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PREFACE

Not so many years ago the dynamics of a frictionless fluid had come to be
regarded as an academic subject and incapable of practical application owing
to the great discrepancy between calculated and observed results. The ultimate
recognition, however, that Lanchester’s theory of circulation in a perfect
fluid could explain the lift on an aerofoil, and the adoption of Prandtl’s hypo-
thesis that outside the boundary layer the effect of viscosit; is negligible, gave
a fresh impetus to the subject which has always been necessary to the naval
architect and which the advent of the modern aeroplane has placed in the
front rank.

The investigation of fluid motion falls naturally into two parts; (i) the
experimental or practical side; (i) the theoretical side which attempts to
explain why experimental results turn out as they do, and above all attempts
to predict the course of experiments as yet untried. Thus the practical and
theoretical sides supplement one another, and it is to the latter aspect that
this book is devoted.

As a scientific theory becomes more exact, so does it of necessity tend to
‘assume a more mathematical form. This statement must be construed to
mean not that the form becomes more difficult or more abstruse, but rather
that, when the fundamental laws have reached a stage of clear formulation,
useful deductions can be made by the exact processes of mathematics. The
object of this book, which is founded upon, and has grown out of, my lectures
on the subject at Greenwich to junior members of the Royal Corps of Naval
Constructors, is to give a thorough, clear and methodical introductory exposition
of the mathematical theory of fluid motion which will be useful in applications
to both hydrodynamics and aerodynamics.

I have ventured to depart radically from the traditional presentation of the
subject by basing it consistently throughout on vector methods and notation
with their natural consequence in two dimensions, the complex variable. It
is not intended to imply that the application of the above methods to hydro-
dynamics is in itself a novelty, but their exclusive employment has not, so far
as I know, been hitherto attempted. The previous mathematical knowledge
required of the reader does not go beyond the elements of the infinitesimal
calculus. The necessary additional mathematical apparatus is introduced as
required and an attempt has been made to keep the book reasonably self-

contained in this respect. As we are dealing with a real subject (even if in an
a1
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idealised form) diagrams have been freely used. There are about 360 of these
numbered in the decimal * notation with the number of the section in which
they occur in order to facilitate reference.

The order of the chapters represents an attempt to give a rational classifi-
cation to the topics treated. This is, of course, by no means the only possible
order, but it seems to have some advantages. Chapter I is of an introductory
character and is concerned mainly with inferences based on the famous theorem
of Daniel Bernoulli who may justly be considered the father of Hydrodynamics.

Chapter II gives an account of such properties of vectors as are essential to
the analysis of the motion of a fluid element and to the formulation of the
hydrodynamical equations. Vectors are introduced here without any reference
to systems of coordinates. The fundamental properties of vector operations
are deduced by operational methods, which, in the form here explained, are easy
to apply and lead directly to the theorems of Stokes, Gauss, and Green. As
this is a book on hydrodynamics, not on vectors, the treatment is necessarily
concise. On the other hand the subject matter has been arranged with a view
to helping those to whom vector manipulation may be unfamiliar, and the
reader is recommended to make himself thoroughly conversant with the contents
of this chapter, if necessary, by frequent reference to it. Such a course will be
amply rewarded by a physical insight into the phenomena under discussion
which are, in general, made unnecessarily obscure by expression in particular
coordinate systems. The proper function of coordinates is to perform the final
step of algebraic interpretation. In Chapter III the general properties of fluid
motion continuity, dynamical equation, pressure, energy, and vorticity are
studied in the light of the vector formulation whose advantage is then clearly
seen.

Chapter IV is occupied with intrinsic properties of two-dimensional motion
in so far as they can be treated without the complex variable. Chapter V is
a digression to introduce the complex variable, defined as a vector operator,
and to prove such theorems as will be required in the sequel. In particular the
properties of conformal mapping are treated in some detail in view of their
subsequent fundamental importance.

Chapters VI to XIV form a complete unit and embody an attempt to give
a detailed discussion of two-dimensional motion from the unified standpoint of
the complex variable, making full use of conformal mapping and the theorem
of Blasius and its extensions. I have begun with a discussion of streaming
motion in Chapter VI, followed by a consideration of simple Joukowski aero-
foils in Chapter VII, while sources and sinks are postponed to Chapter VIII.

* It should be noted that the section numbers are decimals of which the integral part denotes
thecr})‘umberlgf the chapter. Thus for example section 4-21 precedes section 4-5 and both belong
to Chapter IV,
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In Chapter IX the moving cylinder is treated in detail and a form of the theorem
of Kutta and Joukowski, generalised to include the case of accelerated motion,
is obtained (9-53). Chapter X contains a discussion of the mapping theorem of
Schwarz and Christoffe] with some immediate applications ; in Chapters XI,
X1I further applications are made to the discontinous motions of jets, currents,
and the cavity behind a cylinder in a stream, including an account of the
elegant method of Levi-Civita. Chapter XIII is devoted to the discussion of
rectilinear vortices, K4rmén’s vortex street, and the drag due to a vortex wake.
Chapter XIV deals with two-dimensional wave motion.

Chapter XV introduces Stokes’ stream function and the application of
conformal mapping to three-dimensional problems with axial symmetry. The
general motion of spheres and ellipsoids is treated in Chapter XVI. In Chapter
XVII partial differentiation with respect to a vector (2-71) is applied to obtain
Kirchhoff’s equations in vector form thus replacing six equations by two. It is
believed that this method is new and that it offers opportunities for research
in stability problems. Chapter XVIII discusses vortex motion in general with
particular application to the aerofoil of finite span. Chapter XIX gives an
outline of the application of vector methods to viscous liquids and a brief
description of the boundary layer theory. It is interesting to note how simply
the components of stress in a viscous liquid can be derived by vector methods
for any system of orthogonal coordinates (19-41).

Chapter XX is intended as an introduction to the theory of the flow of a
compressible fluid at subsonic and supersonic speeds. The source in a com-
pressible fluid is discussed in 89, and the vortex in 13-8.

There are 569 exercises in all collected into sets of examples at the end of
each chapter. Many of these are taken with permission, for which I express
my best thanks, from the Mathematical Tripos, the University of London’s
M.Sc. examination, and from the examination of Constructor Lieutenants at
the Royal Naval College.* Apart from these I have included others of various
origins, now unknown and so unacknowledged, used in my lectures and about
100 given me by the late Professor L. N. G. Filon. Some of the exercises are
very easy, others are quite difficult and may be regarded as supplementing the
text.

In stating theorems I have, as far as possible, associated the name of the
discoverer as sufficient indication of the origin, but it must not be assumed that
the method of presentation here is in every case that in which the theorem was
originally given. For example Gauss might well consider 2:60 as his theorem
veiled in allegory and illustrated by symbols. Bibliographical references have
occasionally been added where they appear to be useful or appropriate, but no
systematic attempt -has been made to give them. I have followed Lamb

* These sources are distinguished by the letters M.T., U.L., R.N.C., respectively.
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(1849-1934) in associating the negative sign with the gradient of the velocity
potential. The preparation of the fourth edition has given me the opportunity
to act upon suggestions made by a number of readers to whom I am very
grateful.

The gratifying reception accorded to this work has encouraged me to con-
tinue to search for improvements. Apart from considerable rearrangements
and new methods of presentation this fourth edition differs from the third by
several important additions; the formulae of Plemelj for solving certain
boundary value problems (5-592); a systematic discussion of flow under
gravity with a free surface, including a new method here published for the first
time (11:60-11-64) ; an exact treatment of the surface wave of constant form
(14-84) and what I call the “ exact linearised theory ”” which flows from it ; an
account of some comparison theorems, including Serrin’s ‘‘ under-over ”
theorem. These theorems, which have important applications, deserve to be
extracted from the journals in which they were originally puljiished.

I take this opportunity of expressing my thanks to the officials of the Glas-
gow University Press not only for the ready way in which they have met my
requirements but also for their careful attention to typographical detail which
is so important in a work of this kind, and most of all for maintaining that
standard of elegant mathematical printing for which they are justly renowned.

L. M. MILNE-THOMSON

MATHEMATICS DEPARTMENT
THE UNIVERSITY OF ARIZONA
TucsoN, ARIZONA
August 1962
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HISTORICAL NOTES

TuE term hydrodynamics was introduced by Daniel Bernoulli (1700-1783) to
comprise the two sciences of hydrostatics and hydraulics. He also discovered
the famous theorem still known by his name.

d’Alembert (1717-1783) investigated resistance, discovered the paradox
associated with his name, and introduced the principle of conservation of mass
(equation of continuity) in a liquid.

Euler (1707-1783) formed the equations of motion of a perfect fluid and

developed the mathematical theory. This work was continued by Lagrange
(1736-1813).

Navier (1785-1836) derived the equations of motion of a viscous fluid from
<certain hypothesis of molecular interaction.

Stokes (1819-1903) also obtained the equations of motion of a viscous fluid.
;ie may be regarded as having founded the modern theory of hydrodynamics.

Rankine (1820-1872) developed the theory of sources and sinks.

Helmholtz (1821-1894) introduced the term velocity potential, founded the
theory of vortex motion, and discontinuous motion, making fundamental con-
tributions to the subject.

Kirchhoff (1824-1887) and Rayleigh (1842-1919) continued the study of
discontinuous motion and the resistance due to it.

Osborne Reynolds (1842-1912) studied the motion of viscous fluids, intro-
duced the concepts of laminar and turbulent flow, and pointed out the abrupt
transition from one to the other. '

Joukowski (1847-1921) made outstanding contributions'fo aerofoil design
and theory, and introduced the aerofoils known by his nanie.

Lanchester (1863-1945) made two fundamental contributions to the modern
theory of flight ; (i) the idea of circulation as the cause of lift, (ii) the idea of
tip vortices as the cause of induced drag. He explained his theories to the
Birmingham Natural History Society in 1894 but did not publish them till
1907 in his derodynamics.






PLATE 1

Fic. 1.—Flow round cylinder immedi- " Fre. 2.—Backward tlow in tho boun-
ately after starting (potential fow). dary layer behind the cylinder ; accumu-

lation of boundary layer material.

I'1¢. 3.-—Formation of two vortices ; F1a. 4.—The eddies increase in size.
flow breaking loose from ecylinder.

Fia. 5.~ Final picture obtained a F1G. 6.-—T'he eddies grow still more ;
long time after starting. finally the picture becomes unsymmet-
rical and disintegrates.

The direction of flow in all photographs is from left to right.

Reprint from A pplied Hydro- and Aeromechanics, by L. Prandtl, Ph.D., and O. G. Tictjens, Ph.D.,
through courtesy of United Epgincering Trustees, Inc. .



PLATE 2

F1a. 1.—Streamlines round an aerofoil the very first moment after
starting.

Fia. 2.—Formation of the starting vortex which is washed away
with the fluid.

Reprint from Applied Hydro- and Aeromechanics, by L. Prandt], Ph.D., and O. G. Tietjens, Ph.D.,
through courtesy of United Engineering Trustees, Inc.



Fia. 1.—Like Fig. 1, Plate 2, but with the camera at rest with respect
to the undisturbed fluid and a shorter exposure. Also with a greater
angle of attack and consequently a greater starting vortex.

FK1a. 2.—Atter formation of the starting vortex the acrofoil was stopped
and then the picture was taken.

Reprint from Applied Hydro- and Aeromechanics, by L. Prandtl, Ph.D., and O. G. Tietjens, Ph.D.,
through courtesy of United Engineering Trustees, Inc.



PLATE 4

Fra. 1.—Karman trail ; Reynolds number wd/v =250,
The camera is at rest with respect to the cylinder.

Fia. 2.—~Karméan trail ; Reynolds number wd/v=250.
The camera is at rest with respect to the undisturbed fluid.

Reprint from Applied Hydro- and Aeromechanics, by L. Prandtl, Ph.D., and O. G. Tietjens, Ph.D,
through courtesy of United Engincering Trustees, Inc.
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CHAPTER I
BERNOULLI'S EQUATION

1+0. The science of hydrodynamics is concerned with the behaviour of
fluids in motion.

All materials * exhibit deformation under the action of forces; elasticity
when a given force produces a definite deformation, which vanishes if the force
is removed ; plasticity if the removal of the forces leaves permanent deforma-
tion ; flow if the deformation continually increases without limit under the
action of forces, however small.

A fluid is material which flows.

Actual fluids fall into two categories, namely gases and liquids.

A gas will ultimately fill any closed space to which it has access and is
therefore classified as a (highly) compressible fluid.

A liquid at constant temperature and pressure has a definite volume and
when placed in an open vessel will take under the action of gravity the form
of the lower part of the vessel and will be bounded above by a horizontal free
surface. All known liquids are to some slight extent compressible. " For most
purposes it is, however, sufficient to regard liquids as incompressible fluids.

In this book we shall for the most part be concerned with the behaviour
of fluids treated as incompressible and the term liquid will be used in this
sense. But it is proper to observe that, for speeds which are not compar-
able with that of sound, the effect of compressibility on atmospheric air can
be neglected, and in many experiments which are carried out in wind tunnels
the air is considered to be a liquid, in the above sense, which may conveniently
be called incompressible avr.

Actual liquids (and gases) in common with solids exhibit viscosity arising
from internal friction in the substance. Our definition of a fluid distinguishes
a viscous fluid, such as treacle or pitch, from a plastic solid, such as putty or clay,
since the former cannot permanently resist any shearing stress, however small,
whilst in the case of the latter, stresses of a definite magnitude are required to
produce deformation. Pitch is an example of a very viscous liquid ; water is
an example of a liquid which is but slightly viscous. A more precise definition

* In this summary description the materials are supposed to exhibit a macroscopic con-
tinuity, and the forces are not great enough to cause rupture. Thus a heap of sand is excluded,
but the individual grains are not.

A . M.T.H.
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of viscosity will be given later. For the present, in order to render the subject
amenable to exact mathematical treatment, we shall follow the course adopted
in other branches of mechanics and make simplifying assumptions by defining
an ideal substance known as an inwviscid or perfect fluid.

Definition. An inviscid fluid is a continuous fluid substance which can
exert no shearing stress however small.

The continuity is postulated in order to evade the difficulties inherent in
the conception of a fluid as consisting of a granular structure of discrete mole-
cules. The inability to exert any shearing stress, however small, will be shown
later to imply that the pressure at any point is the same for all directions at
that point.

Moreover, the absence of tangential stress between the fluid on the two
gides of any small surface imagined as drawn in the fluid implies the entire
absence of internal friction, so that no energy can be dissipated from this

Fic. 1-0.

cause. A further implication is that, when a solid moves through the fluid or
the fluid flows past a solid, the solid surface can exert no tangential action on
the fluid, so that the fluid flows freely past the boundary and no energy can
be dissipated there by friction. In this respect the ideal fluid departs widely
from the actual fluid which, as experimental evidence tends to show, adheres
to the surface of solid bodies immersed in it. The difference in behaviour
is well illustrated by considering straight steady flow along a horizontal pipe.
If we draw vectors to represent the velocity at points of 4B, a diameter of
the pipe, for an inviscid fluid their extremities will lie on another diameter,
while for a viscous fluid the extremities will lie on a parabolic curve, passing
through 4 and B. It might be thought that the study of the perfect fluid
could throw but little light on the behaviour of actual fluids. As we shall see
presently this is so far from being the case that the theory can, in important

instances, explain not only qualitatively but also quantitatively the motion of
actual fluids.

1-0l. Physical dimensions. Physics deals with the measurable pro-
perties of physical quantities, certain of which, as for example, length, mass,
time and temperature, are regarded as fundamental, since they are independent
of one another, and others, such as velocity, acceleration, force, thermal con-
ductivity, pressure, energy are regarded as derived quantities, since they are
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defined ultimately in terms of the fundamental quantities. Mathematical
physics deals with the representation of the measures of these quantities by
numbers and deductions therefrom. These measures are all of the nature of
ratios of comparison of & measurable magnitude with a standard one of like
kind, arbitrarily chosen as the unit, so that the number representing the
measure depends on the choice of unit. v

Consider a dynamical system, i.e. one in which the derived quantities depend
only on length, mass and time, and change the fundamental units from, say,
foot, pound, second, to mile, ton, hour. Let [, m,, ¢, and l,, m,, t, be the
measures of the same length, mass and time respectively in the two sets of units.

Then we have
l
(1) ll—_—fXZzlez, my = Mmy, t =1Tt,,
2

where L, M, T are numbers independent of the particular length, mass or time
measured, but depending only on the choice of the two sets of units. Thus in
this case, we have L == 5280, M = 2240, T = 3600. These numbers L, M, T
we call the respective measure-ratios of length, mass, time for the two sets of
units, in the sense that measures of these quantities in the second set are
converted into the corresponding measures in the first set by multiplication by
L,MT.

The measure-ratios V, 4, F of the derived quantities, velocity v, acceleration
a, and force f, are then readily obtained from the definitions of these quantities
as

V=LT A=V|T, F=DMA,

so that ultimately the measure ratio of a force is given by F = ML/T* And
in general if n; , n, are the measures of the same physical quantity » in the
two sets of units, we arrive at the measure-ratio

(2) U= N = LeMT*,

Mg

and we express this conventionally by the statement that the quantity is of
dimensions L=MvT* (or is of dimensions z in length, y in mass, and z in time).
If # = y = 2 =0, then n; = n,, so the quantity in question is independent of
any units which may be chosen, as for example, the quantity defined as the
ratio of the mass of the engines to the mass of the ship. In such a case we say
the quantity is dimensionless and is represented by a pure number, meaning
that it does not change with units.

Now consider a definitive relation

(3) a = bc
between the measures @, b, ¢ of physical quantities in a dynamical system, i.e. a
relation which is to hold whatever the sets of units employed, and which is not
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merely an accidental relation between numbers arising from measurement in
one particular set of units. Suppose the dimensions of a, b, ¢ are respectively
(p, ¢, 7), (s, ¢, u), and (=, y, ), so that

4) a, = a,L?MTr, b, = b L*M!T%, ¢, = c,L*MVT*.
Then (3) would become a, = b,¢, , and (4) would then give by substitution
a, LPMOT" = b,L*M*Tc,L*MvT>.
Now a; = byc, , since the form of (3) is independent of units, and therefore
LeMel'r = Le+ep+vTu+s, or p =s+z, ¢=1t+y, 7 =1u+z

In other words, each fundamental measure-ratio must occur with the same
index on each side of (3), i.e. each side of (3) must be of the same physical
dimensions.

In systems involving temperature as well as length, mass, and time as
fundamental quantities (thermodynamical systems) a measure-ratio (say D) of
te\m/perature must be introduced.

1-1. Velocity. Since our fluid is continuous, we can define a fluid particle
as consisting of the fluid contained within an infinitesimal volume, that is to
say, a volume whose size may be considered so
small that for the particular purpose in hand its
linear dimensions are negligible. We can then treat
a fluid particle as a geometrical point for the
particular purpose of discussing its velocity and
acceleration.

If we consider, fig. 1-1 (@), the particle which at time ¢ is at the point P,
defined by the vector *

Fia. 1-1 (a).

r = OP,
at time ¢, this particle will have moved to the point @, dgfu{'ed by the vector

r= Oé- :f\
The velocity of the particle at P is then defined by‘the vector t
r-r_ ‘_if
4ot b=t dt’
Thus the velocity q is a function of r and ¢, say
q =£r,0).

* The subject of vectors is explained at length in Chapter II.
t The symbol lim is to be read as “ the limit when ¢, tends to the value ¢ . This is the usual

N

I

method of deﬁninig differential coefficients, whose existence we shall infer on physical grounds.
The symbol — alone is read “ tends to *'.
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If the form of the function f is known, we know the motion of the fluid.
At each point we can draw a short line to represent the vector q, fig. 11 (b).
To obtain a physical conception of the velocity field defined by the vector
q, let us imagine the fluid to be filled with a large (but not infinitely large)

number of luminous points moving with the fluid.

A photograph of the fluid taken with a short time // ’f f
exposure would reveal the tracks of the luminous points as Py /
short lines, each proportional to the distance moved by the - ,,/,/"
point in the given time of the exposure and therefore pro- 7

portional to its velocity. This is in fact the principle of one Fia. 11 (6).

method of obtaining pictorial records of the motion of an actual fluid.* In
an actual fluid the photograph may reveal a certain regularity of the velocity
field in which the short tracks appear to form parts of a regular system of
curves. The motion is then described as streamline motion. On the other
hand, the tracks may be wildly irregular, crossing and recrossing, and the
motion is then described as turbulent. The motions of our ideal inviscid fluid
will always be supposed to be of the former character. An exact mathematical
treatment of turbulent motion has not yet been achieved.

fluid so that its tangent at each point is in the du'ec'mon of the fluid velocity
at it that pomt is called a_streamline.

* When the fluid velocity at a given point depends not only on the position
of the point but also on the time, the streamlines will alter from instant to
instant. Thus photographs taken at different instants will reveal a different
system of streamlines. The aggregate of all the streamlines at a given instant
constitutes the flow pattern at that instant.

When the velocity at each point is independent of the time, the flow
pattern will be the same at each instant and the motion is described as steady.
In this connection it is useful to describe the type of motion which is relatively
steady. Such a motion arises when the motion can be regarded as steady by
imagining superposed on the whole system, including the observer, a constant
velocity. Thus when a ship steams on a straight course with constant speed
on an otherwise undisturbed sea, to an observer in the ship the flow pattern
which accompanies him appears to be steady and could in fact be made so by
superposing the reversed velocity of the ship on the whole system consisting of
the ship and sea.

If we fix our attention on a particular particle of the fluid, the curve which
_;s,pa.mm describes during its motion is called a_path line, The direction of
motion of the particle must necessarily be tangential to the path line, so that

* Plates 1-4 illustrate this.
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the path line touches the streamline which passes through the instantaneous
position of the particle as it describes its path.
Thus the streamlines show how each particle is moving at a given instant.
The path lines show how a given particle is moving at each instant.
fhen the motion is steady, the path lines coincide with the streamlines.

1:12. Stream tubes and filaments. If we draw the streamline through
each point of a closed curve we obtain a stream tube.

A stream filament is a stream tube whose cross-section is a curve of in-
finitesimal dimensions.

When the motion is dependent on the time, the configuration of the stream
tubes and filaments changes from instant to instant, but the most interesting
applications of these concepts arise in the case of the steady motion of a liquid,
which we shall now discuss.

In the steady motion of a liquid, a stream tube behaves like an actual tube
through which the liquid is flowing, for there can be no flow into the tube
across the walls since the flow is, by definition, always tangential to the walls.
Moreover, these walls are fixed in space since the motion is steady, and there-
fore the motion of the liquid within the walls would be unaltered if we replaced
the walls by a rigid substance.

Consider a stream filament of liquid in steady motion. We can suppose
the cross-sectional area of the filament so small that the velocity is the same

at each point of this area, which
—— can be taken perpendicular to the
93 = direction of the velocity.
= Now let ¢, , ¢, be the speeds of
the flow at places where the cross-
sectional areas are o; and o,. Since
the liquid is incompressible, in a given time the same volume must flow out
at one end as flows in at the other. Thus

Fie. 1-12.

9191 = 4203~

This is the simplest case of the equation of conservation of mass, or the
equation of continuity, which asserts in the general case that the rate of genera-
tion of mass within a given volume must be balanced by an equal net outflow
of mass from the volume. The above result can be expressed in the following
theorem.

The product of the speed and cross-sectional area is constant along a stream
Jilament of a liquid in steady motion.

It follows from this that a stream filament is widest at places where the
speed is least and is narrowest at places where the speed is greatest.

A further important consequence is that a stream filament cannot termi-
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nate at a point within the liquid unless the velocity becomes infinite at that
point. Leaving this case out of consideration, it follows that in general
stream filaments are either closed or terminate at the boundary of the liquid.
The same is true of streamlines, for the cross-section of the filament may be
considered as small as we please.

-2, Density. If M is the mass of the fluid within a closed volume ¥,
we can write

(1) M =Vp,

and p, is then the average density of the fluid within the volume at that
instant. In a hypothetical medium continuously distributed we can define
the density p as the limit of p, when V— 0.

In an actual fluid which consists of & large number of individual molecules
we cannot let V— 0, for at some stage there might be no molecules within the
volume V. We must therefore be content with a definition of density given
by (1) on the understanding that the dimensions of ¥ are to be made very
small, but not so small that ¥ does not still contain a large number of mole-
cules. In air at ordinary temperatures there are about 3 x 10'® molecules per
cm.3, A sphere of radius 0-001 cm. will then contain about 10! molecules,
and although small in the hydrodynamical sense will be reasonably large for
the purposes of measuring average density.

I-3. Pressure. Consider a small plane of infinitesimal area do, whose
centroid is P, drawn in the fluid, and draw the normal PN on one side of the
area which we shall call the positive side. The other N
side will be called the negative side.

We shall make the hypothesis that the mutual
action of the fluid particles on the two sides of the
plane can, at a given instant, be represented by two
equal but opposite forces p do applied at P, each
force being a push not a pull, that is to say, the
fluid on the positive side pushes the fluid on the
negative side with a force p do.

Experiment shows that in a fluid at rest these forces act along the normal.
In a real fluid in motion these forces nmlake an angle € with the normal (analogous
to the angle of friction). When the viscosity is small, as in the case of air and
water, € is small. In an inviscid fluid which can exert no tangential stress
€ = 0, and in this case p is called the pressure at the point P. .

In the above discussion there is nothing to show that the pressure p is
independent of the orientation of the element do used in defining p. That this
independence does in fact exist is proved in the following theorem.

F16. 1-3 (a).
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Theorem. The pressure at a point in an inviscid fluid is independent of
direction.
Proof. Let P, Q be two neighbouring points, and consider a cylinder of
fluid, whose generators are parallel to PQ, bounded by a cross-section do; and

an oblique section do,, the centroids
of these sections being P and @ re-

#2490, .
spectively. Let the pressures at P and
, 6 @, defined by the sections do, and do, ,
pdo, \P Fplds, be p, and p,, and let the normal at Q
Fia. 13 (6). make an angle 6 with PQ. The volume

of fluid within the cylinder is ldo,,
where [ is infinitesimal. Let ¥ be the component in the direction of P@Q of the
external force per unit mass of fluid, and let f be the acceleration of the
cylinder in the direction PQ. Then if p is the density, the second law of
motion gives
Py doy— pydo, cos 8+ F pldoy = f pl day.
Now, do, cos @ = do,. Therefore dividing by do, ,

P1—P2 = bp(f-F).

If we let Q approach P, | will tend to zero and therefore p, — p, tends to
zero. Thus when @ coincides with P we get p;, = p,. Since the direction of
the normal to the section at @ is quite arbitrary, we conclude that the pressure
at P is the same for all orientations of the defining element of area. Q.E.D.

Pressure is a scalar quantity, i.e. independent of direction. The dimen-
sions of pressure in terms of measure-ratios (see 1-01) M, L, T' of mass length
and time are indicated by ML-T-2

The thrust on an area do due to pressure is a force, that is a vector quantity,
whose complete specification requires direction as well as magnitude.

Pressure in a fluid in motion is a function of the position of the point at
which it is measured and of the time. When the motion is steady the pressure
may vary from point to point, but at a given point it is independent of the
time. :
It should be noted that p is essentially positive.

1-4. Bernoulli’s theorem (special form). In the steady motion of a
liquid the quantity

§+qu’+gh
has the same value at every point of the same streamline where p, p, ¢ are

the pressure, density, and speed, g is the acceleration due to gravity, and % is
the height of the point considered above a fixed horizontal plane.
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Proof. Consider a stream filament bounded by sections 4B, CD of areas
0,,0;,and let p, , ¢, , by be the pressure, speed, and height at AB, while p, ,'q5 , kg
are the corresponding quantities at CD. After a short time 8¢ the liquid which
was in ABCD will occupy the
portion A'B'C'D’ of the fila-
ment where

AA' = ¢, 8, CC =g, ét.

In moving the liquid from
the first to the second position, M
work will have been done by AIE
the thrusts on 4B, CD. This L
work will be expended in in-
creasing the kinetic energy and the potential energy of the liquid. The
thrusts on the walls of the tube do no work, for they are perpendicular to
the direction of flow.

The work done by the thrust at 4B is p, o, x A4’, and that done at CD
i8 —pya,x CC’. Hence the total work done by the thrusts is

Fra. 1-4.

P101 41 8t —Ppy 0, ¢5 3.
The liquid has gained the kinetic and potential energies of the liquid
between CD and C’'D’, the total amount gained is therefore
10545 8t p X ¢4 +04 45 8t p X ghy.
The liquid has lost the kinetic and potential energies of the part between
AB and A’B’, making a loss of
101 ¢, 8t px gs®+0y gy 8 px ghy.
Equating the net gain to the work done, we get
P101 41 88— Py0; G5 8t = 03 ¢3 8t p(3qs* + ko) — 01 1 8 p(39.* +ghy).
Now ¢, ¢; = 0, ¢, , by the conservation of mass (see 1-12). Thus

P1— P2 = p(39a®+ghs) — p (3022 + ghy)-
Therefore

%‘+1}ql’+yh1 = ’;’;z+%q=’+ghz,

so that the given expression has the same value at any two points of the
stream filament and is therefore the same at all points of the streamline to
which the filament can be shrunk. QE.D.

1-41. Flow in achannel. Suppose water to flow steadily along a channel
with a horizontal bottom and rectangular cross-section of breadth b. If 4 is
the height of the free surface above the bottom, since the pressure at the free
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surface must be equal to that of the atmosphere, we shall have from Bernoulli’s
theorem w2+ 2gh = constant, where u is the velocity supposed parallel to the
walls and constant across the section. If the breadth of the channel varies
slightly, there will be a small consequent change in u, and therefore by differ-
entiation of the above

udu+gdh = 0.
Again, from the equation of continuity, ubk = constant, and therefore
@4.@.*.@ =0
v b h
Elimination of du gives
b urh
b~ b(gh—-u?)’

Thus the depth and breadth increase together if, and only if, u?<g#, i.e.
if u is less than the speed of propagation of long waves in the channel (cf. 14-62).

1-42. Remarks on Bernoulli’s theorem. The form in which the
theorem has been stated is called special for two reasons. Firstly, we have
agsumed the external forces to be due to gravity alone. The field of gravita-
tional force is a conservative field, meaning by this that the work done by the
weight when a body moves from a point P to another point @ is independent
of the path taken from P to ¢ and depends solely on the vertical height of @
above P. A conservative field of force gives rise to potential energy, which is
measured by the work done in taking the body from one standard position to
any other position. In order that potential energy of a unit mass at a point
may have a definite meaning, it is obviously necessary that the work done by
the forces of the field should be independent of the path by which that point
was reached. The gravitaticnal field is clearly the most important of conserva-
tive fields of force, but it is by no means the only conceivable field of this nature ;
for example, an electrostatic field has the conservative property. If more
generally we denote by £2 the potential energy per unit mass in a conservative
field, Bernoulli’s theorem would take the more general form that

Poip
S+3g2+Q
p 1q

is constant along a streamline, and the same method of proof could be used.

Secondly, we have assumed the fluid to be incompressible, and of constant
density. More generally, for barotropic flow, that is to say when the pressure
is a function of the density,* the theorem assumes the form that

jd%’+§q’+9

is constant along a streamline. This is proved in 1-61.

* This amounts to assuming that an equation of state f (p, p, 8) =0 exists wherein the entropy
8 has everywhere the same value, the homentropic case of 20-01.
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1-43. The constant in Bernoulli’s theorem. If we fix our attention
on a particular streamline, 1, Bernoulli’s theorem states that

2;f+%q2+gh =0,,

where C, is constant for that streamline. If we take a second streamline, 2,
we get

Erigegh =,

where C, is constant along the second streamline. We have not proved (and
in the general case it is untrue) that C; = C,. When, however, the motion is
irrotational, a term which will be explained later (2-41), it is true that the
constant is the same for all streamlines, so that

§+~}q2+gh=0,

where C has the same value at each point of the liquid. It will also be shown
later (3-64) that this case arises whenever an inviscid liquid is set in motion
by ordinary mechanical means, such as by moving the boundaries suddenly
or slowly, by opening an aperture in a closed vessel, or by moving a body
through the liquid.

1-44. Hydrodynamic pressure. In the steady motion of a liquid
Bernoulli’s theorem enables us to elucidate the nature of pressure still further.
In a liquid at rest there exists at each point a hydrostatic pressure pg, and
the principle of Archimedes states that a body immersed in the fluid is buoyed
up by a force equal to the weight of the liquid which it displaces. The particles
of the liquid are themselves subject to this principle and are therefore in equi-
librium under the hydrostatic pressure pg and the force of gravity. It follows
at once that pg/p+gh 1s constant throughout the liquid. When the liquid is
in motion the buoyancy principle still operates, so that if we write

. »=pp+pm,
Bernoulli’s theorem gives

Z’f+1}q’+%"+gh =C,
and therefore

1) })_:J'%q” =0,

where ¢’ = C — (pg/p+gh) is a new constant.

Now (1) is the form which Bernoulli’s theorem would assume if the force
of gravity were non-existent.

The quantity pp may be called the hydrodynamic pressure, or the pressure
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due to motion. This pressure pp measures the force with which two fluid
particles are pressed together (for both are subject to the same force of buoy-
ancy). It will be seen that the knowledge of the hydrodynamic pressure will
enable us to calculate the total effect of the fluid pressure on an immersed
body, for we have merely to work out the effect due to pp and then add the
effect due to pg , which is known from the principles of hydrostatics. This is
a very important result, for it enables us to neglect the external force of
gravity in investigating many problems, due allowance being made for this
force afterwards.

It is often felt that hydrodynamical problems in which external forces are
neglected or ignored are of an artificial and unpractical nature. This is by no
means the case. The omission of external forces is merely a device for avoid-
ing unnecessary complications in our analysis.

It should therefore be borne in mind that when we neglect external forces
we calculate in effect the hydrodynamic pressure.

We also see from (1) that the hydrodynamic pressure is greatest where
the speed is least, and also that the greatest hydrodynamic pressure occurs
at points of zero velocity.

It should be observed, however, that the device of introducing hydro-
dynamic pressure can be justified only when the boundaries of the fluid are
fixed, for only in these conditions is the hydrostatic pressure constant at a
given point. When the liquid has free surfaces which undulate, the hydro-
static pressure at a fixed point will vary, and we must consider the total
pressure.

In the case of compressible fluids the pressure due to motion is usually
called aerodynamic pressure.

1'5. The Pitot tube. Fig. 1-5 (a) shows a tube ABCD open at 4, where

it is drawn to a fine point, and closed at D, containing mercury in the U-shaped
part.

! If this apparatus is placed

A4 <«—— with the open end upstream in

D a steadily flowing liquid, the
c B axis of the horizontal part in
the figure will form part of the

Fio. 15 (a). streamline which impinges at

A. Hence if p, is the pressure
just inside the tube at 4, and p is the pressure ahead of 4, we shall have, by
Bernoulli’s theorem,

P

+1¢%,

oI
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since the fluid inside the tube is at rest. The pressure p, is measured by the
difference in levels of the mercury at B and C, assuming a vacuum in the part
CD. This is the simplest form of Pitot tube for determining the quantity

p+3ng* £

In applications it is often required ~
to measure the speed ¢. In order to £ 4
do this we must have a means of #
measuring p. G F

This measurement can be made by
means of the apparatus shown in fig. Fia. 1'6 (b).

1-5 (b), which differs from the former

only in having the end 4 closed and holes in the walls of the tube at B

slightly downstream of 4. The streamlines now follow the walls of the tube

from 4, and the fluid within the tube being at rest and the pressure being

necessarily continuous, the pressure just outside the tube at E is equal to
the pressure just inside the

£ —_° tube at £, and this is measured
— < by the difference in the levels
= A

of the mercury at G and F.
In practice it is usual to com-
B bine both tubes into a single
apparatus as shown in fig. 1-5
(c).

In this apparatus the dif-
ference in levels of the mercury at B and G measures p, —p = 3pg?.

The above description merely illustrates the principle of speed measure-
ments with the Pitot tube. The actual apparatus has to be very carefully
designed, to interfere as little as possible with the fluid motion. With
proper design and precautions in use, the Pitot tube can give measurements
within one per cent. of the correct values in an actual fluid, such as air or
water.

F1a. 1'5 (c).

1:6. The work done by a gas in expanding. Let S and 8’ be the
surfaces of a unit mass of gas before and after a small expansion.

Let the normal displacement of the element dS of
the surface S be dn.

Suppose the pressure of the gas to be p. Then the
work done by the gas is

p 2 dS.dn = pxincrease in volume = p dv,
where v is the volume within S. But since the mass
is unity, vp = 1.
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Hence the work done by the gas

()

and if the expansion is from density p to density p,,

the work done = ro pd (}> .
» P

We suppose that the pressure is a function of the density only.

We shall call internal energy per unit mass the work which a unit mass of
the gas could do as it expands under the assumed relation between p and p
from its actual state to some standard state in which the pressure and density
are po and p,. Calling E the internal energy per unit mass, we get

B jnopd (1) :&—B_v\.po@
[ P Po P Jp P

on integrating by parts. Thus
p
E = ﬂ’ - 2 + I @ .
Po P o P

Note that internal energy is a form of strain energy analogous to that of
a stretched elastic string.

1-:61. Bernoulli’s theorem for a compressible fluid. In the case of
a compressible fluid we use exactly the same method as in the case of an
incompressible fluid, noting, however, that account must now be taken of the
internal energy.

Using the figure of 1'4, and calling p, and p, the densities at AB and CD,
we get as before for the work done by the thrusts the expression

P101 1 8t~ pyoy ¢, OL.

This work has been utilised in increasing the kinetic energy, the potential
energy, and the internal energy. Thus we get

P10y 1 8= Py 0y G 8L = 0y 4 Ot g (3q5°+ghs) — 0y ¢y 8 py (3, +gh,)
+E,05 4,0t py— B0y, 8 py
where Ii; , E, denote the internal energy per unit mass at AB and CD respec-
tively.
Since the motion is steady, the inflow of mass at 4B must equal the outflow
at CD, and therefore the equation of continuity is now

P101 41 8L = py0y g3 8.
We therefore get
Ph_P

-2 = 1952+ ghy+ By~ (32* + ghy + E)).
P1 P2
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Now, from 1:6,
y2 P
Ea:ﬁe_i'_’h,j'd_? Elz”—“—&+j dp.

Po P2 Jp P’ Po P1 JmP
Thus we get Bernoulli’s theorem, namely,

Pa 2%
<1> ["2 gg gty = "2 40+ g,

n P P P

If we consider aerodynamic pressure (1-44) Bernoulli’s theorem assumes the
form
2) j@+ 3¢* = constant along a streamline,

P
whence we get

®) dp = -pqdyg.
1-62. Application of Bernoulli’s theorem to adiabatic expansion.

When a gas expands adiabatically (that is to say without gain or loss of heat),
the pressure and the density are connected by the relation

(1) P = rp",
where « and y are constants. For dry air, y = 1-405. Therefore

? dp j"’ Ky Y (p ro)
L= g Y-2(p = L [pr-1—py-l] = L (£ _4L0).
jpop 14 Pnp P Y—l[p Po ] y_l P Po

Since po/p, refers to a standard state, this is constant, and therefore Ber-
noulli’s theorem gives
r r
y=1lp
If we take p, to be the pressure when the velocity is zero * and neglect the
effect of gravity, we obtain

+4¢*+gh = C.

Y P Y Po
9 Y Py = Y Po,
@ y—-1p 4 v=1po
8o that
2y po P Po
(3) Po L B(1 RA),
1 y-1 po Pop
' r—t1
Ppo _ P [P\
NOW 1‘)‘0—; —;‘07‘_—1— <;);> from (1).

Also, from the theory of sound waves, it is known (14-87) that the speed
of sound ¢, when the pressure is p, is given by

2 YD,

Co
Po

* It is not asserted that zero velocity is attained. The pressure p, is nevertheless uniquely
defined by the equation which follows.
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Therefore we obtain from (2)

and therefore

The ratio of the third term to the second in this expansion is g2/4c,?, so that
even when the speed ¢ is equal to half the speed of sound this ratio is 1/16.
Thus it appears that we may, to a good approximation, neglect the third term,
unless ¢ is a considerable fraction of c,.

Bernoulli’s theorem for air will then take the form

.—?Lo)

P12 =
=+ —_
Po b Po

which means that the air may be treated as incompressible within a very
considerable range of speeds. In particular, for air speeds of 300 miles per
hour, the error in speed measurements made by the use of the Pitot tube (see
1-5) will be only about 2 per cent.

Again, the speed of flow in the neighbourhood of the wings of an aero-
plane will be comparable with the forward speed, and therefore the effect of
compressibility is small for small forward speeds. On the other hand, the
compressibility cannot be neglected in the neighbourhood of the tips of the
propeller blades.

1-63. Subsonic and supersonic flow. If ¢ is the speed of sound
when the pressure is p, we have (14-87) ¢* = yp/p, and therefore 1-62 (2) gives

)

c? o>
2 0

y- 1 + %q - y— 1
which shows that ¢ has the maximum value ¢, when ¢ = 0, and that ¢ has the
maximum value ¢pay When ¢ = 0, given by
2¢e® |
y-1

The critical speed ¢* occurs when sound speed and fluid speed are equal,
and therefore from (1),

2
K — Ak —
(3) g*F=c ~0°J7+1

@)

s

2) Tmax =
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The following forms of Bernoulli’s equation (1) should be noted :

&) o = }(y-1)(thas - ) g
2 _ o2 2
(®) “’(I,T:+E§,—, =1

The graph of ¢* as a function of c* is the B!
straight line 4B in fig. 1:63. This shows that along
a streamline ¢ << ¢y, ¢ < qmax- The straight line
¢*—c® = 0 cuts AB at the point C (c*2, ¢*?), where
q* = c*. The two portions AC, BC of this line
correspond with two physically different régimes.

If we introduce the Mach number

(6) M = ge,

at any point of AC we have ¢<¢* = ¢*<c¢, so
that M <1, provided that g<c.  Flow for which
M <1 is called subsonic.

At any point of BC we have ¢>¢* = c*>c¢,
so that M >1, and the flow is then said to be
supersonic.

We get from (1)

() 1+3(y-1)Mm?

r=1
:c_ozz(@y_l_&r v, 0
¢ \p T \p

1:64. Flow of gas in a converging pipe. If w is the area of the section,
which is taken to be small, the pipe will converge if w decreases as we go
along the pipe, i.e. if dw/ds<0, where ds is an element of length of the pipe.
The equation of continuity is w pg = constant, which gives

ldp 1dg 1 dw

1 P

) p ds + q ds w ds

Taking the adiabatic law, Bernoulli’s theorem gives

Y P

3%+ < = constant,
y=1p
and therefore
dq y—a 9P
q ds+'yxp p 0.

Let c* = yp/p denote the local speed of sound, i.e. the speed at the point
we are considering. Then

B ™. T.H.
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Substitution in (1) then gives
4 _ ¢ (_1 do) _ ﬂ.’ﬁ”_(_l d_“’)
1%~ o-¢ Z:ds)ul—Ma wds)’
and so dg/ds is positive if M < 1, i.e. if g<e.
Thus the speed increases as we go along the pipe in the direction in which

it converges if the flow is subsonic; for supersonic flow the speed decreases
as the pipe gets narrower.

I-7. The Venturi tube. The principle of the Venturi tube is illus-
trated in fig. 1-7. The apparatus is used for measuring the flow in a pipe and

consists essentially of a conical contraction in the pipe from the full bore at 4
to a constriction at B, and a gradual widening of the pipe to full bore again
at C. To preserve the streamline flow, the opening from B to C has to be very
gradual. A U-tube manometer containing mercury joins openings at 4 and
B, and the difference in level of the mercury measures the difference in
pressures at 4 and B. Let p,, ¢, , s, g5 be the pressures and speeds at 4 and B
regpectively. Then

pl P _Pa 2
24302 = 2+ 140,
P Y\ P 1gs

by Bernoulli’s theorem.
Let S, , S, be the areas of the cross-sections at A and B.

Then 08 =08,
since the same volume of fluid crosses each section in a given time. Therefore
2 (91— pa) .
8,2
Ve lsi)
P1— Pq i8 given by observation and the value of ¢, follows.

If A is the difference in level of the mercury in the two limbs of the mano-
meter and o is the density of mercury, the formula becomes

=
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I 2gho
o= [ = Kk,
(55Y)

K being a constant for the apparatus.

1-71. Flow of a gas measured by the Venturi tube. Assuming
adiabatic changes in the gas from the entrance to the throat, we obtain from
Bernoulli’s theorem and the equation of continuity

Y N 2 Y P2 2

LD gt = T4,

=1 p, " 20 y=1p, s
P11 51 = PagaSas

2y (1_0_: _1_’§>
2 _Y=1\pi p,

pa/ Syt

whence we easily obtain

Now,% = <%), , and therefore
2 2

To use this formula we must know p,, p, and p;. The instrument must
therefore be modified so that 4 and B in fig. 1-7 are connected to separate
manometers, thereby obtaining measures of the actual pressures p,, p, and
not their difference, as in the case of a liquid. For speeds not comparable
with that of sound, the ordinary formula and method for a liquid may be used
(see 1-62).

1-8. Flow through an aperture. When a small hole is made in a wall
of a large vessel which is kept full, it is found that the issuing jet of liquid

Fia. 1-8.
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contracts at a short distance from the aperture to a minimum cross-section.
At the contraction, called the vena contracta, the issuing jet is cylindrical in
form and all the streamlines are parallel. If o, is the area of the aperture and
o, the area of the cross-section of the jet, the ratio o,: 0, is called the coeffi-
cient of contraction. The exact value « of the coefficient of contraction can
only be rigorously evaluated in certain special cases, but plausible arguments
can be adduced to show that «>3}. That «a<1 follows experimentally from
the existence of the contraction.

1-81. Torricelli’s theorem. In fig. 1-8, let & be the depth of the vena
contracta below the level of the upper surface of the water in a tank which
is kept full, and let IT be the atmospheric pressure. If ¢ is the speed of efflux
at the vena contracta, Bernoulli’s theorem gives

n n

—+gh = —+1¢%,

o toh =2+l
since the velocity is practically zero at the free surface of the water in the
tank, and the pressure is /1, both there and on the walls of the escaping jet.
Therefore q? = 2gh.

This is Torricelli’s theorem, for the speed of efflux.

If o, is the area of the cross-section of the jet at the vena contracta, the rate
of efflux is

ayN/2gh.

It is in most cases sufficient to take A as the depth of the orifice, for the
vena contracta is at only a short distance from this. If o, is the area of the
orifice and « the coefficient of contraction, the rate of efflux is

01V 2gh.

1:82. The coefficient of contraction. Let there be a small hole 4B
in the wall of a vessel, which is kept full, and let A be the depth of the hole

Fia. 1-82 (a).

below the free surface. Let IT be the atmospheric pressure, ¢ the speed of
efflux at the vena contracta. Let 4’B’ be the projection of the area of the hole
on the opposite wall, both walls being supposed vertical.
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If p is the hydrostatic pressure at 4B when the hole is closed, the action
of AB and A'B’ on the fluid will consist of two equal but opposite forces po;.
When the hole is opened, the force po, at AB disappears and is replaced by a
force Ilg,. If we suppose, as a first approximation, that the hydrostatic
pressure remains unaltered, except at the hole 4B, the force accelerating the
fluid is (p—IT)o;,. The rate of outflow of momentum is p g o, ¢, where o, is the
area of the vena contracta. Thus *

(p-ID)o, = 0y p g%

LGP

P +3¢%

Therefore o, = 30, , and the coefficient of contraction 1s }.

Bernoulli’s theorem aiso shows that when the hole is opened the pressure
on the walls in the neighbourhood of the hole 4B will fall below the hydro-
static pressure, so that the accelerating force is actually greater than p—1II,
and therefore, in general, o,/0; >4%. (See 3-32.)

If, however, we fit a small cylindrical nozzle projecting ¢nwards, the original
assumption is nearly exact and the coefficient of contraction is §. This arrange-
ment is known as Borda’s mouthpiece, fig. 1-82 ().

By Bernoulli’s theorem,

N k]

Fic. 1:82 (b). Fia. 1-82 (c).

On the other hand, a rounded nozzle projecting outwards, fig. 1-82 (c), will
increase the flow, for the vena contracta will occur at the outlet and we shall
get

poy—Iloy = o3 p ¢*
and therefore

92 _ %P—azn/‘ﬁ’

oy p-1I
which is greater than the former value.

Torricelli’s theorem shows that the rate of efflux increases with increasing
coefficient of contraction so that this device increases the efflux. This fact
was used by the Romans in the era of the Emperors, when the people were
allowed as much water as they could draw in a given time from a supply
flowing through an orifice.

* From 3-40 it appears that when the motion is steady, the flux measures the rate of change
of momentum.

-
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19. Euler’s momentum theorem. Consider a current filament
bounded by cross-sections of areas o, , o, at AB, CD respectively, in the steady
motion of a liquid. If ¢;, g5 are the speeds at 4B, CD, Euler’s theorem states
that, neglecting external forces, the resultant force due to pressure of the
surrounding liquid on the walls and ends of the filament is equivalent to forces
poy ¢,% and po, ;% normally outwards at the ends 4B, CD respectively.

Proof. By Newton’s second law of motion, the resultant force must pro-
duce the rate of change of the momentum of the fluid which occupies the portion
of the filament between AB and CD in fig. 1-4 at a given instant ¢.

Now at time £+ 8¢ the liquid in question will occupy the portion of the
filament between 4'B’, C’D’'. Thus the momentum of the liquid in question

D D

7 PO g
Fi1e. 1.9,

has increased by the momentum of the fluid in between CD and C'D’ and has
diminished by the momentum of the fluid between 4B, A'B’.

Hence there has been a gain of momentum of amount po, ¢, 8¢ x ¢, at CD
and a loss of amount po; ¢, 8t x ¢, at AB. Hence the rate of change is a gain
of amount po, ¢, at CD and a loss of amount po, ¢,% at 4B. These rates of
change are produced solely by the thrusts acting on the walls and ends of
the filament. Hence these thrusts must be equivalent to the forces po, ¢,% and
po3 @;* normally outwards at AB, CD respectively. QE.D.-

1'91. The force on the walls of a fine tube. Consider liquid flowing
steadily through the portion 4B of a tube whose cross-sectional area is so
small that the liquid may be considered as part of a stream filament.

9 (7+09;) G (#,:+043)
Fia. 1-91.

Let o, py, ¢; denote the cross-sectional area, the pressure, and the speed
at 4, 03, Py, g the corresponding quantities at B. By Euler’s momentum
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theorem, the total action of the pressures on the liquid in 4B consists of normal
forces po, ¢ at 4 and po, ¢;® at B, both outwards. But the forces due to the
pressures at 4 and B are p, o, and p, 0, , both normally inwards.

Hence the forces exerted by the walls on the liquid together with the
normal inward forces p, o, , p, o, are equivalent to the normal outward forces
PO1 s o2 ga*

Hence the forces exerted by the walls on the liquid are equivalent to normal
outward forces o, (p,+pgy?) at 4 and o,(p,+pg,?) at B. By the principle of
action and reaction, the forces exerted by the liquid on the tube are obtained
by reversing these latter and are therefore equivalent to normal inward forces
of the above amounts.

1:92. d’Alembert’s paradox. Consider a long straight tube in which
an inviscid liquid is flowing with constant speed U. If we place an obstacle 4

™
) [
LY

[

Fia. 1-92.

in the middle of the tube the flow in the immediate neighbourhood of 4 will
be deranged, but at a great distance either upstream or downstream the flow
will be undisturbed. To hold the obstacle at rest will in general require a
force and a couple. Calling ¥ the component of the force in the direction
parallel to the current, we shall prove that F = 0. This is d’Alembert’s
paradox.

We shall neglect external forces such as gravity. Then F is the resultant
in the direction of the flow of the pressure thrusts acting on the boundary
of 4.

Consider the two cross-sections S;, S, at a great distance from 4. The
fluid between these sections can be split up into current filaments, to each of
which Euler’s momentum theorem is applicable. The outer filaments are
bounded by the walls of the tube and on these the thrust components are
perpendicular to the current. The walls of the filaments in contact with 4
are acted on by the solid by a force whose component in the direction of flow
is —F. By Euler’s theorem, the resultant of all the thrusts on the fluid
considered is

-p 8, U+p 8, U2,

which vanishes since S, = S,.
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By Bernoulli’s theorem, the pressure p, over S, is the same as the pressure
psover S;. Thus
P18 —F-py 8, =0,
and therefore F=0.

If we suppose the walls of the tube to recede, we have the case of a body
immersed in a current unbounded in every direction, and the above proof still
shows that F = 0.

Finally, if we impose on the whole system a uniform velocity U in the
direction opposite to that of the current, the liquid at a great distance is
reduced to rest and 4 moves with uniform velocity U. Superposing a uniform
velocity does not alter the dynamical conditions. Therefore the resistance to
a body moving with uniform velocity through an unbounded inviscid fluid,
otherwise at rest, is zero.

1:93. The flow past an obstacle. If we consider a sphere, fig. 1-93 (a),
held in a stream which is otherwise uniform (uniform at a great distance from

Fre. 1-93 (a).

the sphere) and neglect external forces, the streamline flow must be sym-
metrical with respect to the diameter AC of the sphere which lies in the
direction of the stream. The central streamline coming from upstream en-
counters the sphere at 4 and the fluid is there brought to rest. The point 4
is a point where the velocity is zero, usually called a stagnation point.

This streamline then divides and passes round 4BC, 4DC, reuniting at C,
which is a second stagnation point, and then proceeds downstream to infinity.*
The streamlines adjacent to this are bent in the neighbourhood of the sphere
and gradually straighten out. As we proceed further from the sphere the
streamlines become less and less curved, so that at great distances laterally
from AC their curvature becomes negligible. Photographs taken when the
motion is in its vnitial stages confirm this qualitative description. (See Plate 1,
fig. 1.)

In a real fluid, such as water, there is of necessity internal friction. Experi-
mental evidence tends to show that the fluid in actual contact with the obstacle

* We shall use the term * infinity ~ as a convenient description of points so distant that the
disturbing effect of the obstacle is negligible.
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must be at rest. To reconcile the photographic evidence with this, the boun-
dary layer hypothesis was introduced by Prandtl, namely, that in the im-
mediate neighbourhood of the sphere there is a thin layer of fluid in which the
tangential velocity component increases with great rapidity from zero to the
velocity of the main stream as it passes the sphere, while the pressure is
continuous as we pass normally outwards. As the velocity of the stream is
increased, the boundary layer remains thin at 4 and on the anterior portion
of the sphere but increases in thickness towards the rear, as illustrated in
fig. 1-93 (b). (See also Plate 1, fig. 3.)

Fia. 1-93 (b).

Within this boundary layer there is reversal of the motion, forming eddies,
while the theoretical motion subsists outside. The boundary layer thus
separates from the sphere at a point in the neighbourhood of B.

As the velocity of the stream is still further increased, the point of separa-
tion of the boundary layer moves further forward and the layer widens out
behind into an eddying wake
in which energy is continually
washed away downstream with
the eddies, fig. 1-93 (c).

The picture of the relative
motion is the same when the
sphere moves forward in other-
wise still water with constant
velocity and the sphere will undergo a resistance or drag to compensate
for the loss of energy. To maintain the velocity, energy must be supplied
to the sphere, and d’Alembert’s paradox is avoided. The general validity
of Prandtl’s hypothesis is amply confirmed by photographs, and shows that
the theoretical study of hydrodynamics can still fulfil a useful function, since
the motion outside the wake is still a theoretical streamline motion. In
another direction also we can apply the theory to the study of the behaviour
of those bodies of ““ easy ”” shape in which the breaking away of the boundary
layer is confined to a part near the rear with a consequent diminution in the
breadth of the wake. Examples of these easy shapes occur in the forms of
fish, in properly designed aerofoils, and in strut sections of small drag.

Fia. 1-93 (c).
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These are also the considerations on which we can repose our trust in the
applications of Bernoulli’s theorem to measurements made in actual fluids
by the Pitot tube, and that for a twofold reason. In the first place, the aper-
tures in a Pitot tube are on the anterior portion, where the boundary layer
is thin, and in the second place, the pressure is transmitted with continuity
through this thin layer.

EXAMPLES I

1. A water tap of diameter } in. is 60 ft. below the level of the reservoir
which supplies water to a town. Find the amount of water which can be delivered
by the tap in gallons per hour.

2. Water is squirted through a small hole out of a large vessel in which a
pressure of 51 atmospheres is maintained by compressed air, the external pressure
being 1 atmosphere. Neglecting the difference of level between the hole and the
free surface of the water in the vessel, calculate in feet per second the speed at
which the water rushes through the hole.

8. Water flows steadily along a horizontal pipe of variable cross-section.
If the pressure be 700 mm. of mercury (specific gravity 13-6) at a place where the
speed 1s 150 cm./sec., find the pressure at a place where the cross-section of the
pipe is twice as large, taking g = 981 cm./sec.2.

4. A stream in a horizontal pipe, after passing a contraction in the pipe at
which the sectional area is 4, is delivered at atmospheric pressure at a place
where the sectional area is B. Show that if a side tube is connected with the pipe
at the former place, water will be sucked up through it into the pipe from a

reservoir at a depth
s (.1_ - l)
29\4% B?

below the pipe ; S being the delivery per second.

5. An open rectangular vessel containing water is allowed to slide freely down
a smooth plane inclined at an angle « to the horizontal. Find the inclination to
the horizontal of the free surface of the water.
If the length and breadth of the vessel be a, b respectively and the mass of
contained water be m, find the pressure on the base of the vessel, neglecting atmo-
spheric pressure.

6. Liquid of density p is flowing along a horizontal pipe of variable cross-
section, and the pipe is connected with a differential pressure gauge at two points
4 and B. Show that if p, — p, is the pressure indicated by the gauge, the massm
of liquid flowing through the pipe per second is given by

’2 -
m = 0,0, ‘—‘—’;(1}2’,1_ 0’?22) ’

where o, , o, are the cross-sections at 4, B respectively. (R.N.C)

7. A vessel in the form of a hollow circular cone with axis vertical and vertex
downwards, the top being open, is filled with water. A circular hole whose dia-
meter is 1/nth that of the top (n being large) is opened at the vertex. Show that
the time taken for the depth of the water to fall to one-half of its original value (A)
cannot be less than

“J2-1)nt Jh
2009
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8. If p/p” = constant, and the fluid flows out through a thin pipe leading out
of a large closed vessel in which the  pressure is n times the atmospheric pressure p,
show that the speed V of efflux is given by

2yp 1 —-- ]
ye YP
r=De -1

p being the density at the vena contracta. (R.N.C)

9. A gas in which the pressure and the density are connected by the adiabatic
relation p = kp* flows along a pipe. Prove that

p
y-1p
is constant, if the external forces are neglected, ¢ being the speed. If the pipe
converges in the direction of the flow, prove that ¢ will increase and p/p will diminish
in the direction of flow provided that ¢% <yp. (R.N.C))

10. Show that the speed ¢ of gas flowing in & thin tube whose cross-section is o
at a point, of distance s in arc from a fixed cross-section, obeys the equation

d ¢*\ d
%(logc) + <1 - g)a—slogq =0

where ¢ is the speed of sound in the gas at the point considered, the adiabatic
law being followed throughout.

q + —

11. If gas flows from a vessel through a small orifice from a region where the
pressure is p, to a region where the pressure is p,, prove that the rate of eflux of

mass is .
¢a pa g ;%)tlx%f);-l _ 1]*:

where p = kp”, w, is the area of the vena contracta, and ¢,2 = yp,/p, (cf. 1:64),
p, being the density at the vena contracta.

12. If w is the small cross-section of a tube of flow in a gas, prove that gpw = con-
stant along the tube and hence use the result of 1:64 to prove that gp is a maximum
when ¢ = ¢, and that w is then a minimum,

13. If c,, is the speed of sound at the minimum cross-section in Ex. 12, prove
that there is an upper limit to the value of ¢ given by

QMu=CmXVW+1 2456,

14. Gas flows radially from a point symmetrically in all directions, the pressure
and density being connected by the law p = «p. If m is the rate of emission of mass,
supposed constant, prove that

2_g.2
dmr grt=m exp g 231],

where ¢ is the speed at distance 7, and ¢, is the speed where p = 1.



CHAPTER 1I
VECTORS

2-1. Scalars and vectors. Pure numbers and physical quantities which
do not require direction in space for their complete specification are called
scalar quantities, or simply scalars. Volume, density, mass and energy are
familiar examples. Fluid pressure is also a scalar. The thrust on an infini-
tesimal plane area due to fluid pressure is, however, not a scalar, for to describe
this thrust completely, the direction in which it acts must also be known.

A vector quantity, or simply a wvector, is a quantity which needs for its
complete specification both magnitude and direction, and which obeys the
parallelogram law of composition (addition), and certain laws of multipli-
cation which will be formulated later. Examples of vectors are readily
furnished by velocity, linear momentum and force. Angular velocity and
angular momentum are also vectors, as is proved in books on Mechanics.

A vector can be represented completely by a straight line drawn in the
direction of the vector and of appropriate magnitude to some chosen scale.
The sense of the vector in this straight line can be indicated by an arrow.

In some cases a vector must be considered as localised in a line. For
instance, in calculating the moment of a force, it is clear that the position of
the line of action of the force is relevant.

In many cases, however, we shall be concerned with free vectors, that is to
say, vectors which are completely specified by their direction and magnitude,
and which may therefore be drawn in any convenient positions. Thus if we
wish to find only the magnitude and direction of the resultant of several given
forces, we can use the polygon of forces irrespectively of the actual positions
in space of the lines of action of the given forces.

We shall represent a vector by a single letter in clarendon (heavy) type
and its magnitude by the corresponding letter in italic type. Thus if q is the
velocity vector, its magnitude is ¢, the speed. Similarly the angular velocity w
has the magnitude w.

A unit vector is a vector whose magnitude is unity. Any vector can be
represented by a numerical (scalar) multiple of a unit vector parallel to it.
Thus if i, is & unit vector parallel to the vector a, we have

a = ai,.
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We proceed to develop some properties of vectors with a view to hydro-
dynamical applications.

In what follows, the magnitude of a vector will be supposed different from
zero, unless the contrary is stated.

2-11. The scalar product of two vectors. Let a, b be two vectors,
of magnitudes a, b, represented by the lines 04, OB issuing from the point O.

Let 6 be the angle between the
vectors, i.e. the angle 4OB measured
positively in the sense of minimum
rotation from a to b.

The scalar product of the vectors is
then ab and is defined by the relation

ab = abcos 4.

B

o a M A

i lar and
The scalar product is a scalar an Fro. 211,

is measured by the product 04 .OM,
where M is the projection of B on 04, so that O4 = a, OM = bcosf. Itis
clear from the definition that
ba = ba cos (- 6) = abcos 6 = ab,
so that the order of the two factors is irrelevant.

When the vectors are perpendicular, cos§ = 0, so that ab = 0. Con-
versely this relation implies either that a, b are perpendicular, or that a = 0,
or that b = 0.

If ab = 0, where b is an arbitrary vector, then a = 0, for a cannot be
perpendicular to every vector b.

If 6 is an obtuse angle, the scalar product is negative.

If i, is a unit vector, then i, b = b cos 8, which is the resolved part of the
vector b along the direction of any vector which is parallel to i,.

If i,, i, are both unit vectors, then i, i, = cos 8, which is the cosine of the
angle between any two vectors parallel to i, and ij.

If the point of application of a force F moves with velocity v, the rate at
which the force is doing work is the scalar product Fv.

2:12. The vector product of two vectors. Let a, b be two vectors
of magnitudes a, b inclined at the angle § measured positively from a to b. We
define the wvector product a , b as the vector of magnitude ab sin § which is
perpendicular both to a and to b and whose sense is such that rotation from
a to b is related to the sense of a , b by the right-handed screw rule.

It follows from the definition that vector multiplication is not commu-
tative, for ba sin (—0) = ~ab sin 6, and therefore

aAb= —bAa.
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Also when the vectors are parallel (§ = 0 or ) we have a,b = 0. Con-
versely this relation implies either that a, b are parallel, or that one of them
is zero.

a,b
—
b
6
a
Fie. 2:12 (i). Fie. 212 (ii).

As an example, let P be a point of a rigid body which is moving about the
fixed point O with angular velocity w. Let r be the position vector of P relative
to 0. Draw PN perpendicular to w. Then the velocity of P is wOP sin 6
perpendicular to the plane PON and is therefore the vector w , r.

Ao w,r r,F

g . @

Fia. 2-12 (iii). Fre. 2-12 (iv).
Similarly, the vector moment about O of a force F acting at P is r , F,
fig. 2-12 (iv).
Since ab sin  measures the area of the parallelogram of which a, b are
adjacent sides, the vector product a , b can be regarded as a directed measure

of this area. It is the vector whose magnitude measures the area and whose
direction is normal to the area.

2:121. The distributive law. Both scalar and vector multiplication
are distributive, that is to say,

a(b+c) = ab+ac,
a,(b+c)=a,b+a,c
The proofs are left to the reader. See Ex. II, 27, 28.

2:13. Triple scalar product. If a, b, c are three vectors, the combina-
tion a(b , c) is called their triple scalar product. This is the scalar product of
the vectors a and b, c. The triple scalar product is measured by the volume
of the parallelepiped whose conterminous edges are a, b, c.
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Proof. Since b , c represents the area of the face whose edges are b, ¢
and in fig. 213 is directed along the normal on the same side as a, the triple
scalar product is measured by the volume.
Q.E.D.
Thus a(b,c) = b(c,a)=c(a,b).
But a(b,c)= -a(c,b),
since b,c= -¢c,b,
but note that
a(b,c) = (b,c)a. Fio. 213.
Hence the cyclic rule : the triple scalar product changes sign only with a

change of cyclic order of the vectors. Note also that the actual position of
the sign , is unimportant, for

(a,b)c = a(b,c)=[abc],
the last being a convenient notation for the triple scalar product.
If two of the vectors are equal or parallel, or if all three are coplanar, the
triple scalar product vanishes, e.g.
1) [aab] = 0.

2-14. Triple vector product. Ifa, b, c are three vectors, the combina-
tion a , (b, ¢) is called a triple vector product.
This is the vector product of the vectors a and b, .

Note that a,(b,c)=-a,(c,b) = (c,b),a.
Hence the centric rule ; the sign of the triple vector product changes only
with a change of the centre vector.

The triple vector product has the very important property expressed by
the relation

a,(b,c) = -(ab)c+(ac)b.

Proof. The vector a, (b, €) is perpendicular to the vector (b, €), which
is itself perpendicular to the plane containing b, ¢. Thus a, (b, €)is coplanar
with b, ¢ and can therefore be compounded of scalar multiples of these latter.
Therefore

a,(b,c)=pb-gc,
where p, g are scalars. Since a, (b, ¢) is perpendicular to a, the scalar product
of these two vectors is zero. Therefore

0 = pab-gac.

Thus p = Aac, ¢ = Aab,
where A is a scalar. Hence

a,(b,c) = -A(ab)c+A(ac)b.
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To determine A, take the scalar product with a vector d which is coplanar
with b, ¢ and is perpendicular to ¢, fig. 2-14.
Then cd =0,

¢ and therefore
a,(byc) Abd(ac) = d[a, (b, ¢)]
0 b = a(b, ) ,d],
o0™-6 using the property of the triple scalar
d  product.
Fia. 2:14.

Now (b , c) , disa vector coplanar
with b, ¢ and perpendicular to d and is therefore a vector along c. If @ is
the angle between b, ¢, the magnitude of this vector is

bed sin @ = bd cos (90° - 6)c,
and therefore the vector (bpc),d = (bd)c.

Hence A(bd)(ac) = (ac)(bd),
and therefore A=1 Q.E.D.
Note also the result (a , b) , € = — a(bc)+ b(ac), and that as a mnemonic

the term with the negative sign is always obtained by moving the brackets in
the triple product but preserving the order.

2:15. Resolution of a vector. If a, b, c are given vectors, not all
coplanar, and x is an arbitrary vector, then

(i) x[a(b,c)] = a[(b,c)x]+b[(c, a)x]+c[(a,b)x].
(ii) x[a(b,c)] = (b, c)(ax)+(c, a)(bx)+(a,b)(cx).
The first resolves x along the given vectors, the second resolves X perpen-
dicularly to the planes bc, ca, ab.

Proof of (i). Since a, b, ¢ are not all coplanar, we can resolve x along
them and so get
x = pa+gb+rc,
where p, ¢,  are scalars. Form the scalar product with (b , c) which is per-
pendicular to b and ¢. We then have

x(b,c) = Pa(b <),
which determines p. A A Q.E.D.

Proof of (ii). Let x = p(b,c)+g(c,a)+r(a,b)

Form the scalar product with a which is perpendicular to (¢, a)and (a , b).
Then
ax = p[a(b, c)]
which determines p. A Q.E.D.
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2-16. The indefinite or dyadic product. Given two vectors a, b, in
addition to the scalar and vector products, we introduce the tndefinite or
dyadic product.

a;b.
This product, which we call a dyad, has no geometrical interpretation. It is
an operator of great use in transforming vector expressions.
A sum of dyads is called a tensor of the second rank, e.g.
(a;b)+(c;d)+(e;f)
is a tensor. The brackets may be omitted.

Taking a third vector ¢ we define the scalar product of ¢ and the dyad a ; b

b
d (a;b)e = a(bc), c(a;b)=(ca)b.

Thus the product is a vector, and is indeed a different vector according as
c follows or precedes the dyad.

As an example we have the triple vector product

a,(b,c)= -(ab)c+(ac)b = a[-(b; c)+(c; b)],

which also illustrates the distributive law which holds for dyadic multiplication.

The unat dyad I or idemfactor is a tensor such that, if a is any vector,

(1) Ia=al =a.

We prove the existence of the unit dyad by means of the following expres-
sion for it :

@) I=iji+jij+k;k,
where i, j, k are mutually perpendicular unit vectors. For by resolution (2-15)
we can write @ = a,i +a,j +azk, and the truth of (1) is then easily verified by
forming the products.

Consider the tensor

(3) ®=a;b+c;d+e;f.
The tensor

4) o, =b;a+d;c+f;e
obtained by reversing the order of the vectors in each dyadic product is called
the conjugate of P.

If r is any vector,

(5) dr = a(br)+c(dr)+e(fr) = rd.,.

If & = P, , the tensor P is said to be symmetric, and then

or = r¢, = rod.

If & =-D,, the tensor P is said to be antisymmeiric or skew.
If @ is any tensor, we have identically

(6) D =3}DP+D,)+3(P-D,).

c

M.T.H
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The tensor }(P + P,) is symmetric, for
(P+P)r = rP+rd = r(P+D,).

Similarly, 3(® - ®,) is antisymmetric. Thus any tensor can be expressed
(in one way only) as the sum of a symmetric and a skew tensor.

If in (3) we replace the indefinite multiplication by scalar multiplication,
we get a scalar known as the first scalar invariant of @, written

(7) &, = ab+cd +ef.
The scalar product of two dyads (a ; b) and (c ; d) is defined by

(8) (a;b)(c;d)=a(bc);d=a;(bc)d =(bc)(a;d)
= (a ;d)(bc)

and is again a dyad. The position of the scalar bc does not affect the product.
By distributing the product we see that the scalar product of two tensors
of the second rank is a tensor of the second rank.
If we take the first scalar invariant of the right-hand side of (8), we get a
scalar known as the double scalar product of the dyads and we write

(9) (@a;b)..(c;d)=(ad)(bc)=(cb)(da)=(c;d)..(a;Db)

and so double scalar multiplication is commutative.
By distributing the product we form the double scalar product of two
tensors of the second rank, say @, ¥, and we find that

(10) P..¥=V..0=0,..¥,=V,.. b,

which shows that the double scalar product is unaltered if we replace both
tensors by their conjugates.
Thus if S is a symmetric and 4 an antisymmetric tensor of the second rank,

S..4=8,..4,=8..(-4)=-8..4

Therefore S . . 4 =0 and therefore the double scalar product of a symmetric and
an antisymmetric tensor s zero.

2:19. Scalar and vector fields. If to each point of space there cor-
responds a scalar, then a scalar field is defined. Thus, for example, fluid
pressure p and fluid density p constitute scalar fields.

If to each point of space there corresponds both a scalar and a direction,
that is, if a vector is, as it were, tied to each point of space, then a vector field
is defined. One of the most important vector fields in hydrodynamics is the
field of fluid velocity q. Another important field is that of vorticity (see
2:41).



2-20] LINE, SURFACE, AND VOLUME INTEGRALS 36

2-20. Line, surface, and volume integrals. As we shall in the sequel
have occasion to use these notions, this section will be devoted to explaining
the sense in which the terms are to
be understood. The object of this
section is not to explain how the
integrals may be calculated numeri-
cally, nor the conditions in which
they exist, for these matters are
fully treated in books on Analysis.
When a particular case presents
itself for numerical evaluation, that
case will be dealt with as an in-
dividual instance.

Let AB be an arc of a given
curve (not necessarily a plane curve). By marking points @, , @, ..., @n_1,
divide the arc 4B into N sections 4Q,, ©,@,,..., @y_,B of lengths &s,,
85y, ..., 08y each less than ¢, and take points P,, P,, ..., Py, one in each
section. Fig. 2-20 (i) illustrates the case N = 4. Let f(P), or briefly f, be a
function whose value is known at each point P of 4B, and letf;, f3,...,fx
be the values of f at the points P, , P,, ..., Py.

Then we can form the sum

(1) f188,+fy 883+ ..+ fy sy = Zf 8s.

If we now allow the number N to increase indefinitely, and at the same
time let e tend to zero, the line integral of f along AB, or the curvilinear
tntegral of f along AB, is defined by

j fds = lim Z'f 8s.
(4B)

F1a. 2:20 (i).

N—w
«0

This definition applies whether f is a scalar or a vector.

If f is & vector, then the sum in (1) is a sum of vectors to be obtained by
the law of addition of vectors, and the integral is then a vector quantity.

If f is constant, i.e. if f has the same value ¢ at every point of 4B, then it
is clear from (1) that the sum is cl where [ is the length of AB, and in this case
the value of the integral is cl.

If f is a scalar function which obeys the inequality

(2) M>f>m,
where M and m are fixed numbers, then clearly

Z(M-f)8s>0, Z(f-m)ds>0,
and therefore ZM3>2f8>Tm ds,
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so that Ml >I fds>mi.
(4B)

Let i, be a unit vector along the tangent to the element of arc ds. Then
writing ds = i,ds, so that ds is a directed element of arc of the curve AB, we
have the equivalence

Xds = j Xi, ds,
(4B) (4B)
so that the integral on the left is defined in terms of the integrals already
described. Here X may be a scalar or vector and the multiplication may be
scalar, vector, or dyadic.

To define the surface integral of f = f(P) over a surface S (not necessarily
plane or closed), we divide the surface into
elements of area 38S,, 8S,,..., 88y, each
having its longest dimension less than e. If
fisfes -+ - fn denote the values of f at points
P,, P,,..., Py, one within each element,
we can form the sum

Fro. 220 (ii). f188,+f2 88y+...+fy 88y = Zf88.
The integral of f over the surface § is then defined by

I fdS = lim Zf58.
(S) N—®o
—0

This definition applies to both scalar and vector functions.

If f has the constant value ¢ over the surface, then the surface integral is
cA, where 4 is the area of the surface S. Again, if f satisfies the inequality (2),
then

MA >.( fdS>mA.
(&)

Agam, if n is a unit vector drawn to the element dS in the direction of the
outward normal to a closed surface S,

3) j nds = o,
(S)

for it is easily seen that the projection of this vector on any fixed plane is
zero.

It is often convenient to replace n dS by the vector dS which represents
an element of surface area directed along the normal (cf. 2-12). With this
notation (3) becomes

j ds = 0.
()
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More generally we are led to consider integrals of the type

f X ds,
)

where X is a scalar or vector and the multiplication may be scalar, vector, or
dyadic.

To define a volume integral, consider the volume V consisting of the region
interior to a closed surface 8. We divide V
into elements of volume &, , 8r,,..., 87y,
each having its longest dimension less than e.
Iffi,fay ..., fx denote the values of f at
points P,, P,, ..., Py, one within each
element, we can form the sum

Fodritfodryt. . +fy dry = Zfbr. Fio. 2:20 (i)
The integral of f throughout the volume V is then defined by

I fdr = lim 2 f 8,
(2]

N—o»
«—0

which again applies to scalar and vector functions.
If the function has the constant value ¢, then the integral is equal to ¢V,
and if f satisfies the inequality (2), then

MV>I fdr>mV.
12)

Notation ; we use one sign of integration when there is only one differential
ds, dS, or dr. When two differentials are used we shall use two integral signs.
Thus if dS = d» dy, we write

j(S)de N .” (S)fdx %.

2:22. Variation of a scalar function of position. Let ¢ be a scalar
function of position so that the values of ¢ constitute a scalar field. We shall
suppose ¢ to be a continuous function with

/_,______Q continuous differential coefficients of the first
\ order. Then there exists, in general, a family

s P R of surfaces on each of which ¢ is constant.
—_ P We can call these equi-¢ surfaces.
Fa. 2:22. Let P be any point and let Q be a near

point on the normal at P to the equi-¢ surface
¢ = ¢p, where ¢p denotes the value of ¢ at P. Then if PQ is regarded as
a small length of the first order, we can write
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- po(%
) bo-tr = PQ(3) -
where (g) denotes the distance rate of change of ¢ for displacements in
PQ
the direction of PQ.

Let R be any point near P, and let the equi-¢ surface ¢ = ¢z meet PQ in
S, and assume that to the first order RS is perpendicular to PQ. Then

ér =$g = ¢p+PS (%é)m’

so that
@ du-dp = PRoos0 (%) = PR (gmd §),
S PQ
where grad ¢ denotes a vector * whose direction is along PQ and whose magni-
tude is

emad] = (5),.

It follows from this definition, by putting I_’é =ndn, where n is the unit
vector along the normal at P to the equi-¢ surface through P, that

9
(3) grad¢ = n I
Various alternative notations are available for grad ¢.
a
@ gedg =B B _gy-nl.

In the first of these we denote the change of posmon vector of P by dr, in
the second the change of position vector is denoted by dP, the advantage here
being that explicit attention is called to the point P by the notation. The
notation d¢/or may be compared with the ordinary partial differential coeffi-
cient d$/0z, but it must be remembered that we cannot divide by a vector, so’
that 0¢/dr cannot be regarded as the limit of a quotient of two small quantities:
The symbol Y (pronounced nabla) was introduced by Sir William Rowan
Hamilton and so named from its fancied resemblance to a harp. The vector
operator V is analogous to the scalar operator D = d/dz, in that it does not call
explicit attention to the independent variable. It is nevertheless convenient.
We shall use in the sequel whichever of the notations indicated in (4) may
appear most appropriate.

Returning to (2), the rate of change of ¢ when we proceed in the direction

PR is
7
(is) = ¢R $r _ cos § (% )
0s R—vP P 08 PQ
which is the component of grad ¢ in the direction PR.
* grad ¢ is an abbreviation of the phrase * gradient of ¢ .
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Thus if in (2) we write PR = i,ds, we have
(®) % o igmdg=1,2 = iwve
PP s3r = VO

We must therefore regard Y as a vector operator which, applied to a scalar
é, gives a vector whose component in any direction is the rate of change of ¢
in that direction.

2:23. Alternative expression for grad ¢. Let S be a cylinder bounded
by equi-¢ surfaces ¢ = ¢p, ¢ = ¢q where @ is on the normal at P to ¢ dp,
PQ is infinitesimal of the first
order, the diameters of the cross-
section are small compared with
PQ, and the generators are normal
to ¢ =¢p. Let n be the unit
normal vector (drawn outwards) at
the element dS of the surface of
the cylinder. Consider

Q) I ng ds.
(&)

Since the diameter of a cross-
section is of the second order, ¢ is constant round the boundary of a cross-
section, and therefore the contribution of the curved surface of the cylinder
to (1) is zero (cf. 220 (3)). If w is the area of a cross-section, (1) then gives,
approximately,

Fia. 2:23.

ﬂ¢ as = nQ¢Qw+np¢pw

(S
) w[ng {¢p+ PQ (Z—‘ﬁ)m}wp np]

= PQ (grad ¢) = V (grad ¢),
where ¥ is the volume of the cylinder, and where we have used np+ng = 0.
Now let the cylinder be replaced by any small convex surface S enclosing
P; 8 can be split up into a number of cylinders of the type described above,
and since the contributions of the internal boundaries cancel we get, approxi-
mately,

@ Ls) nds = V (grad §),

where V is the volume enclosed by S, and therefore to the order of approxima-
tion here considered :

grad ¢ = Hm né ds.
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Thus if S is any surface enclosing P, we have

o_ % _oy4_ —lm i
®  egp=Ve=emds=tng| npas

where ¥ — 0 means that the surface S shrinks in such a way that it always
encloses P while its longest dimension tends to zero.

2-24. Generalised definition of the operator . We have seen that
the vector operator V when applied to a scalar function ¢ yields the vector
grad ¢ as defined by 223 (3). This naturally leads us to enquire what mean-
ings we should attach to V F, V, F, V; F, where F is a vector function of
position. To this end let X be an unspecified (scalar or vector) function of
position. Then we define ¥ X by

1) V X = lim -l-j nX ds,

v—o V Js
where V is the volume enclosed by a surface S to which the point P at which
V X is to be calculated remains interior, while the largest dimension of S tends
to zero. Here n is the outward unit normal vector at the element dS. The
multiplication in ¥V X may be scalar, vector, or dyadic, when X is a vector.
Taking X in turn to be a scalar ¢ or a vector F, we make the following
definitions, the names on the right giving an alternative nomenclature.

r

(2) V¢ =lim 1 ngdS = grad ¢.
V=0 " J(S)

(3) * VF:lim—l— nFdS = div F.
V=0 ¥ J(S)

@) V.F=lm=| n,FiS=culF.
v—oV Jis)

(b) V;F:liml n; FdsS.
v—o V)

Observe that (2) shows (cf. 2:23) that the definition of Y here given is
consistent with its previous use as a gradient operator on a scalar.

Note also that V is a vector operator in the sense that if n is a vector, né,
nF, n, F remain respectively a vector, a scalar, and a vector when V/ is sub-
stituted for n.

Thus from (1) the formulae

a(ng) = (an)¢$, a(n; F) = (an)F,
lead to

(6) a(Vé)=(aV)$, a(ViF)=(aV)F

* div F is an abbreviation for divergence of F. A vector field whose divergence vanishes is
called solenoidal. A vector field whose curl vanishes is called irrotational.
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More generally we can manipulate formulae containing ¥ as though V
were an ordinary vector, provided that the manipulated results are significant,
for example, do not terminate with Y/, and that we pay due regard to vectors
which are variable and vectors which are constant.

2:31. The operator (a V). Let a be a vector which is not to be varied
in the limiting process of 224 (1). Then

1) lim- LS) and dS = a[ lim = LS) né dS] = a(V4) = (aV)é.

v=oV v—oV

1 1 . _ . _
@) I;rgﬁj(s)mnwds— a[‘ygﬁ,j(n, Fds|= a(v:F) = @VF,

from 216, and remembering that V/ is a vector operator.

If a = ai, 2:22 (B) shows that (a V)¢ is a times the rate of change of ¢
in the direction of a.

Observe that (a V) is a scalar differentiation operator. Thus to interpret (2)
we note that F has scalar components along three arbitrary fixed non-coplanar

vectors, and therefore (a V) F gives a times the rate of change of F in the
direction of a.

Also, since (a V) is a scalar operator, the ordinary rule for differentiating
products gives

®) (aV)(be) = b[(a V)c]+¢[(aV)b].

) (aV)(b,c) = [(aV)b],c+b,[(aV)cl

Note also that, for infinitesimal changes of position,

(6) dp=(dr V)¢ =dr(V¢), '

dq = (dr V)q.

As an important application let q be the
fluid velocity at the point P, q the velocity 2
at a neighbouring point @ in the position
measured from P by the infinitesimal vector

n Fia. 2:31.

Then q' = q+(n V)q to the first order.
2:32. Operations on a single vector or scalar.
@ div (grad ¢) = V(V4) = (V V)¢ = V24,

since ¢ is a scalar. The operator V2 is called the Laplacian operator.

1) div (curl a) = V(V,a) = [VV a] = 0,
from 2:13 (1).

(IIT) curl (grad ¢) = VA (V) = (V, V)¢ = 0,

since, from 212, a, a = 0.
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(Iv) curl (curl @) = YV, (Va)
Using the triple vector product, we get

curl (curl a) = Y(Va)-(VV)a = grad (div a)-V? a.
Thus

(V) Via=V(V a)"VA(VAa)-
The foregoing are all capable of direct proof. For example, to prove (II) we
write, with an obvious notation,
1

Vi(Vsr@) = lim tim 73 [ {m(na a)ds, a8,

Vi—0V—0 VIVZ
74—0 ;-0 V3V Ij“z(“x A3)d8;dS,,

= - lim lim
using the triple scalar product cyclic rule, and assuming that the order of
integrations can be inverted. Thus

Vi(Vzp3) = =V2(Vip2),
or V(Vaa)= -V(V,a)=0.
Similarly for (V), we have

VA (Vra) = lim lim 71172 ”nu(n“ 2)dS, ds,

V1—0 V;—0
H{na(nla) ~ (ny ny) a}dS, S,

= lim lim
V=0 Vy—0 V1Vz

=V(Va)-V*a.
These specimen arguments show that manipulations with / ultimately rest
on the corresponding manipulations with n.

2-33. Operations on a product. To study operations on a product

XY, we shall suppose X, Y to obey the following product law :
(X+X)NY+Y)=XY+XY +X'Y+X'Y',
the order of the factors in every product being, in general, relevant.

Let X, Y be the values of our symbols at the point P, and X', Y’ their
values at a point of a closed surface S surrounding P, and n a unit outward
normal to the element dS of this surface. Then we have identically

XY =[X+(X'-X)][Y+(Y'-Y)]
=XY+X(Y'-YV)+( X' -X)Y+(X'-X)(Y'-7),
and therefore

jn XY dS = jn Xy dS+jn X(Y'-Y)dS
+_[n (X' -X)Y dS+jn(X'—X)(Y’-— Y)ds.

If we let the surface surrounding P shrink to infinitesimal size, X'~ X



233 OPERATIONS ON A PRODUCT 43
Y’ - Y will also be infinitesimal, and therefore the last integral will itself be
infinitesimal compared with the other integrals and may be neglected.

Also, X, Y, being calculated at the point P, are fixed, and jn dS = 0 when
taken over a closed surface (220 (3)). Therefore

(1) jn XYdS =0,
and we get ;
In X'Y dS = In XY - Y)dS+In(X’—X)YdS

= jn XYy dS+In X'YdS

on making a further application of (1).
Dividing by V the volume enclosed by the surface, we get
1 1y — l ’ l ’
an X'Y'dS = an XYy dS+VJn X'YdsS.
If we now let V-0, this gives, by the definition of V,
' V(XY) = V(X ¥)+V(XY,),
the suffix zero indicating that the corresponding quantity is not to be varied
when applying the operator nabla.* This formula can be compared with the
corresponding formula for the differentiation operator D = d/dx, namely :
D(XY) = D(X,Y)+D(XY,) = Xo(DY)+(DX)Y,= X(DY) +(DX)Y,

the suffix zero being dropped, as it is no longer required. The above property,
in conjunction with the gradient property (2:23), shows that Y is in the nature
of a generalised differentiation operator.

2-34. Applications of V to products. We shall now Qpply the result
of the previous section to certain products of vectors and scalars, remembering
that we must so arrange that V is never an end term. The triple scalar and
vector products yield the following results which will be useful :

(4) PAAr) =T(Pr9) = -q(PaT)

(B)  Palg,r) = (rp)q-r(pq)

© P(qr) = q,(PAT)+(qP)T-

Observe that (C) is merely a rearrangement of (B).

@ V(a,b) = V(a,bg)+V(a,,b)

= by(V 5 @) - 2,(V , b), from (4).

* Note that this st.eﬁ is an essential preliminary to developing the result of operating on &
product, of. 2:34 (II), (III).
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The suffix zero is no longer required and we get
V(a,b) =b(V,a)-a(V,b)
or div(a,b) = bcurl a—acurl b.
(II) VA(aAb)=VA(aAbo)+VA(aoAb)
= (b, V)a-by(V a)-(a,V)b+2,(V b), from (B),
Va(a,b)=(bV)a-(aV)b-b(V a)+a(Vb).
(1) V(ab) = V(a, b)+V(aby)
=a,(V,b)+(aV)b+b,(V,a)+(bV)a, from (C).
(IV) From (II) and (III), by subtraction,
(aV)b = }{V(ab)-V,(a,b)-b,(V,2)
—a,(Vab)-b(V a)+a(V b).
In particular, since V ,(q ,q) = 0, we get
(qV)q = 3VEE-q, (VA 9q)
(V) If q is a constant vector (unaffected by V), we get, from (II), (III),
V)b = -V ,(n,b)+n(Vb),
(V)b = V(nb)+(V \b) zn.
(VD) V(ag) = V(go a)+V($a,)
= ¢(V a)+ a(V @), since ¢ is a scalar, or
div (a$) = ¢ diva+agrad ¢

(VII) Va(ad) = V(a,4)+V A(a o)
= = aAV ¢+¢(VA a):
curl (ag) = ¢ curl a— a , grad ¢.
(VILI) V@) = Vigoth)+V (dho)
=¢Vy+4 Ve
where ¢, i are scalar functions.
(IX) Vi) = V(V )
=YV $+2(V (V) +4V 4,
using (VIII) and then (VI).
X) V(a;b) =V(a;by)+V(a,;b)
=b(Va)+(aV)b.

In particular, Vi:q)=q(V9-+(qV)q.
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2:40. Analysis of the motion of a fluid element. Consider an
infinitesimal element of fluid whose centroid is the point P.

Let n be the position vector
of the point @ of the element
relative to P. Then if q is the
fluid velocity at P, the velocity at
Q will be (231).

(1) q+v=4q+(mV)q,

Consider the equation

{nV)gn =g,

where ¢ is a constant. The left side

is homogeneous and quadratic in the components of v}, and therefore represents
a surface of the second degree.* Let us find the normal at the pointy). If dyis
in the tangent plane at @, the equation of the surface is satisfied to the first
order in dv by the vector n+d, and therefore by substitution and subtraction,
omitting the second order term in d dy, we get

@) {n V)q}dn+{(dn V)qjn = 0.
But from 2-31 (3), since { operates on q but not on ), we have

{@n V)q}in = (dn V)(qn) = dn{V(qm)},
and from 2-34 (V)

Fia. 2:40.

Vign) = = (VAg)an+(n V)q.
Therefore, from (2),

{nV)g-(VAq) \n+(nV)q}dn = 0.

Since the normal is perpendicular to dv, it follows that it is in the direction
of the vector

®3) 20 V)q-(V Q) a0 = 2f(n), say.
Therefore, from (1), (3), we get for the velocity at Q the expression

q+Vv = q+3(VAq) An+f().

From this it appears that the velocity at @ is the sum of three parts, namely :

(i) The velocity q at P, which corresponds to a translation of the element
as a whole.

(i) The velocity (V 5 q) o0, which is the velocity due to the rotation of
the element as a whole with the angular velocity $(V , q). (See 2:12.)

(ili) A velocity f(n) relative to P, which is in the direction of the normal

* In fact a central quadric, typically an ellipsoid. That it is a central quadric follows from
the fact that if 7 lies on it, so does - 7.
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f(n) to the quadric of the system of central quadrics {nV)q}n = constant, on
which @ lies.

The first two of these motions are rigid body movements ; they could still
take place if the fluid element were frozen solid.

The third motion is called a pure strain and can only take place when the
substance is deformable, as is the case with a fluid. This type of relative
motion is characteristic of any deformable substance whether fluid or not.

To elucidate the nature of the pure strain, we observe that a central
quadric has three perpendicular axes of symmetry which are normal to the
tangent planes at their extremities. Lines parallel to these axes are being
elongated at constant (though generally different) rates. Such a motion will
distort an element originally spherical into an ellipsoid. We also note that
lines in the direction of the axes of symmetry at time ¢ will still be mutually
perpendicular at time ¢+8¢. Since the axes of symmetry are parallel to the
normals at their extremities, the directions of these axes are given by the
equation

NAf() = 0.

The foregoing analysis shows that this description of the motion relates
to an intrinsic property of the fluid, independent of any axes of reference.

2-41. Vorticity. The vector V ,q = curlq = { say, is called the vorticity
vector, or simply the vorticity. The angular velocity of an infinitesimal element,
often but not very aptly called molecular rotation, is equal to half the vorticity.
If a spherical element of the fluid were suddenly solidified and the surrounding
fluid simultaneously annihilated, this solid element would rotate with the above
angular velocity. See Ex. II, 13.

A vortex line is a line drawn in the fluid such that the tangent to it at each
point is in the direction of the vorticity vector at that point. It will be shown
later (3-54) that vortex lines move with the fluid.

When the vorticity is different from zero the motion is said to be rotational.

A portion of the fluid at every point of which the vorticity is zero is said
to be in irrotational motion. In such a portion of the fluid there are no vortex
lines. Motions started from rest are always initially irrotational.

242, Circulation. Consider a closed curve C situated entirely in a
moving fluid. Let q be the velocity at an arbitrary point P of the curve and
s, & unit vector drawn in the direction of the tangent at P, the direction
being so chosen that an observer moving from P in the sense of s,
describes the curve in the sense chosen as positive. Take a point @, on the
curve, adjacent to P such that the arc PQ is of infinitesimal length &s.
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.We can then form at P the scalar product qs,ds = q 8s, where 3s is the
directed element of arc at P (cf. 2-20).

F1a. 2-42.

Forming the analogous products at @, R, ..., and so on right round the
curve back again to P, we define the circulation of the velocity vector round
the curve C by the relation

circulation = lim X' q &s = j qds.
230 ©
The circulation may be written in the alternative forms

circC=.[ qu=j qdr=J qdP,
© © ©

all of which mean the same thing.
We can form the circulation of any vector round a closed curve.

2:50. Stokes’ theorem. Let S be a surface * having the closed curve C
for boundary, and let n be a unit vector in that direction of the normal to the
element of area dS which is related to the directions of circulation round d8
and C by the right-handed screw rule. Then

j n(V,q)dsS = I qds = circ C.
(9 ©

This is Stokes’ theorem.

Proof. If we join points of the curve C by sets of lines lying on the surface
S so as to form a network, we see that every mesh of the network has lines in
common with its neighbours, except those parts which belong to the curve C.
Since a line which appears in two meshes is described twice in opposite senses,
it follows that

circulation round C = sum of circulations in the meshes.

» * Such a surface may be conveniently described as a diaphragm closing 0.
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It is therefore sufficient to prove the theorem for a single mesh of an
infinitesimal network covering S.

| H\”\

=>

[/

Fia. 2:50 (i).

Since any mesh can be divided into triangles
it is sufficient to prove the theorem for a
single triangular mesh 4BC whose sides are of
infinitesimal length. Let D, E, F, be the mid-

points of the sides, fig. 2-50 (ii), and let P be the
) ‘ centroid. Write
F () AB=a, BC=b, CA= —(a+b).

A a
Fi1a. 2:50 (ii).

B Let qu denote the value of q at any point
M. Then by the definition of the integral we

have, very nearly,

j dsq:ﬁqﬂ-BC qp+CA4 qg
(4B0)

= a(qr-qz)+b(qp-qz).
Now from 2-31 ()

qr = qp+(PFV)qe, qe=qp+(PEV)qp.
Therefore by subtraction

@ Q- 9z = (EFV)qp = —3(bV)qp.
Similarly qp-qz = }(aV)qe.
Therefore

3) jdsq = -4[a(bV)-b(aV)iqr = }[(a,b) ,VIqr.

Now n dS=4(a , b) if dS is the area of ABC and therefore to the same order
of approximation ;
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jn(V'Aq)ds — 3[a,bI(V . q) = }{(a,b) \V1qr

Comparing this with (3), we have proved the theorem for an infinitesimal triangle
and therefore generally for any surface which can be regarded as the limit of a
triangulation, bounded by a curve which can be regarded as the limit of an
inscribed polygon. Q.E.D.

Stokes’ theorem as stated above is a
particular case of a more general theorem
which, using directed areas, may be stated
thus :

@ .‘.w) (ds"%’) X= Lc)ds -

where X is any scalar or vector function of =
position and ds is the directed element of Fro. 2-50 (iii).
arc of C.

Proof. As before, it is sufficient to prove this for a single triangular mesh as
follows. With the same steps,

IdsX = -1a[b ;F]X +b[a gi-,]x - [g(aAb)A-a?P]X,

and since $a , b is the directed area of the mesh, the theorem follows for the
mesh and therefore generally. QE.D.
A still more general form is

@ [ 75 (@05m) X] = [ _sp s

the proof of which is an immediate inference from the method of proof given
above ; indeed we can even replace the first 3/0P on each side by the same
operation repeated # times.

2-51. Deductions from Stokes’ theorem. Putting in turn q, ¢, ,q
for X in the general form of the theorem 2-50 (1), we get

(1) LC) qds = Ls) (n,V)qdS = Ls) n(V,q)ds

- J(s)nﬁ a8 = LS)CdS,

where § is the vorticity. In words; the circulation of the velocity in any
circuit is equal to the integral of the normal component of the vorticity over
any diaphragm which closes the circuit.

D M.T.H)
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2) j. dds = I (n V) ds.
©) 5)
(3) ,[(C) ds AQ= j(S) (n AV) A9 a8 = —J(,g) nV q)d8+j(s) (V; q) ndS.

2-52. Irrotational motion. Let O be a fixed point, P an arbitrary
point in a simply connected * region in which the motion of a fluid is irrota-
tional. Join O to P by two
B Q paths OAP, OBP, each lying

P in the region in question.
P > Then OAPBO is a closed
\A//\q curve, and therefore, by

Fic. 2:562. Stokes’ theorem,

I qu+j qds =I n(V ,q)ds,
(04P) (PBO) ()]

where 8 is any surface lying entirely in the fluid and having the curve 04 PBO
for rim. Since the motion is irrotational, V , q = 0, and therefore

tY) j qd5=j qds = - ¢p,
(04P) (OBP)

say, and it is now clear that ¢p is a scalar function whose value depends solely
on the position of P (and of the fixed point O) and not on the path from O
to P.

Now take a point @ so near to P that the velocity vector q may be assumed
nearly constant along PQ.

Let 0 be the position vector of Q with respect to P.

Then, approximately, if ¢p is denoted by ¢,

—nV¢=-%+h=j qds = qn.
(PQ)

Since @ is arbitrary, provided it is near enough to P, the vector y) is also
arbitrary and therefore

() = -V
Thus when the motion is irrotational the velocity vector is the gradient of
a scalar function 1 of position - ¢.

This scalar function is called the welocity potential. We have proved that
the velocity potential necessarily exists when the motion is irrotational.

* For the meaning of this term see 3-70.

t The negative sign for this scalar function is adopted by some writers and not by others.
We have followed Lamb in adopting the negative sign, so that p¢ is the impulsive pressure which
will generate the motion from rest, cf. 3-64.
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Conversely, when the velocity potential exists, the motion is necessarily
irrotational, for then .
Vaq=-VaA(V) =0

from 2-32 (III).

It also appears, from the meaning of Y ¢, that the fluid velocity at any
point is normal to that member of the system of surfaces ¢ = constant, which
passes through that point. In other words, the streamlines cut the equi-¢
surfaces orthogonally.

2-53. Conservative field of force. In a conservative field of force
(1-42), the work done by the force F of the field in taking a unit mass from O
to P is independent of the path. Thus in fig. 2-52,

[ Fdr=] Fdr = —Qp,
(04P) (0BP)

where £2p is a scalar function whose value depends solely on the position of P
(and of the fixed point O).

This equation is of the same form as (1) of section 2-52, and we can from
that point repeat the same argument to show that

F= -V&Q,

where £2 is a scalar function, known as the force potential. Physically, 2
measures the potential energy of the field, that is, the energy stored up in
taking a unit mass from O to P.

The negative sign in 2:52 (2) further brings out the mathematical (not
physical) analogy between the velocity potential and the force potential.

2:60. Gauss’s theorem. Let the closed surface S enclose the volume V,
and let X be a scalar or vector function of position. Then, if dr is an element
of the volume V, and d is an element of the surface S,

j (v X)dr = -j nXds,
(v (S)
where n is a unit vector in the direction of the normal to dS drawn into the

interior of the region enclosed by S. This is Gauss’s theorem.*

Proof. By drawing three systems of surfaces, say parallel planes, the
volume ¥V will be divided into elements of volume. If 8r be such an element,
we shall have approximately (2-24 (1)),

(VX)or = —LM nX ds,

* C. F. Gauss, * Theoria attractionis ”, Comm. soc. reg. Gott., Vol. II, Gdttingen, 1813,
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the integral being taken over the surface of the volume &7, and by summation
for all elements :

I (VX)dr = lim 2V X &r = —Z‘j nX dS.
) &r—0 (67)

Now at a point on the common boundary of two neighbouring elements
the inward normals to each element are of opposite sign. Thus the surface
integrals over boundaries which
are shared by two elements of
volume cancel out and we are

left with the surface integral over

€-eeee i T s Q.E.D.

Note that the minus sign in
or the above theorem arises from
the fact that we have considered
the normal drawn ¢nto the region
enclosed by S. In applications
to hydrodynamics we shall thus be considering the normal drawn into the
fluid when 8 is the bounding surface.

It should be mentioned that the theorems of Stokes and (auss, and the
various deductions therefrom, depend for their complete validity on the exist-
ence and continuity of the partial derivatives implied in their enunciations.
Discontinuity will manifest itself physically when it occurs in the motion of a
fluid, and we shall not therefore discuss conditions of validity, for that would
lead us too far from the main theme.

If the region within S is m-ply connected (see 3-70), we modify it to become
simply connected by inserting m — 1 barriers B,, B,, ..., B.,_;; and reckon
each face of a barrier as a separate boundary. Thus we have in the case of a
doubly connected region, a single barrier B whose faces will be denoted by B+
(the positive face) and B~ (the negative face). Then Gauss’s theorem applied
to the simply connected region so attained gives

Fia. 2-60.

VX dr = -f nXdS-[ n+x+daS-[ n-x-ds
) (S) (B%) (B7)
Since at any part of B, n++n-=0, if we write
X+-X-=[X]

for the jump in X when crossing B from the negative to the positive side
Gauss’s theorem for the doubly connected region in question is
f VX dr = -f nXxds- [ n+x]ds.
19) ) (BY)
If m>2 we simply add more terms on the right, one for each barrier.
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2-61. Deductions from Gauss’s theorem. If a is a vector and ¢ a
scalar, let us write in the enunciation of Gauss’s theorem the following forms

instead of (VX): V a, V3, V4, (VV)¢, (VV)a, V(q;a)
We then get the following theorems :

(1) _[ Vadr = —j nads.
) &)
(2) j Vaadr=-| n,ads.
o) J($)
(3) J Védr = —I ng ds.
() (S)
4) j Viddr= -] (nV)¢dS = -—j -gis ds, from 2-22.
) J@® () on
(5) j Viadr= -| (nV)ads.
%) J&®
®) | v@iaar=-[ n@iaus,
%) J(8)

which may be called the tensor form of Gauss’s theorem.
Using 2-34 (X), the last result leads to

M |, amas = -[ awa+@valen
)

(¢2]
Gauss’s theorem may also be formulated thus :

aX -

8 .[ =5 dV = —j s X, .’
© ) P ®

using @V for the element of volume and dS for the inwardly directed vector

element of surface area.

2-615. A solenoidal vector forms tubes of constant intensity. If a
is a vector field, an a-line is a line whose tangent at every point is in the
direction of the a-vector through that point (cf. streamlines). An a-tube
results from drawing the a-line through every point of a closed curve. Consider
the portion of an a-tube between two plane sections by planes 8,, S; whose
outward normals are n; and —n,. By Gauss’s theorem

f n;a dSl-f n,adS, = |V-adr=0;
(81 (8

since by definition *Va = 0 and since by the definition of an a-tube, nadS =0
at the lateral surface.

* Page 40 footnote.
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Thus 4=/nadS is constant along the tube. We call 4 the intensity of
the tube. We can therefore define a unit tube as one of unit intensity and we
can speak of the number N of unit tubes which thread a given circuit C.

2:62. Green’s theorem.* From 2.34 (VI) we have, for any vector a,

V(¢a) = a(V ¢)+4(V a).
Thus from 261 (1), we get

—j naqst:j a(V¢)d~r+I $(V a)dr.
® " 2]

Putting instead of a the vector V¢, where ¢ is a scalar function, and
noticing that n V¢ = a/on (2-22), we get

) I(V)(V¢V¢)df= —jmwwr_j ¢a¢ds
= —Lv)l/'V%dT—Ls)xpg%ds,

since the left-hand side is unaltered when ¢ and i are interchanged. The
above relations constitute Green’s theorem, or Green’s first identity.
An immediate inference is Green’s second identity

@ [ eve-vaa=-| (gl-pP)as
Put ¢=¢in (1). Then
® [ @h@har=-[ svisan-| 43as

Def. Any solution ¢ of Laplace’s equation V2 ¥V =0 is called a harmonic
Junction.
If ¢ is a harmonic function it follows from (1) that

o
@ [, wowna=-] v
Herein put ¢ =1. Then
®) [ Zas=o
(5 0n
If ¢ and ¢ are both harmonic functions, (2) gives

(6) j (¢a¢ .p%)dS:o.

In Green’s theorem the functions ¢ and i must be one-valued, that is to

* G. Green, Essay on Electricity and Magnetism, Nottingham, 1828,
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say, to each point P of the region V there must correspond only one value of ¢
and one value of . These functions will, in our applications, usually represent
velocity potentials and, provided the region is simply connected,* the above
condition will be satisfied. The same may be true in a multiply connected
region, but here it is possible for the condition to be violated on account of
the existence of circulations. When circulations exist Green’s theorem requires
modification.

Suppose for example that the region is doubly connected and that on
crossing the barrier B which renders it simply connected, ¢, ¥ jump by constant
quantities «, A, the cyclic constants of the barrier,

(7) pr-¢-=[gl=x, $t-¢-=[]=
Then the foregoing argument shows that

f(v>(v¢v¢) dr = —J‘(v;ﬁvttpdf-f Fom 05~ f(nﬂ * e IS

=-Ly)¢V'¢dr-—f 5 dS f+,an+
- (V)l/jvzqsdT f ¢a¢d _A".(B*')an-’-

the last result being got by interchanging ¢ and ¢ in (4), which is permissible
since the left-hand side is unaltered.

The foregoing constitute Green’s theorem for a doubly connected region.
For an n-ply connected region we add one more term for each additional
barrier. E.g. if n=3, )

f(vqsv./,)dT:-f¢v2¢dr—f¢%ds—xlf W is-w[ 2 as.

@B on* ') (8, ron+

2-63. An application of Green’s theorem. Take a closed surface S at
every point of whose interior V*¢ = 0, Y24y = 0. Then, by Green’s theorem,

W) [, (#%-yH)as=o

Take a point P interior to S, and let 7 be the distance of P from the element
of area dS. We shall prove that, if ¢p is the value of ¢ at P,

_ o (1\ 10o¢
(2) dm dp = Lﬁ [¢ n (;) - %]d&
which expresses the value of ¢ at any interior point in terms of its values on
the boundary.

Proof. Takey = 1/r. Itis easily verified that * 1/r = 0. Draw a sphere
* See 3-70.
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J centre P, radius R, so small that 2 is entirely within S and apply 262 (2) to
the region between 2 and 8. Since dn = dR on 2, we get

® [ ivser=] [s30) ol f [ean(a)-maml o

Fra. 2-63,

Since the first two integrals are independent of R so is the last, which
is therefore equal to its limit when R—0; and if we make R so small that
é = ¢p nearly over the whole surface, the limit of this integral is

. 1 109¢
1 [- —--—]4 R2=— 4 ép.
le ¢PR2 RoR w 17¢p

Therefore we obtain Green’s third identity
1 1 1 10¢ 1 d (1
—— . ~\72 —_— o ) — (=
(4) ¢P - 47 (V) r V ¢ dr 4ﬂf(s) r ndS+ 4Wf(s)¢an (T) dS’

and since /2 ¢ = 0 we have (2). Q.E.D.
It also follows from (1) that the left-hand side of (2) is zero for a point exterior
to S.

2-70. Cartesian coordinates. If we take three mutually perpendi-
cular axes of reference, Oz, Oy, Oz, and three unit vectors, i, j, k, parallel
to these axes, any vector a can be expressed in terms of its components,*
a., a,, a,, along the axes in the form

a = ia,+ ja, + ka,.
The vectors i, j, k themselves combine according to the laws
it=p=k=1, ij=jk=ki=0

for their scalar products, since they are perpendicular.

* This notation for the components of a vector is very convenient. Thus the components of
the velocity q would be (g, g, , 4,), although they are more usually denoted by (4, v, w). We
shall use both notations for q.
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For the vector products, we have
il\i = J/\l =k, k=0, j/\k =i, k,i=j i/\j =k,
for the same reason.
Taking a second vector b, we have therefore the scalar product
ab = (ia, + ja, + ka,)(ib,+ jb, + kb,) =ab,+ab,+a.b,;
and the vector product
a, b = (ia,+ ja,+ka,) , (ib, + jb, + kb,)
= @i 5 (iby+ jby+ kb,) + a,j o (ib, + jby + kb,) +a,k , (ib,+ jb,+ kb,)
= i (avbz - azbv) + i (azba; - azbz) + k (azbv - avbz)‘
The vector product can be more conveniently written in the form of a
determinant, thus :

Il

i j k
a, a, a,
b, b, b,

In this form it is clearly seen that a , b and b, a have opposite signs, for
the second is obtained from the first by interchanging the last two rows of
the determinant, thereby causing a change of sign, but not of absolute value.

If ¢ = ¢(x,y,2) is a scalar function, we have, from 2-22, i V ¢ = 9¢/ox
and, from 2-15 (i),

Vé=iiVh+i(iVe+k(kVe),

a,b=

.0 .0 9
and therefore Vé= (|§;+,@+k.a_z) é,
8o that the vector operator Y/ is to be interpreted by
.0 .0 0
(1) V——l'a—:vﬁ—j@'f”ké;-

If we apply the operator to the vector q whose components are u, v, w
parallel to the axes, we shall get
vVq-= (l3+j~—+k )(|u+jv+kw),
which gives, on performing the multiplication,
ou dv ow
2 Va= 8z+8y+az

Repeating the operation on { ¢, we obtain at once

Vi = 0% 33¢ ¢

o T

.0 . .
(|%+15&+ a—z),\(iu+jv+kw)

i(sz_gi_) +.(§1_l_@ k(av ou
oy az) N7 3z)+ 5;0-3—1/)'

Again, Vad

I
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We can also write symbolically Dk
]

9 @ 0

Viaa=|7 W %

u v w

* To interpret the expression (a V/)q, we observe that, if
a = ia,+ja,+ka,,

ad
then aV:acb-a;’-{-a'-a—y-f-a..a.a;,

and therefore

ou ou ou
(avV)q=1i (a, +ay 8y+a‘ az)

+j (a, :z+a, :y+a. g )+k ( ow Pt g’;+a. aa':)
- Lastly,
o o\, .
viq = (5:::—'+53/_’+5z—’) (iu+ jo+ kw)
=1 (g’_lf"__alt_l_*_@)_*_ (a.v a’v ) )+ (gt_‘f+a_"£+g’.1_v) .
0z ' Oy’ 02 % a g o0z2  dyr 0
The foregoing interpretations in carteslan coordinates serve to illustrate
the economy of thought and writing arising from the use of vector notations
independent of coordinates. The vector methods form a powerful tool for
obtaining general theorems and afford immediate insight into their intrinsic
character. In order to investigate particular problems which involve the
carrying of calculations to a numerical conclusion it is nearly always necessary
to introduce coordinates at some stage. It is clear that this stage may often
be advantageously deferred as long as possible.

2:7l. The alternative notation d/or. We have seen in 2-70 (1) that
the gradient operator may be wntten
[}

(1) F i i +ia +k 2 r =iz+jy+ke,

and therefore the dyadic product

@ Zir=(ig+igrkg)s Gatiprko

= (i;1)+(j; )+ (k; k) = I, the idemfactor (2 16).

Thus if a is a constant vector,
'] 0
3) 3;(?3)=(5;.r)a=la=a.
 Also 9" _ i, and therefore

oz
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o _ .0 _ordp
“ %= Vor = Gar
These results are capable of a simple generalisation.
Thus if q = §u+ jo+ kw, we can write

] 2 9 9
() ba='$+i§6+k%.
and therefore if a is a constant vector,
9
(6) q (qa) = a,
and if T is a scalar function of u, v, w,
@ oT _dqaT

o dudq’
Again, as in 2-33, ,
_a.?_’__a_( )—i( )+_a.( ) = Qo+qo = 2q from (6)
aq = 3q qq =2q 9%9q 3q 990 = Qo+ qo = 2q .
If ro and r are the position vectors of the same fluid particle at two different
instants of time, it is easily verified that
0o 9;r, @ a;r,

(8) 5= =—%—+z—, Wwhe means 2'r
or— ar ‘ar, " e
Thus in particular
a;r, a;r_a;r_ _o;r 8_,_r.,
® ar e o 1T o

Let T be a homogeneous scalar function of the second degree of two inde-
pendent vectors U, w. By this we mean thatif 7 = T (u, w), thenif ¢ is a scalar,
T (tu, tw) = 87 (u, w).
Write § = tu, 5 = tw, then
I'(E, ) = T (u, w),
and therefore

ZEW _ wr, v

‘But T m) _ 9T 3 oT oy

® Ea ma
—uZi0¥
% o
;I::us ‘ u%%+w%—i'-=2t1’(u,w).
tting ¢ = 1 we get
u2£+ or 2r
IR

which is the vector analogue of Euler’s theorem on homogeneous functions (of
degree 2).



60 THE ALTERNATIVE NOTATION 9/or [2-7t

The method of proof is quite general and applies to a homogeneous function
of degree n, in which case 2 is replaced, in the above proof, by =.

2:72. Orthogonal curvilinear coordinates. In cartesian coordinates
the position of a point is defined by the intersection of three mutually perpen-

J
[ >
4 P
=P —F———\
e o —\
T 2 =N
L =77 ~ ——————\
* x
P
VL
Y
= z
F1c. 272 (i). Fia. 272 (ii).
dicular planes, z = constant, y == constant, 2z = constant. For certain

problems other systems of coordinates are convenient, for example, spherical
polar coordinates, in which the position is defined by the intersection of a
sphere, r = constant, a plane w = constant, and a cone § = constant, fig.
2-72 (i), or cylindrical coordinates, in which the position is defined by the
intersection of two planes, & = constant, w = constant, and a cylinder
w = constant, fig. 2-72 (ii).

To discuss the form taken by the nabla operator in such a system of ortho-
gonal coordinates, suppose these to be defined by

@ = iUy, %, Us), Y = falthy s Us, %), 2= foluy, us, uy),
where the surfaces, u, = constant, u, = constant, u; = constant, intersect
orthogonally. If we draw the surfaces corresponding to %, , 4, , u; and u, + 8u, ,
Uy + Uy , Uz + Suy , We obtain a figure

o' B’  which is to the first order a rect-
‘ angular parallelepiped whose edges
A’ : are hy Su,, hy8u,, hgdug, fig. 2:72
C ! (iii), where &, , hy, ks are functions
' of the coordinates obtained from the
/:35113 .- G 7 relation
-l (ds)? = (do)*+ (dy)? + (d2)?
A P = hy¥duy)*+ haP(du)* + hol(dus)?
= < g wher:
z #a0y ';.l 0272 " h:: azd oz ox
G. 2-72 (iii). = an u1+a-T‘;du’+aT’du.,
2 % IS EY] R TR
G Ca) o (33)
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and so on, the product terms like du,du, disappearing on account of the ortho-
gonal property.

Let i,, i,, iy denote unit vectors in the directions 04, OB, OC corre-
sponding to increasing values of u;, u,, %;. These vectors, being mutually
perpendicular, satisfy the same relations among themselves as the vectors
i, j, k of 2-70.

Then from 2-31 we have, for a scalar function ¢,

. 1 o
WVe= hl aul
and therefore, using 2-15 (i),

1 695 1 a¢ 1 0.
(1) Vb= o W By 2 B
Thus, in orthogonal curvilinear coordinates,
i, @ iy 0

V= ‘a_uﬁhz 3uy By

Since the unit vectors are themselves functions of the coordinates, we
must calculate expressions like / , i; and V i;. To find the former we have,
from 232 (III), V,(Vu) =0, and, from (1), Vu; = iy/h;. Therefore
2-34 (VII) gives

1 sy s 1\ . 1 ahl 1 ak1 1 ahl

E(VAII)— |1AV(hl>— |1A|: haa“1 h- hlghzauz - hlzh aus ]

L b O b O
Hence Vb = o Gu, hhy ouy
Again, Vi, = V (ig 5 i5) = i3(V 5 12) — 12(V 5 §5), from 2-34 (I). Therefore
Vi, = __La_h,_*____l__“a_kg 1 a(hyhy) 1 dlog(h, h,,)
YT hyhyOuy  hyhg 0wy Ryhyhy  Ou, h1 ou,

Now let qQ=q i+ ipt+gsi;.
Then Va=2V(qi)=2(qVi+iyVa)
from 2-34 (VI), and this reduces to

@ vVaq= by By h by {au (91 h2 hg) +5— 8 (g2 ks hy) * (93 hy kn)}
Thusif @ = -V ¢, we get from (1) and (2)

® V4= i {on (- 0e) 26 (' 00) * (i 20}

Again, Vaq=2VA@1i) = Z[-i; A, V@ +a: (Vi)
and therefore, after reduction, in determinantal form the vorticity is
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hiiy hyiy, hyi,
1 0 b} 0

@ C=VaI= i | e Ou
hMay haqs hsgs
(6 C=iLi+isl+isds.
For the acceleration * we have, from 3-10 (7) and 2-34 (IV).
dq _

aq
E at+%vq qa §

Taking the component along i, , we get
(.-
ot a’
0 0 0
AV = (0 3+ B+ 3E), from ),

QA= g2ls-0:0a

s gy by oq, by ) ( 9gshs , 9, hl)
hlh, ha (ha ou, hs E +h1 kz ha hz ou, h, oy , from (4).

Combining these, the component acceleration along i, is

9, 1 99, 1 9g 1 9g
o TR TR e, T h B,

Q a’h) 92 (3}!1) qs (ahl)
+k @ {hl (au1 o \3uy) Th, \7u,

-5 { G+ % Ga) 5 Ga)
hy By \Ouy/ * hy \Ou,/ k3 \Ou,
The remaining components can be written down by symmetry.
To illustrate these results in the case of spherical polar coordinates, we
have, fig. 2:72 (i), z = r cos 8, y = r sin § cos w, z = 7 sin 0 sin w, so that
(ds)? = (dz)?+ (dy)* + (d2)® = (dr)*+ r¥(dB)* +7? sin? O (dw)?.
Thus if v, = r, 4, = 6, u3 = w, we have

(7) hy, = 1, hy = 7, by = rsin 0, and therefore, from (3),
1 ) a¢) ] ( 1 8¢)
Vig = 7% 8in 0{ ( sin 6 ) + o (sm b%) * 7 dw \sin § dw

Again, with cylindrical coordinates,

(6)

=2, Yy=wcosw, 2z = wsinw.
Taking U =2, U =ww U= w,
we get h=1 h=1 kh=w

* This discussion is placed here for convenience, but section 3-10 of the next chapter should
be read first.
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Thus the vorticity, from (4), is given by

i Iy wi,

1{9 o @
(8) 8 =-1% 3 30 |’
9 Qo o

where the suffixes denote the direction of the corresponding unit vector or
component. See also Ex. II (16), (17).

2-73. Rate of change of the unit vectors. In orthogonal curvilinear
coordinates (2:72) we can calculate di,/du,, (r,s =1, 2, 3) as follows. By
Dupin’s theorem,* that triply orthogonal surfaces intersect in lines of curvature,
we see that the curves along which either u, or u, varies are lines of curvature
of a surface u; = constant. Now normals to a surface at adjacent points of a
line of curvature intersect. Therefore as we go along O4 in fig. 2-72 (iii), the
normal is+diy intersects the normal i; and therefore diy is perpendicular both
to i, and iy, and so is parallel to i,. Therefore 9i;/0u, is parallel to iy, and
similarly 9i;/du, is parallel to i, , and four similar results.

Let ds = hy du, iy+hy dug ig+hy dug is. Thus

os s . Os

5171=h1'1: a_“—hz'a: a—%=hs'a-
Therefore 0(hy 1,)/0uy = 0(hy i)/0u, , and so
A oi, —hy i, i oh, . oh,

1 ouy 23w, ’aul_|‘5z;;'
But 9i,/0u, is parallel to i, , and 9i,/du, is parallel to i;. Therefore
) a_ilzi_,%’ a.,_.,ah,
ou, hy Ou, hy uy’
Also from i, = i, i We get
oi ai..an iy Ohy iy Ohy _ iy Oh
From (1) and (2) we can write down di,/0u, for all values 1, 2, 3 of r, s.
These results, together with
i, 0 |3 0
V= hl au1 +}T, Ou, h, Oug
enable any nabla operation to be calculated with reasonable economy of effort.

EXAMPLES II

1, If masses m, n are at the extremities of the vectors a, b, prove that the
centroid is (ma + nb)/(m +n).

*R. J. T. Bell, Coordinate geometry of three dimensions, London (1926), pp. 334, 344.
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2, Prove that (i) ab = ba = a,b, +a,b, +a,b, ,
(ii) (a+b)? = a2 +b2+2ab,
(iii) a(b,€) = | a5 ay a, | = [abc]
b, by be
Cz Cy Cy

8. Prove that (i) (@+b),(a-b) = -2a,b,
(ii) |a b |* = a®b®—(ab)? = (ab+ab)(ab - ab).

4. Prove that (i) a,(b,c)+b,(cpra)+c, (apsb) =0,
(ii) (@ A b)(c ,d) = (ac)(bd) —(ad)(bc) (Lagrange’s identity)
(iii) a[b(c ,d)]-b[a(c ,d)] +c[d(a ,b)]-d[c(a , b)] = O

8. Prove that the area of the triangle whose vertices are at a, b, c is the magn

tude of the vector
4[(brc)+(c a)+(a, b))
6. If A is a scalar and r, s vectors, all functions of ¢, prove that
L d dr d/\
ds dr
(u) (rs) =r Ef+s i’

ds dr
(m)a(r,\s) = rAJ‘-+%As.

I

7. If the surfaces ¢ = ¢, where ¢ is the velocity potential, be drawn for equ
distant infinitesimal values of the constant ¢, show that the velocity at any poin
is inversely proportional to the distance between consecutive surfaces in the neigt
bourhood of the point.

Prove also that if any surface of equal velocity potential intersects itself, th
point of intersection is a stagnation point.

8. If ¢(r, t) denotes the velocity potential, prove thav
d) dt—qdr,
and show that the differential equatlons of the streamlines are given by
dr V¢ = 0.

9. If ¢, ¢’ are two distinct solutions of Laplace’s equation (3:20) valid withi
the closed surface S, prove that

J‘(s)d> on f ¢8n

10. If ¢(x+h, y+£, 2+1) be written in the form ¢(r+ R), where
r=iz+jy+ks, R =ih+jk+ki,
show that Taylor’s theorem can be expressed in the symbolic form

é(r+R) = $(r)+(R V)¢(r)+-21—l(R V)Eé(r)+....

11. If n = i 8z +j 8y + k 8z, prove, with the notations of 2:40, that
Jn) = i(adz+hdy+9g82)+j(hdz+bdy+fd2) + k(g dz+f8y+cd2),
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Ou ov ow

where @== b= 3y c=3
ow dv ou OJw ov OJu
2f=ay+az’ 2g=8z+az’ 2h=ax+ay’

and hence that the equation of the central quadric of 2-40 is
a(8z)2 +b(8y)? + c(82)? + 2f Sy 8z + 29 8z dz + 2k 8z 8y =constant.

12. If q=iutjo+kw, n=idz+jdy+k?z
prove that
ou ou ou ov
(er)q—i(a 8z +a Sy +3 8z>+|< 81:+ 8 Y +3, Sz)

+k<5;8x+@8y+aa—g Sz)

13. Prove that through any point P of a fluid in motion there is in general at
any instant one set of three straight lines at right angles to each other such that,
if the lines move with the fluid, then after a short time 8 the angles between them
remain right angles to the first order in 8¢, and that the angular velocity of this
triad of lines, as it moves with the fluid, is  curl v, where v is the fluid velocity
at P. Prove also that, if a small portion of the fluid with its mass centre at P be
instantaneously solidified without change of angular momentum, then its angular
velocity immediately after solidification is § curl v, if, and only if, the principal
axes of inertia for the resulting solid lie along the above triad of lines. (U.L.)

14, Use the tensor form of Gauss’s theorem to prove that

(i) f (nq)q dS = f [(@v)q9+q(vq)ldr,
(S) (1]

(i) 3 f [nq?-2(nq)q)dS = f [9(va) -q A §]dr.
) V)

15. If P, Q, R are finite, continuous, and single-valued functions of =, y, z
throughout a space bounded by a closed surface S, prove that

f”(ap ?9+§£)dwdyd1= f(lP+mQ+nR)ds,

where I, m, n are the direction-cosines of the outward normal at any point of S,
and the integrals are taken throughout the volume and over the surface S.

Find the value of %—?
taken over the surface of an ellipsoid, where p is the perpendicular from the centre
to the tangent plane. (R.N.C)
16. For spherical polar coordinates, prove that the components of vorticity
are given by
9 (g 8in 6) 3qo]
(curl q), = r8in 0 [ a9 7
1 [9(ger) _9,
(curl q). = ; [ ar —a"a—'

E ) 85 8
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1 1 b dlq
Cula = ; [mase-—w?)-

17. Prove that in cylindrical coordinates
Vig = ’45 ¢ 10 1 d%¢

FE I R = e
18. Prove that the components of the vorticity in cylindrical coordinates are
179(¢u®) _9a7
(curl q), = wl: 0w ow
[6% a(q,.. @)},

(curl q)g

0 0,
(curl q), = S 3o

19. Prove that if P lies on a straight line which passes through the extremity of
aand is parallel to b, then the equation of the lineis n = a + bt, where n is the position
vector of P and ¢ is a scalar.

20. Show that the equation of a plane whose normal is n and which passes
through the extremity of a is (p—a)n = 0.

21. If F =a;a’ +b; b’ +c;c, show that nFn = constant represents a family
of central quadrics.

22. Prove that V,,r =0, Vr = 3,Vr = r/r, V(1/r) = —r/r3, V¥(1/r) =

23. Prove that in general orthogonal coordinates

A
GV = =~k e,
Co iy iy oy
(1 V)is = -5 (0 V"’“h by 31ty

and deduce the expression for (i; V)q.
24. Show that typical terms in (V ; q) are
b 30y (091, g2 Ohy g5 OBy iy 05/, 045 oh,
h1 (5171"};3 Fug Ty au3>’ hoky ("3%‘,‘?’ 5@)’
and hence write down the complete expression for V ; q.

25. If @ is any dyad, prove that
) V(QP) =qVP+(PV)q,
(ii) @ = [Pi;i]+[Df; jl1+[Pk; k].
26. If a, b, c are any three non-coplanar vectors, and if a*, b*, c* are so chosen

that a*a = b*b = c*c = 1, while all cross-products such as ab* ac*, etc., are zero,
prove that (a; a*)+(b; b*) +(c; €*) is the idemfactor.

27. If u is a unit vector, interpret geometrically the scalar product ux, and prove
geometrically that
u(b+c) = ub+uc.

Deduce the distributive law for scalar products.
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28. By considering the vector product of an arbitrary unit vector u and the
vector
x=a,(b+c)-a,b-a,c
prove, using the preceding example, that x = 0, thus deducing the distributive law
for vector products.

29. With the notation of 2-50 prove that
f V (ng)dS = f V (qds).
(8) )

80, With the notations of 2:72 show that
hy? = (0z/0u,)*+ (0y/0uy)®+ (92/0uy)?,

with similar expressions for kg and Ag.

'la b ¢
31. Prove that [abc](p,q)=| pa pb pc
qa gqb gqc

82. Prove that
() VI(q;q) -] = q(VQq)-q,%.
(i) V{r,[(q;q)-3I¢*]} = -r[q(Vq)-q,&].



CHAPTER III
EQUATIONS OF MOTION

3:10. Differentiation with respect to the time. Fig. 310 shows the
actual path of a fluid particle which at time ¢, was at the point 4, whose
position vector is r, with respect to the fixed point O.

At time ¢ the particle is at P,
at time ¢+8¢ it is at @, position
vectors r and r+ 8r respectively.

When the particle is at P
there are associated with it scalar
functions, such as pressure and
density at P, and vector functions,
such as its velocity and accelera-
tion at P.

We enquire how to form the differential coefficient with respect to the time
of such scalar and vector functions. First note that the position vector r of
this particular fluid particle is a function of ¢ only, for it is clear that r can
depend only on the time ¢ and some position such as 4 considered as the initial
position and therefore fixed.

We have seen in 1-1 that

(1)

Fia. 3-10.

_dr
=

Now consider, for example, the density p. If we fix our attention on the
particle when at P, the density depends on the position vector r and the
time ¢, so that

p = f(r,0).

Since r is a function of ¢ only, so is p, and therefore we can form a total

differential coefficient dp/df. To calculate this we have, in the notation of 2-71,

b 30y drife) 09 (4 2)y

ot dt or ot
and therefore

@ % =2 @ve

The first term on the right represents the rate of change of p with respect
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to the time when P is regarded as fixed, the second the rate of change of p at
a fixed time ¢ due to the change of position from P to @. Since p is a scalar,
this can be written

@) ‘f{j Z+q(Vp).

This gives the rate of change of density as the particle moves about. If
the fluid is incompressible, the density of the fluid particle does not change,
so that

dp _ 9 _
(4) £=0 o 2+q(Vp)=0.

When p is constant, (4) is satisfied identically. *
A similar argument can be applied to any scalar function «, giving

®) b T qva)

To find the rate of change of a vector a associated with the particle, the
steps of the argument are exactly the same down to (2), which now gives

© % ava,

which cannot be further reduced to the form (3).
The most important case here is that of the velocity vector q whose rate
of change gives the acceleration of the particle, namely

M -2, qna=2vam-a.t

from 2-34 (IV).
Translating this into rectangular cartesian coordinates by means of 2-70,
we see that

du dv dw |, 0u av
a+|—+k2‘——|7 ; k—

+(ui+ ~a—+wa iut+jot+k
3 vay a)(u ju+ kw),

so that (7) is equivalent to the three equations :
du Ou  Ou Ou ou

(8) a=-a—t-+u-a—a;+v~a?/+wb—z's
dv_av+u_a_?+v§2+a_v
7 T "I il P
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do_0, ow o0 ou
d ot ox oy = oz
Thus we have the equivalence of operators

d 9o d 0 0
s e

dt "ot " om oy 0z
in cartesian coordinates. In the vector form
d 9
©) = 5t@w.

The operation here implied is sometimes called differentiation follounng
the fluid, implying that we are calculating the rate of change of some quantity
associated with the same fluid particle as it moves about.*

3-20. The equation of continuity. If we consider a fluid particle of
infinitesimal volume dr and density p at time ¢, the mass of this fluid particle
cannot change as it moves about and therefore

) 2 (pan =0.

This is one form of the equation of continuity, or conservation of mass. If
the volume expands, the density
diminishes, and vice versa, in such
a way that (1) is always satisfied.

Let X denote any property per
unit mass carried by a fluid particle
as it moves. Then for a volume ¥
which moves with the fluid, i.e. always
consists of the same fluid particles

d dX d aX

2) ‘%I(V) Xpdr = .‘.(V)W pdr+ J-(V)Xlit (pdr) = va&? pdr.

Another point of view is the following :

Consider a fixed closed surface S lying entirely in the fluid. If n is a unit
inward normal to the element dS, the rate at which mass flows into the sur-
face through the boundary is

Fia. 3-20.

(3) j pqn dS.
8)
The mass of fluid within the volume V enclosed by 8 is
j pdr.
(2]

la: Ssoox(lim writers use the notation D/Dt. The names substantial or material rentiation are
also used. >
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Assuming that no fluid is created or annihilated within S, the mass can
only increase by flow through the boundary. Equating the time rate of
increase of the mass to (3), we get

d
2 pdr=j pqndS=—j Vipq)ir
V) S (42]

by Gauss’s theorem. Thus

| (Z+vie@)ir=o.

)

Since the surface S can be replaced by any arbitrary closed surface drawn
within it, we must have, at every point,*

(@ 24V =0,

which is another form of the equation of continuity.
Now, from 2:34 (VI) and 3:10 (9), we have successively

¥ avp+pVe=0.

dp _ _d 1
) Feva=0 Vaq=_glg (o).
In the case of an incompressible fluid, dp/dt = 0 (see 3:10 (4)), and therefore
(6) V q= Oa

which is the equation of continuity for a liquid ; the expansion ¥ q vanishes.
Using cartesian coordinates (2:70), this gives

ou Ov ow
7 Bz + 5& + P 0.
In the extremely important case of irrotational motion, we have q = -V ¢,

and therefore the equation of continuity (6) for a liquid in irrotational motion
becomes

8) Vié =0,
or in cartesian coordinates,
2 2 2
(9) N I 0

PR
Equation (8) is known as Laplace’s equation.

From this investigation it appears that a fluid cannot move according to
an arbitrarily assigned law of distribution of velocity. For the motion to be

"‘If]. A dr =0 for an arbitrary volume V,—l—'[ Adr = 0,80 that lim 1
) vim V.

I Adr =0, i.e.
=0 V(7

lim%.AV =4=0.
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possible it is evidently necessary that the equation of continuity should be
satisfied.

In particular, possible irrotational motions of a liquid are subject to the
condition that the velocity potential ¢ shall satisfy Laplace’s equation.

3:30. Boundary conditions (Kinematical). When fluid is in contact
with rigid surfaces or with other fluid with which it does not mix, a kinematical
condition must be satisfied if contact is to be pre-
served, namely that the fluid and the surface with
which contact is maintained must have the same
velocity normal to the surface.

P 9 If we denote by n the normal unit vector drawn
at the point P of the surface of contact and by q
the fluid velocity, we shall have, in the case of
a fixed rigid surface, qn = 0, which expresses the condition that the normal
velocities are both zero, or, in other words, the fluid velocity is everywhere
tangential to the fixed surface, fig. 3-30 (i).

When the rigid surface is in motion, if
U is the velocity of the point P of the
surface, we must have

Fia. 3-30 (i).

qn = Un,
or (q-U)n =0. Fia. 3:30 (ii).

This equation points out that the velocity of the fluid relative to the surface
is perpendicular to the normal, that is, tangential to the surface.

When two fluids which do not
mix (such as air and water) are in
contact along a common (geometrical)
surface of separation S in order that
contact may be maintained, it is
clear that the relative velocity q— q'
must be again tangential to S. On
the other hand, we note that in this
case the form and movement of S
are unknown until the problem of the motion has been solved.

Fia. 3-30 (ii).

3:3l. Boundary conditions (Physical). The kinematical boundary
conditions just investigated must be satisfied independently of any special
physical hypothesis.

In the case of an inviscid fluid in contact with rigid boundaries (fixed or
moving), the additional condition to be satisfied is that the fluid thrust shall
be normal to the boundary.
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In the case of two inviscid fluids presenting a surface of separation S, the
condition to be satisfied is that the pressure shall be continuous at the boundary
as we pass from one side of .S to the other.*

To prove this, take a cylinder whose generators are normal to S and whose
cross-sections dS are small areas on either side of S. Then if p, p’ are the
pressures in the two fluids, we have,

resolving along the normal, pds

pdS—-p'dS =0, ie. p=17p,

gince, as in 1.3, the body forces
and mass-accelerations are negligible /‘
compared with the terms retained.

Thus in the case of water in ,
contact with the atmosphere, the #aS
pressure of the water at the free
surface will be equal to that of the
air, and if this latter is assumed to be constant, the water surface will be
a surface of constant pressure.

Another important example of this principle occurs when the surface S
separates not two different fluids, but two regions of the same fluid, there
being a discontinuity of tangential velocity at the surface S which is then &
vortex sheet (13-70). This may be conceived to occur in the case of air stream-
ing past an aerofoil, where the two streams from the upper and lower faces glide
over one another along a surface of discontinuity, springing from the trailing
edge. Bernoulli’s equation then gives, when the motion is steady,

Fie. 3-31.

P i Pys
=+ =<+4g?
P 1q , tq

and since p = p’, we must have ¢ = ¢’. Thus the surface will be a surface of
discontinuity of direction of the velocity, not of speed.

In the case of a jet or current passing through fluid otherwise at rest where
the pressure may be assumed constant, the continuity of pressure inside and
outside the jet shows that the surface of the jet is one of constant speed.

In the case of a viscous fluid, experiment supports the view that at a rigid
surface in contact with the fluid the relative velocity is zero, and this is the
physical condition to be satisfied.

The interface between a fluid and an immersed solid may be regarded as a
vortex sheet, i.e. a surface of discontinuity of tangential velocity in passing from
fluid to solid (13-70). Viscous contact is then distinguished by zero discontinuity.

3:32. Efflux. Returning to the subject of 1.82, consider the steady irro-

* This condition must be modified when surface tension is taken into account. See 14-50.
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tational flow of liquid through an aperture of area oy in the wall of a vessel,
fig. 3-32.

Consider a horizontal plane section X' of the vessel, so far removed from
the aperture that all the stream filaments may be supposed to cross it with
the same speed ¢, , and let m be a unit normal drawn to 2 into the fluid below.

Let | be a unit normal drawn outwards at the section o, of the vena
contracta where the speed is g, .

Let w denote the surface of the walls of the vessel below the section Z,
s the surface of the jet between oy, and g,.

Consider the fluid bounded by the total surface £+w+s+a;, and let n
be a unit inward normal at any point of this surface.

Since Y q = 0, Gauss’s theorem, 2-61 (7), gives

[amaas = -[@wradr= -4 vedr =4[ nras
using 2-34 (IV) and then Gauss’s theorem 2:61 (3).

Fie. 3-32.

Now the values of nq on Z, w, s, o, are respectively ¢, 0, 0, —¢,, and
the values of n are m, -l on X, 0,. Also, the speed is ¢, over the surface s
by Bernoulli’s theorem. Therefore

~lgtop+mg? 2 = I nq*dS+q,’J nds.
(w) (2)

Since the surface formed by s+ o, + o is closed, 220 (3) gives
I ndS = -—I ndS—j ndsS = l(og— 0y).
(@) (o) (o9

Therefore mg,* 2 - 1(20,-0y)¢,® = I ng*ds.
(w)

Take the scalar product by I/(s, ¢,?), and eliminate ¢; by the equation of
continuity in the form ¢, £ = ¢; 0,. Then, if & = 0y/0, is the coefficient of

contraction, t 2
ontraction, we ge 1-——‘-[ n(_q_) s
] O1Jw) \J2

= =

51 ot
2-21Im
P
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‘When the plane of the orifice is vertical, Im = 0 and the denominator
can be replaced by 2. This is also the case when o,/2 is negligible.

Thus for flow through a hole in an infinite plate In = -1, and

1 1 7\2 1
oL = §+£J. (a) dS>§-

Again, when a vertical cylindrical nozzle, pointing inwards, is fitted to a
hole in the horizontal bottom of a tank with vertical sides, In = 0 over the
sides, and experiment shows that ¢ is sensibly zero over the bottom. Thus

1 >}
oy~ 2’

2

%X =

and when o,/2 is negligible, & = 1/2.

3:40. Rate of change of linear momentum. Consider the fluid which
at time ¢ lies within a fixed closed surface S. At time + 3t the same mass of
fluid will have moved and will now occupy the in-
terior of a closed surface S'.

Let A4, B be the regions within S and external
to &', and within S’ and external to S respectively.
Let M be the linear momentum at time ¢ of the
fluid within S. Then at time ¢+ 8¢ the momentum
of the same mass of fluid will be

M+ % &t +momentum of fluid in B — momentum
of fluid in 4.

Now the last two terms give the momentum which has flowed out of S
across its boundary in time 8t.

Therefore the rate of change of the momentum of the fluid which at time ¢
occupies the region within the fixed surface S is

%?—+rate of flow of momentum outwards across the boundary of S.

Now M= I qpdr.
Rate of flow of momentum outwards across the boundary

= -[ _ratamas,
(&)

for — qn is the normal velocity across dS. The tensor p(q ; q) is the momentum
transfer tensor, for its scalar product by n is pq(qn) which measures the rate
per unit area at which momentum crosses dS.

Therefore the required rate of change of momentum is



16 RATE OF CHANGE OF LINEAR MOMENTUM [3-40

9
1) aj rq df—j pQ(qn)ds.
) )
Using Gauss’s theorem, 261 (7), this becomes

[ 2 parir+ [toa1v @1+ @ Voanar

- J'[‘i%i) (e (V q)] dr, from 3-10 (9),

_ j[p%uq(‘%’;w(v:n)]dr—

(2) = I p %—? dr, using the equation of continuity.

We can also look on this result as follows :
The rate of change of the momentum within S as S moves about with the

Ruid is

d d d d

-d—tjquﬂr = jp—(itgd'r—qua(pdf) = J.pﬂqd'r,
since the third integral vanishes on account of the first form of the equation
of continuity 3-20 (1).

3:41. The equation of motion of an inviscid fluid. Consider the
fuid which at time ¢ occupies the region interior to a fixed closed surface S.
By the second law of motion, the total force
. acting on this mass of fluid is equal to the rate
A5 of change of linear momentum.

The force is due to

(i) the normal pressure thrusts on the

boundary ;

(ii) the external force (such as gravity),

say F per unit mass.
Thus the total force is

Fro. 3-41. jpn dS+IFPdT = —j(vp)d'r+Ide"’

using Gauss’s theorem. Equating this to the rate of change of linear momen-
tum calculated in 3-40 (2), we get

j(FP"‘VP—P%%)d" =0.

Since the volume of integration is entirely arbitrary, we can shrink this
volume to a point and so obtain

d
FP"VP’P';? =0, or
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dq 1
() 7-F " Vo,
which is the equation of motion.
Again, from 3-10 (9) and 2-34 (IV),
dq _9dq

0
A=l @V)a=41Ve-q,(Vaq

Therefore
oq 1 2
o) H-aA(Va) = F- Vp-}Vy
which is another form of the equation of motion.

3-42. Euler’s momentum theorem. We shall now obtain the general
form of the theorem established in 1-9. From 3-40 (1), we have for the rate
of change of momentum of the fluid within a closed surface S,

F
aqu df—j (nq)pqds,
()]

and therefore, from the second law of motion, using fig. 3-41,

I npdS:—IdeT+£Ipqdr—I (nq)pqdS.
® ot ®

This formula states that the resultant thrust on the fluid contained within
a closed surface S is equal to the reversed resultant of the body forces on the
enclosed fluid, together with the rate of change /ot of the momentum of the
fluid, and the rate of flow of momentum outwards across the boundary of S.
This is the generalised form of the momentum theorem. It may also be
regarded as a generalisation of the theorem known as the principle of Archi-
medes, to which it reduces when the fluid is at rest.

3-43. Conservative forces. For conservative forces derivable from a
potential 2 we write F = — . Also if the pressure is a function of the density
so that fdp/p exists, we have, from 2-31 (5),

1 dp jdp I dp

~@drV)p=-*-=d|+=(@r —=

P( )p o . @rv) o
and therefore, since dr is arbitrary,

1 dp
1 - = <.
1) p Vp=V J. p
The equation of motion 3-41 (1) then assumes the form
dq _ dp
@) P i -V(j;—%ﬁ).

which shows that the acceleration is derivable from the acceleration potential
fdplp+2.
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Further, observing that the vorticity is § = V , q, equation 3-41 (2) can be
written in the form
aq _(dp 2
® 3-qut=-Vr x= [Zea+iy
which puts the vorticity in evidence.
Again 3-41 (1) can be written

0
P ;,%+P(q Viq= -Vp-pV8Q
while the equation of continuity 3-20 (4) gives

)
a5 +qV(pq) =0
By addition, using 2-34 (X)), we get
@) 269, Vlpq; q+Ipl+p v 2=0,

where I is the idemfactor.
In cartesian coordinates, the equation (2) is equivalent to the following
system of three equations :
ow ou ou ou 02 1dp
) %y % T % pa
Xl g, 92 10
ot dv Oy 0z dy poy
ow, v ow v 0@ 1
ot or  dy 0z 0z p oz
If€ = ié+jn+k{, so that £, v, { are the components of vorticity, equation
(3) yields the following set : l

u 0 1ap
(6) 5 ten- 'vl+ax(%9 = "% 5

a N 2 1p

% +uf - w§+ (&q)———@—;@,

ow a W 22 1dp

at‘H’f unt o (M)——‘é;";'a;’

where ¢ = ul+oP 4wl

g o _u wo v B
dy % 1T % & T oy

The reader should verify that the equations (5) and (6) are equivalent,
The above results once more illustrate how effectively the vector notation
condenses and illuminates the analysis.
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Beltrams flows arise when q , § = 0 ; the corresponding equation of motion is
(3) in the form

M M _vx x= jd—f+9+%q’-

If the vorticity is different from zero, the condition q ,§ = 0 states that
vortex lines and streamlines coincide.

If §=0 we have the important case of ¢rrotational motion which is also a
Beltrami flow and obeys equation (7).

In the case of a homogeneous liquid [dp/p is replaced in the above equations
by p/p.

All the foregoing are known as Eulerian or statistical forms of the equation of
motion. Inthem attention is directed to a particular point r of space. As time
¢ elapses this point is occupied by a succession of fluid particles; r and ¢ are
independent variables.

3-44. Lagrangian form of the equation of motion. From the La-
grangian or historical point of view instead of fixing attention on a particular
point of space we fix attention on a particular fluid particle and follow its pro-
gress. The independent variables are r,, the initial position vector of the
particle, and ¢ the time. If the particle occupies the position r at time ¢, we have
r=r(r,,t) so that the acceleration of the particle is 32r/dt?, a partial derivative,
and therefore from 3-41 (1) the equation of motion is

Pr_g lop_pg 13ir Op
a2~ " par p or ar,
using 271 (8). Multiply in front by @ ; r/@r,. Then from 2-71 (9) we have
o;r (0% lop _
“) (Pt om0

and this is the Lagrangian form of the equation of motion, all differentiations
being with respect to the independent variables r, , t.

If F= -V, integration from 0 to ¢ gives Weber’s transformation, namely

a r dx J’ ¢ { I dp }
2 5=, X = —+ Q=32 dt.
( ) q qO aro X 0 P }q
The equation of continuity follows from 3-20 (1) in the form
3) pdr = pydr,

where suffix zero refers to the particle in its initial position, expressing the fact
that the mass of the particle remains unaltered as it moves.
In cartesian coordinates we have dr=dz dy dz, dr,=dz, dy, dz, and

o(z, y, 2)
4 dzdydz = J deydy, dzy, J = —222
( ) ?/ 0 !/o zo a(zo’ !/o, zo)
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J being the Jacobian of the coordinates (z, y, ) of r with respect to the coordi-
nates (z, , Yo , %) Of ¥y . In this notation the equation of continuity becomes

(6) P = po-

A surface F(r, t)= 0 always consists of the same fluid particles if, and only
if, dF/dt= 0. For this condition means that F(r, ¢) is independent of ¢ and so
when expressed in Lagrangian coordinates has the form f(ry)= 0. This
occurs, in particular, in the case of the free surface of a liquid in continuous
motion.

It is not essential that ry should be the initial position vector. Any vector
variable which serves to identify a particle and which varies continuously from
one particle to another may be used ; see for example 14-80.

3:45. Steady motion. When the motion is steady, dq/dt = 0, and we
then get, from 3-43 (3),

(1) qAt=Vx , x=j§§+%qz+9-

From the meaning of V applied to a scalar, this shows that the vector
q A § is normal to the surfaces

(2) I(—lf+§q2+!2 =,

where ¢ is a constant. Since q , § is perpendicular to q and to T, it follows that
any particular surface of the system (2) contains both streamlines and vortex
lines. Along every such strcamline or vortex line the left-hand member of
(2) has the same constant value. This is the general form of Bernoulli’s
equation for a fluid. For a liquid [dp/p in (1) and (2) is replaced by p/p.

The existence of the surfaces (2) is a necessary condition for steady motion
to be possible.

When the motion is both steady and irrotational (§ = 0), equation (1)
shows that the constant in (2) is the same throughout the fluid.

3-50. The energy equation. When the forces are conservative, the
equation of motion, 3-41 (1), after scalar multiplication by pq, gives

d
tp 7 (1) =-qVp-pq VL
Since 952/dt = 0, we have, from 310 (9),

a
7 =9Ve

and therefore p(% [3¢¢+2]= -qVp.
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Multiply by the volume element dr and observe that, by the equation of
continuity (3-20 (1)),
d
(_i_t (P d‘l') = 0.
We then get, on integrating throughout the volume of the fluid,
d
lraerm = -[avpa

Now, if T = I%pqzd-r, V= jp.Q dr, J= jpEdr,

are the kinetic, potential and internal (1-6) energies respectively, we get, using
2:34 (VI),

%(T+ V)= —JV(pq)dﬂ-ij qdr

= qun dS+Iqud1,

by Gauss’s theorem, the surface integral being taken over the bounding surface,
and n being the unit inward normal.

Now the last integral is —dJ/dt, see Ex. III, 31, and therefore
d

d—t(T+V+J) = qundS,

which expresses that the rate of change of total energy of any portion of the

fluid as it moves about is equal to the rate of working of the pressures on the
bgdndary.

3-51 Rate of change of circulation. Let C' be a closed circuit which
moves with the fluid, i.e. a circuit which always consists of the same fluid
particles. Let a be the acceleration of a fluid particle and B its curl :

(1) -a=dq/dt, B=V,a.

Then for the rate of change of circulation in (' as it moves we have

d . dj j’ dq I (dr) j
2 —circ C=— dr=\| =dr+ adl5-) = adr,
@ de &) ) © @ o1 \a ©
for q d(dr/dt)= q dq and therefore its integral round C' vanishes.
Also by Stokes’ theorem

(3) j adr:j n(V,a)ds
(© &)
over any diaphragm S which closes C. Therefore
@) -"fcirc0=j n B dS.
di ®

¥ M.T.H.
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Now the vector field B is solenoidal (2-24 footnote), for by 2-32 (II)
®) VB=V(VAa)=0,

and therefore we can define unit B-tubes (2:615). Therefore from (4)

(6) d%circ o=V,

where N is the number of unit B-tubes which thread the circuit C. This result
holds for viscous and compressible as well as for inviscid or incompressible
flows.

For an inviscid fluid under conservative forces we have

1
a=-_Vp-VE
and therefore

G B=vp.V():

If we call 1/p the bulkiness of the fluid, Vp and V¥ (1/p) are normals respec-
tively to the curves of constant pressure and constant bulkiness, so that the
vector B is tangential to the curve of intersection of these surfaces. The
direction of B determines the sense of the circulation in C.

As an example ; at given temperature and pressure water with greater salt
content has higher density and therefore smaller bulkiness. Suppose in an
ocean that the salinity decreases in a certain direction. Then the bulkiness
increases in the same direction, and the pressure increases downwards. The
result is that circulation is set up along the bottom in the sense of decreasing
salinity and along the surface in the sense of increasing salinity. This explains
the surface currents into the more saline Mediterranean from the Black Sea
through the Bosporus and from the Atlantic through the Strait of Gibraltar.

From (6) it appears that the necessary and sufficient condition for con-
stancy of the circulation in a circuit which moves with the fluid is V , a=0 or
B=0.

A fundamental application of this result is Lord Kelvin’s theorem concern-
ing the constancy of circulation in a circuit moving with the fluid in an inviscid
Sluid in which the density is either constant or is a function of the pressure (baro-
tropic flow).

Proof. If p is a constant VV (1/p)= 0 and therefore B = 0, from (7).

If p is a function of p, V (1/p) and V p are parallel vectors and therefore
from (7), B=0. In either case d circ C/dt= 0 so that circ C is independent of
time. Q.E.D

3:52. Vortex motion. If  is the vorticity vector, we have
C = VA q,
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and therefore, from 2-32 (II),
vg=0,

so that the divergence of the vorticity is everywhere zero; vorticity is sole-
noidal.

Vortex lines have been defined already (2-41). If through every point of
a closed curve we draw the vortex line, we obtain a vortez tube.

A vortex filament is a vortex tube whose cross-sectional area is of infini-
tesimal dimensions. By Gauss’s theorem, applied to the volume enclosed
between two cross-sections of areas doy and do, of a vortex filament, we get

an as = —jVCd-r =0,
and since n¥ = 0 on the walls of the filament,
Cinydoy+ 8 ngdoy = 0,
where €, , §, are the vorticities at the ends of the filament. Thus
{1doy = {pdoy,

which expresses that the magnitude of the vorticity multiplied by the cross-
sectional area is constant along the filament.*

It therefore follows that a vortex filament cannot terminate at a point
within the fluid. Vortex filaments must therefore be either closed (vortex
rings) or terminate at the boundaries.

The analogy of the foregoing with the corresponding property of stream
filaments in a liquid may be noted, for in the case of a liquid ¥V q =0, so
that q like € is solenoidal.

3-53. Permanence of vorticity. If ais the acceleration, we have
dq @ .
a==F-a. Vg
Taking the curl and using 2-32 (I1I) and 2-34 (II) we have
0
Via= 2 CVa+ @V a-av Y.

Now from 362 V§ =0, and from 320 (5) pV q = —dp/dt. Thus using
3-10 (9) we find that

Via=R-cv fj’; or
d
W) 7()-lava+iv,a

This purely kinematical relation gives the rate of change of /p.

* This result follows directly from the property of solenoidal vectors (2:615).
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If the forces are conservative and the pressure is a function of the density, taking
the curl of 3-43 (2) shows that ¥V , a=0, and in this case (1) becomes

45)- ()]s

an equation due to Helmholtz.
To solve this equation we use the notation 3/dr for Y, and so, from 2-71 (8),

o a5 (55 ) G

where r, is the position vector of the particle at time ¢, as in fig. 3-10.
Differentiating 2-71 (9) with respect to ¢ we get

d(9;r, a;r\ d;r, 9;q
@ i) Gor) %o or, =
since dr/dt=q. Thus (3) can be written
d 8\ Cdfa;ry\ a;r
i) 5a (o) n =0
Multiply on the right by 9 ; ro/or and use 2-71 (9) again. Then we get
d (8 a;r, _
®) ilo %) =0
and therefore
(6) 5 . ?—’L’ = constant = -C~° ,
p or Po

where §, and p, are the values of § and p at time ¢, .
Multiply on the right by @ ; r/or, and use 2-71 (9) once more. Then

(N S = ;_0 . ai_r .
P po Org

From (6) we see that if §, = 0, then £ = 0 so that motion once irrotational
remains so. Therefore a particle which has vorticity at any time continues to
have vorticity. Thus rotational motion is permanent and so is irrotational
motion.

Notice that this conclusion depends on the assumptions which led to equation
(2); inviscid fluid, conservative forces, pressure a function of the density.

3-54. Permanence of vortex lines. When inviscid fluid moves under
conservative forces and the pressure is a function of the density a vortex line
consists always of the same fluid particles and therefore moves with the fluid.

Proof. Let a line of particles be specified by a Lagrangian parameter « so that
at time ¢ the position vector of a particleis r = r(«, ¢). Then at timetthe tangent
to the line is in the direction of the vector dr/da.
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By the definition of a vortex line the vorticity vector is tangent to the line
and so if §, is the vorticity at time ¢, , we have
or or
(1) 5j’A§o=0 or Coz/\oa“;:
where A, is a scalar, and these statements are equivalent. From 3-53 (7) we have

at time ¢
;zﬁ,\ogﬁ’. aa_’,'_' _ Py z,\a_f,
Po O re po Ox Oot
so that the same particle « is still on the vortex line. Q.E.D.
Such a line moves about with the fluid like a material substance. More-
over the line cannot disappear, for we have proved that rotational motion is
permanent.
It follows that when in an actual fluid a vortex line does disappear, the
internal friction must be the cause.

3-55. Relative motion. Velocity is a concept relative to a frame of
reference which the observer sets up as his standard of “ fixity . Thus the
velocity of a terrestrial body
is usually measured with re- 2’
spect to a frame of reference
fixed to the globe of the
earth. r

Now consider two car-
tesian frames of reference
Owyz or F, and O'z'y’2’ or (74
F'. Each frame may be
imagined as identified by a
set of wires rigidly connected
and moving with the frame. x
Suppose that at time ¢ the
frames are coitncident and that
F’ is moving relatively to # with a motion described by an observer in F
as a velocity U of O’ and an angular velocity w. Then the position vector
r of a particular fluid particle P at time ¢ is the same for both frames.*

Let q, q' be the velocities of the fluid particle P at time ¢ as estimated by
observers in F and F’ respectively. Then q=q'+U+w,r, and therefore,
for the vorticity,

E=VaAq=VAq +Vrlw,r)
=8+ (VrN-(wV)r=%+3w-w ={+2w,

. *Fig. 3-65 shows the relative positions of the frames at time ¢ + 3¢, when they are no longer
coincident. The fluid particle which was at P at time ¢ is at P’ at time ¢ + 8¢.

xl
F1a. 3-55.
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so that, like velocity, vorticity is a concept relative to the frame of reference.
If § = 0 in the frame F, the observer in that frame says that the motion is
irrotational, and therefore also says that there is a velocity potential ¢ such
that @ = -V ¢, while the observer in the frame F’ says that the motion is
rotational with vorticity — 2w.

Similarly, circulation is a concept relative to the frame of reference, for if
I is the circulation in a closed circuit C' as measured by an observer in F and
if I'" is the circulation in the same circuit as measured by an observer in F",
then

I'=TI"+2w8,

where S is the area enclosed by the projection of C on a plane perpendicular
to w.

Proof. I'-T" = j qdr—J q'dr = j (VU+w,r)dr = wj (r dr).
© © © ©

Take w == wk. Then

wj rAdr::wJ. (zdy—ydr) = 2wS. Q.E.D.
© ©

These considerations are of importance in the hydrodynamics of meteor-
ology on the rotating earth.

3-60. Irrotational motion. Pressure equation. When the pressure
is a function of the density, p = f(p), the equation of irrotational motion* under
conservative forces is, 3:43 (7),

aa_? = —V(S%%quﬂ)-

Since q = -V ¢ in irrotational motion, this gives
dp 10 a¢) -
and therefore
dp . , o
) [Z+ip+0-2 - co,

where C(t) denotes an instantaneous constant, that is to say, a function of ¢
only, which therefore at a given instant has the same value throughout the
liquid. This is the pressure equation. The function C(t) may be replaced by an
absolute constant by adding a suitable function of ¢ to ¢. The addition of such

* “ With motton irrotational, in fluid incompressible,
A tiny hittle minnow swims along a line of flow,
And the greater its velocity—well cutting out verbosity—
The greater its velocity, the faster it will go.”
Eureka, Cambridge.
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a function to ¢ does not affect the relation q = —V¢. When the motion is
steady, d¢/0t=0, and we recover Bernoulli’s equation, but with the same value
of ¢ throughout the fluid at all times.

The pressure equation is of paramount importance, for once we know the
velocity potential ¢, the velocity is determined by q = -~ V ¢, and the pressure
is then found from the pressure equation and the relation p = f(p).

Note that ¢/t is calculated by varying ¢ only and therefore refers to a
point fixed in space.

When the fluid is incompressible the pressure equation is

P02
;+1}q +-Q—5 =C(t).

It follows that in principle the solution of any problem of irrotational
motion of a liquid is reduced to finding the velocity potential ¢ which satisfies
Laplace’s equation {2 ¢ = 0 and the other conditions of the problem. The cal-
culation of fluid thrust on a surface is then reduced to an integration.

3:61. The pressure equation referred to moving axes. Consider as
in 3-565 a moving rigid frame of reference #' whose motion referred to the
instantaneous position ¥ of the frame,* with O as base-point, is described by
the linear velocity U and the angular velocity w. The point P, whose
position vector referred to O is r, if rigidly attached to the frame F', has
the velocity V = U+w,r. Thus if P is fixed in F instead of in the frame
F', it will appear to an observer in the frame F’ to move with velocity — V.
If the motion is irrotational when referred to the frame F, there exists a
velocity potential ¢ such that q = -V ¢, and the rate of change of ¢ at a
point fixed in F is now measured (cf. 3-10) by an observer in ¥ as

0
(G-vv)e
Hence the pressure equation for a liquid becomes
7;’+;q2+9~%'f+vv¢ = C(t).

Let q, be the velocity of the fluid relative to the moving frame. Then
q.=q-V=-V¢-V.
Thus 1¢°+V(V¢) = 1(q-V)'-3V?
and therefore the pressure equation with respect to the moving frame can be
written

Z.) 2 __??_ 2 __ (!
DrhgA Q- -1V = 0,

* This instantaneous position F is taken as the standard of fixity referred to in 3 55.
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where ¢, is the magnitude of the fluid velocity at P relative to the moving
frame, and V is the speed of the same point regarded as fixed to the moving
frame.

3:62. The thrust on an obstacle. Consider the steady irrotational
motion of a homogeneous liquid in the presence of a fixed obstacle S. Let
F be the thrust on the obstacle due to the hydrodynamical pressure. Then if
n is a unit outward normal to the element dS of the surface of the obstacle,

F= -I pnds.
(S)

Now, from the pressure equation, since the motion is steady,
p = constant — § pg?,

and a constant pressure produces no resultant action on a closed surface.
Therefore

F = :}pI ng*ds.
(8)

Now nq is the component of the
velocity of the fluid normal to the
boundary, and therefore nq = 0 at
points on the boundary. Therefore
we can write

(1) F= %pj(s) [n¢*-2q(nq)ldS,

the surface integral being taken over the surface of the obstacle. Let S’ be a
closed surface entirely surrounding the obstacle, and let n’ be a unit normal
(drawn outwards from the region between S and S’) to the element dS'.

Then, if we integrate over the surface S+ .8, we get from Gauss’s theorem
2-61, (3), (7),

J o, (0 -2amais = [ (Ve-2q(7 @2 Vair
($+8") V)

= [(V) [2qA (V A q) - 2q (V Q)]d‘r, from 2-34 (IV)

Since the motion is irrotational, V , @ = 0, and if the region (V) between
S and §’ encloses no points at which fluid is created or destroyed, V q = 0

from the equation of continuity, and therefore the volume integral vanishes.
It follows that

| me-2amanas = [ o @-2qm anas:.
(S) S
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Thus in (1) we can replace S by any enclosing surface, provided we cross
no singularities in the fluid, i.e. by any reconcilable surface (see 3:70).
In the same way we prove that the moment about the origin is

@) L= %pjm r A[ng2-2q(nq)]ds,

where S’ is any surface reconcilable with S without crossing any singularities
in the fluid.

3-64. Impulsive motion. Let us suppose that a fluid in motion is
subjected to external impulses and to impulsive pressure.

If q, is the velocity generated in the element which was previously moving
with velocity q, | the external impulse per unit mass, and w the impulsive
pressure, by equating the impulse to the change of momentum of the fluid within
a closed surface S, we get, as in 3-41,

jwndS+J|pdr=Ip(q1—q)dT.

Using Gauss’s theorem this gives

[1p-vo-sa-anar=o.

Since the volume of integration is arbitrary we have a2~ 3 &Q
1 -
I~ Vo=q-q v’

e
This is the general equation of impulsive motion.
This equation provides a physical interpretation of the velocity potential
as follows.
The external impulses being absent, let ¢ be the velocity potential of a
motion generated from rest by impulsive pressure w. Then in the above
equation | = 0, q = 0, q; = -V ¢, and therefore

Va=pV¢
which in the case of a homogeneous liquid gives
@ = p¢+ constant.
The constant can be ignored, for a pressure constant throughout the fluid
produces no effect on the motion, and we see that p¢ is the impulsive pressure

which would instantaneously generate from rest the motion which actually
exists (cf. Ex. III, 32).
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Conversely, a motion generated from rest by impulsive pressure only is
necessarily irrotational, the velocity potential being w/p. This must neces-
sarily be the case when a motion is, for example, started from rest by sudden
motion of the boundaries. The argument is true also for a viscous fluid as
regards the ¢nittal motion (see Plates 1, 2, fig. 1), but vortex sheets (13-70)
may form even in an inviscid fluid due to the bringing together of layers of
fluid which were previously separated and are moving with different velocities.
The presence of even slight viscosity may cause these sheets to roll up and
form concentrated vortices (see Plates 1, 2, 3, 4).

3-70. Connectivity. Definition. A region of space is said to be connected
if we can pass from any point of the region to any other point by moving
along a path every point of which lies in the given region.

Thus the region interior to a sphere, fig. 3-70 (i), or the region between two
coaxial infinitely long cylinders, fig. 370 (ii), are connected.

Definition. A closed circuit, all of whose points lie in the given region,
is said to be reducible, if it can be contracted to a point of the region without
ever passing out of the region.

The circuit PRQS in figs. (i), (i) is reducible; the circuit P'R'Q'S’ in
fig. (ii) is srreducible, for it cannot be made smaller than the circumference of
the inner cylinder.

Fia. 3-70 (i). Fia. 3-70 (ii).

Definition. A region in which every circuit is reducible is said to be simply
connecled.

Examples of simply connected regions are : the region interior to a sphere ;
the region exterior to a sphere ; the region exterior to any number of spheres ;
the region between two concentric spheres ; unbounded space.

The region between the concentric cylinders in fig. (ii) is certainly not
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simply connected, for it contains irreducible circuits. We can, however, make
this region simply connected by inserting one barrier or boundary which may
not be crossed, such as the plane 4 B containing
a generating line of each cylinder, fig. (iii).
When this barrier is inserted every circuit
in the modified region is reducible and the
modified region is therefore simply connected.
We also note that the insertion of an
additional barrier between the inner and outer
cylinders would break the region up into two
parts which, although individually connected
regions, would not form a connected region . %
in their totality. Fio. 370 (iii).
We thus arrive at the following definition.

Definition. A region is said to be doubly connected, if it can be made simply
connected by the insertion of one barrier. A region is said to be n-ply connected,
if it can be made simply connected by the insertion of n —1 barriers.

Examples of doubly connected regions are: the region between coaxial
infinitely long cylinders; the region interior to an anchor ring; the region
exterior to an anchor ring ; the region exterior to an infinitely long cylinder.

Another useful idea is contained in the following definition.

Definition. The paths joining two points P and @ of a region are said to
be reconcilable, if either can be continuously deformed into the other without
ever passing out of the region.

Thus in figs. (i), (ii) the paths PRQ, PSQ are reconcilable. In fig. (1i) the
paths P'R'Q’, P'S'Q’ are irreconcilable.

Two reconcilable paths taken together clearly constitute a reducible circuit.

Definition. Two closed circuits are said to be reconcilable, if either can be
continuously deformed into the other without ever passing out of the region.

Reconcilable circuits are not necessarily reducible.

The term reconcilable can also be conveniently applied to surfaces (cf. 3-62).
Thus the diaphragms referred to in the verbal enunciation of Stokes’ theorem
251 (1) must all be reconcilable without passing out of the fluid.

The above properties of regions are termed topological rather than geo-
metrical, for they do not essentially depend on the particular shapes of the
boundaries mentioned. For example, the cross-sections of the cylinders could
be ellipses or any other simple closed curves.

3.71. Acyclic and cyclic irrotational motion. When the region
occupied by fluid moving irrotationally is simply connected, the velocity
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potential is one-valued, for the velocity potential at P is defined by (see 2-52)

(1) $p = —j qdr,
(04P)

and this integral is the same for all paths from O to P, for all such paths are
reconcilable. Motion in which the velocity potential is one-valued is called
acyclic. Thus in a simply connected region the only possible irrotational motion
18 acyclic. This result depends essentially on the possibility of joining any
two paths from O to P by a surface lying entirely within the fluid and then
applying Stokes’ theorem (sec 2-52).

When the region is not simply connected, two paths from O to P can be
joined by a surface lying entirely within the fluid only when certain topo-
logical conditions are satisfied. When they are not, the inference from Stokes’
theorem cannot be made, and the velocity potential may then have more than
one value at P, according to the path taken from O to P.

When the velocity potential is not one-valued the motion is said to be
cyclic.

In the continuous motion of a fluid the velocity at any point must be
perfectly definite. Thus, even when ¢ has more than one value at a given
point, V¢ must be one-valued. It follows that although two paths from
O to P may lead to different values of ¢p, these values can differ only by a
scalar «, such that ¥ « = 0, and « is therefore independent of the coordinates
of P. This scalar « may be identified with the circulation in any one of a family
of reconcilable irreducible circuits, for, if C be any circuit, (1) shows that

(2) circ C = decrease in ¢ on describing the circuit once.

We shall have occasion later to consider particular types of cyclic motion.
For the present we shall consider only acyclic irrotational motion, and the
general theorems which follow must be considered as applying to that type of
motion only. In that sense the regions concerned may always be considered
as simply connected, but it should be remembered that acyclic motion is also
possible in multiply connected regions.

3:72. Kinetic energy of liquid. The kinetic energy is given by
T= }j pgtdr,
14}

taken throughout the volume V occupied by the fluid.
When the motion is irrotational,

q= ‘V‘#’
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and therefore by Green’s theorem, if ¢ is single valued, and since 2 ¢ = 0,

T=tp| VHVHE= 1] s3Ees,

taken over the bounding surface of the liquid, dn denoting an element of
normal drawn into the liquid.

This result has a simple physical interpretation. Since the actual motion
could be started from rest by the application of an impulsive pressure pg,
and since —0¢/on is the velocity of the liquid normal to the boundary,
pp 8S x — % 9¢/on 1s the work done by the impulsive pressure on the element
88 in accordance with the following dynamical theorem.

The work done by an impulse is equal to the product of the impulse into
half the sum of the components in the direction of the impulse of the initial
and final velocities of the point at which it is applied.

The surface integral therefore represents the work done by the impulsive
pressure in starting the motion from rest.

3-73. Kelvin’s minimum energy theorem. The irrotational motion
of a liquid occupying a simply connected region has less kinetic energy than
any other motion consistent with the same normal velocity of the boundary.

Proof. Let T be the kinetic energy of the irrotational motion, ¢ the
velocity potential, and 7', the kinetic energy of any other motion given by

q=-Vé+q,, Vqo =0, nq,= 0 at the boundary,

the second condition being the equation of continuity. Then
1, = [1p(-V gt aurdr = 74705 [ (Vo auin
where Ty = jgpqozdr.
Now, from 2:34 (VI),
V($ 90 = (V) +6(V Qo) = qu(V ¢)-

Therefore j(V $)qQodr = —I néq,dsS = 0,

by Gauss’s theorem, and since nq, = 0.

Therefore T,=T+T7T,

Since T, is positive, it follows that T'< T',. Q.E.D.
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3-74. Mean value of the velocity potential. We shall prove the
following theorem due to Gauss.

The mean value of ¢ over any spherical surface, throughout whose interior
Vié = 0, is equal to the value of ¢ at the centre of the sphere.

Proof. Describe a sphere S of radius 7 about . Then from 2-63 (2)

1 o1 1 a¢
But the second integral vanishes by 2-62 (5). Therefore

¢P 4W2I(5)¢ ds. Q.E.D.

Corollary. ¢ cannot be a mazimum or minimum in the interior of any region
throughout which {*¢ = 0.

For if ¢p were, say, a maximum, it would be greater than the value of
¢ at all points of a sufficiently small sphere, centre P, which contradicts the
theorem just proved.

We can now prove the following theorem.

In vrrotational motion the maximum values of the speed must occur on the
boundary.

Proof. Take a point P interior to the fluid as origin, and take the axis of
z in the direction of motion at P. Then if ¢p, qq are the speeds at P and @
(a point near to P),

e 1= () (e (B,

R ' = e

7w = <61: p, qq + ay Q+ 0z

Now, aLi satisfies Laplace’s equation * and therefore cannot be a maximum

or minimum at P. Therefore there are points such as  in the immediate

2
neighbourhood of P at which ( ¢> > (%)P , and therefore gq% > ¢p2

6:5 Q 8
Thus ¢qp cannot be a maximum in the interior of the fluid, and its maximum
values, if any, must therefore occur on the boundary. Q.E.D.

It should be noted that ¢ may be a minimum in the interior of the fluid,
for it is zero at a stagnation point.

From the above results we can deduce the following theorem.

In steady irrotational motion the hydrodynamical pressure has its minimum
values on the boundary.

Proof. By Bernoulli’s theorem,
%+§q2 = constant.

'v'?—¢~—v¢—0
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Thus p is least where ¢? is greatest, and this cannot occur inside the fluid.
Thus the minimum values of p must occur on the boundary. The maximum
values of p occur at the stagnation points. Q.E.D.

3-75. Mean value of the velocity potential in a periphractic region.
A region is said to be periphractic * when it is bounded internally by one or
more closed surfaces. For example, the region occupied by fluid in which a
solid sphere is totally immersed is of this nature.

Consider liquid at rest at infinity bounded internally by a closed surface
S and unbounded externally. With centre P, describe a sphere Z, of radius R,
large enough to enclose S. If the liquid is in irrotational motion, Gauss’s
theorem applied to the periphractic region between S and X' gives

j a—"‘ds+j % 45 = —jv2¢df ~o0.

(S) on (=) on

Fia. 3.75.

Therefore, since dn = —dR on X,
0 5[ 9 ,6_
w I

where F is the flux into the region considered across the internal boundary S.
Now, d2 = R*dw, where dw is the solid angle subtended at P by dZ.
Therefore the above result can be written

0 F
R [ pdo = -5
But if M (¢) is the mean value of ¢ over the sphere Z,

M) = g [ $02 = 1= [ ¢ do

* Greek, mepippaxros = * fenced about ™.
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and therefore
M@g) __F _F
@ ok - e M@ = gptl

where C is independent of E. To show that C is also independent of the
position of the centre of the sphere X, let us displace the centre through a
distance 3z, keeping R constant. Then

oY _ 1%,

ox ox 4 ) oz

Since by hypothesis 9¢/0x->0 at infinity, by making R large enough we
can make 0¢/0x as small as we please, so that 8C/dz = 0. Thus C is unaltered
when the centre of the sphere X' is displaced, provided that S is always
within the sphere.

In the important case when S is the surface of a solid body, there is no
flow across it, so that F = 0, and therefore the mean value of ¢ over any
sphere enclosing the solid is constant and equal to C.

We now prove that ¢p—>C when P—>co. In fact, applying 263 to the
region between S and 2, we get

iwtn=[ 5 ()25 a8

[alsm () -3

Now, the latter integral is equal to

i[ ¢d2+1I 9 45 — anC,

R?) 5 Rj OR
from (1) and (2). Therefore
1y _137,
@) tntpe-0) = | [ ()12

If we now let r—o0, both 1/ and its differential coefficient tend to zero,
and therefore when P> oo ,

ép—>C.

3:76. Kinetic energy of infinite liquid. Taking liquid moving irrota-
tionally, at rest at infinity, and bounded internally by a solid S, we shall
suppose that the velocity potential ¢ is single valued. Applying the method
of 3-72 to the region between the solid S and a large surface X, completely
enclosing S, we get for the kinetic ener5y of the liquid occupying this region
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Since there is no flow into the region across S, the equation of continuity
takes the form (cf. 3-20 (2))
op j‘ o
1 das + aXr =0,
M ,‘. (s) on (z)a
and therefore

2= -tp|_6-0gbas-to| @-0%az,

where C is any constant. It follows from (1) that [o$/0n dZ'is independent of 2
and is in fact zero since for a solid boundary [d¢/dn dS=0. If therefore we take
C to be the value to which ¢ tends at infinity (3-75) and then enlarge the surface
2 indefinitely in all directions, the second integral vanishes and we get the
kinetic energy.

7 -tp| -0 Fas—-ip| 43as

3-77. Uniqueness theorems. We shall now prove some related
theorems concerning acyclic irrotational motion of a liquid. The proofs are
all based on the following equivalence of the expressions for the kinetic energy,

0
) o[ ear = -1p ]9 Sas

where the volume integral is taken throughout the fluid and the surface integral
is taken over the boundary.

(I) Aeyclic rrotational motion ©s tmpossible tn a liguid bounded entirely by
fized rigid walls.
For gg = 0 at every point of the boundary, and therefore qudf =0.

Since ¢2 cannot be negative, ¢ = 0 everywhere and the liquid is at rest.

(IT) The acyclic vrrotational motion of a liquid bounded by rigid walls will
instantly cease if the boundaries are brought to rest.
This is an immediate corollary to (I).

(IIX) There cannot be two different forms of acyclic irrotational motion of a
confined mass of liquid in which the boundaries have prescribed velocities.

For, if possible, let ¢, , ¢, be the velocity potentials of two different motions
subject to the condition d¢,/0n = 0¢,/0n at each point of the boundary.

Then ¢ = ¢, —¢, is a solution of Laplace’s equation and therefore repre-
sents a possible irrotational motion in which

2 _ oy _ oy _,
an~ on  on
G M.T.H,
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Therefore, as in (I), ¢ = 0 at every point, and therefore ¢, — ¢, = constant,
50 that the motions are essentially the same.

This theorem shows that acyclic motion is uniquely determined when the
boundary velocities are given.

(IV) If given vmpulsive pressures are applied to the boundaries of a confined
mass of liquid at rest, the resulting motion, if acyclic and irrotational, is uniquely
determinate.

If possible, let ¢, and ¢, be velocity potentials of two different motions.
The impulsive pressure which would start the first motion is pg, , that which
would start the second is pg,, and since the pressures are given at the boun-

daries
phL = pd,
at each point of the boundary.

Therefore ¢ = ¢, —¢, is the velocity potential of a possible irrotational
motion such that ¢ = 0 at each point of the boundary. Therefore, from (1),
g = 0 at each point of the liquid. If follows that ¢, — ¢, is constant and the
motions are essentially the same.

(V) Acyclic irrotational motion is impossible in a liquid which i< at rest at
tnfinity and vs bounded internally by fived rigid walls.

Since the liquid is at rest at infinity and there is no flow over the internal
boundaries, the kinetic encrgy is still given by (1) (see 3-76) and the proof is
therefore the same as in (I).

(VI) The acyclic irrotational motion of a liguid at rest at infinity and bounded
wnternally by rigid walls will instantly cease if the boundaries are brought to rest.
This is an immediate corollary to (V).

(VII) The acyclic vrrotational motion of a liquid, at rest at infinity, due to the
prescribed motion of an immersed solid, is uniquely determined by the motion of
the solid.

If possible, let ¢, , ¢, be the velocity potentials of two different motions.
The boundary conditions are

%% = %%3 at the surface of the solid, ¢, = ¢; = 0 at infinity.

Thus ¢ = ¢, — ¢, is the velocity potential of a possible motion, such that
0¢/on = 0 at the surface of the solid, ¢ = 0 at infinity. It then follows from
(1) that ¢ = O everywhere, so that ¢, - ¢, = constant, and the motions are
essentially the same.

(VIII) If the liquid is in motion at infinity with uniform velocity, the acyclic
vrrotational motion, due to the prescribed motion of an vmmersed solid, 1s uniquely
determined by the motion of the solid.
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For the relative kinematical conditions are unaltered if we superpose on the
whole system of solid and liquid a velocity equal in magnitude and opposite in
direction to the velocity at infinity. This brings the liquid to rest at infinity.
The resulting motion is then determinate by (VII) and we return to the given
motion by reimposing the velocity at infinity.

EXAMPLES III
+ 1. Establish the equation of continuity for an incompressible fluid in the form

du Lo ov + dw _ 0
or oy o0z
_ 2xyz (@ -y)2 oy
Show that U= - (x2+y2)2 y U= (x2+y2)2 , W= 3—92_;_?/—2
are the velocity-components of a possible fluid motion. Is this motion irrotational?

(R.N.C.)

2. If the fluid moves radially and the velocity « is a function of 7, t only, where
r is the distance from a fixed point, prove that the equation of continuity is

%, .,% 2) =
al -»—+~~a~(r u) 0

3. If every particle of fluid moves on the surface of a sphere, prove that the
equation of continuity is

6
cos 0 66 (pq, cos 0) + 5— a (pq.cos6) = 0,
where 0, w are the latitude and longitude, and ¢, q,, the angular velocities in latitude
and longitude respectively.

4, If w is the area of the cross-section of a stream filament, prove that the
equation of continuity is

9 ?

5z (P0) + 57 (pwg) = 0,
where ds is an element of arc of the filament in the direction of flow and ¢ is the
speed.

« &, If F(r,t) = 01is a surface which always consists of the same fluid particles,
show that, after an infinitesimal time 8¢, F(r+q &, t+58t) = 0, and deduce that

oF
—a?+(q V)F

8. Explain the method of differentiation following the fluid, and find the
condition that the surface F(z, y, z, t) = O may be a boundary surface.
Prove that the variable ellipsoid

s v 2
pyr (BE’“ZZ) =1
is a possible form of boundary surface of a liquid at time ¢.

7. A quantity of liquid occupies a length 21 of a straight tube of uniform
small bore, under the action of a force towards a fixed point in the tube varying
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as the distance from the fixed point. Determine the pressure at a distance z from
the fixed point when the nearer free surface is at a distance z.

8. For cylindrical coordinates (2-72), prove that the acceleration is

dq _ . (49a ¢ 1d d'q,
@ " "( at m)+' o & (%) +iz g%
where d'[dt = 0/0t + q4,0/0w +w1q,0/0w + ¢,0/0x.

9. Prove that the three equations of motion expressed in cylindrical co-
ordinates are, (see Ex. 8),

lop dg, 1dp dqq q.2 1dp d
ra T d T A w PP e @ @

10. If liquid rotates like a rigid body with constant angular speed w about
a vertical (z) ax1s and gravity is the only external force, prove that the pressure is
given by

2. 3 w?r? - gz + constant,
P

where r is the distance from the axis. Show that the surfaces of equal pressure
are paraboloids with the same latus rectum.

11. If liquid contained within a closed circular cylinder rotates about the axis
of the cylinder, prove that the equation of continuity and the boundary con-
ditions are satisfied by @ = w , r, where w is the angular velocity supposed depen-
dent on the time only and r is the position vector measured from a point on the
axis of rotation.

12, If the liquid in Ex. 11 starts from rest under the external forces whose
components are az + By, &+ 8y, 0 and the axis of the cylinder is the z-axis, write
down the equations of motion and prove that

dw
7 = ir-B).
Prove also that the pressure is given by
f = }?r? +§[aa? + (B +y)ay + 3y7]
where 7 is the distance from the z-axis.
13. If the motion of a fluid be referred to a moving frame of reference which

rotates with angular velocity w and moves forward with velocity u, show that
the equation of motion is

oq dr ) _ 1
W+w,\q+<EV q= F—;Vp,
where %; = q-U-w,r, and that the equation of continuity is

a”V( )o

where q is the fluid velocity and the position vector r is referred to the moving
frame.
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14. If the motion is referred to a moving frame which has velocity u and
angular velocity w, prove that the vorticity satisfies the equation

0
B+, 8+@, V)T = Vg,
where q, = q—-u-w,r.
15. If q is the velocity, prove that
1
[ Ve - (@vara,ni
) 1]
and deduce that

3f neas = [ amaas+ | avaur-| @i
(8 (S) V) (V)

where S is a closed surface and V the enclosed volume.
Use the above result to find the force on a body due to fluid pressure.

16. If I' is the circulation around any closed circuit moving with the fluid,

prove that ir .
F ks (;)’

if the external forces have a potential, and the pressure is a function of the density
alone. (U.L)

17. A pulse travelling along a fine straight uniform tube filled with gas causes
the density at time ¢ and distance « from an origin where the velocity is u, to become
po® (Vt—x). Prove that the velocity w is given by

(uo— V)4 (V1)

Vg

18. Every particle of a mass of liquid is revolving uniformly about a fixed axis,

the angular speed varying as the nth power of the distance from the axis. Show
that the motion is irrotational only if n+2 = 0.

If a very small spherical portion of the liquid be suddenly solidified, prove that

it will begin to rotate about a diameter with an angular velocity (n+2)/2 of that
with which it was revolving about the fixed axis.

(U.L.)

19. An explosion takes place at a point O at some distance below the surface
of deep water. If O’ is the image of O in the free surface, show that the velocity-
potential of the initial motion at any point P varies as

1 _ 1
op 0P
Determine the initial velocity of the free surface at any point. (R.N.C)

20. Define irrotational motion and prove that under certain conditions the
motion of a frictionless liquid, if once irrotational, is always so. Prove that this
theorem remains true, if the motion of each particle be resisted by a force varying
as its absolute velocity.

21. If ¢ is constant over the boundary of any simply connected region occupied
by liquid in irrotational motion, prove that ¢ has the same constant value through-
out the interior.

22. Prove that, if the normal velocity is zero at every point of the boundary
of liquid occupying a simply connected region, and moving irrotationally, ¢ is
constant throughout the interior of that region.
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28. Liquid moving irrotationally occupies a simply connected region bounded
partly by surfaces over which ¢ is constant, and partly by surfaces over which the
normal velocity is zero. Prove that ¢ has the same constant value throughout
the region.

24. A body moves in a given manner, without change of volume, in an inviseid
liquid. T, denotes the kinetic energy of the fluid when 1t has no external boundary
and is at rest at infinite distances; T’ denotes the kinetic energy of that part
of the fluid which is outside a closed surface S, which is external to the body ;
T denotes the kinetic energy of the fluid when S, is its external boundary and
is fixed. Prove that, if the regions occupied by the fluid are simply connected,

T>Ty+Ty.

25. If « = constant, B = constant are the equations of a curve, show that the
tangent is in the direction of the vector Vo , V8. Hence show that if the « and 8
surfaces are any two systems of surfaces which pass through the vortex lines, then
§ = FVa, VB, where F is a scalar function.

26. In Ex. 25 use the fact that V& = 0 to prove that (VF)(V«,VB) =0,
and hence show that this is equlvalent to the vanishing of the Jacobian

o(F, o, B)[0(z, y, 2),
8o that F is a function of «, B only.

27. Prove that V f(«, B) f Voz+ alj;V B. With the notations of Ex. 25, 26

show that if the scalar functxon f o, B) is so chosen that 0f/0x = F, theun
(i) q = f(a, B) V B is a solution of the equation § = V , q.

(ii) § = fVaAVB

28. Use Ex. 27 to prove that the general solution of § = V , q is
q-= _V¢+f(a:13) Vﬁr

where o = constant, 8 = constant are two systems of surfaces which pass through
the vortex lines, and ¢ is a solution of Laplace’s equation.

29. Obtain Clebsch’s transformation that the velocity can be expressed in the
form

= - Vé+AVy,

where the surfaces A = constant, u = constant move with the fluid, and the curves
in which they intersect are vortex lines.

80. Prove the moment formula 3-62 (2).

81. If E is the internal energy per unit mass, prove that
dF pdp _
Pt —pat = 7P Va.

32. Prove that for a compressible fluid moving irrotationally

P

where w is the impulsive pressure which would generate the motion from rest.



CHAPTER IV
TWO-DIMENSIONAL MOTION

41. Motion in two dimensions. Two-dimensional motion is charac-
terised by the fact that the streamlines are all parallel to a fixed plane and
that the velocity at corresponding points of all planes parallel to the fixed
plane has the same magnitude and direction. To explain this more fully, sup-
pose that the fixed plane is the
plane of xy and that P is any
point in that plane. Draw PQ Q
perpendicular to the plane @y (or
parallel to Oz). Then points on
the line P are said to correspond
to P. Take any plane (in the
fluid) parallel to xy and meeting
PQ in R. Then, if the velocity
at P is ¢ in the zy plane in a
direction making an angle 6 with
Oy, the velocity at R is equal in
magnitude and parallel in direc-
tion to the velocity at P. The
velocity at corresponding points is then a function of z, y and the time ¢,
but not of z. It is therefore sufficient to consider the motion of fluid particles
in a representative plane, say the wy plane, and we may properly speak of
the velocity at the point P, which represents the other points on the line PQ
at which the velocity is the same.

In order to keep in touch with physical reality it is often useful to suppose
the fluid in two-dimensional motion to be confined between two planes parallel
to the plane of motion and at unit distance apart, the fluid being supposed to
glide freely over these planes without encountering any resistance of a frictional
nature. Thus in considering the problem of the flow of liquid past a cylinder
in a two-dimensional motion in planes perpendicular to the axis of the cylinder,
instead of considering a cylinder of infinite length, a more vivid picture is
obtained by restricting attention to a unit length of cylinder confined between
the said planes.

In considering the motion of a cylinder in a direction perpendicular to its

P4

N\
N\
L

\\

§c

Fia. 4-1(i).
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axis, we can profitably suppose the cylinder to be of unit thickness * and to
encounter no resistance from the barrier planes. This method of envisaging
the phenomena in no way
restricts the generality and
does not affect the mathe-
matical treatment.

To complete the picture
we shall adopt as our repre-
sentative plane of the motion
the plane which is parallel to

Fia. 4-1 (ii). our hypothetical fixed planes
and midway between them.

Thus in the case of a circular cylinder moving in two dimensions the dia-
gram will show the circle C which represents the cross-section of the cylinder
by the aforesaid reference plane, and the centre 4 of this circle will be the
point where the axis of the cylinder
crosses the reference plane. This point
may with propriety be called the centre
of the cylinder. More generally any
closed curve drawn in the reference
plane represents a cross-section of a
cylindrical surface bounded by the fixed
planes.

A clear understanding of the above
conventional description will enable us
to use the more familiar notation of
ordinary two-dimensional geometry without confusion, and the reader is
invited to form a mental picture of his results in the light of the diagram of
fig. 4-1 (ii).
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