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PREFACE

NOT so many years ago the dynamics of a frictionless fluid had come to be

regarded as an academic subject and incapable of practical application owing
to the great discrepancy between calculated and observed results. The ultimate

recognition, however, that Lanchester's theory of circulation in a perfect

fluid could explain the lift on an aerofoil, and the adoption of Prandtl's hypo-
thesis that outside the boundary layer the effect of

viscosity
is negligible, gave

a fresh impetus to the subject which has always been necessary to the naval

architect and which the advent of the modern aeroplane has placed in the

front rank.

The investigation of fluid motion falls naturally into two parts ; (i) the

experimental or practical side
; (ii) the theoretical side which attempts to

explain why experimental results turn out as they do, and above all attempts
to predict the course of experiments as yet untried. Thus the practical and

theoretical sides supplement one another, and it is to the latter aspect that

this book is devoted.

As a scientific theory becomes more exact, so does it of necessity tend to

assume a more mathematical form. This statement must be construed to

mean not that the form becomes more difficult or more abstruse, but rather

that, when the fundamental laws have reached a stage of clear formulation,

useful deductions can be made by the exact processes of mathematics. The

object of this book, which is founded upon, and has grown out of, my lectures

on the subject at Greenwich to junior members of the Royal Corps of Naval

Constructors, is to give a thorough, clear and methodical introductory exposition

of the mathematical theory of fluid motion which will be useful in applications

to both hydrodynamics and aerodynamics.

I have ventured to depart radically from the traditional presentation of the

subject by basing it consistently throughout on vector methods and notation

with their natural consequence in two dimensions, the complex variable. It

is not intended to imply that the application of the above methods to hydro-

dynamics is in itself a novelty, but their exclusive employment has not, so far

as I know, been hitherto attempted. The previous mathematical knowledge

required of the reader does not go beyond the elements of the infinitesimal

calculus. The necessary additional mathematical apparatus is introduced as

required and an attempt has been made to keep the book reasonably self-

contained in this respect. As we are dealing with a real subject (even if in an
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idealised form) diagrams have been freely used. There are about 360 of these

numbered in the decimal * notation with the number of the section in which

they occur in order to facilitate reference.

The order of the chapters represents an attempt to give a rational classifi-

cation to the topics treated. This is, of course, by no means the only possible

order, but it seems to have some advantages. Chapter I is of an introductory

character and is concerned mainly with inferences based on the famous theorem

of Daniel Bernoulli who may justly be considered the father of Hydrodynamics.

Chapter II gives an account of such properties of vectors as are essential to

the analysis of the motion of a fluid element and to the formulation of the

hydrodynamical equations. Vectors are introduced here without any reference

to systems of coordinates. The fundamental properties of vector operations

are deduced by operational methods, which, in the form here explained, are easy

to apply and lead directly to the theorems of Stokes, Gauss, and Green. As

this is a book on hydrodynamics, not on vectors, the treatment is necessarily

concise. On the other hand the subject matter has been arranged with a view

to helping those to whom vector manipulation may be unfamiliar, and the

reader is recommended to make himself thoroughly conversant with the contents

of this chapter, if necessary, by frequent reference to it. Such a course will be

amply rewarded by a physical insight into the phenomena under discussion

which are, in general, made unnecessarily obscure by expression in particular

coordinate systems. The proper function of coordinates is to perform the final

step of algebraic interpretation. In Chapter III the general properties of fluid

motion continuity, dynamical equation, pressure, energy, and vorticity are

studied in the light of the vector formulation whose advantage is then clearly

seen.

Chapter IV is occupied with intrinsic properties of two-dimensional motion

in so far as they can be treated without the complex variable. Chapter V is

a digression to introduce the complex variable, defined as a vector operator,

and to prove such theorems as will be required in the sequel. In particular the

properties of conformal mapping are treated in some detail in view of their

subsequent fundamental importance.

Chapters VI to XIV form a complete unit and embody an attempt to give

a detailed discussion of two-dimensional motion from the unified standpoint of

the complex variable, making full use of conformal mapping and the theorem

of Blasius and its extensions. I have begun with a discussion of streaming
motion in Chapter VI, followed by a consideration of simple Joukowski aero-

foils in Chapter VII, while sources and sinks are postponed to Chapter VIII.

* It should be noted that the section numbers are decimals of which the integral part denotes
the number of the chapter. Thus for example section 4-21 precedes section 4*5 and both belong
to Chapter TV.
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In Chapter IX the moving cylinder is treated in detail and a form of the theorem

of Kutta and Joukowski, generalised to include the case of accelerated motion,

is obtained (9*53). Chapter X contains a discussion of the mapping theorem of

Schwarz and Christoffel with some immediate applications ;
in Chapters XI,

XII further applications are made to the discontinous motions of jets, currents,

and the cavity behind a cylinder in a stream, including an account of the

elegant method of Levi-Civita. Chapter XIII is devoted to the discussion of

rectilinear vortices, Karman's vortex street, and the drag due to a vortex wake.

Chapter XIV deals with two-dimensional wave motion.

Chapter XV introduces Stokes* stream function and the application of

conformal mapping to three-dimensional problems with axial symmetry. The

general motion of spheres and ellipsoids is treated in Chapter XVI. In Chapter

XVII partial differentiation with respect to a vector (2*71) is applied to obtain

Kirchhoff's equations in vector form thus replacing six equations by two. It is

believed that this method is new and that it offers opportunities for research

in stability problems. Chapter XVIII discusses vortex motion in general with

particular application to the aerofoil of finite span. Chapter XIX gives an

outline of the application of vector methods to viscous liquids and a brief

description of the boundary layer theory. It is interesting to note how simply

the components of stress in a viscous liquid can be derived by vector methods

for any system of orthogonal coordinates (1941).

Chapter XX is intended as an introduction to the theory of the flow of a

compressible fluid at subsonic and supersonic speeds. The source in a com-

pressible fluid is discussed in 8-9, and the vortex in 13-8.

There are 569 exercises in all collected into sets of examples at the end of

each chapter. Many of these are taken with permission, for which I express

my best thanks, from the Mathematical Tripos, the University of London's

M.Sc. examination, and from the examination of Constructor Lieutenants at

the Royal Naval College.* Apart from these I have included others of various

origins, now unknown and so unacknowledged, used in my lectures and about

100 given me by the late Professor L. N. G. Filon. Some of the exercises are

very easy, others are quite difficult and may be regarded as supplementing the

text.

In stating theorems I have, as far as possible, associated the name of the

discoverer as sufficient indication of the origin, but it must not be assumed that

the method of presentation here is in every case that in which the theorem was

originally given. For example Gauss might well consider 2-60 as his theorem

veiled in allegory and illustrated by symbols. Bibliographical references have

occasionally been added where they appear to be useful or appropriate, but no

systematic attempt has been made to give them. I have followed Lamb
* These sources are distinguished by the letters M.T., U.L., R.N.C., respectively.
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(1849-1934) in associating the negative sign with the gradient of the velocity

potential. The preparation of the fourth edition has given me the opportunity

to act upon suggestions made by a number of readers to whom I am very

grateful.

The gratifying reception accorded to this work has encouraged me to con-

tinue to search for improvements. Apart from considerable rearrangements

and new methods of presentation this fourth edition differs from the third by
several important additions

;
the formulae of Plemelj for solving certain

boundary value problems (5-592) ;
a systematic discussion of flow under

gravity with a free surface, including a new method here published for the first

time (11-60-1 1-64) ;
an exact treatment of the surface wave of constant form

(14-84) and what I call the
"
exact linearised theory

"
which flows from it ;

an

account of some comparison theorems, including Serrin's
"
under-over

"

theorem. These theorems, which have important applications, deserve to be

extracted from the journals in which they were originally pi^jpshed.

I take this opportunity of expressing my thanks to the officials of the Glas-

gow University Press not only for the ready way in which they have met my
requirements but also for their careful attention to typographical detail which

is so important in a work of this kind, and most of all for maintaining that

standard of elegant mathematical printing for which they are justly renowned.

L. M. MILNE-THOMSON

MATHEMATICS DEPARTMENT

THE UNIVERSITY OF ARIZONA

TUCSON, ARIZONA

August 1962
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HISTORICAL NOTES

THE term hydrodynamics was introduced by Daniel Bernoulli (1700-1783) to

comprise the two sciences of hydrostatics and hydraulics. He also discovered

the famous theorem still known by his name.

d'Alembert (1717-1783) investigated resistance, discovered the paradox

associated with his name, and introduced the principle of conservation of mass

(equation of continuity) in a liquid.

Euler (1707 -1783) formed the equations of motion of a perfect fluid and

developed the mathematical theory. This work was continued by Lagrange

(1736-1813).

Navier (1785-1836) derived the equations of motion of a viscous fluid from

certain hypothesis of molecular interaction.

Stokes (1819-1903) also obtained the equations of motion of a viscous fluid.

He may be regarded as having founded the modern theory of hydrodynamics.

Rankine (1820-1872) developed the theory of sources and sinks.

Helmholtz (1821-1894) introduced the term velocity potential, founded the

theory of vortex motion, and discontinuous motion, making fundamental con-

tributions to the subject.

Kirchhoff (1824-1887) and Rayleigh (1842-1919) continued the study of

discontinuous motion and the resistance due to it.

Osborne Reynolds (1842-1912) studied the motion of viscous fluids, intro-

duced the concepts of laminar and turbulent flow, and pointed out the abrupt

transition from one to the other.

Joukowski (1847-1921) made outstanding contributions 'to aerofoil design

and theory, and introduced the aerofoils known by his name.^

Lanchester (1868-1945) made two fundamental contributions to the modern

theory of flight ; (i) the idea of circulation as the cause of lift, (ii) the idea of

tip vortices as the cause of induced drag. He explained his theories to the

Birmingham Natural History Society in 1894 but did not publish them till

1907 in his Aerodynamics.





PLATE 1

FIG. 1. Flow round cylinder immedi-

ately after starting (potential flow).

FIG. 2. -Backward ilow in the boun-

dary layer behind the cylinder ; accumu-
lation of boundary layer material.

FIG. 3. Formation of two vortices ;

How breaking loose from cylinder.

Fia. 4. The eddies increase in size.

FIG. 5. Final picture obtained a

long time after starting.

FIG. 0. Tlie eddies grow still more ;

finally the picture becomes unsymmet-
rical and disintegrates.

The direction of flow in all photographs is from left to right.

Reprint from Applied Hydro- and Aeromechanics, by L. Prandtl, Ph.T)., and O. Q. Tietjens, Ph.D.,

through etmrtesy of United Engineering Trustees, Inc.



PLATE 2

FIG. 1. Streamlines round an aerofoil the very first moment after

starting.

FIG. 2. Formation of the starting vortex which is washed away
with the fluid.

Reprint from Applied Hydro- and Aeromechanics, by L. Prandtl, Ph.D., and O. G. Tietjens, Ph.D.,
through courtesy of United Engineering Trustees, Inc.



PLATE 3

Fia. 1. Like Fig. 1, Plate 2, but with the camera at rest with respect
to the undisturbed fluid and a shorter exposure. Also with a greater
angle of attack and consequently a greater starting vortex.

. 2. After formation of the starting vortex the aerofoil was stopped
and then the picture was taken.

Reprint from Applied Ilydro- and Aeromechanics, by L. Prandtl, Ph.D., and O. G. Tietjena, Ph.D.,
through courtesy of United Engineering Trustees, Inc.



PLATE 4

JTro. 1. Karman trail ; Reynolds number wd/v=250.
The camera is at rest with respect to the cylinder.

Fro. 2. Karman trail ; Reynolds number wd/v 250.

The camera is at rest with respect to the undisturbed fluid.

Reprint from Applied Hydro- and Aeromechanics, by L. Prandtl, Ph.D., and O. G. Tietjens, Ph.D.

through courtesy of United Engineering Trustees, Inc.
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CHAPTER I

BERNOULLI'S EQUATION

1*0. The science of hydrodynamics is concerned with the behaviour of

fluids in motion.

All materials * exhibit deformation under the action of forces ; elasticity

when a given force produces a definite deformation, which vanishes if the force

is removed
; plasticity if the removal of the forces leaves permanent deforma-

tion
; flow if the deformation continually increases without limit under the

action of forces, however small.

PL fluid is material which flows.

Actual fluids fall into two categories, namely gases and liquids.

A gas will ultimately fill any closed space to which it has access and is

therefore classified as a (highly) compressible fluid.

A liquid at constant temperature and pressure has a definite volume and

when placed in an open vessel will take under the action of gravity the form

of the lower part of the vessel and will be bounded above by a horizontal free

surface. All known liquids are to some slight extent compressible. For most

purposes it is, however, sufficient to regard liquids as incompressible fluids.

In this book we shall for the most part be concerned with the behaviour

of fluids treated as incompressible and the term liquid will be used in this

sense. But it is proper to observe that, for speeds which are not compar-
able with that of sound, the effect of compressibility on atmospheric air can

be neglected, and in many experiments which are carried out in wind tunnels

the air is considered to be a liquid, in the above sense, which may conveniently

be called incompressible air.

Actual liquids (and gases) in common with solids exhibit viscosity arising

from internal friction in the substance. Our definition of a fluid distinguishes

a viscous fluid, such as treacle or pitch, from a plastic solid, such as putty or clay,

since the former cannot permanently resist any shearing stress, however small,

whilst in the case of the latter, stresses of a definite magnitude are required to

produce deformation. Pitch is an example of a very viscous liquid ;
water is

an example of a liquid which is but slightly viscous. A more precise definition

* In this summary description the materials are supposed to exhibit a macroscopic con-

tinuity, and the forces are not great enough to cause rupture. Thus a heap of sand is excluded,
but the individual grains are not.

A
s M.T.H.
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of viscosity will be given later. For the present, in order to render the subject

amenable to exact mathematical treatment, we shall follow the course adopted

in other branches of mechanics and make simplifying assumptions by defining

an ideal substance known as an inviscid or perfect fluid.

Definition. An inviscid fluid is a continuous fluid substance which can

exert no shearing stress however small.

The continuity is postulated in order to evade the difficulties inherent in

the conception of a fluid as consisting of a granular structure of discrete mole-

cules. The inability to exert any shearing stress, however small, will be shown

later to imply that the pressure at any point is the same for all directions at

that point.

Moreover, the absence of tangential stress between the fluid on the two

sides of any small surface imagined as drawn in the fluid implies the entire

absence of internal friction, so that no energy can be dissipated from this

FIG. 1-0.

cause. A further implication is that, when a solid moves through the fluid or

the fluid flows past a solid, the solid surface can exert no tangential action on

the fluid, so that the fluid flows freely past the boundary and no energy can

be dissipated there by friction. In this respect the ideal fluid departs widely

from the actual fluid which, as experimental evidence tends to show, adheres

to the surface of solid bodies immersed in it. The difference in behaviour

is well illustrated by considering straight steady flow along a horizontal pipe.

If we draw vectors to represent the velocity at points of AB, a diameter of

the pipe, for an inviscid fluid their extremities will lie on another diameter,

while for a viscous fluid the extremities will lie on a parabolic curve, passing

through A and B. It might be thought that the study of the perfect fluid

could throw but little light on the behaviour of actual fluids. As we shall see

presently this is so far from being the case that the theory can, in important

instances, explain not only qualitatively but also quantitatively the motion of

actual fluids.

I-OL Physical dimensions. Physics deals with the measurable pro-

perties of physical quantities, certain of which, as for example, length, mass,

time and temperature, are regarded as fundamental, since they are independent
of one another, and others, such as velocity, acceleration, force, thermal con-

ductivity, pressure, energy are regarded as derived quantities, since they are
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defined ultimately in terms of the fundamental quantities. Mathematical

physics deals with the representation of the measures of these quantities by
numbers and deductions therefrom. These measures are all of the nature of

ratios of comparison of a measurable magnitude with a standard one of like

kind, arbitrarily chosen as the unit, so that the number representing the

measure depends on the choice of unit.

Consider a dynamical system, i.e. one in which the derived quantities depend

only on length, mass and time, and change the fundamental units from, say,

foot, pound, second, to mile, ton, hour. Let ^ ,
ml , ^ and 12 5

m2 , 2 De ^ne

measures of the same length, mass and time respectively in the two sets of units.

Then we have

(1) *!
=

ji
x Za

= JWa ,
ml

= Mm2 ,
tv
= Ttz ,

h

where Z/, M t
T are numbers independent of the particular length, mass or time

measured, but depending only on the choice of the two sets of units. Thus in

this case, we have L = 5280, M = 2240, T = 3600. These numbers L, M, T
we call the respective measure-ratios of length, mass, time for the two sets of

units, in the sense that measures of these quantities in the second set are

converted into the corresponding measures in the first set by multiplication by

L, M, T.

The measure-ratios F, A, F of the derived quantities, velocity v, acceleration

a, and force/, are then readily obtained from the definitions of these quantities

as

F - LIT, A - V/T, F = MA,

so that ultimately the measure ratio of a force is given by F = ML/TZ
> And

in general if nt ,
nz are the measures of the same physical quantity n in the

two sets of units, we arrive at the measure-ratio

(2)
^ = N = L*MVT*.
nz

and we express this conventionally by the statement that the quantity is of

dimensions LXMVTZ
(or is of dimensions x in length, y in mass, and z in time).

If x = y = z = 0, then nt nz ,
so the quantity in question is independent of

any units which may be chosen, as for example, the quantity defined as the

ratio of the mass of the engines to the mass of the ship. In such a case we say

the quantity is dimensionless and is represented by a pure number, meaning
that it does not change with units.

Now consider a definitive relation

(3) a = be

between the measures a, 6, c of physical quantities in a dynamical system, i.e. a

relation which is to hold whatever the sets of units employed, and which is not
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merely an accidental relation between numbers arising from measurement in

one particular set of units. Suppose the dimensions of a, 6, c are respectively

(p> ?> ')> ( *> w)> and C 2/> )
so tnat

(4) 0, :

Then (3) would become al 1& ,
and (4) would then give by substitution

Now aa
=

&2C2 >
gince the f rm f (3) ig independent of units, and therefore

LpMQTr = L9+xMt+vTu
+*, or p s + x, q t + y, r = u + z.

In other words, each fundamental measure-ratio must occur with the same

index on each side of (3), i.e. each side of (3) must be of the same physical

dimensions.

In systems involving temperature as well as length, mass, and time as

fundamental quantities (thermodynamical systems) a measure-ratio (say D) of

temperature must be introduced.

I I . Velocity. Since our fluid is continuous, we can define &fluid particle

as consisting of the fluid contained within an infinitesimal volume, that is to

say, a volume whose size may be considered so

small that for the particular purpose in hand its

linear dimensions are negligible. We can then treat

a fluid particle as a geometrical point for the

particular purpose of discussing its velocity and

acceleration.

If we consider, fig. 1-1 (a), the particle which at time t is at the point P,

defined by the vector *

r -OP,

at time ^ this particle will have moved to the point Q, defined by the vector

The velocity of the particle at P is then defined bythe vector |

r i-i-r dr [>q = lim - = T- '^ ^ ti-t dt

Thus the velocity q is a function of r and t, say_q=/(f.Q._
* The subject of vectors is explained at length in Chapter II.

f The symbol lim is to be read as
"
the limit when *j tends to the value t ". This is the usual

<! >4

method of defining differential coefficients, whose existence we shall infer on physical grounds.
The symbol - alone is read "

tends to ".
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If the form of the function/ is known, we know the motion of the fluid.

At each point we can draw a short line to represent the vector q, fig. 1-1 (6).

To obtain a physical conception of the velocity field defined by the vector

q, let us imagine the fluid to be filled with a large (but not infinitely large)

number of luminous points moving with the fluid.

A photograph of the fluid taken with a short time /
exposure would reveal the tracks of the luminous points as ^*
short lines, each proportional to the distance moved by the ^
point in the given time of the exposure and therefore pro-

portional to its velocity. This is in fact the principle of one

method of obtaining pictorial records of the motion of an actual fluid.* In

an actual fluid the photograph may reveal a certain regularity of the velocity

field in which the short tracks appear to form parts of a regular system of

curves. The motion is then described as streamline motion. On the other

hand, the tracks may be wildly irregular, crossing and recrossing, and the

motion is then described as turbulent. The motions of our ideal inviscid fluid

will always be supposed to be of the former character. An exact mathematical

treatment of turbulent motion has not yet been achieved.

I'll. Streamlines and paths of the particles, j^n^rawn in^ the

fluid so that its tangent_at .each point is in the direction of the fluid velocity

atjbhat point is ^lled^^tr^qmline.
When the fluid velocity at a given point depends not only on the position

of the point but also on the time, the streamlines will alter from instant to

instant. Thus photographs taken at different instants will reveal a different

system of streamlines. The aggregate of all the streamlines at a given instant

constitutes the flow pattern at that instant.

When the velocity at each point is independent of the time, the flow

pattern will be the same at each instant and the motion is described as steady.

In this connection it is useful to describe the type of motion which is relatively

steady. Such a motion arises when the motion can be regarded as steady by

imagining superposed on the whole system, including the observer, a constant

velocity. Thus when a ship steams on a straight course with constant speed

on an otherwise undisturbed sea, to an observer in the ship the flow pattern

which accompanies him appears to be steady and could in fact be made so by

superposing the reversed velocity of the ship on the whole system consisting of

the ship and sea.

If we fix our attention on ^particular particle of the fluid^ the curve which

k_called a_#o&JM& The direction of

motion of the particle must necessarily be tangential to the path line, so that

Plates 1-4 illustrate this.
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the path line touches the streamline which passes through the instantaneous

position of the particle as it describes its path.

Thus the streamlines show how each particle is moving at a given instant.

The path lines show how a given particle is moving at each instant.

When the motion is steady, the path lines coincide with the streamlines.

I 12. Stream tubes and filaments. If we draw the streamline through

each point of a closed curve we obtain a stream tube.

A stream filament is a stream tube whose cross-section is a curve of in-

finitesimal dimensions.

When the motion is dependent on the time, the configuration of the stream

tubes and filaments changes from instant to instant, but the most interesting

applications of these concepts arise in the case of the steady motion of a liquid,

which we shall now discuss.

In the steady motion of a liquid, a stream tube behaves like an actual tube

through which the liquid is flowing, for there can be no flow into the tube

across the walls since the flow is, by definition, always tangential to the walls.

Moreover, these walls are fixed in space since the motion is steady, and there-

fore the motion of the liquid within the walls would be unaltered if we replaced

the walls by a rigid substance.

Consider a stream filament of liquid in steady motion. We can suppose
the cross-sectional area of the filament so small that the velocity is the same

at each point of this area, which

can be taken perpendicular to the

direction of the velocity.

Now let q , qz be the speeds of

. the flow at places where the cross-

sectional areas are o^ and cr2 . Since

the liquid is incompressible, in a given time the same volume must flow out

at one end as flows in at the other. Thus

This is the simplest case of the equation of conservation of mass, or the

equation of continuity, which asserts in the general case that the rate of genera-

tion of mass within a given volume must be balanced by an equal net outflow

of mass from the volume. The above result can be expressed in the following

theorem.

The product of the speed and cross-sectional area is constant along a stream

filament of a liquid in steady motion.

It follows from this that a stream filament is widest at places where the

speed is least and is narrowest at places where the speed is greatest.

A further important consequence is that a stream filament cannot termi-
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nate at a point within the liquid unless the velocity becomes infinite at that

point. Leaving this case out of consideration, it follows that in general

stream filaments are either closed or terminate at the boundary of the liquid.

The same is true of streamlines, for the cross-section of the filament may be

considered as small as we please.

I !. Density. If M is the mass of the fluid within a closed volume V,

we can write

(1) M=VPl ,

and
/>!

is then the average density of the fluid within the volume at that

instant. In a hypothetical medium continuously distributed we can define

the density p as the limit of pt when F-> 0.

In an actual fluid which consists of a large number of individual molecules

we cannot let V-> 0, for at some stage there might be no molecules within the

volume F. We must therefore be content with a definition of density given

by (1) on the understanding that the dimensions of F are to be made very

small, but not so small that F does not still contain a large number of mole-

cules. In air at ordinary temperatures there are about 3 x 1019 molecules per

cm. 3
. A sphere of radius 0-001 cm. will then contain about 1011

molecules,

and although small in the hydrodynamical sense will be reasonably large for

the purposes of measuring average density.

I -3. Pressure. Consider a small plane of infinitesimal area da, whose

centroid is P, drawn in the fluid, and draw the normal PN on one side of the

area which we shall call the positive side. The other

side will be called the negative side.

We shall make the hypothesis that the mutual

action of the fluid particles on the two sides of the

plane can, at a given instant, be represented by two

equal but opposite forces p da applied at P, each

force being a push not a pull, that is to say, the

fluid on the positive side pushes the fluid on the

negative side with a force p da.

Experiment shows that in a fluid at rest these forces act along the normal.

In a real fluid in motion these forces niake an angle with the normal (analogous

to the angle of friction). When the viscosity is small, as in the case of air and

water, e is small. In an inviscid fluid which can exert no tangential stress

= 0, and in this case p is called the pressure at the point P.

In the above discussion there is nothing to show that the pressure p is

independent of the orientation of the element da used in defining p. That this

independence does in fact exist is proved in the following theorem.
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Theorem. The pressure at a point in an inviscid fluid is independent of

direction.

Proof. Let P9 Q be two neighbouring points, and consider a cylinder of

fluid, whose generators are parallel to PQ, bounded by a cross-section dai and

an oblique section da2 ,
the centroids

of these sections being P and Q re-

spectively. Let the pressures at P and

Q, denned by the sections d^ and da2 ,

be P! and p2 ,
and let the normal at Q

FIG 1-3 (6)
make an angle with PQ. The volume

of fluid within the cylinder is I dai ,

where I is infinitesimal. Let F be the component in the direction ofPQ of the

external force per unit mass of fluid, and let / be the acceleration of the

cylinder in the direction PQ. Then if p is the density, the second law of

motion gives

pl da^ p2 dcr2 cos 6 4-F pi da^ = f pi do-v

Now, dcr2 cos 6 = dalt Therefore dividing by dal ,

If we let Q approach P, I will tend to zero and therefore Pi~p2 tends to

zero. Thus when Q coincides with P we get pl
= p2 . Since the direction of

the normal to the section at Q is quite arbitrary, we conclude that the pressure

at P is the same for all orientations of the defining element of area. Q.E.D.

Pressure is a scalar quantity, i.e. independent of direction. The dimen-

sions of pressure in terms of measure-ratios (see 1-01) M , Z-, T of mass length

and time are indicated by ML~1T~^.

The thrust on an area da due to pressure is a force, that is a vector quantity,

whose complete specification requires direction as well as magnitude.

Pressure in a fluid in motion is a function of the position of the point at

which it is measured and of the time. When the motion is steady the pressure

may vary from point to point, but at a given point it is independent of the

time.

It should be noted that p is essentially positive.

| 4, Bernoulli's theorem (special form). In the steady motion of a

liquid the quantity

has the same value at every point of the same streamline where p, py q are

the pressure, density, and speed, g is the acceleration due to gravity, and h is

the height of the point considered above a fixed horizontal plane.
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Proof. Consider a stream filament bounded by sections AB, CD of areas

orj ,
<72 ,

and letpl , & , ^ be the pressure, speed, and height at AB, while p2 , q2 , h2

are the corresponding quantities at CD. After a short time St the liquid which

was in ABCD will occupy the
f

portion A'B'C'D' of the fila-
^-^

ment where

AA' = & &, CO' = ga &.

In moving the liquid from

the first to the second position,

work will have been done by
the thrusts on AB, CD. This

work will be expended in in-

creasing the kinetic energy and the potential energy of the liquid. The

thrusts on the walls of the tube do no work, for they are perpendicular to

the direction of flow.

The work done by the thrust at AB is pl c^ x AA' ,
and that done at CD

is - p2 cra x CC'. Hence the total work done by the thrusts is

The liquid has gained the kinetic and potential energies of the liquid

between CD and C'D', the total amount gained is therefore

The liquid has lost the kinetic and potential energies of the part between

AB and A'B', making a loss of

Equating the net gain to the work done, we get

Pi &i $i ^ ~~
Pz ^2 S'a

vt == &2 q2 ot p ($^2 ~f~ 5^2)
~~
^i ?!

Now cTj ql
= aa q2 , by the conservation of mass (see 112). Thus

Therefore

so that the given expression has the same value at any two points of the

stream filament and is therefore the same at all points of the streamline to

which the filament can be shrunk. Q.E.D.

I '41 . Flow in a channel. Suppose water to flow steadily along a channel

with a horizontal bottom and rectangular cross-section of breadth 6. If A is

the height of the free surface above the bottom, since the pressure at the free
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surface must be equal to that of the atmosphere, we shall have from Bernoulli's

theorem u2 + 2gh constant, where u is the velocity supposed parallel to the

walls and constant across the section. If the breadth of the channel varies

slightly, there will be a small consequent change in u, and therefore by differ-

entiation of the above

udu+g dh = 0.

Again, from the equation of continuity, ubh constant, and therefore

du db dh _
I

-
I u.ubh

Elimination of du gives
dh u*h

db b(gh-u
2
)

Thus the depth and breadth increase together if, and only if, u2
<gh, i.e.

if u is less than the speed of propagation of long waves in the channel (cf. 14-62).

I 42. Remarks on Bernoulli's theorem. The form in which the

theorem has been stated is called special for two reasons. Firstly, we have

assumed the external forces to be due to gravity alone. The field of gravita-

tional force is a conservative field, meaning by this that the work done by the

weight when a body moves from a point P to another point Q is independent

of the path taken from P to Q and depends solely on the vertical height of Q
above P. A conservative field of force gives rise to potential energy, which is

measured by the work done in taking the body from one standard position to

any other position. In order that potential energy of a unit mass at a point

may have a definite meaning, it is obviously necessary that the work done by
the forces of the field should be independent of the path by which that point

was reached. The gravitational field is clearly the most important of conserva-

tive fields of force, but it is by no means the only conceivable field of this nature
;

for example, an electrostatic field has the conservative property. If more

generally we denote by Q the potential energy per unit mass in a conservative

field, Bernoulli's theorem would take the more general form that

P

is constant along a streamline, and the same method of proof could be used.

Secondly, we have assumed the fluid to be incompressible, and of constant

density. More generally, for barotropic flow, that is to say when the pressure

is a function of the density,* the theorem assumes the form that

is constant along a streamline. This is proved in 1-61.

* This amounts to assuming that an equation ofstate/ (pt p,S)Q exists wherein the entropy
S has everywhere the same value, the homentropic case of 20-01.
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I '43. The constant in Bernoulli's theorem. If we fix our attention

on a particular streamline, 1, Bernoulli's theorem states that

where Ct is constant for that streamline. If we take a second streamline, 2,

we get

-+tet
+fl* = c1 ,

p

where C2 is constant along the second streamline. We have not proved (and

in the general case it is untrue) that Cl
= C2 . When, however, the motion is

irrotational, a term which will be explained later (2-41), it is true that the

constant is the same for all streamlines, so that

p

where C has the same value at each point of the liquid. It will also be shown

later (3-64) that this case arises whenever an inviscid liquid is set in motion

by ordinary mechanical means, such as by moving the boundaries suddenly

or slowly, by opening an aperture in a closed vessel, or by moving a body

through the liquid.

1-44. Hydrodynamic pressure. In the steady motion of a liquid

Bernoulli's- theorem enables us to elucidate the nature of pressure still further.

In a liquid at rest there exists at each point a hydrostatic pressure ps , and

the principle of Archimedes states that a body immersed in the fluid is buoyed

up by a force equal to the weight of the liquid which it displaces. The particles

of the liquid are themselves subject to this principle and are therefore in equi-

librium under the hydrostatic pressure pH and the force of gravity. It follows

at once that ps!p+9^ is constant throughout the liquid. When the liquid is

in motion the buoyancy principle still operates, so that if we write

P = PD+PH .

Bernoulli's theorem gives

and therefore

(1)

where Cf = C-(palp+gh) is a new constant.

Now (1) is the form which Bernoulli's theorem would assume if the force

of gravity were non-existent.

The quantity pj> may be called the hydrodynamic pressure, or the pressure
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due to motion. This pressure PD measures the force with which two fluid

particles are pressed together (for both are subject to the same force of buoy-

ancy). It will be seen that the knowledge of the hydrodynamic pressure will

enable us to calculate the total effect of the fluid pressure on an immersed

body, for we have merely to work out the effect due to pD and then add the

effect due to pH ,
which is known from the principles of hydrostatics. This is

a very important result, for it enables us to neglect the external force of

gravity in investigating many problems, due allowance being made for this

force afterwards.

It is often felt that hydrodynamical problems in which external forces are

neglected or ignored are of an artificial and unpractical nature. This is by no

means the case. The omission of external forces is merely a device for avoid-

ing unnecessary complications in our analysis.

It should therefore be borne in mind that when we neglect external forces

we calculate in effect the hydrodynamic pressure.

We also see from (1) that the hydrodynamic pressure is greatest where

the speed is least, and also that the greatest hydrodynamic pressure occurs

at points of zero velocity.

It should be observed, however, that the device of introducing hydro-

dynamic pressure can be justified only when the boundaries of the fluid are

fixed, for only in these conditions is the hydrostatic pressure constant at a

given point. When the liquid has free surfaces which undulate, the hydro-

static pressure at a fixed point will vary, and we must consider the total

pressure.

In the case of compressible fluids the pressure due to motion is usually

called aerodynamic pressure.

\ '5. The Pitot tube. Fig. 1-5 (a) shows a tube ABCD open at A, where

it is drawn to a fine point, and closed at D, containing mercury in the U-shaped

part.

If this apparatus is placed

with the open end upstream in

a steadily flowing liquid, the

axis of the horizontal part in

the figure will form part of the

FIG 1-5 (a)
streamline which impinges at

A. Hence if p is the pressure

just inside the tube at A, and p is the pressure ahead of A, we shall have, by
Bernoulli's theorem,
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since the fluid inside the tube is at rest. The pressure pl is measured by the

difference in levels of the mercury at B and C, assuming a vacuum in the part

CD. This is the simplest form of Pitot tube for determining the quantity

FIG. 1-5 (6).

In applications it is often required

to measure the speed q. In order to

do this we must have a means of

measuring p.

This measurement can be made by
means of the apparatus shown in fig.

1-5 (6), which differs from the former

only in having the end A closed and holes in the walls of the tube at E

slightly downstream of A. The streamlines now follow the walls of the tube

from A, and the fluid within the tube being at rest and the pressure being

necessarily continuous, the pressure just outside the tube at E is equal to

the pressure just inside the
* tube at E y and this is measured
*

by the difference in the levels

of the mercury at G and F.

In practice it is usual to com-

bine both tubes into a single

apparatus as shown in fig. 1*5

(c).

In this apparatus the dif-

ference in levels of the mercury at B and G measures pl p =
%p<f.

The above description merely illustrates the principle of speed measure-

ments with the Pitot tube. The actual apparatus has to be very carefully

designed, to interfere as little as possible with the fluid motion. With

proper design and precautions in use, the Pitot tube can give measurements

within one per cent, of the correct values in an actual fluid, such as air or

water.

1*6. The work done by a gas in expanding. Let S and S' be the

surfaces of a unit mass of gas before and after a small expansion.

Let the normal displacement of the element dS of

the surface S be dn.

Suppose the pressure of the gas to be p. Then the

work done by the gas is

p E dS . dn = p x increase in volume = p dv,

where v is the volume within S. But since the mass

is unity, vp = 1.

Fia. 1-5 (c).

Fro. 1-6.
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Hence the work done by the gas

and if the expansion is from density p to density pQ ,

f
po

/1\
the work done =

I pd {

-
}

JP \PJ

We suppose that the pressure is a function of the density only.

We shall call internal energy per unit mass the work which a unit mass of

the gas could do as it expands under the assumed relation between p and p

from its actual state to some standard state in which the pressure and density

are p and p . Calling E the internal energy per unit mass, we get

\p.

on integrating by parts. Thus

Po P J?o P

Note that internal energy is a form of strain energy analogous to that of

a stretched elastic string.

1*61. Bernoulli's theorem for a compressible fluid. In the case of

a compressible fluid we use exactly the same method as in the case of an

incompressible fluid, noting, however, that account must now be taken of the

internal energy.

Using the figure of 14, and calling px and p2 the densities at AB and CD,

we get as before for the work done by the thrusts the expression

This work has been utilised in increasing the kinetic energy, the potential

energy, and the internal energy. Thus we get

Pi 0*1 q\ Sf-.patfa ?2 & = <72 qz 8* pz (faf + ghi) -^ ql $t Pl (^q

where E
l , E% denote the internal energy per unit mass at AB and CD respec-

tively.

Since the motion is steady, the inflow of mass at AB must equal the outflow

at CDy and therefore the equation of continuity is now

We therefore get

Pi Pi
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Now, from 1-6,

Po P2,{
p
'dp j? Po Pi,{

Pl dp
2

----H , /&!
----h --

PO P2 Jpt P PO Pi Jj>, P

Thus we get Bernoulli's theorem, namely,

a)
J*, P JPO P

If we consider aerodynamic pressure (1-44) Bernoulli's theorem assumes the

form

(2) I
-=- -f i02 constant along a streamline,

J P
whence we get

(3) dp = -pqdq.

1*62. Application of Bernoulli's theorem to adiabatic expansion,
When a gas expands adiabatically (that is to say without gain or loss of heat),

the pressure and the density are connected by the relation

(1) p =
*/>",

where K and y are constants. For dry air, y 1-405. Therefore

r & = KY [ P
*-

Jp P JPO

Since p /pQ refers to a standard state, this is constant, and therefore Ber-

noulli's theorem gives

Y-l p
'

If we take pQ to be the pressure when the velocity is zero * and neglect the

effect of gravity, we obtain

(2) ~-f|</
2 = - ~,

y-l p y-l PO
so that

(3) gs _ 2? PO d P p\ .

\) 2 i I
L

}

y - 1 pQ \ p pj
y-l

Now ? =^ = ()
Y

from (1).

Also, from the theory of sound waves, it is known (14-87) that the speed
of sound c when the pressure is pQ is given by

r 2 __ r.wC

Po

* It is not asserted that zero velocity is attained. The pressure pt is nevertheless uniquely
defined by the equation which follows.
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Therefore we obtain from (2)

v-i

and therefore

The ratio of the third term to the second in this expansion is ffaf, so that

even when the speed q is equal to half the speed of sound this ratio is 1/16.

Thus it appears that we may, to a good approximation, neglect the third term,

unless q is a considerable fraction of c .

Bernoulli's theorem for air will then take the form

PQ PQ

which means that the air may be treated as incompressible within a very

considerable range of speeds. In particular, for air speeds of 300 miles per

hour, the error in speed measurements made by the use of the Pitot tube (see

1-5) will be only about 2 per cent.

Again, the speed of flow in the neighbourhood of the wings of an aero-

plane will be comparable with the forward speed, and therefore the effect of

compressibility is small for small forward speeds. On the other hand, the

compressibility cannot be neglected in the neighbourhood of the tips of the

propeller blades.

1*63. Subsonic and supersonic flow. If c is the speed of sound

when the pressure is p, we have (14-87) c2 = yp/p, and therefore 1-62 (2) gives

which shows that c has the maximum value c when q = 0, and that q has the

maximum value gmax when c = 0, given by

(2)
y-1

The critical speed q* occurs when sound speed and fluid speed are equal,

and therefore from 1

0)
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The following forms of Bernoulli's equation (1) should be noted :

17

(4)

(5)

<7
2 -

The graph of #
2 as a function of c2 is the

straight line AB in fig. 1-63. This shows that along

a streamline c<c , q < gmax . The straight line

q*
- c2 = cuts AB at the point C (c*

2
, #*

2
),
where

q* = c*. The two portions AC, BC of this line

correspond with two physically different regimes.

If we introduce the Mach number

(6) M =
q/C,

at any point of AC we have q<q* c*<c, so

that M <1, provided that q<c. Flow for which

M< 1 is called subsonic.

At any point of BC we have q>q* = c*>c,
so that M>1, and the flow is then said to be

supersonic.

We get from (1)

y-l
y

(7)

Fio. 163.

I -64. Flow of gas in a converging pipe. If <o is the area of the section,

which is taken to be small, the pipe will converge if cu decreases as we go

along the pipe, i.e. if dw/ds<Q, where ds is an element of length of the pipe.
The equation of continuity is o> pq = constant, which gives

(1) -^4-l^?-_I^!
p ds q ds

~
w~ds

Taking the adiabatic law, Bernoulli's theorem gives

y-l p

P- = constant,

and therefore

Let c2 = yp/p denote the local speed of sound, i.e. the speed at the point
we are considering. Then

1 dp _ q dq

p ds
~~

c*Js*
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Substitution in (1) then gives

dq _ c2g~

[1-64

and so dq/ds is positive ifM< 1, i.e. if q< c.

Thus the speed increases as we go along the pipe in the direction in which

it converges if the flow is subsonic ; for supersonic flow the speed decreases

as the pipe gets narrower.

I 7. The Venturi tube. The principle of the Venturi tube is illus-

trated in fig. !?. The apparatus is used for measuring the flow in a pipe and

FIG. 1-7.

consists essentially of a conical contraction in the pipe from the full bore at A
to a constriction at B, and a gradual widening of the pipe to full bore again

at C. To preserve the streamline flow, the opening from B to C has to be very

gradual. A U-tube manometer containing mercury joins openings at A and

JB, and the difference in level of the mercury measures the difference in

pressures at A and B. Let ^i , #1 , 2>2 > <?2
^e^e pressures and speeds at A and B

respectively. Then

P P

by Bernoulli's theorem.

Let Sl , S2 be the areas of the cross-sections at A and B.

Then 9l S = q2 S2 ,

since the same volume of fluid crosses each section in a given time. Therefore

_ /
2 (Pi -Pi)

V'@H'
Pi~~Pz i8 given by observation and the value of ql follows.

If A is the difference in level of the mercury in the two limbs of the mano-

meter and a is the density of mercury, the formula becomes
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K being a constant for the apparatus.

1*71. Flow of a gas measured by the Venturi tube. Assuming
adiabatic changes in the gas from the entrance to the throat, we obtain from

Bernoulli's theorem and the equation of continuity

i-f-i-i/7~2

whence we easily obtain
Pi

=
P2 ?2

Now, =
( ) ,

and therefore

?2 W
y-i

a

W \Si.

To use this formula we must know p , pz and px . The instrument must

therefore be modified so that A and J5 in fig. 1-7 are connected to separate

manometers, thereby obtaining measures of the actual pressures pl , p% and

not their difference, as in the case of a liquid. For speeds not comparable
with that of sound, the ordinary formula and method for a liquid may be used

(see 1-62).

I *8. Flow through an aperture* When a small hole is made in a wall

of a large vessel which is kept full, it is found that the issuing jet of liquid

FIG. 1-8.
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contracts at a short distance from the aperture to a minimum cross-section.

At the contraction, called the vena contracta, the issuing jet is cylindrical in

form and all the streamlines are parallel. If c^ is the area of the aperture and

cr2 the area of the cross-section of the jet, the ratio cr2 : o^ is called the coeffi-

cient of contraction. The exact value a of the coefficient of contraction can

only be rigorously evaluated in certain special cases, but plausible arguments

can be adduced to show that a> \. That a< 1 follows experimentally from

the existence of the contraction.

1*81. Torricelli's theorem. In fig. 1-8, let h be the depth of the vena

contracta below the level of the upper surface of the water in a tank which

is kept full, and let 77 be the atmospheric pressure. If q is the speed of efflux

at the vena contracta, Bernoulli's theorem gives

n i n
+gh =

P P

since the velocity is practically zero at the free surface of the water in the

tank, and the pressure is 77, both there and on the walls of the escaping jet.

Therefore ?
2 = 2gh.

This is Torricelli's theorem, for the speed of efflux.

If o-2 is the area of the cross-section of the jet at the vena contracta, the rate

of efflux is

It is in most cases sufficient to take h as the depth of the orifice, for the

vena contracta is at only a short distance from this. If a is the area of the

orifice and a the coefficient of contraction, the rate of efflux is

I '82. The coefficient of contraction. Let there be a small hole AB
in the wall of a vessel, which is kept full, and let h be the depth of the hole

y ------

Fro. 1-82 (a).

below the free surface. Let 77 be the atmospheric pressure, q the speed of

efflux at the vena contracta. Let A'B' be the projection of the area of the hole

on the opposite wall, both walls being supposed vertical.
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If p is the hydrostatic pressure at AB when the hole is closed, the action

of AB and A'B' on the fluid will consist of two equal but opposite forces pav
When the hole is opened, the force p^ at AB disappears and is replaced by a

force JTbj. If we suppose, as a first approximation, that the hydrostatic

pressure remains unaltered, except at the hole AB, the force accelerating the

fluid is (p U)^. The rate of outflow of momentum is p q cra q, where cra is the

area of the vena contracta. Thus *

By Bernoulli's theorem,

P n

Therefore a2 Joi , and the coefficient of contraction is .

Bernoulli's theorem also shows that when the hole is opened the pressure

on the walls in the neighbourhood of the hole AB will fall below the hydro-
static pressure, so that the accelerating force is actually greater than p FI,

and therefore, in general, cr2/al >%. (See 3-32.)

If, however, we fit a small cylindrical nozzle projecting inwards, the original

assumption is nearly exact and the coefficient of contraction is \. This arrange-

ment is known as Borda's mouthpiece, fig. 1-82 (6).

FIG. 1-82 (6). Fia. 1-82 (c).

On the other hand, a rounded nozzle projecting outwards, fig. 1-82 (c), will

increase the flow, for the vena contracta will occur at the outlet and we shall

get

and therefore

y-

which is greater than the former value.

Torricelli's theorem shows that the rate of efflux increases with increasing

coefficient of contraction so that this device increases the efflux. This fact

was used by the Romans in the era of the Emperors, when the people were

allowed as much water as they could draw in a given time from a supply

flowing through an orifice.

* From 3*40 it appears that when the motion is steady, the flux measures the rate of change
of momentum.
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I
-9. Euler's momentum theorem. Consider a current filament

bounded by cross-sections of areas oj_ ,
o-2 at AB, CD respectively, in the steady

motion,of a liquid. If ql , q^ are the speeds at AB, CD, Euler's theorem states

that, neglecting external forces, the resultant force due to pressure of the

surrounding liquid on the walls and ends of the filament is equivalent to forces

Pi <?i

2 and
/
0<T2 #2

2
normally outwards at the ends AB, CD respectively.

Proof. By Newton's second law of motion, the resultant force must pro-

duce the rate of change of the momentum of the fluid which occupies the portion

of the filament between AB and CD in fig. 14 at a given instant t.

Now at time t+ 8t the liquid in question will occupy the portion of the

filament between A 'B', C'D'. Thus the momentum of the liquid in question

D

FIG. 1-9.

has increased by the momentum of the fluid in between CD and C'D' and has

diminished by the momentum of the fluid between AB, A'B'.

Hence there has been a gain of momentum of amount
/>cr2 q2 $t x q2 at CD

and a loss of amount pa^ q $t x q at AB. Hence the rate of change is a gain

of amount pcr2 <?2
2 at CD and a loss of amount pa^ q^ at AB. These rates of

change are produced solely by the thrusts acting on the walls and ends of

the filament. Hence these thrusts must be equivalent to the forces pol q^ and

/3<72 qz
2
normally outwards at AB, CD respectively. Q.E.D.

*

I '91. The force on the walls of a fine tube. Consider liquid flowing

steadily through the portion AB of a tube whose cross-sectional area is so

small that the liquid may be considered as part of a stream filament.

PIG. 1-91.

Let QI , P! , ql denote the cross-sectional area, the pressure, and the speed
at A, cra , pi , q% the corresponding quantities at B. By Euler's momentum
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theorem, the total action of the pressures on the liquid in AB consists of normal

forces P<JI qt
2 at A and pa2 q2

* at J5, both outwards. But the forces due to the

pressures at A and B are p^av and p2a2 both normally inwards.

Hence the forces exerted by the walls on the liquid together with the

normal inward forces pl crl , pz a2 are equivalent to the normal outward forces

Hence the forces exerted by the walls on the liquid are equivalent to normal

outward forces cr{ (pi+pqi
2
)
at A and cra (^2 -f pq2

z
)
at B. By the principle of

action and reaction, the forces exerted by the liquid on the tube are obtained

by reversing these latter and are therefore equivalent to normal inward forces

of the above amounts.

I '92. d'Alembert's paradox. Consider a long straight tube in which

an inviscid liquid is flowing with constant speed U. If we place an obstacle A

U U

Fio. 1-92.

in the middle of the tube the flow in the immediate neighbourhood of A will

be deranged, but at a great distance either upstream or downstream the flow

will be undisturbed. To hold the obstacle at rest will in general require a

force and a couple. Calling F the component of the force in the direction

parallel to the current, we shall prove that F = 0. This is d'Alembert's

paradox.

We shall neglect external forces such as gravity. Then F is the resultant

in the direction of the flow of the pressure thrusts acting on the boundary
ofA

Consider the two cross-sections S1 , $2 a^ a great distance from A. The

fluid between these sections can be split up into current filaments, to each of

which Euler's momentum theorem is applicable. The outer filaments are

bounded by the walls of the tube and on these the thrust components are

perpendicular to the current. The walls of the filaments in contact with A
are acted on by the solid by a force whose component in the direction of flow

is -F. By Euler's theorem, the resultant of all the thrusts on the fluid

considered is

-p^C/a+pSatf2
,

which vanishes since Sl
= S2 .
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By Bernoulli's theorem, the pressure pl over Si is the same as the pressure

Pt over S2. Thus

Pi fli-*-ftSi = 0,

and therefore F = 0.

If we suppose the walls of the tube to recede, we have the case of a body
immersed in a current unbounded in every direction, and the above proof still

shows that F = 0.

Finally, if we impose on the whole system a uniform velocity U in the

direction opposite to that of the current, the liquid at a great distance is

reduced to rest and A moves with uniform velocity U. Superposing a uniform

velocity does not alter the dynamical conditions. Therefore the resistance to

a body moving with uniform velocity through an unbounded inviscid fluid,

otherwise at rest, is zero.

I '93. The flow past an obstacle. If we consider a sphere, fig. 1-93 (a),

held in a stream which is otherwise uniform (uniform at a great distance from

FIG. 1-93 (a).

the sphere) and neglect external forces, the streamline flow must be sym-
metrical with respect to the diameter AC of the sphere which lies in the

direction of the stream. The central streamline coming from upstream en-

counters the sphere at A and the fluid is there brought to rest. The point A
is a point where the velocity is zero, usually called a stagnation point.

This streamline then divides and passes round ABC, ADC, reuniting at C,
which is a second stagnation point, and then proceeds downstream to infinity.*
The streamlines adjacent to this are bent in the neighbourhood of the sphere
and gradually straighten out. As we proceed further from the sphere the

streamlines become less and less curved, so that at great distances laterally
from AC their curvature becomes negligible. Photographs taken when the

motion is in its initial stages confirm this qualitative description. (See Plate 1

fig. 1.)

In a real fluid, such as water, there is of necessity internal friction. Experi-
mental evidence tends to show that the fluid in actual contact with the obstacle

* We shall use the term "
infinity

"'
as a convenient description of points so distant that the

disturbing effect of the obstacle is negligible.
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must be at rest. To reconcile the photographic evidence with this, the boun-

dary layer hypothesis was introduced by Prandtl, namely, that in the im-

mediate neighbourhood of the sphere there is a thin layer of fluid in which the

tangential velocity component increases with great rapidity from zero to the

velocity of the main stream as it passes the sphere, while the pressure is

continuous as we pass normally outwards. As the velocity of the stream is

increased, the boundary layer remains thin at A and on the anterior portion

of the sphere but increases in thickness towards the rear, as illustrated in

fig. 1-93 (b). (See also Plate 1, fig. 3.)

FIG. 1-93 (6).

Within this boundary layer there is reversal of the motion, forming eddies,

while the theoretical motion subsists outside. The boundary layer thus

separates from the sphere at a point in the neighbourhood of B.

As the velocity of the stream is still further increased, the point of separa-

tion of the boundary layer moves further forward and the layer widens out

behind into an eddying wake

in which energy is continually

washed away downstream with

the eddies, fig. 1-93 (c).

The picture of the relative

motion is the same when the

sphere moves forward in other-

wise still water with constant

velocity and the sphere will undergo a resistance or drag to compensate

for the loss of energy. To maintain the velocity, energy must be supplied

to the sphere, and d'Alembert's paradox is avoided. The general validity

of Prandtl's hypothesis is amply confirmed by photographs, and shows that

the theoretical study of hydrodynamics can still fulfil a useful function, since

the motion outside the wake is still a theoretical streamline motion. In

another direction also we can apply the theory to the study of the behaviour

of those bodies of
"
easy

"
shape in which the breaking away of the boundary

layer is confined to a part near the rear with a consequent diminution in the

breadth of the wake. Examples of these easy shapes occur in the forms of

fish, in properly designed aerofoils, and in strut sections of small drag.

FIG. 1-93 (c).
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These are also the considerations on which we can repose our trust in the

applications of Bernoulli's theorem to measurements made in actual fluids

by the Pitot tube, and that for a twofold reason. In the first place, the aper-

tures in a Pitot tube are on the anterior portion, where the boundary layer

is thin, and in the second place, the pressure is transmitted with continuity

through this thin layer.

EXAMPLES I

1. A water tap of diameter J in. is 60 ft. below the level of the reservoir

which supplies water to a town. Find the amount of water which can be delivered

by the tap in gallons per hour.

2. Water is squirted through a small hole out of a large vessel in which a

pressure of 51 atmospheres is maintained by compressed air, the external pressure

being 1 atmosphere. Neglecting the difference of level between the hole and the

free surface of the water in the vessel, calculate in feet per second the speed at

which the water rushes through the hole.

3. Water flows steadily along a horizontal pipe of variable cross-section.

If the pressure be 700 mm. of mercury (specific gravity 13-6) at a place where the

speed is 150 cm./sec., find the pressure at a place where the cross-section of the

pipe is twice as large, taking g = 981 cm./sec.
2

.

4. A stream in a horizontal pipe, after passing a contraction in the pipe at

which the sectional area is A, is delivered at atmospheric pressure at a place
where the sectional area is B. Show that if a side tube is connected with the pipe
at the former place, water will be sucked up through it into the pipe from a

reservoir at a depth

below the pipe ;
S being the delivery per second.

5. An open rectangular vessel containing water is allowed to slide freely down
a smooth plane inclined at an angle a to the horizontal. Find the inclination to

the horizontal of the free surface of the water.

If the length and breadth of the vessel be a, b respectively and the mass of

contained water be w, find the pressure on the base of the vessel, neglecting atmo-

spheric pressure.

6. Liquid of density p is flowing along a horizontal pipe of variable cross-

section, and the pipe is connected with a differential pressure gauge at two points
A and B. Show that if pt

- p z is the pressure indicated by the gauge, the massm
of liquid flowing through the pipe per second is given by

where o^ , cr2 are the cross-sections at A, B respectively. (R.N.C.)

7. A vessel in the form of a hollow circular cone with axis vertical and vertex

downwards, the top being open, is filled with water. A circular hole whose dia-

meter is 1/nth that of the top (n being large) is opened at the vertex. Show that
the time taken for the depth of the water to fall to one-half of its original value (h)
cannot be less than
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8. If pjp
v constant, and the fluid flows out through a thin pipe leading out

of a large closed vessel in which the pressure is n times the atmospheric pressure p,
show that the speed F of efflux is given by

p being the density at the vena contracta. (K.N.C.)

9. A gas in which the pressure and the density are connected by the adiabatic

relation p = kp
v flows along a pipe. Prove that

is constant, if the external forces are neglected, q being the speed. If the pipe

converges in the direction of the flow, prove that q will increase and p/p will diminish

in the direction of flow provided that q
2
p < yp. (K.N.C.)

10. Show that the speed q of gas flowing in a thin tube whose cross-section is or

at a point, of distance s in arc from a fixed cross-section, obeys the equation

where c is the speed of sound in the gas at the point considered, the adiabatic

law being followed throughout.

11. If gas flows from a vessel through a small orifice from a region where the

pressure is pl to a region where the pressure is p 2 , prove that the rate of efflux of

where p = kp
v

,
w 2 is the area of the vena contracta, and c2

2
YPz/Pz ( CI%> 1*64),

p 2 being the density at the vena contracta.

12. If to is the small cross-section of a tube of flow in a gas, prove that qpw = con-

stant along the tube and hence use the result of 1 -64 to prove that qp is a maximum
when q = c, and that co is then a minimum.

13. If CM is the speed of sound at the minimum cross-section in Ex. 12, prove
that there is an upper limit to the value of q given by

1

i

= 245 Cm .

14. Gas flows radially from a point symmetrically in all directions, the pressure
and density being connected by the law p =

*/>. Ifm is the rate of emission of mass,

supposed constant, prove that

477 qr*
=m exp ,

where q is the speed at distance r, and ql is the speed where
/>

1.



CHAPTER II

VECTORS

2-1. Scalars and vectors. Pure numbers and physical quantities which

do not require direction in space for their complete specification are called

scalar quantities, or simply scalars. Volume, density, mass and energy are

familiar examples. Fluid pressure is also a scalar. The thrust on an infini-

tesimal plane area due to fluid pressure is, however, not a scalar, for to describe

this thrust completely, the direction in which it acts must also be known.

A vector quantity, or simply a vector, is a quantity which needs for its

complete specification both magnitude and direction, and which obeys the

parallelogram law of composition (addition), and certain laws of multipli-

cation which will be formulated later. Examples of vectors are readily

furnished by velocity, linear momentum and force. Angular velocity and

angular momentum are also vectors, as is proved in books on Mechanics.

A vector can be represented completely by a straight line drawn in the

direction of the vector and of appropriate magnitude to some chosen scale.

The sense of the vector in this straight line can be indicated by an arrow.

In some cases a vector must be considered as localised in a line. For

instance, in calculating the moment of a force, it is clear that the position of

the line of action of the force is relevant.

In many cases, however, we shall be concerned with free vectors, that is to

say, vectors which are completely specified by their direction and magnitude,

and which may therefore be drawn in any convenient positions. Thus if we

wish to find only the magnitude and direction of the resultant of several given

forces, we can use the polygon of forces irrespectively of the actual positions

in space of the lines of action of the given forces.

We shall represent a vector by a single letter in clarendon (heavy) type
and its magnitude by the corresponding letter in italic type. Thus if q is the

velocity vector, its magnitude is q, the speed. Similarly the angular velocity o>

has the magnitude co.

A unit vector is a vector whose magnitude is unity. Any vector can be

represented by a numerical (scalar) multiple of a unit vector parallel to it.

Thus if i is a unit vector parallel to the vector a, we have

a = ai a .
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We proceed to develop some properties of vectors with a view to hydro-

dynamical applications.

In what follows, the magnitude of a vector will be supposed different from

zero, unless the contrary is stated.

2*11. The scalar product of two vectors. Let a, b be two vectors,

of magnitudes a, 6, represented by the lines OA, OB issuing from the point 0.

Let be the angle between the

vectors, i.e. the angle AOB measured

positively in the sense of minimum

rotation from a to b.

The scalar product of the vectors is

then ab and is denned by the relation

ab = ab cos 0.

The scalar product is a scalar and

is measured by the product OA . OM,
where M is the projection of B on OA, so that OA = a, OM b cos 0. It is

clear from the definition that

ba = ba cos
(
-

6)
= ab cos 6 = ab,

so that the order of the two factors is irrelevant.

When the vectors are perpendicular, cos = 0, so that ab = 0. Con-

versely this relation implies either that a, b are perpendicular, or that a = 0,

or that b = 0.

If ab 0, where b is an arbitrary vector, then a = 0, for a cannot be

perpendicular to every vector b.

If 6 is an obtuse angle, the scalar product is negative.

If i a is a unit vector, then i a b = 6 cos 0, which is the resolved part of the

vector b along the direction of any vector which is parallel to I .

If i , 16 are both unit vectors, then i a i6
= cos 6, which is the cosine of the

angle between any two vectors parallel to i a and I6 .

If the point of application of a force F moves with velocity v, the rate at

which the force is doing work is the scalar product Fv.

2*12. The vector product of two vectors. Let a, b be two vectors

of magnitudes a, b inclined at the angle 6 measured positively from a to b. We
define the vector prodttct a A b as the vector of magnitude ab sin 6 which is

perpendicular both to a and to b and whose sense is such that rotation from

a to b is related to the sense of a A b by the right-handed screw rule.

It follows from the definition that vector multiplication is not commu-

tative, for ba sin (
-

0)
= - ab sin 0, and therefore

a A b= -b A a.
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Also when the vectors are parallel (6
= or TT) we have a A b = 0. Con-

versely this relation implies either that a, b are parallel, or that one of them

is zero.

a.b

FIG. 2-12 (i).
FIG. 2-12 (ii).

As an example, let P be a point of a rigid body which is moving about the

fixed point with angular velocity to. Let r be the position vector ofP relative

to 0. Draw PN perpendicular to to. Then the velocity of P is o>OP sin 6

perpendicular to the plane PON and is therefore the vector to A r.

O O r P
FIG. 2-12 (iii). FIG. 2-12 (iv).

Similarly, the vector moment about of a force F acting at P is r A F,

fig.
2-12 (iv).

Since ah sin 6 measures the area of the parallelogram of which a, b are

adjacent sides, the vector product a A b can be regarded as a directed measure

of this area. It is the vector whose magnitude measures the area and whose

direction is normal to the area.

l'I2U The distributive law. Both scalar and vector multiplication

are distributive, that is to say,

a(b + c) = ab+ac,
a A (b+c) = a A b+a A c.

The proofs are left to the reader. See Ex. II, 27, 28.

2*13. Triple scalar product. If a, b, c are three vectors, the combina-

tion a(b A c) is called their triple scalar product. This is the scalar product of

the vectors a and b A c. The triple scalar product is measured by the volume

of the parallelepiped whose conterminous edges are a, b, c.
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Proof. Since b A c represents the area of the face whose edges are b, c

and in fig. 213 is directed along the normal on the same side as a, the triple

scalar product is measured by the volume.

Q.E.D.

Thus a(b A c) = b(c A a) = c(a A b).

But a(b A c)= -a(c A b),

since b A c = - c A b,

but note that

a(b A c)
= (b A c)a.

Hence the cyclic rule : the triple scalar product changes sign only with a

change of cyclic order of the vectors. Note also that the actual position of

the sign A is unimportant, for

<a A b)c=a(b A c) = [abc],

the last being a convenient notation for the triple scalar product.

If two of the vectors are equal or parallel, or if all three are coplanar, the

triple scalar product vanishes, e.g.

(1) [aab] = 0.

2* 14. Triple vector product. If a, b, c are three vectors, the combina-

tion a A (b A c) is called a triple vector product.

This is the vector product of the vectors a and b A c.

Note that a A (b A c) = -a A (c A b) = (c A b) A a.

Hence the centric rule
;
the sign of the triple vector product changes only

with a change of the centre vector.

The triple vector product has the very important property expressed by
the relation

a A (b A c)= -(ab)c+(ac)b.

Proof. The vector a A (b A c) is perpendicular to the vector (b A c), which

is itself perpendicular to the plane containing b, c. Thus a A (b A c) is coplanar
with b, c and can therefore be compounded of scalar multiples of these latter.

Therefore

A(|>A C) =**->
where p9 q are scalars. Since a A (b A c) is perpendicular to a, the scalar product
of these two vectors is zero. Therefore

= pzb-qac.
Thus p = Aac, q = Aab,

where A is a scalar. Hence

a A (b A c) = -A(ab)c+A(ac)b.
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To determine A, take the scalar product with a vector d which is coplanar

with b, c and is perpendicular to c, fig. 2-14.

Then cd = 0,

and therefore

Abd(ac) = d[a A (b A c)]

e ^ "
b =a[(b A c) A d],

\9o-0 ^ using the property of the triple scalar

d product.
FIG. 2-14. XT /L \ j j. iNow (b A c) A d is a vector coplanar

with b, c and perpendicular to d and is therefore a vector along c. If 6 is

the angle between b, c, the magnitude of this vector is

bed sin = M cos (90
-

0)c,

and therefore the vector (b A c) A d = (bd) C.

Hence A(bd)(ac) = (ac)(bd),

and therefore A = 1. Q.E.D.

Note also the result (a A b) A c
= - a(bc) 4- b(ac), and that as a mnemonic

the term with the negative sign is always obtained by moving the brackets in

the triple product but preserving the order.

2*15. Resolution of a vector. If a, b, c are given vectors, not all

coplanar, and x is an arbitrary vector, then

(i) x[a(b A c)]= a[(b A c)x]+b[(c A a)x]+c[(a A b)x].

(ii) x[a(b A c)] = (b A c)(ax) + (c A a)(bx) + (a A b)(cx).

The first resolves x along the given vectors, the second resolves x perpen-

dicularly to the planes 6c, ca, ab.

Proof of (i). Since a, b, c are not all coplanar, we can resolve x along

them and so get
x = pa+qb+rc,

where p, <?,
r are scalars. Form the scalar product with (b A c) which is per-

pendicular to b and c. We then have

which determines p. Q.E.D.

Proof of (ii). Let x =
2>(b A c) + #(C A a) + r(a A b).

Form the scalar product with a which is perpendicular to (c A a) and (a A b).

Then

which determines p. Q.E.D.
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2*16. The indefinite or dyadic product. Given two vectors a, b, in

addition to the scalar and vector products, we introduce the indefinite or

dyadic product.

a;b.

This product, which we call a dyad, has no geometrical interpretation. It is

an operator of great use in transforming vector expressions.

A sum of dyads is called a tensor of the second rank, e.g.

(a;b) + (c;d)+(e;f)
is a tensor. The brackets may be omitted.

Taking a third vector c we define the scalar product of c and the dyad a ; b

by
(a;b)c= a(bc), c(a ; b) = (ca)b.

Thus the product is a vector, and is indeed a different vector according as

c follows or precedes the dyad.

As an example we have the triple vector product

a A (b A c) = ~(ab)c+(ac)b - a[-(b ; c) + (c; b)],

which also illustrates the distributive law which holds for dyadic multiplication.

The unit dyad I or idemfactor is a tensor such that, if a is any vector,

(1) /a = a/ = a.

We prove the existence of the unit dyad by means of the following expres-

sion for it :

where i, j, k are mutually perpendicular unit vectors. For by resolution (215)

we can write a = aj + agj + a3k, and the truth of (1) is then easily verified by

forming the products.

Consider the tensor

(3)
= a; b + c; d-f e;f.

The tensor

(4) &c
= b; a-hd ; c+f ;e

obtained by reversing the order of the vectors in each dyadic product is called

the conjugate of 0.

If r is any vector,

(5) r = a(br) + c(dr) + e(fr) = r#c .

If = <&6 , the tensor # is said to be symmetric, and then

If = - <pc , the tensor # is said to be antisymmetric or skew.

If is any tensor, we have identically

c M.T.H
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The tensor (0-F#c) symmetric, for

Similarly, (0-$c) is antisymmetric. Thus any tensor can be expressed

(in one way only) as the sum of a symmetric and a skew tensor.

If in (3) we replace the indefinite multiplication by scalar multiplication,

we get a scalar known as the first scalar invariant of 0, written

(7) #/= ab+cd + ef.

The scalar product of two dyads (a ; b) and (c ; d) is defined by

(8) (a ; b)(c ; d) = a(bc) ; d = a ; (bc)d = (bc)(a ; d)

= (a;d)(bc)

and is again a dyad. The position of the scalar be does not affect the product.

By distributing the product we see that the scalar product of two tensors

of the second rank is a tensor of the second rank.

If we take the first scalar invariant of the right-hand side of (8), we get a

scalar known as the double scalar product of the dyads and we write

(9) (a ; b) . . (c ; d) = (ad) (be) - (cb)(da) - (c ; d) . . (a ; b)

and so double scalar multiplication is commutative.

By distributing the product we form the double scalar product of two

tensors of the second rank, say <>, IF, and we find that

(10) 0..y=f ..$= <*>... f, = >.. <2>c>

which shows that the double scalar product is unaltered if we replace both

tensors by their conjugates.

Thus if S is a symmetric and A an antisymmetric tensor of the second rank,

S..A = S ..A C
= S..(-A) = -8.. A

Therefore S . . A = and therefore the double scalar product of a symmetric and

an antisymmetric tensor is zero.

2*19. Scalar and vector fields. If to each point of space there cor-

responds a scalar, then a scalar field is defined. Thus, for example, fluid

pressure p and fluid density p constitute scalar fields.

If to each point of space there corresponds both a scalar and a direction,

that is, if a vector is, as it were, tied to each point of space, then a vector field

is defined. One of the most important vector fields in hydrodynamics is the

field of fluid velocity q. Another important field is that of vorticity (see

241).
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2*20. Line, surface, and volume integrals. As we shall in the sequel

have occasion to use these notions, this section will be devoted to explaining

the sense in which the terms are to

be understood. The object of this

section is not to explain how the

integrals may be calculated numeri-

cally, nor the conditions in which

they exist, for these matters are

fully treated in books on Analysis.

When a particular case presents

itself for numerical evaluation, that

case will be dealt with as an in-

dividual instance.
FIQ 2 .2Q (i)

Let AB be an arc of a given

curve (not necessarily a plane curve). By marking points Qi , Qa > > Qff-i

divide the arc AB into N sections AQl , Q^ ,
. . . , Qx^B of lengths Ssj ,

8s2 , . . . ,
SsN each less than e, and take points Pt , P2 ,

. . . ,
PN ,

one in each

section. Fig. 2-20 (i) illustrates the case 2V = 4. Let/(P), or briefly/, be a

function whose value is known at each point P of AB, and let/x ,/2 , . . . ,/y
be the values of/ at the points P1 ,

P2 , . . . , P#.
Then we can form the sum

(1) /i &i +/t Ss2+ . . . +/J Ssy = Zf 8*.

If we now allow the number N to increase indefinitely, and at the same

time let c tend to zero, the line integral of / along AB, or the curvilinear

integral off along AB, is defined by

f /<fe=lim 27/85.
JUB) N-+<x>

f-*0

This definition applies whether /is a scalar or a vector.

If/ is a vector, then the sum in (1) is a sum of vectors to be obtained by
the law of addition of vectors, and the integral is then a vector quantity.

If/ is constant, i.e. if/ has the same value c at every point of AB, then it

is clear from (1) that the sum is d where I is the length of AB, and in this case

the value of the integral is d.

If/ is a scalar function which obeys the inequality

(2) M>f>m,
where M and m are fixed numbers, then clearly

S(M -f) 8*> 0, 27(/- m) 8*> 0,

and therefore 2M 85>Zf 8* >2m 8s,
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so that Ml>\ fds>ml.
JUB)

Let i, be a unit vector along the tangent to the element of arc ds. Then

writing ds = i, ds, so that ds is a directed element of arc of the curve AB, we

have the equivalence

f Xds-={ X\ 8 ds,

J(A) J(AS)

so that the integral on the left is defined in terms of the integrals already

described. Here X may be a scalar or vector and the multiplication may be

scalar, vector, or dyadic.

To define the surface integral of/ = f(P) over a surface S (not necessarily

plane or closed), we divide the surface into

elements of area 8Si ,
S$2 > > $&# >

each

having its longest dimension less than e. If

/i > /2 > fy denote the values of/at points

Pl ,
P2 , . . .

,
PN , one within each element,

we can form the sum

FIG. 2-20 (ii). /x 8^ +/a 8/8, -f . . . +/y 8/Sy - /8&

The integral of/ over the surface S is then defined by

f fdS = lim 27/85.
J (S) #-*

~*o

This definition applies to both scalar and vector functions.

If/ has the constant value c over the surface, then the surface integral is

cA, where A is the area of the surface S. Again, if/satisfies the inequality (2),

then

MA>{ fdS>mA.
J(S)

Again, if n is a unit vector drawn to the element dS in the direction of the

outward normal to a closed surface /S,

(3) f n dS = 0,

Jos)

for it is easily seen that the projection of this vector on any fixed plane is

zero.

It is often convenient to replace n dS by the vector dS which represents

an element of surface area directed along the normal (cf. 2-12). With this

notation (3) becomes
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More generally we are led to consider integrals of the type

f XdS,
Jos)

where X is a scalar or vector and the multiplication may be scalar, vector, or

dyadic.

To define a volume integral, consider the volume V consisting of the region

interior to a closed surface S. We divide F
into elements of volume ^rl} oY2 , . . .

, Sr# ,

each having its longest dimension less than .

If/i >/a >/y denote the values of / at

points P1 , P2 , . . .
,
PN , one within each

element, we can form the sum

/i &i +/a 8ra+ . . . +fN &ry = 2f ST. FIG. 2-20 (iii).

The integral of/ throughout the volume V is then defined by

(F) #-
e-0

which again applies to scalar and vector functions.

If the function has the constant value c, then the integral is equal to cF,

and if/ satisfies the inequality (2), then

MV> { fdr>mV.
J(F)

Notation
;
we use one sign of integration when there is only one differential

ds, dS> or dr. When two differentials are used we shall use two integral signs.

Thus if dS = dx dy, we write

f /*S=ff fdxdy.
J(S> JJ(5)

2-22. Variation of a scalar function of position. Let
</>

be a scalar

function of position so that the values of ^ constitute a scalar field. We shall

suppose </>
to be a continuous function with

continuous differential coefficients of the first

^ order. Then there 'exists, in general, a family

of surfaces on each of which $ is constant.

We can call these equi-<f) surfaces.

Let P be any point and let Q be a near

point on the normal at P to the equi-^ surface

^ = < p , where < P denotes the value of
<f>

at P. Then if PQ is regarded as

a small length of the first order, we can write
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9Q VP-
\dsJpQ*

where (- )
denotes the 'distance rate of change of

</>
for displacements in

\d8jpQ
the direction of PQ.

Let R be any point near P, and let the equi-< surface
</>
=

<f>s meet PQ in

/S, and assume that to the first order RS is perpendicular to PQ. Then

so that

(2) <fo
- fa = Pfl cos (^) = Ffi (grad <f>),

\ OS I PQ

where grad <f>
denotes a vector * whose direction is along PQ and whose magni-

tude is

It follows from this definition, by putting PQ=n dn, where n is the unit

vector along the normal at P to the equi-< surface through P, that

(3)

Various alternative notations are available for grad <.

In the first of these we denote the change of position vector ofP by dr, in

the second the change of position vector is denoted by dPt the advantage here

being that explicit attention is called to the point P by the notation. The

notation 9<^/9r may be compared with the ordinary partial differential coeffi-

cient 9^>/9aj, but it must be remembered that we cannot divide by a vector, so

that d(j>/dr cannot be regarded as the limit of a quotient of two small quantities.'

The symbol V (pronounced nabla) was introduced by Sir William Rowan
Hamilton and so named from its fancied resemblance to a harp. The vector

operator V is analogous to the scalar operator D d/dx, in that it does not call

explicit attention to the independent variable. It is nevertheless convenient.

We shall use in the sequel whichever of the notations indicated in (4) may
appear most appropriate.

Returning to (2), the rate of change of
<f>
when we proceed in the direction

PRia

PR \OS / pQ
which is the component of grad <j>

in the direction PR.
*
grad ^ is an abbreviation of the phrase

"
gradient of $ ".
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Thus if in (2) we write PR =
I, ds, we have

34>
AJL

(5) 57
=

We must therefore regard V as a vector operator which, applied to a scalar

<f) t gives a vector whose component in any direction is the rate of change of ^
in that direction.

2*23. Alternative expression for grad <. Let be a cylinder bounded

by equi-^ surfaces
</>
=

<f>P , <f> <f>g
where Q is on the normal at P to

</>
=

<f>p ,

PQ is infinitesimal of the first

order, the diameters of the cross-

section are small compared with

PQ, and the generators are normal

to
<f>
= <p. Let n be the unit

normal vector (drawn outwards) at

the element dS of the surface of

the cylinder. Consider

(1) f n<f>dS.
Jos)

FIG. 2-23.

Since the diameter of a cross-

section is of the second order, < is constant round the boundary of a cross-

section, and therefore the contribution of the curved surface of the cylinder

to (1) is zero (cf. 2*20 (3)). If CD is the area of a cross-section, (1) then gives,

approximately,

In<f>
dS = t\Q

(S)

= w PQ (grad </>)
= F (grad <),

where V is the volume of the cylinder, and where we have used np+ ng = 0.

Now let the cylinder be replaced by any small convex surface S enclosing

P
; S can be split up into a number of cylinders of the type described above,

and since the contributions of the internal boundaries cancel we get, approxi-

mately,

(2) f n<^= F(grad<),
JOS)

where V is the volume enclosed by S, and therefore to the order of approxima-
tion here considered :
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Thus if S is any surface enclosing P, we have

V-+Q

where F->0 means that the surface S shrinks in such a way that it always

encloses P while its longest dimension tends to zero.

2*24. Generalised definition of the operator V- We have seen that

the vector operator V when applied to a scalar function
</> yields the vector

grad </>
as defined by 2*23 (3). This naturally leads us to enquire what mean-

ings we should attach to V F, V A F> V I F, where F is a vector function of

position. To this end let X be an unspecified (scalar or vector) function of

position. Then we define V X by

(1) V^ = lim

where V is the volume enclosed by a surface S to which the point P at which

V X is to be calculated remains interior, while the largest dimension of S tends

to zero. Here n is the outward unit normal vector at the element dS. The

multiplication in V X ma7 be scalar, vector, or dyadic, when X is a vector.

Taking X in turn to be a scalar
<f>

or a vector F, we make the following

definitions, the names on the right giving an alternative nomenclature.

(2) V^ =
liniT7|
F-*O V Jos)

(3)
* V F = lim

F-*0

(4) V A F = lim ~ I n A F dS = curl F.

i r

(5) V >
F = lim

Observe that (2) shows (cf. 2-23) that the definition of V here given is

consistent with its previous use as a gradient operator on a scalar.

Note also that V is a vector operator in the sense that if n is a vector, n<,

n F, n A F remain respectively a vector, a scalar, and a vector when V is sub-

stituted for n.

Thus from (1) the formulae

a(n# = (an)4, a(n ; F) = (an)F,
lead to

* div F is an abbreviation for divergence of F. A vector field whose divergence vanishes is
called wknoidal. A vector field whose curl vanishes is called irrotational
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More generally we can manipulate formulae containing V as though V
were an ordinary vector, provided that the manipulated results are significant,

for example, do not terminate with V> and that we pay due regard to vectors

which are variable and vectors which are constant.

2*31. The operator (a V)- I^t a be a vector which is not to be varied

in the limiting process of 2-24 (1). Then

(1) lim ^

(2)

f
an< dS = a f lim ^ f n<f> dS\ = a(V$ = (a V)#-

V J(S) LF->orJoS) J

irni
f (an) fdS = aflim^ f (n ; f)d8\

= a(V ; F) = (a V)F,
F-K) r J (5) LF-*) r J J

from 2*16, and remembering that V is a vector operator.

If a = ai, 2-22 (5) shows that (a V)< *s a times the rate of change of <

in the direction of a.

Observe that (a V) is a scalar differentiation operator. Thus to interpret (2)

we note that F has scalar components along three arbitrary fixed non-coplanar

vectors, and therefore (a V) F gives a times the rate of change of F in the

direction of a.

Also, since (a V) is a scalar operator, the ordinary rule for differentiating

products gives

(3) (a V)(bc) = b[(a V)c] + c[(aV)b].

(4) (a V)(b A c) - [(a V)b] A c+b A [(a V)c].

Note also that, for infinitesimal changes of position,

(5) <ty
= (rfrV)< = <*r(V<,

dq =
(<*r V)q-

As an important application let q be the

fluid velocity at the point P, q' the velocity

at a neighbouring point Q in the position

measured from P by the infinitesimal vector

Q

I* Fio. 2-31.

Then q'
= q -f (TQ V)q to the first order.

2*32. Operations on a single vector or scalar.

(I) div (grad (f>)
= V(V $) = (V V)$ =: V2

$>

since
</>

is a scalar. The operator V2 is called the Laplacian operator.

(II) div (curl a) = V(V A a) - [VV a] = 0,

from 2-13 (1).

(III) curl (grad ^) = V A (V <^)
=: (V A V)$ = ^>

since, from 212, a A a = 0.
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(IV) curl(curla) = V A (V A a).

Using the triple vector product, we get

curl (curl a) = V(Va)
- (VV) a = grad (div a)

-V2 a.

Thus

(V) V2 a = V(Va)-V A (V A a).

The foregoing are all capable of direct proof. For example, to prove (II) we

write, with an obvious notation,

Vi(V2A a) = lim lim ^-^ Irhfn^a^/S^cljSi
Fr-^OF.-M) V\V* J J

= - lim lim =-=

using the triple scalar product cyclic rule, and assuming that the order of

integrations can be inverted. Thus

Vi(V2A a) = -V2 (Vi A a), .

or V(V A a) = -V(V A a) = 0.

Similarly for (V), we have

V A (V A a) = lim lim inr [ \n1

Fj-^OFj-^O ^1^2 JJ

- lim lim -^
F,->OF,->0 V\V

= V(Va)-V2 a.

These specimen arguments show that manipulations with V ultimately rest

on the corresponding manipulations with n.

2*33. Operations on a product. To study operations on a product

XT, we shall suppose X, Y to obey the following product law :

(Z+Z'XF+Y') = XY+XY' + X'Y+X'Y',

the order of the factors in every product being, in general, relevant.

Let X, Y be the values of our symbols at the point P, and X' t Y' their

values at a point of a closed surface S surrounding P, and n a unit outward

normal to the element dS of this surface. Then we have identically

and therefore

[nZT'AS= [nXYdS+{nX(Y'-Y)dS

If we let the surface surrounding P shrink to infinitesimal size, Z' J
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Y' - Y will also be infinitesimal, and therefore the last integral will itself be

infinitesimal compared with the other integrals and may be neglected.

Also, X, Y, being calculated at the point P, are fixed, and I n dS = when

taken over a closed surface (2-20 (3)). Therefore
*

(I) fnZYd = 0,

and we get

'dS^ {nX(Y'-Y)dS+[n(X'-X)YdS

= f

on making a further application of (1).

Dividing by F the volume enclosed by the surface, we get

~ fn X'Y' dS = ~ fn XT
dS+j [n

X'YdS.

If we now let F->0, this gives, by the definition of V

the suffix zero indicating that the corresponding quantity is not to be varied

when applying the operator nabla.* This formula can be compared with the

corresponding formula for the differentiation operator D =
d/dx, namely :

D(XY) = D(X Y)+D(XY )
= X (DY) + (DX)YQ

= X(DY) + (DX)Y,

the suffix zero being dropped, as it is no longer required. The above property,

in conjunction with the gradient property (2-23), shows that V is in the nature

of a generalised differentiation operator.

2*34. Applications of V to products. We shall now apply the result

of the previous section to certain products of vectors and scalars, remembering
that we must so arrange that V ^s never an end term. The triple scalar and

vector products yield the following results which will be useful :

(A) p(q A r)
= r(p A q)= -q(p A r).

(B) P A (qA r)
= (rp)q-r(pq).

(C) p(qr) = q A (p A r) + (qp)r.

Observe that (C) is merely a rearrangement of (B).

(I) V(a A b) = V(a A b )+V(aOA b)

= ba(V A a)-a (V A b),from(A).

* Note that this step is an essential preliminary to developing the result of operating on a

product, of. 2-34 (II), (III).
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The suffix zero is no longer required and we get

V(a A b) = b(V A a)-a(V A b),

or div (a A b) = b curl a - a curl b.

= (b V)a- b (V a)- (a V)b+ a(V b), from (B)

V A (a A b) = (bV)a-(aV)b-b(V

(III)

(IV) From (II) and (III), by subtraction,

(a V)b = i(V(ab)-V A (a A b)-b A (V A a)

-a A (V A b)-b(V

In particular, since V A (q A q)
= 0, we get

(V) If Y)
is a constant vector (unaffected by V)> we ge^ fr m (H), (III),

= -V A fo A b)+r)(Vb),

(VI)

= <(V a)+ a(V <), since
</>

is a scalar, or

div (atf>)
= ^ div a+ a grad <j>

(VII)

curl (a<) <f)
curl a - a A grad <.

(VIII)

where ^, />
are scalar functions.

(IX)

using (VIII) and then (VI).

(X)

= b(Va)+(aV)b.
In paiticular, V(q J q) = q(V q) + (q V)q-
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2*40. Anal/sis of the motion of a fluid element. Consider an

infinitesimal element of fluid whose centroid is the point P.

Let
YJ

be the position vector

of the point Q of the element

relative to P. Then if q is the

fluid velocity at P, the velocity at

Q will be (2-31).

Consider the equation

(to
1

m !
FIG. 2-40.

where c is a constant. The left side

is homogeneous and quadratic in the components of
rj,

and therefore represents

a surface of the second degree.* Let us find the normal at the point IQ. If dt\ is

in the tangent plane at Q, the equation of the surface is satisfied to the first

order in diq by the vector YJ + C?YJ,
and therefore by substitution and subtraction,

omitting the second order term in dv\ efrq,
we get

(2) {foV)q}*l + ^V)q}i) = 0.

But from 2*31 (3), since V operates on q but not on
YJ,

we have

and from 2-34 (V)

V(qij) = -(V A q) A *)+toV)q.

Therefore, from (2),

{to v)q-(V A q) AiQ+(W)q}^ = -

Since the normal is perpendicular to
efrr),

it follows that it is in the direction

of the vector

(3) 2(r)V)q-(VAq) A1 = 2/ft). say.

Therefore, from (1), (3), we get for the velocity at Q the expression

From this it appears that the velocity at Q is the sum of three parts, namely :

(i) The velocity q at P, which corresponds to a translation of the element

as a whole.

(ii) The velocity i(VAq)Afy which is the velocity due to the rotation of

the element as a whole with the angular velocity J(V A q)- (
ee 2-12.)

(iii) A velocity /(yj) relative to P, which is in the direction of the normal

* In fact a central quadric, typically an ellipsoid. That it is a central quadric follows from
the fact that if ) lies on it, so does -

TJ.



46 ANALYSIS OF THE MOTION OF A FLUID ELEMENT [2-40

to the quadric of the system of central quadrics {(riV)^}^
= constant, on

which Q lies.

The first two of these motions are rigid body movements ; they could still

take place if the fluid element were frozen solid.

The third motion is called a pure strain and can only take place when the

substance is deformable, as is the case with a fluid. This type of relative

motion is characteristic of any deformable substance whether fluid or not.

To elucidate the nature of the pure strain, we observe that a central

quadric has three perpendicular axes of symmetry which are normal to the

tangent planes at their extremities. Lines parallel to these axes are being

elongated at constant (though generally different) rates. Such a motion will

distort an element originally spherical into an ellipsoid. We also note that

lines in the direction of the axes of symmetry at time t will still be mutually

perpendicular at time t+ $t. Since the axes of symmetry are parallel to the

normals at their extremities, the directions of these axes are given by the

equation

The foregoing analysis shows that this description of the motion relates

to an intrinsic property of the fluid, independent of any axes of reference.

2'4 1. Vorticity. The vector V A 9 = curlq = say> is called the vorticity

vector, or simply the vorticity. The angular velocity of an infinitesimal element,

often but not very aptly called molecular rotation, is equal to half the vorticity.

If a spherical element of the fluid were suddenly solidified and the surrounding

fluid simultaneously annihilated, this solid element would rotate with the above

angular velocity. See Ex. II, 13.

A vortex line is a line drawn in the fluid such that the tangent to it at each

point is in the direction of the vorticity vector at that point. It will be shown

later (3*54) that vortex lines move with the fluid.

When the vorticity is different from zero the motion is said to be rotational.

A portion of the fluid at every point of which the vorticity is zero is said

to be in irrotational motion. In such a portion of the fluid there are no vortex

lines. Motions started from rest are always initially irrotational.

2'42. Circulation. Consider a closed curve C situated entirely in a

moving fluid. Let q be the velocity at an arbitrary point P of the curve and

SA a unit vector drawn in the direction of the tangent at P, the direction

being so chosen that an observer moving from P in the sense of
s^

describes the curve in the sense chosen as positive. Take a point Q, on the

curve, adjacent to P such that the arc PQ is of infinitesimal length 8s.
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. We can then form at P the scalar product

directed element of arc at P (cf. 2-20).

Sj^ 8s = q 8s, where 8s is the

FIG. 2-42.

Forming the analogous products at Q, R, . . . ,
and so on right round the

curve back again to P, we define the circulation of the velocity vector round

the curve C by the relation

circulation = lim 27 q 8s =
J qds.

-*> J (C)

The circulation may be written in the alternative forms

circ C = I q ete = q dr = q dP,
J (C) J (C) J (C)

all of which mean the same thing.

We can form the circulation of any vector round a closed curve.

2*50. Stokes 9 theorem. Let S be a surface *
having the closed curve C

for boundary, and let n be a unit vector in that direction of the normal to the

element of area dS which is related to the directions of circulation round dS

and by the right-handed screw rule. Then

f f

JOS)
A

J(O

This is Stokes' theorem.

Proof. If we join points of the curve C by sets of lines lying on the surface

$ so as to form a network, we see that every mesh of the network has lines in

common with its neighbours, except those parts which belong to the curve C.

Since a line which appears in two meshes is described twice in opposite senses,

it follows that

circulation round C = sum of circulations in the meshes.

* Such a surface may be conveniently described as a diaphragm closing 0.
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It is therefore sufficient to prove the theorem for a single mesh of an

infinitesimal network covering S.

FIG. 2-50 (ii).

have, very nearly,

FIG. 2-50 (i).

Since any mesh can be divided into triangles

it is sufficient to prove the theorem for a

single triangular mesh ABC whose sides are of

infinitesimal length. Let D
t
Ey F, be the mid-

points of the sides, fig. 2-50 (ii), and let P be the

centroid. Write

(1) ZB= a, BC = b, CA= -(a+b).

Let <\M denote the value of q at any point

M. Then by the definition of the integral we

JUJSC)

ds q = AB <\D+CA c\E

Now from 2-31 (5)

Therefore by subtraction

(2) qp-

Similarly

Therefore

(3)
j<*sq=

-K

Now n dS=\ (a A b) if dS is the area ofABC and therefore to the same order

of approximation
*
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Comparing this with (3), we have proved the theorem for an infinitesimal triangle

and therefore generally for any surface which can be regarded as the limit of a

triangulation, bounded by a curve which can be regarded as the limit of an

inscribed polygon. Q.E.D.

Stokes* theorem as stated above is a

particular case of a more general theorem

which, using directed areas, may be stated

thus :

where X is any scalar or vector function of

position and ds is the directed element of

arc of C.

C
Fia. 2-50 (iii).

Proof. As before, it is sufficient to prove this for a single triangular mesh as

follows. With the same steps,

and since a A b is the directed area of the mesh, the theorem follows for the

mesh and therefore generally. Q E.D.

A still more general form is

the proof of which is an immediate inference from the method of proof given
above ; indeed we can even replace the first d/dP on each side by the same

operation repeated n times.

2-51. Deductions from Stokes' theorem. Putting in turn q,

for X in the general form of the theorem 2-50 (1), we get

A q

(1)
f
J(

=
f
JoJos) Jos)

where is the vorticity. In words
;
the circulation of the velocity in any

circuit is equal to the integral of the normal component of the vorticity over

any diaphragm which closes the circuit.

M.T.H;
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(2) f tds= \ (n A V)**S.
J (C) J (S)

f f f f

J7)
A

J(5) J(S) JOS)

2*52. Irrotational motion. Let be a fixed point, P an arbitrary

point in a simply connected *
region in which the motion of a fluid is irrota-

tional. Join to P by two

JL- -^^^^-^"2 paths OAPt OBPf each lying
p in the region in question.

__^_ _^^ Then OAPBO is a closed

A ^^>^q curve, and therefore, by
Fl0' 2 '62 -

Stokes' theorem,

qds+ qds =
J (OAP) J (PJBO) J ((S)

where S is any surface lying entirely in the fluid and having the curve OAPBO
for rim. Since the motion is irrotational, V A q == ^> an^ therefore

(1) I q ds = q ds - -
</>P,

J (OAP) J (OBP)

say, and it is now clear that
</>P is a scalar function whose value depends solely

on the position of P (and of the fixed point 0) and not on the path from

to P.

Now take a point Q so near to P that the velocity vector q may be assumed

nearly constant along PQ.
Let

YJ be the position vector of Q with respect to P.

Then, approximately, if <j>p
is denoted by <f>,

=
J((PQ)

Since Q is arbitrary, provided it is near enough to P, the vector
YJ

is also

arbitrary and therefore

(2) q=
Thus when the motion is irrotational the velocity vector is the gradient of

a scalar function f of position
-

<f>.

This scalar function is called the velocity potential. We have proved that

the velocity potential necessarily exists when the motion is irrotational.

* For the meaning of this term see 3-70.

f The negative sign for this scalar function is adopted by some writers and not by others.

We have followed Lamb in adopting the negative sign, so that p<f> is the impulsive pressure which
will generate the motion from rest, cf. 3*64.
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Conversely, when the velocity potential exists, the motion is necessarily

irrotational, for then

from 2-32 (III).

It also appears, from the meaning of V <f>>
*&&*> the flukl velocity at any

point is normal to that member of the system of surfaces
<f>
= constant, which

passes through that point. In other words, the streamlines cut the equi-^

surfaces orthogonally.

2-53. Conservative field of force. In a conservative field of force

(1-42), the work done by the force F of the field in taking a unit mass from

to P is independent of the path. Thus in fig. 2*52,

Fdr = -Qp,
(OJ.P) J(OBP)

where QP is a scalar function whose value depends solely on the position ofP
(and of the fixed point 0).

This equation is of the same form as (1) of section 2-52, and we can from

that point repeat the same argument to show that

F= -i

where Q is a scalar function, known as the force potential. Physically, Q
measures the potential energy of the field, that is, the energy stored up in

taking a unit mass from to P.

The negative sign in 2-52 (2) further brings out the mathematical (not

physical) analogy between the velocity potential and the force potential.

2-60. Gauss's theorem. Let the closed surface S enclose the volume F,
and let X be a scalar or vector function of position. Then, if dr is an element

of the volume F, and dS is an element of the surface S,

nXdS,
)

where n is a unit vector in the direction of the normal to dS drawn into the

interior of the region enclosed by S. This is Gauss's theorem.*

Proof. By drawing three systems of surfaces, say parallel planes, the

volume F will be divided into elements of volume. If Sr be such an element,

we shall have approximately (2-24 (1)),

= -f
J(

nXdS,

* 0. F. Gauai,
"
TJieoria attractions ", Comm. oc. reg. Goto., Vol. II, Gettingen, 1813%
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the integral being taken over the surface of the volume 8r, and by summation
for all elements :

f f
I (^ X)dr = lim Z^XBr = -2\ nX dS.
J (F) r-*0 J (fir)

Now at a point on the common boundary of two neighbouring elements

the inward normals to each element are of opposite sign. Thus the surface

integrals over boundaries which

are shared by two elements of

volume cancel out and we are

left with the surface integral over
4 -

n

2 6

Note that the minus sign in

the above theorem arises from

the fact that we have considered

the normal drawn into the region

enclosed by . In applications
to hydrodynamics we shall thus be considering the normal drawn into the

fluid when S is the bounding surface.

It should be mentioned that the theorems of Stokes and Gauss, and the

various deductions therefrom, depend for their complete validity on the exist-

ence and continuity of the partial derivatives implied in their enunciations.

Discontinuity will manifest itself physically when it occurs in the motion of a

fluid, and we shall not therefore discuss conditions of validity, for that would
lead us too far from the main theme.

If the region within S is m-ply connected (see 3-70), we modify it to become

simply connected by inserting m-l barriers B l ,
B2 , ..., B^_ : ;

and reckon

each face of a barrier as a separate boundary. Thus we have in the case of a

doubly connected region, a single barrier B whose faces will be denoted by B+
(the positive face) and B- (the negative face). Then Gauss's theorem applied
to the simply connected region so attained gives

f \fXdT=-( i\XdS
J (V) J (S)

Since at any part of B, n^-f n-=0, if we write

-(
J(B+ )

t\-X~dS
(B-)

for the jump in X when crossing B from the negative to the positive side

Gauss's theorem for the doubly connected region in question is

fJ
(

n+[X]dS.
(F) J (S) J (B+)

If w>2 we simply add more terms on the right, one for each barrier.
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2*61. Deductions from Gauss's theorem. If a is a vector and
(f>

a

scalar, let us write in the enunciation of Gauss's theorem the following forms

instead of (V*): V a, V A a > W. (VVM (VVK V(q ; )

We then get the following theorems :

(1) j Vadr = -I nadS.
J(F) JOS)

(2) f VA*-= -f n A a*SL
J(F) J(5)

(3) f n<f>dS.
J(5)(F)

(4) f V2
< <*r = -

f (n V)< dS = -
f f dS, from 2-22.

J(F) Jos) j(S)W>

(5) f V2 adr = -f
J(F) J(S)

(6) f V(q ;*)&
J(F)

which may be called the tensorform of Gauss's theorem.

Using 2-34 (X), the last result leads to

(7) f a(nq)AS=-f [a(V q) + (q
J(-S) J(F)

Gauss's theorem may also be formulated thus :

(8) f

d

~j>dV= -f dSX,^
JCF)^^ J (j5)

using c^F for the element of volume and dS for the inwardly directed vector

element of surface area.

2-615. A solenoidal vector forms tubes of constant intensity. If a
is a vector field, an a-h'ne is a line whose tangent at every point is in the

direction of the a-vector through that point (cf. streamlines). An a-tube

results from drawing the a-line through every point of a closed curve. Consider

the portion of an a-tube between two plane sections by planes S lt $2 whose

outward normals are n x and n 2 . By Gauss's theorem

I nja d8l
-

f n 2a dS2
=

| \7-a dr = ;

JW J w J

since by definition *V* = and since by the definition of an a-tube, na dS =
at the lateral surface.

*
Page 40 footnote.
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Thus <4=Jnad^ is constant along the tube. We call A the intensity of

the tube. We can therefore define a unit tube as one of unit intensity and we

can speak of the number N of unit tubes which thread a given circuit C.

2*62. Green's theorem.* From 2.34 (VI) we have, for any vector a,

Thus from 2-61 (1), we get

-f na<f>dS=\ a(V$*r+|
JOS) J(F) J((F)

Putting instead of a the vector V^> where
i/j

is a scalar function, and

noticing that n V A
= fy/dn (2-22), we get

(1) f (V*W)*r=-f <t>^tdr-\ </>^dS
J(F> J(F) J(5) <

-
-f

J<<F)

since the left-hand side is unaltered when
</>

and
ijj

are interchanged. The

above relations constitute Green's theorem, or Green's first identity.

An immediate inference is Green's second identity

(2)

Put<=</rin (1). Then

(3) f <W)(W)*r=-f
J(F) ^(

Def. Any solution <^
of Laplace's equation y2 F= is called a harmonic

function.

If
<f>

is a harmonic function it follows from (1) that

(4) f
J (F)

Herein put ^= 1 . Then

If <^ and ^r are both harmonic functions, (2) gives

In Green's theorem the functions ^ and ^ must be one-valued, that is to

* G. Green, Essay on Electricity and Magnetism, Nottingham, 1828.
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say, to each point P of the region F there must correspond only one value of^
and one value of

if/.
These functions will, in our applications, usually represent

velocity potentials and, provided the region is simply connected,* the above

condition will be satisfied. The same may be true in a multiply connected

region, but here it is possible for the condition to be violated on account of

the existence of circulations. When circulations exist Green's theorem requires

modification.

Suppose for example that the region is doubly connected and that on

crossing the barrier B which renders it simply connected, ^, \ft jump by constant

quantities /c, A, the cyclic constants of the barrier,

(7) ^-^- =
[fl

= icf ^+-f-=M>A.
Then the foregoing argument shows that

(8) f
J

((V) J (F) (S)

= -f
J (

'(F)

the last result being got by interchanging </>
and

i//
in (4), which is permissible

since the left-hand side is unaltered.

The foregoing constitute Green's theorem for a doubly connected region.

For an n-ply connected region we add one more term for each additional

barrier. E.g. if n =3,

2*63. An application of Green's theorem. Take a closed surface S at

every point of whose interior \7
2

</>
= 0, V2

^ = 0. Then, by Green's theorem,

a)

Take a point P interior to S, and let r be the distance ofP from the element

of area dS. We shall prove that, if
<f>P is the value of ^ at P,

(2)

which expresses the value of ^ at any interior point in terms of its values on

the boundary.

Proof. Take =
1/r. It is easily verified that V* I/' = 0. Draw a sphere
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S centre P, radius R, so small that S is entirely within 8 and apply 2-62 (2) to

the region between S and 8. Since <fo = <ff on 2, we get

0) f
-

J<F)' (r)

FIG. 2-63.

Since the first two integrals are independent of R so is the last, which

is therefore equal to its limit when jR->0 ;
and if we make R so small that

<f>
=

<j)P nearly over the whole surface, the limit of this integral is

Therefore we obtain Green's third identity

-
v ' ^

4:77

and since V2
^ = we have (2). Q.E.D.

It also follows from (1) that the left-hand side of (2) is zero for a point exterior

2'70. Cartesian coordinates. If we take three mutually perpendi-

cular axes of reference, Ox y Oy, Oz, and three unit vectors, i, j, k, parallel

to these axes, any vector a can be expressed in terms of its components,*

ax > <*>v > az> along the axes in the form

a = a*+)

The vectors i, j,
k themselves combine according to the laws

12 = J2
= k2 = 1, ij

= jk = ki =

for their scalar products, since they are perpendicular.

* This notation for the components of a vector is very convenient. Thus the components of
the velocity q would be (qx , qy , qg ), although they are more usually denoted by (tt, v, >). We
shall use both notations for q.
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For the vector products, we have

'A i=: /A/= k A k==
> JA ks= t k A'=/> A/= k >

for the same reason.

Taking a second vector b, we have therefore the scalar product

ab = (\ax + iay+ka g)(\bx+ ibv+kbz) -axbx+ avbv+ ajb, ;

and the vector product

a A b = (\

= aJ
= i (ayb z

- azbv) + j (a zbx
- axb z ) + k (axby

- aybx).

The vector product can be more conveniently written in the form of a

determinant, thus :

j
k

ax ay a z

bx by b g

In this form it is clearly seen that a A b and b A a have opposite signs, for

the second is obtained from the first by interchanging the last two rows of

the determinant, thereby causing a change of sign, but not of absolute value.

If
(/)
=

<j)(x, y, z) is a scalar function, we have, from 2-22, i V < =

and, from 2-15 (i),

and therefore V <t>
= i + j + k

so that the vector operator V is to be interpreted by

*-, . 3 . a
,

a
(1) V =

a- + J -T + k T .

dx '

dy dz

If we apply the operator to the vector q whose components are u, v, w

parallel to the axes, we shall get

which gives, on performing the multiplication,

(2) Vq^AJ.1 v ^ dx dy dz

Repeating the operation on V & we obtain at once

Again, v A q

dv 3u_ . (dw dv\ . (du dw

-^dy'dz)* 1
\d~z~ te
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We can also write symbolically
i |

k

L a i
Bx By Bz

u v w

To interpret the expression (a V)*l we observe that, if

[2'70

a =

then

and therefore

Lastly,

^ _,_ _,_
. .

"f + ++++ " "

The foregoing interpretations in cartesian coordinates serve to illustrate

the economy of thought and writing arising from the use of vector notations

independent of coordinates. The vector methods form a powerful tool for

obtaining general theorems and afford immediate insight into their intrinsic

character. In order to investigate particular problems which involve the

carrying of calculations to a numerical conclusion it is nearly always necessary

to introduce coordinates at some stage. It is clear that this stage may often

be advantageously deferred as long as possible.

2-71. The alternative notation d/dr. We have seen in 2-70 (1) that

the gradient operator may be written

and therefore the dyadic product

=
( i I)+(J ; J)+(k ; k) = * the idemfaetor (246).

Thus if a is a constant vector,

(3)

Also -r- ss
I, and therefore

ox
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(4) ?
fa~~ ar

These results are capable of a simple generalisation*
Thus if q = iw+jtj-f kt0, we can write

<6'

V'B*lB+*l5-
and therefore if a is a constant vector,

(6) (qa) = a,

and if T is a scalar function of , v, w,

(7) ? = agar
du du dq

Again, as in 2*33,

5~
=

tq
(qq) = ^ (q<>q)+~ (qqo) * q + q = 2q from (6).

If r and r are the position vectors of the same fluid particle at two different
instants of time, it is easily verified that

/&\
^ d ; r d , d : r d

(8)
a?
=
-ar'3F-'

where V means
g-r

;r-

Thus in particular

(9)
a > ro ^il^^ir-r-^il a J ro

r
'

ar ar
"" ""

ar "IF"
Let I

7

be a homogeneous scalar function of the second degree of two inde-

pendent vectors u, <>. By this we mean that ifT = T(u, w), then if t is a scalar,

T(tu, tu>)
=

Write = f u, TQ
= ^co, then

, A rand therefore

But
ft <% dtfy at

dT 3T

Thus u~
ai

Putting t a 1 we get
9T ar

which is
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The method of proof is quite general and applies to a homogeneous function

of degree n, in which case 2 is replaced, in the above proof, by n.

2*72. Orthogonal curvilinear coordinates. In cartesian coordinates

the position of a point is defined by the intersection of three mutually perpen-

y

Flo. 2-72 (i). FIG. 2-72 (ii).

dicular planes, x = constant, y = constant, z constant. For certain

problems other systems of coordinates are convenient, for example, spherical

polar coordinates, in which the position is defined by the intersection of a

sphere, r = constant, a plane co = constant, and a cone 6 constant, fig.

2-72 (i), or cylindrical coordinates, in which the position is defined by the

intersection of two planes, x constant, cu constant, and a cylinder

w constant, fig. 2-72 (ii).

To discuss the form taken by the nabla operator in such a system of ortho-

gonal coordinates, suppose these to be defined by
* = /iK wa ,

w3), y == /,(! , U2 , w3), z = /,(*! ,
U2 , a),

where the surfaces, u = constant, u2
= constant, u3

= constant, intersect

orthogonally. If we draw the surfaces corresponding to % ,
u2 , w3 and wx -f Bul ,

u2 + 8w2 , u3 + 8w3 , we obtain a figure

o' B 1
which is to the first order a rect-

angular parallelepiped whose edges
are h^ 81^ , h% Sw? ,

A3 Su3 , fig. 2-72

(iii), where ht ,
A2 > ^3 are functions

of the coordinates obtained from the

relation

h
2
Su

2 \ O
FIG. 2-72 (iii).

where
dx dx

+

dx
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and so on, the product terms like di^du2 disappearing on account of the ortho-

gonal property.

Let J! , i 2 , I 3 denote unit vectors in the directions OA, OB, 00 corre-

sponding to increasing values of u ,
t/2 >

wa- These vectors, being mutually

perpendicular, satisfy the same relations among themselves as the vectors

i, j,
k of 2-70.

Then from 231 we have, for a scalar function ^,

1

and therefore, using 2-15 (i),

1 ^ 1 ^
-

1
d<t>

'

Thus, in orthogonal curvilinear coordinates,

v-ii-l+ls-l+J!.!..
A! d^ h2 du2 h3 du3

Since the unit vectors are themselves functions of the coordinates, we

must calculate expressions like V A 'i an(^ V 'i- To find the former we have,

from 2-32 (III), V A (V %) = 0, and, from (1), V*i=ii/*i- Therefore

2*34 (VII) gives

I . . y (TUj r 1
8*1,

1
8*1,

1 9*, I

h,
(V A "J - "i A v

(hj
-

ii A L ^s a^
l

*, ^2 duz

h v *, aWs
' 3
J

'

TT t-r 'a ^1 *3 ^1Hence V A i
= rT" a~^

~
I~T" a^A

Aj % OWg % fl2 OU<t

Again, V i
= V (U A h) = 3(V A U)

-
'a(V A a) from 2 '34 (I)- Therefore

T? _ l ^a

Now let q = ql ii + q2 i 2 -f g3 1 3 .

Then V q = 27 V (ft ij = 27(ft V ^i + i V ft),

from 2-34 (VI), and this reduces to

Thus if q = -V& we get from (1) and (2)

Again, V A q

and therefore, after redaction, in detenninantal form the vorticity is
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A! ii A2 i 2 A8 i

(6) ?=iid + it +..
For the acceleration * we have, from 3-10 (7) and 2-34 (IV).

Taking the component along ij , we get

(
8
<t\

Combining these, the component acceleration along i x is

(*) ~aT ~*~ T~ 9i a7~ + T" #2 oTT "^" T~ ^3 3""

4. i! ."

h3 \du

[2-72

The remaining components can be written down by symmetry.
To illustrate these results in the case of spherical polar coordinates, we

have, fig. 2-72 (i), x r cos 0, y = r sin 6 cos o>, z = r sin 6 sin o>, so that

(ds)*
=

(<fo)
a+ (%)

a+ (<fe)
a = (dr)*+ r*(dO)*+ r*Bm*0(da>)*.

Thus if % = r, w2
= 0, w3 = to, we have

(7) A! = 1, A2
=

r, A3
= r sin 0, and therefore, from (3),

Again, with cylindrical coordinates,

x = x, y = w cos co, z m sin o>.

Taking MX
= x, u^- tnr, w3

=
o>,

we get Aj = 1, Aj = 1, Aa = ro.

* This discussion is placed here for convenience, but section 3-10 of the next chapter ihonld
be read first.
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Thus the vorticity, from (4), is given by

do;

where the suffixes denote the direction of the corresponding unit vector or

component. See also Ex. II (16), (17).

2-73. Rate of change of the unit vectors. In orthogonal curvilinear

coordinates (2-72) we can calculate d\ r/dut> (r,s 1, 2, 3) as follows. By
Dupin's theorem,* that triply orthogonal surfaces intersect in lines of curvature,

we see that the curves along which either ut or wa varies are lines of curvature

of a surface w3
= constant. Now normals to a surface at adjacent points of a

line of curvature intersect. Therefore as we go along OA in fig. 2-72 (iii), the

normal i 3 -f di3 intersects the normal ! 3 and therefore d\ 3 is perpendicular both

to I 2 and i s ,
and so is parallel to ij. Therefore ai^a^ is parallel to ilf and

similarly dl3/du2 is parallel to i 2 ,
and four similar results.

Let ds = hl dut ^-f- Aa du2 i 2 -f A8 duz i3 . Thus

s _ A i - * i - ft i""^ 11 ' 2 ' 2 ' "^ 13 '

Therefore d(h^ i^jdu^ = d(h2 \ 2)/dui and so

j vlj - O\2 O/l^ dtl^
n/i l\tn

""" =:: In (
""

ou du-t dUi vUn

But dli/duz is parallel to i 2 ,
and d\2/dui ^ parallel to \v Therefore

O\-t lo ()hn vl* It O/l/i

vUn fli VU-t vU't flit OUa

Also from ^ = i 2 A i s we get

From (1) and (2) we can write down d[ r/dut for all values 1, 2, 3 of r, 5.

These results, together with

enable any nabla operation to be calculated with reasonable economy of effort.

EXAMPLES II

1. If masses m, n are at the extremities of the vectors a, b, prove that the

centroid is (wia-f nb)/(w + n).

* R. J. T. Bell, Coordinate yeometry of three dimensions, London (1926), pp. 334, 344.
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2. Prove that (i) ab = ba -
a,

(ii)(a + b)
2

'

(iii)a(b A c)
- [abc]

3. Prove that (i) (a + b) A (a
-
b) = - 2a A b,

(ii) |a A b |

2 = a2 62 -(ab)
a - (a& + ab)(a&-ab).

4. Prove that (i) a A (b A c) -f b A (c A a) + c A (a A b) =0,

(ii) (a A b)(e A d) - (ac)(bd)-(ad)(bc) (Lagrange's identity)

(iii) a[b(c A d)]-b[a(c A d)] + c[d(a A b)]-d[c(a A b)] = 0.

5. Prove that the area of the triangle whose vertices are at a, b, c is the maga
tude of the vector

6. If A is a scalar and r, s vectors, all functions of t y prove that

(i)-(Ar) =A +r-

("\ ( - ^? ^L

d ds dr

dt
A
dt dt*

'

7. If the surfaces
<j>

=
c, where

<f>
is the velocity potential, be drawn for equ

distant infinitesimal values of the constant c, show that the velocity at any poir
is inversely proportional to the distance between consecutive surfaces in the neigl
bourhood of the point.

Prove also that if any surface of equal velocity potential intersects itself, th

point of intersection is a stagnation point.

8. If<f>(r, t) denotes the velocity potential, prove that

d<f>
= -~

dt-<\dr y

and show that the differential equations of the streamlines are given by

0.

9. If
<j>, <f>'

are two distinct solutions of Laplace's equation (3-20) valid withi

the closed surface S, prove that

f ****- f f*d8.
J(S) on J (S)

^ dn

10. If
<f> (x -f h, y + k, z + 1) be written in the form $ (r + R), where

r = tx + ly + kz, R- ih + lk + kl,

show that Taylor's theorem can be expressed in the symbolic form

11. If
irj
* i Bx + j fy + k 82, prove, with the notations of 2-40, that
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. du , dv dw
where a = =- ,

= =-, = 3-,dx dy dz

nf dw dv du dw , dv du
2/ = + 2a = ^~ + ^- , 2A = 5- + -5- ,J

dy dz
y

dz dx dx dy

and hence that the equation of the central quadric of 2*40 is

a (8x)
2 + 6 (8y)

2 + c (8z)
2 + 2/ 8y 8z + 2g 8z 8x + 2h 8x 8y - constant.

12. If q = lu + |v + kw, t|
- ISz + jSy + kSz,

prove that

du ~ \ . fdv - dv dv

13. Prove that through any point P of a fluid in motion there is in general at

any instant one set of three straight lines at right angles to each other such that,

if the lines move with the fluid, then after a short time 8 the angles between them
remain right angles to the first order in 8t, and that the angular velocity of this

triad of lines, as it moves with the fluid, is \ curl v, where v is the fluid velocity
at P. Prove also that, if a small portion of the fluid with its mass centre at P be

instantaneously solidified without change of angular momentum, then its angular

velocity immediately after solidification is \ curl v, if, and only if, the principal
axes of inertia for the resulting solid lie along the above triad of lines. (U.L.)

14. Use the tensor form of Gauss's theorem to prove that

(i)
f (nq)qe&S= f [(q V)q + q (V q)l
J (S) J (F)

(ii)jf [nq-2(nq)q]iZ8- f
J (S) J

((V)

15. If P, Q, R are finite, continuous, and single-valued functions of x, y, z

throughout a space bounded by a closed surface S, prove that

where I, m, n are the direction-cosines of the outward normal at any point of S,
and the integrals are taken throughout the volume and over the surface S.

Find the value of fdS
J7

taken over the surface of an ellipsoid, where p is the perpendicular from the centre

to the tangent plane. (R.N.C.)

16. For spherical polar coordinates, prove that the components of vorticity
are given by

sin0) dqi]
'~fa\'

M.TJi.
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(cttrlq)8=
i r

i

ffc-v ^'
r Lsm $ do> dr

17. Prove that in cylindrical coordinates

Y72,. ^.,^4.1^ +1^V * "
Bxz dm* wdw ro

2 ao>2
'

18. Prove that the components of the vorticity in cylindrical coordinates are

19. Prove that if P lies on a straight line which passes through the extremity of

a and is parallel to b, then the equation of the line is rj
= a + b, where yj is the position

vector of P and t is a scalar.

20. Show that the equation of a plane whose normal is n and which passes

through the extremity of a is (rj
-
a) n = 0.

21. If F = a
;
a' + b ;

b' +c ; c', show that yjFj = constant represents a family
of central quadrics.

22. Prove that V A r - 0, Vr - 3, Vr =
r/r, V(l/r) = -

r/r>, V2
(l/r)

- 0.

23. Prove that in general orthogonal coordinates

'2 d* '3 ^i

and deduce the expression for (\ l V)q.

24. Show that typical terms in (V ; q) are

A2 du 2 h3 du

and hence write down the complete expression for V ; q.

26. If is any dyad, prove that

(i)

(u)

26. If a, b, c are any three non-coplanar vectors, and if a*, b*, c* are so chosen

that a*a b*b = c*c = 1, while all cross-products such as ab*, ac*, etc., are zero,

prove that (a ; a*) + (b ; b*) + (c ; c*) is the idemfactor.

27. If u is a unit vector, interpret geometrically the scalar product ux, and prove
geometrically that

u(b + c) ub + uc.

Deduce the distributive law for scalar products.
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28. By considering the vector product of an arbitrary unit vector u and the

vector

x = a A (b+c)-a A b-a A c,

prove, using the preceding example, that x 0, thus deducing the distributive law

for vector products.

29. With the notation of 2-50 prove that

f V(n(W- f V(qds).
J (S) J (O

30. With the notations of 2-72 show that

V - (dx/du^+ (dyjdu

with similar expressions for A2 and h3 .

a b c

31. Prove that [abc](p A q) pa pb pc

qa qb qc

32. Prove that

-r A [q(Vq)-q A ?].



CHAPTER III

EQUATIONS OF MOTION

3*10. Differentiation with respect to the time. Fig. 3*10 shows the

actual path of a fluid particle which at time t was at the point A, whose

position vector is r with respect to the fixed point 0.

At time t the particle is at P,
{Q /+/

Fio. 3-10.

at time t + t it is at Q, position

vectors r and r-f 8r respectively.

When the particle is at P
there are associated with it scalar

functions, such as pressure and

density atP, and vector functions,

such as its velocity and accelera-

tion at P.

We enquire how to form the differential coefficient with respect to the time

of such scalar and vector functions. First note that the position vector r of

this particular fluid particle is a function of t only, for it is clear that r can

depend only on the time t and some position such as A considered as the initial

position and therefore fixed.

We have seen in 1-1 that

0) ,-.
Now consider, for example, the density p. If we fix our attention on the

particle when at P, the density depends on the position vector r and the

time t, so that

Since r is a function of t only, so is
/>,

and therefore we can form a total

differential coefficient dp/dt. To calculate this we have, in the notation of 2-71,

dp _ 9/(r, t) dr df(r, t) _ df(r, t)
/ 3

di
--dT + * ~W~ ~

~~si~
+

Vq

and therefore

(2)

The first term on the right represents the rate of change of
/>
with respect
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to the time when P is regarded as fixed, the second the rate of change of p at

a fixed time t due to the change of position from P to Q. Since p is a scalar,

this can be written

m S-HMW*
This gives the rate of change of density as the particle moves about. If

the fluid is incompressible, the density of the fluid particle does not change,

so that

When p is constant, (4) is satisfied identically.
*

A similar argument can be applied to any scalar function a, giving

m 5-S-.iv.).

To find the rate of change of a vector a associated with the particle, the

steps of the argument are exactly the same down to (2), which now gives

which cannot be further reduced to the form (3).

The most important case here is that of the velocity vector q whose rate

of change gives the acceleration of the particle, namely

from 2-34 (IV).

Translating this into rectangular cartesian coordinates by means of 2*70,

we see that

. du .dv . dw . du . dv . dw__i I __L If _ __|_ I __(_ If _
dt
+
'dt

+
dt

~
dt
+l

dt
+

dt

so that (7) is equivalent to the three equations :

du du du du du
(8) -= == -~-+u-z-+v-z-+w~ ,v '

dt dt dx dy dz

dv dv dv dv dv
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dw dw dw dw dw
- . = _-f W _-f^--f^ .

dt dt dx dy dz

Thus we have the equivalence of operators

d a a a a

[3-10

-j- -^-z--z-
dt dt ox dy

in cartesian coordinates. In the vector form

^-
dz

The operation here implied is sometimes called differentiation following

the fluid, implying that we are calculating the rate of change of some quantity

associated with the same fluid particle as it moves about.*

3*20. The equation of continuity. If we consider a fluid particle of

infinitesimal volume dr and density p at time t, the mass of this fluid particle

cannot change as it moves about and therefore

(1) |(pdr)
= 0.

This is one form of the equation of continuity, or conservation of mass. If

the volume expands, the density

diminishes, and vice versa, in such

a way that (1) is always satisfied.

Let X denote any property per

unit mass carried by a fluid particle

as it moves. Then for a volume V
which moves with the fluid, i.e. always

consists of the same fluid particles

(2) Xpdr=\
d

-j
) J (F)

at at

Another point of view is the following :

Consider a fixed closed surface S lying entirely in the fluid. If n is a unit

inward normal to the element dS, the rate at which mass flows into the sur-

face through the boundary is

(3)
os)

pqndS.

The mass of fluid within the volume F enclosed by S is

pdr.

* Some writers use the notation DjDt. The names substantial or material

also used.

rentiation are
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Assuming that no fluid is created or annihilated within S, the mass can

only increase by flow through the boundary. Equating the time rate of

increase of the mass to (3), we get

-
<"J(

V(pq)dr
(S) (F)

by Gauss's theorem. Thus

Since the surface S can be replaced by any arbitrary closed surface drawn

within it, we must have, at every point,*

(4) !+VO>q)
= 0,

which is another form of the equation of continuity.

Now, from 2-34 (VI) and 3-10 (9), we have successively

~

(5) ^Vq = 0, Vq=l
In the case of an incompressible fluid, dp/dt (see 3-10 (4)), and therefore

(6) V q = o,

which is the equation of continuity for a liquid ; the expansion V q vanishes.

Using cartesian coordinates (2-70), this gives

du dv dw _

7)
-. + -. + . = 0.
dx dy dz

In the extremely important case of irrotational motion, we have q = -V ^>

and therefore the equation of continuity (6) for a liquid in irrotational motion
becomes

(8) V2 ^-0,
or in cartesian coordinates,

3+3+3-*
Equation (8) is known as Laplace's equation.

From this investigation it appears that a fluid cannot move according to

an arbitrarily assigned law of distribution of velocity. For the motion to be

* If
I

A dr=0 for an arbitrary volume Vt =-.
\

A dr = 0, so that lim ==
\

A dr =0, i.e.

J(F)
J

v](V) r-*o v](v)

limi 4F=4=0.
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possible it is evidently necessary that the equation of continuity should be

satisfied.

In particular, possible irrotational motions of a liquid are subject to the

condition that the velocity potential < shall satisfy Laplace's equation.

3*30. Boundary conditions (Kinematical). When fluid is in contact

with rigid surfaces or with other fluid with which it does not mix, a kinematical

condition must be satisfied if contact is to be pre-

|
n

served, namely that the fluid and the surface with

I

which contact is maintained must have the same

velocity normal to the surface.

If we denote by n the normal unit vector drawn

at the point P of the surface of contact and by q
the fluid velocity, we shall have, in the case of

a fixed rigid surface, qn = 0, which expresses the condition that the normal

velocities are both zero, or, in other words, the fluid velocity is everywhere

tangential to the fixed surface, fig. 3-30 (i).

When the rigid surface is in motion, if

U is the velocity of the point P of the

surface, we must have

FIG. 3-30 (i).

or

qn = Un,

(q-U)n = 0.

q-U

FIG. 3-30 (ii).

This equation points out that the velocity of the fluid relative to the surface

is perpendicular to the normal, that is, tangential to the surface.

When two fluids which do not

mix (such as air and water) are in

contact along a common (geometrical)

surface of separation $ in order that

contact may be maintained, it is

clear that the relative velocity q -
q'

must be again tangential to S. On
the other hand, we note that in this

case the form and movement of $

are unknown until the problem of the motion has been solved.

3*31. Boundary conditions (Physical). The kinematical boundary
conditions just investigated must be satisfied independently of any special

physical hypothesis.

In the case of an inviscid fluid in contact with rigid boundaries (fixed or

moving), the additional condition to be satisfied is that the fluid thrust shall

be normal to the boundary.

FIG. 3-30 (iii).
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In the case of two inviscid fluids presenting a surface of separation S, the

condition to be satisfied is that the pressure shall be continuous at the boundary
as we pass from one side of S to the other.*

To prove this, take a cylinder whose generators are normal to S and whose

cross-sections dS are small areas on either side of S. Then if p, p
f

are the

pressures in the two fluids, we have,

resolving along the normal,

pdS-p' dS = 0, i.e. p =
p',

since, as in T3, the body forces

and mass-accelerations are negligible

compared with the terms retained.

Thus in the case of water in

contact with the atmosphere, the

pressure of the water at the free

surface will be equal to that of the

air, and if this latter is assumed to be constant, the water surface will be

a surface of constant pressure.

Another important example of this principle occurs when the surface S

separates not two different fluids, but two regions of the same fluid, there

being a discontinuity of tangential velocity at the surface S which is then a

vortex sheet (13-70). This may be conceived to occur in the case of air stream-

ing past an aerofoil, where the two streams from the upper and lower faces glide

over one another along a surface of discontinuity, springing from the trailing

edge. Bernoulli's equation then gives, when the motion is steady,

Fio. 3-31.

and since p =
p', we must have q = q'. Thus the surface will be a surface of

discontinuity of direction of the velocity, not of speed.

In the case of a jet or current passing through fluid otherwise at rest where

the pressure may be assumed constant, the continuity of pressure inside and

outside the jet shows that the surface of the jet is one of constant speed.

In the case of a viscous fluid, experiment supports the view that at a rigid

surface in contact with the fluid the relative velocity is zero, and this is the

physical condition to be satisfied.

The interface between a fluid and an immersed solid may be regarded as a

vortex sheet, i.e. a surface of discontinuity of tangential velocity in passing from

fluid to solid
(
13'70) . Viscous contact is then distinguishedby zero discontinuity.

3*32. Efflux. Returning to the subject of 1-82, consider the steady irro-

* This condition must be modified when surface tension ia taken into account. See 14-50.
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tational flow of liquid through an aperture of area ^ in the wall of a vessel,

fig. 3'32.

Consider a horizontal plane section Z of the vessel, so far removed from

the aperture that all the stream filaments may be supposed to cross it with

the same speed ql , and let m be a unit normal draw a to S into the fluid below.

Let I be a unit normal drawn outwards at the section cra of the vena

contracta where the speed is q% .

Let w denote the surface of the walls of the vessel below the section 27,

s the surface of the jet between o^ and cr2 .

Consider the fluid bounded by the total surface +w+ s+ crz , and let n

be a unit inward normal at any point of this surface.

Since y q = 0, Gauss's theorem, 2-61 (7), gives

using 2-34 (IV) and then Gauss's theorem 2-61 (3).

FIG. 3-32.

Now the values of nq on 27, w, s, o-2 are respectively qt , 0, 0,
-
qz ,

and

the values of n are m, -
I on 27, crz . Also, the speed is qz over the surface s

by Bernoulli's theorem. Therefore

f f

J(w)
2

J()

Since the surface formed by s + a
v -f aa is closed, 2-20 (3) gives

nd/S=- ndS-\ n rf/S = I fa - a^.
J (t) J (*!> J (<7,)

Therefore m q? 27- I (2cr2
- a^ q^ = n q* dS.

J(M')

Take the scalar product by \/fa g2
2
),
and eliminate ql by the equation of

continuity in the form ql 27 = q% cr
a . Then, if a aa/o-j is the coefficient of

contraction, we get _ If /^\ a
,

1 I nl 1 ao
= a = i j ^^ Y2

4
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When the plane of the orifice is vertical, Im = and the denominator

can be replaced by 2. This is also the case when a^S is negligible.

Thus for flow through a hole in an infinite plate In = -
1, and

Again, when a vertical cylindrical nozzle, pointing inwards, is fitted to a

hole in the horizontal bottom of a tank with vertical sides, In = over the

sides, and experiment shows that q is sensibly zero over the bottom. Thus

1
> -

,

and when aJZ is negligible, a = 1/2.

3*40. Rate of change of linear momentum. Consider the fluid which

at time t lies within a fixed closed surface S. At time t + $t the same mass of

fluid will have moved and will now occupy the in-

terior of a closed surface S'.

Let A, B be the regions within S and external

to S', and within S' and external to S respectively.

Let M be the linear momentum at time t of the

fluid within S. Then at time t + Bt the momentum
of the same mass of fluid will be

dMM +-- St + momentum of fluid in B - momentum
of fluid in A.

FlQ

Now the last two terms give the momentum which has flowed out of S
across its boundary in time St.

Therefore the rate of change of the momentum of the fluid which at time t

occupies the region within the fixed surface S is

s)MI

hrate of flow of momentum outwards across the boundary of S.
ot

Now M = I qpdr.

Rate of flow of momentum outwards across the boundary

JOS)

for - qn is the normal velocity across dS. The tensor p (q ; q) is the momentum

transfer tensor
-,
for its scalar product by n is />q(qn) which measures the rate

per unit area at which momentum crosses dS.

Therefore the required rate of change of momentum is
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a f f
(1) j~

I pq dr I

Using Gauss's theorem, 2-61 (7), this becomes

from 3-10 (9),

(2)
= 1 p

~
dr, using the equation of continuity.

We can also look on this result as follows :

The rate of change of the momentum within S as S moves about with the

ftuid is

dnce the third integral vanishes on account of the first form of the equation

[>f continuity 3-20 (1).

3*41. The equation of motion of an inviscid fluid. Consider the

fluid which at time t occupies the region interior to a fixed closed surface S.

By the second law of motion, the total force

acting on this mass of fluid is equal to the rate

\dS of change of linear momentum.

The force is due to

(i) the normal pressure thrusts on the

boundary ;

(ii) the external force (such as gravity),

say F per unit mass.

Thus the total force is

1 jt?nd>S-M JF pdr -
I (V2>)^-HFIQ. 3-41.

using Gauss's theorem. Equating this to the rate of change of linear momen-

tum calculated in 340 (2), we get

Since the volume of integration is entirely arbitrary, we can shrink this

volume to a point and so obtain

= 0, or
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(1) g=F-
1

which is the equation of motion.

Again, from 3-10 (9) and 2-34 (IV),

Therefore

dt P

which is another form of the equation of motion.

3*42. Euler's momentum theorem. We shall now obtain the general

form of the theorem established in 1-9. From 340 (1), we have for the rate

of change of momentum of the fluid within a closed surface S,

(nq)pqdS,
(S)

and therefore, from the second law of motion, using fig. 341,

InpdS
= - pfdr + ^- pqdr- (nq)pqdS.

(S) J wj J(5)

This formula states that the resultant thrust on the fluid contained within

a closed surface S is equal to the reversed resultant of the body forces on the

enclosed fluid, together with the rate of change d/dt of the momentum of the

fluid, and the rate of flow of momentum outwards across the boundary of S.

This is the generalised form of the momentum theorem. It may also be

regarded as a generalisation of the theorem known as the principle of Archi-

medes, to which it reduces when the fluid is at rest.

3-43. Conservative forces. For conservative forces derivable from a

potential Q we write F = -V ^- A^ ifthe pressure is a function of the density
so that fdp/p exists, we have, from 2'31 (5),

P P J P J P

and therefore, since dr is arbitrary,

(1) -VP = V I'
The equation of motion 341 (1) then assumes the form

(2) ^9=-'
which shows that the acceleration is derivable from the acceleration potential
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Further, observing that the vorticity is = V A q, equation 341 (2) can be

written in the form

(3) |9

which puts the vorticity in evidence.

Again 341 (1) can be written

while the equation of continuity 3-20 (4) gives

By addition, using 2*34 (X), we get

(4)

where / is the idemfactor.

In cartesian coordinates, the equation (2) is equivalent to the following

system of three equations :

(5)

If = i^-fj^-fkf, so that f , 77,
are the components of vorticity, equation

(3) yields the following set :

du Y d n ,.
dQ 1 dp_ 2 _

dv y , d n ^ dQ I dp
5-
-- -- --- --

dt

-zr -r) -z-
= ----- -,

dt
'

dz
* '

dz p dz

where q
2 = w2

-f v2 -f w2
,

dw dv
__

du dw
r _ dv du

f==
fy~ai' ^"^"ax 1 ^ =

aS""ay"

The reader should verify that the equations (5) and (6) are equivalent.

The above results once more illustrate how effectively the vector notation

condenses and illuminates the analysis.
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BeUrami flows arise when q A
=

; the corresponding equation ofmotion is

(3) in the form

If the vorticity is different from zero, the condition q ^
= states that

vortex lines and streamlines coincide.

If =0 we have the important case of irrotational motion which is also a

Beltrami flow and obeys equation (7).

In the case of a homogeneous liquid fdpjp is replaced in the above equations

by pip.

All the foregoing are known as Eulerian or statistical forms of the equation of

motion. In them attention is directed to a particular point r of space. As time

t elapses this point is occupied by a succession of fluid particles ;
r and t are

independent variables.

3-44. Lagrangian form of the equation of motion. From the La-

grangian or historical point of view instead of fixing attention on a particular

point of space we fix attention on a particular fluid particle and follow its pro-

gress. The independent variables are r
, the initial position vector of the

particle, and t the time. If the particle occupies the position r at time t, we have

r= r (r , t) so that the acceleration of the particle is dz
r/dt

2
,
a partial derivative,

and therefore from 3-41 (1) the equation of motion is

32r 1 dp _ 1 d ;
r

Bp_

dt2 pdr p dr
"

dr

using 2-71 (8). Multiply in front by d
; r/3r . Then from 2-71 (9) we have

and this is the Lagrangian form of the equation of motion, all differentiations

being with respect to the independent variables r
,
t.

If F = -V^ integration from to t gives Weber's transformation, namely

The equation of continuity follows from 3'20 (1) in the form

(3) pdr = pQ drQ

where suffix zero refers to the particle in its initial position, expressing the fact

that the mass of the particle remains unaltered as it moves.

In cartesian coordinates we have dr=dx dy dz, dr =dx dy dz$ and

(4)
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J being the Jacobian of the coordinates (x, y, z) of r with respect to the coordi-

nates (XQ , 2/ ,
z

)
of r . In this notation the equation of continuity becomes

(5) PJ = Po .

A surface F(r, t)= always consists of the same fluid particles if, and only

if, df/dt 0. For this condition means that F(r, t) is independent of t and so

when expressed in Lagrangian coordinates has the form /(r )
0. This

occurs, in particular, in the case of the free surface of a liquid in continuous

motion.

It is not essential that r should be the initial position vector. Any vector

variable which serves to identify a particle and which varies continuously from

one particle to another may be used
;

see for example 14-80.

3'45. Steady motion. When the motion is steady, dq/dt = 0, and we

then get, from 3-43 (3),

From the meaning of V applied to a scalar, this shows that the vector

^ is normal to the surfaces

(2)

where c is a constant. Since q A is perpendicular to q and to
,
it follows that

any particular surface of the system (2) contains both streamlines and vortex

lines. Along every such streamline or vortex line the left-hand member of

(2) has the same constant value. This is the general form of Bernoulli's

equation for a fluid. For a liquid fdp/p in (1) and (2) is replaced by pjp.

The existence of the surfaces (2) is a necessary condition for steady motion

to be possible.

When the motion is both steady and irrotational
(
=

0), equation (1)

shows that the constant in (2) is the same throughout the fluid.

3*50. The energy equation. When the forces are conservative, the

equation of motion, 3-41 (1), after scalar multiplication by pq, gives

, d

Since dti/di
= 0, we have, from 3-10 (9),

and therefore p
~

[|g
2+ Q] ~ - q V P-
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Multiply by the volume element dr and observe that, by the equation of

continuity (3-20 (1)),

|(pdr)
= 0.

We then get, on integrating throughout the volume of the fluid,

Now, if T = f \f>q*dr, V = f pQdr, J = \pEdr,

are the kinetic, potential and internal (1*6) energies respectively, we get, using

2-34 (VI),

= l

by Gauss's theorem, the surface integral being taken over the bounding surface,

and n being the unit inward normal.

Now the last integral is -dJjdt, see Ex. Ill, 31, and therefore

which expresses that the rate of change of total energy of any portion of the

fluid as it moves about is equal to the rate of working of the pressures on the

boundary.
y

3-51 Rate of change of circulation. Let C be a closed circuit which

moves with the fluid, i.e. a circuit which always consists of the same fluid

particles. Let a be the acceleration of a fluid particle and B its curl :

(1) -a = dq/dt, B = VA*.
Then for the rate of change of circulation in C as it moves we have

(2)

J<O

for q d (dr/dt)
= q dq and therefore its integral round C vanishes.

Also by Stokes' theorem

(3) [
J(C)

over any diaphragm S which closes C. Therefore

(4) ~circO= f nBdS.
dt J (,s)
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Now the vector field B is solenoidal (2-24 footnote), for by 2-32 (II)

(5) VB = V(V A a) = 0,

and therefore we can define unit B-tubes (2-615). Therefore from (4)

(6)
j-t
mcC=N,

where N is the number of unit B-tubes which thread the circuit C. This result

holds for viscous and compressible as well as for inviscid or incompressible

flows.

For an inviscid fluid under conservative forces we have

a=--
p

and therefore

(7) B=V
If we call l/p the bulkiness of the fluid, \7^ and V(Vp) are normals respec-

tively to the curves of constant pressure and constant bulkiness, so that the

vector B is tangential to the curve of intersection of these surfaces. The

direction of B determines the sense of the circulation in C.

As an example ; at given temperature and pressure water with greater salt

content has higher density and therefore smaller bulkiness. Suppose in an

ocean that the salinity decreases in a certain direction. Then the bulkiness

increases in the same direction, and the pressure increases downwards. The

result is that circulation is set up along the bottom in the sense of decreasing

salinity and along the surface in the sense of increasing salinity. This explains

the surface currents into the more saline Mediterranean from the Black Sea

through the Bosporus and from the Atlantic through the Strait of Gibraltar.

From (6) it appears that the necessary and sufficient condition for con-

stancy of the circulation in a circuit which moves with the fluid is V A a or

B=0.
A fundamental application of this result is Lord Kelvin's theorem concern-

ing the constancy of circulation in a circuit moving with the fluid in an inviscid

fluid in which the density is eiilier constant or is a function of the pressure (baro-

tropicflow).

Proof. If p is a constant V (IIP)
= and therefore B = 0, from (7).

If p is a function of p, V (l/p) and V p are parallel vectors and therefore

from (7), B = 0. In either case d circ C/dt= so that circ C is independent of

time. Q.E.D

3*52* Vortex motion. If is the vorticity vector, we have
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and therefore, from 2-32 (II),

so that the divergence of the vorticity is everywhere zero ; vorticity is sole-

noidal.

Vortex lines have been defined already (241). If through every point of

a closed curve we draw the vortex line, we obtain a vortex tube.

A vortex filament is a vortex tube whose cross-sectional area is of infini-

tesimal dimensions. By Gauss's theorem, applied to the volume enclosed

between two cross-sections of areas d^ and da2 of a vortex filament, we get

f?nAS= -fv<*T = 0,

and since n = on the walls of the filament,

1 n i ^i + 2 n2 dvz
= 0,

where 1 , 2 are ^ne vorticities at the ends of the filament. Thus

1 d^ =
2 dor2 ,

which expresses that the magnitude of the vorticity multiplied by the cross-

sectional area is constant along the filament.*

It therefore follows that a vortex filament cannot terminate at a point

within the fluid. Vortex filaments must therefore be either closed (vortex

rings) or terminate at the boundaries.

The analogy of the foregoing with the corresponding property of stream

filaments in a liquid may be noted, for in the case of a liquid \7 q = 0, so

that q like is solenoidal.

3-53. Permanence of vorticity. If a is the acceleration, we have

-3-T?-i;<+

Taking the curl and using 2-32 (III) and 2-34 (II) we have

Now from 3-52 V ? = 0, and from 3-20 (5) p V q = -
dp/dt. Thus using

3-10 (9) we find that

This purely kinematical relation gives the rate of change o

* This result follows directly from the property of solenoidal vectors (2-015).
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If theforces are conservative and the pressure is afunction of the density, taking

the curl of 343 (2) shows that V A a= 0> and m this case (1) becomes

I
an equation due to Helmholtz.

To solve this equation we use the notation d/dr for \7, and so, from 2-71 (8),

where r is the position vector of the particle at time t as in fig. 3-10.

Differentiating 2-71 (9) with respect to t we get

dt

since dr/dt=q. Thus (3) can be written

dr
m

dr,

Multiply on the right by d
;
r /3r and use 2-71 (9) again. Then we get

.

dt P dr

and therefore

(6) --^] = constant = ??,
P dr Po

where ^ and
/o

are the values of and p at time f .

Multiply on the right by d
; r/dr and use 2-71 (9) once more. Then

(7)
? = ?? . ?il
P Po dro

From (6) we see that if 0, then = so that motion once irrotational

remains so. Therefore a particle which has vorticity at any time continues to

have vorticity. Thus rotational motion is permanent and so is irrotational

motion.

Notice that this conclusion depends on the assumptions which led to equation

(2) ; inviscid fluid, conservative forces, pressure a function of the density.

3-54. Permanence of vortex lines. When inviscid fluid moves under

conservative forces and the pressure is a function of the density a vortex line

consists always of the same fluid particles and therefore moves with the fluid.

Proof. Let a line of particles be specified by a Lagrangian parameter a so that

at time t the position vector of a particle is r = r (a, t). Then at time t the tangent
to the line is in the direction of the vector
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By the definition of a vortex line the vorticity vector is tangent to the line

and so if is the vorticity at time t
,
we have

(1)
n

o
= or o

= ,-

where A is a scalar, and these statements are equivalent. From 3-53 (7) we have

at time t

dr d;r
T~da

so that the same particle a is still on the vortex line. Q.E.D.

Such a line moves about with the fluid like a material substance. More-

over the line cannot disappear, for we have proved that rotational motion is

permanent.
It follows that when in an actual fluid a vortex line does disappear, the

internal friction must be the cause.

3'55. Relative motion. Velocity is a concept relative to a frame of

reference which the observer sets up as his standard of
"

fixity ". Thus the

velocity of a terrestrial body
is usually measured with re-

spect to a frame of reference

fixed to the globe of the

earth.

Now consider two car-

tesian frames of reference

Oxyz or F, and O'x'y'z' or

F'. Each frame may be

imagined as identified by a

set of wires rigidly connected

and moving with the frame.

Suppose that at time t the

frames are coincident and that

F' is moving relatively to F with a motion described by an observer in F
as a velocity U of 0' and an angular velocity co. Then the position vector

r of a particular fluid particle P at time t is the same for both frames.*

Let q, q' be the velocities of the fluid particle P at time t as estimated by
observers in F and F' respectively. Then q= q'+U + to A r, and therefore,

for the vorticity,

FIG. 3-55.

= ' + <o(V r)-(co

*
Fig. 3*55 shows the relative positions of the frames at time t + 8t, when they are no longer

coincident. The fluid particle which was at P at time t is at P' at time t + bt.
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so that, like velocity, vorticity is a concept relative to the frame of reference.

If ^ = in the frame F, the observer in that frame says that the motion is

irrotational, and therefore also says that there is a velocity potential < such

that q = -V <> while the observer in the frame F' says that the motion is

rotational with vorticity
- 2co.

Similarly, circulation is a concept relative to the frame of reference, for if

F is the circulation in a closed circuit C as measured by an observer in F and

if J" is the circulation in the same circuit as measured by an observer in Ff

,

then

where S is the area enclosed by the projection of C on a plane perpendicular

to co.

Proof. r-T'=f qdr-f q'dr-f (U + co A r)e*r
=

cof (r A dr).
J(C) J(C) J(O J(O

Take to =-- o>k. Then

> r A dr-o> (xdy-ydx) = 2o>S. Q.E.D.
J (C) J (C)

These considerations are of importance in the hydrodynamics of meteor-

ology on the rotating earth.

3*60. Irrotational motion. Pressure equation. When the pressure

is a function of the density, p =/(/>), the equation of irrotational motion* under

conservative forces is, 3-43 (7),

?S- _!

Since q
- V <f>

in irrotational motion, this gives

and therefore

a)

where C(t) denotes an instantaneous constant, that is to say, a function of t

only, which therefore at a given instant has the same value throughout the

liquid. This is the pressure equation. The function C(t) may be replaced by an

absolute constant by adding a suitable function of t to
</>.

The addition of such

* " With motion irrotational, in fluid incompressible,
A tiny little minnow swims along a line of flow,

And the greater its velocity well cutting out verbosity
The greater its velocity, the faster it will go."

Eureka , Cambridge.
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a function to < does not affect the relation q = -V < When the motion is

steady, d(f>/dt=Q, and we recover Bernoulli's equation, but with the same value

of c throughout the fluid at all times.

The pressure equation is of paramount importance, for once we know the

velocity potential <, the velocity is determined by q = - V& and the pressure

is then found from the pressure equation and the relation p = f(p).

Note that d<f>/dt is calculated by varying t only and therefore refers to a

point fixed in space.

When the fluid is incompressible the pressure equation is

It follows that in principle the solution of any problem of irrotational

motion of a liquid is reduced to finding the velocity potential <f>
which satisfies

Laplace's equation V2
^ = and the other conditions of the problem. The cal-

culation of fluid thrust on a surface is then reduced to an integration.

3*61. The pressure equation referred to moving axes. Consider as

in 3-55 a moving rigid frame of reference Fr

whose motion referred to the

instantaneous position F of the frame,* with as base-point, is described by
the linear velocity U and the angular velocity to. The point P, whose

position vector referred to is r, if rigidly attached to the frame F', has

the velocity V = U -f- w A r. Thus if P is fixed in F instead of in the frame

F' t
it will appear to an observer in the frame F' to move with velocity

- V.

If the motion is irrotational when referred to the frame F, there exists a

velocity potential </)
such that q = - V < and the rate of change of

<f>
at a

point fixed in F is now measured (cf. 3-10) by an observer in F' as

Hence the pressure equation for a liquid becomes

p

Let q r be the velocity of the fluid relative to the moving frame. Then

Thus *

and therefore the pressure equation with respect to the moving frame can be

written

"This instantaneous position F is taken as the standard of fixity referred to in 3 65.
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where qr is the magnitude of the fluid velocity at P relative to the moving

frame, and V is the speed of the same point regarded as fixed to the moving

frame.

3*62. The thrust on an obstacle. Consider the steady irrotational

motion of a homogeneous liquid in the presence of a fixed obstacle S. Let

F be the thrust on the obstacle due to the hydrodynamical pressure. Then if

n is a unit outward normal to the element dS of the surface of the obstacle,

- -f
J(S)

pn dS.
)

Now, from the pressure equation, since the motion is steady,

p = constant - \ pq
2

,

and a constant pressure produces no resultant action on a closed surface.

Therefore

Now n q is the component of the

velocity of the fluid normal to the

boundary, and therefore n q = at

points on the boundary. Therefore

we can write

(i) F HFIG. 3-62.

the surface integral being taken over the surface of the obstacle. Let S' be a

closed surface entirely surrounding the obstacle, and let n' be a unit normal

(drawn outwards from the region between S and S') to the element dS'.

Then, if we integrate over the surface S+S', we get from Gauss's theorem

2-61, (3), (7),

(S+ST) (F)

[V<?
2
-2q(V q)-2(q

=
-f [

J(V)
[2q A (V A q)-2q(Vq)]<*T, from 2-34 (IV).

Since the motion is irrotational, V A q = 0> and if the region (V) between

S and S' encloses no points at which fluid is created or destroyed, V q
from the equation of continuity, and therefore the volume integral vanishes.

It follows that

(S)

=
f
J (
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Thus in (1) we can replace S by any enclosing surface, provided we cross

no singularities in the fluid, i.e. by any reconcilable surface (see 3*70).

In the same way we prove that the moment about the origin is

(2) L = J/> r A [n$-2q(nq)]AS,
Josr)

where S' is any surface reconcilable with S without crossing any singularities

in the fluid.

3*64. Impulsive motion. Let us suppose that a fluid in motion is

subjected to external impulses and to impulsive pressure.

If ql is the velocity generated in the element which was previously moving
with velocity q, I the external impulse per unit mass, and w the impulsive

pressure, by equating the impulse to the change ofmomentum of the fluid within

a closed surface S, we get, as in 3-41,

\w n dS + \lp dr = I p (q!
-
q) dr.

Using Gauss's theorem this gives

Since the volume of integration is arbitrary we have ^ ^ % ^ ^ y

This is the general equation of impulsive motion.

This equation provides a physical interpretation of the velocity potential

as follows.

The external impulses being absent, let
<f>

be the velocity potential of a

motion generated from rest by impulsive pressure w. Then in the above

equation I 0, q = 0, qj = - V <, and therefore

which in the case of a homogeneous liquid gives

w =
p(j> -f constant.

The constant can be ignored, for a pressure constant throughout the fluid

produces no effect on the motion, and we see that
fxf>

is the impulsive pressure

which would instantaneously generate from rest the motion which actually

exists (cf, Ex. Ill, 32).
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Conversely, a motion generated from rest by impulsive pressure only is

necessarily irrotational, the velocity potential being w/p. This must neces-

sarily be the case when a motion is, for example, started from rest by sudden

motion of the boundaries. The argument is true also for a viscous fluid as

regards the initial motion (see Plates 1, 2, fig. 1), but vortex sheets (13-70)

may form even in an inviscid fluid due to the bringing together of layers of

fluid which were previously separated and are moving with different velocities.

The presence of even slight viscosity may cause these sheets to roll up and

form concentrated vortices (see Plates 1, 2, 3, 4).

3-70. Connectivity. Definition. A region of space is said to be connected

if we can pass from any point of the region to any other point by moving

along a path every point of which lies in the given region.

Thus the region interior to a sphere, fig. 3-70 (i), or the region between two

coaxial infinitely long cylinders, fig. 3-70 (ii), are connected.

Definition. A closed circuit, all of whose points lie in the given region,

is said to be reducible, if it can be contracted to a point of the region without

ever passing out of the region.

The circuit PRQS in figs, (i), (ii) is reducible
;

the circuit P'R'Q'S' in

fig. (ii) is irreducible, for it cannot be made smaller than the circumference of

the inner cylinder.

FIG. 3-70 (i).

Definition. A region in which every circuit is reducible is said to be simply

connected.

Examples of simply connected regions are : the region interior to a sphere ;

the region exterior to a sphere ;
the region exterior to any number of spheres ;

the region between two concentric spheres ;
unbounded space.

The region between the concentric cylinders in fig. (ii) is certainly not
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simply connected, for it contains irreducible circuits. We can, however, make

this region simply connected by inserting one barrier or boundary which may
not be crossed, such as the planeAB containing

a generating line of each cylinder, fig. (iii).

When this barrier is inserted every circuit

in the modified region is reducible and the

modified region is therefore simply connected.

We also note that the insertion of an

additional barrier between the inner and outer

cylinders would break the region up into two

parts which, although individually connected

regions, would not form a connected region

in their totality. FIG. 3-70 (iii).

We thus arrive at the following definition.

Definition. A region is said to be doubly connected, if it can be made simply

connected by the insertion of one barrier. A region is said to be w-ply connected,

if it can be made simply connected by the insertion of n - 1 barriers.

Examples of doubly connected regions are : the region between coaxial

infinitely long cylinders ;
the region interior to an anchor ring ;

the region

exterior to an anchor ring ;
the region exterior to an infinitely long cylinder.

Another useful idea is contained in the following definition.

Definition. The paths joining two points P and Q of a region are said to

be reconcilable, if either can be continuously deformed into the other without

ever passing out of the region.

Thus in figs, (i), (ii) the paths PRQ, PSQ are reconcilable. In fig. (ii) the

paths P'R'Q', P'&'Q' are irreconcilable.

Two reconcilable paths taken together clearly constitute a reducible circuit.

Definition. Two closed circuits are said to be reconcilable, if either can be

continuously deformed into the other without ever passing out of the region.

Keconcilable circuits are not necessarily reducible.

The term reconcilable can also be conveniently applied to surfaces (cf. 3-62).

Thus the diaphragms referred to in the verbal enunciation of Stokes' theorem

2-51 (1) must all be reconcilable without passing out of the fluid.

The above properties of regions are termed topological rather than geo-

metrical, for they do not essentially depend on the particular shapes of the

boundaries mentioned. For example, the cross-sections of the cylinders could

be ellipses or any other simple closed curves.

3*71. Acyclic and cyclic irrotational motion. When the region

occupied by fluid moving irrotationally is simply connected, the velocity
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potential is one-valued, for the velocity potential at P is denned by (see 2-52)

(1)
= - q dr,

J (OAP)

and this integral is the same for all paths from to P, for all such paths are

reconcilable. Motion in which the velocity potential is one-valued is called

acyclic. Thus in a simply connected region the only possible irrotational motion

is acyclic. This result depends essentially on the possibility of joining any
two paths from to P by a surface lying entirely within the fluid and then

applying Stokes' theorem (see 2-52).

When the region is not simply connected, two paths from to P can be

joined by a surface lying entirely within the fluid only when certain topo-

logical conditions are satisfied. When they are not, the inference from Stokes*

theorem cannot be made, and the velocity potential may then have more than

one value at P, according to the path taken from to P.

When the velocity potential is not one-valued the motion is said to be

cyclic.

In the continuous motion of a fluid the velocity at any point must be

perfectly definite. Thus, even when
<f>

has more than one value at a given

point, V< must be one-valued. It follows that although two paths from

to P may lead to different values of
<f>P , these values can differ only by a

scalar K, such that V K 0, and K is therefore independent of the coordinates

of P. This scalar K may be identified with the circulation in any one of a family
of reconcilable irreducible circuits, for, if C be any circuit, (1) shows that

(2) circ C = decrease in
<f>
on describing the circuit once.

We shall have occasion later to consider particular types of cyclic motion.

For the present we shall consider only acyclic irrotational motion, and the

general theorems which follow must be considered as applying to that type of

motion only. In that sense the regions concerned may always be considered

as simply connected, but it should be remembered that acyclic motion is also

possible in multiply connected regions.

3*72. Kinetic energy of liquid. The kinetic energy is given by

taken throughout the volume V occupied by the fluid.

When the motion is irrotational,

q -
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and therefore by Green's theorem, if
<f>

is single valued, and since V2
^ = 0,

(F) (5)

taken over the bounding surface of the liquid, dn denoting an element of

normal drawn into the liquid.

This result has a simple physical interpretation. Since the actual motion

could be started from rest by the application of an impulsive pressure p^,

and since d<f>/dn is the velocity of the liquid normal to the boundary,

p<f>SSx
-
\ d</>ldn is the work done by the impulsive pressure on the element

8S in accordance with the following dynamical theorem.

The work done by an impulse is equal to the product of the impulse into

half the sum of the components in the direction of the impulse of the initial

and final velocities of the point at which it is applied.

The surface integral therefore represents the work done by the impulsive

pressure in starting the motion from rest.

3*73. Kelvin's minimum energy theorem. The irrotational motion

of a liquid occupying a simply connected region has less kinetic energy than

any other motion consistent with the same normal velocity of the boundary.

Proof. Let T be the kinetic energy of the irrotational motion, <f)
the

velocity potential, and Tl the kinetic energy of any other motion given by

q
- Y (f)

+ q , y q = 0, n q at the boundary,

the second condition being the equation of continuity. Then

where T =

Now, from 2-34 (VI),

(V^)flo^ = -
n<l>q dS = 0,Therefore

by Gauss's theorem, and since nq = 0.

Therefore

Since T is positive, it follows that T<Tr Q.E.D.
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3*74. Mean value of the velocity potential. We shall prove the

following theorem due to Gauss.

The mean value of <f>
over any spherical surface, throughout whose interior

0, is equal to the value of ^ at the centre of the sphere.

Proof. Describe a sphere S of radius r about P. Then from 2'63 (2)

If ty,- -^-

But the second integral vanishes by 2-62 (5). Therefore

Q.E.D.

Corollary. <f>
cannot be a maximum or minimum in the interior of any region

throughout which V2
< = 0.

For if (f)p were, say, a maximum, it would be greater than the value of

(f>
at all points of a sufficiently small sphere, centre P, which contradicts the

theorem just proved.

We can now prove the following theorem.

In irrotational motion the maximum values of the speed must occur on the

boundary.

Proof. Take a point P interior to the fluid as origin, and take the axis of

x in the direction of motion at P. Then if qp , qQ are the speeds at P and Q
(a point near to P),

Now, -J- satisfies Laplace's equation
* and therefore cannot be a maximum

ox

or minimum at P. Therefore there are points such as Q in the immediate

neighbourhood of P at which
(
--

)
>

(

-~
} ,

and therefore qQ
2 > g>

2
.

\ ox/ Q V oxj p
Thus qp cannot be a maximum in the interior of the fluid, and its maximum

values, if any, must therefore occur on the boundary. Q.E.D.

It should be noted that q
2 may be a minimum in the interior of the fluid,

for it is zero at a stagnation point.

From the above results we can deduce the following theorem.

In steady irrotational motion the hydrodynamical pressure has its minimum

values on the boundary.

Proof. By Bernoulli's theorem,

constant.
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Thus p is least where q
2

is greatest, and this cannot occur inside the fluid.

Thus the minimum values of p must occur on the boundary. The maximum

values of p occur at the stagnation points. Q.E.D.

3*75. Mean value of the velocity potential in a periphractic region.

A region is said to be periphractic
* when it ia bounded internally by one or

more closed surfaces. For example, the region occupied by fluid in which a

solid sphere is totally immersed is of this nature.

Consider liquid at rest at infinity bounded internally by a closed surface

S and unbounded externally. With centre P, describe a sphere ,
of radius R,

large enough to enclose S. If the liquid is in irrotational motion, Gauss's

theorem applied to the periphractic region between S and Z gives

f f
J(S)On

FIG. 3.75.

Therefore, since dn -dR on Z,

(1) f HZ2 =
J
%d8=-F,

where F is the flux into the region considered across the internal boundary S.

Now, dZ = R2
da), where da) is the solid angle subtended at P by dZ.

Therefore the above result can be written

F

nj<
But if M(<f>) is the mean value of

<f>
over the sphere Z,

*
Greek, irep^poucros =

"
fenced about ".
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and therefore

where G is independent of R. To show that C is also independent of the

position of the centre of the sphere Z, let us displace the centre through a

distance &c, keeping R constant. Then

dC__ dM(<f>) __lfcty
dx dx 47r dx

Since by hypothesis 5</<fa->0 at infinity, by making R large enough we

can make d^jdx as small as we please, so that BC/dx = 0. Thus C is unaltered

when the centre of the sphere Z is displaced, provided that S is always
within the sphere.

In the important case when S is the surface of a solid body, there is no

flow across it, so that F = 0, and therefore the mean value of
(f>

over any

sphere enclosing the solid is constant and equal to C.

We now prove that
(j)P-^C when P->co . In fact, applying 2-63 to the

region between S and Z, we get

,JL i _rr d.
dn

Now, the latter integral is equal to

from (1) and (2). Therefore

If we now let r-v GO
,
both 1/r and its differential coefficient tend to zero,

and therefore when P-> oo
,

<f>P ->C.

3*76. Kinetic energy of infinite liquid. Taking liquid moving irrota-

tionally, at rest at infinity, and bounded internally by a solid /S, we shall

suppose that the velocity potential <f>
is single valued. Applying the method

of 3-72 to the region between the solid S and a large surface Z, completely

enclosing S, we get for the kinetic energy of the liquid occupying this region

*%&.on
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Since there is no flow into the region across /S, the equation of continuity

takes the form (cf. 3-20 (2))

<" L!
and therefore

where C is any constant. It follows from (1) that fd<f>/dn dis independent of 2
and is in fact zero since for a solid boundary fd<f>/dn dS=0. If therefore we take

C to be the value to which
<f)
tends at infinity (3-75) and then enlarge the surface

27 indefinitely in all directions, the second integral vanishes and we get the

kinetic energy.

(S)
Gn J(S) on

3*77. Uniqueness theorems. We shall now prove some related

theorems concerning acyclic irrotational motion of a liquid. The proofs are

all based on the following equivalence of the expressions for the kinetic energy,

(1) I

where the volume integral is taken throughout the fluid and the surface integral

is taken over the boundary.

(I) Acyclic irrotational motion is impossible in a liquid bounded entirely by

fixed rigid walls.

For ~ = at every point of the boundary, and therefore I q
2dr = 0.

Since q
2 cannot be negative, q everywhere and the liquid is at rest.

(II) The acyclic irrotational motion of a liquid bounded by rigid walls will

instantly cease if the boundaries are brought to rest.

This is an immediate corollary to (I).

(III) There cannot be two different forms of acyclic irrotational motion of a

confined mass of liquid in which the boundaries have prescribed velocities.

For, if possible, let
</>j ,

< 2 be the velocity potentials of two different motions

subject to the condition B<f>i/Bn d<j>2/dn at each point of the boundary.
Then

<f>
= fa

-
(f>2 is a solution of Laplace's equation and therefore repre-

sents a possible irrotational motion in which

dn dn dn
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Therefore, as in (I), q
= at every point, and therefore <

x
-

(f>2
= constant,

so that the motions are essentially the same.

This theorem shows that acyclic motion is uniquely determined when the

boundary velocities are given.

(IV) // given impulsive pressures are applied to the boundaries of a confined

mass of liquid at rest, the resulting motion, if acyclic and irrotational, is uniquely

determinate.

If possible, let <^ and <
2 be velocity potentials of two different motions.

The impulsive pressure which would start the first motion is^ ,
that which

would start the second is
p<f>2 , and since the pressures are given at the boun-

daries

P<f>i
~

F"t>2

at each point of the boundary.

Therefore ^ <^1 -<^2 is the velocity potential of a possible irrotational

motion such that
<f>

at each point of the boundary. Therefore, from (1),

q at each point of the liquid. If follows that ^-^ is constant and the

motions are essentially the same.

(V) Acyclic irrotational motion is impossible in a liquid which i* at rtst at

infinity and is bounded internally by fixed rigid walls.

Since the liquid is at rest at infinity and there is no flow over the internal

boundaries, the kinetic energy is still given by (1) (see 3-76) and the proof is

therefore the same as in (I).

(VI) The acyclic irrotational motion of a liquid at rest at infinity and bounded

internally by rigid walls will instantly cease if the boundaries are brougJit to rest.

This is an immediate corollary to (V).

(VII) The acyclic irrotational motion of a liquid, at rest at infinity, due to the

prescribed motion of an immersed solid, is uniquely determined by the motion of

the solid.

If possible, let <^ , <^2
be the velocity potentials of two different motions.

The boundary conditions are

~ = ~ at the surface of the solid, ql
= q2

= at infinity.

Thus
<f>
= fa

-
(f>2 is the velocity potential of a possible motion, such that

d</>/dn
= at the surface of the solid, q

= at infinity. It then follows from

(1) that q
=- everywhere, so that ^-^ constant, and the motions are

essentially the same.

(VIII) // the liquid is in motion at infinity with uniform velocity, the acyclic

irrotational motion, due to tJie prescribed motion of an immersed solid, is uniquely

determined by the motion of the solid.
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For the relative kinematical conditions are unaltered if we superpose on the

whole system of solid and liquid a velocity equal in magnitude and opposite in

direction to the velocity at infinity. This brings the liquid to rest at infinity.

The resulting motion is then determinate by (VII) and we return to the given

motion by reimposing the velocity at infinity.

EXAMPLES III

1 1. Establish the equation of continuity for an incompressible fluid in the form

du dv dw
__

dx dy dz

Show that u - -
, s ; ,

v -
, -. Or? ,

w =
9

are the velocity-components of a possible fluid motion. Is this motion irrotational ?

(R.N.C.)

2. If the fluid moves radially and the velocity u is a function of r, t only, where
r is the distance from a fixed point, prove that the equation of continuity is

1

3. If every particle of fluid moves on the surface of a sphere, prove that the

equation of continuity is

cos 8 - +
2Q

(pqe cos 0) +^ (pqM cos 6) - 0,

where 6, o are the latitude and longitude, and ge , q^ the angular velocities in latitude

and longitude respectively.

4. If w is the area of the cross-section of a stream filament, prove that the

equation of continuity is

_(p< )+_.(^) o,

where ds is an element of arc of the filament in the direction of flow and q is the

speed.

%
5. If F(r, t)

= is a surface which always consists of the same fluid particles,
show that, after an infinitesimal time St, F(r + q 8t, t + 8t)

= 0, and deduce that

6. Explain the method of differentiation following the fluid, and find the

condition that the surface F(x, y, z, t)
= may be a boundary surface.

Prove that the variable ellipsoid

is a possible form of boundary surface of a liquid at time t.

7. A quantity of liquid occupies a length 21 of a straight tube of uniform
small bore, under the action of a force towards a fixed point in the tube varying
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as the distance from the fixed point. Determine the pressure at a distance x from
the fixed point when the nearer free surface is at a distance z.

8. For cylindrical coordinates (2*72), prove that the acceleration is

.Id', . . d'qr
- s

where d'/dt
=

d/dt + qafd/dw+m~
1
q(Jd/daj

9. Prove that the three equations of motion expressed in cylindrical co-

ordinates are, (see Ex. 8),

1 dp d'qx 1 dp ffq, qj 1 dp d'-~ = - ~ = '-- --

10. If liquid rotates like a rigid body with constant angular speed o> about
a vertical (z) axis and gravity is the only external force, prove that the pressure is

given by
7?- = o>

2 rz ~gz + constant,
P

where r is the distance from the axis. Show that the surfaces of equal pressure
are paraboloids with the same latus rectum.

11. If liquid contained within a closed circular cylinder rotates about the axis

of the cylinder, prove that the equation of continuity and the boundary con-

ditions are satisfied by q = o> A r, where to is the angular velocity supposed depen-
dent on the time only and r is the position vector measured from a point on the

axis of rotation.

12. If the liquid in Ex. 11 starts from rest under the external forces whose

components are <xx + j3y, yx + 8y, and the axis of the cylinder is the z-axis, write

down the equations of motion and prove that

Prove also that the pressure is given by

? = JaiM + Ho
P

where r is the distance from the z-axis.

13. If the motion of a fluid be referred to a moving frame of reference which

rotates with angular velocity to and moves forward with velocity u, show that

the equation of motion is

where
-j-

~ q
- u - to A r, and that the equation of continuity is

?+

where q is the fluid velocity and the position vector r is referred to the moving
frame.
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14. If the motion is referred to a moving frame which has velocity u and

angular velocity <o, prove that the vorticity satisfies the equation

where qr q - u - to A r.

15. If q is the velocity, prove that

1

(F)

and deduce that

1
f 2 f f f

2 J (S) J (S) J (V) J (V)

where S is a closed surface and F the enclosed volume.

Use the above result to find the force on a body due to fluid pressure.

16. If F is the circulation around any closed circuit moving with the fluid,

prove that

dP f ,/lN

if the external forces have a potential, and the pressure is a function of the density
alone. (U.L.)

17. A pulse travelling along a fine straight uniform tube filled with gas causes

the density at time t and distance x from an origin where the velocity is UQ to become

pQ(f>(Vt-x). Prove that the velocity u is given by

18. Every particle of a mass of liquid is revolving uniformly about a fixed axis,

the angular speed varying as the nth power of the distance from the axis. Show
that the motion is irrotational only if n -f 2 = 0.

If a very small spherical portion of the liquid be suddenly solidified, prove that

it will begin to rotate about a diameter with an angular velocity (n -f 2)/2 of that

with which it was revolving about the fixed axis.

19. An explosion takes place at a point O at some distance below the surface

of deep water. If 0' is the image of in the free surface, show that the velocity-

potential of the initial motion at any point P varies as

J___1__

OP O'P'

Determine the initial velocity of the free surface at any point. (R.N.C.)

20. Define irrotational motion and prove that under certain conditions the

motion of a frictionless liquid, if once irrotational, is always so. Prove that this

theorem remains true, if the motion of each particle be resisted by a force varying
as its absolute velocity.

21. If
(f>

is constant over the boundary of any simply connected region occupied

by liquid in irrotational motion, prove that
<f>
has the same constant value through-

out the interior.

22. Prove that, if the normal velocity is zero at every point of the boundary
of liquid occupying a simply connected region, and moving irrotationally, <f>

is

constant throughout the interior of that region.
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23. Liquid moving irrotationally occupies a simply connected region bounded

partly by surfaces over which
(f>

is constant, and partly by surfaces over which the

normal velocity is zero. Prove that
</>

has the same constant value throughout
the region.

24. A body moves in a given manner, without change of volume, in an inviscid

liquid. T denotes the kinetic energy of the fluid when it has no external boundary
and is at rest at infinite distances

;
T '

denotes the kinetic energy of that part
of the fluid which is outside a closed surface S which is external to the body ;

T denotes the kinetic energy of the fluid when $ is its external boundary and
is fixed. Prove that, if the regions occupied by the fluid are simply connected,

25. If a constant, )3
= constant are the equations of a curve, show that the

tangent is in the direction of the vector V a A V )3. Hence show that if the a and j3

surfaces are any two systems of surfaces which pass through the vortex lines, then
= jF V a A V j8, where F is a scalar function.

26. In Ex. 25 use the fact that V ? = to prove that (V ^) (V a A V j3)
=

0,

and hence show that this is equivalent to the vanishing of the Jacobian

so that F is a function of a, )3 only.

27. Prove that V/(a, |5)
= ^/Va+{v#. With the notations of Ex. 25, 26

doe. Op
show that if the scalar function /(a, /3) is so chosen that df/da.

= F, then

(i) q = y(a> jS) V /3 is a solution of the equation = V A q.

(ii) ? = JfVa A V/J.
(/a

28. Use Ex. 27 to prove that the general solution of ? = V A q is

where a = constant, j8
= constant are two systems of surfaces which pass through

the vortex lines, and <f>
is a solution of Laplace's equation.

29. Obtain Clebsch's transformation that the velocity can be expressed in the

form

q = -V^-fAV/x,

where the surfaces A = constant, \L constant move with the fluid, and the curves

in which they intersect are vortex lines.

30. Prove the moment formula 3-62 (2).

31. If E is the internal energy per unit mass, prove that

dE
;> dp--

32. Prove that for a compressible fluid moving irrotationally

*-/?
where w is the impulsive pressure which would generate the motion from rest.



CHAPTER IV

TWO-DIMENSIONAL MOTION
*-

4- 1. Motion in two dimensions. Two-dimensional motion is charac-

terised by the fact that the streamlines are all parallel to a fixed plane and

that the velocity at corresponding points of all planes parallel to the fixed

plane has the same magnitude and direction. To explain this more fully, sup-

pose that the fixed plane is the

plane of xy and that P is any

point in that plane. Draw PQ
perpendicular to the plane xy (or

parallel to Oz). Then points on

the line PQ are said to correspond

to P. Take any plane (in the

fluid) parallel to xy and meeting

PQ in R. Then, if the velocity

at P is q in the xy plane in a

direction making an angle 6 with

Oy, the velocity at R is equal in

magnitude and parallel in direc-

tion to the velocity at P. The
FIG. 4-1 (i).

velocity at corresponding points is then a function of x, y and the time t
t

but not of z. It is therefore sufficient to consider the motion of fluid particles

in a representative plane, say the xy plane, and we may properly speak of

the velocity at the point P, which represents the other points on the line PQ
at which the velocity is the same.

In order to keep in touch with physical reality it is often useful to suppose
the fluid in two-dimensional motion to be confined between two planes parallel

to the plane of motion and at unit distance apart, the fluid being supposed to

glide freely over these planes without encountering any resistance of a frictional

nature. Thus in considering the problem of the flow of liquid past a cylinder
in a two-dimensional motion in planes perpendicular to the axis of the cylinder,

instead of considering a cylinder of infinite length, a more vivid picture is

obtained by restricting attention to a unit length of cylinder confined between

the said planes.

In considering the motion of a cylinder in a direction perpendicular to its
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axis, we can profitably suppose the cylinder to be of unit thickness * and to

encounter no resistance from the barrier planes. This method of envisaging

the phenomena in no way
restricts the generality and

does not affect the mathe-

matical treatment.

To complete the picture

we shall adopt as our repre-

sentative plane of the motion

the plane which is parallel to

FIG. 4-1 (ii).
our hypothetical fixed planes

and midway between them.

Thus in the case of a circular cylinder moving in two dimensions the dia-

gram will show the circle C which represents the cross-section of the cylinder

by the aforesaid reference plane, and the centre A of this circle will be the

point where the axis of the cylinder

crosses the reference plane. This point

may with propriety be called the centre

of the cylinder. More generally any
closed curve drawn in the reference

plane represents a cross-section of a

cylindrical surface bounded by the fixed

planes.

A clear understanding of the above

conventional description will enable us

to use the more familiar notation of

O

FIG. 4-1 (iii).

ordinary two-dimensional geometry without confusion, and the reader is

invited to form a mental picture of his results in the light of the diagram of

fig. 4-1 (ii).

Two-dimensional motion, as will be seen in the sequel, presents oppor-
tunities for special mathematical treatment and enables us to investigate the

nature of many phenomena which in their full three-dimensional form have

so far proved intractable.

4*20. Two-dimensional stead/ motion of a liquid. In 240 we

analysed the general form of fluid motion. In this section we shall make a

detailed analysis of the two-dimensional steady motion of a liquid.

Consider two neighbouring streamlines PJP', QQ'. The motion being

steady, the streamlines are the paths of the fluid particles. The particle which

"The term "thickness" will be used to denote dimensions perpendicular to the plane of
the motion.
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is at A at time t will arrive at A' at tune + 8*. Draw the normals AD, A'Q

to PP' and let them meet at 0, the centre of curvature. Let AD = 8n, the

element of normal reckoned positive

towards 0. Mark along PP', QQ'

lengths AB, DC each equal to Sw.

The fluid which at time t occu-

pies the prism typified by the square

ABCD will at time t + St occupy

the prism typified by the rhombus

A'B'C'D', for if q is the speed at A,

the speed at D will be q + (dq/dri)&n.

Let A'D' make an angle a with

the normal A'O. Since the diagonal

A'C' of the rhombus bisects the

angle B'A'D', it follows that the

angle C'A'D' is Jvr-^a, therefore

A'C' makes with AO the angle ft

given by
FIG. 4-20 (i).

Q'

where Q is the angle between the normals at A and A'.

It should be noticed that we are considering the motion of an infinitesimal

element during an infinitesimal

time and therefore the angles a and

6 are themselves infinitesimal.

It now appears that during the

time 8 the element ABCD has

undergone the following changes.

(i)
A translation whereby the

centre E of the square has moved

to E', the centre of the rhombus,

(ii) A rotation whereby the axis

FIG. 4-20 (ii).
of symmetry AC has been rotated

through the angle \ir-fl
-- 0- Ja

into the direction A'C'. This angle is positive when measured counter-

clockwise.

(iii) A pure strain whereby all lines parallel to AC are lengthened and all

lines parallel to BD are contracted in the same ratio.

It is the distortion engendered by the pure strain which has turned the

square into a rhombus. The distortion is essentially due to the velocity of D
relative to A.
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Rotation and strain are both absent only when the motion is one of pure

translation.

The pure strain here found is characteristic not only of the motion of a

liquid, but of any substance which is capable of change of shape.

The rate of translation is measured by the limit of EE'fit, when &->0,

i.e. by q, the speed of the fluid at A.

To calculate the rotation, we have

(1) AA' = q $t = R9, where R = OA, the radius of curvature of PP* at A.

DD' - + 8n to. GDf = A'G* = a 8w.

Cf\

\

l-~\U, from (1), thus

DD'-DG

and therefore the rotation is

The rate of rotation is therefore

\R ,

Since the rate of rotation is half the vorticity, we have for the vorticity

R dn

In two-dimensional motion the vorticity vector is perpendicular to the

plane of the motion and therefore fixed in direction. The two-dimensional

vorticity vector has therefore many of the properties of a scalar quantity, and

by the vorticity we need only mean, in general, the scalar magnitude o>.

By equating the flux (4-30) across AD to that across A'G we find the

equation of continuity in the form

where R' is the radius of curvature at A of the orthogonal trajectory of the

streamline (see 19-82).

To calculate the strain, we find the elongation t
i.e. the ratio of the increase

of AC to its original length, namely

A'V-AC
AC

*
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Now A'C' cos
(j

+
^)

= 4'<7 = Sn,

so that A'C'
(
cos - - sin -

)
= Sn.

\ JL Z/ *J2i

Since a is infinitesimal, this gives

and therefore, using the binomial approximation,

we get .4 '(7 =
(
I +

H) ^> so that the elongation is

and the rate of elongation is

A similar calculation readily shows that the rate of contraction of BD is

given by the same expression.

It is clear that AC, BD are directions of maximum rate of elongation and

contraction respectively. Lines parallel to AB undergo no elongation or

contraction. The strain is therefore a shear in which lines parallel to AB
move forward at rates which increase linearly with their distance from AB.

4'2I. Motion without vorticity. When the motion is irrotational the

vorticity is zero, and therefore

*L -=
q
.

Bn~ It'

When the streamlines are straight (R = oo ), we have q constant, as we

proceed across the stream. Thus for parallel flow in a canal, if the motion is

irrotational, the speed will be constant across a section of the canal. This is

the case for an inviscid liquid but not for a viscous one (see fig. 1-0).

Again, Bq/dn is positive when we move in towards the centre of curvature

of a streamline. Thus at a bend in a river we should expect the speed to

increase as we proceed across from the outside to the inside of the bend,* with

a corresponding decrease of pressure.

* In actual rivers this theoretical effect is profoundly modified by a tendency to rerersal of
flow at the downstream part of the inside of the bend, and other causes.
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4'22. Motion without strain. The rate of strain will be zero if

Thus if the streamlines are straight (R = <x> ),
we see that, if q is constant

as we proceed across the stream, there will be no strain.

Again, if the fluid rotates steadily about an axis with the same distribution

of velocity as in a rigid body, namely q = raj, where r is the distance from the

axis and w the constant angular speed, we have

-' --*
and so the strain vanishes. We may observe that in this case the vorticity is

and that the molecular rotation is therefore w.

4*23. The vorticity. In two-dimensional motion the vorticity vector %

is necessarily at right angles to the plane of the motion and therefore the

vector product A q will represent a vector lying in the plane of the motion,

at right angles to q, and in such direction that the sense of rotation from q to

A q is counterclockwise.

From 3-53, we get the rate of change of vorticity

(1) f = V)q-

Now, the right-hand member represents a rate of variation of q when we

proceed in the direction
,
i.e. at right angles to the plane of the motion. By

the definition oftwo-dimensional motion

this rate is zero. Thus

\ =

This means that the vorticity of a

fluid particle does not change as the

^q particle moves about.

Fl0 - 4 '23 - This property of the vorticity is

peculiar to two-dimensional motion, as is obvious from (1).

In steady motion the paths of the particles are also the streamlines.

Therefore the vorticity is constant along a streamline.

4-25. Intrinsic equations of steady motion. The accelerations of

the element ABCD in fig. 4'20 are

,3 ?!
?
fe' R'
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tangentially and normally. Equating the mass x acceleration to the force, we

get

m 3__ 1 ^_^
1 ' q

ds pds ds'

ra\ f-JtpJ-Q
1 ' R

~~

p dn dn
'

where Q is the potential per unit mass of the external forces. These equations

can be written

where to is the magnitude of the vorticity. The first gives

P- + \f +Q - 0,
P

where C is constant along the streamline, which is Bernoulli's equation. The

second then gives

which shows how the constant C changes as we move across the stream. When
the motion is irrotational, to = and C is then constant throughout the fluid.

4*30. Stream function. In the two-dimensional motion of a liquid, let

A be a fixed point in the plane of the motion, and ABP, ACP two curves also

in the plane joining A to an arbitrary point

P. We suppose that no fluid is created or

destroyed within the region R bounded by
these curves. Then the condition of con-

tinuity may be expressed in the following

form.

The rate at which liquid flows into the

region R from right to left across the curve ABP is equal to the rate at which

it flows out from right to left across the curve ACP.

We shall use the convenient term flux forjthe rate of flow, and we shall

assume the flux to be consistently reckoned in the same sense, here from right

to left.

The term from right to left is relative to an observer who proceeds along
the curve from the fixed point A in the direction in which the arc a of the curve

measured from A is increasing.
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Thus the flux across ACP is equal to the flux across any curve joining A
to P.

Once the base point A has been fixed this flux therefore depends solely on

the position of P, and the time t. If we denote
1

2 this flux by ifj, i/j
is a function of the position of

P and the time. In cartesian coordinates, for

example,

j/r
=

ifj(x, y, t).

The function ^ is called the stream function.

The existence of this function is merely a

consequence of the assertion of the continuity and incompressibility of the

fluid. Thus a stream function exists for a viscous liquid.

Now take two points Pl ,
P2 ,

and let fa , fa be the corresponding values of

the stream function.

Then, from the same principle, the flux across AP2 is equal to the flux

across APl plus that across P
3
P2 . Hence the flux across Px P2 is fa- fa.

It follows from this that if we take a different base point, A' say, the stream

function merely changes by the flux across A'A.

Moreover, if Pl and P2 are points of the same streamline, the flux across

Pl P2 is equal to the flux across the streamline on which Px and P2 lie. Thus

fa~fa = 0. Therefore

the stream function is constant along a streamline.

The equations of the streamlines are therefore obtained from =
c, by

giving arbitrary values to the constant c.

When the motion is steady, the streamline pattern is fixed. When the

motion is not steady, the pattern changes from instant to instant.

In terms of the measure-ratios L and T of length and time, the dimensions

of the stream function are represented by L2T~l
.

4-31. Velocity derived from the stream function. Let Pj P2
= Ss

be an infinitesimal arc of a curve. The fluid velocity across this arc can be

resolved into components along and perpendicular to 8s. The component

along 8s contributes nothing to the flux across. The com-

ponent at right angles to 8s

flux across divided by 8s

where fa , fa are the values of the stream function at Px ,
Pa .

'

Thus the velocity from right to left across 8s becomes in the limit
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In cartesian coordinates, by considering infinitesimal increments 803, By,

the components u, v of velocity parallel to the axes are given by

u = -~^-, v = -.

dy dx

y

O x

FIG. 4-31 (ii).

In polar coordinates, we get

O x

FIG. 4-31 (iii).

for the radial and transverse components, fig. 4*31 (iii).

4-32. Rankine's method. If the stream function
if/

can be expressed

as the sum of two functions in the form
ifs
=

X + ift2 ,
the streamlines can be

drawn when the curves ^ = constant, ifj2
= constant are known.

4u

FIG. 4-32.

Taking a small constant o>, we draw the curves
I/JL o>, 2o>, 3co, . . . ,

^2
=

fc>> 2w, 3o>, . . .
,
and so obtain a network as shown in fig. 4*32.

At the points marked 3, $ = 3o>, at the points marked 4, if/
= 4o>, and so

on. If we join the points with the same numeral we obtain lines along which

$ = constant, the dotted lines in the figure.

The meshes of the network can be made as small as we please by taking

o> small enough, and the meshes can be regarded as parallelograms (of different
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sizes). The streamlines are then obtained by drawing the diagonals of the

meshes. The streamlines which pass through the corners of a mesh are

approximately parallel in the neighbourhood of the mesh.

4-33. The stream function of a uniform stream. Suppose every

fluid particle to move with the constant speed U parallel to the re-axis.

O
A

U

N

z:MX
O\

x

FIG. 4-33 (i). FIG. 4-33 (ii).

If P is the point (x, y), the flux across OP is the same as the flux across

PM, where PM is perpendicular to Ox. Thus the flux is Uy, and therefore

} = -Vy
is the stream function for this motion. In polar coordinates,

ifi
= Ur sin 9.

Similarly, for a uniform stream in the direction Oy of speed F, we get

= Vx = Vr cos 6.

If we superpose the two streams, we get a stream of speed Vt/2 + F2 inclined

to the x-axis at the angle a = tan"1
V/U, and for this stream

Writing U = Q cos a, V = Q sin a, we obtain the

stream function for a uniform stream, Q making an angle
' a with the cc-axis, namely

_ t/f
= Q(xsmot-y cosa),

x
or, in polar coordinates,

FIG. 4-33 (in).

r

iff
= - Qr sin (9

-
a),

and in all these cases the streamlines are straight lines, as is indeed obvious.

The streamline which passes through the origin corresponds to = and

is therefore the line 6 a.

4*40. Vector expressions for velocity and vorticity. Let sl be a

unit vector tangent to the streamline ^ = constant, and in the direction of

the velocity q.

Let n be a unit vector in the direction of the normal to the streamline

drawn in the direction towards which
\fi diminishes, and let k be a unit vector
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perpendicular to the plane of the motion in such sense that k, sl , n form a

right-handed system. Then q = qsl ,
where q is the speed, and, from 4-31,

FIG. 4-40.

Since n and - V $ are parallel and n is a unit vector, the magnitude of

the velocity is that of
( V ^0- To obtain the velocity we must therefore turn

this vector through a right angle from n to sx . Therefore

(1) q=-k A (-VA) = k AVf
Again, S = V A q = V A (k A V<M

using the triple vector product. The second term represents a variation going

along k and is therefore zero since the motion is two-dimensional. Hence

Again, q A
- (k A V<A) A (

k V2
</0>

or

using the triple vector product and observing that kk = 1.

Finally, consider the operator q\7 = (k AV (A)V < Using the triple scalar

product, we get

(4) q V - k(VAAV)-

It follows, from (2), that if w is the magnitude of the vorticity,

(5) co V2
^A*

In cartesian coordinates, this becomes (2-70)

W ~
lh? Ity*

'

In polar coordinates,

(7) 0> = -r-j -f - -5- + -r-rt- .
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4*41 . Equation satisfied by 0. We have proved, in 4-23, that d^/dt = 0.

Therefore, using 3-10 (9),

Hence from 4-40 (2), (4), we get

and since kk = 1, it follows that

which is the equation satisfied by iff.

When the motion is steady, this becomes

and therefore the vectors V <A> V(V2
<A) are parallel.

Since these vectors are normal respectively to the curves $ = constant,

V2
^r constant, it follows that constant implies VV = constant, and

therefore that

V2
<A=/(<A)>

where f(\ff) is a function of
i/j only. This result also gives another proof that in

steady motion the vorticity is constant along a streamline.

4'5. The pressure equation. If we put, with the usual notations,

the equation of motion

becomes, using 4-40 (1), (3),

which is the equation of motion in terms of the stream function.

Now, let ds be the element of arc at P of a curve AP in the plane of the

motion and Sj a unit vector along the tangent at P. Then (2-31),

Taking the scalar product of (1) by sl ,
we get
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Now integrate along the arc AP. Then

(2)
P J(AP)

where F(t) is an arbitrary function of the time t.

This is the pressure equation expressed in terms of the stream function.

The second integral on the left is

*
d f

fl ds >

J(AP)

where ds is the directed element of arc and this is the rate of change of circula-

tion from A to P. We also note that, by the triple scalar product,

where n is the unit normal to AP, drawn so that k, sl , n form a right-handed

system. Thus (2) can also be written

?+ i0 + fl-
f

V2

<M<A~| f |J
ds = F(t).

P MAP) ot) (AP) dn

In the case of steady motion, the terms involving the time disappear, and

since in that case (4-41) V2jA is a function of
i/r,

we can write

C,

where C is an absolute constant. This is Bernoulli's equation showing the

dependence on the particular streamline chosen.

4*6. Stagnation points. Suppose that the origin is a stagnation point,

Then the velocity vanishes there and hence at the origin

9^ = ^ = 0.
dx

'

dy

Without loss of generality we may suppose that ^ = at the origin and

therefore, by Maclaurin's theorem,

Hence, when x and y are very small, the form of the streamline ^ = iB

in general given approximately by the equation

(1) axz+ 2hvy+ by
z = 0,

which represents two straight lines. Thus at a stagnation point the stream-

line crosses itself, in other words it presents a double point.
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When the motion is irrotational,

+*= (3) +(!$-*VdWo \ty
2
/o

and therefore the lines (1) are perpendicular, so that the two branches of the

streamline cut at right angles.

4*70. The velocity potential of a liquid. In irrotational motion the

velocity is the negative gradient of a potential, namely q = -V <> and in

cartesian coordinates its components are given by

a</> d<f>u = --^, v = --
dx dy

Since the velocity components are also given in terms of the stream function,

we have

d<f) _ diff d<f) __ dift

l)x dy' dy dx'

In the notation of vectors,

(2) -W = k AW-
Thus if Sj is a unit vector in any direction, and n a unit vector normal to

sx measured counterclockwise from st , we get

-sx V< = s 1 (k A VA) =
(slA k)V<A = -n V<A>

d<f> d$
or = --

,

/ os on

irjiich yields equations (1) if we take ds = dx, ds = dy in turn, for the corre-

ponding values of dn are dy, and dx.

) We also conclude from (2) that \7 eft
and V *A are a^ right angles. This

means that the curves, ^ = constant, = constant, intersect at right angles.

Thus the curves of constant velocity potential cut the streamlines orthogonally.

The following points should be observed :

(a) The stream function
t/j

exists whether the motion is irrotational or not.

(6) The velocity potential can exist only where the motion is irrotational.

(c) Where the motion is irrotational, the velocity potential does exist.

(d) Part of the fluid may be moving irrotationally and other pafts rota-

tionally. The velocity potential exists only and always in those parts of the

fluid where the motion is irrotational.

(e) As the fluid moves about, the irrotational part may occupy different

regions of space. The existence of the velocity potential is a property of those

parts of the fluid which are moving irrotationally, not of the regions of space

which they may temporarily occupy.

(/) The flow pattern in irrotational motion under conservative forces

depends solely on the boundary conditions. In particular, when the fluid has
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no free surface, the flow pattern of acyclic irrotational motion depends solely

on the motion of those boundaries, and not at all on the field of external force

which merely affects the pressure.

Consider the stream function

We find that V2
^ = 0, so that the motion is irrotational.

The velocity components are -
x, y.

Hence, to find the velocity potential, we can write

so that d<f>
=

-jj-
dx -f -? dy = x dx y dy ~

Thus
(f>
=

J(a;
2 -y2

).

The streamlines are xy constant, that is, rectangular hyperbolas having

the axes of reference for asymptotes. The lines of constant velocity potential

are also rectangular hyperbolas

Thus this stream and velocity func-

tion give the flow round a rectangular

corner, fig. 4*70, where the dotted

lines correspond to constant values

off
Consider a rectangular drop of

fluid ABCD with sides parallel to

the axes. From (1) we see that u

is the same for all points on BC and

v is the same for all points on AB.

Hence ABCD remains a rectangle as

AB moves up. Also the area ABCD
remains constant (equation of con-

tinuity) since the same particles are

involved. Clearly AB continually decreases in length while BC continually

increases. Hence the drop alters its shape, but the sides remain parallel to

the axes. This illustrates the irrotational character of the motion, and the

rate of pure strain referred to in 240.

4*71. The equation satisfied by the velocity potential. When the

motion is irrotational the vorticity is zero and therefore

VV = 0.

Again, q = - V ^> and V q = 0, from the equation of continuity. There-

fore

= 0.

FIG. 4-70.
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It follows that
</>
and

t//
both satisfy Laplace's equation \7

2F = 0, or, in

cartesian coordinates,

-
dx*

+
By*

We have now arrived at the point where two-dimensional irrotational

motion can be most profitably investigated in terms of the complex variable.

The next chapter will be devoted to a brief description of the necessary

mathematical apparatus.

In Chapter VI we shall see that, in terms of the complex variable, irrota-

tional motion in two dimensions admits of a special mathematical treatment

which enables us to solve problems which in their full three-dimensional form

cannot be attacked with the means at present at our disposal. By limiting

ourselves to two dimensions, we are thus enabled to discuss many peculiarities

of fluid motion which might otherwise elude treatment, and so to throw light

on important physical properties of hydrodynamical problems.

EXAMPLES IV

1. Wind blows over the surface of water which is flowing in the direction of

the wind, but with different velocity. Explain why, in general, any small departure
of the water surface from a plane form will tend to increase.

2. Determine the condition that

u = ax + by, v = cx + dy

may give the velocity components of an incompressible fluid. Show that the

streamlines of this motion are conic sections in general, and rectangular hyper-
bolas when the motion is irrotational.

3. Prove that in a two-dimensional motion of a liquid the mean tangential
fluid velocity round any small circle of radius r is o>r, where 2o> is the value of

dv du

dx dy

at the centre of the circle, terms of order r3 being neglected.

4. Show that u = 2cxy, v c(a
2 + x2 -y2

)
are the velocity components of a

possible fluid motion. Determine the stream function and sketch the streamlines.

5. Obtain the equation of continuity for the two-dimensional motion of an

incompressible fluid in the form

d(ur) dv

~ar +
a5" 0>

where u, v are the velocities in the directions of increasing r and 6 respectively
r, Q having the usual meanings.

Show that this equation is satisfied by u a&rne~* (n+1)a
, v arwe~*(n+1)d

,

and determine the stream function. Show also that the fluid speed at any
point is

where
\fi

is the stream function. (R.N.C.)
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6. If w, v are the velocity components of a continuous two-dimensional motion
of an incompressible fluid, show that

Bu dv _

+ ==().
ox oy

Deduce the existence of the stream function. If the circulation round any
closed path is zero, prove that the stream function satisfies

7. The stream function in a two-dimensional motion is given by \ft
=> O2

0,

r, 6 being polar coordinates. Find the vorticity and the velocity at any point,
Show further that this motion corresponds to the case of two plane boundaries

hinged together along their intersection, opening out or closing in.

8. In two-dimensional irrotational motion, prove that, if the speed is every-
where the same, the streamlines are straight.

^v. Determine the condition that the equation $(x,y,c)
- shall give the

streamlines of an irrotational motion, c being a parameter which is constant along

any one line of the system.

10. In a two-dimensional motion, show that a streamline cuts itself at a point
of zero velocity, and that the two branches are at right angles when the motion is

irrotational.

Sketch the streamline which passes through the stagnation point of the motion

given by

and determine the velocity at the points where this line crosses the axis of y.

.. Show that the velocity potential

gives a possible motion, and determine the form of the streamlines.

Show that the curves of equal speed are the ovals of Cassini given by

rr' = constant.

12. Liquid moves irrotationally in two dimensions under the action of con-

servative forces whose potential D satisfies V2Q = 0. Prove that the pressure

satisfies the equation V2
(log V2

^) =0.

13. In irrotational motion in two dimensions, prove that

14. By considering the circulation round an infinitesimal quadrilateral bounded

by two adjacent streamlines and adjacent normals to them, such as AA'GD in

fig. 4-20 (i), prove that in steady motion the vorticity is

i-$l
R dn

in the notation of 4-20.



CHAPTER V

COMPLEX VARIABLE

5-01 . Complex numbers. Let i, j
be unit vectors along the axes of

0, y, and let k be a unit vector perpendicular to each of these, the three forming

a right-handed system.

y

FIG. 5-01 (i).
FIG. 5-01 (ii).

If we confine our attention to vectors in the xy plane, the vectors a and

k A oc are perpendicular and lie in that plane. Thus the operation of multi-

plying a given vector a in the xy plane by k A results in a rotation of that

vector, without change of magnitude, through a right angle in the sense x to y,

i.e. counterclockwise in the figure. If 6 is a scalar, then 6k A a is the vector

obtained by rotating a through a right angle and multiplying its magnitude

by 6.

Thus as regards vectors in the xy plane we can look upon k A as an operator

which turns a given vector through a right angle.

If we multiply a given vector a by a+ 6k A , we get the vector aa + b (k A a),

which is also in the xy plane. Thus the operator a + 6k A applied to a vector

in the xy plane changes it into another vector in that plane.

Definition. The operator a+6k A is called a complex number, where a

and b are scalars.

It is customary in mathematics to write i instead of k A , and the complex
number is then written in the form

a+ ib.

5*10. Argand diagram. The complex number x+iy applied to the

vector i gives

(x+iy)\ =

that is, the position vector OP of the point P(x, y).
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Thus any complex number applied to the vector i yields the position vector

of a definite point.

This point is termed the representative point of the complex number, and is

taken as a geometrical representation of the

complex number z = x+iy. In this sense

we may refer to the point z, meaning thereby

the representative point in the above geo-

metrical description which is known as the

Argand diagram.

The law of addition of complex numbers O
is now easy to obtain. Let

FIG. 5-10 (i).

Then, operating on the vector i,

i = x \ = x2 i f ya j.

Hence

te+tyj i + K-t-^) i = (3i + a) i + (2/i + 2/2 ) j
= IK -^2)^(2/1 +-2/2)] i.

so that we may write

(x1 +iyl)-i-(x2 +iy2)
=

(vi + xjt-ifa + yj,

and this means that the addition of complex numbers follows the same law

as the addition of vectors.

Thus if A, B, C are the repre-

sentative points of zx ,
z2 ,

zl -f z2 ^ne

four points 0, A, C, B are at the

vertices of a parallelogram. We also

note that, since

the same method can be applied to

* obtaining the difference of two com-

plex numbers marked on the Argand

diagram.

5-IL Multiplication. Let zx
= xl + iyl ,

z2 x2+ iy2 . Then, operating

on the vector i,

Fia. 5-10 (li).

since, by definition, i\ = -
i.

Thus (a?i + tyx) (z2+ tya) i = -^ yz) i + (^ y2 -f xz yx) j

1)]
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and therefore

(1) (xl + iyj (z2+ iy2) = to x2 -^ y2) + i (xl y2+ x^ yj.

It is easy to prove that the same result is obtained if the factors are taken

in the order (x2+ iy2) (x + iy^.

Thus the order of the factors may be interchanged without altering the

product ; multiplication is commutative. Moreover, if we multiply the factors

in (1) according to the ordinary laws of algebra, we get

xl x2+ ito y*+ x* yi) + i* 2/i 2/2-

Comparison with (1) shows that the product is obtained by the ordinary

laws of algebra, provided that we put

= -!,

an interpretation perfectly in accordance with the definition of i as the operator

k A , two successive applications of which to a vector reverse its direction and

therefore multiply it by - 1.

5*12. Equality of complex numbers. The equation

gt+tft = x2+iyz ,

implies the equality of the vectors

and therefore xl
= x2 , y\ 2/2*

Complex numbers are often called imaginary numbers, and in this ter-

minology x is the real part of the complex number z ~ x+iy, and iy is the

imaginary part.* The equality of two complex numbers therefore implies

the equality of the real parts and the equality of the imaginary parts. In an

equation between complex numbers we may therefore equate the real parts

of the two sides of the equation, and equate the imaginary parts.

A complex number is said to be zero if both its real and its imaginary

parts vanish.

We can apply the principle of equality to find p, q t
such that

for xl
= px2 -qyt, yl

=

. . , . xl
which give V = ^6 *

* This name is also sometimes applied to y itself. The x- and y-axes are called the real and

imaginary axes respectively.
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The number p+ iq is called the quotient of the numbers o^ 4- iyl , x%+ tya , so

that

Wi) fa - ^2)

We have thus found that the fundamental rules of algebra addition,

subtraction, multiplication and division apply to complex numbers, subject

to the interpretation
. = -!,

and relying upon this, we shall manipulate complex numbers according to

those rules.

5-13. Euler's theorem.

cos0+ isin0 = eie
.

We define e ie
by putting x = i6 in the exponential series

from which it follows at once that

_ j

dd
~ '

., . / . rt ./ A m
Also -

j^r
-- = - sin 6+ i cos 9 t(cos ^+ 1 sin 6).

au

Thus the linear differential equation

du

has the two solutions % = eie
, u% cos 6 + i sin ^,

both of which become equal to unity when 6 = 0. Therefore they are identical

and thus

(1) eie = cos 6+ i sin 6. Q.E.D.

The complex number z x+iy can therefore be expressed in the form

z = r cos 6+ir sin = reie
,

where (r, 0) are the polar coordinates of the point (x, y), fig. 5-10 (i).

In this notation r = (x
2+y2

)* is called the modulus of z, written

The modulus of a complex number measures the distance of the represen-

tative point from the origin. Thus the modulus is essentially a positive

quantity. An important result is
|
ea

\

= 1, if 6 is real. This follows at once

from (1).
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The angle 6 is called the argument of z. Thus

arg z = 6.

Again, if zl
= r^i, z2 = r2 e^*, then zl z2 = rx r2 e

<(* +^

Therefore
*

arg (zx z2) = arg %+ arg z2 .

In applying -this result it is important to remember that arg z = 6 is

indeterminate to an integral multiple of 2ir, for

and eZlli = cos Zn+ i sin 2?r = 1.

We also note that

eiir- cog ff + j gift Tf _
1^

e tir l2 cos TT-M sin JTT i.

Thus arg (
-

1)
=

TT, arg (t)
= rr.

5-14. Conjugate complex numbers. If in an expression involving

i we change the sign of i throughout, the expression so formed is said to be

the conjugate complex of the original expression.

Thus, if z = x+ iy = re 1
'

,

then the conjugate is z = x iy re~ t0
.

We shall express the conjugate complex by placing a bar above the original

symbol. Observe that the conjugate of z is z, and that z, z have the same

modulus.

We have, from the above,

z -f- z ==
^5s7, z 2 ^ ^iy^ zz == x ~^~ y == T .

Thus we have the following important theorems :

(1) The sum of two conjugate complex numbers is real.

(2) The difference of two conjugate complex numbers is purely imaginary

(i.e. has zero for real part).

(3) The product of two conjugate complex numbers is real and equal to the

square of the modulus of either.

(4) If a complex number is equal to its conjugate, the number is real (use

(2)).

If/(z) is a function of z, we denote the conjugate complex by f(z). Thus

if /(z) = 6z -f 3^'z
2
, /(z)

= 62 - 3tz2
; replacing herein z by z we get / (z)

=
6z-3iz2

.

5-15. The reciprocal of a complex number. If z = re<0% the re-

ciprocal of z is

J.
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To represent z and its reciprocal on the Argand diagram, draw a circle of

unit radius, centre O.

Then if P is the point z, and if on OP we take the point Q' such that

OQ' . OP = 1,

"FiG. 5-15.

(so that Q' and P are inverse points with respect to the circle), the point Q
which represents l/z is the image of Q' in the co-axis, fig. 5-15.

5-16. Vector properties of complex numbers. We have already

seen that complex numbers obey the vector law of addition when represented

on the Argand diagram. If Pl ,
P2 are the representative points of zl , za , for

purposes of addition, we can identify the vectors OP1 ,
OP2 with z1 and z2 in

the sense that if

OPl
= zl , OP2

= za , then O

On the other hand, the scalar product is not represented by z . 22 . We
note, however, that

We therefore obtain the important and useful results

OPt .OP2
= real part of % . za =

|
OPlAOPa |

= real part of iz1 . za =

For example, the moment about the origin t)f the complex force F = Z -f % Y,

acting at the point z, is the real part of izF, that is of iz(X -iY).
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5*17. Rotation of axes of reference. If we wish to change from axes

Ox, Oy to axes Ox', Oy', where Ox' makes an angle a with Ox, we have

x' + iy'
= z' = re"' = re*-> = ze-<*

fp and z = 2;'e
<at

.

If in addition we change the origin to the

point z (referred to Ox, Oy), we get

5-20. Logarithms.

Let z =

Then log z = log r-M0

= log (a)
2+ /

2
) + * tan-1 ? .

x

Thus the real part of log z is log r, or log (#
2
-f y

2
).

The imaginary part of log z is 0, or tan"1 - .

3?

It is important to note that 6 is not determined, except to an integral

multiple of 2-7T, for the addition of 2rr to 6 does not alter the position of the

point (r, 6).

Thus if we draw a circle, centre 0, radius r, and, starting from A, describe

the circle once in the counterclockwise or positive sense, when we return to A
the argument has increased by 27r, assuming that it changes continuously. If

we go round again, the argument increases again by 2?r.

The argument therefore depends not only on the point A, but on the

history of our movements in arriving at that point. The same applies if we

move from A to A round any curve which encloses the origin.

Thus the imaginary part of log z may have the values

0, 0+27T, 6+ 40T,...,

or 0, 0-2?r, 0-4rr,

5-21. Real and imaginary parts. We shall frequently require to

separate a function of z = x+ iy into its real and imaginary parts. We have

just seen that

log z = \ log (x
a+ f)+ i tan-1 y-

,

x

and therefore, if X, Y are real functions,

log (X + iY) = i log (X*+ Y')+ 1 tan- .
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Again, from Euler's theorem (5-13),

___, ___.

Changing into ix, we get

e +e . . t ,
x

cos ia = ^ sin &a = -
(e

a -
e-).

^ z

The hyperbolic functions cosh a, sinh a are defined by the equations

cosh a = J (e+e-
a
), sinh a = \ (e*-~ e-

a
),

30 that cosh = cos iB, sin i0 = t sinh 0.

Hence sin z = sin x cos i'y -f cos a; sin t'y

= sin x cosh y+ i cos a; sinh y,

cos 2 = cos x cosh y
- 1 sin x sinh y.

Similarly, cosh z cos (iz)
= cos (ix

-
?/)

= cosh x cos y 4- i sinh a; sin y,

sinh 2? = sinh x cos y+ * cosh x sin y.

5-30. Definition of a holomorphic function of z. If < =

i/
= ^(x, y) are any functions whatever of x and y, the combination

a function of the complex variable z = a? -My, in the sense that given z (i.e. x

and y) there must correspond to this value

of z one or more values of
</>
+ itft.

This

conception is far too general to be useful.

We shall therefore restrict the functions

which we shall consider to the class of

holomorphic
* functions of z which will now

be defined.

A simple arc is an arc which does not

intersect itself and is rectifiable, i.e. has a

definite length.

A simple closed curve is a closed curve FlG* 5 '30-

which is separated by every pair of points on it into two simple arcs.

Let there be given a simple closed curve (or contour) G in the plane of the

Argand diagram of z (briefly, the z-plane) and a function f(z). The function

/(z) is said to be holomorphic within the contour 0, if it satisfies the following

conditions.

(a) To each value of z within C there corresponds one, and only one, value

of/(z), and that value is finite (i.e. its modulus is not infinite). Briefly, /(z) is

finite and one-valued in (7.

* Greek oAo? complete, fio/></>r?
form.
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(6) For each value of z within C the function has a one-valued finite

differential coefficient with respect to z.

We investigate requirement (6).

Since x = \ (z -f z), y=-^i(z- z) any function of x, y is a function of z and

z. Thus for example if
<j> (x, y), ^ (x, y) are given functions,

Now df=-~dz + -~-_dz.
oz oz

m, * df df Bf v dz
Therefore T-=/ +^ urn T'

dz oz oz

r> , r r
-

But lim -y-
= lim -r
-r~ = hm

dz bx+ iby Sx> dV-+Q

which is indeterminate, since So? and Sy can tend to zero independently of one

another.

Therefore a determinate derivative can exist only if df/dz=Q.

Therefore a holomorphic function of z is necessarily independent of z, i.e.

=o.

Suppose then that/= </ (x, y) + i*ft (x, y)
=

(/)
+ iif/ and that Bf/dz

= 0. Since

9/ dfdx dfdy , 17 ., ,-, , i

=f-^ +--- and a:=i(+), y= -Jt(-g) we have
dz dxdz dydz

x ^ ^ v 7

A .a/ -.a/ t /a# .a^\
o=j^+it^=4(^+^)-i-*

dx
*

dy
*
\dx dx/

*

\dy By

Therefore

These results are known as the Cauchy-Riemann equations. They are

necessary but not sufficient. Sufficient conditions are obtained by adjoining
to (1) the further conditions :

(2) All the partial derivatives --
,
~

,
~

, are continuous.r
dx dy dx dy

Thus a//ai= 0, together with (2) are necessary and sufficient conditions that/
shall be a holomorphic function of 2.

Obvious examples of holomorphic functions are sin z, ez, zs -f5za -3,

(1 + z)j(\
- z8). In the last case we must exclude the points at which z3 = 1.

On the other hand, |
z

|

is not a holomorphic function of z, for
|

z
|

=
-J(zz) t

and so involves z.
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5-31. Conjugate functions. The real and imaginary parts of a holo-

morphic function of z are called conjugatefunctions. Thus, if

f(z)
=

<f>(x, y) + i#(a?, y)
=

$ and $ are conjugate functions. As an example,

yields the conjugate functions x* 3xy* 9
3ccay y

3
.

The Cauchy-Riemann conditions (5-30) give

=
,

=_ (

dx dy' dy doc'

from which we deduce

_ --
dx* dy*

"
'

dx* dy*

~

d* d*
Thus if Vi

2 =
3-2

+
a~2

*^e two-dimensional form of Laplace's operator,

we see that conjugate functions are solutions of the equation Vi
2 ^ = 0.

If we equate conjugate functions to constant values, say, <f>(x,y)
= clt

$(x, y)
= c2 ,

we get two systems of curves. These curves are orthogonal, that

is to say, their tangents at a point of intersection are at right angles. To prove

this, observe that the gradient dy/dx of the curve <f>(x, y)
= cx is given by

d<f> tydy _
"5 i~ ~^~ j~ ^*
ox dy ax

Thus the gradient is -
/
~ .6

Bx/ dy

The gradient of if/(x, y)
= c2 is - - I ~ -

From (1), we see that the product of these gradients is -
1, and therefore

the tangents are at right angles.

FIG. 5-31 (i).

Another proof is as follows. We have

f(z)dz = d<f> + id*l*.

Therefore (arg ^)^ Constent
= t* + (arg ^

I
. M.T.H.,
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so that the elements of arc of the curves ^ = constant, $ = constant, are at

right angles.

It follows that the curves ^ = (^ , ^r
= c2 ,

ifdrawn at frequent small intervals

of the constants cx , ca , divide the plane into infinitesimal rectangles (not all of

the same size).

To illustrate this point, consider

the conjugate functions defined by

(f>
+

i\f/ logz. Now, logz is not

holomorphic in any curve which

O encircles the origin, for taking z

*-------- once round the origin in the positive

sense increases arg z by 2?r and

therefore log z by 2?n, so that log z

is not one-valued. If /(z) is holomorphic, it must be continuous and one-

valued in the region considered. This can be achieved by introducing suitable

barriers. Let us then exclude the origin by drawing round it a circle of small

radius and make a cut or impassable barrier along the positive part of the

real axis, so that z may move in any manner outside the circle without cross-

ing the positive part of the real axis. To fix the determination of the logarithm,

let us agree that log z = ITT when z = - 1. We then get

where tan-1 yjx can now take all values between and 277, but no other values.

The curves
<f>
=

c^ are circles, centre the origin, the curves $ = ca are straight

lines radiating from the origin.

FIG. 5-31 (iii).

The resulting pattern is shown in fig. 5-31 (iii).

5*32. On the relation of conjugate functions to /(z). A given

holomorphic function f(z) can be written in the form

(1) /(*) ^/
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Therefore we have the identities

f(x+ iy) +f(x
-

iy)
= ty (x, y), f(x+ iy) -f(x - iy)

=
2i</> (x, y).

Put x= |z, y= -
\iz. Then these identities give

Let /(O) =<x + ip, and /(O) = a -
t]3.

Then

2a=/(0)+/(0)= 2^(0, 0), 2ij8=/(0)-/(0) = 2^(0, 0).

Therefore if <(x, y) or ^(z, y) is given we determine /(z) from

wherein j8 and a are arbitrary real constants.

Example. < (x, t/)
= sin $ cosh y+ 2 cos x sinh y+ x2 - y

2

/(z)
= 2 sin \z cosh

(
-

\iz) + 4 cos Jz sinh (
-

\iz) + |z
2

-I- Jz
2 - 2tz2,

Since cosh (id)
= cos 0, sinh t'0= t sin Bt

f(z)
= sin z - 2i sin z+ za - 2i'z

a
.

5 33. The solution of Laplace's equation. To solve the equation

put z = x+iy, z x~iy.

_ ___ _ __i_ . .... _._ __ j__
dx dz dx dz dx dz dz

aF az _ . /aF _ aF\

az dy \dz dzjdy dz dy dz dy

Thus we have the equivalence of operators

2 _
a
_ = .!-;! 2~=- i-

dz dx dy' dz dx dy'

a2F a2F /a . a \ /aF . aF\ , aaF A
Therefore -5-7 + =-= = (a a") T~+*^- = * a~a"-

=
-

dx* o]f \dx dyj \dx dyj dzdz

It follows successively that

where/x (z),/a (z) are arbitrary functions, and this is the general solution. We
thus see that any holomorphic function /(z) satisfies Laplace's equation and

therefore that this is the most general continuous solution involving z only.

The most general real solution is F = /(z) -f/(z).
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The conjugate functions to which f(z) gives rise must also be solutions, for

the real and imaginary parts of f(z) must separately satisfy the equation.

This is in agreement with the result already obtained in 5-31. Solutions of

Laplace's equation are often termed harmonic functions. Thus conjugate

functions are also harmonic functions.

5*40. Sense of description of a contour. In calculating integrals

taken round a contour C we can go round the contour in either sense : clock-

wise or anticlockwise. We shall make the convention that the sense of descrip-

tion shall be called positive if the contour is described, so as to leave the area

regarded as bounded by it on the
left, the region L in fig. 540.

Fig. 540 shows the positive sense of description when the area is regarded

as internal to the contour or external to it. The values obtained for the integral

in the two cases will differ in sign.

5-43. Complex Stokes' theorem. If/(z, z) is a function of z = x+iy,
z = x - iy, which is continuous and differentiate in the area S enclosed by the

contour C, then

(1) [ f(z,z)dz = 2i

J (C) J(S) OZ

(2) [ f(z,z)dz=-2i[ f-dS.
J (C) J (5)

OZ

Proof. By Stokes' theorem applied to the plane contour C closed by the

plane diaphragm S

\ fdr=\ (kAV)/<B=kA
f (|| + ||)dS.

J(C) Josf) J(S)\ ox dyj

Now dr = i dx+ j dy = (dx+ i dy) i dzl t since j
= k A i = i L
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Therefore, removing the factor i,

from 5-33. Formula (2) follows by taking complex conjugates and then

replacing/ by /. Q.E.D.

Corollary. In (1 ) put/= u - iv. Then equating real and imaginary parts we

get

f (udx+ vdy)=\ (-fWf (udy-vdx)={
J(0

*' MW ay/ 'J (c)

v *
Jt

The fundamental importance of the above theorem was not perceived at

the time when it appeared as a lemma in Chapter 9, of the first edition of this

book.

5-50. Cauchy's integral theorem. Let C be a simple closed contour

such that the function f(z) is holomorphic at every point of C and in the

interior of C* Then

f /(*)& = 0.

J(C)

This is Cauchy's integral theorem.

Proof. Since f(z) is holomorphic, df/dz
= 0.

),
f

/e
J(C)

Therefore, from 5-43 (1), f(z)dz = 0. Q.E.D.

The proof here given is based on the assumption pointed out in 5-30 that

sufficient conditions of holomorphy are satisfied. A complete proof would be

long and difficult but the conditions here assumed are satisfied in the applica-

tions.

5-51. Morera's theorem. This is the converse of Cauchy's integral

theorem, and states that, if

f /()& = 0,
J(C)

for every simple closed contour within a region JK, then f(z) is a holomorphic

function of z within that region.

Proof. From 543 (1) we get

f % ds = >

J(S)VZ

* This means that C and its interior b'e wholly within a larger contour inside which the
function is holomorphic.
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where S is the region enclosed by C. Since this region is arbitrary, provided it

lies within R, we must have

so that/(z) is a holomorphic function of z. Q.E.D.

The above argument requires a considerable amount of amplification to

make it completely satisfactory. For a complete exposition the reader is

referred to works on Analysis.

5*52. Analytical continuation. Let Rl ,
R2 be two regions, separated

by the line 27, in which functions/! (z),/2 (z) are holomorphic, and such that~
/1(z)=/2 (z)on27.

Then the function /(z), which is equal

if z is in Rl and to/2 (z) if z is in

R2 ,
is a holomorphic function in the total

region -R1+ jR2 - To prove this, we have

only to show that

FIG. 6-52.
J(C)

f(z)dz
=

when C is a contour within Rl -}-R2 . Since /x (z), /2 (z) are holomorphic, the

only case for which this is not obvious is when the contour cuts 27, see fig. 5-52.

For such a contour, we have

f f f
I f(z)dz = I fi(z)dz+\ f2 (z)dz

= 0,

J (C) J (ABPA) J (AQBA)

since the integrals along AB and BA annul one another. Thus, by Morera's

theorem, /(z) is holomorphic in the total region R!+ R&
This situation is described by saying that/2 (z) is the analytical continuation

off^z) into the region R2 .

5*53. The principle of reflection. Let/1 (z) be a holomorphic function

defined within the region R1 which is bounded by a

straight line 27 on which ^(z) takes real values.

Let Rz be the reflection of the region /^ in the

line 27 regarded as a mirror.

Let Pa be the reflection of Pl in 27.

To continue /j(z) analytically into the region R2 ,

it is only necessary to take as/2 (z) a function whose

value at each point Pa is the complex conjugate of

the value of/! (z) at the corresponding point Px .

Fio.6-53.
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5*54. Contraction or enlargement of a contour* Let us apply

Cauchy's theorem to the contour consisting of two closed curves (7, 0' and

the line AB joining two points on them, as shown in fig. 5*54.

FIG. 6-64.

Then assuming /(z) to be holomorphic on C and C' and at every point in

the region between them, we have

f /(*)&+[ /(*)&-[ /(*)&+[ /(*)& = o.

J(C) }(A.B) J(C') J(BA)

The integrals along AB and BA cancel because /() is one-valued and

therefore

f /(*)& = f
J (C) J (C')

both integrals being taken in the positive (anticlockwise) sense round the

respective contours C and C'.

This means that, starting with the contour C, we can replace it by a con-

tracted contour (/', provided that/(z) does not cease to be holomorphic at any

point between C and C'. Similarly, under the same conditions the contour C'

may be enlarged to C.

5-55. Case where the function ceases to be holomorphic. We can

apply the method of argument of section 5-54 to obtain an important result.

Fio. 5-66.

If the function ceases to be holomorphic at a finite number of points within

a contour, we can draw small circles with centres at these points, such that
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each circle encloses only one point at which the function ceases to be holo-

morphic. We can join these circles by non-intersecting straight lines to the

contour C. Fig. 5-55 illustrates the case where the function ceases to be

holomorphic at three points. The circles are Cl ,
C2 , C3 , and the lines are

AJ$i ,
A 2B2 ,

A3B3 . Then, by Cauchy's integral theorem,

f /(*)&+[ -f +[ +[ -[ +[ +[ -t +f =o,
v (C) J (^j-i) v (C|) J (B^A.^) J (A^B^) J (C%) J (B^AI) J (^L}D|) J (Cj) J (B^Af)

where the integrand f(z) dz is understood throughout. Thus

f f f f
1 f(z)dz = I j(z)dz-}- 1 f(z)dz-\- 1 f(z)dz.
J(C) J(C,) J(C2) J(C.)

This means that the integral round a contour can be replaced by the sum

of the integrals round small circles centred at the points within the contour

at which the function ceases to be holomorphic.

5-56. Singularities. A point at which a function ceases to be holo-

morphic is called a singular point, or singularity of the function.

Thus the function f(z) = (z-a)~
l

is holomorphic in any region from which

the point z a is excluded (e.g. by drawing a small circle round it). At z = a

the function ceases to be finite and therefore does not satisfy the first part of

the definition of holomorphy.

More generally, if near the point z = a the function can be expanded in

positive and negative powers of z - a, say
T) r>

the point z a is a singular point.

If only a finite number of terms contain negative powers of z - a, the point

z = a is called a pole.

Again, consider the function /(z)
= log z. This function ceases to be holo-

morphic at z = 0. We have seen in 5-20 that log z is many-valued. If we

choose one particular determination, say that which reduces to zero when

2 = 1, and allow z to describe a closed curve which does not encircle the point

2 = 0, log z will return to its starting value and will be holomorphic inside the

curve.

5-57. Residues. We have seen that a function, which in the neighbour-

hood of z = a has an expansion which contains negative powers of z - a, is

singular at z a.

In this case the coefficient of (2 -a)-
1 is called the residue of the function

at 2 = a.
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Let us consider

\(z-a)
n dz

taken round a circle of radius R whose centre is at the point z a. On the

circumference of this circle z - a = Reie
, and therefore

f (*-a)<fe

If, however, n = -
1, we get

+ i& idO =

Now, suppose that/(z) has an expansion in the neighbourhood of z = a of

the form
fi 7?i-- 2

If we integrate round a small circle surrounding z = a, we get

for all the integrals vanish except that of B^z-a)"1
.

Thus we see the importance of the residues, for they form the only contri-

butions to the integral of a function which is holomorphic at all points except

singularities of the kind described above.

5-58. Cauchy's residue theorem. Let C be a closed contour inside and

upon which the function f(z) is holomorphic, except at a finite number of

singular points within C at which the residues are at , a2 , . . . , an . Then

f(z)dz = 27n'(a1+a2 4- . . + )

J(C)

Proof. Suppose there are three singularities. Surround them by small

circles, as in 5*55. Then

f /(*)& = [ /(*)&+[ f(*)dz+[ f(z)dz
J(C) J(C,) J(C,) J(C,)

= 27rt ax + 27rt a2+ 2iri a3 ,

from 5-57. This proves the theorem in the case of three singularities. The

proof for any finite number is the same. Q.E.D.

5*59. Cauchy's formula. Let/() be a function of the complex variable

f , holomorphic inside and on a closed contour C and let z be any point not on

G. Then

if r%?**nj(C) \>-*

according as z is inside or outside (7.
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Proof. Let F (Q = [/( ) ~-f(z) ] / (
-

*). Then F () is holomorphic every-

where within C except at f =z, where it is undefined.

But since/() is holomorphic,

Let us therefore define F() to be equal to/'(z) when = z.

With this definition .F() is holomorphic everywhere within (7, and there-

fore by Cauchy's theorem JT() <2 = 0. Therefore

by Cauchy's residue theorem, according as z is inside or outside C. Q.E.D.

5-591. Principal value of an integral.

FIG. 5-691.

Let be a point on an arc A (which may be a closed contour) and consider

J u>
-

o

where /(f) is given when moves on A. The integrand becomes infinite when
=

o and 8O ^s integral is, in general, indeterminate. Describe a circle

centre of radius e so small that the circle cuts the arc A in two points B, D,

say. Denote by a the part of the arc inside the circle, i.e. the arc BD, and

denote by A -a the rest of the arc A. The integral (1) is said to exist as a

Cauchy principal value if

(2) lim rF<Z exists.

c-K)J (A-a) 4-o
Observe that an integral which exists in the ordinary sense, exists also as a

Cauchy principal value. The converse is false. Every integral can therefore

be considered as a Cauchy principal value when this latter exists.

ft 7*

Consider in particular I = =- taken round a closed contour (7. Here
J<c)4-o

limf y^= Urn Flog (- )l = lim* [arg (-
-+Oj(C-a)b-bO ->0 L J (C-a) ->0 L (C-a)
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Therefore as a Cauchy principal value

f d

J(C)-o

5*592. The formulae of Plemelj. Let be a given point on a simple

closed contour C and let <() be a function given on C such that

m J_f +M-*(U dr
\L) jr-. j j flC,^^ J (C) 4

-
4o

exists, at least as a Cauchy principal value.

Having fixed a positive sense of description, the curve C separates the plane

into two regions, L on the left and R on the right. See fig. 540. We consider

If z is in Z, we write ^ (^) for (2) giving

(3) ^) =

by Cauchy's integral formula.

Now let z, while remaining in L
t
tend to . Then we write

Again if z is in R, we have d/(-z) = by Cauchy's residue theorem,
J(C)

and therefore from (2)

Therefore if 2, remaining in R, tends to
,
we write

Subtracting (5) from (4) we get thejfrsJ Plemeljformula
*

(6) *t(U-**(U = +(U

and adding (4) to (5) we get the second Plemeljformula
*

(7)

*
Plemelj, J.,

" Bin Erganzungssatz . . ", MonahHefte filr Math. d> Phye., 19 (1908), 205-10.
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If instead of a closed contour C we have an open arc A the formulae still

subsist, for we can close the arc by joining its ends and on this closure ascribe

the value zero to
<f> ()

One of the most valuable conclusions from the first Plemelj formula is

embodied in the following theorem.

The Plemelj theorem. The functional equation

(8) ^(W
OD an arc A has a particular solution

^n J (A) <*~ z

This is the unique solution which is holomorphic in the whole plane except on

the arc A and which tends to zero at infinity.

That (9) is a solution follows at once from (6). To see that it is unique let

Y(z) be the difference of two solutions which satisfy the given conditions.

Then by suitably defining Y(z) on A (where it is undefined) we find that ^(z)

is holomorphic in the whole plane including infinity, and therefore by Liou-

ville's theorem reduces to a constant which must be zero for $ (z) has to vanish

at oo .

5-60. Zeros. If a holomorphic function /(z) can be expressed in the

form /(z)
= (z-z )

n
g(z), where n is a positive integer and g(z) is not zero

when z = z
,
the function /(z) is said to have a zero of multiplicity n at z = z .

If n = 1, z is a simple zero.

Since /'(z) = n(z-zQ)
n
-ig(z) + (z-zQ)g' (

z
),

f (z) will have a zero of multiplicity n - 1 at z = z .

In the case of a simple zero, /' (z ) ^ 0.

Thus if /' (z) ^ inside a given contour in which /(z) is holomorphic, /(z)

can have only simple zeros within this contour.

Again, since the argument of a product is equal to the sum of the argu-

ments (5-13) :

a*g/(z)
= arg (

z ~ Zo)
n + arg 9 (*)

= n arg (
z ~ zo) + arg 9 (

z)

for the same reason.

In counting the zeros of/(z), it is convenient to regard a zero of multiplicity

n as n zeros (all equal).

5*61. The principle of the argument. If C is a simple closed contour

upon which /(z) has no zeros, and within and upon which /(z) is holomorphic,

then the number N of zeros of/(z) within the contour is given by

where the notation means the increase in arg/(z). when z describes the contour

once in the positive sense.
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Proof. For simplicity, suppose there are two zeros inside, say zl and z2 ,

of multiplicities n: and wa . Then

where g(z) has no zeros inside C. Thus (5-60),

arg/(z) = n arg (z
- zt) -f n2 arg (z

- z2) + arg g (z).

When z describes C once in the positive sense,

arg (z
-

Zj) and arg (z
- z2) each increase by 2*7, while

arg #(z) returns to its original value.

Therefore [arg/(z)](C)
= 2-77- (^-f n2)

= 27TJV. Q.E.D.

If in addition /(z) has a zero, say z3 ,
on the contour C, when z describes

the contour once in the positive sense, there will be an increase in arg (z
- za).

This increase will be TT, if z3 is an ordinary
*
point of C ; it will be the angle

between the tangents at z3 ,
if z3 is a point at which there are two distinct

tangents.f Thus in any case we shall have

FIG. 5-61.

where N is the number of zeros off(z) within the contour C.

562. Mapping. Let /(z) be a function of z = x+iy, which is holo-

morphic inside and upon a simple closed contour C in the x, y plane, which we

y 9

-
plane

FIG. 5-62.

-
plane

shall call the z-plane. We take a second complex variable = + 11} and

mark the representative points of in a second Argand diagram, axes Of, Orj t

which we shall call the -plane. Now consider the relation

(1) C =/(*).

By means of this relation, to each point within or upon C there corresponds

one point in the -plane, and, since /(z) being holomorphic is one-valued, only

one point. Thus the points of C and its interior are mapped into certain points

in the J-plane. We shall enquire into the nature of the map on the following

hypotheses :

* See fig. 7-32 (i). t See fig. 7-32 (ii).
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(a) f(z) never takes the same value at two different points of the contour

C; and

(b) the derivative f'(z) has no zero on the contour C.

We shall now prove several properties of the mapping given by (1).

(i) When z describes C once, describes a closed curve F in the -plane,

and this curve has no double points.

Proof. The function f(z) being holomorphic on C varies continuously, and

therefore f varies continuously, so that describes a continuous curve F.

Since /(z) being holomorphic is one-valued, when z describes C once, return-

ing to the same point, f(z) and therefore returns to its initial value. Therefore

F is a closed curve.

Since, by (a), /(z) never takes the same value twice when z describes 0,

never takes the same value twice when it describes F. This means that the

curve F does not cross itself, that is, it has no double points.

(ii) Given the point z inside C, the corresponding point is inside F.

Proof. Let

n = ~ [arg {/(z) -/(z )}](C)
= [arg (

-
)](r)

.

Since /(z) ~/(z )
has at least one zero inside (7, namely z

, section 5-61

shows that n ^ 1.

Now, when describes J1

once, the increase in arg (
-

)
is 0, a (where

*

a<27r), or 27r according as is outside, on, or inside F.

The corresponding values of nareO, m(m<l), 1. But n^ 1. Hence

n = 1, and therefore

This shows that is inside F and that F is described in the positive sense.

This means, 5*40, that is on the left of an observer who describes the contour

in the positive sense.

(iii) If z describes C in the positive sense, describes F in the positive

sense.

This is an immediate corollary to (ii), where it was proved that when z

describes C positively, is inside F and F is described positively.

(iv) Given the point inside JT, there is exactly one point z inside C such

that =/(* ).

Proof. Since is inside Ft
- nas exactly one zero inside J1

, and

therefore

1 = 1 [arg ({
-Ufa = 1

[arg {/ (z)
- Ufa,

* The curve P has no double point and therefore a must be less than 2r. See figs. 7*32
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which shows that f(z)
- has exactly one zero inside C. Calling this 2

, we

(v) The derivativef'(z) cannot vanish inside or upon C.

Proof. If possible, let zl be a zero of/'(z) inside C. Then f(z) -f(zi) has

a zero of multiplicity greater than 1 since /'(zi) = (see 5-60).

Therefore the equation f(z) -/fa) = has at least two roots at zl ,
which

is inside 0. This contradicts (iv), and so the hypothesis that/' (z) vanishes

inside C is false. That/'(z) cannot vanish upon C follows from (6).

(vi) When moves inside F, z is a holomorphic function of .

Proof. From (iv), we see that to each value of within F there corre-

sponds a single definite value of z within (7, so that z is a one-valued function

of I
It remains to show that z has a unique finite derivative for each value of

within JT. Now, if/' (z) is not zero,

dz_ (<%\~i ^_l_
<%~ \dz) ~/'(z)'

and since /'(z) is unique and never zero while z moves within C, the required

result follows. On account of (6) the result is still true when moves on F.

The above results show that the relation (1), subject to the condition (a)

constitutes a bi-uniform mapping whereby the region within C is mapped

point by point on the region within JT, and conversely, the region within F is

mapped point by point on the region within C, in such a way that to the point

z within C there corresponds one, and only one, point within JT, and to the

point within F there corresponds one and the same point z within (7. The

adjunction of condition (6) ensures that the bi-uniform character of the mapping
extends to the boundaries C and F.

5*63. Indented contours. It may happen that we require to map a

contour C on which there occurs a zero of/'(z), say at P.

FIG. 5-63.

To do this we indent the contour C, that is to say, we replace it by a modi-

fied contour C' in which an infinitesimal arc of C containing P is replaced by
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a circular arc, centre P, of infinitesimal radius, so that P is now outside the

modified contour C', fig. 5-63.

To the modified contour C f

the theorems of mapping now apply. We then

let the radius of the indentation tend to zero. A contour may of course be

indented at as many points as may be necessary.

5-70. Conformal representation. Let a bi-uniform mapping of a

region of the z-plane on a region of the -plane be defined by

(1) =/(*)

TT 2

z-plane

n

FIG. 5-70.

Let z, zx , z2 be represented by the points P, P1 ,
P2 of the z-plane, and let

the corresponding values
, t , 2 be represented by the points 77, TTj , 772 of

the -plane. Then

Zj-2 ZX -Z Z2 -Z Z2 -Z

If we suppose zx
-

z, and z2
- z to be small, we then have

(2)

very nearly, and hence

z,-z Zo-Z

Thus, taking modulus and argument,

(3)

arg/7/ri-argPPl
=

Hence arg J777a
-
arg TZT/! = arg PPa

-
arg PPX ,

and therefore
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Equations (3) and (4) mean geometrically that the triangles PJPPZ , IJJJII^
are similar, so that an infinitesimal triangle in the z-plane maps into a similar

infinitesimal triangle in the f-plane. Thus the mapping preserves

(a) the angles ;

(6) the similarity of corresponding infinitesimal triangles.

From these properties we derive the name conformed representation of the

mapping given by (1).

The relation (3) gives the scale of the mapping at the point 77. This scale

since it is a function of z, varies from point to point. An illustration of

conformal mapping is afforded by an ordinary map on Mercator's projection.

It is well known that the angle between two lines as measured on the map is

equal to the angle at which the two corresponding lines intersect on the earth's

surface ; in fact, it is this property which renders the map useful in navigation.

In particular the lines on the map which represent the meridians and

parallels of latitude are at right angles. If we confine our attention to a small

portion of the map, we also know that distances measured on the map will

represent to scale the corresponding distances on the globe, but that the scale

changes as the latitude increases.

We also obtain from (3) the ratio of corresponding small areas. Thus

where /(z) is the conjugate complex of/(z).

To illustrate this last point suppose that

f(z)
= 6z+ 3iz2

.

Then /' (z)
= 6+ 6i z = 6+ 6* (x+ iy),

/' (z)
^ 6 - 6* z = 6 - Qi (x-iy) y

and |'(z)|
2 = (6-6

5-71. The mapping of infinite regions. In most of the applications

of conformal representation to hydrodynamics one or both of the regions con-

cerned extends to infinity and it becomes of importance to have a clear idea

as to what constitutes the
"
inside

"
of the boundary. To elucidate this point,

consider the mapping given by

= z, a >l

applied to the region in the z-plane bounded by the circular arcs r = a, r = 6

and the radii 6 = 0, 6 = ir/a, fig. 5-71 (i).

Put z = re", f = Re*. Then

Re* =
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Thus y = and moves along A'B' when z moves along AB (6
= 0),

y = TT and moves along C'D' when z moves along CD(0 7r/a), while on

the arc AMD(r a), R a, and on the arc BLC(r = b), R = 6, so that

the corresponding paths in the f-plane are the semicircles D'M'A'> B'L'C'.

It is clear that the conditions 5-62 (a), (6) are both fulfilled by the mapping

function, for the origin, at which the derivative of z" vanishes, is excluded from

the region considered. Thus the mapping is bi-uniform and the inside of the

sectorial region in the z-plane is conformally represented on the inside of the

region between the semicircles in the -plane. Moreover, the sense of descrip-

tion corresponds in the two diagrams, the area mapped in both being on the

left when the contours are described in the senses shown. These statements

are true however great b may be, and therefore letting 6->oo and denoting

points at infinity by the suffix oo
, we obtain fig. 5-71 (ii), in which the hatching

z -plane
FIG. 5-71 (ii).

indicates the exterior. This shows that the interior of the infinite sectorial

region is mapped on the upper half of the -plane, and that now the term

interior is to be inferred from the limiting form of the finite case and is related

in the same way as before to the sense of description. The indentations at the

origin may now be removed by supposing a to tend to zero.

Simple considerations on the above lines will generally be adequate to

decide on the meaning which is to be assigned to the terms inside or interior

when applied to mapping in which infinite regions are involved ; indeed the

sense of description alone will generally furnish the required information.
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EXAMPLES V
1. If

</>
-f ty f(z), and f(z) is real when y = o, show that ^ = when y a.

2. Find the function of z whose imaginary part is

3. Taking the transformations

(i)
- z + a, (ii)

-
, (iii)

- 62, (iv)
- z~\

prove that the first is a translation, the second a rotation, the third a rotation

and a magnification, the fourth an inversion followed by a reflection
;
where a is

real and a, 6 may be complex.
Prove that = (az + /3)/(yz + 8), where aS-jSy^O, may be compounded of a

succession of the above transformations and hence gives a mapping in which circles

and straight lines transform into circles or straight lines.

4. Prove that the transformation =
(z-i)/(z + i) maps the upper half of

the z-plane on the interior of the circle
| |

=* 1. Find the points corresponding
to z = oo, -1,0,1.

5. Show that the transformation == z2 maps the half-plane y > on the

whole of the -plane, provided the part of the real axis for which ^ in the -plane
is regarded as an impassable barrier, so that may not be taken along any path
which crosses this barrier.

6. Prove that the transformation = -i(z - l)/(z + I) maps the region within

the circle \z\
=

1, indented at the points z = 1, z=~ 1, on the region in the

J-plane within a semicircle of great radius indented at the origin. Find the relation

between the radius of the semicircle in the -plane and the radius of the indentation

at z = 1, and hence show that when the latter tends to zero the whole of the

upper half -plane is mapped.

7. Show that the transformation z = cos maps the whole of the z-plane in

which there is an impassable barrier along the real axis from z = -oo to z 1,

on the semi-infinite rectangle bounded by = -
TT,

= TT for which
77 ^ 0. Show

that the curves
77
= constant are confocal ellipses.

8. Show that the relation

maps the region between the lines y =
a, y = -a on the interior of a circle of unit

radius and centre at the origin in the -plane.

9. If OA is the line y x tan (kn) from x = to x = ^ cos (&TT), where k< 1

and OB is the line joining the origin to x -12 ,
show that the transformation

maps the circumference of the unit circle in the -plane on the broken line AOB
described twice, the points

= eia
,

= e~ iet

mapping into the origin and the points
=

e**,
= ei(:"~^ into A and B respectively, where sinjS *= k sin a and F IB a,

suitably chosen constant.

10. If the circle
| |

<r is mapped on a region E of the z-plane by the relation

z + a 2
2 + a3

3 + . . . .
, prove that the area of B is

and is therefore greater than the area of the given circle. (Bieberbach)
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11. Use the theorem of the preceding exercise to show that the problem of

mapping a given region B in the -plane on a circle in the 2-plane is reducible to

the problem of determining a2 ,
a3 , . . .

, such that, if z = + aa
2 + . . . /(),

is a minimum. Show that, by restricting the series to a few terms, the region B
can be mapped on an almost circular area. (Bieberbach)

12. The transformation Ex. 3 is called a Mobius transformation. Prove that the

inverse transformation z =
(
- 8 + )/(y

-
a) is also a Mobius transformation.

13. If successive Mobius transformations transform into z
1 and z

t
into z, prove

that the is transformed directly into z by a Mobius transformation. Deduce that

all Mobius transformations form a group.

14. Prove that the Mobius transformation maps the whole z-plane (including
z oo

) on itself.

15. Prove that the Mobius transformation

- ei* _ c not real,
z-c

maps the half plane y>0 on the unit circle
| |

< 1 and maps z = c on = 0.

16. Prove that the Mobius transformation

maps the unit circle
|

z
\
^ 1 on the unit circle

| |
< 1 and z = c on = .

17. Prove that the transformation

maps the semi-circle on the line joining z - 1 to 2 = 1 as diameter on the unit

circle
| |

<1.



CHAPTER VI

STREAMING MOTIONS

6*0. Complex potential. Let
</>, $ be the velocity potential and stream

function of the irrotational two-dimensional motion of an inviscid liquid.

Then equating the velocity components,

d</> _ d$ d<f> _ ty
dx

~~

dy
'

dy dx'

We define the complex potential of the motion by the relation

w =
<f>
+ itfi.

We see from 5-30 that, on account of (1), w is a holoinorphic function of

the complex variable z = x+ iy in any region where
<f>
and

i//
are one-valued.

Conversely, if we assume for w any holomorphic function of 2, the corre-

sponding real and imaginary parts give the velocity potential and stream

function of a possible two-dimensional irrotational motion, for they satisfy (1)

and Laplace's equation.

Thus w = z2 gives <f>
= x2 -y2

, i/j
= 2xy,

a motion which has already been discussed (4-70).

Since iw is likewise a function of z, it follows that ^ and
</>
are the velocity

potential and stream function of another motion in which the streamlines and

lines of equal velocity potential are interchanged.

It will be found that the mathematical analysis is very considerably simpli-

fied by working with the complex potential instead of < and
iff separately.

The simplification is of the same nature as

that attained by using one vector equation

instead of three cartesian equations. In two

dimensions we work with one equation in z

instead of two in x and y.

The dimensions of the complex potential

are those of a velocity multiplied by a length,

i.e. L* I"1
.

*IQ- 6 ' W-

We give a few illustrations in which U represents a velocity and a is a length
both real.

(i) w = Vz.
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Here

[6-0

= Uy, and the motion is a uniform stream parallel to the negative

direction of the z-axis.

(11)

Ua? . a= -- sm 6 = -
r

Ua*y
-

The streamlines $ = constant are circles ;

all touch the cc-axis at the origin. The motion

is due to a doublet at the origin (see 8-23).

(iii)

iiG. 6-0 (u). rpj^ motion takes place in a region con-

tained by the arms of an angle a, and the streamlines are asymptotic to these

arms. The special case a = Tr/2 has been

considered in 4-70.

From the mathematical standpoint, the

complex potential in the form w =
f(z)

determines a mapping of the z-plane on

the w-plane in which the streamlines of the

motion in the z-plane map into the straight

lines
i//
= constant, parallel to the real axis

in the w-plane. The determination of this
Fro. 6-0 (iii).

mapping is the basic principle of the solution of hydrodynamical problems by
means of the complex potential.

** 6-01. The complex velocity
we get

From the complex potential w =

J_ I n L.

dx dx

dw

Hx

dw dz

dz dx

dw

Tz*

Now

and therefore

a)

u =--, v = ~-
t

dx dx

dw
-

,

dz

using the Greek letter i> (upsilon) to denote the combination u - tt>, which we

shall call the complex velocity. We note that the complex velocity is obtained

directly from the complex potential as shown in (1). Graphically, the vector

representing the complex velocity is the reflection, in the line through the

point considered parallel to the z-axis, of the vector of the actual velocity.
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The relation is shown in fig. 6-01.

It is very important to notice that -dw/dz gives u-iv v and not

u+ iv = {;. If we want to obtain u+iv

we must change the sign of i through-

out, so that u+iv = -dw/dz, where id

is the conjugate complex function of z.

Thus, ifw izz
,
we shall have w = - iz*t

changing the sign of i throughout, and

v = u-iv -2iz, v u+ iv ~ Ziz> ^

either of these leading to u =
2y, FlQ 6 .01

v = 2x.

As a simple application, consider the uniform stream depicted in fig. 433

(iii). We have

u-tv

which gives

- - = Q cos a - i Q sin a =
dz

w = -
Qe-'*z.

6-02* Stagnation points. At a stagnation point the velocity is zero,

and therefore the complex velocity vanishes. It follows that the stagnation

points are given by
dw

dz
= 0.

Hence, if w = Ua I
-

)
, the stagnation points are given by

Thus, if 7r<a, the stagnation point is at infinity. If ?r>a, the stagnation

point is at the origin. See fig. 6-0 (iii).

6*03. The speed. For the speed, we have

An alternative method is as follows :

o * 9 / . W ., dw dw
q*
= u*+v2 = (u~iv)(u + iv)

= v.v = . .

dz dz

To illustrate the calculation, suppose w = 2z+3iz* t then w = 22-3^,

There is a stagnation point given by 2+ 6iz = 0, whence z = t/3, and the

point is (0, J).
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6-04. The equations of the streamlines. We here explain a method

whereby the equations of the streamlines, namely iff
= constant, can often be

deduced with the minimum labour. Let

w =

Then exp (^+ty) = exp w.

This may be written

eP cos 0+ i& sin
iff
= X+ iY,

where X, Y are the real and imaginary parts of exp w.

Thus X = et cos $, Y = et sin $.

Eliminating ^, we get

Thus when = constant, we can write tan
</r
=

fc, and the streamlines are

By attributing values to &, we get the individual streamlines. The lines

corresponding to k = 0, k = oo
,
i.e. to

</r
= mr, $ (2n + 1)

~ are respectively
2i

7 = 0, X = 0.

6*10. Flow through an aperture. If w is a function of ?, then z is a

function of w, and it is sometimes useful to use this form of relationship between

z and w.

FIG. 6-10.

If we take z = c cosh w, we get

x+ iy = c cosh
<f> co8*ft+ic sinh

</>
sin 0,

x = c cosh ^ cos ^r, y = c sinh ^ sin
^r.

Eliminating ^, we get

so that the streamlines ^ = constant are confocal hjrperbolas, whose real and

transverse semi-axes are c cos
/r,

c sin ^r, and whose foci are (c, 0), (
-

c, 0).
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If we take the cylinder whose cross-section is one of these hyperbolas for a

fixed boundary we obtain the pattern of liquid flow through the aperture so

formed. As a limiting case, if we take the hyperbolic boundary quite flat

(^ = 0, TT), we get the flow through an aperture of breadth 2c in a flat plate.

This limiting case, however, cannot accord with physical reality since the

speed is infinite at the edges.

To prove this, we have

= 3- = c2 sinh w sinh w = |c
2
(cosh (w + w)

- cosh (w- w))
q* aw aw

= c2 (cosh 2<- cos
2(/r).

At the edges (c, 0), (-c, 0), we have ^ = 0, iff
= or IT. Thus q~* = 0,

an^iherefore the speed is infinite.

. Circulation about an elliptic cylinder. Taking z = c cos w, we

get
x c cosh

i/j
cos

(/>, y = - c sinh
if/

sin
<f>,

and eliminating </>,

Fio. 6-11.

a?
2

=l '

so that the streamHnes are now confocal ellipses whose semi-axes are c cosh
tf/9

c sinner.

If we take the cylinder represented by one of these ellipses as a fixed

boundary, we have the case of liquid circulating about a fixed elliptic cylinder.

As a limiting case, if we take as our fixed cylinder $ 0, the ellipse reduces

to a line of length 2c and we get the case of liquid circulating about a flat

plate of breadth 2c, but here again the speed at the edges will be infinite, for

1 dz dz , ; /T=r
-;
= T- -r= = VC2 -*2 Vc2 -22

,

q* dw dw

which vanishes when z = c.

Also when
|

z
\

is large, we have approximately q = 1/r, where
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Since cos iw == cosh w, we see that the formulae of this and the preceding

section illustrate the interchange of streamlines and lines of equal velocity

potential when we write iw for w (see 6-0).

Xo-21. The circle theorem. We now prove a general theorem * which

will be of great use subsequently.

The circle theorem. Let there be irrotational two-dimensional flow of incom-

pressible inviscid fluid in the z-plane. Let there be no rigid boundaries and let

the complex potential of the flow be/(z), where the singularities of/(z) are all

at a distance greater than a from the origin. If a circular cylinder, typified by
its cross-section the circle 0,

|

z
\

= a, be introduced into the field of flow,

the complex potential becomes

(i) =

Proof. Since z = a?/z on the circle, we see that w as given by (1) is purely

real on the circle C and therefore
if*
= 0. Thus C is a streamline.

If the point z is outside 0, the point az/z is inside 0, and vice-versa. Since

all the singularities off(z) are by hypothesis exterior to C, all the singularities

off(a?/z) are interior to C
;

in particularf(a
z
/z) has no singularity at infinity,

since f(z) has none at z = 0. Thus w has exactly the same singularities as/(z)

and so all the conditions are satisfied. Q.E.D.

6*22. Streaming motion past a circular cylinder. Consider the

stream whose complex potential is Uz. If we insert the cylinder |
z

\

= a, by
the circle theorem (6-21), the complex potential becomes

(1) w=

which is therefore the complex potential of a circular cylinder placed in a stream

whose velocity at infinity is U negatively along the ic-axis. This system is

generally referred to as a circular cylinder in a uniform stream. Actually the

stream is disturbed by the presence of the cylinder and only remains uniform

at a great distance from it. Accepting this conventional meaning, the ter-

minology is convenient.

More generally, if we insert the cylinder in the uniform stream Uze~*"t
the

complex potential, again by the circle theorem, is

(2) w =Uz

If the centre of the cylinder is at the point z , a simple change of origin

yields the complex potential

(3) w= ff-*

* Milne-Thomson, Proc. Camb. Phil. Soc. t 36 (1940).
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fa = Uy, fa = - a*Uy

, i/ra
= - nC7a,

6-22] STREAMING MOTION PAST A CIRCULAR CYLINDER

Keturning to (1), since z = rei$
t the stream function is

where

Putting

we get

so that^xejdnes^corresponding to^j^andj/tft-^e straight lines^pasallel to the-

SB-axis and circlesnSuchm"g~^Se o;-axis at the origin. By giving m, n the values

(TlT^'X 0*3^. .TTTEe" streamlines can be readily plotted with the aid of

Kankine's method (4-32).

The streamlines are symmetrical with respect to the y-axis, for changing

the sign of x does not alter their equation. The streamlines above the x-axis

are the reflections in that axis of

the lines below it, as is obvious

from symmetry.
If the velocity U is reversed,

the streamline pattern is un-

altered.

Writing /r
= kUa, the equa-

tion of the streamlines is

ka =

FIG. 6-22.

so that, when r->oo ,y->ka, and

therefore y = ka is the asymptote of the streamline. Also if &>0, then

y>~ka) and therefore the streamline approaches its asymptote from above.

Again, consider the streamlines which are asymptotic to

y = ka, y = (k + I)a.

Let yl , t/a be the respective ordinates of these lines as they pass over the

cylinder, i.e. when x = 0.

Then A =

Subtracting and rearranging, we get
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Since the term on the right is positive and greater than unity, we conclude

that y%>yi , and that y^ y\<^o But at infinity the distance between these

lines is a. Hence the lines come closer together as they pass over the cylinder.

Since the same mass must cross every section of a stream tube, the velocity

where a given line passes over the cylinder is greater than the velocity at

infinity, and hence by Bernoulli's theorem, in the absence of extraneous forces,

the pressure is less than the pressure at infinity.

6-23. The dividing streamline. In the flow past a cylinder the contour

of the cylinder itself must form part of a streamline. Since the stream function

is

we see that the contour r = a corresponds to
t/r

0.

The complete streamline
t/r
= consists therefore of y and r = a, that

is to say of the circle r a and that part of the #-axis which lies outside it,

fig. 6-22.

Thus the stream advances towards the cylinder along the a-axis until the

point L is reached, then divides and proceeds in opposite directions round the

cylinder, joins up again at M and moves off along the z-axis. This streamline

which divides on the contour is called the dividing streamline. The dividing

line is very important, for a knowledge of its position at once enables us to

draw the general form of the stream by successive lines at first nearly coin-

ciding with it, and then becoming less and less curved. A study of the

diagram 6-22 will make this clear.

The stagnation points are given by dw/dz = 0, that is, by

whence z = a or z a. These are the points L, M where the dividing line

meets the cylinder, and we observe that, in accordance with the general

property of intersecting streamlines (4-6), L, M are double points where the

tangents are at right angles.

6*24. The pressure distribution on the cylinder. To calculate the

speed at the point z = aei9 on the cylinder, we have

= V l ~ = U(l - e-2
") = e- . 217 sin 6,

and therefore

(1)
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Thus q
2

is greatest when 6 = i?r/2 and the speed at these points is 217

that is, twice the velocity of the stream at infinity.

Thus the speed is greatest at

A and B where the diameter per-

pendicular to the stream at infinity

meets the cylinder.

It also follows from (1) that the

speed at P on the cylinder is pro-

portional to the area of the tri-

angle LPM.
If II is the pressure at infinity,

Bernoulli's theorem gives for the

hydrodynamic pressure at a point of the cylinder

B
FIG. 6-24 (i).

or p-II^ Jptf
2
(l-4sin

2
0).

We can represent the pressure distribution on a polar diagram in which,

taking the radius a to represent the pressure 77, the pressure at each point is

measured by a length drawn along the radius through that point. With this

representation, fig. 6-24 (ii), we see that at Nlf NZf N3t N^ t whose vectorial

U

FIG. 6-24 (ii).

angles are 30, 150, 210, 330, the pressure is 77, along the arcs #4 LNl ,

2V2 MNZ the pressure exceeds 77, the maximum excess being %pU2 at L, M,
while along the arcs ^AN^ , N3BN^ the pressure is less than 77, the maximum
defect being %pU

2
. This pressure diagram is symmetrical, the pressure at the

angles 6 and Q+n being the same, so that there is no resultant force on the

cylinder due to the hydrodynamical pressure. This result agrees with experi-
ment only as regards the anterior portion NtLN4 , elsewhere the pressure is

generally in defect (cf. fig. 1-93 (c)).
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6*25. Cavitation. A fluid is presumed to be incapable of sustaining a

negative pressure. In the relative motion of a solid boundary and fluid, the

fluid will remain everywhere in contact with the boundary only so long as the

pressure at every point of the boundary remains positive. Thus at points

where the pressure vanishes a slight further diminution would render the pres-

sure negative and a vacuum would tend to form. The formation of a vacuous

space in a fluid is called cavitation. The phenomenon commonly occurs, for

example, near the rapidly moving tips of propeller blades.

In the case of the flow past a circular cylinder, cavitation will tend to set

in if the pressure is zero where it is least, i.e. at the sides (0
=

far). The

condition for this is

and if U exceeds the value given by this formula the liquid will cavitate at the

sides of the cylinder.

^ 6*29. Application of conformal representation. Consider a mapping
of the -plane on the z-plane by

a) *=/),
such that the region R exterior to C in the -plane maps into the region S
exterior to A in the z-plane. Then the contour C maps into the contour A.

V R

.Q

A

z-plane
FIG. 6-29.

Let a fluid motion in the region R of the -plane be given by the complex

potential

(2) w() = w =
<-fti/r.

Then at corresponding points and z given by (1), w and therefore
</>
and ^

take the same values.

Now C is a boundary and so a streamline, and therefore ^ = k, a constant,

at all points of C. Since A corresponds point by point with 0, = k at all

points of A. Therefore A is a streamline in the motion given by (2) and (1)

together in the z-plane.

The actual form of the complex potential in terms of z would be got by

eliminating between (1) and (2), but it is often preferable to look on as a
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parameter and forgo the elimination. Thus to find the velocity at Q in the

z-plane corresponding with P in the -plane, we have

dw dw dt_ __
^f

*

dz d dz

and therefore

(3) UQ
-WQ

= (Up
-W

Let
<ft , ga be the speeds at P and Q respectively. Then

Let <$! , dS2 be corresponding elements of area surrounding P and Q.

Since the representation is conformal, we know that dSl , dS% are similar and

that the ratio of corresponding lengths in dSt and dS2 is
| d/dz \.

Thus

dSl

dS.2

and therefore

and hence Jp<7i
a
<Zi =

the integrals being taken over corresponding areas. But these integrals measure

the kinetic energies of the liquid in the corresponding areas. Thus the kinetic

energies of the two motions are the same.

We now see the application of these results. If we know the complex

potential of a motion in the -plane given by (2), and if we then transform to

the z-plane by means of (1), we obtain the complex potential of a motion

in the z-plane, the boundaries of the motion being the lines corresponding
in the z-plane by means of (1) to the boundaries in the -plane. The stream-

lines correspond and the velocities at corresponding points are given by (3).

S-30. The Joukowski transformation. The transformation

(1) . = Z+g
is one of the simplest and most important transformations of two-dimensional

motions. By means of this transformation we can map the Z-plane on the

z-plane, and vice versa. We begin with the remark that when
|

z
\

is large,

we have Z = z nearly, so that the distant parts of the two planes correspond
unaltered. Thus a uniform stream at infinity in the 2-plane will correspond
to a uniform stream of the same strength and direction in the Z-plane.

Let us now enquire into the transformation of circles in the Z-plane whose

centres are at the origin.
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We first note that if L, M are the points Z = ^c, Z =

points in the z-plane are z = c, z = -
c, say S, H.

[6-30

,
the corresponding

z -
plane

Z-plane
FIG. 6-30 (i).

Let the point P' in the z-plane correspond to the point P in the Z-plane

on the circle
|

Z
|

= |(a-f 6) and suppose a2 -62 = c2 . The transformation

then gives

c2

-C = Z-C, Z-f 77= + C =

Hence

and therefore P + HP' = 2 (PZ
2
-fPM2

)/(a+ 6).

'

i But since OP is a median of the triangle MPL,

and therefore SP' + HP' = 2a ,

so that P' describes an ellipse whose foci are and H, and whose major axis

is2a.

Now, in the ellipse, if B is an end of the minor axis and C the centre,

therefore the semi-axes of the ellipse are a, 6.

Thus concentric circles with centre at the origin in the Z-plane map into

confocal ellipses in the z-plane,

In particular, if we take 6 = 0, the circle
|
Z

|

=
-Jo maps

* into the straight

line SH joining the foci, for the minor axis of the corresponding ellipse is then

zero, and a = c.

* In the present case dz[dZ = at L, M. We must therefore suppose the circle to be indented
at these points as explained in 5*63.
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This result is easy to establish analytically, for any point on the circle is

Z = Joe
w

, and therefore z %ae
ie
+\ae~

i6 = a cos 0.

Hence as 6 goes through the values 0, 7T/2, TT, 37T/2, 27r, z goes through the

values a, 0, -a, 0, a, and as P describes the semicircle LDM, P' describes

the line SH, and when P completes the circumference along the semicircle

MEL, P' moves back along the line HS.

H

FIG. 6-30 (ii).

Now consider the inverse transformation which gives Z in terms of z.

From (1),

(2)

The positive sign outside the square root means that the value of ^/(z
2 - c2

)

is to be taken which becomes real and positive when z is on the positive part

of the real axis which lies outside the ellipse. When
|

z
\

is very large, we have

from (2), Z = z or Z = 0, approximately, according as the positive or negative

sign is taken. Therefore, if we take the positive sign for the square root, the

points outside the ellipse in the z-plane will map into the points outside the

circle in the Z-plane.

Therefore the transformation

Z == ^(zWi^c2
), c2 = a2 -62

maps the region outside the ellipse of semi-axes a, b in the z-plane on the

region outside the circle of radius %(a+b) in the Z-plane.

6-31. The flow past an elliptic cylinder. If we take in the Z-plane
of fig. 6-30 (i) a stream U which makes an angle a with the real axis, the

complex potential, from 6-22 (2), is

4Z
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The region outside the circle is mapped on the region outside an ellipse in

the 2-plane whose semi-axes are a, 6, centre at the origin and axis a along the

-axis, by the transformation

and therefore the complex potential for the flow past an elliptic cylinder is

and since [z+ V(z
2 - c2)]-

1 = -
[z
-
V(z

2 - c2)],
c

and this is the solution of the problem.

In the above form the complex potential does not readily lend itself to

detailed description of the flow. To simplify the treatment we shall now

introduce elliptic coordinates.

J 6*32. Elliptic coordinates. Let

(1) z ~ c cosh ,

where =
+^'77.

Then x -f iy
= c cosh

( + ^77)

= c cosh cos
77 -f ic sinh f sin

77,

so that

(2) x c cosh cos
77, y = c sinh sin

77,

and therefore

W
c2 coshz

+ ---n* = lj

(4)
c2 cos2

77
c2 sin2

77

From (3), it appears that if has the constant value
,
the point (a?, y)

lies on an ellipse whose semi-axes a, b are given by

(5) a = c cosh , 6 = c sinh f ,

and therefore a2 - 62 = c2 .

The ellipses corresponding to constant values * of f are therefore confocal,

the distance between the foci being 2c. The curves (4) corresponding to

* In what follows we shall let correspond to the whole ellipse, and take < < oo ,

< t) < 2tr. Another possible interpretation is > for y > and < for y < 0. The
corresponding ranges are hen -o
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constant values of
77

are hyperbolas confocal with one another and with the

ellipses.

Now, through any point of the plane we can draw two conies of a confocal

system, one an ellipse and the other a hyperbola. On the ellipse has a con-

stant value, on the hyper-

bola
77

is constant. If we

know these values of f, 77,

the conies can be drawn

and by their intersections

fix the point. For this

reason the parameters f , 77

are called elliptic coordi-

nates.

If we fix our attention

on the ellipse f = ,
we

see from (3) that
77

is the

eccentric angle of the point

(a?, y) on the ellipse. The

geometrical interpretation

is shown in fig. 6-32.

In this figure AA' is the

major axis of the ellipse
=

, S, H are the foci. The confocal hyperbola
which passes through P' on the ellipse is also shown. On AA' as diameter,

the auxiliary circle of the ellipse is drawn.

The ordinate PN meets this circle in Q. The angle QON =
77.

For if a, 6 are the semi-axes of the ellipse, comparison of (2) and (5) shows

that
77

is the eccentric angle of P. But

FIG. 6-32.

x = ON = OQ cos QON = a cos QON

and therefore the result follows.

We can now see that, if
77
=

770 on the hyperbolic branch which lies in the

first quadrant, the values of
77
on the branches of the same hyperbola which

lie in the second, third, and fourth quadrants are 77-770,

respectively.

It also appears from (4) that the line

- = tan 77x '

is an asymptote of the hyperbola through P. This asymptote is the radius OQ.
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In order to complete our description of the ellipse
=

,
we use equations

(5). These give

(6) a+ b = c (cosh -f sinh )
= cefo,

a b ~ c (cosh sinh )
= ce~*.

By division, we obtain

of a+ b
e =-

1 >

a-b

and therefore = \ log
j-

-

This equation determines the parameter in terms of the semi-axes a, 6.

Lastly, we note that the foci (c, 0), (
-

c, 0) correspond to = 0, 17
=

;

0, 77 TT, as is clear from (2).

6-33. Application of elliptic coordinates to the streaming past an

ellipse. The complex potential was found in 6-31. If we put z = c cosh
,

we get ^/(z
2 - c2

)
= c sinh

,
and therefore

z + J(z
2 -cz

)
= c (cosh 4- sinh )

= ce^,

z ^(z*
- c

2
)
= c (cosh sinh )

= ce~s
.

Also, on the ellipse f ,
we have, from 6-32 (6),

a-f 6 = cefo
,
a-b = ce~*.

Therefore w = | J7 (a + 6) [e-<-K-&+ e c-f^].

(1) to = 7 (a + 6) cosh (C
- f -

*')

This expresses the complex potential for the streaming motion past an

ellipse in terms of the elliptic coordinates.

If w put =
, we obtain

iv = U(a + b) cosh i
(17 -a)

= Z7 (a + 6) cos
(77
-

a),

so that
iff
= 0. Hence the ellipse

= f forms part of the streamline ^ = 0,

which is therefore the dividing streamline.

The stream function, from (1), is

Hence the complete dividing line is given by

sinh (f
-

)
= and sin (^

-
a) = 0,

that is, by
= o> i?

=
i?
= OHTT.'

These last values of
77 correspond to branches of a hyperbola confocal with

the ellipse and therefore cutting it orthogonally.
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The line through in the direction of the stream at infinity is an asymp-

tote of the hyperbola.

The general form of the streamlines is shown in fig. 6-33. The asymptote

to the dividing line is shown dotted. The dividing line intersects the cylinder

at L, M, which are therefore stagnation points and consequently points of

FIG. 6-33.

maximum pressure. It would therefore appear that the cylinder is subjected

to a couple tending to set it broadside on to the stream. We shall calculate

the magnitude of this couple in section 642.

For the velocity, we have

dw _ dw d
__
U (a + b) sinh (f

- -
ia.)

dz dt, dz c sinh

and therefore at the stagnation points

-fca = or ITT,

so that | = , 77
= a, or a -far, giving the points L, M, already found from the

dividing line.

A !. * - U (a+ 6) sinh K - & -
**) U (

a+ *) sinh (f-|o+ toe)
A1SO u ........----------

: r- X ------- "' "

c sinh

U* (a+ by cosh ({ + { ~ 2f )
- cosh (

- - 2i

c2 cosh (C+0- cosh (C-

ff2 (a + 6) cosh 2(~ g )
-cos 2(77- a)

a ~ b cosh 2f - cos 277

a -6
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Since = only at a focus, it follows that the denominator cannot vanish

and so the speed is never infinite.

The pressure distribution on the elliptic cylinder is found from Bernoulli's
<"VN^ * *_>v/.*-/'- /~^^^-~~>*sv_li~^-w- ^.-.^^^^ --*^ ~*~*

theorem which gives

' -

/9\ l
--

__
( }

p
* a-6 cosh 2 -00827?

~
p

f '

where U is the pressure at infinity. To find where the pressure is greatest and

least, we have dp/drj
= 0, which leads to

sin 2
(77
-
a) cosh 2 - sin 2rj+ sin 2a = 0,

or sin
(77
-

a) {cos (77
-
a) cosh 2 - cos

(77 -f a)}
= 0.

Now sin
(77
-
a) = gives the stagnation points where the pressure is

greatest. The points of minimum pressure are therefore given by

= cosh 2f ,

cos
(77 -a)

whence tan 77 tan a = --
.

fo = - tanh 2 = -
,

'
1 4- cosh 2

feo
a2

from 6-32. If P denotes a point given by this equation, the result means that

the tangent at P is parallel to the normal at a stagnation point.

If we substitute tan
77
= 62 cot a/a

2 in (2), we get, after some reduction,

for the minimum pressure the value

The condition that there shall be no cavitation is therefore

6-34. Flow past a plate. If 6 = 0, our ellipse degenerates into the line

joining the foci, namely = 0, and therefore a = c. Hence for the flow past

a plate inclined at angle a to the stream, we have

w = Ua cosh
( ia).

The stagnation points still lie on the hyperbolic branches

77
= a, 77

= 7T-f a.

The speed becomes infinite at the edges of the plate, so that the solution

cannot represent the complete motion past an actual plate.

In terms of z, we have

w U (z cos a - i*/(z* a2
) sin a)
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When the plate is perpendicular to the stream,

167

FIG. 6-34.

6'35. A general method. Consider a cylinder of cross-section C placed

in the stream Uze~ icl
. Analogously to elliptic coordinates, let

a) *=/)
define a system of coordinates (, 17)

in which the curve C is given by f = .

Then on C, 2f -
. Thus the complex potential

(2) w = F(Q +F(2&-Q

is purely real on C, which is therefore the streamline /r
= 0,

Now the complex potential of the uniform stream is

(3) Vze-<* = 7/()e-< = F^Q + FM),

where we suppose Ja () to contain only terms which tend to zero at infinity.

If we can arrange this split into the sum of two functions in such a way that

~) a^80 tends to zero at infinity, our streaming problem is solved by

(4) " = *x(Q +*i(2-0.

Thus for the ellipse we have z = c cosh J, and so (3) gives

and therefore

which is 6-33 (1).
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To determine a coordinate system of the required type, let C be given by
the parametric equations =f\(t), y=fz(t)> Writing i( Q-) instead of t, we

get

(5) *=/i(o-<Q + yi(tfo-*a

which has the required property.

Thus in the case 67 the ellipse xa cos t, y=b sin t, we get

z=(a cosh | - b sinh | )
cosh 4- (6 cosh f - a sinh

)
sinh ,

which reduces to the standard elliptic coordinates by taking a=ccosh D

The foregoing remarks embody a principle whose general application is not

confined to the particular mode of coordinate expression here used to illustrate

64I. Theorem of Blasius. Let a fixed cylinder be placed in a liquid

which is moving steadily and irrotationally. Let X, Y and M be the com-

ponents along the axes and the moment about the origin of the pressure thrusts

on the cylinder. Then, neglecting external forces,

M real part of -
-j ^ <fe,

where w is the complex potential, p the density, and the integrals are taken

round the contour of the

cylinder.

Proof. For the action on

the arc ds at P we have

dX = -pdy, dY = p dx,

dM = p(xdx+ y dy). Thus

(2) dM = real part of pz dz.

From the pressure equa-

tion,

(3) p^a-^pq*,
IG * "

where a is a constant.

Since a constant pressure can have no resultant effect, we can take

dw dw
p =~/322 =-/> -7--p>

- . dw

.
,

that

dw, dM = real part of -
%pz -=- dw.
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But on C, i/t
= constant and therefore dw dw, so that

d(X-iY) = \ip f-j-J dz, dM = real part of -
J/>2 (-7-) dz,

and the theorem follows by integration round C. Q.E.D.

It is sometimes convenient to write

where N is the imaginary
When the motion is not steady the pressure equation contains the term

p d<f>/dt,
and therefore to the expressions for the force and moment we must

add

Now on the cylinder i/j
is an instantaneous constant, say c(t), and therefore

dJ> dw ....

l = +icw -

Thus the above expressions for X-iY, M+iN are increased by the

respective terms,
fi C d C

-ip-^\w dz, p
- \[w -f ic(t)]z dz.

The theorem of Blasius in the form just enunciated refers to integrals

round the contour of the cylinder. This contour can be enlarged to any extent,

provided that we do not pass over any singularity of the integrand. Such

singularities can only occur in hydrodynamics when the fluid contains sources

or vortices. We shall deal with these matters later. At present we shall make
some simple applications of the theorem to cases of streaming.

In the case where the cylinder is in uniform motion in liquid otherwise at

rest the forces can still be calculated by the theorem of Blasius, for the dynami-
cal conditions are unaltered if a uniform velocity equal and opposite to that of

the cylinder is superposed in the whole system. The cylinder is then reduced

to rest and the liquid streams past it.

We can also obtain formulae in terms of the stream function
i/j,

which exists

even when the motion is rotational. In fact, using 5*33 (1),

,A^
' ty .ty .&A

(4) u-iv= -JC- f J?:= -2^^-
dy dx dz

and therefore, taking a=0> in (3) we have

Now tfi=<li(z, z) is constant on C and therefore

(6) fdz+ydz=0 on C.
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Combining (1), (2), (5), and (6) we have

(7) X-iY = -
top [ (t^Yife, M = real part of 2p { z (^ dz.

J(0\0z/ J(0 \ozj

Further observe that, although ^ is a function of both z and z, on C the variable

z is a function of z, and therefore by first eliminating z, the residue theorem, and

change of contour may be applied to (7).

6-42. The action of a uniform stream on an elliptic cylinder. Re-

ferring to 6'33, we see that the complex potential is of the form

w cA cosh
(
-

),
z c cosh ,

where cA = U(a + 6),
= +ia.

The force and moment on the cylinder are given by the theorem ofBlasius. Now
dw _ dw

f
dz

__
A sinh

(
-

)

dz d
'

d sinh

We shall integrate round a circle, enclosing the cylinder, whose radius is so

large that dw/dz can be expanded in a convergent series of powers of l/z. The

only contributions to the integrals will then arise from the coefficient of l/z in

the integrand (5-57). Then

.
, dw . I r c2 sinh \

and therefore
~d~

= A
If
--T^ 4"

" "
J

'

so that

Hence Z-~*T = 0, or Z = 0, Y = 0, and

Af+iZV =-|px27rt(-c
2^e-c sinh^ )

=
= j4pcM2

(1
- e-x* (cos 2a - i sin 2a) ).

Therefore M =
7Tpc

2A2e~2* sin a cos a.

Now, from 6-33, A* =+*>! = p. (?{) =
cz \a o/

Hence M -
irp (a

2 - 62
) U2 sin a cos a.

The negative value indicates that the cylinder is acted upon by a couple

which tends to set it broadside on to the stream. An inspection of fig. 6-33

shows the reason for the existence of this couple, for the stagnation points or

points of maximum pressure are unsymmetrically situated.

The result is typical of any elongated body in a stream, and affords an

explanation of the behaviour of a boat drifting in a stream.

We note that the couple vanishes if a = 6, the case of a circular cylinder

as is indeed obvious.
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The couple also vanishes if a = 0, that is, if the major axis of the ellipse

points upstream. The slightest deviation from this orientation of the major

axis calls the disturbing couple into play, with increasing moment until a = JTT.

Thus an elliptic cylinder with its major axis pointing upstream is unstable.

This phenomenon is well exemplified in the case of a ship which needs the

continual attention of the helmsman to maintain the course.

The couple also vanishes when a = JTT, that is, when the cylinder is broad-

side on, but this position is stable, for a deviation from it calls into play a

restoring couple whose moment increases with the deviation.

650. Coaxal coordinates. Let 4, B be the points (c, 0), (~c,0)

respectively. Taking the x-axis as initial line and A and B for poles, the

coordinates of any point P are (rx , 0J, (ra , a) respectively. The numbers ^ ,
ra

are the bipolar coordinates of P.

If P describes a circle passing through A and B, then LAPS = 0!~02 is

constant. Such circles form a coaxal system. The orthogonal system has A

and B for limiting points, and when P describes a circle of this system r2/
/r>i is

constant.

Writing

we have

FIG. 6-50(1).

The position of a point P is fixed if we know in which quadrant it lies, and

the constant values on
, 77 on the circles which pass through it. Thus, just as

we introduced elliptic coordi-

nates, so we may appropriately

call the (, 77,
defined by (1),

coaxal coordinates.

From (1), we get

constant

FIG. 6-60 (ii). (2) & = tccotj,

which may be compared with the equation defining elliptic coordinates.
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The curve =constant is a circle whose centre is the point (0, c cot f) and

whose radius is c cosec f .

The curve
77
=constant is a circle whose centre is the point (c coth 77, 0) and

whose radius is c cosech
77.

Since z = - ic cot |, we get

Since 2 sin ^ sin J = cos ^77
- cos = cosh

77
- cos , we conclude that

x _ sinh
77 y _ sin

c
~~

cosh
77
- cos

'

c cosh
77
- cos

On the real axis = 0, except for points between -4 and B for which = TT.

Observe that <TT when y>Q and that if = on the arc of a circle

through AB for which y>0, then O +TT on the arc of the same circle

for which y<0.
At infinitely distant points PA, PB are parallel, and PA = PB nearly.

Thus r)-> 0, when P-> oo
,
and -> 0, or -> 27T, according as />0 or y<0.

At A and #, 77
is infinite.

6-51. Flow over a ditch or mound. The complex potential

w = U cot -
,

z = ic cot
,

w n

where w is real, makes iff
= 0, when = and when =

JWTT, for in both these

cases w is purely real.

U

FIG. 6-51 (i).

Thus w gives the flow past a boundary which consists of the arc of a circle

through A, B on which =
W7T/2, and the part of the co-axis which lies outside

this boundary.
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To find the velocity, we have

dw dw dt,
u ^ w --

dz a dz

173

at infinity

u-iv-^-U,

so that there is a uniform stream. Again

g
2 = 16

^Y
sm^ Sm iM

V sin - sin - /\ n n '

/ cosh
t)
- cos | \

2

27j 2f I

cosh - cos /

As we approach , 17
-> oo

, and

16C/2

nearly.

oo .Thus if n<2, q-+ 0, and if n>2,

If w<2, we have a mound and the velocity is everywhere finite. If n = 1

in particular, we have a semicircular mound and the problem is the same as

that of the flow past a circular cylinder (see 6-22).

If n = 3, we have a semicircular ditch with infinite speed at A and B.

At the bottom of this ditch
77
= 0, =

3?r/2. Hence the speed is 217/9.

We may also observe that when n ^ 2 the same complex potential gives

the flow past a cylinder whose cross-section consists of two equal circular

segments on opposite sides of a common base, for such a flow is clearly sym-
metrical about the plane of the common base.

U

FIG. 6-51 (ii).

Fig. 6*51 (ii) illustrates two such cross-sections. The circular cylinder is

intermediate between these cases.

If we impress on everything a uniform velocity U(w = -
Uz) from left to

right, we get

w U cot U ic cot -
n n 2
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for the complex potential when a cylinder of such cross-section moves in the

direction BA with velocity U.

The complex potential

^. .U cos a cot - +sm a cosec
n \ n

\-
nj

gives the flow past the above solids when they disturb the stream

(
- U cos a,

- U sin a).

For f= W7T/2 makes w real and so 0=0, while

-
dw/dz -> - U cos a+ iU sin a when -> 0.

6*52. Flow past a cylindrical log. The flow past a mound, discussed

in the preceding section, may be made to yield the flow past a log by allowing

the points A, B to come into coincidence.

The radius a of the circle at whose circumference AB subtends the angle

is given by 2c

sin <

PIG. 6-52.

In the case of the mound, =
n7r/2, and therefore

< -Tb
smY

(2) z = ic co

(3) w = ^- cot 2-
.

n n

Now, when .4 approaches B, c-> 0, and therefore w-> from (1), and ->

from (2). Hence when c is very small (1) and (2) give

_ 2c _ %ic

HTT

Substituting in (3), we get w = ianU cot = anil coth
z z

for the complex potential of the flow past a cylindrical log of radius o. We
readily verify this result as follows. Since

w =
<j>
+

iijs
airU coth

when y = 0, w? is real, so that ^ = 0.
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When -~ = -
, w is also real, so that again = 0.

Thus the streamline = consists of the real axis y = 0, and the circle

=
2ay.

Again, for large values of
|

z
|,

w = = Uz.
an

Hence there is a uniform stream at infinity parallel to the real axis and

from right to left.

To find the speed, we have

q
* = *? . *! = ^2^ . g COSech2~ cosech2~

^
dz dz z2z2 z z

/ 2 \
2

(
_ fair a7T\ (air air

\ cosh h -=-} -cosh
\ \z z \z z

.

cosh cos
lairy

r2 >

On the cylinder, r2 = 2ay, and therefore

/ i-_X
I 1 + cosh -^^ J

T /

ty
2 cosh4

On the plane, y = 0,

6-53. Cylinder in a tunnel. If

w = - *
,

z = zc co

then < =
fcf, i/j

and ^ is constant when
17
= constant,

while
<f>

decreases by %TTK when we

go round one of the circles
77
= constant.

It follows from 3-71 (2) that the potential

w represents the flow due to the circula-

tion *
2-7TK about a cylinder r\

=
t\^ en- Fio. 6-53 (i).

* Note that the region is doubly connected (3*70).
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closed within a cylinder 77
=

772 (cylinder in a tunnel). Eliminating , we obtai

z = ic cot ,
w = 2/c cot"1

,

2* c

efotf 2/a'c i/c IK
whence -7-

=
-7-

-

dz z2 -c* z-c

Thus, by the theorem of Blasius, the force on the inner cylinder is given b

i/c
2pfl/ 1 1 \i *a

p .

== il - ---
]
dz = -~ x 2m =

2 J c \z-c z+ cj 2c

fore X = -n^p/c, 7 = 0,

and the resultant fluid thrust therefore tends to increase the distance betwee

the axis of the cylinder and the axis c

the tunnel.

An interesting case occurs when th

radius of the circle
7?2 becomes infinite, s

that this circle coincides with the radios

axis. We have then the case of a cylinde

whose axis is parallel to a wall. Th

cylinder is urged towards the wall wit

the force

FIG. 6-53 (ii). TTKZ P/C.

Drawing the tangent OP, we have, since A is a limiting point,

C2 = OA* = OP2 = 0CV-a2 = &2 -a2
,

where h is the distance of the axis from the wall and a is the radius. Henc

the force is TTKZP

(W-o2
)*"

EXAMPLES VI

1. In the case of liquid streaming past a fixed circular disc, the velocity a

infinity being w in a fixed direction where u is variable, show that the force necei

sary to hold the disc at rest is 2m du/dt where m is the mass of fluid displaced b
the disc.

I

2. Prove, or verify, that the velocity function

represents a streaming motion past a fixed circular cylinder,
The pressure at infinity being given, calculate the resultant fluid action per uni

length on half the cylinder lying on one side of a plane through the axis and paralL
to the stream. (R.N.C
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3. Liquid flows steadily and irrotationally in two dimensions in a space with

fixed boundaries, the cross-section of which consists of the two lines 7r/10
and the curve r5 cos 56 P.

Prove that, if V is the speed of the liquid in contact with one of the plane
boundaries at unit distance from their intersection, the volume of liquid which

passes in unit time through a circular ring in the plane 6 ** is

where a is the radius of the ring and c the distance of its centre from the inter-

section of the planes of the boundaries.

4. Sketch the streamlines represented by <j>
+ i$ = Az2

,
and show that the

speed is everywhere proportional to the distance from the origin.

5. Discuss the motion represented by w = J ?7a3/z
2
,
and show that the stream-

lines are lemniscates.

v 6. If w2 *= 22 - 1, prove that the streamline for which ^ 1 is y
z
(l +aV>s x2 .

Regarding this as a fixed boundary, show that the motion is that of

stream flowing past the boundary.

7. Verify that the streaming motion past a solid bounded by

(z + l)
2 + </

2 = 2, (z-l)
2 + t,

2 = 2,

when the stream is asymptotic to the ^/-axis, is given by

8. Trace the streamline along which = and
</>

diminishes from +00 to
- oo in the two cases :

(i) z2 = 4W3 ;

(ii) z -
(
w -

and indicate roughly the form of the streamlines for which has a positive value.

9. If w2 U2
(z

2 + c2), obtain the equation of the streamlines in the form

and show that this gives the flow of a wide stream of velocity U past a thin obstacle

of length c projecting perpendicularly from a straight boundary. (R.N.C.)

10. By considering the transformation z + a2/ applied to a stream flowing
with velocity U past a circular island r = c in the z-plane, obtain the corresponding
solution for the stream of the same velocity flowing past an island of the shape

given by a branch of the curve

Trace this curve for various values of the ratio a/c and discuss the physical

significance of the results obtained.

11. In the steady two-dimensional motion of an incompressible fluid given

by w =
f(z), prove that, if p is the pressure at a point where the speed is F, the

resultant force (X, Y) exerted across any arc AB of a streamline by the fluid on
the right of AB upon the fluid on the left is given by
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where the integral on the right-hand side is taken along any arc reducible to AB
without passing over a singularity in the fluid.

[ A cylinder of radius a is placed in a stream of velocity F and pressure p at

infinity. Show that the resultant thrust (per unit thickness) on a quadrant of the

cylinder between 6 0, 6 rr/2, where =
points upstream, is given by

*-[-?.+if>F'], r-a[-y +fpP]. (R.N.C.)

12. Apply to the motion of a uniform stream, given by the complex potential
w Uz, the successive transformations

. a2 -62

and show that the two-dimensional motion in the z3 plane corresponds to an

elliptic cylinder fixed in a uniform stream making angle a with the major axis.

Prove also that the argument of z2 gives the eccentric angle of points on the ellipse.

Prove that the pressure on the surface of the elliptic cylinder is least where the

eccentric angle d is given by
a2 tan d + 62 cot a - 0. (R.N.C.)

13. If the two-dimensional motion of a fluid is given by w ~
f(z), where

w =
<j>+it/*,

z ~ x + iy, obtain the form of the function/in the case of a stream of

velocity F in a direction making an angle a with the axis of x, flowing past a fixed

circular cylinder x2 + y
2 a2

.

By the use of the transformation z' z+c2
/z (c<a), or otherwise, find the

solution for the same stream flowing past a fixed elliptic cylinder

x2 sech2 j3 + y
2 cosech2 j3

= 4C2,

where /? loga/c, and calculate the torque tending to turn the cylinder about
its axis. (U.L.)

14. With the usual notation, show that for liquid streaming past an elliptic

cylinder in a direction parallel to the minor axis the stream function is

^ - Fc ef sinh
(
-

) cos 17.

Hence show that for a stream of velocity Q in a direction making an angle 6

with OX the stream function is

j if/
- #c<*sinh(f-f ) sin (77-0).

15. The elliptic cylinder f is placed in a stream U parallel to the major
axis. Prove that the speed q at any point is given by

a _ ^2
a + & sinh2 (g

~
) + sin2 q

^

a- 6 sinh2| + sin2
77

and that it has the maximum value U (a + b)/a at the end of the minor axis.

16. The velocity resolutes at distant points in an infinite liquid which streams

past an elliptic cylinder are - F cos jS,
- F sin ]3 parallel to the major and minor

axes respectively of the cross-section, and there is a circulation of amount K about
the cylinder. Find the force and couple resultants, per unit thickness, exerted

by the fluid on the cylinder.

17. Show that

where z ^/(a
2 -

fc
2
) cosh (f + 177),

gives the solution of the problem of flow of a stream of velocity U past a fixed

elliptic cylinder of semi-axes a, b, whose major axis is parallel to the stream, there
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being a circulation I round the cylinder. Find also the resultant thrust on the

cylinder. (R.N.C.)

18. Liquid of density />
is circulating irrotationally between two confocal

elliptic cylinders f = , f = j8 where

x + iy
= c cosh

( +
irj).

Prove that, if k is the circulation, the kinetic energy per unit thickness is

19. If x + iy
=

( + iy)
2
, the streaming motion with velocity U parallel to the

axis past the parabola f = is given by

20. Prove that w* = z gives the motion in the space bounded by two confocal

and coaxial parabolic cylinders.

21. Homogeneous liquid streams past the infinite parabolic cylinder

r* cos (0/2)
- a*,

the velocity at infinity being V in the positive direction of the axis of x. Prove
that the velocity potential is

- Vr cos 6 + 2FaM cos (0/2)

and that the resultant thrust on the cylinder per unit length is TrpaV
2
, the pressure

at infinity being taken to be zero.

22. Prove that the formula

in which Jc is real, gives the irrotational motion of fluid circulating about two fixed

circles, the circulations being 2rrk for one and - 2nk for the other.

Determine the motion obtained by applying the transformation

x' + iy' a2/(x + iy-c),

where a is real, obtaining the boundaries of the region in which it takes place.

(U.L.)

23. In the case of flow past a log of radius a lying on the bed of a deep stream,
show that the difference in pressure at the highest and lowest points of the log
is 7T

4
/>

?72/32, where U is the velocity of the stream. (M.T.)

24. Using coaxal coordinates, verify that

gives a uniform stream if n 2 and the flow past a circular cylinder if n 1.

25. Homogeneous incompressible frictionless fluid occupies the region bounded

by the plane x = and the cylinder (x-b)
2 + y

z a2
,
where 6>a. The fluid

is streaming with the general velocity V in the negative direction of the axis of y.
Prove that the motion is expressed by the equation

where z x + iy t
XQ 6, xn 6 - a2/(6 + xn^). (ILL.



CHAPTER VII

AEROFOILS

*/7IO. Circulation about a circular cylinder. Consider the complex

potential

w = IK log
-

>a)

where K is real.

On the cylinder |

z
\

- a we have z = aeiQ
.

Hence w = -
/c0, so that

/r
= and < = - *0.

Thus the cylinder is the streamline ^t
=

.

Also, if we go once round the cylinder in the positive sense, 6 changes

into 0+277 and therefore
<f>

decreases by
2.

Thus, as appears from 3-71 (2), there

is a circulation of amount %TTK about the

cylinder. More generally (1) gives

$ = - K9, \fj
=

/clog
-

,

ct>

so that the circulation is %TTK in every

circuit which embraces the cylinder once

(see 3-71), and the streamlines are con-

centric circles whose centres are on the

axis of the cylinder.

Definition. When the circulation in a circuit is 2?r/<:, we shall call K the

strength of the circulation.

The object of this definition is to avoid the constant occurrence of the

factor 2-77 in the analysis.

In the present case

_? - o d<ft __
K

dr
' rd6~r'

so that K is the speed at unit distance from the origin.

Again, w = IK log z - IK log a,

FIG. 7-10.
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and since the addition of a constant to the potential has no physical effect,

we can, if we like, work with the complex potential IK log 2, and indeed this is

often convenient, in spite of the apparent lack of consistency in the physical

dimensions, and we see that K is still the speed at unit distance from the origin.

The effect of dropping the constant is merely to make the boundary of the

cylinder the streamline
i/r
= K log a instead of = 0.

It is very important to realise that the motion* here described is indeed

irrotational in the sense that the vorticity is zero. In fact the vorticity is

(see 4*20) given by

- -
r dn rdr r2 r2

^7-11. Circulation between concentric cylinders. The complex

potential w = IK log z will also apply to the circulatory motion of liquid

between two concentric cylinders, for the stream function
\jj
= K log r is

constant on the cylinders r = a, r = b.

The possibility of cyclic motion in the case considered here and in the

preceding section is due to the fact that the region occupied by the fluid is

doubly connected (see 3-70).

/7-I2. Streaming and circulation for a circular cylinder. The

streaming motion past a circular cylinder of radius a is given by the complex

potential

The circulation of strength K about the cylinder is given by

IK log
- .

Combining these motions, we obtain the complex potential

(1) w = F (z+
J-M/clog-,

and the cylinder is still part of the streamline = 0, for, putting z = ae*6,

we find that w is real and therefore = 0.

To find the general form of the streamlines, we first investigate the stagna-

tion points given by

Z2 Z IK
OT

whence = a
(_

JJL

We must now distinguish the cases

K < 2aV, K = 207, K > 2aV.
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Case I If K< 2aV, put
- = sin

/?.
Then z = a(

- i sin /? cos ft),

so that the stagnation points lie on the cylinder and on a line below the

centre parallel to the real axis.

FIG. 7-12 (i).

Fig. 7*12 (i) shows the stagnation points A, B, the interpretation of the

angle /?,
and the disposition of the streamlines.

The general effect of the circulation is to increase the speed of the fluid at

points above the cylinder, and to diminish the speed at points below. Thus

the pressure above is diminished and the pressure below is increased, and

therefore there will be an upward force on the cylinder in the direction of

the y-axis.

(fj2\
if

1 -
)
+ K log

-

T J d

FIG. 7-12 (ii).

is unaltered when -a; is written for x and therefore the streamlines are

symmetrical about the y-axis, so that there will be no resultant force in the

direction of the a?-axis, i.e. no resistance or drag.
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When the circulation is zero we have seen that the stagnation points lie

on the a-axis. Another effect of the circulation is thus to move these points

downwards.^/
Case II K 2aJ. In this case ft

=
ir/2 and the stagnation points coin-

cide at the
botjerfn, (7, of the cylinder, fig. 742 (ii).

Caselll K >2aV. Put = Then

z = ai (
- cosh ft sinh ft)

= - ai e* or - ai e~ft
.

FIG. 7-12 (iii).

Calling these z
,
z2 ,

we have

!,,!=<.
Thus the stagnation points are now inverse points on the imaginary axis,

and one is therefore inside the cylinder and does not belong to the motion

considered.

At the stagnation point the streamline cuts itself, necessarily at right

angles (see 4'6), and the fluid within the loop thus formed circulates round

the cylinder, never joining the main stream.

To find the pressure at points on the cylinder, we have

dz

Hence

L

and therefore =
o o

q*
= f 2V sin 9+ -V

-
\ (4F

2 sin2^+~ + sin B\ ,

*\ a2 a I
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and the components of thrust on the cylinder due to the pressure are

f2* (2*X =
-\ pcosdadd, Y =

-\ psmBadO.
Jo Jo

When is replaced by #4-77, the only term in the expression for p which

changes is the last. Thus the pressures at diametrically opposite points are

2*F .
fl

pl
--

p sin 6, pl -\
--

where ^ = - -f J F2 - 2F2 sin2 - .

p p 2a2

The pressures pl have clearly no effect for they cancel one another. There-

fore

X = 2*F p \

*

sin 6 cos 6 d6, Y = 2/<Fp |
sin2 cW,

Jo Jo

whence X = 0, Y =
277/cpF,

and therefore the cylinder experiences a force 27r*/>F, tending to lift it at right

angles to the main stream. This force is usually called the lift.

The calculation of the lift is, even in this very simple case, greatly facilitated

by using the theorem of Blasius. For

taken round the contour of the cylinder. The only pole inside the contour is

z = and the residue there is the coefficient of 1/z in the integrand, which is

at once seen to be 2iF/c.

Hence, by Cauchy's residue theorem,

X-iY = %ip x 2?n x 2iVK = - i . 2?rpF/c,

so that X = 0, Y =
277/cpF, as before.

The advantage of the theorem of Blasius lies in working with the single

variable z and the elimination of irrelevant terms by the residue theorem.

? 13. Uniform shear flow. Let the #-axis be horizontal, say on ground

level, and the y-axis vertically upwards. The velocity distribution

(1) u = wy 9
v 0, a) constant

is one in which the speed decreases as the ground is approached ; the cross

gradient is du/dy = - o>. This type of velocity distribution is frequently ex-

hibited by natural wind, and is known as uniform shear flow. The vorticity is

dv/dx
-
du/dy = o>. Thus uniform shear flow has constant vorticity and this

enables us to give a more precise definition.
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Def. Flow with constant vorticity is called uniform shear flow.

For flow with constant vorticity co, 440 (6) and 5*33 combine to give for the

stream function
\ft

A ay = ^
dz dz

and so by successive integration

(2) *=/+/(*) +*,
the arbitrary functions f(z),f(z) being necessarily conjugate complex since

if/
is

real. Thus the most general shear flow consists of the shear flow whose stream

function is
if*
=

Jcozz superposed on an irrotational flow whose complex potential

is 2if(z).

As an example suppose flow past the circular cylinder of 7-12 has the shear

flow
/r =Jo>z2 superposed. The complex potential for the irrotational flow is

given by 7-12 (1) and therefore (2) above gives

whence

it/j
= F (z

-
z) + Va2 (- - 1\ + tic log zz+ fy

.di/j T7 tic .. . Fa2

t^- = V+ \~iiajz
dz z

*
z2

To find the force on the cylinder we use 641 (7). On the cylinder zz= a2 or

z=a2
/z and therefore

dz z z2

and so from 641 (7)

X - iY = -2ipx 2m x residue of (Bt/s/dz)
2 at z =

so that the lift is increased by the shear flow if CD/K is positive and is decreased

if W/K is negative. Observe that shear flow gives rise to lift even in the absence

of circulation.

>/7'20. The aerofoil. The aerofoil used in modern aeroplanes has a

profile of the
"

fish
"
type, indicated in fig. 7*20. Such an aerofoil has a blunt

leading edge and a sharp trailing edge. The projection of the profile on the

double tangent, as shown in the diagram, is the chord. The ratio of the span
to the chord is the aspect ratio.

The camber line of a profile is the locus of the point midway between the

points in which an ordinate perpendicular to the chord meets the profile.

The camber is the ratio of the maximum ordinate of the camber line to the

chord.

It is proposed to outline the elements of the theory of the flow round such

an aerofoil on the following assumptions :
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[7'20

(1) That the air behaves as an incompressible inviscid fluid.

(2) That the aerofoil is a cylinder whose cross-section is a curve of the

above type.

(3) That the flow is two-dimensional irrotational cyclic motion.

FIG. 7-20.

The above assumptions are of course only approximation* to the actual

state of affairs, but by making these simplifications it is possible to arrive at

a general understanding of the principles involved. There is a considerable

and increasing literature on this subject which cannot even be outlined here.

Our purpose is merely to give an introductory view of the simplest aspects of

the phenomenon.*
It has been found that profiles obtained by conformal transformation of a

circle by the simple Joukowski transformation (see 6-30) make good wing

shapes, and that the lift can be calculated from the known flow with respect

to a circular cylinder. There are two ways of approaching this type of

aerofoil design.

(a) By transforming a given circle.

(6) By enquiring what circle would give rise to a given profile previously

drawn. Naturally, the inverse process of (b) is more difficult. We shall confine

our investigations to the process (a). To this end we shall consider the trans-

formation of 6-30 in more detail.

J 7-30. Further investigation of the Joukowski transformation.

The transformation

regarded as mapping the -plane on the z-plane, is equivalent to the successive

transformations

1
=

7,

* For a more detailed treatment see Milne-Thomson, Theoretical Aerodynamics, London (1958).
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Given and 1} the second of these reduces to simple addition on the

Argand diagram. Let us then consider how to obtain 1 when is given.

Writing

we have , = - e~ie
.

r

The points P() and PI(^) are shown in fig. 7-30.

If we draw P1 P
f

perpen-

dicular to the real axis to meet

OP Sit P', we see that

OP' = OPl
= l

2
/r,

and therefore

OP . OP' = I
2

.

Thus P and Pf

are inverse

points with respect to 0, and to

obtain Px we therefore first find

the inverse point P' and then reflect OP' in the real axis, thereby obtaining

the position of Pv
Finally, to obtain the point z, we add the complex numbers represented

by the points P, Pl by completing the parallelogram OPJRP. The fourth

vertex R then represents z and the transformation is complete.

Now in the problem to be treated here P will be made to describe a circle.

The point P' will then describe the inverse of this circle, which will be shown

to be another circle, and Pl will therefore describe a circle obtained by reflecting

the locus of P' in the real axis. We shall now investigate a geometrical con-

struction for finding the locus of Px .

7-31. Geometrical construction for the transformation. Let C be

the centre of the given circle, cutting the real axis at A, B where OB = I.

Let P be any point on the given circle, P' its inverse with respect to the

circle centre 0, radius I, that is to say the point on OP such that

(1) OP . OP' = I
2 = OB2

.

Let PO cut the circle again at Q and draw P'C' parallel to CQ to meet

CO at C f

.

We shall first prove that the locus of P' is a circle whose centre is C'.

Proof. Since AOB, POQ are chords of a circle intersecting at 0,

(2) OP.OQ = OA. OB.

Dividing (1) by (2),

OP' _ OB
OQ

~~

OA'



188 GEOMETRICAL CONSTRUCTION FOR THE TRANSFORMATION [7-31

Now the triangles OP'C', OQC are similar since P'C' is parallel to QC.

Therefore

OC' _ C'P' OP' _ OB
OC

~~

CQ
~
OQ

~
OA

'

Since OC' : OC is constant, C' is a fixed point.

Since CQ = a, the radius of the given circle, and C'P' : CQ is con-

stant, it follows that C'P' is of

constant length.

Therefore P' describes a circle

whose centre is C'. Q.E.D.

Since OB =
Z, the point B is its

own inverse, and therefore the locus

of P' passes also through B.

Since

OC' _ OB
OC~~OA

the triangles OAC, OBC' are similar

and similarly situated. It follows

that BC', CA are parallel, and there-

fore

LABC f = LBAC = LCBA.FIG. 7-31 (i).

Hence BC f and BC are equally inclined to the real axis. If, therefore, we

reflect the circle which is the locus of P' in the real axis, we shall obtain an

FIG. 7-31 (ii).

equal circle whose centre D lies on BC and which passes through B. This is

the required circle, the locus of Pl the reflection of P'.
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Since B lies on the line of centres <7Z), the two circles must touch at B.

Since OC' and 00 are equally inclined to Oy, and since OD is the reflection

of 00', it follows that OD and OC are equally inclined to Oy. This remark

enables us to find D and draw the circle without any difficulty. The con-

struction of the point R, representing z +Z2
/> is then finished as described

in 7-30.

Fig. 7-31 (iii) shows an aerofoil section sketched through points obtained

by drawing radii vectores at 30 intervals. Corresponding points on the

aerofoil and the circle bear the same number.

FIG. 7-31 (iii).

Aerofoils obtained by this construction are known as Joukowski aerofoils.

They have a blunt nose and a sharp trailing edge corresponding to the point

B on the circle.

7-32. The nature of the trailing edge. The transformation

Z
2 dz I

2

* = + 7 gives = l--,

so that dz/d vanishes at the point = -
1,

=
I, and therefore the representa-

tion ceases to be conformal in the immediate neighbourhood of these points.

The point =
I, being inside the circle, transforms to a point inside the aerofoil

and need not be considered further. The point = - 1 transforms into z = -
21,

the trailing edge. The transformation can be written
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In the neighbourhood of = - 1 and z = -
21, put

[732

where r and s are infinitesimal. Then, approximately,

and therefore X + TT = 26.

In moving round the point B, 6 increases by TT, and therefore x increases

by 27T.

It follows that the two branches of the aerofoil touch one another at the

trailing edge, which is therefore a cusp.

A generalised form of (1), namely

/0 \
z+*d / + A n

(2)
j

=
( ? J >

is also used iu design work and gives rise to a class of curves known as Karman-

Trefftz profiles. Using the same notations, we find

so that if n = 2
,
the increase TT of 6 at B gives for x the increase %TT - A

TT

and the trailing edge has now two distinct branches intersecting at the angle A.

FIG. 7-32 (i). FIG. 7-32 (ii).

The transformation (2) does not permit the simple geometrical treatment

which is available when n = 2.

'/
7-40. Joukowski's hypothesis. If q is the speed at the point B of the

cylinder which transforms into the trailing edge of the aerofoil, and q' the

corresponding speed at the trailing edge, we have, from 6-03,

dw

Ik

Now we have seen that at the trailing edge dz/d = 0, and therefore q' will

be infinite. This could be avoided if B were a stagnation point so that q = 0.
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An inspection of the position of the stagnation points, discussed in 7*12, shows

that, by proper choice of the strength of the circulation *, the stagnation

points can be placed anywhere on the lower half of the cylinder so that B can

always be made a stagnation point.

Joukowski's hypothesis is that the circulation in the case of a properly

designed aerofoil always adjusts itself so that B is a stagnation point and the

velocity at the trailing edge is finite. This condition *
appears to be satisfied

with reasonable exactness within the working range of well designed aerofoils.

The physical explanation of the origin of the circulation is probably some-

what as follows. (See also Plates 2, 3.)

When the motion is just starting, i.e. for low velocities of the airstream,

the flow is ordinary streamline flow, with the stagnation point just ahead of the

trailing edge on the upper surface

of the aerofoil. As the speed in-

creases, even with small viscosity,

the viscous forces increase and the

air is no longer able to turn round

the sharp edge and a vortex is

formed.
FIG. 7-40 (i).

Since the circulation in any circuit large enough to enclose the aerofoil and

the vortex was zero to start with it must remain zero, and so a circulation now

exists round the aerofoil equal and opposite to that of the vortex. The vortex

FIG. 7-40 (ii).

gets washed away downstream, and when the steady state is reached the

circulation round the aerofoil remains.

S/T45. The theorem of Kutta and Joukowski. An aerofoil at rest in a

uniform wind of speed F, with circulation K round the aerofoil, undergoes a

lift KpV perpendicular to the wind. The direction of the lift vector is got by

rotating the wind velocity vector through a right angle in the sense opposite to

that of the circulation.

Proof. Since there is a uniform wind, the velocity at a great distance from

* Behind the aerofoil there exists a vortex wake which causes the measured circulation to be
1

less than that given by Joukowski's hypothesis. The effect of the wake increases with increasing

angle of attack.
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the aerofoil must tend simply to the wind velocity, and therefore if

sufficiently large, we may write

dw _ iaL
A B

dz z z2
' ' * '

[7-45

Z is

(1)

where a is the incidence or angle of attack, fig. 7-20. Thus

7>

w = Ve*"z-A log 2H h . . . ,

FIG. 7-45.

and since there is circulation K, we must have

,2, -_.
for log z increases by 2m when we go once round the aerofoil in the positive

sense. From (1) and (2) we get

(3)
(dw\* __

(dz)
~

If we now integrate round a circle whose radius is sufficiently large for the

expansion (3) to be valid, the theorem of Blasius gives (see 641)

/ /r VP*<*\

X-iY = ^p x 27rt
( )

- - iKp Ve*,
\ 77 /

so that, changing the sign of i,

(4) X+iY = iKp Ve-** = Kp Ve* <**->.

Comparison with fig. 745 shows that this force has all the properties stated in

the enunciation. Q.E.D.

Notes, (i) The theorem was discovered by Kutta (1902), and independently

by Jookowski (1906).

^ii) The lift is independent of theform of the profile.

(iii) The theory gives no drag since we have taken no account of the wake or

of viscosity. See 19-74.
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(iv) If the aerofoil is regarded as moving in air otherwise at rest, the lift is

got by rotating the velocity vector of the aerofoil through a right angle in the

same sense as the circulation.

(v) The theorem of Blasius applied to (3) gives the moment about the

origin
*

(5) M = real part of ZTripBVe'*.

'/SO. The lift on an aerofoil in a uniform stream. The Joukowski

transformation z = -f-Z
2
/ is a particular case of a more general type of trans-

formation

a) 8 =
{+j+5+..., s

which applied to the circle of radius a with its centre C at the point = $ will

yield an aerofoil profile.

The aerodynamic force on the aerofoil is due to the aerodynamic pressure

thrusts on the elements of its surface. It is known that a system of forces

acting on a rigid body (and we shall assume our aerofoil to be rigid) can be

replaced at any chosen base point by a force acting at that base point and a

couple. Moreover the magnitude and direction of the force are the same for

all base points, whereas the moment of the couple depends upon the particular

base point selected.

For the present investigation we shall take as base point the centre C of

the circle. This point is called the centre of the profile ; the actual position it

occupies with respect to the profile is shown when the points of the circle and

the corresponding points of the profile are marked in the same Argand diagram
as in fig. 7-31 (iii). In the present case we shall take C as origin. This entails

writing in (1) z+ s for z and -h s for f ,
which for sufficiently large values of

| |

leads to the following convergent expansion

(to z-t i

a*
i

a*-~ a* s
,

(A) z ^-t- ~ -I p h ....

We also note that (2) can be reversed to give

which can easily be verified to this degree of accuracy by substitution in (2).

. Fig. 7*50 shows the disposition, C being the origin in both planes.

If a is the incidence or angle of attack, the circle theorem (6-21) gives for the

complex potential for the flow past the circle Fe*"-f a2Fe-*/, and if in

addition we have a circulation 27r/c, we get

(4) w = 7*- +=--+we log {.
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If we now replace by the function of z which defines the transformation, we

get the complex potential for the flow past the aerofoil. In the present case

t/o(2wc)V

z-plane
FIG. 7-50.

for sufficiently large values of
|

z
\

this is defined by (3) and (4), which give in

the z-plane

10 = Fe*^-^-...)

(5)

where the dots indicate omitted powers of 1/z.

Comparison with 745 shows that here

(6) A = -
t/c, B = 7e-* a2 - Fe< ax ,

and therefore from 745 (4) and (5)

(7) X+ iY = 27TiKpVe

(8) Ifo = real part of (
- *

where M is the moment with respect to the centre C.

If L is the lift, M the moment, and c the chord, the dimensionless numbers

L M

are called the lift coefficient, and moment coefficient respectively. The moment
coefficient depends on the choice of point about which moments are taken.

Observe that

Lift
= (wind speed) x (air density) x (circulation),

and is independent of shape.
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7-51. Axes of a profile. If we draw the circle and the profile in one

Argand diagram, the line joining the centre C to the rear stagnation point of

the circle is called the first axis of the profile (Axis I), and then in the notation

of fig. 7-50, K 2aV sin /?. Thus the lift L is proportional to sin ft and vanishes

when ft
= 0, i.e. when the wind stream is along Axis I (sense CH1 in fig. 7'50).

The first axis is therefore also known as the axis of zero lift.

Again, if in 7-50 (2) we put % = ZV", we get from 7-50 (8)

M = 27rpZ
2F2

sin(2a+ /u),

so that the pitching moment M vanishes when the incidence is -
Jft. The

corresponding wind direction through C is called the second axis of the profile

(Axis II) or the axis of zero pitching moment. If we call y the angle between

Axes I and II, we get

7*52. Focus of a profile. The focus is the point such that the moment of

aerodynamic force about it is independent of the incidence.

FIG. 7-52.

To establish the existence of the focus we note that if F is any point,

MP = Mc
- CF cos (ft- y -<) . L,

where
<f>

is the angle between CF and Axis II as shown in fig. 7-52 and L is the

lift.

Using the values

Mc = 27rpV
2
l* sin 2 (0

-
y), L = krpdV* sin j8,

we have

MF = 2iTpV*{l
2 sin (2)8

-
2y)

- 2a CF . sin ft cos (ft
- y - <)}

= 2rrpV
2
{l

2 sin (2j8-2y)-a . CF . sin (2j8-y-)-a . CF . sin (y+$).

This will be independent of ft, the absolute incidence,* if we take

i* = a.CJP, <t>
=

y.

This proves the existence of the focus F and gives its position as distant

l*/a from the centre on a line which is the reflection of Axis I in Axis II.

The moment about the focus is

* Absolute incidence is the angle between the wind direction and the axis of zero lift.
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Our diagram has been drawn on the assumption that Axis I is above Axis II

in the sense indicated in fig. 7-52. In this case the pitching moment about the

foeus is negative. If, however, Axis II were above Axis I, y would change

sign and the moment would become positive. The relative positions of Axes

I and II therefore correspond with different dynamical properties of the profile.

Moreover, if y = 0, we have MF = at all incidences and therefore the lift

always passes through the focus. In this case the aerofoil is said to have a

centre of lift.

For a flat aerofoil the focus is the quarter point midway between the centre

and the leading edge.

7*53. Metacentric parabola.
Let L be the actual line of action of the lift knpaV

2 sin
/?.

The direction of

L is perpendicular to the wind. Let the line L meet the line KF, which is

A

II

FIG. 7-53.

drawn through the focus F parallel to the wind, at P, the point K being on

Axis I. Taking moments about the focus F

Q,

FK
FC

using the sine formula for the triangle FKC.
Thus the locus ofP is a straight line parallel to Axis I and midway between

F and Axis I. From a known property of the parabola that the foot of the

perpendicular to a tangent from the focus lies on the tangent at the vertex, it

follows that the line of action of the lift touches a parabola whose focus is F
and whose directrix is Axis I. This is called the metacentric parabola.

To find the resultant lift we draw that tangent to this parabola which is

perpendicular to the wind direction.

Axis II touches the metacentric parabola, for if FRT is perpendicular to

Axis II, FR = RT and hence R lies on the tangent at the vertex.

Since perpendicular tangents intersect on the directrix the corresponding

lift passes through when the wind direction is along Axis II.



AXES OP A PROFILE

EXAMPLES VII

1. When an aerofoil is obtained by transforming a circle as in 7-31, prove
that the moment of the forces, due to the pressures, about the centre of the circle

is

2np 72
Z
2 sin2a.

2. If a circle whose centre is on the imaginary axis is transformed as in 7 '31,
show that the resulting aerofoil degenerates into a circular arc described twice,
while if the centre is on the real axis, a symmetrical aerofoil is obtained.

3. Apply the geometrical construction for the simple Joukowski transforma-

tion to the following :

(a) A circle whose centre is the origin and whose radius is the radius I of the

transformation.

(6) A circle, centre the origin, and radius greater than I.

4. Discuss the type of transformation that will convert the flow past a cir-

cular cylinder (with or without circulation) to the flow past a body of aerofoil shape
in a perfect fluid. Explain in particular how the flow past a circular arc and past a

strut may be found.

How is the transformation used to find the flow past an aerofoil of fixed shape
at varying angles of attack? (U.L.)

5. In the usual notation for two-dimensional motion of a perfect liquid, deter-

mine w as a function of z for a stream of velocity (U, V) flowing past a fixed circular

cylinder |

z - z
\

=
6, when there is a circulation / round the cylinder.

By applying the transformation

z
1 = z + a?/z,

where
|

a - ZQ \

=
6, z being small and a real and positive, obtain the solution for

a stream past an aerofoil with a Joukowski profile, and explain how the circulation

nan be chosen so as to make the velocity finite at the cusp. (U.L.)

6. Prove that the velocity potential and stream function when a stream of

speed 7 impinges, at an angle a to the axis of x, on a stationary circular cylinder
of radius 6, whose centre is the point (c, 0) and round which there is a circulation /,

are given by
T7 (, ^ ^ ^'"l *I

1 / Xw = 7 \(z-c)e-
itt +- f + log (z-c).

^ z c ) 2/n

Applying the transformation z' = z + apjz, where a 6~c, show that, if c is

small, the transformation gives the flow of the same stream past an aerofoil having
a symmetrical Joukowski profile, and that the condition that the velocity of the

fluid remains finite at the cusp is

/ + 4:7776 sin a - 0.

Hence calculate the force on the aerofoil. (U.L.)

7. The boundary of an obstacle in the z-plane is mapped on the circle
|
f

|

a
iifthe -plane by the transformation

Show that the motion of the liquid past the obstacle is given by a complex
potential of the form



198 EXAMPLES VII

Prove that the resultant force per unit length of the obstacle has a magnitude
kpV and that the resultant moment per unit length about the centre of the circle is

where a
l

-62
exp (2i/*). (ILL.)

5. A circle
| |

a is transformed into a thin aerofoil section by the equation

Show how to find the complex quantities an in terms of the thickness and camber
of the aerofoil.

Obtain the lift formula

L

and show that the moment about the centre is

M = 27T
/[
>62F2

sin2(a+/z),

where a is the angle of attack and
/?, 6, p are constants of the transformation. (ILL. )

9. An aerofoil is derived from the circle
|
f
- be*P

\

= a by the conformal

transformation

which is such that the zeros of dz/d all lie within the circle except one which falls

on the circumference at f = -I -
be^-ae**, where a, 6, I are real and in general

the coefficients ar are complex. Show that, if the circulation about the aerofoil is

chosen in accordance with Joukowski's hypothesis, then there is a lift at right

angles to a steady stream in which the aerofoil is placed, vanishing for a certain

angle of incidence, and find the form of a 1 if the moment about the centre of the

circle vanishes with the lift. (U.L.)

10. The transformation z' z + l
2
/z, where I is real, transforms the circle

|

z + 1
- aeW

|

=
a, where a, {$ are real, into a Joukowski profile in the z'-plane with

a cusp at z' = - 21. Show that the tangent to the cusp makes an angle 2/2 with
the axis of x'.

If the profile is fixed in a stream of incompressible inviscid fluid of density />,

whose velocity at infinity is given by -u + iv = Veia
, and the circulation about

the profile is chosen so that no infinite velocities occur in the fluid, show that the

fluid streams tangentially past the cusp at a rate VI COB (a+/8)/a and that the

turning moment M of the pressures on the profile about the point z' = ~l + aeift

is given by M =
27T/)i

2F2 sin 2a. (U.L.)

11. Show that the domain outside the circle
|

Z
\

= a in the Z-plane is trans-

formed into the domain outside a circular arc in the z-plane by the conformal
relation

Z + iae~ iet

where the circular arc subtends an angle 4a at its centre. Show also that z/Z tends

to sin a at infinity.

A cylinder whose section is the above circular arc is placed in a stream of fluid

in which the velocity at a great distance from the cylinder is F. This velocity is

perpendicular to the generators and makes a positive angle with the radius from
the centre to the middle point of the arc. If, in addition, there is a circulation K
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round the cylinder in the positive sense, show that the complex potential w can be
derived by eliminating Z from the above relation and the equation

Prove that the velocity at the upper edge is finite when, and only when,

K 27raF [sin + sin (2<x
-

]3)]. (M.T.)

12. The circle
|
f

|

= a is transformed into a flat profile by z + aa/f. Prove
that near z = 2a

13. In the Joukowski profile, fig. 7-31 (iii), show that if the centre of the circle

is the point se**, the chord 1"7" is

. 4s2 cos2/i

I + 2s cos p
'

and that for slender profiles of small camber the chord is approximately 40.

14. Apply the construction of 7-31 to draw the profiles obtained from the circles

through B whose centres are the points

_ pivfi _L #>iw/3

io
e '

io
e

respectively. Measure the camber and thickness ratio in each case.

15. The circle
| |

a in the J-plane is transformed into a thin aerofoil section

in the z-plane by the equations

*-{[!+ A n (a{Cn, An - Bn +iCn ,
z - * + p,

n=l

where 6 is real and nearly equal to o, and is so chosen that the point in the {-plane

corresponding to z' = -b lies on the circle ; and Bn ,
Cn are small. Show how the

constants Bn , Cn are related to the thickness of the aerofoil and to the ordinate

of its middle line.

Prove that, if the circulation is adjusted to make the velocity finite at the

trailing edge, the lift coefficient of the aerofoil is GL = 27r(a + A) where a is its

incidence, supposed small, and

y being the ordinate of the middle line at a distance 26 cos from the point half-

way between the leading and trailing edges.
Show also that the moment coefficient about the leading edge is approximately

iCx + j7rA-j7rC2 ,
and that, if the moment coefficient vanishes when the lift is

zero, then the centre of pressure is at a quarter of the chord from the leading edge
for all (small) values of the incidence. (M.T.)



CHAPTER VIII

SOURCES AND SINKS

8*10. Two-dimensional source. Definition. If the two-dimensional

motion of a liquid consists of outward radial flow from a point, symmetrical
in all directions in the reference plane, the point is called a simple source.

A
'i

FIG. 8-10 (i). FIG. 8-10 (ii).

A two-dimensional source can be regarded as a straight axis (of unit length

between two fixed planes) which emits fluid in the manner described.

Definition. If 2rrm is the rate of emission of volume per unit time, m is

called the strength of the source*

A source is a purely abstract conception which does not occur in nature.

The idea is nevertheless useful, as will appear, for we can describe many fluid

motions as due to sources which are outside the boundaries of the fluid which

we consider.

A source is thus a point at which fluid is continuously created and distri-

buted. Since the velocity near a source is very great, Bernoulli's theorem

demands a great negative pressure. This fact alone shows that a source in the

above sense can have no actual existence. An expanding bubble of gas pushes

away the surrounding fluid and so imitates a source. When the rate of emission

is constant, not intermittent, the source is said to be steady.

Definition. A sink is a negative source.

Thus a sink is a point of inward radial flow at which fluid is absorbed or

annihilated continuously.

If ur is the radial velocity at distance r from the source the flux out of the

circle of radius r is

r
= 27rw.

* Some writers denote by m the rate of emission of volume. What we call the strength would
then be tn/27r. The object of our notation is to avoid the recurrence of the factor 2rr in the

subsequent analysis, cf. strength of circulation, 7*10.
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_, m
Thus ur

=
,

and this is the entire velocity for an isolated source.

8*12. The complex potential for a simple source. If the source of

strength m is at the origin, the velocity at (r, 6) is mfr radially. Therefore

dw . m . A . . m m- - = u-w = (cos 6- 1 sin 6)
=

,

dz r
v

z

w? = -m log z.

The stream function is
ty
= - md.

If the source is at the point z
,
we have, by a change of origin,

w = -fwlog (z-z ).

It is interesting to compare this result with the complex potential for a

vortex of strength K given in 13-21. A vortex is (mathematically) a source of

imaginary strength.

It will be observed that as r increases, the speed diminishes, so that at a

great distance from the source the fluid is almost quiescent.

It is characteristic of a source (or sink) that the speed tends to infinity as

we approach the source, and therefore in the immediate neighbourhood of the

source the velocity is always radial, no matter how the fluid may be moving

^t
distant points.

8*20. Combination of sources and streams. The motions due to a

uniform stream, and any number of sources, can be obtained by addition of

the corresponding complex potentials, when no boundaries occur in the liquid.

To prove this, consider the complex potential

w = - Uz -mx log z -w2 log (z
- ze).

We show that this potential gives a uniform stream U at infinity, and

sources of strengths m^ , w2 at z = 0, z = z .

n . . dw _._. m* Win
Since u-iv = - = tH --\

~
dz z Z ZQ

when
|

z
|

- oo ,
we have u U, v = 0, so that there is a uniform stream.

Again, near z = z , put z = z -f re*, where r is small. Then

~~
z +re<fl r

'

the first two terms are negligible compared with the third, and therefore

u = cos 0, v = ~ sin 0,
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so that there is an outward radial flow from z
,
due to a source of strength w2

at that point.

In the same way we prove that there is a source of strength m1 at the

origin. The proof can clearly be extended to any number of sources and sinks.

We have insisted on proving this additive property, for it is not obvious

for sources and is in general not applicable in other cases.

For example, the flow past a circular cylinder, centre at the origin, is given

by the complex potential

and the motion due to a source at z is given by -m log (z- z ).

If we add these, we get

U
(z
+

which is indeed the complex potential of some motion, but not that of the

stream past a cylinder in the presence of the source. The failure of the additive

property is obvious, for the stream function does not become constant on the

circle r = a, so that the cylinder is not a streamline.

8-21 . Source in a uniform stream. Let us combine a source of strength

m at the origin with a stream U parallel to the o?-axis. Then we may add the

potentials (8-20) and so obtain

w = -Uz-mlogz,
dw m

So z -
jj

is the only stagnation point and lies on the real axis at the

A O
FIG. 8-21 (i).

point where the stream velocity and the velocity due to the source neutralise

one another. The stream function is

(1)
- _ Uy-m tan-1 9- = - Uy-m6,x

and the streamlines are easily drawn by Kankine's method, which gives fig.

8-21 (i).
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We see that the streamlines are symmetrical about the sc-axis, across which

there is no flow. The dividing streamline passes through the stagnation point

A, and this curve separates the flow into two parts.

We could therefore suppose this curve to be replaced by a solid wall. The

stream function (1) would then give the disturbance in a uniform stream due

to the presence of this wall, and the source would be outside the fluid, and thus

we could have a representation of an actual motion.

Consider the part of the flow for which 2/^0. If we measure 6 counter-

clockwise from the value zero for points on the positive part of the o>axis, on

the negative part of the re-axis we have y = and = TT. Therefore (1) gives,

for this part, $ = - mir and the dividing streamline is

WITT Uy mO
t

which includes the wall and the negative part of the re-axis. When 8 -> 0,

y -> mmr/U = A, say, and therefore the asymptote is y = h. By symmetry there

is a second asymptote y h. From (1) the equation of the wall is then

1 I
, iry , h

- = - - tan ~~
, and OA = - .

x y h TT

asymptote

FIG. 8-21 (ii).

We find, for example, that x/h = 31-9 when y/h 0-99.

The result offers several interesting physical interpretations.

We can regard (1) as giving the stream function for the flow in the neigh-

bourhood of one end of a long bluff body head on to a stream, for example a

long island in a wide river.

Again, if we confine our attention to the part above the -axis, we have

the flow pattern at the bottom of an ocean where the level changes from

to h by fairly gradual stages.

We can also regard the picture as representing the flow of wind meeting
a cliff. In this connection it is interesting to note that the stagnation point A
would be the most sheltered place.
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We can moreover regard any streamline as a rigid wall, and the flow of

wind over more gradually sloping ground would be so represented, but then

there would be no stagnation point.

8*22. Source and sink of equal strengths. Let there be a source and

sink, each of strength m, at the points B, A 9

ae**, -ae**

respectively. Then

w = -m log (z- a eia
) +m log (z+ a e'),

so that, if P is the point z,

ifj
= -m x (angle APB).

The streamlines are given by iff constant, or LAPB = constant, and

are therefore coaxal circles passing through A and B.

The flow is directed from the source to the sink, so that the parts of a

given circle on either side of AB are described in opposite senses. The line

FIG. 8-22.

through AB is a limiting case of the circles. The directions of flow in this line

are indicated in fig. 8-22.

v/8-23. Doublet, or double source. In the case of a source and equal
sink just considered, suppose that A and B are very close together, so that

a is small. Then

w =

2ma*e*i*

+ __________ ino -



8-23] DOUBLET, OB DOUBLE SOURCE 205

using the logarithmic series for the expansion of log(l-f k). Let 2ma /x,

Then

Now let a -> 0, /u, remaining constant so that m -* cc . Then when A and B
coincide, we get

u,eia

w =
z

This combination of an infinite source and sink at an infinitesimal distance

apart is called a doublet of strength ft.
The streamlines are still circles, fig.

6-0 (ii), having a common tangent which makes an angle a with the -axis.

This common tangent is called the axis of the doublet, the positive direction

along the axis being reckoned from sink to source. The physical conception of

a doublet may be helped by considering it as approximately represented by a

short length of two-dimensional tube into one end of which fluid flows to

emerge immediately from the other end, the direction of the tube being the

axis of the doublet.

The complex potential can be obtained in another way which is instructive.

Consider a sink at z and a source at z + 8z .

Then w = -m log (z
- z9

- Szf) -t-m log (z
- z

)

= -m 8ze log (z
- z

) nearly.
dz

Let 8z = r e*". Then, if mr = p, 9
and remains constant while r -> 0, we get

w =
z-z

for the complex potential of a doublet of strength p at the point z , the axis of

the doublet being in the direction a.

8*24. Green's equivalent stratum of doublets. Consider irrotational

motion of a liquid, in the region L of fig. 540 bounded by the contour 0, to be

given by a complex potential w(z) holomorphic throughout L. This condition

excludes singularities and circulations. Then by Cauchy's formula (5 '59)

m ,

J (0) 4-2

according as z is in L or outside L.

If ds is an element of arc of C drawn in the positive direction of description,

we can write d = ds eie
y and therefore for a point z of Z, (1) gives

- l
f

*(fr" <b -f *

jr
. I

j,

-
I

-

^rtJiO 4-2 J(o
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where

and this equation defines a real positive ^ and an angle %. Now pe** ds/(z
-

)

is the complex potential at z of a doublet at of strength p, ds, whose axis is in

the direction #. Therefore (2) shows that the complex potential w(z) could be

imagined to arise from a continuous distribution of doublets ranged round the

contour C whose density per unit length of arc is given by (3). This distribu-

tion is known as Green's equivalent stratum of doublets. For another type of

stratum, also due to Green, see 13-64.

Note that if z is outside L, the velocity due to the distribution is zero, for as

(1) shows, w(z) is then constant, namely zero.

If the region L is doubly connected (as in fig. 9-11), we can modify it to be

simply connected by inserting an imagined barrier AB. The foregoing con-

siderations then apply if we also place a distribution on each face of AB.

'

8*30. Source and equal sink in a stream. Let there be a source of

strength m at A (a, 0), and a sink of strength m atB
(
-

a, 0), and a uniform stream

FIG. 8-30.

U parallel to the real axis. The interesting case arises when the stream is in

the direction from source to sink, that is, in the direction of x negative.

Here w = Uz-mlog(z-a) + mlog(z+a).

The stagnation points are given by

_. m m
U + = 0,z-a z+ a

and therefore

Let

z = :

2am

U
= tf-a*.



8-30] SOUKCB AKD BQUAI, SINK IN A STREAM 207

Then z = 6,

so thft the stagnation points are L, M, where OL = OM b.

The stream function is

-1

The streamline
if/
= contains the real axis y = 0, and therefore the

dividing streamline is

Eearranging, we get

This equation represents a curve which is symmetrical about both axes,

for if the point (#, y) lies on it so do the points ( a?, y).

The value of y cannot become infinite on this curve, for as we go away from

AB the stream becomes parallel to the x-axis. Therefore the curve is a closed

oval of the type indicated in fig. 8-30.

Let OH = c, then y = c when x = 0, and therefore

2ac
c2 - a2 = 2ac cot -.'

~TL9 5 '

62 -a2

and the value of c can be found graphically.

If we take this curve as a fixed boundary, we get the flow past a cylinder

whose cross-section is the above curve.

When a is small,

cot TT
- = approximately,

62 a2 2ac

and therefore c2 = 62.

Thus as a -> 0, c -> 6, and the oval becomes a circle. In this case the source

and sink form a doublet, and we have again the flow round a circular cylinder

of radius 6. The strength of the doublet is 2am =
ju,,

and therefore

which agrees with the result already obtained in 6-22.

The complex potential for the flow past a circular cylinder is

TTw = Uz-\---
z
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The first term represents the stream, the second term the disturbance due

to the cylinder. Thus a cylinder of radius a placed in a stream of velocity U
behaves as would a doublet of strength Ua* on the axis of the cylinder.

8*31. Two equal sources. Equal sources of strength m at the points

(1) w = -wlog (z-a)-wlog (z+a), <f>
+ ii[t

= -wlog(a;
2
-y2 -a2+ 2Vxi/).

The stream function is therefore

\lt
= 7^ tan"1

>

which gives

(2) x*+2xycot -y* = a2
.

FIG. 8-31 (i).

Thus the streamlines are rectangular hyperbolas with centres at the origin.

This is easily seen, for (2) can be written in the form

so that the asymptotes obtained by equating each factor of the left side to

zero are at right angles.
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By giving iff/(2m) successively the values

TT IT IT TT 2?r 3rr 5rr

'

6' V 3' 2' T' T' IT'
w

'

we obtain fig. 8-31 (i) in which the dotted lines are the asymptotes.

The axes of reference are streamlines, intersecting at right angles at the

origin which is a stagnation point.
Since the flow is ultimately along the asymptotes, at a great distance the

two sources behave like a single source of strength 2m placed midway between

them.

If we replace the streamlines Ox, Oy by rigid walls, (1) then gives the flow

into an infinite region bounded by two rectangular walls through a narrow

slit in one of the walls as indicated in fig. 8-31 (ii).

FIG. 8-31 (ii).

If the y-axis alone is taken as a rigid boundary, we obtain from (1) the

flow due to a source parallel to a plane bounding the fluid on one side, fig.

FIQ. 8-31 (iii).

8-31 (iii), where we suppose as usual that the fluid is also bounded by parallel

planes at unit distance apart.

This last result is of great theoretical importance, for it forms the founda-

tion of the method of images which we proceed to discuss.

O M.T.H.
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^
8*40. The method of images. We have seen in the preceding section

that the flow due to a source m at A (a, 0) in the presence of a plane repre-

sented by the y-axis is given by

w = -mlog(z-a)-mlog(z+ a),

and this is the same complex potential as would be obtained if we placed a

source m at the point B(-a> 0) and imagined the fluid to have access to the

whole region on both sides of the plane x = 0. The t/-axis being a streamline

for this system, the plane could be considered as removed. The source m at

B is called the image in the given plane barrier of the source m at A. This is

the simplest case of the method of images, which may be briefly described as

follows.

Suppose that a system S of sources and sinks exists in fluid possessing one

or more boundaries C. If by placing a system S' of sources and sinks in the

region outside C and then allowing the

fluid to have access to the whole region,

we get C as a streamline, then the system

2 S' is said to be the image in C of the
A x

system S.

In the case of the source parallel to a

Fia. 8-40. plane, the system S consists of the single

given source at A, the boundary C con-

sists of the given plane, and the image system S' consists of the source at B.

We note that B is the optical image of A in the given plane regarded as a

reflecting surface.

841. Effect on a wall of a source parallel to the wall. Let the

source be at A (a, 0) and the wall at x = 0. The image of the source in the

wall is an equal source at B( - a, 0), and therefore

w = -m log (z
-

a)
-m log (z+ a) = -m log (z

2 - a2
),

dw _ - 2mz

dz
~~

z2 - a2
'

Now on the wall x = 0, and therefore

dw _ - 2miy dw
__ 2miy

Tz~~ -y*-a2 '

d2
^

-ys-a2
'

and

a) g1 ' y
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where q is the velocity, which is directed along the wall since this is a stream-

line.

The pressure on the wall is therefore

given by
^
x

= -!,. = 5-.
P P P

where 77 is the pressure at infinity.

If the liquid were at rest, the pressure

would be 77 everywhere. Thus the effect

of the motion is to diminish the pressure

on the wall. Hence the wall is urged
IG ' '

towards the source with a force (per unit breadth of wall) given by

(2) F =
a

We also see, from (1), that on the wall, putting y = a tan 6,

m . n/%
q = _ 8m 20,* aa sec2 a

so that the velocity on the wall is greatest when rr/4.

8*42. General method for images in a plane. We can proceed on

much the same lines as for the circle theorem of 6-21. Thus if

f(z) = -Zmr \og(z-zr)

is the complex potential of sources and sinks all of which lie in the half-plane

y>0, the insertion of the plane barrier y = leads to the complex potential

w = /(*) +/(*) = - wr log (z
- zr )

- 27mf log (z
- zr),

since on y = 0, we have 2 = so that w is purely real and y = is the

streamline ^ = 0. Moreover if zr lies in the region y>0, then zr lies in the

region y<0 so that this process introduces no new singularities into the region

Similarly, if all the sources and sinks He in the half-plane x>0the com-

plex potential when the plane barrier x = is inserted is

w =/()+/(- 2)
=-S r log (-2;r)-2:mf log (- z-^),

for here, on x = 0, we have - z = z and so
^r
= 0. This method is applicable

equally well to the rectilinear vortices of Chapter XIII.
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8*43. Image of a doublet in a plane. Taking a two-dimensional

doublet of strength p,
and inclination a to the jc-axis, we can regard this as

the limit of a sink at A and a source

at B
t
where AB makes an angle a with

the 05-axis.

The images of the source and sink

are at B'
t
A' t the optical images of B,

A in the y-axis regarded as representing

the given plane. Proceeding to the

limit when A-*B, we have A'->B',

and the image therefore is a doublet
, ,

. . . FIG. 843.
of equal strength, making an angle

TT a with the cc-axis, in fact, an equal antiparallel doublet.

Using the method of 842 we have for the isolated doublet at the point

z , the potential /(z) = fte*/(z
- z ), and therefore, in the presence of the

plane x = 0,

tie'* u,e~ iac

w ~-

1

8-50. Sources in conformal transformation. If we map the z-plane

on the -plane by a conformal transformation

=/(*),

a source in the z-plane will transform into a source at the corresponding point

of the -plane.

Proof. Let there be a source of strength m at the point P, z in the z-plane,

and let 77, in the -plane correspond to P. Draw a small circle c, centre z ,

and let y be the corresponding curve in the -plane. This curve y must enclose

n.

Since the stream function
i/r

has the same value at corresponding points in

both planes,

- 2irm = d$ =
difj.

J(c) J(y)

We can take c as small as we please and y will also diminish, but the

integral of <k// round y will remain constant and therefore there will be a source

at 77. If y encircles 77 once only (the usual case), the sources will be of the

same strength in the two planes.

If y encircles 77 n times when c encircles P once, the source at 77 will be

of strength m/n.

As an example, suppose = z8, and that there is a source of strength t

at 2 = 0.

Since arg = 3 arg z
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when arg z increases by 2?r, arg will increase by 677 and therefore y will

encircle = three times. Therefore there is a source of strength w/3 at

= 0. On the other hand, if
8 =

z, y will encircle f = once when c encircles

z = three times and there will be a source of strength 3m at = 0.

Vo'51. Source in an angle between two walls. Let there be a source

of strength m at the point z between two walls inclined at an angle TT/W, and

let one wall be represented by the x-axis.

z-plane t^-plane *^o

FIG. 8-51.

Consider the transformation

{ = *.

Then arg = n arg z,

and therefore, as arg z increases from to TT/W, arg increases from to IT

and the interior of the angle is mapped on the upper half of the {-plane.

A source at z corresponds to an equal source at

o
= *?

The image of this source is an equal source m at , and therefore the

complex potential is

w =-ilog(C-Jq)-mlog(-{ ).

Therefore in the z-plane

w = -m log (z
n - z n

)
-m log (z

n -
z"
n
).

8*60. Source outside a circular cylinder. Let there be a source of

strength m at z =/, where/is real, outside the cylinder radius a whose centre

is at the origin. When the source is alone in the fluid the complex potential is

~wlog(z-/). Therefore by the circle theorem (6*21 ), when the cylinder is

inserted,

w = -w log (-/)-m log ^

8-61. The image system for a source outside a circular cylinder.

The complex potential, from the preceding section, if we add the constant

m log (-!//), is

w = -m log (z -/)
-m log (s--?) -f wlogz.
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This is the complex potential of, fig. 8-61

w,
(1) a source m at A, z = / ;

(2) a source w at B, z = a2
//;

(3) a sink -m at the origin.

Since OA . OB = a2
,
^ and 2? are inverse

points with respect to the circular section of

the cylinder, and therefore B is inside the

cylinder.

Thus the image system for a source outside

a circular cylinder consists of an equal source at the inverse point and an

equal sink at the centre of the cylinder. The streamlines are shown in

fig. 8-61 (b).

'120

FIG. 8-61 (a).

FIG. 8-61 (b).

As a corollary it follows that a source inside a cylinder and an equal sink

at the centre has for image system an equal source at the inverse point of the

given source.
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The speed at any point P is given by

PC.PD
a =

dz
= m

(z-f)z(z-a*/f)

= m
PA.PO.PB'

where C, Z), are the points in which AB cuts the circle.

When P is on the circle the triangles OBP, OPA are similar and

J PB:PA = a :/.

8*62. The force exerted on a circular cylinder by a source. Taking

fig. 8-61 (a) with the source at A on the aj-axis, the theorem of Blasius gives

taken round the contour of the cylinder. Now

w = m log z m log (z f) m log (z /'),

where 04 =
/, OB =

/'
= a2

//,

dz z z-f z-f*

Squaring, and expressing the result in partial fractions, we get

(dwV _ m*

\dz)
~

z*

m2 m2 2m2 2m2

I* / .. _f\ft ~T~ / i*/vo '

(-/)
T
(*-/'r */ /(-/>

2w2 2m2 2w a 2 2

/ \ t f f'\ 1~L ff\/ff ~f\ ~f
"""

7^

Now the poles inside the contour are 2 = 0, 2 =/', and the sum of the

residues is therefore

2m2 2m2 2m2 2m2

_ 2m2
/' _ 2m2a2

T +7^ +
7r ~7r "7cTT)"7(^:75

)'

2m2a2
Therefore X-iY = ^'p x 2?ri x -7^ ^-

.

TT
22

Hence

Therefore the cylinder is attracted towards the source. An examination

of the streamlines will show that the pressure is greater on the side of the

cylinder remote from the source. The same is true for a sink.

** 8-63. Lagally's theorem. Consider a uniform stream and a source
; the

complex potential for a stream (
- U, - F) at infinity is

(U-iV)z-mlog(z-a),
the source of strength m being at z = a.

If we introduce a cylinder into the stream, the complex potential is
"

dis-

turbed
"
by the addition of a function which must vanish at infinity, for the
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presence of the cylinder cannot affect the distant parts of the fluid. To make

the case general, suppose there is a circulation of strength K about the cylinder.

Then the complete complex potential at great distances will be of the form

A B
z z

the last terms giving the effect of the circulation and the disturbance intro-

duced by the cylinder.

The complex velocity is then given by

dw _ _ . m IK A 2B
dz z azz2 z3

'''*

To find the force on the cylinder, we have,

from the theorem of Blasius,

(2)

Now let S be a circle of great radius

which includes both the cylinder and the

source. By the method of 5-54, we can

enlarge the contour to S and so write

f (
J (S) \ dz

=
(

(Cf) \?)'*+[ (?)'*dzj J (y) \ dzjFIG. 8-63.

where y is a small contour drawn round the source. Thus

'-"-
Now on the circle S, since

|

z
\
is large, we can expand l/(z

~
a) in powers

of 1/2, and therefore from (2),

dw /rr . Trv m- =-(7-^7)+ -
dz z

and hence

I a a2
\ IK A

14-- +-= + ... )-- + -=+... ,

\ z z* J z z2

where A', B', . . . are certain constants. Thus, by the residue theorem,

(4)

To calculate the second integral in (3), we see from (2) that

where /() =- [-(- log (z-o))].
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The function /(z) is therefore the complex velocity obtained by omitting

the source from the original complex potential, and/(z) is holomorphic within

the contour y. Now

By Taylor's theorem

/W =/[(*

Hence the residue of (dw/dz)* at z = a is 2mf(a).

Once more using the residue theorem, we get, from (3) and (4),

X-iJ = 2irp(U-iV)(m-iK) + 27Tpmf(a).

(6)
= -

torpiic(U
-
iV) + Zrrpm(U- iV+f(a) ).

Now /(a) is the complex velocity
"
induced

"
at a by the remaining part

of the complex potential when we omit the source m. Thus, calling this

induced velocity um - ivm ,
we have finally

(7) X-iY = -27rpiK(U-iV) + 27rpm(U-iV+um -ivm),

and this is Lagally's theorem, which can clearly be extended to any number

of sources by adding for each a term of the same type as the last term in the

formula.

To find a corresponding expression for the moment M, we have

Calculating the residues by means of the preceding formulae, we get

M + iN = -7rpi[(m-iK)*-m*-2(U-iV)(A + ma)-2amf(a)]

(8)
= ZrrpiA (U-iV)+ irpiK (K+ 2tm) + Zirpima (

U - iV+um - ivm)

and M is the real part of this expression.

Lagally's theorem assumes a striking form in the case where stream and

circulation are absent, so that the cylinder disturbs the field of the source

alone. In this case (7) gives

(9) X+ iY = 27rpm (tim+wj,

while the moment expression M+iN = 2rrpima(uin -'ivrn) shows that M is the

moment of the force (X, Y) acting at the point a.

It follows that the force on the cylinder is (X, Y) acting in a line through

the source, and in the same direction as the velocity induced at the source.

We thus obtain the following theorem.

Theorem. A source of strength m in the presence of a cylinder exerts on

the cylinder a complex force %TTpm(um+ ivm),
where um+wm is the velocity
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induced at the source by all causes except the source, and this force is localised

in a line through the source.

When there are several sources, there is the appropriate force (9) localised

at each.*

We can at once apply this theorem to find the force exerted on a circular

cylinder by a source.

Thus, with the notations of 8-62,

w = m log z-m log (z -/)
-m log (z -/').

TT *t \ w m
Hence f(z)

=
1 -&

z z-f
m m _ Wl a

M"-W"^
-/+7I7'

=

and therefore

.y __ 27r/om
2a2

as/already obtained.

* 8*64. Source outside an elliptic cylinder. In the same way that the

Joukowski transformation was used in section 6-31 to deduce the flow past an

elliptic cylinder when the corresponding flow past a circular cylinder had been

obtained, the complex potential due to a source outside a circular cylinder can

be made to yield the complex potential for a source outside an elliptic cylinder.

Considering the circular cylinder of radius (a+ b)/2 with a source at ZQ ,
we get

for the Z-plane

w = + mlogZ-wlog(Z-Z )-wlog(Z-Z ')

where Z '

is the inverse of Z , and therefore if

we get

Making the transformation of section 6-31

we get the complex potential for a source m at the point ZQ in the presence of

an elliptic cylinder whose semi-axes are a and 6.

8*70. Mapping on a unit circle. Consider the circle of unit radius,

centre the origin, in the Z-plane. The coordinates of any point on this circle

can be expressed in the form X = cos 6, Y = sin 0, and as increases from

to 27r, the point (X, Y) describes the circle in the counterclockwise sense. As

we shall be concerned with the region outside this circle it is convenient to

* A corresponding three-dimensional theorem is proved in 15*42.



8'70] MAPPING ON A UNIT CIRCLE 219

write B = -
, so that, as increases from to 277, the point (X, Y) describes

the circle in the clockwise sense and therefore leaves the region outside the

y

Z-plane z - plane
FIG. 8-70.

circle on the left. Any point on the circle can therefore be expressed in the form

(1) Z = X+iY = cosf-isin! = e~**.

If the coordinates of a point on a given curve can be expressed in the form

where the curve is described clockwise as increases from to 2?r, the region

exterior to the given curve is mapped on the region exterior to the unit circle

by
Oj On

This follows at once by eliminating between (1) and (2), since the senses

of description correspond.

For example in the case of the ellipse (a, b) we have

so that the required mapping is

( K)
a+6 a-fe

\) Z ^ ^-T
tyl?

ju Zifj

a Joukowski transformation.

A class of curves having this property has been described by D. Wrinch *

and are included in the equation

These curves are mapped on the unit circle
|
Z

|

= 1 by

which should be compared with (5).

Phil. Mag. (6), 48, 1924.
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These curves range from the hypocycloid with three cusps when a = 6 to

symmetrical aerofoil shapes when 6< \a.

8-71. Source outside a cylinder. Let the region exterior to the curve

C in the z-plane be mapped on the region exterior to the circle
|

Z
\

= I in the

Z-plane by

(1) *=/(3).

If there is a source m at ZQ outside C in the z-plane, there is a source m at

the corresponding point Z outside the circle, and therefore by the circle theorem

(2)
> = -mlog(Z-Z )-mlog(z

-Z
),

which with (1) determines w in the z-plane.

In the case of a doublet we have, as in 8-23,

Now if n el* = m 8z ,
we get from (1)

roSZ = M
and so

(Z-Z )/'(Zor (
i_ Zzo)/'(Z )

8-72. Force on the cylinder. We use Lagally's theorem, 8-63, which

gives

where the induced velocity is calculated by omitting the source from the

complex potential. Thus um - ivm = F' (z )
where F(z) = - w -m log (z

- z
).

Thus using 8-71 (2),

F (z)
= m log (Z-ZQ) +m log (z

-
1)

-m log Z - m log {/(Z) -/(Z )},

together with z = /(Z).

Thus
m

Now by Taylor's theorem

/(Z) =/(Z ) + (Z-Z )/' (Z ) + i(Z-o)2r (Z )+ . . . ,

whence after reduction

_ftr,m>f /"(Z.) 1
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and by the theorem proved in 8-63 this force is localised in a line through z
,

so that no separate calculation of moment is required.

A simple illustration of this result is its application to the elliptic cylinder

givenj^y the Joukowski mapping of 8-70 (5). This is left as an exercise.

8-80. Source and sink outside a circular cylinder. Consider a sink

at Si and an equal source of strength m at S2 outside a circular cylinder,

centre 0. If $/, S2
'

are the inverse points, the image system consists of

-m at Si 9
m at 0, m at $2'>

-m at 0,

and therefore reduces to

-wattf/ and -fwatiSV,

for the source and sink at neutralise one another.

Since OSi . OS/ = a2 = OS2 . OS2',

the points Sl , S2 , Si, S% are concyclic.

FIG. 8-80.

Since the streamlines for a source and equal sink are circles, the circle

through the above four points is a streamline. The cross-section of the

cylinder is also a streamline. Hence the circles intersect in stagnation points

A and B.

Since OA2 = OSi . OSi, OA is a tangent to the circle Si , Si, S2 , and there-

fore the two circles cut orthogonally at A and B (cf. 4-6).

The directions of flow on the dividing streamline are indicated in fig. 8-80.

8*81. The image of a doublet in a circular cylinder. If in fig. 8*80

we let Si approach $2 while the product m x StS2
=

p> remains finite, we get

the image of the doublet JLU

Since the triangles OSi'S^, OS2Si are similar,

OS*'
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and therefore the strength of the image doublet is

.. OS/ OD
M =

**.^,os;
=

l
* x

oc'

where C is the position of the doublet p, and D is the position of pf. Since C
and D are inverse points, if 00 =

/, then OD = a2
//,

and therefore

/*'
= ^v/8

-

Again referring to fig. 8-80, we see that when St comes to coincide with S2

the circle through /S1/S2/S1'/S2
/

touches the axes of the doublets at and D.

Pia. 8-81.

Therefore the image of a doublet of strength p, at distance/from the centre

of a cylinder of radius a is a doublet at the inverse point of strength /xa
2
//

2
,

and the axes of the doublet and its image are equally inclined to the line join-

ing them, but are not parallel. (Such lines are conveniently called antiparalkl.)

The above circle which touches the doublets at and D is still a streamline

and cuts the cylinder in stagnation points A and B.

J
8*82. The force on a cylinder due to a doublet. Let the doublet be

at distance / from the centre of a cylinder of radius a and on the real axis,

fig. 8-81.

Let p, and a be the strength and inclination of the doublet. Then if ff
' = a2

,

we have (8-23)

us** LLO? e~i<z

w ^.
_ C2L.

._^^
,

the second term being due to the image at D of the doublet at 0. Then

(dw\* p?e
2i"

p?a*e~
u*

2ft
2a2

Using the theorem of Blasius,
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taken round the circle. Now, the only pole inside the contour is z =/' and

therefore the residue is the coefficient of (z-f')~
l when the third term of the

above expression is put into partial fractions or expanded in ascending powers

of z -/'. We shall do the latter.

Writing y = z -/', we have

1 1 1 y V2

'"7-71

.+...).

Hence the coefficient of (z-/')"
1 or t/-

1
is

2 _ 2/
3

(7=7?- (/rTtfji
'

2u.2a2 2 f8

Therefore Z - iY =
|t/> x 2m x ^ x _ ,

This gives the force per unit thickness of cylinder and shows that the

cylinder is urged towards the doublet. It is interesting to note that the force

is independent of the orientation of the doublet.

Since all the pressure thrusts on the boundary pass through the centre of

the cylinder, their moment about the centre is zero.

8-83. Extension of Lagally's theorem to doublets. A doublet will

give rise in the complex potential to a term /z e**/(z a). Thus with the

notations of 8-63, we shall have

the terms corresponding to m now disappear.

Again, (5) will become

where f(e) is still the part of the complex velocity obtained by omitting the

doublet. By Taylor's theorem,

/() =/[(*-) + ] =/() + (*-)/' (<)+ ....

and the residue at z = a is now 2/*e
<a
/' (a).

Thus (6) becomes

X-iY = -

which is the required extension.
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To apply it to the case of 8-82, we have, omitting the term due to the

doublet at z = f from w,

(2
_

and therefore X-iY - 2Mq C^X .r-fcrie

as before.

8'9. Source in compressible flow. Let there be a (two-dimensional)

source whose output of mass is 27rm per unit time, and let q be the speed at

distance r from the source. Then the equation of continuity gives

= 27TW,

FIG. 8-9.

whence with the notations of 1-63, using 1*63 (7),

r =
m v+l

cp

where M is the Mach number.

By differentiation with respect to M we easily show that r has a minimum

value when M = 1, and therefore (1) gives
(y+l)

r I 2 y-1 \2<y-D
(2) ^-(Fl-y+I*

1

)

The motion thus exists only outside the circle whose radius is r^n and

cannot be continued inside it. Thus there is a physical lower limit to the

size of the source. It cannot be imagined contracted to a point. Outside the

circle we have either pure subsonic flow in which q steadily decreases until

M = at infinity ; or pure supersonic flow in which q steadily increases, till

M = oo at infinity.
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Such flows can take place between two rigid planes inclined at an angle as

in fig. 8-51, the source being at the angle.

EXAMPLES VIII

1. Apply Rankine's method to drawing the streamlines for the flow due to

two equal sources.

2. Draw the streamlines for the flow due to a source and equal sink

(i) alone in the fluid ;

/ (ii) in a stream perpendicular to the line joining source and sink.

J 3. A source and a sink of the same strength are placed at a given distance

apart in an infinite fluid which is otherwise at rest. Show that the streamlines

are circles, and that the fluid speed along any streamline is inversely as the

distance from the line joining the source and sink.

J 4. Two sources of equal strength are situated respectively at the points ( db 0)
in an unbounded fluid. Show that at any point on the circle x* -f /

2 = a2 the fluid

velocity is parallel to the axis of y, and inversely as the ordinate of the point.
Determine also the point in the axis of y at which the velocity is greatest.

Hence show that, if a uniform stream parallel to the axis of y be combined with
the two sources, there are necessarily two points at which the velocity vanishes.

(R.N.C.)

5. If there is a source m at A and a sink - m at B and a uniform stream U
in the direction BA, find the stagnation points, and prove that they lie on AB or

its perpendicular bisector according as the stream is relatively strong or feeble.

Draw the streamlines in each case.

-*
6. There is a source at A and an equal sink at B. AB is the direction of a uni-

form stream. Determine the form of the streamlines. If A is (a, 0), B is
(
-

a, 0)
and the ratio of the flow issuing from A in unit time to the speed of the stream is

27T&, show that the stream function is

and that the length, 21, and the breadth, 2d, of the closed wall that forms part of

the dividing streamline is given by
/ d 2ad

I = v o> -f 2ao, tan -= =
-j >

b a2 - a2

and the locus of the point at which the speed is equal to that of the stream is

J yp-y* = aa -fa&.

7. A two-dimensional source of strength m is situated at the point (a, 0), the

axis of y being a fixed boundary. Find the points in the boundary at which the

fluid velocity is a maximum.
Show that the resultant thrust on that part of the axis of y which lies between

y - b is

fl _l b b}
'la a a2 + 6z/

where p$ is the pressure at infinity. (B.N.O.)

8. Calculate the force on a wall due to a doublet of strength /z at distance a

from the wall and inclined to it at an angle a. In what direction is the wall urged

by this force?
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9. Prove that in conformal transformation a doublet will transform into a

doublet, but that the strengths will differ.

y\AQ. Two sources, each of strength m, are placed at the points (
-

a, 0) and

(a, 0), and a sink of strength 2m is placed at the origin. Show that the stream-

lines are the curves

(z
2 + i/

2
)

2 = a2
(z

2
-2/

2 +
where A is a variable parameter.

Show also that the fluid speed at any point is

where r
1 ,

r2 ,
rg are respectively the distances of the point from the sources and

the sink. (R.N.C.)

ill. If there is a source at (a, 0) and (-a, 0) and sinks at (0, a), (0, -a), all

of
eqyal strength, show that the circle through these four points is a streamline.

v-12. OX, OY are fixed rigid boundaries and there is a source at (a, b). Find

the form of the streamlines and show that the dividing line is

13. In liquid bounded by the axes of x and y in the first quadrant there is a

source of strength m at distance a from the origin on the bisector of the angle
xOu. Prove that the complex potential is - m log (a

4
-f z4).

v/14. Between the fixed boundaries =
?r/4,

=
-?r/4, the two-dimensional

motion is due to a source of strength m at r = a, =
0, and an equal sink at

r 6, 0. Show that the stream function is

x ,
r4 (a

4 -64
) sin 40m tan""1

15. Show that the velocity components given by

ay
, V(*?-_ifl\

represent a possible fluid motion in two dimensions.

Show that the motion is irrotational, and interpret the meaning of the terms
in the complex potential. (R.N.C.)

16. A, B, C is an equilateral triangle. There is a source of strength 2 at A
and sinks of strength 1 at -B and C, and a stream in the direction from A perpen-
dicular to EC. Determine the form of the streamlines when the relative strengths
are such that the dividing streamline consists in part of a closed wall.

17. Show that w = /clog (z
2 - Z

2
) gives the motion due to a two-dimensional

source in the presence of a fixed wall, and, by using the transformation given by
a A
fa**

(z
2
-l)i'

obtain the solution for such a source in a semi-infinite rectangle.

18. Use the transformation z' eff*/ to find the streamlines of the motion
in two dimensions due to a source midway between two infinite parallel boun-

daries, assuming the liquid drawn off equally by sinks at the end of the region.
If the pressure tends to zero at the ends of the streams, prove that the planes are

pressed apart with a force which varies inversely as their distance from each other.
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19. A source is placed midway between two planes whose distance from one
another is 2a. Find the equation of the streamlines when the motion is in two

dimensions, and show that those particles, which at an infinite distance are distant

\a from one of the boundaries, issued from the source in a direction making an

angle Tr/4 with it.

v^O. The irrotational motion in two dimensions of a fluid bounded by the lines

y = b is due to a doublet of strength (JL
at the origin, the axis of the doublet being

in the positive direction of the axis of x. Prove that the motion is given by

Show also that the points where the fluid is moving parallel to the axis of y lie

on the curve

cosh (rrx/b)
= sec (fry/b).

21. The space on one side of an infinite plane wall y = is filled with inviscid

incompressible fluid moving at infinity with velocity U in the direction of the axis

of x. The motion of the fluid is wholly two-dimensional, in the (x, y) plane. A
doublet of strength /u,

is at a distance a from the wall and points in the negative
direction of the axis of x. Show that, if ^ is less than 4a2

C7, the pressure of the
fluid at the wall is a maximum at points distant a^/3 from 0, the foot of the perpen-
dicular from the doublet on to the wall, and is a minimum at 0.

If ^ = 4a2 7, find the stagnation points, and show that the streamlines include

the circle x2 + (y
-
a)

2 = 4a2
,
where the origin is taken at 0. (M.T.)

22. In two-dimensional motion there is a uniform source along the real axis

of total output 2?7W stretching from x = to x a. Show that the complex
potential is

W= -
J

10g(Z-f)df = ~m
j~

Combine this with a uniform stream U parallel to the x-axis, and show that

the dividing streamline is

where r
1 ,

rz are the distances and 8
1 , Z the corresponding angles from a point on

the line to the ends of the source. Trace the form of this line.

23. Along the x-axis there exists for each stretch from x 2na to x =* (2n + l)a
a two-dimensional source of strength k per unit length, and from x = (2n-l)a
to x = 2na a two-dimensional sink of equal strength when n takes all positive
and negative integral values. If w is the complex potential, find dw/dz.

If in a channel bounded by walls at x a and x - a a line source stretches

from x - to x = a, and an equal line sink from x = to x = -a, find the

velocity at any point along the walls. (ILL.)

^24. Prove by direct calculation that the radial velocity on a circular cylinder
due to a source and its image system vanishes.

^5. Verify that a source and its image system in a circular cylinder do in fact

make the section of the cylinder a streamline.

^fa/UL the case of a source outside a circular cylinder, prove that the equation
of the streamline constant is

where c - tan ($lm),ff a2 .
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27. In Ex. 26 above, prove that

(i) the asymptote to the streamline is cx + y-c(/+/') =
;

(ii) all the asymptotes pass through (/+/', 0) ;

(iii) each streamline equation gives rise to a closed curve lying entirely
s inside the cylinder.

v^28. In the case of a source at a point A outside a circular disc, prove that the

velocity of slip of the fluid in contact with the disc is greatest at the points where

the circle is cut by the lines joining A to the ends of the diameter perpendicular
to OA, and that its magnitude at these points is

2m. A
OA*-a2

'

where is the centre and a the radius of the disc.

J 29. If the axis of y and the circle x2 + y
z a2 are fixed boundaries, and there

is a two-dimensional source at the point (c, 0) where c>a, show that the radius,

drawn from the origin to the point on the circle where the velocity is a maximum,
makes with the axis of x an angle^

^S _t a* + cz

(B.N.O.)

30. A two-dimensional source / of strength m is outside a fixed circle, centre C.

Prove that the value of q at any point P is

mvJrr^ r2 ,

where r
, f^ ,

r2 ,
ra ,

r4 denote the distances of P from the points (7, /, J, A, B re-

spectively, J being the inverse point of / with respect to the circle and A, B the

points in which CI cuts the circle. (U.L.)

31. If a circle be cut in half by the y-axis, forming a rigid boundary, and a

source, of strength m, be on the x-axis at a distance a, equal to half the radius,

from the centre, prove that the streamlines are given by

(16a
4 + r4 ) cos 20 - 17aV - (16a

4 - r4 ) sin 20 cot

i/t being a suitably adjusted value of the stream function.

Show that the streamline
i/r
=

mjr/2 leaves the source in a direction perpen-
dicular to Ox and enters the sink at an angle Tr/4 with Ox, and sketch the stream
lines.

32. In the two-dimensional motion of an infinite liquid there is a rigid boundary
consisting of that part of the circle x2 + y

2 a2 which lies in the first and fourth

quadrants and the parts of the axis of y which lie outside the circle. A simple
source of strength m is placed at the point (/,0) where /> a. Prove that the

speed of the fluid at the point (a cos 0, a sin 0) of the semicircular boundary is

^ 4ma/
2 sin20

a*+/4-2a
2/2 cos20*

Find at what points of the boundary the pressure is least. (R.N.C.)

33. Water enters a circular enclosure of radius a at the centre and escapes

by a small hole at the point A of the boundary into the region outside which is also

occupied by water and is unbounded. The motion being considered two-dimen-

sional, prove (i) that the asymptotes of the streamlines pass through a fixed point ;

(ii) that the tangent at to a streamline and the corresponding asymptote are

equally inclined to OA ; (iii) that the streamline has a double point at A, the

tangents at which are perpendicular. Sketch one of the streamlines. (U.L.)
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"

84. Within a circular boundary of radius a there is a source of strength m at

distance / from the centre and an equal sink at the centre. Find the complex
potential, and show that the resultant thrust on the boundary is

a2
(a

2
-/

2
)

In what direction is the boundary urged by this thrust?

Deduce as a limiting case the velocity potential due to a doublet at the centre.

(K.N.C.)

A source is situated at the point (c, c) in the region bounded by the axis

of x and the circle x2 -f y*
= a2

,
the source being outside the circle. Show that the

fluid velocity vanishes at the points (a, 0) and that it will vanish at one other

point on the circle provided that 2c<(2 + </2)a.

36. The boundary of a semi-infinite liquid consists of an infinite plane sur-

mounted by a cylindrical boss of semicircular cross-section of radius a, and the

liquid contains a line source everywhere at a distance c from the plane and the

axis of the boss, where c a tan A. Show that the velocity at points on the boss

is a maximum along the generators lying in the axial planes, making an angle 6

with the axial plane containing the line source, given by tan 6 = cos 2A. (U.L.)

37. Show that w m log {(z
- z) (z

- z2)/z}, where 22 : zl is real, gives the

motion for a simple two-dimensional sink of strength m at z = z
1 ,

in the presence
of a fixed circle, centre the origin, and of radius a, where a2 =

|

zl z2 1.

Using the transformation

z'-z + c2
/*, (c<a<\z1 \) t

obtain the solution for the motion due to such a sink outside a fixed ellipse, and
find/ the resultant force on the ellipse. (U.L.)

^/38. Sources of equal strength m are placed at the points z = nia when

n - ..., -2, -1,0,1,2,3, ....

Prove that the complex potential is w = -wlog sinh (irz/a). Hence show that

the complex potential for doublets, parallel to the 3-axis, of strength /* at the same

points, is given by
w p, coth (rTZJa).

39. If the row of doublets of Ex. 38 is placed in a uniform stream - U parallel
to the se-axis, prove that the streamline

iff
= is

ay _ sin (%iry/a)

7T&2
~"

cosh (fax/a)
- cos (27ry/a)

'

and show that this consists in part of the sc-axis and in part of an oval curve which
is nearly circular (diameter 26) if 6 is small compared with a. Show that this

solves the problem of a stream flowing through a set of parallel equidistant rails

of approximately circular section.

40. Prove or verify that the complex potential defined by

z ( nw\ /(l-n)w\-
exp j-fexpl^ ')a r

\ m/ r
\ m /

makes the streamlines ^ = WTT straight and radiating from the origin. Prove
that the flow is inwards towards the origin in one of the angles thus formed and
outwards from the origin in the other (re-entrant) angle.
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41. If w f(z) and v = -
dz/dw, show that v and u are inverse points in the

Argand diagram. Show that if v can be determined as a function of w, then

-. I v dw.

Prove that the assumption of a simple source in the v-plane in the form

aU. ( \\ aU. I . .
Aw _ --

log
( v - ) + log jj leads to

7T \ U' IT U

TT U ( TTW\Uz -w + exp (
== ) ,

IT
r

\ at//

and that this represents the flow of water out of a canal of breadth 2a, the asymp-
totic velocity in the canal being U.

42. Use the result of Ex. 41 to prove that the complex potential due to a stream

U flowing against the mouth of an infinite canal of breadth 2a is given by

TTZ TTW . TTW

43. Two infinite planes converge at the angle 2<x = 2w7r, but do not meet, to

form a spout into which liquid flows. Show that the diagram in the v-plane

(v = -
dz/dw) corresponds to the type of flow given in Ex. 40, and deduce that for

flow into the spout
m ( nw\ m f(\-n)w\ ~

z = _
exp

--
) + ~--

^=- exp (

--'
) + C.

nU r
\ m/ (l-n)U

r
\ m /

Taking C = m/(nU), show that the result of Ex. 42 can be deduced.

44. If liquid moves inside a thin shell between two plane laminae, show that

a corresponding motion in a thin spherical shell can be obtained by inverting the

streamlines in the first motion with regard to any origin, and find the factor by
which the velocities must be multiplied to transform one motion into the other.

A source and an equal sink are placed at two points of a thin spherical shell.

Show that the equipotential and streamlines on the sphere are small circles.



CHAPTER IX

MOVING CYLINDERS

9*10. Kinetic energy of acyclic irrotational motion. Consider two-

dimensional acyclic irrotational motion of liquid bounded internally by a

cylinder Cx and externally by a cylinder C2 and of unit thickness (i.e. com-

prised between two planes parallel to the plane of the motion and at unit

distance apart). For such a motion to subsist, it follows from 3-77 (I) that

either or both cylinders must be in motion.

Then if S is the region between C and Ca ,
we have for the kinetic energy

dwdw ja f df dw\ , a
-7--^rdo = ip w> }

dS.
)cfe& ^Jea&V B/

Using the complex form of Stokes' theorem, 543, we get

T ~ -
ip w dw+ %ip w dw y

J(Ci) J(C,)

each contour being described in the counterclockwise sense.

9-11. Kinetic energy of cyclic motion. Consider cyclic irrotational

motion taking place in liquid contained between fixed cylinders C: and Ca ,

the region being doubly connected.

Let t0 denote the complex potential. By hypothesis, there is a circulation

of strength /c, so that WQ decreases to WQ-^TTK when we encircle the cylinder

G! in the anticlockwise sense.

Imagine a barrier AB between the cylinders, thus rendering the region

occupied by the fluid simply connected. The barrier AB is a geometrical
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conception which does not interfere with the motion. This will be the case

if AB consists always of the same fluid particles. This barrier gives us a simply

connected region in which WQ is one-valued.

FIG. 9-11.

Let C denote the circuit C^+BA + C^AB, where C 2 is described anti-

clockwise and GI clockwise. The kinetic energy is given by

(1) TO = P wo *3 =
i*/> wo dwo+ |p I o <o>

J(C) J(C) J(O

since WQ
= WQ

-
Zi$ and therefore dw dwQ

- 2i dfy. The first integral vanishes

by Cauchy's theorem, since WQ is one-valued in the region bounded by C.

Since
t/r

is constant on the streamlines C and 2 the last integral reduces to

one along AB+BA. On AB WQ has the value w
,
but on BA it has the value

w - 27T/c. Therefore

(2)
JAB JBA

where (^O).B> (MA are the values of fa at B and A. Thus

(3) T =
7r/cpm,

where m is the flux from right to left across AB.

It follows also from (3) that

(4)
= Ip {

2
?JS

ds =
f
7TKpqn ds,

JUS) OS J

where qn is the velocity normal to the barrier AB. This is the work done by
an impulsive pressure 27r/c/> applied to the barrier AB, the liquid being initially

at rest.

Thus the given cyclic motion could be generated from rest by this impulsive

pressure applied to the barrier, the barrier being supposed to disappear immedi-

ately after the application of the impulses. Conversely, the cyclic motion being

established, the liquid could only be brought to rest by the application of this

impulsive pressure (but in the opposite sense) to a barrier such as AB. It

follows that the cyclic motion cannot be either created or destroyed by im-

pulsive pressures applied to the boundaries Cl and 2 alone.
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We can therefore generalise theorem II of 3-77 as follows (at least for two-

dimensional motion).

// liquid occupying doubly connected space is bounded by rigid walls, the

motion, if acyclic, will instantly cease, if the boundaries are brought to rest, but,

if cyclic, the cyclic part of the motion mil persist.

Theorem VI admits of a similar generalisation, and generally it follows

that, given the strength of the circulation, irrotational motions in doubly

connected space are determinate.

The foregoing remarks, here justified in the case of doubly connected two-

dimensional regions, are of general application to space of any connectivity in

three dimensions.

We can now generalise to the case of any two-dimensional irrotational

motion of liquid between two rigid cylinders C^ and C 2 . The complex potential

of any such motion can be expressed in the form W+ WQ , where w applies to

acyclic motion while WQ applies to cyclic motion with the boundaries at rest.

In this case the whole kinetic energy (per unit thickness) is

(5) T = \ip\ (w+w ) (dw+dw )
= \ip wdw+ \ip w dwQ+ T',

J(C) J(C) J(0)

where

Tr = \ip (w dw + WQ dw) lip \
w (dw

- 2i d$Q ) + (w + 2^r )
dw >.

J(C) J(C) I )

Now by Cauchy's theorem J(C)W dw =
$(c)W did = 0, and as before

tftQ is

constant on Ox and <7 2 . Therefore

JAB+BA

since w and are one-valued and therefore the integrals along AB and BA
cancel. Thus

(6) T = \ip wdw+<rrKp[ (fa)B
-

(

J(C)

in other words, T is the direct sum of the kinetic energies of each motion con-

sidered independently. Since w is one-valued the barrier AB does not intervene

in calculating the integral in (6).

As an example of the kinetic energy of cyclic motion, take the case of cyclic

motion, with circulation of strength K between two circular cylinders of radii

a and 6 (7-11). Here

T =
TTKP (K log b - K log a) = TTK*P log (b/a).

9-20. Circular cylinder moving forward. Taking the origin at the

centre of the cylinder, radius a, when liquid streams past with velocity U at
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infinity in the negative direction of the x-axis, the complex potential, from

6-22, is
Uz+

z

If we impress on the whole system a velocity U in the positive direction

of the a-axis, the cylinder moves forward with velocity U and the liquid is at

rest at infinity, so that ~,
2

(1) z

Comparing this with 8-23, we see that the complex potential is the same

as that of a two-dimensional doublet at

the centre of the cylinder in the positive

r
direction of the z-axis and of strength Ua*.

From (1), we get

y

U-IV = Ua*
u+iv = Vote

The radial and transverse components

of the velocity at the point (r, 6) are

Ua? cos 8 Ua2 sin 8

FIG. 9-20. r2
'

r2

It must be emphasised that these are the components of the absolute

velocity of the liquid at the fixed point in space whose coordinates are (r, 8)

with respect to the moving axes at the instant considered. The only property

required of the complex potential is that its derivative should yield the

velocity. We also note that
2 __

I7
2a4

so that the speed is the same at all points equidistant from the centre of the

cylinder. In particular when r a, q = U, and therefore the speed on the

boundary of the cylinder is U.

9-21. Paths of the particles. Consider fixed axes Ox, Oy at the instant

FIG. 9-21 (i).
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when the centre of the cylinder is at 0. The particle at the point P(xt y) is

moving with velocity Ua2
/r

z at an angle 6 with the radius vector (9-20), and

therefore the tangent to the path of P makes an angle a with Ox where a = 20.

Hence, if R is the radius of curvature of the path of P,

1 _da_d(26)dy_ d$
-r- : -y- 4 rr- * Sin &V .R as ay as ay

Now when the liquid is streaming past the fixed cylinder, the particle P
moves along a streamline whose equation (6-22) is *

7/J A

whence 2 -=- sin 20 = (y
-

77).

cf

1 4
Therefore _ ^ (y-^).

This is the equation of the elastica or curve assumed by a perfectly flexible

rod subjected to longitudinal thrusts. As the cylinder moves from - oo to

-f oo
,
P moves from P to Pt ,

the points of the elastica at which the tangent
is parallel to the #-axis.

We now calculate the drift,} =PoPi in fig. 9-21 (i).

To this end we consider the motion of the liquid relative to the cylinder re-

garded as fixed, so that the liquid moves from right to left with general velocity

U. Using the radial and transverse velocity components of 9-20 we have for the

relative motion

ldr

One integral of these equations is the stream function (1), where the constant
77

gives the initial and final distance of the particle from the line of motion of the

centre of the cylinder. For the drift we then have

dx

on the use of (1) and (2). The motion can be obtained in terms of elliptic

functions by putting for the squared modulus
2

(4) m = fc* =

and writing cos#= -snv, so that v ranges from -K to K, where K is the

* The relation between y and & is that appropriate to an observer moving with the cylinder,
i.e. a streamline when the cylinder is fixed.

t The term and the treatment which follows are due to Darwin who seems to be the first to give
a physically satisfactory intuitive picture of this phenomenon and of virtual mass. C. Darwin,
Proc. Camb. Phil. Soc., 49, (1953), 342-354.
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complete elliptic integral of the first kind. Then the whole course of the motion

is given in terms of the parameter v by

y(v) = (tf + dm>),

Ut(v) = -
K

where ((v), y(v)) are the cartesian coordinates of the particle, at time t(v),

relative to the initial undisturbed position. These equations enable us to plot

the paths* and to calculate the drift

k

Some of these paths are shown in fig. 9-21 (ii) adapted from Darwin's paper.

The origin of time has been taken at the moment of central passage of the cylin-

FIG. 9-21 (ii).

der. The numbers on the curves record the times at those points in a suitable

unit ; thus a point marked 2 gives the position of the liquid particle when the

cylinder has moved forward 2 radii from the centre position. For this set of

particles the broken curved line on the left ofthe figure shows the initial positions

* L. M. Milne-Thomson, Jacobian elliptic function tables, New York, (1958).
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when the cylinder is at oo and the broken line on the right the final positions

when the cylinder has passed to + oo . Thus there is indeed a drift of the liquid

from left to right. The mass of liquid between the initial and final positions

(taking unit thickness of liquid) may be called the drift-mass pD where

(6) pD = p I dr].
J 00

It can be shown by performing the integration that pD = na2
p = M' the

mass of liquid displaced by the cylinder.

9-22. Kinetic energy. When a circular cylinder of radius a moves

forward with velocity U, the kinetic energy of the fluid is given by

Tf
= -

\ip I wdw.

Also w =
, w = T- , dw r2

- dz.

Now on the cylinder, z = a eid
, z = a e~i9

,
dz = - ia e~id

d9, so that

Let M' TTpa
2

. Then M' is the mass of liquid (per unit thickness) dis-

placed by the cylinder.

If then M is the mass of the cylinder (per unit thickness), the total kinetic

energy of the fluid and cylinder is

Let F be the external force in the direction of motion of the cylinder

necessary to maintain the motion. Then the rate at which F does work must

be equal to the rate of increase of the total kinetic energy, and therefore

'-*$-*%
Had the liquid been absent, the second term would have vanished. Thus

the cylinder experiences a resistance to its motion of amount

M,dUM
1u

per unit thickness, due to the presence of the liquid.

9-221. Virtual mass. An inspection of the final equations of 9-22 proves

that the presence of the liquid effectively increases the mass of a moving circular

cylinder fromM toM+ M', whereM'

is the mass of liquid displaced. The mass

M+M'

is called the virtual mass of the cylinder, and the virtual mass is obtained
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by increasing the mass M by the added mass or hydrodynamic mass which in the

case of the circular cylinder is M'. Observe that this hydrodynamic mass M' is

equal to the drift-mass pD calculated in 9-21. It would appear that all moving

bodies, in so far as the motion takes place in a medium, should be affected by
added mass, so that in dynamical experiments the masses enter as virtual masses

of the type M + kM', where the coefficient Jc depends on the shape of the body
and the nature of the motion. Darwin in the paper just cited has proved that

fot bodies moving in a straight line in unbounded liquid the hydrodynamic mass

is given by the drift-mass, i.e. that

IcM' = pD,

and in the case of a circular cylinder k = 1.

9-222. Virtual mass in two-dimensional motion. We consider a

cylinder of any form moving two-dimensionally with velocity U in a straight

line in unbounded liquid. In coordinates fixed with reference to the cylinder

the flow will be represented by a complex potential w= Uz+(f+ig) or in terms

of velocity potential and stream function

(1) <f>=Vx+f, *=Uy+g.
Since/-f ig represents the disturbance made to the stream by the presence of the

cylinderf+ig must tend to zero at infinity and must therefore be expressible in

a series of negative powers of z, so that/ and g will be expressible in series whose

terms will tend to zero at infinity by involving negative powers of r. Thus we

shall have.

The boundary condition can be expressed either as

(4)
= constant on the boundary, or

(5) V<e+mfv =- Ul on the boundary,

where (I, m) are the direction cosines of the normal to the boundary drawn

towards the fluid, and suffixes denote partial differentiation.

The motion of a particle is given by

(&
dx - u f dy - f(6) A"" 17 f" ti~-fv -

The stream function gives one integral of these equations say

(7) * = Vy+g = Ur,,
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so that
77

defines the initial and final asymptotic line of flow. Again

^--v* v. --a (a.j,).

the Jacobian, on account of the Cauchy-Riemann equations 6-0 (1). Thus the

drift is given by

Here the integrand is to be transformed from its expression in x and y into terms

of
<f>
and

iff,
and is then to be integrated with respect to

</>
with kept constant.

The drift-volume D is then given by

Here the field of integration extends over the whole plane of the motion

except the cross-section of the cylinder. But it is important to notice that the

integral is not absolutely convergent and can attain quite different values

according to which integration is done first. In the present case there is no

doubt of the order for the ^-integration was to be done before the ^-integration.

Since in the distant parts of the fluid </>-* Ux, $-*Uy as is clear from (2) and (3) ?

in the last integral of (9) the x-integration is to be done first. An alternative

way of stating this is that if the integrations are taken respectively between the

infinite values x= A, y= /z then A is to be much greater than ft.
Let us then

consider the possible values of the integral

(10) J

Apply Stokes theorem. Then in terms of the stream function
ifj

fp f(o) f()
(11) J= \\(U-if>y)dxdy= -\ (Uy-$)mds-\ (Uy-^mds,

where (0) signifies integration over the body and (oo )
over the surface at infinity.

Now by (4) iff
is constant on the body and the associated integral vanishes while

f(0)

(12) 1 ymd8=V,

where F is the volume of the body. Thus the first term on the right of (11)

always gives VU. As regards the second term let us define the field of

integration as a
" box " $= A, y= /u,

where both A and
JJL

are to be infinite.

If we insert the expansion (3) into the last term of (11) we find that only one

term contributes and that

(13) J = - VU+44
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Thus the extreme values that J can assume are

(14) J= - VU, when
/z,

is large compared with A.

(15) J= 277^4 - VU, when p, is small compared with A.

We proceed to show that (15) is proportional to the hydrodynamic mass.

We have already seen that when A is much greater than p, (9) gives the drift-

volume so that in this case JDU. There are however other interpretations.

In the system in which the body is moving the velocity of the fluid in the x-

direction is u U -<f>x ,
and the total flux of fluid is Ju dy across any transverse

plane. The total transfer of fluid is the time integral of this
;
and the time

integral multiplied by U is the as-integral which is J so that the time integral is

J/U. Here the ^-integration was done first so that we must have
/u,
much

greater than A and the answer is (see (14))
- 7, the reflux of fluid displaced by

the body.

Again if
/>

is the density

(16) 1 1 pu dx dy = />
J

represents the total momentum of the fluid.

The kinetic energy of the fluid is

(17) %HU2 =
\$p{(U-<l>x)* +</>,*} dxdy

which is an absolutely convergent integral defining H the hydrodynamic mass.

But ifH can yield energy, it should also be able to yield momentum so (16) and

(17) should be related. We have, since u = U -(f>x ,
from (16) and (17)

HU2 -JPU = i

f(0) f(oo)= -p (<f>-Ux)(l$u+4>v)ds-p\ (<f>-Ux)(l<f>x +m<l>v)ds

by Stokes theorem.

Now by (5) ^aj+m^y=0 on the body, while at infinity, from (2), <f>x-+U>

<->(). Thus only the leading term in (2) contributes and it yields 4A tan~1
(ft/A).

Thus if
p, is small compared with A

HU-JP=Q9 J = 27rA- VU
from (15) and so the virtual mass is

This proves that for unbounded fluid the drift-volume measures the hydro-

dynamic mass. Thus the added mass really represents a mass of the liquid

entrained by the cylinder.
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. Circular cylinder falling under gravity. Suppose the cylinder

01 radius a, density a, to fall, the axis remaining horizontal, in fluid of density p.

Consider a unit length of the cylinder limited by
smooth vertical walls.

The weight of the cylinder is

The upthrust of the liquid is ncPpg, by the prin-

ciple of Archimedes. Hence the vertical downward

force on the cylinder due to gravity is TTO?(CF- p)g.

If y is the vertical depth measured from the

surface, we have, from 9-22,

Thus
dt2 a-h/o

1 FIG. 9-23.

and the cylinder descends with this constant acceleration, provided that y is

large enough for the surface conditions to be negligible. When cr</>, as in

the case of a balloon, the cylinder rises with an acceleration (p-a)g/(p + a).

^24. CiCircular cylinder with circulation. Let the centre C of the

cross-section of a circular cylinder of radius a be moving with velocity U+ iV
and let C be at the point z at tune t. Then

(1) z = U + iV,

where the dot denotes differentiation with respect to t, and if QTTK is the cir-

culation, the cylinder (7*45) experiences a lift %7TKpiz. Also the acceleration of

the centre is z and therefore there is (9-22) a resistance - M'z.

Therefore the force exerted by the fluid on the cylinder is

X+iY=-M'z

If there are no external forces, the equation of motion of the cylinder,

mass Mt
is

Mz = X+iY.
Therefore

The integral of this linear differential equation of the second order with

constant coefficients can be found or verified to be

M+Mf>
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A eie
, ZQ being arbitrary constants, and A being real. Thus

so that the centre of the cylinder describes a circle whose centre is z . Again,

U + iY = i ~ iwA e*(*+).

Thus /2+F2 = oA42
,

so that the circle is described with constant speed in time 2ir/a), and its radius

is

A =

9-25. Cylinder moving under gravity. If the cylinder considered in

9-24 moves under gravity with its axis horizontal, we take the y-axis vertically

upwards. The effect of gravity on the cylinder is to cause a vertically down-

FIG. 9-25.

ward force Mg, the weight, and a vertically upward force M'g, the buoyancy

(principle of Archimedes). Therefore equation (1) of 9-24 is replaced by

(M+ M')z- ZiTKpiz = -i(M- M')g,

or z iuiz = ig ,

2777CD M-M'^ =

A particular integral is clearly z = gQ t/a>, and therefore

z = zt+A &<*+>+&.
o>

Therefore x = x + +A cos (co^ + e), y = yQ+A sin (a)t + c).

Thus the path of the centre of the cylinder is the trochoid described by a

point on the circumference of a circle of radius A which rotates with angular

velocity w, while its centre moves on a straight horizontal line with constant

velocity gQ/a).

The precise value of A will depend on the initial speed and direction of

motion of the centre of the cylinder. If these are so arranged that -4 = 0,

then the path of the centre of the cylinder will be a straight line. Also, when
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the path is a trochoid, the mean direction of progress is horizontal
;

in other

words, the cylinder does not tend to descend under the action of gravity.

This phenomenon has been advanced as a partial explanation of the observed

behaviour of a tennis ball.

9-30. Pressure equation referred to moving axes. Let the origin

have velocities U and V along the instantaneous position of the axes, and let cu

be the angular velocity. The pressure

equation is given in 3-61. To adapt it to

this case we have to calculate the square

of the speed at the point z. Now, with the

notations of 3-61 and 5-10, we get, for the

velocity of z,

u
FIG. 9-30.

where W = U + iV. Thus the square of the speed of z is

and the pressure equation is

dt
= C(t) 9

where qr is the speed of the fluid relative to the moving axes.

When the relative motion is steady, as for example in the case of an observer

in a ship moving with constant course and speed, we get

where C is now an absolute constant.

9*40. The stream function on the boundary* Consider axes fixed in

a cylinder which is moving with a velocity of translation and rotation.

Let U, V be the components of the velocity of the origin 0, and let o> be

the angular velocity. Then the components of velocity of the point P(x, y)

of the boundary are U -yoj, V+ xto. Kesolving along the outward normal to

the boundary at P, we get

(U - yaj>) sin - (V+ xw) cos 0,

where 6 is the inclination of the tangent to the axis of x.
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Now sin = dy/ds, cos 6 - dx/ds, and the normal velocity of the fluid is

s. Equating the normal velocities, we get

dift dy /Tr v dx

FIG. 9-40.

Integrating along the boundary,

where B is an arbitrary constant, and therefore we have the value of the

stream function on the boundary. We now see that, ignoring an added con-

stant, is equal to the imaginary part of the function

(1) f(z, z) ^-(U-iV)z+ &ajzz.

If we put U cos a, U sin a for U, V, so that the resultant velocity is U at

angle a to Ox, we get

(2) /(z, z)
= - Uz e~ l"

-f %ia>zz.

The conjugate complex function is

(3) f(z,z) =-Uze*-%iajzz.

Since
iff

is the imaginary part of (2),
-

iff
is the imaginary part of (3). There-

fore, by subtraction,

(4) 2t^ = - Uz e~ia-+ Uz e* + iajzz.

9*50. Force on a moving cylinder. Referring to 641, we have for the

action on the element ds of the boundary

dX-idY -ipdz, dM+idN = pzdz.

Now let dz ~ ds eiat and therefore dz = dz e~2ict
. Therefore

(1) X-iY = -i
{ pe-***dz, M+ iN = f pze-***dz,
J(C) J(C)
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where the integrals are taken round the contour C of the cross-section of the

cylinder. Now, if W = U + iV is the velocity of the origin with respect to

axes fixed in the cylinder, and w is the angular velocity, the pressure equation

is (9-30),

(2)
2 = Q-fat+HW+ uizHW-iuS),

where qr is the relative speed. Now, on the boundary the fluid is moving

tangentially relatively to the cylinder, and therefore the relative complex

velocity is

dw

for the left side expresses that the relative velocity is tangential and the right

side measures the relative velocity.

Substitute the value of qr given by this equation in (2) and then substitute

for p in (1). We thus get, making use of the relation dz = e~2i* dz at points

on the cylinder,

(3) X-iY = lip \ (^+ W -
iwz]

Z

dz
J (o \ dz I

-p\ (W + ia)z)(W-ia>z)dz-ip\ -dz.
J(C-) J(C) di

(4) Jf+ flV = -Jpf z(~+W-iwz]
2

dz
J (o V dz I

+ ip| z(W+ iajz)(W-iajz)dz+ p\z^dz.
J (O J M

These equations constitute a generalisation of the theorem of Blasius, to

which they reduce when the motion is steady and the cylinder is at rest. In

their present form they are unwieldy. The simplification of these results is

most rapidly effected by the use of the complex form of Stokes's theorem (5*43),

which gives

(5) I (W-uaz)*dz = 2t
f -2iaj(W-ia)z)dS = 4wA(W-ia>zc),

J (C) J (S)

where A is the area enclosed by the contour and zc = xc+ iyc is the position

of the centroid of this area.

(6) -2i
\ ia>(W-ia)Z)dS = 2a>A(W-iwzc).

J (S)(C)

(1) \ (-Wz+Wz+iwzz)dz = -2i f (-W+iwz)dS = 2iA(W-ia>ze).

J(C) J(S)
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9-52. Extension of the theorem of Blasius. Equation (3) of 9-50 gives

the force on a moving cylinder. This can be written

J \dzj J \ dz dz)
u

J

%ip I (W -f iwz) (W -
iwz)dz

-
ip

---
1 ^ dz,

where the integrals are all taken round the contour of the cylinder. Using

(5) and (6) of the preceding section, we get

Kdw\

^ r
\

-j-j dz+ ipW I dw+wp I zdw
dz l J J

or*

+ 2ipa)A (
W - ia)Zc)

-
ipa>A (

W - iajzc)
-
ip I ^ dz.

j

Now I dw is the increase in w as we pass round the cylinder and is therefore
j

equal to -
2?r/c, where K is the strength of the circulation (which may be zero).

Also, I zdw I z(dw-{-2idi/f) )
since w = w + Siift, and, integrating by

parts,

j
zdt/j

=
[a/j]c -\ t/tdz.

Since the product z$ returns to its initial value on going once round the

cylinder [&f/]c 0, and hence

I 2 dw = I z dw - 2i I
i/j

dz.

Now, from 940 (4), we have on the cylinder

Therefore, from 9-50 (7),

(2)

(3) Hence \z dw = \zdw-2,iA(W- ia>zc).

(4) Again, \</>dz = (w + i$)dz
~ wdz+ Ai(W-ia>ze) t

from (2). Substituting (3) and (4) in (1), we get

(5) X - iY = \ip 1 f

j
dz+wp \

zdw-ip-^-
\wdz
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This may be regarded as the extended form of the theorem of Blasius for

the force on a moving cylinder, its advantage being that the integrals are all

taken round the contour of the cylinder or any larger contour reconcilable

with this without passing over singularities such as sources, sinks, or vortices.

A similar calculation will show that the moment about the origin of the forces

due to the pressure is the real part of

where k is the radius of gyration of the section with respect to 0.

The reduction of (4) of 9-50 to the above form by use of 543 is left as an

exercise to the reader.

It will be seen that it is advantageous to take the origin at the centroid of

the section, for then zc = 0.

The interest of the above results lies in their complete generality, since they

apply equally whether the motion is steady or not.

In the case of relatively steady motion, the terms involving differentiations

with respect to the time disappear.

9-53. Cylinder moving in unbounded fluid. When a cylinder moves

in unbounded liquid which is at rest at infinity, the disturbance due to the

motion of the cylinder must be negligible at great distances from the cylinder.

Thus, for large values of z, we must have dwjdz == 0.

The most general form of w consistent with this condition and with con-

tinuity of the motion of the fluid and of the potential is, for large values

of|*|,

(1) w =
t/clogz-f +~+. . .

,

K being the strength of the circulation.

We then obtain

dw _ IK a
: 2a2

\dz) z* z*
"'

and it follows that the first integral in the Blasius formula 9-52 (5) vanishes.

Changing the sign of i throughout, and taking the origin at the centroid

of the section, we get

(3)

P /) (* / /7WA
X+iY top I zdw+ipj I wdz+ ZmtpiW+ ipA IcoW -i

)
,
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From (2), U dw = \iK~--~ ...} dz ==- 2^% ,

by the residue theorem.

Again, I w dz IK [z log z] +2^^ ,

where [z log z] represents the variation of z log z when we go once round the

contour. If the circulation remains constant, the differential coefficient of

this term with respect to t vanishes. We then get, from (3),

(4) X+iY ~-2TTpa}ia1 + 27TKpiW+ipA (wW-i-r-} -27rp-~.
\ dt / dt

This formula is very convenient for it contains no integrations. In the

complex potential (1), let ax
= a+ ib. Then remembering that W = U+iV,

where (U, V) are the velocity components of the motion of the origin, we get

X =
2irpba) 2iTKpV Apa)V+ Ap -, 2?rp -=- ,

at dt

Y = -

We may also note that Ap = M', the mass of fluid displaced by the cylinder

(per unit thickness), and that if a> = 0, the last two terms of (4) measure the

hydrodynamic mass for linear motion.

The above formulae may be applied to give the results of 9-24, 9-25. This

is left as an exercise.

The theorem of Kutta and Joukowski (7-45) follows as a special case of (4),

for taking o> = 0, and W = constant, we get X+iY = 2nKpiW, which is a

force at right angles to the direction of W, of intensity 27r/cp (S/(7
2

-|- F2
), and

independent of the shape or area of the cross-section of the cylinder. Equa-
tion (4) may therefore be regarded as an extension of the theorem of Kutta

and Joukowski.

The corresponding extension on the lines of Lagally's theorem, when sources

and sinks are present, offers no difficulty.

9*62. Cylinder moving in a general manner. The complex potential

in the case of a circular cylinder moving transversely was derived in 9-20 from

the corresponding case of liquid streaming past a fixed cylinder by superposing

on the whole system a velocity opposite to that of the stream. The case of

transverse motion of an elliptic cylinder could be similarly derived from the

streaming past applied to the result of 6-33. We shall now, however, explain

a method of more general application, whereby a direct attack can be made on

the problem of a cylinder moving with translation and rotation in a fluid at

rest at infinity.
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The method consists essentially of mapping the region exterior to the cross-

section of the cylinder in the 2-plane on the region exterior to the unit circle

| |

= 1 in the -plane combined with a particular application of 9-40 (4).

9-63. The complex potential for a moving cylinder. Let C be the

contour of the cross-section of a cylinder moving two-dimensionally in infinite

liquid at rest at infinity, with no

circulation about it. The motion

of the cylinder is described by the

velocity of translation U of a point

of the cross-section at an angle a

with the #-axis, and an angular

velocity a>. We suppose the domain

outside the cylinder C in the 2-plane

(referred to axes at fixed in the
r , .

,
, , f ,, FIG. 9-63.

cylinder) to be mapped conformally

on the outside of the unit circle
| |

= 1 in a complex -plane, by a relation

(1)
= /(O.

the points at infinity in the z- and f-planes corresponding.

Then for the liquid to be at rest at infinity, the complex potential w cannot

contain positive powers of z (or ) when expanded in a power series in z (or ).

Also, on the boundary C of the cylinder, the stream function
<(/

is such that

(see 9-40 (4))

(2) %ty = -Uze-i* + Uz e**+ iwzz.

We shall denote a general point on the unit circle by or. Then

(3) <7=e", a=e-i9 =
lfa.

Therefore on the unit circle (2) gives

(4) 2fc/r
- B(a) = -

Uf(a) e~*+ Uf(l/a)

The function B(a) may be conveniently called the boundary function. If

this is expanded in powers of o-, we can write

(5) B(a)=Bl (a)+Bt (a),

where B^ (cr) contains all the negative powers of a and no non-negative powers.

Thus BI(^) is holomorphic outside the unit circle and vanishes at infinity.

We can now write the boundary condition (4) in the form

(6) w (a)
- w (I/a)

= Bl (a) +B2 (a).

Multiply by eZa/{27n (or
-

)} and integrate round y the circumference of the
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unit circle. Then

_1_
f w(v)da __ J_ f w (I/op (fa _ J^ f B^(a)da JL_

f B2 (a)da

2SJ (y)
or- 27rtJ (y) ,(7- ~27rtJ (y)

<r- 27rtJ (y) cr-f

Now w() and #!() are holomorphic outside y, while w(l/) and JB2 () are

holomorphic inside y. Therefore if is outside y, the application of Cauchy's

formula (5-59) shows that the second and fourth integrals vanish while the first

and third give

(8) w = BM),

and since J51() contains only negative powers of the condition of vanishing

velocity at infinity is also satisfied.

To see that the velocity is physically admissible everywhere in the liquid,

we have

and since the transformation (1) is conformal at all points in the exterior

domain, there are no zeros of /'() in the liquid, hence the velocity is finite

everywhere in the liquid.

To sum up, by means of (1) we form the boundary function (2), separate

out the negative powers of which tend to zero as
| |

tends to infinity, and

these give immediately the complex potential (8) as a function of .

Elimination of between (1) and (8) would, of course, yield the complex

potential as a function of z. In many cases it is impossible or undesirable to

effect the elimination.

Finally, we can deduce w for the streaming motion past the cylinder by

putting a> = in (2) and superposing the stream U reversed. This gives

9*64. Circular cylinder (general method). The simplest illustration

of the general method is afforded by the circular cylinder of radius a moving
with velocity U at an angle a with the real axis. Taking the origin at the

centre of the circular cross-section, the mapping function of 9-63 (1) is

z = a.
The boundary function is

so that J51(J)=D
raefa -1

;

hence

w= Ua efa -*= Ua*e<*z~l
.

As we should expect, this does not involve the angular velocity.
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9-65. Elliptic cylinder. If the unit circle in the complex f-plane is

given by = e<n
,
the transformation

(1) * = c(C + A-i), 0<A<1,

maps the region outside the boundary G given by

(2) z = a cos
77 + *6 sin

17,

where

(3) a = c(l + A), 6 = o(l -A),

conformally on the region outside the unit circle and the points at infinity

correspond. Clearly C is an ellipse of axes 2a, 26, and the eccentric angle of

the point z is
77.

Note that/'() = only for

which lies within the unit circle, so that the transformation of the exterior

domain is everywhere conformal.

The boundary function is

so that

Hence from 9-63 (8) the complex potential is

(4) w = A

where, from (3),

(5) A = Z7(6coBa+ tasina), - co(a
2 -62

).

When a = 6, we again have the results for the circular cylinder.

The kinetic energy of the liquid (per unit thickness) is given by (9-10)

w dw,
)

taken round the elliptic boundary C, hence

T = - J> I (4C-
1+ J9J-

a
)(J+2S)rf =

J(C)

or T = ^fmU
2
(b

2 cos2a+a2 sin2 a)-f-i^p7rco
2
(a

2 -62
)
2

.

When U = so that the cylinder rotates without translation,

which is the same for all confocal ellipses. In particular, this gives the kinetic

energy when the ellipse reduces to the straight line of length 2c joining the

foci. We then have the case of the flat plate rotating, but the velocity at the



252 ELLIPTIC CYLINDER [9-65

edges is then infinite, so that the solution cannot apply without modification

to a real fluid.

The case of the rotating plate offers some other features of interest.* For

the plate we have 6=0, and so A=l, o=2c and the length of the plate is 4c from

(3). Thus from (4) the stream function is ^= ia)C
2
(f~

2+ ~2
). To find the stream-

lines relative to plate we superpose the angular velocity
- CD on the whole system

by adding to the stream function -%a)(x
z+ y

2
)
= -|o>zz. The resulting

stream function of the relative motion is then

and the streamlines relative to the plate are the lines W constant. On the

plate itself f= 1 since the plate maps into the circumference of the unit circle,

and then W= - o>c2 . Therefore the relative dividing streamline is *F+ cuc2 =0,

or after reduction

The first factor gives the circle i.e. the plate and the remaining part of the

dividing line is

(7) *?-{++? = o.

This meets the plate where ff= 1 or f
4 = - 1 and so z = 20/^2, the points L

and L' in fig. 9-65 in which AA r

is the plate which is rotating anticlockwise.

The curve (7) meets the y-axis where is imaginary i.e. f = -
f, whence

2 K - 3 and z= 2*c/,/3 the points C, C' in fig. 9-65. Thus with the plate the

dividing streamline forms two closed loops as indicated in the figure by L'CL,

L'C'L. The liquid within these is trapped andmust perforcemoveround with the

rotating plate, always with a velocity distribution consistent with irrotational

* C. Darwin, loc. cit. p. 235.
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motion. Within these loops there are relative stagnation pointsS andS
f

(given by

d!F/d
= 0) which lie on the ^-axis at distance c(3

1 /4 - 3~1/4
)
= 0-556c from the

centre of the plate. The particles at these points move as if rigidly attached to

the plate. In fig. 9*65 the dotted lines show other relative paths. The relative

motion in these is clockwise, that is to say, against the sense of rotation of the

plate. In fact the relative angular velocity of the radius from the centre of the

plate to a fluid particle is less than o> and so there is a general anticlockwise

drift of the fluid, leading to rotational added mass (cf. Ex. IX, 8).

Problems relating to elliptic cylinders can also be solved by the direct

method of 6-35. Thus when the cylinder moves forward with velocity U e**,

we have on the boundary i/r
= imaginary part of

- Uz e~** = - Uc e~{" cosh

in elliptic coordinates. Therefore we must have

w = - Uce-*" cosh + ^(),

where F(t,) is to be chosen so as to be real on the boundary and to make w ->

when
| |

-> oo . If the ellipse is defined by = so that = 2 - on the

boundary, we see that the suitable form for F () is

whence w U(a+ b) sinh
(

Similarly for the rotating elliptic cylinder, on the boundary

\fj
=

Jcoc
2 cosh cosh =

Jojc
2 cosh (-) + constant,

and a similar argument leads to

w = Jtwc
2 cosh (2

- 2f )
- l^c

2 sinh (2
- 2

)
=

Jio*(a+ 6)
2 e~2<.

More generally, if
iff
on the boundary is the imaginary part of the complex

potential ^(0 + jF2 ()> where F^) - oo
,
^2 () ~> 0, at infinity, then

provided that F^^Q -
)
-> at infinity.

9-66. Cylinder with circulation. To allow for the circulation about a

cylinder of any form, we observe that the complex potential

(1) w ~ IK log

makes
i/r
= K log | |

=0 along the unit circle = e<1f
, i.e. the boundary C

is a streamline, also
</>
= -

KT], so that
<f>

decreases by 2?r: when we go once

round the cylinder in the positive (counter-clockwise) direction. Thus (1)

gives circulation ZTTK round a cylinder of any form which can be mapped on

the unit circle. In particular for the elliptic cylinder of 9-65, we have

(2) w IK log -f U (b cos a -f ia sin a)
-1+ i ~ (a

2 - 62
)

-2
.
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9-70. Rotating cylinder* When a cylinder containing liquid rotates

about an axis through the origin parallel to the generators the following

considerations may be used.

If the equation of the boundary of the cross-section can be written in the

form

(1) *3 =/(*)+/(*),

where f(z) has no singularities within the cross-section, then the problem is

solved by the complex potential

(2) w =
iwf(z),

for then
i/t
= ^wzz on the boundary.

If all the singularities of/' (z) are inside the contour, then (2) is the solution

when the cylinder rotates in fluid external to it.

More generally if z = F() defines some system of coordinates, e.g. elliptic,

such that on the boundary

then w = io*f() is the complex potential when the fluid is inside or outside

the cylinder according as the singularities of dw/dz, that is off ()/%"()> are

outside or inside the cylinder.

9-71. Rotating elliptic cylinder containing liquid. Taking the cross-

section to be the ellipse,

+ -! or
* * '

-
a* 6*

'

4a2 46*

comparison with 9-70 (1) gives

_ ,o-6 a
f(z>~ 2 ^TP 2

The constant is irrelevant, so that

To find the paths of the particles relative to the cylinder, we can superpose

the angular velocity -w by adding to
if/

the stream function ~|
which gives

22 2
y* \

+
5
" 1

'

so that when !P is constant the relative paths are the ellipses

x2
v
2

~ + i- = constant,
a2 62

which are similar to the cross-section of the cylinder
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For the relative velocity we have

fl

= ~V*''

Consider the particle which at time =0 lies at the point (ka, 0) on the major
axis. Then at time t

*

x = Jca cos Qt, y = -

Thus at time t the particle is at the point of its ellipse whose eccentric angle is

Qt. This refers to the moving axes. Referred to fixed axes the particle will

have an angular velocity of drift a)-Q=(a-b)
2
a}/(a

2+b2
), superposed on its

oscillatory motion.

Suppose, for example, that the positive half of the major axis is initially

marked by dye. This line will remain a radius of the ellipse, and periodically it

will coincide with the major axis again. In the course of (a
2+ b2)/(a

-
b)

2 com-

plete turns of the cylinder it will have rotated completely once right round
;

nevertheless the motion remains irrotational.

9-72. Rotating equilateral prism containing liquid. The lines

a>-a = 0, o?-yv/3+ 2a = 0, x+yj$+ 2a =

bound the equilateral triangle ABC, whose centroid is the origin. The length

of the side of the triangle is then 20^/3. Combining these into one equation,

we get for the equation of the boundary

F (x, y)
= x3 -

3xy
2+ 3a (x

2+ y
2
)
- 4a3 = 0, or } (z

8+ 23
) + 3azz - 4a3 = 0,

whence by comparison with 9-70 (1)

and therefore w = -

Superposing the stream function
iff
= -|o>(a;

2
-f y

2
),
we get the equations

of the relative streamlines F(x, y)
= con-

stant, or

where c is a constant. These are cubic

curves having the sides of the triangle as

asymptotes and loops within the triangle

ABC formed by these asymptotes. In par-

ticular when c 0, we see that the line

ABC is a relative streamline. Fio. 9*72.

B
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9J3. Slotted circular cylinder. The cross-section is the lune comprised

between the circles

xz+y*-b2 - 0, x*+y
2 -2ax = 0,

as shown in fig. 9-73, and the fluid is inside. The centre of the first circle is

on the circumference of the second.

FIG. 9-73.

Multiplying the above equations we get

z z

con-

. . ( ab*\
whence w = ia> \az

--
) .

Note that the singularity z = is external to the cross-section.

974. Mapping method for the complex potential. When the -

tour of the cross-section of the cylinder containing liquid and rotating about

a point of the cross-section with angular velocity eo is a curve 0, such that

the domain inside C can be mapped conformally upon the interior of the unit

circle in a complex -plane by a relation

(1) *=/(Q

we may proceed by the method of 9-63 (7) which gives

(2) w = BM),

and since this contains only positive powers the solution gives finite velocities

at the origin, and indeed everywhere, for

which cannot become infinite, since there are no zeros of/'() in the liquid.
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9-75. Curvilinear polygonal boundary. The transformation

(1) *

where c and n are real positive constants, maps the space inside the unit

circle in the -plane conformally upon the space inside a regular curvilinear

polygon* of n "
sides

"
so that the cylinder is a grooved or fluted column of a

special type. The transformation is conformal at all points inside the unit

circle, if/'() does not vanish or become infinite inside the unit circle, which

is so if

(2)

Now if = e tr> and z = r eie
t it is readily shown that

(3) r2 = zz = c2 (1 + A2+ 2A cos nrj)

and

(4) tan ^ = E^^ilb.cos
7] + A cos (n+ 1) rj

Hence the boundary curve C is such that r is stationary for sin ny = or when

vj
= =

STr/n, s = 0, 1, 2 . . . 2n- 1.

and so

l-A<r/c<l-f A.

The curve C has n axes of symmetry if n is odd, 2n if n is even. In the case

n = 1, a simple change of origin given by z
f = z+ Xc = rV*' allows us to

recognise as the kidney-shaped elliptic limagon

(5) r' = a-f b cos 0', b < a, (a = c, 6/a = 2A).

For a cylinder of cross-section given by (3) and (4), rotating with liquid inside

it, the boundary function is given by

hence 9-74 (2) gives

(6) w = to)C2 A w
.

For the kinetic energy T of the liquid we have

T ~^ip \
wdw = \ip I i(

J(C) J(C)

I
or T = -

(0

* The curve is an epitrochoid.

M.T.H.
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9*76. Rotation about an eccentric point. If the axis of rotation

passes through the point z instead of through the origin, taking the origin

as base point, the motion is equivalent to rotation with angular velocity o>

about the origin together with a complex velocity iz o> of the origin. The

new boundary condition (940) is then satisfied by the complex potential

w -

where w is the complex potential when rotation takes place about the origin.

EXAMPLES IX

1. A circular cylinder of radius a moves transversely through an infinite

incompressible fluid of density p with velocity U, and there is also a circulation /

about the cylinder. Show that, if (u, v) is the velocity at any point z
(
= x + iy),

a*U . I._ + t _.

If the cylinder rotates with spin o>, and / is chosen so as to make the mean

square velocity of slip at the boundary of the cylinder a minimum, prove that

J 27ra2o>, and find the force exerted by the fluid on the cylinder. (R.N.C.)

2. In the case of a fluid streaming past a fixed circular disc, the velocity at

infinity is F. Find the velocity function. Show that the maximum velocity at

any point of the fluid is 2V. Show that, in the case of a cylinder moving forward
in a fluid otherwise at rest, the speed of the fluid varies inversely as the square
of the distance from the centre.

3. If the complete boundary of a region occupied by liquid is at rest, there

can be no purely irrotational motion. Prove this theorem, introducing and explain-

ing the necessary restriction on the nature of the region.
The space between two fixed coaxial circular cylinders of radii a and b and

between two planes perpendicular to the axis and distant c apart is occupied by
liquid of density p. Find the velocity potential of a motion whose kinetic energy
shall equal a given quantity T.

4. If
<f>, ^ are the velocity and stream functions for an elliptic cylinder moving

forward in the direction of the major axis, show that

*

where k Vc ef sinh f. Hence plot the curves
</>
= constant, */t

= constant.

5. A very long thin rigid plank of breadth 2c is floating on the surface of deep
water and receives a normal downwards blow of impulse / at its centre. Show
that the upwards velocity of the water at a distance x from the axis of the plank
is given by

{X +

where p is the density of the water.
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6. An elliptic cylinder, mass M, semi-axes a, 6, surrounded by a fluid, is acted

on by an impulse. Show that the initial motion is given by

u(M+irp bz
)
- 7, v(M + irp a

2
)
- J,

where /, J, are the components of impulse.

7. An elliptic cylinder, the semi-axes of whose cross-section are a and 6,

rotates about its axis with angular velocity at in a liquid which is at rest at infinity.

Find the velocity potential and the stream function, and calculate the kinetic energy
of the liquid per unit layer. Find also at what points of the boundary the fluid

velocity is greatest and least. State, with reasons, whether it can be inferred with-

out further examination that these are points of least and greatest pressure

respectively. (R.N.C.)

8. Prove that the square of the radius of gyration about its axis of an infinitely

long cylinder of density cr, whose cross-section is an ellipse of semi-axes a, 6, is

effectively increased by the quantity

80- ab

when the cylinder is rotating in an infinite liquid of density p.

9. An infinite flat plate of breadth 21 is rotating. Prove that the couple (per
unit thickness) necessary to maintain the rotation is

where aj is the angular velocity and p is the density of the fluid. (R.N.C.)

10. A hollow cylinder, bounded by the ellipse bzx2 + a2 y* a2 62 , contains fluid

and is rotating with angular velocity w about its axis. Show that the stream

function of the fluid motion is given by

Prove that, relatively to the cylinder, the fluid particles describe ellipses in a

common period

7r(a
2 + 62

)

wa6
'

(B.N.C.)

11. A liquid of density p completely fills a vessel in the form of a long elliptic

cylinder ; the semi-axes of cross-section are a and 6, and its mass may be neglected.
The cylinder is caused to rotate about its axis with spin o>. Find the kinetic energy
of the fluid per unit length of the cylinder, and express the result in terms of the

effective moment of inertia.

12. In the case of a rotating elliptic cylinder, prove that the kinetic energy of

the contained fluid is less than if the fluid were moving round like a solid in the

ratio

/a2 -62\*

Va + 6V
*
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13. An elliptic cylinder of semi-axes a and b is filled with incompressible fluid

and rotates about its axis with angular velocity aj. Prove that the velocity

components (u, v) parallel to the axes Ox, Oy of the ellipse are given by

Show that the coordinates X, Y (relative to axes through fixed in space) of

a given particle at time t can be written

T/ ^ / IA a-<*j . ,. .

Y = A
{(

+ &) am |_L_^_J
+ (a

_
6) sm

where A is a constant depending on the particle and t when the particle crosses

the axis OX, (R.N.C.)

14. A thin shell in the form of an elliptic cylinder, the axes of whose cross-

section are 2a, 26 is rotating about its axis in a liquid which is otherwise at rest.

It is filled with liquid of the same density. Prove that the ratio of the kinetic

energy of the liquid inside to that of the liquid outside is 2ab : (a
2 + 62

). (R.N.C.)

15. If the ellipse
=

is full of liquid and is rotated round the origin with angular velocity w, prove that

the stream function is

16. Assuming iff
of the form C(x

3
-3xy

z
) y
determine C so that this will give the

motion inside a rotating prism whose boundary is given by
x = a,

and show that the time taken by a particle originally at one of the points of quadri-
section of a side to move to the mid-point of the same side is (loge SJ/co^/S.

Calculate the effective radius of gyration of the prism about the axis of rotation.

(R.N.C.)

17. A cylindrical vessel, whose cross-section is the segment of the hyperbola
2 (x

2
3?/

2
) -f x + <xy

= cut off by the axis x = 0, is filled with liquid and rotates

steadily with unit angular velocity about an axis through the origin parallel to

the generators of the cylinder. Prove that the stream function is given by

-if,
=

18. The equation
x4 - 6x2/ + y

4 + 2a2
(x

2 + 1/
2
)
- a4 =

is the same as

A cylinder whose section is the closed figure formed by these two hyperbolas
rotates round the origin with angular velocity o>. Prove that the motion of the

contained fluid is given by

19. A hollow cylinder of cross-section S filled with non-viscous liquid rotates

with angular velocity w about an axis parallel to its generators. Show that if x
is a function satisfying V2

x
~ ~ 1 within the cross-section and vanishing on the
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boundary, then the kinetic energy T and angular momentum G about the axis of

rotation per unit length of the cylinder are given by

2T -
po>* (I

-
J), G - pw (I

-
J),

where I is the second moment of the cross-section about the axis of rotation,

J = 4 x d&> an(^ P is ^ne density of the liquid.
Js

Prove that for an elliptic cylinder rotating about a focus

20. A cylindrical vessel filled with incompressible fluid of density p is rotating
about a line parallel to its generators with angular velocity o>. If the section of

the vessel is bounded by a circle of radius a whose centre is on the axis of rotation

and by the radii 6 = <x> verify that the stream function is given by

,
, a cos 20

ut -KWT
cos 2ct

Calculate the kinetic energy per unit thickness of liquid.

21. A rectangular prism, the sides of whose cross-section are 2a, 26, rotates

with angular velocity Q about its axis Oz and contains irrotationally moving
incompressible fluid of density p. Show that, apart from an irrelevant constant,

160 (-l)
n

J (2n + l)?r6 ,w = ~ & ~~
^ . n \ a seen ~ cosn

7T
3 no(2n4-l)3

l 2a 2a

__
2

Write down the expression for the velocity potential <f>
and deduce an expression

for the kinetic energy of the fluid per unit length of the prism. (U.L.)

22. The transverse motion of a solid cylinder in a liquid is defined by the linear

velocity Q = U + iV of the centroid of a section and an angular velocity w, with

respect to axes fixed in the section. Prove that on the boundary of the cylinder
the value of the stream function differs by a constant from

where the bar denotes the conjugate complex.

Liquid is contained between two cylinders whose motions are defined, as above,

by Q, o>, and Q' t a/. Prove that the linear momentum of the liquid is M'Q' -MQ
where M', M are the masses of liquid (per unit thickness) which the outer and
inner cylinder could contain respectively. (U.L.)

23. A circular cylinder containing inviscid incompressible fluid is made to

rotate with a gradually increasing angular velocity about an eccentric axis parallel
to the axis of the cylinder. Find the motion of the fluid.

Find also the motion of the fluid if the cylinder is solid and surrounded by an
infinite mass of fluid. Consider the cases where (a) there is initially no circulation

about the cylinder ; (6) there is initially a circulation / about the cylinder.

24. Find the lines of flow in the two-dimensional fluid motion given by

Prove or verify that the paths of the particles of the fluid (in polar coordinates)

may be obtained by eliminating t from the equations

r cos (nt -*- 0)
-
XQ
= r sin (nt + 6)-y nt(x

-
y ).



262 EXAMPLES IX

25. If the liquid is contained between the elliptic cylinders x2/a* + y
2
/bP

= 1

and x*/a? + y
a
/&*

* k2, where a, 6, A; are constants, and the whole rotates about

Oz with angular velocity Q, prove that the velocity potential </>
referred to the

axes Ox, Oy is given by

and that the surfaces of equal pressure are the hyperbolic cylinders

3.2 y%-
,
y
nin constant.

Determine also the kinetic energy and angular momentum about Oz of the

liquid. (U.L.)

26. In a two-dimensional irrotational motion of an inviscid incompressible fluid

of constant density p, the space between two cylinders whose cross-sections are

the curves Cj and C2 is completely filled with fluid and C1 is wholly inside C 2 .

Prove that
i* r i* 3jt / 3J.
I i / j I i / j I ^r j I UY j
I Up as I kp ds =

I # 7^ a* I a/ ^ us,
J^j) J(c.) J((7,)

^w >?,) on

where ^ is the velocity potential assumed one-valued, I is the cosine of the angle
between the outward normal and the axis of x, and the differentiation is along the

outward normal.

An infinite solid cylinder, whose section is the curve C, moves with velocity U
in the fluid along the axis of x. If for large values of

|

z
\

the complex potential is

given by

where A and
\t,

are real, and z x + iy, prove that the kinetic energy of the fluid

per unit length is equal to

where A is the area enclosed by the curve C.

Deduce that if the infinite right cylinder, whose section is the curve r1 r2 ft
2
,

where rl and r2 are distances from the two points P and Q at a distance 2a apart,
and 6 is greater than a, moves with velocity U along PQ in a fluid at rest at

infinity, then the kinetic energy of the fluid per unit length is

.*{--}.
where E(k) - f^ (1

-# sin2 z)i dx.
(U.L.)

27. Two concentric cylinders, radii a, 6, are moving in the line of centres with
velocities U, V. Show that

* means "
of the order of

" and signifies that positive numbers K, R exist such that the
absolute value of the term in question is less than Kjr*t provided that

|
z

j

= r> R.
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Prove also that, when the direction of 7 is perpendicular to the direction of 17,

where in both cases a is the radius of the inner cylinder.

28. The space between two coaxial cylindrical shells of radii a, b is filled with

liquid of density p. The outer shell, radius a, is suddenly made to move with

velocity U.

Show that the impulsive force per unit length to be applied to the inner cylinder
to keep it at rest is

Show also that the impulsive force to start the inner cylinder with velocity U,
when the outer cylinder is fixed, is

where a is the density of the cylinder.

29. Determine approximately the velocity function for two circular cylinders
of radii a, a' moving with velocities F, V in a direction perpendicular to their line

of centres. Also deduce the velocity function when the cylinders are fixed in a
uniform stream perpendicular to their line of centres.

If V is the velocity of a uniform stream past two fixed circular piers in a direc-

tion perpendicular to their line of centres, a the radius of each pier, and c the

distance between their centres, show that, if c/a is not small, the mean velocity
across the line joining the nearest points is nearly

F .

c-a*



CHAPTER X

THEOREM OF SCHWARZ AND CHRISTOFFEL

10*1. Simple closed polygons. The elementary idea of a polygon

exemplified by, say, a rectangle or a regular hexagon is familiar. For hydro-

dynamical applications it will be necessary to extend this concept to recti-

linear configurations which do not at first sight appear to resemble the poly-

gons of elementary geometry. Let us consider two properties of the rectangle

(or of the regular hexagon).

(a) It is possible to go from any assigned point of the boundary to any

other assigned point of the boundary by following a path which never leaves

the boundary. The boundary is connected.

(b) The boundary divides the points of the plane into two regions the

points of which may be called interior points and exterior points respectively.

The interior points are such that any two of them can be joined by a path

which never intersects the boundary. The same holds of the exterior points.

On the other hand, it is impossible to go from an interior point to an exterior

point without crossing the boundary somewhere.

Any configuration of straight lines in a plane which has the properties (a)

and (6) will be called a simple closed polygon. The adjective
"
simple

"
refers

to the property that every point of the plane is either an interior point, a point

of the boundary, or an exterior point, the points of each class forming a con-

nected system.

In many problems of hydrodynamical interest the boundaries of the polygon
extend to infinity.

We shall regard as the interior points of the polygon (see 5-71) those points

which are in the region which is on the left of an observer who describes the

boundary in a prescribed sense. Several such polygons are shown in figs, (i)-(vi).

Points regarded as infinitely distant are indicated by the suffix oo
, and the

exterior is denoted by hatching. In each case P denotes an interior point.

In fig. 10-1 (i) we have the case of a rectangle with two vertices at infinity.

Alternatively this could be regarded as a triangle with one vertex (correspond-

ing to A& and D^ regarded as the same point) at infinity.

In (ii) all the vertices of the rectangle ABCD can be regarded as infinitely

distant.
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In (iii) and (iv) we have a triangle with two vertices at infinity, the interior

being regarded as inside or outside the angle A^BC^ according to the sense

of description. The diagram (v) can be regarded as a rectangle in which two

vertices coincide at B, C and the other two coincide at infinity, or simply as

a semi-infinite straight line described twice in the senses indicated. This

diagram will have several applications and we note the peculiarity that there

are no exterior points. All the points of the plane belong either to the boun-

dary or to the interior in accordance with our definition of the term interior.

1 1 1 1 1 1 1 1 1 1 1 1 1 (Jl 1 1 ! I It I I I.I U I A

B ! it 1 1 1 1 1 ! 1 ! 1 1 1 ll I II 1 1 U II I LI 1 1 1 1 111 1 1 1 1 1 II 1 1 4^s

(v) D (vi) H

FIG. 10-1 (i-vi).

To describe more clearly in a diagram the situation envisaged in (v) we may
draw the diagram as in (vi), the lines A^B and D^B being thought of as

coincident.

We shall presently show that the boundary of any simple closed polygon
in the z-plane can be transformed into the real axis of the -plane by a con-

formal transformation, the interior points of the polygon then corresponding
to points on one side of the real axis in the -plane ;

the flow pattern in the

polygon will then transform into a corresponding flow pattern in the half

~plane. Assuming this result for the moment, it is then clear that the corners

of the polygon will transform into points on the real axis in the J-plane. We
can regard the process intuitively as an opening out of the polygon until its

boundary becomes an unterminated straight line accompanied by the local

magnification necessary to keep the transformation conformal.
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When the polygons of figs, (i)-(iii) are subjected to this process we obtain

figs, (vii)-(ix). It may be noted that in case (ii) we can regard B^ and C& as

coinciding at a finite point B, (7, or we can regard them as distinct, in which

case we should get a result similar to the result of opening out
(i).

(viii)
B,C

(ix) ///////VY////////////7///////////////////////////

FIG. 10-1 (vii-ix).

This intuitive method cannot of course lead to a detailed discussion of

any but the simplest cases, but it does afford a useful picture of what is going

on.

(x)

Thus if we have uniform flow in a channel with parallel sides, the stream-

lines are straight and parallel to the sides, while the lines of equal velocity

potential are perpendicular to the sides. The uniform flow can be regarded

as due to a source at infinity on the left and an equal sink at infinity on the

right. If we open up the channel regarding B^ , C^ as coincident, we get the

flow from a source at B, C and a sink at infinity. See the correspondence

between figs, (x) and (xi). The results are trivial but illustrate very well the

process of deformation involved.

10*2. Theorem of Schwarz and Christoffel. Let a, 6, c, ... be n

points on the real axis in the -plane such that a<6<c<. . . .

Let a, /J, y, . . . be interior angles of a simple closed polygon of n vertices,

so that

<x++y+.. . = (n-2)7r.

The theorem of Schwarz and ChristofTel is then as follows.
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The transformation from the f-plane to the 2-plane, defined by

267

transforms the real axis in the ~plane into the boundary of a closed polygon

in the z-plane in such a way that the vertices of the polygon correspond to

the points a, 6, c, . . . ,
and the interior angles of the polygon are a, j9, y, . . . .

Moreover, when the polygon is simple, the interior is mapped by the trans-

formation on the upper half of the -plane. K is a constant which may be

complex.

Proof. The proof consists essentially in establishing the following points.

(1) As increases from say a to b, z describes a straight line.

(2) As passes through 6 this straight line turns through the angle TT - ft.

(3) That points interior to the polygon made by these lines correspond to

points in the upper half of the -plane.

b b2

-
plane

z -plane
FIG. 10-2 (i).

Since ?
- a vanishes at = 0, it follows that dzjd is either zero or infinite

(according as a>7r or OL<TT). We therefore avoid the points a, 6, c, ... on

the real -axis by drawing semicircles with these points as centres, each of

small radius r and situated in the upper half of the -plane. The semicircle,

centre a, cuts the real axis in % , aa ,
as shown in fig. 10-2 (i). We shall suppose

5 to describe the real axis in the sense of increasing (so that d is positive),

and to avoid the points a, 6, c, ... by passing round the semicircles.

Let AI , BI, B2 , G! be the points in the z-plane which correspond to

<*i , &i , &a > <V

Let K = ctt, where C is a real positive constant and A is real. Then,
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taking the argument of both sides of the equation of the transformation, we

get

arg (dz)
-
arg (d) = A+ ^

- 1
J
arg (

-
a)

As moves from aa to 6X , arg (dQ remains equal to zero
; arg (

-
a) = 0,

since - a is real and positive ; arg (
-

6)
= arg (

-
c)
= ... = TT, since

-
6, f c, . . . are all real and negative.

Thus arg(<fe) = A+ (j8-7r) + (y-w) + ----

This means that arg (dz) is constant as moves from a2 to b
,
and therefore

z describes a straight line AJBlf The same reasoning shows that, when

increases from 62 to cx ,

arg(dz) = A+(y-7r) + ...,

and z describes the straight line BZC^. Moreover, on B2Cl , arg (dz) exceeds the

value of arg (dz) on A 2B by TT -
/?.

Thus the direction of motion of z has

turned through the angle 7r-fi in the positive sense. Thus points (1) and (2)

are established. Now on the semicircle b b2 ,

-& = re, dl = ireie de.

Taking r to be infinitesimal, we have, with sufficient approximation,

(1) -^ = C^(b-a)'~
1

^~
1

6
V^

(b-cf'
1

. . . ;

so that

where .P is independent of r and 0. Integrating, we get

(2) -rftlWf,
where zl is a constant. Moreover, since j8 is positive, we see that z-> 2X when

r-> 0, so that zt is the point J? where the lines AJBt , .&A meet.

Thus the transformation makes z describe a polygon whose vertices corre-

spond to the points a, 6, c, ... and whose internal angles are a, j8, y, . . . .

Again, from (2),

Thus as describes the semicircle, since 6 decreases from TT to 0, arg (z
- zj

decreases by j6,
and therefore z describes a circular arc, centre J5, situated

inside the polygon when it is a simple polygon. Thus the points in the upper
half of the -plane correspond to points within the polygon. This completes

the essential part of the proof.
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It remains to see how the polygon closes when f progresses from - oo to

+ oo along the real axis. To examine this point, consider fig. 10-2 (ii), where

B

C D A

z-plane
FIG. 10-2 (ii).

for simplicity we have taken the real axis in the -plane indented at three

points a, b, c and a large semicircle having its centre at the origin. Consider

the figure so formed in the -plane. As goes along the portion a, 6, c we get

two sides AB
y
BC of the triangle ABC indented at A, B, C.

On the big semicircle = Reie
,
and if the radius R is large, we can with

sufficient approximation replace a, -6, c by R el9
,
and the equation

of the transformation then gives (corresponding to (1)) the relation

dz

i Reads''

and since a+ ft+ y IT, we get

dz iC

dfi^'R

which gives z = ZD - -=

where ZD is a constant which gives the value to which z tends when #-> oo .

Again, arg (z
-
ZD) ir + \-0,

and therefore, when describes the large semicircle, 6 goes from to TT and

arg (Z-ZD) goes from TT + A to A. Thus z describes the semicircle of small radius

C/R about the point D, as shown in fig. 10-2 (ii). When R- oo the semicircle

in the z-plane-> 0, and we again see that the region within the indented triangle

transforms into the upper half of the -plane. Q.E.D.

If we integrate the equation of transformation, we get

where L is an arbitrary constant, which can be removed by a proper choice of

origin in the z-plane.

An alteration in the angle A merely changes the orientation of the polygon,

while an alteration in C changes the scale.

It follows that all polygons corresponding to given values of a, 6, c, . . . ,

a P, y> are similar. In hydrodynamical applications we shall be con-
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cerned only with simple polygons generally extending to infinity. Three of

the numbers a, b} c may be chosen arbitrarily to correspond to three of the

vertices of a given polygon, the remainder must then be arranged so as to

make the polygon of the right shape. The proper choice of C and A will then

fix the scale and orientation.

When the transformation produces a simple polygon the representation is

conformal, for conditions (a) and (b) of 5-62 are then satisfied for the indented

real axis, and the indentations may be made infinitesimal.

Finally, it remains to discuss the situation which arises when a vertex of

the polygon corresponds to a point at infinity on the real axis of the -plane. If,

for example a-> oo
,
we can by choice ofK write the transformation in the form

When a-> oo
(
- V -> 1 and the transformation becomes

\ -a/

that is to say, the factor corresponding to a oo is omitted from the equation

of transformation, and the angle a does not appear.

10*31. Mapping a semi -infinite strip. Consider a semi-infinite strip

) , of breadth a, regarded as a rectangle with two vertices at infinity.

z -plane -
plane

FIG. 10-31.

Let us map A&, By C on the points = -oo, = -l, = 1 of the real axis in

the -plane. If we open out the boundary and lay it along the real axis of the

-plane, it is then evident that the fourth vertex will lie at = oo .

Thus, in accordance with the Schwarz and Christofiel theorem, the only
interior angles which will appear in the transformation are those at B and C,

each of which is 7r/2. Taking axes as shown, we get

which gives z = K cosh-1 + L.
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Since cosh""1 x = log (x+ Jx
2 -

1), if we take cosh-1 1 = 0, we shall have

cosh-1
(~l) = iir.

Thus L = 0, ai Ktyn), so that

z = - cosh"1 , or = cosh .

77 a

10*32. Mapping an infinite strip. Taking an infinite strip A^B^C^
of breadth a, let us regard B^ , (/, as coincident and map the points , B& ,

on = 0, the origin on = 1, and F(z = cw) on = - 1.

B

S////7////7/////////,
AM F B,C O D,,,

trplane
FIG. 10-32.

Then Doo will evidently correspond to = oo .

The angle at B^C^ is zero, and we therefore get

Take axes as shown in fig. 10-32, and the determination of the logarithm to he

that which vanishes when 1. Then = K log 1 +L, ai K log (
-

1) + L.

Thus we must have L = 0, iKir = ia. Therefore

(1)

** 1 f <r

z = -
log , ox 4 =

77

Corresponding lines in the two planes are illustrated in fig. 10-1 (x), (xi).

The lines x = constant transform into circles
| |

= constant
;

the lines

y = constant transform into lines arg = constant radiating from the origin in

the -plane.

If we map An , D^ on = 0, the transformation is found to be

^-e-W.
In some cases it is convenient to take the origin in the z-plane at the point

E midway between the walls. The corresponding transformation is given by

writing z+iafi for z in (1), so that

(2)
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10-4. Flow into a channel through a narrow slit in a wall. Let the

slit be at the origin, and let the real axis be taken in one side of the channel

AvBvCnD* of breadth a.

z-plane ^- plane
FIG. 104 (i).

If TTW is the volume which flows in at per unit time (per unit thickness),

the flow at will be that due to a source of output 2nm, and therefore of

strength m. At infinite distance from there will be parallel flow, and there-

fore at A<B and B^ there will be sinks of strength \m.
Let us regard B^ , C^ as coincident, and then open out the walls into the

real axis in the -plane so that B^ ,
Cn become the origin 0.

The Schwarz-Christoffel transformation then gives (10-32),

= e/,
and z = corresponds to = 1.

Thus in the -plane we have a sink of strength ^m at = and a source of

strength m at = 1. These give rise to the complex potential

But i - -i = e** /(2o > - e^z/ <2a > = 2 sinh .

Hence, omitting a constant, we get

i i.
7TZ

w = -m log sinh .

It is physically evident that the dividing streamline goes from straight

to the opposite wall, so there should be a stagnation point at this point

P(z = ai). We have, in fact,

dw WITT ^ TTZ

-j-
= -- cot" TT '

dz 2a 2a

which vanishes when z = ai. Hence the pressure at points of A^B^ is

maximum at P, and is therefore smaller at the remaining points of the wall.

Thus the effect of the motion is to urge this wall outwards and, if unsupported,
to cause an outward bulge at P. The velocity at a great distance from the origin

is tW7r/(2a).

Again, if we consider the streamline OP to be a rigid wall, we obtain the
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motion within a semi-infinite rectangular channel due to a source at one

corner, fig. 10-4 (ii).

FIG. 104 (ii).

From another point of view we have the two-dimensional efflux from a

large rectangular vessel through a small hole in the corner.

10-5. Source midway between two parallel planes. This can be

obtained from 10-4 by using the principle of reflection.

y

FIG. 10-5.

Taking axes as shown in fig. 10-5, let there be a source of strength m at

the origin between two planes whose distance apart is 2a. Then

(1) w = mlog sinh ,

for this function satisfies the conditions between the upper wall and the real

axis, and it is real on the real axis. The conditions of 5-53 are thus satisfied,

and w can be analytically continued below the real axis by attributing to it

conjugate complex values at conjugate complex points, which is precisely

what (1) implies.

We may also note that (1) is the complex potential of an infinite row of

sources placed on the y-axis at the distance 2a apart, for

sinh = when z = 0, 2ai, 4at, 6at, ....

10-6. A step in the bed of a deep stream. Let there be a

sudden change of level at BC in the bed of a stream whose velocity at

infinity is U.

The bed A^BCD^ is a simple polygon and can therefore be transformed
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into the real axis in the -plane, B and C corresponding to 5 = -
1,

= 1

respectively. By the Schwarz-Christoffel transformation,

so that z = K{Jp-l + cosh-1

V

//^/////////

z-plant \-plane
Fio. 10-6 (i)

Since s/(
2
-l) and cosh"1 are many-valued functions, let us consider

the determinations appropriate to the different parts of the plane.

-1 O Q +1

Fio. 10-6 (ii).

In fig. 10-6 (ii) we see a general point in the -plane distant rx ,
r2 from -h 1

and -
1, and therefore

where vVj r2 denotes the real positive square root of the product. Let us

denote a point on the real axis by = . Then when >1 we shall take

Ol
= 0, 2

= 0. It follows that 0! = TT, 2
= 0, when - !<<!, so that

Vf- 1 = ^ fl ra . e<"/2 = tN/rx r2 .

Again, when f< -
1, Ol 7rf 62 = TT, and therefore

Now

Therefore on

OnBC
On Cfl

cosh-1
J = log ( + >

-
1), we get
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If in the z-plane we take C to be the point z = and B the point z = ih,

we get L = 0, ih = iirK, so that K =
&/TT, and therefore

We now consider the complex potential.

A uniform stream in the z-plane may be taken to imply a source at D* and

an equal sink at A^. Thus in the -plane we must also have a source and sink

at the corresponding points so that there is a uniform stream, V say. Hence

w = 7, and therefore

*? = v ^ =
dz dz

But at infinity dw/dz = U, = oo .

Hence U = V/K = FTT/A. Thus

M7,," = V C -

Observe that the speed is infinite at B, and zero at C. A more convenient

form for the solution is obtained by writing = cosh t. Then in terms of the

parameter t,

z -
(J+ sinh t), w = cosh J.

7T 7T

The principle of reflection enables us to apply the same complex potential

to a stream of infinite width flowing against a semi-infinite body of rectangular

section, fig. (iii), the origin being at C and the real axis pointing upstream.

U
__

FIG. 10-6 (iii).

The reader may prove that the force on the end BB' per unit thickness is

finite by integrating \p(f over the end.

10-7. Abrupt change in the breadth ofa channel. Suppose a channel,

fig. 10*7 (i), with parallel sides undergoes an abrupt change of breadth from h

tok.

If the velocity at A* is U, the velocity at B^ must by continuity be Uh/k.

We shall open out the polygonal boundary A^B^C^DEF^ into the real

axis in the -plane regarding the points J5, C* as coincident and making them

correspond to f = 0.
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We shall make D correspond to f = 1 and E correspond to = a, the real

number a being determined later, for we cannot arbitrarily fix a since the

correspondents of B^, C^, D have already been chosen.

fi //////////////////////////////////////////////// AB ffffff/f/ff/fffffffffff/fffffffffffftf/fff A

- plane

^ - plane

FIG. 10-7 (i).

The Schwarz-Christoffel transformation then gives

(1)

for the angle of the polygon at #>, C^ is zero.

Now in the z-plane the flow is from a source of output Uh at A^ to a sink

of intake Z7A at -#. Hence in the -plane we have a sink at the origin which

takes in the volume Uh per unit time over an angle of TT. Hence the strength
of the sink is Uh/7r, and therefore

/0\
(2)

I Yw =
log ,

so that -=p
= Hence, from (1),

dw
__

Uh / - a

Now at ^oo (J
=

oo), dw/dz = CT, if the real axis is parallel to

Therefore

Uh h

Again, at B* (J
=

0), = Uh/k. Therefore

Uh Uh
,

so that a = h*Ik\



10-7] ABRUPT CHANGE IN THE BREADTH OF A CHANNEL 277

To obtain an explicit relation between z and w, we must integrate (1).

The integration may be simply effected by writing

.... -1 1 d I It
which gives Ti = P -

XT- ,.
dz

so that -=- =
<w

whence

(3) Z =

where L is arbitrary. If we take z = to correspond to E( =
a), we have

t and therefore L = 0.

Also substituting in (2),
TJJi A2 /2
C//Z. , O I

1w = log
- r

,
whence

77 1 t

(4)
-

The elimination of between (3) and (4) gives the relation between w and z.

The principle of reflection again enables us to apply the same complex

potential to the streaming motion past an infinite solid of rectangular section

placed symmetrically in a stream which flows between parallel banks, fig.

10-7 (ii).

Q '<////^//////sy//////////^///^ ^

^//////^///s/y/^//////^
FIG. 10-7 (ii).

The reader should verify that the force on the end is finite by integrating

over DD'. Compare with the corresponding situation at the end in fig.

10-6 (iii).

10-8. Branch in a canal. Fig. 10-8 (i) shows a branched canal with

straight parallel sides in the main canal and the branch. The sides of the

branch make an angle a with the sides of the main canal.

The breadths of the canal and branch are as indicated h, h: ,
Aa ,

and the

velocity at infinity upstream in the main canal is U. Our problem is to deter-

mine the downstream velocities Ui , ?7a in the main canal and the branch.
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There will be a streamline I coming from infinity and dividing at G into

CBn and CD^, G being a stagnation point. The fluid to the left of I flows into

the branch, that to the right of I into the main canal. On the streamline

A<g>ED& the stream undergoes an abrupt change of direction at E and the

velocity there is consequently infinite.

z-plane

-a -b

'-* T 5

D

^-flane
FIG. 10-8 (i).

We now map the interior of the canal on the -plane in such a way that E
oes to infinity on the real axis while G maps into = 0.

Let the points A^, B^, D^ correspond to = -0, -b, c respectively. We
note that the boundary of the main canal then corresponds to negative values

of.

Now, consider

Q log =
log -f iO, where v = q e~*.

Along the sides of the main canal, 6 =
; along the sides of the branch,

6 = a. At C, q = 0, and hence Q is infinite. Thus we can draw the diagram
in the Q-plane, fig. 10-8 (ii).

Mapping this on the -plane by means of 10-32, we get

(i)

The following values of and v correspond :

-a -6 c

v U
Thus

(2) = 1, b =
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To construct the diagram in the w-plane, let us take

Then we shall have

on AaoBa) , ^ = Uh,

279

= on

on

on

FIG. 10-8 (ii).

and therefore

(3) Uh^Uiht+Uthi,
as is otherwise obvious from the equation of continuity.

Taking </>
= oo at A& , we shall have

<j>

- oo at
, />,.

Thus we get the required diagram, fig. 10-8 (iii).

D '</j&^jW////j&/^/JS/jt^
^00 '"'"""""'""Y \Ll=lJh

'

E
w plane

FIG. 10-8 (iii).

To map the w-plane on the f-plane, we get

which gives, on integration and after a slight reduction,

Now on D^E, ^ = 0, and + a, + b, $-c all have the same sign. There-

fore the logarithms are all real and hence L is real. Again at C, <f>
= 0,
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tfi
= Uthzt and = 0. Thus J^ is purely imaginary. Therefore L^ 0, and

putting = we get
-.. , KI dTT KI O7T

2 a
= "

(a-b)(b+ c)

'

Finally, on A >%<* $ = Uh, while + a is positive and + 6, -c are nega-

tive. Therefore

_ .

(a-6)(a + c)'

Hence
(a^b + c)

= U^-Uh = -U.h,, from (3),

and therefore

... Uh. +a U^.
(4) tt, = _log___LJi
Now from (1), we have

(5) -^ = u = Z7e-fa

az

while from (4),

* ^^ u

and therefore by division we obtain dz/d as a function of
,
and thence as

usual we can obtain w in terms of z, thus giving the velocity distribution.

Since u = when = 0, it follows that dw/d is also zero when = 0, and

therefore, from (6),

Uh U^ Uh-Ujh! _ nT 6"
+

c
"

?

whence by use of (3) and (2),

m = u, h, -i - v2 h,i" > or

T A ^1 \ ^2 ^1 l rrn
Let = A'='i'- = - Then

the first result being obtained from (3). Substitution in (7) gives

In the present problem A, ft, a are given, and x is determined by approxima-
tion from this transcendental equation.
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The principle of reflection shows that our solution also elucidates the

problem of a straight canal with two side branches, the origin still being taken

FIG. 10-8 (iv).

at C. There is, of course, no difficulty in moving the origin, say to the middle

point of CC'.

EXAMPLES X
1. Apply the transformation of Schwarz and Christoffel to obtain the solution

for a wide stream of velocity U flowing past a thin obstacle of length c projecting

perpendicularly from a straight bank, in the form

w* = U*(z
2 + cz).

Find the pressure at any point of the obstacle and show that it becomes negative

if y>c(l + k)k(l 4- 2&)~4, where k = pUz
/2pQ ,pQ being the pressure at infinity. (U.L. )

2. Prove that the complex potential

w = irmr +m log I cosh2 - cosh2
)

gives the flow from a large vase of breadth a through a small hole in one side at

height h above the bottom, the streamline = comprising the unpierced side,

the base and the other side from the base to the hole. Show that at a sufficient

distance from the orifice parallel flow supervenes.

3. Show that the complex potential w = m log sinh (7rz/(2a)} gives the flow

from a large vase of breadth 2a through a small hole in the centre of its base.

Trace the general form of the streamlines, and prove that at a distance from the

base greater than its breadth the flow is sensibly parallel to the walls of the vessel.

4. Prove the theorem of Schwarz and Christoffel for the mapping of a polygon

upon a half-plane. What happens when one of the external angles of the polygon
>27T?

Liquid flows two-dimensionally through a neck of breadth 26 to which converge

symmetrically two wedge-shaped channels bounded by the straight lines

y 6 -x tan /for, x<0.

If the total flow (per unit thickness) through the neck is 26F, show that the

motion is given by the transformations

6F t-I dz CW
TT + 1* dt (t

2
I)

8
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where 6
^

_,
and a - 1 +0. (U.L.)

5. What problem is solved by the transformation

d

^ + 10 = log(J-a),

where x and y are the cartesian coordinates of a point and <f>
and $ are the potential

and current functions respectively. (M.T.)

6. Find the transformation to give the two-dimensional flow of a stream of

velocity 227 at infinity past a right-angled bend in a river bounded by the positive
halves of the x- and y-axes and the straight lines

x = a, y>a and y = a, x>a.

7. Show that the transformations

where z x + iy, w =
(f>
+

ii/t, give the velocity potential </>
and the stream function

for the flow of a straight river of breadth a, running with velocity 7 at right

angles to the straight shore of an otherwise unlimited sheet of water into which
it flows. The motion being treated as two-dimensional, show that the real axis in

the -plane corresponds to the whole boundary of the liquid.

8. Show that the problem of a stream of velocity 7 and infinite width going

past a rectangular projection in an otherwise unlimited straight shore is given by

where b and c are constants given by the equations

F(c/b) k , k 1v ' ' -
=- and T .

, -,, x , f^
2 G

where -P(/c)
= /c

2
, ,

Jo (l-/c
2 sin2 <)i

and ^, 2A; are the length and breadth of the rectangular projection. Obtain the

complete solution in a form not involving elliptic functions, when k = 0.



CHAPTEE XI

JETS AND CURRENTS

11*10. Free streamlines. A streamline /* in two-dimensional motion

separates the fluid into two regions A and B. Neglecting external forces, we

have on streamlines of the two regions

PA PB

for an inviscid liquid in steady motion, the suffix denoting the region considered.

Now consider a point P of the streamline
p,.

If we approach P from the region

A, we arrive at this point with a value pl for the pressure and q^ for the speed.

Similarly if we approach P from the region B, we obtain pz and q2 . Thus

PB

Now the pressure must be continuous (3-31) ;
therefore pt

= p^ It follows

that

PA &*-PB ?2
2 = constant.

In the cases which we have hitherto considered the velocity has been

continuous, i.e. ql
=

q2 .

We now envisage a class of motions in which the velocity is discontinuous,

for example, a layer of oil flowing over a layer of water, the speeds in the two

layers being different.

To particularise the discontinuous motion still further, let us suppose that

the fluid in region A is at rest, q^
= 0.

We then see that, along ^, g2 = constant. We are thus led to frame the

following definition. A streamline which separates fluid in motion from fluid

at rest is called s,free streamline.

Neglecting external forces, free streamlines have the following properties.

(i) Along a free streamline the stream function
if/

is constant. This is of

course a general property of all streamlines.

(ii) Along a free streamline the speed is a constant called the skin speed.

Free streamlines are thus isotachic lines, or lines of constant speed.

(iii) Along a free streamline the pressure is constant. Free streamlines are

thus isobaric lines or isobars, i.e. lines of constant pressure.

Proof. Since the pressure is continuous, its value on the free streamline is
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equal to its value in that part of the adjacent fluid which is at rest, and that

value is constant when external forces are neglected.

It follows from (iii) that the fluid which is at rest could be absent.

Example. The liquid issuing as a jet from a hole in a vessel is bounded by
free streamlines, the constant pressure being maintained by the atmosphere.

If the atmosphere is absent, the constant pressure is zero.

IML Jets and currents. Neglecting external forces, suppose that we

have liquid in motion (in two dimensions) bounded by the free streamlines

C

z plane
FIG. 11-11 (i).

H! , iJL2 . These streamlines separate the plane into three regions A, B, C, the

liquid in motion occupying region B. If A and C are empty of liquid, we have

a jet ;
if A and C are occupied by liquid at rest, we have a current. Smoke

issuing from a chimney or water from a hose are examples of (three-dimen-

sional) jets. Currents are exemplified by the discharge of liquid into a pond
from a submerged pipe, and by ocean currents, for example the Gulf Stream.

A jet or current may be closed or may extend to infinity, see fig. 11-11 (i).

On the free streamlines, j/r
and q are both constant.

On /zt , let A = 0, q=U.
On /x2 >

let = a, q = V.

Then the figure in the w-plane consists of the infinite band between
i/r

and $ a.

v

w -
plane t - plane

FIG. 11-11 (ii).

If we represent the w-plane on the upper half of the -plane, in such a way
that w = corresponds to =

1, we have from 10-32

/i\ a
i y

(1) w = -
log ,

where the logarithm is chosen to vanish when = 1.
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Now consider the function o>, where

so that a) = 6+ i log
~ .

On fa , q Z7, on jLt2 , q F, and therefore o> = on /^ ,
o> = 04- i on

jt*2

7
where /?

= log jz

Thus the figure in the co-plane, much as in the w-plane, consists of a band

of breadth j8 and bounded on one side by the real axis.

log

CO - plane
FIG. 11-11 (iii).

Representing this band on the -plane we obtain (10-32).

(3) a> = log,
77

where ca = corresponds to = 1.

Hence, from (1) and (3),

fiw
a> = - ,

a

and therefore, from (2),

1 dw
(4)

___ =

If F =
7, we have ft

= 0, and therefore

w = - Z7i5.

This means that a jet in which the speed is the same on both boundaries

must be straight.

If =(), (4) gives
a fiBw\---

Therefore
1

1 - za |

= exp
-
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So that, when i/>
is constant, |

z- za \
is constant and z then describes a circle

whose centre is z . The radius of the circle is

and therefore, if rl and r2 are the radii of
/Ltx and

that is to say the current speeds on the free streamlines are inversely pro-

portional to the radii.

Thus it appears that currents bounded by free streamlines can exist and

that these streamlines are either parallel lines or concentric circles. It should

be observed that in the latter case, the motion being irrotational, the fluid does

not rotate like a rigid ring.

1 12. Formula of Schwarz. Given a circle, centre z = 0, radius R, the

function /(z), which is holomorphic within the circle and whose real part takes

the value 0(0) on the circumference, is given, save for an imaginary constant, by

Proof. Let = R eie denote a point on the circumference C of the circle.

Then ~= R e-*6 = #/. Since = -
log (/JB) we can write

where 0() is a known function of .

Then on the circumference

(3)

and therefore

If 2 is inside C, Cauchy's formula (5-59) and the residue theorem give

(5) ^
(c>

- 2

Let/(0) = a+i6, then/(0) = a-ib, and so putting z = in (5),

"-s
and therefore from (5),

Putting f = /2 e*6 we have rfJ/J = t (Z^, and the required result follows.

It is often advantageous to use the alternative formula (5).
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1 1*30, Impinging jets. Fig. 11*30 shows two uniform streams, A t ,
A 2 ,

of the same speed U at infinity, meeting and branching off into two other

z-plane
FIG. 11-30.

streams, J5X ,
B2 . Assuming that a steady motion of the type thus depicted is

possible, the problem is to determine the streams B ,
B2 when A and A 2 are

completely specified. If we imagine the streams or currents A 1 ,
A 2 to advance

from infinity, it is physically plausible that when they meet a stagnation point

will arise, and therefore that when the motion has become steady a stagna-

tion point will continue to exist. Let us take this point as origin and the

a?-axis as parallel to and in the direction of flow of A^.

The free streamlines A 1 B19 B A2> A 2 B2 ,
B2 A : will be lines of constant

speed, and therefore the speed at infinity of all four streams must be the same,

namely U. Let h^ ,
h2 ,

k
, k% be the breadths at infinity ofAlt A2y Blt B2 .

Since the inflow and outflow must balance to preserve continuity, we obtain

(1) ^+^2 = fci-f-Jv

Here hi and h2 are given, &a , k2 are unknown.

1 1*31. The complex velocity. Writing as usual

v = qe~
ie = tt-tv,

where q is the speed and 6 is the direction of the velocity, we have on the free

streamlines

(2) o=Z7e-*,



288 THE COMPLEX VELOCITY [11-31

and therefore as we go round the free streamlines starting at A and de-

scribing A1 Bl ,
B1 A% ,

A z B2 ,
B2 A l in turn, 6 will vary from to -

27r, and

therefore - will vary from to 2?r.

Consequently the representative

point of u drawn on the Argand

diagram in the u-plane will de-

scribe a circle whose centre is the

origin and whose radius is U 9 fig.

11-31.

The points A l ,

then represented by

(3) 0! = 17,

6X
= U e**, b2

= U e** 9

where -
a,

-
j8,

- y are the asymp-
totic directions of the streams A 2 ,

v plane
FIG. 11-31.

,
B2 are

.#! , B2 . Here a is given but

and y are unknown.

The values of the flux at At , A 2 , Bl ,
52 are respectively

and therefore if we take
i/j
= on A j jB2 ,

i.e. on the arc ax 62 ,
we shall have

iff
= ^ J7 on the arc ax 6X ,

^r
=

(Jc2
- ^2) C7 on the arc &! a2 ,

^ = k2 U on the arc a2 62 -

1 1 *32. Expression of the complex potential in terms of u. To deter-

mine the complex potential w =
</>+{$ which satisfies these conditions, we

observe that
iff

is the real part of - iw
t
and therefore we can apply the formula

of Schwarz (11*2), which gives

f/5

-2rrtw;= )

+ v^ r/
{^ == ("-\> J\
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where the logarithm is determined so as to vanish when u = 0. Thus we find

-
{(-i8)-2*iog(i~)+2;

log (i~

Therefore, ignoring a constant,

which is the required expression for the complex potential in terms of u.

11-33. Relations between the breadths and directions of the

currents. Since momentum is conserved in the x- and ^-directions, we have,

A! -f h2 cos a - k^ cos P~-k2 cos y 0,

h2 sin a &j sin fi k2 sin y 0.

1 1-34.' Expression for z in terms of u. Since

dw

, j 1 , 1 dw
we get dz = - - dw r- au.

u u au

Now, from 11-33,

1 dw
__
U J Aj ^2 &x ^2 \

.A, A, *, *,
"T* A I , t
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and, from 11*33, the second term in this expression vanishes. Therefore,

integrating and observing that z = when u = 0, we get

tff^n I,
u
\ A2i /, \ *!, /. o\ fca= 4 log 1 -- + logll- I -7rlog(l- r ) -^l

TT
(a,!

5
\ !/ a2

&
\ a2/ 6j \ V &2

where % =V,a2
= U e<, ^ = Z7e*, 62 =

This result shows that the motion is reversible, for the above expression for

z is unaltered if we change the signs of U, ax ,
a2 , &i ,

62 and u -

1 1-35. The equations of the free streamlines. On a free streamline

If we substitute this in the expression for z above, we get

TTZ = h: log (1
- e~ie

) + A2 e~
ta

log (1
- e~^-*)

-
^! e-^ log (1

- e--w) -
A:2 e-

l>
log (1

- e--

_ _
Now, 1-6-^ = 6 2 ^e2-e-2j = 2^sin . e 2.

2

Therefore TTZ = ^ -I log 2i+ log sin - - I

e~*'^
-| log 2i+ log sin -~ - i - >

( 22)

Kow, from 1 1 -33, Ax -f A2 e~
ia -^ e~* - A;2 e-^ = 0. Thus

TTZ = 1
(
- h2 a e-<a +h j8 e-^+ k2 y e-*)

*L 1 Z. . 1 7 Ml+ ht log sin -+ hz e~
ix

log sin --- ^ e~tp
log sin ^~2 2 2

- k2 e-** log sin ~-

If we equate the real and imaginary parts, we get the coordinates (#, y)

of a point on the free streamlines expressed in terms of the parameter 6.

11*40. The indeterminateness of the problem. In solving the

problem of two impinging jets we had to introduce four unknowns, namely

&i > &2 > A y tne asymptotic breadths and directions of the resulting branch

jets. Between these constants we have found three relations, 11-30 and 11-33,

so that the problem contains one undetermined constant. Thus a unique
solution is, in general, not possible. The explanation of this indeterminateness
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no doubt lies in the fact that we are considering a steady motion already

established without regard to the initial conditions from which this steady

motion is supposed to arise.

Thus, for example, we could suppose the motion to be set up by starting

the jets at distant points at instants separated by a time interval t. To

different values of t there will no doubt correspond different steady motions,

although there is no reason to suppose that they will all be stable.

11-41. Direct impact of two equal jets. In this case there is sym-

metry about both axes, so that we can take

From 11-32,

so that

a)

and from 11*34,

(2)

(l- j)+log

exp

The elimination of u between (1) and (2) gives the relation between w
and z.
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On the free streamlines, u = U e~ie
. Thus

~2i.e~2 sin -- -22/ sn -5
i \ / i= log
-

3
-

T-^r
-- *log

2e~ 2" cos - 2e'-y cos -

= log (-tan^) -ilog (-itan
- .

Now, on the streamline in the first quadrant,

3rr

Hence, if we put = - TT - # then < x< 75 ,
and

= log
(f

cot
l)

- i log
jt

cot
(j

+

Thus, if t = tan ^,

and therefore eliminating t,

77 /

XP 2V

_, ,Thus -
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If we regard the streamline x = as a rigid barrier, we have also solved

the problem of the direct impact of a jet on an infinite plane.

The thrust on the plane (per unit thick-

ness of liquid) could of course be obtained

by integrating the pressures, but the thrust

can be at once inferred from the fact that

momentum is advancing through the jet

at the rate phU
2

perpendicular to the

plane and that the momentum of the fluid

in contact with the plane is zero in the

direction of the normal to the plane. Thus

the thrust is phU
2

.

It should be noted that there is no

indeterminateness in the above solution,
FlG * u '41 ^u) *

since the condition of symmetry introduces a fourth relation among the

unknowns.

11-42. Direct impact of two jets. When two jets with the same

asymptote impinge directly as in fig. 11*42, it is clear that a symmetrical

FIG. 11-42.

solution must exist. Thus kt
= kz , a = TT, y = 2?r /?.

Hence, from 11*33,

, *!-*,-*! 0080-4,008 fi
= 0.

Thus

The parametric equations of the free streamlines can be found as

before.
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1 1*43. Oblique impact of equal jets. If two jets of the same breadth,

and whose asymptotes are inclined at the angle 2/2, are projected simultane-

ously, it is physically clear that a solution will exist which is symmetrical with

respect to the bisector of the angle between the asymptotes. Further, from

the principle of reversibility (11-34), it is clear that the solution will be the

same as that of the preceding section if we reverse all the velocities, see fig.

1142. In the present case, k = k2 , ft are given and h^ ,
hz are required.

We have, then, /^-f h% 2^ ,

^-hz- (7&J + h2)
cos ft

- 2&! cos ft.

Thus h{
= ^(l + cosjS),

1 1 '50. Rigid boundaries. We shall now discuss some motions in which

the moving fluid is bounded in part by free streamlines and in part by fixed

rigid walls.

A rigid wall acting as a boundary is of course a streamline along

which
i/r
= constant, but it is not necessarily either an isobar or an isotachic

line.

The discussion of those problems in which the rigid boundaries are straight

may be effected by Kirchhoff's method, which depends essentially on the

function

where U is a typical speed, generally the skin speed on a free streamline.

or dw
Since - = u-iv qe~'

B = u,
dz

we have Q = log (

j log ( 1 +i6.

Now along a free streamline the speed q is constant and therefore log (U/q)

is constant.

Along a fixed straight boundary the direction of motion 6 is constant, since

it coincides with the direction of the boundary.
If therefore we mark the boundaries and free streamlines in the (J-plane,

the diagram will consist of straight lines and will constitute a polygon whose

interior can be mapped by means of the Schwarz-Christoffel transformation

on the upper half of the -plane. Thus a relation is obtained between Q and
,

i.e. between dw/dz and .

On the other hand, the boundaries and free streamlines when marked in

the w-plane all correspond to straight lines = constant, and the resulting
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polygon can also be mapped on the upper half of the -plane. This leads to

a relation between w and .

If we eliminate between the two relations found in this manner, we obtain

a relation between dw/dz and w which on integration leads to the relation

between w and z, which characterises the motion.

Alternatively, we can often with advantage retain as a parameter in terms

of which w and z are expressed.

The precise execution of the above process will be best understood from

the illustrations which follow.

1 1-51. Borda's mouthpiece in two dimensions. Borda's mouthpiece
consists of a long straight tube projecting inwards into a large vessel.

Neglecting gravity, the ratio of the section of the escaping water at the

vena contracta to the section of the tube is \. The two-dimensional form of

this mouthpiece consists therefore of a long canal with parallel sides projecting

inwards. We shall suppose the canal to be so long that the walls of the vessel

do not affect the flow, in fact we consider an infinite canal.

The 2-plane diagram in fig. 11-51 represents a section of the mouthpiece
whose walls are A^B, A^B'. The wall A^B is part of a streamline. The fluid

flows along A^B, turns at B, and flows out of the tube along BCX . The shaded

area between A^B and BC^ indicates fluid at rest or absent. The lines corre-

sponding to the wetted walls in the z-plane are indicated by special shading in

all the diagrams.

At the section C^Oo there is uniform parallel flow, with velocity U say.

Let the breadth of the mouthpiece at BE' be 2a. Then, if a is the coefficient

of contraction, the breadth of the issuing jet at C^C^ will be 2o-a and the flux

out of the mouthpiece will be 2aaC7.

The central streamline E^F*, is straight. If we take
iff
= on E^F*, we

shall have
ifj
= - aall on the streamline A^BC^ and = aaU on the stream-

line A*BC* .

Again, let us take $ = at B and E'
t which can always be arranged since

an arbitrary constant can be added to the velocity potential. Then at A^ ,

An , EOQ ,
and at all points in the vessel at a great distance from BE', we shall

have
cf)
= + QO

, while ^ = oo at C& , C. Thus the to-plane is as shown in

fig. 11-51.

Let us map the interior of the polygon A^C^C^A^ in the w-plane on the

upper half of the -plane, making B', B correspond to = -1, ~ 1, and

^'03 , Coo , regarded as coincident, to $ = 0. Then from 10-32 (2), we get

/i\ 2craU , f
(1) w =- logf

the determination of the logarithm being that which vanishes when = 1 .
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The next step is to draw the polygon described by

w - plane F
1 oc

[11-51

\-plane

U/\> -pla

Q -plane

B'

C
c'

FIG. 11-51.

when z describes the boundary in the z-plane, and then to map this polygon
on the -plane.

In order to elucidate the change in 6 as z describes the boundary, we draw

the plane showing

dw
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On the free streamlines, q = 17, and therefore

U -e&
U

Therefore as we move along BC^C'^B'j Z7/o describes a circle of radius

unity. Along A^B we have 6 = 0, while q increases from at A^ to U at B,

and hence U/u decreases from <x> at A* to unity at B.

The diagram is shown in fig. 11-51. The lines there marked A^B, A'^B'

are actually coincident but are drawn separately to clarify the diagram. It

now appears that B = 2?r along A^B', and therefore

on A*B 6 = 0,

on B0 Q = t0 (0<0<7r),

on <?;#' Q = iB (7r<0<27r),

on JBX = 277.

The diagram in the Q-plane is therefore that shown in fig. 11-51.

We map this polygon on the {-plane by means of 10-31, which gives

(2) Q = 2 cosh-* { = 2 log (J+ V(
2 -

1) ),

so that

(3) -tf = [+V( 2
-l)]

2
.

Equations (1) and (3) constitute the solution of the problem. We could

eliminate and then obtain the relation between w and z by integration. The

interest of the problem lies, however, in determining the form of the free

streamlines, which is done in the next section.

With regard to the above solution it should be observed that there are

no points at which the speed becomes infinite. The fluid turns the corners

at B and B' with finite speed and to this extent the solution is physically

acceptable.

In an actual fluid the dead water portion is usually occupied not by fluid

at rest but by fluid in eddying motion. Therefore the above investigation

can only be regarded as a first approximation. On the other hand, the solution

is an adequate representation of the issuing jet when the region outside the

free streamlines is occupied by air or water vapour.

1 1 -52. The equation of the free streamlines. We make the following

general observations :

(i) On a free streamline, is real, for the line is mapped on the real axis of

the -plane.

(ii) On a free streamline, dz = ds eie, where is as usual the direction of

the tangent and ds is an element of arc of the line.
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(iii) If (x, y) is a point on the free streamline,

dx - dy . n
-=- = COS0, -~ = SID. 6.
ds ds

(iv) On a free streamline, Q = iO.

(v) If U is the (constant) speed along the free streamline,

[11.52

dw
= 1.

It follows, from (v), that on a free streamline

1 =
dw dw

ds

dw ,
from (i),

the upper or lower sign being taken according as s increases with f or not.

The above remarks apply to all problems treated in the manner described

for Borda's mouthpiece.

To apply them to that problem, take the origin in the z-plane at B and

consider the free streamline BC^. As we go along that line from B in the

z-plane, decreases from 1 to in the -plane. Therefore ds/d is negative and

V
dw

=--, from 11-51 (1).

Now from (iv) above and 11-51 (2), we get

id = 2 cosh-1
.

id 6 6
Thus = cosh = cos -

, and d -
\ sin - dB.

mi r r /i \
ds era 6

Therefore, from (1), 50
=

9
'

Hence from (iii), since x, y both vanish when B 0,

a? = cos tan ^ dO, y = I sin tan - d0.
TT J ^ 7T J ^

Performing the integrations, we get

o _ /
/J /J\

_

x =
(
sin2 - - log sec -

), y = (0
- sin 6).

TT \ 2 2/ TT

From these equations the free streamline BC^ can be plotted.

Now at CM ,
= TT and therefore y = era.

Hence from fig. 11-51, z-plane,

2a = 2cra-f cra-f era.

whence a = J, which is Borda's result.
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11*53. Flow through an aperture. We consider fluid issuing from a

very large vessel through an aperture in one of the walls. The fluid will issue

as a jet bounded by free streamlines along which the speed is constant, and

at infinity the flow in the jet will

be uniform and parallel.

Fig. 11-53 (i) represents the

motion.

If we take
<f>

at B and

B', we shall have
<j>
= - oo at

OQO and
<f>
= co at E& , where

EcfiFtt is the central (straight)

streamline taken as
i/j
= 0.

If BB' = 2a, and U is the

uniform velocity at C^, the out-

put of the jet at C^C'^ will be

2oaU, where a is the coefficient

of contraction. Hence A^BC^
will be the streamline

j/r
= - aaU and A'^B'C'^ will be ^ = aaU.

The diagram in the w-plane will therefore be the same as in fig. 11-51, and

we shall have, after mapping on the -plane of the same figure,

z -plane
FIG. 11-53 (i).

(1) w = . Y . rr
log

- laau.

The diagram in the J7/v> plane is, however, different.

As z moves along BC^C^B', we obtain fig. 11-53 (ii),

Here arg (J7/o) decreases by TT as we go from B' to B, so that

on B'C, Q = iO (0>0>-7r),

on ^Goo, Q = i0
(

Mapping the Q-plane on the ^-plane by means of 10-31 (the origin being
moved to Q -

in), we get

(2) Q = cosh"1
^
- ITT.

Equations (1) and (2) give the solution of the problem.

To find the coefficient of contraction, we use the general method of 11-52.

Taking the origin at B', and considering the free streamline B'C^ on which

is real and increases from - 1 to 0, we get, from 11-52 (1),

for now ds/d is positive, while f is negative.
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Again on B'C* , Q = iO, and therefore, from (2),

iO = cosh"*1 -
in, = - cos 0, d = sin d0.

Thus
* = ?r

U\v-plane

Q-plane

FIG. 11-53 (ii).

Using 11*52 (iii), we have

x 5. __?? Cos tan d0 = (1
- cos 0).

77 Jo *

At (7^ ,
=

^TT, a; = 2aa/?r, which is the horizontal distance between

B' and C. Therefore

2a =
r+ 2

= 0-611.

1 1 54. Curved boundaries. Looking at the problem of Borda's mouth-

piece, a consideration of the method of solution of 11-51 shows that its success

depends solely on the fact that the diagrams in the w-plane and the Q-plane

are bounded by straight lines, thereby allowing the application of the theorem

of Schwarz and Christoffel.

Professor E. B. Schieldrop has pointed out that by a slight modification

of the diagram in the Q-plane, still keeping it a polygon, the solution can be

D

C.C

D

FIG. 11-54 (i).

obtained, corresponding to a rounding of Borda's mouthpiece at the entrance

BB' (fig. 11-51).
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Thus, if the diagram in the Q-plane is replaced by that shown in fig. 11*54

(i), got by cutting off the corners of the diagram of 11-51 by lines inclined at

an angle a, on transforming back to the z-plane we get a mouthpiece with a

rounded entrance, fig. 11-54 (ii).

FIG. 11-54 (ii).

The actual calculations have to be performed by graphical or approximate

methods, but it is remarkable that such a simple modification can produce

workable designs for nozzles. The idea is, of course, applicable to all problems

which can be treated by polygonal diagrams in the Q- and w-planes. For

details the reader is referred to the original paper.*

1 1*60. Flow under gravity with a free surface. A free surface is a

surface which always consists of the same fluid particles and along which the

pressure is constant.

In the case of two-dimensional motion such a free surface is cylindrical,

and we consider the curve which is the section of this cylinder by the plane of

the motion.

Let then the free surface be typified by the curve C. The form of C will

depend on the time t, and will have a parametric representation.

(1) =/M) onO,
where a is a real-valued Lagrangian coordinate (3-44) for the particles of C,

such that the total ^-derivatives of z agree with the partial ^-derivatives of/, i.e.

m ^_ a/_, *_#_/W dt~dt~ h '

dt*
"" W ~

Jti '

If g is the acceleration due to gravity, the equation of motion is

(3) dqldt-g=-(Vp)lp,

and since ^p is normal to a surface of constant pressure, the condition of con-

stant pressure at the free surface is that the vector dq/dt
- g is normal to the

free surface.f

In the two-dimensional case, with the y-axis vertically upwards, this con-

*E. B. Schieldrop, Skrifter Oslo, No. 6, 1928.

t This can be made the basis of a three-dimensional treatment.



302 FLOW UNDER GRAVITY WITH A FREE SURFACE [11-60

dition states that d2
z/dt

2 + ig is normal to C when z is on C. Since /a is in the

direction of the tangent to C, we see from (2) that

(4) ftt + ig
= &(*,$/, n(7,

where r(a, t) is real valued when a is real. Thus the most general two-dimen-

sional free surface can be represented in the form (1), where /(a, t), for real

values of a, is a solution of (4), which is a partial differential equation of para-

bolic type.

We note that tr(a, t) points in the direction of decreasing pressure.

The determination of a suitable form for the function r (a, t) constitutes the

central difficulty of the general problem. (Cf. 11-63.)

When the function r(a, t) is given, the problem reduces to solving equation

(4) subject to boundary conditions. Observe also that when r(a, t) is given,

(4) is a linear equation for /(a, t) and therefore solutions can be added, i.e. the

principle of superposition applies.

11*61. Potential flow with a free surface. Referring to 11-60 (1), (4),

let us determine the complex potential w(z, t) on the assumption that the

motion is to be irrotational.

We have u + iv = dz/dt and therefore

,, x
dz dw(z,t) -

(1)
_ = __L_ = _ W. = _

W2>

and therefore from 14-60 (2)

(2) /t(a,0=-iMM) on (7.

By means of 11-60 (1) we can express w(z, t) as a function of a and t and

therefore

>.(,
= wz (z, t) za = -/(M)/.(a, on C.

Since a is real on (7, this relation can be written in the form

(3) t^,*)=-J^)/.(M).
Assuming that/(a, t) and/^ (a, t) are analytic functions of a, the right-hand

side of (3) is also an analytic function of a. Thus we can use (3) to define w as

an analytic function of a for complex values of the parameter a, and hence as

an analytic function of z. The complex potential w(z, t) so defined will be the

complex potential of a flow which is consistent with the free surface given by

*=/(,*)
Therefore any analytic solution /(a, t) of 11-60 (4), wherein the coefficient

r(a, t) is a real valued function for real values of a, represents a possible free

surface motion, for which the corresponding free surface is z =/(, t), and for

which the complex potential is determined from (3) by a quadrature.*

* The method here described is due to Fritz John, Communications on Pure and Applied
Mathematics, VI (1953), 497-503.
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11*62. Steady flow with a free surface. We take axes XQ) yQ . Let

z = xQ+iyg and let the complex potential be WQ
= WO (ZQ)

= < -H<Ao- We
the free surface to be the streamline ^ = 0, so that

(1) <^
= 0, WO (ZQ)

= ^o(zo)> a^ the free surface.

Therefore at the free surface

(2) q
2 = 9? = oo.

dzQ dz

Therefore by Bernoulli's theorem, since the pressure is constant at the free

surface,

where QQ is the gravitational potential and V is a constant of the dimensions of

velocity. By proper choice of the height of the origin we can always arrange

that F2 is positive. From (3) we get

Let the components of gravity be (g sin a, g cos a). Then

(5)
= -\ig(zQe-^ -z e*),

which becomes gyQ when a 0, and gxQ when a = ^TT.

Let a be a fixed length and introduce dimensionless quantities z, w, Q,

denned by

(6) z = az, WQ
= aVw(z), QQ

- agQ, F* = V*/(ag).

Then (4) can be written

Here jP2 is a Froude number (cf. 12-1) which is infinite when g = 0. Also (5)

becomes

(8) Q= -t(2e-
fa -ew ).

Differentiate this with respect to
</>.

Then

(9) S e<B = e
"ia ~ 2 *'^^ at the free surface -

dtp dq> d</>

Observe in this connection that at the free surface z and z are functionally

related and therefore Q as defined by (8) is a function of
<f>,

(10) Q =
(<), at the free surface.

Now eliminate dz/d<f> between (7) and (9). Then
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This equation defines z as an analytic function of ^, and therefore since

w =
<f)

at the free surface where (11) is satisfied we have the equation

dw \dw dw

to determine z as a function of w in terms of the arbitrary analytic function

Q (w) which reduces to the real valued function Q($) when = 0.

Observe that Q(<f>) is not known in advance, for it will be determined from

(8) only when the functional relation between z and z has been determined.

If we assign functional forms to Q($) or Q(w), we can find the correspond-

ing flow. The idea is due to M. C. Sautreaux.*

If we denote by a dash differentiation with respect to w, (12) can be written

(13) z'
2

which likewise represents (11) at the free surface.

If a = 0, i.e. if the ?/~axis is vertically upwards,
TP2

(14) ,

If g =0, F* is infinite and (14) becomes

(15) 3'-2t'Y-l =0.

This equation therefore is apt to represent all flows with free streamlines

when the gravitational field is absent.

Solving (14) for z' we get

Since dz/dw = l/(u iv)
= u/q

2
iv/q

2
,
we find u and v from the real and

imaginary parts of the right-hand side of (16).

Integrating (16) we get

(17)

If in (17) we put ^ = 0, we find the equation ofthe streamline
i//
= 0, x and y

being expressed as functions of the parameter (f>.
If the radicand is negative

for a range of
<f>,

we get x = constant for this range, so that part of the stream-

line = will consist of a vertical line which could be replaced by a rigid wall

or boundary. The free streamline will therefore correspond to the case where

the radicand is positive. Combining this with (7), for which the left-hand side

is necessarily positive, we see that on the free streamline

* " Sur une question d'hydrodynamique ", Ann. Scient. de Vflcole Normale Superieure, 10

(1893), 96-182.
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(18)
1 2Q(0-J

(18)
fi'

2W J12

This inequality therefore delimits the range of values of ^ which correspond to

points on the free streamline.

Exampk(i), F* = 1, 2(w)-l=2w, a = 0. Then (17) gives

(19)

The streamline ^ = is given by

(20)

where we have chosen the negative sign for the radical.

The radicand is negative unless
(f>

lies in the interval (
-

J, 0). For values of

<}>
outside this interval x constant. Thus ^ consists in part of a vertical

wall. If -
J < <f>

< we put < = -
J (1 -f cos 26), and then

(21) x+ iy
=

\i (I
- cos 20)

-
J

sin:

= |*(l-cos 20)- |0+J sin 20+ 0.

The constant (7 is arbitrary, but it will be found convenient (not essential)

to give it the value JTT. We then get

(22) z =j7r-|0+ isin20, y = I (I
- cos 20).

This is the equation of a cycloid whose cusps correspond to = 0, (|TT, 0),

=
TT, ( JTT, 0) and whose vertex is at =

JTT, (0, |).

From (16)
- ~ - -

z
= *'- tan when = 0. Thus u = ?

2 tan 0, v= -
g
2

.

When =
TT, w/^

2 = oo and therefore u = v = q = 0, so that the vertex of the

cycloid is a stagnation point. As goes from \TT to 0, u is positive, while as

goes from \IT to TT, u is negative. Thus the cycloid is described opposite

ways when a particle moves from the vertex to the cusps, in fact there is

symmetry of the flow about x = 0.

Therefore using the principle of the dividing streamline we have the flow

shown in fig. 11*62.

If we wish to discuss the interior streamlines we write

(23) w = -
J (1 + cos (20 4- 2^) ),

which reduces to
</>
= -

J (1 4- cos 20) when 17
= 0.

From (23)

(24) = J sin 20 sinh 277,

which gives the streamlines ^ = constant. In particular ^ = when
TJ
= 0, the

case just discussed, or when 0=0, ITT, TT, and so on. Thus the flow pattern is

a periodic reproduction of fig. 11-62.

M.T.H
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Example (ii). F2 = oo , Q'(w) = ,
a = -\rr.

This is a case in which gravity is absent and which leads to flow through an

orifice as discussed in 11-53.

FIG. 11-62.

Equation (13) becomes

(25) z'2-2eV + l =0.

Putting and then solving we get

(26)

where we have taken the positive sign for the radical.

If
<f>
> 0, the right-hand side is real, and since -

d^/dz = u - iv, we see that

v = so that there is a rigid wall parallel to the #-axis, with which, by choice

of origin, it will coincide.

When
(/>
< we put

(27) & = sin 0,

and then (26) becomes

- = cot 6 (sin + icos 6) = cos + i (- ^ -sin 0)
au \sm c/ /

Integration, taking the arbitrary constant to be \TT, gives

(28) z = \TT+ sin + i (cos 6+ log tan |0),

which gives the free streamline

x = \TT+ sin 0, y = cos + log tan |0

If in (25) we write = TT instead of =0, we get a second free streamline for

which (27) becomes et = - sin 0. To get the equation we simply change the
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sign of in (28). Since log [-tan 0]
=

t'rr-f-log tan \Q, this gives for the

second free streamline

z = - %7r-8mO+ i(cQ8 + log tan \Q)

which is the mirror image of (27) in the y-axis.

The flow is shown in fig. 11-53 (i), but here the origin is the middle point of

BB'.

The width of the orifice, in our dimensionless coordinates is 2 (TT 4- sin TT) and

of the jet at infinity is 2 (^77+ sin 0). Therefore the coefficient of contraction

iS 7T/(7T-f2).

1 1*63. Tangent flows. Referring to 11-60 (1) let z denote a point of the

free surface, the motion being assumed steady. We define the Lagrangian

coordinate a of a surface particle by the condition that - a is the time at which

the particle occupies the position z . In steady motion all particles take the

same time /? to travel from position z to position z. Therefore the function

z =/(a, j8- a) must be independent of a for every jS. Hence

(1) *=/(,*) =*(), = a + *.

From 11-60 (4) it then follows that r(a, t)
= (/ + ^)A/ must be a function

of f3 alone, say

(2) r (,*) = & (j8).

Then 11-60 (4) reduces to the ordinary differential equation

(3) *"(+* = tswos),
where S'(j8) and therefore S(f$) is real for real 0. This linear equation can be

solved by two quadratures to give z
(j8).

If the motion is irrotational, it follows from 11-61 (3) that w is also a func-

tion of /3=a+t which is determined by a quadrature from

We can now make an important remark. If in (3) we put g = 0, we have a

problem in which gravity is absent, the type of problem already considered in

this chapter. Having found z
(/3), the solution of this gravity-free problem,

we are in possession of the complementary function of the linear equation (3)

when g = 0, namely

(5) iS'G8) = VWo'03) when = 0.

If we insert this in (3), we obtain the equation

which can be solved in the form

(7) *i(0

where F(p) is a particular integral of (6). Since (6) is of type (3) the solution
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zi() gives a free surface of constant pressure, which reduces to z () when

<7=0.
Also the solution %i(p) contains a free parameter, namely the skin speed

in the solution z
(/3).

We shall call z1 (j8)
the tangent solution* to the given problem, for it reduces

to the gravity-free problem, when g = 0.

11*64. The tangent solution to the vertically downwards jet.

Consider the vertically downwards jet which issues from an orifice of breadth 2a

in a flat horizontal infinite plate, fig. 11-53 (i). We shall take the origin not at B,

but at the mid-point of BB' and we shall consider, when # = 0, the free stream-

line <?,.

For this free streamline, we have from 11-62 (28),

(1) x = k (\TT+ sin 0), y<>
= k(- log cot J0+ cos0), k = 2a/(7r+ 2),

where here denotes the acute angle between the direction of motion and the

vertical so that at B, 6 = \TT and at Cn ,
= 0.

If U is the skin speed of the jet, and /? is the time taken by a particle to

move from B to P on the free streamline, we have

(2) D=2.'(j8)i.'(j8) >

and from (1)

(3) z (0)
= k {77+ sin + i cos - i log cot 0}-

The differential equation of the tangent solution 11-63 (6) can be written

Changing the variable from ft to we have

whence

VW
= A

~v~*

and so

(5) z(6)=AzQ (e) +B-
U2

We must take A = 1, B = 0, and so

(fi\ y (b\ .
\\t) ""\.\ )

~

* L. M. Milne-Thomson, Proc. Midwestern Conference on Solid and Fluid Mechanics 1959.
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Performing the integration we get

qk* f TT I I 0\
2

0}
(7) 2 1 (0)

= z (0)+ ~r-< 0- - - -* (logcot-1 -fte-^logcot-VU \ & A \ uj 2t)

Observe that when 0=0, log cot J0 = oo but that

(8) lim (sin log cot 0)
= 0.

From (7)

^z.2 e ~
sin log cot - >

%(*- o+ sin6>1 g cot o)>

and therefore

and this gives the asymptote of the free streamline of the tangent flow.

Now by the equation of continuity the same quantity of liquid must flow

through each cross-section of the jet in the same time, and, as the velocity

clearly tends to infinity as -> 0, the ultimate form of the jet will coincide with

this asymptote.

In particular, let us choose the skin speed such that (9) vanishes ;
that is

to say

(10) U*=gL
Introduce this into (7) and substitute for 2 (0) from (3). Then the free

streamline of the tangent solution is

TJ2

(11) Zi= {0+Asin0+ t[A cos + J(l -A
2
)]},

j

where A = 1 + log cot

When =
\TT we have A = 1 and

At infinity 6 = 0, A = oo and, since A sin 6 -> 0,

Uz

M0)= {<(-)} = -too.
y

We can easily verify that the pressure is constant on the free streamline,

for from (11)

(12) 2^! = U* {2A cos + 1 - A2}.
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Also from 11-63 (4)

dw -rrx ,,^

Therefore

dw __ 7735 _~
{p'~ kcotd

Therefore

Adding this to (12) we get

which shows, by Bernoulli's theorem, that the pressure is constant on the

surface of the jet.

EXAMPLES XI

1. Incompressible inviscid liquid in two-dimensional motion under no body
forces occupies the whole space outside the region

and streams into the region through the end x = 0. Show that the asymptotes of

the free streamlines as the liquid leaves the region at x = oo
,
after a steady state

has been reached, are y =
a/2. (U.L.)

2. In 11*53 ;
if the breadth of the aperture is Tr-f 2, prove that the speed q on

the centre line of the jet at distance h from the aperture is given by

, U .

3. In Borda's mouthpiece (11-51), prove that

x = 2aa (sin
2
J0 - log sec 0)/7r,

and plot the free streamlines.

4. Liquid flows in the negative direction of the axis of y between two planes
defined by x = a, y>b and meets a barrier defined by y = 0, Z>x> -I. The

speed for large positive values of y is F. Show how to determine the ultimate

velocity of the two jets and the resultant thrust on the barrier. (U.L.)

5. A jet of incompressible fluid moving irrotationally in two dimensions issues

from a funnel-shaped opening of which the walls converge at an angle 2<x, the width
of the opening at the end being 2c. The jet is bounded after emergence by

"
free

streamlines
"
$ =

ij5, the speed along each being F.
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Prove that the motion is given by the following equations of transformation :

201 , -Q ,
. TTU dz ft *u

w = -J-
log t - ip, t = - sin , -j-

= - - e<w cot 7:- ,

TT
e r

2<x dw <xF 2a

and that c = ~ 1 -f - cot~ sin udu\*VL a J 2a J
Find the coefficient of ultimate contraction of the jet in this case, and verify

that it agrees with 7r/(7r + 2) if a =
7r/2. (U.L.)

6. Show that the transformations

w = -4 log (*-!) +Dy

t = cosh {(-)/)},
where Q = log (-dz/dw), and ^4, 5, (7, Z) are constants whose values are to be

found, give the motion of a two-dimensional jet of liquid issuing symmetrically
from an aperture of width 2a in a plane wall.

Prove that the ultimate width of the jet is 27ra/(7r + 2), and that the equation
to either of its boundaries may be put into the form

X "*

~^T2 ^ g tan
2"

1
" 008 ^' y * ^2 ^ ~ sin ^'

the corresponding edge of the aperture being taken as origin, and 6 being the

inclination of the tangent to the ultimate velocity. (U.L.)

7. Fluid escapes from an aperture placed symmetrically in the base of a deep
vessel with vertical sides. Treating the motion as two-dimensional, neglecting

gravity, and regarding the region in the plane of z occupied by the fluid as bounded
in the way described below, draw and explain figures showing the boundaries of

the corresponding regions in the planes of w and &, where Q log (
-
dz/dw) t and

write down equations of the form

dw - f (t] ^ - /
(t)

Ti
~ Jl() '

dt
~-/2() '

by which each of these regions can be represented conformally on the upper half-

plane in the plane of an auxiliary complex variable t. Show how all the constants

occurring in
f-^ (t) and/2 (t) can be determined.

[The boundary of the z region consists of (i) a semi-infinite line x = 0, y^ ;

(ii) a segment y 0, a>x^0; (iii) a free streamline starting at z a and having
an asymptote x b (not given) ; (iv) the infinite line x =

c, where c>6>a.]

8. Investigate the motion given by the conformal representation

*?__!? t-r***
dt

~
TTt*

*

dQ = 1 ,J(b-a)(b-a')
~dt

~
2n(t

eP - -0 = <L" = [V(6
~

<*') (*
~
a) + J(* -)(*- Tl"

^ dw q L ,J(a-a')(t-b) J

Calculate the breadth of the vessel in terms of the final breadth of the jet, at

which the velocity is Q ; determine also the intrinsic equations of the curves

bounding the jet and its final direction.

Show how n =
1, 6 = 0, and a = oo

, or a' = -oo will give Helmholtz's jet
with the profile a tractrix, and describe any other simple case, such as a * oo

,

a' 0. (U.L.)
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9. The fixed boundaries of liquid moving in the (x, t/)-plane are given by
y s x-a(y<.-a) and y = -x + a (y>a). The sector containing the negative

part of the aj-axis is completely filled with liquid which is at rest at infinity and
which escapes through the opening between (0, a) and (0, -a). Show that the

ultimate width of the jet is

|log(N/2-]

Determine the form of the free streamlines. (U.L.)

10. A two-dimensional jet of liquid issues symmetrically out of two plane walls

converging at an angle 2<x, but terminating at equal distances from the point of

convergence. Show that the equations of transformation which lead to the solution

of the problem are
2*

dz 26

^
dt

~
irt

'

where 26 is the ultimate width of the jet and V its ultimate velocity.
Prove that, if 2c is the width of the opening between the walls,

c - b[l +- f%an 6 sin (afl
-

)} di\ . (U.L.)
L ir J Q I \ 77/ J J

11. A stream, whose breadth and speed at infinity are a and F respectively,
flows on the side y>0 of the obstacle given by

y e= 0, -oo<o;<0, x = 0, 0<2/<a.
Show that the two-dimensional irrotational motion of the stream under no body
forces is given by equations of the form

dw _ A dQ B Q _
~dt

~~

(t-l)(t-X)
'

~dt

~
J(t

2
-l)

'
~

where - 1 <A< + 1 . Determine A and J9, and proceed to find the equation satisfied

by the angle a through which the stream is deflected. (U.L.)

12. A Borda's mouthpiece of breadth a is fitted symmetrically in the base of

a large rectangular vessel of breadth ka, and projects inwards to a great distance

from the base. Prove that inside the vessel at a distance from the mouthpiece
the flow is practically a parallel stream and that the coefficient of contraction is

k - (k
2 -

k)z Deduce the result of 11-51 as a limiting case.

13. If in fig. 11-54 (i) the points D, D' correspond to f = -a, =
a, (a < 1)

respectively, show that

Sketch the general shape of the corresponding diagram in the Z7/u-plane. If
U = u reie on the part of the diagram corresponding to J5D, B'D', show that

log r = log r + 6 cot a,

where r is the value of r when 6 = 0.
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14. In 11-54, show that, along B'D',

w =
(26/Tr) log -t6 and

-jj
e

i i j %> r ,

and therefore as = -- r. a.
IT t,

26 f< A d 26
Deduce that x = -- r cos

, v = --

ri /r2_a2
\^ <K

where = 2 sin a
j ^^j -j^-^

,
a < < 1.

15. In 11-54, if a =
Tr/4, prove that

Evaluate (^, ?/)
for a = 0-2, 0-4, 0-6, 0-8, and hence plot the form of the mouth-

piece.

16. Discuss the application of the method of 11-54 to obtain the flow through
an aperture in which the edges are suitably rounded.



CHAPTER XII

HELMHOLTZ MOTIONS

12-1. Cavitation. Consider a cylinder moving from right to left with

speed U totally immersed in incompressible fluid, say water, otherwise at rest.

Fig. 12-1 shows the streamlines as seen by an observer moving with the cylinder.

In fig. (i) the motion is just starting (cf. Plate I, fig. 1) and the cylinder is wetted

all over
;
the points of minimum pressure are on the boundary of the cylinder

at the extremities of the diameter perpendicular to the direction of motion.

In fig. (ii) the cylinder has attained a high speed.* In this case it is found that

W di)

FIG. 12-1.

the water separates from the cylinder at points which are on the anterior

part to form a bubble or cavity, between free streamlines, filled with water

vapour.

Let IJ be the pressure at infinity and p c the pressure of the vapour within

the cavity. Then Prandtl defines the cavitation number a by
J~T 7) T^2 772

/i\
11 pc Y u

by Bernoulli's theorem if V is the fluid speed on the cavity wall.

In two-dimensional motion it is found that the width of the cavity is of

order a"1
,
and its length of order a" 2

. Thus both width and length increase

when a decreases.

In cavities under water, if the external pressure is kept constant and the

speed is sufficiently great, cr is positive, since pc the vapour pressure is less

than the atmospheric pressure. As the speed U increases it appears from (1)

that a decreases and therefore that a->0 when C7->oo
,
with a consequent

indefinitely great increase in the width and length of the cavity.

*More properly a high Reynolds' number. See 19-62.
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In the present chapter we shall be mainly concerned with what have been

called (after their discoverer) Helmkoltz motions, characterised as follows :

(1) The motion takes place in free space, i.e. gravity is neglected.

(2) The motion is steady, i.e. p + %pq
2 = constant.

(3) The pressure along the cavity is equal to the pressure in the undis-

turbed stream, p e
= J7, and therefore the cavitation number vanishes.

As to (1), the difference between motion in free space (e.g. in a freely falling

tank) and under gravity is slight when the object producing the cavity is

moving horizontally at high speed. The effect of gravity depends essentially

on the Froude number

U*

g x (length of cavity)

which tends to zero as or~>0 and the effect of gravity is not then important.

As to (2), since the motion will be assumed steady, we may suppose the

obstacle at rest and the fluid to flow past it.

I! 1 2. Proper cavitation. This is defined to be discontinuous fluid

motion in which the minimum pressure occurs on the free streamlines. In

improper cavitation the minimum pressure is attained on the boundary of the

obstacle.

The distinction between proper and improper cavitation derives its interest

from the following facts, all applying to steady motion.

(1) In proper cavitation the free streamlines are convex seen from the fluid.

Proof. The pressure gradient along a normal to the streamline drawn into

the fluid is positive. Therefore the acceleration of a particle normal to its path

(the streamline) is directed into the cavity. Hence the cavity is convex seen

from the fluid.

By a similar argument (applied in free space) the speed attains its maximum
at a point where the boundary is convex seen from the fluid.

Corollary. The distinction between proper and improper cavitation does

not arise with obstacles whose boundaries are rectilinear.

(2) At a point of a streamline where the direction of the velocity tends to

two different limits at either side, the speed is either zero or infinite.

Corollary. At a point of separation from an obstacle the streamline has a

continuous tangent.

(3) If a point P divides a streamline into two arcs Ax , A2 such that the

tangent is continuous at P but the curvature is different according as P is

approached along Ax or along A2 ,
then the speed cannot be constant along Aa

or A2 .
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Proof. With the notations of 1243 consider and r as functions of the

complex potential w on the streamline $ 0, say. The curvature is

dB d0 dw r, dd
. , 77

gr ^

d\ dw dX dw
'

Now er is continuous near an arc on which the speed is constant, so that

a discontinuity in d8/d\ implies a discontinuity in dO/dw. Therefore dr/dw has

a logarithmic singularity. Therefore r cannot remain constant on the stream-

line at either side of the discontinuity in curvature.

Corollary (i). At a point of separation the curvature is either continuous

or infinite.

Corollary (ii). In proper cavitation the curvature at the point of separation

from an obstacle of finite curvature is continuous ;
the streamline must not be

concave, by (1), and a convex streamline of infinite curvature would cut into

the obstacle.

12*20. Direct impact of a stream on a lamina. Suppose a stream

of infinite breadth and velocity U to encounter a fixed lamina BBr

of breadth I

placed at right angles to the stream, fig. 12-20. We take the centre A of the

lamina as origin and AB as axis of oo. The streamline which strikes the middle

of the lamina at A will divide, and, following the lamina to B and B 1

',
will

then leave along the free streamlines BC^ , B'C'^ . The vacuous region between

these free streamlines constitutes the cavity. We shall suppose the dividing

streamline to be
if/

and we shall take
<f>
= at A. Then

</>
= oo at

Cw , C'v. The w-plane is shown in fig. 12-20, where for clearness the portions

C'nB'A, C^BA are shown slightly separated although in fact they coincide

with the negative ^-axis.

The diagram in the w-plane must therefore be regarded as a polygon whose

boundary is C'^B'ABC^ and whose interior is the whole w-plane, the interior

angle at A being 2?T. By means of the Schwarz-Christoffel transformation,

we map this region on the upper half of the -plane, making B', A, B corre-

spond to = -
1, 0, 1 respectively. The transformation is therefore

(1) 3
= Et W = W'

since w = when = 0.

Now consider - U dz/dw = C7/u. Marking this on the Argand diagram,

as z describes ABC^C'^B'A, we get the figure of the C7/u-plane, so that

arg (
- U dz/dw) decreases by TT when we go from A round ABC^C'^B'A.

Therefore the Q-plane is as shown in fig. 12-20 (cf. fig. 11-53 (ii).)

We map this polygon on the upper half of the {-plane, making = -
1, I,

correspond to B', B, A^ respectively, at which points the interior angles of the
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polygon are \TT, \TT, 0, so that the Schwarz-Christoffel transformation gives

dQ K'

Q = ~

z-plane

-
plane

tpss-co

I- plane
-1

B r

f/\) -plif\) -lane

-
plane C,c e-f

Fio. 12-20.

Now, when J = -
1, Q = -

wr, and when J = 1, Q = 0.

Therefore = -wr, -iJ5T' (in) +L = 0, and hence
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From this we get

- - = cosh (ITT+ Q) = - cosh Q.

Q = cosh-1 = log
- + ~ - 1 .

That the proper sign is here taken in front of the square root follows from

the fact that there is a stagnation point at A where = 0, so that dw/dz must

vanish when = 0. But for small values of , the square root is 1/f , very

nearly, so that dw/dz-^Q when ->-0.

Now, from (1),
~ = #. Therefore

(3) ^ = L-W(i- 2
)]-

Integrating from B' to B, i.e. from =-lto = 1, we get

_

(4) =-^(2+ 4*).

This determines K, and therefore, from (1),

^-
The solution is therefore given by (2) and (5).

12-21. The drag. To determine the thrust on the lamina or the drag, if

p and q are the pressure and speed on the upstream face of the lamina and

77 the pressure in the cavity, Bernoulli's theorem gives

=
P P

Hence the drag D is given by

D =
f
(p-TI)dx = \p

f
(U*-q*)dx t

from B' to B along the lamina.
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Since AB is the axis of a?, it follows that

319

= !=
, dx = dz.

Therefore

Using (1) and (3) of 12-20, we get for the integral

Thus
7T+ 4

which is the drag (per unit thickness of liquid).

12*22. Drag coefficient. In experimental work it is usual to express

drag by means of a drag coefficient CD ,
denned by the equation

where S is the projected area of the body perpendicular to the stream. The

drag coefficient in the case just investigated of a lamina perpendicular to the

stream is therefore

CD = -^-.= 0-88.
7T+4

This agrees with the observed value in motions with a well-defined cavity.

12-23. Riabouchinsky's problem. If a stream U is disturbed by two

parallel plates, instead of one, with free streamlines joining the edges, we obtain

a situation first investigated by Riabouchinsky,* and illustrated in fig. 12-23 (i)

in which the plates are perpendicular to the undisturbed stream direction which

z-plane

FIG. 12-23 (i).

* Proc. London Math. Soc. (2), 19 (1921) 206-215.
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is along the line joining the middle points of the plates. Here M is the mid-

point of a free streamline joining two edges. The flow pattern has two lines of

symmetry indicated by the axes Ox, Oy. The complex velocity v has the values

V, iV, 0, U at M, A, B, C^ respectively where V is the constant speed on the

free streamline.

A B c M
v*IV*-plane

FIG. 12-23 (ii).

Fig. 12-23 (ii) shows the plane ofv/V (the hodograph plane) for one quarter

of the flow, and also the plane of v2/V
2

. In the former the free streamline maps
into a quadrantal arc of a circle since

|

v
\

= V on the free streamline and in the

v2
/V2

plane this maps on a semicircle. This semicircle we map on the upper half

of the -plane of fig. 12-23 (iii) by the transformation

M

FIG. 12-23 (iii).

(1)

which maps A into =1 and M into = - 1. To form the w-plane we take

<=0 on the y-axis, clearly allowable by the symmetry, and ^r=0 on the free

streamline. The part of the flow here considered maps into the third quadrant
in the w-plane and therefore into the upper half of the w2

-plane, fig. 12-23 (iv),

B A M

w-plane

FIG. 12-23 (iv).
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The Mobius transformation (see Ex. V, 14).

(2) W2
:

will then map the upper half of the w2
-plane on the upper half of the -plane,

provided a, /?, y, 8 are properly chosen real constants (real in order that the real

axes may correspond). Combining (1) and (2) the w>2-plane is mapped on the

hodograph plane by

where G> , 77
are constants. Since at M wQ and v= F, we have c= - 2

and the numerator is (u
a - 72

)
2

. At C^ w = - oo and v = ?7 so that

77= ~(Z7*+F*)/F
2

and the denominator is (v
2 - Uz

) (v
2 - V*/U

2
). Thus we can write

: = ~, a2 = ~-
2 , a6=l,

I/2 1

(3) W = G
(
~2

and we note, from 12-1 (1), that

F2

W *=.
where cr is the cavitation number.

The formula (3) is a relation between w and dwjdz and so leads to the solution

of the problem by a quadrature.

In the notation of elliptic functions* write

6* 62

(5) t = v/V = 6nd(w | w), w=l , ?% =

where m is the squared modulus andml is the complementary squared modulus

The values of v at M, C, A, B are respectively F, Z7, *F, and so the correspond-

ing values of u are \K, 0, \K+iR', tTT and the complex w-plane is therefore as

shown in fig. 12-23 (v).

iK

u-plane

FIG. 12-23 (v).

* For the notation see Milne-Thomson, loc. cit. t p. 236.



322 RIABOUCHINSKY'S PROBLEM [12-23

We then get from (3), after some reduction,

6f (m1
1 /2 nd2 w-l)dn2 ^

(o) w =-m an u en u

Now dz/du= (dw/du)
--

(dw/dz)
= -

(dw/du) ~-u

and therefore from (5) and (6)

~ = --__-
{ds

2 M+ m^/2 dc2
u}.du 12 }

Integrating we get

(8) f(u)=T>su+m1
l '2 'Dcu,

where H is an arbitrary constant and Ds u, DC u in Neville's notation* denote

elliptic integrals of the second kind. The constants G and H are determined by
z h+ il when u = \K+ iK

f

,
z = h when u = iK',

where 21 is the breadth of a plate and 2h is the distance between the plates.

If we denote the drag coefficient on one plate by OD(O-) as a function of the

cavitation number a, it can be proved that when a is small

the cavitation number o-=0 corresponds to an infinite value of h that is to say

when one plate is infinitely distant. Thus from 12-22, Cj>(0)
=

27r/(7r+4).

In practice it is small cavitation numbers which arise, and Biabouchinsky's

solution attains fundamental importance from its ability to deal with variable

small cavitation numbers.

12-25. Gliding and planing. The problem derives its interest from the

behaviour of seaplane floats, speed-boats, and like phenomena.
In gliding or planing on a free surface the pressure along all the free stream-

lines is nearly atmospheric (constant) and the cavitation number is practically

zero.

In gliding near a free surface gravity can be neglected if gl/U* 9 gh/U
z are

each very small compared with unity, where I is the length of the obstacle, and

h is the depth of the water.

In the case of deep water, however, the effect of gravity cannot be neglected

in calculating the splash formed by an object moving near the surface. There

is in fact a whole complex of motions consistent with a given inclination of,

say, a plate and the speed of the stream.

The problem to be considered in the next section (12-26) arises as follows.

For any given depth of water, stream velocity and attitude of a plate, there is

a greatest height of the trailing edge above the (upstream) water surface for

* E. H. Neville, Jacobian elliptic functions, 2nd edition, Oxford, (1951), Chapter XIV.
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which a continuous motion embracing the plate is possible ; i.e. suppose a

splash is established round a plate immersed in a stream, then this plate can

be moved upwards above the upstream level without breaking the continuity

of the splash. The work of 12-26 applies to the form of such motions in very

deep water.

12-.26 Gliding of a plate on the surface of a stream. 9" We suppose

the lamina stationary and the stream to flow past it.

z -plane

w plane

-
plane

C',D' B' A

Uju -pla

Q-plane C,D

FIG. 12-26 (i).

Consider, fig. 12-26 (i), a stationary lamina BB f

of breadth Z, against which

a stream of great depth and velocity U impinges. It is assumed that the

* A. E Green, Proc. Camb. Phil Soc., 32 (1936).
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stream leaves the trailing edge of the lamina at B along the free surface stream-

line JBCoo > while a jet or splash is formed at the leading edge B', this jet being

bounded by the free streamlines B'C^ , D^D^. The region behind the plate

between BC^ , B'C^ is occupied by atmospheric air at pressure Jf7, and so is

the region above and to the right of D^D'^. It follows that along these free

streamlines the speed is constant and equal to U, the speed of the stream

at !),.

There will be a streamline which impinges on the lamina at some point A
and there divides to form the free streamlines BC^ , B'C'^. We shall take this

dividing line to be $ = 0. The origin will be taken at A and the axis of a; along

AB. The direction of the stream is then taken to make an angle
- a with AB.

If c is the breadth of the jet at a great distance, we shall have along

AO#; , t = uc.

The diagram in the w-plane is then that shown in fig. 12'26 (i), which should

be compared with fig. 12-20. Transform this into the upper half of the -plane,

making B', B correspond to = -1, +1, and let A, C^ then correspond to

= a, 6, respectively. Since the interior angles of the ^-polygon are

2rr at A and at C'^ ,
the Schwarz-Christoffel transformation gives

dw _ + a
__

b-a
i XI ~~TV "L

v T ** ** ~
v '

so that w = K-K(b-a) log (+b)+L.

As increases by passing round the point = 6, arg ( + b) decreases from

TT to 0, and therefore log ( + b) decreases by iir, and thus 0, the imaginary part

of w, increases by K (b-a). But, in passing round C", the diagram in the

u;-plane shows that
iff

decreases from Uc to 0. Thus

Now, consider -Udz/dw as z describes ABC^D^D'^C'^B'A. Along the

free streamlines the speed is constant. Thus the path described is that shown

in fig. 12-26 (i) and the argument decreases from to - 77.

Thus the diagram in the Q-plane is as shown. To map this on the -plane,

the Schwarz-Christoffel transformation gives

so that Q = K' cosh-1 + L', K = K f

J(a*
-

1).

Now at B'
9 B, Q has the values -ITT, and the values -

1, 1. Therefore

-ITT = K' cosh-M -!)+', = K'
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\4-aL
Thus L' = 0, K' = -

1, and Q = -cosh-1 -
,

^ j.

so that __
dw l + a //1-fan

2
1Thus -7f7- = -F --J\"Y -)

- 1
*

Vdz + a V \ + a/

the negative sign being taken in front of the square root, since dw/dz = at

the stagnation point A, where = - a.

Inverting this result, we get

U dz

We can now obtain the value of a, for atD w ,
- U dz/dw = 6"-<a (fig. 12*26 (i))

and ^ = - oo . Thus (3) gives

e-* = a- (a
= a~

and thus a = cos a, since e~*a = cos a - 1 sin a.

Again, from (1) and (3), we get

dz

Integrating this from = -1 to ? = 1 we get, after some reduction, the

breadth of the plate,

To find the thrust T on the plate, we have, as in 12-21,

after a calculation which we leave to the reader. When 6 is large this becomes

This is of course normal to the plate, and can therefore be resolved into a

drag, and a lift given respectively by

D = T sin a, L - T cos a.

By division, we get from (4) and (5),

a---...,
\

v y

\ 6 / J

taking 6 large and using the binomial and logarithmic series.
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If we now let &-><
,
we get Rayleigh's formula,

[12-26

FIG. 12-26 (ii).

which gives the thrust when an infinite stream impinges on a lamina at an

angle a, fig. 12-26 (ii), for when 6->oo
, D*, , D* come together. We discussed

the case a = 7r/2 in 12-21.

12-30. Reflection across free streamlines. We now describe an entirely

different procedure due to M. Shiffman* which consists in extending the variables

which describe the flow across the free streamlines and finding the boundaries

and singularities of this extension. This process is called the principle of re-

flection acrossfree streamlines and the resulting extension of the flow is called the

image of the actual flow. We shall indicate by a star the variables z*, w*t
v* t

of the image corresponding to the variables z, w, v of the actual flow.

Considering for the present flows with only one free streamline we denote by
U the fluid speed on that line so that in the u-plane, or hodograph plane, the free

streamline is represented by the circular arc

(1) vv=Uz
.

Now consider streamlines in the z-, w-, and u-planes as pictured in

fig. 12'30 (i), the free streamline being shown dotted.

* Communication* on Pure and Applied Mathematics, Vol. I (1948) 89-99, Vol. II (1949) 1-11
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Without loss of generality we can take ^r=0 on the free streamline.

Since w and v= -dw/dz are both holomorphic functions of z, it follows that

the variables z, w, v are holomorphic functions of one another.

By 5-53 the function w can be continued analytically across the straight

line /r=0, on which it takes real values, by optical reflection and so

(2) w* = w.

Since a streamline is represented in the w-plane by a line parallel to /r=0,

and its optical reflection in $= is the image streamline, it follows that in taking

the image the order of the streamlines is inverted (see fig. 12-30 (ii)).

Again by the principle of analytic continuation (5-52), since from (1) v and

U2
/v take the same value on the arc

|
v

\

= U, we have

U*
(3)

* _ _

and u, v* are inverse points with respect to the circle
|

v
\

= U.

Therefore the complex velocity and its image are parallel but the speed is

altered in the ratio U*/q*. Thus we have the following theorem :

Theorem. The image of an element of a streamline is another element of a

streamline in the same direction. The order of the streamlines is inverted.

Let dz be an element of a streamline and dz* its image. Since

dw
v= "&

* __ __
dw

V = ~*' "- ~'
we have, using (2).

v* dz* = - dw* = - dw = - dw = v dz,

since on a streamline dw = dw and so v dz = v dz. Combining this with (3) we

get 2
. g

2

(4) dz* =
jj^dz

=
y^dz,

which furnishes a second proof of the above

theorem and shows that arc length is altered

in the ratio
<?

2
/t/

2
.

We now consider some particular situa-

tions.

Flow in a corner. Let the flow be in

the angle <X,TT.

The image system is flow outside an

equal angle. Fig. 12-30 (ii).

Consider as an application a jet run-

ning against a wall composed of two planes forming a corner ABC,

fig. 12-30 (iii).

FIG. 12-30 (ii).
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The image flow is shown shaded in fig. (iii). The whole flow, actual and

image, takes place in a canal between ABC and A*B*C*. The streamline which

FIG. 12-30 (iii).

bisects the canal at infinity is the free streamline and has constant velocity V.

Thus A*B* and B*C* are straight, parallel to and at distance 2h from AB and

BC where h is the breadth of the jet at infinity ;
B* is on the bisector of the

angle ABC.

Stagnation point.

FIG. 12-30 (iv).

The image of a quadrant near the stagnation point is flow in an angle

3rr/2, and so the image of the whole neighbourhood is three sheets with the

branch point 0*.

Uniform stream at infinity. If the stream is v = Ve~ iet

, (3) gives

so that the image is a uniform stream. From (4)

(5) z* - z = constant

and therefore when z is infinite so is z*. Thus the image is a parallel uniform

stream at infinity with speed altered in the ratio Z72/F
2
,
which is unity if V= U.
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Free streamline. If there is a second free streamline, speed V, (4) gives

(5) again so that the image is a homothetic free streamline. If V= U the image is

a translation of the original.

Image of a general point. Let the flow near the point z be given by

(6) v = a(z
- z

) + higher powers of (z
- z

), the index
j8 being real

From (4)

(7) 2 Zn =

where z * is the image of z and only the leading term of an expansion has been

written. Combining these results with (3) we get

(8)

i

20+1.

From (7) we see that if 2/?+l>0 the image is at a finite point, while if

2/J-f 1<0 the image z * is at infinity.

Simple source. In (6) put <x=w, the strength of the source, and /}
= - 1.

Hence A= -m and the image is therefore an equal source at infinity (inward

flow). Conversely the image of a simple source at infinity is an equal source at

a finite point.

12-31. Borda's mouthpiece. This has been described in 11-51. By
symmetry it is sufficient to consider only half the flow, fig. 12-31.

FIG. 12-31.

For simplicity of explanation the upper wall AB^ has been doubled by
. If M is the influx there is a source of output M at infinity (B^).

The image of A is A* coincident with A and therefore the image of AB^ is

A*B*
y
B* being a source of output M . The image of B^C^ is the parallel

line jB*Coo*. Since the velocity at C^, C^* is the same as that on the free

streamline, we see without calculation that the coefficient of contraction is 0*5.
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Thus we have a simple intuitive picture of the flow. From a source at in-

finity the fluid enters the region between the fixed walls AB^, BnC^. From

a source at B* of equal strength the flow impinges on that from infinity to form

the free streamline (or line of constant pressure) AC&.

12*32* Flow from an orifice. The problem was considered in 1153.

z-plane

FIG. 12-32 (i).

The line of symmetry B^C^ of the jet is a streamline so we need consider

only half the flow, fig. 12-31 (i). The image of this portion of the flow is a region

on the upper side of the free streamline ACX bounded by this line and the images

of ABac, J^ooOoo. Starting from A, the point of detachment, the image of A is

the coincident point A* and therefore the image of AB^ is the finite straight

segment A*B* coincident with AB^ in direction, there being a source at B*
whose output is the same as that at B^ i.e. as the efEux from this half of the

orifice. The image of the boundary B^C^ is the parallel line B*C<x*. Since the

velocity of the jet at infinity is equal to the velocity on the free streamline, the

width of the jet at infinity is preserved in the formation of the image. Thus we

see, without calculation, that the coefficient of contraction exceeds 0-5. There-

fore intuitively the flow can be regarded as taking place between fixed walls

BnABtCn* and B^C^ ;
the free streamline arises from the impact of the

flows due to a source at infinity (B^) and an equal source at B*.

The position of the image point B* is not arbitrary but is completely deter-

mined by the condition of symmetry in the w-plane, fig. 1232 (ii), wherein

p*_<-w\ -*&

w-plane

a. 12-32 (ii).
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BafCv* is the optical reflection ofB^G^ in the real axis
iff
= 0, the point of de-

tachment of the free streamline being A.

We now proceed to the analytical expression of the flow. Let us map on the

upper half of a complex -plane as shown in fig. (iii)

_ i

A*A

FIG. 12-32 (iii).

Then by the Schwarz-Christoffel transformation

dw -Kt dz Li

where K, L are constants to be determined, whence by division

and thereforeKLU since v-^-U when ->oo .

The substitution = - cos A leads on integra-
3

tion to

w = K log sin A -f M,

. r
l A ,\ Arz = t/; I tan - A 1 -f N,
\ J

v = ill cot- ,

FIG. 12-32 (iv).

where M, 2V are constants.

The domain in the complex A-plane is shown

in fig. (iv).

All the constants can be determined by the correspondence between the

points A, B, C in the various planes. If 21 is the breadth of the orifice we have

at A, A = 7T/2, z = li, w =

atB, A = TT

at C, A = 77+ too, z = -f oo
,

whence we get, since K = LU,

w = -- i
- N 2K f A

,
1 .

logsmA, 2 = :r<tan--A + 7r>, u = *

7T+ J ^ A J

To determine JB* we put A = getting for z the value 27rK/(7r+2).

The width of the jet at infinity is one half the magnitude of this i.e.
-rrl\(rr 4- 2)

and the coefficient of contraction is ir/(ir+ 2) = 0-61 1.
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To get the free streamline put A = -4- w. Then
u

x =
21 21

(v-tanhv), y =--
(sech v+ w/2),

TT + &

12-33. Stream impinging on a lamina. The problem was discussed in

12-20. For the reflection method we need consider only halfthe flow. The image

system is shown in fig. 12-33 (i).

z-plane

FIG. 12-33 (i).

Note that at A* the angle is 3?r/2, the image of the angle ?r/2 at A. The

image of AE* is the parallel line A*E
<X)
*.

If ds, ds* are corresponding lengths of AB and its image A*B* (i.e. A*B),

we have from 12-30 (4) ds*=ds q*jU
2

;
since onAB q varies from zero at A to

V at B it follows that -4** is less than AB.

to - plane

-plane

-1

X -

ITT *

FIG. 12-33 (ii).

The image flow overlaps the actual flow to some extent, and should therefore

be considered as a separate sheet of a Kiemann surface.
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For the mapping we have

333

(1) w =

The substitution f = - cos A gives

(2) -=?= -ZcosA(l-fcosA)

so that

(3) z= -L(JA-fsinA-t-Jsin2A),

where we have taken w = at B i.e. at f = 0, and z=0 at A. We get from (1)

and (2) dwjdz = -u=2JK:sinA/{Z;(l + cosA)}.

At JB, A = 7T/2, 2 = Z, v = U, where 2Z is the breadth of the plate

and so

4Z_~~
"~7T + 4

J

and so finally
9717 A7

-(JA+sinA+Jsin2A).
21U

w = 7 cos
2
A, 2 =

7T+4: 77+4:

We note that at A*
9
where A= ?r, the value of 2 is

2-n-l/(ir+ 4). The drag coefficient

was found in 12-22 to be 27r/(rr+ 4). The relation between these numbers is not

fortuitous as will now be proved.

12-34. Geometrical interpretation of the force.

FIG. 12-34.

Consider flow past an obstacle AB. Let BC^ be a free streamline. By
reflection in BC* the obstacle has the image BA*. Let X +iY=F be the force

per unit thickness of obstacle. Then from 6-41

{B -i(p-p 9)fa,
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where pe is the pressure in the cavity. By Bernoulli's theorem

?+ jgi
= &

and therefore

[12-34

= p!7
2
(
-

i) (dz
-
dz*) from 12-30 (4)

where a* and a are the complex numbers for the points A* and A.

Thus the resultant force both in magnitude and direction is the same as if

the excess stagnationpressure were acting over the entire front of the line joining

A to A*.

If the body and flow are symmetrical, the force is in the direction of the flow

and the line AA* is perpendicular to this direction. In that case the magnitude
of the force is \pU

2AA* and the drag coefficient is AA*JAB as exemplified in

12-34.

12-35. Backward jet. A type of cavity which is observed in the entry of

an object into fluid is one in which a spout is formed behind but directed back

z-plane

FIG. 12-35 (i).

towards the object, and a stagnation point is formed behind the spout. Fig.

12-35 (i) depicts such a symmetrical flow past a bent lamina, the free streamlines

being shown dotted as usual
;
E is the stagnation point. Mathematically we

imagine the backward jet to continue upstream to infinity but on a different

sheet of the flow. In actual motions the backward jet might break up before
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reaching the obstacle, or might first impinge on the obstacle and then disin-

tegrate.

Consider the upper half of the flow only and map the flow and its reflection

on the upper half of the -plane. The w- and f-planes are shown in fig. (ii)

EC

w- plane
- __-_.

f - plan

I

I

"1 -a -1
|0 J

E A B C * A* E*

FIG. 12-36 (ii).

If OCTT is the inclination of the arm BC of the lamina to the asymptotic flow

direction, and if J5, B* are mapped on = -1,1 and E, A, E*, A* on = -
e,

-a, e, a we have

since by the principle of reflection the angle at C in the z-plane is 2-Tr, the angle at

B is (1
-

a)??, at B* (1 -f a)??, at A&, A<* the angles are -
TT, at E and E*, n and

3rr respectively.

In the w-plane the image is simply a reflection across CD& and

The complex velocity is then

The constants K, L, a, e are determined by the following five conditions

(i)

(ii) We denote by ZA+ the limit of the values of z as we approach A from the

right along the real axis in the -plane. Similarly ZA_ is defined by approaching

A from the left. Then Im(zA_)
- Im(zA+ )

= since

= Im(nvr)



336 BACKWARD JET [12-35

where r is the residue of dz/d at = - a.

(iii) w is real near C so that Z is real.

(iv) VQ F, where F is the velocity on the free streamline

(v) vAa
= V,

where U is the velocity of the stream.

These conditions determine the constants K, L, a, e in terms of F, U, I, all

the integrals being explicitly calculable.* The quantities F and U are related by

where 77 is the pressure at infinity and pe is the pressure in the cavity. By the

method of 12*34 the drag coefficient is JTT \

K
\

.

12*40. Levi-Civita's method. We shall now describe a general method

of determining the flow past an obstacle, on the assumption that the motion

is steady, irrotational and two-dimensional, and that a cavity is formed behind

the obstacle.

The method depends essentially on mapping the w-plane upon the inside

of a semicircle in the -plane in such a way that the free streamlines map into

the diameter, and on the use of the function o>() which has already been

employed in the theory of jets (11-11).

12*41. Mapping the z-plane. Suppose an obstacle S to be placed in an

infinite stream of velocity U y fig. 12-41. One of the streamlines v coming
from infinity will meet the body normally at a stagnation point and will

there divide, following the body along arcs Xl and A2 and thereafter leaving

the body at points A l , A 2 to form two free streamlines /^ , p,2 between which

lies the cavity. We shall take
<f>
= 0, ift

= at 0, so that the dividing stream-

line is
t/r
= 0. The origin is taken at and the axis of x is drawn downstream

and parallel to the velocity at infinity. The region occupied by the moving
fluid is denoted by R.

It is convenient here to take (-w) rather than w in the next diagram,

which shows the (-w)-plane. The lines pi + Xiy ju2+ ^2> which are really

coincident with the positive real axis, are drawn slightly separated as in other

cases of this kind. The diagram in the
( w)-plane is now mapped on the

upper half of an auxiliary TF-plane by means of the transformation (readily

deduced from the Schwarz-Christoffel theorem)

w = - W2
.

* The flow is discussed by another method by D. Gilbarg and D. H. Rock, Naval Ordnance

Laboratory Memo. 8718 (1945).
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The points corresponding to A l and A 2 are denoted by Wx ,
- W2 . Actually

i
= V(-^i), JF2 = V(-<W where ^ ,

< 2 are the velocity potentials at

U
(R)

Z-plane

1
- cos <x

" -
plane

O'

FIG. 12-41.

A 2

The upper half of the TF-plane is now mapped on the upper half of the

Z-plane in such a way that Al corresponds to Z ~
1, and A 2 to Z = - 1. The

necessary transformation is readily seen to be

W = lZ(Wi+Wt) + l(Wi-Wt) = a(Z+cosa),

where

Note that W = now corresponds to Z = cos a.

Y M.T.H.
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Finally, we map the upper half of the Z-plane on the interior of the semi-

circle in the -plane whose radius is unity, whose centre is at the origin, and

whose diameter is along the real axis, fig. 12-41.

The necessary transformation is of the Joukowski type,

Z = -i

To verify this, we have = eix on the semicircle, and therefore Z = cos %.

Hence, as x g es fr m to ?r, describes the semicircle, while Z goes from - 1

through -cos a to 1. The arc of the semicircle therefore corresponds to the

segment A^A 2 of the real axis in the Z-plane, the arc A^O corresponding to

^ and OA 2 to A2 . Again, as varies from - 1 through to + 1, Z goes from

1 to oo and then from - oo to - 1. Thus the radii OrAt ,
0'A Z correspond

to ftj , /x2 . Since, in conformal transformation the senses of description also

correspond, it follows that we have mapped the upper half of the Z-plane on

the interior of the semicircle.

Eliminating Z and W,
we thus get

which maps the w-plane on the interior of the semicircle. Moreover, the

stagnation point corresponds to = eict
.

12-42. The streamlines. We have

= w-w =

o-
Suice

O'
Fio. 1242.

Therefore the equation of the streamline $ = is

-l) = 0.
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Since 77
= corresponds to the diameter of the semicircle and

to the curved part, this line is the dividing streamline, the equation of the

remaining part being the cubic curve

which passes through the stagnation point (cos a, sin a) and touches the

axis of
f]

at the origin. We are only concerned with the part of this curve

within the semicircle. This has been drawn in fig. 1242, and the form of the

streamlines indicated by the method of 6-23.

12*43. The function o>(). The function o>() is defined by the equation

~
U dz

~
U U

Thus w() = + ilog^ = 6+ir,

and the real part of a> () is therefore the angle which the fluid velocity makes

with the axis of x in the z-plane, and the imaginary part r is a measure of the

speed, in fact

On the free streamlines, q = U and therefore r = 0.

Thus co () is real on
/zt , p,2 ,

that is, on the real axis in the -plane. Also,

at infinity in the z-plane, = 0, and therefore

co(0) = 0.

The function to () is necessarily holomorphic at all points within the semi-

circle, for these correspond to the region R of the z-plane where the motion is

continuous. Moreover, we have seen that to () is real on the real -axis, and

therefore the function to() can be continued (see 5-53) over the remaining

half of the unit circle by attributing to it the value to (1) at the point , and

hence giving the same value but changing the sign of r. The function to ()
determines all the circumstances of the motion as we shall now prove.

12-44. The wetted walls. The wetted walls, fig. 12-41, or parts ^ ,
A2

of the obstacle in contact with the fluid, are represented by the arcs A-f),

A 2 in the -plane. Now from the definition of co (), or briefly o>, and the

expression of w in terms of (1241), we have

(1) Udz = -e**dw = %a*e
it U+ --2coaa\

(^-?)y-

Now on the arc A^O, we have
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Substituting and integrating from x = to any value of x on OAt , and

remembering that corresponds to z = 0, we get

Cx
= - 2a2

(2) U z = - 2a2 eita
(cos x - cos a) sin

Equating the real and imaginary parts,

2a2 f*

U j a

2a2
(*

y = - - e~* sin 6 (cos x
- cos a) sin

;

and these are the parametric equations of the wetted wall A2 if we take x
between and a, and of A! if we take x between a and TT.

In particular, if in (2) we take x = 0, we get the value z2 corresponding

to the point A 2 .

If dX denotes an element of arc of Xl or A2 ,
we have

U dX U
|

dz
|

= 2a2 e~T
|

cos x - cos a
|

sin x dx,
and therefore

(3) A = -==r I e-* (cos x - cos a) sin

the lower limit corresponding to A2 and the lower limit TT to Xl ,
since dx is

negative on going from TT to a, and so is cos x - cos a.

The radius of curvature of the wetted walls is given by

dX
cos x - cos a

v ' dB U

12-45. The free streamlines. The parametric equations of the free

streamline
/x,2 are got by integrating (1) of the last section from = 1 to = f ,

where f is a point on 0'A 2 , remembering that, at A 2 , z takes the value z2 just

found. Thus

where is now a real variable. Equating the real and imaginary parts, the

required result is obtained.

The velocity is given by u = U e~ico
.

The pressure. Using the pressure equation, U being the pressure in

the cavity, we get

Thus p-n =

This is the hydrodynamic pressure.
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12*46. Drag, lift, and moment. Let the resultant force due to the

fluid have components X, Y along the axes at the point in the z-plane.

Then, as in the theorem of Blasius,

X+iY = i

Since U dz = -
(A V

OA%)

>,
we get

the integrals now being taken round the arc of the semicircle in the -plane.

Now consider the analytic continuation of o> (), 5-53, in the whole circle J1

,

fig. 1246.

We have ia> (f)
= t (0

-
ir)

= t (tf 4- tr) + 2r = foi ({) + 2r.

Also ty is real when ^ describes A^OA^ (see fig. 1241) and therefore dw = dw.

Moreover, when 5 describes the arc AfiA^ of I
7
in the counter-clockwise sense,

FIG. 1246.

describes the arc AfA^ in the clockwise sense. Thus we get

X+iY = P -5 />C7 f e*">
^ JU^^j)

eMo^r
It therefore only remains to calculate the residue of the integrand at the

only pole inside F, namely = 0.

Expanding by Maclaurin's theorem, and remembering that o>(0) =

(1243), we get

Also
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Multiplying these results and picking out the coefficient of l/, we get the

residue

ia
2
{J^/'(0)

- 2i cos a a/(0)
- H"' (O)]

1
}-

Thus, using the residue theorem, we have

X+iY = frpUa^w'(Q))* + %7rPUaH[^'(<))cosa-w"(<))],

whence X = i7rp7a
2
[co' (O)]

2
,

7 -
jTi/ot/a

2^ 7

(0) cos a - co" (0)],

and X is the drag and Y the lift. These are Levi-Civita's elegant results.

The moment M of the forces about the stagnation point is found by a

similar calculation to be the real part of the integral

M+ iN =
u t(XA,)

taken round the semicircle AjOA-i in the -plane, and must be calculated in

each particular case. The knowledge of X, Y, M allows us by the ordinary

principles of Statics to find the single force which is equivalent to the action

of the fluid on the obstacle. This single force will always exist unless

X = Y = 0.

1 2-47. Discontinuity of <o (). The function w () = 6+ ir presents a dis-

continuity at the stagnation point 0, for its real part 6 has two values there

corresponding to the two directions of flow along the tangent (or tangents)

at 0, moreover r-> - at 0, since the speed vanishes there.

Let the tangents to the

contour of the obstacle at

make an angle 2y with each

other, fig. 12-47 (i), and let

the internal bisector of the

angle make an angle with

the x-axis.

If is an ordinary point of

the contour 2y = TT, and the

tangents form parts ofone line.

If the contour is symmetrical
about the &-axis, e 0.

->y+c, but when we approach

FIG. 12-47 (i).

When we approach moving along X1 ,
6

moving along A2 ,
Q-> - y+ .

Also, when ->e<a
, co() becomes infinite, and the same must happen when

->e-<.

A simple function satisfying these conditions is
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To prove this, consider the behaviour of the function

343

when f moves inside or upon the semicircle in the -plane. If we determine

the logarithm so that log/(0) = 2t(a-7r), the function log/() is one-valued

and holomorphic at all points within the semicircle.

Now consider to be taken at P on the arc A1} fig. 1247 (ii).
We get

arg/(0 = arg (
- efa)

-
arg (

-
-<)

= TT -f Vi v2 = TT - (TT
-
a) = 27T 4- a.

FIG. 1247 (ii).

If is taken at Q on the arc Aa ,

Thus arg/(f)
has the constant value a - 2gr on Aj and the constant value

a - TT on A2.

When ^ passes through from A2 to Aj, arg/(^) decreases by TT.

Now

= - y+ {log (-e-*

But log (-e~
fa

)
= i(ir-*). Therefore, when J is on A2 ,

and when is on Xl ,

= -y+ JZ{^(7r a)+ i'(a -.27r)}
= e-f y.

7T

It is also evident that o ()-* when J->e
<a or e"~**. Thus o> () has all the

properties stated. Moreover, o> () is real when is real and can therefore be
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continued into the lower semicircle by the principle of reflexion. We also note

that

We have thus isolated the singular part of the function o> () at the point

and its image 0'. If we put

where

we have the general solution for obstacles which present only one discon-

tinuity of w (0 on the semicircle in the -plane. By attributing various forms

to (0 we can then obtain solutions for the resulting contours. The converse

problem of determining o>() for a given contour is of course more difficult

and only a few cases have been completely elucidated.

I2-50. Solution when = 0. In this case we have, from 12-47,

(1) o,(0 = o> (Q = e-y+ -^

Since to (0)
= from 12-43, we must have

(2} ,- 2y L "\ -""
(2) '-^("-2)'

a -2

2iy. t-e*-

.

which determines a.

Also is constant along Ax and A2 . Hence o> (?) is the function correspond-

ing to the flow past a lamina bent at an angle 2y, fig. 12-50.

y

FIG. 12-50.

Since

we get, from (1), the imaginary part of o>()> namely
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Substitution of this in 12-44 (3) will give the lengths of OAt , OA% and it is

then obvious that the ratio of these lengths is not arbitrary. This means that

the stagnation point will be at the bend, only if the lamina is correctly orien-

tated to the stream. If not, an abrupt change of direction of the velocity will

then occur at the bend
; physically acceptable solutions will be found only by

modifying the cavity so as to include parts of one arm or both.

It may be remarked that slight changes in y may produce violent oscilla-

tions in the position of the stagnation point and consequent fluctuations in the

moment.

To calculate the drag and lift, we have

,,., 2t'y J 1 eiet

w (0 =_^{^._ ^
Thus CD' (0) = - sin a, a>" (0)

= - sin 2a,
TT TT

where a is given by (2).

Using Levi-Civita's formulae (12-46), we get for the drag and lift

v 4a2
/)0y

2
9 7T v T. . 7T

JL = cos^ , I = GTpc/y sin
TT Zy y

12-51. Stream impinging on a plate. If we put 2y = TT, the bend in

the lamina disappears and we have then the case of a stream impinging on a

fixed lamina, see fig. 12-26 (ii). From 12-50 (2), we then get a = c+ far, so that

a is the angle at which the lamina is inclined to the asymptotic direction of

the stream. The formulae for the drag and lift, 12-50, then give the results

already obtained in 12*26.* When a = JTT, we obtain the result of 12-21.

12-52. The symmetrical case. If in the problem of 12-50 we take

= 0, we get the symmetrical case in which the stream impinges directly on

a lamina bent in the middle, fig. 12-52, which represents an approximation to

a ship with a sharp bow. In this case a = JTT, and the drag, 12-50, becomes

4a2
pUy

2
/7r,

while the lift vanishes. This expression contains the constant o,

whose value can be expressed in terms of \l> the length of OAl , as follows.

Since e = 0,

Putting J

v
we get r -

log ,

77

* The verification of this statement involves the calculation of a* in terms of U and I, the

length of the plate. The details of the calculation are explained in 12-52.
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and therefore, from 1244 (3),

FIG. 12-52.

Denoting the value of the definite integral by/, we get

8a2 -

and hence the drag is $pU2
ly*l(irf).

To evaluate/, let

Then /l(a ,
)
= t

where *P(x) is the logarithmic derivative of the Gamma function.*

Then /=a/i (i-j)_/i (i-j).

Now it is easy to establish the reduction formula

n x 1

from which we get / = J+~ + ^5/1 (l --)
^7T 7T \ 7T/

and/can then be evaluated from tables of the W function.f

* Milne-Thomson, Calculus of Finite Differences, London (1959), 9-3.

t British Association Tables, Vol. I, London (1931).
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EXAMPLES XII

1. Obtain the free streamline when a wide stream flowing with velocity U
parallel to a straight shore impinges on a pier which projects to a distance h perpen-

dicularly from the shore, and find the thrust on the pier due to the fluid motion.

2. A stream of finite width c whose velocity at infinity has resolutes

(
- V cos a,

- V sin a)

impinges on the rigid plane barrier y = 0. Show that the two-dimensional irrota-

tional motion of the stream under no body forces is given by equations of the form

dw _ A(t-X) dQ B_
~dt

~
(f
2 -!)

'

~dt

~~

7t

where -1<A< + 1.

Show that the stream divides into two branches of ultimate widths c cos2 Ja,
c sin2 a, and that the thrusts on the portions of the barrier on either side of the

point of zero velocity on the barrier are in the ratio TT - a : a, assuming the pressure
on the side of the barrier opposite to the stream equal to that along the free stream-

lines. (U.L.)

3. When a stream impinges on a lamina to which it is inclined at the angle a,

prove that the stagnation point divides the lamina in the ratio

2 + 2 cos a + (IT
-
a) sin a + 2 cos a sin2a

2 - 2 cos a + a sin a - 2 cos a sin2a

Hence show that the stagnation point is always between the centre of the

lamina and the end farthest upstream.

4. Show that the transformations

.,._ <?_ -(')* ..

lead to the solution of the problem of a plate placed obliquely in a stream with

the liquid dividing along two free streamlines on either side.

If 26 is the breadth of the plate and it is inclined at an angle a to the stream,
show that

267
cQQA

a 267
jind

- 7T . 2 - 7T . 2
1 + T sin a 1 + - sin a

4 4

where F is the stream velocity.

5. A fluid flows in two dimensions from y = +00 between the two planes
a? = a, y>b and impinges symmetrically on the fixed plane y = 0. Explain
how the forms of the streamlines can be found, and show that if d is the ultimate

width of the stream in contact with y = 0, then

TTO,

6. A finite stream impinges on an infinite straight barrier, the motion being
in two dimensions and the boundaries of the stream curves of constant speed.
If the undisturbed stream makes angle %ir-a with the barrier, show that the

perpendicular drawn from the point on the barrier where the stream divides to
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the asymptote of the streamline through that point is to the breadth of the
undisturbed stream as

~
(1 + sin a) + a cos2a -f sin a cos a log (2 cos a) + 2 cos a tanh-1

(tan |J
: IT.

Show that the resultant thrusts on the two parts of the barrier represented
by this point are in the ratio TT + 2<x : TT - 2<x. (U.L.)

7. A stream of incompressible fluid, whose velocity at infinity is U, impinges
symmetrically upon a bent lamina whose section consists of two straight lines,
each of length a, at right angles. The fluid flows over the convex side and is

bounded internally on the downstream side by two free streamlines. Show that

the resultant thrust on the lamina is V27rpaZ7
2
/{6*/2+'7r + 21og4J (\/2-l)}, and

that the intrinsic equation of either of the free streamlines may be written
s A cot2 20, where A is a constant, s is measured from the edge of the lamina
and 6 is the inclination of the tangent to the axis of symmetry.

8. A bent plane perpendicular to the ay-plane, whose section by that plane
consists of two straight fines AB, BC at right angles, is placed in incompressible
liquid flowing at infinity with unit velocity in the negative direction of Ox, so that
the central streamline is straight along xO, strikes the plane at B on the concave
side and bisects the angle ABC. With the usual notation, verify that all the Con-
ditions can be satisfied by putting

,

s/(*-&)(c-a)

Choosing the scale of measurement so that c - a =
1, and putting c - 1 cos2 U,

prove that

L = 2

P-2

f

"

w
J B

r
/2

si

J B

where B is the value of U corresponding to t = 6, whilst L is the length of either

plane and P the resultant thrust on it.
(U.L.)

9. In fig. 12*50, prove that the lengths of the wetted walls are given by

(cos x - cos a) sin x dx

and a second integral for A2 obtained by taking the lower limit to be zero. Hence
prove that when X is given there is only one possible value of A2 to make the motion
conform to the type shown in the diagram.



CHAPTER XIII

RECTILINEAR VORTICES

13-0. In this chapter some aspects of two-dimensional vortex motion will

be considered. The vorticity vector is necessarily perpendicular to the plane

of the motion and we shall as usual consider unit thickness of liquid, that is

to say, we suppose the liquid to be confined between two planes at unit

distance apart and parallel to the plane of the motion. The vortex lines being

straight and parallel, all vortex tubes are cylindrical, with generators perpen-

dicular to the plane of the motion. Such vortices are known as rectilinear

vortices. It is, as before, convenient to use the language of plane geometry.

13*10. Circular vortex. Let there be a single cylindrical vortex tube,

whose cross-section is a circle of radius a, surrounded by unbounded fluid.

The section of the vortex by the plane of the motion is a circle and the

arrangement may therefore be referred to as a circular vortex.

FIG. 13-10 (a). FIQ. 13-10 (6).

We shall suppose that the vorticity over the area of this circle has the con-

stant value o>. Outside the circle the vorticity is zero. Draw circles, concentric

with the circle which bounds the vortex, of radii r' and r, where r'<a<r.

Let q
f and q be the speeds of fluid motion on the circles of radii r' and r respec-

tively. It is clear from the symmetry that the speed at every point of the

circle radius r' is the same, and that the velocity is tangential to this circle,

for a radial component would entail a net flux across the circle and its centre

would then be a source or a sink. Similarly the velocity at any point of the

circle of radius r is tangential to that circle.
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Apply Stokes's circulation theorem (2-50) to these circles. Then

I q
f

ds = toTrr'*, r'<a\ \qds = ojTra2 , r>a.

Since q' and q are constants on their respective circles we get

2<77r' q'
= co Trr'

2
,

27rr q <o TTO?.

Thus q'
= \ur\ r'<a\ q = %a)a*/r, r>a. When r' r = a we have

q'
= q = ^ao) so that the velocity is continuous as we pass through the circle.

From this it appears that the existence of a vortex such as we have described

implies the co-existence of a certain distribution or field of velocity. This

velocity field which co-exists with the vortex is known as the induced velocity

Held and the velocity at any point of it is called the induced velocity.

It is customary to refer to the velocity at a point of the field as the velocity

induced by the vortex, but this must be understood merely as a convenient

abbreviation of the fuller statement that were the vortex alone in the otherwise

undisturbed fluid, the velocity at the point would have the value in question.

In this sense, when several vortices are present, the field of each will contribute

its proper amount to the velocity at a point.

Beturning to the circular vortex, the induced velocity at the extremity ofany
radius vector r joining the centre of the vortex to a point of the fluid external

to the vortex is of magnitude inversely proportional to r and is perpendicular

to r. Thus the induced velocity tends to zero at great distances.

As to the fluid within the vortex, its velocity is of magnitude proportional

to r and therefore the fluid composing the vortex moves like a rigid body

rotating about the centre with angular velocity \a>. The velocity at the centre

is zero. This important fact may be stated in the following way.
A circular vortex induces no velocity at its centre. This is to be understood to

mean that the centre of a circular vortex alone in the otherwise undisturbed

fluid will not tend to move.

Still considering the fluid within the vortex, the velocities at the extremities

of oppositely directed radii are of the same magnitude but of opposite sense so

that the mean velocity of the fluid within the vortex is zero. Thus, if a circular

vortex of small radius be
"
placed

"
in a field of flow at a point where the

velocity is u the mean velocity at its centre will still be u and the fluid com-

posing the vortex will move with velocity u ;
it will

" swim with the stream
"

carrying its vorticity with it.

The circular vortex is illustrated in nature on the grand scale by the tropical

cyclone (hurricane, typhoon) which attains a diameter * of from 100 to 500

miles, and travels at a speed seldom exceeding 15 miles per hour. Within

* D. Brunt, Weather Study, London (1942).
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the area the wind can reach hurricane force, while there is a central region,
"
the eye of the storm ", of diameter 10 to 20 miles where conditions may be

comparatively calm.

We also get from the above results

<?
r

i <7 a i= - when r<a, ~ = - when r>a,
coa a faa r

so that the speed q tends to zero at infinity and is greatest at the boundary.

r/a = 1 r/a

Fia. 13-10 (c).

Fig. 13-10 (c) shows the graphical relation between the above quantities,

the curved part being a portion of a rectangular hyperbola.

Outside the vortex the motion is irrotational, and the velocity is q e*+*
w

so that

dw _ |a
2 aje-<(9 +*ir > _ ia*a>

. _ _ i.
9

dz r z

and therefore the complex potential is

w =
fya>a

2
log z.

It follows that there is a circulation of strength K given by K = eoa2 . We
may therefore call K the strength of the vortex* the actual circulation being2.

Thus for the liquid outside a circular vortex whose strength is K and whose

centre is at the point 2
, the complex potential is

w = wclog(z-z ).

I3-II. Pressure due to a circular vortex. Let p , p denote the

pressure inside and outside the vortex. The pressure must be continuous at

the boundary, and therefore

(1) PiP when r a.

Inside the vortex, the equation of motion is

1 dpl _ ro>2 _ K2 r

p dr
~

4
~~

a4
'

* This notation avoids the recurrence of a redundant factor 2n and ia analogous to the defini-

tion of the strength of a source in 8-10.
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for the liquid is rotating with constant angular velocity co/2, and hence the

acceleration is rwz
/4t towards 0.

Integrating, we get

where pQ is the pressure at the centre.

Outside the vortex, we may use the pressure equation in the form

*p /c
2 77- + - constant = ,

p 2ra
p

where 77 is the pressure at infinity. Hence, from (1),

(
2

) Po+^^n-*^, or 7> = 77-^. Thus

The relation between the pressure and the radius is shown in fig. 13-11,

where y = pressure/77, x = r/a, and k - /c
2
/>/(a

a
77).

FIG. 13-11.

The curves are the parabola y~(I-k) %kx
2 and (y-l)aj

2 =-&, the

latter being asymptotic to y = 1. The curves touch at x = 1, corresponding
to the boundary. The dotted portions are drawn to show how the curves lie.

It appears that the pressure increases continuously from the value 77(1
-

k)

and tends to 77 at a great distance.

13-12. Hollow circular vortex. We have just seen that the pressure
is least at the centre of the vortex and has the value 77(1 -&). If k>l it

follows that the pressure would be negative. To avoid this, a concentric

hollow containing no liquid will exist within the vortex. The pressure dia-

gram of fig. 13-11 will now have to be modified by moving the origin to the

appropriate point between y = 1 - k and y = 1 - \k. As an extreme case we
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may suppose k = 2, i.e. Kz
p = 2a2/7. We have then a completely hollow

cylindrical space around which there is cyclic irrotational motion.

It also appears that when the circulation %TTK and the pressure 17 at infinity

are given, a circular vortex, whose interior is wholly occupied by fluid, has a

minimum radius given by a2 = *2
/>//7. (Cf. 13*8.)

13-13. Rankine's combined vortex. This consists of a circular cylin-

drical vortex with its axis vertical in a liquid which moves under the action of

gravity, the upper surface being exposed to atmospheric pressure 77. This is

a three-dimensional problem, but may be conveniently treated here.

Take the origin in the axis of the vortex and in the level of the liquid at

infinity, fig. 13-13, and measure z vertically downwards. We see at once that

the kinematical conditions at the boundary are satisfied by taking the velocity

FIG. 13-13.

system found in 13*10, namely (writing 2co for a)) wr when r<a and o>aa/r

when r>a, both horizontal in direction and at right angles to r. Whenr>a
the motion is evidently irrotational, for there is a velocity potential <f>

- a2wB.

Therefore the pressure equation gives

P

p

j. j.

9Z = constant,

-gz being the potential of the gravitational field. To determine the constant,

put r = oo
,
z = 0. Then p II, the surface pressure at infinity, and therefore

(1) p =

To determine the pressure pl inside the vortex, we have the equations of

motion

p or p oz
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Thus
P P

To determine C, we must have p = ^ when r = a, and therefore

(2) Pl =

At the free surface p = pl
= 77, and therefore, from (1) and (2),

a*o>2

2 = TT r when r>a,V2

These equations determine the form of the free surface.

It also appears that the surfaces of constant pressure are obtained by a

mere translation vertically of the free surface form which corresponds to

p = PI = n.

To obtain the depth of the depression at A below the general level of the

liquid, put r = in (3). Then OA = a2wz
/g.

v 13-20. Rectilinear vortex filament. The strength of the circular

vortex was defined in 13-10 by

Tra2 being the area of the cross-section. If we let a->0 and oj -> oo in such a way
that the above product remains constant, we get a rectilinear vortex filament,

that is, a two-dimensional vortex whose cross-section is an infinitesimal circle

(cf. 1-12).

In view of the minimum size of a circular vortex described in 13-12, the

vortex filament obtained in this way must be regarded a convenient abstraction

(cf. 8-10).

A rectilinear vortex filament is represented by a point in the plane of the

motion, just as a two-dimensional source is so represented. It also follows

from 13-10 that the complex potential, due to a vortex filament of strength K

situated at the point z
,
is

w = ii<log(z-z ).

The strength K is positive when the circulation round the filament is

counterclockwise. We may refer to such a filament as a point vortex, or

simply a vortex when there is no fear of ambiguity.
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13-21. Single vortex filament. Take a vortex filament of strength K

at the point A, z . Then w = IK log (z
- z ). The velocity of the point P, z,

is therefore given by
dw IK tK

dz

FIG. 13-21.

where R = AP and arg (z- z )
= 0. Thus

#
Thus the direction of motion at P is at right angles to AP with speed

q = K/R in the sense given by the rotation of the vortex at A.

It should be noted that the stream function is

\jj
= |/clog (z-z )(z-z )

= ic log |

z-z
|

= KlogR.

Also since 2it/j w(z}- w(z) we have v = -
i

^
13-22. Motion ofvortex filaments. We have seen (13-10) that a circular

vortex alone in the fluid possesses no tendency to set itself in motion and the

same therefore applies to a vortex filament. If therefore there are several

vortex filaments, the motion of the filament at the point P is the same as the

motion which would be produced at P by the remaining vortices if the vortex

at P did not exist. It must be observed, however, that the complete motion

of the fluid may be due not only to vortices but also to the presence of sources,

streams, or other causes, and the velocity of P will then be compounded of the

velocity induced by the other vortices, as just described, and the general velocity

at P of the fluid due to the remaining causes.

Thus if w is the complex potential of a flow which contains a vortex of

strength K at the point z , the complex velocity of the vortex is

U ~iv = -
{ y [w

- we log (z
- z )]

> = - 2i < -
[ift
- K log I z - z I

t^z J ^z Jo

where suflix zero indicates that after the differentiation we put z = z and
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1 3*23. Two vortex filaments. Consider filaments at A l , A 2 of strengths

KJ ,
K2 . If zl ,

z2 are the affixes of Al , A 2 ,
then

w = i/q log (z
- zj + iK2 log (z

- z2).

The velocity of Al is due to K2 alone

and is therefore given by

Similarly the velocity ofA 2 is given by

(2) u2 -iv2
=^- Thus,

/o\ / \
, / \ r*

FIG. 13-23.
(3) K1 (ul -^v1)-\-K2 (u2 -^v2 )

0.

If we imagine masses K19 KZ at A^ , A 2 ,
their centroid G will be at the point

(KI zi + ^2 z2)/(Ki+ ^2)? provided /ct + /c2^ 0. We shall call 6r the centroid of the

vortices. It follows from (3) that the centroid of the vortices remains at rest.

The velocity of A x is

- GAl
-

w,

where w
(

and the line A l A 2 therefore rotates with this angular velocity. Since neither

vortex has a component of velocity along A^A29 it follows that A^A 2

remains constant in length. Therefore w is constant and each vortex describes

a circle with constant angular speed.

If K! = K2
= K and AI A 2

= a, then each vortex describes the circle on

A 1 A 2 as diameter with angular speed 2/c/a
2

.

13-24. Motion of a system of vortex filaments. If we have several

filaments /q ,
/c2 ,

/c3 ,
. . . at points zl ,

z2 ,
z3 ,

. . .
,
the considerations of the last

section show without difficulty that the function

W = iE KfKa log (zr
-

z,), r^sy

gives the induced velocity of any particular filament.

If for simplicity we consider three filaments, we have

W = * {*! V2 log (zl
- z2) + K2 K9 log (z2

- z3) + KS /q log (2,
-
zj},

and the induced velocity of the filament K^ is given by

Writing down the corresponding velocities of /c2 and /cs , we get at once,

after multiplication and addition,

(1) KI ul+ K2 u2+ K3 us
= 0, ^Vi+^Va-h/CgVa = 0,
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so that the centroid of the three filaments remains at rest. This result is

easily seen to apply to any number of filaments.

If we write W = ^-H^, we have

Hence Ki U\ "r _ > V, =

Thus /
is analogous to the stream function in giving the components of

the velocity of the vortex. Also

dt r -i\dxr

,

dyr dt]'

But
dxr

Therefore d*F/dt=Q and V is a constant of the motion.

v/13'30. Vortex pair. A pair of vortices each of strength K but of

opposite rotations is called a vortex pair. Consider such a pair K at A and - K

at B where AB = 2a. Take the #-axis to bisect

AB at right angles, fig. 13-30 (i). The vortex

at A induces in B a velocity */(2a) parallel to

Ox} and B induces a like velocity in A. Hence

the pair advances in the direction OX with the

constant velocity K/(2a). The complex potential

is

. . z-ai
w IK log

FIG. 13-30 (i).

where the origin is the mid-point of AB.

The stream function is therefore

/ i
PA

t = K log
-

,

where P is any point. The instantaneous stream-

lines are therefore given by PA/PB = constant,

and are coaxal circles having A, B for limiting points and the x-axis for

radical axis.*

The velocity at any point of Ox is along this line and there is therefore no

flow across it. The velocity at is 2/c/a, which is four times the velocity of

advance of the vortex pair.

* In terms of the coaxal coordinates of 6-50 the complex potential of the vortex pair is

w as -*, provided that we take A, B as z ~c. The relation of the problem of 6-53 to the

present theory now becomes evident.



358 VORTEX PAIR [13-30

To find the relative streamlines, we impose a velocity on the whole system

equal and opposite to the velocity of advance of the vortex. The appropriate

stream function is therefore

where rt = PA, r2 = PB y
and the relative streamlines are shown in fig. 13-30 (ii).

FIG. 13-30 (ii).

The semi-axes of the oval are 2'09a, l-73a approximately (Kelvin).

The figure also represents the streaming past a fixed cylinder whose section

is that of the oval.

If U is the asymptotic velocity of the stream, we have U ~
K/(2a), and

hence we can regard the motion as due to vortices at A and B of strength

2aU in a stream of asymptotic velocity U.

**
13*31. Vortex filament parallel to a plane. Let a vortex filament

at A be at distance a from a plane OX, AO = a. If K is the strength of the

filament and we place a second fila-

ment at B where AB = 2a and at

the same time allow the fluid to

have access also to the side of the

plane on which B lies, we have a

vortex pair which yields no flow

across the plane. This may there-

fore be removed. Thus the vortex

at B is the image of the vortex at A.

Since the pair moves parallel to OX with velocity /c/(2a), it follows that the single

vortex A in the presence of the plane will move parallel to the plane with the

above velocity. In the position shown the complex potential is

FIG. 13-31.

w = IK log

25- a*
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Hence at time t we shall have

. . z-ai-Vt
W = IK lOg*

where V = */(2a).

TT dw
Hence - -

: ^-
--

:

dt \z-ai-Vt z+ai

and therefore at a point on OX, taking t = 0,

K2 cos2

* \
: ^ ]>
i-VtJ

aa

Again when t 0, the velocity at P on Ox is the resultant of K/PA, K/PB

perpendicular to PA, PB, and so q = 2/c cos2 0/a. Thus the pressure at P is

given by

where 77 is the pressure at infinity (6 = JTT).

K2p
Thus p = II ~ cos2 . cos 20.

d

The force on the plane due to the motion is therefore

K2 fff/2

~ cos2 cos 20 . a sec2 <Z0 = 0.

13-32. Vortex doublet. Consider a vortex pair, K at ae** and -K at

- a e**. If we let a->0 and /c-> oo in such a way that 2a* = /x,
we get a vortex

doublet inclined at an angle a to the oj-axis, cf. 8-23.

y

FIG. 13-32.

The direction of the doublet is reckoned from the vortex of negative rota-

tion to that of positive rotation. The complex potential is

w lim IK (log (z
- a e**)

-
log (24- a e**) )

ae _

The stream function is $ = -
ft cos (a

-
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If, in particular, we take the vortex doublet to be at the origin and along

the axis of yt
we have ^ = -

\i sin 6/r. If we put /z
= Ub2

,
we obtain

C762 sin 8
* =

>

which is the stream function for a circular cylinder of radius b moving with

velocity U along the cc-axis.

Thus the motion due to a circular cylinder is the same as that due to a

suitable vortex doublet placed at the centre, and with its axis perpendicular

to the direction of motion.

We obtain a circulation round the cylinder by placing a vortex filament of

suitable strength at the centre.

I3'33. Source and vortex. The considerations of the previous section

lead us to enquire how a source and a vortex combine. The complex potential

w (-m+ iK) logz, /

FIG. 13-33.

decreases by 27r(tm+/c) when we go once round the origin, and therefore
</>

decreases by 2ir/c while ^r decreases by 2irm, and w therefore satisfies the con-

dition for a vortex and a source there.
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The stream function is

= -w0-f/clogr.
When

</r
has the constant value K log C, we get

mfl

r = Ce,
so that the streamlines are equiangular spirals.

The streamlines can readily be drawn by the diagonal method (4-32), by

combining the lines

tn6 = nco,

K log r = na>, n = 0, 1, 2, . . .
,

or * = -, r = e^.m
The above combination is known as a spiral vortex.

We could impose a longitudinal velocity perpendicular to the plane. This

suggests two loose analogies : (i) the swirling flow of gas in an exhaust jet,

(ii) flow towards a bath waste if a sink is substituted for the source.

13-40. Vortex filament parallel to two perpendicular planes.
Take the planes for axes. Let the vortex be at (x, y). Then the image system

is - K at (x, -y),
- K at

(
-

x, y), and K at (
-

x,
-

y). The velocity of the

K/2r

K/2y

FIG. 13-40.

vortex is due solely to its images. Hence the velocity components are those

shown in the figure. Since aj=rcos0, y = rsin0, the radial and transverse

components are given by
dr K cos 6 K sin K cos 29

dt

dS

2r sin 2r cos r sin 20
'

K sin K cos K
T

'dt 2r 2r sin 2r cos

Therefore, by division,

Integrating, we get

Idr

rti

2 cos 20 dd
~~

sin 20 ~dt

'

r sin 20 = a,
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where a is a constant. The form of the path of the vortex and its sense of

description are shown.

13*50. Vortex in or outside a circular cylinder. Let there be a

vortex of strength K at the point Z~X+ iY outside the cylinder | z\=a.
If the motion is due solely to the vortex the circle theorem gives the complex

potential

(1) IK log (z
- Z) - IK log (a*/z

-
Z),

which, omitting an irrelevant constant, is equivalent to

IK log (z-Z)-~ IK log (z
- a2

/Z) + IK log z.

This shows (cf. 8-61) that the image system consists of a vortex of strength
- K

at the inverse point and a vortex of strength K at the centre.

The addition to (1) of the term IK log (
-
Z), which is independent of z gives

the complex potential in the form

(2) w = IK log (z
- Z) - IK log (1

- a2
/zZ)

= < + i^G 1

,

where the stream function KG is constant on the boundary of the cylinder and

is given by 2iKG = w - w, so that

(3) G = G(z, z ; Z, Z) = log |

z - Z
\

-
J log (1

- a2
/zZ) (1

- a2
/*Z),

and it is now clear that G has the reciprocal property

which expresses that the function is unaltered by interchange of the pairs of

variables.* Now write

(5) g(z, z ; Z, Z) = 0(z, z
; Z, 2) -log |

z-Z
\

The function g has the following properties.

(i) g(z, z
; Z, Z) is a harmonic function of (x, y) which has no singularity

at z = Z or at any point of the region occupied by the fluid,

(ii) The function g has the reciprocal property
//j\ _ IM . nr /7\ _ / r* 75 .\

(0) O\Z* Z \ /J \ j) Q\Zj* j I Z Z]

Now
r rv v

zr9(Z> %\ 2, Z) = ( pr0(z,
^

; ^, -/ . -
OL \OZ OZ 1 1

where suffix 1 indicates that after differentiation we must put z = Z, = Z.

It then follows from (ii) that

/r\ i f*lft a . *7 ^7\ 1 1 * / *7 *7 *7 r/\
(*) \2:9(z > z ' L > L)) $w9(':/

> /'> L
>
LI-

*
(? is in fact a Green's function.



13*60] VORTEX IN OR OUTSIDE A CIRCULAR CYLINDER 363

This result is fundamental for the present investigation. It is a direct

consequence of the property (ii). In the present case (5) shows that

(8) (Z,Z; Z,Z) = -log(l-|g

and it is easily shown by direct differentiation of (5) and (8) that this particular

function satisfies (7).

Let us now superpose on the flow due to the vortex alone in the presence of

the cylinder any other field of flow (e.g. a uniform stream or a circulation

round the cylinder) whose stream function ^ (z, z) is constant on the boundary
of the cylinder and has no singularity at z = Z. The stream function for the

combined flow is

(9) <A(z, z)
=

fa(z, z) + KG(z, z ; Z, Z).

To find the complex velocity of the vortex we use the principle stated in

13-22 by forming the function

i.e. by subtracting the stream function of the vortex itself alone in unbounded

fluid. Then from 13-22 the complex velocity of the vortex is

Now from (5) and (9)

(10) * = t (z,z) + Kg(z, z; Z, Z).

Therefore the complex velocity of the vortex is

(11) Ul _t01= -2*||,
where

(12) Xi = <Ao (Z,Z) + &9(Z,Z; Z,Z).

Comparing (10) with (12) we see that the factor K in the last term of the

expression for x becomes the factor \K in the last term of the expression for xi
on account of (7). Observe that xi = Xi(^> Z) is a function of Z, Z only and

is independent of z. From (11) we get

MO)
dX - u - fa dY - v -fa

(Id) __ MI _-_, __,__.
The function xi is called Routh's stream function.

In particular, if the vortex at (X, Y) is the only mobile singularity in the

flow and if ^r (Z, Z) depends on the time t only through (X, Y), we have

dfo^dxi^dX dxi dT_ n
dt dX dt^dY dt
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from (13). Therefore

Xi (Z, Z) = constant,

and this is the equation of the path of the vortex.

FIG. 13-50 (i).

In the case of a single vortex of strength K outside the cylinder and a cir-

culation of strength K' about the cylinder we have = K log r, where r =
|

z
|,

while from (8) g(Z,Z; Z, Z) = -
log (1

- a2
/#

2
),
where R =

|

Z
|.

Therefore

the path of the vortex is given by

(H) Xl = K' log jR ~ |ic log (1
- a2

/#
2
)
= constant,

so that R remains constant and the vortex describes a circle concentric with

the cylinder and with speed

To deal with the case of a vortex inside the cylinder we see that the function

g of (8) is unsuitable, for it has the singularity Z = in the region of flow.

FIG. 13-50 (ii).

The complex potential, however, is still obtainable from the circle theorem in

the form

IK log z - IK log f Z
J
+ IK log (z

-
Z).

Take K+K 0. Then we have the situation of fig. 13'50 (ii), where

w = IK log (z
-
Z) - IK log (a

2 -
zZ).
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and we now see that the appropriate form for g, having the reciprocal property,

is
__ _

g (z, z\ Z, Z) = -
i log (a

2 -
zZ) (a

2 - zZ) leading to

(15) g(Z,Z; Z
t Z)=~log(a*-R*).

Thus
</r
= and the path is given by

Xl = -
|/c log (a

2 - JK
2
)
= constant,

so that the vortex again describes a concentric circle with the speed *JR/ (a
2 - JR

2
).

It appears from this discussion that the image of an internal vortex of strength

K is a vortex of strength
- K at the inverse point and a circulation of strength

- K about the cylinder.

As a final illustration * consider a vortex of strength K at the point Z out-

side the cylinder together with a uniform stream (of complex potential
-

Uze-**)

and circulation of strength K' about the cylinder. Then if (R, @) are the polar

coordinates of the vortex, we have

i/r (Z, Z)=-U(R- a*/R) sin (9 - a) + K' log R,

and the path of the vortex is given by

(16) XI = -U(R-^\
sin (0 - a) + K' log R - \K log (l

-
1^

= constant.

If the flow whose stream function is (z, z) is superposed on the field which

contains n vortices, KT at the point zr ,
r = 1, 2, ... , n, the stream function of

the combined flow is, from (9),

(18) i/j(z, z)
=

(z, z)+ZKrG(z, z zr ,
zr ),

the summation being from r = 1 to r = n. Write

(19) iff,
=

i/5r (z8 ,
zs) + 127 icr (?(zr ,

zr ; z, , 2,), 0,
= 0(z, , z, ; z, , z",),

r^

(20) *F = ^K8 (ifjs+ ^Ksg8) summed from s 1 to s n.

It then follows from (11) that the complex velocity of the vortex at z
t is

v, where

(21) K8v8 = -

Thus the function (20) is entirely analogous to the function *P of 13-24

and is a constant of the motion if
tf/Q does not depend on time explicitly.

The function g has been found in (5) for the region exterior to a circle and

in (15) for the region interior to a circle. When the boundary is other than

circular, the conformal mapping of the region occupied by the fluid on the

region exterior or interior to a circle, as the case may be, will then reduce the

* For a detailed study of the ideas here outlined, consult C. C. Lin, On the Motion of Vortices
in Tivo-Dimensions, University of Toronto Press (1943). This paper discusses the most general
problem.



366 VORTEX IN OR OUTSIDE A CIRCULAR CYLINDER [13'50

problem to the one considered here. The relation between the function g and

its transform under the mapping is given by 13-60 (4), (5).

13-51. Vortices in the presence of a circular cylinder. Consider

vortices K at A, z1 , and - K at B, z^ ,
outside the circular cylinder \z\

= a.

The complex potential in the absence of the cylinder is IK log (z
-
z^j(z

-
z\),

and if we insert the cylinder |

z
\

a the circle theorem gives

W = IK log (Z
- ZX)/(Z

- %) - IK log (

FIG. 13-51 (i).

so that the image system consists of opposite vortices at the inverse points and

w = IK log (z
- z^ +wz , where, ignoring a constant,

(1) Wz
~ - IK log

and the complex velocity of the vortex at A is the value of -dwz/dz when

If we write, as in 13-50,

w =

so that

the path of the vortex at A is given by

+ log

AB'
constant = \Kg (zl9 ^ ; lf 2X) = \K log

"
,
so that

where A; is a constant whose value depends on the initial conditions.
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If A is the point (x, y) or (r, 6), then

rBm0(r-~] =
&[r

2+^-2a
a cos

20]
,

which reduces to (x
2+ y

2 - a2
)
2 f = &2

[ (x*+ y*
- a2

)

2+ 4aVI-

Taking & = 0, this gives the cylinder and the x-axis, which is the
"
dividing

streamline."

We can therefore draw the form of the curves, fig. 13-51 (ii), which consist

of two loops within the cylinder and branches outside which are asymptotic

FIG. 13-51 (ii).

to y k, for when x->oo , y
2-+k2

. The outside curves are described by a

vortex pair whose distance apart at infinity is 26, where 6 is the value of the

constant k. The inner loops are described by a vortex pair within the cylinder.

The motions inside and outside can co-exist but the line joining corresponding

vortices within and without does not continue to pass through the centre of

the circle.

The loops may degenerate into points. In that case there will be a stationary

vortex pair within the cylinder. To get the condition for this, take all four

vortices on the t/-axis and let r be the distance of A' from the centre. Then

A' will be stationary if its induced velocity is zero, i.e. if

r + a2
/r

which gives r4+4a2 r2 -a4 = 0, whence

r2/a
2 =

^/5
- 2 = 0-236067, and r/a = 0-486,

nearly. A vortex pair thus situated within the cylinder will remain at rest.

13-52. Stationary vortex filaments in the presence of a cylinder.
If in fig. 13-51 (i) we reverse the sense of rotation of all the vortices, the motion

of the vortex A is given by (1) of the last section, with the sign of K changed.

Let us impose on this system a stream in the direction of OX whose velocity

at infinity is U. The complex potential for the cylinder alone in the stream is
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Hence the motion of the vortex A is obtained from the function

(1) Wz =-!
a2\ .

'

-
-ft/clog

z/
Z

Hence the vortex A will be at rest if dwjdz = 0, when z = z^. Performing

the differentiation and dropping the suffix 1 for simplicity we get

(2) - ^
-
^J

- -
(^_ a2

)(z
_

2) (Z
2 _ a.

}

If two complex numbers are equal so are their conjugates. Expressing

this fact and dividing, we get

which leads, after a straightforward reduction, to

(3) (zz -a2
)
2+ zz (z -z)

2 = 0.

Putting z = r ei$
,
where < 6 < TT/%, this gives

(
r2 - a2

)
2 = 4r4 sin2 0, or, r - - = 2r sin fl.

Hence ^4^4
' = AB, and if this condition is satisfied the vortices can be at

rest behind the cylinder.

From (2) and (3) we deduce that * = U (r
2 - a2

)
2
(r

2 + a2
)/r

5
.

It is clear from the symmetry that if A is at rest, so is B. Thus it appears

that equal but opposite vortices of the strength given above can remain at

rest behind a circular cylinder in a uniform stream 7, provided that they are

placed at image points A and By such that AA' = AB.

FIG. 13-52.

This result is of great interest since such vortices have frequently been

photographed (see Plate 1) in slow streaming past a cylinder. The general

form of the streamlines is shown in fig. 13-52.
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There are four stagnation points, three on the cylinder and one on the axis

of the stream.

We deduce the complex potential of the fluid motion from (1) by adding

the term IK log (z z
)
for the vortex at A.

13-60. Conformal transformation. Let there be a vortex at 71 in the

-plane, and let P in the z-plane correspond to 77 in the -plane by means of

the conformal transformation

(1) * = /()

Let y be a small curve surrounding 77, and c a small curve consisting of

points corresponding to the points of y and therefore surrounding P. If

(2) w =
</-H'i/r

be the complex potential giving an irrotational fluid motion in the -plane,

there will be a corresponding fluid motion in the z-plane, obtained by eliminating

from (1) and (2), and the values of <, ^ and w will be equal at corresponding

points. Hence the circulations round y and c will be equal, i.e.

f -fy =
f

-
J (y) J (c)

Hence, if there is a vortex filament at 77 of strength K, there will be a

vortex filament of strength K at the corresponding point P.* It does not,

'.P

-
plane

FIG. 13-60.

z-plane

however, follow that these vortices will move so as to continue to occupy

corresponding points. If we know the motion of one, we can nevertheless

determine the motion of the other by means of a theorem due to Routh.

The theorem may be obtained as follows.

Let 77 be the point x ,
P the point %.

Suppose the transformation (1) maps the region exterior to the profile

A in the z-plane on the region exterior to the cylinder C or
| |

= a in

the -plane (cf. fig. 6-29). The principles of conformal mapping allow us

* Cf. 8-50. It is assumed that c encircles P once only.
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to relate corresponding flows in the two planes through their stream functions,

say

(3) 0(*,*) = ft>(C,a.

If either of these is given the other is determined.

If the only mobile singularity is a vortex of strength K at zl and therefore

a vortex of strength K at f 1 , the path of the vortex in the -plane is determined

by the function xi of 13-50 (12) where, with an obvious modification of notation,

where y is given by 13-50 (5) in the forra

Now in the z-plane we have

g(z, z; zl) zl )
=

(z, z; zlt z l )

where G is a function (at present unknown) which has no singularities in the

fluid except at z = zl ,
and has the reciprocal property 13-50 (4). On the other

hand, F and G are both stream functions, one the transform of the other under

(1). Therefore F and G take the same value at corresponding points, and so

by subtraction

(4) g(z, z
;

zl9 zt)
= y(, f ; 1 , i) + log

Therefore letting z->zl we get

(5) g(*i , *i ;
zl9 z\)

= y(fi , ^ ; x , W + log

This determines ^ in terms of the known function y, and therefore the path of

the vortex in the z-plane is given by x constant, where

_

This is Eouth's theorem.

As an illustration let us find the path of a vortex K moving in the z-plane

in the presence of a flat plate stretching from z - 2a to z = 2a. Such a

plate is mapped on the circle
| |

= a by the Joukowski transformation

The problem for the circle is solved by 13-50 (14). For brevity take K = 0, so

that if fl
= r (cos 0+ i sin 6)

Thus in the z-plane

X = -i^

l-^-j, ~p
= l-~ (cos 20-i sin 20).
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with xl
= (r +

J
cos0, yl

= (r --
J
sin0,

and the path is x = constant. The problem which includes streaming and

circulation round the plate, 13-50 (16), offers no additional difficulties.

13-61. Vortex outside a cylinder. Just as in the case of a source

described in 8-71, the complex potential can be written down in terms of a

mapping function,

which maps the region exterior to the contour G of the cylinder in the z-plane

on the region exterior to the unit circle
|

Z
|

= 1 in the Z-plane. Thus if there

is a vortex of strength K at z outside C, there is also a vortex of strength K at

the corresponding point Z outside the unit circle in the Z-plane, and by the

circle theorem

W ~ IK log (Z
~ Z )

- IK log ( -~ - ,

which with (1) determines w as a function of z. Any distribution of vortices

can be treated in this manner (see 8-70, 8*71).

13*64. Green's equivalent stratum of sources and vortices. We
use the description and notation of 8-24. Since u- iv= - dw/dz is a holomorphic

function of z in the region L of the flow bounded by the contour (7, Cauchy's

formula (5*59) gives

/i\ If (u iv)od . A
(1) -.1

~ = w iv or 0,

according as z is in L or outside. Here (u-iv)G denotes the complex velocity

u - iv at points of the contour C. Let qs be the tangential component of velocity

in the direction of positive description of 0, and let qn be the normal component
directed into L. Then

(2) (u
-

iv)c cZ = (u
-

iv) ds eie =
(0,

-
tgw) cb,

and therefore at a point z in the field of flow (1) gives

(0)

and this is the complex velocity at z of a distribution of sources of strength

qn/27r and of vortices of strength gt/2w, per unit length ranged on the boundary

0. By (1) this distribution produces zero velocity outside L.
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13*70. Vortex sheet. In 13-20 we defined a rectilinear vortex as the

idealised limit of a cylindrical region of vorticity whose cross-section shrinks to

a point while the amount of vorticity remains unaltered. We use an analogous

process in defining a vortex sheet.

In fig. 13-70 n is the unit normal vector at the point P of a surface 27. Let

be an infinitesimal positive scalar and consider the points PI ,
P whose position

vectors referred to P are |en, -|en respectively. As P describes the surface

2 the points Pj ,
P describe surfaces Si ,

$ parallel to 27 which is halfway

between them. Take an infinitesimal area of 27, say dS, whose centroid is P.

FIG. 13-70.

The normals to 27 at the boundary of dS together with the surface Si ,
SQ will

delimit a cylindrical element of volume dr = e dS.

Now imagine the above surfaces to be drawn in fluid which is moving

irrotationally everywhere except in that part which lies between Si and /S .

Let be the vorticity vector at P. Then we can write %dr e dS to dS,

where

If we now let e->0, ->oo in such a way that co remains unaltered, the surface

27 is called a vortex sheet of vorticity co per unit area.

Before the passage to the limit, the velocity will be continuous throughout

the fluid, and if q, qx , q are the velocities at P, Px ,
P

,
we have

(2) qi = q + |(nV)q, q = q-i*(nV)q,

whence by addition

(3) q=J(qo+qi).

This result is true however small c may be. Thus the velocity of a point P of
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a vortex sheet is the arithmetic mean of the velocities just above and just

below P on the normal at P.

If we apply Gauss's theorem, 2-61 (2) with a = q, to the elementary cylinder

of volume dr in fig. 13-70, we get approximately

neglecting a contribution of higher order of smallness from the curved surface

of the cylinder. Dividing by dS and letting e-0 as before, (1) gives the exact

result

for the surface vorticity to of the sheet.

It is clear that a non-zero value of co is associated with a discontinuity of

the components of q , q t perpendicular to n. It follows that a surface across

which the tangential velocity changes abruptly is a vortex sheet.

It also appears from (4) that co is perpendicular to n and is therefore

tangential to the vortex sheet. A two-dimensional vortex sheet is represented

by a line AB in the plane of the motion, such that there is an abrupt change
in the tangential velocity, but no change in the normal velocity, on crossing

the line AB.

For example, in rowing, the blade of an immersed oar separates fluid mov-

ing in opposite directions (cf. fig. 6-34) along the face of the blade. When the

oarsman suddenly removes the blade from the water, the hollow space left

quickly fills up with fluid presenting an abrupt change of tangential velocity

on two sides, in fact a vortex sheet. This sheet is unstable and rolls up to form

the vortex so frequently observed. A similar explanation may be offered for

the vortices which follow the tip of a spoon moved across the surface of a cup
of tea.

It is important to notice that the formation of vortex sheets, in the wake of

a moving aerofoil for example, is in no way contradictory to the theorem that

motion started by impulses must be iirotational.

In some motions (see Plate 4) a vortex trail consisting of two rows follows

the body. This may be regarded as a rolling up of portions of a vortex sheet

into concentrated vortices. We shall therefore develop the theory of two

rows of vortices.

13*71. Single infinite row. Consider an infinite row of vortices each of

strength K at the points

0, a, 2a, ...
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The complex potential of the 2n-f- 1 vortices nearest the origin is

wn = t/clogz-M/clog(z-a)-t-. . . + tVc

[13-71

*K log {z(z
2 -a2

)(z
2 -22a2

) . . . (z
2 - w2a2

)}

+ %K log {- . a2 . 22a2
. . . n2a2 l .

I
77

"

J

-e Q-
-2a

y

-Q ^o

Fia. 13-71.

The constant term may be omitted, so that we write

2a

,
sin can be expressed as an infinite product in the form *

If we let n-> oo
, we get for the row

. , . TTZ
w = lie log sm .

Consider the vortex at z = 0. Its complex velocity is given by

d (. . . TTZ . , 1 . (IT ^TTZ 1\- -=- < t/clog sin IK log z > = - t/c I
- cot =0.

dz \ a Jz=o Va a zj z=0

Thus the vortex at the origin is at rest and so therefore are all the vortices

of the row. Thus the row induces no velocity in itself.

The stream function is given by
r / / \ -/-\ 1 I

'**%' 1TZ\

%nfj
= w(z) -w(z) = IK log ( sin sin 1 ,

/ i i i / T_ 27rt/ 27rx\

$ =
J/c log I cosh - - cos 1 .

* See e.g. Hobson, Plane Trigonometry, 282.
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For large values of yja we can neglect the term cos 2irx/a, for its modulus

never exceeds unity, and therefore along the streamlines
ifi
= constant we

have y = constant. Thus at a great distance from the row the streamlines

are parallel to the row.

Again, if o
x ,

ua are the complex velocities at the points z, z, respectively,

we have

WCTT ,
TTZ IK7T TTZ

u-4-Ua = cot cot
a a a a

t/ar

a

o2 sin-
a

,

cosh - - cos-
a a

which is purely imaginary and tends to zero when y tends to infinity. Thus

the velocities along the distant streamlines are parallel to the row but in

opposite directions. The row therefore behaves like a vortex sheet as regards

distant points.

13*72. Karman vortex street. This consists of two parallel infinite

rows of the same spacing, say a, but of opposite vorticities K and -/c, so

arranged that each vortex of the upper row is directly above the mid-point

of the line joining two vortices of the lower row, fig. 13*72. Taking the con-

y

bfi

FIG. 13-72.

figuration at time t = 0, we take the axes as shown in the figure, the x-axis

being midway between and parallel to the rows which are at the distance

6 apart. At this instant the vortices in the upper row are at the points

ma+ \ib y
and those in the lower at the points (w-hj)a- \ib y

where m = 0,

1, 2,....

The complex potential at the instant t = is therefore, by the preceding

section,

. \ . , . * / <
. *\w =
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Since neither row induces any velocity in itself, the velocity of the vortex

at z \a - %ib will be given by

= i/c log sin - (z-^ib)
Ldz a jza= ia-\

iKTT {TT . Trb\ KIT ^irb= cot --t = -- tanh .

a \2 a/ a a

Thus the lower row advances with velocity

TT K7T x 1.
^b

V ~ tanh ,

a a

and similarly the upper row advances with the same velocity. The rows will

advance the distance a in time r a/V and the configuration will be the same

after this interval as at the initial instant.

To examine the stability of the arrangement, we observe that at time t

the vortices of the upper row will be at the points ma+Vt + %ib and those of

the lower at the points (n+ ^)a+Vt- ^ib, where m and n take all integral

values including zero from <x> to + oo . If we displace each vortex slightly,

those in the upper row will move to raa+ 7tf+ %ib + zm ,
and those in the lower

row to (n + %)a+Vt-%ib + Zn ,
where \zm \, \z'n \

are all small initially. The

system will be stable if these quantities remain small. Now the complex

velocity of the vortex for which m = will be

The contributions (13-21) to this velocity from the vortices corresponding

to m in the upper row and - n 1, n in the lower will be

1 1 \

Expanding by the binomial theorem and retaining only the first powers

of z
,
zm , z_m , zln-i >

zn > whose moduli are all small, we get

{

__ , __ _ /

z' 1
.

Y

""".}
If we put

* zm = y cos md, zn = y cos (n+ \)6, where y and y are small

complex numbers, the above contribution becomes

ZKI y(l~cosm0) _ 2ici(y-y' cos

"a2 w2 a2
((

-
a*

* These correspond to a displacement of an undulatory character of the rows.
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Now it is known * that

._. K 2ka KTT

(2) 27 -- - = tanh KIT = 7,v ;

o a2 22
and dzq/dt

=
dy/dt. Thus, summing and using (1), the disturbing effect on the

vortex for which m = is given by

(3)

where A= L
w_i

["~
n~o

For a vortex in the lower row we put
- K for K and interchange y and y',

which gives

To solve these equations, differentiation of the conjugate complex of (3)

gives

on using (3) and (4) again. Substitution of

then gives

Therefore A is real and the motion is unstable if ^a

On the other hand, A is purely imaginary and the motion is periodic and

therefore stable if C2>^2
.

But when 9 = TT, we get C = 0, for every term vanishes.

Thus we must have A when 6 = IT as a necessary condition of stability

for this type of displacement.

To find A, we get from (2), by differentiation with respect to k,

"

2 cosh2 for'

and it is easily verified by applying the rule for expansion in Fourier series

that
* l-cosmfl

* Hobson's Trigonometry, 294.
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and therefore when =
TT,

4 2 cosh2 for

Thus A = if cosh for = /2, so that

for = 0-8814, or 6 = 0-281a,

and the vortex street cannot be stable unless this condition is satisfied. For

a further discussion of this question reference may be made to Lamb's Hydro-

dynamics.*

13-73, The drag due to a vortex wake. When a cylindrical body
is placed in a stream, at fairly low Reynolds' numbers (19-62), it is found

that vortices leave the opposite edges alternately,! with a definite period

Q- <)- -Q-

FIG. 13-73 (i).

between the formation of successive vortices, and at a distance behind the

body a fully developed vortex street exists. In the immediate neighbourhood

of the body the form of the vortex trail is obscure. At a great distance

downstream the vortices are damped out by viscosity. In the intermediate

part the vortex street exists in the form already described. We shall now

investigate an approximate expression for the drag due to this form of wake.

We shall make the following assumptions :

(i) The wake can be represented by point vortices.

(ii) The origin being taken in the midst of the regular portion of the wake,

the complex potential will be nearly the same as that for the infinite vortex

street discussed above.

(iii) If we surround the cylinder by a contour which advances with the

same velocity as the wake and whose dimensions are large compared with

the cylinder and the distances between successive vortices and the rows, the

motion on the boundaries of the contour will be steady.

(iv) That the formation of the vortices is truly periodic.

We shall consider the cylinder to be in motion with velocity U in liquid

otherwise at rest. Take the vortices at distance a apart in the rows and let

*See also L. Rosenhead, Proc. Roy. Soc. (A), 127 (1930), where the stability is discussed
when the vortices have finite cross-sections,

t See Plate 4.



13-73] THE DRAG DUE TO A VORTEX WAKE 379

6 be the distance between the rows, fig. 13-73 (ii). Then the vortex street will

advance with velocity

/t\ rr K7T
T-

id*

(1) F = tanh ,

a a

where K is the strength of each vortex. Since vortices are continually shed

from the body at interval T say, the period of the motion will be T, and we

shall have F< U and (U - V)r = a.

We take the a-axis midway between the rows and in the direction of

advance. By imposing a constant velocity
- F on the whole system the

i

FIG. 13-73 (ii).

B

vortex street will be brought to rest, the cylinder will advance with velocity

U - F, and the fluid will have a general streaming velocity
- F (except near

the wake). The dynamical conditions will be unaltered.

We now draw a rectangle ABCD of dimensions large compared with those

of the cylinder and a, 6, the side AD being taken coincident with the y axis

which is so chosen that the origin is at the centre of the parallelogram whose

vertices are the four vortices nearest the origin. Thus no vortex occurs on

the boundary of this rectangle. The complex potential will then be

(2)

(3)

w1
= Vz -f IK log

sin-

, say, where

The term Vz represents the stream which has been superposed. Let-X-iY
be the action of the liquid on the cylinder. Then the liquid within ABCD is

acted upon by the thrust X+ iY on the internal boundary, i.e. by the cylinder,

and by the pressure over the external boundary of the liquid outside.
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If Hx+iHv denotes the momentum of the liquid within ABCD, and

Fx+iFv denotes the flux of momentum outwards across the boundary ABCD,
Euler's momentum theorem (3-42) gives

-iY-i\
J(c)

where c denotes the contour of the rectangle ABCD.
Now the normal velocity outwards across the arc ds of the boundary is

s, and therefore

(6)

Now - i \ p dz = - i I (C
-
%pq

2
)dz,

J(c) J(c)

from the pressure equation, the regime being steady on the boundary. The

integral of the constant C vanishes and

9 j- dwl dw ,_ dwi,j rt-
02 dz = -^ -^ dz ~

(dw*
- 2t1

dz dz dz

Thus -if jd8 = tv[ (
J(c)

* P
J (<!)

V<

Substitute in (4) and use (5). Then

and the integral of the first term taken round c vanishes, while that of the

second is real. Therefore X is the real part of

i- f (
dw\-HU) **s'

and X, the drag, is a function of the time. We shall calculate the mean value

D of the drag.

Since dw/dz is independent of the time on the contour, see assumption (iii)

above, and since the motion is periodic with period T, we have, on integrating

from to T and taking the real part,

(6) rD = (Hx\ - (HJ. - real part of
|^ J (^)*

&
}

the first two terms on the right indicating the increase in x-momentum due

to the appearance of two new vortices within the contour in the interval T.
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To find the first terms of (6) it is therefore necessary to calculate the increase

of momentum due to the entrance of a vortex pair into the rectangle ABCD,
considered as infinitely large. Consider

#;-; = L(u-w

where w' = IK log (z
- z

)
- IK log (z

- z ). Thus, if we take for convenience of

calculation, z = ih, 2 = - ih
y
we get the components H'x ,

H'
y given by

r+ 00 p -jiC00=
-&/>* rfy log (z

-
fc'A)

-
log (2 -MA)

J QO L -Jx=

As cc increases from - oo to -f oo the increase in log (z
-

ih) is equal to - iir

or iTT according as y>h or y<A.
Thus the integrated part is fai or according as y does or does not lie

between - h and + h. Hence

Jh

Resolving this along the sc-axis of our problem, we get for the first pair of

terms in (6) the value

(7) %7TpKb.

To evaluate the integral in (6), we have, from (2),

fdw\*

a a
J

and therefore

a a

Smo
~

. ^ 2?r2; . a
4- 2 cot -

loga

a

Now dw/dz = except on DA. Hence the value of the integral is got by

finding the change in the above expression for the values z = iy
= + i oo and

z = iy
= - i oo .

Put
a a v z/

vn
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Then

,

I (fo = - __^a L ?!
2 ~

/c
2
7r f . . . . , , 7r6 / 7n' 716=- ^4^-4itanli

--. +
a \ a \ 2 a

Substituting in (6) and using (7), we get

_. 277/0)6 27T/C
2
p /, 7r6 ,

. 7r6\
2) --c_ +-C 1 -- tanh ,

T a \ a a /

which is Karman's formula for the drag. In terms of F, this can be written,.

since a = r(U- F),

a a

It must be emphasised that the above calculation depends on the assump-
tions stated and can be regarded only as an approximation.

1 3*8. Vortex in compressible flow. Suppose the streamlines are circles*

and that in each such circle there is the same circulation ZTTK.

FIG. 13-8.

Then if q is the speed at radius r we have the circulation 277r =
27r/c, so that

using the notations of 1-63 and 1-63 (7).

Clearly then r has a minimum value rmln when M = oo
,
and so

2

'min I (y-l)M*
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As r increases M must steadily decrease. M attains the critical value

unity when

*If - lf*K - M- -'

Thus in Fig. 13-8 if the circle C has the radius r^ the motion here con-

templated cannot be continued within C, so that this region must be empty of

fluid or perhaps occupied by a solid core. In the region between G and the

circle of radius r* we have M>1 and the flow is supersonic. When r>r* the

flow is subsonic.

EXAMPLES XIII

1. If a rectilinear vortex moves (in two dimensions) in fluid bounded by a

fixed plane, prove that a streamline can never coincide with a line of constant

pressure.

2. Prove that the pressure due to a spiral vortex is the same as that due to a

source of suitable strength.

3. A region in the plane of x, y is bounded by the lines y = c. Two-
dimensional fluid motion in the region is due to a vortex at the origin. Prove that

the stream function is

where t = cos (7ry/2c) sech (7ra:/2c),

and %TTK is the circulation round the vortex. (U.L.)

4. Investigate the motion of two infinitely long parallel straight line vortices

of the same strength, in infinite liquid.
Prove that the equation of the streamlines of the liquid relative to moving

axes, so chosen that the coordinates of the vortices are ( c, 0), is

log {[(x
-

c)
2 + f] [(x + c)

2 + y
2
]}
-

(x
2 + t/

2
)/2c

2 = constant.

5. Three parallel rectilinear vortices of the same strength K and in the same
sense meet any plane perpendicular to them in an equilateral triangle of side a.

Show that the vortices all move round the same cylinder with uniform speed in

time 2?ra
2
/(3Ac).

6. A two-dimensional vortex filament of strength m is near a corner of a large

rectangular tank filled with perfect fluid, the filament being parallel to the edge
of the corner.

Show that the filament will trace out in plan the curve r sin 26 = constant,

and that the motion will be regulated by the equation r2 = m/2.

7. Determine the motion of a rectilinear vortex filament of strength K in

infinite liquid bounded by two perpendicular infinite plane walls whose line of

intersection is parallel to the filament. Show that the time taken by the vortex

in moving from the position midway between the two planes to another position
is proportional to cot 20, where 6 is the angle between one of the planes and the

plane containing the filament and the common line of the two planes.
Find the effect of the presence of the vortex on the pressure at any point P on

one of the walls at the instant when the plane through P containing the vortex is

perpendicular to the wall. (U.L.)
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8. Two parallel rectilinear vortices of strengths &x ,
&2 move in a perfect fluid

of infinite extent, and cross a plane perpendicular to their length at A and B
respectively. G is the centre of mass for masses k: and kz at A and B, and C when
the masses are interchanged. Show that the vortices rotate in circles about G
with angular velocity (k^ -f k2)/AB

2
,
and the speed of a particle P of fluid in the

plane is (kt + k2 ) CP/AP . BP.
Prove that, when ABP is an equilateral triangle, the particle P moves as if

rigidly attached to the vortices
;

also that the same is true if P is a point on the

line AB such that

where x = OP/AB and is the mid-point of AB. (U.L.)

9. A vortex of strength m is inside a fixed circular cylinder of radius a, filled

with liquid moving irrotationally, at a distance b(<.a) from the centre of this

cylinder. Find how this vortex moves and compare with the case of the vortex

which lies in an infinite liquid outside the same cylinder, (6>a), there being no
circulation round the cyUnder alone.

Determine d</>/Bt in both cases, <f> being the velocity potential.

10. A thin rectilinear vortex exists inside and parallel to the generators of a

cylindrical vessel, whose normal cross-section is bounded by a semicircle of radius

a and the diameter joining its ends. Find the velocity of the vortex in any position
and prove that there is a point of equilibrium on the radius bisecting the semicircle

at a distance from the centre nearly equal to 049a. (U.L.)

11. A rectilinear vortex of strength K is situated in an infinite fluid surrounding
a fixed circular cylinder of radius a. The vortex is parallel to and at a distance

f from the axis of the cylinder and there is no circulation in any circuit which
does not enclose the vortex. Show that the vortex moves about the axis of the

cylinder with a constant angular velocity equal to

Find the velocity of the fluid at a point on the cylinder such that the axial

plane through the point makes an angle with the axial plane through the vortex,
and proceed to show how the resultant thrust on the cylinder may be calculated.

12. A long fixed cylinder of radius a is surrounded by infinite frictionless in-

compressible liquid, and there is in the liquid a vortex filament of strength m t

which is parallel to the axis of the cylinder at a distance c(c>a) from this axis,

Griven that there is no circulation round any circuit enclosing the cylinder but not
the filament, show that the speed q of the fluid at the surface of the cylinder is

being the distance of the point considered from the filament.

Show further that, at the surface of the cylinder,

J 1

2a"
< i

sphere
jt?

is the pressure at infinity. (U.L.)

13. Determine the stream function of the motion (of homogeneous incom-

pressible frictionless fluid) due to a rectilinear vortex in the region bounded by two

right circular cylinders with a common axis, which is parallel to the line of the

rortex.
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The radii of the cylinders being r and rt , and the distance of the vortex from
the axis being c, prove that, if c2 r rl , the vortex remains stationary, otherwise,
the path of any point on it is a circle. (ILL.)

14. Inviscid incompressible fluid is flowing past a fixed circular cylinder of

radius a, its undisturbed velocity at a great distance from the cylinder being V
parallel to the axis of x. The motion is two-dimensional, and the origin of coordi-

nates is taken at the centre of the section of the cylinder. Behind the cylinder
is a vortex pair symmetrically situated with respect to the axis of x. Prove that

the vortices can maintain their positions relative to the cylinder if they lie on the

and that the strengths of the vortices corresponding to a given position on this

curve are

where r is the distance from in the plane. State, without proof, whether the

arrangement is stable or unstable ; and explain briefly the connection of these

theoretical results with the actual observed flow of a fluid of small viscosity past
a circular cylinder. (U.L.)

15. Vortex filaments, all parallel to Oz, of strengths K I , * a , . . . , cut the plane
z = at points (xl , yj, (x2 , t/2) Prove that

SK^ x
i
= A> 2*i 2/1

= B
>
SK\ r\

- C* Z*\ r
\ 01

- 2^*1 *2-

If a pair of equal and opposite vortex filaments are situated inside, or outside,

a circular cylinder of radius a at equal distances from its axis, prove that the

equation of the cylinder described by each vortex is

(r
2 -a2

)
2

(/"

2 sin20-62
)

4a2 62 r2 sin2 0,

where b is a constant. (U.L.)

16. A vortex of strength K is placed at the point f = id outside the circle
|

= c.

Apply the conformal transformation iz = + c2/ to find the complex potential due
to a vortex at z = / behind a flat plate of length 4c about which there is circulation

%TTK (A
-

1). Show that for the velocity of the vortex to vanish A =
(d* + c4)/(d

4 - c4),

but for the velocity at the edges of the plate to be finite A = (d
2 - cz)/(d? -f- c

2
), and

hence that the velocity at the ends cannot be finite if the vortex is at rest. Assume
d and /to be real. (U.L.)

17. Three vortex filaments, each of strength m, are symmetrically placed inside

a fixed circular cylinder of radius a, and pass through the corners of an equilateral

triangle of side ^3 . 6. If there is no circulation in the fluid other than that due to

the vortices, show that they will revolve about the axis of the cylinder with angular

velocity

18. Show that an infinite cylinder of liquid whose cross-section is an ellipse

inside which the vorticity vector $ is constant and parallel to the generators of

the cylinder can maintain its form when rotating as a rigid body (the centres of

the cross-sections being at rest) with an angular velocity co = A?, where A depends

only upon the eccentricity of the cross-section.

Find the paths of fluid particles inside the cylinder (i) relative to the rotating

cross-section, and (ii) relative to a fixed frame. (U.L.)
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19. Prove that a cylindrical vortex of uniform vorticity, whose normal section

is bounded by an ellipse of semi-axes a, 6, can exist in incompressible non-viscous

liquid of uniform density p, at rest at infinity under pressure P, provided that it

rotates about its axis with a suitable constant angular velocity n.

Show that cavitation will occur at the ends of the minor axis, unless

P> pn
z
(a + b)a, and that, when there is no cavitation, the relative streamlines are

lines of constant pressure inside the vortex. (U.L.)

20. Prove that in the steady two-dimensional motion of a liquid of uniform

vorticity ,

Prove that, if = 0, the resultant force exerted by a uniform stream of

velocity F on a fixed cylinder of any form of section is kpV at right angles to the

direction of flow, where k is the circulation in any circuit embracing the cylinder.
If f T and the cylinder is circular, find the form of

/r,
and if the motion at

infinity is a shearing motion parallel to Ox, prove that the preceding result holds,

provided k is replaced by k' +7ra2
, where k' is the circulation immediately sur-

rounding the cylinder, radius a, and F is the velocity at infinity on that streamline

which would, if produced, pass through the centre of the cylinder. (U.L.)

21. An infinite row of equidistant rectilinear vortices of equal numerical

strengths *, but alternately of opposite signs, are spaced at distances a apart in

infinite fluid. Show that the complex potential is

i j.
1&

w IK log tan ,

the origin of coordinates being at one of the vortices of positive sign, and hence
show that the row remains at rest in this configuration.

Show further that if the very small radius of cross-section of each vortex

filament is ea, then the amount of flow between two consecutive vortices is

approximately 2/c log 2/zre.

22. Show that the complex potential w for a very long row of equidistant

parallel line vortices, each of strength K, whose traces on a plane perpendicular
to them have coordinates

zr
= ra, (r

= 0, 1, 2,...),

i ... TTZ
is given by w IK log sin

If the vortices suffer a small disturbance so that

zr
= ra + (f + irj) e

ir
, (0< a< 2rr),

show that the disturbance increases as eA<
,
where

A =
/ca(27r-a)/2a

2
. (U.L.)

23. Show that, at any point z, the velocity (u, v) due to an infinite row of

vortices, each of strength w, at the points z = z
Q + na, where n is any positive or

negative integer or zero and a is real and positive, is given by

r ^-
cot

a a

If now the vortices undergo small displacements

n
= cos nx,
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where 0<x<27r, obtain the equation of motion in the form

4, im* ( / x\
w = 1^ t v */

where is the conjugate imaginary to .

Hence show that such a single row of vortices is fundamentally unstable.

(ILL.)

24. Show that the stream function for a row of an infinite number of rectilinear

vortices of equal strength K, evenly spaced at intervals a along the x-axis in infinite

fluid, is

. K , r . 2?ry Znxl
ifj
= -

log cosh - - cos ,

all the vortices being parallel to the 2-axis.

The position of a second row of such vortices of strength
- K would be obtained

by a rigid body displacement of the first set, defined by x = Aa, y = -
\JJQ,,

Show
that such a double row or vortex

"
street

"
advances with speed

777C /COSh
27T/U, + COS 27rA\i

a \cosh 277/Lt
- cos 27rA/

in a direction 9 with the street, given by
tan 6 sin 27rA/sinh 27r/z. (U.L.)

25. Two parallel rows of rectilinear vortices, evenly spaced at intervals a, are

situated at distance 6 apart. All the vortices in one row are of equal strength K
and those in the other of equal strength -K. Find for what arrangements the

system will move forward with uniform speed, and determine these speeds. Show
that if each vortex of the one row is exactly opposite one of the other the arrange-
ment is an unstable one. (U.L.)

26. An infinite
"
street

"
of linear parallel vortices is given by the following :

x = ra, y =
6, strength = m

;
x ra, y

-
6, strength = - w, where r is any

positive or negative integer, or zero. Prove that, if the fluid at infinity is at rest,

the street moves as a whole, in the direction of its length, with speed

Trm
, , 2ir6

coth
a a

Show that such a street of vortices is necessarily unstable for a displacement
limited to a single vortex. (U.L.)

27. Calculate the velocity of the vortices in a K&rman vortex street, the

strength of each vortex in one row being mt and that of each vortex in the other

row being m t
and the vortices of one row alternating with those of the other.

If all the vortices but one are supposed constrained to retain their relative

positions, investigate the stability of the motion of the remaining vortex, showing
that it cannot be stable unless a certain relation is satisfied between the mutual
distances of the vortices, and find this relation. (U.L.)



CHAPTER XIV

WAVES

14-10. Wave motion. A wave motion of a liquid acted upon by gravity

and having a free surface is a motion in which the elevation of the free surface

above some chosen fixed horizontal plane varies.

Taking the axis of x to be horizontal and the axis of y to be vertically

upwards, a motion in which the equation of the vertical section of the free

surface at time t is of the form

(1) y a sin (mx - nt),

where a, m, n are constants, is called a simple harmonic progressive wave.

If we draw the profile of the free surface (1) at time t = 0, we get the sine

curve y = a sin mx, fig. 14*10 (i). Since (1) can be written in the form

(2) y = a sin m
(
x

)
,

\ m/

we see that the profile at time t is exactly the same shape as at time t 0,

for we have simply to move the origin to 0' where 00' nt/m to recover the

original form of the profile, fig. 14-10 (ii).

Equation (1) therefore represents a motion in which the curve

y a sin mx

moves in the direction of the axis of x with the velocity c = n/m, which is

called the speed of propagation of the wave. When a the profile of the

liquid is y = 0, which is the mean level.

The quantity a is called the amplitude of the wave and measures the

maximum departure of the actual free surface from the mean level. The

points Cl , C2 ,
. . .

,
of maximum elevation are called crests, the points Tt ,

T2 ,
. . . ,

of maximum depression are the troughs of the wave. The distance

between successive crests is called the wave-length A. Thus

m
The aspect of the free surface is exactly the same at times t and

The time

27T
T == -

n
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is called the period of the wave. The reciprocal of the period is the frequency

n/2-Tr. The angle mx - nt is called the phase angle, and the number n may be

conveniently called the phase rate.

(i)

(Hi)

FIG. 14-10 (i), (ii), (iii).

From the above numbers we obtain the relation A cr. The equation of

the profile can be also written in the form

2?T
, *

y a sin -r- (x
-

ct).
A

It will be observed that the motion represented by (1) is a two-dimensional

motion. In this chapter we shall be concerned only with two-dimensional

wave motions which may therefore be supposed to take place between two

vertical planes at unit distance apart, fig. 14-10 (iii), and this convention will

be assumed in the absence of explicit statement to the contrary.

14-1 1. Kinematical condition at the free surface. Consider water of

depth h in which waves of height v\
=

rj (a?, t) above the mean level are pro-

pagated, the height being measured from the undisturbed level, and the axis

of x being taken along the bottom * in the direction of propagation. The equa-

* We consider only the case of constant depth. For variable depth the reader may consult

J. J. Stoker, "Surface waves in water of variable depth ", Quarterly Jour, of Applied Math. V.

(1947), p. 154.
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tion of the free surface is then y-y-h = 0, and since the surface moves with

the fluid d(y-"q- h)/dt
= 0, so that

Unless the contrary is explicitly stated, we shall confine our attention to

the linearised theory in which the squares and products of the variable parts of

y

P

O
FIG. 14-11.

all quantities and their differential coefficients may be neglected. In particular

drj/dx, which measures the slope of the profile, will be taken as small. We
then get at the free surface

where
t/r

is the stream function. This is the kinematical surface condition for

wave profiles of small height and slope.

In the case of irrotational waves of profile

(2) 77
= a sin (mx - nt),

we see from (1) that, when y = h, the stream function
j/r

is proportional to

sm(mx-nt). We therefore attempt to satisfy (1) by the complex potential

w = 6 cos (mz - nt), which gives $ - 6 sin (mx - nt) sinh mh at the free sur-

face to our degree of approximation. Substitution in (1) gives bm sinh mh = an,

so that

ac
(3) w = -r, 7 cos (mz - nt),swhmh

where c = n/m is the speed of propagation.

It should be noted that no hypothesis has been made as to conditions above

the wave profile and therefore (3) will continue to hold if the profile is an

interface between two fluids.

~*
14-12. Pressure condition at the free surface. Let p{ be the pressure

just inside the liquid at P in fig. 14-11 and pQ the pressure just outside. We
shall again assume the motion to be irrotational, as will indeed be the case

for waves started in an inviscid liquid by natural forces. The pressure equation

(neglecting the term %q
2
)
then gives
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and C(t) may be taken to be independent of t by incorporating any time

variable terms in
d<f>jdt.

Thus

Pi-Po = p \ft-w -2*0+ constant.

In the case of constant (atmospheric) pressure, we may write

(1) Pi-Po =

by a suitable adjustment of <, and in this connection we may observe that p,

and PQ can only differ by a small quantity and therefore B<f>/dt
must be small.

Thus (1) is the pressure condition at the free surface of irrotational waves of

small height.

If we neglect surface tension (see 14-50), we have Pi-p^ = and therefore

grj
-

d(f>/dt
= 0.

Now at the free surface

and therefore in the above surface condition we may suppose 77
to be put

equal to zero in the second term, in other words,

(2)

and this is the surface condition. Notice that (2) gives the surface elevation

when
(/>

is known.

14*13. Surface waves. If we combine the kinematical and pressure

boundary conditions 14-11 (1), 14-12 (2), we get

Now from 14-11 in the case of a simple harmonic progressive wave, fig. 14-11,

we have

(2) w = -r-r T cos (mz nt), 77
= a sin (mx nt).

Thus (1) gives, after a simple reduction,

(3) c2 = - tanh mh,m

the equation giving the speed of propagation of waves of length 27r/m.

Equations (2) and (3) completely characterise these waves at the surface of

water of depth h, and it is worth observing that, while (2) is deducible from

kinematic considerations alone, (3) gives the relation which must subsist between
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n and m (c
= n/m) in order that the solution may be physically satisfactory.

The speed of propagation is in fact a function of the wave-length.

More generally, taking axes as in fig. 14-11, the conditions to be satisfied

are (1) and

(4) iff
= 0, when y = 0,

since the bottom has to be a line across which there is no flow.

The complex potential is

w = w(x+ iy, t)
=

(f>(x, y, + *#(, y, t).

Condition (4) therefore states that w is real when y = 0, and therefore the

holomorphic function w can be continued by the principle of reflection (5-53)

into the region for which y is negative, more precisely -h <y <0. Thus

w(x- iy, t)
=

<l>(x, y, t)
-

u/t(x, y, t),

and therefore
<f> (x, y, t) | [w (x + iy, t) + w(x- iy, t)],

t/r(z, y, t)
= -$i[w(x+ iy, t)-w(x-iy, t)].

Putting y h and substituting in (1), we get

- [w (x+ ih, t) + w(x- ih, t)]+ ig--[w(x+ ih, t)-w(x- ih, t)] 0.
ot dx

Since w is a holomorphic function this relation must hold for any point in

the region of its existence. We can therefore write z for x and so obtain

^ , -, ~,-w(z-ih,t)] ~ 0.
ot* oz

This equation is due to Cisotti.*

It therefore follows that any holomorphic function w(z, t) which is real on

the real axis, i.e. which is real when z is real, and which satisfies equation (5),

will be the complex potential of an infinitesimal motion of water of depth h.

The boundary conditions (1) and (4) are automatically satisfied.

The reader should verify that substitution of the complex potential (2) in

(5) leads to (3). Thus Cisotti's equation contains the whole theory of waves of

the type described.

14-14. Speed of propagation. The speed of propagation, in terms of

the wave-length A = 277/m, is given by 14-13 (3) in the form

C2 A A ^277^T = ?rr tann "T-
gh 27rh A

c2 A
When A/A is small 2?rA/A is large, and therefore -=- = =-= nearly, since

cjti
tjfnh

tanh0->l when 0->oo . Thus for small values of A/A, c is proportional to

* Rend. Lincei (6), 29 (1920).
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VA. Again, when X/h is large, h/X is small, and therefore ca = gh nearly, so

that the speed of propagation tends to the constant value *J(gh) which it cannot

exceed. The results are exhibited graphically in fig. 14-14, from which it is

FIG. 14-14.

clear that there is only one wave-length for a given value of c<J(gh) and that

every such value is the speed of some wave. The results are considerably

modifie<Lby surface tension, 14-54.

14*15. The paths of the particles. Let z be a, fixed reference point

and z+z
r

the position of a water particle at time t, where
|

z'
\

is assumed to be

small. Then for a wave of small height the fluid velocity at z+ z' will be equal

to the fluid velocity at z, neglecting second order quantities. Thus

dz' dw o

dt dz sinh mh
. . .

sin (mz nt),

from 14-13 (2). Integrating, and supposing the fixed value z to be so adjusted

that the added constant of integration is zero, we get

-/ . -
sum mh

cos

since c = n/m. Equating the real and imaginary parts, we get

x' a cos (mx nt) cosh my/smh mh,

y
' = a sin (mx - nt) sinh my/smh mh,

and therefore

X '

a2

a cosh my
sinh mh

a sinh my
sinh mh

The path of the particle is therefore, an ellipse whose semi-axes are a, )3,

horizontal and vertical respectively, and whose centre is at the mean position z.

Since a2
)3
2 = a2

/sinh
2
mh, all the ellipses have the same distance between

their foci, but the lengths of their axes decrease as we go downwards into the

liquid. At the bottom, y = and therefore j8
= 0, so that the ellipse de-

generates into a straight line, and the particles on the bottom simply move

to and fro. The general nature of the paths of particles whose mean positions

are in the same vertical line is shown in fig. 14-15.
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We observe that the phase angle (mx - nt) of the wave is also the eccentric

angle in the ellipse, so that each particle describes its ellipse in the periodic

time of the wave and all are in the same phase. The motion of a line of

mean level

FIG. 14-15.

particles originally vertical is therefore a bending of the line, illustrated by the

dotted lines in the figure, much as a blade of grass bends in the wind, but

here the line also suffers a translation.

It should also be noted that the particles below a crest or trough are all

moving horizontally in the same vertical line. In particular, the particle at

the crest is moving forward, at the highest point of its ellipse, while at the

trough it is moving backwards, at the lowest point of its ellipse. This obser-

vation has a bearing on the phenomena of tides and tidal currents.

14-17. Progressive waves on deep water. For a wave whose surface

elevation is given by

(1) i]
= a sin (mx- nt),

y

FIG. 14-17.

the complex potential is given by 14*13 (2). Move the origin to the undis-

turbed surface. Then

w = ac cos (mz+mih - nt)

sinh mh
= ac [cos (mz - nt) coth mh - i sin (mz

-
nt)].

If we let &-> oo ,we get coth mh-+l, and therefore, for waves in deep water,

(2) w = ac e~ mg-nt\
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Also the speed of propagation, 14-13 (3), is given by

so that the speed is proportional to the square root of the wave-length.

For the paths of the particles, the method and notation of 14-15 give

dz
f dw= -

dt dz

so that
|

z
r

|

= a emv , and the paths are circles of this radius. As y-> - oo the

radii of the circles ->0.

In order that the water may be regarded as deep in the above investigation

it is only necessary for us to be able to take coth mh 1 = tanh mh. Now
tanh 2-65 = 0*99, and this condition is amply satisfied if

so that the water can certainly be regarded as deep if the depth exceeds half

a wave-length.

A submarine whose depth is half a wave-length would hardly notice the

motion due to surface waves.

18. Pressure due to a deep water wave. Ifp is the pressure at the

particle whose mean position is z, the pressure equation is

-+9(y+y')~-J7 = constant.
p ot

Now gy' imaginary part of -
ag e~i(mz

~ni)

real part of iag e~^
mz-nt ^

,

-^ = real part of iacn e-*<w2
-n<

),
ot

and therefore -
gy' since c2 = g/m.

ot

Tinas p/p+gy = constant, in other words, the pressure at any particle is

equal to the pressure at the mean position of that particle.

r-^14-20. Kinetic energy of progressive waves. By the kinetic energy
of a progressive wave we shall mean the kinetic energy of the liquid (per unit

thickness) between two vertical planes placed at a wave-length's distance

apart and perpendicular to the direction of propagation, fig. 14-20.

Taking one of the planes through the y-axis, we have from 9-10, since the

liquid is inside the contour,

T=+Jip| wdw.
J (OABC)
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From the periodic character of the motion it is clear that w has the same

values at corresponding points of AB, 00, and therefore the contribution of

y

FIG. 14-20.

these lines to the integral is zero. Thus for the progressive wave of 14-13,

we have

T = ~
n2 /2

iyyi

mz - nt sn

(sin 2 (mx - nt)
- i sinh 2my)dz.

Now instead of integrating along the wave profile BO, we can integrate

along the straight line BO, since the elevation is a small quantity. Thus

T -kip11 r
PA

i sinh 2mh dx = Ja
2
0pA,4 yr '-r-^r-s 7

sinh2
wAJ

using the propagation equation, 14-13 (3).
/

14-21. Potential energy. The potential energy (per unit thickness) is

simply due to the elevated water in a wave-length and is therefore, reckoned

from the undisturbed level,

^xgprjdx = la?gp\ 2sina
(wia-wQ<fo = a*gp\,

Jo Jo

and this is equal to the kinetic energy.

Thus the total energy of a progressive sine wave is Ja
2
^/oA per wave-length,

and half of this is kinetic energy, and half potential energy due to elevation

above the undisturbed level.

It may be noted also that the average energy per unit length of wave is

I4-22. Group velocity. A local disturbance of the surface of still water
will give rise to a wave which can be analysed into a set of simple harmonic

components each of different wave-length. We have seen that the velocity
of propagation depends upon the wave-length and so the waves of different

wave-lengths will be gradually sorted out into groups of waves of approxi-
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mately the same wave-length. In the case of water waves, the velocity of the

group is, in general, less than the velocity of the individual waves composing

it. What happens in this case is that the waves in front pass out of the group

and new waves enter the group from behind. The energy within the group

remains the same.

To study the properties of such a group, consider first the particular case

of the disturbance due to the superposition of two waves of the same amplitude

>]!
= a sin (mx - nt), rjz a sin {(m+ Sm) x-(n+ 8w) t},

where 8m, Sn are infinitesimal. The resulting disturbance will be

(1) T)
= 2a cos \ (x 8m - 1 8n) sin (mx -nt) = A sin (mx - nt),

where A = 2acos (x $m-t$ri). We can therefore look upon (1) as a pro-

gressive sine wave whose amplitude A is not constant but is itself varying as

a wave of velocity cg
= 8n/8m. This velocity is called the group velocity and,

in the case of waves of length A, is given by

dn d(mc) dc . dc
c - = c -fm -= c A -frdm dm dm d\

Using the value of the wave velocity c, given in 14-13 (3), we get for a single

group of simple harmonic waves

2mA \

sinh 2mh/

When mh =
27r/i/A is large, the group velocity is Jc. Thus for waves on

deep water the group velocity is half the wave velocity. If the water is very

shallow (hiA small), the group velocity is equal to the wave velocity.

More generally from a given local disturbance, such as a splash, waves

of a variety of wave-lengths and of microscopic amplitudes a, ax , a2 , . . . will

travel out. Considering only those waves of approximately the same length

27r/m the elevation at distance x at time t will be due to the sum of a large

number of infinitesimal terms ; thus

f\
a sin [mx - nt]+ ax sin [ (m + SmJ x-(n+ $n1)t+ l]+ . . .

= A sin (mx - nt) +B cos (mx-nt) = C sin (mx-nt+e),
where

A = a+ aj cos (xbrn^-t 8% -t- a ) 4- a2 cos (ccSm2
- 8n2 -f 2) + . . . ,

B = a sin (x 8mx
- 1 8nx -f^) 4- a2 sin (x 8m2

- 1 8n2 -f c2) + . . . ,

Now
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Thus A, B and therefore C and e are functions of (x-cg t). Therefore the

amplitude graph moves as a wave with velocity cg .

FIG. 14-22.

14-23. Dynamical significance of group velocity. In a simple har-

monic train of waves, energy crosses a fixed vertical plane perpendicular to

the direction of propagation at an average rate equal to the group velocity.

Proof. If p denotes the variable part of the pressure and u the horizontal

velocity for a fixed value of a?, the rate at which work is being done on the

fluid to the right of x is

dW f* 7

-*= }.***

XT d< ,
,

dw pnac . . . .

Now p = p
-~ real part ot p = -^ r sin (mx - nt) cosh my,

dw
-3-
dz

, f dw mac .

u = real part of -
-3- = -r-= f sni (mx - nt) cosh my.r v ' y

Thus -^- =
dt

( sinh 2mh\
sw.2 (mx-nt)1t (h+ -- .

' M
\ 2m J

The average value of sin2 (mx - nt) over a period is J. Thus the average

rate of working is

aa c2mnp sinh 2mh /., 2mA \-~- 1 + .i 7
= -

2m \ sinh 2mA/ 2

using 14:-13 (3). Now $gpa
2

is the energy per unit length of wave. Thus

energy crosses the plane at the average rate cg . Q.E.D.
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14*24. Wave resistance. A body such as a ship travelling over the

surface of water leaves behind it a train of waves. These waves possess energy
which is carried away and dissipated. This energy must have been produced
at the expense of the energy of the moving body which therefore experiences

from this cause a resistance R. If c is the velocity of the body, and therefore

also the velocity of the wave train, the rate at which work is being done to

overcome R is Re. If we consider a fixed plane drawn on the downstream side

(the motion being treated as two-dimensional) perpendicular to the direction

of motion of the body, the rate at which the length of the wave train is increas-

ing ahead of this plane is c, and therefore the rate of increase of energy ahead

of the plane is c x %gpa
2

,
where a is the amplitude. But energy is crossing the

fixed plane at a rate equal to the group velocity. Thus

c x %gpa? = cg x %gpa
2+Rc,

and therefore R -- x Iqpa
2

\ qpa* ( 1
-

. . . f ) ,

c
wr *w

^ sinh2m&/

if 27T/W is the wave-length and Ji the depth (14-22).

Since the speed of propagation of waves cannot exceed J(gh), it follows

that when the body has a speed greater than this no wave train can accompany
it and the resistance from this cause vanishes, a fact well supported by
observation.

y
14-30. Stationary waves. Two simple harmonic wave trains of equal

amplitude travelling in opposite directions are given by the surface elevations

T^
= Ja sin (mx nt), ^ 2

= J& sin (mx+ nt).

The result of superposing these is the elevation

7j
= a sin mx cos nt.

A motion of this type is called a stationary or standing wave. At a given

value of x the surface of the water moves up and down. For a given value of

t the form of the surface is a sine curve of amplitude a cos nt, which therefore

varies between and a. A wave of this type is not propagated.

The points for which mx =
STT, s = . . . , 2, 1, 0, 1, 2, ... are always

at rest in the mean surface and are called nodes. The points for which

mx (2s-t-l)7r/2 are points of maximum displacement for a given value of t

and are called loops. When cos nt = 1 the surface is in the form of the sine

curve
f\

a sin mx, which represents the maximum departure from the

mean level. When cos nt = the free surface coincides with the mean level.

When a progressive train of waves represented by ^ impinges on a fixed

vertical barrier and is there reflected (772),
the resulting disturbance when a

steady state is reached consists of stationary waves.
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Such waves can, for example, be generated by tilting slightly a rectangular

vessel containing water and then restoring it to the level position. The water

level at each end of the vessel then moves up and down the vertical faces

which are loops.

Conversely a progressive wave can be regarded as due to the superposition

ofttwo standing waves.

14-31. Complex potential of stationary waves. To obtain oscillatory

waves of stationary type, we can substitute in 14-13 (5) a suitable harmonic

function for w. Talcing

w(z, t)
= A sin mz sin nt,

we get w (z+ ih, t) + w(z- ih, t)
= 2A sin mz cosh mh sin nt,

w(z+ ih, t)-w(z- ih, t) 2iA cos mz sinh mh sin nt,

and on substitution we get w2 = mg tanh mh. This equation connects the

frequency with the wave-length.

The surface elevation is given by 14-12 (2) :

grj
= real part of = = An sin mx cosh mh cos nt.

Hence if the surface elevation is
77
= a sin mx cos nt, we get

a = An cosh mh/g Am sinh mh/n,

... ac . . n
so that w = -T ; 7 sin mz sin nt, c =

sinh mh m
This result could have been deduced at once by superposing two solutions

of the form found in 14-13, in this case

w = \ac cosech mh cos (mz - nt)
-
|ac cosech mh cos (mz + nt).

14-32. Paths of the particles in a stationary wave. Using the method

of 14-15, if z-\-z' is the displaced position at time t of the particle whose mean

position is z
t
we get

dz' dw acm_ _ cos mz sm ni

at dz sinh mh

% ___^ cos mz cos nt

sinh mh

Thus arg z' is constant, and therefore the particles describe straight lines

with simple harmonic motion of period 2rr/n, the period of the wave. The

amplitude is

I
cos mz

|

= -7-1 T {J(cos 2mx-hcosh 2my)}%.
a .

,

o
~T~T T cos mz = -7-T 5- 1

sinh mh ' ' sinh mh

Thus the amplitude decreases as we move downwards from the surface.

The inclination of the line corresponding to the mean position z is

arg z' = arg cos mz = tan" 1
{tan mx tanh my}.
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This inclination is therefore zero below the nodes (mx = SIT) and \TT below

the loops. Thus the particles below the nodes move horizontally, those below

the loops move vertically, fig. 14-32.

loop

y

Fro. 14-32.

14-33. Stationary waves in a rectangular tank. Since the motion

under the loops in a standing wave is vertical, the motion between any two

given loops would be unaltered if fixed rigid vertical planes were inserted

there. We should then have the

case of liquid oscillating in a tank

of finite dimensions.

Consider a rectangular tank of

length I. Take the origin at the

bottom at an end and the y-axis

vertically upwards. Since x =
has to be a loop, the surface dis-

turbance must be of the form

fj
= a cos mx cos nt,

and hence

w ac cos mz sin wtf/sinh mh.

Since there must also be a loop at x = /, we must have

ml = 57T,

where s is any integer. Thus the possible wave-lengths of the oscillations are

given by
A = 21, I, 21/3/21/4,....

When a photographic plate is developed by rocking a dish containing the

developing solution, care must be taken to vary the frequency of the oscilla-

tions, otherwise the portions of the plate which are below the loops of the wave
will be underdeveloped, since the solution in the neighbourhood of these

points has very little motion and its chemical action soon ceases, causing a

streaky effect on the negative.
20 M.T.H.

FIG. 14-33.
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14-34. Energy of stationary waves. Considering unit thickness, the

potential energy in a wave-length is given by

=
JoJo

Taking rj
= a sin mx cos nt, we get F = %gpa

2 cos2 nt . A,

and when cos nt = 1, the potential energy is gpa
2 X.

Now at this instant the energy is wholly potential, for the kinetic energy

depends on the normal velocity of the boundary, 3*72, which is instantaneously

zero. Thus the kinetic energy at time t is

T = Igpa? sm
2nt . A.

14*40. Steady motion. The complex potential for a simple sine wave

moving forward was obtained in 14*11 (3). If we take axes of reference

moving with the wave, the complex potential will be deduced by writing z' + ct

for z and therefore the complex potential becomes

ac cos mz'

sinh mh

If we superpose on the whole system a velocity c in the direction of the

negative axis of x, the axes and the wave profile will be reduced to rest and

the fluid will have the gen-

eral velocity c from right

to left, the complex poten-

y/=0 tial now being*
I II- "i^_ ^ *-*

,
ac cos mz'

w cz -f-

_ _ _ _____ ______ smh mh
^/= ""

This represents a steady
y~~h motion in which the force

FIG. 14-40. ,. ,

on any particle is un-

altered, for the addition of a constant velocity has no dynamical effect.

But there is an advantage in this reduction inasmuch as the profile is now a

streamline corresponding to a constant value of /. For the applications we

shall make, it is more convenient to take the origin in the undisturbed surface,

which means writing z+ih for z'. Thus, finaDy, dropping a constant cih,

,_, accosm(z+ih)
(1) w = cz-\ ; = i

sinh mh

The bottom is now the streamline
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while, at the free surface,

i * i\
r smh wfa-f h) sin mxVl

=
CTJ
- ac (cosh WTJ -f sinh WTJ coth w^) sin mx.

But, to the order of approximation adopted, the surface is the streamline

^ = 0, so that neglecting if,

(2) 1)
= a sin ma?.

In the case of deep water, the complex potential becomes

(3) w cz+ace-im*,

and the surface streamline
ift gives

(4) 77
= a em7* sin mcc,

which agrees with (2) to the same order of approximation.

14-41. Second approximation to the wave speed. Taking for

simplicity the case of deep water, the complex potential and the surface profile

are given by 1440 (3) and (4). We note here that (4) is the exact result of

putting i/r
= in (3), but it is not to be assumed that therefore (4) is necessarily

a surface of constant pressure. We have

dw dw ... . , v ._ . , -x

02 _ _
c2 (l-^mae-miz

)(l + ^maeimz)
dz dz

= c2 (1
- 2am emv sin mx -f a2m2 e2mv).

Hence at the free surface

If p is the pressure in the liquid at the free surface and U the external

pressure, the pressure equation now gives

p-U p{ gr) + wqc
2 caa2m3

-^
c2a2m4

^
2 -

. .
.} -f constant.

(1)
= py {

- g+ c2m - c2a2w8
}
-
pc

2a2 w*7?
2 -

. . . -f constant.

If in this result we neglect terms containing a2
,
we get p = II if c2 = g/m,

the result already obtained. A much closer agreement between p and J7 will

be obtained if we neglect the terms containing a2
m*i7

2
,
which are of the fourth

and higher order of small quantities. This will make the free surface one of

constant pressure if -<7-fc
2w-c2a2w3 = 0, which gives

neglecting terms of the fourth order, and this is a closer approximation to the

wave speed. It will be observed that the speed thus found depends not only

on the wave-length but also on the amplitude.
'
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The maximum value of the first term neglected in (1), namely -
/>c

2a2w4
??
2

,

is -2gpa(a?m
3
/2), which is the fraction asws

/2 of the difference in pressure

between the crest and the trough. Thus, for a wave of amplitude 4 feet and

80 feet long, this fraction is

3

= 0-015,

and the pressure neglected is therefore at most that of

0-015 x 8 ft. of water = 14 in. of water.

14-42. Waves at an interface. Consider liquid of density p and depth

h' flowing with constant velocity V over a layer of liquid of density p and

depth h which flows with constant velocity F, the fluids being bounded above

and below by rigid horizontal planes.

Take the axis of x in the (geometrical) interface which separates the fluids

and which constitutes a vortex sheet. To investigate the condition that a

wave of small elevation
77
= a sin (mx - nt) may be propagated at the interface

V-c

: ----r-r-j^
FIG. 14-42.

with velocity c = n/m, we impose on the whole mass of fluid a velocity c

opposite to the direction of propagation, thus reducing the profile to rest and

changing the velocities of the streams to F'-c, V-c. From 14-40, it is

evident that the complex potential for the lower fluid is

(1) w=5 _(F-c)z

for the streamline
\fj
= is then

77
= a sin mx.

We deduce at once the complex potential for the upper liquid by writing
- h' for k, thus giving

(2) w' = - (V -~c)s+
a(1

T ~ff cos m(z-ih').
sinn mfi

The speed in the lower liquid, neglecting a
2

,
is then given by

_ dw dm /rr vo 2wa(F-c)2
,

,
,. .

<T = -j- ^r (F - c)
2--r4-r^ cosh m(y -f h) sin mx,1

dz dz
v ' sinhmA '
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and therefore at the interface the speed is given by

go
a = (V - c)

2
{l
-
2mrj coth mh},

and for the upper liquid by

?0
'2 = (V -

c)
2
{l + 2mrj coth mh'}.

Now at the interface the pressure equation gives for the two liquids

(3) P' + ^p'Q^+p'ffn constant,

(4) P+ \pq*+ P9Tl
= constant.

But the pressure must be continuous, and therefore p p'. By sub-

traction,

i/*V
2 - IpqJ+Mb'-p) = constant.

Thus the coefficient of
77
must vanish, and therefore

mp (V - c)
2 coth w&+ wp' (V -

c)
2 coth wft' = g (p

-
p').

This equation determines the velocity of propagation. We note that

(i) If p = 0, V = 0, then the equation reduces to 14-13 (3).

(ii) If the liquids are of infinite depth the equation simplifies to

(iii) The condition of stability is the condition that waves of the prescribed

type can be propagated, i.e. that c shall be real.

(iv) There are, in general, two values of c for which the equation is

satisfied.

(v) If c = 0, there is a stationary wave.

(vi) If the liquids are at rest, save for the wave motion F = V = 0, and

then, if the depths are infinite,

It follows that we must have p>p
f

,
i.e. the heavier liquid must be under-

neath, but see 14*54.

As a particular deduction, consider the upper fluid to be air of specific

gravity s and of infinite depth. Then putting V = V 0, we get

^ = -
/

P
~*} v

= - tanh mh{l -
s(\ -htanh mh)},m (cothmh+ s) m y

approximately, since s is small. Comparing this with 14-13 (3), we see that

the presence of the atmosphere tends to diminish the wave velocity.

This result is of general application, as is seen from (vi) above, which also

shows that, if p and p are nearly equal, the periods of the oscillations of the

common surface will be long, compared with period of the oscillations of a free

surface of liquid.
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14-43. Stead/ flow over a sinuous bottom. Let a stream of mean

depth h flow with general speed U over a bottom at which the elevation is

FIG. 1443.

given by % = a sin mx, a being small and the axis of x horizontal.

Take the origin hi the free surface. Then the complex potential (1440)

(1)
*=-

where H is determined by

q
(C)\ 772 _
(2)

U ~m
gives the steady wave motion with surface elevation 772=6 sin mx on a steady

stream of depth H, The free surface is the streamline ^r=0 and the bottom is

^= UH . We determine b so that i/j^Uhis the streamline y= - h 4-^ Putting

\fj-~Uhm the stream function gives

??i
= -r-1 sin mx sinh m(H - h)11 sinhm#

which corresponds torj^a sin mx provided that

_ 6 sinh m(H h)

ainhmH

h 1

(3)

cosh mh ^ sinh mhmU2

This gives the ratio 772 : ^ for a given value of x.

Thus the crests and troughs of the free surface and the bottom correspond

or are opposite according as

U2 ^- tanh mh, or U2 $ c2 ,"" m

where c is the speed of propagation of waves of length 2rr/m in water of depth h.

If U = c, the ratio
r/2

:
97!

becomes infinite. This means that the free

surface cannot then be represented by a simple sine curve, and the assumption

on which the solution was obtained then breaks down.
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14-44. Waves at an interface when the upper surface is free. The

problem considered in 1442 admits of interesting generalisation, if we con-

sider the upper surface to be free instead of being bounded by a fixed hori-

zontal plane. Taking the case of liquid of depth h and density p lying on

liquid of density p', we consider the propagation of waves at the interface.

This resembles the problem of 1443, if instead of a fixed sinuous bottom we

consider liquid to be present below the sinuosities. Taking the figure and

notations of that section, we get in the upper liquid the same complex poten-

tial (1) and the same ratio (3) of the elevations at the surface and interface,

U now denoting the wave velocity. The additional condition to be satisfied

is the continuity of the pressure at the interface, which means that

%pq
z
+gpr)-%p'q'

2
-gp'r} = constant,

where q, T\
refer to the upper liquid at the interface and q' to the lower. If the

latter is of great depth, we can take w' -
[7(24- oe~

<m( +i
*>), as in 1440(3),

which leads to

ag (p
-
p) + pbmll

2 cosh m(H~h) cosech mH - p'amU* = 0.

Eliminating the ratio b : a by means of the relation 1443 (3), we get, after

some reduction,

p cot}imh)-g(p'-p)}{mU
2
-g} == 0,

which gives

m m(p+ p
f

coth mh)

Thus, corresponding to a given velocity U, there are two possible wave-

lengths of which the first is the same as if the upper liquid were absent.

To find the values of m in the second case, put

Then we have to solve the equation

f(x) = s + cothsc-- = 0. Now f(x) = s+ (coth*-- )
---

x \ ay a?

But coth x- l/x is positive if x is positive, and (l-I)/x is negative if l< 1.

Hence f(x) is positive if l< 1 and there are no positive roots to the equation.

On the other hand, if I>1, /(O)
- - oo

, /(oo )
= ! + $, and therefore the

equation has a real positive root ; that there is only one such root follows

from the fact that/'(x) is positive when l>l. Thus if

Ut> 9(p'-P)h
'
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only one type of wave is generated, but, if Uz
is less than this value, a second

type of wave exists for which the ratio of the elevation at the interface to

that at the free surface is given by 1443 (3), where U2 has the second of the

values given by (1). This ratio is

a p emh

b p'-p'

so that if
/>'
-
p is small the elevation of the waves at the interface will be very

large compared with the surface elevation. This result has been used to

explain the abnormal resistance sometimes experienced by ships near the

mouths of some of the Norwegian fiords where there is a layer of fresh water

over salt, the enhanced resistance being ascribed to the generation of waves

of large amplitude at the interface.

14*50. Surface tension. An interface between two fluids which do not

mix behaves as if it were in a state of uniform tension. This tension is called

the surface tension and depends

on the nature of the two fluids

and on the temperature.

Let PQ 8s be an element of

arc of a cross-section of a cylin-

drical surface forming the inter-

face between two fluids whose

surface tension is T. If p1 , p 2

F
are the pressures on either side,

80 the angle between the tan-

gents at P and Q, resolution along the normal at P gives the approximate

equation
=

and therefore P-pz
where R is the radius of curvature.

Thus at an interface there is a discontinuity of pressure. Phenomena

involving surface tension are generally described by the adjective capillary.

Referring to fig. 14-11 and the notations of 14-12, the difference between the

internal and external pressures at the point P of the interface is

Also the curvature, since the slope is small, is d*r]/dx*. Thus the pressure

boundary condition at the interface is

a
the negative sign being due to the fact that the slope decreases as x increases.
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Differentiate with respect to t, and note that drj/dt
= B^/dx. Then

?!^^4_^ =
dtz

y
dx p dx3

This now replaces the surface condition 14-13 (1).

14-51. Equation satisfied by the complex potential. The argument
of 14-13 still applies, and we get Cisotti's equation in the form

^ [w(z+ih, t) + w(z-ih, t)]+ tg T [w(z+ ih, t)-w(z-ih,
Ot* OZ

T d3

-^ ,-, = 0.

p OZ*

14-52. Surface waves. To obtain the surface waves in water of depth h,

take the periodic solution

w(z, t) A cos (mz-nt),

which is real when y = 0. Substituting in the equation satisfied by w, 14-51
,

we get

1 7 1 7
3^ '17- n2 cosh mh+ mg smh mh -\

-- smh mh = 0,
P

(Tm
2
\

g ^--
j
tanh mh,

which gives the speed of propagation of waves of length 277/m.

14-53. Effect of capillarity on waves at an interface. Using the

figure and notations of 14-42, we obtain the pressure equations (3) and (4) by

exactly the same steps. The effect of the surface tension at the interface is

to replace the condition p p' by the condition

p~p' --T-~ = Tarn* sin mx,

and the propagation equation becomes

mp (V - c)
2 coth mh+mp

f

(7'
-

c)
2 coth mh' = g(p

-
p) + Tm2

.

14-54. Speed of propagation. Consider waves propagated at the inter-

face between two layers of liquid of great depth, and otherwise at rest. We
have, from 14-53, if p is the density of the upper fluid,

f = 9P~P'
,

Tm

mp + p' p+p
f

If the wave-length Sir/m is large, the first term on the right is large com-

pared with the second, and the effect of capillarity is inconsiderable. On the
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other hand, for small wave-lengths the second term predominates and gravity

can be neglected.
/

p
Put S = *-

, T :

p

then s is the specific gravity of the upper liquid and I is a length which may
be regarded as a measure of the surface tension. In terms of s and I,

2 _ gf

(
1 - g) /i~~
1 + s \m

By differentiation we see that c2 has a minimum value when m =
l/l, so

that the velocity of propagation is least for waves of length

A = 2?rZ,

and the least value of c is

given by

Thus

This shows that when

c>c there are two admis-

sible values of A/A ,
and

these values are reciprocals.

Waves of length less

Fl0 ' 14 *54 '

than A are called ripples,

so that ripples are waves in whose propagation capillarity plays the pre-

dominating part.

The group velocity is given by

1 + 8

X/X

Thus for ripples the group velocity tends to the value 3c/2, which is greater

than the wave velocity, while for waves in which A is much greater than A

(gravity waves) the group velocity tends to c/2, as already found in 14-22.

The condition for stability is that c2 shall be positive, so that c is real.

This condition is always satisfied if p>p
f

. But it is worthy of note that it is

also satisfied if p<p' 9 provided that

2W $-(/>'-/>)'
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This result is illustrated by the experiment in which water is retained by

atmospheric pressure in an inverted tumbler whose mouth is closed by gauze

of fine mesh.

14-55. Effect of wind on deep water. If the water is deep and at rest

except for the wave motion, we get, from 14-53,

2V's V'zs
__ g l-s Tm _ 2

(1)
~ c+ " ~

Cl '

where 5 = p'/p, and c: is the wave velocity when there is no wind. For a

given wave-length the wave velocity c will be greatest when dcjdV = 0, i.e.

when c V, and the maximum velocity is then

If the wind has any other velocity greater or less than cm , the wave velocity

is less than cm .

Again, the values of c are imaginary if

s

Kemembering that cx depends on the wave-length 27r/m, and has the

minimum value c (14-54), it follows also that

This last inequality implies that waves within a certain range of wave-

lengths cannot then be propagated. They are blown into spindrift.

This means that the water surface is then unstable, even if a flat calm

prevails previously to the starting of the wind. Lamb gives the minimum

value of V in this case as about 12-5 knots.

The two values of c given by (1) are

V's If
2

sV* \'-

and if F'< ^(1 + *-*)*,

these velocities have opposite signs. Hence the waves can travel either with

the wind or against it, but they travel faster with the wind than against it.

If F' exceeds the value just given, the waves cannot travel against the wind.

It must be remembered that the above conclusions are based on arguments
which take no account of viscosity.

14-58. Levi-Civita's surface condition. We have seen in 1440 that a

wave of constant profile shape can be reduced to steady motion. Consider such

a wave profile, progressing from right to left with velocity c, to be reduced to

rest by superposing a velocity c from left to right on the whole system, as for

example in fig. 14-58.
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In the notation of 1243 we write

(1)
- - = v = qe~

ie = ce= - i(a

(2) co

and we take the free surface to be the streamline 0=0.
Since in steady motion the time variable does not enter, the complex

potential w is a holomorphic function of z alone, and we may take w for inde-

pendent variable instead of z. At the free surface 0=0 and so w=(f> ;
therefore

z, q, to are functions of the real variable alone. Again at the free surface, by
Bernoulli's theorem, %q*+gy is constant and therefore

(3) q
%
+g

ljL

= o when,/r=0.

But from (1), when = 0, dz/d<f>
-eid

/q and therefore

,
while from (^^.

q o<f) 00

Thus (3) can be written

But co is a holomorphic function of w and therefore dr/d</>
= -

d0]dijj. Thus

finally

(4)
~ = -^e-

3T
sin^, = 0.

U0 C

This form of the surface condition is due to Levi-Civita.*

The condition is non-linear. The linearised approximation is obtained by

assuming |

co
|

to be small of the first order. This means that and r are small

so that sin 6=0 and q=c nearly. Thus the linearised form is

The theory based on this surface condition is completely equivalent to that

given in the preceding sections of this chapter.

To see that this is so, consider a symmetrical wave profile of wave-length A

and take the origin at a crest, fig. 14-58. For simplicity we take the depth of the

water to be infinite.

From the symmetry (f>
is constant and 0=0 on the vertical through a crest or

trough, and since at a great depth -d</>/dx=c, -d0/cty=0, we may take

(f>=
- ex and therefore 0=0 on the y-axis, and </>= JcA on the verticals through

the adjacent troughs on the left and right.

* Math. Ann. 93 (1925) 264.
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Thus the boundary conditions to be satisfied are

(6) 6 = when
</>
=

$cX,

(7) w->0 when i/r->oo ,

(8) the surface condition.

Fio. 14-58.

In the present case the surface condition is given by (5).

It is readily verified that all these conditions are satisfied by

(9) co = - iAeigw!c\ c2 = #A/27r,

where A is a real constant, and the supposition that w is small entails A being

small. If then we write m=27r/A, A=ma, and expand the exponential in (1),

we get
dz 1 1 . 1

dw c c c

whence by integration, observing that 2=0 when w=0,

w= -c{(z+ai)-iae
imwlc

}.

Since a is small a first approximation is w -
c(z+ ai) and therefore substituting

this in the index of the exponential we get

This agrees with 14-40 (3) if in the latter we move the origin to the crest, that is

to say write z+ ai+Xfi for z. The result then differs from (10) only by a con-

stant. Thus the linearised approximation (5) agrees with the previous theory,

and indeed gives precision to the assumptions of that theory.

There is, however, a serious limitation to the use of the linearised approxima-

tion. A wave will break at the crest when the fluid velocity there exceeds the

velocity of the wave. The critical case is clearly when the fluid velocity at the

crest is exactly equal to the velocity of the wave, that is to say in the steady

motion case u=0. From (2) this means that at the crest er=0 and so r= - oo .

It follows that no approximation based upon r being small can throw any light

on this case. T. V. Davies* has proposed an approximation to the boundary

* Proc. Boy. Soc., A, 208 (1951) 475 ; Quart. Appld. Math. 10 (1952) 57. My colleague B. A.
Packham (to whom I am indebted for this section), Proc. Roy. Soc., A, 213 (1952) 238, has success-

fully applied the method to the solitary wave.
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condition (4) which preserves its essential features and allows r to be large.

The approximation is

which differs from (4) only in putting J sin W instead of sin 0.

It is left as an exercise to verify that the boundary conditions (6) and (7),

and the surface condition (11) are satisfied by

(12) e-" = 1 - 3Aez"iv>tc\ c2 = gXfi-ir,

where 3A is an arbitrary real constant. When
|

to
|

is small (12) reduces to (9).

Since w=0 at the crest it follows from (1) and (12) the v=0 there when

3.4= 1, which is the condition for breaking at the crest.

When this condition is satisfied we have near the crest, where w is small,

and therefore from (1)

_

dw
oc w~llz and w oc z3 /2

.

This expresses that when breaking is about to occur, in the neighbourhood

of the crest the wave is in the form of a wedge of angle 120. This agrees with

observations ofwaves just before breaking and with a theoretical result obtained

by Stokes.

14*60. Long waves. The surface waves which have been considered in

the preceding sections were not restricted as to wave-length. We shall now

consider waves whose length is large compared with the depth of the water.

Thus for water of depth h, contained say in a horizontal canal, the hypothesis

Fia. 14-60.

is that hfA is small where A is a typical wave-length. The previous limitation

that the surface elevation and slope of the waves is small will of course be

retained. In the present instance this implies that rj/h and drj/dx are small.

On the hypothesis of long waves, the propagation equation, 14-13, simplifies

and the general solution can be readily obtained.



14'60] LONG WAVES 415

We have, in fact, if w(z, t) is the complex potential,

w(z+ih, t)
= w(z,

and therefore, neglecting terms containing A2
, the equation for w becomes

As before, w must be real on the real axis y = 0.

To solve this equation, let c2 = gh, and put zl = z+ct, z2 = z-ct.

_. dw dw dw dw dw dw
Then -H-

=: o~ + 5- ~a7
= c a~~ c a~ >

dz dz: dz2 ot ozl ozz

and therefore (1) reduces to

*Bz~W
^ * Inte8ratill we Set a^

= ^^i)'

where w^(z^ is an arbitrary function of z
l .

Integrating once more, w = t^1 (^1) +w2 (zz), where ^2(^2) is an arbitrary

function of za , and therefore the general solution of (1) is

(2) w = -^(z-f d) + W2(z-^)>

where the (holomorphic) functions wl , wa can De arbitrarily chosen, subject

to the sole condition that w is real when y = 0.

Equating the real and imaginary parts, we have for the velocity potential

and stream function,

(3) < = 4(x, y, t)
=

(4) ^ = ^r(a?, y,
=

and since w is real when y = 0,

(5) 0(

By Maclaurin's theorem,

(6) ^ = ^,0,0^ +...,

and since y lies between and h the second term is infinitesimal compared
with the first. Therefore we can put y = throughout, and hence

(7) < = ^ (&+(*)+ ^s (& -<#).

The same argument applied to (4) shows, in view of (5), that
\ft
= 0.

Thus (7) is the complete solution of the problem of long waves.

It follows from (7) that all particles which are in the same verticalplane have

the same horizontal velocity,
-

d<f>/dx, and therefore remain in a vertical plane.
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Again, from (6),

(v 11 /V\ay y, i)
-i ~y\

~

Since the first term on the right is the vertical velocity at the bottom,

which is zero, it follows that the vertical velocity is of the second order and

is proportional to the height above the bottom.

14-61. The pressure. IfU is the pressure at the free surface and
77
the

surface elevation for given values of x and t, the pressure equation becomes

P
"' ~

since q
2
is neglected and d(f>/dt is independent of y. Thus

p = n+gp(h+r)-y),

which shows that the pressure at the depth h+rj -y is the same as that calcu-

lated by the laws of hydrostatics. This is sometimes expressed by saying that

the vertical acceleration is negligible.*

14-62. The surface elevation. From 14-60 (7), the velocity potential is

(1) t^^x+cD+^x-ct).
Hence, from 14*12, the surface elevation is given by

(2) T
t
= -(&(x+c)-M(x-ct)).

y

Thus the surface elevation is the sum of the elevations due to two progres-

sive waves whose initial forms are

advancing in opposite directions with speed c given by

c2 = gh.

This is the characteristic property of long waves, that the wave velocity

depends only on the depth of the water and not on the wave-length.

It also follows from (1) that the velocity u (necessarily horizontal on our

assumptions) is given by

(3) u = -<f

14*63. Wave progressing in one direction only. Consider a wave

progressing in the positive direction of the #-axis. If u is the velocity of the

* An alternative treatment of long waves based on assuming this result is indicated in Ex.
XIV, 68, 69, 70. See also 14-70.
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liquid, 77
the corresponding surface elevation, we have, from 14-62 (2) and (3),

u -<t)'(x-ct), T?
= --</>'(x-ct),

y

and therefore u = gy/c = cy/h, since c* = #/L Thus for a wave progressing
in the positive direction of the sc-axis

(1)
- =2.
c A*

FIG. 14-63.

To trace the motion of a particle originally at P in the undisturbed surface

of water in a straight canal, we observe that the displacement is

I u dt = = I rjC dt.

The second integral measures the shaded area in fig. 14-63, and therefore

the displacement of the particle is obtained by dividing the area of the profile

which has passed P bv the depth of the undisturbed water. When the wave

has finallv passed, the particle is left ahead of its initial position by the volume

of the elevated water divided by the cross-sectional area of the water.

It also follows, from (1), that u2h = grf, and so

which expresses the fact that the kinetic energy in a length dx of the wave
is equal to the potential energy (measured from the undisturbed level) in the

same length. This result is true only for a wave progressing in one direction.

14-64. Change of profile in long waves. The case of a long wave

travelling in one direction without change of profile can be reduced to steady-*c -*

FIG. 14-64.

motion by impressing on the whole system a velocity equal but opposite to

the velocity c of propagation.

The wave form then remains stationary in space and the fluid flows under

it with the local velocity -c+w, where u is the (small) forward velocity in

the progressive wave when the elevation is
77.

2D M.T.H.
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The equation of continuity is then

(c-u)(h+7j) = ch,

whence u = cy/h approximately, a result already obtained.

For the reason already explained (14-60), the vertical velocity is small

compared with u and therefore its square is of the fourth order of small

quantities when u is taken as of the first order, so that the pressure equation

at the free surface becomes

?+ (c-u)
2
+077 =

P P

Eliminating u by means of the equation of continuity, we get

neglecting the cube of f]/h. The condition for the existence of the steady

motion is that p = U at the free surface. Thus, unless
7j

2
/h

2
is negligible, a

free surface cannot exist when ca = gh. Thus a long wave of finite height

cannot be propagated without change of profile,

It also appears that, when 7)

2
/h

2 cannot be neglected, the condition p 77

can be more nearly satisfied by taking a somewhat larger value of c when
17

is positive, and a somewhat smaller value when
77

is negative. Thus an eleva-

tion tends to travel faster than a depression, the wave tends to get steeper in

front of a crest and observation shows that it curls over and ultimately

breaks.*

1 4-70. Effect of small disturbing forces. Let X, Y be horizontal and

vertical components of a small disturbing force acting on water in a horizontal

canal of small depth A, X being in the direction of the canal. The equation

of motion is then

du _ I dp

dt pdx'

Since the depth is small, the force "Y will be practically constant as y varies

from to h, and Y will therefore merely operate to change slightly the value

of g and the effect will be of the second order. Y can therefore be neglected.

The pressure is then given by

and therefore -r- = X - g~ .

ot ox

* See J. J. Stoker,
" The formation of breakers and bores ", Communication on Applied Mathe-

matics, New York (1948) I, pp. 1-87.
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If is the horizontal displacement of a particle from its undisturbed

position, we have $

=*
The equation of continuity is

which expresses the fact that the same volume of fluid lies between the planes

x, and x+dx in the disturbed and undisturbed positions. Thus

and the equation of motion is

S
Multiply by -h, differentiate with respect to x and use (1). We then get

w *v_0*v h(3) W~ dtf-
h
~te'

which is the equation determining the changes in elevation.

14*71. Tides in an equatorial canal. We consider a shallow canal of

uniform depth coincident with the earth's equator, and we suppose the only

tide-raising force to be due to the Moon moving in the equatorial plane.

If F is the force of the Moon's gravitational attraction at the earth's centre,

the force at two diametrically opposite points of the equator will be F+ f, F - f,

where f is the small variation in F as we move outwards along the radii, whose

length is small compared with the Moon's distance. The force f is the tide-

raising force, and the above explanation shows why tides are generated simul-

taneously at antipodal points of the earth.

Fig. 14-71 shows a diagram of the equatorial

canal, is the earth's centre, M the point directly

under the Moon, G the point where the zero

meridian of Greenwich meets the equator, and P
the point, which we shall consider, in longitude a.

The Moon moves westward relatively to the

earth with angular velocity n (supposed constant),

and at the instant t the angle GOM will be nt+ .

The tide-raising force of the Moon per unit mass

has atP the horizontal component/sin (2Z.POM),*
in the sense shown in the diagram.

* For details the reader is referred to Lamb's Hydrodynamics, from which the numerical data
are quoted. We shall assume the result.
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In the case of the Moon,

fjg
= 8-57 x 10-8

;

for the Sun,

fig
= 3-78 x 10-8 -

If we take at P the axis of x horizontal, i.e. perpendicular to OP, and

x and a to increase in the same sense, we shall have dx a doc, where a is the

radius of the earth. Thus the elevation T?
is given by 14*70 (3),

a2
?/

c2 a2
?? 2hf

The complete solution of this equation may be regarded as the sum of a

complementary function containing arbitrary functions, and a particular

integral. The complementary function represents free vibrations of the water

of small amplitude which are quickly damped out by friction. The particular

integral gives the forced oscillation which is the tide. To find this, we assume

r\
= A cos 2(nt+ + a), which gives on substitution in the equation

c2 af
-- - -^

ry-j
-

r-y.
-

1

2(c
2 -w2a2

) g

Taking a = 21 x 106
ft., the value of af/g is 1-80 ft. in the case of the Moon,

and 0-79 ft. for the Sun. It follows that the tide is semi-diurnal, i.e. high water

and low water each occur twice in a lunar day. Moreover,

n a* n*a a a

and, since h/a in the case of the actual ocean is a small fraction, c2 -w2a2
is

negative and therefore on this theory the tides are inverted. This means that

low water occurs at the point which has the Moon in the zenith, and also at

the antipodal point.

14-80. Gerstner's trochoidal wave. In 1802 Gerstner, Professor of

Mathematics at Prague, showed that a trochoidal profile properly chosen

would make the pressure constant without approximation at the free surface

of deep water. This is the only known exact solution of the problem of wave

motion. The motion is, however, not irrotational.

Take the axis of x horizontal and the axis of y vertically upwards. Let

a, 6 be Lagrangian parameters which fix the position of a particular fluid

particle when there is no wave. Then Gerstner's wave is obtained by suppos-

ing that the position of this particular particle at time t is given by

(1) x = a-f e^sin w(a-hcJ), y b e^cos m(a+ ct).m m
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From this it is evident that the

path of this particle is the circle whose

centre is (a, 6), and whose radius is

eP*/m, fig. 14-80.

The angular velocity of the radius

joining the particle P to the centre P
is me.

If we fix our attention on another

particle we merely change the values

of a, b in (1).

To show that (1) represents a pos-

sible fluid motion, we must prove that the equation of continuity is satisfied,

We have, from (1),

FIG. 14-80.

(2) z a+ib exp [m (b + ia + ict)].

From 3-44 the equation of continuity is

, A d(x,y) dxdy dxdy _ [.dzdz\ . .

constant- -^-ff = ^ -
, / = Re

(i ^ = l-e2wb ,

d(a,b) dadb do da \ dado]

which is constant, so that the motion is possible.

We must now obtain the surface condition. The accelerations of the

particle are d2
x/dt

2
,
dz

y/dt
2

,
and therefore the equations of motion are

dx' dt*
*

~pdy*

\-+9y} ~ mc*emb amm(a+ ct),
\P Idx\p

L.

dy\p

Multiply these respectively by

dx

da

and then add. This gives

ifi_
da \p

Similarly, by adding after multiplication by dx/db, dy/db, we get

(3)

_

oa

= m&e* sin m(a-f ct).

(4)
db \-+gy)

= ~
\P /
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Multiply (3) and (4) by da, db respectively and add, giving

and therefore

d(-+gy] = d[-

constant-^ (6 emb cos m(a + ct)
j
-c2 emb cos m(a

For a particle at the free surface p must be constant if surface tension is

ignored, and therefore the coefficient of cos m(a+ct) must vanish, which gives

(5) c2 = g/m=gXI"27r

Thus the free surface condition is satisfied without approximation, and the

pressure at any fluid particle whose parameters are (a, 6) is given by

fn

- constant -bg + %c*e
Zrnb

,

P

and therefore the pressure is constant if b is constant.

This means that the pressure has the same value for any given particle as

it moves about.

In particular, the pressure is constant for all particles for which the para-

meter 6 is the same irrespectively of the value of a.

If we take b ft for particles in the free surface and 77 to be the pressure

there, we get

P

which determines the pressure at any other particle.

dc
The group velocity is cg = c - A-rr = \c from (5).

d\

14-81. Form of the free surface. To examine the form of the curves

of constant pressure, equations (1) show that 35 and y are periodic functions

of t, the period being 27r/(mc).

Keeping b and t fixed, the values of y recur when a is increased by 27r/m,

while the value of x undergoes a linear shift of amount 27T/W. Thus the

greatest values of y recur at points separated by the distance 27r/w. Fixing

attention on one of these greatest values of y, we see that an increase in t will

cause that value to occur for a smaller value of a in order to keep the phase

angle m(a+ ct) the same. Thus the profiles of the surfaces of equal pressure

move in the negative direction of the axis of x with velocity equal to the wave-

length 2n/m divided by the period 27r/(wc), i.e. with velocity c. If we impose
on every particle a forward velocity c, the motion will become steady and the
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profiles will remain fixed. Writing = m (a+ ct), we have then for the equation

of the profiles of the surfaces of equal pressure

x [_
_ emb gm y

_- ^mm m

FIG. 14-81 (i).

These curves are trochoids generated by a point carried at the distance

e^/m from the centre of a circle of radius l/m which rolls on the underside of

the line y = 6+ l/m, fig. 14-81 (i).

If we take b in the free surface, the corresponding profile is a cycloid.

The curves of equal pressure are shown in fig. 14-81 (ii).

FIG. 14 81 (ii).

Any one of these may be taken as the free surface. The extreme form is

the cycloid with cusps upwards. The vertical lines show the undisturbed

positions of the water columns.

To find the mean level y k corresponding to any trochoid, that is to

say, the level with respect to which the same amount of water is elevated as



424 FORM OF THE FREE SURFACE [14-81

depressed, we observe that \(y-k)dx - Q taken over a wave-length. Thus

i

^
(b - k -- emb cos 0\ (1 + em* cos 6) dd = 0,

which gives

p2mt>

W 6-*=2^
Thus the mean level is below the path of the centre of the generating

circle by this amount.

As we go down into the liquid, the distance of the tracing point from the

centre of the generating circle decreases.

For the progressive wave, the kinetic energy (per unit thickness) is found

by integrating over a wave-length the kinetic energy of the elementary mass

p(l
- ezmb)da db, denned by a fluid particle (a, 6). We have from 14-80 (2)

f = |?
~ = cV 6 from 14-80 (1).

ot ot

Hence, if we take b
ft to define the free surface, the kinetic energy is

,27T

f f
a+

^r 2?r ie2 ? e4w0\
T = |pc

2 (e-e**)dadb = pc
2 x ?-?.

J-ooJa \2m 4m/

Put A = 27r/w, ^ = 2 em /w, so that A is the height of the crest above the

trough. Then

which is the kinetic energy per wave-length.

For the potential energy, whether of the progressive wave or the steady

profile, we have, taking the mean level as datum and using (1),

fj<

But, from 14-80 (5), g/m = c2,
and therefore

T= V.

We can use the fact that T= V to give an intuitive interpretation of group

velocity.

The fluid particles describe circles with constant speed, and the pressure at

a particle is the same at every position in its orbit. Now consider any particle

whose orbit meets a fixed vertical plane at A and B, fig. 14-81 (iii). No kinetic

energy or pressure thrust work crosses this plane during a period, for what
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crosses from left to right at A goes back from right to left at B. On the other

hand potential energy does cross, for the potential energy per unit mass at A
exceeds that at B by g . AB. Clearly the potential energy moves with the

wave, that is with velocity c. But the potential energy is half the total energy.

Therefore the total energy is transported with velocity \c, the group velocity.

FIG. 14-81 (iii).

To prove that the motion is rotational, we observe that

u dx+ v dy = scalar product of the velocity and position vector

= real part of (dz/dt)dz.

From 14-80 (2),

3- dz = {c exp m (il+ ict) }{dl+ dl exp m(-il-ict)},
ut

where I = a+ ib. Thus

udx + vdy = d
(

e* sin m(a -f ct) } + c e*** da.
\m I

This is not an exact differential and the motion is therefore rotational.

The circulation in an elementary parallelogram of the liquid is obtained from

the second of the above terms (since the first is an exact differential) and

is therefore equal to

_
do

Dividing by the area of the parallelogram, we get, for the vorticity,

_ 2mc e2 6

< - ~
i _ e2m&

'

the negative sign indicating that the vorticity is in the opposite sense to the

revolution of the particles in their circular orbits.

The vorticity decreases rapidly as we descend into the liquid.

14*82. An exact irrotational wave. John's equation 11-63 (3) can also

be applied to wave motion.
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Consider the steady motion obtained by taking

(1) S(W = o#

where CD is a constant of dimensions [T"
1
]. Then

(2) z(p)

where, without loss of generality, we can take B Q and a real and positive so

that

(3) 3=
CO

From 11-63 (4) we then get

-~ = (--aiw e-w] l-+aia) e^\ ,
whence

dp \o> / \o> /

(4) w = - + a*aj* )8
- cos <o&

\oj
2

y 01

The free surface given by (3) is a trochoid without double points if the amplitude

a < <7/a>
2

,
the wave-length being

(5) A = 2710/ai',

so that the condition a < g/a)
2
implies 2?ra < A.

The velocity -dw/dz becomes infinite if dzjd^=0 which gives

(6) c^

where n is any integer. The corresponding values of z are the singular points

Such singularities must be excluded from the flow. In order to do this we can

take as bottom any streamline above or through the singular points given by

(7). Fig. 14-82 (taken from John's paper) shows the free surface and the

bottom surface formed by the streamline through the singular points, for

various values of the ratio A = 27ra/X. In the diagram the units have been

adjusted so that o>=0= 1, and A=277. For small values of a/A the depth of the

liquid is large compared with a, A of the order A log (A/a), and the amplitude of

the bottom surface is infinitesimal compared with that of the free surface of

order a2
/A. On the other hand for a/A close to l/2rr, the depth of the liquid is

small and the bottom follows the surface closely. In the motion given by (3)

and (4), the free surface remains unchanged in time and each particle has a

horizontal velocity varying between g/a>
- aco and <7/o> + ao>.
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Introduce a new coordinate system moving to the right with constant

horizontal velocity gjc* relative to the old one. We then obtain a motion of the

type of a progressive wave. To do this we write in (3) and (4)

Fio. 14*82.

z = ^ + Z, w ^W- g
~, jB

O) OJ

which lead to

(8) Z==^+ a exp {*co(a+ 1)},
OJ

(9) W = a>
2a2

(a+ + exp {-
CO

Elimination of (a+ )
shows that W is a function only of Z+gt/w, so that the

wave progresses with velocity g/aj to the left. As the singularities are no longer

fixed we have to associate a moving bottom surface with the wave. For small

values of a/A the bottom surface can be taken so far down that the motion

reduces essentially to the infinitesimal motion of a liquid of infinite depth.

The phase rate g/w is (gX/27r)
1/2 as in the classical approximation.

In the motion given by (3) and (4), a is a Lagrangian coordinate only for the

real values which correspond to particles in the free surface. The motion of the

surface particles is identical with that of a Gerstner's trochoidal wave (14*81),

given by

z = - ha exp {ia)
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in which a is a Lagrangian coordinate even for complex values, and the resulting

fluid motion is rotational.

14-84. An exact non-linear theory of waves of constant form.

Consider a wave of constant form to be moving from right to left with velocity c

on the surface of water of infinite depth.

FIG. 14-84.

We assume the wave to have a vertical axis of symmetry through a crest

C. The wave length A is the distance between, say, two consecutive troughs

Tl9 Tz one on each side of C, fig. 14-84.

We reduce the wave form to rest by superposing a velocity c from left to

right on the whole system, so that the liquid now flows under the fixed form

with general velocity c from left to right. We take the x-axis to be in the

direction of this general velocity c and the y-axis to be vertically upwards through
the crest C. We call H the height of the wave, that is the vertical distance of

crest above trough.

The form of the free surface profile is unknown. We proceed to map this

unknown profile T1(7T 2 on a known curve, the circumference y of the unit

circle in a -plane. If T^M^, T^M^ are verticals through the troughs, we can

conveniently call one wave the region, bounded by these verticals and the pro-

file I^CTj.

We map the region, defining one wave on the interior of the unit circle cut

along a certain radius. We postulate that the point Mn shall map into the

centre M of the unit circle and the line MnC into the radius MC, which we take

to lie along the real axis in the -plane. Thus if

(1) =re

we shall have x = on MC.
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The cut MT will then be placed along the radius of y opposite to MC. We
shall think of the edges of the cut as being slightly separated to form the

radius MTl on which x = - ir and the radius MT 2 on which x = **

Then as we describe the circumference y of the unit circle by varying x
from -TT to TT, i.e. by following the path T^CT^ in the -plane, the point z

will describe the wave profile T^CT^ and on going from T l to T2 ,
x will decrease

by the wave length A. This decrease can be accomplished by the mapping
function

and the same function maps = into Mn . Thus the mapping may be

effected by

(2) z =
^(logS

+ a 1 +K 2+W+...),

where, as will appear, to obtain a symmetrical profile the coefficients an ,

n = l, 2, ... must be real. We then get

where

(4)

On the free surface we put

(5) = a = e<*, a = I/a.

Then from (2), for a point (x, y) on the free surface,

(6)
A= (i cos + i2 cos

and this verifies the symmetry about CM or ^ = 0, for x changes sign with x>

and y does not. This can happen only if all the an are real.

Then from (3) and (5), on the free surface,

dz _ dzdo _ tt/(a) A~

Further, if we put

(8) /W
where .R and ^ are real we note, on account of (5), that R and 6 are functions

of x so that
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Also taking logarithms in (8) we get at the point a =
+ iO() =log/(e*) =log(I +

where

(10) b l =al, &2 =aa -iV, 63 =a8 -a 1
a 2

so that the bn are all real and are known when the an are known. Thus

(11) log#(e) = 6 1 cos e+ 6 2 cos2e-f &3 cos3-h... ,

(12) 0(e) = & 1 sine-t-& 2 sin2+&3 sin3<: + ... .

We can use (11) and (12) to obtain a relation between 6 and R as follows.

From (11)

j-log.R()
= ~b l sin e - 26 2 sin 2e - 363 sin 3e - ....

But smnx^ gm + 26 2 sin 2e+ 363 sin 3e + . . .
)
dc = ?r6n sin wy .

Therefore

/TO\
2" sinne sn

(13)
-

It will be found that (13) is the key to the solution of our problem. More-

over up to this point we have studied only the properties of the mapping.

Let us now consider the fluid motion.

If we take
tfj
= at the surface, the boundary conditions are

(14) iff
= at the surface, r = 1.

(15) ^ = oo at Moo, r = 0.

(16) u-iv=c at Moo, 5=0.

They can all be satisfied by the complex potential

(17) =-glogC,

which gives tf/

-
(cA/2?r) log r and this satisfies (14) and (15). Also, using (3),

,10 ,
. c

(18) M_w = __ = ___ = _,

and when 5 = 0, /() = 1, so that (16) is also satisfied. Again from (18) and (8),

on the surface we have

and therefore
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(19) q = c/R ;
is the inclination of the velocity vector to the horizontal.

At the free surface the pressure is constant and therefore Bernoulli's theorem

gives q
2 + 2gy = constant or, from (19), (c

2
/#

2
) + 2gy = constant, whence, by dif-

ferentiation and the use of (7),

which can be written

If we integrate this equation from to e, we get

1 3#A f f 1

where
//,

is an arbitrary constant.

Comparing (13) and (20) we now see that it is possible to eliminate R(e)
and so obtain an equation to give 6(x). To do this, take logarithms of both

sides of (20) and differentiate with respect to . Then

1 +
jit

sin 6 (o>) daj
Jo

Substitute this in (13). Then

LM_ r 1 ELII^SI d .

l +J sinflMda,
1*- 1 n J

^Jo

This is a non-linear integral equation for the slope 6 (x) of the wave as a

function of x- After solving this, b lt 6 2 ,
63 ,

... are found from (12), then ax ,
aa ,

a3 ,
... from (10), and finally the wave profile from (6).

Moreover when a lt a2 ,
as ,

... are known, so is the function/() by (4), and

therefore the velocity at any point by (18).

Thus it appears that the whole exact theory of waves of constant form

follows from the solution of the non-linear integral equation
*

(21).

To find the kinetic energy we must remove the superposed velocity c, so

that now

(f
= (u

-
c)

2+vz
(u
- iv - c) (u+iv

-
c).

But from (18) u - w = c//(). Therefore

Now if dS and dA are corresponding elements of area of one wave and the

unit circle, we have from (3) and 6-29

* This equation is due to A. I. Nekrasov, Izv. Ivanovo-Vosnosonk. Politehn, Inst., 3 (1921),

52-65 ; 6 (1922), 155-71.
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dA
A2

* /({)/.

Therefore the kinetic energy of one wave is given by

T = fr \ f dS = \P \
J (one wave) J

_

8 y

Notes

(i) In 14-58 (4) Levi-Civita's non-linear surface condition poses the problem

of solving a partial differential equation. The problem presented by the non-

linear integral equation (21) is quite different in that it is one which could be

tackled numerically with modern high-speed computers.*

(ii) The problem is an eigenvalue one
;
indeed it can be shown that no

solution different from 6 = exists when p < 3.

(iii) The kernel of (21) is

To see this, the identity

, ,, , v /cos no) + i sin na>\ . , _ . o> ~ cos na>

log (1
- e

ia)

)
= - 27

(

--
) gives log 2 sin ~ = - 2/-

n=l \ n I & nl n

In this put o> = e+ x an^ w = "" X in *urn an<^ subtract, thus getting

= i loa* e
l-cos(e - x)

(iv) In terms of the kernel K(e, x) the equation (21) can be written

For simplicity the case of infinite depth has been treated here. For finite

depth h the same general procedure is followed by mapping one wave on an

annular region between two concentric circles cut along a radius. This leads

to the same type of equation (23) but with a kernel which now depends, instead

of on sines, on Weierstrass's sigina functions.

* The computation is in progress (1959) at the Mathematics Research Center.
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(v) If in (21) we write

^=3+ v, OO<1,
and put

equating like powers of v on the two sides leads to an infinite series of integral

equations for 1 (x) t #2(x)> >
which can be solved with increasing labour.

Correct to v3 the process, which is convergent for v < 1, leads to

(25) %-*)

(vi) It appears from (25) that if v2 and higher powers of v are negligible,

the solution of (21) is of the form 6(x) ft sin x, where ft is a small constant.

(vii) Combining (11) and (20) we see that

(26) sin0 (a>)da> = -^~^exp [-3(6j cos c+ 6

Jo fy*

and the right-hand side never vanishes. Therefore the expression on the left

is never zero, being in fact positive for
ju, > 0. Observe also that c2 can be

obtained from (26).

(viii) That
p,

is necessarily positive follows from (26) by putting e = 0.

(ix) From (21) we see that

0(27r-x) = 0(x), 0(0) =0(7r) -0.

Therefore it is sufficient to know the values of 6 (x) in the interval < x < ""

and therefore we can replace (21) by

(27)
f

\
smO

(c

Jo
da)

which simplifies numerical computations.

(x) In a sine wave the form of the profile near the crest and the form near

a trough are the same. Since, from (21 ), 6 (n
-

x)^ (x)>^^ property does not

hold on the exact wave. (Cf. 18-65 (4).)

(xi) Equation (21) being non-linear we are not able to superpose solutions

by addition.
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14*85. Exact linearised theory. We use this term for the theory of

waves of small slope treated by the exact method of 14-84. If 6(x) is small of

the first order, we have sin 6(x)
~

6(x) an(i therefore

1 sin 6 (tu) da>

Jo

is also a small quantity of the first order.

Therefore sin 6 (e)
I 1 -f /A

|

sin 6 (o>) da> =
(e) to the first order, and so the

non-linear integral equation 14-84 (21) reduces to the homogeneous linear

integral equation

JO 1

If in this case we put 6() = sin sc, we get

and thus 6(x) = sin sx is a solution ifand only if p,
= 3s. Thus (1) has the eigen

values

^ 3, 6, 9, ..., 3s, ...

and corresponding eigen functions

sinx, sin2x, sin3x,..., sins*, ... .

Inasmuch as the complete circuit of y in fig. 14-84 corresponds to one wave,

we must take \L
= 3 (cf. 14-8, Note (vi) )

and

(2) %)=/3sin x ,

where /? is of the first order. Then from 14-84 (12) we find that, to the first

order, all the b8 vanish except 6 X
=

/?,
and therefore all the as vanish except

!-&!=.
Therefore from 14-84 (6) y = (A/2?r) jB cos x at the free surface.

Taking the difference of the values of y at x = (a crest) and x = ^ (a trough),

we find that the height of the wave is given by H (A/?r) )5 and therefore

(3) p = 7rH/X.

Eeturning to 14-84 (6) we then find for the wave profile

(4) x = -
(A/27r) x

~ \H sin x , y = \H cos x >

This is a trochoid, not a sine curve as in the ordinary linearised theory of

the earlier sections of this chapter (cf. Gerstner's wave, John's wave).
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We can introduce an amplitude a by writing

(5) H = 2a.

To find the speed of propagation, in 14*84 (26) put

^ = 3, 6 X
=

ft
=

27ra/A, c = 0.

Then

(6) c2 - ^ ***
2tfT

Comparing this with c2 = gX/Zrr obtained from the ordinary theory, we find

agreement when a/A is negligible, and we note that the speed of surface waves

on deep water increases with increase of the ratio amplitude/wave length.

To find the kinetic energy we use 14-84 (22). Here from 14-84 (4),

and the area of the unit circle is TT. Therefore using (3), (5), (6),

which differs from the value found in 14-20 by the presence of the exponential

factor.

For the potential energy we have from (4)

(8) V = \gp f dx - la*gpX -
Jo

Thus measured for the datum here used V^ T.

14-86. Sound waves. We shall suppose that sound waves are propa-

gated in a gas by small to-and-fro motions of the medium whereby the dis-

turbance passes rapidly from place to place without causing a transference of

the medium itself. The basic assumptions are the following :

(i) The variations of the pressure, density, and velocity from their equi-

librium values po , p , are infinitesimal quantities of the first order whose

powers and products may be neglected.

(ii) The motion is irrotational.

(iii) The pressure is a function of the density ;
in particular, the adiabatic

law p = KPY will be assumed.

From (i), the quadratic terms in the equation of motion are negligible,

and therefore omitting the external forces,
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Also, from (ii), q = -V <

and therefore r- V $ == ~ V P*
ot p

Taking the scalar product by dr, we get

_, d<f>
fp dp p-pThus ~ = = -

^ JDO P Po

since the difference p - pQ is infinitesimal. Therefore

(i) y-

We can write for the density

(2) p

where s, the condensation, is infinitesimal.

With this notation the equation of continuity (3-20 (5)) will assume the

form

(3) |+Vq =
0, or | =W -

From (iii), p = K? =
/c/v(l

ignoring the higher powers of s. Thus (1) gives

(4) | = <*, c^-
<#

f>

Eliminating s between (3) and (4), we get

(5)

which is the equation satisfied by the velocity potential in the propagation of

sound waves.

14*87. Plane waves. If the sound waves are propagated in one dimen-

sion only, say, parallel to the #-axis, the equation becomes

the solution of which (14-60) is

<f)
=

<f>t (x-ct)+(f>2 (x+ct) t

where fa and
<f>z are arbitrary functions. This represents a motion in which

the velocity potential <j>i(x) is propagated with speed c in the positive direc-
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tion of the sc-axis, while the velocity potential < 2 is propagated in the opposite

direction also with speed c.

Thus c is the speed of sound. Since from (4),

the speed of sound in any gas can be calculated. The result for air at C.,

about 330 metres per second, agrees closely with the observed figure and

justifies the choice of the adiabatic law.

On the above hypothesis of one-dimensional propagation, the velocity

potential has the same value over any plane for which the value of x is given.

Such waves are therefore called plane waves.

The velocity potential of a plane simple harmonic progressive wave is of

the form

<f>
= A cos-Y- (x-~ct),

A

where A is the wave-length. The period is r A/c.

Sound waves travel with a velocity independent of the wave-length and

are in this respect analogous to long water waves.

If the particle whose equilibrium position is x is at time t in the position

%+ > we have

d a< 27TA .277. A 277.

a
= u= -

fe
=T smT (x

~
ct) > * =

c
C08T t*-*)-

Thus
<f>
= c, and the actual amplitude of the displacement namely A/c is

proportional to the amplitude of the velocity potential.

To obtain a measure of the intensity of sound we may take this as propor-

tional to the mean rate at which energy is transmitted across a unit area of

the wave front. The rate at which the pressure works is given by

27T

the mean value of which over a period is

Thus the intensity is proportional to the square of the amplitude and

inversely proportional to the square of the period.
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14-88. Plane waves in a cylindrical pipe. Let I be the length of the

pipe whose cross-section may be any plane curve and whose generators are

parallel to the axis of x. We shall seek periodic solutions to represent station-

ary waves. To do this, assume <k = f(x) cos nt. Then the equation

d2 < O au . d*f n* A _.
-- = c2 -^ gives -4+--f= 0. Thus
dt* dx2 dxz c2

(1) <=(J.cos h#sin
)
coant.

\ c c /

The ends of the pipe may be open or closed. At a closed end the velocity

vanishes, i.e. ty/dx = 0.

At an open end which communicates with the outside air whose pressure

is p ,
the condition p pQ must be approximately satisfied, provided that the

diameter of the pipe is small compared with the wave-length. Thus at an

open end d<f>/dt
= 0.

If the pipe is closed at x = and x = 1
9
we get, from (1),

B = 0, sin (nl/c)
= 0.

This latter condition gives

nl =
77, 27T, 3rr, . . . ,

c

and therefore the periods Zrr/n are

21 21 21 ii, nx
~~

> Zr > 7T > > an<^
<f>
= A COS COS n,

c 2c 3c c

where n has any of the above values.

These solutions can be superposed so that

. . 7TX TTCt A %7TX %7TCt

(f>
= A! cos -r- cos 4-A 2 cos -=- cos = 4- ....II II

Of these terms the first is called the gravest or fundamental note, the others

overtones. The frequency of the gravest note is c/(2l). The velocity vanishes

at each end when the pipe is emitting the gravest note, and in addition at

other points when emitting an overtone. Such points are nodes, while points

of maximum speed for a given value of t are loops, using the same terminology
as in the case of water waves. At a loop the pressure is constant, while at a

node it is stationary for a given value of t.

For a stopped pipe, i.e. closed at one end, say x 0, and open at the other,

we have again B = 0, but since d<f>/dt vanishes when x = I, we get cos (nl/c)
=

Thus
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and the frequency of the gravest note is n/(2Tr)
=

c/(4Z). The open end is a

loop.

For a pipe open at both ends we get A = and sin (ril/c) 0, so that the

frequencies are the same as if both ends were closed but the open ends are

now loops.

14-89. Spherical waves. When the disturbance is symmetrical with

respect to the origin, < will be a function of the distance r only and of the time.

We then get, from 14-86 (5) and 2-72,

VarV 3rJ'
r

Thus, exactly as in 14-60, we get

representing the sum of a diverging and a converging disturbance.

In the case of a wave diverging from the origin we can write

and the motion can be regarded as due to a source of strength f(l) at the origin.

If the source is in action for a limited time and then ceases, by integration over

an interval of time which includes the whole time of transit of the disturbance

past a given point we get, from 14-86 (4),

U <fc = 0,

since the value of
(f>

is zero before and after the passage of the wave. This

result means that s is sometimes positive and sometimes negative, or that a

diverging wave must necessarily contain both condensed and rarefied portions.

This remark is due to Stokes. Thus a diverging spherical wave of condensa-

tion cannot exist alone.

EXAMPLES XIV
1. The crests of rollers which are directly following a ship 220 ft. long are

observed to overtake it at intervals of 16-5 sec., and it takes a crest 6 sec. to run

along the ship. Find the length of the waves and the speed of the ship. (M.T.)

2. Prove that w = A cos -y (z -f ih Vt)
A

is the complex potential for the propagation of simple harmonic surface waves of

small height on water of depth h, the origin being in the undisturbed free surface.

Express A in terms of the amplitude a of the surface oscillations.

Prove that F2

2?r A

and deduce that every value of V less than ^J(gh) is the velocity of some wave.
Prove that each particle describes an ellipse about its equilibrium position.

Obtain the corresponding result when the water is infinitely deep. (U.L.)
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3. Liquid of uniform depth A, contained in a vessel with vertical sides parallel

to Oz, is slightly disturbed ;
find the equations determining the motion.

Show that the velocity potential is of the form

^ = f(x, y) cosh k (z + h) cos (crt + c)

and explain how/, k and a are to be found. Illustrate your answer by the case

where the horizontal section of the vessel is a rectangle of sides a, b. (U.L.)

4. Calculate the kinetic and potential energies associated with a single train

of progressive waves on deep water, and from the condition that these energies
are equal obtain the formula

Show how this result is modified when the wave-length is so small that the

potential energy due to surface tension is not negligible. (R.N.C.)

5. A train of simple harmonic waves of length A passes over the surface of

water of great depth. Prove that, at a point whose depth below the undisturbed

surface is h, the pressure at the instants when the disturbed depth of the point
is h + 77

bears to the undisturbed pressure at the same point the ratio

A )
"

(M.T.)

6. Show that the wave-length A of stationary waves on a river of depth Ji y

flowing with velocity v, is given by
qX , %7rh

v2 = tanh -y-

Deduce that, if the velocity of the stream exceeds *J(gh), such stationary waves-

cannot exist.

7. In a train of waves on deep water given by

show that, if (h/l)
2

is negligible, the fluid particles describe circles with uniform

speed.
Prove that, to a second approximation, the surface particles have a slight mean

drift in the direction of propagation. (R.N.C.)

8. Plane progressive waves, in water of depth h, whose velocity potential is

ga cosh m(z + h) , ,
. ,

e _^ L cos fm (x cos a 4- y sin a)
-
nt]n cosh mh l y >

are reflected at a rigid vertical wall occupying the plane x = 0, the axis of z being

vertically upwards and the origin of coordinates in the undisturbed surface. Find
the velocity potential of the reflected waves and show that the paths of the particles
are ellipses the planes of which are vertical only in the plane x = 0. (U.L.)

9. Investigate the wave motion occurring at a horizontal interface between
two fluids, of which the upper one of density p 2 has a general stream velocity U,
and the lower one of density p is at rest except for the small motion, the fluids,

being otherwise unlimited.

Show that the wave velocity c of waves of length A is given by the equation
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and prove that, for a given value of U, waves below a certain wave-length cannot
be propagated. (ILL.)

10. An infinite liquid of density or lies above an infinite liquid of density p,

the two liquids being separated by a horizontal plane interface. Show that the

velocity v of propagation of waves of length A along the interface is given by

>

2-7T p + cr

Prove that, for any group of such waves, the group velocity is equal to one-half

of the wave velocity. (R.N.C.)

11. A layer of liquid of density p and depth h lies over liquid of infinite depth
and density <r(>/o). Neglecting surface tension, show that two possible types of

waves of length 2?r/m can be propagated along the layer, with velocities given by

= - andm macothmh + p (R.N.C.)

12. Two incompressible fluids of densities plt p2(pi>Pz) ar superposed. The

upper fluid is moving as a whole with velocity Z72 , and the lower with velocity Ul ,

in the direction of the axis of x, which is horizontal, that of y being vertically

upwards. Show that the height rj
of a wave disturbance, whose velocity potentials

in the two fluids are
<f> 1 , <f> 2 respectively, satisfies the following equations at the

boundary :

Obtain the velocity of propagation of waves of length A at such an interface if

Ul
= U2

= 0, and both fluids are of infinite depth. (R.N.C.)

13. The fluid in the region 0<z<&, of density p 2 , separates two fluids of

densities p and p3 , occupying the regions ^<z<oo and - oo <z<0, respectively,
when at rest under gravity ;

and pi</02 <^/)
3- ^ waves of length A, large compared

with h, are set up in the middle layer, find the two possible velocities V l ,
F 2 of

propagation, showing that one value F x is independent of p 2 and such that a group
of such waves of sensibly the same length advances with a velocity ^V l , whilst the

other value F2 is independent of A. [The axis of z is taken vertically upwards.]

14. If the plane z = is the horizontal interface of two otherwise unlimited

incompressible fluids, of which the upper one, of density p t , is moving as a whole
with velocity U in the direction of the axis of x, while the other one, of density />2 ,

is at rest, show that the conditions of continuity satisfied at the interface by the

velocity potentials <f> l , <f>2 of small disturbances from the steady state in the two
fluids can be written in the form

Prove that a disturbance of wave-length A will be propagated along the surface

of separation with a real velocity only if

9 />2
2
-Pi

2
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15. Obtain the conditions to be satisfied for small oscillations at the horizontal

interface of two semi-infinite liquids of densities p, p' (/>>/>') moving with general
stream velocities U, V in the same horizontal direction, the surface tension T
being taken into account.

Show that there are two possible wave velocities for a wave of length A, namely

pU+p'U' Xgp-p' ^T pp'(V-V'Y
'

"
t
"

' '
'

(U.L.)

16. Two liquids, which do not mix, occupy the region between two fixed hori-

zontal planes. The upper, of density p' and mean depth h', is flowing with the

general velocity U over the lower, which is of density p and mean depth h, and is

at rest except for wave motions. Prove, neglecting viscosity, that the velocity V
of waves of length 27T/&, travelling over the common surface in the direction of U,
is given by

pF
2
cothM-fp'(?7-F)

2 cothM' =

where T l
is the surface tension.

Apply the result to discuss the stability of the surface of deep water over which
a wind is blowing with a given velocity. [For numerical purposes g may be taken

as 980, and Tl
as 74 in C.G.S. units, and p'/p may be taken to be 0-0013.] (U.L.)

17. Liquid of density p and depth h lies over a fixed horizontal bed
; above it

is a layer of liquid of density p' (<p) and thickness h', and the upper surface is a

fixed horizontal plane. Obtain an equation to determine the velocity F of waves
of length 27r/w at the common surface, the surface tension between the two liquids

being 1\.
Prove that, if h, k' are both small compared with 27r/w,

72 = hh
> (P-P')9 +T^

ph' + ph
approximately. (U.L.)

18. Two portions of a large uniform stream of liquid of density p, flowing with

velocity U, are separated by a plane boundary of perfectly flexible fabric, of mass m
per unit area, and subject to a tension T

t
the boundary being parallel to the stream.

Show that waves of length A can be propagated along the fabric, in the direction

of the stream, with a velocity F given by

providedthat

19. Explain, giving the necessary theory, why a flag flaps in a breeze.

20. Find the wave velocity of a train of simple harmonic waves, of wave-

length A, moving under the influence of gravity and capillarity on the common
surface of two fluids of densities p and p', when T is the surface tension. Show
that there is a minimum wave velocity ; find its value and that of the correspond-

ing wave-length. Prove that the group velocity of a group of waves of nearly the

same amplitude, wave-length, and phase is greater or less than the wave velocity

according as the wave-length is less or greater than that corresponding to the

minimum wave velocity. Mention any phenomenon which is explained by this

result. (U.L.)
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21. A layer of liquid of density pl and height h rests upon the horizontal surface

of unlimited liquid of density p%(p%> pi)- If Tl ,
T2 are the surface tensions at the

upper and lower boundaries of the layer, prove that the velocity V with which
waves are propagated along the layer satisfies the equation

V*k2
p t (p2 + pi tanh kh)

- V2
k[k

z
{p l (Tl + T2)+p2 T! tanh Jch} + p 1 p2g(l + tanh kh)]

+ {k^T1 + Plg} {k*T2 + (P2
-
Pl)g} tanh kh - 0,

where 27r/k wave-length. (U.L.)

22. An impulsive pressure WQ +w 1 sin mx is applied to the free surface of deep
water at rest. Find the impulsive pressure at any point in the water. Show that

the initial kinetic energy of the water is mw-fl^p per unit area of the free surface.

(R.N.C.)

23. An impulsive pressure w sin mx is applied to the surface of deep water at

rest, the origin being in the free surface and the axis of z downwards. Determine
the velocity function of the initial motion, and show that the fluid velocity at a

depth z is mw e~mz/p.
Work out the corresponding results for shallow water of depth d. (R.N.C.)

24. Sketch the two-dimensional, approximate theory of the propagation of

surface waves of small height on a horizontal sheet of liquid of uniform depth.
Show that the velocity potential <f>

and the stream function $ of a solitary wave
*

are given approximately by

$ + fy = - c (x + iy) + coc tanh %m (x + iy),

where the a?-axis is taken along the bottom of the liquid and the y-axis vertically

upwards, and where
me2 = g tanh mh, Sma. = 2 sinh2 mh,

h being the depth of the liquid.

Verify that the height of the wave at a distance x from the point of maximum
height is approximately

77
=

rjQ sech
2

wx,

and that, to the same degree of approximation,

25. A volume llhb of water is in a tank bounded by the vertical planes x I,

y =6 and the horizontal plane z = -h. Initially the water is at rest under
external pressure at its upper surface equal to Po+piX/l, where p and p 1 are

constants and p l is small. Suddenly this external pressure alters to a uniform

pressure pQ . Determine the form of the upper surface at any subsequent time.

(U.L.)

26. A rectangular trough, of length 2a, is filled with liquid to a depth h, and
made to oscillate in the direction of its length with velocity UQ cos pt. Show that

the velocity potential of the forced oscillations is given by

-
coapt,

]

where A n - 8au (
-

) sech

pn denoting the period of free waves of length 4a/(2w + 1) in liquid of depth h.

(R.N.C.)

* See Lamb's Hydrodynamics, 252
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27. A long rectangular tank of length 2a, filled with water up to a small height

h, is initially at rest, and is then given a small longitudinal velocity F sin nt .

Show that the height 17
of the free surface above the equilibrium level at time t

and at a distance x from that end of the tank which is initially rearmost, is given

by
(x-a)
^--<- -

2 / 2 1x22/2
,=o ri*/c

2
-f (s + )

2
7r
2
/a

2

where c2 = gh and s is an integer. (K.N.C.)

28. Prove that, if a canal of rectangular section is terminated by two rigid
vertical walls whose distance apart is 2a, and if the water is initially at rest and
has its surface plane and inclined at a small angle j8 to the length of the canal, the

altitude
rj

of the wave at any time t is given by

where c is the velocity of a wave of length 4a/(2n + l) in an infinitely long canal.

29. A rectangular box, with four very long edges and two of the faces bounded

by them horizontal, is completely filled with three non-miscible liquids, whose
densities and depths are crlt cr2 ,

cr3 and Il9 /2 , 13 in downward order respectively
when in equilibrium. Show that c, the velocity of propagation of waves of small

amplitude along the common surfaces, is given by

[cPmfai coth mli +

[c
2
w(<72 coth ml2 +cr3 coth mlz ) -g(<rs -cr2)]

= C4w2
<r2

2 cosech2 ml2 ,

where the wave-length is 2-TT/m. (U.L.)

30. Using cylindrical coordinates (z, or, 6), show that the differential equation
for

(f>
is satisfied by

zwn sin n6 cos at,

the free surface of the undisturbed fluid being given by z = h. Oz being drawn

upwards, find cr and show that the solution can represent standing waves of small

amplitude on the surface of fluid bounded by one of a family of surfaces of revolu-

tion and by two suitable meridian planes, which are to be determined.
Find the path described to-and-fro by a particle of the fluid which passes

through the point (0, tzr
, 0). (U.L.)

31. Find the velocity of straight-crested simple harmonic irrotational waves of

wave-length A, over the surface of deep water. Supposing the waves to be due
to an initial elevation on a very narrow strip of the surface containing the line

x - 0, z = 0, prove that, at time t, the form of the surface is given by the equation

1.3.5...(4n + l)V2aj/ /
'

where 6 is a constant depending upon the initial elevation. See Lamb, 238.

32. The axes of x and y being horizontal and the axis of z vertically downwards,
verify that

. . f -27T2\ . / 27TV \ %7T(x-Vt)
<f>
- A exp f

r-
)
sin

( T f- cos :
--r r

\6cos a/ \6cotay b

is a possible velocity potential for a wave motion in deep water bounded by the
vertical planes y = J6 cot a, and determine the velocity v of propagation.
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33. Give the characteristics of long waves in a canal, and determine the velocity
of propagation. Show that, for a propagation in one direction, the fluid velocity
at any section of the canal is proportional to the height of the free surface above
the equilibrium level.

34. Obtain the equation of motion of long waves in a shallow canal of depth A,

under gravity, and find the possible disturbances of harmonic type in such a canal

of length 21 and closed at both ends by a vertical boundary.

35. The cross-section of a canal is a semicircle of radius a. Prove that the

velocity of propagation of long waves is J(7ro#)i, the banks of the canal being

supposed vertical.

36. The bottom of a straight uniform canal of rectangular cross-section has
its vertical longitudinal section in the form y a sin mx, where a is small com-

pared with the mean depth h of the liquid in the canal. If the liquid is moving
horizontally with a mean velocity u in the direction of the axis of x, show that the

free surface has the form
sinh mh f

7i = a -r-r TT-, r; sm mx
awhm(h -h)

where h' is given by mu2 = g tanh mh\ (ILL.)

37. If the bottom of a canal is slightly corrugated, so that the depth is given

by h -f c sin Kx, c and Kh being small, prove that, if a stream of velocity U flows

along the canal, there will be standing waves in the latter, of height 77 given by

Do the corrugations affect the velocity of progressive waves along the canal?

(B.N.C.)

38. If the breadth at the free surface and the quantity of water per unit length
in a canal of uniform cross-section are given, prove that the velocity of propagation
of long waves is the same for all shapes of the cross-section.

A straight horizontal tube of length I, closed at both ends, whose cross-section

is a circle of radius a, is half-filled with water. The tube is slightly tilted and again
made horizontal. Find the period of the free oscillations of the water. Prove also

that the amplitude of the forced oscillations of the free surface due to the prescribed
motion of a diaphragm at one end of the tube, whose displacement at time t is

b sin nty where 6 is small, is

nb

39. Obtain the equation of motion for long waves in a shallow trough of depth
h. Such a trough is closed at one end (x 0) by a fixed vertical wall, and at the

other end (x I) by a piston subject to a prescribed simple harmonic displace-
ment = a cos pt. Find the forced oscillation in the trough and show that, at the

piston, the rise
rj

of the water above the equilibrium level is given by

.

-n = -5 cot ,1
c c

where c2 = gh. (R.N.C.)

40. Prove that, for long waves in a horizontal canal of uniform depth h, and
uniform rectangular cross-section, the following equations hold :
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where u is the horizontal velocity and
77

is the height of the wave above the

equilibrium level.

Such a canal is unlimited in the direction x increasing, and is closed at the

end x by a cross-section movable longitudinally. At t the water in the

canal is at rest
;
the boundary is then given a small velocity u 0(), the function

\jt being such that the total displacement of the boundary is always small. Show
that this generates in the canal a disturbance which is purely progressive, and

that
77
= if t<x/c, but

77
=

(c/g)ijj (t--jtf t> x/c, where c2 = gh. (R.N.C.)

41. A shallow trough of length 21 is filled with water up to a height h and is

closed by two pistons with vertical walls, which are constrained to move horizontally
with simple harmonic motions

a sin (nt-c) (when x = -1) and a sin (nt + e) (when x = +Z).

Find the resulting forced oscillation, and show that the amplitude of
77

is

amh (cos
2 e sin2mx sec2ml + sin2 e cos2wx cosec2 mZ)i,

where m =
n/,J(gh). (U.L.)

42. Obtain the equation of motion of long waves of small amplitude in a uniform
canal of depth A.

An isolated wave, of any form, travelling in such a canal, strikes a vertical wall

which forms a cross-section. Show that the wave is reflected without change of

type, and that, during the impact of the wave on the wall, the water rises to twice

the normal height of the isolated wave.
Show also that the horizontal momentum of such a wave is equal to the total

excess mass of water above the equilibrium level multiplied by the velocity of the

wave, and deduce the time integral of the additional pressure on the wall, due to

the impact of the wave. (U.L.)

43. Two-dimensional long waves are travelling parallel to the axis of x in water

of variable depth h. Prove that, if
77

is the height of the free surface above the

equilibrium level, 77
satisfies the equation

If A = z2/2&, prove that

is a typical solution of period ^Tr/p ; and use this result to illustrate the variations

of amplitude and wave-length to be expected in the case of waves moving in from

deep water up a gradually shelving beach. (U.L.)

44. Obtain the differential equation of motion of long waves in a canal of

variable depth h in the form

ot ox \ ox,

where
77

is the height of the wave above the equilibrium free surface.

The depths of a canal for #<0 and a?>0 are hl
and A2 respectively. A pro-

gressive wave
77
= a sin m(x- F^), where F^ = ghlt travels along the portion

of depth hv Obtain the amplitudes of the reflected and transmitted waves and
discuss its bearing upon the magnitudes of tides in a river separated from the sea

by a
"
bar

"
of shallow depth.
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45. In a canal both breadth and depth change suddenly, the variation of the

breadth being from b
l
to 62 . A progressive wave travels with velocity c

1 along
the part of breadth ^ and is partially reflected and partially transmitted at the

discontinuous section, the velocity of the transmitted part being c2 . Prove that

the ratio of the elevations at the discontinuous section of the reflected and incident

waves is

(R.N.C.)

46. A straight-crested earthquake wave passes along the bed of an ocean of

uniform depth h, so that the elevation of the bed is given by a cos 27r(z-cO/A,
where a is small. Show that the amplitude of the consequent surface waves is

I

g-Jcosh-y-V ,

where F is the velocity of surface waves of length A.

47. Give the theory of
"
long waves

"
in a canal of uniform width and of

depth A, proving that the velocity of free waves is J(gh). An earthquake wave

T/o
= C cos k (ct

-
x) travels along the bottom. Prove that the consequent wave

on the free surface is

77
=

2 cos k(ct-x).
crgn,

48. Obtain the equations satisfied by the elevation
77
and horizontal displace-

ment in tidal waves in straight canals of uniform depth.

Neglecting the rotation and curvature of the earth, and assuming a tide-

producing celestial body to move uniformly once around the plane of the earth's

equator in a day, show that an equatorial canal would contain a progressive wave,
giving a

"
direct

"
or

"
inverted

"
tide according as its depth were greater or less

than about 13 miles. (U.L.)

49. If tidal waves are due to a body assumed to move in the plane of the

equator at a constant angular rate (once per diem) relative to the point Q at which
a great circle canal crosses the equator at inclination a, show that this results

in a permanent change of level proportional to sin2 a cos 2x/a, and the addition of

two semi-diurnal tides of standing waves, with amplitudes proportional to

(l+cos
2
a) cos 2x/a, and 2 cos a sin 2cc/a respectively, x being the distance along

the canal measured from Q, and a the radius of the earth. (U.L.)

50. Establish the equation

,&?>

for the elevation
77

of the surface in tidal wave motion in a canal of variable section,
where b denotes the breadth at the surface, and $ is the area of the section.

Prove from this equation that the amplitude of a progressive wave is nearly

proportional to b~% h~i, where h is the mean depth across a section, if b and h
and their rates of change along the canal vary only by small fractions of them-
selves in distances of the order of a wave-length ; and verify that this corresponds
to assuming continuous propagation of energy without reflection. (U.L.)

51. Give an account of the approximate theory of long or tidal waves, explain-

ing the assumptions made.
A harmonic train of such waves, proceeding with velocity c

l9 meets a
"
shelf

"

over which the wave velocity is c2 ;
show that it gives rise to a reflected and a
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transmitted wave, and compare the amplitudes of these with that of the incident

wave.

If, after passing over the shelf, the original depth is again restored, show that

the ratio of the amplitudes after and before passing over the shelf (neglecting the

effects of multiple reflections) is given by

and that the amplitude is always reduced, whether the waves have crossed a shelf

or a deep. (U.L.)

52. Obtain, stating any assumption made, the equation of tidal motion in a

canal of varying section, the breadth at the surface being 6, and the mean depth
over this width being h, in the form

W "
6

*

(

An estuary for which b = fix/a, h =
yx/a, where 0<#<a, and /3 and y are

constants, communicates with the open sea at x = a, in which a tidal oscillation

77
= C cos (nt + c) is maintained.

Show that the tidal waves of the estuary are given by

- r p -r
1

/
1 (2iclai) 2*

where K = rc
2
ajgy. See Lamb, 186. (U.L.)

53. Give the theory of long waves in a canal of uniform depth h due to a

disturbing potential Q = H expi(at-Kx). If the bottom yields to the dis-

turbing force so that its elevation is
T/O

= a exp i(vt-Kx), prove that the relative

height of the waves is the same as if the potential had been diminished in the

ratio 1
ft, where p, denotes the ratio of a to the

"
equilibrium height ", Hjg,

due to the disturbance. Prove that this conclusion is not confined to simple
harmonic waves. (M.T.)

54. Taking c = 1100 ft./sec., calculate the length of an organ pipe, open at

both ends, whose fundamental note has the frequency 128. Prove that the

fundamental frequency will be unaltered if a rigid diaphragm is placed at the

middle of the pipe. Explain the physical reason for this phenomenon. (R.N.C.)

55. Show that the possible periods of the air vibrations in a pipe, open at both
ends and of length 2/, are

T T
*,

2
,

3
,

where T =
4Z/c, and c is the velocity of sound in air.

If a thin Motionless piston, of mass M, is placed at the middle of the pipe, show
that the periods (2?r/w) of modes other than the symmetrical ones are now given by

, nl M'c n
cot + -^T-J

=*

c Mnl

where M '

is the total mass of air in the pipe.
Hence show that, if M'/M is small, these periods are

T m>
}

T
(\

3Mlf/' 5V
very nearly. (R.N.C.)
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56. A straight tube of length I is open, to the atmosphere at one end. The
other end opens into a large vessel in which the pressure at time t is

77(1
- sin nt),

where J7 is the atmospheric pressure and a is a small constant. Find the velocity

potential of the air within the tube. (R.N.C.)

57. A horizontal pipe, of length I, is rigidly closed at one end and open at the

other. Show that the periods of the air vibrations in the pipe are 43/cNy where N
is an odd integer, and c is the velocity of sound in air.

If there is a thin frictionless piston, of mass M, at the middle section of the

pipe, show that the periods (27T/n) of the free vibrations are given by

Mnl _ _., . nl- = 2M cot ,

c c

where M' is the mass of the air within the pipe. (R.N.C.)

58. A straight tube of length I rigidly closed at one end has the other end

stopped by a plug of mass M which can move without friction in the tube and is

controlled by a spring. If no air is present the plug can perform small oscillations

of frequency n/2-n-. If the tube be now filled by a mass M' of air at atmospheric

pressure, and the other side of the plug be also exposed to the atmosphere, prove
that the frequency a/27r of the free vibrations is given by

59. A straight pipe, of length I, is rigidly closed at one end, and at the other

end is an air-tight piston which is caused to oscillate, its displacement at time t

being a cos nt, where a is small. Find the velocity function for the air vibration

set up in the pipe, and show that the kinetic energy of the enclosed air is

ma2
( 9 nl en

, nl) .

T \ n
2 cosec2 ---r cot } sm2

nZ,41 c I cj

where m is the mass of the air within the pipe, and c is the velocity of sound.

(R.N.C.)

60. A thin piston of mass M, placed at the middle of a straight tube open at

both ends, is controlled by a spring such that the natural period in vacua is 27r/m.
Show that if the presence of the air is taken into account the natural period is

27T/M given by

M (m
2 - n2

)
= 2P cnS tan - ,

where 21 is the length of the tube, and S is the sectional area. (R.N.C.)

61. A pipe, of length 21, is stopped at one end and open at the other, and is

divided into two parts by a thin close-fitting piston which slides in the pipe without

friction, but is controlled by a spring of such strength that its natural period of

vibration is 27r/m. In equilibrium the piston is at the middle point of the pipe,
and the enclosed air is at atmospheric pressure. Show that the period 2irjn of a

normal mode of vibration is given by

a (n2 - m2
) 2cn cot ,

c

where a is the length of pipe required to contain air equal in mass to the piston,
and c is the velocity of propagation of sound in air at atmospheric pressure. (U.L.)

2p M.T.H.
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82. Determine what happens when a train of plane waves of sound impinges

directly on the surface of separation of two gases in which the speeds of sound

are c and c'. Show that the fraction (c'
-

c)
2
/(c' + c)

2 of the incident energy is

reflected. (K.N.C.)

63. If w/27r is the frequency of waves symmetrical about the origin within a

rigid spherical case, of radius a, show that

na
__

na
tanT~V (R.N.C.)

64. Prove that in sound waves of small amplitude the velocity potential <f>

satisfies the equation

and prove further that the value of
<f>

at any time t at any point P of an unbounded
medium is given by

\t I G (ct) dw,

where the integrations are taken with respect to solid angle (dco) over a sphere of

centre P and radius ct, and F, G denote the initial values of <, -
, respectively.

Prove that, at a point where there is initially no disturbance, the time integral
of the condensation over the whole interval during which the waves are passing
the point is, in general, zero. (U.L.)

65. The centre of a rigid sphere of radius a at time t is at the point x b sin nt,

where b is small. Verify that all the conditions for the surrounding gas are satisfied

by
fein(t-r/c)-\

<f>
= real part of A =-

|
! cos 0,

where c is the velocity of sound, and A is constant. Find the value of A, the

mechanical force needed to maintain the prescribed motion of the sphere and the

work done by it in one vibration. (U.L.)

66. A point source of sound gives rise to a vibratory motion for which

. acosk(ct-r)
</,
= -

Show that the mean rate of transmission of energy across the surface of a con-

centric spherical surface is 2irpck
z
a?.

An organ pipe has one end open and one end closed. Discuss the effect of the

open end on the periods, and show that for vibrations of fundamental mode the

modulus of decay is IQP/irwc, where I is the length and w the area of cross-section

of the pipe. (U.L.)

67. If the velocity potential (in spherical polar coordinates) for sound waves
is of the form/(r) eint cos 0, show that

where k =
n/c and A and B are arbitrary constants.

A rigid spherical envelope of radius a containing air executes small oscillations,
so that its centre at any instant is at the point r b sin nt, 6 = 0.
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Prove that the velocity potential of the air inside the sphere is

fcos Jcr sin kr

where C = nkz
a*b/{(2

- Fa2
) sin ka - 2&a cos ka}. (M.T.)

68. For long waves in a canal, assuming the result of 14-61, prove that

dp Brj

Tx
=
9pfx .

and use the fact that the right-hand side is independent of y to infer that particles
in a vertical plane perpendicular to the direction of propagation remain in such a
vertical plane.

69. If (u, v) are the small components of velocity in a long wave, use the equa-
tion of motion and Ex. 68 to show that

du I dp d-n= - -

, where * -
Jju*.

Obtain the equation of continuity in the form

l

ai'

where h is the mean depth.

70. Use Ex. 69 to show that

and hence prove that



CHAPTER XV

STOKES' STREAM FUNCTION

15-0. Axisymmetrical motions. In the preceding chapters we have

been able to discuss two-dimensional motions in terms of a single complex
variable and a complex potential. In proceeding to consider motion in three

dimensions, we can no longer have recourse to the complex potential. The

simplest case is that in which the motion is the same in every plane through

a certain line called the axis. Such a motion occurs, for example, when a solid

of revolution moves in the direction of its axis of revolution in a liquid other-

wise at rest.

This type of motion, which is called axisymmetrical, presents some analo-

gies with the two-dimensional case
;

in particular, a stream function can be

denned, and when the motion is irrotational a velocity potential of course

always exists.

The axis of symmetry will be taken as oj-axis and the motions are most

conveniently discussed in terms of spherical polar coordinates (r, 6, a)), or

cylindrical coordinates (#, at, w), fig. 2-72 (i), (ii).

15-1. Stokes* stream function. Consider a fixed point A on the axis

of symmetry and an arbitrary point P. Join P to A by curves AQf, AQJP
both lying in the same plane

through the axis, which for con-

venience may be called a meridian

\ 3
plane. The position of a point in

[

this plane can be fixed by the

/' cylindrical coordinates (x, w). If

O A B x we rotate the meridian curves
FlG ' 15<1 (i)>

AQJ?, AQJP about the axis of

symmetry, a closed surface will be formed into which as much liquid flows

from right to left across the surface generated by AQJP as flows out in the

same time across the surface generated by AQJP, assuming that no liquid is

created or destroyed within the surface.

If we denote the flux across either of these surfaces by 2^, the function

^ is Stokes* stream function, also known as the current function. If we keep

AQ^P fixed and replace AQJP by any other meridian curve joining A to P,

the argument shows that the value of
</r

is unaltered. The stream function ^
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depends therefore on the position of P, and perhaps on the fixed point A. If

we take another fixed point B on the axis and draw the curve BQJP, the flux

across the surface generated by BQ3P will be the same as that across AQ^P,
for from the symmetry there is no flow across AB. It follows that the value

of
i/f

does not depend on the particular fixed point chosen for the definition,

provided that this lies on the axis. On this understanding the value of the

stream function at P depends solely on the position of P, and when P is on

the axis we have $ = 0.

If
iftp , i/jp> denote the values of the stream function at P and P', the flux

from right to left across the surface generated by the revolution about the axis

of any line joining P and P' is 27n/jp>
-

2-Tn/fp.

Taking P, P' at infinitesimal distance Ss apart,

the normal velocity from right to left across PP'

is therefore given by

27707 8s qn = 27r(i/rp> iftp),

whence by proceeding to the limit

0n = -
-aT Fl - 15>1 ()2 m ds v '

As particular applications of this important result, by taking ds in turn

equal to dw, dx
t
r dd, dr, we have

FIG. 15 1 (iii).

1
dif;

rsinfldr

which give the velocity components in cylindrical and spherical polar co-

ordinates. There is no component perpendicular to the meridian plane.

The streamlines are given by the equation

\fj
= constant,

for across such a line there is ho flow.

The dimensions of
/r
are L8T~l

, but the dimensions of the velocity potential

< are
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It should be observed that
if/

exists in virtue of the continuity of the motion,

and therefore the equation of continuity is automatically satisfied. We also

note that from the above values of the velocity components

[WO fg) O \tUO )

dx dw

which is another form of the equation of continuity.

The stream function has been defined with reference to a base point on

the axis. To take the base point elsewhere merely changes by a constant

(cf. 4*30). Since differences and derivatives of
i/r

are alone involved we may,
if convenient, regard i/j

as containing an arbitrary constant.

15*20. Simple source. A simple source is a point of outward radial

flow. If the source emits the volume 4tirm per unit time, m is the strength of

the source.*

A sink is a point of inward radial

flow.

If there is a source of strength m
at the origin, the outward flux across

a sphere of radius r, whose centre is at

the source, is related to the radial

velocity by the formula farm = 4wr2
qr .

Thus

d</>
1

di/j
m

whence
. m . .ma?

FIG. 15-20 (i).
d> = , lA = m COS C/

r r

The stream function can also be obtained directly from the definition by

considering the flux across the spherical cap cut off by a plane through P

perpendicular to Ox. ^
If the source is at the point A of the

axis instead of at the origin, we shall

have, fig. 15-20 (ii),

\ft
m cos X

= - m(r cos0-c)

In terms of x and w, we have

m

FIG. 15-20 (ii).

m(x-c)

* Thus the output is M = 47m. Some writers call M the strength (cf. p. 200, footnote).
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We note that these functions involve x and c only through the combination

x - c. Hence

ty__ty ?__<
dc

~
dx

9

dc
~~

dx'

The image of a source in a plane is clearly an equal source at the optical

image in the plane, cf. 840.

15-21. Submarine explosion. If a spherical cavity of radius R con-

taining gas at pressure pQ begins to expand rapidly in surrounding unbounded

liquid, we have a state of affairs closely imitating the effect of a submarine

explosion. Let R be the radius of the cavity at time t, pl the pressure of the gas

which is assumed to expand adiabatically, and let the inertia of the gas be

neglected. Then, by the law of adiabatic expansion,

Gravity being neglected, the motion of the liquid is radial, the velocity at

the boundary of the cavity being dR/dt = R\
Thus the motion will resemble that due to a source, and we can put

. m
d<f)

m
<f> = , -__=:__.r

r dr r2

Therefore when r = jR, m\W ~ R'. Hence

The pressure equation then gives

If the pressure at infinity is negligible, we see that F(t) is equal to zero,

for that is the value taken by the left side when r = <x> . Putting r = R, we

have p = pl , and therefore

Multiply by 2R?R' and introduce a constant c3 = pa/p. Then

^
/gixtx _2c*V p,

Jt (" K )--J&=T
K -

Integration, observing that R' = when R = jR , gives

**'* 2
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If y
-

4/3, the solution can be completed by writing R -
(I+n)R ,

which gives

As an illustration, if p 1000 atmospheres and R 50 cm., then

c = 3-16 xlO4
cm./sec., the radius of the cavity is doubled in 0-004 seconds,

and the initial acceleration of the radius is 2-00 x 107
cm./sec

2
,
which justifies

the neglect of gravity.

15-22. Uniform stream. For a uniform stream 7, parallel to Ox, by

taking the flux from right to left across a circle of radius w whose centre is

U

FIG. 15-22.

on Ox and whose plane is perpendicular to Ox, we have 2m/j
= -7rw2U, and

therefore

(1) $^-\w*U --iE/r
2 sin2 0.

This result could also be obtained by integrating the equation

The velocity potential is clearly

(2) <f>^-Ux^-Ur cos 0.

15-23. Source in a uniform stream. If we combine a source and a

uniform stream, we get

(1) ^ = -
JZ7r

2 sin2 +m cos 9.

The stagnation point is such that qr
= 0, qe = 0, or

Ucos6+ -
2
- 0, -tf sin0 = 0,

which give =
TT, r* = w/7 = a2

, say.

The streamline which passes through the stagnation point is therefore

- \Ur* sin2 + m cos = - 7a2
.
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This is the dividing streamline, whose equation may be written in the form

and therefore when 0->0, or->2a, which gives the asymptotes.

FIG. 15-23.

The dividing line is shown in fig. 15-23 and can be easily traced by Rankine's

method or from the equation

r = a cosec -
.

Equation (1) therefore gives the streaming motion past a blunt-nosed

cylindrical body whose diameter is ultimately 4a.

The pressure equation gives

(2)
p.
p

which shows that p~>U as r increases.

This result may be used for calibrating a Pitot tube for different positions

of the side openings, the opening at the nose measuring FL+\pU*y while the

side opening measures p.

Equation (2) may also be used for calculating the pressure distribution near

the nose of an airship.

15-24. Finite line source* Consider a line source stretching along the

axis from to A, the strength at the distance from being m^/a per unit

length where OA = a.

Q A
FIG. 15-24.
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The stream function is got by superposing the stream functions of a series

of elementary point sources of strengths mf S/a, and is therefore

t/j
= - I m^ cos a <Zf,

where a is the angle PQx, and OQ = .

Since g = x-w cot a, d m cosec2a c?a,

G7 COS a ,.

we have r-s
sm2a

and the integration can be effected when m
s

is known as a function of f . The

simplest case occurs when m^ == constant = m say, and then

T a \sinai suia2/ a

The streamlines are hyperbolas with foci at and A.

If we superpose a uniform stream U, we get

- - *7r2 sin2 +- (PO - PA).

The dividing streamline must contain the negative #-axis as part of itself

and therefore corresponds to
i/j
= m, and has for equation

Now P^t2 = r2 4- a2 - 2ar cos ax , PO = r.

Hence for large values of r,

= a cos ax+ powers of r"1
.

When P recedes to infinity, aj-^0.

Thus the dividing streamlines are asymptotic to

ro
2 = 462

, 62 = m/U.

We have therefore again the case of streaming past a cylinder with a nose,

but in this case more pointed than that illustrated in fig. 15-23.

15*25. Airship forms. If we combine a uniform stream in the positive

direction of the a-axis with a point source m at the origin and a uniform line

sink of total strength -m stretching from the origin to x = a, we get the

stream function
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When P is on the positive co-axis, x = r, PO - PA = a, and when P is on

the negative #-axis, x = r, PO PA = a.

Thus = contains the whole of the x-axis, and the dividing streamline

consists of this and a closed portion of airship form, fig. 15-25.

PIG. 15-25.

By assuming other laws of variation of the line sink, provided the total

intake remains equal to the output of the source, a variety of such forms can

be produced.

15*26. Source and equal sink. Doublet. Another simple combina-

tion consists of a source of strength m at the point (a, 0) and a sink of strength
- m at the point ( a, 0).

With the notations of fig. 15-26 (i), we get

ml ---
j

i
iff
= m (cos 2 cos 0i)>V2 TI/

from which the streamlines can easily be drawn.

w

FIG. 15-26 (i).

If the product 2ma = \L remains constant when w->oo and 2a->0, the

combination becomes a double source or doublet. The corresponding values

of $ and
i/j may be obtained quite simply as follows.

We have, by the sine rule,

sin02 sinfli sin^-^) 2 sin J(^-^i) cos (02
-

a (sin 2
- sin 0^ _ 2a cos (02 -f OHence fj r2 = sn
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Therefore $ =

i __ m(x a) m(x+ a]

SOURCE AND EQUAL SINK. DOUBLET

/L6
COS Kfls

[16-20

JJLX
cos (02

r2 rx fi^ cos 1(02-0!)

When a-*0, 2 ->01 ->0, r2 -*rl -*r. Thus, for a doublet,

, _ /x cos f _ ^x cos ^ _ /^C^
2 ~ f2

) __

The direction of the doublet is reckoned from sink to source.

These results also follow from Maclaurin's theorem, using the remark at

the end of section 15-20. Thus if fa = 1/r, when a is small,

w
a- -i i

Similarly,

The streamlines for a doublet are shown in fig. 15-26 (ii). The method of

drawing them is exhibited in (a) of the same figure. Taking i/j
= no),

\ m dfa\ a /1\

)
---haw -^ zr.-^-- -

/ a^Q r \da I a^ Q
r
dx\rj

**

FIG. 15-26 (ii).

n = 1, 2, 3, . . .
,
we draw the circle diameter OA ~

^/(nco) touching the axis

of the doublet at 0. Draw PM perpendicular to OA and mark

OQ = OM - OP sin - 0.4 sin2 0.

Then, if 0# = r,

u sin2 = no,
r

and so Q is a point on the streamline.

The image of a doublet in a plane is an equal but anti-parallel doublet at

the optical image in the plane, cf. 8-42.
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15-27. Rankine's solids. If we combine the source and equal sink of

section 15-26 with a uniform stream U in the negative direction of the cc-axis

the stream function is

When P is on the axis, 6 = or TT, while 62 -61
= 0, except for points

between source and sink, where 2 ~6l
= -n.

Thus
ifj
= contains the whole of the axis except the part between source

and sink and therefore gives the dividing streamline, whose equation is

(2) c?2 -f 62
(cos 62

- cos X )
= 0, 62 = 2m/C7.

Since cos 6
1 , cos #2 are each numerically less than unity, it follows that w2

cannot exceed 262
, and therefore the dividing streamline is closed.

The dividing line generates by rotation about the axis a dividing stream

surface which is clearly symmetrical with respect to the plane x = 0, since

the equation is unaltered if the signs of m and U are reversed. We have thus

the streaming motion past a closed solid of revolution of oval section, fig. 15-27,

where A is the sink, B is the source, called a Eankine's solid.

The points C and D where the stream divides are stagnation points. To
determine them we may differentiate the stream function, or more simply

w

FIG. 15-27.

observe that the stream at D neutralises the velocity due to source and sink,

so that if OD =
i, OB = a,

(3)

m = U, or (Z
2 -a2

)
2
:=2aOT,

which determines I and therefore the length of the solid. To determine the

breadth, if OE h t equation (2) gives 262 cos a = A2
, where a is the angle

EAO. Hence
2a _ A2

which determines the breadth.
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Solids constructed in the above manner by a suitable distribution of

sources and sinks have a practical value as well as a theoretical interest, for,

the source distribution being known, it is easy to calculate the velocity and

hence the pressure. The comparison of the calculated with observed results

shows that the pressure follows the theoretical distribution closely on the

anterior part, and for moderate streams shows a departure only near the rear

where there is a sudden drop below the theoretical value. It is this drop

which causes the drag actually found in practice.

15*28. Green's equivalent strata. A connected closed surface S

separates space into two regions R l and R2 . Let dn^ dn% denote elements of

normal to S drawn into R v and R 2 respectively. Then

(!) i

Let
<f>!

and < 2 denote the velocity potential of acyclic irrotational motions

in the regions R l and R2 respectively.

Consider the motion given by <f>v From 2-63 (2) we have

i r i d^ i r a /i>

1P
47rJ ()/% 47r J os)

x
d*

=--M -^
47rJ (5) ra%

(3) 0=-- -dS +~ <t>i-dS when Pis in #2 .

477 J (5)
r
a% \rj

We can interpret (1) by saying that at any point of R 1 the velocity potential

of the actual motion is the same as that which would be produced by

(i) A distribution of sources of strength (
-
dfi^dn^/^TT per unit area

distributed over the surface S together with

(ii) A distribution of doublets of strength ^^TT per unit area distributed

over S.

These distributions constitute Green's equivalent stratum of sources and doiiblets.

The distributions will give the actual velocity at any point of Rl and zero

velocity at any point of R2 .

Turn now to
(f> z . A point P in jRj_ is external to jR2 and therefore (3) gives

(4) 0=- dS+ - hj-d8, Pin*,.
M(S) r ^2 M(S) ^

Adding (2) and (4) we get

V^u-^A^o. l
f u ^^-i---(-- do-h -
I (91-92)5 (-

(S) r \dni dnj ^ J (S)

vri v 2/
a x \r

This again can be interpreted as a distribution of sources and doublets. The

equivalent stratum already found is therefore not unique. If, however, we
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take
<t> 2
=

(j>i
over S, the second integral in (5) vanishes. Also if we replace S

in thought only, by a membrane, we have on /S, d^^ds = d<j> z/ds, so that the

tangential velocity is continuous but the normal velocity is discontinuous. In

this case we have a unique source distribution of strength

per unit area which would produce the given motion.

Alternatively let us choose
c/> 2 so that (d<i/d% + d</) 2/dn 2 )

= over S. Then

the first integral in (5) vanishes and we have continuous normal velocity but

discontinuous tangential velocity over S, which is therefore a vortex sheet. In

this case we have a unique doublet distribution of strength (fa
-
fa)fin per unit

area which could produce the given motion.

It emerges from this result that a vortex sheet can be replaced by a dis-

tribution of doublets.

If the motion in R l is cyclic, with cyclic constants K I? /c 2 , ..., we can use

doublets, but not sources, to give

;

**

Here
cj) l

is one-valued in the region 7^ modified to become simply connected

by introducing barriers or l3 cr 2 , ..., and
c/> 2

is the velocity potential of acyclic

motion generated in R 2 ,
when proper normal velocities are applied to each

element dS of an imagined membrane coincident in position with the original

boundary.

15-29. Butler's sphere theorem. The circle theorem of 6-21 has an

analogue which applies to axisymmetrical motions. Let f(r, 6) be a given

function of the two spherical polar coordinates r and 6 and let a be a given

positive constant. Define

We can then state the following theorem.f

Butler's sphere theorem. Let there be axisymmetrical irrotational flow, in

incompressible inviscid fluid with no rigid boundaries, characterised by the

stream function
</f
=

/r (r, 6) all of whose singularities are at a distance greater

than a from the origin, and let
/r
= 0(r

2
)
at the origin. If the rigid sphere r=a

be introduced into the flow, the stream function becomes

t S. F. J. Butler. Proc. Camb. Phil. Soc. 49 (1953) 169-174.
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Proof. The conditions to be satisfied are

(i) the flow given by ifr
must be irrotational,

(ii) ift= constant, when r=a,

(iii) i/r

* has no singularities outside r=a.

(iv) The velocity due to
e/r

* must tend to zero as r tends to infinity, and
if/

*

must introduce no net flux over the sphere at infinity.

From 15-1 and 2-72 (4) the condition of zero vorticity derived from the stream

function
\fs

is

(3) r

By direct differentiation we readily verify that if
i/r

satisfies (3) so does

(4)
,/, * -
ro

This disposes of (i), and (ii) is clearly satisfied since t/j=0 when ra .

Since r and a*/r are inverse points with respect to the sphere r a, if one point

is inside the sphere, the other is outside. Thus the singularities of
I/JQ being all

outside the sphere, those of
I/JQ
* are all inside. Thus (iii) is satisfied.

As to (iv), ip
is regular inside the sphere r a and near the origin i/f

=
(r

2
).

Therefore at infinity i/

*
0(l/r). From 15-1 it then follows that the velocity

at infinity due to *
is (1/f

3
)
which tends to zero as r tends to infinity. For

the flux we have $qr dS 0(l/r) which also tends to zero. Q.E.D.

The same method of proof shows that if all the singularities of (r, 6) are

inside the sphere r a, and if
t/r 0(l/r) for large r, then (2) gives the flow inside

the sphere when r a is made a rigid boundary . Here (iv) is replaced by the

condition that *
gives finite velocity at the origin. The proof is left as an

exercise.

15-30. Sphere in a stream. The stream function for a uniform stream

from right to left is %Ur
2 sin2 0. Therefore from Butler's sphere theorem,

when the sphere r = a is inserted,

(1)
=

We note that this is the stream function due to the combination of a stream

- U and a doublet of strength \Ua? at the origin. Thus the velocity potential is

(2) * =
i

The streamlines can be drawn directly from (1), or more easily by first
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drawing the streamlines of the doublet as in 15-26 and then applying Rankine's

diagonal method to a superposed uniform stream.

The velocity at any point of the sphere is tangential and therefore from

(2) its value is -
d<f>/r d6 = 3 7 sin 6/2. The stagnation points occur on the

FIG. 15-30.

axis when 6 = or TT, and the maximum velocity of slip is 3 7/2 round the

equatorial belt which is perpendicular to the direction of the stream.

The pressure at any point of the sphere is given by

P 8
-

where IJ is the pressure at infinity. The points of minimum pressure occur on

the equatorial belt mentioned above and the pressure there is p , where

and therefore the condition that there shall be no cavitation is that^) >0, i.e.

In accordance with d'Alembert's paradox, the resultant thrust on the

sphere is zero. The thrust on the anterior hemisphere is given by

N2
f oU2

']

F = p cos . 2ira2 sin 6 dO = no? \II-?~--\ .

Jo I 1 J

The thrust on the rear hemisphere is equal but opposite to this.

15-31. Kinetic energy. When the motion is irrotational, the kinetic

energy of the liquid contained in any region bounded by surfaces of revolution

about the axis is given (3-72) by

where dn is an element of normal drawn into the liquid at the element dS of

20 M.T.H.
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area of the bounding surface. In the present case, dS = ZTTW ds, where

an element of arc of the meridian curve of the boundary. Also

[15-31

is

Bn
1^1

W (

since each represents the normal velocity, and therefore

(1) T = 7

the integral being taken round the portions of the meridian curves on one side

of the axis, fig. 15-31, in the sense indicated by the arrows, the fluid being

comprised between the surfaces generated by ABC, DEO.

If the outer boundary is absent, the integral is then taken round ABC in

the clockwise sense. Changing the sense of description, we get

(2) T = -i
(CBA)

the sense now being anticlockwise.

Another expression for T in terms of the stream function only is obtained

by observing that integration of (1) by parts gives

=

77p I
iff d</>,

since the integrated part vani-

shes. But

d<f> Idif*_ = __. Hence
ds w on

FIG. 15-31.

taken round the boundary in the sense indicated in fig. 15-31.

15-32. Moving sphere. When a sphere moves with velocity U in a

liquid at rest at infinity, the velocity potential and stream function are at once

deduced from 15-30 (2) and (1) by superposing a uniform velocity U in the

positive direction of the a-axis, so that

J. __ 177 3
COS # _ ITT 3

SU12

y2 if

It is important to observe that these results now refer to an origin moving
with the sphere, so that even when U is constant the motion is not steady.*

The kinetic energy of the liquid is given by, 15-31,

* It is then relatively steady, I'll.
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a* f' cos'flsinflcW -

where M' is the mass of liquid which the sphere could displace.

Thus the total kinetic energy of the system, solid plus liquid, is

where M is the mass of the sphere.

Thus the virtual mass is (M+\M
f

)

cf. 9-221.

If F is the resistance of the

liquid, by equating the rates of work-

ing, we have

and therefore

F =
FIG. 15-32.

.*V
1

~dt
}

which vanishes when U is constant.

If the sphere falls under gravity in an infinite liquid, the forces acting

upon it are the weight Mg vertically downwards, the buoyancy M'g vertically

upwards, and the resistance \M' dlljdt also vertically upwards. Thus

so that the acceleration is

dU M-iW 1-

where s is the specific gravity of the sphere compared with the liquid.

This result implies that the effect of the liquid is to reduce the acceleration

due to gravity in the ratio s- 1 : s-f |. In particular, if s<l, the sphere rises

with the acceleration given by the above formula. This has an obvious

application to the motion of a balloon.

Darwin has shown* that the type of investigation leading to 9-222 (9) can

be applied to a three-dimensional body moving in the x-direction to give for the

drift volume

r\ _
MJJ ( -/*) dx dy dz,

wherein the ^-integration must be done first. The hydrodynamic mass is then

pD.

In the case of the sphere D=7ra3 and the hydrodynamic mass is therefore

\M' as obtained above.

* Loc. cit. p. 235.
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15*33. Pressure on a moving sphere. The pressure equation is

ID t
f+tf

-.r,

_
Let r = OP be the position vector of the point P (fixed in space) with

regard to the centre of the sphere. Then

8<t>
. a3 dU . a3

. . dr 3a3 dr
-

and therefore U cos = velocity of along OF -
dr/dt.

Let f = dU/dt be the acceleration of the centre of the sphere.

Substituting in (3), we get

Substituting in (1), we get

/72 tf
3 77* "

since all the terms on the left except the first vanish when r oo .

Thus the pressure on the surface of the sphere is given by

cos2
0-5),

where a is the point (r)r==a of the sphere.

These results can also be obtained at once from 3*61 .

15-40. Image of a source in a sphere. Consider a sphere, centre 0,

radius a.

Let there be a source of strength m at the point A (/, 0, 0), and let P be any

point. IfAP makes angle 1 with the positive direction of the axis, the stream

function for the source alone, adjusted to vanish at the origin is

and therefore, by Butler's sphere theorem, when the sphere is placed in the field,

(1) /r
= m(l + cos 0J - w(l -f cos 0x)*

WIT= m -fm cos BI
----m (cos &)*

a
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The evaluation of (cos 0J* offers no special difficulties but the solution of

this and similar problems connected with the sphere are facilitated by some

simple geometrical considerations. In fig. 1540, B is the inverse of A so that

(2)

FIG. 15-40.

Draw BL, OM perpendicular to OP, PB. Then 0, M, B, L are concyclic so that

(3) PO.PL = PB. PM.

Now r1
2 = r2 +/

2
-2/rcos^, r2

2 = r2 +/'
2 -

2/V cos 6, and therefore from

15-29(1)

PM

a \r r a r a

Again cos Q^ = (r cos 6 -f)frl and therefore

from (3) and so

(5)

Therefore from (1)

(003^=-^ =

n , x *= m+m cos yx
--

(r
- r2) -h -7- cos ^2 .

The last two terms constitute the image of the source in the sphere, which thus

consists of a source of strength ma/f at the inverse point and a line sink of

strength mja per unit length stretching from the inverse point to the centre.

15*41. Image of a radial doublet in a sphere. Consider a doublet of

strength JJL placed at A along a radius of a sphere of centre 0, radius a. Taking
OA as axis of

ft,
the stream function due to

JJL
alone is

= -p sn2 = -/*! - cos
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using the diagram and notation of 15-40. By Butler's sphere theorem, in the

presence of the sphere r = a, we have

/xsin
2

!?!

rl a fair
~~

r
l afa

But OM =f sin 2
= (a

2
//) sin 62 . Therefore

Thus the required image is an oppositely directed doublet of strength /xa
3
//

3 at

the inverse point (cf. 8-81).

15-42. Force on an obstacle. Let the motion be steady and irrota-

tional. Let there be n singularities of the flow each at a finite distance from

the obstacle. Let S be the surface of the obstacle, and let Sf (i
=

1, 2, . . .
, n)

be spheres of infinitesimal radius, one round each singularity. Let Sn+1 be a

sphere of large radius R conceived as enclosing St (i 0, 1, 2, . . .
, n), and let

V be the volume exterior to these St but interior to Sn+l . Then by Gauss's

theorem

"Z
f [n

t-oj()
2q (n q)]<K = - [V <f

- 2q (V q)
- 2 (q

-I,.

since V 9 an(i V A 9 ^ an(^ therefore

[n <?

2
~2q(nf

f
t-Oj(

The integral on the left is independent of Sn+1 and therefore so also is the

integral on the right, and if q 0(1/J?
2
),

it is clear that the integral on the

right has its integrand 0(l/jR
2
)
and therefore must anyway tend to zero as

R-+CC . Thus the integral is identically zero and therefore, writing

(1) u = ~inga
+q(nq),

we have

(2)
- f u dS = Z { u dS.

Jos.) <-iJ()

In exactly the same manner we prove that

(3) -f
r A uZS= Z\ r

J(S.> t-lJ(S
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Thus if F, L are the force and moment on the obstacle, we see from 3-62 that

(4) F=27pf udS, L= 27pf r A u<Z&

Thus the action on the obstacle may be regarded as the resultant of a

system of forces and moments

(5) F, =

FIG. 15-42.

Suppose that the itla. singularity is a source of strength mt situated at the

position 1%. Then, if r is the radius of the infinitesimal sphere $,- , we can

write for points on the surface of this sphere

where q f
is the velocity at the point r

t
induced by all causes except the singu-

larity there. Substituting in (5) and remembering that 1 n dS = over a

closed surface, we get

(6) F< = 47rm, P q f , L, = r, A 4w?w, p q,.

This shows that in the case of sources, we can suppose the fluid action on the

obstacle to be due simply to a force Ff localised at the ith source (i
= 1, 2,

. . .
, n).

To find the effect of a doublet, consider a sink -m at A and a source m

at J5, where -42? =
yj.

If q is the velocity induced at the sink by all causes except the source and

the sink, the velocity at the source due to all causes except the source is
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while the velocity at the sink due to all causes except the sink is

Thus from (6) we see that at the source there is a force farm p q + and at

the sink a force - farm p q_. The forces in the line AB cancel and we are left

with the forces shown in fig. 1542, i.e. in the limit when we have a doublet

of strength n = YJ m, there is a force and couple

(7) F = 47rp(nV)q> L = 4rrpn A q,

where q is the velocity induced at the doublet.

15-43. Action of a source on a sphere. From 15-40 we find that the

image system of a source m at distance/from the centre of a sphere of radius

a, induces a radial velocity ma3
/~

1
(/

2-a2
)~

2 and therefore the sphere is urged

towards the source by a force

/(/
2 - 2

)
2

*

15-44. Action of a radial doublet on a sphere. From 15-41 we find

the velocity induced by the image doublet at the point (r, 0) to be

2fj,
cos 6 a*

the pole of coordinates being the inverse of the position of the doublet. From

15-42 (7) the sphere is urged towards the doublet by a force

2/z cos 6 a*

15-50. The equation satisfied by the stream function when the

motion is irrotational. If the flow is symmetrical about the z-axis, the

vorticity is (from 2-72 (8))

??_ dh = 1 (1 W] +A (I W] = _!_
dx dw dx \w dxj dm \w dwl sin cu

If the motion is irrotational, it follows that

_

dx \w dx] dw \w

which is the required equation.

We shall now prove that the conformal transformation
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transforms the above equation into

where w is considered as the function of
, 17 given by the transformation.

Proof. Since
*\

p\ J\
**\ *N 'N

(3) 2 - - - = i , 2 = - i >

we see * that (1) is equivalent to the vanishing of the real part of

The first two factors on the right are conjugate imaginaries whose product

is therefore real, and consequently the real part of

vanishes and this is equation (2). Q.E.D.

15-51. The velocity. We have

-, ,
, c 4 a// a</<and therefore q

2 - ~- ~-
W2

OZi OZ^

The conformal transformation z
l
~ /() then gives

and therefore

Again, if ds
f , ds^ are elements of arc in the directions in which and

77

increase respectively, we have

=
(ds)* = (*)* + (fa) =/'(0x/'(C)

where J2 =f (>)/' (t). Thus the velocity components in the directions in

which
, T?

increase are given by

* Note that 4> may be regarded as a function ofthe independent variables zl , ^ or of , ^. Also

^ is a function of zx only and therefore is a function of Zi only.
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or in terms of the stream function by

i a/r _ I
or

s,,
Jar drj'

* w
_ _ _ - _

*
' * Jw d$

o

From these results we obtain the equations (cf. 5-30),

dA~\ dA ^-_!^
d w drj dr] w dt;

15-52. Boundary condition satisfied by the stream function. When
a solid of revolution moves with velocity U in the direction of its axis in a

liquid, the normal velocities of the solid and

the liquid in contact with it are the same.

Thus
1 diL T . Q r,dw-- -JL = U cos = E7 -7-w os as

Integrating round the boundary, we get

U x
i/r

- -
JZJtu

2 + constant.
FIG. 15-52.

If the liquid is at rest at infinity, the

motion there must be unaffected by the presence of the solid and therefore

must tend to a constant value at infinity. Without loss of generality, the

constant may be assumed to be zero.

15*53. The sphere. One of the simplest applications of the foregoing

results is to the motion of a sphere. The transformation

z1 = x+ iw = c el

gives x = c et cos
17,

w = c e* sin
??,

so that the surfaces f = constant are

spheres. For a sphere of radius a we have a c e*. The equation satisfied

by the stream function is

m a / i W a / i

1 ;
sin

7) dl dr) sin
i)

while if the sphere moves forward with velocity U in the direction of the

x-axis,

(2)
= - %Uc

2 ez* sin2
??

at the surface
;

(3) ^r->0 at infinity, where the liquid is undisturbed.

Equation (2) suggests the trial solution
iff
= /() sin2

77.
Substitution

in (1) then gives successively
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= 0,

From (3), we see that B = and (2) tlien gives

whence
iff
= -

Jc
2C7e^ sin2??/^

= - a3
7 sin2 0/r,

the result already obtained in 15-32.

15-54. Stream function for a planetary ellipsoid. A planetary (or

disc-shaped) ellipsoid is the figure obtained by rotating an ellipse about its

minor axis. This figure is also known as an oblate spheroid. The figures of

the earth and of the planet Jupiter are approximately of this form.

The transformation

(] ) zl
= x -\-irn = c sinh t

gives x = c sinh cos
77,

w = c cosh sin
77,

and therefore the curve =
is an ellipse in the meridian plane whose semi-axes are

a ~ c cosh , b c sinh ,

and so f gives a planetary ellipsoid.

The stream function satisfies the equation (15-50)

= 0.
\cosh f sin

77
d / ^ \cosh f sin

T]

When the ellipsoid moves forward with velocity U in liquid at rest at

infinity the conditions to be satisfied by </r
are

(3) ^ = |C7c
2 cosh2 sin2

T]
at the solid surface,

(4) i/r->0 at infinity.

Condition (3) suggests the trial solution, = /() sin2
17.

Substitution in (2) gives successively

/" (0 cosh | -/' (fl sinh ( - 2/(0 cosh =
3

/' (0 cosh f - 2/(0 sinh f = B,

^ / /tf) \ B
d| \cosh

2
f/ cosh3

'

where J5 and C are constants and (4) shows that (7 0.
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Now, by integration by parts or by direct verification,

f d , /sinh
, . ,

A ._.

Ca*
=

2 TTe
" cot smh f +A

J cosh8 \cosh
2
f /

and we take D 0, since the other terms tend to zero when f->oo . Thus

FIG. 15-54.

To verify that/()->0 when -<*>
,
we have, for large values of

,

py-v2 "I

sinh cosh2
^ cot"1 sinh sinh - -

.-

sinh sinh

which clearly tends to zero. Thus (4) is satisfied.

To determine B, we have from (3)

B cosh2

( J^ - cot-* sinh f )
- - Uc* cosh2

f .

Vcosn-
5

f /

Now

Therefore

Thus, finally,

(5)
=

a = c cosh ,
b =a\l\ -e2 = c sinh .

5 = - i7c
2
/(ex/I^7

2 -
sin^e).

-
Jf7c

2
(sinh

- cosh2
| cot"1 sinh |) .

2

ex/l_ e2_ sm-l e

To find the velocity potential, we have from 15-51

dd> I Bib

Therefore, from (5),

c cosh ^ sin
rj

~- = -
(2
- 2 sinh f cot"1 sinh ) sin r>, k

077 C

,
Z7c (1

- sinh | cot-1 sinh <

e>/l-e2 -sin- 1 e

Note that
</>

is of the form Uf() x.

cos
7).



15-54] STREAM FUNCTION FOR A PLANETARY ELLIPSOID 477

The kinetic energy and hence the virtual mass are then easily calculated

from the formula

The streaming motion past a planetary ellipsoid is easily deduced by super-

posing a stream - U on the solution found above.

15-55. For a circular disc moving perpendicularly to its plane, we put
e = 1, c a in the formulae of 15-54.

Thus on the face of the disc (f 0), we have

i / irr 2 2
<p
- cos

77, t/j fUa
2 sin2

??,
77

and the kinetic energy is

TJ-O

15-56. Venturi tube. To find solutions of 15-54 (2) which are indepen-

dent of we put di/j/d
= which leads at once to

iff
= Ac cos

77,

where A is an arbitrary constant. The streamlines, T?
= constant, are hyper-

bolas and the stream surfaces are therefore the hyperboloids (of one sheet)

generated by the revolution of these hyperbolas about the 23-axis.

If we take a particular constant value
T;O , we get the flow of liquid through

a tube whose wall is the corresponding hyperboloid, the smallest section, or

throat, of the tube being a circle of radius c sin
rjQ . The taper of the tube in

the neighbourhood of the throat can be made of any degree of fineness by

taking rjQ sufficiently small.

We have thus an idealised representation of the flow through the throat

of a Venturi tube (1*7), or the working part of a high-speed wind tunnel.

As an extreme case, taking 77 Tr/2, we get the flow through a circular

aperture of radius c in an infinite plane wall (x = 0). As usual in such cases

the speed at the edge of the aperture is infinite (cf. 6-10).

From the definition of $ the flux through the throat is 27rAc(}. COST?O)

which determines A in terms of the flux.

15-57. Stream function for an ovary ellipsoid. The ovary (or egg-

shaped) ellipsoid, also called a prolate spheroid, is generated by the rotation

of an ellipse about its major axis. The method of 15-54 can be applied to

this case by means of the transformation

05-M = ccosh.
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Pursuing the same steps, we obtain

(cosh |+ sinh2
log tanh | J

sin2
?/

a 62 a+ b-c
c c2

for the spheroid, defined by ,
a c cosh f ,

b c sinh
, moving

forward with velocity U in the direction of the se-axis.

15-58. Paraboloid of revolution. The transformation

gives x -

and therefore
4C*

Thus the surfaces constant are paraboloids of revolution whose foci

are at the origin. To discuss the motion of such a paraboloid progressing

with velocity U in liquid otherwise at rest, we observe that, at the boundary
of the paraboloid =

,
we must have

(i)

while the stream function must satisfy

We therefore put ifj =/(^)^
2 in (2), which gives successively

and therefore
i/j
~ (\B

z
-\-C)iif. The condition at infinity is no longer = 0,

for the paraboloid itself is of infinite extent and disturbs the fluid. This must

therefore be replaced by the condition that the velocity vanishes at infinity

for points not near the paraboloid. From 15-51, we have

The first term on the right does not vanish unless B = 0. Therefore we

must have B 0.

Hence
iff
= O^

2
.

Comparing this with (1), we get

(3) <A
=
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In the case of the streaming motion past the paraboloid we have, by super-

posing a stream U from right to left,

FIG. 15-58.

The result (3) can also be deduced as a limiting case of the motion of an

ovary ellipsoid as follows. Moving the origin to the focus, the transformation

of 15-57 can be written

x+ iw = c cosh - c 2c sinh2 .

If we write 2k2c for c, and J/fc for
,
this becomes

x+iw = 4c&2 sinh2 ^ ,

2k

and when &-> oo this goes over into x+ im = c 2
.

The corresponding changes in the stream function of 15-57 are as follows

a, 6, c become respectively

2Pc cosh f- , 2k*c sinh |? , 2k*c,
k k

while |, 77
become /&, if]/k. Making & >oo then gives (3).

I5'60 Comparison theorems. We consider irrotational flow of an

inviscid incompressible fluid, bounded by streamlines, in a region R of the xy

plane. There are no sources or sinks inside E.

The plane may be that of two-dimensional flow or a meridian plane of

axisymmetrical flow, the a?-axis being the axis of symmetry.
The velocity from right to left across an element dn of normal to a stream-

line
</r
= constant will be e di/jjdn where e 1 or l/y according as the flow is

plane or axisymmetrical so that e is always positive.

A strip domain is the region bounded by two non-intersecting streamlines

each having its end-points at x = 00.

A point P of the boundary will be called a regular point if it is not on the
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axis (in the case of axisymmetrical flow) and is on the circumference of some

circle which touches the boundary at P and whose interior lies entirely in R.

The stream function
\fj

satisfies the differential equation

(1) fax+tvy = <^v

This is an equation of elliptic type and its solutions obey a maximum

principle, namely that a non-constant ip can achieve neither a maximum nor

minimum inside its region of definition.

Physically this means that the presence of such an interior maximum or

minimum would demand interior vorticity which contradicts the hypothesis of

irrotational flow.

If therefore
i/j

is zero on one boundary and equal to a positive constant on

the other, it follows that
i/j ^ in the whole region between the boundaries.

Comparison Theorem 1. Let D, D* be strip domains bounded respectively

by streamlines y, F and y*, JT and let D be contained in D*.

Let two distinct axisymmetric flows through D and D* be defined by
stream functions

/r
and $* such that

ijj
= on y, </r*

on y*, j/r
= Q = 0* on F,

where Q is a positive constant ; that is the two flows have the same flux.

These flows are not to be thought of as superposed.

If P is a regular point common to y and y*, and if R is any regular point

on F
9 then, for the speeds at P and R of the two flows,

(2) q(P) ^ q*(P), q(R) > q*(R).

For either equality to hold it is necessary and sufficient that D D*, $ = 0*.

FIG. 15.60 (i)

Proof. Let &=$*-$ and suppose the general flow is from right to left,

fig. 15-60 (i).

On y, i/j
= and Q = 0* > ;

on F, \ft 0* and Q = 0.
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By the maximum principle if Q on y, Q ==
throughout D.

If Q > on y, Q > throughout 7).

At P, JQP = 0. Therefore dQ/dn > 0,

i.e. q*(P)-q(P) > or ?*(P) > q(P).

At #, ^ = 0. Therefore e d/dn ^ 0,

i.e. -q*(R) + q(R) ^ or q(R) > 5* (72).

This proves the theorem for plane or axisymmetrical flow for which e=l or

1/y, both of which are positive.

Clearly for either equality to hold we must have D D*, iff
=

*/*. Q.E.D.

If we let F recede to infinity so that Q increases indefinitely we still have

Q on F at every stage so that finally Q at oo . The second conclusion

concerning the velocity of the flows at R ceases to be meaningful, but the

first subsists in the form of the following theorem.

Comparison Theorem 2. Let D and D* be flow regions for two plane (or

axisymmetrical) flows having the same non-zero uniform velocity at infinity.

Let D and D* be bounded by the single streamlines y and y* extending to

x= oo . If D is a part of D* and if y and y* have a regular point P in

common, then the speeds at P follow the inequality

(3) q(P) < q*(P).

The equality holds only if D = D* and the two flows are identical.

These comparison theorems seem to be originally due to Lavrentieff, but

have been given a sharper form by Gilbarg,*

Serrin's under-over comparison theorem.^ Let R^ and R2 be two regions

occupied by plane or axisymmetrical irrotational flows and let S^ and Sz

denote the respective streamlines ^ = 0. We assume
e/r ^ in each flow. Let

S l and S 2 have an arc MN in common such that the direction of each flow on

MN is from M to N. Further, suppose that the arcs QM of S^ and NQ of $2 ,

having only the point Q in common, together with MN bound a region

MNQ = Rs

interior both to R l and R z . Let M and N be regular boundary points, and

let q(M, R ) denote the boundary velocity at M for the flow R lt and so on.

Then

the equality holding if and only if the flows are geometrically similar.

* Jour. Rational Mechanics and Analysis. 1 (1952), 309-20.

t J. Senin, Jour. Rational Mechanics and Analysis, 1 (1952), 563-72. Comparison theorems
have been applied by Serrin and Gilbarg to prove various uniqueness theorems for plane and

axisymmetrical flows.

2n M.T.R
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Proof. Fig. 15-60 (ii) shows the case where Q is a finite point and the

case where Q is at infinity.

If the flows are similar, the theorem is obvious with equality.

N
FIG. 15-60 (ii)

Let
tf/lt iff 2 be the respective stream functions and let P be a point of MN.

Let

(5) QP
On QM, QP = q(f

on MN, QP = ;

on NQ,

If dn is an element of normal at P drawn into the flows,

, R,) q(P, RJ - 0.

Hence a line CP issues from P on which QP = 0, fig. 15-60 (iii).

fcp D /fi

N ~~p M
FIG. 15-60 (iii)

Consider the region D bounded by QM, MP, CP .

On QM, Gp^Q-
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on MP, QP = 0,

on Cp, QP = 0.

By the maximum principle either Qp = in D or Qp > in D. The latter

must be the case.

Hence (e dQpjdn)M > 0, i.e.

(6) q (P, RJ q (M, R z) -q(P, R 2) q (^, RI) > 0.

Similarly in the region D
r

bounded by CP , PN, NQ, we find that QP < and

(dQPjdn)N < or

(7) q(P9 R,) q(N 9
Rz )

- q(P9 R,) q(N, R,) < 0,

and from these inequalities, (6) and (7), the theorem follows at once. Q.E.D.

We leave the reader to prove that the level line CP passes through Q.

EXAMPLES XV
1. Construct graphically the streamlines for a source and equal sink in three

dimensions.

2. A source of strength m is placed at the origin in a stream of incompressible
fluid moving with velocity U in the direction of negative x. Find the equation
of the surfaces of constant pressure, and trace roughly the shape of the meridian

section of three such surfaces, corresponding to p=p respectively, where pQ is

the pressure at infinity.

In the case where p = pQ + p*
4 and *4<fU2

, prove that the plane x = 4/cmi/6J . U
touches the surface of constant pressure along a circle, and find the radius of this

circle. (ILL.)

3. If AB be a uniform line source, and A, B equal sinks of such strength that

there is no total gain or loss of fluid, show that

where c = AB, r
l
and r2 are distances from A, B respectively, and C is a constant

depending on the strengths of the sources. (R.N.C.)

4. Two sources of strengths m, mf

are placed at two points, A, B respectively,
in an infinite stream of velocity V parallel to AB.

Obtain the equations of the streamlines in the form

m cos + m' cos 8' - Vw2
/2

= constant,

where (r, 6), (/, 6') are bipolar coordinates referred to A, B as poles, and AB as

initial line, and w is the perpendicular distance of any point from AB.
Show that the main stream, the stream issuing from A, and that issuing from

B, are separated by the loci

. 0\ 2
,

/
,

. 0V

(R.N.C.)

/ , 0'\
2

rr
and -m / (r cos s J + m / (

r sm ~ = V.
2j
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5. A and B are a simple source and sink of strengths /x,
and /z' respectively,

in an infinite liquid. Show that the equation of the streamlines is

/z cos 6 -
p,'

cos 6' = constant,

where B, B' are the angles which AP, BP make with AB, P being any point.
Prove also that, if /x>ju/, the cone denned by the equation

cos 6 = 1 -

divides the streamlines issuing from A into two sets, one extending to infinity, and
the other terminating at B. (R.N.C.)

6. Prove that, if 0, C
l ,
C 2 are points on the axis of x, such that 00\ = c l ,

OC 2
= c2 ,

and c^ c 2
= a2

,
the function

rr2~ r a x-c? z-Cil
\ _? + ? + 1 I

L a <a r 2 T-J J

where r, r
x ,

r 2 are the distances of any point from 0, C x ,
C 2 respectively, and is

the origin, gives the motion of liquid due to a simple source of strength m at C
1 ,

in

the presence of a fixed sphere r = a. (R.N.C.)

7. Find an expression for the potential due to a continuous distribution of

sources and sinks along the axis of x in a perfect fluid.

If the distribution is of constant strength s from x to x = a, show that

the equipotential surfaces are ellipsoids of revolution with foci at the two ends of

the line.

If, in addition to the above, there is a sink of total equal strength at the origin,
and a steady streaming with velocity V at infinity parallel to the axis of x, show
that there is a closed stream surface of revolution of airship shape whose total

length is the difference of the roots of

x3 xza = sa2/(47r7). (U.L.)

8. Interpret the motions for which

(ii) *-(*

where r and r' are measured from two fixed points 0, 0' in Ox.

9. If there is a doublet at the origin of strength /x in the direction of the unit

vector a x , prove that its velocity potential is

where r is the position vector of the point at which
</>

is calculated. Interpret
the expression

10. Determine when the velocity function is

Jo, 1
\

\ (**+**)*/ (R.N.O.)
11. Verify that
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is a possible form of Stokes' stream function, and find the corresponding velocity

potential. (U.L.)

12. A spherical mass of liquid, of radius 6 and density />,
has a concentric

spherical cavity of radius a, which contains gas at pressure p whose mass may be

neglected. The liquid is at rest when an impulsive pressure w is applied to the

external boundary. Show that the initial kinetic energy generated is

If, during the subsequent motion, the gas obeys Boyle's law and there is no

pressure on the external boundary, find the radius of the cavity when the liquid
first conies to rest. (R.N.C.)

13. A mass of fluid of density p is bounded by two concentric spherical free

surfaces of radii r
l
and r 2 , and, the fluid being at rest, impulsive pressures w l

and
G72 are applied to these surfaces. Show that the surfaces begin to move with

velocities

;~> and TV- ~x~'
(R.N.C.)

14. A mass of fluid of density p and volume l7rc
3
/3 is in the form of a spherical

shell. There is a constant pressure p on the external surface, and zero pressure
on the internal surface. Initially the fluid is at rest, and the external radius is

2nc. Show that when the external radius becomes nc, the velocity U of the

external surface is given by

Up (n
3
-l)i

3P _(_ 1)1' (R.N.C.)

15. A mass of fluid of density p and volume 4?rc
3
/3 is in the form of a spherical

shell. A constant pressure pQ is exerted on the external surface of the shell.

There is no pressure on the internal surface and no other forces act on the liquid.

Initially the liquid is at rest and the internal radius of the shell is 2f-. Prove that

the velocity of the internal surface when its radius is c is

Up, 2* \*

3p 2i-l/
'

16. An infinite mass of liquid is at rest subject to a uniform pressure pQ and
contains a spherical cavity of radius a filled with gas at pressure mp . Prove that

if the inertia of the gas be neglected and Boyle's law be supposed to hold through-
out the motion, the radius of the sphere will oscillate between a and na, where n
is determined by

1 4- 3m log n - n
9 = 0.

If p be the density of the fluid, and m be nearly equal to unity, show that the time

of oscillation will be 27r(a
2
p/(3pQ))^.

17. A quantity of fluid, self-attracting according to the law of gravitation,
surrounds a solid sphere of radius a, the radius of the external free surface being 6.

The solid sphere is suddenly annihilated. Show that, when the radius of the inner

surface is r, the square of the velocity of any point of it is

kR[3 (r
5 - a5

)
- 5 (r

3 R* - a3 62 ) + 2
(
R5 - 65)]

where R3 r3 -f 63 - a3 and k is a constant.
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18. A volume of gravitating liquid is initially at rest in the form of a spherical
shell of very great radius and contracts under its own attraction, there being no

pressure on either surface of the shell. Prove that, when the inner radius is x,

where y
5 = z3 -f c3 , y is the constant of gravitation and p and 47rc

3
/3 are the density

and volume of the liquid.

19. A sphere is moving forward in a straight line with velocity U. Find the

force required, by direct calculation of the resultant thrust of the fluid.

20. A sphere is projected under gravity at a great depth with velocity U at

inclination 45 to the horizontal. If the density of the sphere be twice the density
of the liquid, prove that the greatest height above the point of projection attained

by the sphere is 5U*/(Sg). (K.N.C.)

21. A sphere of radius a is placed in an infinite stream of liquid flowing with

uniform velocity V. Show that the streamlines are given by the equation

(a
3 - r3)

sin20/r
= constant.

If the sphere is divided into two parts by a diametral plane perpendicular to

the direction of motion of the stream, show that the resultant force between the

two parts is less than it would be if the liquid were at rest, the pressure at infinity

remaining the same, by an amount
7r/>

2F2
/16.

22. A sphere of radius a is moving with constant velocity V through an infinite

liquid at rest at infinity. If p is the pressure at infinity, prove that the pressure p
at any point P distant r from the centre of the sphere, and such that OP makes
an angle 6 with the velocity of the sphere, is given by

3x2

Show further that if F exceed *J&p j5p 3
a hollow ring is formed in the liquid round

the equator of the sphere. (E.N.C.)

23. A sphere of radius a is moving in an infinite liquid with variable speed F
in the direction of the axis of x. Show that the pressure at the surface of the

sphere is least over the small circle

X =
~W~z ~dt

)

the centre of the sphere being the origin. (R.N.C.)

24. Obtain the solution for the irrotational motion of incompressible liquid
in which a sphere of radius a is moving with velocity U.

Find the equation of the streamlines in this motion, and prove that the

equation to the path of a particle relative to the centre of the moving sphere is

r2 sin2
0(l-

where b is a constant depending on the particle.

Explain why this equation is not identical with that of a streamline
;
and

show that the position of the particle on its path is expressed in terms of the time

by the equation

dr '

(E.N.C.)
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25. A sphere of radius a moves with uniform velocity V in an infinite liquid.

Find the velocity potential and show that the equation to the path of a particle
in the fluid is obtained by eliminating r, between the equations

x = r cos -
. ,

J>/(r
a -a8

)(r
3 -a3 -rca

)

y r sin 0, r3 - a3 = re2 cosec2 0,

where c is an arbitrary constant. (R.N.C.)

26. A sphere of radius a is fixed in a liquid which is flowing past it in such a

manner that at a great distance from the sphere the velocity is constant. A
coloured particle of fluid is inserted upstream at a point which lies on the axis of

the system and its motion is observed. If, while the particle is upstream, its

distance from the centre changes from z 1 to z2 in time T, show that the maximum
velocity of slip on the sphere is

(M.T.)

27. A stream of water of great depth is flowing with uniform speed V over a

plane level bottom. A hemisphere of weight w in water and of radius a, rests with

its base on the bottom. Prove that the average pressure between the base of the

hemisphere and the bottom is less than the fluid pressure at any point of the

bottom at a great distance from the hemisphere, if F2
>32w/ll7ra

2
/>.

28. A uniform sphere of mass M floats half-immersed in liquid of unlimited

extent and depth, under gravity. If a velocity U vertically downward is suddenly
impressed upon the sphere, show that the required impulse = 3MC7/2. Prove
that the upward velocity of the fluid in contact with the sphere at the free

surface = \V. (R.N.C.)

29. A sphere of radius a is moving with constant velocity U through an infinite

liquid at rest at infinity. If p is the pressure at infinity, show that the pressure p
at any point of the surface ot the sphere, the radius to which point makes an angle
6 with the direction of motion, is given by

-rra
2
\p -pU2

If the sphere be divided into two hemispheres by a plane inclined at an angle a
to the direction of motion, show that the normal and tangential components of

the reaction between the two hemispheres, due to the fluid pressures, are

-- -- and ^7rpo
2 Z72 sin a cos a respectively. (U.L.)

30. If two doublets of strengths /x, p have a common axis, show that one of

the stream sheets is a sphere.

31. Find the stream function ^ for a double source at inside a fixed sphere
of radius a whose centre is on the axis of the double source at a distance c from 0.

Calculate the pressure at any point of the sphere in this case. (R.N.C.)

32. A double source of unit strength with its axis parallel to the axis of x is

placed at the point (0, 0, c) outside a fixed sphere of radius a, having its centre at
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the origin, and immersed in liquid which is otherwise unbounded. Prove that near

the sphere the velocity potential <P due to the double source and its image is

. a dPn-M ,sm0 n
,

1 r/
cos<ft,Y

1 / - n~la*n-l \ .% -=TT K"-1 *-- s

-2C +1 \ n rn J

where r
t 0, < are spherical polar coordinates, JLI

= cos 0, and Pn_x (p,) is the zonal

surface harmonic of degree (n
-

1).

[The theorem ^ ,

n - nPn (p)
=

3^1^ may be assumed, if necessary.]

Verity the result that the ^-component of the velocity of the liquid at (0, 0, c),

due to the sphere moving with a given velocity (in the absence of the double

source), is

where qv is the normal velocity at an element dS of the surface of the sphere, and
the integral is taken over the surface of the sphere. (U.L.)

33. If a double source S is placed in the presence of a fixed sphere of radius a

whose centre is distant c from S, find the stream function and show that the

speed at a point P on the surface of the sphere is

where r = SP and & =
angle SOP.

Prove that the pressures on the sphere have a resultant

towards the double source. (U.L.)

34. Determine the hydrodynamical image with respect to a sphere of a doublet

whose axis passes through the centre of the sphere.
Prove that, if the distance of the doublet from the centre is great compared

with the radius, the resultant thrust on the sphere is approximately proportional
to the inverse seventh power of the distance.

35. A double source of strength /A is placed at the centre of a fixed hollow

sphere of radius a, which is filled with incompressible inviscid fluid. Show how
to obtain the pressure at any point, given the pressure pQ at the point A of the

sphere which lies on the axis of the double source, and show that the equation to

one of the surfaces of equal pressure is

(r/a)
3 =

(1 + J tan2
0)/(2

- tan2 0). (K.N.C.)

38. A solid is bounded by the exterior portions of two equal spheres of radius

a which cut one another orthogonally and is surrounded by infinite fluid. If the

solid is set in motion with velocity u in the direction of the line of centres, show
that the velocity potential of the resulting motion is

, o /cos cos 6' cos \
* fi" it I i , ______ i

2 a U
\ r2

+
/2

~ '*

where r, r', R are the radii vectores of a point measured respectively from the

centres of the two spheres and the point midway between them, and 0, 6', are

the angles which these radii vectores make with the direction of motion of the

solid.
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37. Find the velocity potential due to a simple source outside a fixed sphere,
in an unlimited frictionless liquid.

Prove that the sphere is apparently attracted towards the source and that,
when the radius is small compared with the distance of the source, the attraction

varies, to the first approximation, inversely as the fifth power of the distance.

38. Prove that the velocity potential due to the image of a source of strength
m in a sphere of radius a is the same as that due to a distribution of doublets over

the surface of the sphere, the axes being normal to the surface and the strength

per unit area being

/2o 1,

where c is the distance of the source from the centre and R is the distance from
the inverse point.

39. A source of strength m is situated in fluid, bounded internally by a fixed

sphere of radius a, at a distance c from the centre of the sphere. Prove that the

velocity potential at a point on the surface is

2m m, r+c+a---
log
-

,

r a r+c-a

r being the distance of the point from the source.

Find the magnitude of the velocity at any point on the surface. (U.L.)

40. Define Stokes' stream function for motion of incompressible fluid sym-
metrical about an axis

;
show that the following are possible Stokes' functions,

and give their interpretation ;
r - r' and cos 9, where r = OP, r' = O'P, 9 = POO' ;

0, 0' being any two fixed points on the axis of symmetry.

Prove that ih a \ cos 9 + - cos 9' -\ j-r
t c a j

gives the motion due to a simple source S of strength JJL placed at a distance c from
the centre of a fixed sphere of radius a, R being measured from the centre of the

sphere, (r, 9) from S, and (r
r

, 9') from the inverse point of $ with respect to the

sphere. (U.L.)

41. A source and a sink of equal strengths are placed at the points (0, 0, c)

inside a sphere of radius a with its centre at the point (0, 0, 0). Find an expression
for the velocity potential at points within the sphere. (U.L.)

42. Find the image of a source with regard to a sphere. is the centre, P, Q
are points outside the sphere on the same radius, Q being nearer the sphere, and

P', Q' are their inverse points. Prove that a source of strength p,
at Q and one of

strength fia/OQ at Q' produce the same radial flow at every part of the surface

of the sphere as a line source uniformly distributed along QP of total strength /t,

together with a line source uniformly distributed along P'Q' of total strength

Ita/OQ.

43. A solid sphere of radius a oscillates in an infinite liquid with simple har-

monic displacement c cos pty
where c is small. Determine the direction and

magnitude of the resulting oscillation at any given point of the fluid. (R.N.C.)

44. The centre of a sphere of radius a, in an unbounded liquid, performs small

linear oscillations, the displacement at time t being c sin nt. Prove that the mean
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kinetic energy per unit volume of the fluid at the point (r, #), referred to the centre

of the sphere and its line of motion, is

(5 + 3 cos 2*).

Calculate the periodic force necessary to maintain the motion. (R.N.C.)

45. A sphere of variable radius a moves through an infinite fluid with a variable

velocity v in a fixed direction. Find the pressure at any point on its surface, and

show that the resultant thrust of the fluid on the sphere is

46. Fluid, extending to infinity, surrounds a spherical boundary whose radius

at time t is a + b sin nt, the centre being fixed. If there are no external forces,

show that the pressure at the boundary is

PQ + 'kp bn
2
(56 cos Znt - 4a sin nt + 6),

where pQ is the pressure at infinity. (R.N.C.)

47. A sphere of radius a is surrounded by infinite liquid which is at rest at a

very great distance from the sphere, under a pressure pQ . If the sphere is made
to vibrate radially so that the radius at any time is a + b cos nt, and there are no

body forces, find the pressure on the surface of the sphere at any time, and show
that its least value is

pQ -n2
pb(a + b).

48. Show that the motion set up by impulsive pressures applied to the boundary
of a liquid is irrotational.

A spherical bubble of steam in a large mass of water of density p under no

body forces suddenly loses practically all its internal pressure by condensation of

the steam. If at this instant its radius is a, show that the bubble collapses in a

time

PQ being the pressure at a great distance, and that the energy dissipated is

PQ (original volume of bubble). (ILL.)

49. An infinite mass of liquid fills up the region outside a fixed sphere of radius

a and is attracted towards the centre of the sphere by a force
ju,/r

2
per unit mass.

If the pressure at infinity is w and the sphere is suddenly annihilated, show that

the instantaneous change in the pressure at a distance r is (wa+fip)jr.
Find the velocity of the inner boundary of the liquid at any subsequent time

and in the particular case where the pressure at infinity is zero, find the time taken
to fill up the cavity. (ILL.)

50. An infinite liquid of uniform density p at rest under uniform pressure P
contains a spherical bubble of radius a

,
full of vapour, which carries an electric

charge e uniformly distributed over the surface. Assuming that this charge

always remains the same and produces an outward thrust on unit area of the

surface of amount e2/8?ra
4 when the radius is a, and that the vapour suddenly

condenses so that the internal pressure falls to zero, find the pressure at a distance

r from the centre of the bubble when its radius is a and prove that then



EXAMPLES XV 491

OP (&
a^ = _

(0o
3_ a3)o

___
(ao

_
a) .

Hence show that, if 3tf
2
/87ra P = a* + a^ctQ +a^, the radius of the bubble will

oscillate between the limits a and a^ and find an expression for the period. (U.L.)

51. Obtain the differential equation of the surfaces which move so as always
to be made up of the same fluid particles.

At time t a spherical bubble of gas of radius a is at rest within a large

surrounding mass of heavy liquid of density p which is also at rest. The pressure of

the gas is pQ and the pressure of the liquid in the horizontal plane through the

centre of the bubble is p. Prove that, in the initial motion, the radius of the

bubble begins to increase with acceleration (p -p)/(pa), the centre of bubble

begins to move upwards with acceleration 2g, and the bubble remains approxi-

mately spherical, the inertia of the gas and the surface tension being neglected.

(U.L.)

52. The equation of the meridian section of a surface of revolution is

r = a sec \B, where O^^^rr. The surface is placed in a steady stream of velocity
U. Show that the stream function is

and find the velocity potential. (U.L.)

53. A light thin circular disc of radius c is at rest on the surface of still liquid
of density p, of infinite extent and depth. A vertical downward impulse / is

applied to the centre of the disc. Show that the velocity communicated to the
disc is Si/^/oc

3
). (U.L.)

54. (Oblate) spheroidal coordinates
, p,, CD are obtained from cylindrical co-

ordinates or, x, a) by the transformations

w + ix = Jc sin (6 + irj),

= sinh
77, IJL

= cos 6.

Obtain Laplace's equation in these coordinates in the form

Find the boundary conditions in terms of these coordinates when an oblate

spheroid is moving along its axis with velocity U in an unbounded fluid otherwise

at rest.

55. An airship in the shape of a prolate spheroid, of polar semi-axis a, equa-
torial semi-axis 6, is moving with speed U parallel to its axis of revolution in air,

which may be treated as an incompressible fluid. Find an expression for the

velocity potential at any point of the fluid, and also for the pressure at any point
of the envelope of the airship, the pressure at infinity being TTO .

56. Prove that when a spheroidal disc in which a = b = lOOc moves through

water, with a velocity of 1 ft./sec., in the direction of its smallest axis, the speed
at the rim is about 63 ft./sec.

57. Obtain the formula -\p <f>^-dS

for the kinetic energy of a fluid, which is in a region bounded internally by a mov-

ing surface S, and is at rest at infinite distances
;
n being drawn into the fluid.

Prove that, if S is a prolate spheroid, of eccentricity tanh a, moving parallel

to its axis of symmetry with velocity V, the kinetic energy of the fluid is
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-_
)

Sinn a cosh a - a

where M' is the mass of the displaced fluid. (U.L.)

58. Show that in spheroidal coordinates
(JJL, , w) defined by the equations

x =
dfj,, y w cos o>, z w sin w,

w = a

the equation of continuity becomes

5

'ail

If a thin circular disc of radius a is moving with velocity U parallel to its axis

in an infinite mass of liquid, prove that the velocity potential is

and show that the kinetic energy of the liquid is |pa
3
t/2 . (U.L.)

59. The space bounded by the paraboloids xz + y
z

az, x* + y
2 = b(z~c)

[where a, 6, c are positive and 6>a] outside the former and inside the latter con-

tains liquid at rest. Suddenly the bounding surfaces are made to move with

speeds U, V respectively in the direction of the z-axis. Prove that in the motion

instantaneously set up the surfaces over which the current function is constant

are paraboloids of latus rectum ab( U -
V)/(aU

-
bV).

60. If w + ix =/(-M?7), show that the equation

07?Way
has a solution of the type t/j

= m^UV where Z7, V are respectively functions of
, 17

provided that

If
( + irj) (w + ix) a, show that there is a solution of the type



CHAPTER XVI

SPHERES AND ELLIPSOIDS

I6'0. The discussion of irrotational motion of a liquid in space when

symmetry about an axis no longer exists, resolves itself into the determination

of the velocity potential which satisfies given boundary conditions.

Apart from the boundary conditions the equation of continuity has to be

satisfied, in other words the velocity potential must satisfy Laplace's equation

V2
< = 0. Solutions of this equation are called harmonic functions, concerning

which a vast literature exists which it would be impossible even to summarise

here. We shall merely investigate certain special types of solution of which

immediate application will be made to the motion of two spheres and the

ellipsoid.

16*1. Spherical harmonics. Laplace's equation in cartesian coordi-

nates is

n\ r
_j

r
_^

?
dx2 dy

2 dz2

Any homogeneous solution of this equation is called a spherical harmonic.

Obvious examples of solutions are 1, x, y, z, yz, x2 -y2
. If

<f>
is a harmonic

function such that < =
<j>m 4-

</>n ,
where

(j>m and
(f>n are each homogeneous func-

tions of x, y, z of different degrees m and n respectively, it is obvious that < m
and

</>n are also spherical harmonics, for the results of operating on them with

V2 are also homogeneous functions of different degrees and therefore cannot

cancel one another identically when added together. Expressed in polar

coordinates r, 6, o>, the equation becomes, 2-72,

* '
dr \ "dr /

+
sm~0 d0 \ W)

+
sin2 &?

~~ '

The velocity potential of a simple source
<f>
= m/r is a spherical harmonic,

as is also immediately obvious by substitution in (2). If the source is at a

point A on the axis of x distant c from the origin, fig. 16-1, we have < = m/R,
where R = AP, and this, being a velocity potential, must satisfy Laplace's

equation, for it was derived in 15-20 from the equation of continuity. Now

R* = r2 -f c
2 - 2cr cos 9
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If A< 1, we have an expansion of the form

(1
- 2A cos 8+ A2

)~
= 1 + APA (cos 6) + A2P2 (cos 6) + ...,

where the coefficients Pl (cos 0), P2 (cos 0), . . .
,
are independent of A.

Thus, if r< c, putting A = r/c, we have

1 1 r r2

j-
= _+_-p1 (cos0) + -

5
P2 (cos0)-}-. . . ,

tt c c c

while, if r>c,

Since the terms in r, r2 , . . .
,
r*1

,
r"2

, ... of these expansions are homo-

geneous but of different degrees, as remarked above, each must be a spherical

harmonic. Thus we have the two sets of spherical harmonics (ignoring the

constant c),

1, rPl (co80) ) r2P2 (cos0), ...
,

1 P1 (CQS0) P2 (COS0)

each of which satisfies Laplace's equation identically. It is easily proved by

expanding by the binomial theorem that

P! (cos 0)
= cos 0, P2 (cos 0) = \ (3 cos2 -

1),

and so on. The functions Pn (cos 0), n 1, 2, 3, . . .
,
are known as Legendre's

functions or zonal Jiarmonics (of the first kind). These functions are appro-

priate to problems dealing with spherical boundaries. Thus for streaming

past a sphere, we have

/ a3 \
< = U [

r cos 0+-z-z cosr
V 2r2

/

which involves the two spherical harmonics belonging to the zonal harmonic

P1 (cos0).
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In the case of a doublet of strength /z at A, we have, from 15-26,

, __ IJL
cos a _ fji (r cos c) _ d 1

~~

-R
2

~
(r

2+ c2 -2crcos0)*

""
**

5c
(
r2 + c2 - 2cr cos i

Thus, if r<c,

cos a _ /I 2rP1 (cos0)
f

3r2P2 (cos0)

while if r>c,

These expansions give the velocity potential of a doublet in terms of the

zonal harmonics.

We may add the following observation. If
(/>

is a spherical harmonic, so

are all its partial differential coefficients of any order with respect to x, y, z.

Thus, for example, d<f>/dx is a spherical harmonic, as is at once* obvious by
substitution in (1). From the spherical harmonic 1/r, we derive in this manner

the further harmonics

x
j/ ^

q 9 nt q
*

r3 r3 r3

16*12 Kelvin's inversion theorem. If ^> </>(r, 6, w) is a harmonic

fjZ /g2 \

function, then <* (f>
(

, 0, a;)
is also harmonic, where a is any constant.

Proof. Let R = a2
/r. Then

</>*
= #<(#, 0, w). By hypothesis <(r, 0, w)

satisfies Laplace's equation 16-1 (2), and therefore </)(R, 6, w) satisfies the same

equation with R written for r, namely

df(R,e,a,
as

+ sm e
i d i

isde (
s

,,
sin2 9oj2

Now

and therefore

, 0, co) _



496 KELVIN'S INVERSION THEOREM [16-12

Therefore

a / d<i>*\ i a / . d6*\ i as<*_ I r2 '. I J____ I a1T1 $ r I i__ r

dr\ dr ) sin 8 B6 \ 30 J sin2 da>*

w
Q.E.D.

Note that (r, 0, w), (a
2
//, 0, to) are inverse points with respect to the sphere

r = a, so if one is inside, the other is outside the sphere.

16*13. Weiss's sphere theorem. The circle theorem of 6-21 has a

general three-dimensional analogue, not confined to axisymmetrical motion,

as follows.*

Weiss's sphere theorem. Let there be irrotational flow, in incompressible

inviscid fluid with no rigid boundaries, characterised by the velocity potential

<f> (r, 6, co), all of whose singularities are at a distance greater than a from the

origin. If the sphere r a be introduced into the flow, the velocity potential

becomes

(1) *(r,ft) = 0(r,,) +

Proof. Let the velocity potential after the introduction of the sphere

become
<f>(r, 6, o>) + x(r, 6, a)), so that x(r 0, w) is the perturbation velocity

potential due to the introduction of the sphere. The conditions to be satisfied

are, satisfaction of Laplace's equation, no perturbation at infinity, zero normal

velocity at the sphere. More precisely

(i) Y2
^ = 0, and % has no singularities outside the sphere r a.

(ii) x(r, 0, ^) = I 1 for large r.

Taking x to be defined by (1) it follows from 16-12 that \7
2
X = 0, and also

since all the singularities of
<f>

are external to the sphere, all those of x are

internal to it, since the exterior inverts into the interior. Thus (i) is satisfied.

Again, since < is by hypothesis regular near the origin, we have there a

series expansion of the form

(f> (r, 0, to)
= AQ+A l r+Atrz +... ,

where A
,
A lt A z are independent of r

* P. Weiss, Proc. Camb. Phil Soc., 40 (1945).
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Inserting this in the expression for x we fin<i easily that the terms of the lowest

order is

which shows that (ii) is satisfied.

To verify condition (iii) we have

dr dr

which vanishes when r a, for then R = a. so that condition (iii) is satisfied.

Q.E.D.

We observe that the application of this theorem is not restricted to axisym-

metrical motions.

16*20. Concentric spheres. The region between a solid sphere of

radius a and a concentric spherical envelope of internal radius b is filled with

liquid.

FIG. 16-20.

Impulses are applied to the sphere and envelope, thereby causing the

sphere to start into motion with velocity U and the envelope with velocity V
at an angle a to the direction of U. To discuss the initial motion (the spheres

will only be concentric initially) take the direction of U as sc-axis, the origin

being at the common centre. The boundary conditions are then as follows :

(1)
-~ = U cos 0, when r = a ;

OT

(2)
- J? = V cos j8, when r = 6,

OT
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where j8 is the angle between the direction of V and OP, P being any point on

the envelope.

The cartesian coordinates of P will be b cos 0, b sin 6 cos co, b sin 6 sin ca,

and therefore the unit vector in the direction of OP is

i cos 0+ j sin cos co -f k sin 6 sin co.

If we take the direction of V to be in the x, y plane, the unit vector in the

direction of V will be

i cosa+ j
sin a,

where i, j, k are unit vectors along the axes.

The scalar product of these vectors gives (2-11)

cos B cos a cos 6+ sin a sin 6 cos CD - cos a-f - sin a.r
r r

Boundary condition (1) therefore suggests that
<f>

will involve the harmonics

#, #/r
3
, while (2) suggests further the harmonics y, y/r

3
.

Hence we assume
Bx Dy

or, reverting to polar coordinates,

which gives

_ ? ~
( _^-f _-) cos 0-f ( -(7 + TI sin ^ cos w.

dr \ r3 / V r3 /

Equations (1) and (2) then give

(9
7?\ / Q 7}\

-^ + -3-) COS0+ f -On
g-J

sinflcosco = C7cos0,

( -^4-f j^}
cos 0-f f -^+

-73")
sin^cosco = F(cosa cos 0+sina sin^cosco).

These equations must be satisfied for all values of 6 and a> and therefore *

. 2B rr W

2Z>= Fcosa, -(7+Tr- = Fsina.
3

* These equations can be deduced by putting $ in turn equal to and w/2.
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Writing, for brevity, c3 = 63 a3
,
we get at once

a*U-b*Vcosot

a3 63 . -, &3Fsina=- Fsma, C = --
-j ,

and therefore

< (a
3
?7 63F cos a)r-h -^-^ (U V cos a)

c3 L 2r2 J

63F sin a

c3
sin ^ cos a>.

It must be emphasised that this velocity potential only represents the

motion at the instant the boundaries are concentric.

16-21. Concentric spheres moving in the same direction. In the

result of 16-20, if a 0, U and F are in the same direction, and then

In this case the impulsive pressures on the boundaries when the motion is

started from rest, namely p<f> (see 3-64), are

a cos 6rf 63\ .. 363
-i

A, .

mi
= -*- Lv "2 J ~T J

p on mner>

?u2
~

s
f/_f__.-f53

J Fpon the outer.

The impulsive thrust on the inner boundary is therefore

/! =;
\
mx cos 2-rra

2 sin d dd

Similarly, on the outer boundary the impulsive thrust is

the directions of these thrusts being shown in fig. 16-21.
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If we reverse the impulsive thrusts II and Z2 , we get the impulsive thrusts

exerted on the liquid by the boundaries, and their resultant is equal to the

momentum set up in the liquid, which is

therefore, in the direction of Ox,

FIG. 16-21.

where MI, Mz

'

are respectively the masses

of the liquid which the inner and outer

boundaries could contain. This result is true

not only of spheres but of any two surfaces

moving in any manner. For the momentum
of the liquid is independent of the density of

the inner body. Thus if we imagine the inner

body to have the same density as the liquid,

the centre of mass of this body and the

liquid is fixed with respect to the envelope and moves with the velocity V of

the envelope. Therefore the total momentum of the liquid and inner body is

M2'V. Thus the momentum of the liquid alone is 1/YV-M/U.
To find the impulse J required to start the inner sphere, we have, by the

principle of momentum,

J-Z^ MJJ,

where Mx is the mass of the sphere.

16-22. If the outer envelope is at rest, V 0, and then

so that the apparent added mass of the sphere, when a fixed outer boundary
is present, is

-

1
263 -2a3

'

which tends to \MJ when 6-oo (cf. 15-32).

The kinetic energy of the liquid can be found by integration or inferred

directly from the added mass in the form

T ~ 772 'I
2&3 -2a3

If the outer envelope is at rest and the inner sphere is accelerated from
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rest by a force F which produces the acceleration /, in time & the impulse is

J = F 8$, and the velocity is U =/&, and therefore

16-30. Two spheres moving in the line of centres. Consider two

spheres, centres A, B, radii a, 6, moving towards one another with velocities

U, F, fig. 16-30.

FIG. 16-30.

The position of a point P is fixed in a meridian plane by its polar coordi-

nates (r, 0) referred to A and (/, 0') referred to B. The velocity potential <f>

must satisfy the boundary conditions

and therefore we can write

(1)

where fa and fa each satisfy Laplace's equation and the boundary conditions

-),.- -(&)'
Thus <^ is the velocity potential when the sphere A moves with unit velocity

towards B, the latter being at rest.

If B were absent, fa would be the velocity potential due to a doublet at A
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in the direction AB of strength ^,
=

\a*. The presence of B, however, causes

the first boundary condition of (3) to be violated.

To satisfy this, we introduce the image of
JLIO in B, which is a doublet, /^ ,

directed along BA at A 1 ,
the inverse point of A with respect to B. This image

requires an image /*2 at A 2 , the inverse point ofA l with respect to A, and so on.

Thus we have an infinite series of images at points A lt A 2 ,A99 ..., of strengths

Mi > ^2 > Ma > 9
where the odd suffixes refer to points within B and the even

suffixes to points within A. Let/n = AA n . Then, if AB = c,

(4) /!
= '--> /, = -. /, = c ^-,... ,

C ./ 1 C ""./2

/ ^3\

(5) ft = ,

The equations for the /n lead to a difference equation of Riccati's form,*

which can be in this case completely solved and the value of ^n can then be

written down.

With the notations of the figure, we then have

, __ fto cos /zx cos #! ^2 cos #2^ =__ +__+___+... .

This is an exact solution of the problem, but in an unwieldy form.

To obtain an approximate solution correct to the term in c~3
,
we observe

that if B were absent, <
x would be

1
a3 cos 6

2-72'

Using the expansion of 16-1, we get, near the sphere B, when B is taken

as origin,

a3 cos
i
a3

aVP^cosfl')2+ 8
+ >-72

-
2^ ^8

which gives over B the normal velocity

a3 cos 6'

^

This can be cancelled by adding a term to the first approximation, which

gives the second approximation,

. a3 cos 6 a3 63 cos 6'

* Milne-Thomson, Calculus of Finite Differences, 1 1 -8.
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and the normal velocity over B now vanishes to the order c~8 at least. Simi-

larly,

63 cos0'
l
a363 cos B

(
7

) r2 i
r

/2
+
z"^ ^r~

to the same order of approximation.

Near A, the same expansion gives

cos 6' 1 2r cos 8

and therefore, when r = a,

(8) &

To find the kinetic energy of the liquid, we have

taken over the spheres ^ and 5. Thus, using (2) and (3),

T =

where P1=

From Green's theorem (or by direct calculation) we have Ql
= Q2. Also

on A, dfaldn cos 6, dSA ~ 2?ra2 sin d6 and

=
f.

o

Therefore, correct to terms in c~3,

and therefore

T =

where M/, M2

'

are the masses of liquid displaced by the respective spheres.
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16-31. Sphere moving perpendicularly to a wall. If in the problem

considered in 16-30 we put F = U, b = a, it is evident that the plane which

bisects AB at right angles is a

plane of symmetry across which

there is no flow. We can there-

fore replace this plane by an

infinite rigid wall and we thus

get the case of a sphere moving
with velocity U towards the

wall. Putting c = 2h, where h

is the distance of the centre of

the sphere from the wall, the

kinetic energy of the liquid is

FIG. 16-31. where M r

is the mass of liquid

displaced by the sphere.

The sphere moves as if the fluid were unbounded and another sphere were

moving with the optical image of the first in the wall.

If the sphere is moving towards the wall and there are no extraneous forces,

the total energy remains constant, i.e.

(
U* = constant.

As the sphere approaches the wall h decreases, and therefore I/A
3 increases.

Hence U must decrease and the sphere is repelled from the wall. Similarly,

if the velocity is away from the wall, as h increases I/A
3 decreases and therefore

U increases. Thus in either case the sphere is repelled from the wall.

It follows that two equal spheres moving with the same speed in opposite

directions along the line of centres will appear to repel one another whether

the distance between them is increasing or decreasing. Observe that only

the relative velocity of approach is concerned in this result, so that the spheres

may have any velocities along the line of centres. This phenomenon minimises

the prospects of head-on collision between floating bodies.

16*40. Two spheres moving at right angles to the line of centres.

If spheres, centres A, B, radii a, 6, move with velocities U, V parallel in direc-

tion and at right angles to AB, the velocity potential will be of the form



16 40] TWO SPHERES MOVING AT RIGHT ANGLES TO THE LINE OF CENTRES 505

Subject to the boundary conditions, fig. 16-40,

FIG. 16-40.

If the distance c between the centres is very great, each sphere will be

almost unaffected by the presence of the other and we shall have, as a first

approximation to fa ,
the potential

a3 cos 6

2" ~r2
~

'

Now when c is large, at points near B we shall have approximately r = c,

and therefore

a3 cos 6 a3 r cos 6 a3/ cos 0'

This gives over B the normal velocity

a3 cos 6'

2C3
"

instead of zero, as demanded by (1). This normal velocity will be cancelled

if we take

, _ a3 cos a3 63 cos 0'

(*) fa =
i>

- + -^ ~1J*~
'

A I TcO /

On A, the same method of approximation gives

so that, if c~6
is neglected, (2) gives an approximation to the required velocity

potential.

Near B, we have

aVcosfl'

and therefore, when r = a,

2c3 4c3 r'
2
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(3) <i = \a COS 6,

and, when / b,

(4) ^=~cos0',

provided terms containing c~6 and higher powers are negligible.

The kinetic energy of the liquid is then given, as in 16-30, by

where ft =
-J#i|*?.,

, ft =
-J

and, from Green's theorem, q1 (72
.

On the surface of A, dfa/dn cos 6,

and on the surface of J5, d^jdn cos #'.

We therefore get, as in 16-30,

2 3
a*b*

Pi = I
3
, ?i

=
ft
= w -r

and therefore T = JM1

/

72

where Mx', M2

'

are the masses of liquid displaced by the spheres.

16-41. Sphere moving parallel to a wall. Putting V = U, b = a in

the results of 1640, we get the case of a sphere moving parallel to a fixed rigid

plane wall, for the plane bisecting AE at right angles being a plane across

which there is no flow may be taken as a boundary. If c = 2A, so that h is

the distance of the centre from the wall, we have

The sphere moves as if the fluid were unbounded, and another equal sphere

moved with the optical image of the first in the wall.

16*50. Ellipsoidal coordinates. The equation

where a, 6, c are fixed and B is a parameter, represents for any constant value

of 6 a central quadric of a confocal system.* In particular, if 0, we have

an ellipsoid. Equation (1) leads to

(2) f(6) = x* (6
2+ 0) (c

2
-I- 6) +f (c

2 + 0) (a
2 + 9) 4- z

2
(a

2+ 6) (6
2+ 8)

* See for example, R. J. T. Bell, Coordinate Geometry of Three Dimensions (1926), Chapter X.
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which is a cubic equation in 6, and has therefore three roots, say A, p, v. This

shows that, given the point P (x, y, z), there are three central quadrics which

pass through P. These are in fact an ellipsoid, a hyperboloid of one sheet,

and a hyperboloid of two sheets. Moreover, these quadrics cut orthogonally

at P. For a proof of these statements the reader is referred to works on solid

geometry. We shall assume their truth.

Since A, ^, v are the roots of the equation (2), the identity

(3) /(0) = (A-0)(/i-fl)(v-0)

follows, for the function on the right vanishes when 6 A, /x, v, and the

coefficients of 3
agree.

If we put in turn = - a2
,

- 62
,
- c2, we get, from this identity,

(a
2 -62

)(a
2 -c2

)

'

(4) y2
=

(&
2 ~c2

)(6
2 -a2

)

'

which give the values of x, y, z when A, fi, v are known. Thus A, fz,
v can be

used to fix the position of a point in space, and we take them as a system of

orthogonal curvilinear coordinates called ellipsoidal coordinates. The surfaces

A = constant, p = constant, v constant are the confocal quadrics, and in

particular we shall always suppose that A = constant gives the ellipsoids.

In order to make hydrodynamical applications of these coordinates we

must find the appropriate expression for V2< - Reference to 2-72 shows that

we must first calculate hl9 h2 > h3 where

Since dx = ^~ (ZA+ r- ^M+ ^- di>,
5A op dv

putting d/x 0, dv = 0, we get

(5) V =

From equations (4) we get by logarithmic differentiation

x % z



508

and therefore, from (5),

ELLIPSOIDAL COORDINATES

+ 7-5-r\-^?

[16-50

(7)
=

2 + A)(&
2 -a2

)(6
2 -c2

)

(c
2 + A)(c

!

)(c
2 + v) \

- a8
) (c* -&)/'

the second line being obtained by using equations (4) and then observing that

this results from putting the third line into partial fractions by the usual

method of substituting
- a2

,

- 62 ,
- c

2 for A. The values of hz , h3 can be

written down from symmetry.

FIG. 16-50.

If we regard (x, y, z) as functions of A and proceed from a point P on the

surface A = constant along the normal at P to a point Q on the surface

A -|- dX constant, we shall have PQ = Ax d\ and

1 dx
(8) T- -^ cos 6X ,v '

/&! aA
x '

where 69 is the angle between PQ and the axis of x. If, on the other hand,

we regard A as a function of #, y, z, and, if we proceed in the x-direction a

distance dx keeping y, z constant, we shall arrive at the point S of the surface

= constant, and then

-~ = cos e9.

Thus _ ^
l dx" MA"



16-51] ELLIPSOIDAL HARMONICS 509

If we put

(9) W =
(

2 + A)(&
2 + A)(c*+A),

we get from (7),

(2fc,W = (A
-
p) (A

-
), (2fc2 *) =

(M - v) 0*
-

A), (2A,W =
(
-

A) (-/*).

(*)'
= -Therefore

Observing that ^ ,
& are independent of A, the operation V2

gives >
fr m

2-72 (3),

do; w = _

Equating this to zero we have Laplace's equation expressed in ellipsoidal

coordinates. Solutions of this equation are called ellipsoidal harmonics.

16-51. Ellipsoidal harmonics. With the notations of 16-50, Laplace's

equation in ellipsoidal coordinates can be written in the form

(1) Oi-

Let a be a value of
<f>
which satisfies this equation, and let us seek solutions

of the form

<M<*X
where x is a function of A only. We get at once

Substitution in (1), remembering that a is a solution of (1), gives R 0.

which can be written in the form

(3) ~ic

Since the left side is a function of A only, the right side must be inde-

pendent of ft, v, and therefore a solution of the proposed form is only possible

if a be such that this condition is satisfied. This means that a must be of

the form

(4) a = aA/(/x, v),
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where <XA is independent of
JJL,

v and /(/LI, v) is independent of A. In this case

(3) becomes

d . . dx\ d . I

which, on integration, gives

where A and B are arbitrary constants.

Thus if a is an ellipsoidal harmonic having the postulated properties, so

also are

_ f
dX tdX

(5) a ~^r > hr-
J aA ^A J "'A

the second being obtained by taking a = 1, which is obviously a solution

Now (1) is merely Laplace's equation \7
2

< = expressed in a particular

system of coordinates.

Therefore CD, y, z, xy, yz, zx, and in fact any spherical harmonic, are solutions

The values of x, y, z are given in 16-50 (4), so that we may take

a = (a
2 + A)^(a

2 + /x)4(a
2 + v)^, corresponding to x,

or a - (6
2
-f A)i (6

2+ /x)* (6
2

-f- v)* (c
2
-f A)* (c

2 + /ii)l (c
2
-f v)4,

corresponding to y2, which both obviously satisfy (4).

Therefore the ellipsoidal harmonics given by the first function of (5) are

where C is an arbitrary constant, and a?, ?/,
2; are supposed expressed in terms

of A, /x,
v by means of 16-50 (4). The limits have been adjusted to make the

integrals vanish at A = oo . These are the only forms of which we shall make

applications.

All functions of the type (6) are included in the forms V ^> r A (V ^)

where

r =

rr r f x* y* z* \dX
17 I /_ i v j__ _ 1

J
_

JA W+A 62+A c2 -fA y*A

'

16-52. Translator/ motion of an ellipsoid. Consider the ellipsoid
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which corresponds to A = 0, moving in the direction of the x-axis with

velocity U. The boundary condition is

(2)
dn

d<f>
Sx

01 =- V >

A, where 8X is the angle between the normalsince dn = h^X, cos a

and the x-axis (16-50 (8)).

Thus when A = 0, <j>
= Ux, and when A-><x> , <-->0. These conditions

are satisfied by the function
</>x of 16-51 (6). We therefore take

dX
* = UX

\^<J A V*

Condition (2) then gives

dX
5 T- >

when A = 0.
a2

. abc

From 16-50 (6), dx/dX = |x/a
2

,
when A = 0, and therefore

(3)

abcU

2^o
v i,

,
where a = abc r

Jo \
a

dX

The constant a depends solely on the semi-axes a, 6, c of the ellipsoid.

Its numerical evaluation requires the use of elliptic integrals.

Thus, finally,

= oftctfa f
00

-

and on the ellipsoid we have, from (3),

A)*'

2-c

The kinetic energy of the liquid is

Since cos xdS is the projection on the plane x = of the area dS of the

surface, fig. 16-52, the last integral gives the volume of the ellipsoid 47ra6c/3

and

J-a

where M' is the mass of liquid

displaced by the ellipsoid.

The case of the sphere is

obtained by putting a = 6 = c,

when all the integrals can

easily be evaluated.

When the ellipsoid has in
FIG. 16-52.
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addition velocity components 7, W parallel to the y- and z-axes, we get, by

superposing the results analogous to (4), the velocity potential

abcUx r d\ abcVy f dX abcWz T dX
" +

2- yo J A

where /? , y are denned by writing 62+ A, c2+ A for a2+A in the integrand

of (3).

The ovary and planetary ellipsoids can be regarded as special cases of the

above.

16-53. Rotating ellipsoid. When the ellipsoid rotates with angular

velocity co = wx \ + wv ] + a)g k, the velocity of the point r x\ + y] + zk of

the boundary is co A r. If coy
= w z

= 0, the velocity is therefore -
]a)xz+ ka)x y.

If 6V , Z are the angles between the normal to the ellipsoid and the y- and

z-axes, the boundary condition is

~"dn

or ^. ;

The function
<f>vz of 16-51 (6) can be adapted to this form of boundary

condition. Thus taking

we get, when A = 0,

i i
'

2cV
*~

b*c*.abc \26"
2 2c

where we have put dy/dX ^yjb", dz/d\
= \%l&, and

d\_r
~J.

Sinc6 _ -1 f 1___M~ '
___

(6
s+ A) (c

a+ A)

~
(6

2 - c2) \6
2+ A c2 + A/

'

we get&

where j8 , y have the same meanings as in the last section. Thus

(52
_ C2\2

and the required velocity potential is obtained by substituting this value

of C in (1). The kinetic energy of the liquid can be calculated by the same

method as before.
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When the ellipsoid has angular velocity components ojv , a>z in addition,

the complete velocity potential is found by superposing the results obtained

by symmetry from the above.

16-54. Rotating ellipsoidal shell. If the interior of the ellipsoid

3,2
2 Z2

is filled with liquid and rotates about the oj-axis with angular velocity a>x ,

the boundary condition is

x
d(f> y d(f>

z
dcf> y z---^- (aZ + w -

We can satisfy this by taking <f> Ayz, for this is a spherical harmonic.

We then get

which determines A. If, in addition, the shell has a velocity ux along the

#-axis, we must have
</>
= - xux. Thus if the shell moves in any manner,

EXAMPLES XVI

1. If
</>
= rnS is a spherical harmonic, prove that, S being independent of r,

a /. -dS\ 1 *

5Z (
sm aa )

+ ~7~
a^/ sin2

and deduce that S/r
n+l is also a spherical harmonic.

2. If < = rn *S is a spherical harmonic, symmetrical about the axis of a?, and S
is independent of r, show that

where /n
= cos 0. Show that solutions of this equation corresponding to n 0,

n 1 are P (/>0, PI(H)) and also

e.w = i ^g j
, iw = *M log

j
- 1.

Show that the velocity potential of a line source along the axis from to a is

m (6oW~Qo(/x/))/a where m is the total strength and
p,'

= cos^', where 6' is the

polar angle at the end a.

2K M.T.H.
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3. The motion of fluid is given by the velocity potential

4>
= c((l+-}-^ +^r

l\ nj a"-1 rn
-

in which C is constant, and r and 6 are spherical polar coordinates. Determine

the stream function. (U.L.)

4. A sphere of radius a is surrounded by a concentric spherical shell of radius

ft, and the space between is filled with liquid. If the sphere be moving with velocity

F, show that

Fa3

and find the current function.

5. A thin spherical shell whose mass may be neglected surrounds a concentric

sphere of mass m and density cr, the intervening space being filled with a mass m'

of liquid of density p. Prove that, if the outer sphere be given a normal impulse,
the momentum is divided between the sphere and the liquid in the ratio

3m/>/[m' (2cr + />)].

6. The space between two concentric spheres, radii a, ft, is filled with liquid.
The spheres have velocities Z7, F in the same direction. Find the velocity potential.
Prove that the kinetic energy of the liquid is

- F63 )

2
].

Deduce the impulse required to set the outer sphere in motion with velocity F,
the masses of the spheres being M l ,

M 2 .

7. The space between a solid sphere, of radius a, and a concentric spherical

shell, of radius 2a, is filled with homogeneous liquid, and, the system being at rest,

an impulse is applied to the shell, causing it to start with velocity F ; given that

the velocity function of the initial fluid motion is of the form (Ar -f B/r
2
)
cos 6,

show that the sphere starts with velocity

12PV

where cr, p are, respectively, the densities of the sphere and the liquid.

Show also that, if the mass of the shell is negligible, the magnitude of the applied

impulse is

where M is the mass of the liquid. (R.N.C.)

8. A hollow spherical shell of inner radius a contains a concentric solid uniform

sphere of radius ft and density cr, and the space between the two is filled with liquid
of density p. If the shell is suddenly made to move with speed w, prove that a

speed v is imparted to the inner sphere, where
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9. Find the values of A and B for which

is the velocity function of the motion of an incompressible fluid which fills the

space between a solid sphere of radius a and a concentric spherical shell of radius

2a, when the sphere has a velocity U and the shell is at rest. Prove that the

kinetic energy of the fluid of density p is 107rpa
3
E/

2
/21.

If the sphere, of density a, is initially at rest in contact with the shell at the

highest point and falls down under gravity, show that the velocity in the concen-

tric position is given by

la + bp
'

(R.N.C.)

10. The space between a solid sphere, of mass M and radius a, and a fixed

concentric spherical shell of inner radius b is filled with liquid. An impulse / acts

directly on the sphere. Prove that the sphere starts with velocity

where M' is the mass of liquid displaced by the sphere.
Find the initial value of Stokes' current function for the motion. (R.N.C.)

11. Liquid of density p fills the space between a solid sphere of radius a and

density o- and a fixed concentric spherical envelope of radius b. Prove that the

work done by an impulse which starts the solid sphere with velocity V is

Calculate the initial momentum of the liquid. (R.N.C.)

12. A sphere, of radius a and density a, is surrounded by a concentric spherical
shell of radius b, and the space between the sphere and shell is filled with fluid of

density p. The whole system is moving with a velocity v when the shell is suddenly

stopped. Find the velocity of the sphere immediately after the impact. (R.N.C.)

13. The space between two concentric spheres, radii a, 6, of which the outer is

fixed, is filled with fluid of density p. Show that, if the inner starts from rest with

acceleration /, the initial resultant thrust on the outer is

27r/>/a
3 &3/(&

3 -a3
).

14. Homogeneous liquid occupies the simply connected region bounded

internally by a surface $ x and externally by a fixed surface SQ . Irrotational

motion is set up by moving $ x
in any way without change of volume. Prove that

the kinetic energy of the fluid is greater than it would be if there were no external

boundary.

Verify the theorem by calculating the kinetic energy when S
l and <S are

instantaneously concentric spheres and $ x
is set in motion as a rigid boundary.

15. A sphere of radius a is moving with speed v along a diameter of a fixed

sphere of radius 6, the space between the two surfaces being filled with fluid.

Prove that, when the distance between the centres is x, the kinetic energy of the

fluid motion is

where /xn+1 (6
2 -xcn)

3 - ^Wa
3 63 , //

= iva
3

,

and <>n+i(6*-ae)
= z&2 -cw (z

2 -a2
), c x. (U.L.)
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16. A sphere, of mass M and radius a, is at rest with its centre at a distance h

from a plane boundary. Show that the magnitude of the impulse necessary to

start the sphere with a velocity V directly towards the boundary is

very nearly, where M' is the mass of the displaced fluid. Find also the impulse on

the plane boundary. (R.N.C.)

17. A sphere of radius a moves in a semi-infinite liquid of density p bounded

by a plane wall, its centre being at a great distance h from the wall. Show that the

approximate kinetic energy of the fluid is

the sphere moving at an angle a with the wall at a speed V. (U.L.)

18. An infinite rigid plane separates liquid otherwise unbounded into two

parts. A sphere moves in a direction perpendicular to the plane. Explain by
general reasoning the effect of making a circular opening in the plane with its

centre on the line along which the sphere is moving, (a) when its velocity is towards
the plane ; (6) when its velocity is away from the plane.

19. Two equal spheres, radius a, distance between centres d, are fixed in a

stream U perpendicular to the line of centres. Show that the velocity halfway
between them is approximately

8a3 )

*{*}
Find the velocity when the stream is parallel to the line of centres.

20. Two spheres, radii a, 6, distance c apart, are surrounded by fluid. The first

is made to move with velocity U towards the second. Show that the second

starts with velocity A/B approximately where

21. A sphere, of radius a, immersed in liquid of density p, whose only boundary
is an infinite plane wall, is moving with velocity U directly towards this wall,

which is at a distance c from the centre of the sphere, c being large compared with

a. Neglecting a4/c
4

, prove that the velocity potential in the immediate neighbour-
hood of the sphere is given by

where r is the radius vector of a point, measured from the centre of the sphere,
and is the angle r makes with the direction of motion of the sphere.

Calculate approximately the kinetic energy of the liquid. (R.N.C.)

22. A sphere of radius a is moving with speed V parallel to a fixed plane wall,

the wall being at a distance c from the centre of the sphere. Show that, in the

neighbourhood of the sphere, the velocity potential is approximately given by

where r and r' are distances from the centre of the sphere and its image in the

wall respectively, and y is measured parallel to the direction of motion.

Calculate to the same approximation the pressure on the sphere.
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23. A mine at a distance a from a plane infinite wall and at a depth b below
the surface of still water, which extends to infinity in depth and away from the

wall, explodes symmetrically. If E is the total energy generated by the mine,
calculate the normal velocity at any point of the free surface immediately after the

explosion, and also the normal impulsive pressure at any point of the wail.

24. A sphere of radius a moves with velocity u directly towards a fixed plane,
which bounds a region occupied by homogeneous frictionless liquid. Show how
to determine the velocity potential of the motion when the centre of the sphere is

at a distance c from the plane.
Prove that the kinetic energy of the liquid is

where M' is the mass of liquid displaced by the sphere, and

/x
= |wa

3
, /xn

=
fifl-.1 (pn/qn)

3
,

pnjqn being the wth convergent to the continued fraction

a a2 a2

2c- 2c^~ 2c - . . .

'

in which all the partial quotients after the first are equal to - 2
/2c. (U.L.)

25. Two equal circular cylinders, of radius a, with their centres d apart, are

fixed in a uniform stream of velocity F perpendicular to the line of centres. Obtain
an approximate value for the velocity function, assuming that a/d is small. Show

that the velocity midway between the centres is V f 1 + 8 -^ ) very nearly. (R.N.C.)

26. The space between a long solid cylinder, radius a, and a concentric cylin-
drical shell, radius b, is filled with homogeneous liquid. Find the velocity function

for the fluid motion when the cylinder and shell have velocities U and F, respec-

tively, perpendicular to their common axis and in the same direction.

If, when the system is at rest, an impulse applied to the shell causes it to start

with a velocity F, find the initial velocity of the cylinder, and show that the

velocity function for the initial fluid motion is

8
)

)

C
'

where
/>,

cr are, respectively, the densities of the liquid and cylinder. (R.N.C.)

27. A circular aperture of radius a in the wall of a large tank filled with liquid
of density p is closed by a piston with a plane end flush with the wall. The piston
is suddenly pushed inwards with velocity U. Show that the impulsive pressure P
on the wall is given by

J](\
al -1!_ L !

2 .32
...(2-3)2

' p
\2 r

"f
22 .4r3

"f '" +
22 .42

...(2A:-2)
2

where r is the distance of the point considered from the centre of the aperture.

(ILL.)

28. An ellipsoid of semi-axes a, 6, c moves with velocity V through an infinite

liquid at rest at infinity in the direction of the axis of length 2a. Find the velocity
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potential of the motion and show that at a great distance the motion approximates
to that due to a doublet at the centre of the ellipsoid, of axis and strength given by

Ji^-
fav '

i r du
where OQ

= ctbc I r

29. The ellipsoid x2/a
2 + y

2
/b

2 + z2/c
2 = 1 is placed in a uniform stream parallel

to the x-axis. Prove that the lines of equal pressure on the ellipsoid are its curves

of intersection with the cones y
2
/b

2 + z2/c
2 = x2

/h
2
) where h is an arbitrary constant.

30. A stream of infinite depth, whose bed is the plane 2 = 0, flows with velocity
U parallel to the x-axis and is disturbed only by an obstacle in the shape of the

upper half of an ellipsoid. If A is the positive root of

x2
y
2 z

2

+ _ y. h = l,

and the ellipsoid is given by A = 0, show that the velocity potential of the motion

of the stream is

. r
o = abc

JA (a
2

,

where

Prove also that the slip velocity at all points over the section by x = is

2Z7/(2-o). (U.L.)

31. A rigid ellipsoid, semi-axes a, 6, c, is moving with velocities U, V parallel

to the axes o, 6 respectively. Show that to maintain the motion a couple is required
about the axis c of moment

reckoned positive from the axis a to axis 6. (U.L.)

32. The region outside the ellipsoid

is occupied by liquid which is at rest at infinity. The ellipsoid rotates with angular

velocity o> about the axis of x. Find the velocity potential and show that the

kinetic energy of the liquid is

where ft,
= abc f (a

2 + A)-* (6
2 + A)-t (c

2 + A)-* dX,
J o

y = abc I (a*+X)~*(b*+X)-*(c*+X)-%dX,
Jo

and M is the mass of liquid displaced by the ellipsoid. Hence find the effective

moment of inertia of the ellipsoid. (U.L.)

33. Show that when a circular disc of radius a rotates about a diameter in

liquid at rest at infinity, the kinetic energy of the liquid is Spa
5
o>

2
/45, o> being the

angular velocity of the disc and p the density of the liquid.
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34. Find the only solutions of Laplace's equation in ellipsoidal coordinates

A, n, v which are independent of /z and v.

The axes of an ellipsoid which is surrounded by an unlimited liquid vary with

the time in such a manner that the ellipsoid always remains similar to itself.

Prove that
/

= - lobe (a/a + bib + c/c) .* V/ ' '

JA V(a
2

35. Prove that if a solution of Laplace's equations in ellipsoidal coordinates

A, I*,
v is of the product form L . M . N, then a possible value of L satisfying the

equation is of the form

Find a second solution in A which satisfies the differential equation for A in

this case, and hence obtain three solutions of Laplace's equations in the form

xyz . F
t

where F is a function of either A alone, or /* alone, or v alone.

36. Show that if A is a root of the equation

then L =
(a

2 + A)i is a solution of the equation

1 d2L

where da, = dA/\/(a
2
-f A) (6

2
4- A) (c

2
-f A) and A and B have certain values.

Prove also that for certain other values of A and B, (6
2
-f A)i, (e

2 + A)i are also

solutions, but that it is impossible to obtain a solution of the form

L - p(a?

where no two of p, q, and r are zero, if a, 6, c are all different.

37. An ellipsoidal vessel of semi-axes a, b, c is filled with frictionless liquid of

density p, and is rotating about the axis of x with angular velocity w. Prove that

the velocities at any point of the liquid are given by

u 0, v = Cz t w = Cy,

and determine the constant C.

38. An ellipsoid is filled with fluid and has velocity components U, V, W,
w lt W 2 , o>3 ,

the axes of reference being principal axes. Show that relative to the

ellipsoid the paths of the particles are ellipses, the period being Zrr/m, where

,1.
a2

(6
2 + c

2
)

2 62 (c
2 + a2

)

2 c2 (a
2 + 62

)

2
J

39. An ellipsoidal thin shell of semi-axes a, 6, c is filled with liquid of density p
and rotates about the axis c with spin co. Find the velocity potential of the motion,
and show that the kinetic energy is

_!'
15
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40. An ellipsoidal shell is filled with liquid and rotates uniformly about a given
diameter. Prove that the path of every particle of liquid relative to the ellipsoid

will be an ellipse whose plane is conjugate to the given diameter, and that every

particle will sweep out, about the centre of its elliptic path, equal areas in equal
times.

41. The axes of an ellipsoid which is filled with liquid vary with the time in

such a manner that the volume of the ellipsoid remains constant. Prove that

the velocity potential of the liquid is

42. Given that x = a (cosh a + cos
]8
- cosh y), y = 4a cosh \OL cos | ]8

sinh |y,
z 4a sinh |a sin J]8 cosh |y, transform the equation of continuity into

(cos j8 + cosh y) -| + (cosh y + cosh a) + (cosh a
- cos j8)

~ = 0,

and show that the surfaces for which a, jS, y are constant are confocal paraboloids.
Hence show that the velocity potential for infinite liquid streaming past the

fixed hyperbolic paraboloid j8
=

j8 , with speed F, parallel at infinity to the axis

of x, is given by <f>

= F(#-a/2sinj8 ), and write down the corresponding values

of
<f>
when the fixed surface is the elliptic paraboloid a = a , or y == y .

43. An infinite mass of liquid has the plane z for free surface. If on the

surface an impulsive pressure w WQ sin mx sin my is applied, show that the initial

motion is given by p^ = ar exp (-z(w
2 + w2

)i), z being the position in the fluid.

44. A right circular cone of height h has a base radius of A^/2. A mass of

fluid of this form is moving parallel to the axis and base first with velocity F,
when the base strikes against a fixed plane. Taking the fixed plane as the

plane xy and the centre of the base as origin, prove that the velocity function

just after impact is V(2z
2 -x2

~y
2
)l(4:h) )

that the impulsive pressure of the fluid is

F/>(2(z-/i)
2 -a;2 -?/

2
)/(4/i), and that the impulse on the plane is 3/4 of what it

would have been had the cone been solid and of the same mass.

45. Show that any irrotational motion of homogeneous liquid moving in a

simply connected region bounded internally by a closed surface, and at rest at

infinite distances, can be regarded as due to sources and doublets distributed over

the surface. Proceed to explain what must be done in order to dispense with
either the sources or the doublets.

In the case of a sphere of radius a, which is being deformed so that after a small

interval of time t the equation of the surface is r = a + Ut P2 (cos 9), determine a

distribution (i) of sources, (ii) of doublets, on the surface which will give rise to

the same velocity potential.

46. Irrotational motion of homogeneous incompressible frictionless fluid out-

side a closed surface S is due to the motion of S with outward normal velocity q9
of given magnitude at any point of S. The velocity potential due to a double

source, of unit strength, and having its axis parallel to the axis of x, situated at a

point P outside S (supposed fixed), is denoted by 0. Prove that the ^-component
of the velocity at P, due to the motion q9 , is



CHAPTER XVII

SOLID MOVING THROUGH A LIQUID

17-10. Motion of a solid through a liquid. Consider a solid S

immersed and at rest within an unbounded liquid which is also at rest. If

the solid be set in motion in any manner, the resulting motion of the liquid

will be irrotational and acyclic. Moreover, such a motion once established

will instantly cease (3-77 (VI)) if the solid be brought to rest. We shall con-

sider only motions of the liquid which are due solely to the motion of the solid

in the sense just described. In such a motion the pressure of the liquid at

the surface of the solid is finite, and therefore to generate a given motion of

the solid requires only a finite amount of energy, which is shared between the

solid and the liquid. The kinetic energy of the liquid is therefore finite, and so

the velocity at infinity must be zero. Thus the velocity potential <j>
must

satisfy the conditions

(1) V2
<t> everywhere, \7 <f>

= at infinity.

To describe the conditions to be satisfied at the boundary of the solid,

take a frame of reference R' fixed relatively to the solid, say an origin 0' and

three cartesian axes O'x, O'y, O'z. The motion of the solid is then specified by
a velocity u of the origin and an angular velocity <*>. Thus at the point r of

the boundary the velocity is u + to A r, and if n is the unit outward normal

vector at this point to the surface of the solid, the boundary condition is

(2) ~^= n(u + co A r)
= un + co(r A n),

using the triple scalar product (2-13). This condition may be satisfied by

writing

(3) <-U9 + o>x>

where <p, x are vectors whose components along cartesian axes, say, are solu-

tions of Laplace's equation whose gradient tends to zero at infinity, and which

satisfy the boundary conditions

so that cp, x depend solely on the shape of the solid and not on its motion.
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Several special cases of the determination of
<f>

have already been dis-

cussed, for example, the sphere and ellipsoid. We now proceed to investigate

the motion of the solid by a method which depends essentially on considering

the solid and liquid to form a single system. The pressure thrusts at the

boundary then become internal forces and their evaluation is unnecessary.

17-20. Kinetic energy of the liquid. This is given by

(1)

using the boundary conditions 17-10 (2), (3), the integral being taken over the

boundary of the solid.

This expression shows that TL is a homogeneous quadratic function of

the vectors u, to. For, if A is any scalar, the effect of changing u, to into

Au, Ato is merely to change TL into XZTL . Therefore by Eider's theorem on

homogeneous functions (2-71) we have

(2) U^ + 0>^ = 2TX ,

du dto

Again, from 17-10 (2), (3), we get

U
-

,
and therefore

fa/
T ^ dn

du "

J(5)
" ""

J(S)

But since the components of tp satisfy Laplace's equation, Green's theorem,

2-62 (2), gives

from 17-10 (4). Therefore we get the first of the following results, and the

second by a similar argument,

Were the motion started by impulses (see 17-31), the integrals on the right

of (3) would be the linear impulse and impulsive moment applied by the solid

S to the boundary of the liquid in contact with it.

When written in full for, say, cartesian coordinates, the above expression

(1) for the kinetic energy will be found to consist of 21 terms containing the

quadratic combinations two at a time of the six components of u and to.

If in (3) we write Au, Ato for u and to, these expressions become multiplied

by A. Thus the partial derivatives of the kinetic energy are homogeneous
linear functions of the vectors u, to.
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In cartesian coordinates, we have

u = \ux+ \uv+ kuz ,

to = i 0)3.4- jcoy-fkeo^ ,

and therefore (2-71)

dTL _ dTL BTL dTL__
|
_

|_
__

j_ n _-_
t

du oux ouv ouz

17*21. The kinetic energy of the solid is given by

(1) Ta
J(F)

taken throughout the volume V enclosed by the solid, a being the density

which may be constant or variable. In cartesian coordinates this expression

contains 10 independent coefficients. By Euler's theorem

2T 2T
(2) I

From (1) we get at once

(3)
^

^ a"
J(F)

(4)
CO

( F)

the linear and angular momentum of the solid.

If T = TL + Ts is the total kinetic energy of the system, combining (2) with

17-20 (2) gives

(5)

17*30. The wrench. A system of forces represented by localised vectors,

acting at given points, has for resultant a single force F acting through any
chosen base-point and a couple L. The force F is then the vector, localised

in a line through 0, obtained by drawing through vectors equal and parallel

to the given forces and taking their vector sum. Thus the magnitude and

direction of F do not depend on the position of 0. On the other hand, L is the

sum of the moments about of the given localised forces, and consequently

its magnitude and direction depend on the position of 0, but L is a, free vector.

The vector pair (F, L) is called a, force wrench. For two force wrenches to be

equal, both force and couple components must be equal when referred to the

same base-point. By suitable choice of it is possible to arrange that the axis

of the couple shall be parallel to F. The line in which F is then localised is
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called the central axis. If the corresponding couple is I", this reduction is

unique and F A F = 0.

In exactly the same way a system of localised impulses gives rise to an

impulse wrench (^, X), where is the vector sum of the impulses and X is the

sum of their vector moments about the base-point. Again, a momentum wrench

(M, H) arises when we compound localised linear momenta into a single

localised linear momentum vector M, and an angular momentum vector H.

17-31. The impulse. When a solid S moves in a given manner in un-

bounded liquid, the motion of the liquid being due solely to the motion of the

solid, the motion of the liquid is uniquely determinate and the velocity

potential </>
is likewise determinate, see 3-77 (VII), (save for an irrelevant added

constant). The motion of the liquid which actually exists at time t could be

generated instantaneously from rest by applying to the solid a suitable impulse

wrench. This impulse wrench must be so adjusted as to produce instantane-

ously in the solid the momentum wrench which actually exists at time t and

also to overcome the perfectly definite impulse wrench exerted on the boundary
of the solid by the impulsive pressures p<f>

of the liquid, see 3-64.

The impulse wrench on the solid which would thus generate the motion

from rest is called the impulse of the system at the instant considered.

17-32. Rate of change of the impulse. Instead of the moving frame

Rf

of origin 0' fixed relatively to the solid S, we consider in this section a frame

of reference R, origin 0, fixed in

space (see 3-55). We shall denote

time rate of change with respect ^^^ *L

to this frame R by d/dt. We shall /;
'

'

Jh*?*
prove that if (5, X) is the impulse

wrench, as defined in 17-31, and

(F, L) the external force wrench
\J ^_ ^

on the solid, referred to the same

base-point 0, then
->y *%

___ _ __
:o. 17-32.

Proof. Let us imagine a closed surface E, fixed in space, to enclose the

solid S. This surface is merely geometrical and is not a material barrier to the

motion. Let (M# , H^) be the momentum of the system E consisting of the

solid and the liquid within E at time t. If we suppose the motion of the solid

and unbounded liquid which actually exists at time t to be generated instan-

taneously from rest as described in 17-31 by the impulse (, X) applied to the

solid, there will be an impulsive pressure p<}> throughout the liquid, and there-
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fore the external impulse acting on the system EE will consist solely and entirely

of (, X) and an impulsive pressure p<f>
over the surface E. These impulses

therefore generate the momentum (M^ , Hjj). Thus, if n is the unit outward

normal to dS,

(2) 5-f np<l>dS=ME , X-f (r A np0<*S=H*,
JCE) J(E)

the second integral being the moment about of the impulsive pressure thrust.

Again, the pressure equation gives

,

and a pressure (7, uniform over the boundary, has no resultant. Therefore the

equations of motion of the system ZE are

the integrals on the right expressing the flux of linear and angular momentum

through E (see 340, 342). Eliminating ME , H# by means of equations (2),

we get

(3) g-F = J Hnj-(iiq)q]eZS,
Gl J (E)

(4)
}(E)

Since the left sides of these equations are independent of E, these equations

show that the integrals on the right are independent of our particular choice

of the envelope E* We shall prove, by taking all points of the envelope to be

infinitely distant from the solid, that these integrals are zero.f The result (1)

will then follow.

Now, from 3-75 (3), we have at any point P of the liquid

where r is the distance of P from the element dS of the surface of the solid

over which the integrals are taken.

For points P at a great distance R from we can write r = R 4- s, where

s/R is infinitesimal and therefore approximately

1 _ !.___ JL__ JL_2*
r
~
R W 7*~W &'

* This independence also follows from 3-63.

t Observe that we are not stating that these integrals are zero in the limit but that they have
a constant value. That this constant value is zero is then inferred from their limiting behaviour
at infinity.
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Noting that I
-- dS = by the equation of continuity, we see that to

J(S)on

the above order of approximation
A

where A is independent of R. It follows that the speed q is of order R~*.

Also for points on the envelope E, dS = Rz
dw, where da) is an elementary

solid angle. Thus in (3) and (4) the magnitudes are of the order

f *?, f
J (E) #4

'

J (E)

doj

and these clearly tend to zero when R -> oo . Q.E.D.

17-40. Moving origin. It is convenient to refer the motion not to the

frame R, origin 0, fixed in space, but to the frame Rf

, origin 0', fixed in the

solid (17-10). At time t the frame R' occupies a certain position in space. We
choose the frame R so that it coincides with R' at this instant. Let the motion

of R' be described by the velocity u of the origin 0' and an angular velocity u>,

both relative to the fixed frame R. We consider the changes in
,
X in a short

interval dt. Since the interval is infinitesimal we can consider separately the

effects of the translation u dt of the origin, the rotation to dt of the frame, and

the changes in the vectors in the interval dt as estimated by an observer moving
with R', and then add the results.

To consider the effect of the translation we ignore the rotation, and suppose

the vectors 5, X to remain unchanged with respect to an observer moving with

the frame R f

.

Since the localised vector is merely moved parallel to itself it undergoes

no change. On the other hand, the moment of the impulse with respect to

the fixed origin is increased by the moment about of in its new position

at 0', fig. 1740 (i), namely by u dt A . Thus, due to the translation of the

origin, X increases at the rate u A .
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Now consider the rotation co dt, the origin remaining fixed and the im-

pulses remaining unchanged with respect to an observer moving with the

frame R'.

If OA, OB, fig. 17-40 (ii), represent 5, ^ at time t they will be represented

by OA', OB' at time t+dt, where

and therefore with regard to the fixed frame R the rates of increase are co A 1*

and co A X respectively.

Lastly, to an observer moving with the frame R', , X appear to vary with

the time at the rates which we shall denote by d%/dt, d'X/dt.

Thus the rates of change of J, X with respect to the fixed frame R with

which the moving frame R' instantaneously coincides, are respectively

3% d$ _ ax <zx

I7-4I. Equations of motion. Since the rate of change of the impulse

is equal to the external force, 17-32, we have

dt

^-+<o A X + U A 5 - L.

These are the equations of motion in the form suitable for resolution along

axes fixed in the moving solid.

17-42. Impulse derived from the kinetic energy. If (!-, X) are the

components of the impulse at the base-point 0, a force wrench applied to the

body for an infinitesimal time, 82, will increase the velocity from (u, c*>) to

(u + Su, w + Sco), and the corresponding impulse will then be (5 + 81-, X+ 8X),

all the increments being infinitesimal. The work done is, by the definition

of an impulse,* u S + <*> 8X, and this must be equal to the increase in total

kinetic energy

Therefore

(1) u8?+<o8X = Su+ ^8<o = ST.
9u dw

If we take 8u = hu, Sco = ^u>, where h is an infinitesimal scalar constant,

* If (F, L) is the force wrench in question the work done is

80 = u(F3;)+o>(LSO
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since the impulse is a homogeneous linear function of the velocities, we must

have also S = h%, SX AX, and therefore

du do>

from 17-21 (5). Taking an infinitesimal variation of this equation, we get

and therefore, from (1),

dT dT
J- Su+XSw = Su + ~ 8w.

Since Su, So> are independent, this gives

? =
^, x =

|,
which expresses the impulse in terms of the partial derivatives of the total

kinetic energy.*

17-43. Equations in terms of kinetic energy. The equations of

motion, 1741, now become

d fdT\ dT _ _

d ldT\ dT dT .

These are Kirchhoff's equations in vector form.

If we observe that T Ts+ TL ,
these equations can be written

--
A "au

"

dTa 9TS _
A

"

A
"""

A
"

Now, if the liquid had been absent (TL = 0), the right side of these

equations would have contained only F and L. The action of the liquid

pressures on the body must therefore be represented by the remaining terms

on the right. Thus the action of the liquid is represented by the force and

couple

d(dTL\L
dt\dv>J

- u
*inr

* This result can also be inferred by combining 17-20 (3) with 17-21 (3), (4). This is left as

an exercise



17-60] PERMANENT TRANSLATION 529

I? 50. Permanent translation. If the motion is steady and the solid

does not rotate, the action of the liquid on the solid reduces to zero force,

d'Alembert's paradox, and a couple

w - u
*i&-

This couple (cf. 6-42) will tend to rotate the solid. The couple, however,

vanishes if, and only if, the above vector product vanishes, which means that

the vectors u and dTL/du are parallel.

Therefore in this case the velocity u is in the direction of the normal to

the ellipsoid

u
"aiT

=c>

where c is a constant.* From 17-20 (2), since o> = 0, the equation of this

ellipsoid is also

(2) TL - |c,

and is analogous to the momental ellipsoid of a rigid body. The direction of u

can only be parallel to the normal if u is along one of the principal axes of the

ellipsoid.

Since there are three principal axes, it follows that there are three directions

in space, mutually perpendicular, such that, if the solid is set moving along

one of them without rotation, it will continue so to move. These directions

are known as directions ofpermanent translation.

When the solid is moving in a direction of permanent translation with

velocity u, a small disturbance is effected by changing u to u-f v and giving

the body an angular velocity to, where v, to are initially infinitesimal so that,

when their quadratic terms are neglected, Kirchhoff's equations become linear.

The discussion of the stability entails the solution of these equations and is,

except in certain cases of symmetry, rather complicated. We can however

obtain a general idea of the stability from the following argument in which

the effect of o> is ignored. Taking our solid to be itself an ellipsoid, the expres-

sion for TL is obtained from 16-52. It appears from numerical calculation that

the greatest axis of the ellipsoid (2) is in the direction of the least axis of the

solid and vice versa, fig. 17-50.

The sense of the couple (1) is also shown in the figure. Thus, if S moves

in the direction OB of its least axis, the couple (1) tends to cancel any slight

deviation therefrom. On the other hand, if the direction of motion is that of

the greatest axis OA of S, any deviation is increased by the couple. If the

direction of motion be that of the intermediate axis, the couple is restorative

* See Ex. II, 27. The ellipsoid here mentioned is an ellipsoid in the velocity-space in which
the Telocity components (u, v, w) take the place of the cartesian coordinates (x, y, z).

2L M.T.H.
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or not according to the direction of the deviated velocity. Thus when a body
of this general shape moves through a liquid, the motion is stable onlyjwhen
it moves broadside on.

FIG. 17-50.

There are many well-known phenomena which are explained in principle

by this remark. Thus a ship has to be kept on her course by the helmsman ;

an elongated airship requires similar attention. A sailing ship will not sail

permanently before the wind with the helm lashed, but tends to set itself at

right angles to the wind. A body sinking in liquid tends to sink with its longest

dimension horizontal.

Lastly, we may remark that, to hold a body at rest in a uniform stream u,

requires a couple

where T& is the kinetic energy of the fluid when it is reduced to rest at infinity

and the solid moves with velocity u.

This may be regarded as supplementing d'Alembert's paradox by the

statement that a solid in a uniform stream is acted upon by a couple except

when presented to the stream in any of the three orientations corresponding

to the directions of permanent translation.

17-51. Permanent rotation. When the solid rotates steadily without

translation, we have u = 0, and the body is acted upon by the couple

This couple vanishes when the vectors c*> and dTL/d<* are parallel, that is

to say, when the axis of rotation is parallel to the normal to the ellipsoid
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Thus there are also three axes of permanent rotation mutually perpen-

dicular, but not necessarily intersecting, for the ellipsoid determines merely

the directions and not the position of the axes.

I7'52. Solid of revolution. When the solid has three perpendicular

planes of symmetry, the total kinetic energy referred to their intersections

as axes must assume the form

2T - Pux
*+ Quv

*+Ruz
z+ Aa>x

2 + Ba>y
2+ Ca>z*,

for the reversal of any velocity component must leave the kinetic energy

unaltered, and therefore no product terms can occur. When the solid is one

of revolution about the x-axis, T will be unaltered when uv ,
uz or a)y , a>z are

interchanged. Therefore Q = R, B 0. If, in addition, the axis of revolu-

tion moves always in the soy-plane and there is no rotation about that axis,

we must have uz
= 0, o>v

= a>x = 0. Thus, in this case,

T = ^(PuJ + QuS + CwS).

The equations of motion are then, if there are no external forces,

\Pux+lQuv + P<ozux\--Q<jj,uv \ = 0.

(1) Cd,k+ (Q-P)kw,w l ,

= 0,

where i, j,
k are unit vectors along the axes.

y

FIG. 17-52 (i).

Since there are no external forces, 17-32 (1) shows that the impulse com-

ponents are constant. In the present case the angular component X is per-

pendicular to the plane of the motion and therefore the impulse reduces to a

single linear resultant localised in the line O'x' say. Then

(2) Pux = cos 0, Quv
= - sin 0, <*> z

= 6,
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where 6 is the inclination to the sc'-axis of the line OL fixed in the solid and

coinciding with the #-axis.

From (1),

-\ sin 6 cos 6 = 0.
(3) PQ

Writing x = 20, this becomes

(4)

If P>Q, this is the equation of motion of a pendulum. The value of x

given by (4) is therefore periodic, and hence so also is the value of 9 given

by (3).

If (x' 9 y') are the coordinates of the centre of the solid, we get, from (2),

(5)

. . ,/cos
2 sin20\

x ux cos 9~uv sine/ = I p^ + Q~ )

y' ux sin + uy cos = ( ^
-
^ j

si- sin cos 6 --,
(6)

from (3).

Equation (5) shows that x' is never negative, so that the centre always

moves forwards, the path having no loops. From (6), we get
*

y'
- ctyf,

FIG. 17-52 (ii).

* No arbitrary constant is added since the moment of the impulse about the centre vanishes

with y'.
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so that y' is periodic, since is periodic, and therefore the path of the centre

is a sinuous curve. This equation shows that if is proportional to 6.

Two main cases can arise according as the solid performs complete revolu-

tions or oscillates between the positions given by 6 = a, 9 = a. These are

illustrated in fig. 17-52 (ii). In the first case 6 has a fixed sign, so that the path
does not intersect the line of the impulse. When the solid oscillates, however,

6 (and therefore y') vanishes in the extreme positions and the path lies

symmetrically about the line of the impulse.

17-53. Stability due to rotation. In the case of a solid of revolution

the kinetic energy can be put in the form

T = \[Au*+ Ru* + Bu*+ P<a*+Q(*+ Qt*\.

If the solid moves with velocity \u, ico, we shall have ux u, a)x
= to

and, in a slight disturbance, uv ,
cov ,

u z ,
a) z will be infinitesimal. Now

*S/7T

= iAux -\- \Buy-\- kBu s ,

Therefore, neglecting products of the infinitesimals, the equations of

motion parallel to the a?-axis become

^ = 0, ^ = 0.
dt

'

dt

Thus, to the first order, ux = u, wx = co.

To the same order of approximation, the remaining equations are

B^-BajUz + Auw, = 0, B~l + Ba>uv --Auajv
=

(),
dt dt

Q^+(P-Q)ua>,
+ (A-B)uu z

= 0,

Q^-(P-Q)a>wv -(A-B)uuv
= 0.

To solve these put uy
= a eixt, u z

= b eai,
o>

tf
= a eixi

, 00, ft eiM .

This gives the four equations :

iBXa -Bwb +Aup = 0,

Bwa +iBXb -Auv. =0,

(A-B)ub+ Qih* +(P-Q)a>$ = 0,

-(A-B)ua -(P-Q)o>a +QiXp =0.
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The elimination of a, 6, a, jS leads to the determinant

iBX

~Bw

(A-B)u

or, on expanding,

[BQX* -(P-Q)B<J -A(A-B) n2
]
2 - [B (P - 2Q) Aco]

2 = 0.

This gives for A the two quadratic equations

BQX2 -B(P-2Q)Xaj-B(P-Q)a>*-A(A-B)u* - 0,

Buz - 0.

[17-63

Now the condition for stability is that A should be real, for then e%M is

periodic and therefore a disturbance, if once small, remains small.

The roots of both the above quadratics are real if

that is to say, if 2P2 o>
2 + ABQ (A -B)u2> 0.

This condition is always satisfied if A^ B, and can be satisfied in any case

by taking o> large enough.

A familiar example of this principle is the stability given to a projectile

by rifling the gun barrel.

17-54. Solid containing a cavity. When a solid has a cavity filled with

liquid in acyclic motion, the total energy of the system is equal to that of

the solid plus that of the liquid. The kinetic energy of the latter is clearly a

homogeneous quadratic function of the velocity (u, <*>) of the solid, for the

previous argument shows that the velocity potential is a homogeneous linear

function of (u, w). Thus the effect of the liquid in the cavity is merely to

alter the apparent constants of inertia of the solid, and the motion of the

system is the same as that of the solid with these altered constants of inertia.

17-60. Lagrange's equations. The configuration of a dynamical system
is known when the coordinates of every point in the system are known, or at

least ascertainable from known quantities. These coordinates may be the

ordinary cartesian $, y, z, or any other quantities in terms of which these may
be expressed. Thus, in the case of a top spinning under gravity about a fixed

point on its axis of revolution, it is sufficient to know the inclination 6 of the

axis to the vertical, and the angle CD which the vertical plane through this

axis makes with a fixed vertical plane. Given and w as functions of the

time and the initial configuration and motion of the top, the position at time t

of any point of the top can be ascertained. These quantities 6, a> are called
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generalised coordinates. Extending this idea, we can conceive the position of

any specified dynamical system to be determinable in terms of a certain number

of generalised coordinates q , q2 ,
. . .

, qn .

When the position vector r of every point of the system is given explicitly

by a relation of the type

(1) r = r(ft ,&,..., ?),

the system is said to be holonomic. As a direct consequence, the velocity is

(2) v = r = 27t a<g,,

where the subscript i in E
t
denotes summation from i 1 to i n, and where

(3) a
t
= dr/dqt , so that from (2)

I
For a non-holonomic system, we have (2) without however (3), so that the

non-integrable equation dr = Z*
t
a

t dq t
takes the place of (1) ;

and equation (4)

no longer holds.

Consider now a system of solids S moving in inviscid liquid L, which may
be either unbounded or contained within a fixed enveloping surface E. We
shall assume that the solids form a holonomic system, and that the motion

of the liquid is due entirely to the motion of the solids and would instantly

cease, were the solids brought simultaneously to rest. The motion will then be

irrotational and acyclic.

We cannot assume that the liquid is a holonomic system, for if the solids

are moved through a cycle of positions returning each to its original position,

we have no evidence that the fluid particles are then each in their original

positions, indeed examples can be constructed which seem to point to the con-

trary conclusion. Therefore we cannot assume (1) to hold for the fluid

particles.

At the boundary of a solid we have the condition

where
<f>

is the velocity potential and Vn is the normal component of the velocity

of the solid. At the envelope E we have Vn = 0. But by hypothesis Vn is a

linear function of the generalised velocities q^ , /2 ,
. . .

, qn > so tha^ the boundary
conditions (5) together with Laplace's equation determine $ uniquely as a

linear function of the generalised velocities. Thus we can write

(6) ^ = 27,6J

where the <^ are functions of the generalised coordinates, but not of the

velocities, and satisfy Laplace's equation. Therefore taking the gradient it

appears that (2) holds also for the liquid.
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Now consider the rate at which work is being done by all the forces on the

system in an imagined or virtual motion in which the generalised virtual velo-

cities, which we shall denote by Dq^Dt, are geometrically possible so that for

a point of a solid

(7)
= z. ^L ^Sl

and for the motion of the liquid

For brevity we shall term the rate of doing work by any system of forces

their power, and denote it by DW/Dt for the virtual displacements.

Consider the solids only. If Fs is the total force, internal and external, on

the typical particle of mass m at the point P, the virtual power of the forces

acting on the solids is

T?-^*}
on using (7), where

(10)

is the generalised force corresponding with the generalised coordinate qt
. The

equation of motion of the particle at P is F# = mi-, and therefore (10) gives

\
( dr\Dq { Dq<

)
=^

(
Ps %J DT

=
'Q*-< -Dt

At this stage we use the holonomic property (4). Replacing Brjdqt by

dr/dqi and noting that the kinetic energy of the solid is Ts J27Pmr r, we get

Lagrange's equations for the solids, namely

Consider the liquid. To avoid confusion with the generalised coordinates

we shall denote the fluid velocity by v instead of the customary q. Then

on using (6), and therefore

(

The kinetic energy of the liquid is TL J L>v v dr, and therefore

* from(13) -
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where the integrals are extended to the whole volume of the liquid. In a virtual

motion of the liquid we write for the virtual velocity :

<
---

Since d/dt and D/Dt are independent operators, (12) and (15) give

(16}
D"- dy

(ib) ~Df~~df'

Let F be the total force, including pressure thrust, per unit mass on a

fluid particle. Then the equation of motion is

(17) FL = v,

and the virtual power of the forces on the liquid is

m ^-J*v* --4*2$* -,,%.
(19) w=-JpFi^Jr.

Now consider

f ov V dr - S { 0V **' Dqi dr-S 5Ti Dq<

J
pv V dr - -

Z,.
J
pv -^ -^ rfr - 2,,

-^r- -^

from (14). Operate on this equation with d/dt. Then

But from (16)

Combining this with (17), (18), (20) we get

Since the Dq{/Dt are independent we may put all but one equal to zero, and

so we get Lagrange's equations for the liquid, namely,

If we write T = TS+TL and add (11) and (21), we get

(23) g<
= 27pFs ~

which constitute Lagrange's equations for the whole system of solids and liquid.
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The generalised forces Ql
are the coefficients of DqJDt in the combination

of virtual powers arising from (9) and (18), namely D(Wg~{- W^)/Dt. In this

expression the only forces which contribute to the virtual power are the external

forces on the system (third law of motion), the only possible exception being

pressure thrusts on the fixed envelope E. These, however, do no work, since

the normal component of the velocity at E vanishes. In calculating the Qt

from (23) F^ and Fjr may therefore be taken as the external forces on the solids

and liquid. In the absence of external forces the Qt are zero.

I7'6I. Sphere in the presence of a wall. When a sphere moves in

liquid bounded by an infinite fixed rigid wall, the kinetic energy is given to a

first approximation from the results of 16-31, 1641 in the form

T - \(A&+ Bf) 9

where (x, y) are the coordinates of the centre referred to axes perpendicular to

and along the wall, fig. 17-61, and

A =

M being the mass of the sphere and M' the mass of the displaced liquid.

Then, by Lagrange's equations, if X, Y are the components of the external

force acting on the sphere,
d .... .dA .dB

If the forces are so adjusted that x, ij remain constant, these equations give

Q 1W^n^ QytT'/f^
Y &-LVJ. Us , ^. -ox TT UlVJ. U . .

FIG. 17-61.

Thus if the sphere is moving directly towards or away from the wall (y
=

0),

X is negative, and therefore a force towards the wall is required to maintain

x constant. The sphere is therefore apparently repelled from the wall. On
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the other hand, when moving parallel to the wall (x = 0), X is positive, and

therefore a force away from the wall is required to maintain y constant. Thus

the sphere is apparently attracted towards the wall.

Analogous results in the case of the motion of two spheres may easily be

obtained by the application of Lagrange's equations.

17*70. Solid of revolution athwart an inviscid stream. Consider

a stream U disturbed by a solid of revolution held with its axis perpendicular

to the stream.

Let 77 be the plane which contains the axis of the solid and the direction

of the stream. Let y be the circumference of the cross-section of the solid by
a plane at distance x from a fixed point on the axis of the solid. Then any

point P of the surface S of the solid is denned by coordinates (x, a>) where co

is the azimuth of the meridian plane through P measured from the plane 77.

The fluid velocity at P may be regarded as compounded of a component qw

tangential to y and a component qm tangential to the meridian curve through

P. It is then evident that we can write

(1) qm (x,w) = Vf(x, m), qm (x,oJ)=Ug(x,oJ
),

where the functions/ and g are independent of U. We shall prove that *

(2) qn (x, a>)
= qm (x, 0) cos a>, qM (x, at)

= q(l) (x, 7T/2) sin a).

2f/COS UJ/(.V,0)

\U

(a) (C)

FIG. 17-70 (i)

Proof. Consider fig. 17-70
(i),

which shows the point P on the circle y, its

centre 0, and the point C of y which in (a) is the point where the radius in the

direction of the stream U meets y. In (b) the radius in the direction of the

stream U meets y in Q, where OQ and 00 are equally inclined to OP. In (c)

the intensity of the stream is considered to be 2C7 cos o>, and its direction is

along OP.

* These elegant results are due to I. J. Campbell, Q.J.M. and A.M., ix (1956), 140-2.
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From (1) the meridional components of velocity are Uf(x, to), Uf(x, -co)

and 2Uf(x, 0) cos o> in (a), (6), (c) respectively. Now the stream in (c) is the

resultant of the superposition of those in (a) and (b). Therefore

Uf(x, CD) + Uf(x, ~w)=W cos a>f(x, 0).

But from the circular symmetry /(jj,
-

co) =f(x, co). Therefore

Uf(x,a>) = Vf(x, 0)coso;,

and this proves that

(e)

FIG. 17-70 (ii)

(0

Now consider fig. 17-70 (ii) where the points (7, P, Q are as before. In (d)

the stream V is directed along 00, in (e) along QO. In (/) the stream is 2 7 sin to,

and is directed along RO, where OR is derived from OP by clockwise rotation

through a right angle. From (1) the components of velocity tangential to y
are Ug(x,a>), Ug(x) 7T-w) ) 2Usma)g(x, TT/%) in (d), (e), (/) respectively, and

since by superposition of (d) and (e) we get (/) it follows that

Ug (x, a>)+Ug(x,7T-a)) =
<

2lU sin w g (x, rr/2).

Now g(x,7T a))
=

g(x, o>), as is seen by reversing the stream, and therefore

we have proved that

Q.E.D.

EXAMPLES XVII

1. If
</>, (/>'

are the velocity potentials of two possible motions of an incom-

pressible fluid in a simply connected region, prove that

taken over the boundary.
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A solid is surrounded by liquid enclosed in a fixed envelope. If the solid be
set in motion with velocity v, prove that the momentum given to the fluid is - Mv,
where M is the mass of fluid displaced by the solid.

2. Define the impulse wrench I of a rigid body on a surrounding infinite

liquid, where there are no irreducible circuits in the liquid, and show that it is not
in general identical with the wrench of momentum of the fluid.

Prove that the force wrench applied by the solid to the liquid is equivalent to

where W denotes a
"
wrench-integral ", V is the velocity at any point P of a

large fixed surface Z enclosing the solid, and v is the unit vector in the direction

of the outwards normal to Z.

What conditions must be satisfied if the last wrench-integral is to be null in

the limit, when all the points of the surface are removed to infinity?

[A wrench-integral is the limit of the sum of infinitesimal localised vectors.]

(U.L.)

3. Obtain the velocity potential due to a sphere of centre and radius a,

moving with velocity U in the direction Ox, in an infinite liquid of density p.

Show that the ^-momentum of the fluid contained between this sphere and any
concentric sphere is zero, but that the ^-momentum of the fluid contained between

the sphere and any infinitely long circular cylinder of axis Ox is \mUt where m is

the mass of fluid displaced by the sphere. (R.N.C.)

4. A rigid body is moving without rotation in an infinite liquid, the resolutes

of its velocity parallel to the axes being ( U, F, W) and its volume being t>. Assum-

ing the velocity potential (f>
of the flow produced to be given, at large distances

from the body, by the development

Sz S Sm* o m .

where the origin is some point of the body and Sm is a surface spherical harmonic
of degree m, prove that the kinetic energy T of the moving liquid is given by

(U.L.)

5. Obtain the equations of motion of a body, moving through unbounded

liquid, in the form

d/BT\ dT dT _
-5; I -5 J+w 2 =-- o>3 -5-

= JL,
dt\duJ * dw *

dv

d/BT\ dT dT dT dT _

3- (= ) + w 2 v
--w3 ~ + v - w = L,

dt\do)^/ dw$ do)z cw dv

where, in the notation of 1743, u =
(w, v, w), w =

(o> t , o> 2 , ^3), F = (X, Y,Z),
L = (L, M, N).
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6. Assuming that the velocity potential of the motion set up in a liquid by
the motion of an ellipsoid of semi-axes a, b, c with velocity u parallel to the direc-

tion of the axis of length 2a is of the form

where C is a constant, determine C.

Find the kinetic energy of the fluid and the
"
impulse

"
of the motion. (U.L.)

7. A prolate ellipsoid of revolution, of semi-axes a, 6, is held in a stream of

general velocity F, flowing in a direction which makes an angle with the major
axis. Determine the couple, arising from the fluid pressure, which tends to set

the major axis transverse to the stream.

[The fluid is homogeneous, incompressible, and frictionless, and has no external

boundary.] (U.L.)

8. Show that if a solid of revolution moves through a liquid, then the form of

the kinetic energy T is given by

2T - A(u
2

and prove that the steady motion given by

u = v = 0, w = V ; o^!
=- co 2

= 0, co3
= Q

is stable, provided &> 4F2PC (A - 0)1A1P. (U.L.)

9. A solid of revolution, of uniform density and free from holes, immersed
in an infinite liquid, is such that, when its motion is given by the velocity (u, v, w)
of its centre of mass and the angular velocity (cu, ,

co 2 ,
o>3 ), the kinetic energy of

the system is

i {Au
2 + B (v

2 + w2
) + Cco^ +DK2 + co3

2
)}.

The solid is initially at rest under gravity in an infinite liquid. Show that the

equation determining the inclination 6 of its axis to the vertical at any time is

where M is the mass of the solid less the mass of the fluid displaced. (U.L.)

10. A solid of revolution with a plane of symmetry perpendicular to its axis

moves through a fluid with the velocity (o>, u). Show that for such a solid there

is a possible steady motion in which uv a>z uzwy 0, where the sc-axis is the axis

of revolution, and determine the character of the motion.

11. The kinetic energy of a solid moving two-dimensionally in an infinite liquid
is given by the expression

2T =

where (w, v) is the velocity of the centre of mass referred to two axes, Ox, Oy fixed

in the body, and CD is its angular velocity about the perpendicular axis Oz. Show
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that if the solid is initially moving with velocity U in the direction Ox, and without

rotation, the motion will be stable if slightly disturbed, provided A >B. (U.L.)

12. If A, or E, and G are the force components and couple required to act per
unit time in order to generate unit velocity perpendicular, or parallel, to the axis

of a spheroid and unit angular velocity about a perpendicular axis, and C is the

effective moment of inertia about the axis when the body moves in infinite liquid
at rest at infinity, prove that the total kinetic energy T with the usual notation

is given by
2T = A (u

z + v2 ) + Bw* + G (p* + 5
2
) + Crz

.

Express T in terms of Lagrange's coordinates x, y, z, 9, <f>, i/r,
and show that, if

the impressed impulse is F parallel to Oz, then

Gift sin2 + Cr cos 6 = E, a constant, <f>
+ *jjcos0

x = -F (
-j
-

j;}
sin 6 cos 6 cos 0,

s^X
T/" (U.L.)

13. A pendulum consists of a rigid bar, free to turn about a fixed horizontal

axis at its upper end, and a bob, in the form of a thin elliptic cylindrical shell filled

with liquid. The generators of the cylinder are parallel to the fixed axis, the

cylinder has plane ends at right angles to its generators, the central line of the bar

(produced) lies along the minor axis of the middle cross-section, the whole mass,

including the liquid, of the pendulum is M
,
its centre of mass is at a distance h

from the fixed axis, the mass of the liquid is m, the major and minor semi-axes of

a cross-section are a and 6, the length of the simple equivalent pendulum is L
t
and

this would become L' if the liquid solidified. Prove that

(L'-L)Mh(a
z + b*)

= ma2&2 .

14. An anchor ring is immersed in fluid which is moving so that the circulation

in any circuit which threads the ring once is constant. Prove that the motion is

necessarily irrotational and that the circulation in any reducible circuit is zero.

(U.L.)

15. A cylinder of negligible mass whose cross-section is an ellipse of axes 2a, 26
is filled with water and placed at rest on a table with the major axis, 2a, of the

sections vertical and allowed to roll over. Find the angular speed when the

major axis is horizontal in the cases (i) where the table is perfectly rough ; (ii)

where it is perfectly smooth
;
and show that the squares of these angular speeds

are in the ratio

(a
2 - 62)

2
: (a

2 - 62)
2 + 462 (a

2 + 62 ).

16. A simple closed surface contains liquid and a solid. The surface is set in

motion in any given manner, T l is the kinetic energy of the fluid when the solid

is free, and T2 when the solid is fixed
;
while T' is the kinetic energy of the fluid

when, the boundary being held fixed, the solid is moved as in the first case
;
show

that
T f

. (U.L.)



544 EXAMPLES XVII

17. Any number of spheres are moving in infinite liquid. Show that the
"
impulse

"
is compounded of impulses through the centre of each sphere and, if T

is the total kinetic energy of all the solids and the liquid, then the impulse at the

centre of the sphere whose position vector is r is

18. Two circular cylinders of unit length are placed between two parallel

planes at unit distance apart. The cylinders can slide without friction between
the planes and the intervening space is filled with liquid. If the cylinders are

simultaneously projected at right angles to the plane of their axes, prove that

they experience a mutual repulsion or attraction according as the directions of

projection are in the opposite or the same sense.

19. Two spheres are moving in their line of centres at distance c apart, great

compared with their radii a, b. Calculate the approximate value of the kinetic

energy of the motion and write down the equations of motion.

If the spheres perform small oscillations about fixed positions, show that the

mean value of the force acting on each is 37Tp(a?b*/c*)kk'p
2 cos c, where k

}
k' are

the amplitudes of the oscillations, fa/p the period, e the phase difference. (U.L.)



CHAPTER XVIII

VORTEX MOTION

18-10. Poisson's equation. Let / be a continuous function whose

value is defined at every point Q of a certain volume F. Let

; I JQ 7

9P =
~pQ UTQ

>

where P is a point of F, and ^TQ is an element of volume at Q. Then
<f>P

satisfies the equation

(1) y = Vfc>=-4r/J.,

which is known as Poisson's equation.

Proof. Consider a closed surface S enclosing P, containing the volume y,

and situated entirely within V. We can regard <f>P as the velocity potential

due to a continuous distribution of sources of strength fQ per unit volume, so

that the element of volume drQ behaves as a source of strength /Q drQ and

therefore of output ^TT/Q^TQ. Then the outward normal flux across S is

simply the sum of the outputs of all the sources within S and is therefore

4* /Q drQ = 4?r /p drp .

J (v) J (v)

Again, by Gauss's theorem, the outward normal flux is

-f V2
<l>pdrP .

J(y)

Thus
f (V2

p + 47T/P) drP = 0,
J(y)

and, since (y) is arbitrary, we have (1). Q.E.D.

Poisson's equation is also applicable, when ^ and /are replaced by vectors,

in the form

for the vectors can be resolved along three fixed vectors and the formula (1)

is then applicable to each resolved part.

2n M.T.R.
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18-20. Velocity expressed in terms of vorticity. Consider liquid

enclosed within a fixed envelope E, and suppose the vorticity to be given

at every point. In those parts ,

of the fluid, if any, where the
"'" '"'~

motion is irrotational we shall

have = 0.

If n is the unit inward normal

at the element dS of E, the

boundary condition is r . . -'j**r / ., ^f^''
i

/

(I) nq = onE.

Take a point P within the

fluid and regard P as fixed. The

velocity at P will be denoted by

qp ,
the velocity at Q by qQ , where Q is any other point in the fluid. Let us

consider the vector

(2)

where the integral is taken through the volume V enclosed by E, the point P
remaining fixed.

As we shall have to differentiate sometimes regarding P as fixed and Q as

variable and sometimes Q as fixed and P as variable, we use temporarily d/dQ.

or d/dP for V according to which case is considered. The volume element dr

is drQ throughout.

Then by Poisson's equation (18-10),

FIG. 18-20.

and therefore, from 2-32 (V),

(3) qp =
-J>

Now q^ is independent of the position of P, and therefore

a

dp
= -f

477>
J(i

a /i \ .

mce
--^ I p/i)

l

velocity at P due to a unit sink at Q. These are equal but opposite vectors.

Also, from 2-34 (VI),

aQ VPQ;
-
PQ
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and dqg/dQ = 0, from the equation of continuity. Thus

9AP _ If 9

-dp--^} (V)dQ

from (1). Therefore (3) gives

where Bp is the vector potential of the velocity defined by

- A

The velocity is obtained as the curl of the vector potential, just as in irrota-

tional motion it is obtained as the gradient of the scalar velocity potential.

To find Bp ,
we have from its definition and 2-34 (VII),

R.-1A f 5P^-__

the fourth statement being obtained by a second application of 2-34 (VII)

and the last by Gauss's theorem in the form 2-61 (2). This result expresses

the vector potential in terms of the vorticity and the velocity at the boundary
E.

18-21. Flux through a circuit. The flux through a circuit C can be

expressed in terms of the vector potential as follows. If we close the circuit

by a diaphragm S, the flux is

J OS) J (S)

By the triple scalar product n(\7 A B) = (n A V)B, an<^ therefore, by
Stokes* theorem, the flux through C is

f Bds,
J(C)

taken round the circuit. The direction of the flux is related to the sense of

description by the right-handed screw rule.
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18-22. Unbounded fluid. When the fluid is unbounded and the speed

q at a great distance is of order 1/r
2 at least, where r = PQ, the surface

integral in 18-20 (5) tends to zero, since dS r2 dw> where dcu is an elementary

solid angle, and therefore

and the velocity is therefore a function of the vorticity only.

Thus we have, using 2-34 (VII),

where r is the position vector of P with respect to Q (not vice versa).

The above result means that the

velocity at P can be regarded as the

vector sum of elementary velocities, that

corresponding to the vorticity in the

volume element dr at Q being

The relation of the vectors is shown

in fig. 18-22. The magnitude of this

velocity is

dr , .

dqp
- -

4Q sin a,
477T2

^

FIG. 18-22.

where a is the angle between Q and r.

This fictitious elementary velocity may be referred to as the velocity induced

at P by the element at Q.

18-23. Vortex filament. Let the vorticity be concentrated in a single

vortex filament. It has been proved, 3-52, that the product of the magnitude
of the vorticity and the (infinitesimal) area of the cross-section of such a

filament is constant. Calling this product /c, the strength of the filament,

the velocity induced at P by the length ds of the filament, fig. 18-23 (i), will

be

K ds ,

where sl is a unit vector in the direction of the tangent to the filament.

In the case of a re-entrant or closed filament C (vortex ring of infinitesimal

cross-section), we shall have
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Applying Stokes' theorem in the form 2-51 (3), we get

549

over any diaphragm S which has C for boundary.

FIG. 18-23 (i).

Now, by the triple vector product,

/ d \ a n\ a / a fi\\ / a2

/i\\
V
n A aoj A ao \r)

~
aQ |

n
ao WJ

n
\d& WJ '

and the last term vanishes, since l/r is a spherical harmonic.

Hence, since na/aQ =
a/aw,

It follows that the velocity at P is derived from the velocity potential
*

Now a(l/r)/an = cos 0/r
2

,
where ^ is the angle between cw and the line

joining d$ to P. This is shown in fig. 18-23 (i). (Observe that in the figure

as drawn dr is negative.) Also, dS cos 6 is the projection of the area dS on

the plane perpendicular to r, and therefore dS cos 0/r
2 dwt the elementary

solid angle subtended at P by the area dS. Thus, finally, we get

where o>P is the solid angle subtended at P by any diaphragm which closes

the filament C.

This is illustrated in fig. 18-23 (ii), which shows a sphere of unit radius,

centre P, on whose surface the solid angle is measured. It may be observed

*
Comparing with 15-26 we see that this is also the velocity potential of a sheet of doublets,

normally over 8, of strength
- K per unit area cf. 15-28.
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that the value of
<f> just found is equal to the flux through the aperture pre-

sented by the vortex ring (7, due to a point source at P of strength /c/(47r). If

we take P round a closed circuit which threads the ring once, the solid angle

FIG. 18-23 (ii).

increases or diminishes by ^TT, according to the sense of description. Thus <

is many valued. This is, of course, in agreement with the fact that the presence

of the vortex ring renders the space doubly connected.

The momentum M of the fluid being assumed to be I
/><

dS over both sides

of S(cf. 17-20(3)), we have
J

M = KP\
Jos

dS
(S)

taken over one side of S, which is the same for all diaphragms, since I dS over

a closed surface vanishes. If the vortex ring is a plane curve of area A and

normal n, we have M = KpAn.

18-24. Electrical analogy. There is an exact correspondence between

the formulae concerning vortex motion and those concerning certain electro-

magnetic phenomena. In this analogy a vortex filament corresponds to an

electric circuit, the strength to the electric current, and the fluid velocity to

magnetic force. Thus the formula for induced velocity corresponds exactly

to the formula of Biot and Savart for the magnetic effect of a current. The

analogy is still further extended by observing that sources and sinks corre-

spond to positive and negative magnetic poles.

I8'30. Kinetic energy. This is given by

T =

If B is the vector potential,

from 2-34: (I). Applying Gauss's theorem,

B(n A q)AS,
(F) (S)
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taken throughout the volume F enclosed by the bounding surface S.

liquid is unbounded and the first integral converges, we have

551

If the

where P , Q are the vorticities at P and Q and drp , drQ elements of volume

at these points.

Another expression for the kinetic energy is

(F) OS)

taken throughout the volume V contained by the boundary S.

To prove this result we have, by the triple scalar product and 2-34 (IV),

- -r[q A (V A q)]
= r[(q V)q]-*r V q*

Now, V r = 3, (q V) r = q.

Therefore q(r A ?) - k2+ V[q(qr)]-(qr) V q-*V (r?
2
).

Integrating and applying Gauss's theorem, the result follows, since

V q = 0. In the case of a fixed boundary, nq 0. If the liquid extends

to infinity and the velocity at a great distance is of order r~2
,
the energy is

represented by the first integral alone.

18-40. Axis/mmetrical motions. When the motion is symmetrical
about the co-axis, the vortex lines must be circles whose centres are upon this

axis and whose planes are perpendicular thereto. Such motions are con-

veniently discussed with the aid of Stokes' stream function, whose existence

does not depend on the motion being iirotational.

P

FIG. 18-40.

To obtain the form of the stream function, consider a point P, coordinates

(xt w), in a meridian plane. Draw the circle, centre M, perpendicular to the

aj-axis, on which P lies.
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Let B be the vector potential at P. Since q = V A ^> an(^ sulce ^ne com-

ponents of q lie in the meridian plane, it is at once evident that B must be

perpendicular to the meridian plane. It also follows from the symmetry that

B has the same magnitude B at every point of the circle. Since the flux

through the circle is measured by the circulation of B round it (18-21), it

follows that this flux is InmB. If we take the vorticity on a vortex line C to

be related by the right-handed rule to the direction of the axis, this flux is

from left to right. Hence, if ^r is the stream function,

This gives the stream function in terms of the magnitude of the vector

potential.

18-41. Circular vortex filament. Consider the circular vortex filament

0, fig. 1840, of very small cross-section a. Then the strength of the filament

is cr = 47TK-, say. If Q is any point of (7, whose centre is A, where OA
,

draw MR equal and parallel to AQ. Let the angle PMR be 6, and let AQ -

rj.

Then the element of arc at Q is
77 d0, and the vorticity vector at Q is a tangent

to C. Thus the vorticity at Q is cos 9 . iw
- sin 6 . \m , where \m and iw are

unit vectors parallel to the axis of w and perpendicular to the meridian plane

respectively. Thus, from 18-22-
PQ

-g)* + i)* + w*

The coefficient of i ro vanishes for the reason already explained, and the fact

is indeed obvious in this case on performing the integration. The coefficient

of !< is the magnitude of B, and therefore the stream function is

f 2" cos Odd

A discussion of the details of the motion requires the use of elliptic func-

tions. We may, however, observe that for points in the plane of the ring

(considered as of infinitesimal cross-section) there is no radial velocity. This

follows at once from the Biot and Savart principle, explained in 18-23. It

therefore follows that the radius of the ring remains constant, and the ring

moves forward with a velocity which must be constant since the motion must

be steady relatively to the ring.

When two such rings follow one another with the same axis and sense of

rotation, the effect of the induced velocity will be to enlarge the diameter of

the leading ring and diminish that of the other, which may eventually pass

right through the leader when the roles become interchanged.

If two equal rings of opposite rotations approach one another, the induced
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velocity will tend to enlarge each, and on the plane midway between them the

velocity will be perpendicular to the axis. Thus as a ring moves towards a

wall to which its plane is parallel, the diameter will continually increase, and

its velocity will continually diminish.

18-50. Equation satisfied by the stream function. Taking the cure

of 343 (3) we have

(i) H-v A (qA = o.

In the case of axisymmetrical motion

q = ifr+iorSW, = i

where i a ,
im ,

\w are unit vectors in the meridian plane and perpendicular to

that plane. Thus q A
= \ x qa

-
iw qx ,

and therefore, from 2-72 (4), taking

^ = h2 1, Jiz w, we get

and therefore (1) gives

|

.
|

, = Q
dt dx dm

Using the equation of continuity (15-1),

m _
r ^ w,r r ^

OX GW

this becomes -J -f w \qx a
-

(
i

)
+ gw
_

(
A

)
1 = 0.

d
l^

1 ^ \ro/
a 9m \cr/ J

Thus, in terms of the stream function,

m dm dx \mj m dx dm \m.

When the motion is steady this gives

dx dm
= 0,

dx \mj dm \mj

which implies that /GJ is a function of
i/r, say,

(3) 5 - w/(0).

Equation (3) shows the relation which must be satisfied by the vorticity

for the motion to be steady (cf. 441). Now

r dm
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Therefore the equation satisfied by the stream function is, from (2),

(5) s
Bx dm

= 0.

dx \m*
'

I dm \m*

When the motion is steady, (3) and (4) yield the simpler equation

(6) E2
t/J
= tZ7

2
/(</r).

Taking the value of
(
= m~lE2

iff)
in polar coordinates, from 2-72 (5),

we get
d / 1 Bili\ d / 1 ^*A\ o n fi

BT \sin dfj dd \/
2 sin 50/

By attributing forms to /($) we have a differential equation to determine

iff.
The simplest assumption of this nature is to take/(^r)

= A, a constant.

We may then seek for solutions of the type

ijj
= jP(r)sm

2
0,

which gives rzF" (r)
- 2F (r)

= Ar\

To find the complementary function, put A 0, F(r) = Krn
, which gives

n = 2, or - 1. The same substitution gives for the particular integral n 4,

~ r4 sin2
0.Thus

18-51. Hill's spherical vortex. The stream function just found will

represent the motion within a fixed sphere of radius a, if the value of ^ is

finite at all points within the sphere and the normal velocity vanishes at the

boundary. These conditions give B 0, and

(-Mi) -(0+\rsin QrdQ/ r==a \ 10
2 co. = 0,

whence C = -

(1)

Thus

fulfils the required conditions, whatever the value of A.

The vorticity, given by direct calculation or by 18-50 (3), is = Ar sin 0.

The vortex lines are circles perpendicular to the axis of symmetry. On all

such circles of the same radius the vorticity has the same value.

There are stagnation points in the meridian plane given by the solutions of

the simultaneous equation qr 0, qe = 0, i.e. by

(2a
2 - 4r2

) sin = 0, 2 (a
2 - r2

)
cos = 0,
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whence 6 = 7r/2, r = a//2. Thus there is a ring of stagnation points of

radius r a/^/2.

The stream surfaces are given by

(a
2 -r2

)r
2 sm2 = c4

,

where c is a constant. These include the sphere and the axis of symmetry on

which the stream divides. The principle of the dividing streamline then

enables us to draw the form of the

streamlines in the meridian plane, fig.

18-51, which shrink to zero at the

stagnation points.

Taking advantage of the arbitrary

constant A, the remarkable fact emerges

that such a vortex can exist at rest in

surrounding fluid which streams past it.

The stream function for streaming past

a sphere is, 15-30,

(2)

r>a.

FIG. 18-51.
When r = a, (1) and (2) give i/f 0,

and the normal velocity is zero at the boundary. In order that the motion

may exist, we must also have continuity of the tangential velocity, which

gives, on equating the values of di/j/dr,

and therefore the stream function (1) for the internal motion becomes

If we impress on the whole system a velocity U from left to right, we have

a spherical vortex of radius a moving forward with velocity U in fluid at rest

at infinity. The motion of the fluid external to the vortex is irrotational and

the same as that produced by the motion of a solid sphere of the same radius.

18-60. Aerofoil of finite span. The Joukowski aerofoil considered in

Chapter VII was a cylinder of infinite length of which we merely considered

a unit segment. The aerofoils actually in use being of finite length or span, the

motion cannot be considered as entirely two-dimensional.

Consider an aerofoil of span 26 symmetrical with regard to the central

section perpendicular to the span, fig. 18-60 (a). In this figure the aerofoil is

considered to be at rest and the wind stream to impinge on the leading edge,



556 AEROFOIL OP FINITE SPAN [18-60

the wind direction at infinity upstream being that of the z-axis. The axis

of y is taken vertically upwards and the axis of x along the span, the origin

FIG. 18-60 (a

being in the central section. In fig. 18-60 (6), which is purely schematic to show

the principle, each streamline which impinges on the leading edge divides into

two streamlines, the upper s going over the top of the aerofoil and the other s'

Upper surface. Lower surface.

FIG. 18-60 (6).

underneath. These lines s, s' do not necessarily follow the transverse section

of the aerofoil, and therefore do not leave it at the same point of the trailing

edge.

The locus of the lines s will be a surface S, and the locus of the lines s' will

be a second surface $'. We shall assume that immediately behind the

trailing edge these surfaces coincide and form a single surface 27 across which

the tangential velocity is discontinuous in direction but has the same magni-

tude. Since the pressure equation contains only the square of the magnitude

of the velocity, the pressure will then be continuous. The surface is a
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vortex sheet of the kind described in 13-70, and can be considered as con-

sisting of vortices spread over it. Since the speeds above and below are equal

at any point of 27, the vortex lines will bisect the angles between the directions

of the velocities.

In order to obtain a simple problem we shall suppose that these vortex

lines are all straight and parallel to Oz. As a further simplification we shall

take the trailing edge to be straight and the surface 2 to begin at that edge.

These assumptions are not so restrictive as might appear at first view.

y

FIG. 18-60 (c).

To evaluate the resistance or drag,* it is more convenient to consider the

aerofoil as in motion with velocity U and the air to be otherwise at rest. We
consider two fixed infinite planes P, P drawn perpendicular to the direction

of motion, P a great distance ahead and Pl a great distance astern. See

fig. 18-60 (c), where P is not shown. If we draw a second plane P/ parallel

to Px and at a distance U behind it, the increase in energy per unit time of the

fluid between P and Pt will be due to the transference of that part of the

vortex sheet which lies between P/ and Pl into the region between P
and P! ,

for the irrotational parts of the motion ahead and astern will make no

contribution, on account of the quasi-steady character of the motion between

P and Pj. Thus, if
<f>

is the velocity potential and R is the drag, by equating

the rate of working of R to the rate of increase in kinetic energy, we get

RU =

* The drag here considered is the induced drag caused by the induced velocity of the vortex

wake. It is less than the observed drag which includes skin friction and other effects.
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Transforming this by Green's theorem, we get

where
</>

refers to the upper side of and <' to the lower side. Since the normal

velocity
-

d<f>/dy is continuous, this gives

(2) R =
\

Now consider the section of the aerofoil at distance x from 0. Let K(x)
be the circulation round this section. As we go through the vortex sheet Z
from above to below, the velocity potential decreases by the circulation. Thus

<t>-$ = K(x). Therefore, finally,

(3) R =

To calculate the lift Y, we have by the theorem of Kutta and Joukowski

for the section of the aerofoil between x and x+ dx the lift pUK(x)dx. Thus

K(x)dx.
-b

18-61. Aerofoil of minimum induced drag. We are now in a position

to inquire what distribution of circulation K (x) along the aerofoil will give the

least resistance when the lift is given. With the notations of the preceding

section we have to make R a minimum, subject to the condition that Y is

given. Using the method of undetermined multipliers,* we must have

SR-XSY =

for any variation in K(x). Now, from 18-60 (1),

using the same transformation as before. Also S< 8<' = $K(x). Therefore

f SK(x) f dx-XU \

b

8K(x)dx - 0,

J-b y J-6

and if this is to hold for any arbitrary variation SK (x), we must have

- = XU = constant F, say.
dy

The wake therefore behaves like a flat plate of breadth 26, moving with

velocity F in a direction perpendicular to its length. Superposing a velocity

F on the solution given in 6-34, we have the complex potential

w = -tY[z-(z2 -&2
)],

z

* See for example, Edwards's Differential Calculus.
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and therefore on the plane y = 0, we have

the upper sign being taken on the upper side.

Thus, the circulation being given by the decrease in
(f>
on passing round

the plate,

K(x) =

The circulation at the middle section (x 0) is

K - 2F6,

and therefore K (x)
= ^ J(b*

- z2
).

This can also be written in the form

which is the equation of an ellipse described by the point of coordinates

EXAMPLES XVIII

1. If S is a surface bounded by a curve C, prove that

f [F A ds]= f {ndivF-grad(Fn)}ZS,
J C J S

n denoting the normal to S. (Stokes' theorem may be assumed, if necessary.)
An infinite liquid is at rest at infinity and the motion is due to a closed vortex

filament of boundary C and strength K
;
show that the velocity at a point P is

<1 =-4
where r is the distance between P and the element ds.

Hence show that q = - K grad Q/^TT, where Q is the solid angle subtended by
the closed filament at P. (U.L.)

2. If the vorticity co is given at all points within a fluid, prove that the correct

values of the vorticity are given if

v = curl A,

where A =

and the integrals extend through the fluid.

If the velocity has also a known divergence Q, show that this can be allowed for

by adding to v a portion

f For a detailed discussion of the vortex sheets connected with aerofoils see Milne-Thomson's
Theoretical Aerodynamics, London (1958).
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If the circulation k is zero about all paths in the fluid except such as enclose a

thin vortex, prove that the circulation is the same about all circuits that enclose

this vortex and that the vortex cannot end within the fluid. Prove also that

A-M*.
where the integral is taken vectorially along the vortex. (U.L.)

3. If the components of rate of pure strain are (a, 6, c, /, g> h), show that

- = ^ exp f

t

(aA
2 + 6/^

2 + cv2 4- 2//iv + 2gvX + 2%t) dt t

P Po Jo

where A, /i, v are the direction cosines of the element a> of a vortex filament.

Interpret this result physically and discuss its connection with Kelvin's theorem

as to the permanence of the circulation in a circuit moving with the fluid. (U.L.)

4. Show that the velocity due to a rectilinear segment AB of a vortex filament

is perpendicular to the plane PAB and equal to

T^- (cos PAB + cos PBA),
4:7rp

where p is the perpendicular from P on AB.
Calculate the velocity at any point due to a rectangular vortex filament, the

sides of the rectangle being given by z and x = a, y = 6. (U.L.)

5. A cylinder of any cross-section containing fluid rotates with given angular

velocity about its axis and the fluid possesses constant vorticity . Show that

the kinetic energy per unit length of the cylinder of this motion exceeds the kinetic

energy of the irrotational motion by

JJ
+ (dVldy)*]dx dy,

where F is the solution of V2 V = 1
,
which is finite and continuous at all internal

points and is constant on the boundary.

6. Liquid moves in two-dimensions within an elliptic cylinder whose axes

are 2a, 26. If the vorticity has the constant value a> at every point, prove that the

streamlines are similar ellipses described in the periodic time 27r(a
2 + &2)/(a&o>).

7. Prove that a stream function of type i/j
= Ax2 + By

2 can represent steady
motion of perfect fluid, with uniform vorticity , taking place inside a cylinder
bounded by an ellipse of semi-axes (a, b) which is rotating round its axis with

uniform angular velocity o) ,
to be determined in terms of . Show that the paths

of particles of liquid relative to the boundary are similar ellipses.

By transforming to elliptic coordinates given by

x = c cosh f cos
77, y c sinh sin

77,

show that if the very thin rigid cylindrical boundary has infinite liquid outside it

moving irrotationally, then, provided it is of the same density as the liquid outside,
this rigid interface between them may be supposed dissolved without disturbing
the steady state of motion.

8. Prove that in a steady two-dimensional motion of a liquid of uniform

vorticity 2, under no body-force,

fp- = constant - \<p + 2^r,
P

where q is the speed and $ the stream function.
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Liquid is flowing past a fixed circular cylinder of radius a. The vorticity is

constant and equal to 2f , and, if the origin is at the centre of a section of the cyUnder,
the motion at infinity is the shearing motion

u *7~2fy, v ** 0.

The circulation immediately around the cylinder is K. Find the form of
tf/ y and

prove that the resultant force on the cylinder exerted by the fluid pressure is

pU(K + 27ra2
) along the axis of y. (U.L.)

9. The motion of an incompressible fluid in two dimensions is such that the

vorticity 2 is uniform ; show that the stream function
i/

is given by

where /is an arbitrary function.

The space between two confocal elliptic cylinders, with semi-axes c cosh a,

c sinh a, and c cosh j8, c sinh /? respectively, where a > )3, is filled with liquid of

uniform vorticity . Determine the stream function, and prove that the kinetic

energy per unit length is equal to

- 4 tanh (a
-

)}. (U.L.)

10. A cylindrical vortex sheet is such that the vortex lines are generators of

the cylinder and the vorticity at any point is 2U sin 9, where is the angle
measured from a fixed plane through the axis of the cylinder. Prove that the

vortex sheet moves through the liquid with velocity U parallel to the fixed plane.

(M.T.)

11. Homogeneous liquid is circulating irrotationally in two dimensions round
a hollow cylindrical vortex of radius a and circulation 27r/c. Prove that the pressure
at a great distance must be

/o/c
2
/(2a

2
).

Prove that the system can oscillate freely in a mode in which the boundary of

the cross-section of the vortex becomes a sinuous curve with n wave-lengths to

the circumference and that the period has one or other of the values

12. A mass of liquid, whose outer boundary is an infinitely long cylinder of

radius b, is in a state of cyclic irrotational motion and is under the action of a

uniform pressure P over the external surface. Prove that there must be a con-

centric cylindrical hollow whose radius a is determined by the equation

where M is the mass of unit length of the liquid and K is the circulation.

If the liquid receive a small symmetrical displacement, prove that the time of

a small oscillation is

13. The motion of fluid in an unbounded region is due to a thin vortex ring,
the circulation through which is k. Prove that the velocity at any point, not in

the substance of the ring, can be expressed by either of the formulae

-
grad <j>

and curl A.

Obtain expressions for
<f>
and the components of A, and verify that the values

of the components of velocity are the same whether they are derived from the one
formula or the other. (U.L.)



562 EXAMPLES XVIII

14. Show that the velocity q at a point P in an incompressible non-viscous

fluid, extending to infinity, where it is at rest, and containing a closed vortex fila-

ment of boundary C and strength K, is given by q = curl *F, where *F = -
I .

If the boundary C is a circle, find the relation between *F and Stokes' stream

function for the problem. Hence, or otherwise, show that the velocity resolutes

parallel and perpendicular to the axis of a circular vortex filament, at a point P
near the axis, are respectively given by

u = i<a2/2r
3

, v = 3/ca2cj(r
2 -a2

)i/4r
5
,

where w and r are the distances of P from the nearest points of the axis and the

vortex filament respectively. (U.L.)

15. Prove that the velocity at the centre of a circular vortex ring of strength
m and radius a is m/2a, and find the velocity at any point on the axis of the ring.

16. Prove that the effect of a circular vortex ring at a great distance from
itself is approximately the same as that of a double source of strength wa

2
/4r,

where

m is the strength of the vortex and a its radius.

17. Obtain the approximate formula (jK"/4:7r6){log(86/a)-l/4} for the velocity
of advance of a thin circular vortex ring, 6 being the radius of the line of centres

of the cross-sections, a the radius of any cross-section, and K the circulation.

18. If q, q' are the velocities of the liquid due to a thin circular vortex ring of

strength m and radius a at two points in the plane of the ring at distances r, r
r

from its centre, where rr' = a2 and r>r', prove that

i
, ,1 m f*/

2 M
qn + qrz = I
-

r -

^Jo (r-r'sin
2
0)&

19. Prove that for a single thin vortex ring of radius a the stream function at

a point near the ring and distant x from its plane is approximately equal to

where K is the circulation through the ring.

20. Prove that the velocity due to a thin circular vortex ring of radius a and

strength K, at a point P of its plane distant r from the centre of the ring, is

5r4 /I . 3\ 2 7r6 \ . 3 .K r 3r2 /1\ 2

25L onsy
where r <a, and calculate the velocity when r> a.

21. A circular line vortex of strength K lies on a sphere of radius /and centre

; prove that the vortex has an image in a concentric sphere of radius a, and that
it lies on a concentric sphere of radius/', its strength is /c', and its radius and that

of the given vortex subtend the same angle a at 0, provided that

//'
=

*, v/= -v/'-
Prove that, at a point P on Ox, the axis of the first vortex, outside a rigid

sphere, centre and radius a(</), the velocity is along Ox and is equal to

rhere P
<
1
(cos a) sin2a ^P

i(cosa)/dJ(cos a), P. being the zonal harmonic of order i>

(U.L.)
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22. If the vorticity is given at all points within an incompressible fluid, prove
that a possible value of the velocity v is given by

v = curl A,

where, if (f , 77, )
are the components of the vorticity, the components of A are

1 f
(*
f dx dy dz 1

(* f f dxdydz I f f
j" Y

dx dy dz

^ttr~r~' &))r~ '

sjjjs
and -the integrals extend throughout the fluid.

For a single circular vortex filament of radius a and strength K, with the axis of

x as axis of symmetry, prove that, at any point P, A is at right angles to the axis

of x and to the perpendicular from P on to the axis of x, and that its magnitude is

where k =

du
rJo i 2 a'
o (!-&

2 sm2
w)z Jo

r is the distance of P from the axis of x, and x the distance of P from the plane of

the vortex ring. (U.L.)

23. Prove that the force and couple components of the impulse (F, L) and
the kinetic energy of a vortex system are given by

subject to certain conditions which should be stated.

Deduce that for a circular vortex filament of strength K and radius m, with its

axis along Ox,
T -TTpKlff

= 27TpK&(WU-XV), Fx
= TTpKW

2
,

where u, v are the velocities along and perpendicular to Ox and
i/j

is Stokes' current

function. Deduce also that for a circular vortex ring, whose section is a circle of

radius a small compared with the radius WQ of its circular axis, at a distance s

from the centre of the normal section

-l-^). r-i^logS?-!). (U-L.)

24. Assuming the law of vorticity w/w = WQ/WO in a thin vortex ring in steady

translatory motion, prove that, if the axial section of the ring is a circle of radius c

with its centre at a distance WQ from the axis of symmetry, the velocity of advance
of the ring is

P- r\ r r_(m-t*.)!-- _ dw dx
<> Jo U J {d

2 + m 2 - 2mw cos a + (c
-
z)

2
}f

the integration with respect to w and x being taken over an axial section, where
co is the resultant vorticity and the ring is supposed to move with constant speed
in the direction of the cc-axis. (U.L.)

25. Show that, for an aerofoil of finite span, the induced drag is a minimum
for a given lift, when the distribution of lift across the span is elliptical.

If V is the speed of the aerofoil relative to the air, L the lift, D the induced

drag, p the density of the air, and 25 the span of the aerofoil, prove that when
D is a minimum

D - 2
/27r/>s

2F2
. (U.L.)



CHAPTER XIX

VISCOSITY

19-01. The stress tensor of a perfect fluid. In an ideal or perfect

fluid the force exerted by the surrounding fluid on an element dS of the surface

of a fluid particle is a normal thrust - pn dS, where n is the unit outward normal

and p is the pressure. We can therefore regard the stress (or force per unit

area) as obtained from the stress tensor

(i) y = -pi,

where Z is the idemfactor (2-16), by scalar multiplication by n, that is to say,

stress = t\W = -pnl -pn.

In terms of three mutually perpendicular unit vectors i, j, k we have

/ = i
;

i + j ; j + k
;
k. If therefore in (1) we replace dyadic by scalar multi-

plication we obtain the first scalar invariant of the stress tensor denoted by

(2) V^-^ii + jj + kk^-ap,

and we could use (2) to define the pressure p when W is given.

The stress tensor (1) possesses all-round or spherical symmetry ; that is to

say, the direction of the stress is normal to, and its intensity is independent of

the orientation of, dS.

19-02. The viscosity hypothesis. In the case of a viscous fluid, that is

to say, a fluid which is subject to internal friction, the stress on the element dS

of the surface of a fluid particle is not necessarily normal to dS, and so the

stress tensor, assuming one to exist, will be of the form

(1) *=-/I+S,
where the tensor ~p'I has all-round symmetry as in the case of no viscosity,

while the tensor S depends directly on the viscosity. The stress on dS will

then be

(2) n# = -

In 2-40 we analysed the motion of a fluid particle into a movement of the

particle as a whole, like a rigid body, compounded with a rate of pure strain

in which the direction of motion of each point of the particle is normal to a

certain quadric. If we regard viscosity as manifesting itself through action of
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a frictional character on the surface of our fluid particle by the surrounding

fluid, it is clear that rigid body movements, since they cause no relative motion,

can have no effect in producing forces of a frictional character. The natural

hypothesis is to attribute the stress t\S of

(2) solely to the pure strain.

Consider a spherical particle, centre P,

of infinitesimal radius h, fig. 19-02.

If n is the unit outward normal at the

area dS of this particle, the pure strain is

causing dS to move relatively to the centre

of the sphere with velocity (240),

The viscosity hypothesis is that n? is pro-

FIG. 19-02. portional to/(n), more precisely that

(3) n2 =
2ju/(n) = 2ju,(n V)q+/*n A (V A q)>

where \L
is called the coefficient of viscosity. The physical dimensions of

//,
are

expressed by ML~l T~! in terms of measure-ratios of mass length and time.

Now from 2-16 we have

(4) /(n) - (n V)q +in(-V;q + q;V) = in(V;q + q; V)-

Here q ; V is ^ne dyadic product conjugate* to V 5 q-

It then follows from (3) that

and therefore (1) becomes

The pressure p is now defined by (cf. 19-01) the scalar invariant of this,

namely,

and so finally the stress tensor is the symmetric tensor

(5) *= -p/-
Thus the stress on dS is

(6) n0 =-?n
where = V A q is the vorticity.

* To interpret and explain q ; y explicitly we write out y ; q in full and then reverse the
order of the vectors in each dyadic product. Thus in cartesian coordinates (xlt xt , xa ) if

q = i^ + itft + iafc.
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The stress on this hypothesis is a linear function of the direction of the

normal to the area across which it is supposed to act. By choosing different

elements on the surface of the sphere, we obtain the corresponding viscous

stress. For an inviscid fluid, ju,
0. Also when the fluid is at rest, q = 0. In

both these cases the viscous stress vanishes. That the above hypothesis

applies generally is an assumption whose justification requires an investigation

into the transfer of momentum due to random motions of the molecules to

which the stress must ultimately owe its existence. To enter into these

considerations is beyond the scope of this work, and it will therefore be

assumed that (5) represents the effect of internal friction in a fluid.

1 9-03. The equation of motion. In the case of a viscous fluid the

equation of motion is derived at once on the model of 341.

Thus, considering the volume of fluid V within a surface S imagined

drawn in a fluid, we have

f P ^dr=
J(F) W (F)

which gives on the application of Gauss's theorem

(1) P^ = fF+V*.

To calculate V *& the simplest procedure is to write y for n in 19-02 (6), i.e.

to use Gauss's theorem. We then get

Writing a VM this readily reduces * to

(2) p^ = pF-Vl>-/*VA? + tMV(V

In the case of constant viscosity',
a = 0, and

(3) p- = />F-V^-/*VA

while for incompressible fluid V q = 0> an<i

(4) p^ = pF-Vj

Alternatively, using 2-32 (V), we can write this as

(5) p = pF

* See W. F. Cope,
** The equations of hydrodynamics in a very general form ", JR. and M.

1903 (1942).
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For some purposes it is convenient to use the kinematic coefficient of

viscosity v = [Ji/p
of dimensions L2T~1

f
whose value for water at 15 C. is

1-23 x 10~5
ft.

2
/sec. and for air l-59x 10~4

. Judged by this standard, air is

more viscous than water.

In the case of conservative forces, using the methods of 344, we can write

the equation of motion (5) in the following forms.

(6) g=-i

(7)
0jT-

qA?-- 1

(8) -q A

where x ~
JP/P+ i^

2

From this equation it appears that for steady irrotational motion V X ^>

and therefore x nas the same constant value throughout the fluid.

The form (8) is convenient for transformation to any system of orthogonal

curvilinear coordinates by the methods of 2-72.

In particular, for two-dimensional motion in terms of cartesian coordinates,

we have, from (8),

In these equations and x are unaffected by change of coordinates, and

we may therefore regard x, y as any orthogonal curvilinear coordinates. Thus,

in the case of plane polar coordinates (r, 6),

d(
Ir-. a r--. dX- v

K
dt
^~

~dr %30'

The expression for in terms of the velocity components is

/ = ^e V* ^r

^ dr^r rdO*

19-04. Steady motion ; no external forces. In this case 19-03 (1)

becomes

V<z> - (pq V)q - V(pq; q)-qtV(pq)]

from 2-34 (X). But the equation of continuity is V(pq) = ^ an<^ therefore

(i) V(^-^q;q) = o.

This equation is valid even when p and /z are functions of position.
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19-05. Boundary conditions in a viscous fluid. The kinematical con-

dition that the normal velocity of the fluid in contact with a moving boundary
is equal to the normal velocity of the boundary holds for fluids whether viscous

or not.

When a viscous fluid is in contact with a solid, the tangential velocity is

the same for both. This assertion is of a physical character founded on

experiment.

Thus there is no relative motion of a solid and the fluid in contact with it.

At an interface separating two fluids the normal pressure and the viscous

stress are continuous, provided surface tension is neglected.

19-11. Equation satisfied by the vorticity. Taking the curl of 19-03 (7)

and observing that the curl of a gradient is zero (2-32), we get, as in 3-53,

Now V A (V
2
q)

= -V A (V A ?) = Vs
?, from 2-32 (V),

noting that V =
(3-52). Therefore

(1) f = ($V)q +"V2
.

If we start a viscous liquid into motion from rest, initially 0, and

therefore (1) becomes initially

(2) S=*V?.
Since tj does not in general vanish at the boundaries, it follows that vorticity

may ultimately be generated by spreading inwards from the boundaries in

accordance with the above equation.

In two-dimensional motion the vorticity is always perpendicular to the

plane of the motion and therefore (2) applies at all times.

That in actual fluids the vorticity exists to any marked extent only in

those parts of the fluid which have passed near to rigid boundaries is a fact

well supported by observation, and is strikingly exhibited in the case of the

wake behind a sailing vessel which arises solely from the water which has

passed near to the ship's hull. The same observation shows that the eddy
disturbance in the wake is damped out by friction.

Another illustration is of some interest. A discussion arises from time to

time as to whether the sense of rotation of the vortex which is often seen

when water runs out of a bath is different in the Northern and Southern

hemispheres. It is not difficult to prove by experiment that either sense of

rotation can be obtained according as the bath is filled with the hot or the

cold tap, the fluid from one or the other acquiring opposite vorticities as it

moves near the boundary.
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19*12. Decay of vorticity. When the motion is in circles about the

z-axis, the velocity being a function of the distance r from that axis, we get,

from 19-11 (1),

&
"

This equation is identical with that for the radial flow of heat in two dimen-

sions.* Thus, in the case of an isolated rectilinear vortex of strength K, initially

concentrated along the axis of z, we get the solution

which is easily verified by differentiation to satisfy (1). The circulation in a

circle of radius r is then

f
r

f
2?7r dr = ZTTK \ 1 -

Jo I

exp I
-

\ 4i>

When t->0 this is ITTK, while when ->oo it tends to zero. This shows

how rapidly vorticity is damped out by the viscosity to which it owes its origin, f

19-13. Circulation in a viscous liquid. If C is the circulation in a

closed circuit moving with the fluid, then

C =

taken round the circuit.

From 3-51 (2) and 19-03 (6) we get, for a liquid,

dC

~dt~

Thus as the circuit moves with the liquid the rate of change of circulation

depends only on the vorticity in the neighbourhood of the circuit. Hence, if

the liquid is originally at rest (
=

0), circulation can only arise by the diffusion

of vorticity inwards from the boundary (cf. 19-11).

19*21. Dissipation of energy. Consider a surface H which moves with

the fluid and therefore always encloses the same fluid particles. The kinetic

and internal energies are

Tk =

*
Carslaw, Conduction of Heat, Cambridge, 1921.

f
"
Big whirls have little whirls which feed on their velocity ;

Little whirls have smaller whirls and so on to viscosity."

Attributed to L. F. Richardson.
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taken through the volume V enclosed by 27. Here E is the internal energy per

unit mass (cf. 1-6 and 20-01).

The time rates of increase of Tk and J are, from 3-20 (2),

dTk f
. dJ t dE ,

(1) -57- = paq dr, -=- =
p-j- dr,

J (V) v j (y) Vvv

where a is the acceleration given by the equation of motion, 19-03 (1),

In order to keep the discussion general we introduce the second coefficient of

viscosity A, related to the
"
bulk modulus

"
K (cf. elasticity theory) by

If K=0 we have the case discussed in 19-02. Further, we introduce the

rate of deformation tensor D denned by

and we note that the first scalar invariant (2-16) is

(5) D2
= Vq-

With these notations the stress tensor of 19-02 (5) in its generalised form

becomes

(6) = -pi + (K
-
fft) 7Dj+ 2/iD.

We then have the following energy balance.

The rate of increase of kinetic and internal energy rate of working of the

stress forces on the boundary 27+ rate of working of the body forces -f the rate

at which heat is supplied ;
in symbols

Qdr.
(2) J(F) J(V)

Here Q is the rate per unit volume at which heat is supplied, for example by
conduction through 27, or by radiation from sources external to F.

Using (1) and Gauss's theorem, (7) gives

(8)

NOW V (^q) = (V$) q + ($V) q>

and if we put this in (8) and remember (2), we get

(9)

Since the volume of integration is arbitrary, the integrand vanishes and we

have
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Now from (4) V ; q = D + 2 (V 5 q ~~ q J V) an(i the tensor in the brackets

is skew symmetric, whereas and /) are symmetric. Therefore from 2-16

and therefore (10) becomes

(11)

Now if T is the absolute temperature and S is the entropy, we have from

20-01 (4), (9),

(12) TdS=dE+pd(l/P).

Therefore T dS/dt is the rate of gain of heart per unit mass, so that the rate

of gain of heat per unit volume is

d

since, from 3-20 (5), Dx = Vq = -
(I/p) dp/dt. Therefore (11) and (13) give for

the rate of gain of heat per unit volume

(14) pT^^^'-D+pDj+ Q.

Now Q is the rate at which heat is supplied by conduction and other external

causes. Therefore

(15)

is the rate per unit volume at which a fluid element gains heat at the expense
of other forms of energy. Therefore wt is the rate of dissipation of energy due

to internal friction and for that reason is known as the dissipation function.

Now use (6) and note that D - 1 Dj. Then

(16) Vl

For a spherically symmetrical expansion or contraction the term in curled

brackets vanishes. The last term will vanish if either

K = or Dj = 0.

For a liquid Df = in any case so that K does not enter here or in (6).

For a gas D/ ^ and the question whether K = remains open.

In cartesian coordinates, using the footnote of 19-02 we can write

r,.- 1,2,3
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Then

wt
=

2/z {2(e 23
2 + e31

2 + <?12
2
) + J (<?22

- e33 )

2 + J (e33
- en )

2
-I- J (en - e22 )

2
}

which is essentially non-negative and can vanish only if the fluid moves like a

rigid body implying that <?u c 22
-- ^33

= c 23
= e31

= e12 0.

Observe that for a liquid

In the case of liquid within a fixed closed envelope S we find by similar

steps that the rate of dissipation of energy is

(F) JGS)

But q = at the fixed surface. Therefore W{
~ ^

2
dr, and we can

JF

suppose energy to be dissipated at the rate /x
2
per unit volume.

19-22. The flow of heat in a fluid. The question of dissipation of energy
is bound up with the rate of flow of heat.

Consider liquid within a fixed closed geometrical surface S as in fig. 3-40.

Let n be a unit normal at the element dS. If we consider a time interval S

the amount of heat within S will have increased by the heat imported by the

flow of matter through the boundary. If T is the temperature, this will be

(1) I (nq $t)pTc dS,
J(-S)

where c is the specific heat of the liquid.

Heat will also be gained by conduction through the boundary. If K is

the thermal conductivity, this will amount to

(2) f -K(n\?)TdS8t.

The liquid will also gain heat from the liberation of energy by friction, the

amount being, (19-21),

(3) w
t
dr St.

J(F)

The increase of heat within the surface S will be

(4) |fWJ(
Hence (4)

= (1) + (2) + (3). Thus

|f (pcT)dr-{ (nq)pcTdS=\ w
tdr-{

J(F) JOS) J(F) J(
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Now, by Gauss's theorem,

f (nq)(pcT)dS = -
f [(poT) V q + (q

J (S) J (F)

and here V q = 0, d/dt
=

d/dt + (q V)> (3'10).

Therefore f (~ (pcT)
- w

t
- V (# V ^)1 ^r = 0,

J(F) I/W J

and, since this holds for an arbitrary volume,

573

This equation together with the equation of motion and the equation of

continuity serve to determine the three quantities p, q, T which characterise

the general motion of a viscous liquid. In the case of a gas it would also be

necessary to take account of the equation of state connecting the pressure,

density, and entropy.

19-31. Flow between parallel plates. Consider liquid forced under

pressure to move between two fixed parallel plates at the distance h apart,

fig. 19-31.

FIG. 19-31.

Take one plate to be in the a?, y plane and the other to be z = h.

Suppose, first, that the motion is in the ^-direction only, so that if

q = | u+ } v+kw,

then v = 0, w 0. The equation of continuity is du/dx 0, so that u is

independent of x. When the motion is steady, u will therefore be a function

of z only and independent of the time. Thus the equations of motion are

dp d*u dp dp= -
4- p -r-r^ , U=^-> y---.

ox oz2 oy oz

Therefore -
dp/dx P is independent of x9 y, z, and hence

p
u =r A+Bz-^-z2

.
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Since u = when z = and z = h, we get

The average value of u across a section perpendicular to a? is

u dz = r- ,

1 f*-
j\
"Jo

and u = 6u z(h-z)/h
z
,
the velocity midway between the plates being 3w /2.

The velocity across a section follows the
"
parabolic law ", namely, if at

each point of a line parallel to Oz we draw the velocity vector, the extremities

of these vectors will lie on a parabola, fig. 1-0 (b).

The motion is not irrotational, for the vorticity vector is

The viscous traction exerted by the upper plate on the fluid is

Thus there is a traction of amount QfjLU /h per unit area in the direction of

flow exerted by the fluid on each plate.

The rate of dissipation of energy per unit volume is

and therefore, considering a column of height h, the rate of dissipation per

unit area of plate is

To discuss the rate of flow of heat, let us make the hypothesis that each

plate is maintained at the same constant temperature T . Then dT/dx 0,

and we get from 19-22

If we further assume the viscosity JJL
to be independent of the temperature

distribution, which will be nearly true if the plates are close together, this gives

Since T = T when z = and when z = h, we get
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Secondly, let us suppose that the flow is two-dimensional, i.e. w =

everywhere. We shall suppose the plates to be very close together. Then

u and v vary from their maximum values midway between the plates to zero

in the short distance h/2. Thus the rate of variation of these components in

the z-direction must be very great compared with the rates in the x- and y-

directions. Neglecting these latter in comparison, the equation of motion

becomes

.dp .dp .dp f.
d*u . d*v\

""'"" + ~

Hence dp/dz 0, and p is a function of #, y only.

Thus u.
d*U - Bp

IL
d*V - dpInus * -&*-&>' V>W-dy*

Therefore we get, as above,

M _ _
, __
, _ _

,

where w
,
VQ are the mean values of u, v as before.

Consequently, g=-^ , |=-^ ,

and therefore UQ ,
v are the components of a two-dimensional motion of an

inviscid liquid in which the velocity potential is

Thus when a portion of the region between the plates is obstructed by a

cylinder of thickness h y the mean flow will be the same as that of an inviscid

fluid flowing past a cylinder of the same cross-section, with the reservation

that the analogy must break down at distances from the obstacle comparable
with Ji. Since h can be made as small as we please this restriction is insignifi-

cant. This has enabled Hele-Shaw and others to make very beautiful experi-

mental models of two-dimensional flow of an ideal liquid by injecting colouring

matter to display the streamlines.

19-32, Flow through a pipe. When viscous liquid flows steadily through
a cylindrical pipe of any cross-section whose axis is in the direction of the

z-axis, the equation of continuity shows that the velocity is independent of z

if there are no components of velocity at right angles to the axis. Then we can

put
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where q is a function of x and y only. The equation of motion is then

whence -f = 0, -% = 0, _|?+f , (Jj + J?)
= 0.

dx dy dz
r

\dx2
dy

2
/

Let P = -
dp/dz denote the pressure gradient along the pipe in the direction

of flow. This is constant since dz
p/dz

2 = 0. Writing

the last equation gives

(2) V2
<A-0.

Since q = at the boundary, (1) and (2) show that
iff

is the stream function

for inviscid liquid filling a cylinder of the same cross-section as the pipe, and

rotating about its axis with angular velocity P/(2/z). Thus the problem

becomes the same as that of 9-70.

Taking the case of a pipe whose cross-section is the ellipse

we have, from 9-71,

2 ~
y2) + constant -

01Sothat

Therefore q on (3), if we take

P /72/)2 P f1 Z
. JL U U

. i ,
JT U

-II
The rate of discharge is R = \\qdxdy, over the cross-section of the pipe.

To evaluate the integral, observe that on the ellipse given by x = Xa cos 6,

y = A6sin0, the integrand is A(l- A2
), and the area between this ellipse and

that corresponding to A+dA is 2?ra6A dX. Thus

, D P a2 62 . P cand R = ---- ^ -nab ~ ---r ^ S

where S is the area of the section.
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Hence the mean velocity across the section is

P ( x2
v
2
\

-
,
and therefore q = 2qQ ( 1 - - ~

) .

For a pipe whose cross-section is a circle of radius c, we have

n f r*\ P& _ 7rc4P
q 2q 1 - 1 , q = -

, R ~ -
,

\ C / OfJi OfJL

where r is the distance from the axis.

If we take c2 = ab and write 6 = aa, so that the elliptical and circular

sections have the same area, the ratio of the rates of discharge is 2a : (1 -f a2
),

which is less than unity. Thus a circular pipe discharges at a greater rate

than an elliptic one of the same cross-sectional area.

Measurements of the rate of discharge from circular pipes provide evidence

that the assumption of no slip at the wall is justified, for slip would increase

the discharge by an amount which would destroy the validity of the law,

found above, that the rate varies as the fourth power of the diameter.

The above results also furnish a method of measuring p.

19-41. Components of stress. If ult u2 ,
u3 are orthogonal coordinates,

we denote the components of stress in the directions % , u2 ,
u3 across a plane

perpendicular to k by the notations

Thus in cartesian coordinates we have nine components across planes

perpendicular to a>, y, z, namely

xx, xy, xz
; yx, yy, yz \ zx, zy, zz.

Taking n ~ i in the formula giving the stress, we have, for a liquid,

.nd.0 a-

It follows from this that xy = yx, xz = zx, yz zy, so that the nine

components actually reduce to six, namely xx, yy, zz
; xy, yz, zx.

This result can also be obtained by equating to zero the moments about

lines parallel to the edges through the centre of an infinitesimal parallelepiped,

and the same method shows that the result is true for any system of coordinates.

More generally, for any orthogonal system of coordinates (2-72), we have

2O
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Now, from 2-34 (IV),

and i x q = q , \i A q = -
1203+ 1302- Hence using the method of 2-72, we get

successively

- - ll dqi
-

' 2 Bqi
-

' 3 Bqi--~--
hI

fY7 i ^ - - I -- . --q Aw A h; - i
-

^^ d

q(y j )
=^ x

J,
"W2'*3; 7 "W3"2/i~~ In I tin ^ l 3 /t>3

~ r )

a* dhi\ InO* a/ii io^i a/
I

* * x
I i

*** *-
i

^l 1

Thus, omitting terms which cancel, we get

j_ ??i 1_ ?^ _ _?2_ ^2 _ 0i a^i]
lW 2

~
/^

1 1~ ^~
""

z, a' j,' "z, ^rr ^1," ^7 f

The remaining stress components can be written down at once. It is

evident from the above that u^u^ u2u , u^u^ = w3% , for the relations are

not altered by an interchange of suffixes.

In the case of cylindrical coordinates (2-72), w
x x, u 2

= w, w3
= o>, we

get Aj = 1, h2
= 1, A3

= m,

- ~t
trr dw

^ a}

ojw = -p + -Z-
\-^ + m , -zr

-
^ w \da)

2
/

^
|^3a?

dw

The stress components for spherical polar coordinates are given in Ex. XIX,
20.

The above results apply to a liquid. For a compressible fluid 19*02 (5)

shows that p should be replaced by p-\- f p V q, where V q is given by 2-72 (2).
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19*42. Steady rotatory motion. When the motion is two-dimensional,

consisting of rotation about the axis of x with an angular velocity n which is

a function only of the distance w from the axis of rotation, it appears that

the only velocity component is wn perpendicular to the radius vector. Thus

the viscous stress components (1941) all vanish except ma>, which is equal to

fi[d (wn)/di3 ri\
=

jLtny dti/dta.

Therefore the moment about the axis of the viscous drag on a circular

cylindrical surface of radius w and of unit length is w p,m(dn/dw)27nz.

When the motion is steady, there is no change in the angular momentum
of the fluid contained between two such cylinders, and therefore the above

moment has the same value (but opposite signs) at the inner and outer surfaces.

Hence

where A is independent of w. Thus

If the fluid is bounded internally by a cylindrical surface of radius a moving
with angular velocity nt and externally by a concentric cylinder of radius b

moving with angular velocity nz , we must have

A
T>

A
T>

ni=
-~2a*

+B > n2 = ~2P
+ Z?

'

and therefore

n^-n^
<

a2 62 (%-yi2)

V^-/ "' To 9 >

--
oTiLo <TT~

In this argument % and n2 are not restricted to have the same sign. If

we suppose n2
- nz , where n^ and %3 have the same sign, the angular velocity

n will vanish when

and the fluid on the two sides of the
"
stagnation

"
cylinder so defined will be

rotating in opposite senses.

Again, if in (1) we put b = oo
,
nz 0, we get n/% = a2

/***

2
*
which gives the

velocity distribution when the fluid is bounded internally only.

If the fluid is bounded externally but not internally, we have a = and

therefore n = % ,
so that the whole system rotates (in steady motion) like a

rigid body.

If the inner cylinder is at rest, we get

b2 w*-a2

H ~ ~9 Z^
- W

2'w2 62 -a2
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This steady motion has been shown by G. I. Taylor to be stable for all

values of w2 . The friction couple on the outer cylinder is then

f o *
dn \ A

abn*

[L . ZTTW* y- =
47TJU, j- {

.

V dw]
^

b2 - az

When the outer cylinder is fixed and the inner one rotates, Taylor
* has

shown that the motion is stable only for sufficiently small angular velocities

of the inner.

In a later paper Taylor f has shown that, while the motion remains stable

in the above sense when the inner cylinder is at rest, turbulence sets in when

the angular velocity n2 is sufficiently large.

19-51. Effect of viscosity on water waves. When waves of small height

T]
= a sin (mx - nt)

are propagated on deep water in the absence of viscosity, the complex potential

(14-17) is w = ac e-*<m*-w *>, so that the velocity is u - iv imac e-^mz-nt \ giving

u = mac emy sin (mx nt), v = mac emv cos (mx nt).

If the liquid is viscous, the surface stresses due to these velocity com-

ponents are (19-41), when y 0,

^ dv
yy

~ - p -f 2^t
-- p - 2jLtm

2 oc cos (mx - nt),

yx = IJL
( +

j

= 2fim*ac sin (mx-nt),
'dyl

and if these forces are applied to the surface by an external agency the wave

as given above will persist even when the fluid is viscous.

The rate at which the forces do work is

yy v+ yx u pmac cos (mx - nt) + 2/xm
3a2 c2

,

and the mean value of this is 2/zw
3a2 c2 .

Now the total energy of the wave (per unit surface area) is (14-21)

and, in the absence of the external agency mentioned above, the rate of dissi-

pation of energy in the wave must be equal to the mean rate of working of the

viscous forces. Thus

j (\ a
2me2

p) 2ju,w
3a2 c2

,
or -=- = -2vm2 a.

ut Oft

Hence a = a exp (~2vm
2
t), where a is the initial value of a, and so the

wave at time t has the profile given by

77
= a exp (

- 2vmz
t) sin (mx nt),

* G. I. Taylor, Phil Trans. (A), 223 (1922). t Proc. Hoy. Soc. (A), 157 (1936).
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the amplitude of which is continually diminishing with the time. The time

taken for the index of the exponential to attain the value 1 is

*

and after the lapse of this time the amplitude of the wave will be

a e-i = 0-37 x .

Taking v = 0-0178 cm. 2
/sec. for water, we get ^ 0-711A2

sec., when A is

measured in centimetres.

Thus when A 1 cm., ^ is less than 1 sec., while if A 100 cm., ^ is about

two hours. Thus capillary waves are suppressed by viscosity almost immedi-

ately while gravity waves are affected very little.

When waves travel in the direction of the wind, but with less velocity,

the crest shelters the leeward face, while the windward face from trough to

crest receives the full force of the wind. The part of the wave on which the

wind thus impinges directly is, owing to the propagation, receding from the

wind which therefore pushes in the direction in which the water is already

moving. On the leeward face the water is, owing to the propagation, rising,

and the sheltering prevents the wind from opposing this motion
;

it may
even be helped by the back eddy which often exists on the lee side of an

obstacle. Thus the wind always urges in the direction in which the water is

moving and so tends to increase the energy which the viscosity tends to

dissipate.

19-61. Axisymmetrical motion. Resuming the argument and nota-

tions of 18-50, we see that, to allow for viscosity, the left side of equation (5)

must be modified by the addition of the term corresponding to wv V A (V A ?)

From 2-72 (4), we have successively

,
i /av av i a/,\ i

since = - hrr*^ ~ - ^ = -
GT \dxz owz w dm/ w

Thus the equation satisfied by the stream function becomes

the second term being an alternative notation for the determinant of 18-50 (5).

This determinant is known as the Jacobian or functional determinant, and its

vanishing implies a functional relation between
ifj
and w
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We note that the motion represented by (1) is not reversible, for a change
of sign of

\fj
alters the signs of the first and last terms, but not that of the

middle term.

19-62. Slow motions. The general equation of motion of a viscous

liquid, not being linear, has so far proved intractable when applied to all but

a few special problems. Attempts have therefore been made to obtain

approximate solutions by replacing this equation by modified forms which

are linear. From 19-03 (6), we have

This would be a linear equation if the quadratic terms (q V) q were absent.

This supposition leads to the modified equation

(1) g =

To obtain some idea of the approximation involved, we observe that the

physical dimensions of the neglected quadratic terms are measured by U*/a,

where U is a typical velocity and a a typical length ;
for example, we might

consider a sphere of radius a moving with velocity U. Again, the dimensions

of the term due to viscosity are those of vU/a
2

. The neglect of the quadratic

terms therefore amounts to the statement that the Reynolds number

(2) R,%
is small.

Again, if we use the form 19-03 (7) and neglect the quadratic term -
q A ,

the modified equation becomes

(3) ^=-
The order of approximation is here the same as before. In the case of

steady motion, both (1) and (3) are included in the equation

where the scalar P can be replaced by p/p, p/p + Q, plp + \<f+Q, according

as we neglect external forces and adopt the basis of (1) or (3). It is evident

that the problem involved in neglect of the external forces differs in no essential

particular from that in which they are retained, for both cases involve the

solution of an equation of type (4).

Another and completely different method of attack is due to Oseen, who

puts
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where i is a unit vector in the direction of the typical velocity U, and neglects

the quadratic terms (q' V)q'
The general equation of motion then reduces to

or, in the case of steady motion,

(5) U(\ V)q' =

Compared with (4), this equation does in some measure take account of

the quadratic terms. The method of application of this approximation will

be gathered from exercises 31-34 at the end of this chapter.

19-63. Slow streaming past a sphere. Let a solid sphere of radius a

be held fixed in a uniform stream U flowing steadily in the negative direction

of the axis of x. If we neglect the quadratic terms in the equation of motion,

the stream function satisfies the equation (19-61)

(1) E**f>
= 0.

The boundary conditions are

(2) Iz = 0, -r- = 0, at the surface of the sphere,
T ou or

(3) 0->J t/ro
2

,
at infinity.

Transforming to polar coordinates, x = r cos 6,m = r sin 0, we get

a a a a a a= cos =- - sm = , ^~ = sin 4- cos0^,ox or rod ow dr rod

and (1) becomes

The boundary condition at infinity, /r
= \Ur* sin2 0, suggests the trial

solution

=/(r)sin
2
0.

Substitution in (4) gives successively

9* sin d I I d
\]r(dy(r) _ 2/(r)\ 1 _

9T2
+
~*~ 96toW JIXd^ ~^J J

~
'

We can satisfy this linear homogeneous equation of the fourth order by
a sum of terms of the form Arn

, provided that

[(w-2)(n-3)-2][(n-l)-2] = 0,
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whence n = -
1, 1, 2, 4, and therefore

Condition (3) shows that C = E7, D = 0, and therefore

The velocity components are

= -1/COS0-2 -
3
+ -cos0,3q,

= -- = -COS- -
3
+ -2 rsmBrdd \r

3 r]

,
-

* rsmtfdr \r
3 r/

Putthig r = a, (2) gives A |t/a
3
, B = -

f C/a, and so

which vanishes when r a. From 2-72 (4) and (7), the vorticity is

(5 ) C = l?fc&L.%
^

r dr rd0 2r2

19-64. Drag on a slowly moving sphere. In the problem just dis-

cussed the liquid is reduced to rest and the sphere moves forward with velocity

U, if we impress on the system a velocity U in the direction of x increasing.

The corresponding stream function is then

If P is the drag, the rate of doing work is PU, and this must just balance

the rate of dissipation of energy given by 19-21.

The vorticity is still given by 19-63 (5), and therefore

PU -
)it

dr ~U* sin2 . 27rr
2 sin dO =

J a J 4^

and so P 6^11a, a formula due to Stokes.

This is also the force which must be applied to the sphere to hold it at

rest in a steady stream U.

It must be remembered that the foregoing analysis applies only to motions

in which the Reynolds number Ua/v is small. Thus for a sphere of one milli-

metre radius moving in water the velocity must be less than 0-2 cm./sec. The

main application of this formula occurs in studying the motion of minute

particles.

To find the terminal velocity (or velocity when the resultant force is zero)

of a sphere of density a falling in a liquid of density />,
we have, on equating

the weight to the buoyancy plus the resistance,
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%nva?g =
%7Tpa

3
g+ far[jiUa, U = f ^ - a2

#.

I9'70. Vector circulation. Let C be a curve in the plane of a two-

dimensional motion, and let k be the unit vector normal to the plane. Let

(1) K =
[ qdr.
J(C)

When C is a closed curve, enclosing the area 27, the scalar K is the circulation

(2-42) in this curve, and by Stokes's theorem

=
\
J<

k(V A q)cZS
=

If, as is usual in two-dimensional motion, we conceive the fluid to have unit

thickness, we can call dS the (vector) amount of vorticity in the volume dS of

a cylinder of unit thickness, and then, since = k, the circulation K is the

(scalar) amount of vorticity in the cylinder 27 of unit thickness.

More generally, we can extend the definition (1) to an open curve C (plane

or twisted) by defining the circulation in C as the scalar K .

Now consider the vector

(2) r = n A qcZS,
J(S)

where the integral is taken over a surface S. If S is a closed surface which

encloses the volume Vy Gauss's theorem gives, taking n as the outward normal,

(3)
=

f
V A q<*r=

fJ(F) J(

Thus F measures the (vector) amount of vorticity in the volume F. It is

left as a simple exercise to show that for the two-dimensional motion just con-

sidered, in which S will now denote the whole surface of the cylinder 27, we

have K = kF.

Definition. The vector F defined by (2) is called the vector circulation over

the closed or open surface S.

There is a useful alternative expression for the vector circulation over a

closed surface S, namely

(4) r=f r(n?)iS.
JGS)

Proof. If X is any continuous function of position, it follows from Stokes's

theorem that

(5) (n
J(S)

for any closed curve C drawn on S divides it into two diaphragms Si and 2 ,

each closing C and the surface integrals over these diaphragms are equal line

fntegrals taken in opposite senses round C, and therefore cancel when added.
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Using the dyadic notation and the fact, 2-71 (2), that V J
r = ^> the idem-

factor, we have

(n A V)(q;r) = (n A V)(q ; r) + (n A V)(q ; r )
= {q(n A V)}r+{(n A V)q}r

= q{n A (V; r)} + {n(V A q)}r - q(n A /) + r(nQ = -(n A q)+r(nQ.

The result (4) follows by integrating over S and using (5) with X = q ;
r.

Q.E.D.

Corollary. For irrotational motion = and therefore F 0.

It is important to observe that the above proof has been so framed as to

avoid volume integrals and (4) therefore takes no account of the circumstances

inside S. The only restriction on (4) is that implied by (5) which demands that

X shall be finite, one-valued, and continuous.

In the case of a closed surface S moving with the fluid, we have from (3)

and the equation of continuity in the form d(p dr)/dt 0, the rate of change of

the circulation in the form

dt

from 3'53 (2). Now from 2-34 (X)

V(?; q)
= V)q+q(V?)=(?V)q,

since V = 0. Therefore

7/7 -f V(?;q)*T=-fat J(F) J(

From this it follows that the circulation T remains constant for a closed

surface generated by vortex lines, as, for example, in the case of Hill's spherical

vortex, 18-51.

I9'7I. The wake. When a body, typically an aerofoil, moves through

fluid or when the fluid streams past an aerofoil at rest, a wake is formed which

consists of fluid which has passed near to the surface of the aerofoil, and, as

remarked in 19-11, the vorticity is largely confined to the fluid which constitutes

the wake.

We propose to develop some consequences which flow from two particular

hypotheses.

(i) The wake consists of fluid in regular motion which can be described by
streamlines and vortex lines.
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(ii) Outside the wake the vorticity is negligible, i.e. we can assume = 0.

Hypothesis (ii) may be regarded as a definition of the wake.

19-72. The net vorticity in the wake.

Theorem. Let S be a closed surface every point of which is in contact with

the fluid and which cuts the wake in vortex lines. Then, if the fluid velocity is

finite and continuous over S, the vector circulation over S is zero.

Proof. From 19-70 (4), F^ r(ntydS.
Jos?)

Outside the wake = 0, inside it n = since the vortex lines lie on S. There-

fore F = 0. Q.E.D.

Corollary. The net vorticity in any section of the wake cut off by a closed

surface which intersects the wake in vortex lines is zero, for from 19-70 (3)

Net vorticity = I dr = F = 0,

where the volume integral is taken through the section in question.

This corollary assumes that the whole of the interior of the surface is occupied

by fluid.

In the case of a closed surface Sl which surrounds an aerofoil A and cuts

the wake in vortex lines, consider the fluid between A and Sv Then the

circulation over S l
is zero by the theorem, and the circulation over A is zero,

since q = on A in the case of a viscous fluid, where q is the fluid velocity

relative to A.

The net vorticity in the boundary layer and that portion of the wake which

lies inside S l is therefore zero.

These results are purely kinematical. They hold for compressible viscous

fluids and do not assume steady motion or constant viscosity.

19-73. Vorticity transport. Referring to fig. 2-50 (iii), let

(1) T5 -
f
JGSf)

The first integral represents the rate of transport of vorticity through the open
surface S due to convection, the second the rate of transport due to diffusion.

If in fig. 2-50 (iii) we take C to be a vortex line and the diaphragm S, which

closes C, to be a surface consisting of vortex lines, we shall call S a vortex

diaphragm closing the vortex line C.

Ts then represents the rate of transport of vorticity, through a vortex

diaphragm, due to convection and diffusion.

Preston
9

s theorem.* In the steady motion of a homogeneous liquid of

* The two-dimensional form of this theorem is due to J. H. Preston, A.R.C. Report, No.
6732.
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uniform viscosity the rate of transport of vorticity through a vortex diaphragm

which closes the vortex line C is

(2)
-
P

Proof. Multiply the equation of motion 19-03 (8) by n A , put dqjdt = 0,

and integrate over S. Then

(3) -f n A (q
JOS) OS) (S)

Now V = V(V A 3) = fr m 2*32 (II), and since S is a vortex diaphragm
n = 0. Therefore using the triple vector product

n A (V A )
- (n A V) A ?-(n V)^+n(V?) = (n A V) A?->

n A(q A ?) = -(nq)?+(nQq = -(nq)?.

Substitute in (3) and use (1). Then by Stokes's theorem

(C') (C)

But C is a vortex line and therefore on C the vectors ds and are parallel so

that ds A
= 0. Q.E.D.

19*74. The force on an aerofoil. Consider a three-dimensional aerofoil

A at rest in a steady stream V = \V and ignore body force.

FIG. 19-74.

Let E be an imagined fixed closed surface (i.e. not a physical boundary)

entirely surrounding the aerofoil A. The equation of steady motion, 19-04 (1),
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By Gauss's theorem integration over the volume between E and A gives

p(q ; q)]dS.
(A) J (27)

Now n(q ; q) = (nq)q, and this vanishes on A since q = on A if the

fluid is viscous, and nq = on A if the fluid is inviscid. Therefore the force

on the aerofoil is

(1) F=f
J ((A} (27)

Thus, using 19-02 (6), we get

(2) F=
f [-pn-
1(27)

J(27)

This is a general result which applies to any steady motion, whether p and /x

are constants or functions of position.

We now show that if
//.

is constant, the second integral vanishes. For by
the triple vector product, since = V A q,

J (27) J (27)

from 19-70 (5).

Thus when ^ is constant the force on the aerofoil is given by the first integral

of (2).

Let us now assume that not only /x,
but also p is constant, so that we are

dealing with a homogeneous viscous liquid. Then V q = and the force on

the aerofoil is

(3) F=[ [-yn-
J(27)

19-75. Oseen's approximation at a distance. In fig. 19-74 the closed

surface E is arbitrary. Let us take it to be a sphere of radius so large that we

can write

(1) q - V + v, p=n+p',
where v and p' are small deviations of the first order from the uniform state

of velocity V and pressure 77. Then the equation of motion assumes Oseen's

form (19-62) :

Tr dv 1

For convenience introduce the parameter k, defined by

(2) V = 2fo.

The equations of motion and continuity then become
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1
/ / d \

p \ dxl

It follows from (3) that V2
!*'
= 0> so that P' ^s a harmonic function, and if

we write

d<f>

we get a particular solution of (3), namely

(5)

The complete solution will be of the form

(6) v = q 1 + v 2

where V 2 satisfies the equations

(7)

Let us examine the solution (5) in more detail. Since ultimate vanishing

over the distant sphere E is required, we should expect the appropriate form

of the velocity potential <j> expressed in spherical polar coordinates r, 6, w to

be a sum of harmonic terms of the type Sn (0, eo)/r
w+1

,
and of such terms the

dominant one for large r should be

TO
r

Substitution in 16*1 (2) gives the equation satisfied by SQ , namely
i 3 / 0$ \ i 92$^ sin 6 -^ + -r-TTi -^ -2 = 0.

To solve this equation write

u = log tan J0, and $ = fm (u) cos mo> or fm (u) sin ma).

We then get

^
2^_m2/ - A
du*

m
<> m - ()

>

whence fm = Aa e-m +Bn = A m (cot ^) +5m (tan \Q).

The second term ->oo when O->TT, i.e. upstream, and this is clearly unsuit-

able. We therefore take Bm 0.

On the other hand, the first term >oo when 0->0, i.e. in the wake. At

first sight this seems to demand Am also, but it will appear from the

calculations which follow (see p. 534) that if Am -
0, there will be no lift.

Confining our attention to the case m - 1, we then get the particular

potential

(8) (f>lQ
= ~- cot J0(a cos W -h/2 sin w),
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and the velocity q 10 derived from this becomes infinite when = 0. To remove

this infinity we write V 2
= q a+ V3 ,

where q 2 is chosen to satisfy

(9)

We then seek to determine the potential i/j
to satisfy

(V2 - 2k
j^\

= or (V
2 - W) (e-**0) = 0.

It is readily verified that this equation has the particular solution

e-kr

(10) e~kx
tfi

- cot \6(a. cos a) +/3 sin cu), x r cos 6,

and the combination

J _ Q kr(l-~cos 5)

(11) ^10+ =-- cot |0(acoso>-fj8 sinco)

has no infinity when 6 = 0, since the term cosec |# which causes it can be

cancelled. But q 2 determined from (9) does not satisfy the equation of con-

tinuity, for

V q 2
= -

y2/f = _ 2&^ from (9).
ox

We therefore add a further velocity q3 which satisfies

(V
2 -
S&l^q^O,

and

so that V(cl2+ cl3)
= 0- Now the assumption

gives Vq3
=

Comparing this with 2kdi/s/dx derived from (10) we get a' = -2&a,

j8'
=

2^j8, and the appropriate velocity is

07.

(12) qs = - :

7-*
(fW-)

(j+)8k),

and we note that q3 is perpendicular to V, so that Vq3
= 0.

The complete solution built up on these lines is of the form

(13) q = V+ qi+ qa+qg+ q^

Here q x is the irrotational solution associated with the pressure (equation (4)),

and includes the particular term q 10 calculated from
<f> lQ (equation (8)), which

becomes infinite when 6 =
; q 2 is the special solution V where

ifj
is given

by (10), so chosen that along the wake (0
= 0) the infinities of

<^ 10 and ifj
cancel

one another
; q3 is a further special solution chosen to ensure that the equation
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of continuity V^+Qa) is satisfied ; q 4 is the complementary solution

which satisfies the Oseen equation (7) and the equation of continuity.*

The velocity q given by (13) is finite and continuous over the whole surface

of the sphere Z.

The presence of the exponential factor shows that q3 is negligible unless

r - x is small, that is to say in the wake, which at a distance is bounded rather

vaguely by a paraboloidal surface r - x = e, where c is a small constant. The

vorticity arises only from V A q3 and V A ^4 smce VA^I^VA^S 0- ^ ^^
appear presently that the value of V A 9 4 does no^ affec^ the f rce on ^ne aero-

foil, so that the vorticity is effectively confined to the wake.

It should be emphasised that the above method of approximation concerns

only the distant sphere. It has nothing to say concerning the flow in the neigh-

bourhood of the aerofoil.

19*76. Lift and drag. From 19-74 (3) the force on the aerofoil is

F = P+Q+R,
where

(1) P=-[ pndS, Q=-[ fin^dS, R=-f Pq(nq)<Z&
J (> J (> Jw

From 19-75 (1), (4), (13), we have

p =

where v = q 1+ q a + q3+ q 4 and Vq3
= 0.

Since n dS = 0, we get
J()

P=pf n(Vv)- P f n(Vq 2)dS- P \ n(
JW J (r) J (r)

Also q(nq) = V(nV) + V(nv) + v(nV)

to the first order and I nv dS = by the equation of continuity. Therefore
J()

(2) P+R^p V A (n A v)dS- A,v (nqJcZS+p q4A (V A n)dS
J (27)

n(Vq a)cZS.
J(27)

Let

(3) --=-[
J

Then / is the inflow into from the complementary solution ; predominantly
an inflow into the wake.

* For the foregoing analysis of the solution I am indebted to Mr A. C. Stevenson and
Mr L. A. Wigglesworth.
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Again the vector circulation over E is

= n A vd = n^d/S-f- n
J(27) J(S) JOE)

The first two integrals on the right are vector circulations due to the irrota-

tional velocities ^ and q 2 and must therefore vanish (19-70), and so we can

write F == F3 -f F4 , where F3 and F4 are the vector circulations due to q3 and

q4 . Lastly, put ?3
= V A ^3 ?4 = V A ^4 ,

then from (1), (2) and (3)

(4) F - PV A F3+ VZ+ F + F", where

(5) F'=-pf n(Vq 2)dfif-f pn&dS,
J <D J (r)

F' = PV A r4+p[ q4A (V A n)cZS-f /in A 5I i8.
Jw J (-s)

We now prove that F" = 0. Since V<14 = 0, 2-32 (IV) gives

V A ?4- V A (V A q4)--V2
q4, and V A (q4A = V)q4

= ^>
and therefore, since q4 satisfies 19-75 (7),

Therefore there exists a scalar function Z such that

&+2&q A i = VZ.
Therefore

f pn&dS=[ /i(n A V)^iS-2^f n A (q4A i)i8.
JW J(^) J(r)

The first integral on the right vanishes by 19-70 (5) and 2kp =/> F by
19-75(2). Therefore

= -
P n A (q4 A V)dS, and

J (^)

n^dS = -
PV A r4 ,

so
J (Z)

and therefore F'' = 0.

Returning to (5) we can show that F' ->0 as the radius ofZ tends to infinity.

This is a simple consequence of the expressions for q a and q3 given in 19-75

and is left as an exercise.

We now get from (4) the asymptotic result F = L+ D where

(6) L = />V A r3 ,
D = VL

Thus L is perpendicular to V and is therefore a lift, whilst D is the drag.

These results improve in accuracy the greater the radius of the sphere 27 and

constitute the generalisation of the Kutta-Joukowski theorem for an inviscid

2? M.T.H.
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and Filon's formula * for a viscous liquid in two-dimensional motion. Here

F3 is the vector circulation over 2 due to qs , and I is the inflow into the wake

due to q4 .

To simplify F3 write q3 v3 \ + w>3 k. Then

T3
= 27rr

2
(vs k - ws j) sin 6 cos 6 dO

Jo

= knkr
(j8 j

-
<x.k)e~

kr ekruu du, u =- cos
J-i

= 471
(j8 j

- a k) {1 + e-2^ -
(1
- e-w ')/(fo-)}-

Hence as r-+ao , r3 ->47r(j8j -ak), which gives rise to the lift

This result justifies the statement made in 19*75 that there can be no lift

when a and
]8 are both zero.

It can be shown from the above results that the components of the lift are

associated with circulations in the distant circuits in which the sphere 2 is cut

by the diametral planes o> and co = JTT. There will be zero circulation in

any circuit surrounding but not threading the wake.f

I9-80. Similarity. Consider the equation of motion

(1)

and suppose there is another motion of the same or another fluid which differs

only in the scales of length and time. Denote corresponding quantities in the

second motion by dashes. Then

(2) + (q' V')q' = -V +V V'
2
q'-

The motions are said to be similar if we can proceed from equation (1) to

equation (2) by multiplying every term in (1) by the same constant factor,

a say.

By the hypothesis, we have

(3) r = Ar', t = Kt',

and, for similarity, we must have

(^ __ ag q'* _ ocq
2

p' __ ap v'q' _ avq

7
- T ' V "

"7"
'

J?
~

7;
'

72"
~ 72

~ '

Whence, by division,

^ = r^K
>
^^V2

,
& = P = R

q r/t

'

p pq
2 v v

* L. N. G. Filon,
"
Forces on a cylinder ", Proc. Boy. Soc. (A), 113 (1926).

tCf. T. E. Garstang, Phil. Trans. Roy. Soc. (A) 236 (1936), p. 25.
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and thus the Reynolds number qr/v must be the same for the two motions.

Since the equation of continuity as well as the first two of the above con-

ditions is satisfied in virtue of (3), it follows that the equality of the Reynolds
numbers is both necessary and sufficient for the similarity of the motions.

In experiments made with a model in a wind tunnel, the quantities < and

/ for the tunnel and model are less than the same quantities for the full-scale

machine, while v is the same for both. This has led to the introduction of

compressed air wind tunnels, for v ^fp can be made smaller by increasing p.

In comparing forces of drag and lift, we observe that any force F can be

written in the form
F = Jp/V/(fi),

where R is the Reynolds number, U is a typical velocity, and r is a typical

length. The dimensionless number f(R) is the drag, or lift, coefficient as the

case may be.

19-81. Boundary layer. When liquid flows past a solid boundary it is

observed that the full velocity of the stream is acquired at a short distance

from the boundary, while it is usually assumed that the liquid in contact with

the boundary is at rest. Prandtl's hypothesis of the boundary layer amounts

to the statement that there is a thin layer in the neighbourhood of the boundary

within which the forces of viscosity and inertia are of comparable magnitudes,

whereas outside this layer the effects of viscosity are negligible and the fluid

behaves as if frictionless.* To discuss the effect of this hypothesis on the

equations of motion near the boundary, consider the two-dimensional flow in

which the boundary is taken as the x-axis, fig. 19-81.

If we draw an ordinate at P and mark

vectors to show the aj-component u of the

velocity, the hypothesis demands that the

extremities of these vectors shall lie on a

curve having an asymptote parallel to the

ordinate at P. If we regard the full stream

value of u to have been attained when u is

less than U by some small fixed arbitrary

percentage, say one per cent., the thick-

ness of the boundary layer is thereby

defined. Various definitions of this type

may be given, each leading to a different measure h of the thickness, but all of

the same order of magnitude. It also follows that the gradient du/dy will

be great as y increases from to h within the layer. On the other hand, the

transverse component v will be small throughout.

* For a discussion of boundary layer growth, see Goldstein and Rosenhead, Proc. Camb.
Phil. 8oc., 32, 1936.

O

y V

p

FIG. 19-81.
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Now consider the equations of motion

du du du 1 dp fd
2u d2

u\+ u +v = ___L4. V + ,

dt dx dy p dx \dx2
dy

2
]

dv dv dv
__

1 dp (d
2v d2

v\
7T7 I U "^ T V 7T~ iT~"T" V I -^

~
-}- ;r r

dt dx dy p dy \dx2
dy

2

Introduce the variable
77,

denned by y hi}. Then
77

will be a dimension-

less variable comparable as regards order of magnitude with the variable x,

and we can then write v hv ,
where v is comparable with u. In terms of

these variables the above equations become

du du du 1 dp d2u v <Pu--
g

-
dt dx dr; ph

In (1) we observe that the term v d2
u/dx

2 is negligible compared with the

other terms, while the last term of the equation which represents a friction

force must be regarded as of the same order as the inertia term u du/dx.

Taking the order of this as unity we see that v oc h2 or Ji oc Jv. Thus the thick-

ness of the boundary layer is proportional to the square root of the kinematic

viscosity. From this result it follows that all the terms in equation (2) are of

order h and therefore

Thus the pressure in the boundary layer is independent of y, and our

equations reduce to (3) and

/A . du du du 1 dp d2u
(4) + u +v = __.^: + 1/ ,

dt dx dy p dx dy
2

which, together with the equation of continuity

<6> +-*
determine the motion.

We can derive from (4) an integral equation due to K&rman. We have

using (5),

du du du d
,

. dv d(u
2
)

d
,

.

'u _ ____ ~-
dx dy dx dy dy dx dy
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Thus integrating (4) from to h,

Now

Thus

f*^j a
f* 2,7 77

a
f* ,7 *3P W

-^-dy + ~\ uz dy-U^-\ udy -- ~-v(-^-} ,

Jo & &> Jo fojo />to \dyV
since du/dy when y = h.

To obtain the boundary layer in the case of streaming past a flat plate

presenting a sharp edge (at x = 0) to the stream, let us follow Lamb in making
the assumption that the velocity distribution obeys the law

(7) "= V W
for this makes u = U, du/dy 0, when y = h and u = 0, d2

u/dy
2 = 0, when

y = 0, the latter condition following from (4), if the pressure gradient dp/dx

is zero outside the boundary layer and therefore inside it. Substitution in

(6) gives, assuming steady motion,

__
ox

,
7,2whence hz =

7^7^
-

r == ,

(4-7T) U

which gives the thickness of the boundary layer.

The traction at the wall is given by the value, when y 0, of

since n =
j. Putting y = 0, this gives

/4 TT

Thus the drag on a length I (from the leading edge), reckoning both sides

of the plate, is obtained by doubling the above and integrating from to l
t

which gives

where -R is the Reynolds number Ul/v.

The coefficient 1-310 thus obtained agrees well with the coefficient T328

obtained by Blasius without the use of Kannan's theorem and the special

assumption (7).
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The theory of the boundary layer serves as a useful guide to experimental

work and gives a qualitative description of viscous motion near a boundary,
but its applications have so far been of a tentative and empirical character.

19-82. Intrinsic equations. Consider a streamline OP and its ortho-

gonal trajectory ON, the motion being steady and two-dimensional, fig. 19-82.

FIG. 19-82.

Take as axes at the tangent and normal to the streamline. The intrinsic

equations for an inviscid liquid have been given in 4-25. It remains to com-

plete them by adding on the right the terms corresponding to v \7
2
v, where

v = u+ iv qe
l

,
6 being the inclination to Ox of the tangent at the point P

of the streamline. We require the values at 0, where 9 = 0. Let ds, dn be

elements of arc of OP and ON, KS ,
Kn the corresponding curvatures at 0. Then

when = 0,

Ka ^ ' ^n ~^T~
* A1SO ~r~

as dn ds

dx . .. dy~ - sin 0,
-~ =

dn dn

Therefore, differentiating and putting 0,

Now, if/ is any function of x and y,

cos 0,
-~- = sin 0,
as

= 0.

as dx ds dy ds dn dx dn dy dn
'

as2 as \dx) ds dx ds2 ds \dy) ds dy

dn* dn \dx) dn dx dn* dn \dy) dn dy

Therefore at we have

a
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^f-iffU* *t_vf. K y
ds*

~
ds \dx)

s

dy~ dx*
'
dn

'

-. = _
dn* dn\dy)

n
dx By*

n
ds'

Hence, on the understanding that 9 is to be made zero after the differentia-

tion, we have

V(je") = (?^) +^(? *)-*.^ (?") + * ^ (?*)

The real and imaginary parts are the required components and we thus

get the intrinsic equations of motion, namely

(2)v *
ds dn

where Q is the potential of the external force.*

To these we must adjoin the equation of continuity, which is (when 6 0)

~
(pq cos 6) -f- ^- (pq sin 6)

= 0, or
c^ic dy

(3) ^jj~+npq
= 0, i.e.

|^
+ Kn? = for a liquid.

From 4-20 the vorticity is

Equation (1) can be written with the aid of (3) and (4) in the form

,5,

and therefore, integrating along a streamline from to s, we get

In a fluid of small viscosity v is small, and therefore the magnitude of F
gives a measure of the range of applicability of Bernoulli's theorem as a first

approximation. In particular, at the boundary of a solid q 0, and then

F =

* The equations of this section are readily obtained by specialising the general intrinsic

method explained in 20-7.
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This last result also applies when the streamlines are straight, for then

KX , Kn vanish.

If we make the approximations of the boundary layer theory, (1) reduces

near the wall to

(6) !jfc
+,jM *,v '

p ds
*
ds ds dn2

provided that the curvatures are not large, and then

With the same approximations, (2) gives

(7)
l^ +^-(t)
pdn att~

U '

Eliminating p/p +Q from (6) and (7) and using (3), we get

d f d*<l *\ *
-tr(v^\+ Kn <? = 0.
dn\ dnz *

Thus, in the boundary layer,

where A is independent of n and is therefore the value of v d2
q/dn

2 on the

boundary.
If Kn is constant, this equation gives

and this admits of further integration in terms of elliptic functions.

EXAMPLES XIX

1. Water flows along a pipe of circular section with velocity q under a pressure

gradient P. Prove that

-
dr\ dr p.'

where r is the distance from the axis, and find the rate of discharge.

2. Viscous fluid flows steadily parallel to the axis in the annular space between
two coaxial cylinders of radii a, na (n > 1).

Show that the rate of discharge is

_ _.
logn J

where P is the pressure gradient. Find the average velocity.
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3. If water flows along a cylindrical pipe of circular section, inclined at an

angle a to the horizontal, prove that the rate of discharge is

Tra4 . _ .

(P+gp since),

where P is the pressure gradient.

4. Show that if a viscous incompressible fluid is flowing steadily in straight
lines along a cylinder whose generators are parallel to the axis of z, the speed w
at any point satisfies the equation

d*w B2w . ^
-=-? + -^rr = constant.
dx* dy

z

Fluid is flowing steadily along a channel of rectangular section of sides 2a and

26, under a pressure gradient P per unit length. Show that the total flow per
second is

1926

If the mean velocity across a section when a = b is F, and R is the drag on
the walls per unit area, deduce that

3-8/ . (U.L.)

5. In the transformation z = c cosh ( + 177),
= is the cross-section of a

solid cylinder which is being dragged longitudinally with constant velocity U
through a pipe whose cross-section is f f t , the intervening space being filled

with liquid, at constant pressure, moving parallel to the axis with velocity u.

Show that V 2w = and that all conditions are satisfied by
u- U&-$[&-(,).

Prove that the drag on the solid cylinder is 27r/x7/( 1 ) per unit length.

6. Prove that the stream function
if*
= C(b

2
y-\y*) corresponds to a steady

stream of liquid in a straight channel of breadth 26, there being no slip at the

boundary.
Show that this stream function satisfies the differential equation of viscous

liquid motion, and calculate the pressure at any point, the coefficient of kinematic

viscosity being v and the density p.

7. Show that in the two-dimensional motion of a viscous liquid the stream

function satisfies the equation

d(x,y)

Hence show that any steady motion for which the streamlines are independent
of the degree of viscosity must be either (1) a motion for which the resultant velocity
and vorticity are each constant along every streamline or (2) a rigid body rotation

superposed upon an irrotational motion.

8. A viscous liquid is bounded by parallel planes at distance h apart. One

plane is fixed and the other moves parallel to itself with simple harmonic motion
a cos nt. Show that the tangential drag per unit area on the fixed plane has the

maximum value

h (cosh o - cos eo)
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9. Show that the circulation / = J(q . ds) round a closed circuit always
composed of the same particles of fluid remains invariable if, and only if,

where Q is a scalar function of position and time t, and that, if Q does not contain

t, then Q 4- \q
2 is constant along the path of a particle.

Prove that, when the body forces are conservative and p is a function of
/o,

the accelerations are certainly derivable from such a function Q if (i) JJL 0, or if

(ii) JJL/P
= constant and V 2

q = 0, and give Q in each case. (U.L.)

10. A viscous incompressible fluid is flowing steadily along a cylinder in straight
lines parallel to the generators and to the axis of z. Show that the velocity at any
point is given by

where
ip

satisfies the equation
-~~ + ~~ 0, and A, B, and C are constants.

If the cross-section of the cylinder be a semicircle and its diameter, and the

fluid be flowing under a constant pressure gradient P per unit length, find the

mean velocity across any section. (U.L.)

11. Incompressible viscous liquid under no body forces moves in a thin film

between the fixed plane z = and the rigid moving surface z = h (x, y). If
( (7, F, W)

are the velocity resolutes of the point (x, y, h) of the moving surface, show that the

differential equation for the pressure at points (x, y, z) is

dx \ dx/ dy V dy/ { dx dy

stating any assumptions made.
The moving surface is plane, unlimited in the ^-direction, inclined at a small

angle a to the plane z = 0, and the leading and trailing edges are at heights h^,

h 2 respectively. Show that, if TT is the pressure at these edges, then, if F = W 0,

gives the pressure at points in the section whose thickness is h. (U.L.)

12. Show that in the steady motion of a viscous liquid of kinematic viscosity v

where s is taken along a streamline.

13. Find an expression for F, the total rate of dissipation of energy in a viscous

fluid. Show that if the boundaries be at rest and there is no slip, the rate of dis-

sipation is given by

F = p (e + r)

2 + f
2
)
dx dy dz.

If the motion is two-dimensional and due entirely to the steady motion of a

cylinder travelling with velocity V at right angles to its generators, find the

appropriate form of F. (U.L.)

14. Obtain the dynamical equations of motion for a fluid, taking viscosity and

compressibility into account.

Show that the rate of doing work of the internal reactions in the fluid is -
jP,

where

_, ^ du ^ dv , dw ^ fdw dv\ ^ fdu dw\ ^ fdv du\F ^. XX +yy + ZZ + yZ
l + \ + ZX l + ] +Xyl + \

dx dy dz \dy dz/ \dz dx/ y \dx dy/
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and that the equation of flow of heat in the fluid takes the form

dy\ dy/ dz\~dzj
' ' Dt

'

where 6 is the absolute temperature, K is the thermal conductivity, p the density,
and c is the specific heat at constant volume.

What other relations are required to obtain a theoretically sufficient set of

equations? (U.L.)

15. A viscous fluid is in two-dimensional motion such that at any instant the

streamlines are circles about the axis of x. Show that the stream function
i/t

satisfies the equation

Examine the form of the solutions corresponding to
i/j
a function of r*/t only.

A simple rectilinear vortex of strength k is generated along the z-axis at time
t = 0. Find the velocity of the fluid at any position distant r from the axis at

time t
;
and show that if a circle with its centre on the axis is to spread outwards

so as to enclose a constant amount of vorticity, the area of the circle must increase

steadily. (U.L.)

16. Viscous incompressible fluid is in steady two-dimensioned radial motion
between two non-parallel plane walls

;
r and < are polar coordinates, r being the

distance from the line of intersection of the planes of the walls, which are
<f>

oc.

Show that the velocity is given by

where (^ - ~
(h

-
Zvkf- 6tf -/),

h and k being constants and v the kinematic viscosity.
If R = rum&x/v> show that for purely divergent flow and a given value of R

the greatest value of a is given by

ri*

l / 1

Jo I'

17. Prove that for viscous liquid filling a closed vessel which is at rest the rate

of dissipation of energy is

C
J

(

J

If the vessel has the form of a solid of revolution and is rotating about its axis

(which is the axis of z) with angular velocity o>, prove that the rate of dissipation
of energy has an additional term

d r)

(lDu + mDv)dS, D s y =--=-," dx dy

and I, m, n are the direction cosines of the inward normal at the element dS of the

surface of the vessel. (U.L.)

18. Incompressible viscous liquid under no body force completely fills the

space between an infinite circular cylindrical axle rotating with angular velocity o>

in an eccentric circular cylindrical bearing. If and 0' are the centres of the

cross-sections, which have radii a, a + e respectively, where e is small, and
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00' = Ae, (0 < A < 1), show that the pressure p at a point P in the liquid satisfies

the approximate equation

dp _ 6/xo>a
2
A(cos0 + C)

dd
~

2
(l+Acos0)

3
'

where 6 is the angle POO', \L is the viscosity, and C is a constant. Neglect the

curvature of the lubricating channel. Find p and show that

C -
3A/(2 + A2

). (U.L.)

19. Transform the equations of motion of a viscous incompressible fluid, and
the equation of continuity, to cylindrical polar coordinates r, 0, z on the assumption
that the pressure p and the components u, v, w of the fluid velocity in the direc-

tions of r, 9 and z increasing, respectively, are all independent of 9.

The fluid fills the space z > 0, being bounded by the plane z = only, and
this plane is rotating with constant angular velocity CD about the axis r = 0.

Verify that the steady motion is given by

where z = (i//cu),

p is the density and v the kinetic viscosity of the fluid
; F, G, H, and P are inde-

pendent of p, v and o> and satisfy certain ordinary differential equations and

JF(0) = 0, 0(0) =
1, #(0) =

0, J(oo )
= 0, (oo )

= 0.

The boundary conditions in the physical problem may be taken as u = 0,

v = o>r, w = at z 0, and u = 0, v = at z = oo
; w must not be taken to

vanish when z = oo . (U.L.)

20. Prove that in polar coordinates the stress components are

21. Obtain the equations for the steady motion of a liquid under pressure only,
in the non-dimensional form

du du du dp\ 1 _ 9

>x-+v-5r +w^-+-+) = ^ V 2
w,

ox dy oz dxj R

where R is the Reynolds number. (U.L.)

22. Obtain the transformation formulae relating the stress components and
slide velocities referred to two different sets of rectangular axes.

Assuming the stresses in a fluid of viscosity ju,
to be given by

xx-oc. = yy-fi zz-y = -p, where -p
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and three equations of the type

_ (dw dv

y-^dj+a
and a, j3, y are linear functions of the slide velocities, show that, if the form of

these equations is invariant for a change of rectangular axes, then

du dv dw

a~2^ =
-2^

= y-2^ = -|M8,

. ^ 3u dv dw
where 8 = 3- 4- 5- + -5-

.

TT Tdz % dz (U.L.)

23. Assuming the stresses in a viscous fluid to be given by equations of the

type

find the equations of motion parallel to the coordinate axes.

24. Prove that the equation of motion of a viscous compressible fluid can be

put in the form

on the assumption that the surface traction contains a term proportional to V cj

in addition to the terms arising when the fluid is incompressible.

25. Assuming that the coefficient of kinematic viscosity in a compressible
viscous fluid is constant, prove that the equation of motion has an integral of

the form

r dp

17'P ^^ dt
3 r

the motion being assumed irrotational.

26. A sphere is in steady motion with velocity V along the axis of Z in an
infinite perfect fluid, while the fluid rotates with constant angular velocity Q
about that axis. Show that the stream function is of the form/(r) sin2 6 in polar
coordinates where /(r) satisfies the equation

r3/'"
- 2r2/" - rf + k*r2

(rf
-
2/)

= 0,

where k = 2/F. Find the integral of this equation that satisfies the
"
no slip

"

condition at the boundary, and discuss the state of flow in the neighbourhood of

the sphere. (U.L.)

27. Verify that the velocity

7 - A grad^ (1/r) + Bx grad (1/r) + {U -
B/r, 0, 0}

satisfies the equations of slow steady motion of an incompressible viscous liquid

(neglecting the so-called inertia terms).
Determine the constants A and B in order that the solution is applicable to the

streaming of infinite liquid past the fixed solid sphere x2
-f y

2 + z2 = a2
,
the velocity

of the stream at a distance being (/, 0, 0), and show that the stream exerts a force
"

upon the sphere in the direction of the stream. (U.L.)
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28. A sphere of radius a is fixed with its centre at the origin in viscous liquid,
whose velocity at infinity is U parallel to Ox. Verify that when the

"
inertia

terms
"
are neglected altogether, the equations of motion and boundary conditions

are satisfied by the velocity components

provided that the pressure p is properly determined. Find the resultant force on
the sphere. (U.L.)

29. Two infinite circular cylinders, of radii a, a', are rotating with uniform

angular velocities co, a/, so as always to be in contact along the z-axis, and are

surrounded by viscous incompressible liquid of density p and viscosity coefficient
fi.

Neglecting inertia terms, prove that all the necessary conditions can be satisfied

by a stream function of the form

and determine the constants A, B, C, D, when the equations of the normal sections

of the cylinders are

r = 2a sin 6, r = - 2a' sin 0,

where (z, r, 6) are cylindrical coordinates.

Examine the case a! a, a>' = - a> more particularly, showing that then

,
. / 4a2 sin20\ . Q

iff
= \oja\r j

sin 6
;

determine the stress components prr , pea , prQ , so far as they depend on /*, and
deduce the tangential stress on one of the cylinders, noting any peculiarity in

your result and discussing its bearing on the validity of the solution. (U.L.)

30. A circular cylinder of internal radius a can rotate freely without friction

about its axis. It is filled with viscous liquid and the whole system is rotating as

if solid about the axis of the cylinder with angular velocity a) . The cylinder
is instantaneously brought to rest at time t ~ and then immediately released.

Show that the angular velocity of the cylinder at time t is

where o>
1
is the final angular velocity of the system when it is again rotating as if

solid and the values of k are the roots of

! + 2}J1 (ka)
- JcaJ (ka) = 0.

State other necessary conditions. It may be assumed that the cylinder is so

long that the disturbing effect of the plane ends is negligible and that the stress

component pr is

where (r, a), z) are cylindrical coordinates. (U.L.)

31, Discuss the approximations made by Oseen in the mathematical discussion

of the flow of viscous fluid past a fixed obstacle at small Reynolds numbers. Find
the equation satisfied by the vorticity on Oseen's theory and explain its physical

significance.
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Verify that, for two-dimensional flow past a cylinder of any section, the equa-
tions of motion and continuity are satisfied by

deb 1 dy d<t> 1 dv ^34*
M== J>:+ *_ x v== r + HT^ p=-pU^~,dx 2k dz

A
dy 2k dy

r r
dx

where k = U/(%v), U is the undisturbed velocity of the stream and is in the direction

of the axis of x, v is the kinematic viscosity and

Assuming that solutions for
</>, x can be found that make u, v vanish at the

surface of the cylinder, prove that the drag force on the cylinder per unit length is

taken round the boundary of the cylinder and dn is an element of outward
normal. (U.L.)

32. State the arguments by which Oseen reduced the equations of motion of a

viscous liquid, moving at a great distance from a fixed solid body with velocity U
parallel to Ox, to the form

U ^~ (u, v, w) = - - V p + v V 2
(u, v, w).

OX p

Writing U 2vk, verify that these equations are satisfied by

where V 2
^ =

0, v2 - 2A;

Discuss the solution

n=0

where /Sn is a spherical surface harmonic of order n and Kn+i
is the Bessel function

of the second kind of half integral order.

Explain how the terms involving x account for the wake behind the solid. (U.L.)

33. In Oseen's approximation, if
</>

is the velocity potential of the irrotational

motion outside the wake, prove that the drag on any body of revolution, with its

axis parallel to a steady stream of liquid of density p, is

where the integral is over the surface of the body and U is the undisturbed velocity
of the stream. (M.T.)

34. A sphere of radius a moves with constant velocity U along the s-axis

through a viscous liquid at rest at infinity. Verify that, on Oseen's hypothesis, the

stream function is
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35. Obtain the approximate equations of motion for the two-dimensional

steady flow of an incompressible, slightly viscous fluid in a boundary layer along
a plane wall in the form

flu ou dU o^u ddt odt

ox dy
~~

dx dy
2

'
~

dy
' ~~

dx
'

where U is the velocity in the main stream just outside the boundary layer.

Fluid is flowing between two non-parallel plane walls, towards the intersection

of the planes, so that, if x is measured along a wall from the intersection of the

planes, U is negative and inversely proportional to x. Verify that a solution of

the differential equations may be obtained in which is a function of y/x only and
hence obtain the solution

~ = 3 tanh2

where tanh2a =
f ,

for the velocity u in the boundary layer along one of the

walls. (U.L.)

36. A jet of air issues from a small hole in a wall, and mixes with the surround-

ing air. Write down equations to determine approximately the velocity in the jet
at some distance from the hole, on the assumptions that the compressibility of the

air may be neglected and that the motion is laminar and symmetrical about an
axis. If M is the rate at which momentum flows across a section of the jet, ju,

is

the viscosity and p the density of the air, and if the axis of x is along the jet and y
is the distance from that axis, prove that the velocity in the jet parallel to the axis

is given by -" -

p l/3M\y
where = -- J( )2.

37. A jet of air issues from a straight narrow slit in a wall, and mixes with the

surrounding air. On the assumptions that the compressibility of the air may be

neglected, that the motion is steady (non-turbulent) and two-dimensional, and
that the approximations of the boundary layer theory may be applied, show that

at some distance from the slit the velocity along the axis of the jet is

where M denotes the rate at which momentum flows across unit length of a section

of the jet. The axis of x is along, and the axis of y perpendicular to, the axis of

the jet.

Find the flux across a section of the jet. (M.T.)



CHAPTER XX

SUBSONIC AND SUPERSONIC FLOW

20*0. With a few exceptions, the preceding investigations have been

concerned with liquids or incompressible fluid, typically water. The Mach

number (1-63) has been taken equal to zero.

In this chapter we shall be concerned with compressible fluids, typically

air. The fluid will be assumed inviscid. The most important consequence of

viscosity is probably the drag due to the skin friction in the boundary layer.

External forces will be neglected, which implies, as explained in 144, that we

are concerned only with hydrodynamic, or here more appropriately aero-

dynamic, pressure.

20-01. Thermodynamical considerations. Consider a unit mass of

gas, volume v, density p, so that

(1) vp = I.

Let T be the absolute temperature (temperature measured from the absolute

zero, about - 273 C.) of the gas. The gas is said to be perfect if it obeys the

law,

(2) pv = RT, or p = RpT,

where p is the pressure and R is a constant. Thus of the four quantities

p, v, p, T only two are independent.

Logarithmic differentiation of (2) gives the relations

dp dv _dT dp _ dp dT
(6) 7+~T' 7~7~f

~"r~*

We shall consider only a perfect gas.

The first law of thermodynamics asserts that heat is a form of energy.

Let us imagine our unit mass of gas to receive a small quantity q of heat.

Hypothesis. For all gases, in mean motion or not, there exists an internal

energy function E, independent of the mean motion and dependent only on the

variables of state p, p, T, such that, when a small quantity of heat q is com-

municated to the gas,

(4) q = dE + pdv.

2Q M.T.H.
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The quantity dE is the excess of the energy supplied over the mechanical

work done by the pressure.

Hypothesis. In a perfect gas the internal energy E is a function of the

absolute temperature T alone.

This hypothesis is a generalisation from the results of experiment. It is

also known as Joule's law. It follows that

(5)

and (4) now becomes

(6) q

If, in communicating the small quantity q of heat to the gas, the expansion

is prevented (dv = 0), the temperature of the gas will rise, say dT, and we can

write

q = cvdT.

The quantity cv is called the specific heat at constant volume. It is the quantity

of heat required to raise the temperature one unit when the volume is kept

constant. Putting dv in (6) therefore gives

(7) k = Or

We similarly define cv , the specific heat at constant pressure, as the quantity

of heat required to raise the temperature one unit when the pressure is kept

constant. Now, ifp is constant, (3) gives dv/v = dT/T, and therefore from (6)

and therefore

c9 = k+R = cv+R
from (7).

We therefore conclude that

(8) X =
(c,-c.).

Hypothesis. In a perfect gas c^ cv are constant.

This is also based on the results of experiment.

In the above we have denoted the small quantity of heat by q and not by
what would seem the more natural notation dQ. The reason for this is that

there is, in general, no function Q of which q is an exact differential. We can,

however, write

(9) q = TdS
9

where dS is the differential of a function S called the entropy.

To justify (9), observe that (6) and (7) give

70 dT p .. dp dv
- t--
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using (2) and (8) which proves that dS is an exact differential. Now write

(10) y = c,lev ,

and we get at once

dS = cvd log (pv
Y
).

If the state changes from (pt , vj to (pz , -y^, the increase of entropy is

therefore

(11) * S2
- S1

= cv log (piV) - ^ log fav?).

The second law of thermodynamics asserts that the entropy of an isolated

system can never decrease, i.e. dS ^ 0.

If the entropy retains the same constant value throughout the fluid, the

flow is said to be homentropic. The condition for homentropic flow is therefore

dS = 0. It follows from (11) that, if the flow is homentropic,

(12) pvv /c, or p = Kpv ,

where K is a constant which depends on the entropy. This is the adiabatic law

(cf. 1-62).

The steady flow of gas is governed by the equations of motion and continuity

in the form

(13)

and, as there are three unknowns p, p, q, these equations are insufficient to

determine the motion. In the case of homentropic flow, however, we can adjoin

the adiabatic relation (12) and so obtain a determinate system of equations.

To calculate the internal energy we have

ft y I

and thus, save for an added constant, we have the alternative forms

'-iS-rfi^r.
The enthalpy or total heat I is the heat which communicated to a unit mass

of a perfect gas will raise the temperature, at constant pressure, from absolute

zero to the present temperature.

Thus from (4), since p is constant,

(15) /

and therefore from (4) and (9)

(16)

In the isentropic case, where S is constant along a streamline but not

necessarily the same constant on different streamlines, we have

(17) dl = along a streamline.
p
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20' I. Crocco's equation. From 1'62 Bernoulli's equation in terms of

the enthalpy, 20-01, can be written

(1) / + J#
2 = //, constant along a streamline.

The function H is the total energy or stagnation enthalpy (i.e. the enthalpy

at q = 0) of the streamline. In general H has different values on different

streamlines. Flow in which H has the same value everywhere is called

homenergic.

Now from 343 (3) the equation of steady motion under no forces is

(2)

Eliminating p and q with the aid of 20-01 (16) we get Crocco's equation

(3) q A $ = VH-rvS.
Thus, neglecting viscosity and heat conduction, we shall find vorticity in

the field of flow whenever the distribution of the total energy H or the entropy

S is not uniform. This can happen, for example, when the fluid starts from

a state of rest but of non-uniform temperature, or downstream of a curved

shock line (20-6).

From (3) it follows that steady irrotational flow if homenergic, is also

homentropic, and if homentropic, also homenergic.

20*12. Addition of a constant velocity. Let F be a given two-dimen-

sional flow in the a), y plane. If this flow is referred to cartesian axes x, y, z

which are moving uniformly with velocity
- V in the direction of the z-axis,

the flow F' as viewed from the moving axes differs from F by the addition of

a constant velocity V normal to the plane of the motion at every point. The

velocity components u, v and the pressure, temperature, and density are the

same functions of x, y, and the time as for the flow F. The addition of this

constant velocity has no effect on the acceleration of the fluid particles or the

\&articity.*

Thus, for example, the above addition to the flow pattern for the com-

pressible vortex of 13-8 leads to a spiral flow about an axis. The streamlines

are helices on coaxial cylinders, any pair of which may be taken as boundaries.

This instance has some interest in connection with the flow of gases in an

exhaust pipe. The method has also been applied to a side-slipping or swept-
back supersonic aerofoil and to an oblique shock wave.

20*13. Steady motion. Neglecting viscosity, heat conduction and heat

radiation, we have for the steady flow of a gas the following set of equations :

(1) V(p*\) 0, equation of continuity,

* H. Poritsky, Journal of Applied Mechanics, 13 (1946), pp. 53-60.
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(2) (q \7) q = - - V P> equation of motion,

(3) p f(p, $), equation of state,

where S is the entropy.

These are three equations for
/>, p, q, S. To obtain a determinate problem

a fourth condition is required. Such a condition can be obtained by supposing

the flow to be isentropic. Then

(4) (q V) S = 0, entropy constant along a streamline.

It is convenient to write

(5) c2 = -?
(S constant),

dp

where c is the local sound speed (14-86). We then get from (3)

(6)

Taking the scalar product by q, and using (4) and (1),

(7) (qV)l> = qc
2
V/> = -cVVq-

Now (q V)q = V(i?
2
)-q A fr m 2 '34

(
IV)- Take tlie scalar

of (2) by q and use (7). Then since q and q A are perpendicular,

(8) qV(^2
)
= 2Vq-

This is the equation satisfied by the velocity, and we may regard c2 as

defined by Bernoulli's equation, 1-63 (4),

(9) e2 = J(y -l)(gLx-</
2
)

along a streamline, which holds on account of (4).

20-2. Steady irrotational motion. Here we have 20-13 (8) together

with q -
\7 <f>.

Thus in cartesian coordinates

+ 2UV -+ 2w ^~1~ + 2tw ^-^- = 0,
ox oy oy oz oz ox

where

(2) tt = -a-' v =
-;>-'

W = -T ;

dx dy oz

If the values given by (2) and (3) are substituted in (1), we get the non-

linear equation satisfied by the velocity potential for compressible flow.

In the case of incompressible fluid (c
= co

) this equation reduces to Laplace's

equation.
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Simple examples of steady irrotational motion have already been given for

the source (8*9) and the vortex (13*8).

Considerable progress is possible with the linearised theory, in which small

perturbations of a uniform stream by an immersed slender obstacle are con-

sidered.*

20-3. The hodograph method. Consider two-dimensional steady

motion. Let PQR be an arc of a curve in the plane of the flow, the (x, y) plane,

which may be conveniently called the physical plane. From the points P, Q, R,

. . .
,
draw vectors PPl , QQ , RR . . .

,
to represent the fluid velocity at these

points. From a fixed point H draw vectors HP', HQ' ,
HR f

,
. . . , equal and

parallel to these velocity vectors. The points P', Q', R', . . .
,
describe the

\e

Q x H u

Plane of the flow. Hodograph plane.

FIG. 20-3.

hodograph of the given curve PQR, and the plane of this curve is the hodograph

plane of the given motion. If we take the axis Hu in the hodograph plane

parallel to Ox in the plane of the flow, the velocity at P will be

u+iv qe
ld

,

and P f
will have cartesian coordinates (u, v) or polar coordinates (q, 6).

We have seen in 20-2 that the velocity potential of an irrotational com-

pressible flow satisfies a non-linear differential equation. We shall show that if

(q, 6) or (u, v) are taken as variables, the equation becomes linear.

It is useful to introduce the stream function
ifj.

The equation of continuity

is, in the case of steady motion,

d(pu) d(pv) =
dx dy

and we can satisfy this by taking

n \ d*/i *^A
\*) Pu ~

Po ~~r > Pv
~

Po ^r

* Milne-Thomson, Theoretical Aerodynamic*, 3rd Edition, London (1958), Chapters XV, XX.
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where pQ is any constant, which may be conveniently identified with the

density, say, in the main stream, when we consider flow past an aerofoil. The

function
tfj

is the stream function. Thus if
<f>

is the velocity potential, we have

-dd) = udx + vdy,
- d$ =
P

and therefore, as is easily verified,

so that

(2) <fe=-

If suffixes denote partial differentiation, z,
=

Sz/dq, we have at once

and since z^ = zt, ,
we get

9 *

Performing the differentiations and equating the real and imaginary parts,

we get, observing that p is a function of q only,

(3) <t>Q
=

qtffe -,

These are the hodograph equations. To get the equation satisfied by the

stream function since
</>Q0 (f>Qq ,

we have

since p is independent of 0.

Now
d

(^ W

using Bernoulli's theorem 1-61 (3) and c2 = dp/dp.
We then find that (4) becomes finally

(5) ^^(LM^.d-M^^, M =
|.

This is the linear equation satisfied by the stream function. The equation is

due to Chaplygin.*

* See also R. Sauer, Theoretische Einfuhrung in die Qasdynamik, Berlin (1943), p. 94.
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20-31. The hodograph equations for homentropicflow. Assuming the

adiabatic relation p/p (p/p )
v

>
introduce the non-dimensional speed variable

(1) r = -f-> )8
=

(
= 2-5 for air).

?max y 1

Observe that < r < 1, and that M2
=2j8r/(l

-
r).

It is then easy to show that Bernoulli's equation can be exhibited in the

form

(2) p = ft,(l-T),

and that the hodograph equations become

(3) 2r (1 -r)*+Vr = -
{1
- (20+ I)T}& , (1 -r)^ - 2r&.

The elimination of
(f>

leads now to Chaplygin's equation, 20-3 (5), in the

new variables, namely,

(4) 2r(l
- r)^ ~ {2r(l

-
r)-tyr} + {1

-
(2)3 + l)r}^ - 0.

Since this is a linear equation for
i/r,

we can seek to build up solutions by

superposition by addition of elementary solutions of the type

(5) j = 5mr*"> Fm (r) sin (mO+ ej,

where Bm ,
em are arbitrary constants. Substitution in (4) leads to the hyper-

geometric equation

(6) r(I-T)F^(T) + {m + l-(m+I~p)T}F'm (T) + %m(m + l)ftFm (r) = 0,

which is satisfied by the hypergeometric function *

where a + 6 = m-j3, c = m+ 1,

The corresponding value of
<f>

is then found from (3) to be

(7) $ = -B.T*-(l-T)

There are solutions in compact form when m or - 1. The case m =
is exceptional. To solve (3) we can then assume

(8) tfi
= AO or

</>
= 50,

which lead respectively to < and
ift

as functions of T alone. In the physical

plane the source (8-9) and the vortex (13-8) are comprised in the solution (8),

and more generally the type of spiral flow obtained by combining a source

and vortex, which was discussed in the case of a liquid in 13*33.f

* Milne-Thomson, Calculus of Finite. Differences, London ( 1959), 9-8.

f Considerable progress has been made by S. Bergman in the elucidation of steady isentropio
Eows. See in particular, N.A.C.A. Technical Notes, Nos. 972, 973, 1018, 1096. See also M. J.

Lighthill, the hodograph transformation in trans-sonic flow, Proc. Roy. Soc. A) 191 (1947),

pp. 323-369.
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20*32. The case m = - 1. In this case 20-31 (6) becomes

617

whence F^ (r)
= A (I

-r)W+ B,

so that there is a pair of fundamental solutions

(1) **i(T) = l, P*l(r) = (l-T)**.

Corresponding with the first, we get from 20-31 (5), (7),

(2) T~i sin ft ^ = -T)-* cos ft

where we have put e^ = as is clearly permissible and written the constant

JB.t as

FIG. 20-32.

The second solution of (1) above leads similarly to

(3) T~i{l + (28+ l)r> cos .
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The flows given by (2) and (3) degenerate into an incompressible flow when

(
an(l therefore r->0), given by

(4) *=-

If w is the complex potential of (4), we get

. ., -A Adz
W = t + l+ = 2^-2d^>

and therefore ivz Az, whence

Thus the curves $ = constant are confocal parabolas (cf. Ex. VI, 20).

If we take two of these parabolas, say (a) and (b) in fig. 20-32, as boundaries

we get the flow of a liquid in a curved two-dimensional channel or nozzle. The

nozzle converges from A* , where the speed is zero, to its narrowest part at C
and then diverges to B^ , where the speed is again zero. We might therefore

expect (2) and (3) to give a somewhat similar type of flow. The flow (2) has

been discussed by Ringleb,* and the flow (3) by Temple.

20-33. Compressible flow in a convergent-divergent nozzle. We
shall discuss 20-32 (2). It is convenient to replace A by 4og iax 8 that

(1) </r
= -

2a?maxr-i sin 0, ^ = -
2agmaxT~i(l -T)-* cos 0.

From Bernoulli's equation in the form 20-31 (2) we have

p

and therefore from 20-3 (2), after some reduction,

dz = 2a^V-Ml-r)-0e
2
^0H4j3T-

1
(l^^

and therefore on integration

(2)
? = T-(1-

where a is an arbitrary constant lying between and 1. The choice of this con-

stant merely determines the position of the origin in the physical plane.

The streamlines
tj/
= constant are now obtained by eliminating r and

between (2) and the first equation of (1). If we write

(3) X = X(r) = ajS [ r~l
(l -T)-*-

I
&T, R = R(r) = ar~l (l -T)-*,

J at

* F. Ringleb,
"
ExakteLdsungenderDifferentialgleichungemeradiabatischenOasstrbmung

"

Z a.M.M., 20 (1940), pp. 186-198.
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equation (2) gives

(4) z^X+Re,
and therefore on elimination of 6

(5) (z-X)(z-X) = fl,

so that the curves of constant speed (r
= constant) are circles whose centres

z = X(r) are on the real axis and whose radii are R(r). Also

dX _ aft dR
__ or(j3+l)-o

( '
dr

~
r(I-r)*-*' dr

~~

r^l-r)^1
*

Thus as T increases from zero X always increases, while R decreases to a

minimum value when r = 1/(1 4- /?) and thereafter increases.

The condition that consecutive circles of the system (5) corresponding to

values r and r 4- 8r shall intersect is easily seen from a diagram to be

-SZ<S#<SZ.

The values (6) show that this implies

* 2

no using 20-31 (1) and 1-63 (3). Thus in the supersonic region consecutive

circles of constant speed always intersect, in the subsonic region never. The

critical case occurs where consecutive circles touch, and therefore the envelope

of the system (5) separates the z-plane into two regions, one in which con-

secutive circles of constant speed intersect and one in which they do not.

To find the envelope, differentiate (5) with respect to r. This gives

2R <f = ,_^ (z+ j_2Z) = -2R~coS 2e
dr dr dr

from (4), and therefore using (6),

(7) --= 1+0(1 + cos 20),

and the envelope is then given by (7) and the two equations implied by (4).

If in (4) we regard r as the function of 6 given by (7), at a singular point of

the envelope we must have dz/dO = 0, which gives after a simple reduction

cos 20 = -
l/(2j8).

The corresponding value of r from (7) is

(8) r

At this point of the envelope two consecutive circles of constant speed

touch, and therefore the singularity is a cusp. By the symmetry there are
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two such cusps, optical images in the x-axis. The envelope is indicated by
in fig. 20-33 (i).

FIG. 20-33 (i).

In the hodograph plane if we take (r, 9) as polar coordinates, the envelope

is the ellipse given by (7), while a streamline
i//

constant is given by the first

of equations (1). Eliminating between (1) and (7), we get for r the quadratic

and so to each value of there correspond two values of r, a physically impos-

sible r6gime characteristic of the region where consecutive circles of constant

speed intersect ; a streamline such as (p) in fig. 20-33 (i) turns back at the

envelope.

These values are, however, imaginary if

(10)
2

;
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The critical case arises when inequality is replaced by equality or

V *-*/ "n
~=

t/oo\ ~~ A*t>4:^,

taking ($ 2-5, the case of air. This streamline in the hodograph plane is

(12)
20+1 sin*

which passes through the cusps of the envelope where r is given by (8) and

cos 26 = -
1/(2).

The heavy line in fig. 20-33 (i) shows this streamline, which touches the

envelope at the cusps and passes into the region behind it. The region to the

right (in the figure) of this streamline is a forbidden region, in which no flow is

FIG. 20-33 (ii).

physically possible. To obtain a nozzle, we can take as rigid boundaries any
two streamlines to the left of this critical streamline.

We also observe that the circle of constant speed on which q = c* is given

by the value r = l/(2/?+ 1), and the flow in the part of the nozzle (shaded in

fig. 20-33 (i)) interior to this circle is supersonic. Thus Bingleb's solution,
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besides satisfying the hodograph equations exactly, gives an example of a com-

pressible flow in which the regime can pass from subsonic to supersonic and

back without shock.

It also appears from (12) that the maximum speed attainable on the critical

streamline occurs when 9 = n/2 and

Thus the maximum local Mach number attainable in this type of flow is

= 2-5 for air.

A similar discussion can be made of the solution 20-32 (3).

Here the curves of constant speed are found to be trochoids which have a

two-cusped envelope. A critical streamline passes through the cusps and

separates a forbidden from a permitted region of flow. In this case also the

flow passes from subsonic to supersonic and back without shock. The maximum
Mach number attainable is about 2 for air.

Comparing the figures of this section with fig. 20-32, we see that in the

incompressible case the forbidden region degenerates into a straight barrier.

20*4. Moving disturbance. Before considering supersonic flow let us

examine a special problem. Let a feeble instantaneous disturbance such as a

cry originate at a point P in air otherwise at

r^t.

Such a disturbance will spread in a spherical

wave, with P as centre, with the speed of sound

c, so that at times t, 2t, 3^, ... the disturbance

will have reached points which lie on concentric

spheres, centre P, radii ct, 2ct, 3c, ... If, how-

ever, the air is in motion with velocity V from

right to left, the points reached by the dis-

turbance at time nt will lie on a sphere of

FIG. 20-4 (i).
radius net whose centre is at distance Vnt from

P. If F<c these spheres will not intersect, and

it is clear from fig. 20-4 (ii) that the disturbance will ultimately reach any

pre-assigned point of space.

But when V> c the state of affairs is different, fig. 20-4 (iii), for then the dis-

turbance never reaches points which lie outside a cone whose vertex is P, whose

axis is in the direction of F, and whose angle is 2/4, where sin p, c/V = l/M.
The angle /x is called the Mach angle and the cone is the Mach cone.

In two-dimensional motion the Mach cone is replaced by a wedge and the

lines in which the plane of the motion cuts the wedge are Mach lines.
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A similar phenomenon is observed when uniform flow V(>c) takes place

parallel to a wall which is smooth save for a small roughness (such as a projecting

seam) at P. Here a disturbance originates at P and is continually renewed as

the oncoming air reaches P. The waves continually generated at P give a

Fi. 20-4 (ii). FIG. 20-4 (iii).

noticeable disturbance only where they lie most densely, i.e. on w, the Mach
line which issues from P. In the steady state the disturbance at every point of

m is the same
;
the disturbance is not damped, at least in theory, as we recede

from the wall along m. If there are several such roughnesses, each will give rise

-.
^L.

V-
///-.

FIG. 20-4 (iv).

to a Mach line. Along such a line there is air density slightly different from
the density of the smooth flow, and this circumstance renders it possible to

photograph the lines whose existence is thus well attested.

From this it appears that supersonic flow, in which the airspeed exceeds the

critical value, is physically different from subsonic flow. This manifests itself

mathematically by the change of the differential equations from the elliptic

to the hyperbolic type.
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20*41. Characteristics. Consider a geometrical surface C conceived to

be moving through the fluid. Let the point P belonging to the surface have

the velocity qc ,
and let q be the velocity of the fluid particle with which P

instantaneously coincides. The velocity of the point P of the surface relative

to the fluid is then qc - q.

Def. A characteristic is a surface which moves through the fluid in such a

way that the magnitude of the component of the velocity of each point P of

the surface relative to the fluid in the direction of the normal to the surface

at P is equal to the local speed of sound at P.

In symbols

n(qo-q) =c,
where c is the speed of sound at P, and n is the unit normal to the surface at P.

Since small disturbances are propagated with the speed of sound (14-86), it

follows that the wave front of such a small disturbance is a characteristic.*

20-42. Characteristics for stead/ motion. In the case of two-dimen-

sional steady motion, with which alone we shall be concerned,f the character

FIG. 20-42 (i).

istics will be cylindrical surfaces represented by a curve in the plane of the

motion and will be at rest. Thus

(1) nq=c, or qn =c,
where qn is the normal component of the fluid velocity.

* T. Levi-Civita, Caratteristiche e propagazione ondosa, Bologna (1931).

f The theory of characteristics can be applied also to steady axisymmetrical motions,

implicity of exposition the two-dimensional case only is discussed.

For
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Thus ifPTl is the tangent to a characteristic C1 and ifPQ is the fluid velocity

vector at P, the projection of PQ on the normal at P is equal to c. If then ft

is the acute angle between the tangent to the characteristic and the fluid

velocity,

(2)

and the angle /x is called the Mach angle at P (cf. 204).

It is clear from (2) that the Mach angle can exist only if the Mach number

M ^ 1. Thus real characteristics in the sense of the definition exist only where

the flow is supersonic. It is also clear from the figure and from (2) that there

are two possible directions for the tangent to the characteristic at P, namely,

PTt and TZP, each making the angle p, with PQ. Thus exactly two charac-

teristics pass through each point

of fluid in supersonic motion. f
v

The directions of the character-

istics are readily found by means

of the adiabatic ellipse whose

equation in the hodograph plane

(cartesian coordinates u, v) is

+ 7^2
- L FIG. 20-42 (ii).

To use this ellipse
* to determine the directions of the tangents to the

characteristics at a point P, draw the velocity vector PQ = q at P and place

the ellipse with its centre at P and so

that it passes through Q. This can be

done in two ways, and in each case the

major axis is along the tangent to the

corresponding characteristic at P.

As to the sense of the tangents to the

characteristics, we can conveniently take

the positive sense of the normal to be

that which makes an acute angle with

the velocity vector, and the positive sense

on the tangents P2\ and PT2 to be that

obtained by giving the normal a counter-

clockwise rotation of one right angle.

With this convention, PT in fig. 2042

(iii) makes the angle /x with q and PT% the angle TT ft.

* Since 1-63 shows that c*/gmax = \/\(y
-

l)/(y + 1)]. when y is given all adiabatic ellipses
are similar.

2a M.T.H.

FIG. 20-42 (iii).
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The corresponding tangential components of the velocity are q cos p =
t,

and -
q cos

ju,
= -

1.

The normal components by definition are then both c, and therefore

Bernoulli's theorem, 1-63 (4), gives

(3) C2 = &2
(<&ax

-
q
2
COSV)

- *2

The Mach lines of 20*4 are the same as the characteristics of this section,

and indeed for steady flow the terms Mach line and characteristic are inter-

changeable.

20-43. Variation of speed along a characteristic. For steady two-

dimensional flow the equation of continuity, 19-82 (3), can be written

where ds is an element of arc of a streamline and Kn = ddjdn is the curvature

at this element of the orthogonal trajectory. Here 6 is the angle which the

tangent to the streamline makes with some arbitrarily chosen fixed direction.

If in addition the flow is irrotationai, = and therefore, 19-82 (4),

where KS dO/ds is the curvature of the streamline. We now assume that the

flow is also homenergic. It then follows from Crocco's equation (20-1) that the

flow is also homentropic. Thus 1-61 (3)

p p

holds not only along a streamline, but for variation in any direction.

From (1) and (3) we get successively

K a^-- = _
nV

ds p ds ~ds c2 ds
'

(4) -^=
Kn q tanV = q tan2

/*^ -

Now consider the variation of the speed q as we proceed from P to an

adjacent point R of the characteristic whose tangent PTl makes the acute

angle /* with the tangent PS to the streamline through P. From (2) and (4)

jda = ~ -~ ,,-=- ~
ds dn *

\
^ dn *

ds
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Now from fig. 2043, dn = ds tan
/A,

and therefore

627

that is to say,

(5)

(W . BO \
da q tan u, I -z dn -f -^- as ) =7 tan LU/#,

\dn ds J

add~ = cot ft along PTj.

Fj(}. 20-43.

For the other characteristic through P we get, by writing TT
/x,

for /x,

(6)
^~ cot

/u, along PT2 .

20-44. Characteristic coordinates. Consider the characteristic whose

tangent PTl makes the angle ft with the velocity at P. If t is the component
of q along PTl ,

we have t q cos
/z,

and therefore

dt = cos p-dq-q sin fj,dfi
= q sin /x(d#

-
d/u,)

from 2043 (5). Using 2042 (3) and observing that q sin
/it
= c, we get

, dt dt

Q 1 . . t -
-

JLA
= 7 Sin""1 --- TT 4- a,

^ ^max

where a \TT is an arbitrary constant of integration. When q = c*, the critical

sound speed, /x
= TT and therefore = a. Using 2042 (3) again we get

t kt
sin-i- tan"1 = tan"1

(A; co
9Wx c
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so that

(1)
=

ft -1-7 tarr
1
(& cot ft)-|7r-{-a.

K

Again, from Bernoulli's theorem 1-63 (4), putting c = q sin
/LI
we get

(2) ?= f^-1+-
r _-r

It follows that (1) and (2) give the polar coordinates (q, 6) of points on the

hodograph of a characteristic which makes an acute angle p with q ;
the dif-

ferent characteristics of this system being obtained by varying a. Writing

(3) /(ft)
=

ft+ r tan-1
(k cot ft)

- fa

we observe that/(7r- p) -/(ft), and (1) becomes

while the corresponding equation for the system of characteristics which make

the angle 77 - ft with q is

(5) *+/(,*) = j8.

Thus taken in conjunction (4) and (5) are the equations of the hodographs

of the two families of characteristics. On a member of the first family a is

constant
;
on a member of the second family ]8

is constant. Thus a, )3
are

curvilinear coordinates. Given a and
jS,

a point in the field of flow is determined

by the intersection of the two corresponding characteristics
;
and to each

point in the field there corresponds a pair of numbers a, /?.
Thus if a, ]8 are

known at each point of the field, the flow is thereby completely determined,

for the characteristics can be plotted and the streamlines obtained as explained

below.

The practical application of the method is facilitated by a change of nota-

tion. Let

D = number of degrees in radians,

P = 1000- [number of degrees in /(ft) radians].

Then (4) and (5) may be replaced by

(6) P+D = 2A, P-D^W,
where A and B are new constants of integration. Thus

(7) P = A + B, D = A~B.

Observe that when P is given, JJL
can be determined from (3), and therefore

q
2 from (2), and hence the pressure. For this reason Busemann calls P the
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pressure number. The term direction number is applied to D by Temple
*

; it

is the angle between the local direction of flow and some arbitrarily fixed line.

To carry out the method for an actual flow of air (y = 1*405) all that is

required is contained in the following table of corresponding values of P, p/pQ ,

and
JJL.

TABLE

20-45. Straight-walled nozzle. Fig. 20-45 (i) shows some of the

characteristics and streamlines for supersonic flow through a divergent two-

dimensional nozzle with straight walls. Such a flow could be regarded as due

to a source (8-9) placed at the intersection of the walls. The (slightly curved)

characteristics divide the field into diamond-shaped cells.

Through a vertex of each cell there pass two characteristics. Along one A
is constant, along the other B is constant.

An approximate representation of the field of flow will be obtained if the

curved sides of each cell are replaced by straight lines. A curved side, which

is an arc of a characteristic of the system A = constant, joins two vertices

whose coordinates are, say, A, B and A, B-.
* G. Temple, "The method of characteristics in supersonic flow", R. and M. t No. 2091

(1944). The present account of the method, which was originated by Busemann, is based on
this paper
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To a degree of approximation which depends on the smallness of e, the

straight line joining these vertices will be parallel to that characteristic of the

system A constant which passes through the point whose coordinates are

FIG. 20-45 (i).

A, B-\. The angle between this line and the local direction of flow is the

Mach angle p, which corresponds to the pressure number P ~ A + B-^. The

local direction of flow is obtained from the direction number D = A B-\-\e.

Similarly the straight line

which joins the points A, B and

A-, B is approximately par-

allel to the characteristic of the

system B = constant which passes

through A -
Je, B. The angle it

makes with the local direction of

flow is the value of
JJL
which cor-

responds to P A -fB -
e, and

the local direction of flow is ob-

tained from D = A B~^.
To draw a diagram such as fig. 2045 (i), let us follow Temple in supposing

that we are given the value of the pressure at the section VZ, fig. 2045 (iii),

of the nozzle to be p 0449 ^ - Then from the table the corresponding pres-

sure number is 998. Let us further suppose that the walls are inclined at 16.

Divide the arc VZ into four equal parts at the points W , X, Y.

Then if we take the line of the nozzle wall through V as the initial line from

FIG. 20-45 (ii).
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which directions are measured, the direction numbers at F, W , X, Y, Z are

0, 4, 8, 12, 16. Thus the coordinates of these points are respectively (499, 499),

(501, 497), (503, 495), (505, 493), (507, 491).

The next step is to draw the lines VWl , WiW, WXl , X^X, and so on. It

will be sufficient to show how to determine

a typical point, say X^.

The point Xt lies on a characteristic

A constant through W (501, 497) and on

a characteristic B constant through X
(503, 495). Therefore Xl is the point (501,

495). Hence WXt has the same direction

as the characteristic of the system A = con-

stant which passes through the point (501,

496).

The pressure number for this point is

P = 501 + 496 = 997 and the direction

number is D 501 - 496 = 5. From the

table the corresponding Mach angle is

p 58 -18. Using a protractor, we draw

through W a line which makes the angle

D + n = 5 + 58-18 with the direction of

the wall through V. Similarly through X
we draw the line in the direction of the characteristic of the system B = con-

stant which passes through (502, 495). These lines determine Xl by their

intersection. When Vly W1} Xlf Y1} Z l are determined, we proceed to find

W2 , X2 , Y2 , Z2 , and so on.

This illustrates the method for straight walls. If the walls are curved, we

replace them by an approximating polygon in which the directions of successive

sides differ by the chosen standard amount e.

The application of the method is limited to continuous flow free from shock

waves, whose presence will be indicated by the intersection of neighbouring

characteristics of the same system and the appearance of an envelope of these

characteristics.

20-5. Flow round a corner. Consider fluid streaming with constant

supersonic speed F parallel to a straight wall AB, which bends away from the

stream into a second straight part BC at the corner B. In the uniform stream

the Mach angle is given by sin /*
= c /F and is therefore known. Thus the

flow will begin to turn the corner along a straight characteristic or Mach line,

m in fig. 20*5. Assuming for the moment that the final state is uniform flow

of speed Vl parallel to BC, the turn will be completed at a second straight

FIG. 20-45 (iii).
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Mach line mv The method of characteristics then shows at once that all the

Mach lines issuing from B are straight and that the velocity at each point of

any one of them, say m, is the same. If
<f>

is the velocity potential, it follows

that

c
FIG. 20-5.

are independent of r. Moreover, since w is a characteristic qe = c, and there-

fore Bernoulli's theorem, 1-63 (4) gives

Since qr , qe are independent of r, we try to satisfy (1) and (2) by assuming

(3)
< = ifW,

where f(B) is independent of r. Substitution in (2) then gives, using 2042 (4),

~

This equation has the obvious solution

where c is an arbitrary constant, and so

(4) qr
= ^max sin (W + c), & - c* cos (IcO + c),

since c* = ^max -

Let us measure 6 from the initial Mach line m . Then when = 0,

gmax sin e = 7 cos /^o >
c* cos e = F sin /z ,

so that

(5) tan = A; cot ^ = kJ(M -
1),

where If is the Mach number of the oncoming stream F .
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To find the position of ml we have, on this line, 6 = Ql
=

/i + a - /*i > where

a is the angle EG makes with AB, i.e. the angle through which the oncoming
stream has been deflected. Then

(6) F! cos /^ = gmax sin (W^ c), Ft sin /^ = c* cos (kB^e).

By division an equation is obtained to give^ ,
and Fa is then found from (6).

To determine the pressure, we have

W = c2 = qe
* = c* 2 cos2 (JW+c).

P

Now ^ - f^-Y and c 2 - ^- = |(y + l)c*
2

. Therefore
?o W />o

(7)

The maximum value of 6 which is physically possible is that which makes

p 0, i.e.

It follows that if 4-/z >0max ,
i.e. if

(9) a>s (|7r-,)- At ,

the fluid will not be in contact with the wall BG, but will be separated from it

by a vacuum bounded by BC and the line 6 #inax which is simultaneously a

streamline and a characteristic.

If instead of presenting a sharp corner, the wall has a continuous bend, the

bend may be replaced by an approximating polygon and the solution obtained

by a limiting process. It is, however, simpler in this case to use the method of

characteristics.

Lastly, we observe that the flow is irrotational and homentropic, and is

therefore reversible. In fig. 20-5 the flow is expansive, i.e. pressure and density

decrease in the direction of the flow, and the Mach line w "
leans away

"
from

the oncoming stream. If we reverse the direction of motion on all the stream-

lines, the characteristic m^ will lean towards the oncoming stream Fj and the

flow will be compressive, entailing increase of pressure and density.

20-6. Shock waves. If we try to apply the method of investigation for

flow round a convex bend (20-5) to a concave bend, the Mach lines will be found

to develop an envelope, E.

This would entail a mathematically ambiguous state of flow behind the

envelope, where the fluid velocity would not be uniquely determined. Such a

state is not physically possible. Experimental observations indicate that this
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situation gives rise to a shock line S which starts at the cusp of the envelope

and runs between the two branches. In crossing this line the normal velocity

component decreases suddenly,* the density, pressure, temperature and entropy

FIG. 20-6 (i).

suddenly increase. Fig. 20-6 (ii) shows the application of the shock and ex-

pansive flow (20-5) to a flat aerofoil EC.

The straight streamline AB impinges at B and a straight streamline CD

departs from 0.

FIG. 20 6 (ii).

On the upper surface we have therefore expansive flow E1 round the bend

ABC which turns the oncoming stream into one parallel to BC. This then

flows into the concave bend BCD and a shock line Sz passes through C. Simi-

larly on the lower surface we get a shock line S: at B and an expansion Ez at C.

Consider the straight stationary shock wave occurring at an obtuse angle

77-0.

Let suffix refer to conditions in front of the shock line S and suffix 1 to

conditions behind that line, so that F is the speed of the oncoming, Vi that of

* It will appear shortly that the tangential component is unaltered, so that the speed is

always reduced in passing through the shock line.
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the deflected flow. Let S make the angle cr with the direction of F and let

WQ , % denote the components of F and Fx perpendicular to S. If we consider

the conditions in front and behind a small line element dl of S, the oncoming
flux of matter must be the same as the departing flux (equation of continuity)

so that

(1)

Since the pressure thrust acts normally to dl there is no change of the

momentum flux parallel to S, therefore

(2) pQwQ F cos a = plwl F! cos (or
-

0).

/S

FIG. 20-6 (iii).

The difference in pressure thrusts on dl must be equal to the normal flux of

momentum through dl. Therefore

(3) Pi-Po = Pow
2
-Piwi

2
-

These are the equations of ordinary mechanics. We obtain a fourth relation

by applying the principle of conservation of energy including thermal energy.

If E is the internal energy per unit mass of air the total energy is Z+-|F
2

per unit mass. We equate the flux of energy to the rate at which work is done

by the pressure thrusts. Thus

and therefore from (1)

Po Pi

Using 20-01 (14), we get

By Bernoulli's theorem each of the first two expressions in (4) is equal to

the appropriate value of ^q*na,x . The equality of these first two expressions

shows that max is unaltered by the shock.

This equation is of the same form as Bernoulli's equation but in fact the

states (pQ , p ) and (p^ , p^ here correspond with different values of the entropy,
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so that (4) cannot be written down from the principles of isentropic flow on

which Bernoulli's equation is based. The increase of entropy from 20-01 (11)

S1 -S, = c,log
PoPi

v

From (1) and (2) we see that the tangential component of the velocity

parallel to the shock front is unaltered. Calling this component w, we get

from (4)

Substitute for pQ , pt in (3) and eliminate
/> , pt by means of (1). Then, after a

simple reduction, we get the important relation, due to Prandtl,

(5) WQW, = li (&ax
-
w*) = c* 2 -

k*w*,

with the notation 2042 (4), and observing that c* = &<?max .

Observing that-w = VQ sin <r, wl
~ Fx sin (a

-
(9), equations (2) to (4)

reduce easily to the following set.

(6) F cos a = F! cos (CT
-

6),

x
2 sin2 (a-^),

the last being got by squaring both sides of (6) and subtracting half the result

from (4).

Putting J/> = Pl
-
PQ , Ap = Pi-Po,

we get, after some easy reductions,

(1) and (6),

(10) ApQ
= PoV<* sin2 a ~- from (1) and (3),

From these equations Jp , ApQ and o- may be calculated when 0, p , p ,
F

are given.

Also from (11)

Po Po * \ Pol \Po
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which determines the Hugoniot curve of pjp against pi/p ,
a rectangular

hyperbola. When pi/p -*<&
,
we get

& -> ^ - 6 approximately

40-

30-

20-

Asymptote

Hugoniot I

S^' Adiabatic

for air. Thus a shock wave can compress air at most to six times its original

density. The dotted curve is the adia-

batic PI/PQ (PI/PO)
V

- When dp-->0,

J/o~>0, (11) goes over into the differ-

ential equation dp/dp = yp/p of the

adiabatic. The two curves therefore

touch at their starting point />1//o
1.

The ratio p/p and therefore the tempera-

ture rise more steeply in the Hugoniot
curve than in the adiabatic.

Finally, we may note that the con-

ditions in front of the shock line here

discussed must be supersonic. The con-

ditions behind may be either supersonic

or subsonic. It is the normal component
of velocity which is reduced, the com-

ponent tangential to the shock front is

unaltered. Thus the velocity is refracted 12345
towards the shock front in passing from

front to back. If the shock front is
Fl0 ' 20 '6 (iv) '

sufficiently oblique to the oncoming air, the conditions behind may still be

supersonic.

20-61. The shock polar. In the hodograph plane represent the velocity

V of the oncoming flow by the segment OA of the w-axis. From draw the

vector OP to represent the velocity Vx (components u, v) of the stream deflected

by the shock through the angle 8. The locus of P is the shock polar belonging

toF .

With the notations of fig. 20-61 (i) we have

w = F cos a, w = F sin a, wl
= F sin a - -

Substituting in 20-6 (5) these give

(1) F 2 sin2 a - F v tan a = k* (q*^
- FQ

a cos2 c

which together with

6 D
/o

cos a

(2) tan a

determines the locus of P (M, v), i.e. the shock polar.
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The elimination of a between (1) and (2) leads directly to the equation

(3)

Fio. 20-61 I

The shock polar is therefore a cubic curve *
symmetrical with respect to

the M-axis which it meets at the points A, B in fig. (i),

(4) l*= F
,
^&2

7?uax/F ,

so that

(5) OA . OB =
Jfea$iax

= c* 2 - 00**.

Thus .4 and B are inverse points with respect to the sonic circle u2 + v2 = c* 2
.

Points on the polar within this circle correspond with a subsonic regime after

the shock. When
It* (a* - V z \ 4- V 2
H* Wmax ' o / ' ' o

(6) OM = w =

v is infinite and the real asymptote is therefore u OM. If we produce OP to

meet the curve again at Q, an initial velocity represented by OQ will, after the

shock, be reduced to the velocity represented by OA.

The shock polar corresponding to given values F and gmax can be con-

structed point by point as follows.

Mark the points A, B, M given by (4) and (6), and on AB, MB as diameters

draw circles 3 , 2 . Join any point Q on 2 to B, and let QB intersect Cl in R.

* Tn fact the Folium of Descartes.
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Then the point P where AR meets QN, the perpendicular to AB, is a point on
the shock polar. The proof is left as an exercise.

One application of the shock polar is obvious from fig. (i). Supposing the

polar to be given, the direction of the shock line which deflects the stream

FIG. 20-61 (ii).

through the angle 6, is obtained by drawing a normal to AP, where P is the

point where the line through 0, which makes the angle 6 with the oncoming
stream, cuts the polar. Also we get from this construction Vl

- OP. Since

OP cuts the polar at a second point P' there is a second possible shock line

perpendicular to AP'
; but experimental results seem to indicate that for coni-

pressive flow at a bend the one corresponding with P actually occurs. The

tangent OT from (the point T lies on the circle w2+ v2 = c*2
) gives the

Si

FIG. 20-61 (iii).

critical angle 0* where the two possible shock lines coincide. If 0>0*, the

above construction fails and there is a curved shock line in front of the corner.
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We observe, further, that as 0->0, i.e. as P approaches the double point A
of the shock polar the shock becomes weaker and the conditions of no shock

are being approached, so that the direction of the shock line must tend to

coincidence with a Mach line. Therefore the angle between the tangents to

the shock polar at the double point A must be TT - 2^t, where /x is the Mach

angle.

FIG. 20-61 (iv).

Fig. (iv), due to Busemann, shows a family of shock polars for c*< F ^ (fo^.

They all enclose the point (7*, and lie within the circle to which they tend when

F ->#max- On the dotted curves the ratio of the stagnation pressure behind

the shock to that before it has the constant value shown.

20-7. Characteristics in isentropic flow. The steady flow considered

in 2043 was homentropic. In this section we envisage the more general case of

isentropic flow, in which the entropy S remains constant along each streamline

but not necessarily the same constant on different streamlines.

Imagine the field of flow to be covered with a geometric network consisting

of a family of curves C and their orthogonal trajectories, the family of curves

N.
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Consider the C and N curves at the point P. For the curve C denote by ds

the element of arc, by t the unit tangent vector drawn in the direction ofincreas-

ing s and by KS the curvature at P. For the orthogonal curve N the correspond-

ing quantities will be denoted by dn, n,

Kn ,
and we shall take as our standard

disposition that shown in fig. 20-7, in

which the direction of n is obtained by
a counterclockwise rotation of t through

one right angle, thereby determining the

positive sense of dn.

Then by Frenet's formula *

(1)
= *".

9n

dn FIG. 20-7.

since the positive direction of the normal vector of the curve N is, by our con-

vention, that of - 1.

By differentiating the formula nt = 0, we get

at an

dn dn
n n

at
"

ds

an

OS
-/csnn = -/cstt,

since nn I = tt. Therefore

at _
dn

~~ "

With these notations we have, if q = qs t + qn n,

(2)

dn

ds

If we now apply (3) to the equations of motion and continuity, 20*13 (2), (1),

and take account of (1) and (2), we get

afc, a& ~~ .. 2.. _ ldP

(5)

(6)

fc^-aT
dp o

I dp

p dn

The constancy of entropy along a streamline, 20*13 (4), is expressed by

=

* C. E. Weatherburn, Elementary Vector Analysis, London (1926), p. 85.
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Lastly, 20-13 (6), which is derived from the equation of state, yields

(9)
- C2,

( ' dn~~ dn
+
dSdn'

We can use (8) and (9) to eliminate dp/dn and dp/dS from (5). Then (4)

to (7) are four ordinary simultaneous linear algebraic equations to determine

the four quantities

, -5 , 3 , ,

dn 0% aw aw

which are the derivates of q8 , qn , p, $ in the direction normal to the C'-curves.

If we use the determinantal method of solution we get

dq8/dn _ dqn/dn _ dp/dn __~ " ~"

where on reduction of the determinants J x ,
J 2 efcc - we

Following Meyer
* we now enquire

"
are there any lines (C-curves) along

which the equations of motion (4) to (7) will say nothing about the normal

derivatives (10) and therefore also about dp/dnl
"

Clearly this will be the case if, and only if, the values given by (11) are

indeterminate, that is, if all the determinants A k (k 1, 2, 3, 4, 5) vanish. A
necessary condition is the vanishing ofA 1 (and therefore also ofJ 5), which gives

qn = or qn = c. If qn = all the determinants vanish and the C-curves

are then the streamlines. We shall return to this case later. If

(12)_qn = C,_
* R. E. Meyer,

" The method of characteristics for problems of compressible flow involving
two independent variables ", Sixth International Congress for Applied Mechanics, Paris, 1946,

Quarterly Journal of Mechanics and Applied Mathematics, I, (1948), pp. 196-219.
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we have J x =J 2
= ^ 6

= 0, while the conditions A 3
= A4

= 0, when combined

with (12), yield the single additional equation

This equation, together with (12), is independent of all the derivatives normal

to a C-curve and also of the curvature /cw of the orthogonal .ZV-curve.

In particular, a flow which has a discontinuity of the normal derivatives of

pressure, density, velocity and entropy along a curve on which (13) holds is

compatible with the equations of motion. Such curves are called characteristics

or Mach lines, and it is the possibility of these discontinuities and their con-

finement to the Mach lines which distinguishes steady supersonic from steady

subsonic flow.

It should be noted that the characteristics as here denned on which (12)

holds are the same curves as those defined in 2041.

The alternative condition for the vanishing of the A k is, as observed above,

qn 0. Inserting this in equations (4) to (7), we get

(15)

(16) f = 0,

which express the equations of motion along a streamline, the equation of

continuity, and the original assumption of constant entropy along a stream-

line.

These equations show that the streamlines too have certain properties of

characteristics. Since the above equations, (14) to (16), say nothing concerning

dqs/dn and dSjdn, discontinuities of these quantities may occur on the stream-

lines and are propagated with the velocity of the fluid. Such discontinuities

correspond with the presence of vorticity in the flow (cf. 20-1). Usually, how-

ever, the entropy and total energy are known on every streamline, so that the

vorticity is determined by Crocco's equation, 20-1 (3), and the streamlines

then have no properties of characteristics.

Thus it appears that the only lines on which the equations allow discon-

tinuities in normal derivatives are the Mach lines and the streamlines. The

indeterminateness of normal derivatives holds for derivatives of any order, as

can be proved by differentiating the equations any number of tunes with respect

to n.

We also observe that (12) means that the Mach lines make with the stream-
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lines the Mach angle /x
= sin-^c/g). Thus if 6 is the inclination of a streamline

to the oj-axis, we have for the slope of the Mach lines

This shows that a Mach line along which the state of flow (i.e. q, p, S) is

constant must be straight (cf. 20-5).

Meyer (see p. 642, footnote) has shown that (13) to (16) are adapted to a

step-by-step method of integration devised by Massau.* This method antici-

pates those since devised by Busemann and others. For details the reader is

referred to Meyer's paper.

In the case of axisymmetrical motion we consider the C and N curves

which lie in a meridian plane. Let the tangent at P make the angle B with the

axis and let w be the distance of P from the axis. Then the only modification

of the foregoing consists in the addition to the left sides of (6) and (13) the

respective terms pR and c2R, where

wR = q8 sin 6+ qn cos 6.

20-71. Uniqueness theorem. We consider steady adiabatic two-

dimensional supersonic flow.

Def. A curvilinear polygon which consists of arcs each of which is either

a Mach line, a streamline, or a sonic line f is called a characteristic polygon.

The boundary between a region where the state of motion (defined by

velocity, density or pressure, and entropy) is uniform, and a region where it is

not must consist of lines on which the normal derivatives of some order are

discontinuous. The boundary must therefore be a characteristic polygon.

Again, iftwo flow patterns which show no finite discontinuity of the velocity,

density, and entropy are identical in one region but not in others, the boundary
of this region must be a characteristic polygon.

Def. An ordinary line is a curve which does not meet any one Mach line

or streamline at more than one point.

On an ordinary line the equations of motion admit and determine one set

of values of the normal derivatives of any order of q, />,
S for any arbitrary

continuous distribution of these variables themselves on the line.

Uniqueness theorem. The state of supersonic flow (i.e. the values of the

variables q, p, S) along an arc AB of an ordinary line, determines uniquely the

field of flow in the smallest characteristic polygon which contains AB.

* J. Massau, Memoire sur I'integration graphique des equations aux derivees partielles, Ghent

(1900-1903). See also Enzykl d. Math. Wiss., II, 3t , p. 159.

f A line on which the fluid speed is equal to the critical sound speed c*. Where such a line

occurs it usually separates sub- from super-sonic flow ; cf. the critical circle in Ringleb's nozzle

(20-33), and the vortex of 13-8.
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Proof. Consider two flow patterns Ft and Fz which have the same state

of motion (i.e. the same values of q, p, S) along the arc AB of an ordinary line.

It follows from the definition of an ordinary line that for Fl and jP2 > the

variables q, p, S can be expanded into the same Taylor series in the neighbour-

hood of AB, and therefore the flow patterns F1 and F2 are identical in a small

finite region containing AB. Any such region must, however, extend to some

characteristic polygon. Q.E.D.

Usually the entropy and total energy

are known in every streamline. The

streamlines then cease to have the pro-

perties of characteristics. Except for the

possible intervention of sonic lines, the

uniqueness theorem then asserts that the

state of motion on AB determines the flow

uniquely in the Mach quadrilateral ACBD
bounded by the pair of Mach lines through

A and the pair through B.

20-8. Flows dependent on time. Consider a flow which depends on

the time t and on one space coordinate r, the distance from a fixed origin. Let

q denote the velocity in the direction in which r increases. Then the equations

of motion and continuity are

FIG. 20-71.

(1)

(2)
~

dt

dq dq 1 dp
di
+q

dr "~p Or'

dq dp (n-l)pq _

p- + q-~ + ~-L ~ = 0,r
dr

*
dr r

where n = 1 for one-dimensional flow, say along a straight tube, n = 2 for

two-dimensional flow with circular symmetry as for a two-dimensional source,

and n = 3 for three-dimensional flow with spherical symmetry as in the case

of a three-dimensional source. Making the change of variable (due to

Riemann)

(3)

we get

cdp

a P
c = dp"

da> c2 dp

p dr

1 dp

p dr
'

da)

'dt

c dp

~p
~dt

'

Equations (1) and (2) can now be written

dq dq doj ^ dw dq da> (n-l)cq .~ + q-^ + c = 0, + c- + q-z- + } = 0,
dt

*
dr dr dt dr

*
dr r
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which combine by addition and subtraction to give

a ' - ' ^
/... , ~\ _ (

n ~

[20-8

(5)

d-

-

d .

-(

As in 20-7 imagine the (r, t) plane to be covered with two orthogonal families

of curves C and N. Let ds, dn be

elements of arc of C and N respec-

tively at P, and let the tangent at P
make the angle a with the r-axis.

Then
ds+ i dn = e~ icl

(dr + i dt) ,

and therefore

FIG. 20-8.

so that (4) is equivalent
* to

= sin a + cos a ,

ot os on

= cos a - sin a ,

or os on

/ ,a> + g' r , v -
T

[sm a -f- (^+ c) cos a]
--
~^

^ + [cos a
-

(? + c) sin a]

This equation will have nothing to say concerning the normal derivative

d(n) + q)/dn if we so choose the direction of the C curve that

cos a - (q + c) sin a

along C, i.e. so that

(6)

dr
cot a ~

-J-
along C,

and our equation then becomes

d(,4-

(7)
ds

(n-l)cq .

- sin a.

Thus discontinuities in the normal derivatives of a> + q in the direction in

the (r, t) plane normal to the C curves travel with the velocity q + c given by

(6). This means that in the physical plane these discontinuities are propagated

with the velocity q + c, i.e. with velocity c relative to the fluid. Thus in accord-

ance with the definition of 20-41 the characteristics are points,! circles, or

spheres according as n 1, 2, or 3.

A similar investigation applied to (5) shows that the discontinuities of the

* Observe that on the right side n is a number 1, 2, or 3 and has no connection with dn.

f Or, more generally, planes perpendicular to the direction of the r-axis.
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normal derivates of o> - q travel with the velocity q
-

c, thus defining a second

set of characteristics.

It appears from (3) that so long as c2 == dp/dp is positive the foregoing con-

siderations are valid, so that in this case characteristics exist for subsonic as

well as for supersonic flow.

In the case of one-dimensional flow we obtain at once from (4), (5) Riemann's

results, namely that aj -f q is constant for a geometrical point moving with the

velocity q -f c, and at - q is constant for a geometrical point moving with the

velocity q
- c. For subsonic flow these velocities have opposite and for super-

sonic flow the same directions.

EXAMPLES XX
1. If E is the internal energy of a gas, S the entropy, show that

dE _ SE
p ~'dv y 1 "

ds

2. Draw a graph to show the relation between the pressure p and the speed q
in isentropic flow along a streamline, and show that the curve has a point of inflexion

where q c*.

3. In isentropic flow along a streamline show that

where p* is the density where q q* = c* and M* qjc*.

4. Obtain Bernoulli's equation in the form

where k2 - (y

5. In two-dimensional steady irrotational flow prove that

du dv d(pu)
t
d(pv) _ n__ -_ M _-

_J
_ __ yjf

oy ox ox oy

6. Use the velocity potential

to prove that in compressible subsonic flow with the same circulation the radial

and transverse components of velocity are

and hence prove the Kutta-Joukowski theorem for lift on an aerofoil.

Prove that the drag is zero.

7. Show that the change of variable given by
d\ . ,, . dr A2

- , ..

-r- = J(l -T)^-~, --
>I, whenr-^0

A T r

leads to the hodograph equations

A d</>/d\
= -F dj/de, A dj/dX -

d<f>/dO,

where F {1
-

(
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8. Referring to the second solution of the hodograph equation, when m = -
1,

given by 20-32 (3), show that

Prove that the curves of constant speed are trochoids generated by rolling a

circle of radius a(l+)3) along the line x = a (I +- j8) + a (2j3 + 1
) logr, the trochoid

being described by the extremity of a radial line of length a(j3 + T"a
). (Temple.)

9. Prove that the hodograph of the envelope of the trochoids of Ex. 8 is

l)r + l}
2

'

(Temple.)

10. Prove the following construction for the normals to the characteristics at a

point P in steady two-dimensional supersonic flow where the local sound speed is c.

Draw PQ to represent the velocity vector. Let the circle whose centre is P and whose
radius is c intersect the circle on PQ as diameter at N

l
and jV 2 . Then PN

} ,
PN 2

are the normals to the characteristics.

11. Use 20-43 (5) and (6) to prove that, if C
l , C 2 are the characteristics at P,

the tangent to the hodograph of C
1
at P is parallel to the normal to C 2 at P, and a

similar result with C
l
and C2 interchanged.

12. Considering steady, irrotational, two-dimensional supersonic flow, a triangle
OAD is drawn at the origin in the hodograph plane and P is a point on AD be-

tween A and D. The triangle is so drawn that OP represents the velocity at P' in

the field of flow, PA represents the local sound speed at P', A is a right angle, and
OD represents gmax- The line PC is drawn parallel to AO to meet OD at C. Prove
that (i) APIAD = k (see 20.42 (4)), (ii) OC represents c*, (iii) APD is parallel to

the normal to a characteristic at P', (iv) APD is the tangent at P to the hodograph
of the other characteristic through P'. (Temple.)

13. Use Ex. 12 to show that the point P describes an epicycloid obtained by
rolling the circle on CD as diameter on the fixed circle centre 0, radius OC, and infer

that in steady irrotational two-dimensional supersonic flow the hodograph of any
characteristic is the epicycloid generated by rolling a circle of diameter

</max - c*

on a fixed circle of radius c*.

14. In the case of flow round a corner, show that in the notation of 20-5 the

Mach number is given by

15. Discuss flow round a corner (20-5) when the oncoming stream has the
critical speed c*, and prove that the equation of the streamlines is then

r = r c

where r is a constant, and hence show that the streamlines are homothetic curves.

16. Draw by the method of characteristics the complete flow diagram for flow

round a corner when the oncoming stream has the critical speed c* and the angle a
of the second wall with the first is so great that the flow does not reach the second
wall.



EXAMPLES XX 649

17. In expansive supersonic flow round a polygonal bend the air stream is

deflected through the small angle n at the nth corner (n
= 1, 2, 3, ...,). If pn is

the pressure and fin the local Mach angle after the nth corner is passed, prove that,

approximately,

^~
= 1

-
2y0n cosec 2/.n , /zn

- p^ -
J0n[ (y + 1) secV~i -

2].

(Lighthill.)

18. In the preceding example, show that, if the bend is continuous,

and hence prove, or verify, that

where

19. In Ex. 18, prove that if the bend is continuous

-
-~j

= -
2y cosec 2/A,

and hence prove, or verify, that

p g (p,)

Po 9 (f^o)

- (
sin2^ \

y/(y"1}

3^' ~
\y

- cos 2/Lt/

*

(Lighthill.)

20. In Ex. 19, prove that the velocity F at the deflection & is given by

/ - cos
2/u,_

F

where F is the velocity of the undeflected stream. (Lighthill.)

21. Show that the pressure behind a plane shock front which deflects through
the angle 6 is, approximately,

PI =
Pot1

- 2y0 cosec 2
/*ol-

22. Show that 2O6 does in fact yield an increase of entropy in the case of a

shock wave, and that the increase is approximately

12

where Apjp^ = 20 cosec 2/z nearly.

23. With the notations of 20-6 prove that

Ap

24. Gas is flowing steadily in a parallel supersonic stream along a straight pipe.
If the pressure downstream is greater than the pressure upstream, show that a shock
front perpendicular to the stream must exist and that the flow downstream of the

shock front is subsonic. Prove that

Ap - p u>
2
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25. For the perpendicular shock front of Ex. 24 show that

2r
jf,

r- 1

Pi y + l y + l

=
,

Poo y-ll Voo' /Poo'

(y + l)
2

T,00

where pw , />00 ,
roo are the stagnation values for the oncoming flow.

26. Use the method of the addition of a constant velocity to deduce the equa-
tions of a straight oblique shock front from those for the perpendicular shock front

described in Ex. 24.

27. In one-dimensional flow of a gas the pressure is a function of the density.
Obtain the equations of flow in the form

du du c2 dp

dt dx p dx

dp du dp _

f+p =- +u~ = 0.
dt dx dx

28. A gas flows parallel to the #-axis. A particle is at x at time t and at x at

time t = and
/

p dx m.

1 dx d2 x dp- =
,

= _ ^1 .

p om ot* dm

29. Show that the linear equation satisfied by the velocity potential <f>
in 20*3 is

P̂rove that -
,

_ .

p om ot* dm

30. The pressure, density and normal velocity resolute on either side of a straight
line stationary compression shock are pQ , pQ ,

WQ and pt , pl ,
wv Establish the equa-

tions

m,

where y is the adiabatic index.

If c and Cj are the velocities of sound on either side of the shock, prove that
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Adiabatic ellipse, 625.

expansion, 15.

law, 15, 611.
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BELL, R. J. T., 63, 506.

BELTRAMI flow, 79.

Bend in a river, 107.

Bent lamina, 344.

BERGMAN, S., 616.
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rigid, 294.
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stream function, 243, 474.
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CAUCHY-RIEMANN conditions, 128.

CAUCHY'S formula, 137.

integral theorem of, 133.
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Cavitation, 158, 166, 314, 465.

number, 314.

proper, 315.

Cavity, 314.

with backward jet, 334.

Central axis, 524.

Centre of lift, 196.

Centre of profile, 193.

Centric rule, 31.

Channel, abrupt change in breadth of, 275.

Characteristic polygon, 644.

Characteristics, 624, 640 643.

Chord, 185.

CHEISTOFFEL, theorem of SCHWARZ and,
266.

Circle mapped on ellipse, 159.

Circle theorem, 154.

Circuits, closed, 90.

irreconcilable, 91.

irreducible, 90.

reconcilable, 91.

reducible, 90.

Circular cylinder, circulation about, 180.

falling under gravity, 241.

image of doublet in, 221.

in stream, 154.

in stream with circulation, 181.

moving forward, 233, 250.

moving under gravity, 242.

pressure distribution on, 156.

Circular disc moving forward, 477.

Circulation, 46, 92, 180.

about a circular cylinder, 180, 241 .

about a general cylinder, 253.

about an aerofoil, 191.

about an elliptic cylinder, 153.

constancy of, 82.

in a viscous liquid, 569.

strength of, 180.

vector, 585.

CISOTTI, V., 392.

Closed pipe, sound waves in, 438.

Coaxal coordinates, 171, 357.

system of circles, 171.

Coefficient of contraction, 20, 74, 295.

Coefficient of viscosity, 565.

Collision of floating bodies, 504.

Comparison theorems, 479.

Complex number, argument of a, 1 24.

modulus of a, 123.

Complex numbers, 120.

addition of, 121.

argument of, 124.

conjugate, 124.

equality of, 122.

Euler's theorem on, 123.

logarithms of, 126.

modulus of, 123.

multiplication of, 121.

Complex numbers, quotient of, 123.

real and imaginary parts of, 126.

reciprocal of, 124.

representative point of, 121.

rotation of axes of reference of, 126.

vector properties of, 125,

Complex potential, 149.

equation satisfied by, 392, 409
for a moving cylinder, 249.

of water waves, 391, 404.

Complex Stokes's theorem, 132.

Complex velocity, 150.

Compressed air wind tunnel, 595.

Compressible flow, source in, 224.

vortex in, 382.

Concentric spheres, 497.

Condensation, 436.

Confocal conies, 153, 162.

quadrics, 506.

Conformal representation, 144.

application of, 158, 369.

in three dimensions, 472.

sources in, 212.

vortices in, 369.

Conjugate complex, 124.

Conjugate functions, 129.

relation to/(z), 130.

Conjugate tensors, 33.

Connected region, 90.

Connectivity, 90.

Conservation of mass, 70.

Conservative field of force, 51, 77, 567.

Constancy of circulation, 82.

Continuation, analytical, 134, 344.

Continuity, equation of, 6, 70, 454, 599.

Continuity of pressure, 73, 556.

Contour, 127.

contraction or enlargement of, 135.

indented, 143.

sense of description of, 132.

Contours, indented, 143.

Contraction, coefficient of, 20, 74.

Coordinates, bipolar, 171.

cartesian, 56.

characteristic, 627.

coaxal, 171, 357.

curvilinear, 60.

cylindrical, 62.

ellipsoidal, 507.

elliptic, 162.

generalised, 535.

orthogonal curvilinear, 60.

spherical polar, 60.

COPE, W. F., 566.

Corner, flow round, 631.

Crest of wave, 388.

Critical speed, 16.

Critical streamline, 622.

CROCCO'S equation, 612.
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Curl, 40.

Current function, 452, 553, 583.

Currents, 284.

relations between breadths and directions

of, 289.

Curvilinear coordinates, 00, 577.

Cyclic motion, 91.

Cyclic rule, 31.

Cycloid, 423.

Cylinder, circular. Nee under Circular

cylinder.

Cylinder, force on, 244.

elliptic, 164, 248.

circulation about, 153.

rotating, containing liquid, 254.

general method for a moving, 249.

moving in a general manner, 248.

rotating, containing liquid, 254.

stream function, on boundary of, 243.

with circulation, 253.

Cylinder in a tunnel, 175.

Cylinders, concentric, circulation between,
181.

Cylindrical coordinates, 60, 62.

stress in terms of, 578.

Cylindrical log, 174.

pipe, sound waves in, 438.

pipe, viscous flow in, 575.

D'ALEMBERT'S paradox, 23, 465, 529.

DARWIN, C. G., 235, 252, 467.

DAVIES, T. V., 413.

Decay of vorticity, 569.

Deep water, waves on, 394.

wind on, 411.

Deformation, 1.

Density, 7.

Determinant for curl, 61.

for vector product, 57.

Differentiation following the fluid, 70.

Diffusion of vorticity, 569.

Dimensions, 3, 110, 453, 567, 594.

Directed area, 30.

Direct impact of jets, 291, 293.

Direction number, 629.

Discharge from a pipe, 577.

Discontinuity of pressure, 408.

of <*>(), 342.

Discontinuous motion, 283 et seq.

Dissipation of energy, 569, 574.

Distributive law, 30.

Ditch, flow over, 172.

Divergence, 40.

Double scalar product, 34.

Double source, see under Doublet.

Doublet, 150, 204, 459.

action on a sphere, 472.

force on a cylinder due to a, 222.

image of, in a circular cylinder, 221.

Doublet, image of, in a plane, 212.

vortex, 359.

Doublets, extension of Lagally's theorem

to, 223.

Drag, 25, 318, 341, 378, 558, 584, 593.

coefficient, 319, 333.

of vortex wake, 378, 595.

Drift, 235, 239.

-mass, 237.

-volume, 239.

Dyad, 33.

Dyadic product, 33.

Dynamical system, 3, 535.

EDWARDS, J., 558.

Efflux, 20, 73.

velocity of, 20.

Elastica, equation of, 235.

Electrical analogy, 550.

Ellipse mapped on a circle, 159.

Ellipsoid, ovary, 477.

planetary, 475.

rotating, 512.

translation of, 510.

Ellipsoidal coordinates, 506.

harmonics, 509.

shell, rotating, 513.

Elliptic coordinates, 162.

geometrical interpretation of, 163.

cylinder, 153, 161, 170, 251, 254.

Elongated body in stream, 170, 530.

sinking, 530.

Elongation, 106.

Energy, internal, 14, 609.

equation, 80.

kinetic, 92, 96, 231, 465, 522.

minimum, Kelvin's theorem, 93.

of waves, 395, 402, 417, 424, 437.

transmission of, 398.

Enthalpy, 611, 612.

Entropy, 610.

Equation of continuity, 6, 70, 454, 599.

satisfied by ^, 114. 473, 553, 581.

the velocity potential, 72, 117, 436, 613.

pressure, 86, 87, 115, 243.

Equation of motion, 76, 566.

Equations of motion of moving solid, 527.

in terms of kinetic energy, 528.

intrinsic, 108, 598, 641.

streamlines, 152.

Equiangular spiral, 361.

Equilateral prism rotating, 255.

EULER'S theorem on complex numbers, 123.

momentum theorem, 22, 77.

theorem on homogeneous functions, 59.

EULBRIAN equation of motion, 79.

Expansion, 71.

Explosion, submarine, 455.

Exterior of polygon, 264.
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Filament, stream, 6.

vortex, 83.

FILON, L. N. G., 694.

First scalar invariant, 34, 564.

Flow between parallel plates, 573.

in a channel, 9.

into channel through narrow slit, 272.

ofgas in converging pipe, 17.

of heat, 572, 574.

over ditch or mound, 172.

past a cylinder, 154, 173.

cylindrical log, 174.

an elliptic cylinder, 161.

an obstacle, 24.

an oval curve, 206.

a plate, 166.

pattern, 5, 117.

subsonic, 17, 224, 382, 619.

supersonic, 17, 224, 382, 622.

through an aperture, 152, 299, 330, 477.

through a pipe, 575.

through a slit, 209, 272.

Fluid, 1.

compressible, 1.

flow of heat in a, 572, 574.

incompressible, 1.

inviscid, 2.

equation of motion, 76, 566.

homogeneous, 76.

theorem on, 8.

particle, 4.

pressure, 7, 564.

thrust, 8.

unbounded, 548.

viscous, boundary conditions in, 568.

equation of motion of, 566.

Flux, 109.

through a circuit, 547.

Foci, 160, 164.

Focus of a profile, 195.

Folium of Descartes, 638.

Force, conservative field of, 51, 77, 567.

on a cylinder due to a doublet, 222.

on a cylinder due to a source, 215, 220.

on a moving cylinder, 244, 248.

on an aerofoil, 193, 688.

on an obstacle, 88, 333, 470.

on a sphere due to a doublet, 472.

on walls of a fine tube, 22.

potential, 51.

Force wrench, 523.

Formula of Schwarz, 286.

Formulae of Plemelj, 139.

Free streamlines, 283, 290, 297, 340.

Free surface under gravity, 301, 302, 303,

307, 308.

Frequency, 389, 438.

Function, stream, 109, 462.

Psi, 346.

Function, Q, 294.

<o(), 339.

Functional determinant, 563, 681.

Functions, conjugate, 129.

current, 452.

harmonic, 132, 493.

holomorphic, 127.

Fundamental note, 438.

GARSTANQ, T. E., 594.

Gas, 1.

flow in a converging pipe, 17.

flow measured by Venturi meter, 19.

work done by expanding, 13.

GAUSS'S theorem, 51.

deductions from, 53.

on the mean value of the velocity poten-
tial, 94.
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GERSTNER'S trochoidal wave, 420, 427.

Gibraltar, Strait of, 82.

GILBARG, D., 336, 481.

Gliding plate, 323.

GOLDSTEIN, S., 695.

Gradient, 38.

Gravest note, 438.

Gravity waves, 410.

flow, 301, 302, 303, 307, 308.

GREEN, A. E., 323.

GREEN'S theorem, 53.

an application of, 55.

equivalent stratum, 205, 371, 462.

identities, 54, 56.

Group velocity, 396, 399, 410, 422, 425.

Gulf Stream, 284.

Harmonic functions, 132, 493.

Harmonics, ellipsoidal, 509.

spherical, 493.

Heat, flow of, 572, 574.

HELE-SHAW'S experiments, 575.

HELMHOLTZ motions, 315.

equation for vorticity, 84.

HILL'S spherical vortex, 554.

HOBSON, E. W., 377.

Hodograph equations, 616.

Hodograph method, 614.

Hodograph plane, 320, 326, 614.

Hollow circular vortex, 352.

Holomorphic functions, 127.

principle of reflection, 134.

zeros of, 140.

Holonomic system, 535.

Homenergic, 612.

Homentropic, 611.

HUGONIOT curve, 637.

Hydrodynamic mass, 238.

Hydrodynamic pressure, 11.

Hyperbolic functions, 127.
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Hypergeometric functions, 616.

Idemfactor, 33.

Image of a doublet in a circle, 221.

plane, 212, 460.

sphere, 469.

Image of a source in a circle, 213.

plane, 210.

sphere, 468.

vortex in a circle, 362.

plane, 358.

Images, method of, 210.

Impact of stream on lamina, 316, 326.

Impulse, 524.

derived from kinetic energy, 527.

rate of change of, 524.

Impulsive generation of motion, 89, 524.

Incidence, 192.

Indented contours, 143.

Induced drag, minimum, 558.

Induced velocity, 217, 350, 548.

Inertia, apparent, 238, 466.

Infinite strip, mapping of, 271.

Inflow into wake, 592.

Instability of water surface, 411.

Integral, curvilinear, 35.

principal value of, 138.

Integrals, line, 35.

surface, 35.

volume, 35.

Intensity of sound, 437.

Interior of polygon, 264.

Internal energy, 14, 610.

Intrinsic equations of motion, 108, 598,
641.

Inverse points, 125, 187.

Inviscid fluid, 2.

Irreconcilable circuits, 9J.

Irreducible circuits, 91.

Irrotational motion, 46, 50, 86.

Irrotational vector field, 41, 54.

Isentropic flow, 611, 616, 640.

Isobaric lines, 283.

Isotachic lines, 283.

Jacobian, 80, 581.

Jets, 284.

impinging, 287.

indeterminateness of problem of, 290.

two equal, direct impact of, 293.

oblique impact of, 294.

vertical under gravity, 308.

JOHN, F., 302.

JOUKOWSKI aerofoils, 189.

and KUTTA, theorem of, 191.

extension of the theorem of, 248.

hypothesis of, 190.

transformations, 159, 186.

geometrical construction for, 187.

JOULE'S law, 610.

formula for drag, 382.

momentum theorem, 597.

vortex street, 375.

KARMAN-TREFFTZ profiles, 190.

KELVIN'S theorem, constancy of circulation,

82.

inversion, 495.

minimum energy, 93.

Kinematical condition at free surface,

389.

Kinematic coefficient of viscosity, 567.

Kinetic energy, 92, 96, 231, 465, 522.

in terms of vorticity, 551.

of a circular cylinder in a fluid, 237.

of acyclic irrotational motion, 231.

of cyclic irrotational motion, 231.

of infinite liquid, 96.

sphere, 465.

KJRCHHOFF'S method, 294.

equations, 528.

KUTTA See under JOUKOWSKI.

LAOALLY'S theorem, 215.

extension of, 223.

LAGRANGE'S equations, 534.

LAGRANGIAN equation of motion, 79.

LAMB, H., 378, 419, 597.

Lamina, aperture in, 299.

gliding on a stream, 323.

impact of stream on, 316, 326.

in a stream, 166.

LAPLACE'S equation, 72, 131, 493.

solution of, 131.

LAVRENTIEFF, 481.

Leading edge, 185.

LEGENDRE'S functions, 494.

LEVI-CIVITA'S general method of determin-

ing flow past an obstacle, 336.

surface condition, 411.

Lift, 193, 341, 558, 592.

on an aerofoil in a uniform stream, 193.

Limiting points, 171.

LIN, C. C., 365.

Linear momentum, rate of change of, 75.

Liquid, 1.

inviscid, steady motion of, 104.

viscous, circulation in, 569.

energy dissipation of, 569, 574.

Localised vector, 28.

Logarithms, 126.

Long waves, 414.

pressure due to, 416.

small disturbing forces, 418.

Loops, 399, 438.

Lune containing liquid, 256.

MACH angle, 622.
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MACH cone, 622.

line, 622, 643.

number, 17.

Mapping, 141.

an infinite strip, 271.

a semi-infinite strip, 270.

bi-uniform, 143.

method for rotating cylinder, 256.

of infinite regions, 145.

on a unit circle, 218, 371.

MASSAU, J., 644.

Maximum principle, 480.

Mean level, 388, 424.

Mean value of velocity potential, 94, 95.

Measure-ratios, 3.

Mediterranean, 82.

MERCATOR.'S projection, 345.

Meridian plane, 452.

Metaceritric parabola, 196.

Method of images, 210.

MEYER, R. E., 642.

MILNE-THOMSON, L. M., 154, 186, 236, 321,
340, 502, 659, 614, 616.

Molecular rotation, 46.

Moment, 89, 193, 341, 342.

Moment coefficient, 194.

Moment of force on aerofoil, 193.

vector, 30.

Momentum, rate of change of, 75, 527.

theorem, 22, 77.

transfer tensor, 75.

Moon's attraction, 419.

MOBEBA'S theorem, 133.

Motion, axisymmetrical, 452, 551, 581, 644.

discontinuous, 283.

impulsive, 89.

in two dimensions, 103.

irrotational, 46, 50, 86.

acyclic, 91.

kinetic energy of, 227, 231.

theorems on, 97.

cyclic, 91.

kinetic energy of, 231.

pressure equation of, 86.

of a fluid element, 45.

of a solid through a liquid, 501.

relatively steady, 5.

rotational, 46.

similarity in, 594.

slow, in viscous liquid, 582.

steady, 5, 80.

intrinsic equations of, 108, 598, 641.

relative, 85.

relatively, 5.

rotatory, 579.

two-dimensional, 104.

streaming, past a circular cylinder, 154.

streamline, 5.

turbulent, 5.

Motion, two-dimensional, 103.

vortex, 82.

wave, 388.

without strain, 108.

without vorticity, 107.

Moving axes, 87, 243, 526.

Moving cylinder, 248.

force on, 244.

origin, 526.

Nabla operations on a product, 43.

vector, 41.

operator, 40.

Neglect of external forces, 12.

NEKBASOV, A. I., 431.

NEVILLE, E. H., 322.

Nodes, 399, 438.

Non-holononiic system, 535.

Norwegian fiords, 408.

Note, fundamental, 438.

Nozzle, 301.

convergent-divergent, 618.

straight-walled, 629.

Obstacle, force on, 88, 470.

Open pipe, sound waves in, 438.

Operator (a V), 41.

9/dr, 58.

.B 2 , 553, 581.

i V, 40.

Ordinary line, 644.

Orthogonal curves, 129.

curvilinear coordinates, 60.

OSEEN, C. W., 582, 589.

Oval curve, flow past, 206.

Ovary ellipsoid, 477.

Overtones, 438.

PACKHAM, B. A., 413.

Parabolic law of velocity, 2, 574.

Paraboloid of revolution, 478.

Particle defined, 4.

Path line of a particle, 5.

Perfect gas, 609.

Period of wave, 389.

Periphractic region, 95.

Permanence of vortex motion, 82.

Permanent rotation, 530.

translation, 529.

Pipe, flow through, 575.

PITOT tube, 12, 457.

Planetary ellipsoid, 475.

Planing, 322.

Plasticity, 1.

Plate, flow past, 166, 597.

PLEMELJ, J., 139.

formulae, 139.

theorem, 140.

POISSON'S equation, 545.
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Polar diagram, 157.

Polar, shock, 637.

Pole, 136.

Polygons, closed, simple, 264.

PORITSKY, H., 612.

Potential, complex, 149.

PRANDTL'S boundary layer hypothesis, 25,

595.

Pressure, 7.

aerodynamic, 12, 609,

distribution on a cylinder, 156.

due to a circular vortex, 351.

equation, 86, 87, 115, 243.

in terms of
j/r,

115.

of irrotational motion, 86.

referred to moving axes, 87, 243.

in viscous fluid, 564.

independent of direction, 8.

minimum on the boundary, 94.

number, 629.

on elliptic cylinder, 166.

on moving sphere, 465, 468.

hydrodynamical, 11.

PRESTON'S theorem, 587.

Principle value of integral, 138.

Principle of Archimedes, 77.

of argument, 140.

of reflection, 134.

Prism, rotating equilateral containing liquid,

255.

Product, double scalar, 34.

dyadic, 33

scalar, 29.

triple scalar, 30.

triple vector, 31.

vector, 29.

Profile, axes of, 195.

centre of, 193.

change of, in long waves, 417.

focus of, 195.

Projectile, 534.

Propagation, speed of wave, 395, 399, 409,

417.

Proper cavitation, 315.

Pure strain, 46, 105.

Radical axis, 176.

RANKINE'S combined vortex, 353.

method, 111.

solids, 461.

RAYLEIGH'S formula, 326.

Reconcilable circuits, 91.

Rectilinear vortex, 354.

Reducible circuit, 90.

Reflection, across free streamlines, 326.

principle of, 134, 273, 275, 277, 281.

Relation of conjugate functions to f(z),

130.

Relative motion, 85.

Residues, 136.

Residue theorem, 137.

Resistance, wave, 399,408.
Reversal of transformation, 193.

REYNOLDS number, 582, 595.

Rhyme, 86, 569.

RlABOUCHINSKY, D., 319,

RICHARDSON, L. F., 569.

Rifling, 634.

Right to left, 109.

Rigid boundaries, 294.

RINGLEB, F., 618.

Ripples, 410.

ROOK, D. H., 336.

ROSENHEAD, L., 378, 595.

Rotating curvilinear polygon, 257.

cylinder, 254, 579.

ellipse, 254.

equilateral triangle, 265.

lune, 256.

plate, 252.

Rotation, 106.

of axes of reference, 126.

Rotatory motion, 569.

ROUTH'S theorem, 369.

Rowing, 373.

Sailing ship, 530.

SAUER, R., 615.

SAUTREAUX, M. C., 304.

Scalar invariant, 34.

multiplication, 29.

product, 29, 33.

quantities, 28.

SCHIELDROP, E. B., 301.

SCHWARZ and CHRISTOFFEL, theorem of,

266.

formula of, 286.

Semi-infinite strip, mapping of, 270.

Sense of description, 132, 146.

SERRIN, J., 481.

Shear flow, uniform, 184.

Sheltering, 581.

SHIFFMAN, M., 326.

Ship's bow, 345.

Shock polar, 637.

Shock polar diagram, 640.

Shock waves, 633.

Similarity, 594.

Simple harmonic progressive wave, 388.

Simple polygons, 264.

Simply connected region, 90.

Single row of vortices, 373.

Singularities, 136.

Sink, 200, 454 See also under Source.

Sinking body, 530.

Sinuous bottom, flow over, 406.

Slow motions, 612.

Solenoidal vector field, 41, 54.
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Solid athwart a stream, 539.

Solid containing a cavity, 534.

Solid moving through liquid, 521.

of revolution moving through liquid, 531.

Sound, intensity of, 437.

plane waves of, 436.

spherical waves of, 439.

velocity of, 15, 16, 437.

Source and equal sink in a stream, 206, 461.

sink of equal strengths, 204.

Source and sink outside a circular cylinder,
221.

and vortex, 360.

complex potential of, 201.

double, 204, 459.

finite line, 457.

force exerted on a cylinder by a, 215.

image system in circle for a, 213.

in an angle between two walls, 213.

in a uniform stream, 202, 456.

in compressible flow, 224.

midway between two parallel planes, 273.

negative, 200.

outside a circular cylinder, 213.

a general cylinder, 220.

an elliptic cylinder, 218.

parallel to a wall, 210.

simple, 200, 454.

strength of, 200, 454.

three-dimensional, 454.

two-dimensional, 200.

velocity potential of, 454.

Sources and streams, combination of, 201.

in conformal transformation, 212.

two equal, 208.

Specific heat, 610.

Speed, 94, 151, 473.

maximum on the boundary, 94.

Sphere, action of a doublet on, 472,

drag on a, 584.

image of a radial doublet in a, 469.

source in a, 468.

in a stream, 464.

in the presence of a wall, 538.

moving in a liquid, 466, 474.

parallel to a wall, 506.

perpendicularly to a wall, 504.

pressure on, 468.

slow streaming past a, 583.

virtual mass of, 467, 501.

Spheres, concentric, moving in the same
direction, 499.

moving atrightangles to line ofcentres, 504.

in line of centres, 501.

Sphere theorem, 463, 496.

Spherical harmonics, 493.

polar coordinates, 60, 62.

polar coordinates, stress in terms of, 578.

sound waves, 439.

Spiral vortex, 361.

Stability due to rotation, 533.

of fluid between rotating cylinders, 579.

of moving solid, 529.

of vortex street, 375.

Stagnation point, 24, 115, 151, 181.

enthalpy, 612.

Standing waves, 399.

Stationary waves, 399.

Steady flow over sinuous bottom, 406.

Steady motion, 5, 104, 402, 612.

STEVENSON, A. C., 592.

STOKER, J. J., 389, 418.

STOKES, 439.

complex theorem, 132.

stream function of, 452.

theorem of, 47.

deductions from, 49.

Stopped pipe, 438.

Stratum, Green's equivalent, 205, 371, 462.

Stream, deep, step in bed of, 273.

direct impact on a lamina, 316.

filament, 6.

filament, theorem on, 6.

gliding of a plate on surface of, 323.

impinging on a plate, 332, 345.

impinging on bent plate, 344.

tube, 6.

uniform, 112,456.
action on an elliptic cylinder, 170.

Stream function, 109, 452, 615.

boundary conditions satisfied by the, 474,
566.

equation satisfied by, 114, 472, 553, 581.

for an ovary ellipsoid, 477.

for a planetary ellipsoid, 475.

for a source, 454.

in terms of vector potential, 552.

of a uniform stream, 112, 456.

velocity derived from, 110, 453, 615.

Streaming past a circular cylinder, 154, 181.

past an ellipse, 164, 170.

past a lamina, 166, 597.

Streamline, 5, 338.

dividing, 156.

motion, 5.

Streamlines, free, 283, 290, 297, 340.

equations of, 152, 290, 297.

for a circular cylinder, 154.

for a doublet, 150, 460.

for elliptic cylinder, 165.

for sphere, 464.

for spherical vortex, 555.

for vortex pair, 357.

Strength of circulation, 180.

of source, 200,454.
of vortex, 351.

Stress, components of, 577.

Stress tensor, 564.
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Submarine explosion, 455.

Submarine in waves, 395.

Subsonic flow, 17, 619.

Surface conditions, 390.

elevation, 391, 416.

integral, 35.

particle, 417.

tension, 408.

waves, 391, 409.

Supersonic flow, 17, 622.

Symmetric tensor, 33.

Tangent flows, 307.

TAYLOR, G. L, 580.

TEMPLE, G., 618, 629.

Tennis ball, flight of, 243.

Tensor, 33.

Terminal velocity of sphere, 584.

Thermodynamical systems, 4.

Thermodynamics, laws of, 609, 611.

Thickness defined, 104.

Thrust, 8.

on a hemisphere, 465.

on an obstacle, 88, 470.

Tide, semi-diurnal, 420.

Tides in an equatorial canal, 419.

Time variable compressible flow, 645.

Topological, 91.

TORRICELLI'S theorem, 20.

Trailing edge, 185, 189.

Transmission of energy, 398.

Triple scalar product, 30.

Triple vector product, 31.

Trochoid, 242, 423.

Trochoidal wave, 420, 427.

Trough of wave, 388.

Tube, force on walls of, 22.

Pitot, 12, 457.

stream, 6.

Venturi, 18, 477.

vortex, 82.

Turbulent motion, 5.

Under-Over theorem, 481.

Uniform stream, 112, 150, 456.

Uniqueness theorems, 97, 233, 644.

generalised forms of, 233.

Unit circle, mapping on, 218.

Unit dyad, 33.

Unit vector, 28.

Unit vectors, rate of change, 63.

Vector circulation, 585, 594.

Vector, curl of a, 40.

divergence of a, 41.

field, 34.

operations on a single, 41.

partial differentiation, 58.

potential, 647.

Vector product, 29.

resolution of, 32.

unit, 28.

velocity, circulation of, 47.

expressions for, 112.

Vectors, 28.

centric rule for triple product of, 31.

cyclic rule, 31.

multiplication of, 29.

product of, 29, 31.

Velocity, 4, 150, 473.

in terms of vorticity, 546.

of efflux, 20.

of propagation, 388, 392, 409, 416.

of sound, 15, 16, 437.

Velocity potential, 50, 89, 116.

boundary condition for, 5P1.

due to vortices, 548.

mean value of, 94, 96.

of a liquid, 116.

physical interpretation of, 89.

Vena contracta, 20.

VENTURI tube, 18, 19, 477.

Virtual mass, 237, 238, 467, 500, 511.

Viscosity, 1, 564, 565.

coefficient of, 565.

effect of, on water waves, 580.

hypothesis, 565.

kinematic coefficient of, 667.

stress due to, 577.

Viscous liquid, circulation in, 569.

equation of motion of, 568.

flow of, between plates, 573.

flow of, through pipes, 577.

pressure in, 565.

steady motion, 567.

steady rotatory motion, 579.

vorticity in, 568.

Volume integral, 37.

Vortex, circular, 349.

circular, hollow, 352.

doublet, 359.

filament, 83, 354, 548.

circular, 652.

parallel to a plane, 358.

two perpendicular planes, 361.

rectilinear, 354.

single, 355.

filaments in presence of cylinder, 361.

centroid of, 356.

motion of, 355.

motion of a system of, 366.

two, 356.

HILL'S spherical, 654.

in compressible flow, 382.

in conformai transformation, 369.

line, 46.

lines, permanence of, 84.

motion, 82.
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Vortex motion, electrical analogy, 550.

of, inside a circular cylinder, 364.

outside a cylinder, 362.

pair, 357.

pressure due to, 351.

Rankine's combined, 353.

sheet, 372.

source and, 360.

street, KARM!N, 375,

strength of, 351.

tube, 83.

vector potential of, 548.

velocity induced by, 548.

velocity potential due to, 549.

wake, drag due to, 378.

Vortices in presence of circular cylinder,

366, 367.

rectilinear, 354.

single infinite row of, 373

Vorticity, 46, 61, 63, 83, 106, 108,

112.

decay of, 569.

diffusion of, 569.

equation satisfied by, 83 568.

in trochoidal wave, 425.

m viscous liquid, 568.

in wake, 586.

permanence of, 83, 108.

rate of change of, 83, 108, 568.

transport, 587.

vectors expressions for, 112.

velocity expressed in terms of, 546.

Wake, 586.

vortex, drag due to, 378.

Water in inverted tumbler, 411.

Water waves, effect of viscosity on, 580.

Wave, amplitude of, 388.

capillary, 410.

crest of, 388.

deep water, pressure due to, 395.

frequency of, 389.

Gerstner's trochoidal, 420, 427.

form of free surface of, 422.

gravity, 410.

long, 414.

mean level of, 388, 423.

motion, 388.

period of, 389.

permanent, 402.

phase angle of, 389.

phase rate of, 389.

progressing in one direction, 416.

resistance, 399.

simple harmonic progressive, 388.

stationary, 399.

Wave, surface, 391.

tidal, 419.

troughs of, 388.

velocity of propagation of, 395, 399, 409,
416.

velocity, second approximation to, 403.

Wave-length, 388, 422.

Waves at an interface, 404.

effect of capillarity on, 409.

when upper surface is free, 407.

Waves, complex potential of, 390, 404.

condition at free surface of, 390.

[ deep water, effect of wind on, 41 1.

effect of small disturbing forces, 418.

exact theory, 434.

exact linearised, 434.

group velocity of, 396.

group velocity of, dynamical significance,
398.

long, 414.

change of profile in, 417.

non-linear theory, 412, 428.

of small height, complex potential for,

390.

paths of particles in, 393, 400.

plane, 436.

in a cylindrical tube, 438.

potential energy of, 369, 402.

pressure equation for, 416.

progressive, kinetic energy of, 395.

on deep water, 394.

sound, 435.

spherical, 439.

stand ;
t -See stationary,

stationary, 399.

complex potential of, 400.

energy of, 409.

stationary, in rectangular tank, 401.

paths of par* ides in, 400.

steady dow of, over sinuous bottom, 406.

steady motion, artifice of, 402.

ace, 391, 409.

. urface elevation of, 416.

WEATUERBURN, C. E., 641.

Weber's Transformation, 79.

WEISS, P., 496.

WIGGLESWORTH, L. A., 592.

Wind, action on waves, 411, 581.

Wind tunnel, 477, 595.

compressed air, 595.

Work done by a gas in expanding, 13.

Wrench, 523.

WRINCIJ, D., 219.

Zeros of a holomorphic function, 140-

Zonal harmonics, 494.
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