7l Clearly, we can write ¢; = Sicl,
where each ¢} is a l—cham on K; so that ac} is also on K;. It follows that
dc; = Yact = Ygi- mo ordci = g;- a?o But then g; - ?0 is a boundary,
and the sum of its coefficients, namely, ¢; itself, must be zero.

We have shown that every element of Co(K, @) is homologous to a
O-Cham of the form > g;- cr, and that two elementary chains g; - a, and
g; oy g 1= ], are homologous only if g; = g; = 0. Thus the correspond-
ence ) g;* alo (g1, . .., gr) is an isomorphism of Hy(K, G) onto the
direct sum G @ -+ @ G, k& summands. []

CoROLLARY 6-8. The integral group Ho(K) of a complex K with k
combinatorial components is a free group on k generators. Thus
po(K) = k, and there is no torsion in dimension zero.

Using the notation of the above proof, establish the following facts for the
augmented case of the complex K.

ExErcIsE 6-8. A cycle of the form g - 0(1)0 —g- a?o is homologous to zero if
and only if ¢ = 0.

ExERcISE 6-9. Every 0-cycle is homologous to one of the form > g;* a?o

Exercise 6-10. Every 0-cycle D gi o i is the sum of k¥ — 1 O-cycles of the
form g - ‘7(1)0 —g- t:r?0

Exercise 6-11. ﬁo(K, @) is isomorphic to @ ® -+ ® G,k — 1 summands.

Tt is evident from the above exercises that the augmented Oth homology
group of a connected complex is trivial, while from Corollary 6-8 we see
that the nonaugmented integral homology group is infinite cyeclic. This
is the reason for the frequent use of augmented homology theory in con-
nectivity problems. For instance, it is quicker and easier to say that “the
homology groups of the n-cell are all trivial” than it is to make the excep-
tion for dimension zero that would be necessary if we did not use aug-
mented theory.
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6-7 The Euler-Poincaré formula. In 1752 the great mathematician
Leonhardt Euler discovered a simple geometric fact that had escaped
notice by geometers for two thousand years. Let P denote a simple
polyhedron (a homeomorphic image of the 2-sphere S2), and let V, E, and
F denote the number of vertices, edges, and faces, respectively, of P.
Euler’s discovery was the relation between these numbers, which is
expressed in the formula

V—-E+F=2

The reader may verify this himself for the cases of a tetrahedon, a cube,
etc. The formula applies, however, to irregular simple polyhedra as well.
For instance, a pyramid with a trapezoidal base has V = 5, E = 8, and
F=5andV — E+F = 2.

We prove a generalization of the Euler formula, the generalization being
due to Poincaré. Let «,, m = 0,1,...,n, denote the number of m-
simplexes in a finite complex K of dimension n. Therefore the rank of
each free integral chain group C,,(K) equals a,. Let £, and B8, denote
the ranks of the free groups Z,,(K) and B, (K), respectively. Since the
boundary operator is a homomorphism of C,(K) onto B,,_;(K) with
kernel Z,,(K), it follows that (cf. Theorem 6-10)

O — fm = Bm—1 for m > 0. (1)

Using nonaugmented homology in dimension zero, we have Z(K) =Cy(K),
)

ag — &n = 0. (2)
Then, since Hn(K) = Zn(K) — Bn(K), it follows that
tm — Bm = pu(K) 3)

(cf. Theorem 6-12; in this case s = 0). Combining relations (1), (2), and
(3), we obtain

Qy — pm(K) = Bm + Bm—1 for m >0
and )
oo — po(K) = Bo.
If we now take the alternating sum of the equations (4) over all values
of m, we obtain

3 (=) (am — ) = 32 (—1)™(Bn + Bns).

m=0 m=0
But it is obvious that

n

Z (_l)m(ﬁm + Bn—1) = =B,

m=0



242 SIMPLICIAL HOMOLOGY THEORY [cHaP. 6

and since C,;1(K) = 0 (the complex K has dimension n), we have
Bn.(K) = 0 and 8,, = 0. Therefore we have the famous Euler-Poincaré
formula,

n n
> (D"an = 20 (—1)"pu(K).
m=0 m=0

The number ¥ r—o (—1)™a, is called the Euler characteristic of the
complex K and is denoted by X(K).

Despite the noninvariant mechanism used in their definition, the simpli-
cial homology groups of a finite (geometric) complex K are actually topo-
logical invariants of the carrying polytope |K|. This will be established in
Section 8-2. If we assume this fact for now, then we see that the Euler
characteristic X(K) is also a topological invariant. And we can compute
X(K) simply by counting the simplexes in any triangulation whatsoever
of the polytope |K|!

In simple cases, the number X(K) affords a useful means for determining
the Betti numbers of a complex. For instance, consider a 2-sphere tri-
angulated as a tetrahedron. Simple enumeration yields ag — a; + a2 =
4 — 61 4= 2. Since the 2-sphere is connected, po(S?) = 1; and we
have already seen that p,(S*) = 1. Therefore we have

Po(8%) — p1(8?) + P28 =1 — p1(8*) +1 =2
or
p1(S?) = 0.

As another example, consider the torus T' as triangulated in Fig. 6-9.
Enumerating simplexes, we obtain X(T) = ag — a3 + az = 9 — 27 +
18 = 0. Since 7 is connected, po(T) = 1; and we showed earlier that
p2(T) = 1. Thus

X(T) = po(T) — pu(T) + p2(T) =1 — p(T) +1 =0,
or
pi(T) = 2.

Exercise 6-12. Determine the Betti numbers of the Klein bottle as tri-
angulated in Fig. 6-16.

ExErcisk 6-13. Triangulate the surface of genus 2 in Fig. 6-18, and compute
its Betti number in dimension 1.

EXERCISE 6-14. What is the second Betti number of the projective plane?
of the Mébius band?

Remark: Tt is quite natural to ask if the homology groups solve the problem
of characterizing polytopes. We mentioned above (and will prove in Section
8-2) that if |K1| and |K2| are homeomorphic polytopes, then the homology
groups H,(K1, @) and H,(K2, @) are isomorphic for each dimension p. What
we ask here is whether the converse is true. That is, if H,(K1, G) and H,(Kz, G)
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are isomorphic for each dimension p and for all coefficient groups G, are the
polytopes [K1| and |K2| necessarily homeomorphic? The answer is, “No!” In
fact, we have already seen an example to refute this conjecture. In Exercise
6-3, we asked for the homology groups of a complex whose carrier is the space
pictured in Fig. 6-19, a 2-sphere with two tangent circles. It is easy to compute
the groups of this example and see that they are precisely the same as those of
the torus. But this space has a cut point and the torus does not, so the two
cannot be homeomorphic!

The reader may construct an example of a space with the same homology
groups as the surface of genus 2 but that is not homeomorphic to that surface.

6-8 Some general remarks. When one starts with an oriented complex,
the construction of a homology theory is a purely algebraic process. The
chain groups and the boundary operators are defined, and then the
homology groups follow easily. Let us review and abstract this process.

Given an oriented complex K and a coefficient group @, we consider
the weak direct sums > j2; G, where «, is the number of p-simplexes in
K. These are the chain groups C,(K, G). Then the boundary operators a,
are defined in such a way that d,_; 8, = O for each positive integer p.
The result is that we associate a chain complex with the oriented complex
K. Abstractly, a chain complex is a sequence {C), 8,} of free groups C,
and homomorphisms 8,:C, — C,_; such that d,_;d, = 0 for each
positive integer p. Given such a chain complex, we define the cycle group
Z, to be the kernel of 8, and the boundary group B, to be the image
3p+1(Cp41). Since 9,1 8, = 0, B, is a subgroup of Z,, and because both
are free groups, we may define the homology group H, to be the (additively
written) factor group Z, — B,,.

Thus, starting with an oriented complex as we did in the development
of simplicial homology theory, the above process yields unique homology
groups. Also, whenever and however we can associate a chain complex
or an oriented complex with a topological space X, we can develop a
homology theory for the space X. This assertion has been shown to be



244 SIMPLICIAL HOMOLOGY THEORY [cHAP. 6

true for triangulated spaces, of course, and the automatic process whereby
it is done constitutes the chief reason for considering simplicial homology
theory first. There are techniques for associating an oriented complex
with more general spaces, moreover, and hence there are homology
theories for more general spaces. We describe some of these in Chapter 8.

There is another concept that is often used in the literature and that
we can mention here. The weak direct sum of a sequence of free abelian
groups is again a free abelian group. Using this fact, we may form the
chain group

CK, @ =CoK,G @ C,(K,G) ®---@®CK,G) D ---

by taking the weak direct sum of the individual chain groups of an oriented
complex K over a coefficient group G. By definition, each element of
C(K, G) is a sequence (¢, 1, - - - , Cn, - - .), Where ¢ is a p-chain of K with
values in G and where all but a finite number of the components ¢, are
zero. Such a weak direct sum as C(K, @) is often called a graded group.

On the graded group C(K, @) we have the boundary operator 8 = {d,},
which is easily seen to be an endomorphism of C(K, @) into itself with
the property 80 = 0. Abstracting this situation, we arrive at the following
definition. If F is an abelian group and d is an endomorphism of F into
itself such that d® = 0, then F is called a differential group with differential
operator d. In these terms, the chain group C(K, @) is a graded differential
group with differential operator d.

Now given a differential group F, we may define the cycle group Z(F)
to be the kernel of the differential operator d, and the boundary group
B(F) to be the image d(F), and finally the derived group of F to be
H(F) = Z(F) — B(F). Thus the homology group H(K, G) is the derived
group of the graded differential chain group C(K, @).

Our discussion here serves to exhibit the essential algebraic constructs
insofar as we can at this point. We will return to these and other abstract
formulations as we become prepared to carry them further. This approach
has been introduced here because it is widely used and because the reader
should be aware of it early in his study of algebraic topology.

6-9 Universal coefficients. We indicate in this section how the homology
groups H,(K, G) of a finite complex K with coefficient group G can be
determined if we know the group G and the integral homology groups
H,(K). This is done by decomposing the integral chain groups C,(K) in
a particular way and showing how this leads to the structure of H,(K) as
was given in Section 6-5. Then the same technique is applied to the chain
groups C,(K, G) to obtain the desired result. To fill in the details of the
admittedly sketchy arguments below, the reader may consult Chapter II
of Lefschetz’s Algebraic Topology [20].
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The following algebraic results are needed, but will be stated without
proof.

TreorREM 6-9. Every subgroup of a free group is a free group.

TrEOREM 6-10. A subgroup B of a free group A is a direct summand
of A if the factor group (difference group) A/B is a free group, and
then A /B is isomorphic to the complementary group B'in A = B ® B’.

Let B be a subgroup of a free group 4. Then an element x of A belongs
to the rational closure [B] of B if some multiple of z is in B.

TrHEOREM 6-11. The rational closure of any subgroup B of a free group
A is a free group. Moreover, A/[B] is a free group.

TueorEM 6-12. If B is a subgroup of a free group A of finite rank,
then there exists a basis (generating elements) x,, . . ., z, of 4, and there
are integers r and s, both nonnegative, with » + s < n and integers
t1, - . ., t; greater than unity such that ¢; divides ¢4, 7 < s, with the
property that (x4, ..., ¥,4,) is a basis for [B], while (2, . . ., @/, t1Z,41,
..., tsTrys) 1s a basis for B. The factor group A/B is then isomorphic
to the direct sum of the free group generated by the elements z, 4541, . . .,
x, and cyclic groups of orders ¢;.

The elements x4, ..., , in the basis of B in the above theorem are
called the free elements of B; the elements ¢z, ; are the torsion elements
of B; and the integers ¢; are the torsion coefficients.

The following notation is useful. If @ is an abelian group and ¢ is an
integer, then ¢@ is that subgroup of G consisting of all elements tg where
g isin G; G" is that subgroup of G consisting of all elements g such that
lg = 0; and G denotes the factor group G/tG. For instance, a cyclic
group of order ¢t is Z, = Z/iZ, where Z, as usual, denotes the group of
integers.

The integral chain group C,(K) is a free group on a, generators, where
ap s the number of p-simplexes in K. Since the homomorphism 8 on
Cp(K) has image B,_;(K) and kernel Z,(K), the fundamental theorem
on homomorphisms applies to show that Cp(K)/Z,(K) is isomorphic to
B,_1(K). By Theorem 6-9, B,_(K) is a free group, so C,(K)/Z,(K) is
also free. Since Z,(K) is free, Theorem 6-10 permits us to write C,(K)
as a direct sum Cp(K) = Z,(K) @ X,(K), where the boundary operator
8 throws X ,(K) isomorphically onto B,—(K).

We next examine Z,(K). It is easily seen that each element of the
rational closure [B,(K)] is a p-cycle, so [B,(K)] is a subgroup of Z,(K).
By Theorem 6-11, Z,(K)/[B,(K)] and [B,(K)] are free groups. Hence we
may use Theorem 6-10 again to decompose Z,(K) into Z,(K) =
[B,(K)] @ W,(K).
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If we apply Theorem 6-12, we may write the group B,(K) as a direct
sum By(K) = A,(K) ® 0,(K), where A,(K) is the subgroup generated
by the free elements of B,(K) and 6,(K) is the subgroup generated by
the torsion elements of B,(K). This then yields a decomposition of the
rational closure of B,(K) as [B,(K)] = Ap(K) @ [0,(K)]. Finally, since
X,(K) is isomorphic to B,_1(K) = A,_1(K) ® 6,_1(K), we can write
X,(K) as a direct sum T'p(K) ® ®,(K), where 8 throws I';(K) onto
Ap_1(K) and ®,(K) onto 6,_1(K). Gathering this up, we may write the
chain group C,(K) as

Cr(K) = A,(K) @ [6,(K)] ® W,(K) @ Tp(K) ® p(K).

Let a?, b2, c?, d?, and e? be bases for these groups, so chosen that 6,(K)
has the basis #b? and 0 throws d? on a®~! and throws e? on £ pp L,

Since

Zy(K) = 8,(K) @ [6,(K)] © W,(K)
and
BP(K) = AP(K) ® op(K):

it follows that
2,8
B,(K)

[6,(K)]

Hy(K) = B(K)

Wy(K) &

where W,(K) is a free group whose rank 7, is the pth Betti number of K
and where the torsion group T,(K) = [0,(K)]/6,(K) is isomorphic to
the direct sum of cyclic groups Z;, @ -+ @ Zq,

Next let us introduce an arbitrary coefficient group G. It is clear that
C,(K, @) may be considered as the group of all linear combinations of
the basis elements of C,(K) with coefficients in G. The same remark also
applies to the groups in the decomposition of C,(K) given above. (This
is an example of a tensor product, which we define below.) If we use this
idea, it is obvious that we may write

Co(K, @) = 0,(K, @) ® [6,(K, )] & W,(K, G)
@ I'y(K, Q) ® o,(K, G).

Now the boundary operator 9 carries
A(K, G) @ [0,(K, G)] © Wp(K, G)

onto zero because each of their basis elements is so mapped. Also 9 carries
I'y(K. G) isomorphically onto Ap_1(K, @), which means there are no
cycles in T(K, G). Then 0 carries ®,(K, G) into [0,—1(K, )] by the
formula dg - e? = ¥ 'g - b?~!. The kernel of 9 in ®,(K, G) is therefore
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the direct sum ZG"g_l - ;. The kernel of 9 is the direct sum of the indi-
vidual kernels so that

Z,(K, G) = 8,(K, @) @ [6,(K, )] ® W,(K,G) ® 3. G7 - e

Similarly,
an+1(K, G) = BI‘,,_H(K, G) @ a¢p+1(K, G)
= AK, @) @ 6,(K, () = By(K, G).

Therefore, the homology group H,(K, G) is given as

ZP(K’ G) —_ [ep(Kv G)]

T,
Bk 0= oK G © G O© 26 e

HP(K; G) =

The first term on the right is exactly 2 G2 - b;, so we have

H,(K,G) = W,K, G & Z Gr-b; @ Z el e
Abstractly, then,

HE @ =360 60 > 67 .
1

Thus it appears that if we know the Betti number r, and the torsion
coefficients #* and ', as determined from the integral homology groups
H,(K) and H,_;(K), then we can determine H,(K, G) precisely. I'or
this reason, the integers are often called a universal coefficient group.

The development above has been rephrased recently by introducing a
new concept. Let A and B be two modules over a ring R. The tensor
product A ® B of A and B is the module generated by all pairs (a, b), a
in A and b in B, with the relations

(a1 + az, b) — (a1, b) — (ag, b) = 0, aj, azin A, bin B,

(a, by + bs) — (a,b;) — (a,by) = 0, ain A, by, bs in B,

(ra, b) — r(a, b) = 0, ain A, bin B, rin R,
and

(a, rb) — r(a, b) = 0, ain 4, b in B, rin R.

An equivalent definition of the tensor product may be given as follows.
Let X (A, B) be the free module generated by the set of all pairs (a, b),
and let Y (A, B) be the least subgroup of X(A, B) containing all elements
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of the four forms

(al + ag, b) - (aly b) - (a2) b)) (a: bl + b2) - (a'7 bl) - (a; b2))

(ra,b) — r(a, b), and (a, rb) — r(a, b).
Then
X(A, B)

A®B=?(I’—.B—).

Next, given two modules A and B over a ring R, we define Hom(A, B),
the module of all homomorphisms ¢ of A into B. The addition of two
homomorphisms is the usual functional addition. That is,

(p1 + e2)(@) = e1(a) + ¢2(a),

and the multiplication of a homomorphism ¢ by an element of the ring R
is given by
(re)(a) = 1 - ¢(a) = ¢(ra).

Now if A4 is a free group, if B is a subgroup of A, and G is any abelian
group, then the inclusion isomorphism 7:B — A induces a homomorphism

wB®G@—AQQG

The kernel of 4 is essentially a function of the groups H = A/B and G.
We denote this kernel by Tor(4/B, @).
In these terms, we can write the “universal coefficient theorem” given
above as
H,(K,G) = Hy,(K) ® G ® Tor(H,_1(K), G).

Again we must say that the preceding discussion is merely an indication
of the more modern and abstract approach to homology theory. If he
wishes to pursue this development later, the reader is referred to Chapter
V of Eilenberg and Steenrod, Introduction to Axiomatic Homology Theory [7].

6-10 Simplicial mappings again. In Section 5-6, we proved that any
continuous mapping of one polytope into another can be approximated
arbitrarily closely by a homotopic simplicial mapping defined on suitably
chosen triangulations of the two polytopes. We could not investigate
some useful properties of simplicial mappings at that time, however, since
these properties involve the homology groups. In particular, a simplicial
mapping of one complex into another induces homomorphisms of the
homology groups of the first complex into those of the second. This is in
direct analogy to the induced homomorphisms on the homotopy groups
given in Theorem 4-28.
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Simplicial mappings are redefined here in terms of abstract complexes,
and hence there is no mention of continuity in connection with such
“mappings.” This generality permits a wider application of the results
(for instance, see Section 8-1 on Cech homology theory) and also leads
to a consideration of certain transformations, the chain-mappings, defined
directly upon the chain groups of a complex.

Let K, and K, be abstract simplicial complexes, and let ¢ be a single-
valued transformation of the vertices of K; into the vertices of K,. The
transformation ¢ is a simplicial mapping of K, into K, provided that if
o = (vgv1 -+ - ¥p) is any simplex of K;, the collection of vertices ¢(vy),
o(1), ..., ¢(vp) in Ko forms a simplex o9 of K. Since ¢ is not assumed
to be one-to-one, it may happen that, for some ¢ # j, we have o(v;}) = ¢(v;).
The simplex ¢? in K will then be of lower dimension than ¢?, and in such
a case we say that ¢ collapses o®.

We now proceed to show how such a simplicial mapping ¢ of K, into
K, induces a homomorphism of the group H,(K;, ) into H,(K,, G)
for each dimension p. To begin with, we define a transformation ¢, of
the chain group C,(Ki, @) into the chain group C,(K2, &) as follows.
Let go® be an elementary p-chain on K;. We set

¢p(go?) = 0 if ¢ collapses a®
and
op(go?) = g o(a?) if ¢ does not collapse g”.

That is, if 6 = (vg - + - v,,), then ¢,(go?) = g{e(vo) - - - ©(vp)) only if the
image vertices ¢(v;) are all distinct. This definition is extended linearly
to arbitrary p-chains by means of the formula

%(Z gio’Z) = ) eplgio?).

The proof of Lemma 6-13 is left as an easy exercise.

Lemma 6-13.  The transformations ¢,:Cp(Kq, @) — Cp(K3, G) are
homomorphisms.

The key property of the collection {¢,} of homomorphisms is the
content of the next theorem. It is convenient to let 3 denote the boundary
operator in both K; and K.

THEOREM 6-14. For any p-chain ¢, in C,(Ky, @), p > 0,
d(ep(cp)) = @p—1(9cp).

Proof: It suffices to prove the desired relation for an elementary chain
go®?. If ¢, does not collapse ¢?, the proof is easy. For by definition,
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3(es(ga”)) = 3(gle(vo) - - - @(vp)))

= 3 (D) glel0) - 509 -+ o),

=0

where the symbol ;(\vi) means that this vertex is deleted. On the other
hand, we have

er1(0G07) = 1 (Z (1) s+ ,,,,>>
=0

= 3 (—Depalgln - -+ O+ 1)

1=0
P .
= 3 (Do) - - - 9G)  0vn)),
=0

which establishes the desired relation in this case.
If ¢ collapses a?, then ¢(v;) = ¢(v;) for some 7 7, and it follows from
the definitions that

d(eplga?)) = 8(0) = 0.

There is no loss of generality in assuming that the two vertices v; and v;
are vy and v, (though not necessarily in this order), for the class of order-
ings of the vertices that gives the orientation of (vq - - - v,) contains either
(oo =+ By v+ B e+ vp) OF Wjvwguy » + + By~ + D5+ - vp). With this
agreement,

‘pp—1(3(ga'p)) = ¢p_1 (Z (——l)kg(vo e D Up))
k=0

= ¢p_1(g{vrvz - - vp)) — ep—1(gloova - - - vp))

+ i (—1*ep_1(glvovs - -+ Ok -+ - vp))
k=2

= glp1)es) - -+ (p)) — gle(@a)e(v2) - - - (vp))

3 (D aloa)en) - - - B0 - - - 6(0p)-
k=2

Since ¢(vg) = ¢(v1), each term in the summation is zero by definition
and also the first two terms cancel. If more than the face {vov1) of o7 is
collapsed, of course, the first two terms may already be zero. []

The collection {¢,} of homomorphisms induced by a simplicial mapping
¢ is often denoted by the same symbol ¢, and the basic property established
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in Theorem 6-14 is then given by the symbolic formula
dp = 0.

One says that the induced mapping ¢ on chain groups commutes with the
boundary operator 9. A schematic representation of this relationship
is helpful in remembering it.

Co(K1, @) =2 Cp i (K4, G)
ﬂopl l Pp—1
C:D(K2; G) T C —1(K27 G)

The relationship is now given by requiring commutativity in the diagram.

Such diagrams of groups and homomorphisms are very useful, and the

reader will see them often, both in this book and in the current literature.
Let us examine the consequences of the relation dp = 9.

Lemma 6-15. If 2, is a p-cycle of K, then ¢,(2p) is a p-cycle of K.

Proof: We need only show that d¢,(z,) = 0. But by Theorem 6-14,
30,(2p) = @p—10(2p) = ¢p—1(0) = 0 since, by definition, 9z, = 0. ]

Lemma 6-16. If b, is a p-boundary of K, then ¢,(b,) is a p-boundary
of K 2.

PTOOf.' If bp = 6cp+1, then <pp(bp) = (Pp(acp+1) = <")<p,,+1(cp+1) by
Theorem 6-14. Thus ¢, 1(cp41) is a (p + 1)-chain of K, with boundary

‘Pp(bp) . D

Lemma 6-17. If 2z, and 22 are homologous p-cycles of K, then op(2l)
and ¢,(22) are homologous p-cycles of K.

Proof: I1f 2, and g?, are hor}lologo2us, then 2z, — 22 = dcy41. Then we
have ﬂ"p(zp) - ¢p(2p) = ¢p(zp - zp) = ‘Pp(acp—i—l) = a‘Pp+l(cp+l)- L]

TrEOREM 6-18. The homomorphism ¢,:Cp(Ky, @) — Cp(Kz, G) in-
duces a homomorphism ¢,* of H,(K, G) into H,(K,, G).

Proof: For an element of a homology group, that is, a coset in the cycle
group, we use our customary notation [2,], where 2, is any representative
of the homology element. We define the desired homomorphism ¢,* by
setting

er([2p]) = [ep(2)]

It must be shown that ¢,* is well-defined. This entails proving that if
2, is any other representative of [z,], then ¢,(z;) is a representative of
[¢p(25)]. But this is precisely the content of Lemma 6-17. The fact
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that ¢p* is a homomorphism follows immediately since ¢, is a homo-
morphism. []

It should be obvious that the identity stimplicial mapping of a complex
K onto itself induces the identity isomorphisms on the homology group of K.
Two complexes K; and K, are said to be isomorphic complexes if there
exists a one-to-one simplicial mapping ¢ of K; onto K, such that ¢~ ! is
also simplicial. (We made use of this situation in the realization theorem
in Section 5-7.) Again it should be evident that such a simplicial isomor-
phism induces isomorphisms of the groups H,(K;, G) onto H,(K,, @).

A special case of a simplicial mapping occurs when the complex K is a
subcomplex of K,. The simplicial mapping ¢ defined by

i) = v

for each vertex v of K is called the injection mapping of K, into Ko. The
induced homomorphisms ,:C(Ky, G) — Cp(K,, G) can easily be shown
to be isomorphisms into. But it does not follow that the induced homomor-
phisms i,*:H,(K1, G) — Hp(Kj3, G) are isomorphisms into! To see why
this may be so, consider a p-cycle on K; which does not bound on K;.
There may be (p + 1)-simplexes in K, that are not in K;, and these may
give a (p + 1)-chain on which the p-cycle bounds in K. A simple instance
of this situation is obtained by injecting the 1-skeleton of a 2-simplex into
the closure of the 2-simplex. Since this 1-skeleton is a 1-sphere, its first
homology group is isomorphic to the coefficient group @, whereas the
first homology group of the closure of a 2-simplex is zero. And there is no
isomorphism of a nontrivial group G onto zero.

Several instances of the use of simplicial mappings will occur in our
subsequent developments, so no examples are given here. The exercises
below should prove rewarding, however, and the reader is urged to com-
plete them before proceeding.

A closed n-pseudomanifold is a finite complex K with the following properties:

(a) K is homogeneously n-dimensional in the sense that every simplex of K
is a face of some n-simplex of K.

(b) Every (n — 1)-simplex is a face of exactly two n-simplexes.

(¢) Given two n-simplexes ¢7 and o3 of K, there is a finite chain of n-simplexes
and (n — 1)-simplexes, beginning with ¢} and ending with o3, such that any -
two successive elements of the chain are incident.

We define K to be orientable if the integral homology group H.(K) is not
trivial; otherwise K is nonorientable.

ExEercise 6-15. Prove that if K is an orientable n-pseudomanifold, then the
n-simplexes o} can be so oriented that the integral n-chain z, = > 1o} is an
n-cycle. Also prove that every integral n-cycle on K is then a multiple of z, and
hence H,(K) is infinite cyclic.
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ExErcise 6-16. Let K = 8" be the boundary complex of an (n -+ 1)-simplex
o"*1. Show that S is an n-pseudomanifold.

Exercise 6-17. Let T2, P2, and B be triangulations of the torus, the projec-
tive plane, and the Klein bottle, respectively. Show that each is a 2-pseudo-
manifold.

ExErcise 6-18. Prove that if K; and K2 are two n-pseudomanifolds with
fundamental n-cycles z3 and 2, and if ¢:K; — Ko is a simplicial mapping of
K, into K32, then ¢4(2}) = k- z2. (The number % is called the degree of ¢.)

ExERcISE 6-19. Let ¢:8%2 — T2 be a simplicial mapping of some triangula-
tion 82 of the 2-sphere onto some triangulation T2 of the torus. Prove that the
degree of ¢ must be zero.

Exercise 6-20. Construct a simplicial mapping ¢:72 — S2 whose degree
isn, foreachn = ..., —3,—2,—1,0,1,2,3,...

Exgrcise 6-21. Prove that if K is a nonorientable n-pseudomanifold, then
H,_1(K) is cyclic of order 2.

ExErcise 6-22. Prove that if K is any complex and KP? is its p-skeleton, then
for each 7, 0 < 7 < p, Hi(K) and H;(KP) are isomorphic. What can be said
about H,(K?) in relation to H,(K)?

6-11 Chain-mappings. The construction of the homomorphisms
¢p:Cp(K1, G) — Cp(K2, G) from a simplicial mapping ¢:K; — Ko was
the key feature of Section 6-10. To permit even greater generality, we
now consider merely the algebraic structure and assume that we are given
a collection {¢,} of homomorphisms ¢,:Cp(K1, @) — C,(K,3, G). That
is, the collection {¢,} is not necessarily induced by some simplicial map-
ping. Such a collection {¢,} is called a chain-mapping of K, into K, if
the commutative relation,

3(en(cp)) = ¢p—1(3cp),

holds for each chain ¢, in C,(K 1, G).

In these terms, every simplicial mapping induces a chain-mapping.
But there are chain-mappings that are not induced by any simplicial
mapping. As a simple example, consider the complex K consisting of three
vertices v, vy, and vy and three 1-simplexes (vov1), (Vov2), and (v1v,). We
will give homomorphisms ¢ and ¢; of the mod 2 chain groups of K into
themselves which satisfy the commutative relation and yet are not induced
by a simplicial mapping. As usual, it suffices to define ¢ and ¢; on ele-
mentary chains. Letting a denote either 0 or 1, we define

‘PO(a<vi>) == a‘(”i) (1’ = O; 1) 2);
e1(a(or1)) = alverz) + alvivs),

e1(avove)) = alvgry) + alvivs),
and

p1(afvive)) = alvers) + alvevz).
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The only simplicial mapping that could induce ¢, is the identity simplicial
mapping 4, but 7 cannot induce ¢;, so no simplicial mapping induces
(¢o, ¢1). Tt is easily shown that ¢ and ¢; are homomorphisms and that
d¢1 = ¢od. Thus the pair (¢o, ¢1) is a chain-mapping induced by no
simplicial mapping.

We can apply the same definition of chain-mapping to the abstract chain
complexes of Section 6-8. Given two chain complexes (Cp, d,) and (Cp, 95), a
mapping f:(Cp, 3,) — (Cp, 8p) is a sequence of homomorphisms f,:Cp — Cp
such that d,fp = fp—19p, p > 0. This permits all our algebraic constructions
to be applied to chain complexes.

Since Lemmas 6-15, 6-16, and 6-17 and Theorem 6-18 depend en-
tirely upon the commutative relation d¢ = ¢d, these results apply to
arbitrary chain-mappings as well as to those induced by simplicial map-
pings. Therefore we know that a chain-mapping ¢ = {¢p} induces homo-
morphisms ¢p* of the homology groups of K, into those of K;. We also let
¢x denote the entire collection {@p*}.

Our chief problem is one of comparing two chain-mappings as to their
induced homomorphisms on homology groups. In particular, we introduce
a relationship between two chain-mappings ¢! and ¢® which assures us
that the induced homomorphisms oL and ¢2 are the same. This rela-
tionship is a combinatorial analogue of the homotopic relation between
continuous mappings.

Let ¢! and ¢? be chain-mappings of the integral chain groups Cp(K)
of a complex K; into the integral chain groups Cp(K3) of a complex K.
Then ¢! and ¢? are chain-homotopic provided that there is a collection
D = {D,} of homomorphisms D,:Cp(K;) — Cp41(K2) such that for
every chain ¢, in C,(K;) the following relation holds:

a:Dp(cp) = (P12J(Cp) - ¢117(cp) — :Dp—l(acp); SD—1(0) = 0.

That is, D,(cp) is a (p + 1)-chain on K, whose boundary is given by the -
above equation. The collection D is called a deformation operator (see
Lefschetz [96]), and the fundamental relation is often given by the symbolic
formula

D = o2 — o' — Da.

At first sight this definition looks more complicated than it actually is.
Several examples will help to clarify the basic idea. Let 16° be an ele-
mentary O-chain. Then Dg(1 -¢°) is a 1-chain on K, and we have

aD(1-6%) = 02(1-0%) — '(1-0% — D_;3(1 - 0.



6-11] CHAIN-MAPPINGS 255

In the nonaugmented case, 9(1 - ¢%) = 0, so
3Do(1-0%) = ¢*(1-0% — o'(1-09).

Thus ©Do(l -0 is a l-chain on K, whose boundary is ¢%(1-0%) —
¢'(1-0%. That is, if ¢! and ¢? are chain-homotopic, then every O-cycle
on K, of the form ¢?(1 -6% — (1 -6°) is a O-boundary.

Now let 1-0! be an elementary 1-chain on K;. Then D;(1-0¢!) is a
2-chain on K, and

0D1(1-0Y) = Q*(1-0Y) — o!(1-0Y) — Dpa(1 - ol).

We know that 49 = 0, and we had better check this for the chain
D:(1-0t). Computing, we have
30D (1 -] = 9[*(1-0") — ¢'(1-0") — Ded(1 -ah)]
= 9¢%(1 -a1) — 9o’ (1 -0!) — dDeI(1 -ab).

Applying the fundamental relation to the last term on the right, we have
3D0d(1 - a1) = o291 -0!) — o'd(1 -0!) — D_100(1 -a').
Since 93(1 - ¢!) = 0 and both ¢! and ¢? commute with 9, we have
30D1(1 - a') = 3p*(1 -0) — dp!(1 -01) — ¢29(1 -a') + o'o(1-a!)

= 3p2(1 -0) — ¢29(1 -0!) — e (1 -0Y)
+ o'9(1-0!) = 0.

Thus the 2-chain D;(1 - o!) has ¢%(1 - 1) and —o!(1 - ¢!) in its boundary
as well as the two 1-chains ©¢d(1 -¢!). In a sense, this 2-chain plays the
role of the homotopy cylinder in this combinatorial situation. Iigure
6-20 is a picture of a typical chain ©,(1 - }).

oy(1 - o)

Ficure 6-20
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Our primary interest is in cycles, of course, so let the chain ¢, be a
p-cycle on K;. Then the fundamental formula tells us that the (p + 1)-
chain ©,(c,) has boundary

ag)p(cp) = ‘P2(cp) - Sal(cp)

because D,_; dc, = Dp_1(0) = 0. Thus for any p-cycle z, on K;, the
chain D,(z,) has boundary ©%(2p) — ¢'(2p), and this is precisely the
condition which says that ¢2(2,) is homologous to ¢'(z,). In other words,
if the chain-mappings ¢! and ¢? are chain-homotopic, then every cycle 2z,
on K, is mapped onto homologous cycles ¢'(z,) and ¢*(zp) on K. This
statement concludes the proof of the following result.

TueoREM 6-19. If ¢! and ¢? are chain-homotopic chain-mappings of
a complex K, into a complex Kj, then the induced homomorphisms
oL and ¢2 on the integral homology groups coincide.

Let K; and K, be two complexes, and let ¢; and ¢ be the identity chain-
mappings of K, onto itself and K onto itself, respectively. Then K; and
K, are chain-equivalent complexes if there are chain-mappings ¢:K; — K
and ¥:K, — K, such that the composite mapping ¢y :K, — K is chain-
homotopic to ¢s and ¥¢:K; — K, is chain-homotopic to ¢;. It should be
noted that chain-equivalent complexes need not be isomorphic, although
the converse is true. This definition is the combinatorial analogue of the
concept of homotopically equivalent spaces (see Section 4-4), and hence
the following analogue of Corollary 4-29 is not surprising.

TureoreM 6-20. Chain-equivalent complexes have isomorphic integral
homology groups.

Proof: As was remarked following Theorem 6-18, the induced homo-
morphisms ;* and 7o* are the identity isomorphisms and hence, by Theorem
6-19, the induced mappings (Y¢)x and (¢¥)« are isomorphisms onto. It
is easy to show that (Ye)x = Vs« and that (¢¥)x = ex¥s (see Exercise
6-23 below). Since ¥y ¢4 is an isomorphism onto, it follows that ¢, must
be an isomorphism and that ¥, must be onto. Similarly, since ¢x¢y is
an isomorphism onto, ¥y is an isomorphism and ¢4 is onto. Therefore
both ¢, and ¥4 are isomorphisms onto. []

ExErcisk 6-23. Let ¢:K; — K2 and ¢:Ks — K3 be chain-mappings. Show
that the composite mapping Y is a chain-mapping of K; into K3, and show
that the induced homomorphism ()« is the composite Yxex of the induced
homomorphisms.
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6-12 Cone-complexes. Let K be a finite complex, and let v be a vertex
not in K. The cone at v over K is the complex vK consisting of (1) all
simplexes of K, (2) the vertex v, and (3) all simplexes of the form {vvg - - - v,),
where (vg - - - v,) is a simplex of K. In the case of a geometric complex K,
the carrier |[vK| is precisely the join of » and K as given in Section 4-3. We
of course orient vK.

In Section 4-3, we showed that every join of a point and a space is
contractible and hence is homotopically trivial, that is, all homotopy
groups of such a space vanish. We now apply Theorem 6-20 to prove that
every cone-complex vK is homologically trivial, meaning that the integral
homology groups H,(vK), p > 0, are all trivial, whereas Hy(vK) is
infinite cyclic. This will be done by showing that the cone-complex vK is
chain-equivalent to the complex consisting of the single vertex v. In view
of Theorem 620, this will complete the proof since a single vertex is cer-
tainly homologically trivial.

An auxiliary result will be needed. Consider an oriented simplex ¢? =
(vo -+ vp) in K. Let vo? denote the oriented simplex (vvg - - - vp) in vK.
Similarly, if ¢, is a chain in Cp(X), then vc, denotes the obvious (p + 1)-
chain in Cp ;1 (vK).

Lemma 6-21. Let 1 -va® be an elementary (p 4+ 1)-chain on vK. Then
l-vo? = 10 — v9(1 - oP).
Proof: We need only compute.

AL - (g vp) = 1-{vg---vp) — 1-Covy~-vvp)+ -+
+ (—=1)P1 - {wvo -+ vp_1)

=1-{g-+-vp) — L-v{g--vp) 4 -+
+ (—1)1’1 .v<vo...vp_l>
=1-g° — v3(1-07). ]

To show that vK and » are chain-equivalent, let ¢ be the simplicial
mapping which carries each vertex v; of vK onto v. Also let ¢ denote the
associated chain-mapping. Let the map ¢ of the definition of chain-
homotopy be the injection chain-mapping 7 of v into vK. It is evident that
the composite mapping ¢y is the identity mapping of v onto itself, and
hence the requirement that ¢y be chain-homotopic to the identity is
automatically satisfied. To complete the argument, we must construct
a deformation operator connecting the composite mapping ¥¢ — ip and
the identity mapping j on »K. For brevity’s sake, let us denote i¢ by 7.
We wish the operator D = {D,} to be such that

aS)P(Cp) = j(cp) - T(Cp) - ®1)—1(6(:11)-
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We define D on elementary chains as follows:

0)

Dp(1:07) =0 if v is a vertex of o? (p =
= 1-vo? if v is not a vertex of o? (» = 0).

This definition is extended linearly to arbitrary integral p-chains, as usual.

Now as a simplicial mapping, 7 throws every vertex of vK onto v, and
hence 7 collapses every simplex ¢?, p > 0, in vK. Thus, as a chain-
mapping, 7(1 -a?) = 0, p > 0. The operator D should satisfy

Dp(1 - 07) = j(1-0%) — Dp_10(1-0") (p > 0)
=1-¢7? — Dp_19(1-07) (p > 0).

Or, by definition of ©, we must show that
(1 -vo?) = 1-0? — v(doP).

But this is precisely the conclusion of Lemma 6-21 and hence is a deforma-
tion operator. In view of Theorem 6-20, this completes a proof of the de-
sired result.

THEOREM 6-22. Any cone-complex is homologically trivial.

As an example of a cone-complex, consider the following situation.
In Euclidean (n + 1)-space E"*!) let vy denote the origin and v,
i=1,2,...,n -+ 1, be the unit points on the axes. The n + 1 points
Yo, U1, - - - , U determine an n-dimensional geometric simplex s" in the
hyperplane x,.; = 0. The boundary of s™ is (topologically) an (n — 1)-
sphere. Let K denote the (n — 1)-skeleton of Cl(s"), and let v,41 = v.
Construct the cone-complex vK. By a projection parallel to the line
through the points (0,0, ...,0,1) and (1/(n + 1),...,1/(n + 1), 0), we
obtain a homeomorphism of the carrier [vK| onto s”. Thus the carrier [vK|
is also a topological n-cell. If we accept the topological invariance of sim-
plicial homology groups (see Section 8-3), then this construction proves
that any n-cell is homologically trivial.

6-13 Barycentric subdivision again. In Section 5-5, we developed the
method of refining a geometric complex K known as barycentric subdivision.
It was noted that the barycentric subdivision K’ of K has the same geo-
metric carrier as does K. If the simplicial homology groups are to have
geometric significance, they certainly should be invariant under bary-
centric subdivision. That is, we should be able to show that H,(K', &)
and H,(K, G) are isomorphic for each p. It is this fact which we prove
in this section. We will eventually do more than this. Our actual goal
is to prove that the homology groups depend only upon the coeflicient
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group G and the space |K|. In short, the homology groups are topological
invariants.

For purposes of generalization, we redefine barycentric subdivision in
terms of abstract simplicial complexes. To do this, recall that an abstract
simplicial complex K is a pair (U, Z), where U is a collection of abstract
elements called vertices, and £ = {o} is a collection of finite subsets o
of U with the property that if ¢ is an element of =, then every subset of
o is again an element of =. Now the barycentric subdivision of K = (%, Z)
is a complex K’ = (V/, Z’), where (1) U’ = Z; that is, the vertices of K’
are the simplexes of K (if ¢ is a simplex of K, we will denote it by ¢ when
thinking of it as a vertex of K’), and (2) the simplexes ‘e in 2’ are defined
by saying that (¢, ...,6,) constitutes a simplex ‘e? = (¢ - - “Gp) in 2’
if for some permutation (i, ..., 4, of (0,1,...,p), it is true that 27
Is a face of g;;,,, for each j < p, as simplexes of K. As in the geometric
case, the simplex o, of highest dimension is called the carrier of ‘o?. It
will profit the reader to return to Section 5-5 and compare the above
definition with the geometric case. By identifying the vertex ¢ with the
centroid of o in the geometric simplicial complex, he will see that the two
definitions agree in that they yield isomorphic abstract complexes.

To proceed with the chief business of this section, we will prove that
the barycentric subdivision K’ of a complex K is chain-equivalent to K
itself. In view of Theorem 6-20, this will prove that the integral homology
groups H,(K') and H,(K) are isomorphic. The proof of the following
theorem is quite long and involved, so we will not hesitate to digress in
order to illustrate the situations we meet.

THEOREM 6-23. A finite complex K and its barycentric subdivision K’
are chain-equivalent.

Proof: We must define chain-mappings v of K into K’ and %' of K’
into K such that both the composite mappings uu’ and «w'u are chain-
homotopic to the identity chain-mappings. We define »’ first and as a
simplicial mapping. If & is a vertex of K’, we let w/(6) be any vertex of
the carrier o of &. The choice of the vertex of ¢ to be used as u/(¢) is arbi-
trary but, once made, it is fixed. It is easily seen that u’ is indeed a simpli-
cial mapping and hence induces a chain-mapping, also called u/, of K’
into K. Furthermore, as a chain-mapping, 4’ has the following effect on
an elementary chain 1 - o of K’:

w'(l-'e) = n-o0, 1)
where n = 0, =1, and where ¢ is some face of the carrier of ‘o. If v’

collapses ‘e, then 9 = 0; otherwise y = =1, depending upon the relative
orientations of ‘o and 0. ‘
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v

Collapses onto (vg) Collapses onto (v; vg)

Collapses onto (¥ vg) Collapses onto (v; vo)

l\

Vg 41

Maps onto (vy v; v9) Collapses onto (v} vg)

Ficure 6-21

Figure 6-21 shows an example of a ’. The arrows indicate where each
vertex of K’ is sent by «/. Note that u/(¢°%) = o% as required. It should
be noted that «' sends one 2-simplex of K’ onto the 2-simplex of K. Such
must always be the case (see Sperner’s lemma as in Lefschetz [22]).

The chain-mapping u of K into K’ does not come from a simplicial map-
ping. For an elementary chain 1 - o7 of K, u will yield a chain of K’ con-
sisting of terms =£1-’0?, where ‘o” ranges over the p-simplexes in the
subdivision of ¢®, the sign being determined by orientation, so that the
boundary of u(l -¢?) is in the subdivision of the boundary of ¢”. We
give an inductive definition of u as follows. For a vertex a° of K, we let

u(l-¢% = 1-6°%

The vertices ¢ and ¢° are the same point, but we are regarding ¢° as a
vertex of K’. It is obvious that, so far, we have the necessary commuta-
tivity with the boundary operator, since du(l -¢°) = ud(1 -¢°) = 0. For
a 1-simplex ¢! = (0309) of K, oriented as indicated, we set

w(l-o!) = 1-(656") + 1- @'ed).
Verifying the commutative relation, we find that
ou(l-o) =1-6"'—1-63+1-69 —1.6"=1-6% — 1-60
and
w(l oY) =ul-09 —1-03) =1-69—1-067.

Hence the relation du = ud holds so far.

Now assume that u has been defined for all elementary chains of dimen-
sion ¢ < psuch that du = ud. We then define u on an elementary p-chain
1+ 0P by setting

u(l - o?) = ¢Pud(l - o?);




6-13] BARYCENTRIC SUBDIVISION AGAIN 261

that is, u(1 - 0®) is the p-chain on the cone at ¢” over the chain ud(1 - o?).
(We are using the notation of the previous section here.) Checking the
commutative relation, we find that

u(l -o?) = ud(l -o®) £ 6Pou(a(1 - o?)),

as was shown in Section 6-12. But we have du = ud for dimension p — 1,
so that du(d(1 -¢?)) = udd(1 -0®) = u(0) = 0. This completes the in-
ductive definition of the chain-mapping u.

The composite mapping w'u ¢s the identity chain-mapping on K. For
u'u carries each elementary 0-chain 1 -¢° onto itself. Thus we need only
prove that uu’ is chain-homotopic to the identity chain-mapping on K’
to complete the proof. This means that we must construct a deformation
operator D = {D,} such that for any elementary p-chain 1 -’6? of K’
we have

0D,(1-'0%) = 1-'0” — wu'(1-'6?) — D,_,8(1 - '0?P). (2)

The definition is again inductive.
Given any vertex ¢ in K’, we define D, so that

Do(1-6) = 1-6 — /(1 -6)

[because ®_;(8(1-6)) = 0]. That is, we must define dDo(1 - &) to be a
O-chain on a pair of vertices of K’. But /(1 &) is a O-chain on ¢°, where
0® is some vertex of the carrier ¢ of &. Then wu/(1 -6) = 1 -, since
takes each elementary O-chain onto itself (essentially). Thus there is a
1-simplex (6%) in the subdivision of o, the carrier of . We take Do(l - 6)
to be the chain 1 - (¢%), and the desired relation will hold.

Assuming that the homomorphisms Dy, ..., D,_; have been defined
so as to satisfy relation (2) above, consider an elementary p-chain 1 - ‘o®
of K. We wish to define D,(1 - ‘o®) so that relation (2) holds. The chain
1-’¢? — wu/(1-'67) — Dp_18(1 - 'oP) is on a cone u(0?) = ¢%(dc?) for
some simplex ¢? in K. Such a cone is homologically trivial by Theorem
6—22, and hence every p-cycle on 6%u(dc?) bounds a (p + 1)-chain on this
cone. If we show that the chain 1:'6? — wu/(1 - 'a?) — D,_;(3(1 - 'a?))
is actually a p-cycle, then it will bound some (p + 1)-chain of K’, which
can then be taken as D,(1 - ‘o). Thus we compute

a1 -'e? — uw'(1-'g?) — Dp_18(1 - 'a?)]
= 9(1-'0%) — duu'(1-'g?) — aD,_,9(1 - 'a?)
= 9(1-'0?) — Juu/(1 - '6P)
— [0(1-'0P) — ww/o(1 - 67) — Dp,_589(1 - ‘oP)]
since D,_; satisfies relation (2). Clearly, ©,_;03(1 - 'g?) = 0, so the
right-hand side of this equation reduces to ww'd(1 - 'o?) — duw'(1 - 'a?).
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But both u and %’ are chain-mappings and commute with 9, so
w'd(1 - 'a®) = ouu'(1 - ’a?®).

This shows that 1-¢? — wu'(1-'0%) — ©,_;0(1-’0P) is a p-cycle.
Hence by our remark above, this is also a boundary. We take Dy(1 -+ ‘a?)
to be a (p + 1)-chain on the cone u(¢?) which this cycle bounds. This
completes the inductive definition of the deformation operator © and
proves that wu’ is chain-homotopic to the identity on K'.[]

In view of Theorem 6-20, we can immediately state the following
corollary to Theorem 6-23.

TuEOREM 6-24. Let K’ be the barycentric subdivision of a finite complex
K. Then for each dimension p, the integral homology groups Hp(K)
and H,(K'’) are isomorphic.

This result is a formal statement of the invariance of simplicial homology
groups under barycentric subdivisions. Repeated applications of Theorem
6-24 afford an obvious proof of the following corollary.

CorOLLARY 6-25. Let K™ be the nth barycentric subdivision of a
finite complex K. Then for each dimension p, the integral homology
groups H,(K) and H,(K™) are isomorphic.

Tinally we may apply the “universal coefficient theorem,” Section 6-9,
to prove the next result.

CoroLLARY 6-26. Let K™ be the nth barycentric subdivision of a
finite complex K, and let G be an arbitrary abelian group. Then for
each dimension p, the homology groups H,(K, G) and H (K™, @) are
isomorphic.

The continuous barycentric simplicial mappings, defined in Section
5-6, on geometric complexes certainly induce homomorphisms of the
homology groups just as do the abstract simplicial mappings. Let us
gather some information which should be quite suggestive. The key facts
are the simplicial approximation theorem (Theorem 5-23) and Corollary
6-25. From the first of these results, we know that any continuous mapping
of one finite polytope into another can be approximated arbitrarily closely
by a simplicial mapping on a suitably chosen triangulation of the two
polytopes. This simplicial mapping induces homomorphisms of the
homology groups of these subdivisions. But in view of Corollary 6-25,
we may consider that the induced homomorphisms are on the homology
groups of the original polytopes. This strongly suggests that a continuous
mapping of a polytope induces homomorphisms of the homology groups. This
conjecture is true and could be proved by carrying out a program based
upon this line of thought [27]. We will not carry out such a program, but
we will use another approach to attain the same end (see Section 84).
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6-14 The Brouwer degree. Consider two n-spheres S™ and =" and a con-
tinuous mapping f:S® — Z". With every such mapping f we associate an
integer p(f), called the degree of f. Intuitively, the degree p(f) is the
algebraic number of times that the image f(S™) wraps around Z".

Each n-sphere, 8" and =", has a (curvilinear) triangulation isomorphic
to the boundary complex of a geometric (n + 1)-simplex. Let K and L
denote these triangulations of S™ and Z", respectively. In proving the
simplicial approximation theorem (5-23) we showed that for each mapping
f there is a barycentric subdivision K® of K that is star-related to L
relative to f.

We know that the integral homology group H,(K) is infinite cyclic,
which means that there is a fundamental n-cycle z, on K such that every
integral n-cycle on K is a multiple m - z,, m an integer. By Corollary 6-25,
H,(K™) is also infinite cyclic. Furthermore, it is easy to prove that if
2, denotes the fundamental n-cycle on K, then u(z,'?) is the funda-
mental n-cycle on K“*P. (Here u is the chain-mapping associated with
barycentric subdivision as in Theorem 6-23.) This last statement follows
from the fact that the induced homomorphism uy of H,(K®) into
H,(K“*V) is actually an isomorphism onto (Corollary 6-25).

Just as in the proof of the simplicial approximation theorem, we may
now construct a simplicial mapping ¢ of K® into L such that ¢ is homo-
topic to f (we need not be concerned about the accuracy of the approxima-
tion). This simplicial mapping ¢ induces a homomorphism ¢,* of
H,(K®) into H,(L). The image o(z®) of the fundamental n-cycle on
K® is certainly an n-cycle on L. If we denote the fundamental n-cycle on
L by 7n, it follows that ¢(z%) = p - v, for some integer p. We define p
to be the degree of the mapping f and will abbreviate it by deg (f).

We must show that deg (f) does not depend upon the simplicial mapping
¢, as it seems to do. To accomplish this, we will consider just how the
mapping ¢ is defined. Recall that K® is star-related to L relative to f
provided that for every vertex »; or K%, there is a vertex w; of L such
that f(St(vi)) is contained in St(wj). It is possible, however, that more
than one vertex of L contains f(St(v;)) in its star and hence there may be
several choices for ¢(v;) in defining the simplicial mapping ¢. If such is
the case, it is clear that any admissible choice of ¢ can be changed into
any other by means of a sequence of admissible choices each differing
from its predecessor at only one vertex. Thus we may consider only the
effect of changing ¢ at a single vertex v; to form a new mapping ¢'.

There are exactly n 4 2 vertices in L. The image f(St(v;)) lies in at
most n + 1 stars St(w,v), since the intersection of all n + 2 stars ét(w,-)
is empty, which f(St(v;)) certainly is not. Thus there is at least one vertex,
say w, of L that is not an admissible image ¢(v;). Therefore no simplex
of K having v; as a vertex can be mapped onto a simplex of L having
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w as a vertex, no matter what choice we may take for ¢’(v;). Conversely,
if o is an n-simplex of K® and is mapped by ¢’ onto a simplex of L
having w as a vertex, then f(¢™) lies in St(w). Therefore a change in the
mapping ¢ at the vertex v; cannot alter the coefficient in the chain ¢(z®)
on any n-simplex having w as a vertex. Since deg (f) = p is taken to be
the coefficient in ¢(2*) assigned to each n-simplex of L, this argument
proves that a change in ¢ at one vertex, and hence at any number of
vertices, does not alter deg (f) = p.

Next, suppose that we had used the barycentric subdivision K®+D
instead of K® to define . Again we let u be the chain-mapping of K*
into K®*+1 associated with subdivision. The reverse chain-mapping v’
is induced by the simplicial mapping assigning to each simplex of K&+
a face of the simplex of K that contains ¢ in the point-set sense. There-
fore the composite mapping ¢u’ assigns to each vertex of K%+ 5 vertex
of L that is admissible from the standpoint of approximating f. It follows
that ou' assigns to the fundamental n-cycle u(z®) = 2% an n-cycle
p'+7n. But now uy and uy are inverse isomorphisms, so euw'u(zP) =
o(zP) = p - ¥, which proves that p’ = p. This implies that we may use
any suitably fine subdivision of K in defining ¢ and hence deg (f).

The next step is to consider a subdivision of the complex L and see if
the computation of deg (f) using this complex gives the same integer p.
Tt suffices, of course, to consider only the first barycentric subdivision L.
We may choose a subdivision K m) of K such that K™ is star-related to
L’ relative to f. This obviously implies that K™ is also star-related to L
relative to f, since the stars of vertices of L contain the stars of vertices
of L. Let p be the degree of f computed using K tm and L, and let p’ be
that computed using K™ and L’. If 7, is the fundamental n-cycle on L,
then wu(Y,) is the fundamental n-cycle on L. Letting 2, be the funda-

mental n-cycle on K, we have

§0(zn) =pTn
and
o' (zn) = p" - u(¥n).

From the remarks made above, given any simplex o® in K™, the
mapping %'¢’(¢™) is a star-mapping of K™ into L which is homotopic to
f. We must have w'¢/(za) = p* Yn. But w¢'(z.) = w'(p" - u(vy)), and
since ux and u. are inverse isomorphisms, it follows that p” = p. This
shows that deg (f) does not depend upon the subdivision of the complex L.

We need an important result before showing that the number deg (f)
does not depend at all upon the triangulations K and L of the n-spheres
S™ and =". We will prove that deg (f), as defined by means of K and
L, depends only upon the homotopy class of f. To this end, let f and
g be homotopic mappings of S” into Z". Thus there is a mapping h:S™ X
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I' — 2" such that h(s,0) = f(s) and h(s, 1) = g(s) for each point s
in 8". We let € denote the Lebesgue number (see Theorem 1-32) of the
covering of 2" by the open stars St(wj). Since S™ X I! is compact, the
mapping k is uniformly continuous. Hence there is a positive number &
such that if A is any subset of S™ and B is any subset of I, each of diameter
less than &, then the diameter of (A X B) is less than €.

Let K’ be a subdivision of K with mesh less than §/2 and choose num-
bers 0 =ty < t; <ty < --- <t =1 such that t; — t;_; < & for
each 7. Each open star St(vi) in K’ has diameter less than & as has each
open interval (t;_y,t;). Thus each set A[St(v;) X (ti_1, £)] has diameter
less than € and hence lies in the star of some vertex w; of L. Now if ¢ is any
number satisfying t;_; < ¢ < t;, the star-mapping approximating the re-
stricted mapping A|S™ X ¢:8" — =" may be defined by setting o(v; X ) =
wj, using the same simplicial mapping for any such ¢. It now follows that we
obtain the same number p = deg (h|S™ X f) for all values of t,t;_, <
¢t < t;. Passing from one such subinterval to the next must also give the
same number p because the approximating star-mappings agree at the
end point ;. Therefore deg (h|S™ X ) must be the same for all values of
¢t in I', and we have proved that deg (f) = deg (9); that is, deg (f) is
invariant under homotopy.

Last, we show that the degree of f does not depend upon the triangula-
tions K and L of the n-spheres S* and =*. We will use two lemmas in
this argument.

Lemma 6-27. If H, K, and L are three finite geometric complexes, and
f:|H| — |K| and g:|K| — |L| are continuous mappings on the indicated
carriers, and if H is star-related to K relative to f, and K is star-related
to L relative to g, then H is star-related to L relative to the composite

mapping gf.

Proof:. If f(St(vi)) lies in some St(Wj) and g(ét(w,-)) lies in some St(uk),
then gf(St(v;)) lies in St(uz). []

Lemma 6-28. If 8", 2% and X" are n-spheres, if f:8" — =" and
g:Z"* — X™ are continuous, and if H, K, and L are triangulations of S,
2", and X", respectively, which are admissible for defining deg (f)
and deg (g), then H and L are admissible triangulations for defining

deg (¢/), and deg (gf) = (deg (f)) - (deg (g)).

Proof: If p is the algebraic sum of the number of n-simplexes of H that
are mapped onto a simplex of K by the star-mapping ¢ approximating f,
and if p’ is the algebraic sum of the number of n-simplexes of K mapped
onto a simplex of L by the star-mapping ¢’ approximating ¢ (and this
is the geometric significance of degree), then p - p’ is certainly the algebraic
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sum of the n-simplexes of H mapped by the admissible star-mapping ¢'¢
(previous lemma) onto an n-simplex of L. []

Returning to the main problem, let L and Lo be any two triangulations
of =". Choose a subdivision L{ of Lo such that Lg is star-related to L
relative to the identity mapping ¢:=2® — Z". The associated star-mapping
¢ of L} into L is continuous and is homotopic to <. It would seem obvious
that this implies that deg (¢) = =1, but this has not been shown. The
degree of ¢ and hence of ¢ depends, as far as we know, upon the choices
of L and Lo. In fact, the statement that deg () = =1 is a special case of
the theorem we are trying to prove. It is convenient to prove this special
case first.

Let L’ be a refinement of L such that L’ is star-related to L; relative
to ¢, and let ¢’ be the approximating star-mapping. Applying Lemma
6-28, take each n-sphere to be =", the mappings to be the identity mapping,
and take H to be I/, K to be Lj, and L to be L. We then have deg (¢'¢) =
(deg (¢")) - (deg (¢)). The number deg (¢’¢) is defined with respect to L’
and L, which is the vital point here. Since ¢’¢ is homotopic to the identity,
we know that deg (¢'¢) = deg (¢), where deg (2) is defined relative to L'
and L. For the complexes L’ and L, the iterated simplicial mapping w’
of the subdivision process is a star-mapping approximating the identity <.
Since ' induces an isomorphism of H,(L’) onto H,(L), we know that
deg (w) = deg () = 1. Thus we have deg (¢') - deg (¢) = 1, so each of
these numbers is either +1 or —1. Since L and Ly may have had opposite
orientations, we could have deg (¢) = —1, but in this case we may
merely reorient Lo so that deg (¢) = -F1. This implies that the identity
mapping :Z" — Z" can always be taken to have degree +1 regardless
of the triangulations L and Lg used in defining deg ().

Continuing with the general case, choose a subdivision K’ of K so fine
that K’ is star-related to both L and L, relative to the mapping f of S™
into =". Clearly f = if, where 4 is the identity mapping on Z". The
value of deg (f) as defined relative to K’ and L is equal to the product
deg (¢) - deg (f), where now deg (f) is defined relative to K’ and L.
Since we may take deg (¢) = +1, the two definitions of deg (f) agree.
Hence we may conclude that the degree of f is independent of the particular
triangulation of Z". Finally, letting ¢’ be the identity mapping of S™ onto
itself, we have f = fi’, and the same argument shows that deg (f) is inde-
pendent of the triangulation of S”. This lengthy argument has proved
the following result.

TaeoreM 6-29. The degree of a continuous mapping f of an n-sphere
S™ into an n-sphere =" depends only upon the homotopy class of f.

This means that any two homotopic mappings f and g of S™ into 2"
have the same degree. The converse theorem was proved by H. Hopf,
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namely, if f and g are two mappings of 8™ into =" and if deg (f) = deg (g),
then f and g are homotopic. These two results yield a succinct classification
of the continuous mappings of one n-sphere into another. In particular,
we may conclude that the homotopy classes of such mappings are in one-
to-one correspondence with the integers. This serves to show that the nth
homotopy group of an n-sphere m, (S™) is infinite cyclic. We do not include
Hopf’s proof here, but will give the following indicative result.

THEOREM 6-30. The n-sphere is not contractible, i.e., the identity
mapping of S™ onto itself is essential.

Proof: A constant mapping certainly has degree zero and hence cannot
be homotopic to the identity whose degree we proved to be unity. []

Oddly enough, one of the most important facts about degree is also
one of the most obvious.

TarorEM 6-31. If f:8® — E™ is continuous and deg (f) # 0, then
each point of Z" lies in the image f(S™).

Proof: Suppose that p is a point of =™ and that p is not in the compact
set f(S™). Let 2e be the distance d(p, f(S™)) from p to f(S™), and choose a
simplicial subdivision L of =" of mesh less than €. Choose a subdivision
K of 8™ which is star-related to L relative to f, and let ¢:K — L be the
associated star-mapping. Then no simplex ¢ in K is mapped onto an
n-simplex of L containing the point p. This implies that deg (f) = 0,
contrary to our assumption. [ ]

We may point out that this theorem may be proved in another way
by reference to Theorem 4-13. Our proof above is included as an example
in using the tools of this section. We will exhibit an application of the
above result in the next section.

Next we extend the concept of degree to include mappings of the closure
of an open set in S™ into another n-sphere =". The theory differs from that
above in that the degree is defined locally and may vary from point to
point. Indeed, this new concept of degree fails to be defined at some
points.

Let D be a connected open set in S*, and let f:D — =" be continuous.
Let p be a point of Z* not in f(D — D). Let U be a spherical neighbor-
hood of p so small that U N f(D — D) is empty. By the Tietze extension
theorem (2-31) there is an extension f:S" — D — =" of f|(D — D) into
the n-cell Z* — U. Let f:S® — =" be defined by J(z) = f(z) if z is in D,
and J(z) = f'(z) if z isin 8® — D. We define the degree of f on D at p,
deg (f, D, p), to be the degree of .

As an example, let D be the closed unit disc in E? given by the complex
coordinates || < 1. Let f:D — E? be defined by f(z) = (z — 4)2. The
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unit circle is mapped as indicated in Fig. 6-22, and we show as shaded
areas in the remaining figures the three extensions f’ required to compute
the degree of f at pg, p1, and po.

Once we have shown that deg (f, D, p) is independent of the particular
extension f’, we can use the previous theorems on degree to obtain cor-
responding results for this new theory. But this independence is almost
obvious. For in computing deg (f), we can choose a triangulation L of Z"
so fine that some n-simplex 6™ of L lies entirely in the spherical neighbor-
hood U. Then we choose a triangulation K of S" star-related to L relative
to T and such that the approximating star-mapping ¢ carries a simplex of
K onto o™ only if that simplex lies in D. This is possible simply by making
the approximation sufficiently accurate. The degree of f may be computed
merely as the coefficient of ¢" on the image ¢(2,) of the fundamental
n-cycle z, of K. This coefficient is determined only by those simplexes of
K that are mapped by ¢ onto o™ and, in fact, is the number mapped with
positive orientation minus the number mapped with negative orientation.
It is now evident that the choice of the extension f’ is immaterial.
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The homotopy invariance of degree has the following formulation in
this setting.

THEOREM 6-32. Let D be the closure of an open set D in S”, let =" be
an n-sphere, let fo:D — =" and f;:D — =" be continuous, and let p be a
point of 2" — fo(D — D) — fi(D — D). If there is a homotopy
k:D X I' — =™ between fo and f; such that h[(D — D) X I'] does
not contain p, then deg (fo, D, p) = deg (1, D, p).

Proof: Let U be a spherical neighborhood of p that does not meet the
compact set hA[(D — D) X I']. By the Tietze theorem again, there is an
extension of h|(D — D) X I, say h':(8" — D) X I' — 2" — U, and
we can combine this with A to obtain a mapping k:S® X I' — =*. This
clearly gives a homotopy between an extension f, of fo and an extension
f1 of f1. By Theorem 6-29, deg (7o) = deg (F1). But these are, respec-

tively; deg (fO: l—)’ p) and deg (fl) Dy p) D
Similarly, Theorem 6-31 has the following formulation.

TuroreM 6-33. If D is the closure of an open set D in 8", if f:D — ="
is a continuous mapgng of D into an n-sphexg, and if p is a point of
2" such that deg (f, D, p) # 0, then p is in f(D).

Proof: Suppose that p is not in f(D). Let U be a spherical neighborhood
of p that does not meet the compact set f(D). Then p is not in f'(S® — D),
either, and so is not in f(S™). This contradicts Theorem 6-31. []

The theory of degree has also been approached by using differentiable
mappings instead of simplicial mappings as the basic approximations.
The reader who is interested in such a development is referred to
Nagumo [110, 111].

6-15 The fundamental theorem of algebra, an existence proof. The
theorem to which this section’s heading refers is the following result.

TuEoREM 6-34. Every polynomial P(2) = a9 + a;z + -+ + 2", the
coefficients a; being complex numbers, and n > 0, has at least one zero.

There are many proofs of this result, one of which we give here as an
application of Theorem 6-29. First, we remark that we may consider P
as a mapping P:E? — E? and if we set P(w) = o0, we have a continuous
mapping P:S? — §2.

LemMa 6-35. The polynomial P(z) is homotopic to the mapping
fle) = 2™
Proof: We define the homotopy explicitly by setting

h(z, t) = 2" + (1 — t)(ap + @12 + - - - + @n_12"7Y),  for  finite,
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and h(owo,t) = o0.

for all £ and all finite z, k is continuous by elementary theorems in function
theory. It is easy to show that lim, . h(2, {) = oo for all ¢ and hence that
h is continuous on 8% X I'.[]

LemMma 6-36. The degree of f(z) = " is n.

Proof: We indicate in Fig. 6-23 two triangulations of the 2-sphere,
considered as the plane plus a point at infinity, on which f(z) is actually
simplicial. In this mapping, for example, the n shaded pieces of Fig.
6-23(a) are mapped onto the shaded piece of Fig. 6-23(b) in a sense-
preserving fashion. It is now clear that the degree is n. []

Proof of Theorem 6-34: From Lemmas 6-35 and 6-36, it follows that
the degree of P(z) = n. Then by Theorem 6-31, each point of S? is the
image of some point of S2. In particular, there is at least one point 2o
such that P(zo) = 0.[]

It is tempting, but incorrect, to say that because deg (f) = 7, each
point is the image of at least n points. The function f(2) = 2" is a counter-
example since only zero is mapped onto zero. At the time of this writing,
the following question cannot be answered. If f:8* — Z™ is continuous
and deg (f) = F, is the set of points z in 2", such that f~!(x) has at least
k points, nonempty? No example is known for which this set fails to be
dense in 2.

The proof given in this section is typical of the use of degree theory in
constructing existence proofs. The method can be summarized as follows.
(a) So phrase the problem that for some mapping f, deg (f, D,p) #0
implies the existence of the desired quantity (in our case, a root of a

&) =7

2r/n

(a) (b)

Fig. 6-23. n shaded simplexes in (a) map onto the one shaded simplex in (b).
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polynomial), (b) find a simple function f* homotopic to f such that
deg (f*, D, p) can be computed, and (c) do the computation.

It is possible to obtain a degree theory in more general spaces than we have
considered here. A first generalization is to n-dimensional orientable manifolds.
With restrictions placed upon the mappings, a degree theory can be set up even
in function spaces. The usual approach is to consider a function f on a set D in
a Banach space B, f being completely continuous (that is, f carries bounded sets
into compact sets) such that f:D — B. This condition allows one to make
approximations by means of mappings of Euclidean spaces for which degree
theory can be defined. If the degree thus obtained for f is not zero, we have
the existence of a solution of certain functional equations. This is the Leray-
Schauder method [97, 98]. For a self-contained account, see Rado and Reichel-
derfer [29].

6-16 The no-retraction theorem and the Brouwer fixed-point theorem.
We recall that a retraction of a space X onto a subset A of X is a continuous
mapping 7:X — A such that r(a) = a for each point a in A. In other
words, the restriction r|A of r to A is the identity mapping. The following
“no-retraction theorem” seems to be intuitively obvious.

TreoreM 6-37. There is no retraction of an n-cell onto its boundary,
n > 0.

Proof: There is no loss of generality in taking the n-cell to be the set of
points in E” satisfying the inequality Y.7—o 27 < 1 whose boundary is
the sphere S"~1. Suppose that there is a retraction r of this n-cell onto
S™~1. Define the mapping

hz,t) = r[(1 — ) - 2], xin 871

where x is taken to be a unit vector in E®. Clearly, we have iz, 1) =
r(0 - ) = 7(0) for each point z in S"~!, so k(x, 1) is a constant mapping
of 8”1 onto the point 7(0). But A(z,0) = r(z) = x is the identity
mapping of S” ! onto itself. Thus (z, £) is a homotopy between a constant
mapping which has degree zero and the identity mapping which has
degree 1. By Theorem 6-29, this is impossible, so the retraction r cannot
exist. []

The following result, equivalent to Theorem 6-37, may be proved as
an exercise.

TaEOREM 6-38. There exists no retraction r:8™ X I' — 8" such that
r(z,0) = x and r(x, 1) = pg, a point in S*, for all points z in S™.

Intuitively, this says that it is impossible to peel an orange without
breaking the skin.
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y = f(z)
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Il Xy

Ficure 6-24

Looking in another direction, let f be a continuous mapping of the unit
interval I' into itself. It is quite obvious that there is at least one point
2o in I for which f(zo) = zo. To see this, we merely note that the graph
of y = f(x), must cross the graph of y = z at least once (see Fig. 6-24).

It might not be quite so obvious that the same result is true for a con-
tinuous mapping of an n-cell into itself. The reader may ponder over
the problem of using the truth of the theorem for the case n = 1 together
with the fact that an n-cell is (topologically) the product of » unit intervals
to prove the general case. The proof given below is short and easy only
because we bring to bear some formidable machinery.

THEOREM 6-39. Given any continuous mapping f of an n-cell into itself,
there is at least one point zy for which f(zo) = =zo.

Proof: Again we may take the n-cell as in the proof of Theorem 6-37.
Now suppose there is a mapping f of this n-cell into itself which has no
fixed point. For each point x in this n-cell, let L(x) be the directed ray
from f(x) to . Since there is no fixed point, there is a unique ray L(x) for
each point z in the n-cell, and hence a unique point L(z) N 8. Let r
be the mapping defined by r(z) = L(z) n S*~!. That is, we map = onto
f(2) and then back along L(z) until we meet S*~!. It is easy to see that
r is continuous, and clearly 7(r) = z for each point z in S®~'. This
means that r is a retraction of the n-cell onto its boundary, which contra-
dicts Theorem 6-37. Thus the unique rays L(z) cannot exist as claimed
and there must be a fixed point. []

The Brouwer fixed-point theorem above also implies the no-retraction
theorem. For if we assume the fixed-point theorem and suppose that r is a
retraction of the n-cell, we obtain a contradiction as follows. There are
mappings of S"~! onto itself with no fixed points. One of these is the
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antipodal mapping g, which interchanges antipodal points. Then the
composite mapping gr is a continuous mapping of an n-cell into itself
having no fixed point. This contradicts Theorem 6-39 and proves the
two theorems to be equivalent.

We often express the Brouwer fixed-point theorem by saying that the
n-cell has the fixed-point property. Many other spaces also have the same
property. Results in this direction may be found in Lefschetz [22], Young
[135], and others.

Fixed-point theorems also have been used for existence proofs, particularly in
function spaces. The use of the fixed-point property in function spaces is due
to Birkhoff and Kellogg [64], who approximated the spaces by suitable mappings
of an n-cell into itself. (Also see Birkhoff [4].) Schauder later refined the method
and proved that a continuous mapping of a convex subset C' of a Banach space
into a compact subset of C has a fixed point. This result is the basis of many
existence proofs in analysis.

6-17 Mappings into spheres. Some very important topological proper-
ties of Euclidean spaces can be established by a study of mappings into
spheres. We collect some of these results in this section, the methods
being largely those of Borsuk [68].

LEmmA 6-40. Let K be a finite geometric complex of dimension <n.
Then every mapping f:|K| — S" is inessential.

Proof: Let L be a triangulation of S” with dimension n. By the simplicial
approximation theorem (6-23), there is a mapping g:|K| — 8" such that
g is homotopic to f and is simplicial on suitably chosen subdivisions of
K and L. Since a simplicial mapping does not raise the dimension of
simplexes, g cannot map |K| onto S*. Hence Theorem 4-13 applies to show
that ¢, and therefore f, is inessential. []

CoroLLARY 641. If m < n, then every mapping f:8™ — 8" is in-
essential and admits an extension f to the (m + 1)-cell bounded by S™.

Proof: That f is inessential follows from Lemma 6—40, and the extension
7 is given by Theorem 4-5. []

Note that this result can be used to prove that for m < n, the homotopy
group wn(S™) s trivial.

LemMma 6-42. Let K be a finite geometric complex with dimension <n,
let A be a closed subset of [K|, and let f:4 — S" be continuous. Then
f has an extension f:|[K| — S".

Proof: By Theorem 2-35, there is an open set U in |K| such that A lies
in U and such that there is an extension f:U — S™ of f. If we take a suit-
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ably fine barycentric subdivision K%' of K, we find a subcomplex L of
K™ such that |L| contains A and is contained in U. Let K% denote
the p-skeleton of K®. It is clear that f has an extension f° mapping
|K§P| U |L| into S". [We need only assign images to the vertices of
K® — L] Then f° is also an extension of f.

Suppose that for p < dim K < n, there is an extension f7:|K¥| U
L] — S™ of f. Then f? is defined on the boundary of each (p + 1)-
simplex sy, ..., s, in K% — L. But then by Corollary 641, f? can be
extended over each s;, thus yielding f?*!:|K%¥,| U |L] — 8™ Since
dim K = dim K® < n, this proves the lemma. []

LeEmMMa 6-43. Let K be a finite geometric complex of dimension <n + 1,

let A be a closed subset of |K|, and let f:A — S" be continuous. Then

there is a finite set F in |K| — A such that f has an extension

fiIK| — F — 8™

Proof: Carrying on with the proof of Lemma 6-42, let s1,..., s, be
the (n + 1)-simplexes of K® — L, and let F be the set of barycenters
§; of these simplexes. A radial projection of each s; — §; onto the boundary
of s; yields a retraction r:|K| — F — |K{| U |L|. The composite mapping
frr:|K| — F — 8" is the desired extension of f. []

LeMMma 6-44. Let A be a closed subset of S", and let B be a set con-
sisting of exactly one point from each component of S* — A. For
every mapping f:A — S"~! there is a finite subset F of B and an
extension f:8" — F — S"~! of f.

Proof: From Lemma 6-43, there is a finite subset (z,...,%s) of S* — A
and an extension f:S® — (xy,...,%,) — S ! of f. For each w; let b;
be the point in B lying in the same component of 8* — A as does x;,
and take F = (by, ..., b,). To prove that f has the desired extension,
we use induction, showing that if f has an extension

Fimr8™ — (byy oy by, @, L, Tg) = ST
then f also has an extension
Fis™ — (by, .o by gy .., 2g) — SPTL

Since we may take f* = f, this will complete the proof.

Since z; and b; lie in the same component of S — A, there is a finite
sequence of points z; = yo, Y1, ..., Ym = b; and also a sequence of
convex n-cells Iy, ..., [, in S* — A such that y; ; and y; lie in I;
for each 7 = 1,2, ..., m and such that the boundary S; of I; contains
none of the points z;, b;, or y;. It now suffices to show that if f has an
extension

- n—1
f;——lzsn - (bla I bi—l: Yi—1 Tigly - -« xq) -8 )
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then f also has an extension

f_jiZSn — (b1, oy b1, Yy Tig1y - - -, Xg) S™L
Let r be a retraction of S* — y; onto S* — I;. Then by setting fj:(x) ==
fi—1(r(x)) for each point z in 8" — (by, ..., bi_1, ¥j, Tig1, - . -, Ty), We

have the desired extension. [ ]

TaeEOREM 6—45. Let K be a finite geometric complex. For K to have
dimension = n, it is necessary and sufficient that for every closed subset
A of |K| and every mapping f:A — S", there exists an extension
FK| — 8™

Proof. The necessity of the condition is precisely Lemma 6-42. Suppose
then that dim K > n. Let s be an (n + 1)-simplex in K. Take 4 to be
the boundary of s and f:A — S™ to be a homeomorphism. If f has an
extension J:|K| — 8", then f~':|K| — A is a retraction. In particular,
this mapping retracts the (n 4 1)-cell s onto its boundary, contradicting
Theorem 6-37. ]

CoROLLARY 6—46. If P is a finite polytope and K; and K, are two
triangulations of P, then dim K; = dim K.

A proof of Corollary 6-46 can be supplied by the reader.

TuroreM 6-47 (Borsuk separation). Let X be a compact subset of
E™, and let xo be a point in E* — X. For z, to lie in the unbounded
component of E® — X, it is necessary and sufficient that the mapping
f:X — 8"~! defined by

r — 2o

|l — wol|

flx) =

be inessential. (We are using vector notation for points of £™.)

Proof: By means of a translation, we may consider zq to be the origin
in E*. Since X is compact, it lies inside some sufficiently large spherical
neighborhood S(0, 7) of the origin. The similarity mapping sending each
point x onto z/r maps E™ homeomorphically onto itself, with X being
carried into the n-cell bounded by S®~!. Therefore we could have assumed
this condition on X originally; also, if zo = 0, the mapping f is given by

x

@ = g

Suppose that O lies in the unbounded component C of E* — X. Since
C is arcwise-connected (Theorem 3-5), there is a mapping p:I' — C with
p(0) = 0 and p(1) = x;, where x; is a point having norm [|x;| greater
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than unity. Consider the mapping H:X X I' — 8"~ ! defined by

Hz, ) = = —P2O_

le — pOI
Clearly,
) H(z, 0) = f(2),
while
T =2 .
Heo ) = =

Since each point z in X is inside S*~! and z; is not, it is easily seen that

for no z is
r — 1 A

le =zl ~ Tfall’

H(, 1) =

which is a point in S®~!. For this equation would imply that

le — 24l + [l=4]
r = L
[l1]] b

and z would have norm exceeding that of x;. Therefore H(z, £) is a homo-
topy between f and a mapping H (z, 1) that does not cover S®~1. By Theo-
rem 4-13, H(z, 1), and hence f, is inessential.

Conversely, assume that the component C of E® — X that contains
the origin is bounded. Then C U X is a closed subset of the n-cell bounded
by 8*~!. If the mapping f is inessential, then by Theorem 4-5 there is an
extension f:C U X — 8"~ !. Define the mapping r of the n-cell bounded
by S*~! by setting

r@@) = J(z), xinCUX,

and
x .
r(x) = Mol znotin C U X.

The two definitions agree on X, so r is continuous; and for points in
8"l x = z/|z||, so r(z) = z. Thus r is a retraction of the n-cell onto
its boundary, contradicting Theorem 6-37. []

The next result is also due to Borsuk.

TaroreM 6-48. Let X be a closed subset of 8*. Then S* — X is con-
nected if and only if every mapping f:X — S™ ! is inessential.

Proof: Suppose that 8* — X is connected, and let f:X — 8"~ be any
mapping. Let zo be any point in S* — X. By Lemma 644, there is an
extension 7:S" — zo — S*~L. But 8" — 2, is contractible, so f is in-
essential and therefore f is also inessential.

On the other hand, if S* — X is not connected, let z; and x2 be points
in different components of 8" — X. If weregard 8 — x, as E”, it follows
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that s lies in a bounded component of E* — X. Therefore Theorem 6-47
applies to give an essential mapping of X into S* ™. []

Since the property expressed in Theorem 6-48 is topological, i.e., is
preserved by homeomorphisms, we have the next result as a corollary.

TrEOREM 6-49. If X is a closed set in S™ that separates S*, and Y is
any homeomorphic image of X, then Y separates S™.

Since 8"~ ! separates S", we immediately have the following portion
of the generalized Jordan curve theorem.

TaEOREM 6-50. If 2 is a set in S™ that is homeomorphic to 8™, then
T separates S™.

We do not know as yet that the set Z in Theorem 6-50 separates S™ into
exactly two connected open sets, but it is easy to show that each com-
ponent of S* — Z has all of 2 as its boundary. For if not, then some
component C has C — C lying in a topological (n — 1)-cell I~ ! in Z.
But every mapping of I'"~! into S"~! is inessential, which proves the
following result.

TueoreEM 6-51. No homeomorph of an (n — 1)-cell separates S™.

However, it is conceivable that a set = be the common boundary of three
connected open sets in S"®. Earlier, we saw an example of a continuum
with this property (Section 3-8), and we know that homeomorphs of
spheres can be wildly imbedded. It turns out that, although a 2-sphere
can be so wildly imbedded in S that neither of its complementary domains
is a 3-cell, no sphere S"~! can be so badly imbedded in S™ that its comple-
ment has more than two components. We shall give a proof of this later.
The following result is as far as we can go at present.

THEOREM 6-52. Let A and B be subsets of S” such that (1) B is the
boundary of A, (2) A is homeomorphic to the n-cell I, and (3) B is
homeomorphic to S*~!. Then S* — B has two components 8" — A
and A — B, and in particular, A — B is open in S".

Proof: Since I™ does not admit essential mappings into S* ™!, it follows
from Theorem 6—48 that S* — A is connected. The set A — B is homeo-
morphic to an open n-cell and so is connected. On the other hand, S"~!
does have an essential mapping into itself (e.g., the identity), hence by
Theorem 648, S® — B is not connected. We need only note that
S* — B = (8" — A) U (A — B) to complete the proof. [ ]

TraeorEM 6-53 (Invariance of domain). If U, and U, are homeomorphic
subsets of S, and if U, is open, then U, is open.
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Proof: Let h:U,; — U, be a homeomorphism. Let 25 be a point of U,,
and take x; = h™'(x,). Let V; be a spherical neighborhood of x; such
that V; lies in U;. Then V, and V; — V, satisfy the conditions of
Theorem 6-52, and h(V,) — h(V; — V) is open. Since z, lies in this
open set, it follows that U, is a union of open sets and is open. [ ]

Query: Why is Theorem 6-53 not obviously true?

A space M is locally Euclidean of dimension n if each point of M lies
in a subset of M which is homeomorphic to E™.

TaeoreMm 6-54. Let M; and M, be two locally Euclidean spaces of
dimension n. If U is an open subset of My, and if A:U — M, is a
homeomorphism of U into My, then A(U) is open in M.

Proof: Let x4 be a point of A(U), and take x; = A~ 1(x3). Select open
sets V1 and Vo containing z, and x5, respectively, such that both ¥V; and
V5 are homeomorphic to E® and such that V lies in U and A(V) lies in
V,. Since E™ is homeomorphic to an open subset of S", we may choose
homeomorphisms ¢g;:V; — S” and g3:Vy — 8", where ¢,(V;) and g2(V2)
are open subsets of 8". Then gyhgi ' maps ¢,(V,) homeomorphically
onto a subset of go(V,). By Theorem 6-53, this subset of go(Vs) is open
in 8™ and hence is open in g3(V3). Thus the set hgi'g1(Vy) = R(V4) is
open in V, and hence is open in My. Since x5 lies in A(V,) and A(Vy)
lies in U, it follows that U, is a union of open sets. [ ]

One of the many “intuitively obvious” results in topology is the fol-
lowing consequence of the above theorem. (See Brouwer [70].)

CoROLLARY 6-55. Two locally Euclidean spaces M and M, of different
dimensions cannot be homeomorphic.

Proof: If dim M; = m; and dim Ms = my, and if m; = my + F,
k > 0, then M, X E* is also locally Euclidean of dimension m;. The
nonopen set M, X 0 in My X E* is homeomorphic to M,. If M, were
homeomorphic to M,, then it would be homeomorphic to a nonopen
subset of a locally Euclidean space of dimension m;, contradicting
Theorem 6-54. [ ]

The point of Corollary 6-55, the reason that it is not so easy as it is
“obvious,” is that just because there is a way of describing a space with,
say, 83 parameters does not mean there is no way of describing the same
space with 79 parameters. The unit square, for example, can be described
with two parameters and also with one, using a Peano mapping. The
second parametrization maps several points onto one, but it is not obvious
that this must happen for all mappings of I7° onto 132,

Exercist 6-24. Let S be the surface of genus 2 (Fig. 6-18). Assume S to
be imbedded in E3, and let U be the bounded component of E3 — §S. Tri-
angulate the solid U = U U §, and compute its integral homology groups.
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Frqure 6-26

Exercise 6-25. Identify the three 1-simplexes (vov1), {(vevs), and (vavs) in
the complex pictured in Fig. 6-25 by identifying vertices v, v2, and v4 and by
identifying vertices v1, v3, and v5. Determine the integral homology groups and
the mod 2 homology groups of the resulting surface.

ExErcisE 6-26. Without calculation, determine the integral homology groups
of the complexes pictured in Fig. 6-26. (Assume that there are no 3-simplexes
in any of these complexes.)
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ExERcisE 6-27. In the triangulated torus of Fig. 6-9, replace one 2-simplex
with the complement of the simplex {vivsv4) in the projective plane pictured in
Fig. 5-14. Determine the integral homology groups of the resulting surface.

Exercise 6-28. Identify n distinet points of S2. Find a triangulation of the
resulting surface, and compute the integral homology groups.

ExERCISE 6-29. Let 84 denote the 4-skeleton of the closure of a 5-simplex.
Show that the 2-skeleton of S* consists of two projective planes triangulated
as in Fig. 6-14, each containing every l-simplex of St.

Exercise 6-30. Identify the opposite faces of a cube in two different ways
(there are more than two ways, of course). Triangulate the resulting solids
and find their integral homology groups.

ExErCISE 6-31. Projective n-space P may be obtained by identifying anti-
podal points of 8*. Prove that P* may be triangulated as an n-pseudomanifold
which is orientable if n is odd and nonorientable if » is even.

Exercise 6-32. Let S1,...,S: be any finite set of spheres. Prove that
P%_, S can be triangulated as an orientable pseudomanifold.

Exercise 6-33. Let K be a 2-pseudomanifold, let a;, ¢ = 0, 1, and 2, denote
the number of s-simplexes in K, and let X(K) be the Euler characteristic of K.
Prove that

3az = 201, a1 = (a0 —X(K)), a0 Z 37+ V49 — 24X(K)).

Exercist 6-34. Using the results of Exercise 6-35 and assuming that any
triangulation of the 2-sphere S2, the projective plane P2 and the torus T must
be 2-pseudomanifolds, show that the following inequalities are satisfied:

for 82, ap = 4, a; = 6, and az = 4,
for P2, ag = 6, a1 = 15, and a2 = 10,
and for T, ag = 17, ay = 21, and az = 14.

In particular, find a minimal triangulation of the torus.

ExERCISE 6-35. Construct a triangulation of 8” which is symmetric with
respect to the origin in En+!, Define the antipodal mapping f carrying each
vertex into its antipodal vertex. Show that f is simplicial and that for any element
hn of the integral homology group H,(S™), we have fy(hs) = (—1)"ha.

ExERcIsE 6-36. Show that any mapping of the (n -+ 1)-disc into S™ maps
at least one pair of antipodal boundary points onto a single point.

Exercise 6-37. Let fi(z) = fi(x1,22,...,%), ¢t =1,2,...,n, be real-
valued continuous functions on the n-dise. If
n@ _ 6@
z1 Tn

for no boundary point x, prove that the system of equations
f{(xl,.--,xn)=0 (i=l,...,n)

has at least one solution in the n-disc.
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ExERcIsE 6-38. A linear graph is a finite connected 1-dimensional complex.
A vertex of a linear graph is odd or even provided that it is a face of an odd or
even number of 1-simplexes. Prove that there is an even number of odd vertices
in any linear graph.

ExEercrse 6-39. An Euler line in a linear graph is a line drawn without lifting
the pencil and without retracing any 1-simplex (crossing at a vertex is per-
mitted). Show that a linear graph may be traced with an Euler line if and only
if there are no more than two odd vertices in the graph. Furthermore, prove
that if there are two odd vertices, the tracing Euler line must begin at one of the
odd vertices and will terminate at the other.



CHAPTER 7
FURTHER DEVELOPMENTS IN ALGEBRAIC TOPOLOGY

This chapter consists of two major parts, the first devoted to relative
homology theory and the second to cohomology theory. We introduce
the two subjects separately.

7-1 Relative homology groups. It is often found that we know the
homology groups of a complex and wish to deduce from this knowledge
information about the groups of some subcomplex. And conversely,
knowing the groups of a subcomplex, we may want to obtain some knowl-
edge of the groups of the entire complex. It is the relations between such
groups that form a goal in studying relative homology theory, an inven-
tion of S. Lefschetz [95]. We will use several sections in reaching for
this goal.

Throughout the first part of this chapter, we will be considering an
abstract simplicial complex K and a closed subcomplex L contained in K.
A p-chain ¢, on K is called a p-cycle of K modulo L provided that dc, is a
chain on L, that is, dc, has nonzero coefficients only on simplexes of L.
We will set up the relative homology groups of K modulo L and discuss
the geometric interpretations as we proceed.

Let 7 denote the identity simplicial mapping, the ¢njection, of L into K
defined by 7(v) = v for each vertex of L. As we have remarked before,
i induces (or is) an isomorphism of the chain groups C,(L, @) into the
chain groups C,(K, @), but this does not mean that the induced homo-
morphism 7, on homology groups is an isomorphism. For the remainder
of this discussion, we will use only the group Z of integers as coefficients
and will write C,,(L) for Cp(L, Z), ete.

In view of the isomorphism 4, the chain group C;,(L) may be considered
as a subgroup of C,(K) and, since both are free groups, we may define
the relative chain group of K modulo L (with integral coefficients) as the
difference groups

6, (X) = et - 0.

An element ¢, of C,(K/L) is a relative p-chain of K modulo L and, of course,
is a coset in Cp(K). For such a coset, it will be convenient to write

tp = ¢ ® Cp(L),

where ¢, is any chain of K in the coset Z,. Clearly, ¢, is an equivalence
282
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class [c,] and consists of all chains of K of the form ¢, 4 k,, where £k, is
a p-chain of L. As usual, we say that ¢, is a representative of ¢,.

We now have a graded group C(K/L) = Co(K/L) ® C(K/L) ® - - -
@ Co(K/L) @ - - -, and all we need for a homology theory is the boundary
operator (see Section 6-8). The new boundary operator is defined by

6_611 = 9(cy ® Cp(L)) = dcp—1 ® Cp_y(L),

where 8 is the usual boundary operator on C,(K). To say this in a slightly
different way, to form the boundary of a relative chain, one takes the
usual boundary of any one of its representatives and then considers the
coset of this boundary. Of course, it must be shown that 3 is well-defined.
To do so, let ¢, and ¢, be two representatives of the same relative chain ¢,.
By definition, ¢, = ¢, -+ k, for some chain k, on L. Therefore, dc;, =
dcp + 9k,. Since L is a closed subcomplex, the boundary ok, is in C'p_; (L)
[of course, ok, is actually in B,_;(L)]. Thus dc, and dc, lie in the same
coset in Cp_;(K), that is, dc, @ Cp_1(L) = dc, ® Cp_i(L).

The fundamental requirement for a boundary operator is that it be of
order 2. We show that 3(dc,) = O for any relative p-chain ¢,. If ¢, =
¢p ® Cp(L), then 3(dc,) = 3(dc, ® Cp_1(L)) = 8dc, ® Cp_s(L), by
definition. But ddc, = 0. Thus 3(dc,) = Cp_3(L), and Cp_o(L) is the
zero element of C,,_o(K/L).

Once the property 3@ = 0 is established, we may apply the usual
method of obtaining a homology theory. Thus we define the relative
cycle groups of K mod L as

Zp (%) = the kernel of 3 in C, (%) = §740),

and we define the relative boundary groups of K mod L as

5, (%) - a0, (5).

The fact that 39 = 0 implies that B,(K/L) is a subgroup of Z,(K/L).
Hence, since both of these groups are abelian, we may define the relative
homology groups of K mod L as

1) -5.(5) ()

By these definitions, a relative chain Z, is a relative cycle if and only if
9z, = 0. This means that Zp = 2p ® Cp(L) is in Z,(K /L) if and only if
9z, lies in C,_y(L). That is, a chain on K represents a relative cycle if
its boundary lies in L. Of course, a true cycle on K, a chain with zero
boundary, is also a representative of some relative cycle. Similarly,
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b, = b, ® Cp(L) is a relative boundary if and only if there is a chain
dp41 in Cpy1(K) such that b, — 8dp4q lies in Cp(L), that is, b, together
with some chain on L constitutes the boundary of a chain on K. It will
benefit the reader to draw some sketches illustrating this concept geo-
metrically.

Exercise 7-1. Let K be a finite complex, and let v be a vertex of K. De-
termine the relative integral homology groups Hp(K/v),p = 0,1,2,...

Exercise 7-2. Let S2 denote the boundary complex of a 3-simplex o3, and
let S! denote the boundary complex of one 2-simplex o2 of 82. Determine the

relative integral homology groups H,(S%2/8%),p = 0, 1, 2.

7-2 The exact homology sequence. An economical and very suggestive
way to gather the interrelations between the homology groups H,(K),
H,(L), and H,(K/L) is in the form of the exact homology sequence. This
algebraic construct was first formally recognized by Hurewicz [86] in 1941,
although the various parts were known earlier. Let us look at the indi-
vidual parts first.

We have mentioned the injection mapping ¢ of the subcomplex L into
the complex K and the resulting induced homomorphism 4, of the groups
H,(L) into H,(K). There is also the canonical homomorphism j of
Cp(K) onto C,(K/L) given by

jlep) = cp @ Cp(L).

By definition, j(dc,) = dc, ® Cp_1(L) and 3(j(cp)) = 3(c, ® Cp(L)) =
dc, ® Cp_1(L). That is, we have jo = 3j, so j is a chain-mapping. In
view of Section 6-10, there is an induced homomorphism jy of the groups
H,(K) into H,(K/L).

A more complicated homomorphism i3 defined next. Let z, be a rela-
tive eycle with representative z, in Cp(K). Then 92, = Cp_1(L), by
definition. Butif 3(z, ® Cp(L)) = Cp_1(L), then 8z, must lie in Cp_1(L).
Furthermore, 3(9z,) = 0, so the chain 9z, is actually a cycle, that is,
dz, lies in Z,_1(L). As an element of Z,_1(L), the chain 8z, determines a
unique element of the homology group H,_;(L). We define a transforma-
tion on homology classes by setting

3« ([z]) = [92,),

where we are using our usual notation for equivalence classes.

We first show that 9, is well-defined, that is, if Z, is some other repre-
sentative of [2,], then 8z, and 9z, are homologous. To do this, let Z, be
homologous to Z,, that is, 2, — Zp is a relative boundary. Thus if zp and
2, represent z, and Z,, respectively, then there is a chain dp 41 in Cpy1(K)
such that z, — 2, — ddp41 = Tp, Where , is a chain in C»(L). Then we
have that 9z, — 0z, — 89dp1 = 02, — 9zp = 9%,, which implies that
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9z, and 9z, are homologous. Therefore 9y is well-defined. It is merely a
routine verification of the definition to show that 4, is a homomorphism
of H,(K/L) into H,_1(L), and this may be left as an exercise.

The necessary mechanism to set up the homology sequence of the pair
(K, L) isnow at hand. This is the sequence of groups and homomorphisms
symbolized in the following diagram:

- Hy(K) ™ H, (%) % p—1(L) = Hy_1(K) 5 - - 5 Ho(K).

The important relations between the homology groups H,(K), H,(L),
and H,(K/L) are collected in the theorem following this definition: a
sequence of groups and homomorphisms ¢;:G; — G,_, (usually 7 = 1, 2,
3,...,ort=---,—2—1,0,1,2,...) is said to be an exact sequence if,
for each ¢, the image under ¥; of G; is the same subgroup of G;_; as is the
kernel of ¥; ;. That is, we have y;(G;) = ¢;=4(0), where 0 is the identity
element of G;_,. If the sequence terminates in a first group the map into
that group is required to be onto.

TrEOREM 7-1. The homology sequence of a pair (K, L) is exact.

Proof: There are three parts to this proof: (1) kernel of j, = image
under x, (2) kernel of 9, = image under j,, and (3) kernel of 7, = image
under dy. Since these arguments are quite typical of those found in rela-
tive homology theory, we give them below in some detail. However, they
are not difficult, and the reader may prefer to prove them himself.

Part (1), kernel of j, = image under 7,. Let 2, be a cycle on K such that
J(2p) is homologous to zero. Since j(z,) = z, ® C,(L), this means that
the relative cycle z, ® C,(L) is assumed to be a relative boundary.
Therefore there is a chain d;; on K such that z, — dd,,; = x,, where z,
is & chain in Cj,(L). This in turn implies that the coset J(2p) = 2, ® Cp(L)
contains the element z, of C,(L). Therefore z, — z, = ddp4,, or 2, is
homologous to x,, and this is the same as saying that [2,] = [z,]. Since
¢ is the injection mapping, we have #([z,]) = [z,] = [¢,]. Thus if
Jx([25]) = 0, then [2,] is the image of an element of H,(L), so we have the
kernel of j, contained in the image under 7.

Now assume that the element [z,] of H,(K) is the image under 7, of an
element [z,] of H,(L). This says that z, is homologous to i(x,) = z,, or
that 2z, — x, = ddpy1 for some chain dpy, on K. Therefore z, —
ddp 1 = «,, where z, is in Cp(L). This implies that z, is homologous to
ddp1mod L. But ddpyq is on L, so z, is homologous to zero mod L.
Therefore j(z,) = 2, ® Cp(L) is homologous to zeromod L, and this
implies that the kernel of j, contains the image under 7., completing the
proof of part (1).
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Part (2), kernel of 8, = image under j,. Let Z, = 2, ® Cp(L) be a
relative p-cycle representing a homology class [Z,] such that 9. ([z,]) = 0,
that is, [2,] is in the kernel of 94. By the definition of 9, this implies that
9z, is homologous to zero mod L or that 9z is in Cp_1(L). If 92, is ho-
mologous to zero in L, then there is a chain d, on L such that dd, = 9z,.
Consider then the chain z, — d,. Since 2z, and d;, have the same boundary,
this chain is a cycle. Thus z, — dp is a representative of the coset z,,
and z, — d, is an absolute cycle on K. It follows that j(z, — dp) = 2,
and we have that the kernel of 9, is contained in the image under j,.

On the other hand, assume that Z, = j(2,) for some absolute cycle z,
on K. Then z, = 2z, ® Cp(L) and 3z, = 92, ® Cp_1(L) = Cp_1(L)
since 8z, = 0. Thus 9, ([Z;]) = [92,], which is the zero coset in H,_1(L).
This implies that the kernel of 8, contains the image under j, and com-
pletes the proof of part (2).

Part (3), kernel of i, = image under 9. Assume that z, is a repre-
sentative of a homology element in H,(L) which lies in the kernel of iy,
that is, ix ([zp]) = 0in H,(K). This means that i(zp) = z, is homologous
to zero on K, or there is a chain d,4; on K such that 2z, = ddp41. Now
Hdps1) = dpy1 ® Cppa(L) = dpy1 is a relative chain in Cpy1(K/L).
We show that dp4; is actually a relative cycle. For ddpi1 = 0dpy1 @
Cp(L) = 2, ® Cp(L), and 2, is itself a chain on L. Thus ddp+1 = Cp(L),
the zero element of C,(K/L). Then we have that o ([dps1)) = [0dps1]l =
[2,], or [2,] is the image under 9, of an element of H p+1(K/L). Therefore
the kernel of 7 is contained in the image under 9.

Last, if [2,] is any element of H,(L) for which there is a relative cycle
dp41 such that dx([dp41]) = [25], then we show that ix([z,]) = 0. By
definition, 84 ([dp+1]) = [0dp+1] for some chain dpy; on K. If [2] =
[9dp41], as assumed, then 2, is homologous t0 8dp41 on K, which says that
i+ ([2o]) = [2p] is the zero element of Hy(K). Therefore the kernel of i
contains the image under 9., completing the proof of part 3). ]

LemMa 7-2. In the exact sequence ¥;:G; — G;_1, suppose that the
subsequence of four groups
Yite e Yit1 G Vi Gis

Gi+2 141

is such that both G5 and G;_; are trivial. Then ¥, 4, is an isomorphism
of Gi+1 onto G,‘.

Proof: If G;42 = 0, then the image Yir2(Gig2) = 0in Giy1. By the
exactness of the sequence, the kernel of ¥, is zero, and thus ¥;4; is an
isomorphism. Then since G;_; is trivial, the entire group G; is in the
kernel of ;. By exactness then, the entire group G; is in the image under

Viq1, and ¥4 is onto. []
The above lemma is a very useful tool in working with exact sequences.
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As a simple instance, consider the case in which K is the closure of an n-
simplex, n > 1, and let L be the (n — 1)-skeleton of K, an (n — 1)-
sphere. Setting up the homology sequence of this pair, we have

s 1)~ Ha (K)o Hoa@) = a0 = -+
Since H,(K) and H,_,(K) are trivial for n > 1, Lemma 7-2 applies to
show that H,(K/L) is isomorphic to H,_,(L), which is infinite cyclic.

ExErcisE 7-3. Let 02 be any 2-simplex in the triangulation of the torus T.
Show that Ho(T) and Ha2(T/o2) are isomorphic. What can be said about H(T)
and H1(T/o%)?

ExERCISE 7-4. Let s be a meridian circle on the torus T. Determine the rela-
tions between H,(T) and H,(T/s), p = 1, 2.

7-3 Homomorphisms of exact sequences. If (G, ¥:) and (H;, ¢;) are
two exact sequences, then a collection of homomorphisms ¢ = (gs),
g::G; — H; is a homomorphism g¢:(G;, ¢;) — (H; ¢;) if the property
gi—1¥: = ¢g; holds for all 2. This means that both “paths” from G; to
H;_ | are the same homomorphism or that we have commutativity in the
diagram:

'_)GiﬁGi—l_)"
ié’ i iai—l

i
.—)HZ.-—)Hi_l.—)...

Let (K1, Ly) and (K3, Ly) be two pairs of complexes and closed sub-
complexes. A mapping ¢:(K,, L) — (K,, Ls) is a simplicial mapping
of the pair (K1, L) into the pair (K4, Ly) provided that ¢:K; — Kz is a
simplicial mapping of K; into Ky and that ¢(L,) is contained in Ly. It
follows from Section 6-10 that ¢ induces a homomorphism ¢, = {¢,*}
of the groups H,(K1) into Hp(Ks) and that ¢|L; (¢ restricted to L;)
induces a homomorphism (¢|L1)sx = {(¢|L1)p*} of the groups H,(L;)
into H,(Ljy). Furthermore, since ¢(L;) is contained in Ly, it is easy to see
that ¢ also induces a homomorphism &, = {@,*} of the relative groups
H,(K,/Ly)into H,(K3/Ly). We wish to show that these homomorphisms
constitute a homomorphism of the homology sequence of (K, L;) into
that of (K, Ls) in the sense of the above definition. That is, we wish to
prove commutativity in each square in the following diagram:

1

ix i 9%
- — Hy(Ly) =5 Hp(Ky) ™ Hy(K1/Ly) = Hyp_y(Ly) — - -

1(‘(’|Ll)p* l‘l’p* J‘;p* l«p]Ll)p—l*
.2 .2 62

o — Hy(Ls) ™ Hy(Ks) 2 Hyp(Ks/Ls) = Hyp_y(Lg) — - - -
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The reader may easily verify that ¢,xt = 72(¢|L1),* and that 4L =
J2¢p*. We prove only that (¢|L;),_1* 0t = 8%@,*. To do this, let z, be
a relative cycle with representative z,. Then d'z, is a representative of
dL([z,]), and ¢d'z, is a representative of (¢|L;)y* dL([Z,]). Similarly,
9%¢(z,) 1s a representative of d2¢,*(2,) = 02le(zp) ® Cp(Ls)]. Since ¢ is
simplicial, we have 3%p = ¢d', which proves the desired commutativity.

Exercise 7-5. If ¢:(K1, L1) — (K2, L2) is such that ¢(K1) is contained in
Ly, show that ¢, is the trivial homomorphism.

ExERcISE 7-6. Let v be a vertex of a 2-simplex o2 in the sphere S2. Define
the mapping ¢:(S2, ¢2) — (S2,v) by setting ¢(v;) = v; for v; not in o2 and
¢(v;) = v forv;in ¢2. Discuss the induced homomorphisms ¢,., (¢|o?),, and B,.

7-4 The excision theorem. If L is a closed subcomplex of K, then we
say that K — L is an open subcomplex of K.

Consider three complexes, M, L, and K, where M is an open subcomplex
of L, and L is a closed subcomplex of K. Both K — M and L — M are
closed subcomplexes, and clearly K — M contains L — M. We may
construct the relative homology groups H,[(K — M)/(L — M)]. The
excision theorem states that these groups are isomorphic to the groups
H,(K/L) for each dimension p. Intuitively, this means that the interior
of L is unimportant as far as homology modulo L is concerned.

We will approach a proof of the excision theorem indirectly. Let L
and K; be two closed subcomplexes of a complex K, and define L; to be
K, N L. Let ¢ be the injection mapping of K into K; then ¢|L; (¢ restricted
to L;) is the injection of Ly into L. These give us isomorphisms, still
called 7 and ¢|Ly, of C(K ) into Cp(K) and of Cp(L,) into Cp(L). Further-
more, we also have an induced isomorphism 7 of C,,(K1/L1) into C,(K/L)
since ¢ maps L; into L. As usual, we use the star subscript to denote the
corresponding induced homomorphisms on homology groups.

A remark which has not been made before but which should be evident
is that such an induced homomorphism will be an isomorphism onto if
it comes from a chain-mapping that is an isomorphism onto. The geo-
metric property that will ensure that 7 is an isomorphism onto is that K,
contains K — L. For if this is true, let ¢, @ C,(L;) be a relative chain in
C,(K,/L;y). This chain is mapped by 7 onto ¢, ® Cp(L). Now given
¢y ® Cp(L) in Cp(K/L), there is a representative ¢; of ¢, @ Cp(L), where
¢) is a chain on K — L. Since K, contains K — L, ¢; is also on K.
Therefore ¢, ® C,(L,) is a relative chain in C,,(K;/L;) which is mapped
by % onto the given chain ¢, ® C,(L). Thus 7 is onto. Since 7 is already
an isomorphism, we have that 7 is an isomorphism of C,(K;/L;) onto
Cp(K/L) if K, contains K — L, and in this case 74 is an isomorphism of
H,(K,/L,) onto Hy(K/L).

The above situation may be rephrased as follows. If K contains K — L,
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then K — K, is contained in L. Letting M be the open subcomplex
K—K,wehave K=K —Mand L =K ,NL=(K-—-M)NL=
(KNL) — (MNnL)=L — M. Therefore the argument above has
established the next result.

TaeoreM 7-3 (Excision). If L is a closed subcomplex of a complex K,
and if M is an open subcomplex of L, then the injection mapping of
K — M into K induces an isomorphism of H,[(K — M)/(L — M)]
onto H,(K/L) for each dimension p.

As an example of the use of exact sequences and the excision theorem,
we give an inductive proof of the following result.

TaeEOREM 7—4. The integral homology group H,(S™) of the n-sphere is
infinite cyclie.

Proof: Let s"T! be a geometric (n - 1)-simplex. The boundary complex
of s"*! [the n-skeleton of Cl(s"T1)] is a triangulation of the n-sphere S™.
(We prove only that this triangulation has infinite cyclic nth homology
group, of course.) Let s” be one of the n-simplexes in S”, and denote by
8”1 the boundary complex of s*. Using the cone construction (see
Section 6-12), we have shown that the n-cell Cl(s®) is homologically
trivial. We also know that H,(s"/S"~!) is isomorphic to H,_;(S"™1),
n > 1.

Now let 7™ be the closed subcomplex of S™ consisting of all the simplexes
of 8™ except the open simplex §". It should be clear that T™ may be con-
sidered as a cone over S®~! at the vertex opposite s® and also that 7" N s™
is precisely 8”71, Letting K = 8", L = T", and M = 8" — s", we may
apply the excision theorem to prove that H,(s"/S®!) is isomorphic to
H,(S"/T™). Setting up the exact homology sequence of the pair (S*, T™),

we have
n

= B = B — Ha (3

) - Hy (T — - -

Since T™ is a cone and is homologically trivial, we know that both H,(T")
and H,_{(T") are trivial for n > 1. By Lemma 7-2, this implies that
H,(S™) is isomorphic to H,(S"/T"). Combining this with the fact that
H,(s*/8"1) is isomorphic to H,_;(S"1), we have that H,(S™) is iso-
morphic to H,_;(8"~ 1) forn > 1. Having previously shown that H2(S?)
is infinite cyclic (see Section 6—4), we have completed an inductive proof. [_]

Exercise 7-7. Let K be a finite complex, and let v and w be two vertices
not in K. Let vwK denote the double cone over K at the vertices » and w. Show
that

H,(vwK) is isomorphic to H,—1(K) (p > 0)
and that
Ho(wwK) is infinite cyclic.



290 FURTHER DEVELOPMENTS IN ALGEBRAIC TOPOLOGY  [cHAP. 7

7-5 The Mayer-Vietoris sequence. In a somewhat different direction
but with similar arguments we now set up the Mayer-Vietoris exact
sequence, which exhibits the relationships between the groups of the
union and intersection of two complexes. Let K be a complex which is the
union of two closed subcomplexes K; and K» where we assume, in general,
that K; N K is a nonempty subcomplex of K also. The Mayer-Vietoris
sequence is as follows:

3 Hy (K3 UKs) =5 Hy(Ky 0 K2) ™ Hy(K1) ® Hp(Ks)
5 Hy(KiUKg) S5,

After defining the homomorphisms s,, v4, and 7, we will show that this
sequence is also exact.

Let j be the mapping of the chain group Cp(K; N K,) into the direct
sum C (K1) @ C,(K,) defined by

Jlep) = (cp, —¢p)-

This is possible since K; N K is contained in both K; and K,. Thus j
is the injection of C,(K; N K3) into C(K ) and the negative injection of
Cp(K1 N K3) into Cp(K3). The mapping j induces a homomorphism ji
of Hy(Ky N K3) into Hy(K1) ® Hp(K,) in the usual way. Note again
that while 7 is an isomorphism into, jx need not be an isomorphism.

We easily define a mapping s of Cp(K;) ® Cp(Ks) into Cp(K; U K>)
by setting

s(ep, ¢3) = ¢ + ¢5-

This is possible since a chain on either K; or Ko is on K; U K». The
chain-mapping s induces a homomorphism s, of H,(K;) ® H,(K,) into
H,(K{ U K,). Once again a nontrivial element of H,(K;) ® H,(Kj,)
may be mapped by s, onto the zero element of H,(Ky U Ks), for a cycle
may fail to bound on K, for instance, and yet bound on K; U K.

The construction of vy is more laborious. Let ¢, be a chain on K =
K, U K,. This implies that ¢, may be written as ¢, = ¢} + ¢2, where
¢! is on K; and ¢2 is on K,. These chains ¢; and ¢ are determined only
modulo K; N K,, that is, ¢} + ¢Z = k} + k2 if and only if ¢} — k} =
¢2 — k2 = d,, where d, is a chain on Ky N K. This in turn implies that
C,l(K, U K3)/(K; N K,)] is isomorphic to

f)oolkie)

C”<K1 nk,) @ \k nk,

Now if 2, is a cycle on K; U K>, we may write 2, = 2z + 22, and hence
0z, = 921 + 322 = 0 or 9zj = —0dz;. Both of these chains are in
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Z,_1(K; N Kjy). Clearly, both are cycles and, since dzj is on K; and
—a22 is on K and they are equal, it follows that they both must be on
K; N K,. Since 2} is determined modulo C,(K; N K3), the cycle 9z, is
determined modulo B,_;(K; N K3). Thus we may define », directly by
setting

ve([20]) = [82111] .

We must show that », is well-defined, which entails showing that if 2,
is homologous to 'z, on K, then 9z} is homologous to 8’z, on K N Ko.
If z, ~ '2p, then z, — 'z, = 6! p+1, and writing ¢, = ther + 24,
zp = 2} + 22, and 'z, = 'z} + 22, we have

2y + 22 = "z2p + 'zf, + dtp 1 + gy
Then we have

2y = '23 + Oth i1 + dp and 22 = 22 otk - dZ

where d and dZ are chains on K; N K;. Now the relation z, ~ ’z, clearly
implies that 9z} ~ 9’2z} on K; N K3, s0 vy is well-defined. Again it is
an easy exercise to show that v, is a homomorphism.

THEOREM 7-5. The Mayer-Vietoris sequence is exact.

Proof: As in Theorem 7-1, we must prove the three equalities (1) kernel
of s, = image under j,, (2) kernel of v, = image under s, and (3) kernel
of j, = image under v,.

Part (1), kernel of s, = image under j,. Let d,, be a chain on K; N Ko,
and consider the image j(d,) = (dp, —dp). Then s(dy, —d,) = dp —
d, = 0. Thus j(d,) is in the kernel of s, and this suffices to show that the
image under j. is contained in the kernel of s,.

On the other hand, let (c}, c2) be an element of Cp(K;) @ Cp(K2) such
that s(c}, ¢2) = ¢} + ¢2 = 0. Then ¢} = —cZ, and since ¢} is on K,
and c2 is on K, it follows that ¢} can only be on K; N K,. Thus j(cl) =
(cl, —el) = (c}, c2). Therefore the kernel of s, is contained in the image
under J.

Part (2), kernel of v, = image under s,. Let (2}, 22) represent an ele-
ment of Hp(K;) ® Hp(Kz). Then s(z},22) = z} + 22 is a cycle on
K; U K. By definition, v, ([z} + 22]) = [9z1]. But 2' is a cycle on K,
50 dz; = 0 on K;. Also, of course, 9z} = —d22 = 0 on K, 50 921 = 0
on K; N K, as well. This shows that an image under s, of an element of
H,(K:) ® H,(K5) lies in the kernel of v,.

To prove the converse, we let z, denote a cycle on K; U K, such that
v« ([2p]) = 0. By definition, v ([2,]) = vx([z} + 22]) = [92}] for some
decomposition z, = z} + 22, where 2} is on K, and 2% is on K. Since 2,
is a cycle, 8z} + 022 = 0 or 9z} = —adz2. By assumption then, there is
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a chain on K; N K which is bounded by both 2} and z2. This proves that
z2 and 22 are absolute cycles on K, and K3, respectively, and hence the
pair (21, 22) represents some element of H,(K;) ®@ H,(K;). Then
s(zl, 22) = 2} + 22 = z,. Thus the kernel of v, is contained in the
image under s,.

Part (3), kernel of j, = image under v,. Let z, be a cycle on K; N K,
such that j(z,) is homologous to zero, that is, 2, ~ 0 on K, and z, ~ 0
on K,. Then there exist chains c;,+1 on K; and Ci+1 on K, such
that x, = dchiy = dc24y. Consider the chain z,4q = cpt1 — Chqq OD
K, U K,. Clearly, 2,41 is an absolute cycle on K; U K since 92,1 =
dcp41 — 0Chqy = 7 — 7, = 0. Then vu([p11]) = vu([p41 + 511D
= [8cp+1] = [7p] This shows that the kernel of j, is contained in the
image under v,.

Conversely, let x, be a representative of a homology element vy ([2p41]).
Then if 2,1 = 2b41 + 2541, as before, we mean that z, = dzp4, +
dd,41, where d,,; is some chain on K; N K,. Since dzp41 = 02, +
922 = 0, we have that dzp4; = —8224;. Hence also we have that
x, = —9822 + dd,41, where d,4; is also a chain on K; N Ky. Thus
Zp = 8(zh41 + dp41) is homologous to zero, on Ky, and z, = 8(z41 +
d,+1) is also homologous to zero, on K,. This implies that j(z,) =
(xp, —p) 1s homologous to zero and therefore the image under vy is con-
tained in the kernel of jy.[]

We give another inductive proof of the fact that H,(S") is infinite cyclic,
as an example of the use of the Mayer-Vietoris sequence. In Euclidean
(n + 1)-space E"™1, the n + 1 points (0,0,...,0), (1,0,...,0), ...,
0,...0,1,0) determine an n-simplex s" in the hyperplane z,4; = 0.
The boundary complex of s® is a triangulation of 8"~'. Let vy =
©,...,0,1)and v_ = (0, ..., 0, —1), and construct the two cone com-
plexes K; = v,8" ! and K, = v_S""!. It is obvious that K; U K,
is a triangulation of 8", while K; N Ky = S®~'. Setting up the Mayer-
Vietoris sequence, we have

s Ho(Ky) © Ha(K>) 5 Ha(8") > Hama(8"7)
B Hy (K1) @ Hoy(K3) > -+ .
Both K, and K, are homologically trivial, so for n > 1 we have that

H,(K,) ® H,(K;) and H,_1(K;) ® H,_1(K5) are trivial. It follows
from Lemma 7-2 that v, is an isomorphism onto.
Exgrcise 7-8. Let L be a closed subcomplex of a complex K, and suppose

that the simplicial mapping ¢:K — L has the property that its restriction to L
is the identity mapping ¢ (that is, ¢ is a simplicial retraction). Show that

H,(K) = image of 7,* @ kernel of ¢,*
or

1, - 10 & 1, (£).
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7-6 Some general remarks. As was done in Section 6-8, we may take
the weak direct sum of the homology groups H,(K), H,(L), and H,(K/L).
In this way, we obtain the graded groups H(K), H(L), and H(K/L). The
homology sequence may then be diagrammed briefly as

H(K) % H(K/L)
T 04

H(L)
Similarly, the Mayer-Vietoris sequence is often diagrammed as

H(K,) ® H(K;) -2 H(K, UK>)
™ Ve

H(K;:nKy)

These simplified diagrams make it easy to remember the relationships
involved in these exact sequences.

Another remark may be made. It would not be difficult to retrace our
steps in Sections 7-1 through 7-5 and use an arbitrary abelian group G as
coefficients in place of the integers Z. In this way, we would obtain the
more general homology sequence of the pair (K, L),

HEK, Q) 2 HEK/L, G

ix M

H(L, @)
and the general Mayer-Vietoris sequence,

H(K:, @) ® H(Ky, @) =~ H(K, U K;, @)
i T

HEK;n K, &)

7-7 The Eilenberg-Steenrod axioms for homology theory. As we have
seen, a meaningful homology theory is a complicated mechanism. To
construct such a theory, one must start with a topological space, and from
the space obtain a complex. Then from the complex, we obtain an oriented
complex, from the oriented complex obtain the groups of chains, and
finally from the groups of chains construct the homology groups. In our
development of simplicial homology theory, we were quite vague about
the crucial step from a space to a complex. Indeed, we essentially started
with the complex. Furthermore, the simplicial complex is a specialized
type of complex in that the problem of orientation is easily solved. Thus,
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in a sense, simplicial homology theory carefully avoids two difficult stages
in the development of a homology theory.

Many attempts to construct homology groups for general spaces have
been successful, and we will study some of these in Chapter 8. In an
effort to unify these many theories, Eilenberg and Steenrod [7] were led
to an axiomatic treatment of homology theory. We state below the axiom
system which they have shown to characterize a homology theory. These
axioms apply to much more general categories of spaces and mappings,
but we will find a valid interpretation of the axioms if we think of simplicial
complexr whenever the word space is used and of simplicial mapping when-
ever mapping is used.

According to Eilenberg and Steenrod, a homology theory on an admis-
sible category of spaces and mappings is a collection of three functions:

1. A function H,(X, A), defined for each pair of spaces (X, A) where A
is a closed subspace of X and for each integer p, whose value is an abelian
group, the p-dimensional relative homology group of X modulo A.

2. A function fy,, defined for each mapping f:(X, A) — (Y, B) such
that f(A) is contained in B and for each integer p, whose value is a homo-
morphism of H,(X, A) into H,(Y,B). This is the homomorphism
induerd by f.

3. A function 8(p, X, A), defined for each pair (X, A) and each integer
p, whose value is a homomorphism of H,(X, A) into H,(4,0). This is
the boundary operator.

In practice, we reduce the symbol d(p, X, A) to 8 and drop the index
p on fy, since these will be understood from the context. Now the three
functions above are required to satisfy the following axioms:

Axiom 1. If f is the identity mapping of (X, A) onto itself, then f, is
the identity isomorphism of H,(X, 4) onto itself for each p.

Aziom 2. If f1(X, A) — (Y, B) and ¢:(Y, B) — (Z, (), then the com-
position of fi and gy is (gf)«. Briefly, (gf)x = gufs.

Axiom 3. If fi(X, A) — (Y, B), with f]A:A — B, then the composi-
tions fy and (f]A4)4d coincide. Briefly, of, = (f|A4)+0.

Aziom 4. If 1:4 — X and 7:(X, ) — (X, A) are injection mappings,
then the sequence

s Ho(A) S (0 B HX, A D Hy () S

is exact. (Note that we write H,(A4) for H,(4, 0), ste.)

Aziom 5 (homotopy). If f and g are homotopic mappings of (X, 4)
into (¥, B), then for each p, fxp and gx, coincide.

Axiom 6 (excision). If U is an open subset of X whose closure U is con-
tained in the interior of A, then the injection mappingof (X — U, 4 — U)
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into (X, A) induces isomorphisms of H,(X — U, A — U) onto H,(X, 4)
for each p.

Axiom 7. If P is a space consisting of a single point, then H,(P) = 0
for p # 0.

A proof that this system of axioms characterizes a homology theory
is very lengthy. The Eilenberg-Steenrod book [7] contains not only this
proof but a wealth of detail on the general problems of homology theory.
We will merely note that each of these axioms has appeared either as a
theorem or as a remark in our treatment of simplicial homology theory.
It follows that at least these properties must be assumed for a homology
theory. The remarkable fact is that these few axioms are enough. We
leave this topic with the urgent advice, read Eilenberg and Steenrod!

7-8 Relative homotopy theory. In this section, we intend merely to
call attention to the subject of relative homotopy theory. A few basic
results are quoted without proof in hopes of arousing interest in the
references that are given.

Consider a triple (X, A, x), where X is a space and A is a closed sub-
space of X containing the point x. Again we look at certain mappings of
the unit cube I”, n = 2, into X, but now we do not insist, as we did in
Section 4-7, that all of the boundary B(I™) of I™ map onto the point z.
Let B! be the set [I' X g(I""H] U (0 X I™™1). That is, B! is the
boundary of I™ minus the open top face. We could take B! to be the
closure of B(I") — (1 X I™™!). We consider the function space F,, (X, 4, )
consisting of all mappings f:I™ — X such that f(8(I™)) lies in A and f(B"™!)
= z. Note that all of 3(I") except the open top face maps onto the base
point z. We use the compact-open topology in F.(X, A, x).

As in Section 47, we define m,(X, 4, z) to be the collection of arcwise-
connected components of F,,(X, 4, x), and we call it the nth homotopy
group of X modulo A.

THEOREM 7-6. 7,(X, A, z) is a group forn = 2.

The juxtaposition of two elements of F,(X, A, z) is defined precisely
as was done in Section 4-7, and the arguments establishing the group
structure of m,(X, A4, z) are almost identical to those for 7,(X, ). Rather
than give this proof, it might be more valuable to see why the theorem
fails for n = 1. When n > 1, the set B"~! and the top face 1 X I*™!
intersect in I™. But in the case n = 1, B% is just the point 0, whereas
0 X I°is the point 1, and these do not meet in 72. Juxtaposing two map-
pings of I™ essentially means fastening the two together along the hyper-
plane z; = 1 of the first mapping and x; = 0 of the second. Forn > 1,
this can be done because B! meets both these hyperplanes. But when
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n = 1, the point 1 does not have to be mapped onto the point z, and we
cannot fasten g(0) = « to f(1) # =.

As was done for absolute homotopy, one may define m,(X, 4, x) to be
the fundamental group m;(F,_1(X, 4, x), e;). Since (F,._1(X, A, 2), €2)
can be shown to be a Hopf space whenever n — 1 = 2 or n = 3, the
following result is implied by Theorem 4-18.

TueoreMm 7-7. m,(X, A, x) is abelian forn = 3.

That the relative homology group is a true generalization of the absolute
homotopy group follows from the next lemma, whose proof is very easy.

LemMma 7-8. If A is the single point x, then m,(X, 4, 2) = (X, z).

The succeeding development is sketched to show the similarity of the
two relative theories, homotopy and homology.

TrEOREM 7-9. If f:(X, A, x) — (Y, B, y) is continuous, then there is
an induced homomorphism fy:m, (X, 4,2) = m(Y, B, y), n =2 2. If
1 is the identity mapping of (X, 4, z) onto itself, then 7, is the identity
isomorphism. If f:(X, A,z) — (Y, B,y) and ¢:(Y, B, y) — (Z,C, 2),
then (gf)x = gsfx.

This result simply says that these groups and homomorphisms satisfy
Axioms 1 and 2 in the Eilenberg-Steenrod axiom system.

Tor n = 2, the boundary function 9:Fp(X, A,z) = F,_1(X, 4, 1),
defined by (3f)(ty, ta, . . ., ta) = f(1,ts, ..., tn), can be shown to induce
a homomorphism 9, of 7,(X, 4, x) into m,(A4, z), the absolute homology
group of A modulo z. Then the following can be established.

TuroreM 7-10. If f:(X, A, z) — (Y, B, y) is continuous, then 9, fx =
(flA)x0%.

Thus the Eilenberg-Steenrod Axiom 3 is satisfied. Furthermore, although
it is understandably more difficult to do, the fourth axiom can also be
proved as a theorem in relative homotopy theory.

TuroreMm 7-11. Let 7:(4, z) — (X, z) and j:(X, z, 2) — (X, 4, 2) be
the identity injection mappings. Then the sequence

D (X, A, ) B (A, ) S (X, ) D (X, A, 2)
is exact.

It will be noted that we stop short of the excision axiom here. In fact,
the excision theorem is not true for relative homotopy theory. The lack
of this property seems to be the chief difficulty in computing homology
groups. Such a difficulty is always stimulating, of course, and much effort
is now being put into a study of homotopy theory. For a clear exposition
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of this important topic, the reader is referred to the excellent books by
Hilton [13] and Hu [14(a)] where many further references will be found.

7-9 Cohomology groups. Certain duality theorems in the homology
theory of manifolds were discovered early and seemed to reflect the
existence of a theory dual to homology theory. Although the genesis of
this dual theory, now called cohomology, is cloudy, it occurred during the
decade 1925-1935 concurrently with the change in emphasis away from
the numerical invariants (Betti numbers and torsion coefficients) toward
the group structures. Lefschetz [19] was the first to use cocycles under the
name pseudocycle and the co- terminology was introduced by Whitney [131]
in 1938. Pontrjagin [115] laid the algebraic foundations for the duality
theorems. Other founders of the theory include Alexander, Alexandroff,
Cech, and Vietoris.

We will not give a preliminary intuitive explanation of cohomology
theory, but we will try to clarify the development as it proceeds. In this
section, we construct the cohomology groups of a simplicial complex.
While doing so, we review homology theory as well so that we may exhibit
the many parallels between the two theories.

Let K be an oriented abstract simplicial complex (see Section 6-2).
The orientation of K permits the definition of the incidence numbers
[6?,e?~!], and we recall Theorem 6-1, which states that for a fixed n-
simplex g, n > 1,

-1 - —
> o5, ot et 07 = 0.
¥

We define an integral p-chain c, to be a function from the oriented
p-simplexes of K to the integers, which is nonzero for at most a finite
number of p-simplexes and which satisfies the condition

cp(—07) = —cp(a?).

The p-chain which has the value +1 on a particular simplex ¢§ (and value
—1 on —a%, of course) and zero elsewhere is called an elementary p-chain
and is denoted by 1 - 5. With this definition, one may write an arbitrary
p-chain ¢, as a formal polynomial

f
Cp = Z ,'”0.2;,

where the 7; are integers and the superscript f denotes a finite sum. Chains
are added in the natural way (componentwise if one thinks of them as
sums, by functional addition if one thinks of them as functions) and
hence form a free group C,(K), the p-dimensional integral chain group
of K. Allowing the chains to have values in an abelian group G, we would
obtain the groups C,(K, ) in the same manner.
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There is a very slight generalization when we define cochains. An
integral p-cochain cP is an arbitrary (not necessarily zero almost every-
where) function from the oriented p-simplexes of K to the integers, satisfy-
ing the condition

c?(—a?) = —cP(a?).

Considering an elementary cochain to be the same as an elementary chain,
a p-cochain may be written as a possibly infinite linear combination of
p-simplexes with integral coefficients. Thus we may consider that every
chain is a cochain but not conversely. In a finite complex, the two concepts
are identical.

The addition of cochains is done in the natural manner either by com-
ponents or by functional addition. We thus obtain the group C?(K), the
p-dimensional integral cochain group of K. Here too it can be assumed
that the values of the cochains are in some arbitrary abelian group @, and
we thereby obtain the groups C?(K, G). As is true for any abelian group,
the groups C?(K, G) admit of the integers as a ring of operators, that is,
C?(K, G) is a module over the integers. Note that if there are no p-
simplexes in K, then we set C?(K) = C?(K, G) = 0.

As mentioned above, the two groups C?(K) and C,(K) are identical
in the case of a finite complex K. If K is an infinite complex, however, the
cochain group CP(K) is the direct sum of infinitely many infinite cyclic
groups, whereas Cp,(K) is the weak direct sum. Thus, in general, the chain
group is a subgroup of the cochain group.

We recall that for an elementary chain 1-¢5, the boundary operator
d is defined by

a1-oh) = D lob, et e,
T

where [0, 677!] is an incidence number. Since every simplex has only

a finite number of faces, d(1 - ) is a finite sum and is a (p — 1)-chain.
Also the chain d(1 - ¢8) depends only upon the simplex ¢§ and not upon
the complex K in which o} is located.

The above definition is extended linearly to arbitrary p-chains by means
of the formula

dc, = a(zf ma’{) = Zf n:-9(1- 07).

Since the sums are finite, the result is a (p — 1)-chain. Again we remark
that dc, depends only upon the chain ¢, and not upon the complex K.
Finally, using the property expressed in Theorem 6-1, we have already
shown that for any chain c,,

a(dc,) = 0.
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In an analogous manner, we now define the coboundary operator 8. Tirst,
for an elementary cochain 1 - gj, we define

8(1-a5) = Z[U”“ afl- a7,

where [0?1?, 03] is an incidence number. This says that the coboundary
of 1 -43 is a function assigning nonzero coefficients only to those (p + 1)-
simplexes that have o§ as a face. But this implies that (1 - of) depends
not only upon ¢} but on how ¢} lies in the complex K. This is a funda-
mental difference between the two operators 9 and é. Furthermore, it is
possible that ¢} is a face of infinitely many (p + 1)-simplexes. Thus
8(1 - 08) is not necessarily finite even though it is a cochain.

Again the coboundary operator is extended linearly to arbitrary cochains

by setting
(™) =3 (Z M- 0?) = > n:8(1-07).

This is a (p + 1)-cochain, of course, and depends upon the complex K
as well as the cochain c?.

We remark that we are following current practice in using subscripts
to indicate the dimension of chains and superscripts to give the dimension
of cochains. This may be construed as a mnemonic device, the subscript
on a chain reminding us that 8 lowers dimension while the superseript
recalls that & raises dimension.

Theorem 6—1 may also be used to show that the boundary operator is
of order 2.

TueoreM 7-12. For every integral cochain ¢?, §(éc?) = 0.

Proof: It suffices to prove this for an elementary cochain 1 -¢§. To do
80, consider

8(1-0b) = Z [6211, oBlel !

and its coboundary

(Z [e?F2, ao]a”+1) Z 2t o] 6 (1- a2t
— Z [Jp+1 0_0 <Z [O_p+2 +1] o.p+2>

1 2
E[a.p+ p 13+2 o’f'*'l] g+.

By an argument similar to that for Theorem 6-1, each coefficient in
38(1 - a}) is zero. []
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From this point on, we will concentrate on cohomology theory. In the
cochain group C?(K), we have the usual pair of subgroups Z?(K), the
kernel of & (or the group of integral p-cocycles on K), and BP(K) = §C?~1(K),
the group of integral p-coboundaries on K. The relation 66 = 0 implies
that B?(K) is a subgroup of Z?(K). Since both Z?(K) and B?(K) are
abelian groups, we may form the difference group H?(K) = Z?(K) —
B?(K), the p-dimensional inltegral cohomology group of K. Obviously,
following the same route and using a coefficient group ¢, we may construct
the corresponding groups H?(K, G).

If 25 — 25 = &cP~!, that is, if 2§ and 25 are in the same element of
H?(K), then we say that 2% is cohomologous to 25 and write 2§ « 25.
(Recall that the homology relation is symbolized by ~.)

ExEercISE 7-9. Show that a 0O-cochain is a cocycle if and only if it assigns
the same value to each vertex in a combinatorial component of K. Hence prove
that HO(K) = Z%(K) is a free group on po(K) generators.

Exercist 7-10. If K is any complex and K® is its k-skeleton, prove that

H*(K) = H"(K®) (0 =p<h.
What can be said about H*(K®) in relation to H*(K)?

7-10 Relations between chain and cochain groups. Perhaps the best
approach to an understanding of cocycles and cohomology theory is to
study the relationships between chains and cochains. We defined a co-
chain to be a function on simplexes, but by using linear extension again
we can and will consider a cochain to be a function on integral chains.
Actually, we may take a cochain to be a homomorphism of the integral
chain group C,(K) into the group of coefficients G' of the cochain group
C?(K, @). For let ¢ be a cochain with coefficients in an abelian group
G. That is, we may write ¢c? = Y_g;07 or ¢?(67) = g¢i, where each g; is
in G. Let d, = X7 n;0? be an integral chain. We may then define the
value of ¢® on dp by

*(dy) = ¢ <Zf nfo’f) = 2 m"(1-0%) = 3 mi- g
J J J

Clearly, 3 n; - g; is an element of G since the multiplication of a group
element g; by an integer 5; has meaning.

Tor a fixed cochain c?, this operation yields a homomorphism of Cp(K)
into G. Furthermore, every homomorphism of Cp(K) into G can be ob-
tained in this manner. (The proofs of both these statements are left as
exercises.) The natural addition of homomorphisms is precisely the
addition of cochains, and we therefore know that the group C?(K, G) is
the group Hom(Cp(K), G) of homomorphisms of C(K) into G. See
Section 7-16.
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In place of the functional notation c?(d,), it is often convenient to use
a product notation. That is, we will write

P(dp) = ¢+ dy.

The result of this “product” is called the Kronecker index, KI(c?, dp).
fact, this product is actually a pairing of the groups C?(K, @) and Cp(K)
to the group G.

In the product notation above, the basic relation between the boundary
operator d and the coboundary operator é is expressed in the following
result.

TuroreM 7-13. Let ¢?~! be any element of C?~1(K, @) and d, any
element of C,(K). Then &¢?™!-d, = ¢*~! - dd,.

Proof: We need only consider an elementary chain 1-05. If ¢*~’ =
> g,ﬂf"l, we have, by definition,

~h(1ob) = 5(2.%0’3 1>.<1.ag>
(Zg, Py 1)-(1-0’8)
- [Z 7z (Z [0, «r?—l]a',’-)] - (1-09)
ngo, 21,

and, on the other hand,

1. 9(1-0B) = ¢ (Z 08,077 - 07 )
(ZM” 1> (Z G Y K 1)
- Zgl O'Oy 1] D

The relation given in the above theorem can be interpreted as saying
that & and 9 are adjoint operators, and it could be taken as a definition of
5. In the study of differentiable manifolds [14] one comes to recognize
the relation 8¢~ !-d, = ¢~ '-dd, as a combinatorial form of Stokes’
theorem. We note that for elementary chains 1-¢7~! and 1 -¢?, this
formula reduces to

d(L-a? . (1-6") = (1-0?7Y)-9(1-0") = [¢”, "],

the incidence number.
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As an immediate consequence of Theorem 7-13, we have the next result.

COROLLARY 7-14.
(coboundary) - (cycle) = 0;

(coeycle) - (boundary) = 0.

Proof: If b? is a coboundary and z, is a cycle, then b” = 8¢~ and
dzp, = 0. This implies that

bPezp = 0P 2y =P 02, =710 = 0.

And if 2? is a cocycle and b, is a boundary, then 8 = 0 and b, = dcp 1,
whence

2P by = 2P dcpp1 = 027 Cpy1 = 0+ cppy = 0.0

CoroLLARY 7-15. The Kronecker index induces a pairing of H?(K, G)
and H,(K) to G.

Proof: The product of a cocycle and a cycle depends only upon the
cohomology and homology classes, respectively. For suppose that 27 «~ 25
and 2, ~ z,. Then we have

& =28+ 34" and z,l, = zf, + ac§+1.
Then
1 —1 2 2
A2y = (25 + 8ci77) - (2p + dcpy1)
2 —1 2 2 1 2
=282 4 och -2l + 28 dcpia + 8T - bepa.

Then Corollary 7-14 applies to show that the last three terms on the right-
hand side are zero. Hence 20 - 2zp = 25 - 23. [ ]

As an example of the use of cohomology theory, consider the following
situation. We use the coefficient group Z, of integers mod 2. Let K be
a triangulated surface, and choose an “orientation at each vertex”; that
is, choose a sense on a small circle around each vertex. TFor each edge
ol = (vgv,), define

¢ =0 if the orientations at vy and »; agree in the obvious
meaning of the phrase

=1 if the orientations at vy and v, disagree.
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This defines a 1-cochain ¢ with coefficients in Z,. We show that ¢ is a
cocycle. Consider éc on any particular 2-simplex 62 = (vov12):

dc({pov1ve)) = c(@@oriva)) = c({vov1)) + c({Lov2)) + c((v1v2))

(the signs are all positive in mod 2 theory). Of the three orientations at
vo, v1, and vg, either all three agree, or two agree and disagree with the
third. In either case, we have that c¢({vov1)) + c((ov2)) + 2({vove)) =
0 mod 2.

If we were to change the orientation at some of the vertices, the change
could be described by means of a function a on the vertices (a 0-chain)
by setting

a@) =0 if the orientation is not changed

=1 if the orientation is reversed.

With this new orientation, we form a 1-cocycle ¢’ as we formed ¢ above.
It is easily seen that for any edge ! = (vgv;),

c(a') = c(o) + a(ve) + a(vy).
Furthermore, we have 8a((vqv1)) = a(vo) + a(v;). Hence
¢ = ¢+ do,

or ¢ and ¢’ are in the same cohomology class. We may call this the orienta-
tion class of K. If ¢” is another element of this class, then ¢’ = ¢ + 88,
and we may obtain ¢’/ by a reorientation 8 at the vertices. The use of this
concept is embodied in the following exercises.

ExERcISE 7-11. Prove that the surface K is orientable or not, depending upon
whether the orientation cohomology class is zero or not.

ExEercise 7-12. If ¢(z1) = O for every integral cycle z1 on K, then prove that
K is orientable. (This means intuitively that if the orientation does not change
around any closed path, then the surface is orientable.)

7-11 Simplicial and chain-mappings. Given a simplicial mapping ¢
of a complex K into a complex K,, we saw in Section 6—10 that ¢ induces
chain-mappings ¢, of Cp(K;, @) into C,(K2, @), and we proved the
commutative property

@p—10Cp = OppCp.

This led to the induced homomorphisms ¢p* of H,(K 1, @) into H,(Ks, @).
We now give the analogous situation for cohomology theory. To be
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precise, we show that the chain-mapping ¢, induces a mapping ¢? of
the group C?(K,, @) into C?(K;, G). (Note that ¢? is opposite in direc-
tion to ¢,.) We may properly call ¢? the adjoint of ¢p. It is defined as
follows. If ¢? is a cochain in C?(K,, @), then ¢Pc? is that cochain on K;
whose value on an elementary chain g, - o0 is given by ¢? - ¢,(go - 05) =
c?(¢p(g00D)). By linear extension, we have the formula

¢ (d?) = ¢"(¢p(dp))-
In the product notation we write
ocP dp = c” - op(dy).
The next result states the necessary commutative property.
LemMA 7-16.  For any cochain ¢? in C?(K3, G),
o?Tac? = do"c”.
Proof: Let d,,; be any chain on K;. Then we have

" H1ocP (dpy1) = 8¢ (ept1dpt1)
= ¢"(0ep+1dp+1)
= ¢"(¢pddp+1)
= ¢c”(0dp+1)

= 807" (dp41). (]

The commutative property given in the above lemma is expressed sym-
bolically as ¢3 = b¢ and is applied in cohomology theory just as the
relation ¢80 = d¢ is applied in homology theory. First, the image under
#® of a cocycle on K, is a cocycle on Kj, and the image under ¢” of a
coboundary on K is a coboundary on K;. These facts are easily checked,
for if ¢® is a cocycle on K, then dc? = 0. But §¢Pc? = oPTlocP =
"T1(0) = 0, s0 ¢c? is a cocycle on K. And if b? = 6cP™', then ¢?b? =
P8P~ = 8oP~ 1P~ that is, ¢?b? is the coboundary of ¢?~'c? 1.

It follows that ¢? induces a homomorphism o*" of H?(K,, G) into
H?(K,, @) defined by

(D = ['¢")

The homomorphism ¢?* on the cohomology groups is adjoint to the
homomorphism ¢,, on homology groups in the sense that, if [¢*] is an
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element of H?(K,,@) and [z,] is an element of H,(K,, @), then we have
[]- endzn] = ¢" [c"]" [25]-

LemMma 7-17. If ¢:K; — K, and ¢:Ks — K3 are simplicial mappings
(or chain-mappings), then the composite mapping ¥¢ is a simplicial
mapping (chain-mapping) of K; into K3, and the induced homo-
morphisms satisfy

Wo)* = o™yt

This may be proved by direct computation, and the proof is left as
an exercise.

In Section 6-11, we introduced the concept of a chain-homotopy, but
we repeat it here for convenience. Let ¢ and ¢ be two chain-mappings of
K, into K,. Then ¢ and ¢ are chain-homotopic if there exists a deforma-
tion operator ® = {D,}, a collection of homomorphisms of the integral
chain groups ©,:C,(K;) — Cp41(K?2), such that for each p,

DLy = YpCp — ©pCp — Dp_10C,.

Now in view of the foregoing use of adjoint mappings, it is natural to
define an adjoint operator D = {D?}, where D?:C?(K;) — C?~1(K,), by
means of the formula

DPP(1- 67 71) = P(Dp_s(1- 7Y,

for an elementary chain 1-6?~! and to extend this linearly to arbitrary
chains as usual.

LemMma 7-18. For any cochain ¢? on Ko,
dDPP = YPP — oPc? — DP 5P,

Proof: Let 1 - a® be an elementary chain on K;. Then

dDPcP(1 - 6?) = D (0(1 - o®))

= ’(Dp_19(1- 0"))
= "Wp(l-0%) — ¢p(l-07) — 8D,(1-0"))
= ¢7’(1-0%) — ¢"c"(1- 0%) — ¢"(8D,(1- 07))
= ¢Pc(1- 0%) — ¢"c’(1: %) — 8c”(Dyp(1- 0*))
= yPP(1- 6®) — PP(1-a?) — D*Tec?(1 - o?).

Linear extension then completes the proof. [ ]
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Finally, using arguments analogous to those in Section 6-11, we may
establish the next result.

TurorEM 7-19. If ¢ and ¢ are chain-homotopic chain-mappings of
K, into K, then the induced homomorphisms ¢* and ¢* coincide.

Exercisk 7-13. Prove Theorem 7-19.

ExEercis 7-14. Define the degree of a simplicial mapping of one orientable
n-pseudomanifold into another in terms of cohomology classes, and prove that
the two definitions give equal degrees.

7-12 The cohomology product. There is an algebraic structure, the
cohomology ring, which appears in cohomology theory but has no analogue
in homology theory. This concept is based upon a “multiplication” of
cochains and has interesting consequences in the theory of manifolds. We
do not discuss these applications here but simply present the structure
and refer the reader to Whitney in [44].

Let the coefficients of the cochains on a complex K be taken to be
elements of a ring R with unit element 1 (the integers, for example). We
define the cocycle e® given by ¢®(v) = 1 for each vertex » of K. It turns
out that ¢° is the identity element of the cohomology ring of K.

The complex K will be oriented, as we have done before, by adopting
a simple-ordering of its vertices, and all simplexes will be written in this
ordering. That is, if we write 6? = (vo---vp), it is implied that
v < vy < -+- < v, in the given ordering.

Now let ¢? and ¢? be cochains on K. We define the cohomology product,
or cup-product, ¢® U c? to be the (p + ¢)-cochain whose values are de-
termined by the formula

¢ U (v vplpyr- - Uptq) = " ({vo -« - vp)) - ¢'({vp -+ - vpta))s

where the product on the right is multiplication in the ring R.
The cup-product satisfies the following five properties:

¢® U c¢?is a bilinear function. 1)
(Puchuc =cuE®uc). (2)
?uUe = (3)

U =" 4)

8(c® U c?) = &c” U c? + (—1)%c" U &c’. (5)

We will see that the first four properties permit us to construct, from
the collection of cochain groups, a ring with unit element e%. Each of the
first four properties is easily verified, and these verifications are left as
exercises. The fifth property may be expressed by saying that the co-
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”

boundary operator § is an “antidifferentiation.” To verify this property,
consider the value of the (p + ¢ + 1)-cochain (¢ U ¢%) on a particular
simplex (vg *  * Vpyqt1). Straightforward computation results in

6(Cp U Cq)<l)0 L 1)p+q+1> = Cp U c"(a(vo e Z)p+q+1>)

pte+1 .
=c’U cq< >, (=)o, Up+q+1>)

Jj=0
p+1 .
= (=1 ((wo -+~ 5+ vp41)) * *((Vpt1° * * Vpygs1))
i=0
p+q+1 .
+ (—1)%c"((wo -« - vp)) - " ({p -+~ D * Vpygt1))
j=p

= cP(@o -+ - vps1)) - (Vo1 * Vptqs1))

+ (=17 (o - -+ vp)) - " (@vp -+ * Vpygi1))
= 8cP((wo  * vp+1)) - ¢ (Wpt1* * Vpigt1))

+ (=17 (vo - - - vp)) - 6* (W + +  + + Vptgt1))
= (6 U c? 4+ (—1)Pc? U 8¢ (o - - vpiqi1))-

The fifth property, just proved, is important because of the following
consequences.

LemMma 7-20.
(cocycle) U (coeycle) = cocycle

(cocycle) U (coboundary) = coboundary

(coboundary) U (cocycle) = coboundary

The proof of this lemma is very similar to that of Corollary 7-14 and
is left as an exercise.

TuroreM 7-21. The cohomology class of the cup-product of two co-
cycles depends only upon the cohomology classes of the two factors.

Proof: Let 28 = 28 + 6c? ' and 2§ = 2% 4 &ck .
Then 20Uzf = 5+ 627 U (ef+ 8ci7™h
= ut+ottut+husct + ot usciTh

Each of the last three terms on the right is a coboundary by Lemma
7-20.[]

We may now construct the cohomology ring ®(K, R) of the complex
K with coefficients in the ring R. A ring, we recall, is an additively written
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abelian group which is closed under an associative binary operation of
multiplication, and the multiplication is distributive with respect to
addition. To form the cohomology ring, we simply take the direct sum
of all the cohomology groups H?(K, R) and use the cup-product as the
operation of multiplication. It is merely a routine verification of the
definition to show that ®(K, R) is a ring with unit element e°.

There is one point that remains to be investigated here. The cup-
product on cochains was defined in terms of a particular ordering of the
vertices of the complex K. This, of course, does not yield a topologically
invariant definition, and we cannot force it to do so. However, we can
and will show that the induced cup-product on cohomology classes is inde-
pendent of the ordering of the vertices of K and hence that the cohomology
ring is well-defined. We first note that, in defining the cup-product on
cochains, we really used only an ordering in the small, that is, an ordering
of the vertices of each simplex of K which is consistent in the sense that
the ordering induced on any face of a simplex by the ordering of the
simplex agrees with the ordering given on the face. We then point out
that there is a natural ordering in the small of the barycentric subdivision
K’ of K, the vertices of a simplex of K’ being ordered according to the
dimensions of their carriers. It is this ordering of K’ in the small which
we adopt.

Digressing a moment, we may observe that if K; and K5 are two com-
plexes, each with vertices ordered in the small, and if ¢ is a simplicial map-
ping of K into K, which preserves the ordering (does not invert it), then
it is easily proved that the homomorphism ¢?:C?(K,, R) — C*(K1, E)
preserves the cup-product of cochains and therefore induces a homo-
morphism of the cohomology ring ®(Ks, R) into ®(K, E).

Returning to the complex K and its barycentric subdivision K’, we find
that there is a natural simplicial mapping w":K’ — K (see Section 6-13).
As defined, u’ has certain arbitrary choices involved; if ¢ is a vertex of
K’, we set u/(¢) equal to any vertex of the carrier o. We can avoid this
difficulty by always choosing %'(¢) to be the highest vertex of o in the
ordering assigned to . It may be readily shown that if we so define v/,
then w’ preserves ordering in the small. As remarked above, the induced
homomorphism (u)* preserves the cup-product of cochains and hence
induces a homomorphism of the cohomology ring ®(K, R) into ®(K’, R).

In Section 6-13, we showed that the induced mapping u% of H »(K', R)
into Hy(K, R) is an isomorphism onto. It is evident that the adjoint
mapping (w)* is also an isomorphism of H”(K, R) onto H ?(K’, R).
Furthermore, the chain-mapping w:Cp(K, R) — Cp(K', R) (again see
Section 6-13) induces an isomorphism ux of H,(K, R) onto H,(K', R),
so the adjoint homomorphism w*:H?(K’, R) — H”(K, R) is an isomor-
phism onto. Clearly, w and hence »* do not depend upon an ordering of
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the vertices of K. Thus the ring ®(K, R), based upon any ordering in
the small of the vertices of K, is isomorphic to the ring ®(K’, R), which
does not depend upon the ordering of K. Therefore ®(K, R) is actually
independent of the ordering of the vertices of K.

TueoreM 7-22. If ¢ is a simplicial mapping of a complex K; into a
complex Ko, then ¢* induces (or is) a homomorphism of the cohomology
ring ®R(K,, R) into ®R(K, R).

Proof: We know that if ¢ preserves the ordering of vertices in the small,
then ¢* is such a homomorphism. We use the fact that the cohomology
rings do not depend upon the ordering of vertices and simply construct
orderings in K; and K, that are preserved by ¢. To do so, choose any
simple-ordering of the vertices of K;. We then order the inverses o™ (w,),
where w; is a vertex of K, just as the vertices w; are ordered in K5, and if
¢~ }(w;) contains more than one vertex, then we choose any simple-ordering
of ¢~ 1(w;). It is easily seen that such an ordering of K, is preserved
by ¢.[]

The cohomology ring &(K, R) is almost but not quite a commutative
ring. If the ring R of coefficients is commutative, then, for cohomology
classes only, we have

a® Ub! = (— 1P U d’.

We repeat that this relation holds only for cohomology classes a? and b2
and does not hold for cochains! This relation is known as the Grassman
property, and it means that if R is commutative, the ®R(K, R) is a Grassman
ring. To establish this property, let the vertices of K be ordered in the
small in any fixed way. There is a cup-product U based upon this ordering,
and there is a cup-product U’ based upon the opposite or negative ordering
of the vertices of each simplex. In view of Theorem 7-22, the product of
two cohomology classes is independent of ordering. Hence if 2? and 22
are cocycles, then 2P U 27 and 2z” U’ 22 are cohomologous.

Let 0?%% = (vg---vpy,) be a (p -+ g)-simplex written in the first
ordering. For the second ordering we write (vp44 * + - v9)’, the prime being
used merely to denote that the simplex is ordered in the opposite of the
given ordering. By definition, we have

22U Zp«vp-i—q ceev)) = zq(<vp+q s vp)) zp«vp - vg)).

We also know that

1
Uo)’ — (_1)§(p+q)(p+q+l)(vo .

(pq - " Upyq)

since it will take exactly 4(p 4 ¢)(p + ¢ + 1) interchanges of the p + ¢
vertices to reverse their order. Similarly,

1
(pgq- " vp) = (_1)2(1(“_1)(% © Upgq)
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and (p -+ o) = (—DFPP V(g - - v,).
Hence we may simply compute the result. First,
AU (g - 00)) = (—DEPFOTTDL P (g - vy,

zq(<vp+q' cep)) = (_1)%(Q)(q+l)zq((”p ce Up+q>),
and
Py - - v0)) = (= DI (g - - - vy)).

This implies then that
(_1)%(p+q)(p+q+1)zq U 2" ({00 * * Uptq))

1 1
= (—I)Eq(q-'_l)zq((”p Ce o Upyg) (_1)2P(p+l)zp((vo < 0p)),
or

22U 2P0+ Vpia) = (=1 ((vp - vp1g)) - 2°((o -+ 0p)),
and, using the commutativity of the coefficient ring K, we next find that

2P U 2P((vo- - Vpag) = (— 1% (w0 - - vp)) - 2°(0p + * * Vp1a))-
Finally, since 2 U 2? is cohomologous to 2¢ U’ 2P, we have

UL~ U= (—1)P%P U
This then implies that, for cohomology classes,
[ U 2" = (=D™[" U2},

and the Grassman property of the cohomology ring is established.

7-13 The cap-product. Under the same conditions which permitted
the definition of the cup-product of cochains, we can also define a “product”
between chains and cochains. This will lead in a natural way to a product
between homology and cohomology classes.

Let K be a complex, and use coefficients in a ring R with unit element 1.
For any cochain ¢? and chain d,, we define the cap-product ¢® N dy as
follows. First,

?Nnd, =0 whenever p > q.

If p £ ¢, then the product ¢® Ndg is a (¢ — p)-chain. To define this
chain, consider an elementary chain g -¢?, where g is in R, and 0¢ =
(vo - + * v,) is written in the given ordering in the small of K. We then set

“nNng- (o -+ V) = Cp((”q—p ceUp)) glvo - -+ vq—-p)-
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That is, the given product is an elementary chain with coefficient
¢P((0g—p * * * V) + g assigned to the simplex (v - - - v4_p). We extend this
definition linearly to arbitrary chains.

Again there are five important properties of the cap-product:

¢? N dy is a bilinear function. (1)
fnE?nd) = ("uch) nd. (2)
e Nd, = dg. 3)

KI(c? Nndy) = ¢ -d, when ¢ = p. (4)
a(c® Ndy) = (—1)TP8c” Ndyg + ¢ N ad,. (5)

Property 1 is easily checked, of course. Property 2 relates the cap-product
to the cup-product, and we note that each side here is an (r — p — ¢)-
chain as required. To establish Property 2, the reader has only to compute
the value of each side on an arbitrary simplex 6”79, Property 3 is very
easily proved. Property 4 says that the definition of the Kronecker index
of a O-chain (see Sections 6—6 and 7-10) agrees with that given above
wherever it can. Property 5 for the cap-product readily implies that this
product induces a cap-product of cohomology and homology classes.
That is, we can prove the obvious analogues to Lemma 7-20 and Theorem
7-21. Verification of these remarks is left as an exercise.

We point out that the cap-product does not give rise to a ring structure.
It may be considered as a pairing of the groups H?(K, R) and H,(K, R)
to the group H,_,(K, R), and this pairing is important in certain duality
theorems in the theory of manifolds (see Chapter VIII of Wilder [42]).

If the simplicial mapping ¢ of a complex K, into a complex K, preserves
the ordering in the small of vertices, then one may prove by direct compu-
tation that

ex(p*c® Ndg) = ¢ N eudy

holds true for any cochain ¢® on K5 and any chain d, on K;. This is called
the permanence relation.

By methods similar to those of the previous section, one may prove that
the induced cap-product on cohomology and homology classes is inde-
pendent of the ordering of the vertices of K.

TuEOREM 7-23. If ¢:K; — K, is a simplicial mapping of the complex
K, into the complex K, then the induced homomorphisms ¢, and
o* satisfy the permanence relation

ex(0*a? N by) = a® N ¢ubg

for all elements a® of H?(K,, R) and b, of H,(K,, R).
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As an instance of the use of the cap-product, consider an orientable
n-pseudomanifold M™", and let 2z, be the fundamental n-cycle on M™. If
¢? is any cochain on M", we assign an (n — p)-chain to ¢? by aipplying
the cap-product

® Nzy = Cap.

In view of Property 5 and its consequences, the correspondence c? — Crn—p
induces a homomorphism of H?(M™) into H,_,(M™). It is shown in the
theory of manifolds that this homomorphism is actually an isomorphism
onto. This then establishes the Poincaré duality theorem. (See Chapter
VIII of Wilder [42].)

Next, consider two n-pseudomanifolds M™ and N™ with fundamental
n-cycles z, and v,. Let ¢ be a simplicial mapping of M™ into N”, and
assume that the degree p of ¢ is not zero. In view of the permanence
relation,

ex(e*c® N 2y) = & N gz = p(c” N 7y) (p # 0)

for any cochain ¢ on N™. Now if ¢*c? is cohomologous to zero, it follows
that ¢® N 7, is also homologous to zero, which is true only if ¢? is co-
homologous to zero. This means that ¢* is an isomorphism of H?(N™)
into H?(M™) and hence is a ring-isomorphism of ®(N™) into R(M™"). We
have proved the following result.

THEOREM 7-24. If M™ and N™ are orientable n-pseudomanifolds, and
if ¢:M™ — N™ is a simplicial mapping with nonzero degree, then the
cohomology ring ®(M™) contains a subring isomorphic to ®R(N™).

Making use of the duality mentioned above, Theorem 7-24 implies
that the Betti numbers of M™ and N™ must satisfy the inequality

pq(Mn) = pq(Nn)-

This provides a necessary condition for the existence of a mapping of non-
zero degree from one pseudomanifold into another. Forinstance, a mapping
of nonzero degree from the 2-sphere S? into the torus 7' is impossible
because p1(S%) = 0 and p,(T) = 2.

7-14 Relative cohomology theory. The next two sections constitute
the cohomology counterpart of Sections 7-1 through 7-7. Since most of
the terminology and many of the methods are now familiar, we can be
brief without loss of completeness. Actually, relative cohomology theory
is conceptually the simpler of the two relative theories.

Just as was done for the chain group Cp,(K/L) of a complex K modulo
a closed subcomplex L, we may define the relative integral cochain group
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C?(K/L) of K modulo L to be the difference group
cr (%) — C*(K) — C"(L).

This is misleading, however, because the factor group as written is really
a subgroup of C?(K); speaking precisely, it is isomorphic to a subgroup of
C?(K). To see this, one need only notice that every cochain modulo L is a
cochain on K — L, the open subcomplex.

It is easier to regard the relative cochain groups as follows. Let ¢ be
the injection isomorphism of the chain group Cp(L) into the chain group
C,(K), and let 0, be the zero p-cochain on L. Then the adjoint homo-
morphism * maps C?(K) into C?(L), and (@*)71(0,) is the kernel of *.

We then write
K e —
o (§) = e,

and C?(K/L) is obviously a subgroup of C?(K). It is an easy exercise to
prove that the two definitions of C?(K/L) are equivalent.

We recall that the closure Cl(o) of a simplex o is the complex consisting
of all faces of ¢ (including o itself), and that the star St{c) of o consists of
all simplexes which have o as a face. Since L is taken to be a closed sub-
complex, it follows that for every simplex ¢ in L, Cl(o) is contained in L.
Similarly, K — L is an open subcomplex, and if ¢ is in K — L, then
St(o) is contained in K — L. [Of course, Cl(g) is not necessarily in
K — L] If we next define the coboundary operator § on C?(K/L) as
we did 3 on C,(K/L), it is apparent from these remarks that for an ele-
mentary cochain g-o on K — L, §(g-0) is also on K — L. Thus the
same coboundary operator can be used for the relative theory as is used
for the absolute theory; that is, § maps CP(K/L) into C?*Y(K/L). Tt
follows that § may be taken to be & restricted to the subgroup C?(K/L)
and hence that 86 = 0. We may now drop the upper bar.

Following the now-familiar pattern, we define the groups

z (%) _ kernel of 5,
() o (5)
() ()-#(0)

We emphasize that a cochain mod L is a cocycle mod L if and only if it is
an absolute cocycle of K lying in K — L and that a cochain mod L is a

and
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coboundary mod L if and only if it is the absolute coboundary of a cochain
inK — L.

If ¢? and d, are a relative cochain and an integral chain mod L, respec-
tively, then the Kronecker index is defined exactly as in Section 7-10,

Cp - 3,, = Z NG
Also, with ¢? and d, as above, we have
c? - 5(719_'_1 = 50p . ap+1,

where 8 is the relative boundary operator. This holds because ¢ has
value zero on simplexes of L. Hence c¢? - 3d,; is precisely the same as
¢? - dd,+1, where dpiq is any representative of the relative chain dpyi1-
Similarly, we have &c? - dp 1 = 8c® - dp41, and the relation follows from
the corresponding relation for absolute theory.

Just as in absolute cohomology, the above relation implies that the
product 2? - 2, of a relative cocycle and a relative cycle depends only upon
the cohomology class of z? and the homology class of z,. Thus this Kro-
necker index produces a pairing of the groups H?(K/L, R) and H,(K/L)
to the ring R.

We can carry over the theory of the cup-product to the case of relative
cohomology groups, too. To do so, we merely note that if ¢ and ¢? are
two cochains which vanish on L, then ¢? U ¢? also must vanish on L.
Then by retracing the steps of Section 7-12, we obtain the relative co-
homology ring ®(K/L, R).

ExERCISE 7-15. Why does the cap-product fail to be well-defined in relative
cohomology?

Next we may consider a simplicial mapping ¢ of the pair (K, L;) into the
pair (K3, Ly). We know that there are induced mappings of the relative
chain groups. Let these be 3:Cp(K1/L1) — Cp(K2/Ls). For any relative
chain d,, we have 33(d,) = #3(d,). For the case of cochains modulo L,
we may consider the induced mapping ¢* of C?(K5) into C?(K;). If P is
a cochain of Ko mod L, then c? vanishes on L,. It follows that ¢*c? must
vanish on L;, for if ¢? is a simplex of L, then ¢*c?(6?) = cP(¢(c?)) = 0
because ¢(aP) is a simplex of Ly. Therefore ¢* may be considered as an
induced mapping of CP(Ky/Ls) into CP(K,/L;). This then leads to
induced mappings, still called ¢*, of the relative cohomology groups and
the relative cohomology ring in the natural manner. Finally, we have the
permanence relation

P F __ P, =7
e*c? - dp = ¢ - pdp

for a cochain ¢? of K, mod Ly and a chain d, of K; mod L;. This holds
for d, because it holds for every representative d,, of d.
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7-15 Exact sequences in cohomology theory. Consider again a pair
(K, L) consisting of a complex K and a closed subcomplex L. There is
an exact cohomology sequence of (K, L) which is constructed in a manner
similar to the construction of the homology sequence. The homomor-
phisms involved are as follows.

1. Any cocycle of K mod L is a cocycle of K, and therefore there is an
injection mapping 7* of H?(K /L) into H?(K).

2. The adjoint mapping +* of the injection ¢ of L into K induces or is a
homomorphism of H?(K) into H?(L).

3. If ¢? is a cocycle on L, then ¢? can be considered as a cochain on K
by putting ¢ = 0 on all simplexes of K — L. Then éc? lies on K — L
since 6¢? = 0 on all (p + 1)-simplexes of L. Clearly, éc? is a (p + 1)-
cocycle on K — L, and hence 8§ induces a homomorphism §* of H?(L)
into H?PTY(K/L). The cohomology sequence of K mod L may now be
set up as

&) E RN E B (%-) Egrmy & ...

To prove that this sequence is exact, one may make use of the Kronecker
index ¢? - d, as a pairing of these groups and the corresponding homology
groups, and then applying the exactness of the homology sequence. The
actual proof of the following theorem is left as an exercise.

TrEOREM 7-25. The cohomology sequence of a pair (K, L) is exact.
We may leave it to the reader to prove the next result, also.

TurEOREM 7-26. Let ¢:(Ky, L)) — (Ko, Ly) be simplicial. Then ¢
induces a homomorphism of the cohomology sequence of (K5, Ls) into
that of (Kl, Ll)

The excision theorem also has a cohomology analogue. If M is an
open subcomplex of L, and L is a closed subcomplex of K, then the excision
theorem states that the identity injection ¢ of (K — M, L — M) into
(K, L) induces an isomorphism i, of H[(K — M)/(L — M)] onto
H,(K/L). In the usual dual technique, the injection ¢ induces an iso-
morphism z* of H?(K /L) onto H?[(K — M)/(L — M)], and ¢* is also an
isomorphism of the corresponding cohomology rings.

Next, we may mention the cohomology companion of the Mayer-
Vietoris sequence. Let K be the union of two closed subcomplexes K,
and K,. The desired homomorphisms are as follows:

1. j*:C?(K,) ® C?(Kz) — C?(K; N Kj) isgiven by setting j*(cf, c§) =
J(c®) — 7a(cB), where j; and j, are the identity injections of K; N K,
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into K, and K, respectively. We then have the induced homomorphisms,
also called j*, on the cohomology groups.

2. s*:C?(K) — CP(K,) ® C?(Ks) is defined by setting s*(c?) =
(ZF (c?), ©%(c?)), where ¢; and %o are the injections of K, and K, respec-
tively, into K. Again we use s* to denote the induced homomorphisms
on cohomology groups.

3. The homomorphism »*:H?(K; N Ks) — H?T*(K) is more com-
plicated. Any cochain ¢? of K can be written as cf + 5 with ¢! on K,
and in particular any cochain ¢ of K mod K; N K, has a unique de-
composition ¢§ + ¢5, where cf lies on K; — K; N K;. In this case,
oc? = 8¢ - 8ch is also a unique decomposition. Now let d” be a cocycle
on K; N K,, and let ¢? be a cochain on K mod K; N Ky such that
i*(c?) == dP. Then éc? is a cocycle on K mod K; N K3, which means that
oc? = &1+ 3T with c? 1 actually being a cocycle on K; — K; N K.
By the excision isomorphism of C?TY(K;/K, n Kj) onto C?T}(K/K)),
& may be considered to be a cochain of K mod Kz, and since
CPY(K/K3) is a subgroup of CPTY(K), ¢f*! is a cochain, actually a
cocycle, of K.

We now put v*[d?] equal to the cohomology class [¢T']. (We could

have used ¢3! instead.) Note that the cochain ¢? such that ¢*(c?) = d”
is determined modulo the kernel of 7* which is precisely the group
C?(K/K, N K,). Therefore, &1 is determined up to B?(K/K; N Ka),
which is contained in B?(K), and v*[d”] is well-defined on cohomology
classes.

The Mayer-Vietoris sequence for cohomology is

S HTNE, UKy S UK, 0K & HNK) @ HU(K)
EH(K UKy &t

The exactness of this sequence may be proved in the same manner as was
suggested for the cohomology sequence, that is, by using the pairing given
by the Kronecker index. Of course, it is possible to give a direct proof in
both cases. The interested reader will be tempted to give two proofs in
each case.

This completes our presentation of cohomology theory. A great deal
has been deliberately left to the reader. The reason for the omission of
proofs is twofold. First, many proofs in cohomology are dual to those in
homology, and the necessary manipulatory skills should have been de-
veloped by this point. Second, we feel that this chapter will be read pri-
marily by those who wish to go on to more advanced topics in algebraic
topology, and such a reader should be required to fill in the details of the
proofs for himself.
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ExeRcisE 7-16. Let K be a finite orientable n-pseudomanifold, and let 1/
be an open subcomplex of K. Prove that 3 is connected if and only if H*(})
is infinite cyclic. Then suppose that H*—!1(K) = 0 and that L; and L2 are two
closed disjoint subcomplexes of K, neither of which separates K. Prove that
Li N Lg also does not separate K.

7-16 Relations between homology and cohomology groups. We give
here a brief resumé of the Pontrjagin theory of character groups and
indicate how this theory leads to a duality between homology and co-
homology groups.

Let ® denote the additive group of real numbers modulo 1, and let ¢
be any abelian group. A homomorphism ¢:G@ — ® of @ into ® is called
a character of G. Given two characters ¢; and ¢z of G, their sum is given
by the usual functional addition, i.e., for each element g of G,

(o1 + ¢2)(9) = e1(9) + e2(9),

the addition on the right being performed in ®, of course. Under this
operation, the characters of (7 constitute a new abelian group, the character
group of @, which we will denote by G. Briefly then, G = Hom(G, ®)
(Sec. 7-16). The following are examples. If Z is the group of integers,
then Z = ®. If G is a finite group, then G and G are isomorphic. The
reader may verify these statements as exercises.

If G is a countable group with the discrete topology, then G may be
topologized with a convergence topology as follows. We say that the
sequence of characters {¢,} converges to the character ¢ if, for each
element g in G, the sequence {¢,(g)} converges to ¢(g) in ®. The topological
group so obtained is compact and separable (see Theorem 31 of Pontrjagin
[116]). Also the collection of continuous characters in G constitutes a
subgroup isomorphic to G itself (Theorem 32 of [116]). We shall restrict
attention to a countable discrete group G throughout this section, and we
will assume that G is topologized as above.

Let H be a subgroup of G. The collection of all characters of G which
map H onto zero in ® is easily seen to be a closed subgroup of . This
subgroup is called the annihilator of H. Similarly, if H is a subgroup of G,
then all those elements of G which are mapped onto zero by each element
of H form a subgroup of @, the annihilator of H. Note that the smaller a
subgroup is, the more characters there are which map it onto zero, and
hence the larger is its annihilator and conversely. Precisely, if the sub-
group H of G contains a subgroup H’, then H' contains IT.

We quote several results of Pontrjagin here without proof (for the
proofs see [116] again).
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I:EMMA 7-27. Let H be a subgroup of G and J be a closed subgroup of
G. Then J is the annihilator of H if and only if H is the annihilator of J.

Lemma 7-28. If I;I is a subgroup of G' with annihilator J in @, then the
difference group G — J is the character group of H, and J is the char-
acter group of the difference group G — H.

CoroLLarY 7-29. If ¢ is a fixed element of G, and if ¢(g) = O for each
character ¢ of @, then ¢ = 0. Thus the annihilator of @G is the identity
element of G.

CoroLLARY 7-30. If H is a subgroup of G with annihilator J in G, and
if Z is a subgroup of H with annihilator K, then K — J is the character
group of H — L.

Let G; and G, be two countable discrete groups, and let h:G, — G2
be a llomomozphism of Gy into Go. Then h induces a homomorphism
r* of G5 into G, defined by

(h*¢)(g1) = @(h(g1)),

where ¢ is a character of G, and g; is an element of Gy. This homomor-
phism A* is said to be the dual homomorphism of h.

Lemma 7-31. Let h:G, — G5 be a homomorphism. Then the an-
nihilator of A(G,) is the kernel of h* and the annihilator of A*(G2) is
the kernel of A.

We may now turn to the homology theory of a finite complex K. Letting
G be any countable discrete group, the chain groups C,(K, G) are also
countable, and we assign to them the discrete topology. Let ¢ be a char-
acter of C,(K, G). Given any simplex ¢” of K, the elementary chains
g -o” form a group G(¢?) isomorphic to G. Hence ¢ restricted to G(a?)
defines a character of G through this isomorphism. We may denote this
character of G by ¢(c?). Clearly we have o(—0?) = —¢(o?). But this
is exactly the condition needed to make ¢ a p-chain on K with coefficients
in G. Tt is easy to show that, by linear extension, this process defines an
algebraic isomorphism of C,,(K, @) onto Cy(K, G).

Furthermore, if ¢, is an element of Cp(K, @), and if ¢, is an element of
C,(K, G), then there is a unique element of & given by

on(er) = 3 (ep(@®) - (cp(aD)).

=1

From this pairing of the two groups Cp(K, @) and C,(K, G) to the group
®, it follows that
aﬁpp—kl(cp) = ‘Pp—i—l(acp)'
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This relation shows that the homomorphism 8:Cp1(K, G) — (K, (&)
is dual to 8:Cp(K, @) — Cpy1(K, G). (We recall that for a finite complex,
the chain and cochain groups coincide.)

Applying the above lemmas, we proceed as follows. The kernel of 9 is
the group Z, (K, G), the kernel of §is Z?(K, @), the image d[C; 11 (K, G)]
is B,(K, G), and the image 8(C,,(K, G)] is B*?T!}(K, G). Hence by Lemma
7-27, we may conclude that

Z,(K, G) is the annihilator of B?(K, @) (1)
and
Z?(K, @) is the annihilator of B,(K, G). )

Using Lemma 7-31, we have that

B,(K, G) is the annihilator of ZP(K, G). ®3)
Finally, applying Corollary 7-30 to these statements, we obtain the
following duality between homology and cohomology groups.

THEOREM 7-32. Let K be a finite complex, and let G be a countable
discrete group. Then H,(K, () is the character group of H?(K, G).

By going over the same steps again, we can also obtain the dual to 7-32.

TraeorEM 7-33. With K and @ as in Theorem 7-32, H?(K, @) is the
character group of H,(K, ().

In other terms, we have the two statements

H,(K, Hom(G, ®&)) = Hom(H?(K, @), ®)
and
H?(K, Hom(@G, ®)) = Hom(H,(K, @), ®).

In particular, then, for the additive group Z of integers, we have

HP(KJ (R) = Hom(Hp(K, Z)J (R)
and
H?(K, ®) = Hom(H,(K, Z), ®).

These results and their converses prove that ®, the additive group of reals
modulo 1, is also a universal coefficient group (see Section 6-9).



CHAPTER 8
GENERAL HOMOLOGY THEORIES

8-1 Cech homology theory (introduction). In this first description of
Cech homology theory, we follow closely the technique of Cech’s original
paper [72]. A more recently developed approach, together with greater
generality, will be found in Section 8-3. Our purpose in this section is to
construct the machinery to be used in Section 8-2 to prove the topological
invariance of the simplicial homology groups of a finite polytope.

Given a compact Hausdorff space X, let Z(X) denote the family of all
finite coverings of X by open sets. The coverings in Z(X) will be denoted
by seript letters U, U, . . . and the open sets in a covering by italic capitals
U, V,... An element U of Z(X) may be considered as a simplicial com-
plex if we define vertex to mean open set U in U and agree that a sub-
collection Uy, . . ., U, of such vertices constitutes a p-simplex if and only
if the intersection N?—y U; is not empty (see Section 5-7). The resulting
complex is known as the nerve of the covering U. No symbolic distinction
will be made between a covering and its nerve; the proper interpretation
should always be obvious from the context.

Alexandroff [48] introduced the concept of the nerve of a covering in
1928, and the idea has become very important. If we take a geometric
realization of the nerve of a covering of the space X, then in some sense
we have a triangulated approximation to X. And this “approximation”
gets better as finer and finer coverings are used. This technique forms an
important connection between point-set topology and the combinatorial
methods of simplicial complexes. Indeed, it seems probable that Cech
was motivated by a combination of Alexandroff’s ideas and the earlier
homology theory of Vietoris (see Section 8-6).

Since the nerves of coverings are to play an important role in our de-
velopment, a few remarks about such complexes are in order. First, we
may point out that even though the space X be low-dimensional it may
have nerves of high dimension and these nerves may in no way resemble
the space. For instance, consider the covering U of the unit interval I'!
by the open sets Ul = [0; %)y U2 = (%7 I]y U3 = (%r T‘]‘f) U (%7 1]) and
Us=1[0,%4) U (3 %. It is easily seen that there are six l-simplexes
(U1Us), (U1Us), (UiUs), (U2Us), (U2Uy), and (UsU4) and four 2-
simplexes (U;UyU3), (U1U2Uy), (U1U3Uy), and (UyU3U,).  Since
there are no points in common with all four open sets, there are no 3-
simplexes in U. Hence a geometric realization of U is a tetrahedral sur-
face. This example points out that coverings are not necessarily so well

320
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behaved as they are often envisioned. But, as the following theorem shows,
we can do much worse than the above example.

TaroreM 8-1. Let C' be a compact Hausdorff space which is dense in
itself, and let K be any finite simplicial complex. Then there is an open
covering U of C such that the nerve of U has a subcomplex isomorphic
to K.

Proof: We perform an induction on the number of vertices of K. The
theorem is obvious for all complexes with one vertex. Suppose that the
theorem is true for all complexes with n — 1 vertices, and let K have n
vertices vy, Vg, ..., v,. Consider the subcomplex K’ of K consisting of
all simplexes of K not having v, as a vertex. Let U’ = {U]} be a finite
open covering of C whose nerve contains a subcomplex isomorphic to K’'.
If v, is an isolated vertex of K, we need only add an arbitrary open set U
(not in U’) to U’ to obtain a new covering U with the desired property.
If v, is not an isolated vertex of K, then for each simplex o = (v;, - - - v; jvn)
in K, let Ug,,..., U denote the open sets in U’ corresponding to
Vigy - - -, Vi By definition, Ni—o U7, is not empty. Choose a point pj in
each U/,. Since C is dense in itself, we can find an open set V, not in U’
such that V, lies in Nf— U/, and contains no point py. Let U = U V,,
where the union is taken over all simplexes ¢ of K having v, as a vertex.
It is possible that U is an element of U, but U is not one of the open sets
U; corresponding to a vertex of K’. The new covering U consisting of
the elements of U’ and the open set U contains all the sets needed to
construct an isomorphic image of the complex K. [ ]

The difficulties that seem to stem from the above result are largely
apparent, rather than actual. We include the theorem merely to show that
such questions do exist. We now return to Cech theory.

The collection =(X) of finite open coverings of a space X may be par-
tially ordered by refinement (see Section 2-11). A covering U refines the
covering U, U < U, if every element of U is contained in some element
of A. Also given two coverings U and U in 2(X), we define the covering
U N O consisting of all nonempty intersections U N V for U in U and V
in V. Clearly, W N0 > U, and AU NV > V. This establishes Z(X)
as a directed set under refinement (see Section 2-14).

If U > A in 2(X), then there is a simplicial mapping 7y of U into U
called a projection. This is defined by taking wap(V), V in U, to be any
(fixed) element U of U such that ¥ lies in U. Of course, there may be
several elements of U containing the set V and hence several choices for
wuou(V). This means that there may be many projections of U into .
To see that any such projection mqy is indeed a simplicial mapping, it
suffices to say that if Nf— V; is nonempty, then Nf—gmauou(V;) is also
nonempty because each V; lies in wy (V).



322 GENERAL HOMOLOGY THEORIES [cuap. 8

For reasons to be discussed later, the coefficient group G used in Cech
homology theory is usually taken to be either a compact abelian topological
group or a vector space over a field. Given a covering U in 2(X), we may
apply the methods of Chapter 6 to define the chain groups C,(U, @), the
cycle groups Z,(U, @), ete. In view of Section 6-10, each projection muv
induces a chain-mapping, also denoted by maw, of the complex U into the
complex U. Then the chain-mapping induces homomorphisms xmuv of
the homology groups H,(0, @) of U into the groups Hp(U, G) of U. Since
there may be many projections of U into U, one difficulty must be over-
come before putting this machinery to work.

THEOREM 8-2. If U > AU in =(X), then any two projections m; and 7,
of U into U are chain-homotopic.

Proof: We must construct a deformation operator ® = {D,} such that
each ©, is a homomorphism of Cp(0V, G) into Cp11(W, G) and, for any
chain ¢, on U, we have

0Dpep = TaCp — T1Cp — Dp_19¢p (a)

(see Section 6-11).

To do this, we proceed as follows. If V is any element of U, and if we
denote 71(V) by U, then w,(V) will be U’; that is, a prime on an element
of AU indicates that it is an image under mo. Let us orient U by choosing
a fixed ordering of its vertices, and if ig < 77 < «++ < ip, let (Vig -+ Vi)
determine the positive orientation of the simplex in U with these vertices.
We define D, on elementary chains ga? by

D
DpgVip -+ Vi) = D, (=1iUsp- - UsU% -+~ UL), (b)
=0

where gi; = 0 if not all the sets Uy, .. ., Ui, Ui, ..., Ui, are distinct,
and where g;; = ¢ if all these sets are distinct. As usual, D, is extended
linearly to arbitrary chains.

To prove that relation (a) holds, it suffices to consider an elementary
chain g(V;, -+ - V3,) on V. By sheer computation, we may show that

P .
0D,9(Vig- -~ Vi) = 0 D2 (—DVg(Uso- - UsU% -+ Uty

=0

= zp: (_1)i[i (—D)"gi(Usg- -~ Uiy UsUs- - Ul
n=0

=0

n=j

P
+ Z (_1)n+1g1j<Uz.0. - UuU%- - v --- Uép)}

(cont.)
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F3
= ¢o(Uly--- Ut + Z (=) PG (Us Ul - - 0%+ Ui,

n=0

p—1 ] 3
+ > (—1) [}: (=D g Uy Osye - UiU% -+ - Us)
j=1 n=0
y4
+ Z (—=1)"Mg(Us,y - - - UiUs - - U;.n. .. U;-p>]
=i

(D 3 (U - Oy UsyUL)

n=0
+ (—D)P(—D)P Mg (Usy - - - Uy (e)

We note that the first and last terms in the above sum are wog{V;, - - - Vi)
and —mg(V;, - - - V;,) respectively. Furthermore, the pairs of terms of
the forms

(=D (—=1gKUs, - - - O3U%;- - - Uty
(=1 (=1 g (Usy - - Uy O Uy - - US)

are opposite in sign and will cancel if gj_; = g}. If g/—; % g/, then one
and only one of the two must be zero. This implies that either U/ j—1 18
the same as one of the sets Uy, ..., U;;_, or Uj; is one of the sets
Uiy . . ., Ui;. There are many possible cases here, and we will not give a
complete argument.

In case g; = g for all j, the cancellation of terms mentioned above

allows us to arrange the sum in the form

g{Us - Us) — gUs- - - Usy)

P Ji=1
- > (=1 [Z (—1)"g(Usy- - O+ Uy Uty - UL)
=0 n=0

J

+ i (—1)"g(Usy - - - Uiy Uy - U;.n e Uép)} » o (d)

n=j

which is precisely (g — 7y — D,_13)g(Viy - - - Vi,). We complete our
argument with a simple illustration of a case in which one of the g/ is zero.

Let g(VoV1V3) be an elementary 2-chain on 0, and suppose that
w2 (Vo) = Uy = (Vo) = Uy, while the sets Uy, Uy, Ui, and U} are
distinet. Computing dD2g(V,V1V3), we obtain

dlgo{UoUaU UYS) — gi(UoU U U%) + g5(UoU U U%)].
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Since Uy = Uj, gb = 0. But gi = g5 = g. Hence we have the chain
— QU ULUY) + g(UULUS) — g{UoU U%) + ¢{UoU1UY)
+ QUL UUY) — g{UoU2U%) + g{UoU1U%) — g{UoU1U2).
The third and the seventh terms cancel, so we have
aD20(VoV1Vs) = g{UoULU%) — g(UoU1U2) — g(U1U1U%)
+ g(ULUUS) — g{UoU1U%) + g{UoU2U%).  (e)
On the other hand, computing (72 — 71 — D18)g(VoV1V?3), We obtain
qULULUY) — g{UoU Us) — Dulg(V1V2) — g(VoV2) + g{VoV )]
= g(UoUU%) — g{UoU1Uz)
— [g(U, U US) — g(U,UU?%)
— O(UoURU%) + g{UoU2U?%)
+ U UUL) — g{UoU1 UL ®

It is obvious that, except for the first terms, the above two chains coincide.
But since Uy = U, g(UoUiUs) = g{UsU1Usz); hence ADg(VoV1Vs) =
[ry — w1 — D1819(VoV1V2). [

We can reword Theorem 6-19 in the present context.

TuroreM 8-3. If U < U in Z(X), then any two projections and
ms of U into U induce the same homomorphisms of H,(V, @) into
Hpy(u, @). That is, 41 and 472 coincide.

The machinery needed to define a Cech cycle is now at hand. A p-
dimensional Cech cycle of the space X is a collection 2z, = {zp(W)} of
p-cycles z,(L), one from each and every cycle group Z,(U, @), U in Z(X),
with the property that if W < U, then Tazp(V) is homologous to 2p(U).
(Of course, this homology takes place on the complex U.) Note that in
view of Theorem 83, the particular choice of the projection gy is im-
material. Each cycle z,() in the collection z; is called a coordinate of the
Cech cycle. Hence a Cech cycle has a coordinate on every covering of the
space X.

The addition of Cech cycles is defined in a natural way by setting

{zp)} + {zp(W)} = {zp(W) + z(W},

where the addition on the right is that of chains on the complex U. The
homology relation between Cech cycles is defined as follows. First, a Cech
cycle z, = {2,(U)} is homologous to zero on X (or is a bounding Cech
cycle) if each coordinate 2p(W) is homologous to zero on the covering U,
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for all W in 2(X). In other words, {z,(U)} bounds if and only if there is a
(p - 1)-chain ¢p41(U) on each covering AU in (X) such that the coordinate
2,(U) = dcp41(U). Then two Cech cycles zp and 2, are homologous Cech
cycles if their difference z, — 2z, is homologous to zero. Note that if
2y = {zp(U)} is a bounding Cech cycle, nothing is required of the chains
cp+1(‘u) beyond the fact that dcp41(U) = 2z,(W). In particular, there are
no “connecting homologies” between homologous Cech cycles. To put
it another way, we do not attempt to define a “Cech chain” at all! An
example will clarify this shortly.

The reader may prove that the homology relation defined above is an
equivalence relation on the set of all Cech p-cycles. The corresponding
equivalence classes [z,] of homologous Cech p-cycles are the elements of
the pth Cech homology group H,(X, G), the group operation being defined
by the expected formula

[z] + 2] = [z + 2},

where we are using our customary symbol for an equivalence class.

Cech homology groups are topological invariants of the space X by their
very definition. For these groups depend only upon the collection =(X)
and its structure as a directed set. If k is a homeomorphism of X onto X’,
then for each covering U in Z(X), the collection h(U) of all images of ele-
ments of U is an open covering of X’ and conversely. Certainly U and
h(u) are isomorphic complexes. Also the partial ordering of 2(X) by re-
finement is preserved by k. By filling in the details, the reader may easily
prove that H,(X, G) and H,(X’, () are isomorphic.

We have glossed over a difficult question here, namely the existence of
Cech cycles. Given the pair (X, G), how do we know that there are cycles
2p(U, G) on each open covering of X such that if W < U, then Tuyz,(V)
is homologous to z,(U)? We will discuss this question in Section 8-3.

Obviously, it would be a formidable task to compute the Cech homology
groups of a space directly from the definition. Such work is rarely neces-
sary, however. Our next theorem tends to simplify Cech theory, and its
proof exhibits some of the standard techniques used in applying this theory.

A subcollection 2'(X) of Z(X) is called a cofinal family of coverings of X
provided that for every covering U in Z(X) there is some covering U’ in
Z’(X) such that U’ > . Given such a cofinal family 2'(X), we may go
through the development of Cech theory again, restricting the cycles,
homologles etc., to be on elements of 2’(X). In so doing we construct
pseudo Cech cycles and pseudo Cech homology groups H,(X, 2'(X), G). It
is our aim to show these pseudo Cech groups to be isomorphie to the full
Cech groups H,(X, ). This result is to be applied in Section 8-2 to prove
the topological invariance of the simplicial homology groups of a finite
polytope.
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THEOREM 8—4. Let ='(X) be a cofinal family of coverings of X. Then
the Pseudo Cech homology group H,(X, 2'(X), G) is isomorphic to
the Cech homology group H,(X, G) for each dimension p.

Proof: Let z, = {2,(U)} be a Cech p-cycle. Since 2'(X) is a subcollec-
tion of Z(X), there is a coordinate z,(U’) of 2, on each element U’ of 2'(X).
Hence we may define a transformation f(zp) = 2, where 2z, = {z,(W)}
and z,(U) = zp(W) foruw’ = u. It should be obvious that f is a homo-
morphism of the cycle group Z,(X, G) into the eycle group Z,(X, Z'(X), ).
One readily shows that f also carries B,(X, G) into B, (X, Z'(X), &).
Hence f induces a homomorphism fy of H,(X, G) into H,(X, Z(X), G).
We will show that fy is actually an isomorphism onto.

We first prove that fx is onto. To do so, let { z,(W)} be a pseudo Cech
cycle. Given any covering U in 2(X ), choose a covering U’ in 2'(X) such
that W > L. This is possible because Z’(X) is a cofinal family. Using any
projection waw, we define z,(U) = Tuwzp(W). In this way, we obtain a
collection {z,(W)} of coordinates, one on each element U in =Z(X). By
taking the projection -« to be the identity simplicial mapping, the result-
ing collection of coordinates obviously maps onto {z,(U)} under the
homomorphism f. Hence if the collection so constructed is a Cech cycle,
then f, is onto.

Now each coordinate z,(U) is independent, in the sense of homology,
of the choice of the covering U’ in Z'(X) used to define zp(u). Forif U is
another element of ='(X) such that V0’ > AU, we may show that

1rfu=o'2p(’0/) ~ 7l"u<u'2p(‘u/) = Zp(cu)-

To do so, choose a covering ‘W’ in 3’(X) such that ‘W’ > W’ N V. Since
we are dealing with a pseudo Cech cycle, we have both

Tarwzp(W) ~ 2p(W)
and
Torwzp(W') ~ 2p(0").

Now raamaw2zp(W’) and T Tow2p(W’) are homologous because each
is an image in AU of z,(W’) under two proj ections of ‘W’ into U, and Theorem
82 applies. Thus we have

Tuvzp(V) ~ o Mo 2p(W') ~ T Tuw2p (W) ~ Tuwzp(U).

This proves that z,(U) is well-defined up to a homology.

To show that {zp(U)} is a Cech cycle, let 0 > U in Z(X). We need
only show that Tawz,(0) is homologous to z,(V). From Z’(X), choose a
covering 0’ > V. Then

zp(ro) ~ Tov2p(V')
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(b)

FiGUure 8-2
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and 2p(U) ~ Taw2p(V)
by the argument used above. Therefore we have
Tu2p(V) ~ TupTov2zp(V) ~ Tuvzp(V) ~ 2p(U).

This proves that {z,(W)} is a Cech cycle. Since our construction is valid
up to a homology, this proves that f, is onto.

Next assume that the pseudo Cech cycle {z,(U")} is homologous to zero.
We show that the corresponding Cech cycle {z,(U)} constructed above
is also homologous to zero. For any covering U in Z(X), let U’ be an ele-
ment of 2'(X) such that W’ > U. By assumption, z,(U') ~ 0. Thus

2p(U) ~ Tawzp(UW) ~ 0,

and each coordinate of the Cech cycle bounds. This completes the proof
that fx is an isomorphism of H,(X, G) onto Hp(X, (X)), @). ]

A few examples will help to clarify the sometimes subtle differences
between Cech homology theory and simplicial homology theory. First,
however, we point out that the two theories agree on finite polytopes (see
Section 8-2). Hence our examples must begin with infinite polytopes.

ExampLi 1. Consider the infinite geometric complex K indicated in Fig.
8-1(a), a triangulation of the topologist’s sine curve. There is no finite sequence
of 1-simplexes joining the vertices vo and v2. Hence there are two combinatorial
components of K even though the carrier |K| is connected. It follows that the
augmented simplicial homology group Ho(K, @) is isomorphic to G (see Section
6-6). On the other hand, the augmented Cech homology group Ho(|K|, &) is
trivial! To prove this directly, consider Fig. 8-1(b), in which we picture one
member of a particular cofinal family of coverings. We cover the limit segment
vov1 with a simple chain of sets of diameter 1/n and then cover the rest of the
set with another such simple chain.

In point of fact, the conclusion that Ho(K|, G) is trivial is a consequénce
of the following result.

THEOREM 8-5. Let C be a Hausdorff continuum. Then the augmented
Cech homology group T(C, G) is trivial.

For a proof of this theorem, the reader is referred to Section 11, Chap-
ter V, of Wilder [42], or he may prove it himself as an exercise.

ExampLE 2. The infinite geometric complex K pictured in Fig. 8-2 has just
one combinatorial component, but clearly it carries no simplicial 1-cycle except
the trivial one. On the other hand, the carrier |K|, as imbedded in the plane,
does have a nonbounding Cech 1-cycle. Here again a cofinal family of coverings
may be constructed, each covering being the union of two simple chains as in
Example 1, in such a way that the existence of the nonbounding 1-cycle is
obvious.
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From the above examples as well as by analogy to the simplicial theory,
the reader may have inferred that a Cech 1-cycle is in some way associated
with a connected subset of the space. The following example should cor-
rect such a mistaken impression.

ExawmpLE 3. Consider the annulus in Fig. 8-3 and the cofinal family of cover-
ings {U.}, where each U, consists of finitely many spherical neighborhoods of
radius 1/n. A Cech 1-cycle may be defined in such a way that z1(Usas) is deter-
mined by the covering of the outer circle in the boundary and zi1(Ugk41) is
determined by the covering of the inner circle. The necessary homologies con-
necting 21(U,) and 721(WU.41) are constructed on the entire covering U,, of
course. We should add that the resulting Cech cycle is in the same homology
class as is one constructed on the covering of, say, the outer boundary alone.

ExamrLE 4. Even the connecting homologies between z1(U,) and 721 (Un+1)
need not be over the same portion of the space at each covering. To illustrate
this point, consider the torus and a cofinal family of coverings such as might be
constructed using spherical neighborhoods of radius 1/n. Define a Cech 1-cycle
(actually a pseudo Cech cycle) on these coverings {WU.} as follows. Let z1(WUas)
be determined by the covering of the circle J1, and let 21 (U2x+1) be determined
by the covering of J2 (see Fig. 8-4). For Uz, we construct the homology con-
necting z1(Uzx) and m21(U2k4+1) on the covering of the upper half of the torus,
and for Uszk+1, we construct the homology between z1(Uz2x41) and wz1(Uzk+2)
on the lower half. Again the resulting cycle is in the same homology class as
is the cycle obtained by considering only the coverings of, say, J1.

To begin to clarify the restrictions that were placed upon the coeffi-
cient group @ used in Cech homology theory, we consider next a more
complicated example.

Ficure 8-3 Ficure 84
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Fic. 8-5. The imbedding of tori in constructing a solenoid.

ExampLE 5. Let S denote the solenoid (see Section 3-8). We may consider
S to be constructed as follows. Given a solid torus (or anchor ring) T in E3,
let T's be another solid torus imbedded in the interior of T'1 as shown in Fig. 8-5.
Then let T3 be a solid torus imbedded in 7’2 as Ts is imbedded in T'1, ete. The
intersection N®—; T, is the solenoid S as we will use it here.

From an intuitive standpoint, one expects that the solenoid S must
carry a nontrivial 1-cyele if for no other reason than that S certainly links
such a circle as J in Fig. 8-5. But requiring that S carry a nontrivial
Cech 1-cycle imposes certain restrictions upon the coefficient group used
in the homology theory. To see how such restrictions come about, we con-
struct a cofinal family (sequence) {aL,} of coverings of S by covering each
T, with a finite number of open connected sets of diameter less than 1/n.
Furthermore, we choose these coverings in such a way that U, 1 > Un
for each n, and each A, has a polygonal simple closed curve as a geometric
realization. It follows that a projection 7 of U,4; into U, may be con-
sidered as a simplicial mapping of degree 2 carrying one simple closed
curve onto another.

Suppose that z; is a Cech 1-cycle of S. Each coordinate z;(U,) is 2
cycle on al,, and we may assume U, to be so oriented that 21(U,) assigns
the same coefficient g, to each 1-simplex of U,. Consider a projection 7 of
U, into U,. By our construction, m21(U,+1) must assign to each 1-
simplex of U, the coefficient 2¢,1. Since z; was assumed to be a Cech
cycle, we must have 72;(U,1) homologous to z;(U,), and it follows that
we must have g, = 2¢,41. This being true for all n, one readily sees that
if g is any element of the coefficient group G to be used as the coefficient of
z1(U,), then G must also contain all elements of the form g/2%. Since
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this condition is not satisfied by an arbitrary group, we may conclude that
for the solenoid to have the desired 1-cycle, we must exercise judgment
in the choice of the coefficient group. For example, we may use a field of
coefficients, or a vector space over a field, or a compact abelian topological
group. Certainly we could not use the integers, nor any cyclic group of
order 2™, for then the only Cech 1-cycle on S would be the trivial one
having all coefficients equal to zero.

By simple alterations in the construction of the solenoid, it should be
obvious that we could obtain examples which would force us to avoid
cyclic coefficient groups of orders 3%, 5™, ... . It is in part the existence of
such spaces that imposes the restrictions placed upon the coefficient groups
in Cech homology theory. There are other reasons as well, and we will
mention one more in Section 8-3.

ExAMPLE 6. A metric continuum M is snakelike if, given any positive number
¢, there is a simple chain Uy, Ug, ..., U, of open sets of diameter less than e
covering M. (The “links” of the chain are not assumed to be connected.) An
arc is obviously snakelike, the set in Example 1 above is snakelike, and so is
the pseudo-arc (see Section 3-8). Three arcs with an end point in common (a
triod) is not snakelike.

If M is a snakelike metric continuum, and if U is any covering in
Z(M), then by the Lebesque covering theorem (1-32), there is a positive
number € such that every subset of M having diameter <e lies in some
element of U. Hence the e-chain assumed in the definition of M is a refine-
ment of U. We may conclude that the (1/n)-chains, call them U,, con-
stitute a cofinal family of coverings of M. Since no such simple chain
carries a nontrivial simplicial p-cycle, p > 0, it follows that the Cech
homology groups H,(M, G),p > 0, are all trivial. Suppose that z; =
{zo(U,)} is an augmented pseudo Cech O-cycle of M. Each coordinate
2o(U,) bounds on the simple chain U, whose nerve is isomorphic to a poly-
gonal arc. Thus we may prove that the augmented Cech group " oM, @)
is also trivial. This proves that each snakelike continuum has the same
Cech homology structure as does the arc. But a snakelike continuum
need not resemble an arc at all! Hence we see that even in such an ap-
parently simple case, the Cech homology groups fail to characterize the
space on which they are defined.

In his definitive paper [58] on snakelike continua, Bing gives the fol-
lowing example of a snakelike continuum with just one “end point” (see
the reference for the definition of end point). Let C denote the Cantor
set on the interval 0 < z < 1 on the z-axis in E2. Let M, denote the
set of all closed semicircles in the upper half-plane with center at (%, 0)
and end points in C. For 7 = 1,2,3,..., let M; denote the set of all
semicireles in the lower half-plane with center at () - 3%, 0 and end points
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Ficure 86

in €. The continuum M = UZ, M; is snakelike and has just one end
point, the origin. We have pictured this set in Fig. 8-6. If we add to this
set its reflection in the y-axis, we obtain a snakelike continuum with no
end points. On the other hand, Bing proves that a nondegenerate snake-
like continuum is a pseudo-arc if and only if each of its points is an end
point!

8-2 The topological invariance of simplicial homology groups. Since
the Cech homology groups of any space are topologically invariant, we
may prove the invariance of the simplicial homology groups of a finite
polytope merely by exhibiting an isomorphism of the Cech groups onto the
simplicial groups. Such is the goal of this section.

Let K be a finite geometric complex, and let |K| be the polytope carrier
of K. Let K™ denote the nth barycentric subdivision of K. A vertex
p@+D of K@+ is said to be barycentrically related to a vertex v™ of K™
if 2™ is any vertex of that simplex of K™ whose barycenter is ™+ For
instance, in Fig. 8-7, v/ is barycentrically related to v, and to ve but not
to vo.

Then a vertex »®+% of K*® js barycentrically related to o™ if there
is a sequence o™= @D such that »™ Y is barycentrically
related to v®+? foreach¢ =k — 1,k — 2,...,1,0.

For any vertex v™ of K™, let St(v™) denote the open star of v™, that
is, the collection of all open simplexes of K ™ having v™ as a vertex. In
2
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Ficure 87

the polytope |K|, the carrier |St(»™)| is an open set, and the collection of
all such open sets constitutes a finite open covering of |K| (see Section
5-4).

TureoreM 8-6. Let K be a finite geometric simplicial complex, and let
n > k = 0. If there is a sequence of vertices v, ¢ = k, k4 1,...,n,
with @ a vertex of K and »'® barycentrically related to »™, then
St(v(”)) is contained in St(»*®).

Proof: If n = k + 1, let s? be an open simplex of K™ having »™ as a
vertex. The vertices of s? are barycenters of simplexes of K‘®. Let ¢,
1= 20,1, ..., q, denote the vertices of s?. As ordered, the simplex o, in
K‘® is the carrier of s? and, as open sets, ¢, contains s?. By assumption,
»™ is barycentrically related to »®, a vertex of that simplex of K® of
which ™ is the barycenter. Thus »'® is a vertex of ¢,, and for any open
simplex s? in K™ having v as a vertex, we know that s lies in St(»'?).
This establishes the theorem for n = k -+ 1, and a finite induction com-
pletes the proof. []

For the remainder of this section, we adopt the following conventions.
Let K be a finite geometric simplicial complex with polytope carrier |K|,
and

(1) let v, 2 =1, 2, ..., ©(n), be the vertices of the nth barycentric
subdivision K™ of K,

@) letu, = {|St@)|}, <=1, ..., i(n), be the covering of |[K| by the
open stars of vertices of K™ (we denote the collection {,} by Z’ and will
show that =’ is a cofinal family of coverings of |K|), and

(3) let f, be the simplicial mapping of the nerve of U, onto K™ defined
by fa(IBt@H) = o}, i = 1,2,..., i(n).

It is easily shown that f, is a one-to-one simplicial mapping of U, onto
K™ and that f; ! is also simplicial. Therefore U, and K are isomorphic,
and we have the following result.
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LeEmma 8-7. K™ is a geometric realization of the complex U, for each n.

Also, we can state the next lemma, which is merely a rewording of the
remark following Theorem 6-23.

Levmma 8-8. The simplicial mapping f, induces an isomorphism of the
groups Z,(U,, @) onto Z,(K™, @) for each dimension p and any coeffi-
cient group G. Hence f, induces an isomorphism of H,(U,, G) onto
H, (K™, @).

LemMa 8-9. The collection =’ is a cofinal family of open coverings of
K.

Proof: From Section 54, as was remarked above, we know that each
set |St(v7)| is open and that U, is a covering of [K|. Now let U be any
finite open covering of the compact metric space |K|. Let € be the Lebesgue
number of U (see Theorem 1-32). In view of Theorem 5-20, there is an
integer N such that the mesh of K™ is less than ¢/2 if n > N. Thus,
since each simplex has diameter < €/2, each open star has diameter < e. It
follows that for n > N, U, is a refinement of U. This proves that =’ is a
cofinal family (actually a cofinal sequence) of coverings. ]

By virtue of Theorem 8—4, we may now state that the Cech homology
group H,(|K|, @) is isomorphic to the pseudo Cech group H,(|K|, 2, @),
defined on the cofinal sequence ' = {U,}, for each dimension p. Our
goal in this section will be attained by showing that this pseudo Cech
group is isomorphic to the simplicial homology group H,(K, Q).

TueoreMm 8-10. If K is a finite geometric simplicial complex with
polytope carrier |K|, then for each dimension p the simplicial homology
group H,(K, G) is isomorphic to the pseudo Cech group H,(|K|, Z', @).

Proof: Considering K™ as the first barycentric subdivision of K™~P,

the construction used in proving Theorem 6-23 yields a chain-mapping of
Cp(K™ Y, G) into C,(K™, @). This chain-mapping was denoted by u
in the proof of Theorem 6-23, but it is convenient to use the symbol
Un—_1.n here. Forn > k + 1, we iterate this mapping to obtain

Ukn = Un—1, N * Un—2,n—1" " * Uk, k+1-

Also in analogy to the simplicial mapping u’ of Theorem 6-23, we define
a simplicial mapping wy,  of K™ into K®, n > k, by setting wn, ¢(v7)
equal to any vertex % of that lowest-dimensional simplex in K® that
contains v} as a point. We also denote by wy, » the induced chain-mapping.
Again citing Theorem 6-23, we see that

(i) %k n - W,k is chain-homotopic to the identity on K™ and
(i) Wy, % * Uk, is the identity on K®,
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By Theorem 6-20, this proves that the induced homomorphisms xuk,a
and 4wy, & on the homology groups are actually isomorphisms onto.

In view of Theorem 86, we know that St(?) lies in Stfwy. x(7)] since
o* is barycentrically related to w, x(vj), by definition. Our notation will
be simplified if we denote K by K‘® and the identity mapping of K onto
itself by uo.0. Then ug ., is a chain-mapping of K into K™, ete.

We next define a transformation r on the cycles of K as follows. Let
2, be an element of the simplicial cycle group Z,(K, G). Define the trans-
formation r of Z,(K, @) into Z,(|K|, Z’, G) by setting

r(zp) = {afa [o.n(zp)]}-

Analyzing this, we see that ug,,(2,) is a cycle on K ™ which is carried over
by «fx" to a cycle on the isomorphic complex U,. On homology cosets,
r induces a transformation r, defined by

r+([2]) = [r(20)]-

We will show that r, is an isomorphism onto.

It is inherent in the definition that there is a coordinate of r(z,) on every
element U, of Z'. We need only establish the requisite projection property
to prove that r(zp) is a pseudo Cech cycle. To this end, assume that
U, > Uy, implying that n > k. Define the simplicial mapping

Tn,k = fl:lwn,kfn-

Note that fn:Uy — K™, wn, x:K™ — K®, and fiK*® — ;. Since
each of its factors is simplicial, so ism, . We prove that 7, is a projec-
tion of U, into Uz. Consider a “vertex” [St(v?)| of U,. By our definition,
F2(I8tGF)]) = v7. Then w,, k(v?) is barycentrically related to »7, and by
Theorem 8-6, St(2?) lies in Stw, «(@})]. Then we have fi '[wn,x(})] =
St{wn, x(0M)], and St@?) lies in fi~ Y. 1f2[St(1)]. Hence 7,1 is a projec-
tion. As usual, we also let 7, ; denote the induced chain-mapping of
U, into Up.
Now, for n > k, we wish to show that

T ieafr o, (2p)]) ~ f% ' [0,k(2p)]-
Writing out all the factors of 7, x, we have
oI5 W kxfnefn xtion(@p) = «fi Wn ktio.n(2p)
By construction,

—1 —1
wJio W xon(2p) ~ WSk Wnok: Ukn - ug,k(2p)
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and, since w,, % * U, is the identity on homology cosets,

—1 —
oI W KUk %0 6 (2p) ~ 4S5 "o,k (2p)-

This proves that r(z,) is a pseudo Cech cycle. Since both 4f; " and su¢ »
are homomorphisms, it follows that r, is also a homomorphism:

Tx IHp(K, G) - HI)(|KI’ 2,; G)

To prove that r, is an isomorphism onto, we first show that ry is single-
valued. If z, ~ 22 on K, then for each U,, we have

*fn_l[uo,n(z;)] ~ *fn_l[uo,n(Z§)]

on U, because both , f. ' and 4uo., are isomorphisms on homology groups.
Thus 74 is well-defined.

Next we show that r, is one-to-one. To do this, assume that
r(zp) ~ r(22); that is, relzn] = r«[22]. This homology relation holds only
if the corresponding coordinates in each covering are homologous. This
applies to g, too! Thus

o5 0,0(25) ~ +f5 "tt0,0(25).-
Since ug, is the identity, we have
o Nz ~ «5 ' (e3),

and applying the isomorphism fo to both sides of this homology gives
the desired result, z ~ 25.

Finally we show that 7, is onto. Let {z,(U,)} be any pseudo Cech cycle
of |[K|. We find a cycle z, of K such that r(z,) is homologous to {z,(Ux)}.
To do so, take the coordinate of {z,(U.)} on Uy and move it over onto
K© = K by means of the mapping fo. That is, let 2z, = fo[z,(Uo)]-
We must show that, with this choice of z,, 7(2p) ~ {2p(WU,)}. This entails
proving that

fo Yo, n(2p)] ~ 2p(Un) for each n.

Projecting the coordinate z,(U,) into U, we have
T, 0l2p(Wn)] = £ "wn,ofnl2p(Un)]-
Since {z,(U,)} is a pseudo Cech cycle, we must have that
T .olzp(Un)] ~ 25(Uo) = F5(2p),

by our choice of z,. Applying f. Y2020 to both sides of this homology, we
obtain
I u0.nfof o " Wa,0fnlzp(Un)] ~ fa Muo,nfofo  (2p)-




8-3] CECH HOMOLOGY THEORY (CONTINUED) 337

Sinee xfo, £ 0 %, wfi Y, xfn, and «Uq nxWn,0 are all identity isomorphisms
on homology classes, it follows that

zp(cun) ~ fr-n_luo,n(zp)‘
This proves that ry is onto. []

TueorEM 8-11. The simplicial homology groups of a triangulation K
of a finite polytope |K| are topological invariants of the polytope and
do not depend upon the particular triangulation K.

Proof: Combine Theorems 8-10 and 8-4 with the fact that the Cech
homology groups are topologically invariant. []

This last result is the justification for our use of simplicial theory. In
spite of the noninvariant machinery of oriented complexes, etc., used in
constructing simplicial homology groups, we actually obtain an invariant
of the underlying polytope. We might note also that the argument above
suffices to establish the existence of Cech homology groups in the case of
finite polytopes, with no restriction upon the coefficient group G.

8-3 Cech homology theory (continued). The reader will have dis-
covered an inverse limit system hidden behind the development of Cech
theory as given in Section 8-1. We pause to formulate the Cech theory
in terms of limit systems, which is a more modern viewpoint. Our brief
exposition is intended largely to indicate a direction for further study.

As was remarked in Section 8-1, the collection Z(X) of all finite open
coverings of a space X is a directed set under the partial ordering of
refinement. For each element U of =(X), we may define the groups
H,(U, @) and H?(U, G), the pth homology and cohomology groups of
the simplicial complex U over an abelian group G. And whenever U > U
in Z(X), we have the projection-induced homomorphisms

Mo :Hy (0, G) — Hp(u, @)
and
*rav:H? (U, G) — HP(V, G).

These satisfy the condition that if W > U > U in 2(X), then

xTUVxTOW = xTUW
and
*row*ruy = *raw.

If we let H,(Z) denote the collection {H,(Z, G)} and 7 denote the col-
lection {ymyv}, the pair [H 3,(2), «7] is an inverse limit system over the
directed set =(X), the pth Cech homology system of X with coefficients in
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G. Similarly, if H?(Z) = {H?(U, @)} and *r = {*muyp}, then the pair
[H?(Z), *m] is a direct limit system over Z(X), the pth Cech cohomology
system of X with coefficients in G. It becomes simply a matter of checking
the definitions to see that the pth Cech homology group H,(X, Q) is
precisely the inverse limit group of the Cech homology system [H. (), x7).
And we now define the pth Cech cohomology group H?(X, @) to be the
direct limit group of the Cech cohomology system [H?(Z), *m].

The existence of these Cech groups clearly depends upon the theory of
inverse and direct limit groups. We will simply state the conditions under
which they can be shown to be defined. The Cech homology groups
H,(X, @) can be shown to exist for any space X and any module G over
a ring, and then H,(X, @) will be a module over the same ring. In addition,
if X is compact, we may take @ to be a compact abelian topological group,
and then H,(X, G) will be the same. On the other hand, while the co-
homology groups H?(X, ) are also defined for any space and any module
@ over a ring, they are not meaningfully defined for compact topological
groups.

As was stated explicitly in Lemma 2-93, elements of a direct limit group
such as H?(X, @) are easier to construct than are elements of an inverse
limit group such as H,(X, @). In an inverse limit group, any particular
coordinate of a given element controls only those coordinates which pre-
cede it in the ordering. Hence, to construct a Cech cycle, one must find
coordinates on every covering of (at least) a cofinal family of coverings.
In general, this can be a troublesome task. On the other hand, if one finds
a cocycle on any covering of the space X, then he has a Cech cocycle!
For, speaking intuitively, all refinements of any given covering U consti-
tute a cofinal family and, since a cocycle z?(U) determines the cohomology
class of 2?(V) for each U > A, it follows that 2”(U) determines an element
of H?(X, @). 'This fact, together with the algebraic duality theorems men-
tioned in Section 7-16, has simplified many arguments in homology
theory. For an important example of this procedure, the reader is referred
to Chapters VII and VIII of Wilder [42].

The technique of limit systems also may be applied to define the relative
Cech groups. First, let A be a closed subset of a space X, and let U be
an element of Z(X). A simplex (Uy -+ - U,) of U is on A if and only if the
intersection Nf—p U; meets A.

LemMa 8-12. The collection of all simplexes of U on A is a closed sub-
complex U4 of U.

The proof is left as an exercise.

In view of Lemma 8-12, we may define the relative simplicial groups
H,y(w/uy, @) and H?(U/Uy4, G) over a coefficient group G. Another easy
exercise will provide a proof of the following result.
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Lemma 8-13. If U > 4 in Z(X), and if wup is a projection of U into U,
then T projects V4 into U 4.

According to the definitions in Section 7-3, Lemma 813 states that each
projection my is a simplicial mapping of the pair (U, V4) into the pair
(U, U4). We know, too, that any two projections Tay and mqy of U into
q¢ are chain-homotopic. It follows that the induced homomorphisms

0 U
*7l'cu-0:Hp <,0—A: G) i Hp (‘IT,Z’ G)
U
*’ﬂ'cwoal (‘U_A ) ) Hp <—v G)

depend only upon the order relation between U and U and not upon the
particular projection uy. Thus the collection Hy(2/Z4) = {Hp(UW/ U4, G)
and the collection 4T = {,muyv} together constitute an inverse limit system
over 2(X), while the pair [H?(Z/Z4),*r], defined analogously, is a direct
limit system over Z(X). The pth relative Cech homology group of X mod A,

H,(X/A, G), is the inverse limit group of the system [H,(Z/Z4), 7], and
the pth relatwe Cech cohomology group of X mod A, H?(X/A, @), is the
direct limit group of the system [H?(Z/Z4),*7].

By combining these definitions with the concept of a mapping of one
inverse (direct) limit system into another, it is possible to construct the
Cech homology (cohomology) sequence of the pair (X, A). For complete
details of this construction, the reader is referred to Eilenberg and Steen-
rod [7], Chapters VIII and XI. The necessity for restricting the coefficient
group @ also arises here. For the Cech homology sequence to be an exact
sequence, the space X must be compact, and the group G must be either
a compact abelian topological group or a vector space over a field. This
restriction may be lifted, however, if (X, A) is a triangulated pair, in which
case the exactness theorem can be established with any coefficient group.

By means of similar techniques, one may also prove the excision theorem
for relative Cech homology groups. Indeed, in the reference made above,
a complete verification of the Eilenberg-Steenrod axioms (see Section 7-7)
is given. We will merely exemplify this procedure with the single instance
presented in the next section.

and

8-4 Induced homomorphisms. We have mentioned frequently that a
continuous mapping induces homomorphisms on homology groups. This
fact will be verified in this section, thereby proving the homology analogue
of the corresponding situation in homotopy theory (see Theorem 4-28).

Let f:X — Y be a continuous mapping of X into ¥, where both X and
Y are compact Hausdorff spaces. Then the inverse transformation f*
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carries each open covering U in Z(Y) onto an open covering f~*(U) in
2(X). Since all intersections of elements in f~!(1L) are preserved by f, we
have the following result.

LeEmMma 8-14. If f:X — Y is continuous, and if U is an element of
2(Y), then f~ () is isomorphic to a subcomplex of U under an injection

fa.

Proof: If (Uy - - - U,) is a simplex of U, then N7—y U; is not empty, and
neither is NPy f~Y(U;). This implies that (f~Y(Uy)---f~2(U,)) is a
simplex of f~1(U). Let fy be defined by setting

fu(F7HUY)) = U;

for each nonempty set f~1(U;). Clearly fy is a one-to-one simplicial map-
ping of (W) into U. Since f was not assumed to be onto, there may be
open sets in U which have empty inverse images in X. Hence f~!() is
isomorphic only to a subcomplex of . []

LemMma 8-15. If f:X — Y is continuous, and if U > U in Z(Y), then
FY0) > f~1(w) in 2(X). Furthermore, if Tuy:0 — U is a projection
of V into U, then Ty carries f~1(V) into f~!(U) {these being considered
as subcomplexes of U and U after Lemma 8-14). If 7, is the mapping
of (V) into (W) in Z(X) defined by 7y, then a4, is a projection,
and we have commutativity in the diagram

F7H0) T )
/Ul fu
vV — U

T

Proof: The first two parts of the lemma are obvious. Since 7’ is defined
by 7' (f~Y(V)) = f~1(w(V)) for each V in U, and since fy and fy are
identity injections, it follows that 7’ is a projection and has the desired
commutative property. [ ]

TuroreM 8-16. Let X and Y be compact Hausdorff spaces, and let
f:X — Y be continuous. Let f~*:Z(Y) — Z(X) be the associated map-
ping of coverings, and for each element U in Z(Y), let fu be the injection
of f~'(u) into U. Then the induced homomorphisms

*f‘u:Hp(f_l(cu'): G) - Hp((u'r G)r

together with ™1, constitute a transformation & of the pth Cech homol-
ogy system of X into that of Y.

The proof is merely a matter of checking the definition (in Section 2-14)
of such a transformation of inverse limit systems, the necessary commuta-
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tive relations being given in Lemma 8-15. Again looking at the definitions
in Section 2-14, we see that the transformation ® on the homology systems
induces a homomorphism on the inverse limit groups

fuHp(X, @) — Ho(Y, G).

This is the homomorphism induced by the continuous mapping f. That it
satisfies the axioms of Eilenberg and Steenrod is proved in Chapter IX of
their book [7].

8-5 Singular homology theory. As is the case in most of the sections in
this chapter, the present section merely introduces an important topic
whose scope does not admit of a complete study in an introductory course
in topology. For a more complete exposition on the subject of singular
homology theory, see Eilenberg [75] or Eilenberg and Steenrod [7].

Let X be a topological space. With X we will associate a complex S(X),
the total singular complex of X, as follows. Consider a geometric simplex
s? = (vg -+ - vp) with ordered vertices in some Euclidean space E" and a
continuous mapping f:s? — X of s? into X. The pair (s?, f) will represent
a singular simplex in X.

We define an equivalence relation between such pairs by setting

(s, f1) == (s5, f2)

if the (unique) affine transformation ¢ determined by y(v;) = w; (the
vertices of s3),% = 0, 1, ..., p, where ¢ is counsidered only on the simplex
%, satisfies the following criterion:

f1 =TI

It is easily shown that this is indeed an equivalence relation on pairs
(s?, f), and we define a singular simplex on X to be an equivalence class
? = [(s?, )] of pairs (s?, f) under this relation.

The total singular complex S(X) of the space X consists of the singular
simplexes on X with the necessary functions defined as follows:

(i) dim ¢? = dim [(s?, f)] = p, and

(ii) if s* = (vo - - -vpyandif 12 = (v, - - - vs,) is a face of s, the vertices
of ¢? taken in the same order as they appear in s?, then we define the in-
cidence relation

(67, N > [, £,

where f[t? is f restricted to t? as usual. This may be rephrased in terms of
incidence numbers by saying that if s?™" = {vg - - 9; - - - vp), then

(G N (CauFit ) ISR CS W
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and otherwise (6%, 6”7 = 0.

The integral singular chains are taken to be formal finite linear combina-
tions of singular simplexes with integral coefficients, ¢, = >/ n;6?, each
n; being an integer, and each ¢? an element of S(X). Using the natural
componentwise addition, the chains form a group C,(X), the pth singular
chain group of X.

The boundary operator 9 is defined on elementary chains by the formula

D
A" NI = D0 (DI AN,

i=0
where s~ = (pg--- ;- - vp) as usual. It is easy to prove that 30 = 0
for elementary chains, and the same property holds when the above defini-
tion is extended linearly to obtain the boundary of an arbitrary singular
chain. The necessary algebraic requirements for a homology theory are
now present, and we may define the pth singular homology group 3C,(X)
with integral coefficients as 3,(X) = H,(S(X)).

Given two spaces X and Y and a continuous mapping f:X — Y, there
is an induced transformation fy: S(X) — S(Y) such that f4d = 8fs. This
transformation is defined as follows. Given a singular simplex [(s?, ¢)] in
S(X), we set

f#[(sp) ¢)] = [(Sp; f‘P)]

One need only check that (f¢)|s?~" = f(¢|s?™") to prove that fz com-
mutes with 9. But this is obvious. It follows that fg is a chain-mapping of
S(X) into S(Y) (see Section 6-11) and hence induces homomorphisms

Fa :3C,(X) — 3¢,(Y).

1t is easily shown that if f is a homomorphism, then f, is an isomorphism
onto and that if f:X — Y and g:Y — Z, then (9f)x = g«f«. The reader
may wish to prove these statements as exercises. We prove only the fol-
lowing theorem as an illustration of the methods used in singular homology
theory.

TaeoreM 8-17. If f and g are homotopic mappings of X into Y, then
the induced homomorphisms fx and gy of 3¢,(X) into 3¢,(Y) coincide.

Proof: This involves setting up a chain-homotopy between the chain-
mappings f# and g¢. Having such a chain-homotopy, Theorem 6-19 will
apply to prove this theorem. We must define the operator D:Cp(X) —
Cp+1(Y) such that

D = fp — g# — 9,

and this requires some preparation.
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()

Fic. 8-8. (a) P = 52 X Il. (b) Three 3-simplexes in s2 X I1.

Given a geometric simplex s? = (v - -v,), we construct the prism
P = s X I' and decompose P into (p + 1)-simplexes of the form

B = (oo vh),

where the v; are vertices on the bottom face of P, s? X 0, and the v} are
vertices on the top face of P, s? X 1. This subdivision of P is illustrated
for a 2-simplex in Fig. 8-8.

Now consider the chain on P,

d(s®) = z,,: (—1)E+
=0

It is an easy exercise to show that

ad(s?) = s — ¥ — i (—1)*d(stY),

1=0
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where s?7! = (vy -+ - ;- v,) again. This operator d can be extended
linearly to chains ¢, of geometric simplexes to yield an operator, still
called d, satisfying

3d(c?) = "¢, — ¢p — d(3cp).

Now suppose that F is a continuous mapping of the prism P into Y.
Then any ordered simplex ¢ in P gives rise to a singular simplex 7% =
[(t¢, F|t9)] in S(Y), and this can be extended linearly to chains on P.
Now define

or(®) = 32 (D@, FiE+].

=0

This is a singular chain in S(Y). In the same way, we define cp(s?™Y)
for each face s of s? and extend linearly to chains, thereby obtaining
the relation

dcp(s?) = 's? — s® — cp(dsP).

Returning to the proof of the theorem, consider the two mappings f
and ¢ and the assumed homotopy A:X X I ! — Y such that k(z, 0) = f(x)
and h(z, 1) = g(z). To construct the desired chain-deformation D, let
o? = [(s?, ¢)] be a singular simplex in S(X), where sP = (vg -+ *vp). Con-
struct the prism P = s? X [ 1 A mapping F:P — Y is defined by

F(z,t) = h(e(2), 1)

for each point (z,t) in P. It is evident that, in the notation introduced
above, the chain cr(s?) has the property

dcr(s?) = gu('s”) — fa(s?) — cr(9s7).

Setting D(6?) = cp(s?), we have the desired chain-deformation. ]

We do not develop relative singular theory and its consequences here.
Of course, the first results of this theory are those taken as the Eilenberg-
Steenrod axioms (see Section 7-8). For reasonable spaces, for instance
compact metric spaces locally connected in all dimensions (definition
later), the singular theory and the Cech theory coincide. For other spaces
the two theories do not agree. An example of this last statement is afforded
by the topologist’s closed sine curve pictured in Fig. 8-2, which carries a
nonbounding Cech 1-cycle but does not carry a nonbounding singular
1-cycle.

Before leaving singular homology theory, we may mention a variation
called singular cubic homology theory. In this theory, we define a singular
n-cube in a space X to be a mapping f:I" — X. Such a singular n-cube is
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called degenerate if f does not depend upon all its coordinates. For in-
stance, if f(z, zg, . . ., zn) = fly, 22, - . ., &), Where zo, . . ., z, are fixed,
we say that f is degenerate along its first coordinate. Let @,(X) be the
free abelian group generated by the set of all singular n-cubes in X, and
let D,(X) be the free abelian group generated by the set of all degenerate
singular n-cubes in X. Then the singular cubic chain groups of X are de-
fined as the quotient groups
Qn(X)

The boundary operator d is defined as follows. Let f be a singular n-cube
in X. For each integer z = 1,2, ..., n, there are two singular (n — 1)-
cubes f? and f! given by

0
fi(xlr sy X1y g dy - - ey l‘n) = f(xly sy XTio1, 07 Titly -+ xﬂ)
and
1
fil@y, ooy i1, Tigy ooy @) = f(@1, . ooy Tim1, 1, Togt,y « - oy Tn).

We define 9:Q,(X) — Q,_1(X) by setting
of = D (=D — 1D
i=1

for elementary chains f and extending this linearly to arbitrary chains.
It is not difficult to show that @ maps D,(X) into D,_;(X), and hence 9
induces an operator, still called 9, of C,(X) into Cr_;(X). The basic
property 99 = 0 is also easy to prove, and again we have the algebraic
requirements for a homology theory. It is this homology theory which is
most convenient when discussing relations between the homology groups
and the homotopy groups of a space (see below).

ExErcisE 8-1. Prove that the singular simplicial homology groups and the
singular cubic homology groups of a space X are isomorphic.

In Section 4-7 we defined the higher homotopy groups 7.(X, ) by con-
sidering certain mappings of the n-cube I into X. The singular cubic homology
groups H,(X) are also defined by considering mappings of I” into X. It is
natural to ask how the two groups =».(X, z) and H,(X) compare, particularly
if we free the homotopy group of its dependence upon the base point z by taking
the space X to be arcwise-connected. We will quote two results that provide a
partial answer to this question.

TrEOREM 8-18. Let X be an arcwise-connected space. Then there is a
natural homomorphism h:r,(X) — H.(X),n > 1. Furthermore, if
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f:X — Y is a continuous mapping of X into an arcwise-connected space
Y, then the induced homomorphisms on the homotopy and homology
groups provide commutativity in the following diagram:

To(X) 2 ma(Y)
hl Jh
Ha(X) = Ha(Y)

The image of an element of m,(X) in H,(X) under the homomorphism
h is called a spherical homology class.

One of the first results relating homotopy and homology groups is the following
theorem due to Hurewicz [85].

TueoREM 8-19. If each homotopy group m,(X), 1 < p < n, is trivial,
then the homomorphism h:m,(X) — H,(X) is an isomorphism onto.
If n = 1, then the homomorphism h:ry(X) — H;(X) is onto, and its
kernel is precisely the commutator subgroup of 7;(X).

The reader who is interested in exploring this line of inquiry is again referred
to Hilton {13] or Hu [14(a)].

8-6 Vietoris homology theory. The Vietoris homology theory was the
first of the Cech-type homology theories to appear. It was introduced by
Vietoris [129] in 1927 and in this form applies only to metric spaces. While
this theory has been used in many research papers, it has not been dis-
cussed so extensively as has the more general Cech theory. Again, for the
sake of brevity, we consider only compact spaces in this presentation. We
may refer the reader to Begle [53] for generalizations.

Let M be a compact metric space, and let € be a positive number.
We construct the simplicial complex K. = {7, Z}, where the vertices
in U are the points of M and where a finite subcollection of vertices
Do, P1, - - - » Pn forms an n-simplex in Z if and only if the diameter of the set
Ul ps [= max d(p;, p;)] is less than e. It is easy to prove that for each
€ > 0, K. is a simplicial complex (see Exercise 5-4). Therefore, for each
€ > 0 and each integer n = 0, we may construct the simplicial homology
group H,(Ke) of Ke with integral coefficients.

Given €; > €, > 0, it is evident that each simplex of K¢, is also a
simplex of K., and hence that there is an identity injection jee, of K.,
into K¢ This injection then induces a homomorphism s jee, of H n(Key)
into H,(Ke,). Furthermore, if €; > € > €3 > 0, then the induced
homomorphisms satisfy the relation

xJeregkJeses = xJeres

Since the positive real numbers constitute a directed set, the collection
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{H,(Ke)} together with the injection-induced homomorphisms {4jes}
form an inverse limit system of groups and homomorphisms. The inverse
limit group of this system is the nth Vietoris homology group V,(M).

Clearly the complexes K¢ are much too large for convenient manipula-
tion (they can certainly have a nondenumerable number of simplexes and
infinite dimension). The usual technique in using Vietoris theory involves
discussing the existence or, more often, the nonexistence of certain essen-
tial (nonbounding) cycles. In this way, one studies the connectivity proper-
ties of the space M without becoming involved with the complexes K. It
is known that the Vietoris groups, the singular groups, and the Cech
groups coincide if the underlying space is sufficiently well-behaved. For
instance, all these coincide with the simplicial homology groups on a
finite polytope.

We close this section by stating the result of Vietoris [129], for which
he invented this theory. Let M and N be compact metric spaces, and let
f:M — N be continuous. If for each point y in N, the inverse set f~1(y)
has trivial Vietoris homology groups V,(f, 1(y)) for all dimensions p =,
then f is an n-monotone mapping. We use augmented homology groups in
dimension zero so that O-monofone agrees with monotone as defined in
Section 3-7.

TrEOREM 8-20. Let M and N be compact metric spaces, and let f be
an n-monotone mapping of M onto N. Then the Vietoris homology
groups V(M) and V,(N) are isomorphic for each dimension p = n.

Incidentally, this theorem has been generalized by Begle [53] to compact
Hausdorff spaces.

8-7 Homology local connectedness. The higher-dimensional connec-
tivity property of a space X that is reflected in the vanishing of the Cech
homology group H,(X, @) may be localized by the standard procedure
(see Section 3-1). In doing so, we obtain a natural generalization of point-
set local connectedness (Section 3—1). This is in direct analogy to Section
4-9, in which homotopy local connectedness is introduced as a generaliza-
tion of local arcwise connectedness.

Let X be a locally compact Hausdorff space and Z(X) be the family of
all finite open coverings of X. If P is a subset of X, and if AU is an element of
Z(X), then U A P denotes the subcomplex of U consisting of all simplexes
of U that meet P; that is, (U, - - - U,) is a simplex of W A P if and only if
(Nf=o Us) N P is not empty. Then a chain c,(U) is said to be on P if and
only if c,(W) ison U A P. A Cech cycle zp = {2p(U)} is on P if and only
if, for each U in 2(X), the coordinate z,(U) is on P. Similarly, 2, bounds
P if and only if, for each U in Z(X), the coordinate z,(U) = dcp (W),
where ¢p41(W) is a chain on P.
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The locally compact Hausdorff space X is locally connected tn dimension
n, in the sense of Cech homology, at a point x (abbreviated “n-lc at z”) if,
given any open set P containing z, there exists an open set @ containing x
and contained in P such that every Cech n-cycle on  bounds on P. (We
make a few remarks about this “two-set” definition later.) Then X is
n-le if it is n-le at every point, and X is le™ if it is p-le for each p = =.
For reasons explained in Section 8-3, the Cech cycles here are taken to
have coefficients in a field (or in a vector space over a field).

Let us show that O-lc in the sense of this definition corresponds with
local connectedness.

TurorEM 8-21. The locally compact Hausdorff space X is 0-lc if and
only if X is locally connected.

Proof: We use augmented homology. Assume that X is locally connected,
and let x be a point of an open set P in X. By definition, there exists an
open connected set @ containing and lying in P. Let zo be an augmented
Cech O-cycle on Q. If U is any covering of X, let zo(W) = Sk a0,
a; #~ 0, be the coordinate of zo on u. By definition, 3% 1a; = 0. Each
¢? is an element of U, of course, and by using the simple chain theorem
(Theorem 3-4), we obtain a sequence of elements of U starting with o9
and ending at a5, j = 2,3, ...,k This sequence need not be a simple
chain of sets, but we can associate with it a 1-chain ¢} such that dc] =
0? — o). Then

j= j=2
Buta; = — ZLQ a;, so we have
k ) k .
3 Z ae] = Z a.0; = zo(W).
=2 i=1

Since each element of U used in zo(W) is on @, it follows that the chain
SE ajc} also lies on @ and hence on P. This proves that X is O-lc.

To prove the converse, suppose X is 0-lc but not locally connected.
Then there must be a point z in X and an open set P containing x such
that every open set @ in P containing z meets at least two components
of P. We choose open sets R, @, @, and P’ such that (1) z liesin R, B
lies in Q; Q is closure-contained in @', @’ is closure-contained in P’, and
P’ is closure-contained in P and (2) every augmented Cech 0-cycle on
R bounds on Q. There are two points x; and zz in B and a decomposition
P = P; U P,, where P; and P, are separated, with z; in P, and z2 in
P,. Let U be the covering of X consisting of the open sets X — P,
(P—Q NPy (P— Q) NPy @ NPy and @ N P By definition,
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the coordinate on U of a nontrivial 0-cycle on z; U z, must have the form
a(U; — Usy), where Uy = Q' NnPrand Us = Q@ NnP,. But Uy — U,
is not homologous to zero on Q. This contradiction of the O-lc assumption
completes the proof. [ ]

This last result shows that the n-lc property of a space is a valid general-
ization of local connectedness. It follows that one should expect the n-le
property to be exploited in much the same way as is local connectedness.
Understandably, the latter is a very difficult task. We will merely refer
the reader to Chapter VII of Wilder’s Topology of Manifolds [42], which
will bring him up to the point of reading the current literature.

(a)

Ficure 89
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Local connectedness and the n-le property are actually defined differently in
other than just the dimension. A space is locally connected if and only if it has
a basis of open connected sets. A corresponding formulation for higher dimen-
sions would claim the existence of a basis of open sets on each of which every
Cech n-cycle bounds. This is true for n = 0, of course, but it cannot be proved
even for 1-lc spaces. The continuum in Fig. 8-9(b) is constructed of a sequence
of finite cones C1, C2, . . ., each C; having its vertex identified with a point on
its rim as in Fig. 8-9(a). Each C; has two simple closed curves singled out, its
rim R; and the curve J; shown in Fig. 8-9(a). To construct the continuum, we
identify R; with Jiy1 for each 7 and have the sets C; converge to a point p.
Then ¢ = p U UC; is the desired continuum. Any open set U containing the
point p must contain a first curve R;. The 1-cyele on R; can bound only on C;
and C; cannot be in U, or else Ji = R;_1 would also be in U. Thus C is 1-le
at p, but no open set U containing p has the property that every Cech 1-cycle
on U bounds on U.

Again we refer the reader to Section 8, Chapter VI, of Wilder [42] for a brief
discussion of these relatively unexplored matters.

8-8 Some topology of the n-sphere. In this final section, we study the
simplest of the compact n-dimensional manifolds, the n-sphere. Our pur-
pose is to introduce several results, in particular the Jordan-Brouwer
separation theorem, which the reader will see in generalized form if he
proceeds to a study of the theory of manifolds. (For comparable separa-
tion theorems, see Section 6-17.)

We follow the work of Alexander [45] closely in using the strongly geo-
metric mod 2 homology theory and by introducing a cell subdivision of
S™ in place of the triangulations we have considered previously. This re-
sults in a substantial computational advantage, which is evidenced by the
fact that our first cell subdivision of S™ has 2n + 2 cells, two of each di-
mension ¢ = 0, 1, ..., n, whereas the minimum triangulation of 8™ has
2(2" — 1) simplexes.

Let S™ denote the set of points (21, . .., Tag1) I E™*! satisfying the
equation Y1t a2 = 1. We say that 8" is in standard position. Let
Py, ..., P, be distinct hyperplanes through the origin in E**1. (For
purposes of illustration, we may take P; to be the hyperplane with equa-
tion x4, = 0.) It is clear that Py intersects S™ in (a set isometric to)
S"—1. Using well-known properties of real numbers, it is easy to prove
that P, separates S" into two topological n-cells st and s3. Next, the
hyperplane P,_; intersects S" ' in S*—2 and separates 8"~ ! into two
(n — 1)-cells s and sj7'. (We ignore the separation of S* by Prn_1.)
In general, then, the hyperplane P; intersects the sphere S’ in a sphere
Si~1 and separates S’ into two 7-cells s; and sb; Py interseets S' in two
O-cells s9 and s3. We consider the cells st and s to be relatively open sets
in S, This gives a cell subdivision of 8", which we will denote by K,
the first of a sequence of such subdivisions.
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Note that each i-cell in K, has as its point-set boundary the collection
of all j-cells, j < 7. In particular, the two cells siland s5! are called the
boundary cells of the i-cell. Moreover, each é-cell, ¢ < n, is a boundary
cell of exactly two (¢ + 1)-cells. One more fact is useful later. Each ¢-cell
in K, is a convex subset of S* in the metric of S*; that is, given any two
points of the i-cell, each great circle in S* through the two points has an
arc joining the two points that lies entirely in the ¢-cell.

The homology theory modulo 2 of the cell complex K, is very simple.
Recalling that Z, denotes the group of integers mod 2, we define the chain
groups Cp,(Ko, Z3) as usual, and it is easily seen that each such chain group
is isomorphic to the direct sum Z, @ Z,. Given an elementary ¢-chain,
we define its boundary by setting

30-shH =0-sP+0-s51 (= 1,2;¢> 0),
al-sh=1-s"1+1-s51  (G=1,2;¢> 0),

and
d(co) = 0 (nonaugmented theory).

We verify that 909 = 0 by noting that

- sit+ 1-sb) = a(1-siTh) + (1 sy
=1+ D-si?+ 1+ 552 =0

Following the familiar procedure, we construct the mod 2 homology
groups H,(Kq,Z3) = Zp(Ko,Z3) — Bp(Ko,Z2). Since there are no
(n + D-cells in Ko, H,(Ky, Z3) = Z,(Ky, Z5), and since every 0-chain
is a 0-cycle, Zo(Ko, Z3) = Co(Kg, Zs) = Zo ® Zs. There are but four
p-chains to be checked in each dimension. These are 0 -s} + 0 - s3,
1-s)+1-s5, 0-s7+1-s5 and 1-s] + 0:s3. One easily shows that
the first two are cycles while the last two are not (for p > 0). Hence we
know that Z,(Kg, Zs), p > 0, is isomorphic to Z;. But also each such
p-cycle, p < n, is the boundary of an elementary (p + 1)-chain, and so
B,(Ko, Zs), p < n, is also isomorphic to Z,. It follows that

H’n(K07 Z2) = Z27
Hy (Ko, Z3) = 0, 0 <p<n).
Ho(Ko, Zy) = Zs,

Next we construct a sequence of subdivisions K, Ks, ... of S* such
that K; is a refinement of K;_; and such that the maximum of the diam-
eters of cells in K; approaches zero as ¢ increases indefinitely. The sub-
divisions are constructed with the aid of further hyperplanes through the
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origin as follows. Given a hyperplane P, it will intersect each 1-cell of K¢
in a point, each 2-cell in a 1-cell, etc. In particular, we will want to sub-
divide an n-cell of K into two smaller n-cells. This must be done quite
carefully.

The hyperplane P intersects one of the two n-cells of K¢ in an (n — 1)-
cell which itself has two boundary (n — 2)-cells, and each of these has
two boundary (b — 2)-cells, etc. Ignoring what might happen in the
n-cell of K,, we could form a new subdivision including all these new
L-cells at once. For technical reasons, however, it is convenient to do the
subdividing more slowly. We will insist that, before we introduce a new
1-cell, we already will have introduced the two O-cells which will be its
boundary cells, that before we introduce a new 2-cell we already will have
the 1-cells forming its boundary, ete. Furthermore, we will introduce just
one new cell at a time, which cell may or may not be a boundary cell of a
newly added cell. (It will be a boundary cell of two old cells, of course.)

In summary, suppose that the subdivision K;, ¢ = 0, has been defined
and that we intersect a (& + 1)-cell s*T! of K; with a hyperplane through
the origin in E"*!. This intersection is a k-cell. If in K; there are two
(k — 1)-cells forming the boundary of this k-cell, then K, will be the
collection of cells of K; with the new k-cell added and the (k -+ 1)-cell
s*¥*1 gubdivided into two (k -+ 1)-cells. The additional requirement that,
given any positive number ¢, there is an integer N such that, whenever
i > N, every cell of K; has diameter less than € may be achieved by con-
struction. In any case we select some sequence Ko, K1, Ky, . . ., which
will remain fixed for the remainder of the discussion.

Figure 8-10 illustrates the top hemisphere of S? as it would appear
under some choice of subdivisions. The curved lines are arcs of great cir-
cles, and where stages are omitted we may assume that subdivision of the
lower hemisphere is taking place unseen by us.

At the seventeenth stage in Fig. 8-10, the top hemisphere has been sub-
divided into five 2-cells, thirteen 1-cells, and nine O-cells. Two of these
2-cells have five boundary 1-cells, one 2-cell has four boundary 1-cells, and
two have three boundary 1-cells. But each of the 1-cells has exactly two
boundary 0-cells and can have no more and no less.

Given a particular cell complex K;, we form the mod 2 chain groups
C,(K;) (we will understand that the coefficient group is Z5 hereafter).
Any p-chain mod 2, say c,, may be identified with the union of those p-
cells s? for which ¢,(s?) = 1. Adding to these p-cells the minimum num-
ber of cells of the lower dimensions necessary to form a subcomplex, we
obtain the subcomplex L(c,) associated with the chain c,. We note that such
a subcomplex is uniformly p-dimensional, so not every subcomplex of K;
is the associated complex of some p-chain.

Given any subcomplex L of K;, we may form its mod 2 homology group
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K, K, K, K

K, K; Ko Ky

Ky K5 K Ky
Ficure 8-10

H,(L). We recall that each such homology group is isomorphic to a direct,
sum of cyclic groups of order 2. The number of generators of H,(L) is
the mod 2 Betti number of L, which we may denote by r,(L). Now in
passing from K; to K; 1, it may be that one of the cells s? of L is that cell
subdivided in the process. If so, then L no longer exists as a subcomplex
of K; 1, but there is the obvious subcomplex L’ in K;; consisting of all
the cells of L except s? together with the (p — 1)-cell that divides s” and
the two new p-cells into which s” has been divided. It is obvious that there
are more chains in Cp,(L’) than in C,(L), and hence more p-cycles and more
boundaries are possible. The important fact, of course, is that we do not
increase the number of homology classes in this process. The following re-
sult is thus the analogue of Theorem 6-24.

TueoreM 8-22. If L is a subcomplex of K, and if L’ is its subdivision in
K, 1, then rp(L) = r,(L/) for all p.

Proof: Suppose that as we pass from K; to K;;, the p-cell s” is sub-
divided by a new (p — 1)-cell s»~! into two new p-cells, s% and s5. No
change will be made in the chain groups C;(L), 7 # p,p — 1, and we
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cannot have altered the boundaries except perhaps in dimensions p — 2,
p — 1, p, and p + 1. Hence the only mod 2 Betti numbers that can pos-
sibly have been altered are r;(L),j = p — 2, p — 1, p, p+ 1. We in-
vestigate each of these.

Suppose that z,4; is a eycle on L. Since the chain group Cp41(L) is
unaltered by the subdivision, 2,41 is a chain on L’. We show that 2z,
is also a cycle on L’. This is easy because if dz,,; = 0 on L, then each
p-cell s? in L is a face of an even number of (p + 1)-cells in 2,4 (it occurs
an even number of times in dz,4 ). Then each of the p-cells sf and s%
is a face of each of the same cells of z,,; and hence occurs an even number
of times in 9z, as the boundary is taken in L’. Therefore dzp41 = 0 in
L’, too. Conversely, if 2,41 is a cycle on L', a similar argument proves
2,41 to be a cycle on L. It follows that Z,41(L) and Zp41(L") are isomor-
phic. Then, since the chain groups Cp2(L) and Cp12(L’) are the same, we
have B,.1(L) isomorphic to Bpy1(L’) and hence H p+1(L) isomorphic to
H, (L),

Next, if z, is a cycle on L, and if the p-cell s” is not in the subcomplex
associated with z,, then 2, is also a cycle on L’. If s? is in the subcomplex
associated with z,, then we may write 2z, = 1-s” + zy. Then the chain
Yp=1-s14+1-5 —}—z,l,isacycleonL’fora(l-s’i‘—l— 1-88) = a(l-s?),
the (p — 1)-cell s*»~* occurring twice. Furthermore, v, bounds if and
only if 2, bounds. Also, no eycle on L’ can contain s§ without containing
s5 and conversely because sP~! is a face of just these two p-cells in K.
This gives the desired isomorphisms between Z,(L) and Z,(L’) and be-
tween B,(L) and By(L/).

A cycle z,_; of L is still a cycle of L’ since no new (p — 2)-cells are
added in passing from K; to K;41, and 2,1 bounds on L’ if and only if it
bounds on L. However, there may be new cycles on L’ of the form v, =
1.2 4 7;_1. Consider the cycle z,_1 = 7,_1 + 9s. This cycle
does not contain s? !, because s? 7! is in s} and in Y,_;1. Then z,_; —
Yp_1 = 9s}, showing that 7,_; is homologous to z,_; on L’. Thus
every new cycle is homologous to an old cycle, and this shows that no
new independent cycles are introduced in dimension p — 1 by sub-
division.

Finally, the mod 2 Betti number r,_5 can be changed only by having
a cycle z,_s bound on L’ while not bounding on L. This is conceivable
because there are extra (p — 1)-chains on L/, those involving sl Sup-
pose however that z,_s = o(1 - P71 4+ ¢,_1), ¢p_1 being a chain on L.
If we add to this the chain 8(3sf) = 0, we obtain

(1P~ + 9sh + cp—1) = 2p_s.

Hence z,_» also bounds in L if it bounds in L". []
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CoROLLARY 8-23. Forall7 =2 0and 0 < p < =,

Hy (K, Z3) = Zy = Ho(K;, Zy)

and
H,(Ki, Z5) = 0.

Our next task is to define homology groups for an open subset of S™.
To do this, let D denote an open subset of S”, and for each integer ¢ = 0,
let L; denote the subcomplex of K; consisting of all cells s? of K; whose
closures lie in D. Note that L; either is L; (if the new cells added in sub-
division are not in D), or is a subdivision of L;, or is L; plus cells added in
K;,,. Figure 8-11 illustrates these three possibilities in two dimensions.

Added
cell s!

// /A“'/

Ficure 8-11
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Each subcomplex L; has its own chains, cycles, etc. Any cycle on L;
gives rise to a cycle on D as follows. If zl', is a cycle on L;, then in every
L;,;, there is a cycle 2z, ‘7 obtained from zp by subdivision. We define

2577 to be equivalent to zp The collection of all such equivalent cycles
{ 2h, z;“, ...} is said to be a cycle on D and is denoted by ]

Addition of two cycle [zp] and [25] with, say, k& > 1, is defined by form-
ing the subdivision of 2z}, in Lj and adding this to 25. Then that each L;
is a complex implies that the collection of all p-cycles on D constitutes a
group Z,(D) under this addition.

A cycle [zp] of D is a bounding cycle of D if there is some k = ¢ such
that the subdivision of 2, in Lj bounds in L. Again we have a group
B,(D) of all bounding p-cycles, and B,(D) is a subgroup of Z,(D). The
homology group H,(D) = Z,(D) — B,(D) is defined as usual. The pth
Beiti number of the open set D, r,(D), is the number of generators of H,(D)
and may be infinite.

Since H,(D) is constructed by means of an infinite process, it is not
always easy (or even possible) to compute H,(D) for a given set. Some
useful results will be obtained, however.

TuroreM 8-24. If D is an open subset of 8", then the number of com-
ponents of D is ro(D).

Proof: Let the components of D be Cy, C1, Cs, . .. (possibly infinite in
number) the total number being N + 1 (or ). For each k=0, 1 , N ;
let s be a vertex of some K; in C' k Then the 0-cycles k=15 —\— 1 s

are nonbounding. Also the cyclez® = 1 - 8§ is nonboundmg Furthermore,
no nonzero linear comblnatlon of these cycles 2t bounds. For in such a
combination zg = 26! + 262 + -+ + 2t7 | there is at most one vertex in

each component C. If 2o = acl in some L;, and if sY is in 2o, then sy is
the boundary of the chain formed by all the 1-cells of ¢; lying in Cy. But
no l-chain has an odd number of vertices in its boundary. This proves
that ro(D) = N + 1.

Next, let zp = &2 be a 0-cycle. For each k, let & be the chain of all
0-cells of zq lymg in Ck. There is a polygonal arc from the previously
chosen vertex sh in Cy, to each 0-cell sk in z§; the union of these arcs is a
connected compact subset T of D such that T'j contains sk and all the
0-cells of zE. Since there is at most a finite number of O-cells in 2o, we
need consider only a finite number of sets T'x. The distance d(T'x, S* — D)
is a positive number, say, n;. Let K; be a subdivision of S" of mesh less
than the minimum of the numbers 5:/2 and such that all vertices 9
and all those vertices in zo are in K;. Then in each C;, the union of the
cells of K; that intersect the set Ty is connected, and these cells plus all
their boundary cells form a connected subcomplex Lk contammg the ver-
tex sy and all the vertices sk inCy. Eachecyclel sy -+ 1- sk then bounds
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in L¥; let ¢ be a 1-chain in L having 1-s) + 1 -s;?j for its boundary.
Then we have

k~
20 + Zac,-’ ~ 29.

In short, every O-cycle zo is homologous to a sum of the cycles 2k previ-
ously chosen (that is, 20 = 1-s) and 2f = 1-s) 4+ 1- s3). Therefore
ro(D) = N + 1.[]

The dimension n — 1 also interests us.

THEOREM 8- 25 If zn 1 is a cycle on some Kj;, then there are exactly
two chains ¢} and ¢? in K; such that der = 2,1 = 3. T urthermore,
the carriers |c,| and |c2| intersect in the carrier |z,_ 1)

Proof: Since r,_;(K;) = 0, we know that z,_; bounds a chain ch of
K;. Also We know that there is a fundamental n—cycle z,on K;. We let
2 = 2z, +c.. Then a2 = 922 + acl = 0 + dck = z,_1, so there are
at least two n-chains bounded by z,_;.

Suppose that there is a cell s¥in lex| N |c¢Z] — 2,_;. Choose a point P
in the (relative) interior of s*. Let U be a spherical neighborhood of p
whose closure U does not meet [2a—1]. The boundary of U is an (n — 1)-
sphere S*~!, which we may take so as not to contain a vertex of K.
The intersection of 8"~! with a cell of K; is then a cell of S*~! of one
lower dimension. Also there are (n — 1)- cells in this 1ntersectlon which
come from n-cells of both ¢, and ¢2. Let *cn_l and 4cZ_; be the cor-
responding (n — 1)-chains on S*~L. Since 80,, = z,_; and §*! n 201
is empty, we have that d4cp_; = 0 = 9,¢>°_;. Therefore «Chr—1 and
«C2_ are nonintersecting (n — 1)-cycles on $*~'. But this is impossible
since 7,1 (S"!) = 1.

Flnally, 1f there were a third chain ¢ with o2 = z,_ 1, then ¢ + ¢
and ¢ + ¢ would be independent n-cycles of K;, contradicting the fact
that r,(K;) = 1.[]

CoroLLARY 8-26. If z is any point of S*, and if 2, _; is a cycle of the
open set 8* — z, then 2, _; boundsin 8" — ». Thusr,_;(S* — z) = 0.

Proof: In every subdivision K; of 8", one of the two chains ¢! and c2
on which z,_; bounds can always be taken to lie in 8* — z.[]

TaEOREM 8-27. Let z and y be distinct points of S*. Then
Tn—l(Sn — T — Z/) =

Proof: Let d(z,y) = =, and choose K; such that all cells of K; are of
diameter less than 7/2. Let H be the subcomplex of K; composed of all
n-cells whose closure contains x and of their faces. Then there is an n-
chain ¢, whose carrier is |H|. Let z,_; = dc,. In K, the cycle z,_; also



358 GENERAL HOMOLOGY THEORIES [cHAP. 8

bounds a chain k, not intersecting c,. But the carrier |c,| contains z, and
k| contains y. Therefore no chain that does not have a carrier containing
either = or y can have 2z, _; for its boundary. Hence

a8 —x —y) = L

Then suppose that there were two cycles 2l yandZ2_;in 8" —z — .
Then there are chains c. and ¢ such that both |ea] and || contain z; and
acl = zL_, and dc2 = 2z2_;. We may choose 7 so large that the sub-
complex H defined above does not intersect b4 U |[2—1|. Letting
Zn_1 = OC, &S in the previous paragraph, we have that z,_1 + 2—1 =
(e, + ey and 2,1 + 2 = o, + ¢2). Now the point z is not in the
carriers |¢, 4 ¢i] and |, + 2|, so adding the chains 2z,_; + 2_; and
Zn_1 + Z2_1, we obtain A+ LA = d(ck + ¢2), and neither z nor y
is in the carrier |c + ¢Z|. Thus 2i_; and z;_; are homologous in
S® — x — y. Hence

roa(S" — 2 —y) = 1.0

We come now to one of the most important results in this section and,
indeed, in the topology of the n-sphere.

TueorEM 8-28 (Alexander addition). Let A and B be closed subsets
of S*, and let z,, r < n — 1, be a cycle of S — (A U B). Suppose
there are chains ¢;4; of 8 — A and 24 of 8 — B such that 6cﬁ+1 =
2, = 3c%41, and that there exists a chain k4o of S* — (A N B) such
that 9k, o = a1+ ¢2y5. Then 2, bounds in S — (A U B). For
the case r = n — 1, if A N B is not empty, and if the chains ct41 and
¢2,1 exist as before, then again 2, bounds in §" — (A UB).

Proof: Since ko lies in S* — (4 N0 B), no cell in its carrier |k, ol
intersects A N B. Hence the sets A’ = A N [kr42| and B’ = B N |ky42]
are disjoint closed subsets of S”, and d(4’, B") = 7 > 0. Select a sub-
division K; with mesh less than 5/2 and such that K; contains a refinement
of all the chains mentioned in the hypotheses. Let k,42(A4) be the chain
of all (r + 2)-cells meeting A’. Then the carrier |k,ya -+ kry2(A4)] lies in
S* — A. Let V,41 = 0krq2(A). We may write the equation

(kryo + kryo(A4)) = (c2p1 + Vrg1) + iy (1)
Since 98 = 0, our hypotheses imply

a(cl i1 + Yrg1) F dcri1 = 0; acry1 = 2r. )
That is,
3(C$+1 + Y1) = 2 3)
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Now |kyy2 + kry2(A)|isin S* — A. Hence by (1), Cyy F Yrpris a
chain of S® — A. By our choice of K;, |Y,41| is in 8" — B, and by
hypothesis, |c24] isin S* — B. Hence 241 + Yr—q|isin S® — (4 U B),
and from (3), 2, bounds in S" — (A U B).

In case r = n — 1, either ¢, = c5 or ]cnl U lcnl = 8" by our pre-
ceding results. In the second case, elther ]cnl or \cnl meets A U B, con-
tradicting the hypotheses. And if ¢l = ¢Z, then ¢} is in the set S" —
(4uB).[]

Our first application of the Alexander addition theorem is in a proof of
the fact that the n-sphere 8™ has the Phragmen-Brouwer properties, which
are listed following the proof of the next result.

TaeorREM 829. If A and B are disjoint closed subsets of 8™, n > 1,
and if neither A nor B separates the point x from the point y in 8",
then A U B does not separate x from y in S,

Proof: Let A and B be closed disjoint sets in 8", neither of which sepa-
rates the point z from the point y. Let n be a positive number so small that
no point of A U B is Within a distance n of z U y. Choose a subdivision
K; of mesh <7/2. Let s and s) be vertices of the cells of K contammg x
and y, respectlvely Clearly, nelther A nor B separates so from s) in S™.
Since 1 - sI + 1- sy is a cycle in one component of 8" — A it bounds a

1-chain cl 1n S* — A and, similarly, it bounds a cham ¢ in 8" — B.
Then. ¢; + ¢ is a cycle, and since n > 1, ¢} + ¢ bounds a chaln 702
and, trivially, ks lies in 8 — (4 N B). By Theorem 8—28 1-8941-5)
bounds in S* — (A U B), thus implying that s} and s lie in one com-
ponent of S — (A U B). It follows that z and y also lie in one component
of S* — (A U B).[]

The Pragmen-Brouwer properties are special connectivity properties, all of
which hold for the n-sphere. They are defined as follows for any space S.

Property 1. If A and B are disjoint closed subsets of S, and if z and y are
points of S such that neither A nor B separates  from y in 8, then 4 U B does
not separate z from y in S.

Note that Theorem 8-29 says that S”, n > 1, has Property 1.

Property 2 (Phragmen-Brouwer). If neither of the disjoint closed subsets A
and B of S separates S, then A U B does not separate S.

Property 3 (Brouwer). If M is a closed and connected subset of S, and if C
is a component of S — M, then the boundary of C is closed and connected.

Property 4 (unicoherence). If A and B are closed connected subsets of S,
and if S = A U B, then A N B is connected.

Property 5. If F is a closed subset of §, and if C1 and C2 are disjoint com-
ponents of S — F having the same boundary B, then B is closed and connected.
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Property 6. 1f A and B are disjoint closed subsets of 8, if a is a point in 4, and
if b is a point in B, then there exists a closed connected subset C of S — (4 U B)
which separates a from b.

The following sequence of theorems (8-30 through 8-35) may be proved as
exercises by the interested reader. The proofs may also be found in Chapter I1
of Wilder [42].

THEOREM 8-30. If the space S is connected and locally connected, then
Properties 1 and 2 are equivalent.

TreoreEM 8-31. If the space S is connected and locally connected, then
Properties 1 and 3 are equivalent.

TreEoREM 8-32. If the space S is connected and locally connected, then
Properties 1, 4, and 5 are equivalent.

THEOREM 8-33. If the space S is connected and locally connected, then
Property 6 implies Property 4.

THEOREM 8-34. If the normal space S is connected and locally connected,
then Property 3 implies Property 6.

THEOREM 8-35. If a metric space is connected and locally connected and
has one of the Properties 1, 2, . . ., 6, then it has all of the other properties.

We conclude from Theorem 8-29 that the n-sphere S*, n > 1, has all the
Phragmen-Brouwer properties listed above.

THEOREM 8-36. Let ¢* be a homeomorph of the closed k-cell I* im-
bedded in S*. The 7,(S* — ¢*) = O forallp > 0.

Proof: We give an inductive argument. If k& = 0, then ¢° is a point z,
and for p =n — 1 we have r,_1(S8" — 2) = 0 by Corollary 8-26.
Suppose that p < n — 1. There is no loss of generality in assuming that
the point z lies in some open n-cell of every subdivision K; of S™. Let z,
be a cycle of S* — x in some K;. Then z, bounds in K;. Butif 2z, = dep41,
then every cell in the carrier |c,41| is of dimension =n — 1, and [cp41]
does not contain the n-cell of K; that contains z. Thus ¢, is a chain
of 8" — =z.

Now suppose that the theorem is true for every topological closed cell
of dimension less than k. We may decompose the cell ¢c* into two n-cells
& U with ¢ nck = c* !, a topological closed (k — 1)-cell. If z,
is a nonbounding cycle of S® — c¥, then either z, fails to bound in 8" — cf
or z, fails to bound in S™ — k. For if this were not true, then z, = ach+1
in 8* — ¥ and z, = dc2y, in 8® — 5. Then chy1 + j41 is a cycle of
8" — (Fnek) = 8, — ¢k, By our induction hypothesis, cp+1 +
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241 = 0kpyp in 8" — ¢*—1. Thus the conditions of Theorem 8-28 are
satisfied, and 2z, bounds in §" — (¥ ud) = 8" — c*, a contradiction.

Repetition of this argument establishes the existence of a decreasing
sequence c, c5, ... of closed k-cells whose intersection N % is a point =
and such that for no j is 2, a bounding cycle in S* — c¢f. However z,
does bound in 8™ — z, as we showed above. Thus there is a chain ¢ 41
in S® — « such that z, = dcp4;. Now there is an open set U containing
r and not meeting the closed carrier [c,11|, and there is a j sufficiently
large so that ¢} lies in U. Since ¥ N |epy1| is empty, it follows that 2,
bounds in 8* — 7%, a contradiction. Therefore z, bounds in " — c*. [

If M is a closed subset of S™, and if z, is a cycle of 8" — B which does
not bound in S® — M, then z, is said to link M in S™. Note that if M is
not empty, then p cannot equal n because no n-chain on 8" — M is a
cycle.

TuroreM 8-37. Let =¥ be a topological k-sphere in S*. Then

rp(Z%) = ru_p_1(S" — ZF) =0 (1)
and (p #= k).
re(ZF) = ra_k (8" — 2FH) =1 )

Proof: We apply an induction on the dimension k. TFor k = 0, =k is
a pair of points. In Theorem 827, we proved that r,_;(S" — 20 = 1.
For p > 0, it requires only a simple modification of the proof of Theorem
8-27 to prove that r,_,_;(S" — =% = 0.

Now suppose that the theorem is true for all dimensions less than k.
Let =% be a k-sphere in S”, and let =¥ = A U B, where A and B are
closed k-cells and A N Bisa (k — 1)-sphere ¥~ 1. Let z, be a cycle of
S — 3% p ¢ n — k — 1. By Theorem 8-36, there is a chain cj4, in
S" — A and a chain c¢}4; in " — B, such that dcp41 = 2z, = ch41.
Then chyy + 241 is a (p + 1)-cycle of S® — (A N B) = §* — zk~1,
By the induction hypothesis, cp41 + ci41 does not link Z*7! since
p+13n— (k— 1) — 1. Thus there exists a chain kp 5 in §* — =+~
with 9k, e = c},,+1 -+ cf,ﬂ. Then by the Alexander addition theorem,
zp bounds in 8® — =¥, which proves (1).

Also by our induction hypothesis, there is a cycle z,_ that links Z*~1.
Then the intersection A’ = |z,_x| N A cannot be empty, for if it were,
then z,_; would not bound in 8® — A, contradicting Theorem 8-28.
And in turn, this implies that z,_; would bound in 8" — =*~1 which
contains S® — A. Similarly, B’ = |z,_x| N B is not empty. Since
Zn_p isin 8 — ¥ 1 = 8" — (AN B), A’ and B’ are disjoint. Let
d(A’, B’y = 5 > 0, and take K; to be a subdivision of S" with mesh less
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than 5. Let v,_; be the chain of all (n — k)-cells of z,_x having at least
one face in B’. Then we have

OVp kb = Zn—k—1 mS* — A4 (a)
and
a(zn—-k + 7n—k) = Zn—k—1 in 8" — B. (b)

Now if there were a chain c¢,_r in 8* — =* with dcp_r = 2Zn_i—1, We
could apply Theorem 828 to obtain

Yn_k + Co—k is a cycle bounding in S® — A (c)
and
(aek + Yn_w) + Cn_k is a cycle bounding in 8® — B, (d)

Hence each would bound in 8 — Z*~!. But adding (c¢) and (d), we would
have z,_; bounding in S™ — =*¥—1 g contradiction. We must conclude
that z,_x_; links =% and hence that r,_,_1(S™ — =k = 1.

Suppose then that some other cycle Y,__; also links Z*. We show
that 2p_k_1 + Yn_k—1 bounds in 8™ — =¥ which will show that
Fn—i_1(S" — =% < 1. By Theorem 8-28 again, there are chains cs_;
in 8" — A and ¢2_; in 8" — B, with At = Yn_r_1 = 0c&_;. Using
Theorem 8-29, we see that the cycle cr—i 4 2y links Z¥~!. By the
induction hypothesis, we have

ik + Crt ~ Zn_ in 8® — =1 (e)
Then

d(Vn—k + Cot) = Zn—k—1 -+ Yu_k_1 inS*— A f)
and

MVn_k + 2ok + Gl = 2Zn—k—1 + Yn_p—1  in 8" — B. (®)

From (e) we obtain

OCn_kq1 = Znk + Coep + Coi in 8* — 2%~ (h)
Thus (f), (g), and (h) imply that

Zn—ke1 + Yn—t—1~0 in 8" — =k )

by the Alexander addition theorem. [ ]

The above theorem is a special case of the Alexander duality theorem,
which asserts that, for any closed polyhedron |K| imbedded in 8", r,(K) =
o k18" — |K|). Indeed, if we use the Cech homology theory, we can




8-8] SOME TOPOLOGY OF THE 7N-SPHERE 363

replace the polyhedron by any closed set. (See Borel [66].) It is also worth
noting in this connection that the sphere =¥ in the above theorem may be
wildly imbedded as described in Section 4-6.

As a consequence of Theorem 8-37, we can prove the famous separation
theorem of Jordan and Brouwer.

TuroreM 8-38 (Jordan-Brouwer separation). If Z*7! is a topological
(n — 1)-sphere imbedded in 8", then it separates S™ into exactly two
components, of which Z"~! is the common boundary.

Proof: 1t follows from Eq. (1) of Theorem 8-37 that 2"~1 separates S™
into two components, say A and B. Let x be a point of "', and let sn1
be an open (n — 1)-cell in 2"~ ! containing x and having diameter less than
€. Then X = =" ! — " !is a closed (n — 1)-cell in 8", so 8" — X
is connected. In 8" — X, there is an arc L from a point of A to a point
of B. Since L intersects =", it must do so in the cell s*~!. Thus s"~*
contains a limit point of both A and B. Since e is arbitrary, it follows that
the point z is a limit point of both A and B.[]
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Absolute neighborhood retract (ANR),
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Absolute retract, 62

Abstract simplicial complex, 213

Adjoint chain-mapping, 304

Alexander horned sphere, 176

Antoine’s necklace, 177

Arc (homeomorphic image of a closed
line interval), 115

Arc-preserving transformation, 104

Arcwise-accessible point, 119

Arcwise-connected space, 117

Augmented 0th homology group, 239

Axiom of Choice, 23

Barycenter, 207
Barycentric coordinates, 199
Barycentric extension of a mapping,
210
Barycentric subdivision, 207, 209, 259
Base point of the fundamental group,
165
Basis, for a topology, 6
for a vector space, 193
Betti number, 235
Boundary, of a chain, 277
of a set, 47
Boundary function in homotopy, 296
Boundary group in homology, 227
Boundary operator, 226
Bounding Cech cycle, 324

Cactoid, 138

Cantor function, 131

Cantor set, 97

Cantor star, 157

Cap-product of a chain and a cochain,
311

Carrier of a simplex, 202, 259

Cauchy sequence, 81

gech cohomology system, 338

Cech homology group, 325

Cech homology system, 337

Chain, 225

Chain complex, 243

Chain-equivalent complexes, 256

Chain group, 225

Chain-homotopy, 254

Chain-mapping, 254

Character group (of an abelian group),
217

Clan, 145

Closed mapping, 124

Closed set, 5

Closure, of a set, 4

of a simplex, 206, 213

Closure-finite complex, 213

Coboundary operator, 299

Cofinal family of coverings, 325

Cohomology group, 300

Cohomology product (cup-product),
306

Cohomology ring, 307

Cohomology sequence, 315

Combinatorial component, 206

Compact space, 18

Compact subset, 18

Compact-open topology, 29

Complete metric space, 81

Completely normal space, 42

Completely regular space (Tychonoff
space), 74

Completely separable space, 64

Component, 46

Composant, 139

Composition of mappings, 17

Cone complex, 257

Connected complex, 206

Connected im kletnen, 113

Connected space, 14

Connected subset, 15

Continuous collection of sets, 135

Continuous curve (= Peano space),
122

Continuous function (= mapping), 4

Continuum, 43

Contractible space, 155

Convergent sequence of sets, 101

Convex hull, 200

Convex set, 199

Coordinate of a Cech cycle, 324

Countable basis, 8

Countably compact space, 19

Covering of a space, 18
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Covering mapping, 188

Covering space, 188

Cross section in a product space, 149

Cup-product (= cohomology product),
306

Cut point, 48

Cutting set, 109

Cycle, 227

Cyecle group, 227

Decomposable continuum, 139
Decomposition (of a space into closed
sets), 132
Decomposition space, 133
Dedekind cut axiom, 14
Deformation operator, 254
Deformation retract, 158
Degree of a mapping, 263, 267
de Morgan’s Law, 6
Dense in itself, 88
Dense subset, 11
Derived group (of a differential group),
224
Diagonal set (in a product space
S X 8), 31, 39
Differential group, 244
Dimension, of a complex, 205
of a vector space, 194
Dimension zero, 146
Dimension n, 147
Direct limit group, 96
Directed set, 93
Discrete topology, 2
Distance between sets, 42
Distance function (= metric), 9

Eilenberg-Steenrod axioms, 294

Elementary chain, 226

Equivalent bases for a topology, 7

Essential mapping, 154

Euclidean space, 10

Euler characteristic, 242

Euler-Poincaré formula, 242

Exact sequence of groups and
homomorphisms, 285

Extension of a mapping, 59

Fo-set, 85

Face of a simplex, 201

Finite intersection property, 19
First category space, 89

INDEX

First countable space, 64
Fixed-point property, 273 !
Free element of a free group, 235,
245 |
Freudenthal suspension, 187
Function (= transformation), 3
Function space, 28
Fundamental n-cycle on an n-sphere, ‘
263 |
Fundamental group (= first homotopy
group), 160 |

Gy-set, 85

General position, points in, 214

Geometric realization (of a complex),
213

Geometric simplex, 199

Graded group, 244

Group of a knot, 174

Hausdorff metric on the continua in a
metric space, 42

Hausdorff space (= T2 space), 38

Hereditarily indecomposable
continuum, 143

Hereditary property of a space, 40

Hilbert cube, 70

Hilbert coordinate space, 68

Homeomorphism, 4

Homogeneous space, 100, 143

Homology group, 228

Homology local connectedness, 348

Homology sequence, 285

Homotopic mappings, 152, 159

Homotopically equivalent spaces, 157

Homotopy classes, 152

Homotopy connectedness, 191

Homotopy group, 160, 178

Homotopy local connectedness, 191

Homotopy type, 157

Hopf-space, 167

Hyperplane, 196

Identification mapping, 154
Identification space, 136
Identification topology, 154
Imbedding (= homeomorphism into),
73
Incidence number, 223
Indecomposable continuum, 139
Indexing set, 22



INDEX

Induced homomorphism, 171, 341
Inessential mapping, 154
Injection mapping, 252
Irreducible continuum, 44
Isometric imbedding, 82
Isometry, 10

Isomorphic complexes, 213, 252
Integral cohomology group, 300
Interior mapping, 13

Inverse limit group, 92, 94
Inverse limit space, 91, 94
Inverse limit system, 91, 92, 94

Join of a space and a point, 154

Jordan curve (= homeomorphic image
of the circle), 55

Juxtaposition of mappings, 160, 178

Klein bottle, 237

Knot, 174

Kronecker index, 239, 301
Kuratowski closure operation, 32

Lakes of Wada, 143

Lebesgue measure, 88

Lebesgue number of a covering, 30

Light mapping, 137

Limit inferior (= lim inf), 100

Limit point, 1, 5

Limit superior (= lim sup), 101

Linear graph, 281

Linearly independent vectors, 193

Link in a chain of sets, 107

Locally arcwise-connected space, 119

Locally compact space, 71

Locally contractible space, 191

Locally connected space, 105

Locally Euclidean space, 278

Locally finite complex, 213

Locally finite covering, 77, 80

Locally peripherally compact space
(= rim-compact), 104

Long line, 55

Loop space, 182

Mapping (=
13

Mapping of a pair, 171

Mapping cylinder, 157

Mayer-Vietoris sequence, 290, 316

Maximal principle, 25

continuous funection),

373

Mesh of a geometric complex, 207

Metric (= distance function), 9

Metric space, 9

Metrizable space, 11

Middle space of a factorization, 137

Moébius band, 238

Monotone mapping, 137, 347

Monotone-light factorization of a
mapping, 137

Neighborhood of curves, 159

Neighborhood retract, 63

Nerve of a covering, 98, 320

Non-augmented 0t homology group,
239

Non-cut point, 48

Normal space, 41

Nowhere dense subset, 89

One-point compactification, 73
One-simple space, 167

Open covering, 18

Open geometric simplex, 199
Open set, 5

Open star of a simplex, 204, 332
Open subcomplex, 288

Open transformation, 13
Order-isomorphism, 50
Order-type, 50

Order topology, 52

Oriented face of a simplex, 224
Oriented simplex, 223

Oriented simplicial complex, 223

Pair of spaces, 171

Paracompact space, 77

Parameter space, 149

Partial ordering, 24

Peano space, 117

Perfect set, 88

Permanence relation, 311

Phragmen-Brouwer properties, 359

Polytope, 206

Product metric, 36

Product space, 22

Projection mapping in a product
space, 22

Projection of an inverse limit space,
94, 321

Properly joined simplexes, 201

Property S, 115
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Pseudo-airc, 142
Pseudo Cech homology group, 325

Pseudo-compact space, 104
Pseudo-manifold, 252

Quasi-component, 46

Rational closure of a subgroup, 245

Refinement of a covering, 77

Regular space, 40

Relative Cech homology theory, 339

Relative homology group, 283

Relative homotopy group, 295

Relative topology (= subspace
topology), 15

Relatively open set, 15

Restriction of a mapping, 4

Retract, 62

Retraction mapping, 62

Rim-compact space, 104

Second category space, 89
Second countable space (= completely
separable space), 64
Separable space, 11
Separation axioms (the 7';-axioms),
37
Separation order (of cut points), 50
Separated sets, 14
Simple chain, of sets, 41
of simplexes, 206
Simple ordering, 24
Simplicial mapping, 210, 249
Simplex, 199, 202
Singular homology group, 342
Snakelike continuum, 331
Solenoid, 243
Sphere, 17
Spherical neighborhood, 9
Star of a simplex, 204, 213
Star-finite complex, 204
Starlike space, 155
Star-topology of a complex, 204
Stone-Cech compactification, 77

INDEX

Subbasis for a topology, 9
Subspace, 15
Symmetric difference of sets, 232

T .-space, 37

Tame, or tamely imbedded, polytope,
176

Tensor product, 247

Topological geometric complex, 202

Topological group, 33

Topological invariant, 16

Topological space, 5

Topologically complete space, 81

Topology, 1

Torsion coefficient, 235, 245

Torsion element, 245

Total singular complex, 341

Totally bounded metric space, 84

Transformation, 3

Translation in a topological group, 35

Triangulated space, triangulation, 206

Tychonoff space, 74

Tychonoff topology, 23

Unicoherent continuum, 145

Uniform space, 31

Uniformly continuous function, 30

Uniformly locally arcwise-connected
space, 129

Uniformly locally connected space, 114

Unit cube 1", 62

Upper semicontinuous collection of
sets, 132

Upper semicontinuous function, 134

Universal coefficient group, 247

Universal covering space, 189

Vector space, 193
Vertex, 199
Vietoris homology group, 347

Well-ordered set, 24
Wild, or wildly imbedded, polytope,
176
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