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Preface

Current trends in mathematics education emphasize the relevance and
applicability of its various disciplines to other fields. Of course, this is
nothing new for vector analysis, which has virtually been the language of
mechanics and electromagnetism since the beginning of this century. The
earlier editions of Introduction to Vector Analysis have recognized this aspect
of the subject, but the authors of the fourth edition decided to expand the
treatment of these applications in the hopes of initiating a broader and more
diverse group of readers into the realms of vector techniques. This should
also result in increased versatility on the part of those who master the
subject.

This revised presentation is the result of streamlining some sections
of the text, expanding others, inserting some new ones, and devising a
format that, by utilizing many ‘“‘optional reading” sections. has the flexibility
to accommodate a wide range of instructors’ tastes. As in the earlier editions
our watchword has been expository excellence, so we have preserved our
tradition of approaching each new concept on dual levels: first heuristically
and geometrically, then analytically and rigorously. For instance, dis-
cussions of the physical significance of the cross product, curl, divergence
theorem, etc. lead to heuristic derivations of the associated formulas; then
the analytic formulations and proofs are presented. This geometric-analytic
duality is even extended back to the basic notion of a vector, in this fourth
edition. We feel that this approach aids the student in remembering the
concepts, encourages him or her to anticipate the associated theorems, and
bestows a more profound understanding of the covariance properties.

Some of the revisions in the basic material include: an explicit treatment
of the parallel-perpendicular decomposition of a vector (which is utilized

ix



x Preface

in Hilbert space theory as well as in engineering applications), a careful
exposition of the parameter concept in geometry, reorganized sections on
space curves and particle trajectories, a simplified proof of the potential
theorem for conservative fields, derivations of Green’s formulas, and con-
siderable expansion of the sections introducing line, surface, and volume
integrals. Also the material on curvilinear coordinates has been expanded
to encompass all of Chapter 5, with one section treating cylindrical and
spherical coordinates separately, one section on general orthogonal coor-
dinates, and optional sections on linear orthogonal transformations and
the matrix techniques used in handling and applying them.

The old Chapter 5 (““Advanced Topics™) has been mostly eliminated;
a study revealed that few instructors cover this rather specialized material.
However, the “Historical Notes™ still appear in the appendices.

Some of the topics covered in the optional readings are: tensor notation
and its advantages in proving vector identities, dyadics, more general proofs
of certain theorems, the Frenet-Serret formulas and their interpretation,
vector potentials, and the transport theorems of fluid dynamics. Appendix B
provides coverage of two theorems of advanced calculus that are crucial
to vector analysis.

In addition there are two new appendices that may prove valuable to
readers. Appendices C and D contain derivations of all of the basic equations
of particle mechanics, rigid body dynamics, and (nonrelativistic) electro-
magnetism. The treatment here is rather more compact than expository, and
somewhat more rigorous than one usually finds in the physics textbooks.
Some instructors and advanced students may be surprised to see how readily
these equations can be related when the full power of vector machinery is
invoked.

The sets of exercises in the earlier editions have been enriched by the
addition of “Supplementary Problems™ at the end of each chapter. These
vary greatly in difficulty; some merely provide drill while others involve
quite provocative examples from advanced calculus and geometry. The
answers to these new exercises are not included so that instructors can draw
test material from them.

The authors extend special thanks to Rodrego A. Restrepo, who
graciously contributed many of these problems and served as a reviewer.,
Many thanks also to the other reviewers: Vuryl J. Klassen, Samuel S.
McNeary. and Thomas A. Metzger: and to Edwin Clark, Richard Hutchin-
son, and Samuel Poss, whose contributions have enriched the text.

In closing let us state that it has been our intent to design a textbook
that will stand the engineer and scientist in good stead for his/her professional
needs, give the aspiring mathematician a firm grasp of the three-dimensional
versions of the theorems of higher geometry and their applications, and
continue to serve the needs of every reader for some time after the successful
(we trust) completion of formal training.
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CHAPTER 1

Vector Algebra

1.1 DEFINITIONS

The vector concept is closely related to the geometrical idea of a directed
line segment. Roughly speaking, a vector is a quantity that has direction as
well as magnitude. It is represented by an arrow of length equal to its mag-
nitude, pointing in the appropriate direction. Two vectors A and B are said
to be equal, A = B, if they have the same length and direction.

This description of a vector conveys the intuitive concept, but as a defini-
tion it suffers from a lack of precision. Let us go back to basics and see if we
can formulate this idea more carefully and unambiguously.

Consider two points P and Q in space. If P and Q are distinct points,
there will exist one and only one line passing through them both. That part
of the line between P and @, including both P and Q as endpoints, is called a
line segment. A line segment is said to be directed when the endpoints are
given a definite order. The same line segment determines two directed line
segments, one denoted PQ and the other QP (or — PQ). If P and Q coincide,
PQ is said to be degenerate, and the line segment is a point.

Now a directed line segment is a quantity with magnitude (the distance
between P and Q) and direction (one exception: the degenerate segment, or
point!). Historically, vectors were defined to be directed line segments.
Experience has taught us, however, that it is convenient to consider two
directed line segments as representing the same vector if they are parallel
translates of one another; that is, if they point in the same direction and have
the same length. Thus in Fig. 1.1 we see that PQ, RS, and TU are all equiv-
alent and they represent the same vector. Being careful to consider all the
possibilities, we can now formulate these definitions: Two directed line

1



2 Vector Algebra CHAP. 1
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FIGURE 1.1

segments PQ and RS are said to be equivalent if PQ and RS have the same
length and are parallel (with the proviso that any two points are parallel), and
also PR and QS have the same length and are parallel (the last condition
ensures that RS is not directed opposite to PQ—draw a sketch to see this).
A vector is defined to be a collection of equivalent directed line segments.

We may represent a vector by any one of the directed line segments in the
collection. Thus, we may represent a vector by giving a particular directed
line segment PQ, but it is understood that the vector itself is the set of all
directed line segments that are equivalent to PQ.

In this book, boldface letters are usually used to denote vectors. In the
diagrams, a single directed line segment will often be drawn to represent a
vector, and will be labeled by a boldface letter to denote the vector it repre-
sents. In Fig. 1.1, PQ is labeled A, RS is labeled B, and TU is labeled C.
Since these all represent the same vector, we can write A = B = C. Notice,
however, that PQ and RS are not the same directed line segment, since they
occupy different positions in space, so we would not write PQ = RS.

To summarize, A = B implies that PQ is parallel to RS, that PQ and RS
have the same directed sense, and that the distance between P and Q is the
same as the distance between R and S. This common distance is called the
magnitude of the vector. Any point (degenerate line segment) represents
the zero vector 0. This vector has zero magnitude and no direction; it is
the exception to the intuitive characterization of “vector” given in the first
paragraph. :

Many of the quantities of physics have magnitude and direction, and thus
are conveniently represented by vectors. As examples we mention force,
displacement, velocity, acceleration, and magnetic field intensity. Such quan-
tities are represented graphically by arrows of length proportional to the
magnitude of the quantity, and pointing in the appropriate direction.
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In some books, what we call directed line segments are called bound
vectors, and what we simply call “vectors” are called free vectors. The idea is
that a “free vector” can be moved freely through space; provided it is always
kept parallel to its initial position, and is never allowed to reverse its sense
or to vary in magnitude, it does not really “change,” whereas a “bound
vector” could not be moved about in space. The distinction creates logical
difficulties for both the pure mathematician and for the physicist. For the
pure mathematician it is difficult to accept such loose terminology as “moving
freely through space” in the definition of a quantity that does not funda-
mentally involve the idea of time or motion at all. For the physicist the
difficulty is in determining whether force is a bound or a free vector. In many
cases the effect produced by a force acting on a body depends not only on its
magnitude and direction but also on its point of application. Hence, force
might well be regarded as a bound vector; but in deeper theoretical work this
becomes extremely awkward. Most physicists regard force as a vector quan-
tity (i.e., a “free” vector), recognizing nevertheless that the effect of a force
may depend on the point where it is applied.

In this book, the word scalar is used as a synonym for number. Those
quantities of physics that are characterized by numerical magnitude alone
(and have nothing to do with direction) are called scalars or scalar quantities.
Examples are mass, time, density, distance, temperature, and speed (as read
from a speedometer).

Loosely speaking, you can think of a vector as simply an arrow, but
recognize that two arrows are considered equal, from a vector viewpoint,
provided they are parallel, have the same directed sense, and the same mag-
nitude.

Suppose you are sitting at a desk with a horizontal surface. How many
vectors are there that are perpendicular to this surface, are directed upward,
and have magnitude of three inches? Only one. There are an infinite number
of directed line segments with these properties, but they are identical as
vectors.

1.2 ADDITION AND SUBTRACTION

The sum A + B of two vectors may be defined in the following way.
Let the vectors be represented so that the terminal point, or tip, of A coincides
with the initial point, or tail, of B. Then A + B is represented by the arrow
extending from the tail of A to the tip of B (Fig. 1.2). It is evident that this
definition of addition is compatible with the notion of equivalence; that is,
ifA=A"and B=B, then A + B= A’ + B’. It is also commutative,

A+B=B+A

Figure 1.2 demonstrates that this statement is another way of saying that
opposite sides of a parallelogram are equal and parallel.
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FIGURE 1.2

From Fig. 1.3 we see that vector addition is associative,

(A+B)+C=A+(B+C)

CHAP. 1

so that no ambiguity results from writing A + B + C without parentheses.

~\\~ B+C

A4+B
FIGURE 1.3

If B is a vector, —B is defined to be the vector with the same magnitude
as B but opposite direction (Fig. 1.4). Subtraction of vectors is defined by

adding the negative,
A—B=A+(-B)

The student who ignores this definition and simply memorizes Fig. 1.4 will
inevitably confuse A — B with B — A, which has the opposite direction.
A good way of avoiding confusion is to keep in mind that A — B is,
algebraically, the vector that must be added to B to produce A; hence it
runs from the tip of B to the tip of A, when A and B share a common tail.

The above definitions apply to the vector 0 if it is represented by a
degenerate line segment. Wehave0= —0,A —A=0,A+0=A,0+ A=A,

for every vector A.
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A A-B
/
/
B
FIGURE 1.4
Exercises

. If A and B are represented by arrows whose initial points coincide, what arrow
represents A + B?

. By drawing a diagram, show thatif A + B = C, then B = C — A.

. Is the following statement correct? If A, B, C, and D are nonzero vectors represented
by arrows from the origin to the points 4, B, C, D, and if B— A = C — D, then
ABCD is a parallelogram.

. Let the sides of a regular hexagon be drawn as arrows, with the terminal point of
each arrow at the initial point of the next.

(a) If A and B are vectors represented by consecutive sides, find the other four vectors
in terms of A and B.
(b) What is the vector sum of all six vectors?

FIGURE 1.5

The following problems refer to Fig, 1.5:

5
6.
7
8

. Write Cin terms of E, D, F.

. Write G in terms of C, D, E, K.
. Solve forx:x + B=F.

. Solve forx:x + H=D — E.
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1.3 MULTIPLICATION OF VECTORS BY NUMBERS

The symbol |A| denotes the magnitude of the vector A. Although it
s|, which denotes (as usual) the absolute value of
anumber s, it does have many properties that are quite similar. For example,
|A| is never negative, and |A| = 0 if and only if A = 0. Since A and — A have
the same magnitude, we can always write |A| = |—A|and |A — B| = [B — A|.
The “triangle inequality”

|A + B| < |A| + |B|

is the vector expression of the fact that any side of a triangle does not exceed,
in length, the sum of the lengths of the other two sides (Fig. 1.2).

If s is a number and A is a vector, sA is defined to be the vector having
magnitude || times that of A and pointing in the same direction if s is positive
or in the opposite direction if s is negative. Any vector sA is called a scalar
multiple of A (Fig. 1.6).

A
) —2A

v

FIGURE 1.6

Here are the fundamental properties of the operation of multiplying
vectors by numbers:

0A =0 IA=A (—-DA = —-A (1.1)
(s + 1A =sA +tA (1.2)

S(A + B) = sA + sB (1.3)

5(tA) = (sH)A (1.4)

A vector whose magnitude is 1 is called a unit vector. To get a unit
vector in the direction of A, divide A by |A| (equivalently, multiply A by |A| 1),
’ ‘ Al _

Al JAl

Exercises

1. Is it ever possible to have |A| < 0?
2. If [A| = 3, what is [4A[? What is |[—2A[? What can you say about |sA| if you know
that —2<s<1?
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® NN AW

10.

11.

12
13.

. If A is a nonzero vector, and if s = |A| !, what is |—sA|?
- If Bis a nonzero vector, and s = [A|/|B], what can you say about |sB]|?
- If A is a scalar multiple of B, is B necessarily a scalar multiple of A?

If A — B = 0, is it necessarily true that A = B?

. If |A| = |B|, is it necessarily true that A = B?
- You are given a plane in space. How many distinct vectors of unit magnitude are

perpendicular to this plane?

. How many distinct vectors exist, all having unit magnitude, perpendicular to a given

line in space?

If A is a nonzero vector, how many distinct scalar multiples of A will have unit
magnitude?

Let A and B be nonzero vectors represented by arrows with the same initial point
to points 4 and B respectively. Let C denote the vector represented by an arrow
from this same initial point to the midpoint of the line segment AB. Write C in
terms of A and B.

Prove that |A — B| > |A| — |B|.

Find nonzero scalars g, b, and ¢ such that aA + b(A — B) + c(A + B) = 0 for every
pair of vectors A and B.

1.4 CARTESIAN COORDINATES

Let us consider a cartesian coordinate system in the plane, obtained by

introducing two mutually perpendicular axes, labeled x and y, with the
same unit of length on both axes (Fig. 1.7). We assume that the reader is
already familiar with this construction, which sets up a one-to-one corre-
spondence between points in the plane and ordered pairs (x,y) of numbers.

y
3

A
2 Asj

[}

A
iy
j

— 1 ] ] x

0 i1 2 3 4

FIGURE 1.7
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Let i denote the unit vector parallel to the x axis, in the positive x
direction, and j the unit vector in the positive y direction. Every vector in
the plane can be written uniquely in the form

A = A4i + A5

for a suitable choice of numbers 4; and A,. These numbers are called the
components of A in the x direction and y direction respectively; the component
of a vector in a given direction is the orthogonal projection of the vector in
that direction.

The magnitude of A can be determined from its components by using
the pythagorean theorem (Fig. 1.7),

Al = A2 + 457
To determine the components of a vector, any directed line segment
representing the vector can be used. Thus, if Pi(xy,y;) and P,(x,,y,) are
points in the xy plane, the vector represented by the directed line segment
P3P, (initial point P, terminal point P,) is (x, — x{)i + (¥, — y1)j. Any
other directed line segment equivalent to P;P, would give the same
components.

Example 1.1 The directed line segment extending from (4,6) to (7,11) is equivalent to
the directed line segment extending from (— 1,3) to (2,8) because both of these directed
line segments represent the vector 3i + 5j.

Exercises

. What is the x component of i?

. What is the x component of j?

. What is the magnitude of i + j?

. What is the magnitude of 3i — 4j?

. With the axes in conventional position (Fig. 1.7), directions may be specified in
geographical terms. What is the unit vector pointing west? south? northeast?

6. Vector A is represented by an arrow with initial point (4,2) and terminal point (5, — 1).

Write A in terms of i and .

N A W N -

7. The direction of a nonzero vector in the plane can be described by giving the angle 6
it makes with the positive x direction (see Fig. 1.7). This angle is conventionally
taken to be positive in the counterclockwise sense. Write A, and A4, in terms of |A|
and this angle 6.

8. In Fig. 1.7,if |A| = 6 and 6 = 30°, determine A4, and 4,.

9. Interms of i and j, determine:

(a) the unit vector at positive angle 60° with the x axis;
(b) the unit vector with = —30° (0 as in Exercise 7);
(c) the unit vector having the same direction as 3i + 4j;
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(d) the unit vectors having x components equal to 3;
(¢) the unit vectors perpendicular to the line x + y = 0.

10. Determine |6i + 8], | —3il, i + sj|, |(cos 8)i + (sin 0jl.

11. In terms of i and j, determine the vector represented by the arrow extending from
the origin to the midpoint of the line segment joining (1,4) with (3,8).

1.5 SPACE VECTORS

Throughout most of this book, we shall be concerned with vectors in
three-dimensional space. By the introduction of three mutually perpen-
dicular axes, with the same unit of length along all three axes, we obtain
the usual cartesian coordinate system. The conventional orientation of
axes is shown in Fig. 1.8. Every vector can be expressed in the form
A = A;i+ A;j + Ask, where i, j, and k are unit vectors in the positive
x, y, and z directions respectively. The numbers A,, A,, and A, are the
components, or orthogonal projections, of A in the x, y, and z directions
respectively.

FIGURE 1.8

If Py(x,y1,21), Py(x3,¥2,25), and P3(x3,y3,23) are points in space, the
vector represented by P, P, is

(2 = x)i+ (¥, = y)i+ (z2 — 2k

and similarly for P,P; and P,P; (Fig. 1.9). Observe that the components
of P,P5 are given by the sums of the corresponding components of p.pP,
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z
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X
FIGURE 1.9

and P,P5;e.g., in the x direction we have
X3 — Xy = (X3 — X) + (X3 — X3)

Since, furthermore, P,P; represents the vector sum of PP, and P,P;, we
have shown that vector addition proceeds componentwise; i.e.,

Similar reasoning for multiplication by a scalar shows that, in terms of
components,

SA = (sA,)i + (s4,)j + (s43)k

The commutative and associative laws of addition, as given in Sec. 1.2,
are valid for space vectors; one simply interprets Figs. 1.2 and 1.3 as three-
dimensional. Alternatively, they become very obvious statements when
expressed componentwise (see Exercise 19).

By a double application of the pythagorean theorem, we obtain

Al = \//‘112 + A% + 457

An alternate description of a vector in space is obtained by giving its
magnitude and direction. We can specify the direction by prescribing the
three direction angles o, 8, and y between the vector and the positive x, y,
and z directions respectively (see Fig. 1.10). Sometimes it is more convenient
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%/

16

FIGURE 1.10

to prescribe cos a, cos f, and cos y, the direction cosines, because they are
given in terms of the components by the following simple formulae:

Al AZ
COS O = 7— cos fi = —= Cos y =
Al Al

(compare Figs. 1.8 and 1.10). It is easy to verify that the direction cosines
are related by

43
Al

cos® a + cos? f 4 cos? y = 1

so that if we know two direction cosines, the third is determined up to its sign.

There is no way of telling from the direction cosines what the magnitude
of the vector may be; the magnitude must be specified separately. For
example, any vector parallel to the yz plane and making an angle of 45°
with the positive y and z directions has direction cosines

V2 V2

cosa=0 cosﬂ:7 cos y = 5=

Exercises

In the first seven problems below, let A = 3i + 4j, B = 2i + 2j — k, and C = 3i — 4k.
1. Find |A}, [B], and |C].
2. FindA+Band A - C.
3. Determine |A — C|.
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4. For what values of s is |sB| = 1?

W

. Find the unit vector having the same direction as A.

6. Let A and C be represented by arrows extending from the origin.
(a) Find the length of the line segment joining their endpoints.
(b) This line segment is parallel to one of the coordinate planes. Which one?

7. Let a denote the angle between A and the positive x direction. Determine cos o.

oo

. Determine all unit vectors perpendicular to the xz plane.
9. Compute |i + j + k|.

10. Write the vector represented by PP, in terms of i, j, and k, if P, = (3,4,7) and
P,=(4,-16).

11. Write down the vector represented by the directed line segment OP, if O is the origin
and P(x,y,z) is a general point in space.

12. LetD=i+j+k E=1i+j—k,and F=i—j. Determine scalars s, ¢, and r, such
that 4i + 6j — k = sD + (E + rF.

13. What are the direction cosines of the vector 2i — 2j + k?

14. Derive the identity cos?x + cos?f + cos?y = 1.

15. Give a geometrical description of the locus of all points P for which OP represents
a vector with direction cosine cos « = % (O is the origin).

16. How many unit vectors are there for which cos « = 4 and also cos § = $? Illustrate
with a diagram.

17. A is a vector with direction cosines cos o, cos f8, and cos y respectively. What are
the direction cosines of the reflected image of A in the yz plane? (Think of the yz
plane as a mirror.)

18. Determine all unit vectors for which cos « = cos f§ = cos 7.

19. Verify the commutative and associative laws of addition for space vectors by

expressing them componentwise.

1.6 DIGRESSION

A first step in solving some problems in mechanics is to choose a
coordinate system. For instance, if the problem involves a particle sliding
down an inclined plane, it may be convenient to take one of the axes, say
the x axis, parallel to the plane, and another axis, say the z axis, perpendicular
to the plane. After we have chosen a particular coordinate system, we can
speak of the position vector of the particle. This is the vector represented
by the directed line segment extending from the origin (0,0,0) to the point
(x,v,z) where the particle is located, and (in terms of i, j, and k) it is the vector
xi 4+ yj + zk. Strictly speaking, we should not say “position vector of a
particle” because this might give the false impression that it is an intrinsic
property of the particle, whereas it also depends on the location of the
origin of the coordinate system.

If a particle moves from an initial position (x,,y;,z;) to another position
(X2,V2.25), the displacement of the particle is the vector represented by the
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directed line segment extending from its initial position to its final position.
This vector is (x, — x)i + (y, — y,)j + (z, — z;)k. Notice that if the initial
position vector is Ry = x;i + y,j + z,k and the final position vector is
R, = X,i + y,j + z,k, the displacement is R, — Ry. The displacement of a
particle is the final position vector minus the initial position vector.

The displacement vector, unlike the position vector, is an intrinsic
property of the particle; it does not depend on the choice of a coordinate
system (although its components will be different in different coordinate
systems). In fact, the displacement of a particle is a perfect model for a
vector, at this stage. We have defined the addition of vectors so that they
add in the same way that displacements “add.” Thus (Fig. 1.2) if a particle
undergoes a displacement A, and then another displacement B, it is clear
that the resultant displacement is A + B. That is, A + B is the single
displacement that produces the same net effect as the two displacements
A and B. From the physicist’s viewpoint, this is the reason for defining
vector addition in this way.

Occasionally it is helpful to think of vectors as representing displace-
ments, even when no physics is involved. For example, consider Exercise 5
of Sec. 1.2, where we are asked to write C in terms of E, D, and F. The
answer is C = —F + E — D, which is clear since the net result of the three
displacements —F, E, and —D is C, as one can see by looking at Fig. 1.5.

Do not get the mistaken impression that when we represent a displace-
ment by a vector A, the path of the particle has necessarily been straight.
The directed line segment representing a displacement extends directly from
the initial position to the final position, but the particle itself may have
gone by way of the North Pole!

Forces are also vector quantities. This may seem obvious since a force is
conveniently represented geometrically by a directed line segment. It is
not so obvious, however. How do we know that forces “add” in the same
way as vectors? We shall simply take the word of the physicists that they do,
and direct the interested reader to the laboratory. If F, and F, are forces
acting on a particle, their vector sum F; + F, is the single force that would
produce the same effect, and it is sometimes called the resultant of the two
forces. In elementary physics the resultant of two or more forces is usually
found in the following manner: one draws a diagram showing the forces,
then systematically marks out each force, replacing it by its components
along the coordinate axes. The forces along each axis are summed algebra-
ically, so that one has a single force remaining along each of the coordinate
axes. The magnitude of the resultant force F can then be found by the
pythagorean theorem, since the axes are perpendicular. This is discussed
in every introductory physics book. Obviously, the process is equivalent
to writing each force in terms of i, j, and k, and adding them in the manner
of the preceding section.

It is rather surprising that rotations in space are not vector quantities.
Clearly, a rotation can be represented by a directed line segment; the direction
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would be the axis of rotation, and the length would be the angle through
which the body is rotated. But the result of two successive rotations is not
represented by the vector sum of these line segments. In fact, the “sum”
of two rotations is not even commutative! A body rotated through 90°
about, first, the x direction, then the y direction, will achieve a final position
quite different from the one resulting from the rotations performed in the
other order (try this with the textbook). In this light, it is even more
remarkable that angular velocity is, nonetheless, a vector quantity. This
matter is discussed in Appendix C.

Exercises

1. A particle moves from (3,7,8) to (5,2,0). Write its displacement in terms of i, j, and k.

2. Write down the position vector of a particle located at the point (1,2,9).

3. The position vector of a moving particle at time t is R = 3i + 4¢%j — k. Find its
displacement during the time interval from ¢t = 1to t = 3.

4. What is the magnitude of the resultant of the following two displacements: 6 miles
cast, 8 miles north?

5. Strings are tied to a small metal ring and, by an arrangement of pulleys and weights,
four forces are exerted on the ring. One force is directed upward with magnitude
3 1b, another is directed east with magnitude 6 Ib, and a third is directed north with
magnitude 2 Ib. The ring is in equilibrium (i.e, it is not moving). What is the mag-
nitude of the fourth force that is counterbalancing the other three?

6. The center of mass of a system of n particles is defined by the position vector
g MR+ mRy o mR,
o my+my+ -+ m,

where the ith particle is located at R; and has mass m;. The mass unbalance of the
system, measured at the position R, is defined to be

m;(R; — R) + my(R, —R) + - - + m,(R, — R)

Show that the mass unbalance, measured at the center of mass, is zero.

1.7 SOME PROBLEMS IN GEOMETRY

To avoid circumlocution, practically everybody who works with vectors
makes no distinction between vectors and directed line segments. It is
easier to say “the vector A” than to say “the vector represented by the
directed line segment A.” When we do this, it is still important to recognize
that the concept of a vector is an abstraction from the concept of a directed
line segment, in which we ignore the actual location of the directed line
segment: we say “A = B” when we really mean “the directed line segments
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A and B are equivalent and therefore represent the same vector.” If A
extends from (2,3,4) to (2,3,5), and if B extends from (3, —2,8) to (3, —2,9), then
we have as vectors A = B even though they extend from different points.

What we are saying is that two things are equal when they are really not
identical but are only “equivalent” according to some definition. We are
already familiar with this in elementary arithmetic. We say the fractions %
and £ are “equal” when in fact they are not identical but are only “equivalent”
in a certain way. Strictly speaking, we should say that % and ¢ are fractions
that represent the same rational number: as fractions, they are not equal,
but they represent the same rational number.

Similarly, if we have two directed line segments A and B, we may write
A = B even when the directed line segments are not equal (because they
extend from different points) but are equivalent according to the definition
given in Sec. 1.1.

With this in mind, we now turn to the practical utility of vector algebra.
The simplest applications are in geometry, and will be considered first.

Example 1.2 1f the midpoints of the consecutive sides of a quadrilateral are joined
by line segments, is the resulting quadrilateral a parallelogram?

Let PORS be the quadrilateral and TU VW the midpoints of its sides. In the case
shown in Fig. 1.11, it certainly appears that TUVW is a parallelogram. Keep in mind,
however, that PQRS need not be a plane figure; perhaps S is a point several inches
above the plane containing P, Q, and R. In view of this possibility, is TUVW a
parallelogram?

Solution Let the sides be made into directed line segments A, B, C, and D, as shown
in Fig. 1.11. Then one very obvious relationship is-

A+B+C+D=0

FIGURE 1.11
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To conclude that TUVW is a parallelogram, we need to show that TU = — VW. From
the figure, TU may be expressible in terms of A and B; in fact, TU equals the “tip half”
of A plus the “tail half” of B. Thus

TU =3A + B =4(A + B)
Similarly
VW =4(C + D)
But our basic relationship shows that A + B= —(C + D). Thus TU = —VW.

Example 1.3 Line segments are drawn from a vertex of a parallelogram to the mid-
points of the opposite sides. Show that they trisect a diagonal.

Solution We have diagrammed the situation in Fig. 1.12, labeling certain vectors
for convenience. Since the diagonal is A + B, the problem reduces to showing
C =D = 4(A + B). Let us try to express C in terms of A and B. First of all, certainly
C = s(A + B) for some scalar s. Also, since the tip of C lies on the line connecting the
tip of A to the tip of B, we have C — A = (3B — A), for some scalar . If we equate
the two expressions for C,

s(A+B)=A +t(3B—A)
we derive
(s—iB=(1-s—0A
Since A and B are not parallel, this equation can only be true if the scalars are zero.
s—3t=0
1—-5s—t=0

Solving, we obtain s = 4, so C = {(A + B).

A

Figure 1.12

The reader should try to complete the solution as an exercise, manipu-
lating D in an analogous manner.

Example 1.4 Prove that the medians of a triangle intersect at a single point.

Solution In Fig. 1.13,D is the vector from the corner P to the point of intersection of
the medians from @ and R. We must show that D lies along the median from P, i.e.,
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FIGURE 1.13

that it is a multiple of A + 4B. The condition that D lie along the median from R is
expressed as

C+D =s(C+3A)

for some number s, while that fact that D lies on the median from Q implies that, for
some number ¢,

A—-D=t3C+A
Solving for D and equating the expressions, we derive
(s+4—-1)C=(1—1t—1sA

As in Example 1.3, we conclude that both coefficients must vanish; thus

Wit

s=t=
Using this in either equation for D and writing C in terms of A and B, we find
D=3%A+1B)
which is the form that we sought.
Example 1.5 Let 0 denote the angle between two nonzero vectors A and B. Show that

4B, + A;B; + A3B;

c0s = NE

(1.5)

NOTE: This is one of the most important identities in vector algebra.

Solution This formula will “pop out” if we compare two expressions for |A — B|?,
one derived componentwise and one derived geometrically. Using components, we
know that

IA - B|2 =(4; — Bl)z +(4; — 32)2 +(4; - Bs)z
Expanding powers and regrouping terms, we can write this as
|A — B2 = |A* + [B]> — 2(4,B, + 4,B, + A4,B5)

Now for the geometric formula. A, B, and 6 are depicted in Fig. 1.14; also, the perpen-
dicular from the tip of B to A is drawn, with the lengths of the appropriate segments
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A—B
|B} sin 6
~«— Bl cos 8 — A
FIGURE 1.14

indicated. We can visualize A — B as the hypotenuse of a right triangle, and according
to Pythagoras

|A — B|* = (|B| sin 6)* + (|A| — |B] cos 0)
= |B[*(sin? 6 + cos® 6) + |A|> — 2|A| |B| cos 0
|A — B|? = |A]” + [B|> — 2/A| |B| cos 0 (1.6)
Comparing this with the componentwise expression, we conclude
|A| [Bf cos 6 = 4,B, + A4,B, + A3B, (1.7
which is equivalent to the desired identity.
Incidentally, by referring to Fig. 1.14 the alert reader will recognize

Eq. (1.6) as the law of cosines from trigopometry.
As an application of this formula, consider the next example.

Example 1.6 Show that the vectors A =2i — j+ 5k and B =i+ 7j +k are per-
pendicular.

Solution
cos = 2-7+5
V3051
Hence 6 = 90°.

SUMMARY—GEOMETRIC AND COORDINATE DESCRIPTIONS

Now is a good time to catch our breath and get an overview of what we
have learned. There are two ways of looking at vectors—geometrically,
and componentwise. Geometric descriptions are more physical; a vector
has magnitude and direction, and relationships are described in terms of
lengths and angles. But it is often difficult to compute with these quantities,
especially if the problem is three-dimensional and hard to sketch. Thus to
solve such problems as finding the resultant of several forces, we introduce
a cartesian coordinate system and represent all vectors by their components.
Then a vector becomes an ordered triple of numbers. (Another reason for
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using this rather unphysical component description is communication. How,
for instance, does an astronaut on the moon convey information about a
quantity with magnitude and direction to his earthbound colleagues? He
must describe its components in some coordinate system common to both,
as determined by, for instance, the fixed stars.)

Let us summarize the equations we have derived; they tell us how to
relate one description to the other. The geometrical concept of length of a
vector is computed in terms of components by

Al = (4,2 + 4,7 + 4,92
The angle 6 between two vectors A and B is computed from components
using Eq. (1.5)
AB{ + A,B, + A3B;
Al [B]
In particular, the direction cosines of A, which are the cosines of the angles

between A and the positive coordinate axes, can be computed by substituting
i, j, or k for B in the above; thus

cos O =

4, A, 3

COS O = 7— cos fi = —= cos y ==

A A |A]
Viewed another way, these equations can be used to compute the
component description of a vector from its geometric characteristics; we have

Ay =|Alcosa A, =|Ajcosp  A;=]|A|cosy

Hence the cycle is complete and we are free to exploit whichever description,
geometrical or componentwise, is most convenient. Exercises 6 through 10,
which follow, illustrate these ideas.

Exercises

1. Imitate the solution of Example 1.2, except instead of proving that TU = — VW,
prove that UV = —WT.

2. Using vector methods, prove directly that if two sides of a quadrilateral are parallel
and equal in magnitude, the other two sides are also.

3. By vector methods, show that the line segment joining the midpoints of two sides of
a triangle is parallel to the third side, and has length equal to one-half the length
of the third side.

4. Show that the diagonals of a parallelogram bisect each other.

5. Construct another proof of the fact that the medians of a triangle intersect at a
point, based on the following observation: if D, E, and F are vectors drawn from
some fixed point to the corners of the triangle, then

D+3ED +E+F)—-D]=4E +F)
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Verify this algebraically and then interpret it geometrically. [Hint: The tip of the
vector (D + E + F) is this point of intersection. ]

. Find the angle between 2i + j + 2k and 3i — 4k.

. Find the angle between the x axis and i + j + k.

. Find the three angles of the triangle with vertices (2,—1,1), (1,—3,—5), (3,—4,—4).
. Find the angle between the xy plane and 2i + 2j — k. (Note that k is perpendicular

to the xy plane. You will have to decide what is meant by the angle between a
vector and a plane.)

. Show that i + j + k is perpendicular to the plane x + y + z = 0. (Hint: This plane

passes through the origin. Show that i + j + k is perpendicular to every vector
extending from the origin to a point in the plane.)

The following simple exercises are inserted here to help you to recall some of the basic
ideas of analytic geometry.

11.
12.
13.

14.

15.
16.
17.
18.
19.
20.

21.
22.

23.

24.

25.

True or false: 3x — 4y + 5z = 0 represents a plane passing through the origin.
True or false: The yz plane is represented by the equation x = 0.

True or false: The locus of points for which x = 3 and y = 4 is a line parallel to the
z axis whose distance from the z axis is 5.

True or false: x? + y> 4+ z2 = 9 is the equation of a sphere centered at the origin
having radius 9.

Write down the equation of a sphere centered at the point (2,3,4) having radius 3.
Write down an equation for the cylinder concentric with the z axis having radius 2.
Do the equations x = y = z represent a line or a plane?

What is the locus of points for which x* + z2 = 0?

What is the locus of points for which (x — 2)*> + (y + 3)* + (z — 4> = 0?

What geometrical figure is represented by the equation xyz = 0? (Keep in mind
that a product of numbers is zero if, and only if, at least one of the numbers is zero.)
What is the distance between the points (2,3,4) and (5,3,8)?

What is the distance between the point (3,8,9) and the xz plane? (Distance in such
cases always means shortest distance or perpendicular distance.)

What is the distance between the point (0,3,0) and the cylinder x* + y* = 4? (Idoubt
you will find a formula for this in any of your books. Just use some common sense.)
The expression x? 4+ y? gives the square of the distance between (x,y,z) and the
z axis. In view of this, what figure is represented by x? + y* = z2?

Do you know what figure is represented by the equation (x/2)* + (y/3)* + (z/4)* =
1? (If so, you know more analytic geometry than is required to read this book.)

1.8 EQUATIONS OF A LINE

The position vector of a point is the vector extending from the origin to

the point. Thus the position vector of a point (x,y,z) is the vector xi + yj + zk.
This correspondence between points and vectors is the fundamental means
whereby problems in analytic geometry can be studied by vector methods.
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As an elementary example, let us derive the equations of a line passing
through a given point (x,,y0,Z9) and parallel to a given nonzero vector
V =ai + bj + ck (see Fig. 1.15).

(x0, 0, 20)

R,

FIGURE 1.15

Let R, be the position vector of (x4, q,2,) and let R be the position vector
of a point (x,y,z). It is not immediately obvious what conditions on the vector
R itself will make the point (x,,z) lie on the desired line, but the vector from
(the tip of) Ry, to (the tip of) R must be parallel to V. This vector, describing
R “relative to Ry, is, of course, R — R,. It will be parallel to V if and
only if it equals some scalar multiple of V, so the condition that (x,y,z) be
on the line is that R — Ry =tV for some number t. Rewriting this as
R =R, + tV and expressing it in terms of the components of the vectors,
we obtain

X =X+ at
R=R, +1tV or y=1Yyo+ bt (1.8)
Zz=2zZg+ ct

A point (x,y,z) is on the line passing through (x,,y,,20) and parallel to
V =ai + bj + ckifand only if its coordinates satisfy all three of the equations
(1.8) for some value of the scalar t between — oo and + oo.

Let us dwell for a moment on the significance of the scalar t. It seems
to be somewhat artificial in the description. After all, physically speaking
we can draw the line once we know R, and V; no other data are needed.
The introduction of this element ¢ is just a mathematical device to help us
say, with equations, that R — R, is parallel to V. Equations (1.8) are called
the parametric form of the equations of the line, and the “dummy” variable ¢
is called the parameter.

An interpretation of the role of t can be gleaned from observing points R
on the line for various values of t. Thus, for instance, if t =0, R = Ry;
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ift=1,R=Ry,+ V;ift=—1, R=R, — V; other points, in between and
beyond, are indicated in Fig. 1.16. If we think of the parameter ¢ as repre-
senting time, we can think of Egs. (1.8) as giving the position of a moving
particle at time f. This particle traverses a line parallel to V and passes
through the point (x,y0,20) at time t = 0.

FIGURE 1.16

As far as the line itself is concerned, the scalar multiple ¢ in Eq. (1.8)
could be replaced by any scalar function of ¢, such as t/2, —t, or t°, as long
as the function takes all values between — co and + oo. However, if we wrote

R =R, + *V

we would only be adding positive multiples of V to R, so we would be
generating only “half” of the line (i.e., a ray). If we wrote

R = RO + (Sin t)V

we would generate just the segment of the line between Ry — V and R, + V
(since —1 <sint < 1), and we would be covering this segment infinitely
often; interpreting ¢ as time, the particle would oscillate forever from one
end of the segment to the other. This same segment could be generated
by the original parametric equations, Eqs. (1.8), if we restrict ¢ to the interval
—1<t<1.

Clearly, the parametric form is not unique. Most people, however,
would agree that Egs. (1.8) are the simplest form. Even so, notice that R,
could be replaced by any other vector describing a point on the line, and
V could be replaced by any other vector having the same direction.

The parameter ¢t can be eliminated by manipulating Eqs. (1.8). The
reader can easily verify that if none of the components of V are zero, one
can derive

X—X0=y—y0=2—20 (19)
a b ¢
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This is a nonparametric form, and from it one can immediately read off
the components of V and of Ry. [In using Eq. (1.9), keep in mind the essential
feature that the coefficients of x, y, and z are 1’s! Also observe that (1.9)
represents two equations. | :

Example 1.7 Find equations of the line passing through (2,0,4) and parallel to 2i + j +
3k, both in parametric and nonparametric form.
Solution The condition that R — R, is parallel to V becomes
x—2=2 y—0=1t z—4=3t
Thus,
x=24+2t y=t z=443t
Nonparametrically,

x—2_ _z—4
2 VT3

Example 1.8 Find equations of the line passing through (0,3,—‘1) parallel to 3i + 4k.

Solution In parametric form we have

x =3t
y=3
z=—1+4+4

For the nonparametric form b = 0, so Eq. (1.9) does not make sense. If we eliminate t
from the first and third equations above, we find '

z4+1
4

x_
3=

To this equation we append y = 3, which is already nonparametric.
Example 1.9 Find a unit vector parallel to ,thevlyine
x—4 _z+1

; Y=

Solution By comparison with (1.9) we have a = 2, b = 1, and ¢ = 2, so a vector parallel
to the line is 2i + j + 2k. Dividing this vector by its own length we obtain a unit vector
2i + 1j + 2k. The negative of this vector is also a correct solution.

Example 1.10 Find the point of intersection of the two straight lines-
R=3i+2j+Q2i+j+k)t
R=i—-2k+ (j+ k)t
Solution This is a little deceptive. Although we have used the same letter, ¢, for the
parameter on both lines, we do nat imply that at the point of intersection ¢ takes the same

values for each of the two lines; in terms of the particle-motion interpretation we are
saying that the two paths may intersect, but the individual particles can go through the
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point of intersection at different times. Thus, we should go to a nonparametric descrip-
tion.
In order that the point (x,y,z) lie on the first line, we must have

x—3
2

=y—2=z

The condition for the second line reads
x=1 y=z+ 2

These constitute four equations that the three unknowns (x, y,z) must satisfy. If we just
consider the first three equations,

x—3
2

=y-—-2 y—2=z x=1

we find that they have a solution (x,y,z) = (1,1,—1). We must still check that the fourth
equation,

y=z+2

is satisfied ; otherwise, there is no point of intersection (which is quite possible in space!).
In this case it checks, so the point of intersection has i + j — k as its position vector.

Example 1.11 Find the angle between the lines in Example 1.10.

Solution We have already verified that the lines do intersect, so the problem makes
sense. The first line is parallel to 2i + j + k, the second to j + k. The angle between
these vectors satisfies [see Eq. (1.5)]

2(0) + 1(1) + 1(1) _ 2
22+ 12+ 1230 + 12 + 13 128

el

cos 0 =

Therefore,

o)

Exercises

1. Find parametric equations of the line passing through the origin parallel to 3i +
7k — 2j.

2. Find the equations of the line parallel to the z axis passing through the point (1,2,3).

3. Find equations of the line perpendicular to the yz plane, passing through (1,2,3).

4. Find the two unit vectors parallel to the line

x—l_y+2
3 4

z=9
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5.

11.

12.

13.
14.

15.

Find two unit vectors parallel to the line x = 2y = 3z + 3. These equations can be
written in form (1.9) as follows:

_z+1

X =

N |

W=

. Find two unit vectors parallel to the line represented by the equations x + y =1,

x — 3z =>5. [Hint: Rewrite in form (1.9).]

. Find equations of the line passing through the origin and parallel to the line

x—3=——=1-2

. Find equations of the line passing through the points (3,4,5) and (3,4,7).
. Find equations of the line passing through the points (1,4,— 1) and (2,2,7).
10.

By vector methods, find the cosine of the angle between the lines

x——l_y——O.S_
3 = =z

and xX=y=z

Find the angle between the two intersecting lines

x—1 y-3 =z d x—1
3 4 5 2

=3—-y=2z

Let A and B be two points ‘with position vectors A and B, respectively. Show that
the line passing through these points may be represented by the vector equation

R=35A+(B s+t=1 (1.10)

Solve Exercise 9 by making use of Eq. (1.10).

(Points of Division) If the points 4, B, and P are collinear, P is said to divide the
segment AB in the ratio 4 when the segments AP and PB are related by

AP = J(PB) (1.11)

(a) For what values of 4 does P lie between 4 and B? to the left of A? to the right
of B?
(b) Show that, relative to an origin O, Eq. (1.11) can be written

0A + AOB)
op = 1+2

Relate this to Eq. (1.10).

(c) If P and P’ divide AB internally and externally in the same numerical ratios + 4,
show that 4 and B divide PP’ internally and externally in the ratios +(1 — 1)/
1+ 4.

Find the point(s) of intersection of the following pairs of straight lines.

(@) R=(5i+4j + 5k)t + 7i + 6j + 8k and
R = (6i + 4j + 6k)t + 8i + 6j + 9k

b) R=@Gi+2j+kt+2k and
R = (6i + 4j + 2k)t + 3i + 2j + 3k
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(© Ji—j+ kit and
—6i + 2j — 2Kk)t + 2i
i+j+ke and

i+j—3kt—i+j

(I

1.9 SCALAR PRODUCTS

The scalar product of two vectors is the number
A-B=|A||B|cos 0 (1.12)

where 0 denotes the angle between the vectors. Although A and B are
vectors, A - B is a number. The scalar product is also called the dot product
or the inner product. From Fig. 1.17, we identify [B| cos 0 as the component
of B parallel to A; i.e., the length of the orthogonal projection of B in the
direction of A, with the appropriate sign. Thus, we can interpret A - B as

(length of A)(signed component of B along A)

Since the definition is symmetric in A and B, it can equally well be interpreted
as

(length of B)(signed component of A along B)

[}
1
! B
A i o ) A
< Blcos 8 ~ < Blcos6 - -
FIGURE 1.17

In a few simple cases the scalar product of two vectors is easily computed
directly from this definition. For example, the scalar product of the vectors
shown in Fig. 1.18 is 9/3. .

If either A or B is the zero vector, we have |A| = 0 or |B| = 0, so by (1.12)
it follows that A - B = 0. (We ignore the fact that 6 is not defined in this case.)

On the other hand, it is possible to have A - B = 0 even though both

30°

6

FIGURE 1.18
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A and B are nonzero vectors. For example, if A and B are perpendicular,
then cos 6 = cos 90° = 0 and hence A - B = 0.
Recall that in Sec. 1.7 we derived a component expression for the right
hand side of (1.12), namely Eq. (1.7):
|A| |B| cos 6 = 4, B, + A,B, + A3B; (1.7
Combining this with (1.12) gives us
A * B = AIBI + A2B2 + A3B3 (1.13)

Thus we have two important formulas for the scalar product. Equation (1.12)
describes A - B in terms of geometric concepts and provides a visualization,
while Eq. (1.13) gives the componentwise description and is useful for
computations. Memorize both formulas now. They are important.

Example 1.12 Find the scalar product of 4i — 5j — k and i + 2j + 3k.

Solution (4)(1) + (—5)(2) + (—1)(3) = —9. (The negative sign indicates that the angle
between the vectors must be greater than 90°.)

Example 1.13 Find the angle between the vectors A = 2i + 2j — k and B = 3i + 4j.

Solution 'We have |A| = 3 and |B| = 5. Using (1.13), we see that A - B = 14. Substi-
tuting these values in (1.12), we solve to get § = cos™* 14/15.

Example 1.14 1f F is a constant force acting through a displacement D, the work done
by F is defined to be the product of the magnitude of the displacement with the com-
ponent of the force in the direction of the displacement. In vector notation,

Work = F - D

The following properties of the scalar product are easily verified from (1.13):
A-B=B-A
(SA+B)-C=sA-C+B-C
A (sSB+C)=sA-B+A-C
AP =A-A

Example 1.15 (A Maximum Principle) Let there be given a nonzero vector D, and let
n denote a unit vector. Then [n| = 1and D - n = |D||n| cos 8 = |D|cos 6. This will be a
maximum when cos 6 = 1, i.e.,, when 8 = 0. Thus we have derived the following maxi-
mum principle, which will be useful to us in later sections:

The unit vector n making D - n a maximum is the unit vector pointing
in the same direction as D.

Example 1.16 The scalar product can be used to express components along the axes,
of course; thus the component of D in the x direction is D - i, and so forth. In fact, for
any vector D we can write

D=MD )i+®D- jj+ D kk (1.14)
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As another example of the use of the scalar product, consider the
following problem. One is given two vectors, A and B, and one wishes to
decompose B into a vector parallel to A plus a vector perpendicular to A.
In other words, one wishes to find expressions for the vectors B, and B,
in Fig. 1.19. Clearly, the (signed) length of By is B A/|A|. To construct
a vector of this length in the direction of A, we take the unit vector along A
and multiply by this scalar. Since A/|A| is the unit vector, we have the
following simple formula:

B-AA B-A

NS

B, =

Having computed B;|, B, is just the rest of B:

B-A

BLZB—B||=B—HA
B B,
B, A
FIGURE 1.19

Example 1.17 Resolve the vector 6i + 2j — 2k into vectors parallel and perpendicular
toi+j+ k.

Solution The parallel vector is
%%(i+j+k)=2(i+j+k)
The perpendicular vector is
6i+2j—2k—2i+j+k) =4i—4k
Example 1.18 Find a formula for the mirror image, V', of a vector V, reflected in a
plane mirror with unit normal n. (See Fig. 1.20a.)

Solution In Fig. 1.20b, we have drawn representatives of mn, V, and V' with a common
tail. The dotted lines illustrate the fact that V and V’ have the same component perpen-
dicular to n, but the parallel components are opposite. To obtain V' from V, we must
subtract this parallel component twice. Hence, keeping in mind that n was given as a
unit normal,

V’=V—2V“=V—2(V'n)n
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FIGURE 1.20

Exercises

. Find the scalar product of 3i + 8j — 2k with 5i + j + 2k.

. Find the scalar product of 2i + 3j + 4k with 4i — 3k + 9j.

. Find the scalar product of 3i + 4j with 5j — 10k.

. Determine the angle between 2i + j — 2k and 3i — 4j.

. Find the angle between 2i and 3i + 4j.

. A force F = 2i + 3j + k acts through a displacement D = —2i + j — k. Find the

work done.

. Find the component of 8i + j in the direction of i + 2j — 2k.
. Find the component of i + j + k in the direction of i + j.
. Find the component of the force 5i + 7j — k in the direction of the displacement

PQ, where P(3,0,1) and Q(4,4,4) are points in space.

Find the vector in the same direction as i + j whose component in the direction of
2i — 4k is unity.

IfA- A =0and A - B = 0 what can you conclude about the vector B?

By interpreting 2x + 3y + 4z as a scalar product, show that 2i + 3j + 4k is perpen-
dicular to the plane 2x + 3y + 4z = 0.

If A is a fixed nonzero vector, interpret geometrically (R — A) - R = 0,

(a) in the plane, R = xi + yj,

(b) in space, R =xi+ yj+ zk.

Ifu and v are unit vectors, and 8 is the angle between them, find 3ju — v| in terms of 6.
Let A = (cos ¢)i + (sin ¢)j and B = (cos 0)i + (sin 0)j. Draw these vectors in the
xy plane. By interpreting the scalar product A - B geometrically, prove that
cos(¢p — ) = cos ¢ cos 0 + sin ¢ sin 6.

Prove, by vector methods, that the median from the vertex angle of an isosceles
triangle is perpendicular to the base.

Prove the parallelogram equality, i.e., the sum of the squares of the diagonals of a
parallelogram equals the sum of the squares of its sides.
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18. Prove the triangle inequality of Sec. 1.3,
A+ B| < [A| + B

(Hint: Square both sides, and use the scalar product.)

19. Decompose 6i — 3j — 6k into vectors parallel and perpendicular to
(a) the vectori+ j+ k.
(b) the vector 2i — j — 2k.
(c) the vector 2j — k.

20. The vector n = (3i + 2j + 6k)/7 is perpendicular to a plane. A line segment re-
presenting the vector A = 2i + 5j + 6k lies on one side of this plane. Regarding the
plane as a mirror, write down the vector represented by the mirror image of A.

1.10  EQUATIONS OF A PLANE

Recall that in Sec. 1.8 we specified a straight line by giving a point on
the line and a vector parallel to the line. By analogy, then, we might specify
a plane by giving a point (x,,y,,zo) in the plane, and two vectors A and B
parallel to the plane. Of course, A and B must not be parallel to each other.
Introducing the position vectors Ry = x,i + yoj + zokand R = xi + yj + zk,
we seek the condition on R guaranteeing that (x,y,z) lies in the plane. It is
not immediately obvious how R depends on Ry, A, and B, but, clearly, the
“relative vector” R — R, must lie in the plane (more precisely, it has a
representative that lies in the plane, Fig. 1.21); hence it can be expressed as
a combination of A and B. Thus we have

R-R,=sA+B

for some scalars s and ¢, each taking values between — oo and + oo.
These scalars s and ¢ play a similar role to the single parameter ¢ in the
equation [Eq. (1.8)] for a straight line. The need for two parameters to

FIGURE 1.21
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locate a point in a plane is indicative of the fact that a plane is a two-
dimensional object. The vectors A and B are said to span the plane.

The experience we have gained in deriving this parametric equation for
a plane will be helpful in Chapter 4, when we analyze other two-dimensional
surfaces. The fact of the matter, however, is that we can derive a non-
parametric equation that is much simpler, and the above parametric form
is almost never used. So let us start afresh and try a different tack.

The key to the nonparametric description is the observation that, instead
of specifying two vectors A and B lying in the plane, it suffices to give one
vector N that is perpendicular, or normal, to the plane. Given a point (R,)
in the plane and a direction (N) normal to the plane, one can reconstruct
the plane unambiguously.

The condition that R is the position vector to a point in the plane can
be expressed by saying that the “relative vector” R — R, which lies in the
plane as before, is perpendicular to-N (see Fig. 1.21 again). According to
the previous section, this condition can be written

(R—Ry) - N=0 (1.15)

Conversely, if (1.15) is satisfied, then R — R, is perpendicular to N This
ensures that R is the position vector of a point in the plane.

Hence (1.15) is a vector equation describing the plane. In terms of the
components of N = ai 4 bj + ck, it becomes

alx — xg) + b(y — yg) + c(z — 20) =0 (1.16)
Lumping the constant terms, this can be written
ax + by +cz=d (1.17)
where d = axq + byg + czg.
Example 1.19 Find an equation of the plane passing through (1,3,~6) perpendicular
to the vector 3i — 2j + 7k. .

Solution By (1.16) we can write the equation down at once: 3(x — 1) — 2(y — 3) +
7(z + 6) = 0. This can be simplified to 3x — 2y + 7z = —45.

Example 1.20 Find an equation of the plane passing through (1,2,3) perpendicular to
the line

x—1 y z+5
4 5 6

Solution We recall from Sec. 1.8 that we can find a vector parallel to the given line by
reading off the coefficients in the denominators: 4i + 5j + 6k. This vector is perpen-
dicular to the desired plane, and therefore the equation of the plane is 4(x — 1) +
S5(y—2)+6(z—3)=0.

To be logically complete we should show that any equation of the form (1.17) does
represent a plane, with normal N = ai + bj + ck (assumed nonzero). This is straight-
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forward: Let R, be the position vector of some point satisfying (1.17), as, for instance,
(d/c)k. Then if R also satisfies (1.17), we have R+ N =d = R, *N, s0 (R — Ry) * N = 0,
and we have recovered the form (1.15).

Example 1.21 Find a unit vector perpendicular to the plane 2x + y — 2z = 7.

Solution Reading off the coefficients, we see that 2i + j — 2k is perpendicular to the
plane. Its magnitude is 3, so the desired unit vector is 2i + 4j — 2k. The negative of this
vector is also a correct answer.

Example 1.22 Find the angle between the two planes 3x'+ 4y = 0 and 2x + y — 2z =
5. :

Solution The desired angle equals the angle between the normals N, =3 + 4j and
N, =2i + j — 2k. By the methods of Sec. 1.9,

0 N;*N, 6+4 2
cosl=——"==——=—

IN{ N[ (5)3) 3
The desired angle is approximately 48°.

Example 1.23 In books on analytic geometry it is shown that the distance between an
arbitrary point (x,,y,,z;) and the plane ax + by + ¢z = d is given by the expression

lax, + by, + ¢z, — d|
(@®> + b% + &)

Derive this expression by vector methods.

Solution Let R, be the position vector of a point in the plane, and let R; = x,i +
y1j+ zik and N = ai + bj + ck. The desired distance is the absolute value (distance
is never negative!) of the component of R, — R,, in the direction of N. Hence this
distance is

(R, —Ro)*N| _[R, N —d
IN| NI

which, written out in terms of components, is the expression given above.

Example 1.24 Find the distance between the parallel planes x + y+z =35 and
x+y+z=10.

Solution Take an arbitrary point in the first plane, say (1,1;3), and find its distance to
the second plane by the expression derived in Example 1.23. We obtain

|5—10] _ 53

53

Exercises

1. Find unit vectors normal to the planes
(@ 2x+y+2z=8 d x=5
(b) 4x —4z=0 (e) y=2z+2
(© —y+6z=0 f) x=y
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10.

11.

12.
13.
14.
15.

16.

17.

Find an equation of the plane through the origin perpendicular to 2i — 8j + 2k.

. Find an equation of the plane perpendicular to D and through P, where

D = 10i — 10j + 5k
and P is (1,1,—3).

. Find a plane crossing through (1,3,3), parallel to the plane 3x + y — z = 8.
. Is it possible to find a plane perpendicular to both i and j?
. By vector methods find the distance from the point (3,4,7) to the plane 2x — y —

2z =4,

. Find the distances between the pairs of planes

(@ x+2y+3z=5andx +2y+3z=19

(b) x+y=4andx+y=10

(¢) x =5 and x = 7 (no calculations needed here!)

Determine cos 6, where 8 is the angle between the planes x + y + z =0and x = 0.

. By vector methods, show that the line x =y = 1(z+ 2) is parallel to the plane

2x — 8y + 2z =15

By vector methods find the angle between the line x = y = 2z and the plane x +
y+z=0.

Find the angle between the plane x + y + z =21 and the line x -1 =y +2=
2z + 3.

Find the equation of a line in the xy plane perpendicular to the vector 3i — j.

Find the distance between the lines x + y = 0 and x + y = 5 in the xy plane.

Find a line in the xy plane parallel to 3x + 2y = 4 passing through the point (3,1).
Write the equation of the plane containing the lines

4—z

x:y: 4

and 2x=2—y=z

We are given two distinct parallel planes, and we are told the distance between the
planes is d. A vector v is perpendicular to the planes and its magnitude is 1/d. The
planes intersect the y axis in the points (0,1,0) and (0,4,0) respectively. What is the y
component of v? (There are two possible answers, depending on the two possible
directions of v.)

Find the intersection of the following geometric objects:

(a) the plane 3x + 2y — z = —9 and the line 3x =y — 2= —iz-1
(b) the plane x + y + 2z = 6 and theline —x =2y =4z + 1

(c) the plane 3x — y + z =3 and the plane 2x + z=0

(d) the plane x — y + 2z = 4 and the plane —2x + 2y —4z = 1.

1.11 ORIENTATION

In working in the xy plane, it is conventional to take the positive x

direction to the right and the positive y direction upward. Angles are then
taken to be positive in the counterclockwise direction.
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When working with planes in space, there is no generally accepted
convention for determining the positive sense for angles. The choice is
quite arbitrary. Given any plane in space, we may arbitrarily decree in which
direction we shall consider angles to be positive. The plane is then said to
be oriented.

One way of orienting a plane is as follows. Let A and B be nonzero
~ vectors, not parallel, represented by arrows in the given plane. Let these
arrows extend from the same point. Let A be rotated through the smallest
angle possible to coincide in direction with B. The sense of this rotation is
then said to be “positive” and the plane is thereby oriented. The plane is
oriented by giving the vectors A, B in that order.

For example, the usual orientation of the xy plane is obtained by giving
the vectors i, j in that order. By a 90° rotation the direction of i can be made
to coincide with that of j, and this rotation has the conventional “positive”
sense. We obtain the same orientation by giving the vectors i + j and j in
that order (Fig. 1.22). On the other hand, if we specified the orientation by
giving j, i in that order, we would obtain the opposite orientation, whereby
angles would be measured positive in the clockwise sense (which is not.
conventional, but is perfectly satisfactory).

e
[
+

e

N

.
®

FIGURE 1.22

Another way of orienting a plane is as follows. Let there be given a
single vector that is not parallel to the plane. Let this vector be represented
by an arrow that has its initial point in the plane. Then the terminal point of
the arrow will be on one side of the plane, which we call (arbitrarily) the
positive side. We now take the positive sense for angles in the plane to be
such that a right-handed screw with head parallel to the plane and shank
perpendicular to the plane would advance in the direction of the positive side
of the plane if rotated in the positive sense. (This is independent of the way
in which the screw points.) Alternatively, if we imagine the right hand
grasping the given vector, with thumb pointing in the direction of the
arrowhead, the fingers will curl around the shank of the arrow in the positive
sense of rotation in the plane.
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FIGURE 1.23

In Fig. 1.23 both methods of orienting a plane are illustrated for planes
perpendicular to the y axis. At the left, the plane is oriented by prescribing
two vectors in the plane, A and B, in that order. On the right, the same
orientation is achieved by prescribing a vector C extending from a point
in the plane.

Now let A, B, and C be nonzero vectors, not all parallel to the same plane,
represented by arrows with initial points at the origin (Fig. 1.24). The vectors
A and B determine a plane passing through the origin. If the orientation of
this plane, as determined by A, B in that order, is identical with its orientation
as determined by C, we say that A, B, and C in that order form a right-handed
system. One reason for this terminology is that if the thumb and first two
fingers of the right hand are held so they are mutually perpendicular, the
thumb, forefinger, and second finger form such a system. Another reason is
that if A, B, and C, in that order, form a right-handed system, the rotation of

FIGURE 1.24
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A into B (through an angle less than 180°) will advance a right-handed screw
in the general direction of C. The vectors A, B, and C of Fig. 1.24 form a
right-handed system, as do also the vectors i, j, and k.

Exercise

1. If an oriented plane area is represented by a vector perpendicular to the area, with
magnitude numerically equal to the area, what is the geometrical significance of the
components of the vector?

1.12 VECTOR PRODUCTS

We have seen that the scalar product of two vectors A and B can be
interpreted as the length of A times the component of B parallel to A; in
mechanics, it expresses the work done by a force B exerted through a dis-
placement A, and it is also a very useful tool in analytic geometry. So we
are naturally led to explore the possible advantages of defining another kind
of product, given by the length of A times the component of B perpendicular
to A (ie, [B|sin 0 in Fig. 1.25). Mechanics again lends a provocative
interpretation to this operation.

IB| sin 6

IB] cos 8

FIGURE 1.25

Let us suppose we have a rigid body and, for purposes of reference, we
define a right-handed coordinate system fixed in this body. We interpret B
as a force applied to the body at the point located by the vector A (relative
to the origin, held stationary). Observe that the component of this force
perpendicular to A tends to rotate the body about the axis normal to the
plane of A and B. The rotational effect of this force is enhanced if the point
of application is moved further from the origin, increasing the “leverage” of
the force. In fact, the overall effect is measured by the vector product we
just proposed. Consequently, in physics the torque due to the force B applied
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at the point A is defined to be a vector whose magnitude is this product
(“lever arm times perpendicular force”), and whose direction is perpendicular
to the plane of A and B, so that A, B, and the torque vector form a right-
handed system (ie., if the fingers of the right hand rotate A into B as in
Fig. 1.23, the extended thumb gives the direction of the torque).

Motivated by these considerations, we now define the vector product
of A and B to be the vector

A xB=]A|B|sinOn

where 0 is the angle between the vectors, and the unit vector n is perpendicular
to both A and B, with A, B, and n forming a right-handed system (see Fig.
1.26). Sometimes A x B is called the cross product.

AxB

FIGURE 1.26

Notice that |A x B| is the area of the parallelogram determined by A
and B (computed as base times height). Observe further that because of the
rule determining the direction of n, we have

AxB=-BxA

From these geometric considerations we see that if two vectors are parallel,
their vector product is zero. Of course, A x B is also zero if either A or B
is zero.

As with the scalar product, it is convenient to have a representation of
A x B in terms of the components of A and B. The derivation of such a
formula hinges on the validity of the distributive laws for the vector product,
that is

AxB+C)=AxB+AxC (1.18)
A+B)xC=AxC+BxC (1.19)

The proof of the distributive laws appears at the end of this section as optional
reading. If we accept the laws for now, we can compute the componentwise
expression for A x B easily:
A x B=(A,i+ A,j+ A;k) x (B;i + B,j + Bsk)
= Ali X Bli + A2j X Bli + A3k X Bli
+ A;i % Byj+ A,j x Byj+ Ask x B,j
+ A4i x B3k + A4,) x B3k + 43k x B3k
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The vector products in this expression are easy to evaluate from the defini-
tion; Aqi x B;ji =0, 4,j x B;i = —A,Bk, and so forth. Thus, we finally
arrive at the componentwise expression for the vector product

A x B =(A4,B; — A3B,)i + (A3B; — A;B3)j + (4;B, — A,B)k (1.20)

This formula may be conveniently memorized in determinant form:

i j Kk
AxB=|4, A4, A, (1.20')
B, B, Bj

This symbolic determinant is interpreted to be the vector whose x, y, and z
components are the cofactors respectively of the first, second, and third
entries in the first row.

Example 1.25 Find the vector product A X Bif A = 3i + 4jand B =i + 5k — 2j.

Solution
i j k
AXB=|3 4 0= 20i — 15j — 10k
1 =2 5

For convenience, we list the algebraic properties of the vector product
here:

AxB=—(BxA)
SA+B)xC=5(AxC)+ (B xC)
Ax(sB+C)=s(AxB)+(AxC)

Example 1.26 Find two unit vectors perpendicular to both A = 2i + 2j — 3k and
B=i+3j+k

Solution We have seen that A X B is perpendicular to both A and B. We have

i j ok
AxB=[2 2 —3|=11i—5j+4k
13 1

The length of this vector is 9/2. The desired unit vector is therefore
11 5 . 4
n=——i—-—j+——=Kk
9/2 92 9.2
If we had taken B X A instead we would have obtained the negative of this vector. The
two answers are

i_(l%ii‘ijrLﬁk)

1 18 9
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' Example 1.27 Find the area of the parallelogram determined by A =i + j — 3k and
B = Sk — 6j.

Solution

i Ok
AxB=|1 1 —3|=—13i—5j—6k
0 -6 5

}A X B] = /132 +- 52 + 6% = /230
which is the desired area.

Example 1.28 Find the equations of the line passing through (3,2, —4) parallel to the
line of intersection of the two planes x + 3y — 2z =8,x — 3y +z=0.

Solution Observe that A =i+ 3j— 2k and B =i — 3j + k are the normals to the
planes, and A x B is perpendicular to both A and B. It follows that A x B is parallel to
both planes. Hence A x B is parallel to the line of intersection. We have

. i § k
AxB=|l 3 -2|=-3i-3j—6k
T

Equations of the desired line are

z+4

or, equivalently, x—-3=y-2= 3

Now consider a rigid body rotating about a fixed axis with constant
angular speed w. The angular velocity is represented by a vector « of
magnitude o extending along the axis of rotation with sense determined
by the right-hand rule: if the fingers of the right hand are wrapped about
the axis in the direction of rotation, the thumb points in the direction of
o (Fig. 1.27).

Let us assume that the origin O is on the axis of rotation, and let R
denote the position vector of a particle in the body. Then the velocity v
of the particle is given by

v=0o xR (1.21)

To see this, we first note that |R| sin 6 is the distance of the particle from the
axis of rotation, so v has magnitude a)‘R| sin . Moreover, the velocity v is
necessarily perpendicular to both R and @, and the sense of m is such that
v equals ® x R rather than R x @, as we see from Fig. 1.27.

Example 1.29 A rigid body rotates with constant angular velocity w about the line
x = y/2 = z/2. Find the speed of a particle at the instant it passes through the point
(2,3,5).
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FIGURE 1.27

Solution The vector i + 2j + 2k is parallel to the axis. A unit vector parallel to the
axis is §i + %j + $k. Therefore

o= tolli+3i+3k

(The statement of the problem leaves the sign ambiguous.) The velocity is

-

= +oldi-4i-

[

v=0oxR=+w

b
[SSEISE T
[ N

The speed is

M=ol + 5+ 3 =20

OPTIONAL READING: THE PROOF OF THE DISTRIBUTIVE LAWS

Observe that we only have to prove Eq. (1.18); (1.19) will then follow since

(A+B)xC=—C x (A +B)
— (CxA+CxB)
=AxC+BxC

We begin by proving (1.18) in the special case where B and C are both
perpendicular to A; then, of course, (B + C) is also. In this case it follows
from the definition of the vector product that A x B, for instance, is a vector
that can be formed from the vector B by multiplying its length by the factor
|Al, and rotating it counterclockwise through 90° about A as an axis. In
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Fig. 1.28, think of the vector A as perpendicular to the page, pointing to
the reader. Then B, C, and B + C all lie in the plane of the page, as do the
“rescaled and rotated” vectors A x B, A x C,and A x (B + C).

Now Eq. (1.18) makes a claim about the sum of vectors; geometrically,
it can be interpreted as saying that A x (B + C) is the diagonal of the
parallelogram whose sides are A x B and A x C. This can be seen by
considering the similar triangles resulting from the equal angles and pro-
portional sides in Fig. 1.28.

FIGURE 1.28

To prove Eq. (1.18) in the general case, with no assumptions about the
directions of the vectors, we resolve B and C into their vector components
parallel and perpendicular to A, as in Sec. 1.10 (recall Fig. 1.19):

B=B||+Bl C=C||+Ci
Then it follows from the definition of vector product that
AxB=AxB, AxC=AxC,

(Think this over: Neither the direction nor magnitude of A x B is changed
if we replace B by B,). Furthermore, it is easy to see that the identity

B+C=B,+C)+ B, +C))

resolves the sum B + C into vector components parallel and perpendicular
to A, and therefore

AxB+C)=AxB, +C))

Since we have proved the validity of Eq. (1.18) for vectors perpendicular
to A, its general validity is seen as follows:

AxB+C)=AxB, +C,)=AxB, +AXxC, =AxB+AxC

(Another proof is outlined in Supplementary Problems 22 and 23 at the
end of this chapter.)
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SUMMARY—MULTIPLYING VECTORS

Now we have defined all the essential elements of vector algebra; let us
review their interpretations and applications.

We started by learning how to add two vectors; the sum has the usual
algebraic properties of commutativity and associativity, and it is compatible
with scalar multiplication.

The effect of multiplying two vectors is rather more involved. We have
defined two kinds of multiplication, and they have quite different properties.
If we multiply two vectors by the scalar product, the result is not a vector—it
is a scalar. If we multiply by the vector product, the result is a vector, but
its direction is quite distinct from the directions of the original vectors—
perpendicular to both, in fact. Furthermore, it depends on the order of the
original vectors, changing sign when we switch the order.

The geometric formula for the scalar product of A and B is

=|A| |B| cos 6

where 0 is the angle between the vectors, while the componentwise
expression is

A M B = AlBl + A2B2 + A3B3
For the vector product, the geometric formula is
A xB=|A||B|sinfn

where n is the unit vector perpendicular to A and B so that A, B, and n
form a right-hand system; and the componentw1se expression is most con-
veniently represented

i j k
AXB= Al A2 A3
B, B, B,

From the geometric formulae we saw that a zero scalar product was a test for
orthogonality, while a zero vector product was an indication of parallelism.

Example 1.30 Derive the nonparametric equations for the straight line passing
through Ry = x¢i + yoj + 2k, parallel to V = ai + bj + ¢k, using the vector product.

Solution Recall that in Sec. 1.8 we observed that R = xi + yj + zk would be the
position vector of a point on the line if R — R, was parallel to V.- Setting the vector
product equal to zero

i i k
R-Ry)xV=|x—Xxg y—yo 2—2,|=0
a b c
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we derive the equations

(x = xo)b=(y — yo)a
(y = yo)c = (z — zo)b
(x — xg)c = (z — zg)a

which are equivalent to Egs. (1.9).

The geometric interpretations of the scalar and vector products can be
visualized with the aid of the by-now familiar Fig. 1.29. We see that the
length of the component of B parallel to A can be computed from the
scalar product:

while the length of the perpendicular component is computed from the
vector product:

FIGURE 1.29

To express the vectors B, and B, , we use a unit vector in the direction
of A:

g _ABA A-B
Al JA] A-A

while B, can be computed as the difference
B 11— B - B”

Example 1.31 Derive an expression for B, directly in terms of A and B.

Solution Clearly we need an expression for a vector in the direction of B, . The key
here is to analyze the vector (A x B) x A.

Referring to Fig. 1.29, we see that A x B points toward the reader, perpendicular
to the page. Now taking the vector product of this with A, we find that the resulting
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vector falls back in the plane of A and B, and in the direction of B, ! Keeping in mind
that the angle between A x B and A is 90°, we compute the length:

[(A x B) x A| = |A x BJ||A|sin 90°
= (|A| |B| sin 6) |A| 48]
= |A|*|B| sin 6

Since |B,| = |B|sin 6, we have

B_(AxB)xA_(AxB)xA
AP A-A

The parallel-perpendicular decomposition of B can thus be expressed

_A~BA+(AxB)xA

B=
A-A A-A

Exercises

Find A x B where

(@ A=3i—j+2k,B=i+j—4k

b)) A=2i+j+7k,B=3i+j—k

) A=j+6kB=k+2j—i

dA=iB=j

(e) Bx Aisknowntobei—j

Find the area of the parallelogram determined by 3i + 4jand i + j + k.

Find the area of the triangle with vertices (1,1,2), (2,3,5), and (1,5,5).

4, Find AxB if A=i—j+k and B=3i—3j+ 3k What is the geometrical

significance of this answer?
Find a unit vector perpendicular to both 3i + jand 2i — j — 5k.

6. By vector methods, find the equations of the line through (2,3,7) parallel to the line

10.

11.

12.

of intersection of the planes 2x + y +z=0,x — y + 7z = 0.

Find equations of a line perpendicular to the lines x = y = z, x = 2y = 3z, passing
through the origin.

Compute (A x B) x C and also A x (B x C), given that A = 2i + 2j, B =3i —
j + k, and C = 8i. Does the associative law hold for vector products?

By vector methods, determine the equation of the plane determined by points
(2,0,1), (1,1,3), and (4,7,—2).

Find a unit vector in the plane of the vectors A =i + 2j and B = j + 2k, perpen-
dicular to the vector C = 2i + j + 2k.

By taking the vector cross product of (cos )i + (sin 6)j and (cos )i + (sin y)jand
interpreting geometrically, derive a well-known trigonometric identity.

If A, B, and C are vectors from the origin to points 4, B, and C respectively, show
that (A x B) + (B x C) + (C x A) is perpendicular to the plane ABC. [Hint:
Consider (B — A) x (C — A).]
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13. Find the distance from the point (5,7,14) to the line passing through (2,3,8) and
(3,6,12). (Hint: Use a vector cross product.)

14. Find r and s if (2i + 6j — 27k) x (i + rj + sk) = 0.

15. Given that A-B =0 and A x B =0, what can you conclude about the vectors
A and B?

16. Given that A and B are parallel to the yz plane, that |A| = 2,|B| = 4,and A - B =0,
What can you say about A x B?

17. (a) Do the lines x/3 = y/2 = z/2 and x/5 = y/3 = (z — 4)/2 intersect ?
(b) Find equations for a line perpendicular to both of these lines.
(c) What is the distance between these lines?

18. If @ points in the direction of i + j + k and the body rotates about an axis through
the origin with angular velocity 10\5 rad/sec, find the locus of points having speed
20 ft/sec. What does this locus represent?

19. Supply the missing details of the proof of the distributive law for vector products.

20. If u, v, and w are mutually perpendicular unit vectors and u x v = w, show that
v=wxuandu=v x w.

1.13 TRIPLE SCALAR PRODUCTS

The triple scalar product of three vectors, A, B, and C, is defined to be
[ABC]=A"-(B x C) (1.22)

Notice that the parentheses can be omitted because there is no other sensible
way of interpreting A + B x C. Using the componentwise expression derived

in the previous section for the cross product, we have
[AB,C] = 4,B,C; — 4,B;C, + 4,B,C, (1.23)
— A3B,C5 + A3B,C, — A3B,C, '

Alternatively, from the determinant expression for the cross product we can
express [A,B,C] in the form

A4, A, A
[ABC]=|B, B, B, (1.23')
G, G Gy

The triple scalar product has a geometric interpretation. Consider the
parallelepiped with A, B, and C as coterminal edges, as in Fig. 1.30. The
base of this solid is a parallelogram whose area is given, as we saw previously,
by |B x C|. Its height is the length of the component of A perpendicular to
the base, which can be regarded as the component of A parallel to B x C, or
]A] cos 0, as shown in Fig. 1.30. To be precise we should say this height is
the magnitude of |A| cos 6, because cos § would be negative if A pointed to
the opposite side of the plane of B and C, i.e, if A, B, and C formed a left-
handed system. Thus we see that the volume of the parallelepiped, computed
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BxC

FIGURE 1.30

as base area times height, equals the magnitude of |B x C| cos 6|A|. But
this is precisely A - B x C, the triple scalar product! Summarizing, we can
say that the volume of the parallelepiped with coterminal edges A, B, C is
given, up to sign, by [AB,C]. Furthermore, [AB,C] is positive if and only
if A, B, and C form a right-handed system.

Example 1.32 Compute [AB,C]ifA=2i +k B=3i+j+k and C=i+j+4k
Solution
[ABC]=[2i+k3i+j+ki+j+4k]

2 01
31 1|=8+3-1-2=8
11 4

Example 1.33 Compute [i, j, i + 2j].

Solution
1 00
[Lji+2j]=l0 1 0|=0
1 20

(The vectors are coplanar, so the parallelepiped has zero volume.)

We now list some properties of the triple scalar product that can be
verified from Eq. (1.23). They will be familiar to students who have studied
determinants.

First, notice that the absolute value of the triple scalar product does not
depend on the order of the vectors, but the sign changes whenever two of
the vectors are switched:

[AB.C] = —[BA.C] =[B,CA] (1.24)

This shows that the position of the dot and cross can be changed freely,
because

A‘BxC=[ABC]=[CAB]=C-AxB=AxB-C (125
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Second, the triple scalar product is linear in each of its factors:

[sA + B, C,D] = s{A,C,D] + [B.C,D]
[A, sB + C, D] = s[A,BD] + [A,C,D] (1.26)
[A, B, sC + D] = s[A,BC] + [ABD]

Third, we have the obvious identity ,
[Lik] =1 (1.27)

Clearly, if any two of the vectors A, B, or C are equal, the triple scalar
product will be zero (the parallelepiped will have zero volume). Furthermore,
if any one of the three vectors is replaced by the sum of that one vector
with a linear combination of the other two, the triple scalar product is
unchanged. For example, if we replace A by A + sB + tC, where s and ¢
are any numbers whatsoever, then [A + sB + tC, B, C] = [A,B,C]. The
proof is easy: ’

[A + sB + tC, B,C] = [AB,C] + s[BB,C] + {[C,B,C]

and the last two terms are zero.

It is interesting to notice that these properties make it possible to
evaluate any scalar triple product without using Egs. (1.23) or (1.23"). For
example, let A =i+ 3j, B=1i+k, and C = —Kk; then

[ABC] =[i+3ji+k —k]
=[ii+k —k]+[3ji+k —k]
(i, —k] + [ik,—k] + [3ji,—k] + [3j.k — k]
= —[iik] — [ikk] — 3[jik] — 3[jkk]
= —3[jik] =3[ijk] =3

As a final note, let us show how the scalar triple product can be used to
relate the parametric and nonparametric equations of a plane derived in
Sec. 1.10. The parametric equatton was based on specifying a point in the
plane ‘with position vector Ry = x¢i + y,j + zok, and two vectors A and B
parallel to the plane. Clearly R = xi + yj + zk will be the position vector
of a point in the plane if the parallelepiped formed by R — Ry, A, and B
is flat, i.e, has zero volume. Hence, the equation for this plane can be
expressed

[R—Ry, A, B] =0

Inserting the definition (1.22) for the triple scalar product, we identify A x B
as being a vector N normal to the plane, and we have

(R—Ry)*N=0

This agrees with Eq. (1.15), the nonparametric equation for the plane.
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Exercises

. Find the triple scalar product [A,B,C] given that

(a) A=2i,B=3j,C=75k

b)) A=i+j+k B=3i+jC=5k—j

() A=2i—j+kB=i+j+k C=2i+3k

dA=kB=iC=j

Find the volume of the parallelepiped whose coterminal edges are arrows

representing the vectors 3i + 4j, 2i + 3j + 4k, 5k.

Find the volume of the parallelepiped with coterminal edges AB, AC, and AD,

where 4 = (3,2,1), B= (4,2,1), C = (0,1,4), and D = (0,0,7).

Find the volume of the tetrahedron with coterminal edges representing the vectors

i+j, i—j, 2k Ilustrate with a sketch. (Note: The volume of the tetrahedron is

one sixth the volume of the parallelepiped having the same coterminal edges.)

Find the area of the parallelogram in the plane with vertices at (0,0), (1,1), (3,4), (4,5).

(Hint: Convert this to a three-dimensional problem, finding the volume of the

parallelepiped with this parallelogram as base, taking the third edge to be of unit

length along the z axis.)

Find the equation of the plane passing through the origin parallel to the vectors

A=3i+j—2kand B=i—j+ 5k

Find the equation of the plane passing through (3,4,—1) parallel to the vectors

A=2i+j+kand B=i- 3k

(a) Show that the vectors i — j, j — k, k — i are parallel to a plane.

(b) Find an equation of the plane passing through the origin that is parallel to
these three vectors.

Consider
A=i+j+k B=i
C=C1i+C2j+C3k

(a) If C, = 1, C, = 2, find C5 to make the three vectors coplanar.

(b) If C, = —1 and C, = 1, show that no value of C; can be found to make the
three vectors coplanar.

(c) Discuss the geometrical reason for the result in part (b).

Find the altitude of a parallelepiped determined by A, B, and C, if the base is taken

to be the parallelogram determined by A and B, and if

A=i+j+k
B=2i+4j-k
C=i+j+3k

(Hint: Think of the geometrical interpretation of [A,B,C]/|A x B|.)

Sketch the vectors A =i+ j, B =1+ 2j + 2k, and C =i + 3k. Determine from
your sketch whether or not A, B, and C in that order form a right-handed system.
Check by computing the sign of [A,B,C].

What can you conclude about nonzero vectors A, B, C, and D, given that
[(A x B)- C| + |(B x C)-D|=0?
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13. (a) Let u, v, and w be mutually perpendicular unit vectors, forming a right-handed
system. Show that the vector A =i x u + j x v + k x w makes the same angle
with i that it does with u.
(b) Find a vector extending along the axis of the rotation that carries i, j, and
k into u, v, and w respectively.
14. Show that an arbitrary vector V can be expressed in terms of any three noncoplanar
vectors A, B, and C, according to

V.B,C V.CA V,A.B
v_[VBC, [VCA]_  [VAB]

" [AB.C] [AB.C] [AB.C] ¢ (1.28)

(Hint: We know that V can be expressed as aA + bB + ¢C; to find a, take the
scalar product of V with B x C.)

15. (Review) State which of the following have meaning. Do not evaluate. Assume
B#0.

(a) A x 5B (f) A-B)x (C:-D)
(b) [A, 3B,C - D] (8 Ax[(B-C)D]
© (AxB)-C (h) A/|B]

(d) (A xB)-(C-D) (i) A/B

{e) (A-B)x (C xD)

1.14 VECTOR IDENTITIES

Of the following identities, the first is the most important because the
other three can be derived from it fairly easily.

AxBxC)=(A-C)B-(A-B)C (1.29)
(AxB)xC=(A-C)B—(B-C)A (1.30)
(A x B) x (C x D) = [A,C,D]B — [B,.C,D]A (1.31)

AxB):(CxD)=(A-C)B-D)—(A-D)B- () (1.32)

In formula (1.29), if V= A x (B x C) is not the zero vector, then it
must be perpendicular to B x C. Since B x C is itself perpendicular to both
B and C, it follows that V must be in the plane of B and C, and since they are
nonzero vectors that are not parallel (otherwise V would be the zero vector),
V must be a linear combination of B and C. Thus V = mB + nC for suitable
scalars m and n. The fact that m = A - C and n = — A - B is not obvious, of
course. The actual verification of (1.29) can be accomplished by working out
the componentwise expression for each side of the equality. We leave this
laborious computation to the energetic reader. (Or he can read Sec. 1.15.)

We suggest the following device for memorizing (1.29). As we observed,
A x (B x C) must be expressible as a linear combination of B and C. If the
student can only remember that the coefficients in this expression are scalar
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products of the other two vectors, and that the terms have opposite signs,
he will be able to write

AxBxC)=+[A-C)B—(A-B)XC]
To get the proper sign, use the familiar bvectors i, j, and k; thus
ix(ixj)=ixk=—j=2[(-)i—G-Di]
so the plus sign is correct. [This also works for formula (1.30), of course.]
Formula (1.30) is easily proved by observing
AxBxC=-Cx(AxB)
and using (1.29) for the right-hand side.
To derive (1.31), let U = C x D, whence
AxB)xU=(A-UB-(B-UA=[ACD]|B-[BCD]JA
To derive (1.32),
(AxB)-U=[ABU]=A-BxU)=A-[Bx(CxD)]
=A-[(B-D)C—(B-C)D]
=B-DA-C)—B-C)A-D)

The reader is advised to attach a permanent bookmark in this section,
as an aid in referring to the identities in the future.

Exercises

1. Derive the identity
(A x B) x (C x D)=[ABD]C — [ABC]D
2. Derive the identity
(A xB)-(Bx C)x(Cx A)=[ABC]?
3. Derive the identity
AxBxC)+Bx(CxA)+Cx(AxB)=0

4. Verify formula (1.29) by working out the componentwise expression.
5. Ifthe vector o in Fig. 1.27 is constant, then the acceleration of a particle with position
vector Risa = @ x (@ x R). Simplify this expression.
6. Are any of the following identities generally valid for vectors?
(a) AxB=BxA
b)) (AxByxC=Ax(BxC(C)
(c) AxB=Ax Cifandonlyif B=C
(d AxB=0ifand onlyif A=00rB=0
7. Simplify: |A x B|*> + (A - B)> — |A]* [B|
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1.15 OPTIONAL READING: TENSOR NOTATION

The use of distinguished symbols such as A, A x B, etc., to denote
vectors and vector operations provides an excellent and often suggestive
shorthand for expressing laws in geometry and physics. However, when we
ultimately come down to the actual computations of a concrete problem,
these expressions must be dealt with componentwise. Furthermore, the
verification (and discovery!) of some of the more complicated vector identities
such as those appearing in the previous section is often accomplished most
efficiently by dealing with the components. In this section we shall introduce
some notation which often facilitates this process; it is widely known as
tensor notation. Although we do not intend to discuss tensors themselves
here, we see no reason to designate the notational system by anything other
than its proper name.

The boldface vector symbol A suggests, as we have said, a quantity with
magnitude and direction; this quantity is equally well represented by three
numbers, A4,, 4,, and A;, the components of the vector. Every statement
about the vector is actually a statement about its components. Thus A = B
means A, = By, A, = B,, and A; = By; briefly,

A; =B; (i=123) (1.33)

Expressed simply, the basic idea in tensor notation is to try to write all
vector equations in component form, but using dummy subscripts such as i
in Eq. (1.33), rather than explicitly writing out the equation for the first
component, then the second, then the third. (Whether or not this is always
possible will not be discussed here. For now, we will be satisfied with using
tensor notation when we can.) We will indicate the components of a vector
A by A;, or (A); if it is more convenient; we shall regard the parenthetical
phrase “(i = 1,2,3)” as understood, and delete it. Let’s try some examples.

The expression of the fact that vectors add componentwise becomes

(A+B),=4,+B
That is, the ith component of A + B is the sum of the ith components of
A and of B. Scalar multiplication is expressed
(sA); = s4;
The associative law for vectors, expressed componentwise, merely reduces to
the associative law for numbers:
[(A+B)+Cl,=(A+B);+ C;
= (14l + B,) + Ci
=4+ B+ C)
=[A+®B+O);

The condition that R lie on the line through the tip of V and parallel to
W is expressed

Ri=V, +1tW,
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For the scalar product, we have
A-B=AB, + A,B, + A;3B;
This can be compacted by using the Greek letter  to denote summation.
For any set of n numbers {4} (I =1,2, ..., n), we abbreviate
at+a,+ - +a,

by the expression
2 4
=1
Thus our scalar product becomes
A-B=) AB (1.34)

The componentwise expression of the cross product is a bit complicated.
Observe that each component of A x B is a sum of products of components
of A times components of B. If we (conceptually) form all the products
{A;B,}, we can say that the ith component of A x B is a linear combination
of these with coefficients +1, —1, or O (if the term doesn’t actually appear).
So by defining ¢;;, appropriately, we can write

3 3
(AxB)=Y Y &uAd;B (1.35)

j=1k=1

& is the coefficient of A;B, in the ith component of A x B. Comparison
of this with expression (1.20) in Sec. 1.12 shows

+1 if (ijk) is either (123), (231), or (312)
g =1—1 if (ijk) is either (321), (213), or (132) (1.36)
0 otherwise
In fact, &, is the coefficient of A, in the determinant
iy Ay A
K1 U2 M3
Ny H2 M3
a fact which we could have anticipated by comparing the expression (1.35)

with the determinant formula for the cross product in Sec. 1.12.
A few observations about the symbol ¢, are in order.

(i) & = 0 if any of the subscripts are equal.
(ii) &x = &jxi = &xj» i€, the subscripts can be permuted cycligally.
(iii) &3 = — &, 1.€., the sign changes if two subscripts are switched.
Of course, the scalar product A - B is also composed of products of
A’s components with B’s components, and if the expression (1.34) weren’t
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so simple already, we would write it

3 3
A * B = z Z 5lelB]
i=1j=1
1 ifi=j
where 0 = {0 otherwise (1.37)

The effect of §;; in an expression is simple if the subscripts are summed; since
d;; = 0 unless i = j, one can merely drop the § and substitute i for j. Thus,

3 3 3
Y 2 0;AB;= 3 A;B; (=A-B)

i=1j=1 ji=1
For this reason, §;; is sometimes called the substitution tensor. It’s also
known as the “Kronecker delta.”

Example 1.34 Show that the triple scalar product can be computed as a determinant.

Solution Intheexpression A - B x C, we first use tensor notation for the scalar product :

3
A‘BxC=7Y ABxC)
i=1

Now using (1.35) for the vector product,

3 3 3

A'BXC=Z A; Z Z & B;iCi
i k=1

=1 j =

=1
3 3 3
=3 3 Y &;4BCs (1.38)
i=1j=1k=1
As we observed earlier, this is the expansion of the determinant

Ay Ay A;
B, B, Bs
Cl C2 C3

Notice that every time we have used the summation symbol I, the
subscript over which we were summing occurred twice in the term expressing
the addend; i is repeated in (1.34), j and k are repeated in (1.35), etc. This
happens so often that the following convention is used in tensor notation:
whenever a subscript appears more than once in a single term, it is understood
that this particular term is to be summed over all values (1,2, and 3) of the
repeated subscript. Scalar products are thus written A,B;, and the ith com-
ponent of A x B is ¢;4;B,. In fact, we have §; = 3. Exceptions to this
rule must be explicitly indicated.

The manipulation of expressions involving more than one cross product
is aided by the following identity:

8ikm‘gpsm = 5ip 5ks - 5is 5kp (139)
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(Observe that m is summed over.) To prove this, we notice that the right
hand side is zero unless it has the form 1 — 0 or 0 — 1. Thus
1 ifi=pand k=sbutis#s(ork#p)
OipOks — 01 Ogy = { — 1 ifi=sandk=pbuti#porks#s)
0 otherwise

On the left of (1.39), ¢ is zero unless all subscripts are different; in which
case, i # k and p # s and m must be different from i, p, k, or s. So, there is
actually only one (at most) nonzero term in the sum over values of m! The
product is + 1 if (ikm) is a cyclic permutation of ( psm), which can only happen
ifi = pand k = s; and — 1 results if (ikm) is in the opposite order as (psm),
which requires i = s and k = p. Comparing these conditions, we see that
the left and right-hand sides of (1.39) are equal.
Example 1.35 Simplify A x (B x C).
Solution The ith component is

8ijkAj(B x C) = g4 jgklmBlCm

= & CuamA;BiCrm

Remember that we are summing over repeated subscripts. First we sum over k. Since

the other terms do not depend on k, we can compute &;j&y,,; this the same as &
which, by Eq. (1.39), is 0;; 0, — 6:» 0;;. So the above expression equals

(6310 jm — Oim O ) A;Bi1Cor
Now sum out the substitution tensors one at a time. Summing over m we get

54A4;B,C; — 8,AB,C;
and, summing over /,
A;C;B; — A;B,C;

Identifying the scalar products, we recognize that this is the ith component of
(A - C)B — (A - B)C. We have proved formula (1.29)!

Example 1.36 Simplify (A x B) x (C x D).
Solution The ith component is
Sijk(A X B)](C X D)k = gijk‘gjmnAmBnekpqCpl)q

If we sum over j first, only the first two factors are involved. Rewriting them as &;;&u;,
we use (1.39) to transform the expression to

(5km 5in - 5kn 5|m) AmBngkququ
Summing over the subscripts of the substitution tensors is easy, yielding
A Bigp,CpDy — AiBitinCpDy

Now we identify &;,,4,C,D, as the triple scalar product, recalling Eq. (1.38); similarly
for &,,,B,C,D,. So we are left with

[A,C,D]B; — [B,C.D]4;
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which is the ith component of [A,C,D]B — [B,CD]JA. We have “discovered”
formula (1.31).

Exercises

1. Simplify (A x B) - C.
2. Simplify (A xB) - (C x D).
3. Simplify (A x B) - (B x C) x (C x A)

Supplementary Problems

1. Ifthe vector V = 2i + 3j represents the segment 4B, and the midpoint of ABis (2,1),
find A and B.

2. If Vis a unit vector in the xy plane making an angle of 30° with the positive y axis,
express V in terms of i and j (two solutions).

3. Derive a formula for a vector that bisects the angle between two vectors A and B.
4. Determine s and ¢ so that C — sA — ¢B is perpendicular to both A and B, given that

A=i+j+2k
B=2i—j+k
C=2i—j+4k

5. Prove that [A[B + [BJA is orthogonal to |A|B — [BJA, for any vectors A and B.
6. Consider the cube in Fig. 1.31. Find the angles between:

(a) the face diagonals AB and AC,

(b) the principal diagonal AD and the face diagonal 4B, and

(c) the principal diagonal AD and the edge AE.

7. Let
A=3i+j+2k
B=4i+j+ 5k
C=i—-j+k

C

FIGURE 1.31
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10.
11.
12.

13.

14.

15.

16.
17.
18.

19.

20.
21.

22.

23.

24,

Vector Algebra CHAP. 1

Find A x B, [A,B,C], |A x B|, and the distance from the tip of C to the plane
through the origin spanned by A and B.

. Given A # 0, isittruethat A-B=A-Cand A x B=A x Cimply B=C?
. Prove, for any vector A,

ix(ixA)+jx(jxA) +kxkxA)=—24

Prove:if A+ B+ C=0,then A x B=B x C=C x A. Interpret geometrically.
Simplify [A x (A x B)] x A+ C.

Express 2i — j + 3k as the sum of a vector parallel to V, plus a vector perpendicular
to V, with V = 2i + 4j — 2k.

Suppose the line ¢, passes through the points (5,1,—2) and (2,—3,1), and the line
¢, passes through (3,8,1) and (—3,0,7). Are these lines perpendicular, parallel,
coincident, or none of these?

Find the point(s) of intersection of the lines

/10 R=2i+3j+3k+(i—2j+ 5k)
x+3 y+1

e _

2 3 “

£y

What is the distance from the origin to the plane intersecting the x, y, and z axes
atx =a, y = b, and z = c, respectively?

Find the distance between (1,2,3) and the plane 2x — 2y + z = 4.

Find the distance between the planes 2x + y +z=2and2x + y + z = 4.

Under what conditions can one find a unique vector X that solves both equations

A xX=B, C-X=s

Prove the following theorem of Desargues. Given two (nondegenerate) triangles
ABC and DEF with the property that the line through AD, the line through BE,
and the line through CF have a point in common; moreover, let the lines through
AB and DE intersect at P, the lines through BC and EF intersect at Q, and the lines
through AC and DF intersect at R. Then P, Q, and R are collinear.

Prove the converse of Desargues’ theorem in Exercise 19.

Starting with arbitrary A, and B, define the sequence of vectors A, by A,;; =
B x A,. What is the ultimate behavior of the sequence?

Devise a geometric proof of Eq. (1.25) based on the interpretation of the triple
scalar product as a volume.

Construct another proof of the distributive law for the vector product, based on the
interchange of x and - (see previous exercise) and the distributivity of the scalar
product. (Hint: Derive the identity

D' AxB+C)=D-AxB+D-AxC

and then let D be i, j, and k, in turn.)

Prove: the diagonals of a rectangle are perpendicular if, and only if, the rectangle
is a square.
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25. Describe the set of points located by R such that
R—-a)'R+a)=0

where a is fixed. (Hint: Draw a diagram.)
26. Given two nonintersecting lines

w
w
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find points P on the first line and Q on the second so that PQ is perpendicular to

both lines.

27. Prove: the sum of the squares of the sides of any quadrilateral, minus the sum of
the squares of the two diagonals, equals four times the square of the distance

between the midpoints of the diagonals.



CHAPTER 2

Vector Functions of a
Single Variable

2.1 DIFFERENTIATION

The theory of vector functions parallels that of real-valued functions.
A vector-valued function F(t) is a rule that associates a vector F with ¢ach
real number ¢ in some set, usually an interval (t; <t < ¢t,) or a collection of
intervals. For example, F() = (1/t)iis defined for — oo <t <0and0 <t < c0.

The concept of a limit can be applied to vector functions. The expression

lim F(r) = A 2.1
t—to
means that, given any positive number ¢, no matter how small, one can find
a positive number & such that |F(f) — A| < & whenever 0 < |t — | < 4.

This has a simple intuitive meaning. It means that the magnitude of
F(t) is approaching the magnitude of A, and that (if A is nonzero) the angle
between them is approaching zero (see Fig. 2.1). Equivalently, the components
of F(¢) are approaching the components of A.

The definition just given is identical to that given in calculus books for
real-valued functions, except that the expression |F(f) — A| now refers to the
magnitude of a vector rather than to the absolute value of a number.

A vector function F is said to be continuous at t, if

lim F(t) = F(¢p) (2.2)

t—tg
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F(n-

F@®

FIGURE 2.1

It is said to be differentiable at t, if the limit

. F(to + A1) — F(to)
lim ——M———

2.3
At—0 At 23)

exists; this limit is then called the derivative of F(t) at t, and is written F'(t,)
dF o .
or I (to). The derivative is also a vector function.

If F(¢) is continuous (or differentiable) at every point t for which it is
defined, we shall simply say F(t) is continuous (or differentiable).

The fundamental theorems concerning differentiation of vector-valued
functions are similar to those for real-valued functions, except that when
differentiating the vector product of two vector functions, one must be
careful to preserve the order of factors, since the vector product is not a
commutative operation.

THEOREM 2.1 If F and G are differentiable vector functions, then so
also is their sum F + G, and the derivative of the function F + G is
the sum of the derivatives of F and G respectively,

dF aG

—(F +G)= dz

(2.4)

THeOREM 2.2 If F is a differentiable vector function, and s is a differen-
tiable scalar function, then the product sF is a differentiable vector
function, and

d ds dF

E(F)—gFﬂ-sE (2.5)

THEOREM 2.3 If F and G are differentiable vector functions, then F - G
is a differentiable scalar function, and
dF dG

(F G)=—-G+F: I (2.6)
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THEOREM 2.4  If F and G are differentiable vector functions, then F x G
is also a differentiable vector function, and

d dF dG
G EXG) =" xG+Fx—’ 2.7)

The reader who is familiar with the proofs of the sum and product
formulas of elementary calculus will have no difficulty filling in the proofs
of these theorems.

Example 2.1 Prove Theorem 2.4.
Solution With the definition of the derivative in mind, we write

F(t + At) x G(t + At) — F(t) x G(1)
At

_[F(t+A) - F@)] x G(t + At) F() x [G(t + A1) — G(1)]
B At At

As At — 0, the right-hand side approaches a limiting value given by

dF G
G+ Fx —
a Ty

. - . d
Since the limit of the left-hand side is I (F x G), we have proved the theorem.

It follows from (2.4) and (2.5) that if
F(r) = P(t)i + Q(1j + R(Hk
then
F()=P@®i+ Q()j+ R(k 2.8

Thus, vector differentiation is like scalar differentiation, treating i, j, and
k as constants.

Example 2.2  Let F(t) = i + 2j — k. Then F is a constant vector-valued function, and
its derivative with respect to ¢ is identically equal to the zero vector for all ¢.

Example 2.3 1f F(t) = sin ti + cos tj + tk, then F/(f) = cos ti —sin tj + k
Example 2.4 1 F(t) = £*j — k, then F(1) = 3%,
Example 2.5 1f F(t) = 0, then F(r) = C, where the constant C is a vector.

Example 2.6 Prove that, if F(r) has constant nonzero magnitude (varies only in
direction), then F'(¢) is either the zero vector or it is a nonzero vector perpendicular to
F(t).
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Solution If |F(t)] = constant, then we must have
F - F = constant

and differentiating with respect to ¢, using (2.6), we have

dF o dF
a T
dF
P el
at

Hence the scalar product of F with dF/ds is identically zero. This can happen only
if the vectors F and dF/dt are perpendicular, or if one of them is the zero vector. This
fact is well worth remembering: the derivative of a vector of constant length is
perpendicular to the vector, or zero.

Exercises

1. Let F(t) =sinti+cos tj + k.
(a) Find F'(¢).
(b) Show that F'(¢) is always parallel to the xy plane.
(c) For what values of ¢ is F'(¢) parallel to the xz plane?
(d) Does F(t) have constant magnitude?
(e) Does F'(t) have constant magnitude?
(f) Compute F'(z).
2. Find F'(¢) in each of the following cases.
(a) F(r) = 3ti + £3j
(b) F(t) =sinti+ e 'j+ 3k
() FO=(li+j+ k) x (3i+j—k)
(d) F(t) = (sin ¢ + £3)(i + j + 2Kk)
() Fi)=3i+k
3. Find f'(t) in each of the following cases.
(a) f(t) = (3ti + 5t%j) - (ti — sin t )
(b) f{t) =260 + 26j — K|
© fO=[G+j—2k) x(3tYi+1)] -k

d dR 2
4. Show that - R x — ) =R xd—li.
dt dt dt?
5. Given the three vectors A = 3i + 2j + 6k, B = 3i + 4k,and C = 2i — 2j + k, evaluate
(@) |A| (& Ax(BxC)
(b) A-B d
(c BxC wh¢A+m)
d B-BxC

(&) [ABC] N 4
(1) A/[B] (@) 7 B x 0



62 Vector Functions of a Single Variable CHAP. 2

2.2 SPACE CURVES, VELOCITIES, AND TANGENTS

In the first chapter, we showed that the parametric equations of a line
can be written in vector form

R=R, +tV 2.9)

Here R, is the position vector of a fixed point on the line, V is parallel to the
line, and as ¢ assumes values from — oo to + oo, the tip of the vector R traces
out the line in (x,y,z) space. We can also regard (2.9) as defining R as a
vector function of r (whose derivative is, of course, V).

In this section we shall consider equations of the form R = R(z) where
the function R(z) is more complicated than Eq. (2.9). Of course, the equation
R = R() can be written out in terms of its components, giving the system
of equations

x = x(1)
y =y (2.10)
z = z(1)

where x, y, and z are simply real-valued functions of t.

As t increases from its initial value ¢, to the value t,, the point (x,y,z)
[ie., the tip of the position vector R(f)] traces out some geometric object in
space. In the case of Eq. (2.9), the object is a segment of a straight line. For
more complicated (continuous) vector functions, this locus of points will be
some more general kind of one-dimensional object which we can call a space
curve or an arc. [We say it’s one-dimensional because any point on it can
be located, via the continuous function R(t), by specifying the single number
t.] We use the term “curve” even if the trace of R(¢) is a straight line.

Thus we have associated with every continuous vector function R(¢) a
curve in space, which is the set of values assumed by R(r) as ¢ varies over an
interval. Notice that this is quite different from graphing x, y, and/or z as
functions of t; the curve traced by R(z) is a threadlike collection of points
in (x,y,z) space. One cannot read, from the curve alone, the value of ¢ cor-
responding to a given point. So the curve itself contains much less infor-
mation than the function R(t). Remember that as far as the curve is concerned,
tisasort of invisible dummy variable, which we have glamorized by awarding
it the officious title “parameter.”

Remember also that there are any number of different parametrizations
for a given curve. For example, if W = 1V, the function

R,(1) = Ry + tW

traces out exactly the same straight line as (2.9) for — oo <t < o0, as does
the function
R,(t) =Ry + tan tW

for — /2 < t < n/2. Thus we must keep in mind that many different functions
may parametrize the same curve.
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R
dt

AR

(x,,2) > At

R® R(t+4))

0,0,0)

FIGURE 2.2

It is especially useful to think of (x,y,z) as the location of a particle
movmg through space, with the parameter ¢ representing time. During a
time interval of duration At, the position vector of the particle changes from
the value R(¢) to a new value R(t + At). The displacement of the particle
during this interval of time is

AR = R(z + At) — R(t) = Axi + Ayj + Azk (2.11)

If the displacement is divided by the scalar At, we obtain the average
velocity of the particle during the time interval,

AR Ax. Ay. Az

A oA A T A (2.12)

(In Fig. 2.2, we take At less than unity; hence the vector AR/At is greater in
magnitude than AR))

If R is differentiable, the average velocity AR/At tends to a limit as
At tends to zero. This limit is, by definition, the (instantaneous) velocity v:

, dR dx . dy. dz
v(t) = R'(t) = o dr i+— 79 i+ i k (2.13)
The magnitude of v is called the speed; it may be denoted v.

Figure 2.2 seems to indicate that the velocity vector dR/dt is tangent to
the curve. Let us explore this further. Referring to Fig. 2.3, we say informally
that the line ¢, is tangent to the curve at P if the angle 6, between ¢, and
the secant line #, determined by P and Q, goes to zero as Q0 approaches P
along the curve; that is, the direction of the secant line of /, approaches
that of Z, as Q approaches P.
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FIGURE 2.3

If we try to apply this to the situation in Fig. 2.2, we identify the direction
of the secant line as that of AR/Az. Thus, as At goes to zero the secant line
must have a limiting direction, namely that of dR/dt, unless, of course,
the latter is the zero vector, which has no direction. We have shown the
following: if the vector function R(t) has a nonzero derivative at t,, then
the curve parametrized by R = R(¢) has a tangent at R(t,) whose direction
coincides with that of dR/de. In short, dR/dt is tangent to the curve.

It is conventional to denote by the letter T a unit vector tangent to a
curve. Such a T is defined by the expression

_ (dx/do)i + (dy/dt)§ + (dz/dt)k
J(dx/de? + (dy/de)? + (dz/dt)?

obtained by dividing the above vector by its own magnitude.

(2.14

y

A

FIGURE 2.4
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Example 2.7 Determine the unit vector tangent to the arc x =cost, y =sint, z =0,
at(a)t =0;(b) t = n/2.

Solution The answers are obviously (a) j, (b) —1i, as can be seen from Fig. 2.4. These
answers can be obtained also by use of Eq. (2.14), which gives

—sinti+ costj L. .
T=—r—————"= —sinti+costj

J/sin? t + cos® t

At t=0, we have T= —sinOi+cos0j=j and at t=7/2, T = —sin (n/2)i +
cos (n/2)j = —i.

Example 2.8 Find the unit vector tangent to the curve x = t, y = t2, z = 3, at the point
(2.4.8).

Solution By Eq. (2.14) we have
i+ 265+ 3%k

o Ji+4Z o

When ¢t = 2 we have (x,y,2) = (2,4.8) and T = (1/\/161)(i + 4j + 12k).

We now wish to introduce some nomenclature for describing the curves
pictured in Figs. 2.5 to 2.8. The simplest of these is the one in Fig. 2.5, which
has a continuously turning tangent at every point and no self-intersections.
From the above discussion we can see how to guarantee these properties.

FIGURE 2.5

Pi=p,

FIGURE 2.6

FIGURE 2.7
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Q

FIGURE 2.8

Accordingly, we say that an arc is smooth if it has a parametrization R = R(z),
t; <t <t,, satisfying the following conditions:

(i) dR/dt exists and is a continuous function of ¢, for all values of ¢t in
the interval t; <t <t,,
(ii) to distinct values of ¢ in the interval t; <t < t, there correspond
distinct points,
(iii) there is no value of ¢ in the interval ¢, < t < t, for which dR/dt is the
Zero vector.

We allow the possibility that a smooth arc can be closed, as in Fig. 2.6,
if R(¢;) = R(t,).

Notice that to show an arc is smooth we need only produce one such
parametrization; there may be others, which violate the three conditions.
For example, a straight line segment can be parametrized by R(t) = R, + 3V,
—1 <t < 1, in violation of (iii); yet it is a smooth arc.

The arc in Fig, 2.7 is not smooth since it fails to have a tangent at Q
and R. However, it consists of a finite number of smooth arcs joined together,
and it does not cross itself; such a curve is called regular. The curve in
Fig. 2.8 is not regular, because of the crossing at S.

In Figs. 2.5, 2.6, and 2.7, we have indicated the direction in which the
particle is traversing the curve by a small arrow. Strictly speaking, any
curve is nothing more than a collection of points in space. When, however,
we indicate a direction along a smooth arc, as we have in these diagrams,
then we say that the arc has been oriented. Obviously, a smooth arc can be
oriented in only two ways. The arc in Fig. 2.9 is a replica of that in Fig. 2.5,
but is oriented in the opposite way.

Py

FIGURE 2.9
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When an arc is described by equations such as (2.10), in terms of a
parameter f, the orientation is usually understood to be determined by that
parameter: the direction is the direction of increasing t. For example, the
closed arc

X =cost
y=sint (2.15)
z=0

is simply a circle of unit radius in the xy plane. As ¢ increases from 0 to 27,
the point moves counterclockwise around the circle, as shown in Fig. 2.10.
The same arc with opposite orientation can be given parametrically by

X =cost
y= —sint (2.16)
z=20

The Egs. (2.16) specify the same arc as (2.15), but with opposite orientation,
since as t increases from 0 to 2x, the point (x,y,z) traverses the circle in the
opposite direction.

-+ y

FIGURE 2.10

The same circle can be represented nonparametrically (i.e., without a
“dummy variable”) by the equations

x2+y?=1
2=0 (2.17)

There is no way of knowing from (2.17) which orientation is intended. Note
that (2.17) represents the arc as the intersection of two surfaces (a cylinder
and a plane). When one specifies an oriented arc as the intersection of two
surfaces, by giving two equations, it is necessary to specify the orientation
separately, either verbally or by drawing a diagram.

Undoubtedly the reader is familiar with the notion of arc length, which
is discussed in calculus books (at least for plane curves). This notion
generalizes easily to space curves.

Suppose C is a smooth space curve. Let us subdivide C into smaller
arcs, and approximate it by a polygonal path consisting of n straight-line
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C

FIGURE 2.11

segments joining the endpoints of the arcs (Fig. 2.11). That is, we select
points Qq, Q;, . . ., Q, along C, in that order, with Q, and Q, the endpoints
of C. Foreachk=0,1,...,n, let R, be the position vector to the point Q,,
andlet AR, =R, — R, _,fork=1,2,...,n The total length of the polyg-
onal path is then ) & _, |AR,|. The length of the space curve C is defined to
be the limit of sums of this form, where the approximating polygonal paths
are obtained by taking increasingly small subdivisions while n increases
without bound.

We can compute this limit when the curve is parametrized by R(z) for,
say, a < t < b as follows. The length of AR, is

|AR,| = /(Ax;)* + (An)* + (Az)?

Let t, be the values of ¢t which correspond to the points R; i.e., R, = R(t;).
Then, because dR/dt is continuous, the mean value theorem of calculus
ensures us that for some number 7, between ¢, and ¢,

x
Axy = X — Xp—y = (e — te—1) u ()
t
Similarly, there are numbers t; and 7} in the same interval such that

d
Ay = (1 = t-1) 5 ()

A —_ t )dz(//
Zpy = (t — bt dt Tk

So for the length of the polygonal path we have

n n d 2 d . 2 d ., 27+
k; |AR,| = k; [(d_): (Tk)> + (Zi% (rk)> + (d_i (i > :\ (te — tee 1)
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Now if the polygonal subdivision is made finer, the differences t, — ,_;
become smaller and this sum approaches the integral

2 2 21
fa ’ [(il—’t‘) n <j—f) + <%> ] dt (2.18)

as a limit. Recognizing the integrand as |dR/dt|, we see that the length of
the curve C is given by
fb

The arc length of a regular curve is defined to be the sum of the lengths
of the various smooth curves that constitute it.

Sometimes it is possible to write two of the variables, say y and z, in
terms of the other, say x. In that case dy and dz may be expressed in terms
of x and dx, and the integral is taken with respect to x, the limits of integration
being the values of x corresponding to ¢, and ¢,.

If the arc P, P, lies entirely in the xy plane, which is the simplest case
treated in calculus books, then z is identically equal to zero and so dz/dt = 0
and, by eliminating the parameter ¢, Eq. (2.18) may be written in the familiar

alternative form

X2 B dy 27]

f 1+ (52 | dx (2.20)
x| dx) |

dR

2.
0 dt (2.19)

o

provided the integral exists, or
f 2 B @C-

y1 dy
provided this integral exists. It is possible that these integrals may not exist.
For example, if the arc P, P, contains a segment that is parallel to the y axis,

then dy/dx will not exist along this segment (that is, dy/dx is “infinite”) and
(2.20) will not make sense.

| dy (2.21)

-

N———
[ %)
+
—_
o

Example 2.9 Find the arc length between (0,0,1) and (1,0,1) of the curve
y = sin 2nx z = Cos 2nx
(This is a helix winding about the x axis.)

Solution
dx? + dy* + dz? = dx? + 4n?cos? 2nx dx? + 4n?sin? 2nx dx?
Hence the integral is
[ U+ an2) dx = (1 + dny?

The expression (2.18) is sometimes written

Jo @y + @y + @t or [ |aR] (2.22)
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where it is understood that dx, dy, and dz are expressed in terms of the
parameter t and the differential dr (so that ¢ is the variable over which the
integration is performed). The form (2.22) emphasizes that the arc length
is a property of the curve alone, and does not depend on the particular
parametrization.

Returning to (2.19) we see that the arc length measured along the curve
from some arbitrary initial position R(t,) to a variable position R(t) is given by

_ S(t) _ ﬁtl dR

dt
This suggests the possibility of using s itself as the parameter. In principle,
at least, we may invert the above equation to get ¢ in terms of s; substituting
into the function R(t) gives R as a function of s.
In practice, the direct computation of R(s) is prohibitively difficult
except for some standard, contrived, examples, to wit:

dt (t=>1t9)

Example 2.10 Reparametrize the curves
2,9
(i) R(t)=5i+§k 0<t<2
(ii) R (¢) = (2 cos t)i + (2 sin 1)j I<t<2rn
in terms of arc length.

Solution (i) Choosing t; = 0, we have

N
—

2+1
dt_f (12 + tYyrde = (—%v

Inverting this produces
=[@Bs+ 1)F—1]*
and the new parametrization is

Bs+1)F—1, N [Bs+ 1¥—17%

i k
2 3

R(s) =

(ii) Again with t; = 0, we find

¢ |dR
s=fola,

Hence t = s/2 and the arc-length parametrization reads

di = fo’ (4sin? t + 4 cos? ) de = 2t

R(s)=2005%i+25in%j

The arc length parametrization possesses some advantages. By the
fundamental theorem of calculus, we then have

ds |dR

B = (223)
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(This identifies the speed with the rate of change of arc length, a reassuring
fact.) In coordinate form this becomes

dz\*'*

dt

ds [ [dx\? N dy\? N
dt |\ dt dt
Because our assumptions guarantee that ds/dt # 0, it follows from the chain
rule that
dR _ dR [ds
ds — dt]dt
Since dR/dt is tangent to the curve, this shows dR/ds is also. (This reflects the
obvious fact that the tangent direction is independent of the parametrization
used to describe the curve) Moreover, dR/ds is a unit tangent vector; so
by Eq. (2.14)
dR
T= i
In Example 2.10 these vectors are

(i) ‘2—? = Bs+ DM+ [Gs+ 1) = 1¥3s + 1)k

(ii) dR— 'ns'+coss'
ii dS__Sl 21 51

and the reader can verify that both are unit vectors.

Exercises

1. Suppose that P, P, is a smooth arc in the xy plane. Is it necessarily true that dy/dx
exists at every point on this arc?

2. Study the consequences of dropping condition (iii) in the definition of a smooth arc.
(Hint: Sketch the arc R = ¢%i + 13}

3. By using identities concerning hyperbolic functions, eliminate the parameter ¢ from
the equations

x =cosht y=sinht z=0
4. As t varies from —1 to 1, the point (x, y,z) where
x=t y=l z=0

traces a regular curve. At what point on this curve is there no tangent?
5. Observe that

x=t y = sin 2nt z = cos 2nt

is'a parametrization of the helix in Example 2.9. Compute the arc length between

the same two endpoints using formula (2.19). What is the unit tangent vector at
(0,0,1)?
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6. If T denotes the unit tangent to the curve
x=t y=2t+5 z=73t

show that dT/dt = 0. Interpret this.

7. Find the arc length of the curve described in Exercise 6, between (0,5,0) and (1,7,3),
(a) by using (2.19), and (b) by using a little common sense.

8. (a) Determine the arc length of the curve
x=¢é cost y=¢'sint z=0
betweent =0and ¢ = 1.

(b) Reparametrize the curve in terms of arc length.
9. For the curve

x=sint—tcost
y=cost+tsint
z=1*

find (a) the arc length between (0,1,0) and (—2x,1,472), (b) T(2), (c) T(n).
10. Find the unit vector tangent to the oriented closed curve

=acost y=bsint z=0

att =3m.
11. Show that the graph of any continuously differentiable function y = f(x)is a smooth
curve. (Hint: Check the parametrization x =t, y = f(t), z = 0.)

2.3 ACCELERATION AND CURVATURE

The acceleration of a particle is defined to be the time rate of change of
its velocity. Since velocity is a vector quantity, this acceleration may be
associated with a change in either the magnitude or the direction of the veloc-
ity, or both.

Suppose first that the direction of the velocity is constant. Then the
motion of the particle takes place along a straight line and the magnitude of
the acceleration is the rate of change of speed,

where s is arc length along the trajectory [recall Eq. (2.23)]. The acceleration
is directed along the straight line. On the other hand, if the particle moves at
constant speed around a circle of radius p, it is well known that it undergoes
a “centripetal” acceleration of magnitude

o N1
= p  p\dt
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directed towards the center of the circle. This is due solely to the change of
direction.

One of the aims of this section is to show that for motion along a general
curve with v changing direction and magnitude the acceleration vector can be
expressed as the sum of two orthogonal vectors, one giving the rate of change
of speed and the other giving the instantaneous centripetal acceleration
corresponding to a related circular trajectory.

If motion along a curve is to be related to motion on a circle, we clearly
need to select the circle which “best” approximates the curve at a given
point. In Fig. 2.12 we indicate the circle approximating the curve at P,. Two
properties that the circle must have are clear: it should pass through the
point Py, and its tangent must coincide with the tangent to the curve at P;.
It remains for us to decide what radius p the circle should have in order that
it fit the curve as well as possible.

FIGURE 2.12

Observe that circles with small radii are more sharply curved than circles
with large radii. Thus, by choosing p appropriately, we ought to be able to
select a circle with the same curvature as the given curve, at P,. But how do
we measure this curvature? Intuitively, curvature arises as a result of the
tangent direction changing as we move along the curve; a straight line has
no curvature and an arc is more sharply curved if the tangent turns faster
along the length of the curve. Let us therefore define the curvature k as the
rate at which the unit tangent vector turns, with respect to arc length along

the curve:
dT ds
/ 7 (2.24)

ds

dT
dt
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What does this give for the curvature of a circle of radius p? In Fig. 2.12
the arc length between P, and P, on the circleis As = p Af. The unit tangent
vectors T, and T, also make an angle A#, and the change in the unit tangent
as we proceed from P, and P, is

AT=T, - T,

For small A6, the magnitude of AT is approximately Af, as we see from
Fig. 2.13 (keep in mind that the magnitudes of T, and T, are unity). Thus

AT AO 1

As| T As T p

This approximation becomes exact as As approaches zero, so we can write

dT| 1
dst p
Thus the curvature of a circle, as we have defined it, is the reciprocal of its
radius. This is in harmony with our intuition, and so we shall feel confident

in adopting the definition (2.24).
\ T,

T,

AT
FIGURE 2.13

Consequently, the radius p of our approximating circle (called the
“osculating circle”), is given by
dT

1
p_ﬁ 1/ ds

Now we let N denote a unit vector pointing towards the center of the
approximating circle, and as usual let T denote the unit tangent vector. The
directions of both T and N may vary at different points along the curve, but
they are always at right angles with each other, as shown in Fig. 2.14.

If our earlier considerations about circular motion can be generahzed to
motion along curve, then we are led to anticipate that the acceleration a
can be expressed as a sum of two components,

a=aT+aN (2.25)
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FIGURE 2.14

where a, = ds/dt* is the rate of change of speed, and a, = |v|?/p results from
the change in the direction of the velocity. To see that this is, in fact, the case,
we start over with a more careful analysis.

The position vector of the particle, as usual, is taken to be

R(t) = x(t)i + y(8)j + z(k

which we visualize as the directed line segment extending from the origin to
the point at which the particle is located. We restrict our attention to a
portion of the trajectory where R(t) defines a smooth arc and is twice differ-
entiable. Its derivatives, which are the velocity v and the acceleration a,
respectively, are computed as in Sec. 2.1,

dR dx, dy, dz
dzR d2 d? dzz
=Sr =i dtzy + o5k 2.27)

It is convenient to visualize v(¢) as a directed line segment with its tail at
the point where the particle is located. As ¢ varies, the corresponding vector
v(t) may vary either in direction or magnitude, or both (Fig. 2.15). The speed
of the particle is the magnitude of the velocity ds/dt, where the arc length s is
measured along the curve from some arbitrary initial point:

2 d 2 d 2713 d
v =|v(t)| = [(‘%) + (fo‘) + <i—) :| = d—j (2.28)

The unit tangent vector T may be obtained by dividing the velocity
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v(t)

R(t,) v(1y)

R(15) - v
v(ts)

FIGURE 2.15

v(t) by the speed |v(t)], since our assumptions guarantee that [v(t)| is never
zero.

v(1)

T=—- 2.29
) (2.29)
We note that T is also given by the expression
dR
= 2.30
T=- (2.30)

The curvature k of the curve at any point is defined to be the magnitude
of the vector dT/ds at that point [recall Eq. (2.24)]:

dT
ds
If k # 0, the radius of curvature p is defined to be the reciprocal of the
curvature,

k:

(2.31)

P=z (2.32)
The motivation for this definition of p was given above. By introducing k
we will be able to avoid using the term “infinite radius of curvature.” Thus,
the curvature of a straight line is k = 0.

Since T has constant magnitude, the derivative of T with respect to ¢ is
cither the zero vector or it is a nonzero vector perpendicular to T. This was
proved in Example 2.6; moreover, it is clear geometrically from Fig. 2.13,
where we see that AT is approximately perpendicular to T if AT is small.

If d'T/dt is not the zero vector, we define the unit vector N to be dT/dt
divided by its own magnitude,

dT/dt

= (2.33)
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This vector is called the principal normal. If we apply the chain rule dT/dt =
(dT/ds)(ds/dt) to both numerator and denominator of this fraction, we can
cancel ds/dt and obtain the alternative expression

_ dT/ds
 |dT/ds]

and since k = |dT/ds| we can write

dT
— =kN
ds
In words, we may say that T turns in the direction N, at a rate k (with respect
to arc length).
Now we are ready to derive the representation for the acceleration of the
particle. This has been defined as the time rate of change of the velocity,

dv _d’x. d’. d’z

a(t)zv“):E——(-it_zl-*_Wj.’rW (2.34)
Since |v(t)| = ds/dt, we can write
ds
=—T 2.35
v(?) i (2.35)

So by the product rule for derivatives (Sec. 2.1),

a) = v =TSy BAT_dsq  dsdTds
YW EwE T TdE T ads ar

d’s ds\?
-FT+<3;> KN

In other words, we have
a=aT+aN (2.36)

where a, = d*s/dt* and a, = kv?. This is exactly what we anticipated in
Eq. (2.25).

We note that at any point on the curve where k = 0, the normal vector N
is not defined. This does not matter, since we have a, = 0 in that case and
hence have no need for N in (2.36). In case k # 0, we can write a, = v?/p,
the way we did in the previous heuristic discussion.

Since T and N are mutually perpendicular vectors at any point where
they are defined, we have, by the pythagorean theorem,

a® =a? + a,? (2.37)

To compute a, we need only find d’R/dr* by differentiation, and calculate
the magnitude of this vector. To compute a, we need only find v = dR/dt,
calculate its magnitude |dR/d!| = ds/dt, and differentiate this with respect
to t. Having computed a and a,, it is then easy to obtain a, by using (2.37).
In some problems, this is more convenient than using the expression kv2.
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Example 2.11 The position of a particle moving around the circle x*> + y*> = r2 in the
xy plane, with angular velocity w, is

X =rcos wt y = rsin ot z=0

Find the normal and tangential components of acceleration of the particle, and deter-
mine the curvature of the circle.

Solution We have
R =rcoswti+ rsinwtj

dR . . ]
E= —rw s wt1+ rw cos wt )
d’R B . 2 )
F: —rw” Cos wtl — rw” sin wt §

The magnitudes of these vectors are

ds |dR .
p=—=|—/| = (FPw? sin® wt + r’w?* cos? wt)? = wr
dt dt
IR|
===
dr?

Since ds/dt is a constant, a, = d*s/dt* = 0, and a = a,. Therefore kv? = w?r; and since
v = r, we have k = @?r/w?r* = 1/r. This verifies that the curvature of a circle is the
reciprocal of its radius. The answers are: g, = w*r,q, = 0,k = 1/r.

Example 2.12 'The coordinates of a particle at time ¢ are

x=sint—tcost

y=cost+tsint

z =t
Find the speed, the normal and tangential components of acceleration, and the curvature
of the path, in terms of 1.

Solution
R =(sint — tcos t)i + (cos t + ¢ sin 1)j + t°k

dR .
= (¢ sin t)i + (¢ cos t)j + 2tk

d’R . . .
el =(tcost+sint)i+ (—¢tsint+cost)j+ 2k
The speed is ds/dt = |dR/dt| = (t* sin® t + 1* cos® t + 41°)* = /5t. The tangential
component of acceleration is a, = d*s/di* = \/3
From (2.37),

a,=[a* —a?]?
=[(tcost+sint)? +(—tsint+cost)? +22—5] =1t

Since a, = kv? we have k = a,/v? = t/5t* = 1/5t.
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One can derive a fairly simple expression for the curvature k by taking
the vector cross product of

dZ
R(H)=MT and R'()= Ef T + kv°N

which, since T x T = 0, gives

R x R” = k|v|(T x N)
Since T and N are mutually perpendicular unit vectors, their cross product
B =T x N is a unit vector; this vector is called the binormal. We have
R’ x R” = k|v|’B and

R x R"| = kly[’

and hence
_ IRI X R/I| B IRr X R//l

k - (R/ . Rr)% - lRf|3

(2.38)

However, in most cases it is easier to use Eq. (2.24).

Once again we point out that although many of these formulas involve
derivatives with respect to arc length s, one never needs to actually compute
the reparametrization R(s), because of the chain rule.

OPTIONAL READING: THE FRENET FORMULAS

Because of its importance in geometry, it may be well to say more about
the vector B, which is a unit vector mutually perpendicular to both T and N.
The vectors T, N, B, in that order, form a right-handed system. It is useful to
think of these three vectors as attached to a particle moving along the curve:
as the particle moves, its associated triad of mutually perpendicular unit
vectors moves and rotates (see Fig. 2.16). For a plane curve, T and N lie
in the plane of the curve, so that B is a constant unit vector always
perpendicular to the plane.

Let us try to describe how the triad rotates as a particle proceeds along
a space curve. As we have seen, the vector T turns towards the vector N
at a rate k, measured with respect to arc length.

ar = kN (2.39)
ds

But since N is always perpendicular to T, these vectors will turn together
like a rigid body. N must therefore turn towards the direction —T at the
same rate, k. In addition, it is also possible for N to rotate about T as an
axis; this would happen if the instantaneous plane of the curve were to
“tilt”. In such a case, dN/ds would have a component perpendicular to
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FIGURE 2.16

both T and N, ie., along B. Thus we would have

dN = —kT + B (2.40)
ds
where t measures the rate at which the curve twists; accordingly, it is known
as the torsion. v
The torsion can be visualized by observing the cross section of a piece
of solder wire bent into the shape of the curve, as in Fig. 2.17. The torsion,
or twisting, of the wire will effect a rotation of the cross-sectional pattern.
One can shape the wire into any plane curve without introducing torsion,
but if the curve is nonplanar, the wire must twist.

FIGURE 2.17

Once again, the fact that N turns towards B at a rate 7, and the fact that
N and B are rigidly fixed at right angles, imply that B turns towards — N at
the same rate. At first glance it seems conceivable that B might also rotate
about N as an axis, thus turning in the direction of T. However, if this
happened, T would be forced by rigidity into turning in the direction. —B;
but T turns only in the direction N, by definition! Thus we have
dB

s _ 241
s N (2.41)
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Equations (2.39), (2.40), and (2.41) are called the Frenet formulas. They
are important in differential geometry, where it is shown that any two curves
with identical corresponding values of curvature and torsion are congruent
(as usual, subject to certain restrictions).

Exercises

In the first four problems below, the coordinates of a moving particle are given as a
function of the time r. Find (a) the speed, (b) the tangential and normal components
of acceleration, (c) the unit tangent vector T, and (d) the curvature of the curve, as
functions of time.

1. x=¢"cost, y=¢€"sint, z=0
2. x=13tcost, y = 3tsin ¢, z =4t
3. x=¢"cost, y=eée'sint, z=¢
4. x = 5sin 4¢, y =5 cos 4, z = 10t
5. The position vector of a moving particle is

R = cos t(i — j) + sin (i + j) + 4tk

(a) Determine the velocity and the speed of the particle.

(b) Determine the acceleration of the particle.

(¢) Find a unit tangent to the path of the particle, in the direction of motion.

(d) Show that the curve traversed by the particle has constant curvature k, and
find its value.

6. Find the curvature of the space curve
x=32~¢  y=3* z=3t+7¢
7. Find the curvature and torsion for the helix
x=t y=sint z=Co8t
8. The position vector of a particle is given by
R(¢) = /2 cos 3ti + /2 cos 3t j + 2 sin 3tk

Find its speed, the curvature and torsion of its path, and describe the path
geometrically.

9. If F is a function of ¢ possessing derivatives of all orders, find the derivative of

N dF . d’F
dt dr?
10. By inspection, write down the values of each of the following:
dR
(a) R T (d) T-N (2) [T.N,B]
d dR d*R
b) -(T-T —_ h) |—-
®©5TD @ T 0|05
d’R dN dB
— . f) — . i) —
© T OB OF
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11. The Darboux vector is defined to be ® = tT + kB. Show that the equation

du
i oxU
is satisfied for U =T, N, and B. Notice the resemblance of this equation to the
equation in Sec. 1.12 describing angular velocity.
12. A rigorous derivation of the Frenet formulas proceeds as follows:
(a) Regard Eq. (2.39) as the defining equation for k and N.

dN
(b) Show that e + kT is perpendicular to both T and N. (Here it is helpful to

differentiate the relation T - N = 0.) Thus (2.40) can be regarded as the defining
equation for 1.
(c) Prove (2.41) from (2.39) and (2.40) by differentiating the relation B =T x N.
Carry out the details of this program.
13. True or false:

(a) IfR is the position vector of a particle, ¢ denotes time, and s denotes arc length,
d?R/dt? is a scalar multiple of d’R/ds>.

(b) A moving particle achieves its maximum speed at the instant ¢ = 3. (Before
and after that instant, its speed is less than its speed at t = 3.) It follows from
this that its acceleration is zero at the instant ¢ = 3.

(c) The acceleration of a particle moving along a curve with binormal B is always
perpendicular to B. [More precisely, a(t) and B(z) are orthogonal for each
fixed value of .}

2.4 PLANAR MOTION IN POLAR COORDINATES

In this section we consider the motion of a particle in the xy plane in
which the position of the particle is given in polar coordinates, r and 6. We
remind the reader that r and @ provide alternative descriptions of points in
the plane, and they are sometimes more convenient when circular symmetries
are present. They are depicted in Fig. 2.18 and are related to (x,y) coordinates
through the equations

x=rcosf r=(x*+y)?

1 Y -1 X

=rsin 6 f=sin"! ———"—51=c08" " —S——7
Y 2+ ) 2+ )¢

The extra equations for 6 are necessary to avoid quadrant ambiguities;
customarily one takes —7 < 8 < 7.

We assume that the particle’s trajectory is specified by giving r and 6
as functions of the time ¢, and that these functions possess second derivatives.

In order to work directly with polar coordinates it is convenient to
introduce unit vectors u, and u,, which point respectively along the position
vector and at right angles to it (in the direction of increasing 6), as shown in
Fig. 2.18.
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4

R r,0)

FIGURE 2.18

It is easy to see that u, and u, can be written in terms of i and j as follows:

u,—cos'BH.-sm 0j ' (2.42)
u, = —sin i + cos 6

Note that u, and u, are functions of 6 and are defined at every point in

space except the origin. Unlike i and j, u, and u, are not constants. For

example, along the positive x axis, u, = i, but along the positive y axis, u, = j.

It follows that we must be careful in differentiating vectors written in terms

of u, and u,.
Directly from Eq. (2.42) we see that
du,
a5 = (2.43)
d, .
a -~ ™

(Notice that these important formulas reinforce the observations we made
in the previous section about the derivatives of unit vectors rigidly attached
to each other.)

The position vector of a particle located at a point (r,0) is

R =, (2.44)
We obtain the velocity by differentiating Eq. (2.44) and using the chain rule,
dR dr du,
a - av
dr du, do

a™t o
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Hence, by (2.43), the velocity is given by

R _dr o

VEn T av T a

uy (2.45)

This expresses the velocity as the sum of a radial component, directed away
from or towards the origin with magnitude |dr/dt|, and a transverse
component with magnitude |r d6/dt|.

Example 2.13 A particle moves around the circle r=2 with angular velocity
df/dt = 5 rad/second. Find its speed.

Solution Since r is a constant, dr/dt = 0. Hence
49 10w,

v=r|—Ju =
dt 0 (]

Example 2.14 A circular disk rotates with constant angular velocity 3 rad/sec. A
fly walks from the center of the disk outward to the rim at a rate of 2 cm/sec (relative
to the disk). Find the speed of the fly 4 seconds after he starts at the center.

Therefore |v| = 10.

Solution Since dr/dt = 2, we have r = r + 2t. Since the fly starts at the center, ro = 0.
Hence by Eq. (2.45)

v =2u, + 3ru,

Attimet = 4,r = 2t = 8,50 v = 2u, + 24u,. The speed is then (2% + 24%)* = (580)* cm/sec.

Returning to (2.45), we differentiate again to obtain the acceleration:

a—dv—d_zr +fd_tdur+ﬂ@u +r£§u +rd_0@
=a a2 T aiar Tarar T ARt dt dt
& drdudo drdo o &0 d0d0du,
a2 a0 d T drdt 0 d? 0 de dt dO
—d_zr _‘..2@4.9“4_ @ —_ d_e 2u
=t g a et \a)

Combining terms,

d*r do\? d*6 dr do
=|-5—r{— — +2—— 2.46
2 |:dt2 r(dt) ]u’ * [r iz " | (2:46)
The first term in Eq. (2.46), (d*r/dt*)u,, gives the acceleration for pure
radial motion: and the third term, r(d> 0/dr*)u,, measures the effect of angular
acceleration. In the special case that r is a constant, we have motion in a
circle with center at the origin; then u, and u, are, respectively, the vectors

T and — N of the preceding section. In this special case the second term is
the centripetal acceleration term.
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The fourth term,

dr dé

drdr
is more complicated and is usually not discussed in elementary physics
textbooks. Under certain circumstances it is known as the Coriolis accelera-
tion. As a careful examination of the above derivation will show, this term
is due partly to the change in direction of the radial component of velocity,
and partly to the fact that, as r changes, the transverse component of velocity
changes, even if the angular velocity df/drt is constant.

According to Newton’s second law, F = ma, where F is the total force
acting on the particle. This force F may be written as the sum of two
components,

) F = F.u, + Fyu,

The motion of the particle is then governed by the two differential equations

d*r do\?
=m— —mr|— 4
F,=m e mr<dt> (2.47)
a0 dr d6
= mr — _—— 2.4
Fy =mr T +2mdt I (2.48)
If both sides of Eq. (2.48) are multiplied by r, (2.48) can be written in the form
d , do
rFg = " (mr E) (2.49)

which in some cases may be interpreted as stating that the torque applied
to the particle equals the time rate of change of its angular momentum.

If Fy=0, (249) may be integrated to yield mr?df/dt = C. In other
words, if the force is always directed radially toward or away from the origin
(a “central force field”), then the angular momentum of the particle will be
constant. This immediately implies Kepler’s second law of planetary motion,
that the radius vector in a central force field sweeps over area at a constant
rate, since the rate at which the vector R sweeps out area is

dA 1 2d9

=2
a2 dt
Exercises

1. Find @&*R/dt® in terms of u, and u,.

2. A particle moves in a plane with constant angular velocity @ about the origin,
but r varies so that the rate of increase of its acceleration is parallel to the position
vector R. Show that d?r/dt® = rw?/3.
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Find v and a if a particle moves so that

r=b(l — cos )
and
d
a_,
dt
. Find vand a if

r=>b(+sint)
f=e"-1

. The force F exerted by a magnetic field B on a particle carrying a charge q is given

by F = g(v x B), where v is the velocity of the particle. Draw a diagram showing
the relative directions of v, B, and F, in some special cases. Under what
circumstances will the field exert no force on the particle?

. A particle of mass m and charge g moves in a constant magnetic field B directed

parallel to the z axis. If the resulting trajectory is a circle of radius r in the xy plane,
express g/m in terms of v, r, and B.

. Which terms in Eq. (2.46) will be nonzero, in each of the following cases?

(a) A particle moves around a circle with center at the origin with constant nonzero
angular velocity.

(b) A particle moves around a circle with center at the origin with constant nonzero
angular acceleration.

(¢) A particle moves along a straight line not passing through the origin, with
constant speed.

(d) A person is walking from the center of a merry-go-round towards its outer
edge (discuss various possibilities).

. A particle moves along a straight line, not passing through the origin. Is r(d6/dt)*

nonzero?

. A particle moves with constant radial speed 2 cm/sec away from the center of a

platform rotating with uniform angular velocity of 30 rev/min.
(a) What is its radial acceleration?
(b) What is its Coriolis acceleration?
Find the magnitude of the Coriolis acceleration of a particle moving in the xy
plane with position given by
x = 3t cos 4nt

y = 3t sin 4nt

A particle of mass m moves in a force field F. Assume that the sum of its kinetic
and potential energy is E =4mv-v— {, F-vdt. Using Eqgs. (245), (2.47), and
(2.48), express E in polar coordinates and show that dE/dt = 0, and hence that
E is constant.

2.5 OPTIONAL READING: TENSOR NOTATION

As shown in Sec. 2.1, differentiation of a vector function proceeds

componentwise. That is, the ith component of dF/dt is the derivative of the
ith component of F:

aF\ _ar,
dt ), dt
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This happy circumstance makes the tensor notation for the rules in Theorems
2.1 through 2.4, and their proofs, quite apparent. Thus for the cross product
we have

dF; dG
a0 = eyt Gt ey
by the rules of ordinary calculus. Interpreted in vector notation, this says
d dF dG
_ = F x —
dt(FxG) thG+ xdt

which is Eq. (2.7).
The other theorems are equally straightforward.

Exercise

Derive the rule for the derivative of the dot product.

Supplementary Problems

1. Let C be the curve given by the equation
R(f) = sin ti + cos ¢j + log sec tk Osr<g

find:

{a) the element of arc length, ds, along C, in terms of ¢,
(b) the unit tangent T,

(c) the unit normal N, and

(d) the curvature k.

2. If C is the curve given parametrically by
R(t)=costi+sintj+ 2tk

find:

(@) the normal N and the binormal B for this curve at ¢ = 0, and

(b) the equation of the plane passing through the point R(0) and parallel to both
vectors N and B of part (a).

3. A particle moves so that its coordinates at time ¢ are given by
x(t)=e""cost y(t)=e'sint z(t)=e™!

Find its velocity, speed, and acceleration, and the curvature of its path at time ¢.
4. A particle moves so that its position R at time ¢ is given by

R(t) = log (> + 1)i + (t — 2 Arctan 1)j + 2./2tk

(a) Show that this particle moves with constant speed » = 3.
(b) Find the curvature of the path of this particle.
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. A point moves along a curve so that its position R is given by

R =%+ %+ tk
find:
(a) its speed v,
(b) the unit tangent T to its path, and
(c) the vector kN.

. {a) Find the unit tangent T, the principal normal N, and the binormal B for the curve

x=cos®t y=sin*t z=2sin*t 0O0<t<

SRR

(b) Find the curvature and the torsion for the preceding curve.

. A particle moves so that its position (r,0) in polar coordinates is given by

r=2(1 + sin 6) f=e"

find its velocity v in terms of the vectors u, and u,.

. An experiment is being designed in which a particle of mass 1 is to exhibit the

following planar motion in polar coordinates:

r)=1+t
fort >0
n
o) =—
© 1+t

Determine:

(a) the position and velocity of this particle at the time ¢ = 1, illustrating your
answer in a diagram, and

(b) the radial and transverse forces F,(t) and F,(t) needed on the particle to attain
the desired motion.

(c) Ifthe forces acting on this particle are removed at t = 1, find its positionat t = 5.

. A charged particle moves along the curve

1 . do 1
r=—— with —=—
14+ 2cosf dt

(a) By differentiating the equation R = ru,, show that

R 1
—— =2sin 0u, +-u
o in Ou, + —u,

2

d°R
(b) Find i and simplify.

A particle, starting at ¢t = O from the point r = 2, 6 = 0 in polar coordinates, moves
so that

r=2+sint v=+/2cost
Find a formula for the angle § in terms of , and determine the position of this

particle at time t = /2. (Assume that @ > 0 for all ¢)

A disc rotates back and forth with angular velocity cos t radians/second. An insect
starting 1 cm from the center of the disc at time ¢ = O crawls outward at a rate
of 2t cm/sec. Find the position, velocity, and speed of the insect after 27 seconds.
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12. The evolute of a curve R(z) is the locus of the centers of curvature of the curve.

Using the parametric formulas, show that the tangent to the evolute is normal
to the original curve.

13. 1f the curve R(z) lies on a sphere |R(2)| = constant, prove that

using the terminology of Sec. 2.3. (Hint: Keep differentiating R - R = constant,
using the Frenet formulas.)



CHAPTER ' 3

Scalar and Vector Fields

3.1 SCALAR FIELDS; ISOTIMIC SURFACES; GRADIENTS

If to each point (x,y,z) of a region in space there is made to correspond a
number f(x,y,z), we say that f is a scalar field. In other words, a scalar field
is simply a scalar-valued function of three variables.

For the sake of fixing ideas, the following scalar fields are given as
examples that will be referred to repeatedly:

1. fxyz)=x+2y—3z

2. flx,y.z)=x*+y*+ 22
3. flxy.2)=x>+)°
X2y

4, b = 4+ - 2

fx»,2) 7t gte

5. fleyz2)= N

1
6. flx.z2)= x—2+—yz

The fields in examples 1 through 5 are defined at every point in space. The
field in example 6 is defined at every point (x,y,z) except where x> + y* = 0,
that is, everywhere except on the z axis.

If f is a scalar field, any surface defined by f(x,y,2) = C, where C is a
constant, is called an isotimic surface (from the Greek isotimos, meaning
of equal value). Sometimes, in physics, more specialized terms are used. For
instance, if f denotes either electric or gravitational field potential, such
surfaces are called equipotential surfaces. If { denotes temperature, they are

90
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called isothermal surfaces. If f denotes pressure, they are called isobaric

surfaces.
In the above examples, the isotimic surfaces are:

All planes perpendicular to the vector i + 2j — 3k.

All spheres with center at the origin.

All right circular cylinders with the z axis as axis of symmetry.
A family of ellipsoids.

A family of cones.

The same as in example 3.

A S ad

It is impossible for distinct isotimic surfaces of the same scalar field to
intersect, since only one number f(x,y,z) is associated with any one point
(x,,2).

Here are some physical examples of scalar fields: the mass density of
the atmosphere, the temperature at each point in an insulated wall, the water
pressure at each point in the ocean, the gravitational potential of points in
astronomical space, the electrostatic potential of the region between two
condenser plates. Such scalar fields as density and pressure are only approxi-
mate idealizations of a complicated physical situation, since they take no
account of the atomic properties of matter.

Let us consider the behavior of a scalar field in the neighborhood of a
~ point (xo,0,20) Within its region of definition. Let us imagine a line segment
passing through (x,,V,20) parallel to a given vector u. Let s denote the dis-
placement measured along the line segment in the direction of u (Fig. 3.1)
with s = 0 corresponding to (xy,y,Zo). To each value of the parameter s
there corresponds a point (x,y,z) on the line segment, and hence a corre-
sponding scalar f(x,y,z). The derivative df/ds at s =0, if this derivative
exists, is called the directional derivative of f at (xy,V¢,20), int the direction
of the vector u.

In other words, the directional derivative of f is simply the rate of
change of f, per unit distance, in some prescribed direction. The directional
derivative df/ds will generally depend on the location of the point (xg,yq,Z¢)
and also on the direction prescribed.

(x0, Y0, 20)

FIGURE 3.1



92 Scalar and Vector Fields CHAP. 3

The directional derivative of a scalar field f in a direction parallel to the
x axis, with s measured as increasing in the positive x direction, is convention-
ally denoted 9f/0x, and is called the partial derivative of f with respect to x.
Similarly, the directional derivative of f in the positive y direction is called
0f/dy, and that in the positive z direction, df/0z. We assume that the reader
has had some experience with partial derivatives.

The directional derivative of a scalar field f in a direction that is not
parallel to any of the coordinate axes is conventionally denoted df/ds, but
of course this symbol is ambiguous; it would not make sense to ask “what
is df /ds” without specifying the direction in which s is to be measured.

A convenient way of specifying the desired direction is by prescribing
a vector u pointing in that direction. Although the magnitude of u is im-
material, it is conventional to take u to be a unit vector. We have already
seen (Sec. 2.3) that a unit vector in a desired direction can be obtained by
computing dR/ds in that direction, where R = xi + yj + zk. That is,

dx ., dy, dz
“"dshLdsJersk (3.1)
is a unit vector pointing in the direction in which s is measured. Here we are
thinking of x, y, and z as functions of the parameter s, for points (x,y,z) on
the line segment; s is, of course, arc length along the segment.

If the partial derivatives df/dx, df/dy, and df/dz exist and are continuous
throughout a region, then it is well known (see Appendix B for a proof)
that the following chain rule is valid:
df_@:flf+a_fd_y+afdz (3.2)

ds oxds  ayds ' dzds
If we define the gradient of f to be the vector

of ., of. o
9549544 33
grad f 8xl+6y"+8zk (3.3)

we see that the right side of (3.2) is the dot product of u with grad f,
4 =u-grad f (3.2)
ds

Since u is a unit vector, u - grad /' = |u| |grad f| cos 0 = |grad f| cos 0, where
# is the angle between grad f and w. This gives us the first fundamental
property of the gradient:

PrROPERTY 3.1 The component of grad f in any given direction gives
the directional derivative df/ds in that direction.

By the maximum principle (Example 1.15), the largest possible value of
u - grad f, for unit vectors u, is obtained when u is in the same direction as
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grad f (assuming grad f # 0). Since u - grad f = df/ds, it follows thgt the
maximum value of df/ds is obtained in the direction of grad f. This is the
second fundamental property of the gradient:

PROPERTY 3.2 grad f points in the direction of the maximum rate of
increase of the function f.

If u points in the direction of grad f, then
u - grad f = |u| |grad f] cos 6 = |grad f|
which gives the third fundamental property of the gradient:

PROPERTY 3.3 The magnitude of grad f equals the maximum rate of
increase of f per unit distance.

Experience has shown that the wording of these fundamental properties
makes them rather easy to memorize [and they should be memorized,
together with the definition (3.3)].

The fourth fundamental property of the gradient of a function makes it
possible to use the gradient concept in solving geometrical problems:

PROPERTY 3.4 Through any point (xq,ye,20) where grad f +# 0, there
passes an isotimic surface f(x,y,z) = C; grad f is normal (ie., per-
pendicular) to this surface at the point (xo,y0,20)-

This property holds only when df/dx, df/dy, and df/0z exist and are
continuous in a neighborhood of the point in question. The constant C is,
of course, equal to f(xg,V0,%0)- If grad f = 0 the locus of points satisfying
f(x,y,2) = C might not form a surface. (Consider, for example, this locus
if f is a constant function.)

We omit a detailed proof of this fourth property, but the following
discussion may make it seem reasonable. Let C denote the value of f at
(x0,Y0,20)- Since grad f # 0, it follows from the preceding fundamental
properties that df/ds will be positive in some direction. If, then, we proceed
away from (x4,y0,2¢) in that direction, the value of f(x,y,z} will increase,
and if we proceed in the opposite direction, its value will decrease. Since
f and its partial derivatives are continuous, it seems reasonable that there
will be a surface passing through (x4,v,,z,) on one side of which the values
of f will be greater than (and on the other, less than) C. Now suppose we
consider any smooth arc passing through (x,,y,,z,) and entirely contained
in this surface. Then f(x,y,z) = C for all points on this arc and so df/ds = 0,
where s is measured along this arc. Since df/ds = u - grad f, and in this case u
is a unit vector tangent to this arc, we see thatu - grad f = df/ds = 0, implying
that grad f is perpendicular to u. This reasoning applies to any smooth arc
in the surface passing through (x,,v,,20). Hence grad f is perpendicular
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grad f

FIGURE 3.2

to every such arc, at that point, which can be the case only if grad f is
perpendicular to the surface (Fig. 3.2).

We now return to the six examples given previously. In each case the

gradient is easily computed using the definition (3.3):

1.
2.
3.

grad [ =i+ 2j— 3k
grad f = 2xi + 2yj + 2zk
grad [ = 2xi + 2yj

2
gradfzgintjyj-erzk

xi + yj
rad f =———k
grad f o
grad f — 2x 2y

P L P

(This is the only one of the six examples for which grad f is a constant.)
We already know from Sec. 1.10 that i + 2j — 3k is perpendicular to any
plane of the form x + 2y — 3z = C. We see that grad f =i+ 2j — 3k.
Thus we have verified the fourth fundamental property, in this special
case.

In this case the isotimic surfaces are spheres centered at the origin, so
the normals to these surfaces must be vectors pointing directly away from
the origin. Sure enough, we have grad f = 2xi + 2yj + 2zk = 2R, and
we know that the vector 2R always points directly away from the origin.
To see the significance of the number 2 here, let » denote the distance
from the origin to the point (x,y,z). Then we can, in this example, write
the function in terms of r: it is simply r2. Moreover, if we move away
from any point in the direction of maximum increase of r? which
obviously means moving directly away from the origin, then the element
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of arc length is simply dr. In this direction, the derivative df/ds is df/dr,
and (d/dr)(r?) = 2r. Also, [2R| = 2r, so we have verified the third funda-
mental property in this special case.

3. The reader familiar with cylindrical coordinates can do the same thing
here as we just did with example 2. Let p = (x* + y?)%, the distance
from the point (x,y,z) to the z axis. The function f in this example is
simply p?%, and obviously increases most rapidly in a direction per-
pendicular to the z axis. Its derivative in this direction is 2p, which is
also the magnitude |grad f| = (4x* + 4y?)%. The direction is clearly
normal to the isotimic surfaces, since the latter are right circular cylinders
centered on the z axis. The second, third, and fourth fundamental
properties are extremely transparent in this case, as they were in
example 2.

5. (Weskipexample 4.) All we care to note here is the elementary geometri-
cal significance of the —k term in grad f. The isotimic surfaces of this
function are conical; each has an apex on the z axis and spreads outward
with increasing z. Thus, we see easily that the normal to one such surface
will not point directly away from the z axis, as it does in example 3, but
will have an additional, constant component in the negative z direction.

The following are some sample problems that illustrate the use of the
fundamental properties of the gradient of a scalar field. »

Example 3.1 Find df/ds in the direction of the vector 4i + 4j — 2k, at the point (1,1,2),
if f(x,y,2) = x2 + y* — z.

Solution grad f = 2xi + 2yj — k = 2i + 2j — k at (1,1,2). A unit vector in the desired
direction is u = %i + %j — 1k (obtained by dividing 4i + 4j — 2k by its own length).
Property 3.1 then gives df/ds = u - grad f = % + % + § = 3. This means that the value
of the function fis increasing 3 units per unit distance, if we proceed from (1,1,2) in the
direction stated.

Example 3.2 The temperature of points in space is given by f(x,y,2) = x> + y* — z.
A mosquito located at (1,1,2) desires to fly in such a direction that he will get cool as
soon as possible. In what direction should he move?

Solution As we saw in Example 3.1, grad f= 2i + 2j — k at (1,1,2). The mosquito
should move in the direction —grad f, since grad f is in the direction of increasing
temperature.

Example 3.3 A mosquito is flying at a speed of 5 units of distance per second, in the
direction of the vector 4i + 4j — 2k. The temperature is given by f(x, y,z) = x* + y* — z.
What is his rate of increase of temperature, per unit time, at the instant he passes through
the point (1,1,2)?

Solution As shown in Example 3.1 above, df/ds in this direction is 3 units per unit
distance. The rate of increase of temperature per unit time is thus df/dt = (df/ds)(ds/dt) =
(3)(5) = 15 degrees per second.
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Example 3.4 What is the maximum possible df/ds, if f(x,y,2) = x> + y* — z, at the
point (1,4,2)?

Solution |grad f| = [2i + 8j — k| = /69. The answer is approximately 8.31 units per
unit distance.

Example 3.5 Find a unit vector normal to the surface x> + y*> — z = 6 at the point
(2,3,7).

Solution This is an isotimic surface for the function f(x,y,z) = x> + y* — z. At(2,3,7),
we have grad f = 2xi + 2yj — k = 4i + 6j — k. The length of this vector is /53. Thus,
an answer is (\/53/53)(4i + 6j — k). (The negative of this vector is also a correct answer.)

The reader may have observed that the number “6”, the constant on the
right-hand side of the equation defining the isotimic surface in Example 3.5,
appears to have no effect on the normal, grad f. This is not quite true.
Granted, the formula for grad f ignores the 6, but when it is evaluated at
(x,y,2z) the numbers x, y, and z must satisfy x2 + y*> —z=6. Clearly,
22432 -7=6.

Exercises

1. Compute grad f if
(@) f=sinx+eY+z
(b) f=1/[R|
() f=R-ix]j

2. If f(x,y,z) = x* + y?, what is the locus of points in space for which grad f is parallel
to the y axis?

3. What can you say about a function whose gradient is everywhere parallel to the y
axis?

4. Find all functions f(x,y,z) such that grad = 2xi + zj + yk.

5. Describe grad f in words, without actually doing any calculating, given that f(x, y,z)
is the distance between (x, y,z) and the z axis.

6. Find the derivative of f(x,y,z) = x + xyz at the point (1,—2,2) in the direction of
(@) 2i+2j—k, (b) 2i +2j+ k.

7. Find the directional derivative df/ds at (1,3, —2) in the direction of —i + 2j + 2k if
(@) fx,y,2) =yz+ xy + xz
(b) f(x,3,2) = x* + 2y + 322
(© fle,y.2) = xy + x*p
@) feop2) = x>+ y* + 27

8. Given f(x,y,z) = x2 + y* + z2, find the maximum value of df/ds at the point (3,0,4),
(a) by using the gradient of f;
(b) by interpreting f geometrically.
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9. Find the magnitude of the greatest rate of change of f(x,.z) = (x* + z%)*at(1,3,—2).

Interpret geometrically.

10. Find a vector normal to the surface x* + yz = 5 at (2,1,1).

11. Find an equation of the plane tangent to the sphere x? + y* + z> = 21 at 2,4,— 1),

12. Find a vector normal to the cylinder x* + z2 = 8 at (2,0,2,),
(a) by inspection (draw a diagram);
(b) by finding the gradient of the function f(x,y,2) = x> + 22 at (2,0,2).

13. Find an equation of the plane tangent to the surface z2 — xy = 14 at (2,1,4).

14. Find equations of the line normal to the sphere x* + y* + z% = 2 at (1,1,0),
(a) by inspection (draw a diagram);
(b) by computing the gradient of f(x,y,z) = x? + y? + z* at (1,1,0), and using this

to find the normal.

15. Find a unit vector normal to the plane 3x — y + 2z = 3,
(a) by the methods of Sec. 1.10;
(b) by the methods of the preceding section.

16. Find an equation of the plane tangent to the surface z = x? + y* at (2,3,13). [Hint:
Consider the function f(x,y,2) = x* + y* —z.]

17. Find a unit vector tangent to the curve of intersection of the cylinder x> + y2=4
and the sphere x? + y2 + z2 = 9 at the point (v/2,3/2,7/5),
(a) by drawing a diagram, obtaining the answer by inspection;
(b) by finding the vector product of the normals to the two surfaces at that point;
(c) by writing the equations of the curve in parametric form. (Hint: Let x = 2 sin ¢
and y =2 cos t.) '

18. Determine the angle between the normals of the intersecting spheres x2 +y* +
22 = 16 and (x — 1)? + y? + z2 = 16, at the point (1/2,3/2, 3,/6/2).

19. At what angle does the line 2x = y = 2z intersect the ellipsoid 2x? + y* + 2z* = 82

3.2 VECTOR FIELDS AND FLOW LINES

A vector field F is a rule associating with each point (x,y,z) in a region
a vector F(x,y,z). In other words, a vector field is a vector-valued function
of three variables.

Some vector fields are not defined for all points in space. For example,
the vector field

xi+ yj
F(x,y,2) = e
is not defined along the z axis, since x* + y* = 0 for points on the z axis.

In visualizing a vector field, we imagine that from each point in the region
there extends a vector. Both direction and magnitude may vary with position
(Fig. 3.3).

Any vector field may be written in terms of its components:

F(x,y,2) = F(x,y,2)i + F5(x,,2)j + F3(x,y,2)k
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FIGURE 3.3

Example 3.6 1f f(x,y,2) is a scalar field, grad f is a vector field.

Example 3.7 Each of the “vectors” u, and u, (Sec. 2.4) is a vector field defined in the
plane.

Example 3.8 In hydrodynamics, one associates with each point of a region the velocity
of the fluid passing that point. In this manner one obtains, at any instant of time, a
vector field describing the instantaneous velocity of the fluid at every point.

Example 3.9 In theoretical physics, there is associated with each point in space an
electric intensity vector, representing the force that would be exerted, per unit charge,
on a charged particle, if it were located at that point. This electric field, at any instant
of time, constitutes a vector field. (Magnetic fields and gravitational fields also provide
examples of vector fields defined in space.)

Let us consider a vector field F that is defined and nonzero at every point
of a region in space. Any curve passing through this region is called a
flow line of F provided that, at every point on the curve, F is tangent to the
curve. (Flow lines are also called stream lines or characteristic curves of F. If
F is a force field, the flow lines are commonly called lines of force.) In
Fig. 3.3, three flow lines are indicated as dotted curves.

This may be looked at in another way. The vector field F determines, at
each point in the region, a direction. If a particle moves in such a manner
that the direction of its velocity at any point coincides with the direction
of the vector field F at that point, the space curve traced out is a flow line.

If the vector field F(x,y,z) describes the velocity at each point in a
hydrodynamic system, the flow lines are the paths which are traversed by the
component particles of the fluid, assuming that F is not a function of time.
(The situation is more complicated for time-varying flows.)

Note that, if g(x,y,z) is a scalar field that is not zero at any point, the
flow lines of the vector field g(x,y,z)F(x,y,z) will be the same as those of
F(x,y,z), since only the direction of F at any point is relevant in determining
the flow lines.
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Since the direction of a flow line is uniquely determined by the field F,
it is impossible to have two different directions at the same point, and
therefore it is impossible for two flow lines to cross. If the magnitude of
F is zero at some point in space, then no direction is defined at that point
and no flow line passes through that point. Now let’s see how to calculate
flow lines.

If R is the position vector to an arbitrary point of a flow line, and if s
represents arc length measured along the flow line, then the unit vector
tangent to the curve at that point is given by

_dR _dx. dy. dz

The requirement that T have the same direction as F can be written
T = pF (3.5

where f8 is a scalar-valued function of x, y, and z. This can be written in
terms of components,

dy _dz

dx
ﬁF1=% ﬂF2=“ ﬁF-a ds

- (3.6)

If Fy, F,, and F5 are all nonzero, we may eliminate f and write (3.6) in
differential form,

d dy d
“@o_ay_ 4 3.7)
F, F, F;

If one of these functions (say F3) is identically zero in a region, then we
obtain directly from (3.6) that the curve lies in a plane (say, z = constant)
parallel to one of the coordinate planes.

Example 3.10 U F=xi+ yj+k, then F, =x, F, =y, and F; =1, giving dx/x =
dy/y = dz. Solving the differential equations dx/x = dz and dy/y = dz, we obtain
x = C,€°, y = C,¢*. Thus the equations of the flow line passing through the point (3,4,7)
are x = 3¢’ 7, y = 4¢* 7. The equations of the flow line passing through the origin are
x =0, y = 0—i.e, the z axis.

Example 3.11 1f F = xi + yj, then F;, =x, F, =y, and F; =0. In this case (3.6)
becomes Bx = dx/ds, By = dy/ds, and 0 = dz/ds. Eliminating § from the first two
equations we obtain dx/x = dy/y, and, solving, we obtain y = Cx. From the third
equation we obtain z = constant. The field is zero when both x and y equal zero, and
so the flow lines are not defined along the z axis. The flow lines are straight half-lines
parallel to the xy plane, extending outward from the z axis.

Example 3.12 1If F = —yi + xj, then — By = dx/ds, fx = dy/ds, and 0 = dz/ds. Thus
—dx/y = dy/x, and hence x? + y* = constant. Also, we have z = constant. The flow
lines are circles surrounding the z axis and are parallel to the xy plane. As in Example
3.11, no flow lines pass through points on the z axis.
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Flow lines may be infinite in extent, as in Examples 3.10 and 3.11, or
they may close upon themselves, as in Example 3.12.

Exercises

1. A vector field F is defined in the xy plane by F = —yi + xj. Draw a diagram similar
to Fig. 3.3, showing the values of F at the points (1,0), (0,1), (—1,0), (0,—1), (1,1),
(—1,1),(=1,—1),(1,— 1), and a scattering of other points. Indicate flow lines.

2. LetF=x%+ »%j + k.

(a) Find the general equation of a flow line.
(b) Find the flow line through the point (1,1,2).

3. Without doing any calculating at all, describe the flow lines of the vector field
R = xi + yj + zk. [Hint: If a particle located at (x,y,z) has velocity R, in what
direction is it moving relative to the origin?]

4. The flow lines of the gradient of a scalar field cross the isotimic surfaces orthogonally.
Explain.

3.3 DIVERGENCE

The concept of gradient, as we have presented it, applies only to scalar
fields. We now consider the more complicated problem of describing the
rate of change of a vector field. There are two fundamental measures of the
rate of change of a vector field: the divergence and the curl.

Roughly speaking, the divergence of a vector field is a scalar field that
tells us, at each point, the extent to which the field diverges from that point.
The curl of a vector field is a vector field that gives us, at each point, an
indication of how the field swirls in the vicinity of that point. However, to
describe divergence and curl in such a brief manner is not only useless but a
bit dangerous, since (if taken literally) both of these preceding sentences are
not only vague but technically incorrect. As we shall see, it is possible for a
field to have a positive divergence without appearing to “diverge” at all,
and it is possible for a field to have a nontrivial curl and yet have flow lines
that do not bend at all.

In this section we consider only the divergence. We begin by presenting
a heuristic discussion which will serve to motivate the formal definition.

As usual, the vector field will be denoted by

F=F1i+F2j+F3k

Let us, for the moment, interpret F(x,y,z) as the velocity of a fluid particle
located at (x,y,z), as in Example 3.8 of the previous section; F is thus the
velocity field of the fluid. Now consider a small planar patch of surface
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FIGURE 3.4

inside the fluid. Let 45 be the area of the patch, and let n be a unit vector
normal to the patch. We would like to find an expression for the amount of
the fluid that flows through this area per unit time.

As shown in Fig. 3.4, if F is the velocity of the fluid at some point on the
patch, then the body of fluid that will pass through the patch in the time Ar
is, approximately, the fluid in the tube with base S and central axis F At.
The approximation becomes exact as S and At become small. If we assume
the density of the fluid is unity (i.e., the fluid is incompressible), then the
amount of fluid in this tube is given by its volume. Its base area is S, and
its height is F A¢ - n. Multiplying these and dividing by At, we see that the
amount of fluid crossing the area §S (in the direction n) per unit time is approxi-
mately F - n6S. This is called the flux of the vector field F through the area 5S.

To define the divergence of the field F, we consider a small rectangular
parallelepiped having corners at (x,y,z), (x + Ax, y, z), (x, y + Ay, x), (x, ¥s
z + Az), etc. (Fig. 3.5). We shall compute the total flux of the field F through
the six sides of this box in the outwards direction (i.e., on each side we choose
n to be the outward normal). We then divide this flux by the volume of the
box and take the limit as the dimensions of the box go to zero. This limit is
called the divergence of F at the point (x,y,z).

The computation of this limit proceeds as follows. On face number I in
Fig. 3.5 the outward normal is —i. Thus, according to the above analysis,
the flux out of this face is approximately — F,(x,y,z) Ay Az. The flux out of
face number II, whose outward normal is i, is F;(x + Ax,y,z)AyAz. The
total flux out of faces I and II is thus

[Fl(x + Ax’y7z) - Fl(x’yaz)] AyAZ



102 Scalar and Vector Fields CHAP. 3
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FIGURE 3.5

The difference in these values of F is given, to the same order of accuracy, by

oF
EAX

Thus the contribution to the net outward flux from faces I and II is

o,

AxAy Az
X

Similarly, the two faces in the y direction contribute
0F,
dy

and, adding the contribution of the two remaining faces we see that the net
outward flux is approximately

0F, O0F, 0F;

— + "+ —]AxAyA

( ox + oy 0z yaz
After we divide by the volume Ax Ay Az, our approximations become accurate
as we take the limit and we are led to the following statement, which we take
as our formal definition of divergence:
The divergence of a vector field

F=F,i+ F,j+ F;k (3.8)
is a scalar field, denoted div F, defined by

AyAx Az

F
divF = 2F1 oF2 oFs

ox | oy | o0z (39)

It is easy to compute the divergence of a vector field, as we demonstrate
with examples. Keep in mind that div F is defined by Eq. (3.9), and that our
heuristic discussion gives us the interpretation of div F as net outflux per
unit volume.
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Example 3.13 Find div F, if F = xi + y%zj + xz°k.
0 0
Solution divF = i()c) + —(?2) + —(xz%)
0x dy 0z

=1+ 2yz 4+ 3xz?
Example 3.14 Find div F, if F = xe’i + ] + sin yzk.

0 0
Solution div F = —(xe) + i(e"y) + —(sin yz)
O0x Jdy 0z

=e¥ + xe® + y cos yz

Example 3.15  Give an example of a vector field F that has divergence equal to 3 at
every point in space.

Solution Many solutions can be given, for instance F = 3xi or F = xi + yj + zk.

Example 3.16 In Fig. 3.6, is the divergence of F at point P positive or negative?
Assume no variation of F in the z direction and that F is identically zero.

Solution We see from the diagram that F, is approximately constant, so oF,/dx = 0.
Below P, F, is negative, and above P, F, is positive, so dF, /8y is positive. Since F, = 0,
we have 0F4/0z = 0. It follows that div F is positive at point P.

Heuristically, we can see that the flux through the x faces of a parallelepiped at P
will cancel, while there is definitely flux out of both y faces. Since there is no flux in
the z direction, the divergence is positive.

<

N
VN
HRNN

FIGURE 3.6
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Example 3.17 In Fig. 3.7, is the divergence of F at point P positive or negative?
Assume no variation of F in the z direction and that F; is identically zero.

Solution We see from the diagram that F, is decreasing with increasing x, hence
OF ,/dx is negative. F, and F5 are zero at every point. It follows that the divergence
of F is negative at every point.

Again heuristically, there is no flux in the y or z direction, and the flux in the x
direction decreases as we move to the right. So the net flux through the sides of a box
at Pis inward, and the divergence must be negative.

In Fig. 3.6, where the divergence is positive, the lines of flux do, in a
sense, diverge in a neighborhood of P. This is the picture that motivates the
common (incorrect) statement that “positive divergence means the field is
diverging, negative divergence means the field is converging.” Note that in
Fig. 3.7, the divergence is negative, but the flow lines are not converging. The
divergence is negative because more fluid enters a given region from the left
than leaves it to the right.

Let us mention a hydrodynamic application at this point. Again,
interpret F as the velocity field of a fluid whose density p may depend on
position and time. Then a simple modification of our analysis of flux shows
that the amount of fluid crossing an area S in the direction of its unit normal
n, per unit time, is pF + ndS. Accordingly, the amount of fluid flowing out
of a small box with dimensions Ax, Ay, and Az is approximately

div(pFYAxAy Az
per unit time. This must result in a decrease of the amount of fluid,
pAx Ay Az
and hence a decrease in the density. Therefore we can write

op
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This is called the equation of continuity in fluid mechanics; it expresses the
law of conservation of mass.

The heuristic reasoning employed in this section is, of course, subject to
criticism, as are most arguments involving “infinitesimals.” Its rigorous
justification rests on a result known, appropriately enough, as the divergence
theorem, and we will study it in the next chapter. For the present we are
satisfied with having a formal, precise definition of div F in Eq. (3.9), and an
intuitive picture of what it represents.

Exercises

. Find div F, given that F = &*i + sin xy j + cos? zx k.
. Find div F, given that F = xi + yj + zk.

. Find div F, given that F = grad ¢ where ¢ = 3x2)°z.

. Find the divergence of the field

AW N -

xi+ yj + zk
(&% +y? + 27

Is the divergence of this field defined at every point in space?
S. Show in detail that div (¢F) = ¢ divF + F - grad ¢.

6. Construct an example of a scalar field ¢ and a vector field F, neither of which is
constant, for which div (¢F) is identically equal to ¢ div F.

7. Give an example of a nonconstant field with zero divergence.
8. Give an example of a field with a constant negative divergence.

9. Give an example of a field whose divergence depends only on x, is always positive,
and increases with increasing x. (Hint: The function e* is positive for every x.)
10. True or false: If F is everywhere nonzero and if div F is identically zero, the flow
lines of F must be closed curves.

11. What can you say about the divergence of the vector field in Fig. 3.8 at points
P, Q, and R?

12. What can you say about the divergence of the vector field in Fig. 3.9 at points
P, Q,and R? Assume no variation of F in the z direction and that F; is identically
zero.

13. Another hydrodynamic interpretation of divergence is as follows: Let F be the
velocity field of a fluid. Consider a small rectangular paraliclepiped of fluid located
at (x,y,z). Then the divergence of F is the time rate of change of the volume of this
body fluid, per unit volume, as the size of the box goes to zero. Show this. [Hint:
With R = xi + yj + zk, the box initially has corners at R, R + Axi, R + Ayj,
R + Azk, etc. After time At these corners have moved to the new positions R +
F(x,y,z) At, R 4+ Axi + F(x + Ax, y,z) At, R + Ayj + F(x, y + Ap,z) AL, R + Azk +
F(x, y,z + Az) At, etc. Calculate the new volume using the triple scalar product, and
compute the limit described above. ]

b
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3.4 CURL

As in the previous section, we shall preface our formal definition of the
curl of a vector field with some heuristic considerations. Once again, it is
convenient to imagine that F represents the velocity field of an incompressible
liquid. Now let us imagine we have a little paddle wheel, like that shown in
Fig. 3.10, that is free to rotate about its axis A4".




SEC. 34

Curl 107

A

FIGURE 3.10

Imagine that we immerse this paddle wheel in the liquid. Because of the
flow of the liquid, it will tend to rotate with some angular velocity. This
angular velocity will vary, depending on where we locate the paddle wheel
and on the positioning of its axis. For definiteness we shall try to compute
the angular velocity with the paddle wheel lined up along the z axis.

The mechanism which rotates the wheel is provided by the tendency of
the fluid to swirl around the z axis; this motion is due to the counterclockwise
components of the velocity near the axis. If we impose a polar coordinate
system centered around the paddle wheel axis, as in Fig. 3.11, then the

g -

FIGURE 3.11
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counter clockwise component of F at the point (r,0) is given by F - u,. This
component of the velocity would turn a blade of the paddle wheel at an
angular rate of F - ug/r, in radians per second. Of course, this rate will differ
from point to point near the axis, so that the different blades of the wheel are
“pushed” at different speeds. But it seems plausible to expect that if we took
the average counterclockwise velocity component over a small circle around
the axis, and then divide by the radius of the circle, the quotient would give the
angular velocity of the paddle wheel (whose blades we regard as rigidly
fixed to each other).

Let us perform this computation. In Fig. 3.11 (x,y,z) are the coordinates
of the center of the circle; the z axis comes out of the page towards the reader.
At the point on the circle with coordinates (x + Ax,y + Ay, z), the unit
vector ug is given in terms of the angle 6 by

Uy = —sin i + cos B

The components of the velocity F(x + Ax,y + Ay, z) at this point can be
expressed to first order of accuracy by

oF oF
Fi(x + Ax,y + Ay,2) = 1(xy,2)+—A +é‘—y1Ay

oF oF
Fy(x + Ax,y + Ay, z) = Fz(xy,~)+a—A +5y_2A

F5 does not concern us, since we are only interested in the counterclockwise
component F + u,. Expressing Ax and Ay in terms of r and 6,

Ax =rcos
Ay =rsinf

we have, for the counterclockwise component of velocity at (r,0) on the circle,

F oF
F-u=— Fl—l—é—lrcosﬂ-l——lrsinﬁ sin 6
0x oy

ox ady

The average clockwise component around the circle will be

1

2n
Since the integrals over one period, of cos 6, sin 8, and sin 6 cos @ are zero,
and since (3" cos? 0d6 = [§" sin> 6df = =, this average is seen to be

OF, _oF,
i ox ay

and dividing by r, we conclude that the angular velocity of the fluid about the

F F
+<F2+(—3——3rc086+6—2rsin9>0059

2n
o ¥ - u,do
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1(0F, 0F,
2\ 0x 0y
The computation of the angular velocity about the x axis yields

L(2Fy ok,
2\ dy 0z

L(2F, _oF,
2\ 0z 0x
We want the curl of a vector field to express its tendency to swirl; so,

dropping the factor % for convenience we formulate the following definition:
The curl of a vector field F = Fii + F,j + F;k is the vector field

0F; OF,)\. 0F, O0Fs\, [(0F, O0F,
e —_—— - - 3.1
<6y 82>]+<0z 0x Ut d0x dy k (3.10)
Rather than memorize (3.10), the student is advised to write the curl in the
form of a symbolic determinant:

z axis is

and, for the y axis,

"
o 9 9
-2 < ¢ 3.11
crl F =\ & % (3.11)
F, F, F;

Example 3.18 Find curl F, if F = xyzi + x?)222j + y?z°k.

Solution
i i
0 0 a 3 2.2 s : 2,2
curl F = | — — — | = Qyz° = 2x*y*2)i + (xy)j + 2xy*z* — x2)k
x ay 0z
xyz x2y?z? y2z3

Example 3.19 Find curl Fif F = xi + yj + zk.

Solution
i j Kk
Jd 0 ¢
1F=|— £ iy
amtTR &
x y z

Example 3.20 In what direction is curl F at points P and Q in Fig. 3.12? Assume
that F; is identically zero and that there is no variation in F in the z direction. (This
field is the same as that shown in Fig. 3.9.)
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Solution It should be clear from our discussion that curl F points in the + z direction.
Using the formal definition, observe that at the point P, F, is increasing in the x direction,
so 0F ,/0x is positive. Although F is zero at P, it is positive below P and negative above,
so F, is decreasing as we move through P in the y direction, that is, 0F /0y is negative.
Since we assume F; identically zero, the derivatives 0F 3/0y and 0F 3/0x are also zero,
and since we assume no variation in the z direction, F,/dz and 0F,/0z are zero. It
follows that the only term in (3.10) that does not vanish is the last term, and that the
last term is positive.

At point Q, F, is zero, but it is negative to the left of @ and positive to the right,
hence 0F,/dx is positive. F, is negative at Q and is becoming even more negative
with increasing y, and so dF/dy is negative. The term (0F,/dx — 0F 1/dy) is therefore
positive. The other derivatives in (3.10) equal zero. It follows that curl F at point Q
is also perpendicular to the xy plane, directed toward the reader. (In fact, a little
reflection will convince the reader that curl F at point P is equal to curl F at point Q.)

Example 3.21 1In what direction is curl F, if F is as shown in Fig. 3.13?

Solution Since F is directed parallel to the y axis and appears to have magnitude
proportional to x, we can guess F = Cxj, where C is a negative constant. Hence

i j k
o 0 @
1F=|— — —|=Ck
cur ox oy 0z

0 Cx O

Since C is negative, the curl is directed into the page (negative z direction).

In Fig. 3.13, the paddle wheel would tend to rotate most rapidly with its
axis perpendicular to the page; it will rotate because the velocity of the fluid
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is greater on one side than on the other. The direction of the curl is into the
page, because the paddle wheel will tend to rotate clockwise. This example
shows that it is possible for a vector field to have nonzero curl even when the
flow lines are straight lines; hence, to describe curl F as “a measure of the
rate of swirling of F” is not completely accurate.

Example 3.22 Let us imagine that F represents the velocity field of a fluid of constant
mass density rotating with uniform angular velocity w about the z axis. Find curl F.
(Assume the angular velocity vector e to point in the positive z direction.)

Solution Since @ = wk, we have (Eq. 1.21) F = wk x R, where R = xi + yj + zk.
Hence F = —wyi + wxj. Using (3.11) we find that curl F = 2wk. As we expected,
the curl of F is just twice the angular velocity vector; in this situation, it is the same
at every point in space.

The reader should convince himself/herself that the field in Example 3.22
is portrayed in Fig. 3.12.

Exercises

In Exercises 1 through 3, find curl F:

1. F = xy%i + xyj + xyk

2. F=¢"i +sin xy j + cos yz*k

3. F = z%xi + y%zj — 2%yk

4. Given the vector field F = (x + xz2)i + xyj + yzk,
(a) evaluate divF,
(b) evaluate curl F.

5. Draw a rough picture of the vector field F = xi + yj + zk and, thinking of the
paddle wheel interpretation of curl F, explain why curl F is identically zero in
this case.

6. Give an example of a vector field with curl identically equal to 2i.
. The flow lines of a velocity field F are straight lines. Does this imply that curl F = 0?

8. Is it possible to tell anything about curl F, given only a description of the flow
lines of F?

~
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3.5 DEL NOTATION

To understand properly the notion of an “operator” it is necessary to
take a broader look at the concept of a “function”. For this reason we
digress momentarily to consider what is meant by a function.

In elementary calculus, the functions considered are usually “real-
valued functions of a real variable”. That is, a function f is a rule that
associates with every real number x in its domain of definition a single real
number f(x). For example, the exponential function is defined for all x, and
to each real number x associates a single real number ¢*. We define this
function by writing f(x) = e*. Other functions are defined by writing, say,
f(x) = x? or f(x) = sin x. Most mathematicians nowadays distinguish rather
carefully between the symbol f and the notation f(x). The former denotes the
function and the latter denotes the value of the function (which is a number
and not a function). Thus if f(x) = x?, the function f is the rule “square the
given number”, but f(3) is the number 9.

In more advanced courses we meet functions of two or three variables.
In this book “scalar fields” are simply real-valued functions of three real
variables. Thus, the function f defined by f(x,y.z) = x?y?z* says “multiply
together the squares of the given numbers”. When used alone, in this context,
the letter f denotes this rule, but if we write, say, f(2,1,3), we mean the value of
the function at the point (2,1,3), which in this case is the number 36.

Most of the functions we have been considering in this chapter are
described by expressions involving x, y, and z. In studying vector analysis it
is useful to “visualize” such functions in geometrical or"physical terms. Thus,
the engineering student may think of “an arbitrary function f” as meaning
“an arbitrary electric potential”, or “an arbitrary temperature distribution”,
and the mathematics major may think of this as meaning “a rule whereby we
tag each point in space with a number”. The student who thinks of a function
as a jumble of x’s, y’s, and 2’s doesn’t have much fun, and misses much of the
point.

The vector fields we discuss are vector-valued functions of three real
variables. But the idea is still much the same. In this context, a function F
is a rule that associates with each point (x, y,z) a single vector F(x, y,z).

But now we come to what is a big hurdle for some students: passing to
the general notion of a function. Much of the mystery of modern mathematics
vanishes when we realize that a mathematician uses the word “function” in
a much more general way, to denote any rule that associates an object with
each one of a class of objects. Thus we have not only functions that associate
numbers with numbers (the functions of elementary calculus), numbers with
points in space (scalar fields), and vectors with points in space (vector fields),
but also those that associate functions with functions.

Partly for reasons of convenience, but mainly (we suspect) because so
many people have old-fashioned ideas of what the word “function” means,
the latter types of functions are usually called “operators”. An operator is
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simply a rule that associates a new function with each member of a particular
class of functions.

To take an example from elementary calculus, the process of differentia-
tion defines what is called the derivative operator. This is the operator that
associates with every differentiable function f its derivative df/dx. This
operator is sometimes denoted d /dx or sometimes, even more simply, D. It
converts each differentiable function f into its derivative. We may formally
write this

daf
D(f) =

Some textbooks say that D is simply an abbreviation for d/dx, and that
the symbol d/dx means nothing by itself, having meaning only when it is
applied to some function f. Then we may write df/dx, which of course
we all understand. Other differential operators, such as L = (d%/dx?) +
2(d/dx) + 4, are similarly interpreted as symbols that are meaningless unless
followed by a function. In this case we have

&f L df
L(f)—zx—z+2dx+4f

This is to miss the whole point of the operator concept, however. It would be
much better to visualize this operator as a sort of meatgrinder, into which we
drop the function f, turn the handle, and out drops the function (d*f/dx?) +
2(df/dx) + 4f. There is really no insurmountable difficulty in understanding
that an operator T is a rule that associates with a function f some other
function (or possibly even the same function) T(f). It is misleading to say
that the symbol d/dx means nothing by itself. It means a great deal: it
represents the rule whereby we associate with a differentiable function its
derivative. There is no point in recounting here the basic definition of
“derivative” or the innumerable techniques involved in actually computing
a derivative. The point is that a differentiable function has a derivative and
the derivative operator pairs the derivative with the function. (The excellent
concept of “pairing” is used in many modern books in discussing the function
concept. The derivative of a function is just another function, and the
derivative operator is the mathematical twine that binds the two together.)

Another example of an operator is the gradient. We recall that the
gradient of a scalar field f is a vector field grad f. The gradient operator
may be written, symbolically,
.00 K 0

15; + ]?y + 6—2

Divergence is also an operator. It is an operator that converts a vector
field into a scalar field. Similarly, curl is an operator, but it is an operator
that changes a vector field into another vector field.
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The three operators that concern us most are gradient, divergence, and
curl. Although they may be written grad, div, and curl, there is a suggestive
and convenient symbolic way of writing them that is commonly used. For
this purpose, we introduce the symbol V, called “del” (sometimes “nabla”),
which is an abbreviation for i(6/0x) + j(0/dy) + k(0/0z). In terms of this
symbol, we can write grad f as Vf. Working with V purely formally, pretend-
ing for the moment it is a vector, we see that if we form the scalar product of V
with a vector field F, we obtain

.0 .0 0 . .
V'F=<lb§+16_y+k&> (iF, + jF, + kF;)

0F, oF, 0F,

=ty T

which is the divergence of F. Similarly, if we imagine V to be a vector and
form the vector cross product of V with ¥, we obtain the curl of F:

v x F=<ii+ja%+ka>x(iF1+J'Fz+kF3)

0x 0z
i j k
= éix ;% % =curl F
F, F, F;
To recapitulate, V is an abbreviation,
V=ia%+j(%+k5% (3.12)
The symbols V/, V- F, and V x F are defined by

Vf =grad f (3.13)
V-F=divF (3.14)
VxF=curl F (3.195)

After (3.12) is memorized, formulas (3.13), (3.14), and (3.15) provide very
convenient ways of remembering the expressions for gradient, divergence,
and curl. We just operate with V as though it were a vector. Henceforth we
will use these abbreviations frequently.

Exercises

1. If f(x,y,z) = x%y + z, what is £(2,3,4)?
2. If f(x,,2) = x*y + z, what is the value of Vfat (2,3,4)?
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3. If g(r) = £* and f(x,3,2) = x* + y’z, what is g[ £(1,1,3)]?
4. Given F(x,y,z) = x*yi + zj — (x + y — 2)k, find
(a) V-F
(b) Vx F
(¢) V(V-F)
. If F is a vector field, is V - (V x F) a scalar field or a vector field?
. If F is a vector field, is V x (V x F) a scalar field or a vector field?
. Find V- R and V x R where R = xi + yj + zk.
. If f(x,y.2) = xyz + €, find V - (Vf).
. (a) Compute V x (Vf) for the scalar field f defined in Exercise 8.
(b) Now do the same thing for another scalar field f (use any of the scalar fields
defined in preceding problems, or make one up yourself).
(c) What can you conjecture from this?
10. (a) Compute V - (V x F) for the vector field F defined in Exercise 4.
(b) Do the same for a vector field F that you have made up yourself.
(c) What can you conjecture from this?

N-2NN- -EEES - WY |

3.6 THE LAPLACIAN

In electrostatics, the gradient of the electric potential is a scalar multiple
of the electric field intensity, and the divergence of the electric field intensity is
related to the charge density. For this and other reasons it is convenient to
introduce a single operator that is the composite of the two operators grad
and div. This operator is called the laplacian.

The laplacian of a scalar field f is defined to be div (grad f). Note that
grad f'is a vector field and the divergence of grad f is a scalar field; hence the
laplacian of a scalar field f is a scalar field. In del notation this is V - (Vf)
and for simplicity is frequently written V2f, or Af.

We have
laplacian (f) = V3 = V + (Vf) = j+22—f: azf —Af  (3.16)
since
v =ve (T e Tx) = e e

The symbol V> or A may be considered to be simply an abbreviation for
o r 0
ot
The equation

Af =V =0 (3.17)
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is called Laplace’s equation. Any function satisfying this equation in a
given region is said to be harmonic in that region. For example, the electric
potential of a static distribution of charges is harmonic in any region where
the charge density is zero. A function describing the steady-state temperature
distribution of a homogeneous material is harmonic in the interior of the
region occupied by the material.

The laplacian operator is by far the most important differential operator
in mathematical physics. In this section we discuss its intuitive meaning
without giving proofs.

If f is a scalar, then V?f(x,y,z) denotes the value of V?f at the point
(x,y,z). This is a number that tells us something about the behavior of the
scalar field in the vicinity of (x,y,z). Roughly speaking, it provides a measure
of the difference between the average value of the field in the immediate
neighborhood of the point and the precise value of the field at the point.

(The word “average” here refers to an average over a region of space,
not to a time average. Variations with time ¢ do not enter into the calculation
of V)

Thus, if V2f is positive at a point, and f denotes the temperature, this
means that the temperature in the vicinity of the point is, on the average,
greater than the temperature at the point itself. In particular, if the tem-
perature takes its minimum value at a certain point in space, it is reasonable
to expect that the value of V?f will not be negative at that point. In this
respect, the laplacian can be viewed as a sort of three-dimensional generaliza-
tion of the ordinary operator d?/dx?, which is used in elementary calculus to
test extreme points to see if they represent maxima or minima.

If V3f is identically zero, the average value of f throughout any sphere
(or any cube) will be exactly equal to the value of f at the center of the
sphere (or cube). This is an important property of harmonic functions.

Suppose that (x,y,z) is a fixed point in space, and that f denotes the
mean value of f throughout the interior of a sphere (or cube) with center
at (x,y,z). If this sphere (or cube) is sufficiently small, we will have
(approximately)

f“ - f(x,y,z) = szf(X,y,Z) (318)

where K is a positive constant depending only on the dimensions of the
sphere or cube. For a sphere, K = R?/10, where R is the radius of the sphere.
For a cube, we have K = a?/24, where a is the length of the side of the cube.
Relation (3.18) is exact only in one very special instance: when Vfisa
constant, independent of x, y, and z. It is approximate otherwise, but the
approximation is fairly good in some sense if the sphere or cube is sufficiently
small. It is very helpful in giving an intuitive meaning to expressions
containing the laplacian.
‘The formal differential operator
, 0 0*  0*
A=Vi=—omst o +32
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may also be applied to vector fields to obtain new vector fields, since if F
is a vector field, (0°F/0x?) + (0°F/0y?) + (0°F/0z%) makes perfectly good
sense. For example, if

F = x%yi + y?23j + xyz*k

then we have

0*F .

W Zy]

0*F ]

W = 223J

0*F

2= 6y%zj + 12xyz°k

whence V2F = 2yi + (22> + 6y%2)j + 12xyz’k. When used in this sense, to
operate on vector fields to produce vector fields, we will call V? the vector
laplacian operator.

OPTIONAL READING: DYADICS

Notice that when V2 is used as an operator on vector fields, as in V?F,
its interpretation as div grad is rather strained. After all, there is no meaning
to grad F in our scheme of things.

However, in some areas of physics and engineering it proves convenient
to use such strange symbols. To see how this might come about, suppose
we want to express the vector component of a vector F in the direction of a
unit vector n. The answer is given by n(n - F) (recall Sec. 1.9). This formula
tempts one to define an operator, the projection operator in the direction n,
and to denote it as n n; then the projection of F in the direction n is

(nn)-F=nn-F

Generalizing, given any two vectors A and B, one formally defines the
dyadic AB as an operator acting as follows: for any vector F,

(AB)-F=AB-F
and
F-(AB)=F-AB

Thus the dyadic ii projects a vector onto the x-axis. As another example,

observe that the dyadic ii + jj + kk is an identity operator because
({i+ji+kk): F=F=F-(ii + jj + kk)

[Recall Eq. (1.14)].
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In this context, we can consider grad F, or VF, as a dyadic:
.0 6 é‘ .
VF = +j=— — J(Fi + F,j + F3k)
0 dy 62

6F1 oF, .. 6F1
—-— ki
ox i + oy L 0z !

oF oF, . OF,
+6—]+—a;]]+a—k]

oF OFy . 0OF,

P+ 9k kK
+ P k+ 3y K+ 2z k

(Notice that ij # ji). Then the dyadic-interpretation of div grad F becomes

0 0 d\ (oF aF
V- (VF)={i—+i— hd 1 Lo 203
(VF) ('ax+Jay+kaz> <6x”+ e kk)

O°F,. O°F,. 0°F,
_6x21+6x2J 62k
O°F, . O°F,. 0°F,
+0y21+6y21 62k
0*F,, 0*F, ., O0°F,
a2 it itk

which is the same as V>F.

Exercises

. Find V?f, given that f(x,y,z) = x°yz>.

. Find V3, given that f(x,y,2) = L/(x*> + y? + z%)%.

. Find V°F, given that F(x, y,2) = 3i + j — x?y*z%k.

. Which of the following functions satisfy Laplace’s equation?
(a) f(x,y,2) =€ sin y
(b) f(x,y,z) = sin x sinh y + cos x cosh z
(¢} f(x,y,z) = sin px sinh gy (p and g are constants)

5. Tell whether each of the following is a vector field or a scalar field, given that f
is a scalar field and F is a vector field. Two of the expressions are meaningless;
determine which two.

B W N -

(@) Vf ) Vx f

(b) V-F (g) V*F

(c) Vx F (h) V x (V2F)
(d) V- (Vf) (i) Vx (V)
(e) Vx(¥f) (5 V(v*)
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6. (a) Show that, if f and g satisfy Laplace’s equation, f + g does also.
(b) Find a function satisfying Laplace’s equation and also the following identities:
J0.y.2) =0, f(x,0,2) = 0, f(r,y,2) = 0, f(x.,5,2) = sin x + sin 2x. [Hint: Use 6(a)
and 4(c) to guess an answer. |

3.7 VECTOR IDENTITIES

Although we continue to use the del notation, formally manipulating

0 0 0
Voi—+il 1k
' 15t X
as though it were a vector, this practice has certain hazards. Keep in mind
that the derivative operators appearing in the del operator act only on
functions appearing to the right of the del operator.
For example, supposing that

F=x%i+y%j+x%zk  R=xi+yj+zk

let us compare the two expressions (V *R)F and (R- V)F. For the first
of these we have

(V* R)F = 3F = 3x%)i + 3y2j + 3x%zk

On the other hand, in the second expression, R is to the left of V, and therefore
the derivatives in the del operator do not act on R. We have

0 d d

(R . V)F = (Xaj + ya—y‘ + Z—a—z>(x3yi + yzj + XZZk)
= x(3x?yi + 2xzk) + y(x3i + 2yj) + z(x?k)
= 4x3yi + 2y?j + 3x2zk

Also, it is common practice to omit parentheses in a vector expression
when there is only one interpretation of the expression which makes sense,
in the context of ordinary vector analysis (i.e., excluding dyadics). For
example, V- RF and R - VF must mean (V - R)F and (R - V)F, respectively,
since V + (RF) and R - (VF) do not make sense in this context.

Similarly, V « fF means V - (fF), simply the divergence of fF, since
V- f, and hence (V - f)F, is meaningless.

In some cases where parentheses are omitted, two interpretations are
possible, both of which make sense. For example, if A = A,i + A,j + Ak
1s a vector field and f is a scalar field, both (A - V)fand A - (Vf)are meaningful
and are sometimes written A - V. This is because both interpretations
lead to exactly the same final result. We have

of of of

o 0 o )
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and also

2 2 2 3
A-(V)=A (a—f +%;+6J; ) Alaf+AzajJ:+A3a—J;

both of them equal.

Because of the convention adopted above it is especially important to
preserve order in working with V. For instance, V- A is a scalar field,
simply the divergence of A, but A - V is the differential operator

0 0 0
A
A1 a + A 2 6 + 3 82
a horse of quite a different color.
We now list a number of identities. Here F and G denote vector fields,
¢ denotes a scalar field, and R = xi + yj + zk. Their proofs vary in character
and difficulty, and we discuss them below.

V(g1,) = 01V, + 2V, (3.19)
V-¢F=¢V-F+F- Vo (3.20)

Vx ¢oF=¢Vx F+Vp x F (3.21)
Vi) = l Vu (3.22)

In Eqgs. (3.23) to (3.27), A is any constant vector.

V-R—A)=3 (3.23)

Vx(R-—A)= (3.24)

V(R — A]") = n|R — A" 2(R — A) (3.25)

F-V(R — A) = (3.26)

VA -R)=A (3.27)

V- FxG =G (VxF)—F-(VxG) (3.28)
Vx(FxG)=(G:V)F—(F:V)G + (V:G)F — (V- F)G (3.29)
V x (V x F) = V(V - F) — V?F (3.30)
VF-G)=(F-V)G+(G-V)F+Fx(Vx G)+G x (VxF) (331)

V x V($)=0 (3.32)

V- (VxF)=0 (3.33)

V- (Vo; x V) =0 (3.34)

Identities (3.19), (3.20), and (3.21) are very simple. They are based on the
formula expressing the derivative of a product as the sum of two terms,
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each containing the derivative of one factor. Any of these is easy to verify
componentwise. For instance, the z component of V x ¢F is

0 0
—(¢F,) — — (¢F
5 OF) = 5 0F)
Breaking this up, we see that this is ¢ times the z component of V x F,
plus the z component of (V¢) x F.
Identity (3.22) expresses the chain rule; its x component merely says

0 df ou
W= e

It can be generalized to functions of more than one variable. For example, if
u; and u, are functions of x, y, and z and if f is a function of u, and u,,
then we have

of of

Vi(uyu,) = . Vu, +—

Vu,
uy ou,

Identities (3.23) through (3.27), which involve the vector R, are quite
trivial but occasionally useful.

- Identities (3.28) through (3.31) involve the interplay of the vector and
differential properties of V, and they are quite complex. Any of them can be
verified by laboriously working out the components, and we cheerfully invite
the devoted student to do so. In the next (optional) section on tensor notation
we will use some heavy notational machinery to derive these equations more
efficiently. However, we would like to mention a heuristic device for guessing
at the form of the identities.

Let’s take identity (3.28), and go to work on

V- (F x G) (3.35)

We know that, as far as the vector nature of the triple scalar product is
concerned, we can interchange the dot and the cross. Thus we suspect that
the expression (3.35) is equal to

(VxF)-G (3.36)

However, we must interpret (3.36) in an unconventional manner, namely, the
operator V must continue to differentiate both F and G [and not merely F,
as (3.36) dictates]. So to be correct we must split (3.36) into two terms,
analogous to the splitting in differentiating a product. The term where F
alone is differentiated can be expressed unambiguously as

G- (VxF) (3.37)

To get the term where G is differentiated, we “rewrite” (3.36) as
—(VxG)-F (3.38)
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which is consistent with the vector nature of the triple scalar product. Clearly
from (3.38) we can display the part of the formula in which G is differen-
tiated as

~“F-(VxG) (3.39)

Thus we are led to guess that (3.35) equals (3.37) plus (3.39), in accordance
with identity (3.28)!

Let us try this out again on formula (3.29). Using our old rule for
A x (B x C), we first write, incorrectly,

Vx(FxG)=(V-G)F - (V- F)G (3.40)

This is incorrect because we must interpret V as differentiating both F and G
in each expression on the right. To break up this compound derivative and
get a correct expression for “(V + G)F”, we observe that (V - G)F, interpreted
conventionally, gives the term in which G is differentiated, while (G * V)F
gives the term where G is treated as constant and we differentiate F. Handling
the other term in (3.40) similarly, we propose that

Vx(FxG)=(V-GF +(G-V)F—(V-F)G - (F- V)G

This is identity (3.29).

Clearly the above reasoning is tricky, but it can be very helpful in
suggesting “which way to turn” in the derivation of complicated vector
equations (such as those of electromagnetic theory). Suffice it to say that one
always breathes easier after verifying any such “identity” in a mathematical
handbook.

Identities (3.32), (3.33), and (3.34) are based on the appearance, in each
case, of differences of mixed second derivatives. For example, the z com-
ponent of V x (V¢) is

6 op 0 0¢

dx dy 0y ox
It is well known from advanced calculus that such mixed derivatives are the
same when taken in either order; hence these terms cancel. [To be rigorous,
we should stipulate that ¢ and F possess continuous second derivatives when
applying (3.32), (3.33), or (3.34).] A proof of the equahty of the mixed partial
derivatives appears in Appendix B. :

Identity (3.22) has been included because, in this book, curvilinear
coordinates are not discussed in detail until Chapter 5, and many people
who use this book do not proceed that far. For such readers, the labor of
computing a gradient can be reduced by using (3.22) and a little common
sense, and the following example should be studied carefully by anyone in
this category.

Example 3.23 Find the gradient of the scalar field f given by f(r) = 1/r, where r
is the distance from the origin, r = [R| = \/x* + y* + z°.
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Solution  Since r is the distance from the origin, Vr can be computed by using Properties
3.1 through 3.4. Obviously, r increases most rapidly in the direction away from the
origin, so the direction of Vr is the same as the direction of the position vector R, which
also points away from the origin. When we move in this direction, the rate of increase
of r per unit distance is simply dr/dr = 1. So Vr is a unit vector directed away from the
origin, and hence equals R/[R|, which is the position vector divided by its own magnitude.
That is,

R xi+ yj+zk

V = = ——
r=VR| R|  (x*+y* + 22t

Applying (3.22) to f(r) = 1/r, we have Vf(r) = f'(r) Vr = (— 1/r?) Vr, and, therefore,

1 1 1R xi+ yj+zk R
ViZ)==|Vr=—5o =5 5=
r r r |R| (x* + y* + 2% r

in agreement with Eq. (3.25) for n= —1. Readers familiar with electric fields will

recognize this expression. Except for some physical constants, it is the electric field
intensity due to a point charge located at the origin.

As in Sec. 1.14, the reader is advised to attach a permanent bookmark
to this section, for future referencing.

Exercises

. Verify Egs. (3.19) and (3.20).

. Verify (3.23) through (3.27).

. Verify (3.32), (3.33), and (3.34).

. “Derive” (3.30) heuristically.

. Why is the following “identity” obviously not valid? (Hint: Check the symmetry.)

V-FxG)=G-(VxF)+F-(VxG)

N AW N -

3.8 OPTIONAL READING: TENSOR NOTATION

The operator V, considered as a vector operator, has components
0/0x, 9/0y, and 9/0z. In tensor notation we adopt two conventions which
enable us to absorb V into our system painlessly. First, we designate
coordinates by the triple (x;,x,,x;) instead of (x,y,z); this makes the ith
component of V equal /0x;. Second, we abbreviate /0x; by d;. Now let us
write down the tensor expressions for the concepts introduced in this chapter.

The ith component of the gradient of ¢ is J;¢.
The divergence of F is the scalar 6,F; (remember summation).

The ith component of the curl, V x F, is &% 0;F (recall the determinant
expression for curl).
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The laplacian of ¢ is ¢;0;¢. We may write this as d;%¢ if we stipulate that
the summation convention applies to squared terms, since they would
have repeated subscripts if written out.

Now the proof of the identities of the last section can be carried out
easily. To check identity (3.21), observe that the ith component of V x ¢F is

& O(dFr) = €u(0;0)F i + &iuth OF),
These terms we identify as the ith components of V¢ x F and ¢V x F.

To check (3.26), observe that the ith component of F- VR is F;0;x;
(summing over j). But 0;x; = d;;, the Kronecker delta; so this expression is
F;d;; = F;, the ith component of F.

The proof of formula (3.29) proceeds as follows:

&k O1(F x Gy = 13 0 j(&umF 1Gm)
= &ijk€rim 6j(Fle)
= (5il 5jm - 5im 5;’1) aj(Fle)
= aj(FiGj) - aj(FjGi)
=(G*V)F; + (V- G)F, — (V- F)G; — (F - V)G;

The proof of (3.31) is rather complicated. We begin by developing the
obvious expression for the ith component of V(F - G):

0(F;G;) = F;0,G; + G;0;F; (3.41)

Now we are stumped ; the terms on the right seem to have no vector analogs.
How can we identify the right-hand side of identity (3.31) here? The clue
lies in the tensor expression for F x (V x G); its ith component is

ﬁiij j(gklm 01G,) = &ijpCiaml’; G,
= (0u 5jm — Oim 5jt)Fj G
We observe the appearance of one of these “mystery” terms, F;0,G;, plus
the ith component of —(F - V)G. Transposing, we see that F;0;G; is the ith

component of F x (V x G) + F - VG. Putting this into Eq. (3.41) above, and
using a similar expression for G;;F;, we get

VIF-G)=Fx(VxG)+F-VG+G x(VxF)+G-VF

We have derived the identity.
The equality of mixed second derivatives of any (twice continuously
differentiable) function can be expressed in tensor notation by the equation

impl
or, simply 8,0 = 8,0,
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That is, the components of V commute with each other. (Of course, they do
not commute with functions: ¢;¢ is very different from ¢ 0;.) This makes the
verification of identities (3.32), (3.33), and (3.34) simple. For (3.34), we use
¥ and y for ¢, and ¢,, in order not to confuse subscripts. We then have

ai[ﬁijk(ajl//)(ak){)] = gijk(ai ajl//)(ak)f) + gijk(aj‘//)(ai %9

Because of the antisymmetric nature of ¢, as we sum over i and j the terms
0;0; and 0;0y come in with opposite signs for i # j, and with coefficient
zero if i = j. Thus all the addends in the first term cancel, as do those in the
second, and we get zero, in accordance with the identity (3.34).

Exercises

Using the tensor notation, prove the following vector identities:
1.V-¢F=¢V-F+F-V¢

2. V(A -R)= A if A is constant.

3. VxR=0

4. V-FxG)=G-(VxF)—F-(VxG)
5. Vx(VxF)=V(V-:F)— V*F

6. V x (Vo) =0

7.V-(VxF)=0

Supplementary Problems

L. Let T(x,y,z) = x* 4+ 2y* + 3z% and let § be the isotimic surface: T = 1. Find all
points (x,y,z) on S that have tangent planes with normals (1,1,1).

2. Find the direction of maximal increase of the function
f(x,y,2)=e"cosz

at the point (1,1,0).
3. If p(x,p,2) = x2y + zy + 23, find:
(a) the gradient of ¢, and
(b) the equation of the plane passing through the point (1,— 1,1) and tangent to the
level surface of ¢ at that point.

4. Let S; and S, be the surfaces with equations

2 y2 ZZ X

?+b—2+-c—2=1 and

2 2 2

y V4
o2 pte

=

=1

Show that, if a?B* — b>A? = 0, then the curve of intersection of S; and S, must be
parallel to the xy plane.

5. Evaluate div F and curl F when

F = e*cos yzi + " cos xzj + e*cos xyk
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6. If A = a,i + a,j + a3k is a constant vector, and if R = xi + yj + zk and r = |R],
show that
A xR
v. ‘ [ o
r
7. Find:

10.

11.

(a) the divergence and the curl of F when
F=e""(i + xj + 2xk)
(b) the direction of maximal increase of the function f with
Jeeyz) =[x +p)? + (v + 2 + (2 + x)’]

at the point (2,—1,1), and
(c) the directional derivative at the function f of part (b), at the point (2,—1,1) in
the direction (0, — 1,0).

. Given F = y% + z2j + xk, find:

(a) the curl of F, and
(b) the component of curl F along the tangent to the curve

x=cosut y=sinmt z=t> at t=1

. Let F(x,y,z) be a vector field defined in all space, and consider an intelligent ant

living on the xy plane. Suppose all the ant knows about F is its values on the xy
plane.

(a) Can this ant compute V x F? Explain briefly.

(b) Can this ant compute (V x F) - k? Explain briefly.

A volcano just erupted and lava is streaming down from the mountain top. Suppose
that the altitude of the mountain is given by

2(y) = he 2

where h is the maximum height, and suppose also that lava flows in the direction of

steepest descent (fastest change in z). Find:

(a) the projection on the xy plane of the direction in which lava flows away from the
point (1,2he”°), and

(b) the projection on the xy plane of the equation of the flow line of the lava passing
through the point (1,2,he~%).

If V(R) can be expressed V(R) = Af(R - B), where A and B are constant, prove that

curl V is perpendicular to both A and B.




cHAPTER 4

Line and Surface Integrals

4.1 LINE INTEGRALS

In this section we are going to study a construction that has found
considerable utility in mathematics and physics. It is the operation of inte-
grating a vector field along a curve in space.

Let us give some thought to the meaning of integration along a curve.
By analogy with the theory of (Riemann) integration in elementary calculus,
one would suspect that the curve is partitioned into short arcs, then some
sort of sum is formed over the partition; and, finally, the “integral” emerges
as the limit of these sums as the partitions are made finer and finer.

In fact, we have already gained some experience with this type of process
in Sec. 2.2, where we computed arc length for a smooth arc. Figure 4.1 (a
replica of Fig. 2.11, repeated for convenience) illustrates how the points Q,,,
Q1,...,0Q,, (with position vectors Ry, Ry, ..., R,, respectively) partition
the curve and generate the inscribed polygonal path, whose length we cal-
culate by summing the lengths of the sides |AR,| = |R, — R, _,|. The length
of the curve is then taken to be the limit of these sums, as the partitions are
refined in such a manner that the largest length |ARk| goes to zero.

In that same section we saw how this limit can be evaluated if the curve
is parametrized by R = R(¢), a < t < b. Recall the essentials of the tech-
nique: The interval [a,b] is partitioned a =ty <t, <t, <- - <t,=b to
correspond with the points R, = R(z,), and the approximation

dR
R, ~—
AR, i At

is used to argue that

[.|dR| = lim X AR = lim 3 IR

dR
A= L

dt
t

=L”

as the At go to zero. This final expression is an ordinary integral.

127
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C

FIGURE 4.1

Using this as a model, we now turn to the definition of the line integral.
To form a line integral we start with a smooth, oriented space curve C in a
region in which there is defined a continuous vector field F. Let us subdivide
C into smaller arcs, and approximate it by a polygonal path, as in Fig. 4.1.
Let F, denote the value of F at the point Q,, and form the sum ) % _, F, - AR,,
a scalar. We define

fc F-dR 4.1)

to be the limit of sums of this form, when the approximating polygonal paths
are obtained by taking increasingly small subdivisions while n increases with-
out bound. It can be shown that the limit exists, and is independent of the
particular subdivisions chosen, provided that the maximum value of the
magnitudes |AR,| tends to zero.

Expressions like (4.1) are called line integrals. (This is perhaps unfor-
tunate, since C need not be a line segment; curve integral would be a better
term.) The necessary ingredients for a line integral are a vector field and an
oriented curve, and the result is a scalar.

The definition as given is ambiguous unless C is oriented. The direction
of the vectors AR, is taken to be consistent with the orientation of C, which
in Fig. 4.1 is from Qg to Q,,. If C were oriented in the opposite way, from Q,
to @, each of the vectors AR, would be chosen in the opposite direction, and
the line integral would change sign.

Other notations can be used to denote line integrals. If T is a unit vector
tangent to the path, in the direction determined by the orientation, then
T = dR/ds and Eq. (4.1) can be written

fc F-Tds 4.2)

where s, the arc length measured along C, is taken to be increasing in the direc-
tion determined by the orientation of C.
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If F,=F - T is the scalar component of F in the direction of the unit
tangent, the line integral can also be written

fc F,ds 4.3)

In vector language, we sometimes speak of the line integral of the tangential
component of F over the oriented curve C. If we wish to be sloppier, we just
say “the integral of F along C.”

In books on advanced calculus that do not use vector notation, yet
another form is used:

[ (Frdx+ Fydy + Fydz) (4.4)

We obtain this from (4.1) by taking F = Fi + F,j + F;k. Then, since
dR =dxi+ dyj+ dzk, we have F-dR = F dx + F,dy + F5dz.

An expression such as Fy dx + F,dy + F;dz, where F,, F,, and F; are
functions of x, y, and z, is called a differential form. We call (4.4) the line
integral of the differential form over the oriented curve C.

Many students feel queasy about line integrals, at first, because they don’t
see “what good” they are. A common question is “What do you have after
you have computed a line integral?” The answer is: you have a number.
Depending on the type of problem, this number may represent work done,
change in potential energy, total heat flow, change in entropy, circulation of
a fluid, and so on, but at this point the student is advised to concentrate
simply on learning how to compute line integrals.

In a moment we are going to see how the line integral can be easily
evaluated when the curve is parametrized. Just for the experience, however,
we first present an example that computes a line integral directly from the
definition. Keep in mind that Example 4.1 is gimmicked to work out nicely,
and is atypical in this respect.

Example 4.1 Let C be the curve y = \/§ in the xy plane, extending from (0,0,0) to

(1,1,0),and let F = xy”i + y’k. Find (. F - 4R directly from the definition of the integral
as the limit of a sum.

Solution For convenience, let all Ax’s equal 1/n, so that

k |k
O = (X, o2) = <*,\/: 0)
ARk—-1+< k= )

Fk—xkykl+ykk——1+ k
n? n

n n k2 1 n
2 Fi AR, =} ‘3_*32

k=1 k=11
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which tends to § as n — co. Therefore,
. =1
J;F dR = 3

In the usual situation one has a parametrization R = R(¢),a < t < b, for
the smooth curve C, and by analogy with the arc-length technique we propose

dt dt

The final form is an ordinary definite integral. To see this, observe that we
have the continuous vector function F = F(x,y,z) = F{i + F,j + F3k, and
the continuously differentiable parametric functions x = x(t), y = y(t), and
z = z(t), so that plugging the latter into the former produces, in Eq. (4.5), an
ordinary integral of a function of ¢:

fF-dR=1imz F. AR, =lim ¥ F,- R\ fF R @)
¢ k=1 k=1

d
[F-ar= [Fl(x(r), y0.20) %
d
+ Fax(0),y(0.20) 5

 Ex0.020) § [

For instance, the curve in Example 4.1 can be parametrized x = ¢, y = \/f
z=0,0<t <1, and Eq. (4.5) becomes

1 ,dx ,dz
f0< dt+y >dt frdt

Observe that the line integral has been defined without reference to the
parametrization of the curve, so its value will depend only on the field F
and the oriented curve C, not on the choice of the parameter . Sometimes
arc length is a convenient parameter, sometimes it is better to use an angle
or the time, or one of the variables x, y, z. Examples are given below; study
them carefully!

The integrals % f(x)dx that occur in elementary calculus can be re-
garded as very special kinds of line integrals. Indeed, let us suppose that
F is always directed parallel to the x axis, so that F = f(x)i, and suppose
C is a segment of the x axis, a < x < b, oriented in the direction of increasing
x. Then dR =dxi, and [ F-dR = [} f(x)dx. So you already have had
some experience in evaluating line integrals! Caution: In general, line inte-
grals are not interpreted to represent areas under curves and do not represent
arc length.

Example 4.2 Compute the line integral j F - dR from (0,0,0) to (1,2,4) if
F = x%i + yj + (xz - y)k




SEC. 4.1 Line Integrals 131

(a) along the line segment joining these two points,
(b) along the curve given parametrically by x = ¢, y = 2¢, z = 41>,

Solution (a) Parametric equations for the line segment joining (0,0,0) to (1,2,4) are
x=t,y=2tz=4t(Sec. 1.8). We have

JoF-ar= [ dx s ydy + (= e
= fol 2dt + 202 dt) + (4% — 26)@ dy)

—_ (Y172 _ _u
_fo (172 — dnyde =

(b) In this case we have

fc F-dR = fo‘ ()2t dt) + 02 dt) + (465 — 20)(12¢% dt)

7
- fo‘ (215 + 4t + 48¢7 — 24¢%)dt = 3

Example 4.3 Find the line integral of the tangential component of F = xi + x2j from
(—1,0) to (1,0) in the xy plane (a) along the x axis, (b) along the semicircle y = \/1 — x2,
(¢) along the dotted polygonal path shown in Fig. 4.2.

Solution
(a) Along the x axis, y = 0, hence dy = 0 - dx and

fF-dR:f(xdx+x2dy)

1
=0

-1

1
= f_llxdx =~§x2

(b) Along the semicircle, a convenient parameter is the polar coordinate 6. Since the
radius of the circle is unity, we have, for points (x,y) on this path, x = cos §, y =
sin 6, hence dx = —sin 0 d0, dy = cos 6 d, and 6 runs from 7 down to zero.

FIGURE 4.2
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[P dr = [(xax+x2ay)
= J;O [(cos B)(—sin 6 d6) + (cos® B)(cos 0 dO)]

=‘LO(—sin 0 cos 0 + cos® 0)d6

sin? 6 . 0+ sin® 071° 0
= - —sin =
2 3

T

(c) Along the path labeled (1) in Fig. 4.1, y = x + 1, so that dy = dx and
1
f(xdx + x2dy) = f: [xdx + x*dx] = ¢
Along path (2), y = 1, so that dy = 0 - dx and
Jedx + %2 dy) = flxalx—1
V=), xdx=3

Along path (3), x = 1, so that dx = 0 - dy and

f(xdx + x2dy) = flody =-1

CHAP. 4

[ Note that we use y instead of x as the parameter along path (3).] The value of the

integralis —4 +$ - 1= —%.

Example 4.4 The work W done by a force F in moving a particle from the initial to

the final point of an oriented curve C is given by

W=fCF-dR

(4.6)

This generalizes Example 1.14, and reduces to it in the special case where F is a constant.

Note: If a curve is closed, i.e., its initial and final points coincide, the

notation § F - dR is frequently used. The line integral of F around a closed J

curve C is called the circulation of F about C.

Exercises

1. In Example 4.3 above (refer to Fig. 4.2),

(a) what is T along path (1), in the direction shown, in terms of i and j,

(b) what is T along dotted path (2), in the direction shown,
(c) along (3), in the direction shown?
2. In Example 4.3, what is ds, in terms of dx or dy,
(a) along dotted path (1),
(b) along dotted path (2),
(c) along dotted path (3)?
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3. Show that dR = dxi + dyj is the same as T ds in each of the three special cases
referred to in the preceding two problems. (This illustrates the general rule that, in
practice, it is easier to find dR directly than to find T and ds separately and multiply.)

4, Let

y . x .
= 1—
x2_|_y2 x2+y2-'

Find the line integral of the tangential component of F, from (—1,0) to (1,0),
(a) along the semicircle y = \/T — x2;
(b) along the dotted polygonal path shown in Fig. 4.2.
5. By changing to polar coordinates, find the answers to Exercise 4 by inspection.
6. Find [ F - 4R from (1,0,0) to (1,04), if F = xi — yj + 2k,
(a) along the line segment joining (1,0,0) and (1,0,4);
(b) along the helix x = cos 2nt, y = sin 2xt, z = 4t.
7. Find (R - dR from (1,2,2) to (3,6,6), along the line segment joining these points,
(a) in the manner described in the text;
(b) by observing that R - dR = sds, where s = (x* + y* + z%)!? is the distance from
the origin, and computing {3 s ds.
8. Find the value of § [(3x + 4p)dx + (2x + 3y*)dy] around the circle x* + y? = 4.
9. Find the line integral [ F - 4R along the line segment from (1,0,2) to (3,4,1) where
F = 2xyi + (x* + 2)j + yk.
10. Find the integral § F - dR around the circumference of the circle x> — 2x + y? = 2,
z =1, where F = yi + xj + xyz’k.
11. Find (F - dR where F = x%i+ j+ yzk,along C: x =1,y =212, z=31,0< t < 1.
12. Let F = @ x R, where @ is a constant. (Recall Example 3.22.)
(a) Compute j"F * dR along the straight line from (0,0,0) to (2,2,2). (Hint: Use a
little thought, and you can avoid any work.)
(b) Compute the same line integral along the path z = (x? + y?)/4 in the plane
X =y

4.2 DOMAINS; SIMPLY CONNECTED DOMAINS

We recall from elementary calculus that many of the functions that arise
are not defined for all values of x, but only for certain intervals. For example,
the function f(x) = 1/x is not defined at x = 0, and the function f(x) = cscx
is not defined when x is an integral multiple of 7.

Similarly, the vector fields that arise in practice are frequently not
defined at all points (x, y,z) in space, but only in certain regions of space.

For instance, we learn in elementary physics that the magnitude of the
magnetic field intensity due to a current flowing along a straight line varies
inversely with the distance from that line. As we get nearer to the line the
magnetic intensity increases in magnitude. The magnetic field is not defined
along the line itself. The region of definition consists of all points in space
except those along the line.
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Similarly, the electric intensity due to a system of n point charges is
defined everywhere in space except at the n points in question.

To be sure, the fields that arise in elementary physics are rather hypo-
thetical (Is a charge really concentrated at a point?), but they are useful in
theoretical discussions and their study is essential to more advanced work.

The reader with limited knowledge of electric or magnetic field theory
may imagine instead that the fields we consider are the velocity fields of
fluids that are in some container. Obviously, it is nonsense to speak of the
velocity vector at any point outside the container. The region of definition
in this case consists of all points within the container.

The vector fields that usually arise, both in theory and in practice, have
two important properties. First, such a field is defined in the interior of a
given region but not on the boundary of the region. Secondly, if the field
is defined at two points P and Q, it is possible to find a smooth arc C joining
P to Q along which the field is everywhere defined.

For instance, the velocity of a fluid in a container is not defined for
points on the surface of the container, but only for points in the interior of
the container. Moreover, it is unusual to consider a container with separate
compartments; we usually assume that if there is fluid at two points P and
Q, it'is possible to move from P to Q without passing through any separating
walls. Motivated by these ideas, we now give several precise definitions.

If P is any given point and ¢ is any positive number (zero is excluded),
we say that an ¢ neighborhood of P is the set of all points that are less than
¢ in distance away from P. Thus, if we are speaking of points in the plane,
an ¢ neighborhood of a point P consists of all points in the interior (but not
on the circumference) of a circle of radius ¢ and center at P. If we are
speaking of points in space, an ¢ neighborhood of P consists of all points in
the interior (but not on the surface) of a sphere of radius ¢ and center at P.

Given a region R, we say that P is an inferior point of R if it is possible
to find an ¢ neighborhood of P that lies completely within R. We say that
P is a boundary point of R if, no matter how small we take the positive num-
ber ¢, the ¢ neighborhood of P contains at least one point in R and one point
not in R. So, by definition, an interior point cannot be a boundary point,
nor can a boundary point be an interior point.

A region is said to be open if every point in the region is an interior
point of the region. Thus, if the region of definition of a vector field is an
open region, we can say: if the field is defined at a point P, it will also be
defined in some ¢ neighborhood of P. Of course, if P is very near the bound-
ary of the region, ¢ may have to be very small.

By definition, an open region does not include its boundary. (For
example, the set of all points within a cube is an open region in space, but
the set consisting of all those points either within or on the surface of a cube
is not an open region.) If we say an arc C lies in an open region, then by
definition C cannot intersect or even touch the boundary of the region.

Henceforth, we shall consider only open regions.
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FIGURE 4.3

An open region R is said to be connected if, given any two points P and
Q in R, there can be found a smooth arc in R that joins P to Q.

In Fig. 4.3 we show a region in the plane that is not connected. Ob-
viously we cannot join P to Q by a smooth arc that lies completely within
the region. We will have no occasion to consider such regions; henceforth
we consider only connected regions.

A region that is both open and connected is called a domain.

The region of definition of the magnetic field due to a steady current
flowing along the z axis consists of all points except those on the z axis.
The region of definition of the electric field due to a system of n fixed point
charges consists of all points other than the given n points. It is easy to see
that in either case the region is both open and connected, so that the word
“domain” applies.

In Fig. 44 we give an example of a region in the plane. If we let D
denote the set of points within the shaded region, not including any points
on either of the curves C; and C,, then D is a domain. The points on the
curves C; and C, constitute the boundary of the domain. In the figure we
give an example of a smooth arc joining two points P and Q.

Of special importance are those domains that are simply connected. In
Fig. 4.5 we show a region in the plane that is simply connected. The regions
indicated in Figs. 4.4 and 4.6 are not simply connected.

Roughly speaking, a domain is said to be simply-connected if every
closed curve lying in the domain can be continuously shrunk to a point in
the domain without any part of the curve passing through regions outside

FIGURE 4.4
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FIGURE 4.5

FIGURE 4.6

the domain. The plane regions indicated in Figs. 4.4 and 4.6 are not simply
connected because no closed curve surrounding one of the “holes” could be
shrunk to a point while still always remaining in the domain. Thus, in the
special case of a domain of points in the plane, this simply means that, given
any closed curve in the domain, all points within the closed curve are also
in the domain. In other words, there are no “holes” in the domain.

Simply connected domains in space are, very roughly speaking, those
domains through which no holes have been bored. Thus, the set of points
in the interior of a torus (doughnut) is not simply connected, since a closed
curve within the torus surrounding the hole cannot be shrunk to a point
while remaining always within the torus.

A closed curve C, in the process of being shrunk to a point, will generate
a surface having the original curve C as its boundary. Thus, another way
of wording the definition is as follows: a domain is simply connected if,
given any closed curve lying in the domain, there can be found a surface
within the domain that has that curve as its boundary.

The domain consisting of all points in the interior of a sphere is simply
connected. As another example, suppose we are given two concentric
spheres; then the set of points outside the inner sphere but inside the outer
sphere comprises a simply connected domain.
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FIGURE 4.7

As a further example, consider the cylinder x? + y> = 1. This is a
cylinder of radius 1, concentric with the z axis. Every point outside the
cylinder has coordinates (x, y,z) satisfying the inequality x? + y2 > 1 (z arbi-
trary), and the set of all such points is a domain that is not simply connected.
The set of points in the interior of the cylinder, x? + y? < 1, is simply
connected.

Vector fields defined in simply connected regions have much simpler
properties, in general, than those having domains of definition that are not
simply connected. Domains that are not simply connected may be very
complicated; the reader may wish to contemplate the region of space with-
in an old-fashioned steam radiator, which is very far indeed from being
simply connected.

In this chapter we shall have occasion to refer to a star-shaped domain.
A domain is called star-shaped if there is a point P in the domain such that,
if Q is any other point in the domain, then the entire line segment PQ lies
in the domain. Sometimes we say the domain is star-shaped with respect
to P. Fig. 4.7 illustrates some star-shaped domains.

A star-shaped domain is simply connected;indeed, any curve can be
shrunk to the point P.

Exercises

In each of the following cases, a region D is defined. Tell whether the region is a domain.
If it is a domain, determine whether or not it is simply connected. Ifit is not a domain,
explain why not.

1. The region of definition of a magnetic field due to a steady current flowing along
the z axis [in other words, the region consisting of all points (x,y,2) such that
x* + %> 0].

2. The region of definition of an electric field due to n point charges.

3. The region consisting of all points above the xy plane (ie., all points (x,y,z) such
that z > 0).

4. The region D consisting of all points (x,y,z) for which z > 0.
5. The region D consisting of all points (x,y,z) such that

x24+y?+22>4
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6. The region D consisting of all points (x,y,z) for which
1<x2+31y2<4

(i.e., all points outside a cylinder of radius 1 and within a cylinder of radius 2, both
cylinders concentric with the z axis).

7. The region D consisting of all points (x,y,z) for which 1 < x < 2 (i, all points
between the planes x = 1 and x = 2).

8. The region D consisting of all points (x,y,z) for which z # 0.

4.3 CONSERVATIVE FIELDS

In this section we let F denote a vector field that is defined and con-
tinuous throughout a domain D. Then

F=F1i+F2j+F3k (4.7)

where F,, F,, and F are scalar-valued functions, each of which is contin-
uous throughout D. If these three functions have partial derivatives (there
will be nine such derivatives, 0F,/dx, 0F /0y, . .., 0F3/0z) all of which are
continuous throughout D, then F is said to be continuously differentiable in
D. It follows from these definitions that, if F is continuously differentiable
in D, then curl F is a vector field that is continuous in D, and div F is a scalar
field that is continuous in D.

A vector field F is said to be conservative in a domain D if there can be
found some scalar field ¢ defined in D such that F = grad ¢. If this is
possible, then ¢ is called a potential function or simply a potential for F.

Notice that the potential function for a conservative field is not unique,
since one can always add an arbitrary constant to ¢ to obtain a new potential
whose gradient is also F. (Physicists conventionally choose potentials to
satisfy certain natural boundary conditions; for instance, they may choose
the constant so that the potential function for a gravitational field is zero
along the laboratory floor, or so that the potential function for an electric
field tends to zero at infinity.)

In some physical applications, a different definition of potential is used,
so that one has F = —grad ¢ instead of F = grad ¢. The difference is one
of sign, and this will give the student no difficulty when he is thoroughly
familiar with the basic ideas involved.

The following theorem may indicate why conservative fields are so
important:

THEOREM 4.1 A vector field F continuous in a domain D is conservative
if and only if the line integral of the tangential component of F along
every regular curve in D depends only on the endpoints of the curve. In
that case, the line integral is simply the difference in potential of the
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endpoints. That is, we have

Jo FrdR=6Q - ¢(P)

where P and Q are initial and terminal points of C, respectively.

Before we continue, let us be sure we understand this theorem. We are
given a vector field F defined and continuous in a domain D. The theorem
says this field is conservative if and only if the following condition holds:
that if we are given any two points P and Q in D, and any regular curve C
within the domain extending from P to Q, then

L,QF-dR

depends only on the location of the endpoints P and Q and not in any way
on the choice of the curve C that joins them. (We summarize this condition
by saying “the line integral is independent of path.”) Moreover, if this con-
dition holds, then we can evaluate this line integral by first finding a function
¢ such that F = grad ¢, and then subtracting the value of ¢ at P from its
value at Q.

This is the first theorem of any depth that has been stated in this book.
We strongly urge the student to study the following outline of the proof.

Proof The phrase “if and only if” requires that we prove the implica-
tion in both directions. We break the proof up into four steps. First,
we assume that the line integral of F depends only on the endpoints,
and (i) define a function ¢ in a certain manner, (ii) show that ¢ is a
potential for F, and (iii) show that

[5 F-dR = 9(0) ~ 6(P)

Finally, we complete the argument by proving the converse; (iv)
assuming that F is conservative, we show that the line integral is given
by ¢(Q) — ¢(P) and hence is independent of path. Here we go:

(i) Definition of the function

We choose, once and for all, an arbitrary point (x,V,,z) in D,
which we call the “point of zero potential.” Given any other point
(x,,2) in D, we choose some smooth arc C, in D extending from
(x0,Y0-20) t0 (X,,z); this is possible since we assume D is a domain.
We define ¢(x, y,z) to be

iy = 77 F-aR

(x0,¥0,20)
where we integrate along C,. By hypothesis, this integral is indepen-
dent of path, and so this definition of ¢(x, y,z) does not depend on the
particular arc C, that we choose. In other words, we have defined ¢
in an unambiguous manner.
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(if) Proof that F = V¢
We begin by computing d¢/dx at (x,y,z). By definition this is

lim ¢(X + Ax’ya Z) - ¢(x5y,z)
Ax—>0 Ax

(4.8)

Since D is open (every domain is) there is some ¢ neighborhood of
(x,,z) that is within D. Let us consider a line segment, parallel to the
x axis and passing through (x, y,z), that is within this ¢ neighborhood.
For a point (x + Ax, y, z) along this line segment, let C, denote that
part of the segment extending from (x, y,z) to (x + Ax, y,z). Then C,,
being a line segment, is a fortiori a smooth arc, and the path from
(X0,Y0,Z0) to (x + Ax, y,z) obtained by joining C, to C, consists of
two smooth arcs and is therefore a regular curve (Fig. 4.8). We inte-
grate along this curve to find ¢(x + Ax, y, z) by first integrating along
C, and then along C,: since the first integral gives ¢(x,y,z), we have

(x+Ax,y, z)

d(x + Ax,y,z) = p(x,y,2) + F-dR

(x,y,2)

from which it follows that the numerator of (4.8) is simply the integral
J;(erAx, ¥, z) F- dR

X,¥,z)

taken along C,. Since y and z are constant along this line segment,
we have dR = dxi, and hence F - dR = F, dx. Thus (4.8) becomes
j‘(x+Ax, v, 2) F1 d.X

lim (x,y,2)
Ax—0 AX

(4.9)

Only one variable is involved in (4.9) since y and z are constant along
C,; in other words, one can treat the numerator just like any integral
one meets in elementary calculus. The reader will recognize this inte-

FIGURE 4.8
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gral, divided by Ax, as simply the average value of F; along the line
segment C,. Since F, is continuous, this average value tends to
F,(x,y,2) as Ax tends to zero. (This is a consequence of the funda-
mental theorem of calculus.} It follows that, at any point (x,y,z), we
have 0¢/0x = F;.

Similarly, we can show (taking line segments parallel to the y and
z axes respectively) that d¢p/0y = F, and 0¢/0z = F;. Therefore

gradc/;——d) +6—z?]+5q—sk Fi+ F,j+ F;k=F,

proving that ¢ is a potential function for F.

(iii) Proof that [¢ F - dR = ¢(Q) — ¢(P)

Let P and Q be two distinct points in D, and let C denote any
regular curve extending from P to Q. Let C, be a smooth arc extending
from (xq,y0,20) to P. Since the integral is independent of path, ¢(Q)
must equal the integral taken along the regular curve obtained by
attaching C,; and C together. Thus

¢(Q)=fClF-dR+fCF-dR
=¢>(P)+fCF-dR
from which it follows that

[ F-dr=0(Q) - ¢(P)

(iv) The converse

To prove the converse, we assume F to be conservative, i.e. that
there exists ¢ such that F = grad ¢. Then along any smooth arc we
have F and dR expressed in terms of some parameter ¢t and its differ-

ential dt.
0| 0¢ 6(]5 6¢
fP rdR = f [ x+3, 6y 62 dz

opdx  opdy 0 dz
f(axdt e a)”

o dp
= [, S di=9Q - ¢(P)

Here we made use of the fact that, if ¢ is a function having continuous
partial derivatives with respect to x, y, and z, where x, y, and z are
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differentiable functions of a single parameter ¢, then

W _igdx  2pdy oo

dt  oxdi  dydt  ozdt

The above equations may be written in simplified notation:

J7Edr = [2dp = 9@ - 9(P)
where

0 o¢
F dR—d¢—$dx+a—ydy+Edz

is the total differential of ¢.

This completes the proof. It will be noticed that if the path C is closed,
ie., if P and Q coincide, then

ﬁJLdR=O
since ¢(P) — ¢(P) = 0. Conversely, if
§F-ar=0
C

around every regular closed curve in the domain, then F must be conserva-
tive (see Exercise 1 for the proof).

THEOREM 4.2 A vector field F continuous in a domain D is conserva-
tive if, and only if, around every regular closed curve in D the line
integral of the tangential component of F is zero.

Example 4.5 Show that F = xy?%i + x3yj is not conservative.

Solution A quick way of solving such problems will be given in the next example.
However, we can prove that a field is not conservative by showing that its line integral
does depend on the path. In this case, for instance, let us compute the integral along two
paths joining (0,0) to (1,1) in the xy plane (Fig. 4.9). Along the line y = x we have

an ., 3 [l s, a9
ﬁ0,0) (xy*dx + x’ydy) = J;=0 (x° + x¥dx = 20
Now let us move along the regular path consisting of two line segments, the first joining
(0,0) to (1,0) and the second joining (1,0) to (1,1). Along the first line segment y = 0,
so that the line integral is zero. Along the second line segment x = 1, so that dx = 0
and the integral becomes

y=1 1
[lavtr=3
The total of the two integrals is thus %, differing from 5. Hence the field is not
conservative.
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(1,0

FIGURE 4.9

It is important to notice that if these two line integrals had turned out to be
equal, we would not have been able to draw any conclusions from that alone. Such
a result could have happened by coincidence even though the field F was not con-
servative. Since it is obviously impossible to compute [F - dR along every conceivable
regular curve, the theorem does not provide a practical way of showing that a given
field is conservative.

Example 4.6 Show that F = x)%i + x®yj is not conservative, without computing any
integrals.

Solution This can be done by contradiction. Suppose F were conservative. Then
F = grad ¢ for some function ¢. Since

gradd)——d) +~89 g¢

we must have 6¢p/dx = xy*> and 0¢/dy = x3y. But this is impossible, since the mixed
derivatives 0°¢/dy dx and d%¢/dx dy would be 2xy and 3x?y respectively, whereas the
theory of partial differentiation requires these derivatives to be equal. This contradiction
shows that such a function ¢ cannot exist, and so F is not conservative.

Example 4.7 Show that F = 3x?yi + (x* + 1)j + 927k is conservative.

Solution Again, a routine way of solving such problems will be given later. At this
point, we have no alternative but to try to find a function ¢ such that F = grad ¢.
As we have remarked already, the theorems of this section are not useful in proving
that a field is conservative since we would have to compute an infinite number of
integrals. (If we were to take two points and compute line integrals along a dozen
or so paths joining these points, the equality of these numbers might lead us to suspect
the field to be conservative, but the experiment would not provide a rigorous proof.)

If F = grad ¢, then d¢/0x = 3x%y, 0¢p/dy = x> + 1, and 0¢/6z = 922, In computing
0¢/0x one differentiates while holding y and z constant, and so evidently

¢ = x>y + (either a constant term or a term involving only y and z)

Let us write this as ¢ = x>y + g(y,z), where g is a function not yet determined.
Differentiating, we have d¢/0y = x> + (9g/0y). Comparing this with 0¢/0y above, we
see that dg/dy = 1. Since g is a function of y and z, evidently

g(x,y) = y + (either a constant term or a term involving z alone)
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Therefore, we have ¢ = x>y 4+ y + h(z), where h depends only on z (or may possibly
be a constant). Differentiating, this time with respect to z, we have d¢/dz = h'(z), and
comparison with the above gives '(z) = 9z2. It follows that h(z) = 32> + C, where C
is a constant that may be chosen arbitrarily. Now we have ¢ = x3y + y + 323 + C,
and it is easy to check this to see that grad ¢ = F. Hence F is conservative.

Remark: A common error is to integrate separately and add the results. Since
0¢/dx = 3x%y, ¢ =x%y. Since d¢/dy =x>+1, ¢ =x3y+y. Since 0¢/dz =922,
¢ = 3z%. Adding these we obtain ¢ = 2x3y + y + 323, which is incorrect.

Exercises

1. Show that, if §)C F - dR = 0 for every regular closed curve C, then for any two points
P and Q,

ffF-dR

is independent of path. (Hint: Let C, and C, be two paths extending from P to Q,
and construct a closed curve out of these.)
2. Using the method of Example 4.5, or some similar method, show that the following
fields are not conservative:
(@ F= —yi+ xj
(b) F=yi+ y(x—1))j
(¢} F =yi+ xj+ x?k [Suggestion: Consider two different paths extending from
(0,0,0) to (1,1,1).]
d) F=zi+zj+(y— Dk
xi + xj

(e) F= (not defined at the origin)

x2 + y2
3. Using methods similar to that of Example 4.6, show that the fields of Exercise 2
are not conservative.

4. Compute § F - dR around the closed path consisting of a circle of radius r, centered
at the origin, in the xy plane, taking F = (—yi + xj)/(x*> + y?). (Hint: Change to
polar coordinates.)

5. Ifyou worked correctly, you obtained a nonzero answer to Exercise 4. Yet it appears
that F = grad ¢ where ¢ = tan™!(y/x), and this would contradict Theorem 4.2.
Investigate this mystery.

6. Find a potential for the force field
F = (y + z cos x2)i + xj + (x cos xz)k
7. Show that the field F = 2xyi + (x? + z)j + yk is conservative.

4.4 CONSERVATIVE FIELDS (CONTINUED)

In the preceding section, we saw that a continuously differentiable vector
field F defined in a domain D is conservative if, and only if, it possesses any
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one (and hence all) of the following properties:

(i) Tt is the gradient of a scalar function.
(ii) TIts integral around any regular closed curve is zero.
(iii) Tts integral along any regular curve extending from a point P to a
point Q is independent of the path.

Note that we are using slightly sloppy language here. When we say “its
integral” we mean “the line integral of the tangential component,” and when
we say “any regular closed curve” or “any regular curve” we really do not
mean any such curve, since we require the curve to lie completely within the
domain D.

If the domain D in which F is defined is simply-connected, we can add
a fourth property, equivalent to any one of the other three:

curl F=0 (4.10)

This is of practical utility since, if we are given a vector field F defined
in a simply-connected domain D, we can quickly test to determine whether
it is conservative by computing its curl. In terms of components, the test
to determine whether

F=Fii+ F,j+ Fsk

is conservative consists of checking to see whether all the following equa-
tions are valid:
i&_% OF, _ 0F, @_a_Fi (4.11)
dy  ox dz ~ dy 0z 0x '
Equations (4.11) will be valid if and only if curl F = 0, as one sees easily
from the definition of curl F.
Some of the problems of the preceding section may be solved quite easily
by using this test. For instance, consider the vector field F = yi + xj + x%k.
Equations (4.11) written out are

0 0 0 o, , 0 o,
5()’)—67(36) &(X)—@(X) E(J’)—a—x(x)
The first two of these equations are valid but the third is not, and so the
vector field is not conservative.
A vector field whose curl vanishes everywhere is said to be irrotational.
Now let us turn to the theorem that justifies our claim.

THEOREM 4.3 A vector field F defined and continuously differen-
tiable in a simply connected domain D is conservative if, and only if,
curl F = 0 throughout D.

Notice that the “only if” part of this theorem is trivial because the
curl of a gradient is always zero. The “if” part, however, is harder.
We shall give a proof here for the special case when D is all of space.
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In Exercise 4 the reader is invited to extend the argument to spherical
and rectangular domains. At the end of the section, a proof for star-
shaped domains is given, as optional reading. These restricted forms
suffice for most practical applications. The extension of the result to
arbitrary, simply connected domains requires some topological gym-
nastics, and we shall not go into this.

Proof of “if” part when D is all space  'We are given the information
that curl F = 0 everywhere, and our goal is to show that a scalar field
¢ exists such that F = grad ¢. Thinking ahead, we know that the line
integrals of F can be computed in terms of ¢, thus, let us define ¢ by a
line integral and then try to prove the theorem.

Specifically, we define ¢(x,y,z) to be the line integral of F from
(0,0,0) to (x, y,z) along the following curve:

(i) from (0,0,0) to (x,0,0) along the x-axis,

(7)) from (x,0,0) to (x, y,0) parallel to the y-axis,
(iii) from (x,y,0) to (x, y,z) parallel to the z-axis.

The parametrization is trivial and we have

(32 = [ F1600)dr + [) Faxr0)de + [ Fytxynde (412)

At this point we cannot assume that line integrals are independent of
path. The function ¢(x,y,z), however, is computed in terms of a
specific path; it therefore is well-defined.

Now we proceed to show grad ¢ = F, by components. The z-
component is easy:

0p _ . 0nz+ A — dxy2)
— = lim
52 Az—0 AZ
A O t)dt
— tim EEOOE )
Az—=0 AZ
reasoning as in Eq. (4.9).
For the y-component we have
% = lim ¢(X,y + Ay’ Z) - d)(xsy’Z)
9y ay-o Ay
. 1 y+Ay z
= lim — F,(x,t,0)dt Fi(x, Ay, t)dt
JgAyD; 2(x,1,0) +J;3uy+ Y1)

_ﬁnmwm—ﬁHWWW}

= lim

yray z — Fi(x,pt
jy FZ(X,I,O)dt + hm J‘ F3(X,y + Ay: t) 3(x,y )dl'
Ay—0 Ay Ay—0

Ay

z OF 5(x, y,t
=Fﬁm®+L—%?Qw
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Now we use the second of Egs. (4.11), keeping in mind that in the above
formula the third coordinate is named ¢, not z:

% s+ 7 P00

= Fy(x,3.0) + Fy(x,y,2) — Fa(x,,0)
= Fy(x,y,2)

We sketch the computation for the x-component, allowing the reader
to supply the details:

z OF
% _ by e00)+ [ TS g | [ OFs5s),,

0x 0x
F z aF y ,t
= F(x,0,0) + fywdHfO _1(;;y_)dt
= FI(X,())O) + F1(X,ya0) - Fl(x7070) + Fl(x’yaz) - Fl(xayao)
= Fl(x’yaz)

This completes the proof that grad ¢ = F.

Example 4.8 Show that F = 2xyi + (x* + 1)j + 622k is conservative, and find a scalar
potential ¢.

Solution We use the test (4.11), which is acceptable since this field F is defined and
continuously differentiable throughout space.

6F1 6F2

=2
6y ox X
OF OF, _ oF 0Fy _
0z 5y
and oF oF, aF 0F; _
0z ox

The curl is zero, hence the field is conservative.

The potential may be found by the method of Example 4.7, or we may use the
line integral of Eq. (4.12). Let us try the latter technique.

Inserting the given expression for F, we find

ey = [ 0de + [0 + D + [ 602 ar

z
=x%y+y+27°
0

y
=0+ (x*t+1)| +26

0o

As a check, let us compute ¢ by integrating F along the straight line segment from
(0,0,0) to (x,y,z), parametrized by

R(t) = txi + tyj + tzk 0<t<1
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We find
632 = [ [20000)i + (25 + Dj + 6(322)K] - [xi + yj + k] dr
= 2x2y fol t2dt + x%y fol t2dt + yfol dt + 623 fol 2 dt
=x¥y+y+23
as before.

Example 4.9 Use Eq. (4.12) to find a potential for
F=03x%yz+y+5i+z+x-2j+ &y —y+ 7k
which has the value 10 at the origin.

Solution By (4.12) we have
P(xy.2) =10 + f; 5dt + fo"xdt + JZ(x3y —y+ Ndt

y
+ (X3yt — yt + 71)
0

x

+ xt
0

z

=10+ 5t

0

=10+5x+xy+ x3yz—yz + 7z
As a rule, the reader should use the test given in this section to determine whether a
given field F is conservative, but use the method of Example 4.7 to actually construct

the potential ¢». The reason we do not advise using (4.12) of this section is that it may
be a little tricky for most students to use correctly.

It is very enlightening to investigate the vector field

F— fl + );J
xX“+y
The reader should verify that curl F = 0, but F is not conservative since its
line integrals around closed paths are not always zero, as shown in Exercise 4
of Sec. 4.3. This does not contradict the theorem, because F fails to be
defined on the z axis, where x? + y? =0, and thus the domain D is not
simply connected.

In Exercise 5 of Sec. 4.3, we tried to shake the reader up by suggesting
that this F was a gradient, namely, the gradient of ¢ = tan~!(y/x). This
definition is subject, of course, to quadrant ambiguities, so we might try
F = grad 0, where 0 is the polar angle defined in Sec. 2.4. However, the
polar angle jumps from = to —x as we cross the negative x axis, so it is
discontinuous there and its gradient is not defined (or infinite!). Thus, the
theorem remains unchallenged.

OPTIONAL READING: PROOF OF THEOREM 4.3 FOR
STAR-SHAPED DOMAINS

As before, we only have to prove the “if” part. Assuming D is star-
shaped with respect to the point P, we can define ¢ at the point Q to be the
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line integral of F taken along the straight-line segment from P to Q. Again
notice that the function ¢(Q) is computed in terms of a specific path; there-
fore, it is not ambiguous.

Now we proceed to show grad ¢ = F. First we parametrize the path of
integration. Let (Xo,)0,20) be the coordinates of P, and (x,y,z) be coordi-
nates for Q. Since we customarily use R to denote the vector (x, y,z), which
now is an endpoint in our integral, we shall write

d(x,y,2) = ﬁ,Q F-dr (4.13)

using r(t) to designate the path of integration. Then a parametrization for the
segment is

r(6) = [xo + t0x — xo)Ji + [yo + t(y — yo)Ij + [20 + t(z — zo) ]k

=R, +tR-Ry) (O=<:<1 (4.14)
The explicit dependence of F on the parameter ¢ in the integral (4.13) is
given by

F = F[xo + t(x — Xo), yo + t(y — yo), 2o + t(z — 2,)]
=F(X,Y,Z)

where we have abbreviated the first argument, x, 4+ #(x — Xo), of F by X,
the second by Y, and the third by Z.

Now we compute the gradient of ¢. Since V operates only on the
variables x, y, and z

0 0
Veji— 4o 4 ko
! Ox + J@y + az
(and not on t), we can bring the differential operator inside the integral.
Using identity (3.31), we find

v¢=f01v<p.g.>dt

1 dr dr dr dr
=f0 [(F'V)E+(E°V>F+Fx(sz>+t—1;x(VxF)]dt

Here we must be very careful in our interpretation. V operates, as we said,
on x, y, and z; but the arguments of F are X, Y, and Z. Thus we cannot
identify, for example, V x F(X,Y,Z) as the curl of F, evaluated at (X,Y,2).
This latter would be

(4.15)

V* x F(X,Y,Z)
where V* denotes the operator

0 0

V*
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However we have the following relation, because of the definition of X in
terms of x;

oF 0X0F _ 0OF

ox " oxox lax (4.16)
Similarly,

OF _ OF

dy oy

oF_ o (4.16)

0z 0Z

It follows from these identities that
Vx FX,Y,Z)=tV* x F(X,Y,Z)=tcurl F(X,Y,Z)

By hypothesis, the curl of F is zero; hence, from the above,

VxF=0
in expression (4.15).
Furthermore, since
dr
—=R-R
dt °
we have
dr
20
V x T
dr
d ‘V)—=F
an (F-V) I

[Recall identities (3.24) and (3.26).]
Combining this data in (4.15), we have shown

Vo (x,,7) = fol [F + <g- V> F]dt 4.17)

One more simplification is possible. If we differentiate ¢ F with respect to ¢
along the curve, using the chain rule we find

d
Et’(tF[xo + t(x — Xo), Yo + t(y — Yok Zo + H(z — 20)])

oF JF oF
=tb_(x—xo)+ta‘f(y—J’o)+t52(z‘éo)+F
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By Eq. (4.16), this can be written

d(tF) OF oF oF
A s mx) b (V) e (z—z) m 4 F
dt (x xO) ax + (y yO) ay + (Z ZO) az +
dr
_(dr, 418
( o V)F +F 4.18)

Using this in (4.17), we get
1

= F(x,),7)
0

ooy = |, %(tF) dt = tF

We have succeeded in proving that the gradient of ¢ is F, i.e., F is conserva-
tive!

Exercises

1. Test the following fields to determine whether they are conservative.
(@) F=(12xy + yz)i + (6x* + x2)j + xyk
(b) F = ze™i + xe*’k
(c) F=sinxi+ y%j+ e’k
(d) F=3x%yz%i + x32%j + x*yzk
2x
= i
X2 + y2

2

€ F +x2_i}y2j+22k

2. For which one of the fields in Exercise 1 is the test given in this section not applicable?
How, then, can you test this field to determine whether it is conservative in its
domain of definition?

3. Let F and G be conservative vector fields with potentials ¢ and i respectively.
Is the vector field F + G conservative? If so, determine a potential for it.

4. Show that the proof of Theorem 4.3 in the text can be adapted for some other domains
D, specifically: (i) the interior of a sphere and (ii) the interior of a parallelepiped
with edges parallel to the axes. (Hint: You must verify that all the line integrals are
well-defined.)

5. Show that the scalar field

1

?T R

which is defined everywhere except at the origin, is a potential function for the vector
field R/[R]?, where R = xi + yj + 2K,
(a) by writing ¢ in terms of x, y, and z and computing its gradient;
(b) by inspection, using the second and third fundamental properties of the gradient
listed in Sec. 3.1.
6. A force field is defined by

o xi+yj+zk
_(x2+y2+22)%
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at all points in space except the origin. A particle is moved along the straight line
segment from the point (1,2,3) to the point (2,3,5. What is the work done by the
force on the particle? [Hint: Avoid a lot of work (!) by making use of the statement
of Exercise 5.]

7. Would your answer to Exercise 6 be any different if the path extending from (1,2,3)
to (2.3,5) were not straight?

4.5 OPTIONAL READING: VECTOR POTENTIALS

In the previous section we discussed a partial converse to identity (3.32),
which states that the curl of a gradient is zero. It is a converse because it
states that, if the curl of a field is zero, the field is a gradient; but it is only a
partial converse because it is only valid in simply connected domains.

An astute reader will wonder if there is also a converse, or at least a partial
converse, to identity (3.33), which asserts that the divergence of a curl is zero.
If the divergence of a vector field is zero, is that field necessarily the curl of
another vector field? The answer is yes, provided the domain of definition is
star-shaped.

A vector field whose divergence is everywhere zero is called solenoidal.
If F=V x G, G is called a vector potential for F. Notice that G is not
unique; in fact, according to (3.32), we can add the gradient of any scalar to G.

Now let us prove the statement about the existence of a vector potential.

THEOREM 4.4 A vector field F continuously differentiable in a star-
shaped domain D is solenoidal if, and only if, there is a vector field G
such that F = curl G throughout D.

Proof The “if” part follows from identity (3.33). For the “only if”
statement, we assume F is solenoidal in a domain D that is star-shaped
with respect to the point P. We wish to find G(x,y,z)sothatF = V x G.

The proof is quite similar to that in the previous section. (In fact,
both theorems are special cases of a result known as Poincaré’s lemma).
We again parametrize the straight-line segment from P(xo,Yo,Zo) to

Q(x,y,z) by (4.14):

r(t) = [xo + t(x — x0)]i + [ o + #(y — yo)1i + [20 + t(z — z0) ]k
=Xi+Yj+ Zk

=Ry + t(R —Ry)
(using the same notation as in the previous section).
Now we define G(x, y,z):
1 dr
G(x,,2) = fo (F x & di (4.19)
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where the dependence of F and r on ¢ is exactly as in the previous section.
Equation (4.19) is, as it stands, simply the integral of a vector function of
t; however, it lends an obvious interpretation to an expression like
{3 tF x dr.

We compute the curl of G. Again, V may be taken inside the
integral and by identity (3.29), we have

VxG= f:vX<Fx )dt
1| [dr dr dr
=fo[<E-V>F—(F'V)E+< d) —(V-F) 1tdt

(4.20)
As in the previous section,
dr
YT R - R,
so that \E ﬂ =3
dt
dr
d F . —_—= F
an F-V) T

For the reasons stated in the previous section, V - F(X,Y,Z) is not the
divergence of F, but because

V-F(X,Y,Z) = tV* - F(X,Y,Z)

with V* defined as before, we see that V* - F = 0 implies V+ F = 0.
Incorporating all this into (4.20), we get

VxG= f [(- V>F F+3F]tdt (421

Now using Eq. (4.18), we find that

d(tzF) d(tF)
dt dr

+(tF) 2tF+t(%-V)F

This is precisely what we have in (4.21); therefore

1
= F(x,y,2)

0

vd
VxG= o 7 t*F)dt = t*F

ie., F is the curl of G.

Example 4.10 Find a vector potential for
F=0o xR
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where o is a constant vector (recall Example 3.22, where F was identified as a fluid
velocity field with uniform angular velocity).

Solution The verification that V- F =0 is immediate. Taking P to be the origin
in the above equations, we have the parametrization of the segment PQ:

r(t) =tR
Therefore, since F = @ x r(f) in Eq. (4.19),
1
G(x.y,2) = fo t(® x fR) x Rdt
- (@ xR)foO‘ 2 dt

So we obtain
1
G(x,y,2z) = g(m x R) x R
The reader is invited to verify that V x G = F.

We have now proved results which state that irrotational vector fields
are derivable from scalar potentials and solenoidal fields are derivable from
vector potentials. The natural question arises: Can an arbitrary vector field
be expressed as a gradient of a scalar field plus a curl of another vector field,
under appropriate circumstances? This conjecture is true, and is known as
the fundamental theorem of vector analysis. Its proof, however, involves the
use of potential theory. In fact, the theorem has considerably less practical
utility than the two results we have demonstrated, despite its ostentatious
soubriquet.

Exercises

1. Verify that F = V x G in Example 4.10.

2. Find a vector potential for F = xj.

3. Prove: if F and G are irrotational, then F x G is solenoidal. Can you find the
vector potential for F x G? (Hint: This problem is considerably easier if you have
mastered tensor notation.)

4.6 ORIENTED SURFACES

In Chapter 2 we considered, in some detail, the geometry of space curves.
We now turn our attention to a study of surfaces. Just as the basic properties
of curves hinge on the tangent vectors, the behavior of a surface is charac-
terized in terms of the normal vectors at each point. (Recall that we have one
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method for computing normals; namely, grad f(x,y,z) is normal to the
surface f(x,y,z) = 0. Another method will be derived below.)

Keeping in mind that a smooth arc has a continuously turning tangent,
we say that a surface S is smooth if it is possible to choose a unit normal
vector n at every point of S in such a way that n varies continuously on S.
It is said to be piecewise smooth if it consists of a finite number of smooth
parts joined together. Thus, the surface of a sphere is smooth, whereas the
surface of a cube is piecewise smooth (consisting of six smooth surfaces
joined together).

At every point of a smooth surface there will, of course, be two choices
for the unit normal n. There will therefore be two ways in which we can
define a field of unit normal vectors continuous on S. [If, for instance, the
surface is given by an equation of the form f(x, y,z) = C, then the two fields
are

grad f and —grad f

|grad f| |grad f|

(Sec. 3.1).] In choosing one of these two possibilities we orient the surface.
Thus, there are always two possible orientations of a smooth surface. We
have already discussed orientation for the special case of a plane (Sec. 1.11).
The situation is somewhat the same for more general surfaces. When a
smooth surface has been oriented by choosing a particular unit normal field
n, then a positive direction for angles is determined at each point of the
surface (Fig. 4.10). If the surface is bounded by a regular closed curve C,
the orientation also determines what we mean by the positive direction along
C, by the following rule: an observer on the positive side of the surface
(i.e., the side on which n emerges), walking in the positive direction along the
boundary, always has the surface at his left.

To produce an orientation on a piecewise-smooth surface, we have to
orient its smooth parts consistently. This means that along every edge that
is shared by two smooth parts the positive direction (on the edge) relative to
one of the smooth surfaces is opposite to the positive direction relative to the

positive
side

negative
side

FIGURE 4.10
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n

FIGURE 4.11

other. Study Figs. 4.11 and 4.12 to see why this definition is chosen. Not all
piecewise-smooth surfaces can be oriented; see Exercise 1.

A closed surface is one that has no boundary. Thus the surfaces of
Figs. 4.11 and 4.12 are closed, whereas the surface in Fig. 4.10 has a boundary
and is not closed. It is conventional to take the orientation of a closed
surface, which encloses a region of space, to be such that the unit normal n
always points away from the enclosed region, as illustrated in Figs. 4.11 and
4.12.

A surface can be oriented only if it has two sides; the process of orienta-
tion consists essentially in choosing which side we will call “positive” and
which “negative”. (If the surface is closed, it is more natural to speak of the
“outside” and the “inside”.)

An example of a nonorientable surface is the Mdbius strip, obtained by
twisting and pasting together the ends of a strip of paper (Fig. 4.13). This

n

FIGURE 4.12
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FIGURE 4.13

surface is nonorientable because it has only one side. If n is a unit vector
normal to the surface at a point P, then as it moves around the strip its
direction is reversed by the time it reaches P again. This contradicts the
requirement that n be unambiguous at every point and still vary continuously.

The reader may amuse himself by taking two strips of paper and pre-
paring two bands, one with a twist and one without. If the strips are long
enough to dangle on the floor, no one will notice the difference between them.
Have someone cut along a central line of the cylindrical band at the same time
that you cut the Mobius strip. The cylindrical band will separate into two
cylindrical bands, but the Mobius strip will not separate into distinct
portions. Can you predict the result?

Nonorientable surfaces have other mathematical properties that are
rather amazing; so amazing, in fact, that we must exclude them from further
consideration. Henceforth, whenever we say “surface” we mean an orientable
surface.

Just as it is possible to write the equation of a space curve in parametric
form, giving x, y, and z as functions of a single parameter ¢ (because the curve
is a one-dimensional beast), it is also possible to represent these (two-dimen-
sional) surfaces parametrically by giving x, y, and z as functions of two
parameters u and v:

x = x(u,v) y = y(u,v) z = z(u,v) (4.22)

We have already seen this for the case of a plane (Sec. 1.10). In vector
notation, we write Eq. (4.22) as

R = R(u,v) 4.22))

As the parameters u and v vary, the tip of the position vector R(u,v)
generates the surface. In particular, if we fix the value of, say, v, and let u
vary, then R(u,v) traces out a one-dimensional subset of points in the surface,
i.e., a curve lying in the surface. For a different fixed value of v, R(u,v) traces
out a different curve in the surface. In fact, we can think of the surface itself,
defined by Eq. (4.22) with u and v varying independently, as being composed
of “ribs” that are the curves given by (4.22) for variable u, fixed v.
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aR

FIGURE 4.14

Of course, it is equally valid to picture the surface as composed of ribs
R(u,v) with v varying, u constant. These two families criss-cross and cover the
surface like a fish net (see Fig. 4.14).

This is a very useful point of view because it allows us to apply the
methods of Chapter 2 to these curves, to learn about the underlying surface.
For example, we know that a vector tangent to a curve with v = constant
is given by

z
%%=%i+%j+%uk (4.23)
and, similarly, R/dv is tangent to a curve with u = constant (Fig. 4.14). We
assume here that the relevant derivatives exist, that JR/du and OR/dv are
nonzero and nonparallel at every point, and that these derivatives are
continuous on the surface. Since both vectors are tangent to curves in the
surface, they are tangent to the surface itself. Therefore, the vector

R R

E» X " (4.24)

is normal to the surface.

To recap, we have derived two ways of computing normals to a surface.
If the surface is specified nonparametrically by f(x,y,z) = C, then grad f is
a normal vector; if the surface is given parametrically through Egs. (4.22),
then (4.24) is a normal vector. In both cases a unit normal n is obtained
by dividing the normal by its length, and the induced orientation is reversed
by changing the sign of n (or, in the parametric case, using (/R/0v) x (OR/du)
instead of (4.24)).

Example 4.11 Write the equation for the plane tangent to the surface given by

x = u? y=uw z=1v

at the point correspondingtou =1, v = 2.
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Solution The point corresponding to u =1, v = 2 is Ry =i + 2j + 2k. The tangents
to the constant v, constant u curves are

R :
=2ui+0j=2i+2j

ou
aR

—ui+k=i+k
P» uj+ 1+

Hence a normal to the plane is given by the cross product:

n=0Q2i+2)x(j+k=2i—-2j+2k
The nonparametric equation of the plane is thus
R-Ry)'n=2(x—-1)—2(y—2)+2(z—2)=0
A parametric form can be written using the tangent vectors:

R(u,0) = u(2i + 2j) + v(j + k) + 1 + 2j + 2k

Any portion of a surface that can be represented by equations of the
form (4.22) in a manner such that to distinct ordered pairs (u,v) there
correspond distinct points (x,y,z) on the surface, and satisfying the above
differentiability and continuity requirements, is called a regular surface
element.

Recall that the arc length of a smooth arc was defined as the limit of the
lengths of inscribed polygonal paths (Sec. 2.2). The surface area of a regular
surface element turns out to be a slightly trickier concept, so we will be
content to present a heuristic argument that leads to the correct formula.
Figure 4.15 shows a small patch of the surface bounded by curves of constant
u and v. Notice that, for small Au and Av, the patch is well approximated
by a parallelogram with sides PQ and PS represented by the displacement
vectors R(u + Au,v) — R(u,v) and R(u, v + Av) — R(u,v), respectively. The
area of this parallelogram is given by the cross product; so if we introduce

R

(u, v+ Av) U+ Au, v+ Av)

(u+ Ay, v)

Q

FIGURE 4.15
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the further approximations

R(u + Au,v) — R(u,v) & — Au

R(u,v + Av) — R(u,p) ~ — Av

we find that the area of the patch is given approx1mately by

ﬁR JR
6u o0

Summing these up over the surface and letting Au and Av go to zero, we argue
that the surface area of a regular surface element is given by

AS = AuAv

R OR
S = ff 5, % & |dudy (4.25)
If we introduce the notation
R
ds = R du x 8_ dv (4.26)
ou ov

then we see that dS is a vector normal to the surface at P, whose magnitude
= |dS| is the element of area. The integral (4.26) may be written in the

alternative forms
f f ds|

or f ds
or even ffn -dS

where n is a unit normal in the same direction as dS.

Example 4.12 Find the surface area of the surface defined by the equations
X =cosu y=sinu z=v
for0<u<2r,0<v<1l

Solution We have

R . .

— = —sIn ul + cos u)

ou

R

o
i j k

dS=|—-sinu cosu O|dudv=(cosui+ sin uj)dudv
0 0 1

ff|dS} = fol f:" (cos? u + sin? uy dudv = 2n
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This surface is a right circular cylinder of unit radius and unit height. If it
is cut along a “seam”, it unfolds into a rectangle whose dimensions are
27 by 1.

We now consider a special case of Eq. (4.25) that will illustrate further its
geometrical significance. Let us suppose that the surface we consider is
given in the form z = f(x,y). In other words, we are told how far above
the xy plane the surface is for each point (x,y) in the xy plane. Then it is
convenient to use x and y instead of u and v as the parameters. Let us
suppose that the projection of the surface element on the xy plane is bounded
by the curves

y=nx) y=y(x) x=a x=b

as shown in Fig. 4.16.
We can write x = u, y = v, and z = f(u,v), in order to make use of the
preceding formulas. We have

JR 6R_,+ af
au_ﬁx_l

JR_JR it 6f
v dy 6y

Taking the vector cross product,

ou  ox ax

i j k
R aR of o. o,
1 x99
E7alr Pl LIl e vl kb )

o

01 <L

oy

The magnitude of this vector is \/1 + (9f/0x)? + (3f/0y)?, so that the integral

(4.25) is
[P <af ) (f ) dy dx 4.27)

The geometrical significance of this is seen by considering the angle y between
dS and k. By a simple calculation using scalar products we see that

ds - k| A A
ot =S =+ () (5]

so that (4.27) is simply

f f vats) dx dy (4.28)

1) |cos 7l

This integral could have been obtained heuristically by considering the
area cosine principle which says that, if we look at a plane area 4 whose
normal makes an acute angle 0 with the line of sight, the area we appear to
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FIGURE 4.16

see is A cos 6. This is because distances in one direction will appear to be
shorter by a factor of cos 6 and distances in a perpendicular direction will
not change at all.

Let us digress for a moment to use this law to determine the area of the
ellipse shown in Fig. 4.17. Let us pretend that this ellipse is really a circle
of radius a that we are viewing at an angle. In other words, we imagine
that this is a circle of radius a (area na?) that has been tipped in such a manner
that vertical distances are shortened by a factor b/a. The area we see will
be A cos 0 = (na®)(b/a) = nab. Thus we find the area of this ellipse to be
nab, by a method that is much easier than using integral calculus.

Returning to Fig. 4.16, we can consider an element of area in S whose
projection on the xy plane has area dxdy. The angle between the normal

il RPN
1

FIGURE 4.17

FIGURE 4.18
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to this area and the “line of sight” (imagine that you are below the xy plane
looking up at the surface) is y. By the area cosine principle, the area dxdy
that we see equals dS|cos y|. It follows that

_dxdy
" |cos y|

The absolute value is unnecessary if y is acute.

Frequently, a judicious use of the area cosine principle makes it un-
necessary to use (4.25). The cosine of the relevant angle, in this case 7y,
is easily computed since we can find a normal to the surface by methods we
have already learned and then use scalar products to find the desired cosine.
For instance, the surface z = f(x,y) can be represented by the equation
z — f(x,y) = 0, and the gradient of the function z — f(x,y) is k — (¢f/0x)i —
(6f/@y)j. This is easier than computing the vector cross product given above.
[Caution: Using gradients to give a normal vector N gives a vector that
does not equal dS but is only a scalar multiple of it. However, this makes
no difference since we are only interested in computing cos y = N - k/|N|
when using (4.28).]

Example 4.13 Find the area of the surface defined by
x24+y2+22=1 x>0
Solution The reader should be able to see that this surface is half of a unit sphere.
Let us use the area cosine principle that corresponds to a line of sight along the i direction,
projecting the area onto the yz plane. A normal is given by the gradient
V(2 + y? + z%) = 2xi + 2yj + 22k
If « is the angle that the normal makes with i, then
2xi+ 2yj+ 2zk) i 2x
= =—=X

cos o = —=""=
TUl st a2

The projection of this hemisphere onto the yz plane is a unit circle; hence, the area is
dy dz 1 (-2 g
S_ff cosa—f'lj‘—(l'zzﬁ x"dydz

Since x = (1 — y? — 22},

S=2n
(by standard methods). This checks with our expectations; a unit hemisphere would

have area 4zn/2 = 27

Sometimes, in practice, the formula (4.26) can be visualized. For example,
suppose we parametrize a sphere of radius a by its latitude and longitude
angles ¢ and 0, as in Fig. 4.19. We have

x =asin ¢ cos y =asin ¢ sin 6 z=acos ¢
0<¢p<m= —-r<0<mn
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FIGURE 4.19

Using the two parameters ¢ and 6 instead of u and v, we obtain

R
2—¢=acos¢cosf)i+acosqﬁsin0j—asinqbk (4.29)
JR . .. . .
0= —asin ¢ sin 8i + asin ¢ cos 0 (4.30)
whereupon we compute to show that
JR OR .
% X 25 = a? sin? ¢ cos Oi + a® sin? ¢ sin 0j + a® sin ¢ cos pk  (4.31)
The magnitude of the vector is a? sin ¢; hence it follows that
dS = a* sin ¢ dep dO (4.32)

This result can be visualized from Fig. 4.19. Holding 6 fixed and varying ¢
by an amount d¢, we trace out an arc of length ad¢. Holding ¢ fixed and
varying ), we trace out an arc of a circle of radius a sin ¢, the length of this
arc being a sin ¢ df. For small d¢ and d0, this gives us very nearly a rectangle
with area a® sin ¢ d¢ d6.

Exercises

1. Show that the Mdbius strip is piecewise smooth, and show why the smooth parts
cannot be oriented consistently.

2. Draw a diagram similar to those of Figs. 4.11 and 4.12 for the surface of a tetrahedron.
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3. Consider the triangle with vertices (1,0,0), (0,1,0), and (0,0,1).
(2) Find a unit vector n normal to this triangle, pointing away from the origin.
(b) Determine cos y for this vector.
(c) Supply the appropriate limits for the integral

J*f dx dy
|cos 7]

if it is to represent the area of this triangle.
(d) Evaluate the integral.

(e) Obtain the same answer by applying the area cosine principle to the projection
of this triangle on the yz plane.
4. (a) Derive Eq. (4.31) from (4.29) and (4.30).
(b) Show that the magnitude of this vector is a® sin ¢.
5. Determine the element of surface area dS for a right circular cylinder:

X=acosu y=asinu z=v

Interpret geometrically. [See Fig. 5.1, interpreting (u,v) as 6,2).]
6. Determine the element of surface area dS in the special case of the surface z = x* + y2
7. Find the area of the section of the surface

bounded by the curves u = 0,u = 1,v =0, and v = 3.
8. Derive the identity

dS =(EG — F?)*dudv

where

2

R
Ju

JoR

2 JR OR :
F — _
ov

E___ _ —— . =
ou ov

(The quantities E, F, and G are employed in differential geometry in developing the
theory of surfaces. They constitute the “Second Fundamental Form.”)

4.7 SURFACE INTEGRALS

Let S denote a smooth surface and let f(xy,z) be a function defined
and continuous on S. The surface integral of f over S, denoted

Jfras

is defined by a construction that the reader can, no doubt, anticipate by now.
We imagine the surface cut up into n pieces having area 65 1,08,,...,688,.
In each piece we choose a point (x;,y;,z), evaluate f(x;,y;,z;), and form
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f(x;,v:,2;) 6S;. We sum these numbers:
z S(x:,1,2:) 6S; (4.33)
i=1

In this way we obtain a single number. Now let n tend to infinity, at the
same time letting the pieces grow smaller so that the maximum dimension
of the areas 65,,45,, . ..,dS, tends to zero. In other words, we are dividing
the surface into smaller and smaller elements of area, each time forming a
sum of form (4.33). If these sums tend to a limit, independent of the way
we form the repeated subdivisions, that limit is called the surface integral
of f over S:

[[i foepads = tim ¥ fxipez)S: (4.34)
S max 85;20 i=1

In most situations the function f arises from a scalar product involving
a vector field F. We define the flux of F through the surface S to be the surface
integral

| fs F-ndS (4.35)

where, at any point on the oriented surface, n is the unit normal to S.

(Thus, f = F - n in this circumstance.) The physical meaning of the flux

integral will be discussed shortly, but first let us see how to compute it.
Using the notation of the previous section, we can write the flux as

f fs F-dS (4.35)

Applying Eq. (4.26), we convert this to a workable formula when the surface
is parametrized by R(u,v):

JR OR
- i '3 1"
(¥ o X = dudy (4.35")
If the surface is specified by giving z as a function of x and y, we would use
d
[[F-n dx dy (4.35")
|cos 7|

where the limits of integration are determined by the projection of S onto
the xy plane [with an obvious modification for surfaces described by, say,
x = x(y,z)].

If the surface S is only piecewise smooth, we integrate over each smooth
part separately and add the numbers obtained.

Example 4.14 Compute the flux of the vector field F =i + xyj across the surface
given by
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Solution Using Eq. (4.35"),
R OR w-ov 0
fFax—ddv—fJ. 1 2uldudv

= fo ! fO‘ Qu® — 2uv? + 2u)dudv

1 1 2 7
fO <2 1) 6
Example 4.15 Compute

[[;F-as
where S is the surface of the sphere x* + y? + z2 = 4 and
F=xi+yj+zk

Solution We recall that at a point (x,y,z) the vector xi + yj + zk points directly away
from the origin. The outward normal n to this sphere also points away from the origin,
since the center of the sphere is at the origin. Hence for points on the surface

F-n=|F||njcos 0 = |[F| = (x> + y* + z%)* =2
and ffs F-dS= ffs F-ndS = ffs 2dS = 2 (total surface area)
=2(d4mr?) =32z
since r = 2 is the radius of the sphere.

Note that, in the above example, no integration was needed, since
F - n was constant over the entire surface.

Example 4.16 Compute
[J;F-as

where S is the surface of the cube bounded by the planes x=0,x=1, y=0, y=1,
z=0,z=1,and F = xi + yj + zk.

Solution We see from Fig. 420 that the unit normal to the front face of the cube is
n=1i,so

Fen=i-(xi+yj+zk)=x=1

on this face. It follows that the integral over this face is

[[¥-as=[[F-nas= [[ds =1

since the area of this face is unity. On the opposite face (in the yz plane) n = —i so that
F -n= —Xx, but x = 0 for all points in this face and hence

fF-ndS:O
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FIGURE 4.20

On the top of the cube we have

ffF-ndS:ffF-de:ffﬁS:ﬂdS:1

and on the bottom we have

ffF-.uiS:ff(-z)dS:o

since z =0 in the xy plane. Along the right side we have n = j so that the normal
component of F is unity and the integral over this face is unity. Along the left
sidle n=—j and F-n= —y =0, so that the contribution to the integral is zero.

Summing, we find that
[ F-nas=3

Example 4.17 Compute the surface integral of the normal component of F =
x%i 4 yxj + zxk over the triangle with vertices (1,0,0), (0,2,0), (0,0,3). Consider the
triangle oriented so that its positive side is that away from the origin (Fig. 4.21).

Solution By the methods of Chap. 1 we find easily that n = $i + 3j + k. Hence
F-n=%x?+3yx + 4zx and

cosy=n-k=

~1 N

Using (4.35") we have

I N K L

—ox 3
:fol foz 2 (3x2+5yx+zx>dydx

On S we have z = 3 — 3x — 3y so that zx = 3x — 3x? — $yx, and the integral becomes

1
=1

1 (2-2x
fo ,[o * 3xdydx = fol 3x(2 — 2x)dx = 3x? — 2x? \
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6x+3y+2z=6

FIGURE 4.21

Example 4.18 Compute

[J;F-mas

over the surface of the tetrahedron with vertices (1,0,0), (0,2,0), (0,0,3), (0,0,0), where
F = x%i + yxj + zxk (Fig. 4.21).

Solution We have already computed the integral over one surface. Along the bottom

face we have n = —k and, hence, F - n = —zx, but since z = 0 the integral over the
bottom face is zero. On the fact at the left we have n = —jand F - n = — yx, which is
also zero since y = Othere. On therear face, in the yzplane,n = —iandF-n = —x? = 0.

It follows that

[fsF-as=1

the only nonzero contribution being the integral already computed in Example 4.16.

Note that in Examples 4.15, 4.16, and 4.18 we took n to be the ourward
normal, the usual convention for closed surfaces.

Now let’s consider some physical examples of surface integrals. Suppose,
for instance, that at any point (x,y,z) on a surface S, f(x,y,z) gives the rate
of flow of heat per unit area at that point, in units (say) of calories per second
per square centimeter. Then f(x;, y;,z;) §S; gives, approximately, the number
of calories per second flowing across the element of area éS; and the sum
(4.33) approximates the total number of calories per second flowing across
the entire surface S. If f(x,y,z) varies from point to point on the surface,
this approximation can be improved by taking smaller elements of area
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(and hence more such elements). The limit

([ fexraras

gives, exactly, the number of calories per second flowing across the surface.

Let us look a little deeper into the physics behind this phenomenon.

If we assume a steady-state temperature distribution, where T(x,y,z) denotes

the temperature at each point in space, and if the region we consider is filled

with a homogeneous material having coefficient of thermal conductivity k,
then the vector

Q= —kVT (4.36)

gives, at each point in space, the direction in which the heat is flowing.
The magnitude of Q gives the rate of heat flow per unit area across an area
perpendicular to Q. More generally, we can say that the scalar component
of Q in the direction of a unit vector n (equal to Q * n) gives the number
of calories per unit time and per unit area crossing an element of area
perpendicular to n.

It follows that the function f is given by (—kVT)-n, and the total
number of calories per second flowing across a surface S equals

ﬁg(_kVTj-nds , (4.37)

The reason for the negative sign in Egs. (4.36) and (4.37) is that the tem-
perature gradient VT points in the direction of maximum rate of increase of
the temperature, whereas heat flows in the opposite direction, from hot
to cold.

Let us consider another situation in physics in which surface integrals
arise. If F denotes the velocity field of a fluid and p its density, then as we
saw in Sec. 3.3, the amount of fluid crossing a patch of surface with area 6S
and unit normal n, per unit time, is approximately pF - ndS. This formula
becomes exact as 3S goes to zero. Thus we can see that

pF - ndS (438)
11

gives the rate of flow of liquid across the surface S, expressed as mass per
unit time.

As yet another example, consider an electrostatic field E defined in a
region of space. One can form

{fin-Eas

which is the surface integral of the normal component of E over the surface S.
This integral arises in connection with Gauss’s law of electrostatics which
states that if S is a closed surface,

.Mnﬁﬁ=— (4.39)
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where ¢ is the total charge enclosed by the surface and &, is a constant that
depends on the system of units. The numerical value of the surface integral
in Eq. (4.39) is called the flux across S or the number of flow lines of the
vector field E crossing the surface. This last phrase is not to be taken literally,
since there will usually be a flow line crossing every point of S and therefore
there are really an infinite number of flow lines crossing S. However, in
drawing diagrams, it is impossible to draw an infinite number of flow lines,
so it may be convenient to visualize (4.39) as giving a measure of the number
of flow lines we wish to picture crossing the surface. [This number is
necessarily approximate since the value of (4.39) may not be a whole number. |

Example 4.19 Use Gauss’s law (4.39) to determine the magnitude of the electric
field intensity at a point r units away from a point charge of magnitude q.

Solution Let S be a sphere of radius r with the charge g at its center. Symmetry
considerations lead us to believe that n - E will be constant over the surface of this
sphere, and that E will be normal to the surface. Hence, we can bring n - E outside
the integral, and we obtain

ffn-EdS:n-Effd5=4nr2(n-E)

It then follows from (4.39) that n* E = g/4ne,r?. Hence, if the charge is positive,
|E| = g/4ner? and E is directed away from q. If g is negative, E will be directed towards
the charge g.

Example 4.20 Use Gauss’s law (4.39) to determine the magnitude of the electric
field intensity at a point r units away from an infinite plate carrying a charge of density
o (charge per unit area).

Solution Let S be the surface of a right circular cylinder of length 2r and base area A4,
bisected by the charged sheet. We take the bases parallel to the sheet, so by symmetry
we expect E to be perpendicular to the bases (Fig. 4.22).

The charge within S is ¢ = 6 4. On each of the two bases we have n * E = constant
by symmetry (since we assume the charged sheet infinite in extent), and there will be

FIGURE 4.22
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no contribution to the integral around the curved surface of the cylinder because E
is parallel to this surface; therefore

fﬁn-EdS:n-EfJ;dS=(n-E)(2A)

By (4.39) we have (n- E)(24) = 6A/gy, S0 n+ E = 6/2¢,, If ¢ is positive, this shows
that E is in the same direction as n and |E| = ¢/2¢,, independent of r.

Example 4.21 Consider a cylindrical heat insulator surrounding a steampipe. Let
the inner and outer radii of the insulator be r = a and r = b respectively, and let T,
and T, be the temperatures, respectively, of the inner and outer surfaces of the insulator.
Find the temperature T within the insulator as a function of r (Fig. 4.23).

Solution A section of the insulator, of length L, is shown in the figure. By symmetry,
we assume that T is a function of r alone, so that VT = grad T is directed radially
towards the center of the pipe, with magnitude —dT/dr. (On the assumption that the
pipe is hotter than the surroundings, dT/dr will be negative.) Let S be a cylindrical
surface of radius r and length L within the insulator. By Eq. (4.36), we have

kdT
Q'n=(—-kVT)n= ———
dr

(as usual, we take n to be outward, so VT - n = |VT| |n| cos 180° = —|VT| = dT/dr).

Assuming steady-state heat flow, the number of calories of heat flowing across
any such surface S will be the same as that across any other such surface, since otherwise
the temperature would change with time. The quantity of heat flow per unit time
across any such surface is

H=_USQ-ndS=ffs—k%dS=—k%ﬂ;dS

dT
= —k— (2nLr)
dr

FIGURE 4.23
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Here again we are using symmetry considerations in assuming that d T/dr is constant
along any one surface S (but not necessarily the same as for surfaces with different r),
and so d T/dr can be brought outside the integral sign.

Since H is independent of », we treat it as a constant in solving the differential
equation

T
H = —2nkLr —
dr

Separating variables,
d
HY = —27kLdT
r

we integrate

b dr

H = —2nkL f:” dT

ay
which ultimately yields
_ 2nLK(T,— T,)
~ In(b/a)

Substituting this value of H and integrating

y dr T
HL ~= —2nkL fn dT
we finally obtain

1
T, (T, Ty

Exercises

1. If F = zk, find the surface integral of the normal component of F over the closed
surface of the right circular cylinder with curved surface x% + y? =9 and bases
in the planes z = 0 and z = 2. (Mental arithmetic should suffice.)

2. Compute
f f F-dS

where S is the surface of the cube bounded by the planes x = +1, y = +1,z= +1,
if

(@) F=xi (e) F=yi
(b) F =xi+ yj () F=z
() F=xi+yj+zk (& F=7z%

(d) F=x%i + y?j+ 2%k
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3. Compute the surface integral of the normal component of F = xi over the triangle
with vertices (1,0,0), (0,2,0), (0,0,3), taking the normal on the side away from the
origin.

4. Use Gauss’s law to determine the magnitude of the electric field intensity at a point
r units away from an infinitely long thin wire carrying a charge of A units per unit
length. (Consider a cylinder of length L and radius r concentric with the wire.)

5. Consider a hollow sphere of homogeneous material, with inner radius a and outer
radius b, and inner temperature T', and outer temperature T,.

(a) Find the steady-state temperature as a function of the distance r from the center,
for values of r between a and b.
(b) For a value of r halfway between a and b, is T halfway between T, and T,?

6. Given F = xi — yj, find the value of
[[F-nas

over the closed surface bounded by the planes z =0, z = 1, and the cylinder
x2 + y* = a2, where n is the unit outward normal,
(a) by direct calculation (Hint: The element of area is

dS =adldz

in cylindrical coordinates on the curved surface.);
(b) by symmetry considerations, without changing to cylindrical coordinates.

7. Given F = xi + yj + (z> — 1)k, find
[[F-nas

over the closed surface bounded by the planes z =0, z = 1, and the cylinder
x? + y? = 4% where n is the unit outward normal.

8. Given that F = yi + k, find the surface integral of the normal component of F
over the box shown in Fig, 4.24, taking n to be the unit outward normal. Assume
this box to have a bottom but no top, i.e., roughly like a shoe. (Note: Later on you
will be asked to do the same problem by mental arithmetic, as a demonstration of
the power of the divergence theorem. Take a furtive peek ahead at Exercise 7,
Sec. 4.9.)

9. Let Dbetheregionx >0,y >0,z>0,x + 3y +3z< 1.

(a) Is this region a domain?
(b) Is this region simply-connected ?
(c) If F = 2xi + yj + zk, find the surface integral of the normal component of F
over the boundary of this region, oriented by selecting the outward normal.
10. Calculate | f F - dS over the section of surface described in Exercise 7, Sec. 4.6, for
the vector field

F=yi—xj+xk

11. Let us suppose that a field F due to a point “source” of “strength” ¢ located at a
point P has potential ¢ at a point Q given by ¢(Q) = g/r, where r is the distance from
P to Q. Except when r = 0, ¢ is a harmonic function, that is, V2¢ = 0. Now sup-
pose that the source is not concentrated at a single point but is distributed uniformly
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12.

13.

(2,0,0)

2,1,0)

FIGURE 4.24

with density o (source strength per unit area) over the surface of a sphere of radius
a. If Q is the point (xy,yq,2o), the potential at Q must then be found by integration,

cdS
(Y= o) + (2 — zp)?

$(x0,Y0,20) = ff V=)

where the integral is over the surface of the sphere. Give a heuristic line of reasoning

to show that the potential is

(a) constant within the sphere, equal to 4naos;

(b) equal to 4ra’s/b at any point outside the sphere a distance b from the center
of the sphere. (Hint: Think of F as a scalar multiple of the electric field intensity
due to a charge distribution and use Gauss’s law.)

By interpreting the following integrals as potentials, find their values. Take the
surface S to be the sphere x? + y* + z2 = 4.

ds
@ [ ==
ds
® ==
Evaluate

ff ds
SJx =32 +(y—27+ 22

over the surface x? + y* + z* = 25 by interpreting the integral as a potential.
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14. Let R = xi + yj+ zk and r = |R|. Show that, under certain circumstances, the

integral
w:ff%mdS: —ff<V%>-ndS

over a surface gives the solid angle subtended by the surface at the origin.

4.8 VOLUME INTEGRALS

Volume integrals are defined, of course, through the familiar partition
construction. We consider a function f (i.c., a scalar field) defined within
and on the boundary of a domain V. We imagine that V is bounded, i.e., that
there exists a cube R sufficiently large that every point of V' is within R. We
imagine the cube R subdivided into rectangular parallelepipeds by planes
parallel to the coordinate planes. Ignoring those parallelepipeds that contain
no points of V, we let the volumes of the parallelepipeds that do overlap
V be denoted 6V,,6V;,...,6V,, and in each parallelepiped select a point
(x;,y1,2;) in V. We form the sum Y f—; f(x;,;,2)dV; and define the volume
integral of f over V, if it exists, to be

IJ, rxyzav = tim .-i SCxi,y1,2) 8V, (4.40)

taking the limit as the dimensions of each volume JV¥; tends to zero (which
alsomakes ntend to infinity). For Eq. (4.40) to make sense in an unambiguous
way, we require that the limit exist independently of the particular manner of
subdivision. Tt can be shown that this is the case if f is continuous within
and on the boundary of V; we omit the proof.

Since the volume of a rectangular parallelepiped with edges dx, dy, and
dz is dV = dx dy dz, one sometimes writes

fffv fx,y,z)dxdydz
instead of fff,, oy dV

This suggests, and it can be proved, that a volume integral can be evaluated
by triple integration; that is, by successively integrating with respect to x,
then y, then z (the obvious extension of a double integral). In fact, a volume
integral is almost always evaluated in this way—as an iterated integral. The
only tricky part of volume integration is in supplying the limits of the “partial
integrals”; we will give examples below.

One obvious application is that in which the function to be integrated is
the mass density of a material. Let p(x,y,z) denote the mass density of a
material, say in grams per cubic centimeter, at a point (x,y,z). If p is a
constant, the mass of any material occupying a volume 6V is precisely p 6V.
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If p varies from point to point, as may very well be the case for a compressible
fluid, then if we take a point (x, y,z) in a small region of volume 6V we can say
that p(x,y,z) 8V gives, approximately, the mass of the material within this
region. We can then interpret the sum )7, f(x;,y:,z)dV; as giving an
approximation to the mass within the entire domain ¥, and the integral (4.40)
gives this mass precisely.

Similarly, if f represents the charge density (charge per unit volume),
the volume integral of f over V gives the net total charge contained in the
region V.

Of course, the volume of the domain V is defined by (4.40), taking
f(x,y,2) to be identically equal to unity:

volume of V = f f fv av = f f fV dx dy dz (4.41)

Example 4.22 Find the volume integral of f(x,y,z) = x + yz over the box bounded
by the coordinate planes, x =1,y =2,andz =1 + x.

Solution The region is illustrated in Fig. 4.25a; it can be described as a “four-walled
house with a slant roof.” The reader should take the time to identify the sides cor-
responding to x =0, y=0,z=0, y=2, z=1 + x, and the wall, x = 1, which has
been “cut away.”

Let us get the limits of integration. Consider a typical point (x,y,z) somewhere
in the middle of the region. If we hold x and y fixed, z can slide down to 0 (the floor)
and up to 1 + x (the slant roof), tracing out a column. If we now let x vary and hold
y fixed, the columns trace out a slice; x goes back and forth from 0 to 1. The columns
and slice are depicted in Fig. 4.25b. Now if we vary y from 0 to 2, these slices stack up
and fill out the region. Integrating in this order we obtain

2 1 x
ffffdzdxdy = J‘O fo fOH (x + yz)dzdxdy

2 1 1 , 1+x

=J; fo <x2+§yz >0 dxdy

o , 1 r dxd

_fOL X+ x +§y+yx+§yx xdy
2 (5 7

-1 (g+ay>dy:4

An alternate way of choosing limits arises if we let y vary before x. Then the

vertical columns would trace out a slice from left to right, for 0 < y < 2, and the slices
would stack up as x goes from 0 to 1. This produces

fol foz f01+x (x + yz)dzdydx = fol foz <x + x2 +%y+ yx +%yx2>dydx

2
dx
0

_ (! 2 lz 12 122
_fo <xy+xy+4y +2yx+4yx

- fO‘ (1 + 4x + 3x%)dx = 4
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Suppose, starting from our “typical point in the middle” (x,y,z), we let y vary
first, holding x and z constant. Then we would trace out a horizontal column from
left (y = 0) to right (y = 2). If we next vary z, holding x constant, these columns fill
out aslice parallel to the yz plane, running from the floor (z = 0) to the ceiling (z = 1 + x).
Stacking these slices for x between 0 and 1 fills out the region and we have

f; fol +x J’OZ (x + yz2)dydzdx = J‘Ol J;)l +x (xy +%y22>

=f0‘ fo‘”(zx+2z)dzdx

1+x

dx

2
dzdx
o

= fol (2xz + z%),

0

- fol (1 + 4x + 3x¥)dx = 4

What if, starting from our typical point in the middle, we let x vary first, holding
y and z constant, which produces columns coming “out of the page” in Fig. 4.257
Then we have a complication. In the main part of the house, z < 1, the column runs
from the back wall (x = 0) to the front (x = 1), but in the “attic”, z > 1, the column
only goes back to the slant roof, where x = z — 1. (Where does this equation come
from?) Thus we have to break up the region, below and above the level z = 1, in order
to establish consistent limits of integration. In both sections the columns can run
left to right, 0 <y < 2, generating horizontal slices that can be stacked, 0 < z < 1
in the lower part and 1 < z < 2 in the attic. This produces

fol foz fol (x+yZ)dXdde+J;2 J: fz‘_l(x+yz)dxdydz

=J‘01 J‘j(é+yz)dydz+f12f02<2y2_%zz+Z_y22>dydz

= fol (1 +22)dz + ff (6z—3z%)dz=2+2=4

The above example demonstrates that volume integrals can be iterated
in any order, but that some orders may be more complicated than others.

Example 4.23  Find the volume of the region of space above the xy plane and beneath
the plane z = 2 + x + y, bounded by the planes y = 0, x = 0, and the surface y=1-x2

Solution Let us try to visualize the region. Its base, in the xy plane, is shown in
Fig. 4.26a. Each of the shaded points is the base of a column reaching up to the “slanted
roof”, z=2 + x + y (Fig. 4.26b).

To find the limits of integration, we start with the “typical point in the middle”.
If we let z vary first, with x and y fixed, we trace out a vertical column from z = 0 to
z=2+ x+y. If, instead, we hold y and z fixed and vary x, the horizontal columns
are troublesome; they run from 0 to (1 — y)* throughout most of the region, but in the
upper right-hand corner (Fig. 4.26b) there is an “attic” where the slant roof cuts off
the columns, on their left end. The same happens if we vary y first. Taking the easy
way out, we choose the vertical columns.
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y=1—x?

@ ®)

FIGURE 4.26

If we hold x fixed and vary y, the columns generate slices fromy = 0toy = 1 — x>,
Stacking up these slices for 0 < x < 1, we find

1 1-x2 [f2+4x+ 1 1—x2

fo fo fo ydzdydx=f0f0 Q@+ x + y)dydx
3 1 1 ) 1-x2
—L(2y+xy+§y>o dx
_ (3 2 sl .
—L(5+x—3x —-x +§x dx

37
20

Example 4.24 Find the integral of f(x,y,z) = y over the volume of the sphere contained
inside x? + y? + z2 = 1.

FIGURE 4.27
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Solution Obviously, for a sphere we can integrate equally well in any order. From
Fig. 427, we see that if we fix x and y, z traces out a column between the limits
+(1 — x?* — y*)*. These columns can be slid in the y direction, for fixed x, between
the limits y = +(1 — x?)?, generating slices that can be stacked fromx = —{tox = +1.

Hence % %
[{rav=J, [0 L0000 vaeasas
=2 f‘ll f—i(ll—?zj: 1 —x*— 3;2)% dydx

=2 0ax=0

(We might have anticipated this answer by symmetry.)

Exercises

1. Compute the volume of the sphere of radius R by iterated integrals.

2. The volume of the region described in Example 4.22 equals 3. Verify this four times
by repeating each of the integrations given in Example 4.22, taking f(x,y,z) = 1
instead of f(x,y,2) = x + yz.

3. Sketch the region whose volume is represented by the triple integral

J;Z J.OS J‘O”[Q-»_yz dxdyd:z

4. In this exercise you will be asked to make a simple conjecture on the basis of carrying
out the following computations.
(@) Let F(x,y,z) = x% + yj + zk. Compute

[f;F-as

over the surface of the cube bounded by the planes x =0, x =1, y =0, y = 1,
z =0, z=1(Fig. 4.28).

FIGURE 4.28
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(b) Let f(x,y,2z) = V * F, and compute

JIf, feeraav

over the cube. Notice that here limits are no problem; we have simply

fol fol fol floy,z)dxdydz

{¢) If your answers to (a) and (b) are not equal, check your work until you find
the mistake.

(d) Now invent another vector field F and repeat steps (a) and (b).

() What do you conjecture from this?

5. Let V be a domain with volume v. Let F = xi + yj + zk.

(a) What is
I”;V-FdV

(b) On the basis of your answer to Exercise 4, what do you conjecture is the value of

[f;F-as

the surface integral of the normal component of F over the boundary of V?

6. Find the volume of the region bounded by the surface z = e~***¥’, the cylinder
x? + y?> = 1, and the plane z = 0. (Hint: In cylindrical coordinates, dV = rdrdf dz.)

7. If p(x,y,z) denotes the charge density (charge per unit volume) in a region of space,
then the total charge in this region V is

q=JILPWJ@dV

By Gauss’s law we have

fLE-dS=iq=%fffVp(x,y,z)dV

Combine this with your conjecture of Exercise 4 concerning

ﬁ[VV-EdV

What might this lead you to guess about the relationship between the divergence
of E and the charge density?

8. Evaluate the following integrals over the region of space within the sphere
x2 + y? + z2 = 4, by interpreting them as potentials and using Gauss’s law. (See
Exercise 12 of the previous section.)

dxdydz
@ W

dxdyd
) 1] ﬁf:_)yTyT
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9. Evaluate

dxdydz
fff\/( -9+ (y—2%+22

where the integral extends over the interior of the sphere x? + y? + z2 =4, by
interpreting the integral as a potential.

4.9 INTRODUCTION TO THE DIVERGENCE THEOREM
AND STOKES’ THEOREM

With these preliminaries on integration completed, we can now turn to
the interesting part of our work. In this section we introduce two theorems
of fundamental importance in vector analysis; most of our work so far has
been intended as preliminary to these two theorems. They will be stated
more precisely in later sections; here we intend to state them in crude form,
without giving the precise conditions on continuity, differentiability, etc.,
and we will give proofs for the theorems that are instructive but quite
nonrigorous. In later sections more careful proofs will be given. First we
present the divergence theorem.

THEOREM 4.5 The volume integral of the divergence of a vector field,
taken throughout a bounded domain D, equals the surface integral of
the normal component of the vector field taken over the boundary of D.
In other words, the total divergence within D equals the net flux
emerging from D.

Here is a “simplified proof”; a rigorous proof will be given later.

Proof  Firstlet us consider a small rectangular parallelepiped bounded
by planes of constant x, x + dx, y, y + dy, z, and z + dz. The surface
integral of F - n over the six faces of this solid is the total flux of F out
of the box. In Sec. 3.3 we showed that this flux is given, in the limit, by

V:Fdxdyd:

Now let us divide the domain D into many small parallelepipeds,
as if they were building blocks used in constructing D. What do we
obtain if we sum up the flux out of all these blocks? If two such par-
allelepipeds are adjacent, the flux outward from one equals the flux
inward to the other, over the face they have in common. Hence the
only non-cancelling contributions come from the blocks on the surface,
and these terms add up to give the total flux of F out of the “brick
structure”. As we take smaller and smaller blocks, we expect that
Y'V-FéV approaches the volume integral, and the flux out of the
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structure approaches the flux out of D. Hence,

[[[v-Fav = [[F-as

There are some obvious weaknesses in this proof. The passing to the
limits must be considered much more carefully, particularly with regard to
the surface integral. For example, it is not clear that one is justified in
approximating, say, a spherical surface by a collection of little rectangles
parallel to the coordinate planes (recall that in Fig. 4.15 the rectangular
patch is taken tangent to the surface). These heuristic arguments, however,
are very valuable in helping one to recall the theorems and conjecture new
approaches.

The divergence theorem is sometimes called Gauss’s theorem, because
of its close relationship to Gauss’s law (Sec. 4.7). To see the connection, it is
necessary to know that the divergence of electric field intensity is a scalar
multiple of the charge density. Hence the volume integral of the divergence
over any domain gives a scalar multiple of the total charge g within the
domain. It follows from the divergence theorem that the surface integral of
the normal component of the electric intensity, over the boundary of a
domain, is a scalar multiple of the charge inside. However, Gauss’s law is not
just a special case of the divergence theorem, since it can be applied to point
charges where the concept of charge per unit volume, in the ordinary sense,
is meaningless.

Until some years ago, the divergence theorem was called Green’s theorem
in three dimensions.

Now let us turn to Stokes’ theorem, the other fundamental theorem in
vector analysis.

THEOREM 4.6  The surface integral of the normal component of the curl
of a vector field, taken over a bounded surface, equals the line integral
of the tangential component of the field, taken over the closed curve
bounding the surface.

Here we are considering a closed curve C in space and a surface S that
is bounded by the curve. The theorem states that

f J; (curl F) - ndS = fCF-Tds (4.42)

where dS refers to the element of area and ds refers to arc length. We assume
that S is a surface oriented by a field of unit normals n, and that the line
integral is taken along C in the direction determined positive by the orienta-
tion. (See Fig. 4.29a.)

The “proof” we give is as follows (a more rigorous proof will be given
later).
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FIGURE 4.29

Proof We shall employ a technique similar to that used in the “proof”
of the divergence theorem. Consider the surface divided up into small
elements, each approximately rectangular (Fig. 4.29b). The flux through
S equals the sum of the fluxes through the rectangles. Also, if we add up
the line integrals around each rectangle, we obtain cancellations over
all the internal boundaries, and the sum equals the line integral around
C. Thus, if we can prove Eq. (4.42) for one rectangle, we have it in
general.

To prove (4.42) for a small rectangular area, we choose the coordi-
nate axes so that the x and y axes are along the sides of the rectangle
and the z axis is in the direction of n. We then have n = k; hence

_ _0F, OF,
(curl F) - n = (curl F) - k = o FR

Therefore the left side of (4.42) is

ER

with0 < x < 4,0 < y < b. We split this up into two integrals, choosing
the order of integration differently in the two cases:

BEg e LLG e
= JEn| = fi
= Jo [Faley) — F20.9))dy - fo (Fy(xob) — Fy(x0)] dx

b 0 [ a
= [ Fataydy+ [P0 dy + [ Fioebyx + [ Fi(x0)dx

= [; Fic0dx + [ Faandy + [0 Fuwbax + [ Fa0.9)dy

dx
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This is precisely the line integral of F around the sides of the rectangle,
fc F + T ds, as we wished to prove.

What subtleties are overlooked in this “proof”? First, it is generally not
possible to subdivide a surface S into precise rectangles; thus, we would have
to consider using an approximating surface, and study the effects of the
approximations as the limit is taken.

This is not the main objection, however; there is a more fundamental
one, involved in choosing the coordinate axes so that x and y axes are along
two sides of the rectangle. Let us analyze this more closely.

Suppose, for the sake of argument, that the surface S is a rectangle. Then
the first objection above does not apply, we do not need to chop up S at all.
If it happens that S is already in the xy plane, lying along the x and y axes as
shown in Fig. 4.30, then there is no objection to the proof given above (pro-
vided we assume continuity of the relevant partial derivatives, etc., so that the
integrals exist). But suppose S is not in the xy plane. The above procedure
amounts to choosing a new set of coordinates x’, y, z’ so that S is in the plane
7/ = 0 and has sides along the x’ and y’ axes, and the above argument shows
that Eq. (4.42) is valid when we compute everything relative to the coordinates
x,y, and z'. But how do we know that (4.42) is valid relative to the original
coordinates x, y, and z? This is a serious objection, because we have defined
curl F in terms of a fixed set of coordinates, and we have not yet studied what
happens when we change to another set of coordinates.

Let us be very explicit about this, because it is conceptually very impor-
tant. Let us suppose we are given a vector field F in terms of coordinates
x, y,and z. Suppose now we are given new coordinates x, y’, and z', which we
can express as functions of the old coordinates x, y, and z. Substituting into
F(x, y,z), we can now write F in terms of x’, ), and z. Now let us compute
curl Fintermsof x', y', and z/, and afterward change back to x, y, and z, so that
we have curl F in terms of x, y, and z. The question is, do we get the same thing
as we would get computing curl F directly, from the very beginning, in terms
of x, y,and z?

In other words, does the curl of a vector field depend only on the nature
of the field, or does it also depend on our particular choice of coordinate axes?

»4
©,5) y=b (a,b)
x=0 x=a
y=0 - x
©,0) (a,0)

FIGURE 4.30
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FIGURE 4.31

We shall show in the next chapter that the curl does not depend on the
choice of coordinate axes provided (i) that we always choose axes that are
mutually perpendicular, (ii) that we are consistent in the way we mark off
distances on these axes (physically, this means that we select some unit of
distance, say centimeters, and mark all axes so that distances come out in
centimeters), (iii) and that we always take a right-handed coordinate system,
i.e., one for which i x j=k.

In fact, we should expect this to be true; after all, we saw in Sec. 3.4 that
the curl has a “coordinate-free” interpretation, as the local angular velocity
of a fluid. Similarly, the divergence measures the rate of change of density
of a compressible fluid (Sec. 3.3), and the gradient gives the direction and
magnitude of the maximum rate of change of a scalar. Therefore it should
not be surprising that these three quantities behave in an “invariant” manner
under coordinate transformations.

In this connection, it is worth mentioning that some textbooks consis-
tently use left-handed coordinates, as in Fig. 4.31. Theneitheri x j= —k or
the definition of vector cross products must be modified to givei x j =k, in
which case our “right-hand rule” (Sec. 1.12) becomes a “left-hand rule”.
(This convention has an obvious advantage for a right-handed student who
is pressed for time when taking an examination; he need not put his pencil
down when applying the left-hand rule, since his left hand is free.)

We shall return later on to this important matter of coordinate trans-
formations.

Summarizing, we have rough statements of the divergence theorem and
Stokes’ theorem, and have given instructive but incorrect proofs of both
theorems. Before proceeding to a more careful analysis the reader is strongly
urged to study the following exercises. These are the most important
theorems in this book and they must ultimately be thoroughly understood.

The student who has studied attentively up to this point is “over the
hump”. The rest of this book is devoted entirely to the deeper study of concepts
already introduced.
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Exercises

. Use the divergence theorem to solve Exercise 1, Sec. 4.7.
. Do all seven parts of Exercise 2, Sec. 4.7, by computing

JYII:wElV'Fdx@dz

in each case.

. Use the divergence theorem to solve:

(a) Exercise 6, Sec. 4.7;
(b) Exercise 7, Sec. 4.7.

. Use Stokes’ theorem to solve Exercise 8, Sec. 4.1.
. Use Stokes’ theorem to solve Exercise 10, Sec. 4.1.

6. Verify Stokes’ theorem in the following special cases. Let C be the square in the
xy plane with equation |x| + |y| = 1. Let F be as follows:
(@) F=xi
(b) F = yi
() F=—yi+xj
d F=i+]j
(€) F=y%
7. Despite the fact that the surface of Exercise 8, Sec. 4.7, is not closed, the divergence

10.

11.

theorem can be used to reduce this to a problem in mental arithmetic. Show how
to do this.

. The moment of inertia about the z axis of a uniform solid is proportional to

ﬂbﬁ+ﬁwwa

Express this as the flux of some vector field through the surface of the body.

. One can compute the volume of a room by calculating the flux of the vector R

through the walls. Show this.
By means of Stokes’ theorem, find

fpw

around the ellipse x*> + y* = 1, z = y, where

F=xi+(x+)»j+x+y+2k

The abstract concept of a gooney sphere is derived from the shape of a gooney egg.
A gooney bird is born with a pointed head and a prominent stubby tail; therefore
the shape of the egg is roughly ellipsoidal but with pointed ends. Surface integrals
over gooney spheres are difficult to compute; tables of gooney functions are
needed, but these were tabulated during the war and are still classified top secret.
All that is known is that a gooney sphere of minimal diameter d = 1 has volume
approximately 0.7. (a) Find the surface integral of the normal component of
F = xi + yj + zk over the surface of a gooney sphere with center at the origin and
minimal diameter d = 2, making any assumptions you deem reasonable. (b) Would
your answer be the same if the gooney sphere had center at (2,7,—3)?
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12. If electric field intensity is E = (x + 1)%i + yj + zk, relevant to suitable choices of
the units involved, what is the total charge within the cube bounded by the planes
x=0,x=1y=0,y=1, z=0 and z=1? Evaluate the left side of Eq. (4.39),
(a) directly, (b) by the divergence theorem.

13. If R = xi + yj + zk and r = |R|, find

{[rR-nas

over the surface of a sphere of radius b and center at the origin,
(a) by interpreting the integrand geometrically and
(b) by using the divergence theorem.

14. Given

xi+ yj+zk
Feoryz
y +z
find the surface integral of the normal component of F over the surface of the
sphere x2 + y* + z2 = 4. Can you use the divergence theorem?

15. Stokes’ theorem provides an interesting interpretation of Theorem 4.3, which
identifies irrotational fields with conservative fields in simply connected domains.
Show that if curl F = 0, then the line integral of F around any closed curve that
bounds an oriented surface in the domain is zero. Where does simple connected-
ness come into play?

16. Given ¢(x,y,z) = xyz + 5, find the surface integral of the normal component of
grad ¢ over x> + y* + 22 =9.

17. (a) Show that, if ¢ is harmonic, V + ($V¢) = |Vo|*.

(b) Given ¢ = 3x + 2y + 4z, evaluate

[fo52as

over the surface x? + y? + z2 = 4. Here, d¢/0n represents the normal derivative
of ¢, that is, n - V¢.

18. Let F = ¢V¢. Find the surface integral of the normal component of F over the
surface of a sphere of radius 3 and center at the origin,
@ ifg=x+y+z
(b) ifp =x?+y2 + 22

4.10 THE DIVERGENCE THEOREM

As previously promised, we shall now delve into a more careful, detailed
analysis of the divergence theorem. To fix ideas for the moment, let us
consider a vector field

F=F1i+F2j+F3k

defined throughout a region, with components F,, F,, F; having continuous
partial derivatives in this region. Let S denote the surface of a sphere,
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located within the region, and let D denote the set of points within S. Let n

denote the field of unit vectors normal to S. At each point on S, we take n

to be the outward normal, thus orienting S in the conventional way.
Consider the surface integral

[[F-nas (4.43)
Written out in terms of its components, this becomes
f fs (Fii+ Fyj+ F3k) -nds (4.44)

which equals

f fs Fy(n-i)dS + ffs Fy(n-j)dS + f fs Fyn-k)dS (4.45)

Let us concentrate on only one of these integrals, the one in the middle.
Consider the sphere to be cut up into filaments, each parallel to the y axis.
A typical filament is shown in Fig. 4.32. It has cross-sectional area dx dz and
cuts out two portions from S, having areas 65’ and §S”. The contribution to
the middle integral of the two portions is approximately

50+ j)6S" + Fm” - j)6S”
where F), and F’ are, respectively, values of F, at points on the two portions.
By the area cosine principle (Sec. 4.6), (n” - j) 6S” and (n’ - j) S’ are approx-
imately equal to dx dz and — (dx dz) respectively, since the scalar product of

two unit vectors equals the cosine of the angle between them. Therefore, the
contribution from these two portions is (F5 — F5) dx dz.

FIGURE 4.32
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Since, by the fundamental theorem of calculus, we have

y”aFZ 17 7
fy, a}—dy—Fz—Fz

it follows from the above discussion that the middle integral in (4.45) can be

written
[(5 Gz av)ase

where the middle integral is taken with y varying from y’ to y” within the
sphere, and the double integral is taken over the projection of S on the xz
plane. However, this equals the volume integral over D. Hence we can write

ffs Fyj-ndS= fffD%dxdydz

So the surface integral of F,(n - j) over S equals the volume integral of
0F ,/0y throughout the domain enclosed by S.

Similarly, we can show that the surface integral of F,(n * i) over S equals
the volume integral of F,/0x throughout D; and F5(n - k) and 0F/0z are
similarly related. Therefore, (4.45) becomes

fff <0F1 0F2 a;;) dxdydz

This is simply the volume integral, throughout D, of the divergence of the
vector field F. Since (4.43) equals (4.45), we obtain

fLF-udS:ffDdideV (4.46)

In this way we prove the divergence theorem for a sphere. However,
notice that the same proof applies when S is the surface of an ellipsoid, a cube,
a right circular cylinder, or even a potato-shaped region of a fairly arbitrary
nature. Here is a more precise statement of what we have shown.

THEOREM 4.5 (The Divergence Theorem) Let D be any domain with
the property that each straight line through any interior point of the
domain cuts the boundary in exactly two points, and such that the bound-
ary S is a piecewise-smooth, closed, oriented surface with unit normal
directed outward from the domain. Let F be a vector field, F = F i +
F,j + F3k, continuous throughout a region containing D and its bound-
ary, and such that the partial derivatives of Fy, F,, and F; are also
continuous in this region. Then

fffbdideV=fst-nds

In proving this theorem, we made strong use of the idea of cutting up the
sphere by filaments parallel to a coordinate axis. We assumed in Fig. 4.32
that any such filament cuts out two portions from the surface. Thus the
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FIGURE 4.33

proof does not apply without modification to a domain such as the dumbbell-
shaped one in Fig. 4.33. Here, such a filament can cut out four portions from
the surface. However, it is easy to see that the theorem still applies to such a
domain, since the dumbbell can be cut in the middle and the theorem applied
separately to the two parts. The volume integral over the whole domain
equals the sum of the two separate volume integrals, and the corresponding
surface integrals add up to give the surface integral over the dumbbell (there
will be two contributions from the common boundary B, but they will cancel
each other, since n will have opposite directions in the two integrals).

Let us now investigate one interesting consequence of the divergence
theorem. Let us suppose that the domain D is a very small one surrounding
a point P. If it is sufficiently small, div F will be approximately constant,
and the volume integral of div F over the volume V will be approximately
equal to the product (div F)V. More precisely, we have

lim M =divF

V-0

By the divergence theorem, we can replace the volume integral of div F by the
surface integral of F over the boundary enclosing the volume, from which it
follows that

div F = lim s F - ndS
V-0 Vv

Recall that this was our original motivation for the definition of diver-
gence in Sec. 3.3, but then we were restricted to rectangular parallelepipeds
with sides parallel to the axes. The divergence theorem frees us from this
restriction; it implies that the divergence of F at any point P gives the
outward flux per unit volume at P, regardless of the shape of the volume.
The divergence is, indeed, a “coordinate-free” concept.

Exercises
Note: Computational exercises on the divergence theorem were given at the end of

Sec. 49. The following exercises are relatively more theoretical. Throughout these
exercises, D and F have the properties stated in the divergence theorem.
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1. At what point in the proof of the divergence theorem did we make use of the
requirement that the partial derivative 0F,/@y be a continuous function of y?

2. In the proof, we required that the three partial derivatives be continuous, i.e., that
each of them be continuous in all three variables. Why, for example, should we
care whether or not the partial derivative 0F,/0y is a continuous function of x?

3. Show, by a diagram similar to that of Fig. 4.32, that the volume integral of a func-
tion, taken over D, can be obtained by first integrating with respect to z and then
integrating over the projection of S on the xy plane.

4. Outline a proof of the divergence theorem, taking Exercise 3 as the starting point.

Start with
f ﬂn div Fdv

integrating first with respect to z. Your proof will differ only slightly from that
given in this section, ie., you will integrate first with respect to z rather than y.
By using the definition of surface integral you can avoid completely any use of
such words as “approximately”; for simplicity, assume that S is a smooth surface.

5. Where, in your “proof” (Exercise 4) did you make unconscious use of the fact that
the points on S with normals parallel to the xy plane have a projection on the
xy plane of zero area? [Hint: Look again at the definition of the area of a surface
(Sec. 4.6). What is cos y for such points?]

6. What is the flux output per unit volume at (3,1,—2) if F = x3i + yxj — x*k?

7. What is the flux output from an ellipsoid of volume v if F = 3xi + yj + zk?

8. If F = 3x%i + yj + zk, would the flux output from an ellipsoid depend on the
location of the ellipsoid as well as on its volume?

9. (a) Describe the oriented surface enclosing the region
I1<x®*+3y2+22<4

assuming the usual convention concerning the orientation of a closed surface.
(In Sec. 4.6 it was mentioned that if a surface encloses a region of space, the
unit normal points away from the enclosed region; in this problem, the surface
has two disconnected parts.)

(b) How would you compute the surface integral of the normal component of a
vector field F over this surface?

(¢) If div F = 0 except perhaps at the origin, what can you say about

fF-ndS

over the two parts comprising this surface, taking n to be the unit normal
outward from the origin in each case?

(d) Would your answer to (c) be any different if the region were that between the
sphere x? + y* + z2 = 1 and the ellipsoid

xZ y2 2,2

FRCRNT
(e) Compute the surface integral of the normal component of
o xityj+zk
(2 +y2 + 2
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10.

11.

12.

13.

14.
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over the ellipsoid
x2 2
4 9 16

(a) Using the divergence theorem, prove that

[II, veoar = [ pas

where d¢)/0n, at any point on S, denotes the rate of change of the scalar field in
the direction of the outward normal to S at that point. (Hint: Let F = grad ¢).
(b) Apply the divergence theorem to F = ¢Vy to obtain the first Green formula:

[If, o720 av = [, 6 as— [[f, Vo -vuav

(c) Interchange the role of ¢ and i to derive the second Green formula:

{[], @v*y —yvgrav = ff(qs——z// )

Let ¢ be a scalar field, and define the lumpiness of ¢ at any point to be the scalar

ffs—ds

V—>O

with notation as used in this section.

(a) Explain in your own words why the word “lumpiness” is appropriate. (Hint:
Think of ¢ as the density of a fluid or, if you prefer, as the concentration of
salt at each point in a brine solution.)

(b) How is lumpiness related to the laplacian? (See Exercise 10.)

(c) What can you say about the lumpiness of a harmonic function? (See Sec. 3.6.)

Let ¢(x,),z) be the temperature at (x,y,z). If ¢ represents a steady-state tempera-
ture distribution, show that ¢ is a harmonic function. [Hint: This can be done
directly, using the fact (Sec. 4.7) that Q = —k grad ¢ gives the rate of heat flow
per unit area, by drawing a small parallelepiped. However, it is intended here that
you make use of Exercise 10 and the ideas of Exercise 11.]

Suppose that ¢ represents a temperature distribution that is not steady-state, so
that ¢ is a function of both position and time. Find the relationship between the
laplacian of ¢ and the time rate of change of ¢ at each point. (Let k denote the
coefficient of thermal conductivity, let ¢ denote specific heat capacity, and let p
denote the mass density.)

Let S be a sphere of radius b and center at a point P and let ¢ be a continuous

function. Consider the integral
1
f f oV (-) -nds
s r

where n is the unit outward normal, and r = |R| where R extends from the center
of the sphere to a variable point on the surface. What is the limit of this integral
as b tends to zero? (You cannot use the divergence theorem since 1/r is not defined
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at r = 0. Observe that

1 1 1
whence V(-) N= — = ——

for points on the surface.)

15. Let F be a vector field, defined and continuously differentiable everywhere except
at a point P, and having zero divergence (except at P). Let S’ be a closed surface
(say, an ellipsoid) enclosing P, and let S denote the surface of a small sphere with
center at P completely within §’. Compare

fSF-ndS and fS,F-ndS’

where n denotes the outward unit normal in each case.

16. Let ¢ be a twice continuously differentiable function in a region D bounded by a
suitably smooth surface S, and let r denote distance measured from a fixed point P
inside D. Derive the third Green formula:

e L g L5 ov ()]

(Hint: Exclude a small sphere around P, set iy = 1/r in the second Green formula,
and apply the theory in Exercises 14 and 15 to handle the sphere).

[[32-62()]es

over the surface of the sphere (x — 3)> + y? + z* = 25, where r* = x? + y* + z?
and ¢ = xyz + 5. By using the formula given in Exercise 16, you should be able
to write the answer down at once.

18. Evaluate
BeaC)- )
6n r r on

2 2 2

(a) over the surface of the elhpsmd —+ f—6 + ;—5 = lwherer? = x* + (y — 1)? + z?
and ¢ = x% + y? — 222 + 4;

(b) over the surface of the cylindrical pillbox bounded by x? + y? = 25 and z =

110, where r* = (x —2)2 + (y — 1)* + (z— 3)>and ¢ = x> — 22 + 5.

4.11 GREEN’S THEOREM

This section is relatively elementary and is intended to provide some
preparation for the rigorous proof of Stokes’ theorem.
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FIGURE 4.34

We shall work entirely in the xy plane. Let C denote a closed smooth
arc in the plane (Fig. 4.34). Consider the line integral of the vector field
F = yi around C.

iFdRzﬂyh

(Since it is conventional to orient closed curves in the xy plane so that k is
the positive normal to the plane, we traverse C in a counterclockwise direc-
tion.) Then the line integral can be expressed as the sum of two ordinary
integrals,

fc ydx = L ’ y(x)dx + La V'(x)dx (4.47)

where the first integral is along the bottom portion of the curve and the
second is along the top portion; the notation should be self-evident from the
figure. (Note that the primes here do not denote derivatives.)

The first integral gives the area beneath the lower curve and above the x
axis. The second integral equals

— " yedx

and gives the negative of the area beneath the upper curve and above the
x axis. Therefore the sum of the two integrals is — 4, the negative of the
area within C,

Lyh:—A (4.48)

Here we assumed C to be in the upper half-plane, but the reader can easily
verify that (4.48) also holds if C intersects the x axis or if C is beneath the x
axis.

A similar argument shows that

Lx@=A (4.49)

Here we obtain A rather than — A, and is easily seen from Fig. 4.35.
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Now let us consider various other simple integrals about C. For in-
stance, it is easy to verify that if the vector field is taken to be F = xi, then the
line integral is

[Lxdx=0 (4.50)

Indeed, xi is the gradient of the function x?/2 so that the line integral of x dx
gives the change in x?/2 as we move from initial point to final point, but for
any closed curve these points coincide and hence the line integral is zero. In
similar fashion, since yj is a gradient also, we have

fc ydy=0 (4.51)

Also, we have
fc dx =0 (4.52)
fc dy =0 (4.53)

It is entertaining, though not particularly instructive, to combine these
line integrals in various ways. For instance, if x, is a constant, we derive

fo b= xo1dy =4 (454)
by using Egs. (4.48) and (4.53). Similarly,
Jo b= xgax=0 (4.55)

by (4.49) and (4.52).
Somewhat more interesting is

1
ci(x dy —ydx)=A (4.56)

which we obtain by combining (4.47) and (4.48).



198 Line and Surface Integrals CHAP. 4

In view of the fact that the line integrals in (4.47), (4.48), (4.54), and
(4.56) may be interpreted in terms of the area 4 within C, it is natural to ask
whether there are any similar interpretations for the other line integrals.
More generally, suppose we are given an arbitrary differential F(x,y)dx +
F,(x,y)dy, where F, and F, are continuous functions. Is there any con-
nection between the line integral of this differential about C and the area
within? »

The answer is both “yes” and “no”. In general, there is no connection
in the sense that we can draw a picture like that of Fig. 4.35 and interpret
the integral in terms of areas. There is, however, a connection between the
line integral about C and a double integral taken over the region within C.
We will show that

0F, OF
fc Fydx + Fpdy = f fD <6—x2 - Tay_l> dxdy @.57)

where D is the domain within C (having area A). In the special case that the
integrand in the double integral on the right side of (4.57) is identically equal
to one, as in Eq. (4.56), the right side of (4.57) gives precisely A. Ifthe integrand
is zero, we get zero for the integral. In general, however, our result may not
be related to 4 in any elementary manner and may be difficult to compute
even with the help of (4.57).

The reader may recognize (4.57) as a special case of Stokes’ theorem,
discussed briefly in Sec. 4.9. To see this, let F = F,i 4+ F,j and n = k. The
integral on the left is the line integral of the tangential component of F about
C, and that on the right is the surface integral of the normal component of
curl F over the surface enclosed by C.

This special case of Stokes’ theorem is sometimes called Green’s theorem.
(Several other theorems are also called Green’s theorem, incidentally.) The
precise statement of the theorem is as follows:

THEOREM 4.7 Let F, and F, be continuous functions of x and y for
which the partial derivatives OF ,/0x and 0F /0y exist and are continuous
throughout a domain D in the xy plane. We require that D be bounded
by a regular closed curve C, oriented by choosing k as the unit normal
to the plane. We also require that any line passing through an interior
point and parallel to either coordinate axis cuts the boundary in exactly
two points. Then (4.57) is valid. More generally, (4.57) is valid for
regions in the plane that can be decomposed into finitely many domains
having these properties.

The proof of the theorem is similar to that of the divergence theorem
and goes as follows.
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N & W IN -

Proof  Let us first look at the right side of (4.57). The integral can be
broken up into two integrals, of which the first is

Integrating first with respect to x, we have (with notation as in Fig. 4.35)

f J‘x ‘) 6F2 dxdy = ﬁd [Fa(x",y) — Fy(x',y)]dy = fc Fady

x'() ax

Similarly,

([T =l [0 s
= [ [Fi() = Fuy)dx = Jo Fuax

Adding these two gives the desired result. If D is a region that can be
decomposed into finitely many domains having the stated properties,
we simply sum the integrals involved over all the domains. The double
integral then extends over all the parts, and the line integral extends
over the entire boundary. If the boundaries of two parts have arcs in
common, these arcs may be neglected, since the integrals will cancel
(as in Fig. 4.29).

Exercises

. Use Green’s theorem to derive Eq. (4.48).
- Use Green’s theorem to derive (4.49).

. Use Green’s theorem to derive (4.50).

. Use Green’s theorem to derive (4.56).

. Let R = xi + yjand dR = dxi + dyj.

(a) Compute the magnitude of the vector cross product R x (R + dR).

(b) Thus give a direct geometrical interpretation of the integrand of (4.56). [Hint:
Consider the triangle with vertices (0,0), (x, ), and (x + dx, y + dy).]

(¢) Using Fig. 4.36, give an alternative derivation of (4.56).

. Let F = xi + yj, and let C be an oriented closed curve enclosing an area 4. What is

fCF-Tds

(As usual, T denotes the unit tangent to C in the positive direction.)

- Let C denote the circle x* + y*> = 9, and let F = yi — 3xj. What is the line integral

of the tangential component of F around C, taken in the usual counter-clockwise
direction?
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(x,y)

(x+dx,y+dy)

FIGURE 4.36

Let C denote the ellipse (x%/4) + (y2/9) = 1, and let
F = (3y? — )i + (x* + 2)j

(a) What is the area enclosed by C? (Don't integrate, for heaven’s sake; we have
already derived the area of an ellipse by using the area cosine principle.)

(b) Find the line integral of the tangential component of F around C, in the counter-
clockwise direction. [Hint: By Green’s theorem, this resolves itself to a double
integral, but no computation is necessary if you observe that the symmetry
enables you to ignore certain terms. Just multiply the area by the average value
of (0F,/0x) — (0F 1/0y).]

. Compute

fc (4y3 dx — 2x*dy)

around the square bounded by thelines x = t1and y = +1,

(a) directly, by performing the line integration;

(b) by using Green’s theorem.

(c) By symmetry, it is obvious that one of the terms in the integrand of the above
line integral can be ignored. Which term?

Let F = 4zi — 3xk. Compute the line integral of the tangential component of F

about the circle (x — 5)% + (z — 7) = 4 in the xz plane. Orient the plane by taking

j to be unit normal. [Careful: If you just replace y by z in Eq. (4.57) you will get the

wrong orientation. ]

In (4.57), the functions F, and F, are fairly arbitrary functions of x and y (we only

require that certain partial derivatives be continuous). It therefore appears that we

can interchange F, and F, and also x and y to obtain the formula

Jo (Fady + Frax) = [ (—37 - E;)dydx

The left side of this equation is the same as the left side of (4.57), but the right side
has the opposite sign. It follows that this expression is incorrect. Give a clue,
in only one word, to explain this paradox.
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4.12 STOKES’ THEOREM

We are now in a position to give a rigorous proof of Stokes’ theorem,
which reduces certain surface integrals to line integrals. We are given a
smooth oriented surface S in space, bounded by a piecewise smooth, closed
curve C whose orientation is consistent with that of S (Fig. 4.37). We assume
that the surface can be parametrized by R = R(u,v) in such a way that the
coordinates x, y, and z are twice continuously differentiable functions of u and
v (so that the mixed partials are equal in either order), with (JR/du x JR/0v)
pointing in the direction of the normal.

The set of values (u,v) in the uv plane that correspond to points on S will
be denoted X (Fig. 4.38). We assume that distinct points of = correspond to
distinct point on § (the mapping R(u,v) is one-to-one) and that the region X
and its boundary T satisfy the hypothesis of Green’s theorem. (Notice that
these assumptions imply that the positive orientation on C corresponds to the

FIGURE 4.38
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correct orientation on I'; see Exercise 8.) Then we can use this parametriza-
tion to derive the result:

THEOREM 4.6 Let S and C be as described above, and let F be a
continuously differentiable vector field; then,

LF-&!=££&MF”dS (4.58)

Observe that we are using the notation

R R
dS = dux 5 do (4.59)

introduced in Sec. 4.6. In the derivation we will use the identities

_ R, R

0 OR
d =" 4.61
an o ou Y (4.61)
Jd OR
AP v/ 4.62
v oOv (462)

Before going through the derivation, the reader may wish to review Sec. 4.6,
and also the operator convention (first paragraph of Sec. 3.7). Thus, to
derive Eq. (4.61), we simply use the chain rule in operator form,

0 ox0 dvd 020 _OR

%0 ouox udy oud: ou (4.63)

and (4.62) is derived similarly. We will also use

oR ¢R OR [OR R [OR
which is obtained by expanding the triple vector product and by using the
operator convention. Similarly, the interchange of the - and x in

A-VxB=AxV-B (4.65)

is easily verified.

Do not let these formalities obscure the basic idea, which is that the
position vector R, for points on S, and also F itself at these points, can be
written as functions of the parameters u and v, so the integrals in (4.58)
can be written in terms of u and v. After we have done this, it appears that
we are working in the uv plane, and the proof simply amounts to some
inspired juggling of vector identities, aided by Green’s theorem.
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Proof We write

fCF'dsz[ ) <F-%%>du] [by (4.60)]
= f f I:;;( Zl:) aav(F gg)]dudv (Green’s theorem)

- OF R . R R _F R|
AT 61} © OJudv cvou v O waw
RO 0RO

zfj‘):(avau_a—ué;) F dudv

R /(R
-5 (G ) - (Ey)| raa

[by (4.61) and (4.62)]

=ff < ) V-Fdudo [by(4.64)]

- [f <‘3R al:) V x Fdudo [by (465)]

- f fz (curl F)-(E;R ‘;R> dudv

= J]; curl F - dS [by (4.59)]]

which completes the derivation.

This proof avoids the pitfalls of the argument in Sec. 4.9 only by com-
pletely devoiding itself of any physical content. That is the value, and the
liability, of relying on parametrizations.

Exercises
1. At any point P in space, define the “swirl” of F at P in a direction n to be
1
lim — | F-dR 4.66
fim 2 Je (466

where C is the circumference of a circle of area A centered at P with unit normal
n. Using the word “swirl,” define curl F. [Hint: Use Stokes’ theorem to show
that (4.66) equals (curl F) - n. Then use the maximum principle of Sec. 1.9 to define
the direction of curl F.] Show that this justifies our “paddlewheel” definition in
Sec. 3.4. It also provides a coordinate-free description of curl.
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2. Be a bit fanciful, and imagine that S is the surface of a laundry bag with a draw-string
forming the boundary C. Then Stokes’ theorem states that the surface integral
of the normal component of curl F over the laundry bag equals the line integral of
its tangential component around the drawstring. Now suppose that we close the
bag by pulling the drawstring; the effective length of the drawstring becomes zero
and the line integral is therefore zero. S has become a closed surface.

(a) What is the surface integral of the normal component of curl F over a closed
surface?

We now apply the divergence theorem, which says that the volume integral of the

divergence of a vector field through the interior of a closed laundry bag equals

the surface integral of the normal component of the field over its surface. Let the

vector field be curl F.

(b) What is the volume integral of the divergence of curl F over a domain?

If the laundry bag is very, very small, the divergence of curl F will be approximately

constant throughout, and the volume integral of div (curl F) will be approximately

div (curl F), at a point within the laundry bag, times the volume the bag encloses.

(c) What is div (curl F) at any point P?

(d) To which of the identities of Sec. 3.7 is this related?

3. This is very similar to Exercise 2, but the point of view is somewhat different.
Let S be the surface of a sphere, and let us imagine the sphere divided into two
parts, an upper hemisphere and a lower hemisphere, by a plane parallel to the
xy plane passing through its center. (Draw a diagram.) Let F be a vector field,
and consider the surface integral of the normal component of curl F over the upper
hemisphere. Relate this mentally to the line integral

fCF-dR

where C is the equator, oriented relative to the outward normal of the upper
hemisphere (i.., the positive direction is west to east). Now do the same thing for
the lower hemisphere: the surface integral of (curl F) - n over the lower hemisphere
equals the line integral over the equator with, however, an east-to-west direction
of integration. Add the two.
(a) What is the surface integral of the normal component of curl F over a sphere?
(b) What is the volume integral of div (curl F) through the interior of a sphere?
(c) Let the sphere shrink to a point; what does this say about div (curl F)ata point?
4. Suppose that F = grad ¢, so that the line integral of the tangential component of
F along any curve is equal to the difference in the values of ¢ at the endpoints of the
curve. In particular, if C is a closed curve,

fCF-dR=0

Let S be a surface with boundary C.

(a) What is the surface integral of the normal component of curl (grad ¢) over a
surface S?

If S is a very small element of surface, bounded by a closed curve C, curl (grad )

will be approximately constant on S, and the surface integral of the normal com-

ponent of curl (grad ¢) will be approximately n - curl (grad ¢) times the area of the

surface.

(b) For any unit vector n, and any point in space, what is n - curl (grad ¢) at this
point?
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(¢) Since this result is independent of the direction of n, what can you say about
curl (grad ¢)?
(d) To which of the identities of Sec. 3.7 is this related?

5. Let J denote electric current density (a vector in the direction of the current, with
magnitude in units of current/area) and B denote the magnetic field intensity. One
of Maxwell’s laws of electromagnetism states that, in the absence of a time-varying
electric field,

curl B = uoJ (4.67)
where 1, is a constant. Use Stokes’ theorem to derive
fc B dR = i (4.68)

In words: the line integral of the tangential component of magnetic field intensity,
around a closed loop, is proportional to the current i passing across any surface
bounded by the loop.

6. Given the vector field F = 3yi + (5 — 2x)j + (2 — 2)k, find (a) div F, (b) curl F,
(c) the surface integral of the normal component of curl F over the open hemispherical
surface x> + y? + z2 = 4 above the xy plane. [Hint: By a double application of
Stokes’ theorem, part (c) can be reduced to a triviality. ]

7. Giventhatcurl F = 2yi — 2zj + 3k, find the surface integral of the normal component
of curl F (not F) over (a) the open hemispherical surface x* + y> + z2 =9, z > 0,
and (b) the sphere x* + y? + z2 = 9. (In both parts, you should be able to write
the answer down by inspection.)

8. Show why the positive orientations on C and T, in the proof of Stokes’ theorem,
correspond. (Hint: Reread the beginning of Sec. 4.6.)

4.13 OPTIONAL READING: TRANSPORT THEOREMS

In some physics and engineering applications it is necessary to compute
the time derivative of a surface or volume integral, when the surface or
volume of integration is in motion. For instance, in an electric generator
a loop of wire is moved through a magnetic field in such a manner that the
flux of the field through the surface bounded by the loop is changing.
According to Faraday’s law, an electromotive force is set up in the loop,
proportional to the rate of change of this flux integral.

Similarly, one may wish to note the rate of change of some quantity,
like charge or stored energy, associated with a specific portion of a moving
fluid. If this quantity is given as a volume integral of some density function,
then the volume of interest is being transported downstream with the fluid
as the time derivative is taken.

These two problems are related. First we treat the moving surface
problem, then we use the answer in analyzing the transported volume
problem.
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FIGURE 4.39

The situation is as follows. We have a vector field F that changes with
time, F = F(R,t), and an oriented surface S that, together with its properly
oriented boundary curve C, moves through space; we use the notation S,
and C, to designate the surface and curve at time t. Let ®(t) be the flux
of F(R,t) through S,, at time ¢:

®(1) = ffs FR,)- dS

Notice that ®(t) changes due to two effects; namely, the changing field F
and the motion of the surface S,. The problem is to compute d®/dt.

We shall give two derivations, first a heuristic argument based on
Fig. 4.39, and then a more rigorous argument using parametrizations.

Figure 4.39 shows the location of the surface at times ¢, and ,, together
with its boundary and the orientations. In Fig. 4.40, the displacements of
corresponding points on S, and S,, are shown. If we can associate a velocity
field v = v(R,f) on S that describes the pointwise motion of the surface, then
for t, — t, = dt sufficiently small, the point R on §,, is carried to the point
R + v(R,¢,)dt on S,,. (The reader who is uneasy about the vagueness of these
notions will feel more comfortable with the second derivation.)

FIGURE 4.40
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To compute d®/dt, we must evaluate

% fim U fSlZF(th - dS— ff FR1,): dS} (4.69)

[F3md 31 t2

Visualizing these fluxes in Fig. 4.40 suggests that the divergence theorem,
applied to the region D swept out by the surfaces in the intervening times,
may be useful. Applying the theorem at time t,, with due consideration for
the distinction between the surface normal and the outward normal, we have

fﬂp V-FRy,)dV = fL F(Rz,) - dS— J'fs F(R,,) - dS

+ f f F(R,t,)- dS (4.70)

. (sides)
Expressing

JF
FR,,) ~ F(R,t,) + = dt
and using (4.70) for the S, integral we find

ﬂs FR.t,) - dS - ff FR;y) - dS

=ffs F(Rt,) - dS+dtfft2~6—~ ds

~ [fi, PRty -as - [[FRzy)-as

(sides)

+ f f fD V-FR,)dV (4.71)

Obviously, two of these integrals cancel. On the sides, Fig. 4.41 shows that
the surface element dS equals dR x vdt, where dR is taken along C,,. The
element of volume in D has base |dS| and height |vdt - n|, so that

dV =dS - vdt

FIGURE 4.41
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Consequently, Eq. (4.71) becomes
f fs F(R1;)-ds - f fs F(R,z,) - dS

=dth;tzg—Ft‘-dS— dtgictl FR,,) - dR X v

+dth;t1(V-F)v-dS

Dividing by dt, we arrive at the flux transport theorem

dP oF
—dt—=ffst[5+(v-F)v]-ds
+9€C F xv-dR 4.72)

One of the biggest flaws of the previous argument is the vagueness of the
velocity field concept. It presupposes some way of identifying, in a one-to-one
fashion, the points on the surface S,, with corresponding points on the
surface S, , so that v(R) dt describes the displacements. However, if S, is only
a mathematical surface, without physical substance, this correspondence
between points is rather arbitrary; hence so, also, is the velocity field.

A more logical way to proceed would be to specify a parametrization of
the surface at some fixed time, say, at t = O:

R = Ry(u,v) (4.73)

Here u,v range over a region X, bounded by the curve I in the u v plane (recall
Sec. 4.12). As time progresses, each point originally on S, traces out a curve,
and we write

R = R(R,.1) 4.74)

to describe the location at time t of the point originating from R,. Sub-
stituting Eq. (4.73), we rewrite (4.74) as

R = R(u,v,t) 4.75)

Thus, fixing ¢ and letting u,v roam over X, Eq. (4.75) traces out the
surface S, ; while holding u and v fixed and varying ¢ produces a function that
describes how a single point migrates from surface to surface. In this context
it is clear that the velocity v of a point R = R(u,0,t) on S, is given by

JR
ot

V=

We assume that the orientation of S,, C,, £, and I are all consistent with
the parametrization equation (4.75), as in Sec. 4.12. The rigorous derivation
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of (4.72) then proceeds as follows: we have

®= HF ds = ff F(R(10,0),t) - Rx—-dudv

Thus, since X is fixed,

ff dt ai: Q:“d”

R R (416
+[[ ¥ ( R )du dv
For the first term we have, By the chain rule,
dF[R(uv,t)t]  OF ox L F JF 0y L F OF oz N oF
dt ~ox ot Jy ot az ot ot
4.77)
=(v-V)F + %—F

The second term requires considerable labor, but nothing more profound
than an inspired juggling of identities. Observe that

6 aRxaR F.iai{x.ai{_ﬁ ﬂ{xai(
du cu\dt Ov v\ ot Ou

5, JR ) R
=F- ;u( x ‘U) F %(VX£)

and, moreover, that this equals

_a_F‘-vxaiz _i F. xaj~8—F. xa_R
on aw) " Y %) T\

(4.78)
+ oF, vV X oR
ov ou
In the next paragraph we will show that
oF oR OF 6R JR OR
o VX g VX e =[(V-F)yv — (v V)F] - (— x 0—v> (4.79)

Taking Eq. (4.79) for granted for the moment, we insert it into (4.78) and use
the result in (4.76) to derive

f f [(v V)F+a-+(V F)v — (v V)F] (‘Z‘; aR)dudv

+ff[ ( : al;)-%(F-vxg%)]dudv
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In the last term we interchange the dot and cross products and apply Green’s

theorem (Sec. 4.11):
6F JR JR
= L[ e e G (G x5 e

R o (4.80)
+56 (va-du—l—va-dv)
T Ju ov

Identifying dS and
R R

=— ——dv
dR Oud ov

we recover Eq. (4.72).
The proof of the identity (4.79) is best handled with tensor notation.
First observe that, by the chain rule,

oF (0R

— VI|F

Ju ((%L )
and similarly for ». Using the symbols x*, x;* for the ith components of
OR/éu and OR/dv, respectively, we write the left-hand side of (4.79) as

u v
Sijk(xt’uat’F i)Uij" — & jk(xt’ o.F i)ijk
u v
= gijk(xt’vxku — Xy Xk )Uja(’Fi
= 8ijk(5¢’s O — O 5ks)xsvxtuvj 0.F;

= Sijksfkpes,pxsuxtuvj 6/Fi by (1.39)
= & jxEpekbstpXs X Vi O F; by (1.36)
= (5!'17 5M - 51‘! 5jp)8s,pxsvx,“vj a[Fi by (139)

= 83X X0y 0,F; — £4j%" X 0; 0;F;
= _8izsvt(6¢’Fi)xtux Y+ Sjts(aiFi)ijtuxsv
aR 6R JR
= —[(v- V)F] x — + (V-F)v- 60
The identity is proved.
Finally, we add the remark that if the velocity field v, defined on the
surface S,, can be extended as a continuously differentiable vector field

throughout some region containing S,, then Stokes’ theorem can be em-
ployed to recast (4.72) as

d(D ﬂs[ + (V- F)v+Vx(va)]dS (4.81)

This would be the case if, for instance, the surface were being transported
inside a moving volume of fluid.

Now we turn to the transport theorem for volume integrals. Let p(R,f) be
a continuously differentiable vector field and let ¥, denote the volume of
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integration at time t. The points inside ¥, move with velocity v(R,t), generating
the motion of the volume. Our task is to compute

% ff fv, p(R0)dV (4.82)

The answer can be obtained heuristically as follows. If the volume is
divided into small rectangular parallelepipeds, each of volume AV (as in
Sec. 3.3), then the integral in (4.82) is approximated by

Zp R)AV
For the derivative we have
dp(R t)
2

As in Eq. (4.77), we have

AV +Yp (Rt)dAV

dp(R;t) 0p
= — . V
dt ot veve
while Exercise 13 of Sec. 3.3 states that
1 dAv o
av a7V

Putting all this together, we arrive at

aellbooa = 0, (G evevo v evar
_ ﬂfn[ pv)]dv

Applying the divergence theorem produces

S o= [, S flmess s

which is known as Reynold’s transport theorem.

A more rigorous proof of (4.83) is based on the observation that any
continuous scalar field p can be written as the divergence of some vector
field F; for instance, it is shown in Appendix D that F defined by

R
F(Rt)-4 fff[Rp( 13|3(R R)dV’
satisfies

V-FR,) = pRy)
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With this in hand we use the divergence theorem to express

(][, pav =[], ¥-as

and apply Eq. (4.72) to the (closed) surface S, to derive

%fffmpdV:th?:'dS+fSt(V’F)V‘dS

One more application of the divergence theorem does it:

oo e
=Hvt%dv+ﬂstpwds

in agreement with (4.83).

Exercises

. Let S, be a uniformly expanding hemisphere described by
x2+yr+22=@w) z=0
and let F be the vector field
FR,)=R:

Verify the flux transport theorem in this case.

. Verify the flux transport theorem when S, is the square with corners (0,0,t), (0,1,1),
(1,0,8), (1,1,2), and F(R,7) = xzk.

. Suppose the square 0 < x < 1,0 < y < 1 is rotated about the x axis at a constant
angular velocity. Verify the flux transport theorem with the uniform vector field
FR,)=k.

. Verify Reynold’s transport theorem for the expanding sphere V;:
x? + y? + 22 < (vr)?
and
p(R,1) = |R]t

. Verify Reynold’s theorem for a unit cube with edges parallel to the axes, sliding
in the x-direction at constant velocity and with p(R,t) = xy.

. Prove Euler’s expansion formula:

%”fvth=d(—V°;t‘—"le—)=ﬁfvtv-vdV= ”Stv-ds

Relate this to Exercise 13, Sec. 3.3.

. Use the continuity equation in Sec. 3.3 together with Reynold’s theorem to prove
that the mass of a specific portion of a moving fluid remains constant during the flow.
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SUPPLEMENTARY PROBLEMS

. Let C be the curve given by

T
R(t) =cos ti+sintj+ ek OstSE
2x 2y .
and let F=_x2+y21+x2+y2]+22k

Express [¢ F + dR in terms of ¢ and evaluate the resulting integral.
- Evaluate the following line integrals over the straight-line segment C joining the
point (2,1,4) to the point (3,3,4):
(a) fc3xydx +3dy + yzdz
() [¢c e (yzdx + xzdy + xydz)
. Evaluate

§ [(y + yz cos xyz)dx + (x* + xz cos xyz)dy + (z + xy cos xyz)dz]

along the ellipse x =2 cos 6, y=3sin0,z=1,0< 0§ < 2.

. Compute the line integral [ F - dR, where C is the intersection of the plane
x +y + z = 1 with thecylinder x* + y> = 1and F = (x + y)i + (y + 2)j + (z + x)k.
Orient C clockwise as viewed from above.

. Evaluate

Eﬁc (sin x + y?)dx + (x — e ?)dy

when C is the boundary of the semicircular region x2 + y* < 4, y > 0.
. Let F = (x2/y)i + yj + k.
(a) Find the equation for the flow line for F that passes through the point (1,1,0).

(b) Show that this flow line passes also through the point (e,e,1).
(c) Evaluate

fCF-dR

where C is the path, along the given flow line, from (1,1,0) to (e,e,1).

- Let F(x,y) = (x* + y*)(i + j), and let C be a directed straight-line segment of unit
length, with one end point at the origin (0,0). Find the direction of C such that the
line integral

1=fCF-dR

is:

(a) a maximum (give the direction of C and the value of I),

(b) 2 minimum (give the direction of C and the value of I), and
(c) zero (give the direction of C).

. Let

-y, x+y
71+ 3 21
+y X“+y

X
F(x,y) = 2
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11.
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L/

FIGURE 4.42
(a) Show that
oF, _0OF,
dy  ox

(b) Is F conservative? Justify your answer.
(c) Evaluate f F - dR along the curve shown in Fig. 4.42.

. Let

F = (6x — 2¢**y?)i — 2ye**j + cos zk
(a) Determine whether F is conservative or not. Explain.
(b) Evaluate the line integral (¢ F - R along the path parametrized by
R(O) =t +(t — 1)(t—2)j+—gt3k 0<t<1

(c) Evaluate f. F - dR along

R(t)=%(t—1)i+t(3—t)j+%(t—l)k 1<t<3

Let
F=[(1 +x)*]i+ [xe**? + 2y]j — 22k
G = [(1 + x)e*V]i + [xe* ¥ + 2z]j — 2yk

(a) Show that F is conservative by finding a potential ¢ for F.
(b) Evaluate [ G * dR when C is the path given by

x=(1—-1)eé y=t z=72t 0<t<1

(Hint: Take advantage of the similarity between F and G.)
(a) Show that the field

F = xe’i + ye*j + ze'k

is not conservative.
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13.

14.

15.

16.

17.

18.
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(b) Find a potential ¢ for the field G when
G = [xe ™ + (xyz + p)e™ + y*ze™ + ze**i
+ [ye ™ + (yzx + 2)e® + z%xe” + xe™]j
+ [ze7 % + (zxy + x)e”* + x2ye™ + ye ]k
(a) Find a potential ¢ for the field
F = Q2xyz + 22 — 2y* + 1)i + (x?z — 4xy)j + (x*y + 2xz — 2)k
(b) The field

X . z
= i
X2+ 2% (2 +z%)?

satisfies the condition that V x G = 0 at all points except on the y-axis. Is
G conservative?
Find the elements of surface area dS and dS, in terms of du and dv, for the surface S
given parametrically by x = u?, y = \/fuu, and z = v2.
Let F=yi + (x +2)j + x3sin (yz)k, and let S be the portion of the cylinder
x2 + y? = 1 that lies in the first octant and below z = 1. Calculate

[[ F-nas

Find dS and dS, in terms of d¢ and d#, for the surface with parametric equations

x = (1 + cos ) cos ¢
y=(1+ cos 8)sin ¢
z=sin 0
Let E = —grad(|R|™ ') where R = xi + yj + zk.
(a) Show that E = R/[RJ>.
(b) Find fc E - dR when C is the line segment joining the points (0,1,0) and (0,0,1).
(c) Compute {{s, E - dS when S, is the sphere x> + y* + 22 = 9.
(d) Evaluate [, E - dS when S, is a cube with edges one unit long, centered at
the origin.
(e) Give, if possible, an example of a sphere S with positive radius such that

[f;E-as=0

Let S be the portion of the paraboloid z =9 — x? — y? that lies above the plane
z =0, and let

F=(y—-2i—-(x+2j+ (x+ pk

Find [{s(V x F) - ndS.
Find

ffydideV

when F = (x? + xy)i + (y* + yz)j + (2% + zx)k, and V is the cube centered at the
origin and with faces on the planes x = +1,y = +1,z= +1.
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19. Evaluate

ffS(VxF)mds

where F = 2yi + (x — 2x%2)j + xy°k and where S is the curved surface of the
hemisphere x* + y? + z2 =1,z > 0.
20. Use Stokes’ theorem to evaluate

fc [xsin yi— ysinxj+ (x + y)z°k] - dR

along the path consisting of straight-line segments successively joining the points
P, =(0,0,0) to P, = (n/2,0,0) to P, = (r/2,0,1) to P3 = (0,0,1) to P, = (0,7/2,1) to
P5 =(0,7/2,0), and back to (0,0,0).

21. Use the divergence theorem to evaluate

([, F-nas

when F = y2xi + x2yj + z?k, and when S is the complete surface of the region
bounded by the cylinder x2 + y? = 4 and by the planes z =0 and z = 2.

22. LetF = (x — yz)i + (y + x2)j + (z + 2xy)k, and let S, be the portion of the cylinder
x? + y? = 2 that lies inside the sphere x> + y* + z* = 4. Let S, be the portion of the
surface of the sphere x? + y? + z? = 4 that lies outside cylinder x> + y* = 2. Let
V be the volume bounded by S, and S,.

(a) Draw a diagram illustrating S,, S,, and V.

(b) Compute
f fs Fen,ds,
with n; pointing inward.

(c) Compute

fﬂv (V-F)dV

[[;, F-n,as,
with n, pointing outward.
23. Let F = xyzi+ (> + 1)j + 2k, and let S be the surface of the unit cube
0 < x, y,z < 1. Evaluate the surface integral

ffs(VxF)-nds

(d) Compute

using

(a) the divergence theorem,
(b) Stokes’ theorem, and
(¢) direct computation.

24. Let F be the field F = ye¥i + (x 4+ €%)j + z*k and let C be the curve given by
R(t) = (1 4+ cos t)i + (1 + sin 8)j + (1 — sin t — cos t)k
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26.
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for 0 <t < 2n. Find
fF-dR
C

(Hint: Use Stokes’ theorem, observing that C is contained in a certain plane and
that the projection of C on the xy plane is a circle.)

If F = xzi — yj + x?yk, use Stokes’ theorem to evaluate

fCF~dR

where C is the closed path consisting of the edges of the triangle with vertices at
the points P, = (1,0,0), P, = (0,0,1), Py = (0,0,0) transversed from P, to P, to P;,
and back to P;.

Indicate which of the following statements are TRUE, and which are FALSE. You
may assume that all functions have continuous derivatives for all orders at all points:
(a) The divergence of V x F is zero, for every F.

(b) In a simply connected region, f¢ F -dR depends only on the endpoints of C.
(c) If Vf= 0, then f is a constant function.

(d) If V x F = 0, then F is a constant vector field.

(¢) If div F = 0, then {[s F + dS = 0 for every closed surface S.

(f) If IC F - dR = 0 for every closed contour C, then V x F = 0.

FIGURE 4.43
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27.

28.

29.

30.

31.

32.

33.
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Consider a cone with vertex at the origin, as in Fig. 4.43. The solid angle Q at the

vertex is defined to be the surface area that this cone cuts out of the unit sphere

centered at the origin.

(a) If the cone is perfectly flat, i.e., a plane, what is Q?

(b) What is Q for the corner of a cube?

(c) What is Q for the 45° cone: z = (x? + y*)??

(d) What is the total solid angle around a point?

(e) Suppose the surface S, bounded by the simple closed curve C, has the property
that every ray from the origin intersects S at most once. Then the solid angle
Q subtended at the origin by S is the solid angle at the vertex of the cone generated
by the rays through C. Show that, if S is properly oriented,

R -dS .
Q:J‘fs—lﬁl—; (R = xi + yj + zk)

Use the results of the previous exercise to check Gauss’ law, Eq. (4.39), for a point
charge at the origin. The expression for the electric field appears in Example 4.19.

The flux of a solenoidal field through a surface depends only on the curve bounding
the surface. Explain this.

Show that any level curve R(z) for the function f(x,y,z) satisfies

—Vf=0
dt !

Let the domain D be bounded by the surface S as in the divergence theorem, and
assume all fields satisfy the appropriate differentiability conditions. Prove the
identities:

@ [[f,vo-vxFav=[[Fxvg-as

(b) fffD[(VxV)-(VxW)ﬁv-(VxVxW)]dV:fL(VxVxW)'dS

© [[[,IW-(VxVxV)—V-(VxVxW)]dV=
ffs[VxVxW«WxVxV]-dS

With D and S as in the previous exercise, suppose V-V =0 and W = V¢ with
¢ =0o0nS. Prove

HDV~WdV:0

Prove the identity
ffs Vo x Vn//-ds=gsc¢V¢-dR

with C and S as in Stokes’ theorem.

. What is the angle between the tangent to the curve

RO =ti+t}j+2t%k 0<t<3

and the normal to the surface z = 16 — x> — y at their point of intersection?
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35. Use Green’s theorem to find the area inside the loop of Descartes’ folium

t

X=——7
1+
t2
=— 0<t< o
YEIEP

36. A function f(x,y,z) is said to be homogeneous of degree k if f(tx,ty,tz) = (%, ,2).

37.

38.

Suppose the components F,,F,,F; of the vector field F(x,y,z) are each
homogeneous of degree k, and curl F = 0. Prove

FovV xF) + yF, + zF;
k+1

A torus (doughnut) is shown in Fig. 4.44. Its major radius is A and its minor radius
is a. Derive the parametrization R(u,v) in terms of the toroidal angle u and the
poloidal angle v

x=Acosu-+acosucosv

y=Asinu+ asinucosv

z=aqasinp
Show that the area of the torus is 4n2Aa.

Show that if ¢ is harmonic and S is a sphere of radius R centered at P, then the
third Green formula (Exercise 16, Section 4.10) reduces to the mean value theorem
Jor harmonic functions

o0~ g [l 048

[Hint: You will need the result from Exercise 10(a) of that section.]

FIGURE 4.44
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39. What is the value of the surface integral in the third Green formula if ¢ is harmonic
and P lies outside the closed surface S?

40. Suppose that the vector fields V and W have identical divergences and curls in
the region D, and that they have the same normal component on the bounding
surface S. Prove V = W. (Hint: Consider the properties of U=V — W.)



CHAPTER

Generalized Orthogonal
Coordinates

5.1 CYLINDRICAL AND SPHERICAL COORDINATES

Recall (Sec. 2.4) that many two-dimensional problems can be expressed
more conveniently in polar coordinates than in cartesian coordinates. This
is the case, for instance, if some type of circular symmetry is present.
Analogous situations arise in three dimensions, of course, and therefore
one is led to construct generalizations of the polar coordinate system. The
two generalizations that have proved most useful are cylindrical coordinates
and spherical coordinates, In this section we shall study how the various
vector relationships are expressed in these systems.

Cylindrical coordinates are the most direct generalization of polar
coordinates. To see this, we observe first that the cartesian system can be
described in the following manner: the third coordinate, z, gives the (signed)
height of the point above the xy plane; and the first two coordinates, x
and y, are the two-dimensional cartesian coordinates of the projection of
the point on that plane.

For the cylindrical coordinate system, the third coordinate z is, again,
the height above the xy plane, but the first two coordinates are the polar
coordinates, p and 0, of the projection of the point on that plane (see Fig. 5.1).
Notice that “p” in cylindrical coordinates plays the role of “r” in polar
coordinates; the reason for the change in terminology will be seen later.
However, be aware that there is no standard terminology among authors
for these coordinate systems!

221
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FIGURE 5.1
X =pcosd p=(x*+ y*)?
. . X
y=psin0 0=sin"! =cos !l ——— (51)
X+ 212
z=12z z=12z

The extra equation for 6 serves to remind us that we use the value
appropriate to the quadrant of (x, y), not necessarily the principal value.

The angle 6 in cylindrical coordinates is not defined on the z axis,
when p =0, but otherwise the equations of (5.1) specify a one-to-one
correspondence between the two systems.

4

@ = constant

z = constant

p = constant

FIGURE 5.2
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The nomenclature “cylindrical” comes from the fact that the surfaces
p = constant are cylinders. The surfaces 6 = constant are “half-planes”
extending out from the z axis, and, of course, z = constant defines a family
of horizontal planes. Normals to these surfaces are given by grad p, grad 0,
and grad z, respectively. From Fig. 5.2, we can see that grad p points away
from the z axis, grad 0 points counterclockwise in the horizontal plane,
and grad z points upward. In the order grad p, grad 6, and grad z, these
vectors form a right-handed orthogonal system.

Any two surfaces p = constant and 0 = constant intersect in a vertical
line, which is a curve along which only z varies. It is called a coordinate
curve for z. Coordinate curves for p are horizontal rays extending from the
z axis. Coordinate curves for 8§ are horizontal circles. Notice that grad z,
grad p, and grad 0 are everywhere tangent to their respective coordinate
curves.

These features make it convenient to introduce unit vectors in the
directions of grad z, grad p, and grad 6. Accordingly, we define

o — grad z
* " |grad z|
__gradp
e, = 4—|grad /) (5.2)
e — grad 0
" |grad 0]

The reader should convince himself that e, is the same as k, and e, and e,
are the three-dimensional analogs of u, and u, in Sec. 2.4. In fact, recalling
that |grad f| = df/ds when s measures distance in the direction of grad f,
one can simplify these equations. Along the coordinate curves of z, ds = |dz].
Hence, |grad z| = dz/dz = 1. Along the coordinate curves of p, ds = |dp|-
Hence also, |grad p| = dp/dp =1. But along coordinate curves of 6,
ds = p|d6|. Therefore, |grad 6] = d6/pdf = 1/p. This results in

e, = grad z
e, = grad p (5.3)
e, = p grad 0

The reader should observe that the position vector of a point can be
expressed in cylindrical coordinates as

R =xi+ yj+ zk = pe, + ze, (5.4)

To compute arc length in cylindrical coordinates, observe that in Fig. 5.3
the displacement dR can be expressed as the sum of three orthogonal
displacements

dR =e,dp + epdl + e, dz (5.5)
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FIGURE 5.3

Hence, the element of arc length in cylindrical coordinates is given by

ds = |dR| = (dp* + p*d6> + dz?)} (5.6)

Example 5.1 Find the arc length along the helix

x=sint y=cost z=t

for0<t<4n

Solution Transforming to cylindrical coordinates we find

Hence

w[(dp\2 L [dOV:  [dz2\']
= - Z) +(=) | @
: fo ]:(dt) e <dt * dt !
= [T+ 1]t dr = 42

From Fig. 5.3 it is easy to see that the element of volume in cylindrical
coordinates is given by

dV =dppdfdz =pdpdbd:z (5.7

Example 5.2 Find the volume integral of the function f(x,y,z) = x + y? over the
volume contained between two cylinders, p=1and p=2,for0 <z < 2.
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Solution

[ +yyav = (7 [ [} p*dpdodz= 2(27:)@ - %) =157

Now consider a scalar field f expressed in cylindrical coordinates,
f = f(p,0,z). To express grad f in these coordinates, we observe that since
e,, €, and e, are mutually orthogonal unit vectors, Vf = (e, Vf)e, +
(eg* Vf)ep + (e, - Vf)e,. Each of these coefficients gives the rate of change
of f with respect to distance, df/ds, in the corresponding direction. Applying
the expression (5.6) for ds, we find

_J _
eﬂ Vf B é—S_ ] zconstanl— ap
o] 1
€ V=% e p o0
_ af _J
V=2 A

Therefore the expression for grad f in cylindrical coordinates is

14
gradf-—ﬁ + - ag 9+6—fe (5.8)

Example 5.3 Compute grad f in cylindrical coordinates if f is given in cartesian
coordinates by f(x,y,2) = z/(x? + y?).

Solution First we express f in cylindrical coordinates then apply Eq. (5.8). We have
f(p8:2) = f(x(p.0,2), y(p,0,2), 2(p,0,2) ) = z/p*. Hence,

drs 2z + 1
grad f = ——e +—e,
PERCREY

The expressions for the divergence and curl of a vector field can be
derived by heuristic reasoning with infinitesimals (as in Sec. 3.3), but one
must be extra careful when the coordinate system is not rectilinear.

Let us compute div F as flux per unit volume out of the box in Fig. 5.4.
We start with the vector field F given in cylindrical coordinates.

F= Fp(p997z)ep + FB(p599Z)e0 + Fz(pae’z)ez (59)
The flux of F out of face I equals the outward-normal component of F
times the surface area, (— F,)(p df dz). A similar expression holds for face IV,
but with a different value of p. Hence the contribution from faces I and IV
will be given, in the limit, by

dp do dz (5.10)

A(pF
(F,pd0dz)y — (F,pd0dz) = (g—p”)
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Notice that we regard the dimensions df and dz as the same for faces I and
1V, so they are constants in (5.10).

The flux out of face Il is (— Fy)dp dz, and combining this with face V
we obtain a contribution

oF
(Fydp dz)y — (Fydp dz)y = a_eo d0dpdz (5.11)

The flux out of faces III and VI contributes

oF,
(F2pdfdpy — (F.pdf dphm = — = dzpdfdp (5.12)

The reader may feel a little queasy about this last expression since face III
is not a genuine rectangle, having side /i of length p df and the opposite side
kj of length (p + dp)df. To play it safe, we may replace p in (5.12) by p,
some intermediate value between p and p + dp. Adding all the contributions
to the flux, we obtain

o(pF,) oF,
0

OF
dod z
dp z 4+ 20

0z

dfdpdz + dzgdbdp

Next we divide by the volume element (5.7) and, noticing that in the limit,
p — p (so our precaution was unnecessary), we find that the divergence of a
vector field is given in cylindrical coordinates by

_LapF) , LOFs OF,

divF 5.13
ap p 060 0z (513)

Example 5.4 Compute the divergence of
F(p,0,z) = p e, + zsin Oe, + pze, (5.14)

Solution Applying (5.13)

_1 Ap?) . 1 8(z sin 6) N p2) 5 4 2008 ]

=2+ +p

V-F=
p Op p 00 0z p

We compute curl F by employing the physical characterization of curl
as “swirl” per unit area; see Eq. (4.66). To compute the e, component,
consider the line integral of F around the edge of face I in Fig. 5.4. The
edge must be oriented in the order abcda since e, points toward the reader.

The contribution to the line integral along ab is Fyp df; along cd it is
(— Fy)pdo, but with a different value of z. Since p and d0 are the same
along these edges, we obtain a net contribution of

oF,

F — = —
(Fop d6), — (Fop db),4 0z

dz pdf
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Similarly, edges bc and da contribute

F
(F.dz)y. — (F,dz),, = ad—esz dz

Hence the e, component of curl F is the sum of these divided by the area
pdbdz, or
10F, O0F,
p 00 0z
To find the e, component, we integrate around the edge efghe of face 11
(because e4 points into the page). The line integral is
(Fz dz)ef - (Fz dz)gh + (Fp dp)fg - (Fp dp)he
OF oF

= Y )
=% dpdz + 3z dzdp

and dividing by the area dp dz we find the e, component to be
oF, OF,
0z op

The e, component is obtained by integrating around the edge ijkli of face I1L
(Fpdp); — (F,dp)y + (Fop dB); — (Fop dO);
——2d0dp + ———dpdb
a0 T T, P
(keeping in mind that p on edge i is different from p on edge jk). Dividing
by the area gdf dp, with p between p and p + dp as before, and then taking
the limit, we find the e, component of curl F to be

1 0F,  0(pF,)
;[_%_F o :| (5.17)

Combining these components, we see that the curl of a vector field is given
in cylindrical coordinates by

1 0F, 0F, oF, OF,
curlF—<; 5 -E>ep+<az ap)eg

(5.15)

(5.16)

1 /d(pF,) OF,
== 5.18
+1 (200 Ze)e. 5.18)
or, equivalently (Exercise 3),

e, pe e

e o ¢
wmlF=-|— — = 5.19
anr =l w0 ez (5.19)

F, pF, F,
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Example 5.5 Compute the curl of F given in Eq. (5.14).
Solution Applying (5.19).
e, e, e,

o o @
F=-|2 <2 <
alF="15 @ &

p pzsinf pz
ez
=(0—psine)ﬁ+(0~z)e(,+(zsin9—0);
P

. zsin f
= —sin fe, — zeg+

€;

Spherical coordinates are also generalizations of polar coordinates in the
plane. The first coordinate, r, is the distance of the point from the origin;
hence, it is a three-dimensional generalization of the two-dimensional “r.”
The second coordinate, ¢, is the angle between the positive z axis and the
position vector R (see Fig. 5.5). The third coordinate, 6, is the same angle
as in the cylindrical coordinate system.

Surfaces of constant r are, of course, spheres centered at the origin.
Surfaces of constant ¢ are cones—right circular cones in fact (see Fig. 5.6).
Surfaces of constant § are half-planes, as in the case of cylindrical coordinates.

The reader should be sure he understands why the angle ¢ is restricted.
by definition, to lie between 0 and = radians.

The equations of transformation between spherical and cartesian co-
ordinates are easy to see once we recognize that the cylindrical coordinate

&

(rcos@,rsin 0, 0)

FIGURE 5.5
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p equals r sin ¢, and z equals r cos ¢p. Then with the help of equations (5.1),

we find
X = rsin ¢ cos @ r=(x*+y*+2%)?
y=rsin ¢ sinf 2
¢ =cos ' —————— (principle value) (5.20)
’z=rcosq) (x* +y? + %) :
0 =sin~! Y =cos™! il

The coordinate curves (curves where one coordinate varies and the other
two are constant) are rays emanating from the origin (for r), vertical semi-
circles (for ¢), and horizontal circles (for 0). If we consider the surface
of the earth as a sphere, r = constant, the coordinate curves for ¢ are circles
of constant longitude and those for 6 are circles of constant latitude: ¢ = /2
defines the equator (see Fig. 5.7).

Staying with this earth analogy for a moment, we can see from the
constant surfaces in Fig. 5.6 that grad r points along the local vertical,
grad ¢ points due south and grad 0 points due east. These vectors are also
tangent to their respective coordinate curves, and they are mutually or-
thogonal. Hence, we define a set of unit vectors

_gradr
&= |grad 7|
_grad ¢
e, = lgrad 6| (5.21)
o — grad 0
‘- |grad 0|

and observe that in the order e,, e,, and e, they form a right-handed system.
Again recalling |grad f | = df/ds, we can be more specific in the equations
of (5.21). Along coordinate curves of r, ds = |dr|. The coordinate curves

coordinate curves
for ¢

coordinate curves
for 6

FIGURE 5.7
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of ¢ are semicircles of radius r, so ds = |rd¢|. The coordinate curves of ¢
are circles of radius (be careful!) r sin ¢, so ds = |r sin ¢ d0| (see Fig. 5.8).
Therefore,

e, =gradr
e, = rgrad ¢ (5.22)
€, = rsin ¢ grad §
The position vector in spherical coordinates is simply
" R=re,

Now we can model the computations, made previously for cylindrical
coordinates, to obtain the analogous expressions in spherical coordinates.
From Fig. 5.8, we see that the displacement dR can be expressed

dR = e, dr + eyrd¢ + epr sin ¢ dO (5.23)
Thus the element of arc length in spherical coordinates is
ds = |dR| = (dr* + r*d¢* + 1* sin? ¢ dO?)* (5.24)
From Fig. 5.8, we see that the volume element in spherical coordinates
is given by
dV = (dr)(r d)(r sin ¢ df) = r* sin ¢ dr dp dO (5.25)

The component of the gradient of f(r,¢,6) in the direction e, is the rate
of change of f with respect to distance along the r-coordinate curve: and,

rsin ¢ df

FIGURE 5.8
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similarly, for the e, and e, components. "Using (5.24) for distances, we find,
analogous to (5.8), that the expression for the gradient in spherical
coordinates is

10 | G
aé €+ Tsﬂa_g €

If F is a vector field given in spherical coordinates by

F(r,¢,0) = F.e, + Fe, + Fyeq

we can compute its divergence as before by reasoning on the infinitesimal
parallepiped in Fig. 5.9. The total flux out of all the faces can be expressed

(F,rsin ¢ dOrde)y — (F,r sin ¢ dOrd), + (Fer d dryy — (For dep drly

+ (Fyr sin ¢ dOdr)y; — (Fyrsin ¢ dO dr)y

_0(r*F,) O(F 4 sin ¢)

or op
(keeping careful track of which variable changes from face to face). Dividing

by the volume element (5.25), we find that the expression for the divergence
of a vector field in spherical coordinates is given by

grad f(r,¢,0) = (5.26)

drsin¢d0d¢+%%d0rd¢dr+ dprdfdr

1 8(r*F,) 1 0F, 1 d(F,sin ¢)
W= Y sng 0 Tremg 69

(5.27)

Analogous reasoning on Fig. 5.9 yields the expression for the curl. The
line integral around the properly-oriented edge of face I is

(Fyrd@)a, — (Fyr dd)ea + (For sin ¢ db),. — (For sin ¢ db),,

_ _% O(Fy sin ¢)
=% dfrd¢ + 36

and dividing by the area r?sin ¢ d0d¢$, we obtain the e, component of
curl F,
1 O(Fg sin ¢) _0OF,
rsin ¢ o¢p 00
The line integral around face II produces
(Fr dr)ef - (F dr)gh + (Fd)r d¢)fg - (Fd)r d¢)he

_ r a(ani))
B a¢ d¢ dr + or

and dividing by the area r d¢ dr, we obtain the e, component:

1[8(rF,) oF, ,
r [T Y ] (529)

g rdo

(5.28)

drde
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Face II Face II1

e —
r sin ¢ dO

FIGURE 5.9

The line integral around face III produces
(Fgr Sin d) d@)u - (Fgr Sil’l ¢d0)kl + (F,. dr)jk - (Fr dr)h-

O(rFg) , . OF,
= o dr sin ¢ df + 30

dodr
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and dividing by the area r sin ¢ d0 dr yields the €, component:
1 OF, O(rFy) .
— 5.30
rsingb[@é) or sin ¢ (5.30)

The reader should verify that the results of (5.28), (5.29), and (5.30) can be
summarized thus: the expression for the curl of a vector field in spherical
coordinates is given by

e, re, rsinge
S A )
r’sin¢|or 0¢ 06
F, rF, rsin¢F,

For reference purposes the formulas derived in this section will be
listed, together with their generalizations, at the end of the next section.

curl F = (5.31)

Exercises

L. Derive the equations of transformation between cylindrical and spherical coor-
dinates.

2. Use Egs. (5.1) and (5.2) to derive
xi + yj

eZ:k P=(x2+y2)%

(5.32)
o= yi+xj
T
3. Verify Eq. (5.19).
4. Use (5.20) and (5.21) to derive
_ xi+yj+zk
r_(xz + y2 4 ZZ)%

z(xi + yj) — (x? + yH)k
X2+ pH(x? 4 2 + 22)F

¢ = (
0~ Y+ xj
BCEESRE
5. Verify Eq. (5.31).

6. Compute the laplacian V3 in cylindrical and spherical coordinates. (Hint: Use
V2 = div grad.)

7. Show that if f is a function of r only, then

2
V() = f"(r) + AU
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8.

10.

11.

12.

13.
14.

15.

16.
17.

18.

19.

20.
21.
22.

Generalized Orthogonal Coordinates CHAP. 5

Change to cylindrical coordinates and find the divergence and curl of
xi+ yj
F=—>—==
@ F=7
—yi + xj
b) F=———-
O F="7

[Hint: Observe Eq. (5.32).]

What is the arc length of the curve r = sin ¢, 0 = n/2, for 0 < ¢ < n?

Compute the surface area of the spiral ramp p=u, § =n/2—v, z=v, for 0 <

u<1,0<v<?2 [Hint: Use Egs. (4.26) and (5.5).]

With R = xi + yj + zk and F = R x k, compute the flux of F through the surface

of the cylinder p = 1,0 < z < 1. Check the divergence theorem in this case.

Compute the area of the cone ¢ = constant = 7/6, 0 <r < 2. [Hint: Use Eqgs.

(4.26) and (5.23).]

Evaluate V().

Evaluate ([{(x? + y? + z?)* dx dy dz, integrated over the intersection of the sphere

of radius 2 centered at the origin, and the first octant (x >0, y > 0, z > 0).

Letting R = xi + yj + zk, and r = |R|, write the vector field F = R/#® in terms of

rand e,.

(a) Show that div F is identically zero throughout the domain of definition of F.

(b) Show that the surface integral of the normal component of F over the surface
of the unit sphere r = 1 is 4.

(c) Explain why (a) and (b) do not contradict the divergence theorem.

(d) What is the surface integral of the normal component of F over the surface of
a unit sphere with center 4 units away from the origin?

Compute the gradient, in spherical coordinates, of f(r,¢,0) = cos o/t

Compute the divergence and curl, in spherical coordinates, of F(r,p,0) = e, +re, +

rcos 0 eg.

Compute the flux of F = r"e, through the surface bounded by the unit upper

hemisphere r = 1, 0 < ¢ < 7/2, and the equatorial plane. Check the divergence

theorem in this case.

Verify Stokes’ theorem for F = xj and the hemispherical surface S: r =1, 0<

¢ < m/2,0 < 0 < 2n. Use spherical coordinates.

For what value(s) of nis V - (r"e,) = 07

For what value(s) of nis V x (r"e,) = 0?

(a) Find a vector field F = F,(r)e, satisfying V- F =", m > 0.

(b) Use the divergence theorem to prove

prrwvzm#”ﬂs pitie, - dS

(c) Interpret part (b) if m = 0. (Hint: The volume of a pyramid equals one-third
the volume of the parallelepiped having the same base and height.)
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5.2 ORTHOGONAL CURVILINEAR COORDINATES

Our experience with the cylindrical and spherical coordinate systems
places us in a good position to analyze general coordinate systems, or
curvilinear coordinates.

The general situation is this: each point in a certain region of space is
specified by three numbers (u,,u,,us), called the curvilinear coordinates of
the point. Possibly the numbers can be interpreted as lengths or angles,
but no such geometric visualization is required. All that is needed are the
transformation equations between the curvilinear coordinates and cartesian
coordinates, which we represent by

x = x(uyg,Uy,Us3) uy = uy(x,,2)
y= y(“lauz >u3) Uy = uZ(Xay’Z) (533)
z = z(Uy,uy,U3) uz = u3(x,,2)

Equations (5.33) include (5.1) and (5.20) as special instances.

Observe that it is not feasible to choose the functions u,, u,, and u;
arbitrarily. For example, the system u; = x% u, =y — z, u3 = 2y — 2z is
unsatisfactory because one cannot invert the equations; in fact, the points
(x,y,2) = (1,2,3) and (x,y,2) = (1,3,4) would have identical curvilinear coor-
dinates (1,—1,—2). Therefore, we stipulate that the functions defining u,, u,,
and u; assign different ordered triples to different points in the region of
interest. We also assume that they possess continuous partial derivatives
of all orders and that at every point P the gradients of these functions are
nonzero.

(Sometimes we do not require that the coordinates satisfy these require-
ments at every point in space. For example, if we pass through the z axis
along a line parallel to the x axis, the spherical coordinate § undergoes a
discontinuous jump from 0 to =. We shall generally ignore this difficulty
and work only in a domain where the conditions are satisfied.)

These conditions ensure that through any point P in the domain, having
curvilinear coordinates equal to (c;,c,,c3), there will pass three isotimic
surfaces u,(x,y,z) = ¢y, u2(x,9,2) = ¢;, u3(x,y,2) = c3. As illustrated in Fig.
5.10, these surfaces intersect in pairs to give three curves passing through P,
along each of which only one coordinate varies: these are the coordinate
curves. The normal to the surface u; = ¢; is the gradient:

=51+ —J+

VYu. _t
"= o dy 0z

(5.34)

and the tangent to the coordinate curve for u; is the vector

R ox, 0Oy, Oz
6*%——0—%]4—6—%]4‘6‘” (535)

13
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FIGURE 5.10

Recall that in the cases of cylindrical and spherical coordinates, the
three normals to the isotimic surfaces were mutually perpendicular. In
general, whenever the vectors Vu,, Vu,, and Vus are mutually orthogonal
at every point, we say that uy, u,, us comprise orthogonal curvilinear coor-
dinates. In this section we shall restrict our analysis to such systems.
Moreover, we assume that the u;’s are numbered so that Vu;, Vu,, and
Vus, (in that order) form a right-handed system.

Another feature of the special coordinate systems we studied in the last
section is that each gradient vector Vu; was seen to be parallel to the tangent
vector OR/du; for the corresponding coordinate curve. This is always true
for orthogonal curvilinear coordinates: any coordinate curve for u; intersects
the isotimic surface u; = c; at right angles when (uy,u,,us) form orthogonal
curvilinear coordinates. To see this, consider, say, a coordinate curve for u;.

(i) This curve is the intersection of two surfaces u, = ¢, and u; = c3.
Hence, its tangent 0R/du, is perpendicular to both surface normals
Vu, and Vu;.

(ii) The vector Vu, is also perpendicular to Vu, and Vus, by definition of
orthogonal curvilinear coordinates.

(iii) This implies that 6R/du, is parallel or, perhaps, antiparallel to Vu,.

Since both point in the direction of increasing u, they are parallel.

It follows, of course, that the vectors dR/du;, 0R/0u,, and oR/0us also
form a right-handed system of mutually orthogonal vectors. In fact, by the
chain rule

(Vuy - (R 2 Qi 0x | O oy | 0w 0z
“'\ou;) ~ ox du; | Oy du; | 0z du
Ou; 1 i=j
% 536
ou; {0 P#J (5.36)

Thus it is natural to define the right-handed system of mutually orthogonal



SEC. 5.2 Orthogonal Curvilinear Coordinates 239

unit vectors (eq,e,,e;) by

_ Vu R
&= [Vu| — ou;

¢R

— i=1223) (5.37)
ou;

The vectors (e, ,ey,e,) and (e, ,e,,€,) are special instances of (5.37).

In order to express the vector operations in general orthogonal curvi-
linear coordinates, we need to evaluate three functions h; known as the
scale factors. The scale factor h; is defined to be the rate at which arc length
increases on the ith coordinate curve, with respect to u;. In other words,
if 5; denotes arc length on the ith coordinate curve, measured in the direction
of increasing u;, then

ds, ds, ds;
- =2 =2 5.38
hy du, h, du, 37 dus (5:38)
Since arc length in general can be expressed
R JR R
= =|— —d —d .39
ds lde aul dul + auz Uy + 61,43 Usz (5 )
we see that
R
i == (i=123) (5.40)
Ou;

Combining the last two equations shows that the displacement vector can
be expressed in terms of the scale factors by
dR = hl dul € + hz duz €, + h3 du3 €3 (5.41)
We can get another formula for the scale factor h; by the following
observations:

(@) |Vui] is the rate of change of u; with respect to distance in the direction
of Vu;.
(ii) The direction of Vu; is the direction of the coordinate curve for u;.
(iii) s; measures distance along the coordinate curve for ;.

It follows that

du; 1
Vel = a5, =
Therefore,
1 1 1
hy=——  hy=—— = 5.42
Ve TN BT ) (542)

Example 5.6 Consider the curvilinear coordinate system defined for z > 0 by

X=u; —u,
y=u; +u, (5.43)

z = uy?
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Verify that the system is orthogonal and right-handed, and compute the unit vectors
e; and the scale factors h;.

Solution We do not need the inverse equations for this example, but they are easy
to derive:

xX+y
=—
y—x
Uy ="
uy = z*  (take the positive square root for definiteness)

We use the right-hand expression in Eq. (5.37) to compute the e;:

o it
2
—i+j
€, =
NG
2
ey = wk _ (5.44)
[2us]

Clearly this set is right-handed and orthogonal so that Eqgs. (5.43) do, in fact, define
orthogonal curvilinear coordinates. The h; have already been computed in the denom-
inators of (5.44):

hi=+2 hy=+2  hy=2u (5.45)
Example 5.7 Compute the scale factors for cylindrical and spherical coordinates.
Solution Comparing Eq. (5.41) and (5.5) and (5.23), respectively, we have
h,=1 hy=p h,=1 (5.46)
and h,=1 hy=r hy =rsin ¢ (5.47)

Recall that these were obtained simply by examining the diagrams; the
computations (5.40) for the h; are often unnecessary when the curvilinear
coordinates can be visualized.

The scale factors will allow us to write general formulas for arc length,
volume, gradient, divergence, and curl in terms of curvilinear coordinates.
In this section we will present heuristic derivations for these expressions.

From the discussion above we can say that ds; is the arc length along
the ith coordinate curve, corresponding to a change in the ith coordinate
from u; to u; + du;. Since an arbitrary displacement dR is generated by
changes du,, du,, and du,, each in mutually perpendicular directions, we
can express the element of arc length |[dR| by the Pythagorean theorem as

|dR[? = ds,? + ds;® + ds3*
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Using the scale factors from Eq. (5.39), we find that the arc length along a
curve C is given by the line integral

JodR| = [ds = [ du)” + hy du)™+ (hydu)®  (5.49)

generalizing the formula in Sec. 2.2.

We can immediately generalize the discussion above to conclude that
the line integral of a continuous vector field F, expressed in general coordinates
by F = Fe, + F,e, + Fses, along a curve C, is obtained by

fc F-dR = fc (F1hy duy + Fyhydu, + Fshs duy) (5.49)

where, in practice, one usually has u,, u,, and u; given in terms of some
parameter t; (5.49) then ultimately becomes an integral involving ¢t and dt.

From Fig. 5.11, we observe that the solid generated by displacements
du,, du,, and du, is approximately a rectangular parallelepiped with edges
hyduy, hy du,, and h; du;. Its volume is, therefore,

dV = h1h2h3 dul duz du3 (5.50)

Hence, the volume integral of a function f(uy,u, ,us) is given by

f f f (g sy uz) AV = f f f f(y st Vs hiyhy duy duy dus (5.51)

Again, we can integrate Eq. (5.51) iteratively once the limits are specified.
In spherical coordinates, dV = r? sin ¢ dr d) d¢; in cylindrical coordinates,
dV=pdpdfd:.

In Sec. 3.1, it was shown that the component of grad f in the e, direction
is given by df/ds;, the rate of change of f with respect to distance in the

FIGURE 5.11
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e, direction. Since e, e,, and e, are mutually orthogonal unit vectors, we
can immediately express grad f in terms of these:

df daf df
gradf— +d2 +d‘s3e3

or, introducing the scale factors,

1o 1of 1 of

d — 7 —
grad /= e T o, o,

Example 5.8 Compute grad / in the coordinate system (5.43), for f(u;,u,.u;)=
Uy + u32.

Solution From (5.52) and (5.45),

1 1 1
Vf = —wuey + ——use; + 5— 2uze;

NERNC R T
2
= (use; + use;) % +e3 (5.53)

The expression for divergence is more complicated. Let
F=F161+F262+F3e3

be the vector field, given in terms of the unit vectors e,, e,, and e;. We will
calculate div F as the flux of F out of the sides of the box in Fig. 5.11, divided
by the volume of the box, in accordance with the interpretation of divergence
given in Secs. 3.3 and 4.9.

The flux density normal to the face abcd is F - ¢, = F and the area of
this face is h,hsdu,dusy. Therefore the flux outward from that face is
F,hyhs du, dus. The unit outward normal to face efgh is —ey, so that the
flux outward from that face is — F hyhydu, dus. Since F, h,, and hy are
functions of u; as we move along the u;-coordinate curve, the sum of these
two is approximately

|:i (F1h2h3) dul} dul du:’,
ou,

From this and similar expressions for the other two pairs of faces we see
that the net flux outward from the parallelepiped is approximately

0
[ (F1hyh3) + (th h3) +——(F h hz):lduldu2 dus
and so the flux output per unit volume is this expression divided by the

volume h hyhsy du, du, dus. Hence

1 0
1 = -54
divF h1h2h3 [6 " (Fihyhs) + 2(F2h1h3) + e (Fshlhz)} (5.54)
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Using Egs. (5.52) and (5.54), we have the expression for the laplacian:
V2f = div grad f

_ 1 [6 <h2h3 0f>+ (h 1hs 6f>+ (h 1 0f>j| (5.55)
hihyhy | Ouy \ hy Ouy Ouy \ hy, Ou, Ouz \ hy Ous

Now let us find the expression for curl F. We shall use the “swirl”

characterization described in Exercise 1 of Sec. 4.12. The component of

curl F in the direction e, will be the line integral of the tangential component

of F around the curve efghe in Fig. 5.11, divided by the area enclosed by this

curve. [Recall that, by Stokes’ theorem, {, .. F + dR equals ({ (curl F) - n dS,

which is approximately (curl F) - e, times the area.] The integral along the
edge ef is approximately

Fo(uy,uy uz)hy(uy,uy,us) du,

Along gh we are proceeding in the opposite direction; furthermore, the third
coordinate is now u; + dus, so the line integral is

= Fo(uy,up,uz + duz)hy(uy uz ,uy + dus) du,

Thus the net contribution from ef and gh is given by
0
—é'u—s(thz) dU3 du2
Similarly, the contribution from fg and he is
0
a—uz (F3h3) duz du3
Dividing by the area h, du, hy du;, we have
1 0 0
1F)-e; = —(— i
(curl F) - e, hiohs <0u2 (F3hs3) Bu,s (thz))

Reasoning similarly for the other components, we find that the curl is given by

1
curl F = ( (F3hs) — (F2h2)> e;
h2h3 Us

1 0
+ hihs <E(F1hl) - gu—l(F3h3)>ez

1
+ hihy (614 (F3hy) — 2(F1h1)>e3
hiuay  hou,  hyug

1 ] 5 0

= Tahohs| Gu,  Ou,  ous (3.56)

Fihy Fyh, Fshs
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Example 5.9 Compute the divergence and curl of the vector field
F(uy,up,us3) = usu ey + usize, + ujipes
in the coordinate system (5.43).

Solution From Egs. (5.54) and (5.45),

1] 0 0 0
V-F=— [— (u3u12\/§u3) +— (usuZZ\/ﬁug,) +— (2u1u2)]
ou, Ous

=4u3 Ouy
= /2u;
From Eq. (5.56),
ﬁe1 \/ﬁez 2uze;
1 0 0 0
VxF=—| — —_ —
X 4uz| Ouy Ou, Ou,

ﬁu:;ul \/§u3u2 2u1u2u3

_ (Quyus — \/Euz)\/E e + (ﬁul - 2“2“3)\/E e,

4u, 4u,

CHAP. 5

For reference purposes we list the various vector operations in general
orthogonal curvilinear coordinates, cylindrical coordinates, and spherical
coordinates together here. The reader is advised to attach a third, and final,

permanent bookmark to this page.

GENERAL ORTHOGONAL CURVILINEAR COORDINATES

Scale factors:

1 )
| = [V (i=1,23)

Displacement vector:
dR = hydu;e; + hydus e, + hyduze;
Arc length:
ds = (hy2du,® + hy? duy® + hy? dus?)?
Volume element:
dV = hih,hs du, du, du;
Gradient:

1 of 1 of 1 of
Vf_h_la—lzel+h26u2e2+h3 6u3e3
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Divergence:
! a( h,h )+ (th)—i—i(th)
h h2h3 1 273 2 276113 aua 3112
Curl:
hie,  hye, e,
1 0 0 0
VxF= - - =
hihohy | Ou;  Qu,  Ouy
Fihy Fih, Fshy
Laplacian:
[ 0 (hyhsy Of hyhs Of
2 3 3
Vi=s h2h3 8u1< h 8u1> + 6u2< I, 6u2> +

CYLINDRICAL COORDINATES

Displacement vector:

dR =dpe, + pdOe, + dze,
Arc length:

ds = (dp* + p*db?* + dz?)*

Volume element:

dV = pdpdfdz
Gradient:
@f 10f f
V=t % T 2
Divergence:
1 0(pF,) 10F, OoF,
V-F=-t70) 2000
p dp p o0 oz
Curl:
e, pe; e,
1|0 ) 0
VxF=-|—- — —
*¥ =5l @ o
F, pF, F,

duy

(

h3 6u3

)]

245
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Laplacian:

1o of\, 1 ¥f
20 _ —
VI=0m\” ( ap>+ P2 307 " &z

SPHERICAL COORDINATES

Displacement vector:
dR =dre, + rdpe, + rsin pdbe
Arc length:
ds = (dr? + r* d¢? + r? sin? ¢ d6*)*
Volume element :
dV = r*sin ¢ drd¢ db
Gradient:

_af Ly 1 of
V=t i Trsnga0®

Divergence:
190 1 1 OF
V-F =——(r*F F ve
rtor CE)t in g rsin ¢ 6(1) (Fy sin ¢) + rsin ¢ 00
Curl:
e, re, (rsing)e,
1 o 0 0
1Y - = —
T sing lor 3 a0
F, rF, (rsin ¢)F,
Laplacian

e Lo 1 of 1o
Vf—;;5<r E>+r sm¢6¢< ¢6¢>+r25in2¢w

Exercises

1. Verify that the formulas for the vector operations in cylindrical and spherical
coordinates, as computed in Sec. 5.1, are instances of the general formulas derived
in this section when the scale factors Egs. (5.46) and (5.47) are inserted.

2. Verify (5.53) by expressing f in cartesian coordinates, applying V, and transforming.
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3.

10.

11.

Explain why curvilinear coordinates defined by functions of the form

Uy =u(2) uy = uy(x) uz = uz(y)

are automatically orthogonal. What other combinations have this property? How
about

uy = uy(p) uy = u,(0) uz = u3(z)

. What is the element of volume relative to the coordinate system u, = ¢, u, = y,

Uy =2z7?

. Compute V2g if g = u;> + u,® + u;3* in the coordinate system (5.43).
. Letu; =x+ y,u; = x — y,and u; = 2z

(a) Is this an orthogonal coordinate system?

(b) Solve for x, y, and z in terms of u,, u,, and u;.

(c) Find ds? and hence determine A, h,, and h; for this coordinate system.
(d) What is the laplacian relative to this coordinate system?

(e) Let f(uy,us,u3) = uy + u, + 2u;. Find grad f.

. Letu; =x+ y,u, =x — 2y, and uy = 2z.

(a) Solve for x, y, and z in terms of u,, u,, and u;.
(b) Attempt to determine the scale factors k4, h,, and h;.
(c) What is “wrong”?

. Consider the transformation

X =u,? —u,?
V= 2uju,
Z=1u,
(a) Show that (uy,u,,us) form right-handed orthogonal curvilinear coordinates.
(b) Compute the scale factors.
(c) Express V2g(u,u,,us).
(d) Find the divergence and curl of the vector field F = use, + u,e, + u,e;.

. Consider the transformation

X =u3
y = e"2 cos u,

z = ¥ sin u,

. (a) Show that (u;,u,,us) constitute orthogonal curvilinear coordinates.

(b) Compute the scale factors.
(¢) Find V2gifg = u;? + u,? + u3%
(d) Find the divergence and curl of the vector field

F = —e“e; + usze,

In cartesian coordinates, dV = dxdydz. Beginning with Eq. (5.20), differentiate
to form dx, dy, and dz in terms of dr, d¢, and df), and multiply to obtain dx dy dz.
(a) Does this give dV in spherical coordinates?

(b) Explain this phenomenon.

Consider the coordinate system u, = y, u, = x, u; = z. The scale factors are all
equal to unity, so that Eq. (5.56) takes an especially simple form.
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(a) Let F = —u,e; + use,. Show that (5.56) gives
curl F = 2e;

(b) Obviously e, = j, e, =1i, and e; =k, so that F = yi — xj and by part (a),
curl F = 2k. But direct calculation of curl F in cartesian coordinates shows
that curl F = — 2k, not 2k. What is “wrong”? :

12. Suppose that u, v, w are orthogonal curvilinear coordinates for which ds* =
v?du® + u? dv? + dw

(a) Calculate the divergence of u, where u is the unit vector tangent to a u curve.

(b) Determine the laplacian of the function f = uvw.

13. By using the “lumpiness” definition of the laplacian (Exercise 11, Sec. 4.10) applied

to a rectangular parallelepiped, give a direct derivation of (5.55).

5.3 OPTIONAL READING:
MATRIX TECHNIQUES IN VECTOR ANALYSIS

In this section we are going to take a quick look at matrix theory, as it
is used in vector analysis. The beginner should be aware that he/she is
going to learn about a very restricted class of matrices. The subject covers
much more ground than we will see here; indeed, most authors devote a
whole book to it. However, the matrix calculus has some very nice inter-
pretations when applied to three-dimensional vector analysis, and we shall
exploit these features.

Those readers who have already mastered linear algebra should,
nonetheless, enjoy reading this section. They will have seen all the formulas
before, but the point of view is quite different from the algebraic approach
and offers some new insights.

A matrix is a rectangular array of numbers, like a bingo card or the
box score of a baseball game. It can have any number of rows and columns.
However, in vector analysis only three matrix “sizes” are commonly used:
the 1-by-3 row matrix

[2,4.1] (5.57)

the 3-by-1 column matrix
1 (5.58)
and the 3-by-3 square matrix
2 0 1 (5.59)

Notice that the dimensions of a matrix are stated “m-by-n”, indicating m
rows and n columns.
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It is useful to think of the entries of a matrix as representing the compo-
nents of a vector. Thus, Eq. (5.57) represents 2i + 4j + k as a row and
(5.58) represents 2i + j + Sk as a column. The square matrix (5.59) can either
be interpreted as consisting of three rows, representing

A=i—j+k
B=2i+k (5.60)
C=i+j+2k

respectively, or as consisting of three columns, representing
D=i+2j+k
E=—-i+k (5.61)
F=i+j+2k

respectively. Both interpretations are useful. To emphasize the point of view,
we can write (5.59) as

1 -1 1 A
2 0 1= B
1 1 2 C
if we are thinking of the rows as vectors, or as
1 -1 1 S
2 0 1{=(D E F
1 1 2 oL

if the column-vector interpretation is appropriate.

When we want to address a single number in a matrix .#, we use the
notation m; for the entry in row number i and column number j, as illus-
trated:

My my, My M3
[my1.my5.m, 3] My, My Myy My (5.62)
msy M3y Mzp; Mz3

Thus in matrix (5.57), m;3 = 1; in (5.58), m,; = 1; and in (5.59), my, = —1,
m33 =2, and m,3 = 1. (Remember the order: m; refers to row i, column j.
Think of the mnemonic Myow cotumns MRoman Catholic“)

Matrix addition is performed by adding corresponding components.

[2 1 4]+[7 11 3]=[9 12 7]

-17 1] [o

1| +[2]=|3

o] |3] [3
1 23] [0 1 —1] [t 3 2
45 6|+|0 1 —1|=|4 6 5
78 9/ (o 1 —1] [7 938
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This is consistent with the way we add vectors, whether interpreting them
as rows or columns. Notice that we only add matrices of the same dimen-
sions; we cannot add, for example, (5.57) to (5.58).

Scalar multiplication also proceeds by entries, in keeping with our
vector interpretation.

22 1 4]=[4 2 8]
1 -1 1] [-3 3 -3
~il2 0o 1|=|-1 o0 -1
o1 2] |- -1 -1

It follows that matrix addition, like vector addition, has all the usual prop-
erties; namely, commutativity, associativity, and distributivity with respect
to scalar multiplication. In fact, matrix theory would be dull, indeed, if
addition and scalar multiplication were the only operations.

The definition of matrix multiplication is what makes the subject useful
and interesting. In general, the product ## = ? of two matrices £ and #
is defined only when the number of columns of the left factor £ equals the
number of rows of the right factor #. Denoting this common number by s,
the entry in the ith row and jth column of £ is then defined by

fii= . Lut (5.63)
K=1

From the formula (5.63), one can see that 2 has the same number of rows as
&£, and the same number of columns as A.

If we look at the possibilities for multiplication of the three types of
matrices with which we are concerned, we discover that there are four
interpretations of (5.63):

(i) If & is a 1-by-3 row matrix and £ is a 3-by-1 column matrix, then the
product # 2 is the scalar product of the corresponding vectors:

[ A ] ‘E‘
B|=A'B (5.64)

For example,

[2 4 1][2
—4+44+5=13

L

(ii) If & is a 3-by-3 square matrix and £ is a 3-by-1 column matrix, then
the product #Z is a 3-by-1 column matrix. The first entry is the scalar
product of the first row of & with £; the second and third entries are
the corresponding scalar products of the second and third rows, respec-
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tively, with £:

A - : A-D
B ---||D|=|B-D (5.65)
C L C-D
For example,
1 -1 1][2 6
2 0 1{{1]{=] 9 (5.66)
1 1 215 13

(iii) If &£ is a 1-by-3 row matrix and £ is a 3-by-3 square matrix, then the
product #Z is a 1-by-3 row matrix. The first entry is the scalar product
of & with the first column of £ the second and third entries are the
corresponding scalar products with the second and third columns,
respectively:

[ A o
B C D|=[A-BA-CA-D] (56

For example,

1 -1 1
[2 4 11|12 o 1|=[11 -1 8] (5.68)
1 1 2

(iv) If & and £ are both 3-by-3 square matrices, then the product £ is
also a 3-by-3 square matrix. The (i, j)th entry of L% is the scalar product
of row i of & with column j of R

A -7 ¢ ] [A-D A'E A-F
B ---({|ID E F|=|B-D B-E B'F (5.69)
C ;- : |/ [€C-D C-E C'F
For example,
1 -1 1)1 2 31 [0 2 4
2 0 113 2 1({=(4 6 8 (5.70)
1 1 2112 2 2 |8 8 8

Notice that the italicized statement in (iv) actually covers cases (i), (ii),
and (iii} also. Alert readers may observe that ¥ is also defined when % is
a column and £ is a row, but we have no use for such products here. (They
are related to the dyadics mentioned in Sec. 3.6.)

The most common use of matrices is in expressing a system of equations.
Two matrices are equal when they have the same dimensions and their
corresponding entries are equal.
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Example 5.10 Express the system of equations

x—y+ z=1
2x + z=2 (5.71)
X+y+2z=3

as a matrix equation.

Solution The reader can verify that

1 -1 1]]x 1
2 0 1{jy|=12 (5.72)
1 1 2|z 3

is equivalent to Eq. (5.71). The square matrix is the same as (5.59), and its rows A, B,
and C are identified in (5.60). The equations (5.71) can be written as follows, with
R = xi + yj + zk:

A-R=1
B:-R=2
C-R=3

Hence, R is the position vector to a point lying simultaneously in three planes, having
normals A, B, and C, respectively (recall Sec. 1.10).

Since matrix products can be interpreted as arrays of scalar products, it should
come as no surprise that matrix multiplication is linear in each factor; for any scalar s,

M+ N)B=SMR+ N R

(5.73)
LM+ N)=sLM+ LN

assuming all products are defined. The proof is left as an exercise.

Since scalar products are commutative, one would expect that matrix multiplica-
tion is also. Surprisingly, this is not the case! Consider, for example, the matrices in
(5.70) multiplied in reverse order:

1 2 3111 =1 1 8 2
32 1(]2 0 1{=}8 -2
2 2 201 1 2 8 0

The answer is different! The reason is that when we form £ # we use vectors
from the rows of ¥ and the columns of #; but when we form #£.% we use the
columns of & and the rows of Z. We are taking scalar products of different
vectors in the two cases. (In fact, if the dimensions do not match, Z.% may
be undefined.)

Let us consider the associative law. Is there any difference between
(L M)R and L (M R)? Notice that .4 must be square 3-by-3 if both products
are defined, in the context of “vector analysis matrices.”

One begins the computation of (Z.#)# by regarding the columns of
A as vectors. However, to compute (4 %), one starts with the row-vectors
of . Thus, we would expect the products to be different. Astonishingly,
they are the same!
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Example 5.11 Verify the associative law

(LMVR = L (MR) (5.74)
for &, M, and Z given by Egs. (5.57), (5.59), and (5.58), respectively.
Solution We computed £.# in (5.68); hence,

2
(MR =11 -1 8]|1{=22-1+40=061
5
M R was evaluated in (5.66); therefore,
6
LMR)=[2 4 1]| 9|=12+36+13=61
13

To prove (5.74) in general, we have to abandon momentarily the vector
interpretation of matrix multiplication, and work with the explicit formula
(5.67) in terms of the entries.

We introduce the notation A" = % .# and 2 = .# #. Then the (i, j)th
entry of the left-hand side of (5.74) is found by using (5.63) twice:

3 3 3 3 3
Z Ralkj = z <Z /ismsk) Tej = z z 1Ml (5.75)
k=1 s=1

k=1 k=1s=1

The (i,j)th element of the right-hand side of (5.74) is

3 3 3 3 3
Z Cindrj = Z an ( Z mksrsj> = Z Z LMyt (5.76)
k=1 k=1 s=1 k=1 s=1
Exactly the same terms appear in the final sums in (5.75) and (5.76), so they
are equal and (5.74) is proved.
One matrix plays a special role in linear algebra: it is the identity matrix
4 defined by

100 i Do
g=lo 1 o|l=|--j ---|=]|i j k (5.77)
00 1 k Do

It is called the “identity” because multiplication by .#, on the right or left,
produces no change.
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Another way to see this is

i o Al=[j Al=]A
k ] kA :

[« B -] 1 j ]:(=[B-i B'j B-'k]=[ B -]

Given a square matrix .4, we say Z is a right inverse of M if MR = 5.
For instancg, one should check that

M R g

1 -1 10[-1 2 -7 [1 0 0

2 0 1]]-2 1 il=]lo 1 0 (5.78)
1 1 2| &+ =1 1| |o o 1

so the second matrix is a right inverse of the first.

Notice the relation between the rows of .# and the columns of #: If
we express MR = S as

R

a® P> N
o = o Y
- O O

we see that
A-D=B-E=C-F=1
A-E=A-F=0 B-D=B:'F=0 C-D=C-E=0 (579

Whenever two sets of vectors {A,B,C} and {D,E,F} satisfy relations
(5.79), we say that one set of vectors is reciprocal, or dual, to the other set.
The considerations of Chapter 1 will enable us to find formulas for reciprocal
vectors (and, as a result, a formula for the right inverse).

Example 5.12 Derive the formulas for the reciprocal vectors for the set {A,B,C}.

Solution Examining (5.79), we see that D must be perpendicular to B and C. Let us
try D = sB x C. To make A - D = 1, we must choose s so that

SA*Bx C=s[ABC]=1
Consequently, if [A,B,C], which is the determinant of .#, is not zero, we find

BxC

= [A,B_,C] (5.80)
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Similarly,
CxA
=" 5.81
[ABC] 5D
AxB
= 5.82
and [ABC] (5.82)

On the other hand, if [A,B,C] = 0, then A, B, and C are coplanar, and it is easy to see
that no set satisfying (5.79) exists (Exercise 5).

This provides a formula for the right inverse: if [A,B,C] # 0, then a
right inverse for the matrix

A
M=1+ B
C
is given by
1 . . :
%=m B>'<C C>‘<A A>'<B (5.83)

If [A,B,C] = 0, no right inverse exists. The reader should verify (Exercise 7)
that the right inverse displayed in (5.78) is consistent with this formula.

Clearly, if we take the reciprocal set of vectors for the columns of .# and
arrange them in the rows of &, we obtain a left inverse of #,1e., LM = F.
Hence, if we now let A,B,C represent the columns of .#, we have

1 B xC : : :

A quick computation (Exercise 6) reveals that the triple scalar product of
the columns of .# equals the triple scalar product of its rows, which in turn
equals the determinant. So the existence of a left inverse also hinges on the
condition det (.#) # 0.

In Exercise 8 the reader is invited to compute the left inverse of the
matrix .# in Eq. (5.78). Rather surprisingly, the left inverse . turns out to be
equal to the right inverse #! To see this in general, we use the associative law,
together with the equalities .4 = # = MR, to derive

P =L I=LMRA)=(LMR=IR =R

The fact of the matter, as the reader will show in Exercise 9, is if a matrix .#
has any inverse at all, it has only one; and this one is both a left and a right
inverse. It can therefore be denoted .# ~', unambiguously. The condition
for having an inverse is that the determinant of the matrix must be nonzero.

-~
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The usefulness of an inverse in “undoing” a system of equations is illustrated
in the next example.

Example 5.13 Solve the system of equations given in Example 5.10.

Solution Consider the equations expressed in matrix form (5.72). If we multiply both
sides of that equation on the left by the inverse of the matrix, given in (5.78), we find
the solution:

|
|

[N

w N =
il
—_— N N

N B Rl

S O =
o = o
-0 O
N %
I

N =
Il

|
[SIEE N A NS

orx=%y=4%4z=1

Example 5.14 Derive a general formula for the solution of the system

Myy Myp Mz || X u
Ma1 My Myz (| Y]|=| 0V (5.85)
M3y M3y M3z | [ 2 w

where det .4 # 0.

Solution  First we form the left inverse of the square matrix. To achieve this, we have
to regard it as made up of column vectors:

Do 1 ExF
M=|D E F M= |- FxD
.. [D,EF]
Do | -~ DxE
Next we multiply on the left by .# ! to obtain
x x| ! ExF --||u
52 v|i=|lyl==—a=s| FxD --- v
D.EF
Aoz EFIL pe e
Looking at the first component, we find
u vw B
E v E F
E x F - (ui + vj + wk) F woo:
X = = —
[D.EF] D .
E D EF
F .

Identifying the parts of the original matrix .#, we have
U My Mys
U My My

W m3; My3

(5.86)

myy mMyy; My3
My My; My3

M3y M3z  May)
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Similarly,
my; U my3 my; my; U
myy U My myy My U
y= M3y W M3y - msz; Mz, W
My Myp My3 My My; My
My1 My Myj My My Myy
M3y M3; M33 mzy M3z Maz

These formulas are collectively called Cramer’s rule.

Exercises

1. Form the indicated products:

1 1 0 -1 3
@ [1 2 3]|2 @f 2 3{o0 1 1
3 0 -1 2 1
10 —1 12 311 0 -1
1 2 3]0 1 1 @21 1]fo 1 1
0 -1 2 Lt o2 3o -1 2
1 0 —1][1 1 0 —1][10 0 0
@fo 1 1{]|2 ®lo 1 1{lo 10 o
0 -1 2|3 0 -1 2|0 o 10

2. Prove that matrix addition is commutative and associative, and distributes with
scalar multiplication. (Hint: Exploit the vector interpretation.)

3. Prove the distributive laws (5.73).

4. Construct an example of two square matrices whose product is commutative.

5. Show that if A, B, and C are coplanar, then no reciprocal set of vectors exists.
(Do not forget to consider the possibility that they are collinear.)

6. Show that the triple scalar product of the columns of a square matrix equals the
triple scalar product of its rows.

7. Show that the right inverse in (5.78) agrees with the formula (5.83).

8. Using Eq. (5.84), compute the left inverse of the matrix in (5.59), and compare
with (5.78).

9. Prove that if det # # 0, .# has only one inverse.
10. Solve by computing the inverse:

2x+y+2z=2
3x + 2z=4
x+y+2z=0
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11. Solve Exercise 10 by Cramer’s rule.

12. Show that the inverse of a product equals the product of the inverses, in reverse
order;ie, (LA =R ¥ L.
The transpose of a matrix M is a matrix, #*, whose rows are the columns of the
original matrix M.

13. Show that the (j,i)th entry in .#7 equals the (i, j)th entry in .#.

14. Show that the transpose of a product is the product of the transposes in reverse
order; ie., (ZR)T = RTLT.
A symmetric matrix is a matrix that equals its transpose. An antisymmetric matrix
is a matrix that equals the negative of its transpose. An orthogonal matrix is a matrix
whose inverse equals its transpose.

15. Show that a symmetric matrix must have the form

Myy My My,
My My Miay

mzy M3y Mzz

Is the product of two symmetric matrices, symmetric?

16. Show that the columns of an orthogonal matrix are mutually orthogonal unit
vectors. Show the same for the rows. What does this say about the reciprocal sets?

17. Show that if @ is orthogonal and & is symmetric, then ¢~ 1% ( is symmetric.
18. Show that if 4 is antisymmetric, it has the form

0 —Mmyy my3
ma1 0 —M3;
—My3 msz, 0

Then show if Z is a column vector representing v, /% represents (ms,i + m3j +
my, k) x v.

19. Construct examples of systems of three equations of the form (5.85) whose solutions
constitute:
(a) a plane,
(b) a straight line, and
(c) the empty set.
(Hint: Remember the interpretation as the intersection of three planes.) What is
the determinant of the matrix in these cases?

5.4 OPTIONAL READING:
LINEAR ORTHOGONAL TRANSFORMATIONS

We now return to the study of different coordinate systems for describing
scalar and vector fields. An important case is the utilization of another
cartesian coordinate system (right-handed, of course), with axes labeled
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FIGURE 5.12

x',y,z" and their associated unit vectors i,j,k’. This “new” coordinate
system will have the same origin as the “old” x, y, z system (see Fig. 5.12).

Consider a point in space. The point’s coordinates in the old system are
(x,y,2) and in the new system they are (x',)",z'). To see how these are related,
draw the position vector R to the point (Fig. 5.12). Then we have two
descriptions of R:

R =xi+yj+zk=xiV+yj + 2k’ (5.87)
If we now take scalar products of (5.87) with i, j, and k in turn, we find

x=x1+i+yj-i+zk'-i
y=xij+yj-j+zk'-j (5.88)
z=xP-k+yj-k+zk -k
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Equation (5.88) can be compactly written

X X
yvi=21Y
z z

with the transformation matrix ¢ given by
i j-i k'-i
F=1J Vi K-j (5.89)
ik j-k k'-k

The matrix # has many useful and interesting properties. First of all,
observe that the columns consist of the direction cosines of the vectors
i, j’, k' with respect to the old coordinate system (recall Sec. 1.5). This is
sometimes an aid in computing #.

Example 5.15 Suppose the new system is formed from the old by rotating through an
angle 6 about the z axis, as in Fig. 5.13. Compute the transformation matrix _#.

Solution The direction cosines of i’ are cos 6, cos <g — 0), and 0. For j's, they are
cos (g + 9>, cos 0, and 0. For k’, they are 0, 0, and 1. Hence,

cosf§ —sinf O
F =|sinf cosf 0 (5.90)
0 0 1

From another point of view we can say that the columns of ¢ represent
the vectors 1, ', and k’ in the old coordinate system

J=1§j K (5.91)

, z, z' directed
toward reader

FIGURE 5.13
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This provides an easy prescription for the inverse of #. Since the set i i,
k' is self-reciprocal, by the analysis of Sec. 5.3, we find

- i i+j ik
Fl=§ =i §r) ik (5.92)
R K-i k-j k-k

The matrix # ! is the transpose of ¢, i.e., its rows are the columns of F.
A matrix whose transpose equals its inverse is called orthogonal (this
terminology was introduced in the previous set of exercises). We have shown
that the transformation that relates coordinates between two cartesian coor-
dinate systems having the same origin is effected by a matrix multiplication
(a linear operation) using an orthogonal matrix, hence the name “linear
orthogonal transformation.”
We can use # "' to get new coordinates in terms of old:

x’ X i-i i-j 7V-k][x
V=L y(=(¥"1 §-i ¥ik[|y (5.93)
Z z K-i K-j k-k||z

It is easy to see the reversal of roles: Now the first column is the direction
cosines of i with respect to the new system, and so forth. In fact, it is also
easy to see (Exercise 1) that the equations in (5.93) result from taking scalar
products of (5.87) with i, j/, k' in turn.
Now that we know how coordinates transform, let us see how vectors
transform. Obviously,
i=@0-"W+G-j)j+3G-k)k
=GO +G-Ni+G- KK (5.94)
k=& i)+ k-j)j+k-k)k
An arbitrary vector V will have the two representations
V=V:ii+V.jj+V-kk=V i+ V,j+ V;k
=Vi'V+ V- jji+ VKK =Vii' + Vo + V5K (5.95)
If we now take scalar products of (5.95) with i, j, and k, we see that the com-
ponents of V transform just like the coordinates of a point:

4 Vi Vi Vi
Val=21V; | =7 (5.96)
Vs V3 V3 Vs

What happens to a scalar field f(x,y,z) under the transformation? If
we think of f as representing, say, temperature, it is clear that we do not
change the value of f at a given point merely by changing coordinate systems.
However, the three numbers describing the point’s coordinates do change;
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so the formula for f, or its functional form, will be different. Let us consider
an example before attempting the general formulation.

Example 5.16 Suppose f(x,,2) = y* — x* in the old coordinate system. The linear
orthogonal transformation of Example 5.15 is performed, with 6 = n/6. What is the
value of f at the point whose coordinates in the new system are (1,1,0)?

Solution Before we can apply the formula y? — x? for f, we must find x and y, ie.,
the original coordinates of (1,1,0). Using the transformation (5.39) with # given by
(5.90) and 0 = /6, we find

x=x cos 6 —y sin = 1(/3/2) - 1(1/2) = \/32—
y=x'sin 6 + y cos 6§ = 1(1/2) + 1/3/2) = \/§2+ 1

Hence y? — x? = /3, the value of f.

Notice that the value of f could not be computed by taking f(x',y’,z)) =
y'2 — x> =1—1=0. First we have to express the original coordinates in
terms of the new, and then apply the formula for f to the original coordinates.
In other words, to express a function f(x,y,z) in a new coordinate system,
f'(x',y',2"), we first express the old coordinates in terms of the new,

x = x(x(’.))/7z,)
y = yx.y.Z) (5.97)
z = z(x,y,2')

[as in (5.88)], then plug into the original functional form for f:
[(x,y.2) = f(x(X,y,2), y(x',y',2), 2(x',y',2)) (5:98)

In particular, the transformed function should not be written as f(x',’,2),
as this is literally incorrect. (However, this notation is often used for abbre-
viation when there is no possibility of misinterpretation.)

In Example 5.16, the function f(x,y,z) = y* — x? is computed in the new
system by

F(x,y,2) = (X' sin @ + ' cos 0)> — (x' cos 6 — y' sin 6)?
— (52 — x'*) cos 26 + 2x'y’ sin 20 (5.99)

The transformation of vector fields is doubly complicated; one must
get new components in terms of old through the transformation (5.96), but
since the components are functions of position the rule (5.98) must be employed
on each component. Thus, first we use (5.98) to express the old (i,j,k) com-
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ponents of V in terms of the new (x',’,z’) coordinates of the point in space:
V = Nx(xX,y.2),y(x,y,2)z2(xX,,'2))i
+ Valx(x'+)j + V(¥ )k

Then we use # ™' to get the new components of V. To summarize, we state
the rule for transforming a vector field: if V is given in the old system by

V= Vi(xy,2i + V(x,3,2)j + Vs(x, p,2)k (5.100)
and in the new system by
V=Vi(xy, 0 + Vi, y,2)j + Vix,y,2)k' (5.101)
then the components are related by
1(x,,2) Vi(x(X, y,2) px',y',2),2(x, ', 2') )
2x5Y52) | = V(Y 2 Y )2 (x Y ) | (5.102)
,i’»(xl’ y’,Z’) V3(X(X/, yl7Z,)7 J’(xl, y',Z/),Z(X/, y/’zl) )

Example 5.17 Express the vector field
V=i+(y2)j+ x>+ )k (5.103)

in the new coordinate system of Example 5.15.
Solution We use the matrix ¢ in Eq. (5.90) to transform coordinates via (5.89), and
we use its transpose for # ~1; hence,

Wx,y,2) ( cosf sinf O|[1

2x,y.2) | =[—sin@ cos@ O|(x sin6+ y cosb)z

Vi(x,y,2) | 0 0 1] |(x'cos@—y sin0) + (x'sin 8 + y' cos 6)

( cos @ + x'z' sin6 + y'z’ sin @ cos 0
= |—sin @ + x'z’ sin @ cos 6 + y'z' cos? @
| XIZ + y/2

and
V = (cos 0 + x'z’' sin? § + y'z’ sin 6 cos O)’
+ (—sin 6 + x'z' sin 6 cos 6 + 'z’ cos? )
+ (X2 + yAK' (5.104)

Now we turn to the question of what happens to the vector operators
grad, div, and curl when we transform coordinates. As a preliminary experi-
ment, consider the following example.

Example 5.18 Let f(x,y,2) = y> — x2. Apply the linear orthogonal transformation of
Example 5.15. Compare the expression
' o YT

—i+—j+-= 5.105
ox T 0yJ + 0z ( )
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with the analogous expression in the new coordinates

o ., o ., o
ax’l +0y’] +Oz’

k' (5.106)

Solution The transformed function f’ was computed in (5.99), and (5.106) becomes
(—2x’ cos 20 + 2y sin 20)i’ + (2x’ sin 26 + 2y’ cos 26)J’

Now let us compute (5.105) and then transform the resulting vector field to the new
system.

of . of . o . .
i+ k=—2i+2
8xl+2yj+az x1+ 2)])
Applying (5.102),
—2x(x,y',2) [ cosf sin@ O] [—2x cosf+ 2y sinb
I yxy,Z)|=1—sinf cosf O 2x' sin 6 + 2y’ cos 8
0 L 0 0 1 0

"—2x" cos 26 + 2y’ sin 20
=| 2x'sin 26 + 2y’ cos 20
0

Hence, (5.105) transforms into (5.106) and they describe the same vector field.

Of course, both expressions in the last example represent Vf, computed
in different coordinate systems. The reason they resulted in the same vector
field is that grad f can be characterized without reference to any coordinate
system; it is a vector pointing in the direction of maximum rate of change
of f with respect to distance, and having length equal to this maximum
rate of change. The same argument that showed grad f could be computed
by (5.105) in the old coordinate system also shows it can be computed by
(5.106) in the new coordinate system.

Similarly, the divergence of a vector field can be defined in a coordinate
free manner, thanks to the divergence theorem (recall the last paragraph
of Sec. 4.10). If we compute div V as the flux per unit volume out of a box
with sides perpendicular to the (x, y,z) axes, we get

oV, oV, Vs
—— e+ == 107
ox + Jdy 0z (5107)
If we use a box with sides perpendicular to the (x',y’,z) axes, we get
ovy, avy oV
! 2 3 (5.108)

o Ty T

Since they both represent div V, (5.107) and (5.108) are the same scalar field,
expressed in different coordinates.
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Example 5.19 Verify this statement for V as in Example 5.17.

Solution Applying (5.107) to (5.103), we obtain V- V = z. Applying (5.108) to (5.104),
we obtain z'sin? 0 + z' cos? § = z. Since z' =z for this transformation, these are
the same.

Of course, we can say the same about curl V. Because of Stokes’ theorem,
the component of curl V in any direction is the “swirl”” of V in that direction,
a concept defined without reference to a coordinate system (recall Exercise 1
following Sec. 4.12). Hence, the vector field

i j k
0 ¢ 0
Z 2 5.1
ox 0y 0z (5.109)
v, n
transforms to the vector field
il jl k/
6 0 0
. . 110
ox' oy o7 © )
Vi Vi Vi

and they both equal curl V. Exercise 7 asks the reader to verify this for the
vector field (5.103).

The following example reveals another interpretation of the matrix 54
in (5.89).

Example 5.20 Verify that (5.105) and (5.106) describe the same vector field for a
general linear orthogonal transformation.
Solution  The functional forms f and f” are related by Eq. (5.98); hence,
UYLy 2, (Y2 2(xy' 7))
ox' ox' :

o 6x+6f oy of oz
T ox ox 0y 0x' 0z ox'

(5.111)

by the chain rule. Similar equations hold for df'/dy’ and of'/oz.
From the equations (5.88), we find

ox .. 0x . ax o dy .
5;-—1 i 6)}/—] i z?_z’_k i ax’*l j (etc)
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In other words, the partial derivatives of the old coordinates with respect to the new
coordinates are the entries of the matrix #:

[ox  Ox 0x |
ox' oy 07
P (5.112)
ox' dy o7
0z 0z Oz
Lax’ oy 07 |

Hence, we can see that (5.111), and the corresponding ¥’ and z’ equations, can be used
to express the vector (5.106) by way of the following matrix product:

[af' of' af}_[af of af]
o oy o7 |ox oy o2)”

Taking transposes and remembering that ¢ is orthogonal, we find

_%_ _ gﬂ
ox’ ox
of’ _of
= — 5113
3y F 2 ( )
o o
L@z’_ L('32_

But the right side of (5.113) is precisely what we obtain by applying the transformation
rule (5.102) to the vector (5.105)! Hence, (5.105) and (5.106) describe the same vector field.

Y
A X

¥ (xo0, Yo, 20)

FIGURE 5.14
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The analogous verifications of the “invariance” of the formulas for
divergence and curl are left to the Exercises.

The fact that ¢ is the matrix of partial derivatives is reflected by the
following, alternative notation:

0(x, y,z)
CAxLy.E)
The terminology, “Jacobian matrix,” is often used when one refers to the
matrix of partial derivatives—hence the symbol “ ¢,
 Finally we would like to extend the analysis of this section to a slightly
more general type of transformation. Suppose that the origin of the new
coordinate system does not coincide with the origin of the first; it is located
at, say, the point with coordinates (x,, y,,Zo) in the old system (see Fig. 5.14).
Then if a point P has old coordinates (x, y,z) and new coordinates (x',v,2),
the vectors R, and R, in Fig. 5.15 are related by

Rl = RO + R2
xi + yj + 2k = xoi + yoj + zok + xi + y'j + 2K’ (5.114)
Taking scalar products of (5.114) with i, j, and k in turn lead to

5

’

x Xo X
Y =y |+ 2|y (5-115)
z Zp z

with ¢ defined as before, from Eq. (5.89). Thus, coordinates of a point do
not transform by a linear orthogonal transformation in this case; Eq. (5.115)
describes an affine transformation.
However, vectors still transform according to the old rules (5.95) and
(5.96) because they are free; shifting the origin makes no difference to them.
Moreover, the vector operators grad, div, and curl retain their “invariant”
formulas, again because they can be defined without reference to a coordinate

FIGURE 5.15
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system. Even the direct proofs of their invariance, as exemplified by Example
5.20, can be carried out unchanged because the matrix of (5.89) is still the
matrix of partial derivatives. The reader should review Example 5.20 to be
sure this point is understood. ,

Consequently, most of the analysis we have developed for transfor-
mations between cartesian coordinate systems having the same origin holds
for transformations between cartesian coordinate systems located at different
origins. This includes the orthogonality of the matrix #, the rules (5.96) for
transforming vectors, the rules (5.98) and (5.102) for transforming scalar and
vector fields, and the expressions (5.106), (5.108), and (5.110) for grad, div,
and curl. The only difference is the appearance of the nonhomogeneous
“shifts” in the equation (5.115) relating point coordinates.

Exercises

1. Show that Eq. (5.93) can be derived by taking scalar products of (5.87) with ', §,
and k' in turn.

2. (a) Derive the matrix for the transformation generated by rotating the (x, y,z) system
about the x axis through an angle ¢.
(b) Repeat part (a) if the (x, y,z) system is rotated about the y axis through an angle y.

. Verify that the transpose of ¢ in (5.90) equals its inverse.

. IfV=3i+4j+kand W=2i — j — k, compute V and W in the new coordinate
system of Example 5.15. Verify that the scalar product V + W remains the same.

5. Consider the scalar and vector fields
Sfix,y,2) = xyz
V(x,y,2) = xzi + j + xyzk

s W

If the coordinate transformation of Example 5.15 is performed with 6 = n/6, express
the following fields in the new coordinate system:

(a) the scalar field f

(b) the vector field V,

(c) grad £,

(d) divV, and

(e) curl V.

6. Repeat Exercise 5 for the fields
f=xt+y
V=xi+yj+zk
Interpret the results.
7. Verify that for the vector field in (5.103), the computation of curl V via (5.109) in

the old system leads to the same vector field as the computation of curl V via (5.110)
in the new system, for the transformation of Example 5.15.

8. Modeling Example 5.20, give a direct proof of the “invariance” under a general
linear orthogonal transformation (5.88), of
(a) the divergence of an arbitrary vector field and
(b) the curl of an arbitrary vector field.
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11.

12.
13.

14.

15.

16.

17.

18.

19.

. Repeat Exercise 8 for a linear orthogonal transformation plus shift (5.115).
10.

Is the laplacian of a scalar “invariant” under the transformations considered in this
section? Consider your answer on the basis of

(a) laplacian = div grad and

(b) Exercise 11 following Sec. 4.10.

What is the element of arc length, ds = (dx? + dy? + dz%)?, in the new coordinate
system?

What is the volume element, dV = dx dy dz, in the new coordinate system ?

Suppose a new x',)',z’ coordinate system is related to the original system by a linear
orthogonal transformation described by a matrix _#, as in (5.89), and a “still newer”

i

x",y",z" coordinate system is related to the “new” system by a linear orthogonal
transformation generated by a matrix #". Show that the x”,y”,z” system is related
to the original x, y,z system by a linear orthogonal transformation, with the asso-
ciated matrix given by (#%’). Prove directly that the product of two orthogonal

matrices is orthogonal. What interpretation can you give to the columns of (FA)?
Compute the matrix # associated with the following sequence of operations, taking
the x, y,z axes into the corresponding x',)’,z’ axes:

(a) First rotate through an angle 7/4 about the z axis.

(b) Then rotate through an angle n/2 about the “current” y axis.

(c) Finally rotate through an angle (—n/4) about the “current” x axis.

Show directly that scalar products are preserved under the general linear orthogonal
transformation (5.96); ie., show that VW, + V,W, + V,W, = ViW, + V, W} +
V3W3 when the components of V and W are related by (5.96). This provides vefi-
fication of the (obvious) fact that lengths and angles are preserved under these
transformations.

Show that under the linear orthogonal transformation (5.88) there is a straight line
through the origin; all of whose points have the same coordinates before and after
the transformation. That is, for all points on this line, x = x’, y = )’ and z = 7.
[Hint: If R is the position vector of a point on the line, then R -i = R - i’; hence
R-(i-1)=0 Similarly, R-(j—})=R-(k—k)=0. Ifi=1 or j=j, there is
nothing to prove, so try R = (i — i) x (j — j).]

Based on the last two exercises, can you derive Euler’s theorem: every transformation
of the form (5.88) can be described as a rotation of the coordinate system about
some straight line through the origin?

Euler’s theorem implies that the sequence of operations in Exercise 14 is equivalent
to a single rotation about some straight line. Find the line, and the angle of rotation.
As a partial converse to the theory developed in this section, suppose we begin with
a transformation of coordinates defined by

(5.116)

- =
Il
Sa
\<‘

(8]
[N

and we know only that ¢ is an orthogonal matrix.

(a) By examining the points with new coordinates (1,0,0), (0,1,0), and (0,0,1) in turn,
show that the columns of #, interpreted as vectors expressed in the old system,
point along the new x’, y/, and z’ axes.
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(b) Exploit the orthogonality of ¢ to prove that the new axes are mutually orthog-
onal and that (x'% + y2 + z’2)* equals the distance of (x',y’,z’) from the origin.
(c) From (a) and (b) we may conclude that the new system is a bonafide cartesian
coordinate system. However, it may be left-handed, as the simple example

pe 1 0 0l x
y|=1(0 1 (ARRY%
z 00 —-1]|7

shows. What modifications of rules (5.96), (5.98), (5.102), (5.106), (5.108), and
(5.110) have to be made when transforming to a left-handed system?

(d) How can you determine, from the matrix ¢, whether or not the new system is
right-handed?

20. Generalize Exercise 18: Given an arbitrary orthogonal matrix # that generates a
transformation via (5.116) and given that the new system is right-handed, show how
to compute the angle and axis of rotation in terms of #.

-21. Derive the matrix for the transformation generated by rotating the x, y, z system
through an angle 7/2 about the straight line through the origin parallel toi + j + k.

22. Generalize the previous exercise: Derive the matrix for a rotation of the x, y, z

system through an angle 0 about a straight line through the origin parallel to n.

23. (Significance of the Jacobian). Obviously the transformation equations (5.33) for
orthogonal coordinates are, in general, nonlinear. However, the relation

R JR JR
dR=6—~du1 + 2 duy + — dus (5.117)
Ou, du, Jus
between the differentials can be viewed as a “local linearization” of Eq. (5.33).
(a) Show that (5.117) can be expressed

T 1 [ox ox ox [, ]
d — — — |4
X Ou; Ou, Ouy ul
dy 0Oy 0y
v |l=122 22 g 5.118
Y 0u1 (3u2 au3 Y2 ( )
0z 0z Oz
d — — — |4
L Z_ | Ouy  Ouy Ouz || u3_

Recall that the matrix of partial derivatives in (5.118) was identified in this
section as the Jacobian of the transformation (5.33). It is abbreviated
_ dxp2)
Ouy,uz,u3)
(b) Show that the chain rule implies that the inverse of the Jacobian is
[Ou;  Ouy;  Ou, |
ox oy oz

_a(ul,uz,us)__ Ouy Ouy  Ouy

R

- == == 5.11
o(x, v,2) ox dy 0z (5-119)

| ox oy oz |
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(c) Show that the requirement of (u;,u,,u;) forming orthogonal curvilinear coor-
dinates forces the rows of # to be orthogonal. Nonetheless, # is not an orthog-
onal matrix. Why?

(d) Show that the determinant of ¢ is hyh,h;, the factor appearing in the volume
element (5.50). This prompts the mnemonic

0(x,),2)

du, duy d
a(ul’u27u3) @2 it

dxdydz = 1




Review Problems

. Vectors from the origin O to four points 4, B, C, D are given as follows:
A=12 B = 3j C =4k D=i+j+2k

(a) Find the length of the perpendicular drawn from A4 to the plane BCD.

(b) Find the length of the common perpendicular to the lines AB and CD.

(c) Find a vector parallel to this perpendicular.

. The vertices of a regular tetrahedron are OABC. Prove that the vector 04 +
OB + 0C is perpendicular to the plane ABC.

. Find the angle which the plane OA4B makes with the z axis, if 4 is the point (1,3,2)
and Bis (2,1,1).

. Given the points 0(0,0,0), A(1,2,3), B(0,—1,1), C(2,0,2).

(a) Find a vector perpendicular to the plane OAB.

(b) Find the distance from C to the plane OAB.

. Determine the shortest distance from the point (3,4,5) to the line through the origin
parallel to the vector 2i — j + 2k.

. Write the scalar equations of the line parallel to the intersection of the planes
3x + y +z =35, x — 2y + 3z = 1 and passing through the point (4,2,1).

. Given the points P;(2,— 1,4), P,(—1,0,3), P5(4,3,1), and P,(3,—5,0), determine

(a) the volume of the tetrahedron P, P,P;P;

(b) the equation of the plane containing the points P;, P,, and P;;

(c) the cosine of the angle between the line segments P, P, and P, P;.

. Write an expression for a vector 5 units long, parallel to the plane 3x + 4y + 5z =10
and perpendicular to the vector i + 2j + 2k.

. Let A, B, C, and D be position vectors of the points A(1,3,—2), B(3,5,—3),
C(—5.9,—5), and D(4,—1,10), respectively. Find

(@) |A —D| ) A-C)-(A—-B)

(b) AxB (d A-BxC.
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Given the four points specified in Exercise 9, determine

(a) the area of the triangle OAB;

(b) the volume of the tetrahedron OABC;

(c) the angle CAB.

By vector methods, prove that the angle subtended at the circumference by a

diameter of a circle is a right angle.

Let POR be a triangle. By vector methods, show there exists a triangle whose

sides are parallel and equal in length to the medians of PQR.

(a) How many unit vectors make equal angles with the vectors a =2i + 2j + k
and b = 3i + 4k?

(b) Find the unit vector u that bisects the angle between a and b.

Write (u x v) * (u x v) as a determinant involving only scalar products.

Ifu, v, and w are vectors, is it necessarily true that (u X v) x w =u x (v x w)?

Given that u, v, and w are nonzero vectors having the same magnitude and

(u x v) x w=u x (v x w), what can you say about u,v, and w?

Find the distance from the point A4(3,7,2) to the plane passing through B(5,10,8)

that is perpendicular to the line 4B.

Find the distance from the origin to the plane through (3,2,6) that is perpendicular

to the z axis.

Find the distance from the origin to the plane passing through (3,4,2) that is per-

pendicular to the line joining (1,2,3) and (3,5,9).

A plane has intercepts (4,0,0), (0,6,0) and (0,0,12). Find the equations of another

plane through (6, —2,4) that is parallel to this plane.

Show that the curve x =1, y = 2¢2, z = > intersects the plane x + 8y + 12z = 162

at right angles.

Find the point on the sphere x* + y? + z? = 84 that is nearest the plane x + 2y +

4z =171.

Find the point on the ellipsoid x? + 2y® + 3z%> = 6 that is nearest to the plane

x+2y+3z=8.

By vector methods, find the point on the curve x = ¢, y = t2, z = 2 at which the

temperature ¢(x, y,z) = x* — 6x + y? takes its minimum value.

What point on the curve x =t, y = 12, z = 2 is closest to the surface x2 — 6x +

Y2+ 7=0?

At what angle does the curve x =1t, y =2t — %, z =2t* intersect the surface

x2 + y* + 3z% = 14 at the point (1,1,2)?

The velocity field of a fluid is described by Fig. 3.6. A quantity of fluid occupies a

spherical region centered at P at time ¢ = 0. Describe the region occupied by the

same particles a short time thereafter. Will the region be spherical ?

Let R = R;i + R, j + R;k be a vector function of the time ¢, and let

dR| _dRy,  dR,.  dR,
arl, ~ ar T a T a

be the time rate of change of R computed on the assumption that i, j, and k do not
vary with time. Now suppose that i, j, and k do vary with the time ¢, but only as a
rigid system (they remain mutually perpendicular unit vectors). Show that, at any



274

29.

30.

31.

32.

33.
34.
35.

37.

38.

39.

40.

41,

42.

Review Problems

instant of time ¢, there exists a vector @ such that the actual rate of change of R is

dR _ dR " R
a dil, @ x

(The letter m denotes moving ; (dR/dt)],,, is the rate of change relative to the “moving
frame™ i,j.k.)

If R, denotes the position vector of a point P relative to an origin O, in the xy
plane and R, denotes the position vector of the same point relative to another
origin O,, then |R,| + |R,| = constant is the equation of an ellipse with foci O; and
0,. Use this observation to prove that lines O P and O, P make equal angles with
the tangent to the ellipse at P. [Hint: grad (R,| + |R;|) is normal to the ellipse. |
Find the angle between the surfaces z = x? + y? and x% + y? + (z — 3)* = 9 at the
point (2,—1,5).

Given f(x,y,z) =2x>+y and R = xi + yj + 2k, find (a) Vf, (b) V- R (¢} V%,
@V x(fR)

IfF = x% + xyj + zk, evaluate each of the following at the point (—1,2,3): (a} V°F,
(b)Vx F,(c)V-F.

Evaluate V2[(i + j + k) x V(R - R)*], where R = xi + yj + zk.

Evaluate V In(xyz — 5) at the point (1,2,3).

Evaluate A- VR + V(A -R) + A -V x R, where A is a constant vector field and
R=xi+yj+zk

. If r2 = x> + y? + z%, R = xi + yj + 7k, and A is a constant vector field, find

(@) V- (r2A) (f) R- V(A - RA)
(b) V x (r?A) (@ V- (A xR)
(©) R V(r?A) (h) V x (A x R)
d) VA - R (i) V3R -R)

(e) V- (rA)

Consider the potential ¢(x,y,z) = xyz.

(a) Find a vector normal to the equipotential surface through the point (1,2,3).

(b) Find d¢/ds at the same point, if s is measured in the direction of the vector
6i + 3j + 2k.

Given ¢(x,y,z) = z2 — x — y, determine

(a) an equation of the plane tangent to the surface ¢ = 2 at the point (—2,4,2);

(b) equations of the line normal to the surface ¢ = 2 at the point (—2,4,2);

(¢) the derivative of ¢ at (— 2,4,2) in the direction of the vector 3i — 2j + 6k.

What angle does the vector 3i + 4j + Sk make with the surface xy — z? = 3 at the

point (3,4,3)?

If » is the distance from the origin to the point (x,y,z) and A is a constant vector,

evaluate
1 1
VIA'V- )]+ Vx|AxV-
r r

For what value of the constant C is the vector field V = (x + 4y)i + (y — 32)j +
Czk the curl of some vector field F?

Find curl [ f(r)R] where R = xi + yj + zk,r = |R|, and [ is a differentiable function,
(a) by direct calculation,

(b) by geometrical interpretation.
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Given Maxwell’s equations in free space,

JH JE
V-E=0 V-H=0 VxE=—— VxH=—
ot ot
show that E and H both satisfy the wave equation
ot
Vu=z
x+y

, show that V¢ x Vi = 0.
1 —xy

Do the preceding exercise without explicitly calculating V¢ or Vi

can you conclude about the isotimic surfaces ¢ = constant and y = constant?
Given w = up, where u and v are scalar fields, show that Vw - Vu x Vo = 0,
(a) by direct calculation,

(b) without calculation.

. Generalize the result of the preceding exercise.
49.

If F and G are conservative fields, is F x G necessarily conservative? If not, what
can you say about F x G?

Find the surface integral {[F - dS over the surface of the cylinder x2 + y* =9
included in the first octant between z = 0 and z = 4, given that F = yi + (x + 2)j +
(x*sinyz)k. (By using the divergence theorem this can be reduced to a simple
problem in arithmetic.)

By a symmetry argument, or otherwise, show that f(x*> — y?)ds = 0, when the line
integral is taken around a circle x> + y? = a? in the xy plane.

Evaluate {{s(V x F) - dS where F = yi + (x — 2x%z)j + xy°k and § is the surface
of a sphere x* + »? + z% = a® above the xy plane.

Use Green’s theorem to derive the formula 4 = nab for the area of an ellipse.
[Hint: IfF = $(—yi + xj), curl F = k. ]

Evaluate [{5:3(15x* — 3x?y?)dx — 2x3ydy along the path 2x* — 6xy> + 23y = 0.
Surface and volume integrals of vector-valued functions are defined as for numeri-
cally valued functions. Alternatively, they can be defined by simply integrating the
X,y, and z components (which are numerical) separately. Show formally that
{{{o V¢ dV = [[séndS by applying the divergence theorem to F = ¢C where C is a
constant vector field.

Similarly, derive the identity

[[f vxaav={]nxads

where n is the outer normal to S, the boundary of D.

Give a vector interpretation of each of the following. The notation is that used in
Sec. 4.10.

(@) tim 24
7

V-0

(b) lim

V-0

{fsnx Fds
V
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58. Parabolic cylindrical coordinates (u,v,2) are defined by x = (> — v3), y = w,z =z
where — 0 <u< 00,020, —0 <z < . In order to make use of the formulas
in Sec. 5.2, it is necessary to know the scale factors h,, h,, and h,. Determine these
scale factors.

59. What is the element of volume in parabolic cylindrical coordinates?

60. (a) Write div A in parabolic cylindrical coordinates.
(b) Write Laplace’s equation V?¢ = 0 in parabolic cylindrical coordinates.



APPENDIX A

Historical Notes

Itis not really possible to appreciate the history of vector analysis without
knowing something of the history of mathematics in general, and this is too
broad a topic for us to discuss here. We shall confine our remarks to certain
specific topics, and let the interested reader pursue the subject further else-
where.

The word “vector” comes from a Latin word meaning “to carry” and
is still sometimes used to mean “that which carries”. For example, one says
“the mosquito is the vector of malaria.” The word entered mathematics via
astronomy, where it was originally used with a somewhat different meaning.
The notion of vector addition was arrived at independently by Mdbius and
others in the early part of the nineteenth century, thus giving rise to vector
algebra. Vector analysis is somewhat more recent. For example, the notion
of curl apparently was introduced by J. C. Maxwell in his Treatise on Elec-
tricity and Magnetism (1873).

The notation used in this book is essentially due to J. Willard Gibbs,
whose book on vector analysis was printed privately in the early 1880’s, and
Oliver Heaviside, whose book on Electromagnetic Theory (1893) makes
hilarious reading because of his jibes at mathematicians.

One of the most interesting events in the history of vector analysis is the
controversy that once existed between exponents of vector analysis and a
few other mathematicians who felt that quaternions were more suitable for
solving problems in physics. Before proceeding, let us briefly discuss the
algebra of quaternions. Quaternions are formally similar to complex num-
bers, so let us first consider the background of the idea of a complex number.

277
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As long ago as 1545 a mathematician (Cardan) “solved” a problem in
algebra that has no real solutions. The problem is to find two numbers whose
sum is 10 and whose product is 40. Cardan gave a formal solution, involving
the square root of a negative number, and verified by substitution that these
“fictitious numbers” have the required properties. As early as 1629, Girard
suggested that such “impossible solutions” should be considered for three
reasons: one can give a general rule for finding roots of certain equations,
these solutions supply the lack of other solutions, and they may in any event
have their own usefulness. In 1673, Wallis pointed out that numbers such as
/—1 should be just as legitimate in mathematics as negative numbers. One
cannot have \/—_1 eggs in a basket, but then neither can one have —7 eggs
in a basket. Wallis came very close to giving the usual geometrical inter-
pretation of complex numbers. It remained for a Norwegian surveyor Wessel
to do this in 1797. (Argand did it independently in 1806, which is why the
term Argand diagram is used. Wessel published his work in an obscure
journal and did not receive credit during his lifetime.)

It was not until 1831 that Gauss put complex numbers on a respectable
basis. Since some readers of this book may have learned complex numbers
from a viewpoint that predates 1831, let us briefly review complex numbers.
A complex number is an ordered pair (x,y) of real numbers. They are added
and multiplied by (real) scalars as if they were row matrices. However, the
product (x,,y;)(x5,y,) of two row matrices is not defined in matrix algebra.
We define the product of two complex numbers according to

(X1, 1)(X2,¥2) = (X1X2 = Y12, X1¥2 + X2 )1)
If we identify (1,0) with the real number 1, and let i denote (0,1), then

(2, ») = (x,0) + (0,y) = x(1,0) + ¥(0,1) = x + yi

which is the usual notation for a complex number (except for electrical
engineers, who use j instead of i). Moreover, we have i2 =(0,1)0,1)=
(—1,0) = —1, so it is now possible to square a number and obtain a negative
number.

Now we recall that multiplication by cos + isin6 has the effect of
rotating a complex number through an angle 6. Hence, rotations in a plane
can be obtained by identifying the plane with the Argand diagram and the
rotation with the operation of multiplying by cos 6 + isin 6. This suggested
to W. R. Hamilton that rotations in space might be similarly obtained, if
there were some way to multiply triples of numbers to obtain a system of
“hypercomplex” numbers that would provide a three-dimensional analog of
the complex number system. Apparently this problem troubled him for a
period of fifteen years. This is not too surprising when one considers that,
up to the time of Hamilton, it was generally assumed that the commutative
law xy = yx was a necessary condition for the consistency of the rules of
algebra. Hamilton is credited with the realization that this is not the case;
actually, Gauss had the same idea earlier but did not publish his work.
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The realization that a noncommutative algebra is needed is still not
enough. Hamilton was still trying to do the impossible. It was proved later,
by Frobenius in 1878, that it is impossible to multiply ordered triples in such
a manner that the resulting algebraic system will have all of the properties
Hamilton desired. Evidently Hamilton suspected this himself. It was on a
famous day, October 16, 1843, when he was out walking with his wife, that
Hamilton, in a great flash of insight, conceived of the quaternions. It is said
that he carved the fundamental formulas of this new algebra in the stone of
Brougham Bridge, on which he happened to be at the moment. He imme-
diately recognized the importance of his discovery (some might say invention)
and devoted the remainder of his life to quaternions.

At first glance, a quaternion looks like a cross between a complex number
and a vector. The usual form for writing a quaternion is

X =Xg+ Xqi + X5j + x3k

Quaternions are added and multiplied by real numbers in the obvious
manner. The product of two quaternions is defined by formally multiplying
them out according to the usual rules of algebra (except that we must be
careful to preserve the order) and then simplifying the resulting expression
by using the following rules:

i=—-1 j2=-1 k*=-1
ij=k jk=1i ki = j
ji=—k  ki=—i ik=—j

An example will illustrate the procedure. If, for instance, x =3 — i +
2j + k and y = 3j — 2k, we have

Xy =03 —i+2j+k)3j— 2k
= 9j — 6k — 3ij + 2ik + 62 — 4jk + 3kj — 2k?
=9j — 6k —3k—2j — 6 — 4i — 3i +2
= —4—7i+7— 9%

It can be shown that the quaternions constitute a division algebra. That
is, to each quaternion x # 0, there is a quaternion x~ ! such that xx ! =
x~!'x = 1. We shall not digress to show how an inverse is computed. It is
important to note, however, that we cannot write y/x, since this would be
ambiguous. We must write either x~ 'y or yx ! and, since multiplication of
quaternions is not commutative, these two expressions may not be equal.

The real part of a quaternion x, + x;i + X,j + x3k is the number x,,.
If the real part of a quaternion is zero, the quaternion is called a pure quater-
nion. In applying quaternions to problems in physics or geometry, pure
quaternions are identified with ordinary vectors in three-dimensional space,
as the notation suggests. '

If x and y are pure quaternions, the real part of xy turns out to be the
negative of the scalar product x - y (computed by the usual formula), and the
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pure quaternionic part represents the vector product x x y. Thus it is pos-
sible to do with quaternions many of the things one ordinarily does in vector
analysis by using scalar and vector products.

Although the quaternions comprise a four-dimensional division algebra,
rather than a three-dimensional one, it turned out that quaternions fulfilled
the needs envisaged by Hamilton. It is possible to represent rotations by the
use of quaternions, although not so simply as one might have wished, and in
general there is a certain awkwardness in the use of quaternions. After
working for ten years, Hamilton published his Lectures on Quaternions (1853);
his Elements of Quaternions appeared in 1866, the year after his death. In-
cidentally, the earliest use of the word vector (in the mathematical sense),
according to the Oxford dictionary, is in this work.

Hamilton had one devoted disciple, P. G. Tait, who mastered all the
tricks of quaternions, and devoted himself to the cause of convincing one
and all that quaternions were the ultimate tool for geometers and physicists.
There were others who disagreed.

At about the same time that Hamilton made his remarkable discovery,
H. G. Grassmann published a work called the Ausdehnungslehre, or the
Theory of Extension. In this remarkable book, both matrix theory and tensor
algebra are developed implicitly, but because he filled the book with philo-
sophical abstractions, and because of its difficulty, the book was essentially
ignored by mathematicians. A second edition was published in 1862, but
the work was not much appreciated until the twentieth century.

The vector analysis of Gibbs and Heaviside, and the various generalities
in this chapter, are more closely related to the Ausdehnungslehre than to
anything Hamilton did. Grassmann introduced various types of “products”
of vectors, and set things up for Gibbs to invent dyadics, and discussed linear
transformations in general. The notion of a linear associative algebra was
developed by Benjamin Peirce in the 1860’s. The only other name we shall
mention is that of Cayley, who was eminent for (among other things) con-
ceiving of n-dimensional space (as did Grassmann) and who published a
Memoir on the Theory of Matrices in 1858.

A delightful controversy took place between Gibbs and Tait concerning
the merits of the use of quaternions in solving problems in geometry and
physics. There is a certain beauty and mathematical elegance in the quater-
nions, but they are not very well adapted to practical use. Tait viewed vector
analysis as a “hermaphroditic monster” and did not hesitate to express this
view in print. The replies of Gibbs can be found in his collected works,
available in any library, and they are both entertaining and instructive to read.
By the beginning of the twentieth century, vector analysis was well estab-
lished, and it was amply demonstrated that Hamilton and Tait were overly
optimistic in their thought that quaternions would be as revolutionary to
mathematics as was the invention of calculus. The revolutionary idea con-
tributed by Hamilton was simply that it is possible to have a self-consistent
algebra in which multiplication is not commutative.
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Exercises

1. Show that, if u and v are pure quaternions,
U= —u*v+uxy

2. Show that if the vectors u and v are identified with pure quaternions,

uv + vu
u'v= —
2
uv — vu
and uxv= 5

3. (a) Let n denote a unit vector that is perpendicular to a plane P. Thinking of P as
a mirror, show that the reflected image of a vector v in the mirror is given by
vV=v—2v-nn
(b) Show that this can be written in quaternionic form as
v = non

4. Let P and P’ be two planes intersecting in a line L and let §/2 be the angle between
the two planes. Choose unit normals n and n’ respectively so that the angle between
nand n’ is 6/2 and let u be a unit vector along L so chosen that n x n’ = sin(6/2)u.
(a) Letting v’ denote the reflected image of v in P and v’ denote the reflected image
of v in P, show that v" is the vector obtained by rotating v through an angle 6
about the axis L. (The positive sense of rotation is related to the direction of u
by the right-hand rule.)

(b) Derive the quaternionic relation

v’ = n'nonn’ (A.1)
(c) Writing (A.1) in the form v" = (—n'n)v(— nn’) derive the relation
v” = (cos 30 + sin 10 u)v(cos 30 — sin 104u) (A.2)
5. If z is a complex number, the exponential ¢ is defined by the infinite series
o

o n!

e =

n

M8

Using the same expression to define ¢* when z is a quaternion, let z = ¢u where u
is a pure quaternion representing a unit vector and ¢ is an angle, and derive

e = —cos ¢ +sin pu

6. Rewrite (A.2) in exponential notation. (This is thee formula for rotations that Ham-
ilton was seeking when he developed the algebra of quaternions.)



APPENDIX B

Two Theorems
of Advanced Calculus

In this appendix we prove two theorems of advanced calculus which are
important to vector analysis.

THEOREM B.1 Let f(x,y,z)} be a scalar function possessing continuous
first partial derivatives 0f/dx, 0f /0y, of/0z in some domain D. Also let
h be a unit vector with components (hy,h;,hs). Then the directional
derivative of f in the direction h exists in D and is given by

af of of of I

=-—"h —h e
ds 0x 1+6y 2+62 3

Proof The directional derivative, if its exists, is given by the limit of

f(x + shy,y + shy,z + sh3) — f(x,y,2)

B.1
- (B.1)
as s approaches zero.
By adding and subtracting equal terms, we rewrite (B.1) as
f(x + shy, y + shy,z + shy) — f(x + shy, y + shy, 2)
s
+f(x + Shl’y+5h25 Z) _f(x + Shlaya Z)
s
+ f(x + Shla Y, Z) - f(xsy’z)
s (B.2)

282
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Each of the terms of (B.2) involves differences of values of f when only
one coordinate is changed. Hence we can use the powerful tools of the
ordinary calculus of one variable; in particular, the mean value theorem
applies to each term (since the partial derivatives are continuous). For
the first term in (B.2), we conclude that there is a number « between
0 and 1 such that

f(x + shy, y + shy, z + shy) — f(x + shy, y + sh,, z)
0
= sh, a—J;(x + shy, y + sh,, z + ashs)

Analyzing the other terms similarly, we find numbers 8 and y also
between 0 and 1 such that the expression (B.1) is equal to

)
shs a—];(x + shy, y + sh,, z + ash;)

N

0
sh, l (x + shy, y + Bsh,, 2)
T

N

0
shy a—i (x + yshy, y, 2)
(B.3)

N

Now we let s approach zero. The numbers «, B, and y are always
between 0 and 1, and since the partials are continuous, we conclude that
the limit exists and is given by

of of

6xh1+5;h2+£h3

(QE.D)

In Theorem B.2 the notation is rather confusing. We advise the
reader that the following symbols mean the same thing:

o)f o [of
2 — - |
0'f/oy ox dyox dy <6x>

THEOREM B.2 Let f(x,y) be a scalar function possessing continuous
first partial derivatives df/0x and df/0y in some domain D. Furthermore
let the second derivative 6*f/0y dx exist and be continuous in D. Then
the second derivative 0*f/0x 0y also exists in D and

> &
dx 0y 0Oyox
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Proof The second derivative, 0%f/0x 0y, if it exists, is the limit as s
goes to zero of

of of
@(X + 5, y) - a_y(xay)

(B.4)
S

On the other hand, the y derivatives in (B.4) can also be expressed as
limits; (B.4) is equal to

1 <lim fortsy+0=fctsy) L flooy+o- f(x,y>> 55

S\t-o0 t -0 t

Since limits and sums are interchangeable, we can write (B.5) as

i 8y + 0= flx +5 9] = [f(xy+ 1) = f(x)]

t=0 St

(B.6)

The numerator in (B.6) can be regarded as the difference between the
values of a function F(u) evaluated at u = x + s and u = s; this compli-
cated function F(u) is defined by

F(u) = flu,y + 1) — f(u,y)

As a function of u, F has a continuous derivative given by

of of
F(u) = — t) — —
(w) E” (w, y +1) % (u,y)
and is thus vulnerable to the mean value theorem of one-dimensional
calculus. We conclude that there is a number o between 0 and 1 such
that

F(x + s) — F(x) = sF'(x + as)
Thus the expression (B.6) is equal to
%) )
s(—f(x +as,y+ t)—a—{c(x+ocs,y)>

. 0x
lim
t—0 St

(B.7)

We can now apply the mean value theorem to the function df/dx in
(B.7), since only the second argument is changing; by hypothesis, of/6x
has a continuous derivative with respect to its second argument, namely,
0*f/0y 0x! We conclude that there is a number S between 0 and 1
such that expression (B.7) is equal to

2

a0
lim —2 %
t—0 St

St

(x +as, y + pt)
(B.8)
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Since °f/dy dx is continuous, the expression (B.8) equals

2
ji (x + as, y) (B.9)

dy 0x
We have shown that (B.4) equals (B.9). Now taking limits as s goes to
zero, again invoking the continuity of 9%f/0ydx, we see that (B.4)
does indeed have a limit, and that it is given by
o*f
0y 0x

(x, )

(QED)
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The Vector Equations
of Classical Mechanics

C.1 MECHANICS OF PARTICLES AND SYSTEMS OF PARTICLES

The basic equation of classical mechanics is expressed by Newton’s
second law, force equals mass times acceleration. More explicitly, if a particle,
or a “point mass,” is located at the position r in an inertial coordinate system,
and if it has mass m, then its motion will be governed by the equation

d*r dv
F=m-—5=m-—-= Cl1
mog=m_ =m (C.1)
Here F is the vector sum of all the forces acting on the particle, and v and a
are velocity and acceleration, respectively (¢, of course, is time). All of the
equations in this section will be derived from (C.1).
The momentum p of the particle is defined by

dr

—mv=m— C2
p=myv=m-_ (C2)

Its angular momentum £ is defined by
{f=rXxp=mrxyv (C3)

The torque T of a force F exerted at the point r is defined by
T=rxF (C4)
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Combining these equations, we find that the torque on a particle equals its
rate of change of angular momentum:

d¢ d dr\ dr dr dxr
Eza(rxma)—d—txma+rxmﬁ=er=T (C.5)

The kinetic energy A of the particle is defined by

1, 1 |de> ppl?
_ = — _— = — C.
H =M =3m | = 2m €9
It obeys the equation
dx dv
—dt——mv E=ma v=F-v (C.7)

The quantity F - v is called the power delivered by the force F, and it equals
the rate of change of kinetic energy.

If a particular force acting on the particle can be expressed as a function
of the position r, so that F is a vector field, it is natural to ask if this vector
field is conservative (Sec. 4.3). If so, we introduce the potential energy, ¥ (r),
satisfying

FCom)(r) = —V¥7(r) (C38)
(Notice that a minus sign is incorporated in the definition so that ¥ (r) =

—¢(r), as in Sec. 4.3). The total force on the particle is then expressed as
the sum of the conservative and the non-conservative forces

F = z Fa(cons) + F(non-cons)
o
— _z V%(l') + F(non-cons)
— _ VAV (l’) + F(non-cons)

where ¥~ =), 7", is the total potential energy. Observe that the power
generated by the conservative forces can be written as the time derivative
of —¥ (r) taken along the trajectory r(t):

dr
(cons) , v _— _ .
;Fa v V4~ (r) 7
oV dx ¢ dy B 0V dz
Ox dt dy dt Jzdt

d
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Consequently, (C.7) can be expressed
A A ()

+ F(non-cons) .y
dt dt

or introducing the total energy " + ¥V~ = &,
dé

dt — F(non-cons) .y (C9)

In the important case when all of the forces are conservative, we see that the
total energy of the particle is constant along the trajectory.

Now let us derive some of the basic laws governing the motion of a
system of N particles located at the positions r, and having masses m,
(x=1,2,..., N); the total force on the ath particle will be denoted F,.
We introduce the total mass M = ), m,, the total momentum P =Y, p,,
the total angular momentum L = ), {,, and the position vector R, of the
center of mass, defined by

R, — ZT”” (C.10)

Several useful theorems emerge from these definitions.

THEOREM C.1  The total momentum P of the system equals the momen-
tum of a single particle of mass M moving with the center of mass.

Proof

dR.,, dr,
e~ 2 M dtr

M =P (C.11)

THEOREM C.2  The motion of the center of mass R, is the same as
that of a single particle of mass M subjected to all the forces on all the
particles simultaneously.

Proof

AR, d*r,
M=y = Lame gz = 2o Fo

It is sometimes convenient to refer to certain vector quantities (position,
velocity) measured relative to the center of mass, or measured “in the center
of mass system.” The center of mass system (hereafter known as the “C-M
system”) is a moving coordinate system whose origin is located at R_,,, and
whose axes remain parallel to the corresponding axes of the inertial system.
Clearly, the position vector of the ath particle in the C-M system isr, — R.,;
and its velocity in the C-M system, defined as the derivative of this vector,



SEC. C.1 Mechanics of Particles and Systems of Particles 289

is the difference of the inertial velocities:
dr, dR, v dR_,,

@R = T
Its angular momentum is

-m dRcm
[a - (ra - Rcm) X m, <va - dt )

THEOREM C.3 The total angular momentum of the system equals the
sum of the angular momenta of the individual particles in the C-M system,
plus the angular momentum of a single particle of mass M moving with
the center of mass.

Proof We have to show that

_ dr, dr, dR_,
ngraxmadt_g(ra_Rcm)xma<dt_ dr )
dR
+ Ry x M= (C.12)

The sum on the right equals
dr, dr,
;l‘a X ma%— Rcm X <;ma%>

dRcm cm
_<§mara> X 7+Rcm X Zm‘zT

a

Using (C.10), we express this as

dR dR
L—-R,,xM—=— MR, x °‘“+Rcme%
dt dt dt
=L—RcmedRcm
dt

and inserting this back into (C.12) verifies the identity.
We invite the reader to supply the proof of the following similar
result.

THEOREM C.4 The total kinetic energy of the system equals the sum of
the kinetic energies of the individual particles in the C-M system, plus
the kinetic energy of a single particle of mass M moving with the center
of mass:

2

L, ol
;5 m,|v,|* = Z‘tlzma

Usually it is convenient to separate the forces on the ath particle
into two categories, namely, internal and external forces. The internal

21

2

dR.,,
dt

dR.,,
dt

Vo —
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forces are produced by interaction with the other particles, while the
external forces are produced outside the system. The advantages of
this separation accrue from the following facts:

(i) Most internal forces between particles are two-particle interactions,
so that if the force on the ath particle due to the fth particle is
F, P, the total internal force on the ath particle is

Faimz Z Fa(ﬁ)
B#a

(ii) Most two-particle interactions obey Newton’s third law, every
action is accompanied by an equal and opposite reaction, which is
interpreted to mean that

F® = —F,® (C.13)

and that both F,¥ and F;® are directed along the line connecting
particles o and f5:

p—r)x F,P =(r; —r) x F,® =0 (C14)

Systems having these properties will be said to “satisfy NTL.”
(Observe that if a system has some internal forces that violate
NTL, one can use the artifice of categorizing these as external forces
and interpreting the theorems accordingly).

Clearly, if a system satisfies NTL, then one can omit the internal forces
from the sum in Theorem C.2, because they cancel pairwise. A more pro-
found result is the following:

TueoreM C.5 If a system satisfies NTL, then the rate of change of its
total angular momentum measured in the C-M system equals the sum of
the torques of the external forces, measured relative to the center of mass.

Proof The theorem states that

dLe™_ d dR, o
= L6~ Rep) X ma<va - ) =) (r, — Rep) x E,*
(C.15)
where the force on the «th particle satisfies
Fat — Faext + Faint
— Faen + Fa(ﬂ)
ﬁga
To derive this, we sum (C.5) over all particles:
d
%=%Zraxma%=2raxﬂ (C.16)
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By (C.12), the left-hand side can be written

dL dLs™ d dR drem™ d’R
—_—= — M—")= R | g
& a (R dt ) g e XM
and Theorem C.2 for NTL systems reduces this to
dL dre™
= F, ™ C17
R L) (€17

The right-handed side of (C.16) can also be reduced:
z Iy X Fa = Z I, X (Fae“ + Faim)

-Zr xF 4y Y r,xF®

a BFa
The terms in the second sum cancel pairwise by (C.13) and (C.14):

X F® 41, x F®=(r,— 1) x F,» =0

while the other sum splits into
Z (r, — x F,2 + R, X Z F, (C.18)

Equating (C.17) and (C.18) and dropping the common term, we arrive at
(C.15).

Theorems C.2 and C.5 are very useful for NTL systems with many
particles and complicated internal forces. They frequently permit a general
overall description of the motion (position of C-M, and angular momentum
about C-M) in terms of the external forces only. As we shall see, these data
provide a complete characterization of the motion of rigid bodies.

The concept of potential energy can be applied to systems as well as to
single particle motions. If any of the forces on the ath particle are functions
of r, only, and if the field F (r,) is conservative, we introduce the correspond-
ing potential energy #(r,) as before:

Fa(cons) (ru) = - V(a) 4t/:‘z(raz)
with, obviously,
. 0 0

0z,

T ox,

The two-particle interaction forces, however, generally depend on the
coordinates of both particles,

F,® =F,Pr.ry)

a

and even worse situations are imaginable.
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To get a convenient theory for systems, therefore, we shall classify as
conservative those forces ¥, that are derivable from a single potential energy
Sunction ¥7(x,x,, ... xry) via

F ™ = —VO% (r;r,,....ry) (x=12,...,N) (C.19)

Here one regards r; as constant when we apply V®, if  # o. Fortunately,
many physical forces are conservative in the sense of (C.19).

The classification of conservative and non-conservative system forces
leads to a generalization of (C.9). If & denotes the total system energy,
defined by

1
E=) imalv¢|2 + (1, Ty, . ry)

then the rate of change of energy along the system trajectory equals the power
generated by the non-conservative forces:

d& dr dr
b (cons) (non-cons)) , " V(a) .
dt L (F, +F ) dt + ; v dt

a
dr,

- (C.20)

— Z F (non-cons) ,
a
3

C.2 MECHANICS OF RIGID BODIES

A rigid body is a system of particles whose internal forces are so strong
that they hold the interparticle distances fixed:

[r, — ¥ = constant (C.21)

Rigid bodies are theoretical idealizations, but their motions provide very
accurate descriptions of the mechanics of real physical solids. The conditions
of rigidity (C.21) can be enforced, in theory, by forces obeying (C.13) and
(C.14), so we will treat rigid bodies as NTL systems.

Observe that Eq. (C.21) implies that the angles between the interparticle
vectors (r, — ry) are also fixed, because the angles can be expressed in terms
of the lengths via the law of cosines. Hence, also, the dot products stay
constant.

Furthermore, the center of mass of a rigid body stays fixed in the body.
To see that R, stays a constant distance from, say, rs, we express [R.,, — s
in terms of these fixed dot products:

Zac mara 2 Za mara Za mar 5 2
[Rep— 12 = | 220 p | = -
M M M
_ Za m,(r, — I's) 2 _ Za Zp my(r, — ¥s) - mg(rg — rs)
= M = M2
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Hence, the distance from R, to each of the particles stays constant, and
R_,, is fixed in the body.

Let us first consider the motion of a rigid body that moves with one
point held in place. In this case it is convenient to use an inertial coordinate
system with its origin at the stationary point. Also, we define an auxiliary
coordinate system with the same origin, but with its axes fixed in the body.
The position of the body is then completely specified by determining the
position of the body-fixed axes.

In the subsequent development we shall draw freely upon the techniques
discussed in Secs 5.3 and 5.4, and the corresponding Exercises.

If we let i, j, and k be unit vectors along the inertial axes and 1, j°, and
k® be unit vectors along the body-fixed axes, then any vector h has the
two representations

h = hli + hzj + h3k
= h % + by + hiPkP
where the h;, h’ are related by an orthogonal transformation expressed
through the orthogonal 3-by-3 matrix ©:

hl hlb
hy | =01 hy (C.22)
hs hy?

If h changes with time, then we have the two expressions for its derivative

dh _dh, . dh, . dhy

A TR TR TIL
dh L di dhy at  dhyp Ak
=—tjppppb L2 b b2 LT3 b p b2
ARG e B i i el S

(Of course, the inertial axes stay fixed.)

Now suppose an observer turns with the body and computes the rate
of change of h. This person is unaware that the body axes are turning and
the only way to detect a change in h is if its body-fixed components change.
Hence, he/she computes

dh\* dh,°? dh,? dhs?
<E) = g e (€23)

What is the relation between dh/dr and (dh/dr)*? To answer this question,
we turn to (C.22). The components of dh/dt in the inertial system satisfy

hy hy’ hy®

d d do

E hz = (9 E hzb + E hzb (C24)
h3 h3b h3b

(Here d@/dt has the obvious interpretation as the 3-by-3 matrix whose
elements are the derivatives of the corresponding elements of ¢). The first
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term on the right gives the components, in the inertial system, of the vector
(dh/dt)® in Eq. (C.23). To unravel the meaning of the second term, we first
rewrite it as

do h
— OO\ hy (C.25)
hs?

keeping in mind that 00 = ¥ = 00" . Differentiating this last relationship
reveals that

ao . o’
— —=0 C.26
a? % (C.26)
but since
o . do”
(dt ¢ > =Ca
Eq. (C.26) says that (d0/dt)0" is antisymmetric. Thus, we can write it as
0 —ws w5
do
o 0T =1 w; 0 —-o (C27)
—w, Wy 0

Now insert (C.27) and (C.22) into (C.25). According to problem 18 of the
Exercises in Sec. 5.3, the resulting expression gives the inertial components
of ® x h, where

®=wi+ w,j+ ok

Hence, we understand (C.24) to say

dh dh\?
ah_ <E> toxh (C.28)

To determine the meaning of the vector @, we let h be the vector from the
origin to the ath particle: h = r,. Then h is fixed in the body, so we have

dr,
o 0+oxr, (C.29)
But the left-hand side is the velocity, in the inertial system, of the particle
atr,. Hence, (C.29) is the same as Eq. (1.21), and we identify o as the angular
velocity of the body-fixed system with respect to the inertial system. The
result (C.28) is known as Coriolis’ law, and the formula (C.27) tells how to
compute the angular velocity vector @ from the transformation matrix.

Let us use the angular velocity vector to express the angular momentum.
We have

L= Zr X MV, —Zr X M X T,)

—Zmirlzm Zmrr
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by (1.29). To study this, we must use tensor notation. If we let r;® denote
the ith component of r,, then the ith component of L can be written

Li = Z mar[(a)zwi - Z mai‘i(a)rj(a)a)j
a a

= Lo (C.30)

(recall the summation convention.) Here the I;; are the components of a
tensor of rank two, called the inertia tensor:

I =Y m[r, ™ 5 — r@r @]
a

Observe that I is symmetric: I;; = I

Now that we have an expression for the angular momentum, we can
write the equations of motion, derived by summing (C.5) over all the particles:
the total torque equals the rate of change of the total angular momentum.
Hence, in tensor form,

d
T; = E(Iijwj)

Notice that since the inertial components of r® change as the body
moves, I;; is a function of time. However, if we work in the body-fixed
coordinate system, all the »* are fixed, and I;; is constant! Hence,
acknowledging Coriolis’ law, we find that in the body-fixed system the
equations of motion are

dw
Ti = IU d + E,Jka) IMCU[ (C.31)

Furthermore, it is well-known that because I is a symmetric tensor, there
exist body-fixed axis systems wherein the off-diagonal components of I
are zero; in such principal axis systems

I, 0 0
I= 0 122 0
0 0 133

Writing (C.31) accordingly, we derive Euler's equations of motion for a
body-fixed principal axis system:

dow
T,=1,;—~ d — (I3 — I33)w,m;

dw,
dt

dw
Ty=1I33—— d =y — 1r)w,0,

T, =15, ——— (I35 — I;;)w;30,4 (C.32)

In principal, one determines the motion by solving the Euler equations
for o and then finding the transformation @ from Eq. (C.27). The latter
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task is made somewhat easier by choosing a convenient parametrization
for @ in terms of “Eulerian angles.”

The Eulerian angles are discussed in the references below. Suffice it
to say that the rotation described by @ can be decomposed into a sequence
of three successive rotations about the z, x, and z (again) body axes through
the angles ¢, 6, and y, respectively; hence,

[cos¢p —sing O|[1 O 0 cosy —siny O
O =|sin¢ cosdp 0|0 cosf —sinf ||siny cosy O
| O 0 1]{0 sin® cos 6 0 0 1

[cos i cos ¢ — cos @sinpsinyy —siny cos ¢ — cos 0 sin ¢ cosy sin fsin ¢
=]{cosysin¢ +cosfcospsiny —siny sin¢g + cosfcospcosyy —sinbcosP
| sin 6 sin ¥ sin 0 cos ¥ cos O

and Eq. (C.27) becomes, in the body-fixed system,
w, = ¢ sin @ sin  +  cos Y
w, = ¢ sin O cos yy — O sin Y (C.33)
w3 = cos O+

Once o is determined from the Euler equations, the Eulerian angles ¢, 0,
and y are determined by solving (C.33). Then ¢ can be computed.

It should be mentioned that other conventions are sometimes used to
define the Eulerian angles.

It is sometimes useful to express the kinetic energy of this motion in
terms of the inertia tensor. We have

A =3 Y m =3 Emfo x

= Y mfoxr)@x 1)

LS el ol 0]

by (1.32). In tensor notation we find

1
=3 Y m[r o — rforfo]
a

w; Z mm[”f(m)2 0ij — rr @],
a

wilijwj

N = N =

If we let @ = wn, where n is a unit vector, then # = ¥(n];n)w*. The

quantity n;;n; is called the moment of inertia about the n direction. If
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i = k® we have n; = 6,3 and the moment of inertia about the z-axis becomes

2 2
i3 L;; 5,’3 =133 = Z ma(r/(a)z - rs(a)z) = z ma(x(m) + y(a) )

a formula familiar to most calculus students.

We now turn our attention to the general motion of the rigid body,
dropping the assumption about the stationary point. Theorem C.2 allows
us to write the equations of motion for the center of mass:

IR,
dt?

Z Faext =M

a

(C.34)

(invoking NTL for the internal forces.) Also, Theorem C.5 says that the
external torque, measured about the center of mass, equals the rate of change
of angular momentum measured in the C-M system. However, since the
center of mass is a body-fixed point, and relativizing all quantities to the
center of mass is equivalent to treating the center of mass as stationary,
the theory we just discussed can be used to analyze this motion. In particular,
if I denotes the inertia tensor with components computed in a body fixed
principal axis system with its origin at the center of mass, the three Euler
equations (C.32) describe the angular velocity of the body system with respect
to the C-M system, which is parallel to the inertial system. Hence, the six
scalar equations (C.34) and (C.32) determine the three components of R,
and the three Eulerian angles, and the position of the rigid body can thus
be completely specified.

Exercises

1. As a rule, the angular momentum L is not parallel to the angular velocity e; but
if @ is directed along the ith principal axis of I, L = I;;@(not summed). Demonstrate
this.

2. Prove: the moment of inertia I, in the direction n measured about the point R, is
related to the corresponding moment of inertia I_,, measured about R.. by the
formula

Io = Icm + Ml(Rcm - Ro)' x n’
3. Prove Theorem C4.
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APPENDIX D

The Vector Equations
of Electromagnetism

D.1 ELECTROSTATICS

It is well known that two electrically charged particles at rest will exert
forces on each other. The forces vary inversely with the square of the distance
separating them (the “inverse square law”), and directly with the charge on
each particle. They are attractive or repulsive accordingly as they are of
opposite or of equal polarity. This body of facts is known as “Coulomb’s
law,” and it can be formulated vectorially as follows.

Let g, and ¢, denote the charge on each particle (signed according to
polarity), and let r, and r, designate the respective position vectors. Then
the force on particle 1 due to particle 2 equals

F,® = kqiq, (ry —13) — kq,9» - r23
fry — 1y

where the (positive) constant k depends on the system of units.
If there are N stationary particles with charges g;, then the forces they
exert on a “test charge” ¢ located at r add vectorially:

N
g 44; m (D.1)

Historically it has proved convenient to interpret Eq. (D.1) as
F = gE(r) (D.2)

298
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where the electric field E(r) is the force, per unit charge, that would be
exerted by the charged particles 1 through N on a charged particle located
atr. Hence, E(r) is a vector field given by

E(r) = kz K |3 (D.3)

The electric field is irrotational for r # r;, as the following computation
shows:

(r—r)

i

= Y kg [le (r,.i|3 )+ V(l" —lr,-|3) x (r — ri)]

Y [0 _3r-r)x - ri)]

Ir—rf°

V x E =Y kq,V

-0 (D.4)

using identities (3.21), (3.24), and (3.25). In fact, E is the negative gradient
of the electrostatic potential ¥(r), given by

V() = Ykq/|r — (D.5)
The equation
E=—-Vy (D.6)

follows from identity (3.25).
The divergence of the electric field, for r # r;, is computed by using
(3.20), (3.23), and (3.25):

V'E=k2q,~[ _3r.|3_3(r_l'i)'(1'—l'i)i|=0

[ =

However, V - E is undefined (infinite?) if the tip of r coincides with one of
the point charges. To investigate this more fully, we consider the electric
field due to a single point charge g, located at the origin r, = 0, and compute
its flux through a closed surface S:

ﬂux=fJ;E-dS=kq1fer3-dS (D.7)

(where, as usual, r = |r|). If the domain D enclosed by S does not contain the
origin, then V - E = 0 throughout D and the net flux out of S is zero, by the
divergence theorem. If the origin lies inside D, then we consider a sphere S,
around the origin, whose radius ¢ is so small that the interior of S, lies inside
D (see Fig. D.1). Since V-E =0 in the intervening region bounded by
S and S,, the flux out of S equals the flux of S, (compare Exercise 15, Sec.
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FIGURE D.1

4.10). Parametrizing S, by the spherical coordinates 6 and ¢ (with r = ¢ =

constant), we have
or oOr
( 2 xS 0) 4 d6

r2sin ¢ dp dG;

as

Thus the flux out of S,, and hence S, equals

2n (n T . r 2 - _
kq, fo fo =5+ r¥sin g e d6 = dnkg,
Shifting the charge g, to position ry, we conclude that

4rkq, if S encloses r,
E-dS =
f fs as {O otherwise.

For N charges, we add all the individual contributions to the flux and derive
Gauss’ law of electrostatics

“; E - dS = 4nk) (g; or 0) = 4nk (total charge enclosed by S) (D.8)

[recall Eq. (4.39)]. Here we are assuming that none of the charges g; actually
lies on the surface S.

Point charges do occur in nature as electrons, protons, etc., but in most
microscopic physical situations involving matter so many particles are
present that it becomes necessary to use a continuum approximation, i.e., to
replace sums over point charges by integrals over charge densities. Thus, we
introduce the charge density function p(r) with units of charge per unit
volume, so that the total charge g in a region D is given by

q= fffb p(x,y,zydxdydz = ﬂ]p(r) dv (D.9)
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This leads us to consider the analogs of Egs. (D.3), (D.5), (D.6), and (D.7) for
the continuous case:

E® =k [{{ o) T(rr—;rrlls av’ (D.10)
V(r) =k f f f Ir_p%\ v’ (D.11)
E() = — V¥(r) (D.12)
f LE - dS = 4nk HD f( ot by 5 PO AV (D.13)

However, we now encounter some mathematical difficulties. The troubles
arise from the appearance of zeroes in the denominators. For the discrete-
particle case, we simply excluded the points r = r; from consideration in
equations like (D.3); these points were finite in number and we were willing
to work around them. However, our continuum model will have whole
regions of space where p is nonzero and the integrands in (D.10) and (D.11)
will diverge if E or #” is to be evaluated in such regions. Thus, the questions
arise:

(i) Are the improper integrals (D.10) and (D.11) well-defined at points
where p(r) # 0?
(ii) If so, are (D.12) and (D.13) still valid?

These questions form the basis of potential theory, a subject that is treated
in the textbook by Jeffreys and Jeffreys. Without going into details, we can
get some insight by considering the following example: Suppose f(r) is a
continuous function and we wish to integrate f(r)/r’ over some region
containing the origin, where r = 0. If we use spherical coordinates we have

ﬂ f(')dV fﬂﬂrw} r?sin ¢ dr dep dO

= [[[ o002 ar]sin g dg do

Since the improper integral {§ rdr converges for ¢ > — 1, we conclude that
the inner integral over r will be finite for p < 3. The other integrals present
no difficulty, so we propose the following rule of thumb for manipulating
the improper integrals that arise due to the continuum approximation: All
the usual operations and theorems may be applied in a straightforward manner
unless one encounters integrals of the form

ffff(r’ﬂr—r’[“"dV’ withp> 3

Of course such a glib statement is mathematically treacherous, but it roughly
summarizes the results of the more rigorous potential theory.
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Accordingly, we see that the potential #°(r) in Eq. (D.11) is well defined
at all points r where the charge density p(r) is continuous. (In fact, jump
discontinuities in p are permissible). So also is the electric field E(r): keep
in mind that the net component of [r — r'| in the denominator is 2 in Eq. (D.10).
Furthermore, since (D.10) is obtained from (D.11) by formal differentiation,
and all the integrals are convergent, the relation

Er) = — V¥(r) (D.12)

is true. Thus, E(r) is still irrotational and (D.4) holds. Moreover, both
integrals in Gauss’ law, Eq. (D.13), are quite regular, and the law remains
valid.

Now let us compute the divergence of E, which by Eq. (D.12) equals the
negative laplacian of ¥~. Modeling the computations we made earlier, we
are tempted to proceed formally from (D.10) to obtain

V-E:kfﬂp(r')v-'%:ldw

Ir

=k ﬂf p(r’)[lr _3 FE 2 _|rr3 ‘rgfs_ r’)] av’

=0 (WRONG!)

but, as the warning flag indicates, this calculation is suspect because of the
exponents in the denominators; the rule of thumb is violated. The correct
expression is obtained by applying the divergence theorem to the left-hand
side of Eq. (D.13), resulting in

fﬂDV-EdV=4nkfﬂp(r)dV

Since this equation holds for any domain D, we conclude

V-E = 4nkp (D.14)

the “differential form of Gauss’ law.” Expressing E in terms of #”, we have
Poisson’s equation for the electrostatic potential

V29" = —4nkp (D.15)

A typical situation in electrostatics is the following: One is explicitly
given (i) the charge distribution p in a certain domain D and (ii) the values
of the potential ¥"(r) on the boundary surface S of the domain; the problem is
to find #"(r) everywhere inside the domain. Observe that one cannot simply
use (D.11) because the charge density function p is only known inside D.
All one knows about the charges outside D is that they, together with the
interior charges, give rise to the specified values of ¥~ on the surface S. (For
example, the charges within an electric conductor always distribute them-
selves along its surface so that the conductor is an equipotential, in the
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electrostatic case). Thus, one has to solve Poisson’s equation in D, with the
specified boundary conditions, to find #(r). Taking the gradient then gives
the electric field E(r).

D.2 MAGNETOSTATICS

Just as stationary charges produce an electric field that can be detected
as a force on a test charge, moving charges or currents produce magnetic
fields that exert forces on “test currents.” However, the geometric properties
of these fields are somewhat more complicated.

A point charge ¢, located at r,, and moving with a velocity v,, produces a
magnetic induction field B whose magnitude and direction at the point r
are given (for nonrelativistic speeds) by

(D.16)

where y is a positive constant depending on the system of units. The magnetic
induction vector exerts a force on a particle with charge ¢ and velocity v
given by

F=nqvxB (D.17)

Here again # is a dimensional constant.

Note the dependence on velocity in these equations; a stationary particle
produces no magnetic field, nor is it influenced by a magnetic field. A moving
particle produces a field perpendicular to its velocity, and is forced by an
external field in a direction perpendicular both to its velocity and the field.

Furthermore, the mutual interaction between two moving particles does
not satisfy Newton’s third law ; the force on particle 2 (g, I, ,v,) due to particle

1 (qbrlavl) iS

givq X (r; — 1)
FZ(U = ’7‘12"2 X T T3
Ir2 — 1]

whereas

4aVy X (ry — 1)

F,® =nq,v, x
1 nq,vy ll'l _r2l3

and a little experimentation will reveal that F,® is not equal to F,", nor
are these forces directed along r, — r,.

Once again it is necessary to make a continuum approximation to solve
most physical problems. Thus, we shall consider a continuum of moving
charges, with a charge density function p,(r) and a velocity field v(r). (In
many situations one has moving charges flowing through a background of
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stationary charges; e.g., in a current carrying conductor the conducting
electrons flow past the stationary ions. Thus, we use a subscript to distin-
guish between the density of moving charges, p,,, and the total charge density

p)-
These moving charges give rise to a current density j(r):

§(r) = pm(r)v(r) (D.18)

According to the discussion in Sec. 3.3, the flux of j through a surface S equals
the amount of charge crossing the surface per unit time, or, in other words,
the current I through the surface.

1=[[;i-as

Moreover, the conservation of charge can be expressed, according to Sec. 3.3,
as

_Pm_ _Op
dr dt

(since the stationary charges do not change). For magnetostatics, dp/0t = 0
so j is solenoidal.

The total magnetic induction field due to a steady (that is, time-indepen-
dent) current distribution is obtained by superposition:

B() =7 [[[ o)) x ,( '|)3

= [[[iw) x f{:—:P v’ (D20)

In some physical experiments the current producing the B field is carried
by a wire filament. It is convenient to model this situation by letting the
cross-sectional area of the wire go to zero, and the current density to infinity,
in such a manner that the flux of j along the wire, i.e., the current I, is constant.
Then the wire becomes a space curve r’ = r'(s) carrying a current I. The
volume integration in (D.20) is regarded as an iterated integral, integrating
first over the cross-sectional area, then along the length of the wire. In our
model the first integral yields the current I, and (D.20) becomes

V-j= (D.19)

dr' x (r —r)

B(r) = I f TG

dr'(s) r—r(s
Y LU RS
1r —r'(s)|
In magnetostatic situations, of course, the current is carried around a closed

curve; otherwise, j could not be solenoidal. Thus, the integral in (D.21)
could be more accurately written §.

(D.21)
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It is very instructive to compute the total force exerted on one current
loop by another. The effect of the field B(r) on the loop r,(s) carrying

current I, is given by
F1=nﬂfj x BdV

—nl, Sﬁ dr, x B(r,)

If B is produced by loop r(s) carrying current I,, then the interaction force is

d —
F® =yl 1, ﬁggldrl x ——-——[ £ X (11— 12)]

Iy — e

By identities (1.29) and (3.25)

dry(r; —r,) r,—r,
F,@ =l § 6 1T I e gy, T2
ny 2 { lrl _ l'2| I ry I |l‘1 . l’2|3
=y, I §5 d 95 d
=nyiqd; I (lrl — r2|> I
I § é )
—ny 12 ' r, — l'2|3 dl'2

The first term vanishes by Theorem 4.2, and the resulting expression

r
F,® = —pyl, IZSﬁ § e 1—r2|3 1 dr,

is antisymmetric; i.., on interchanging indices we find that F,® = —F,,
Therefore, the total magnetic force between two current loops satisfies a form
of Newton’s third law, even though the interparticle forces do not!

It can be shown that a current loop does not exert a net force on itself,
but that any given portion of the loop is, in general, subjected to a force.
We delete this analysis because the improper integrals are quite complicated.

Returning to (D.20), we use (3.25) to rewrite the equation for the magnetic

induction:
B(r) = —yﬂf,(r)xv( !>dV’
— 4V x fﬂl i) dV’ (D.22)
(Since V operates only on r.) It follows immediately that B is solenoidal
V-B=0 (D.23)

Hence, B is derivable from a vector potential A,
B=VxA
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and, in fact, we can read off from (D.22) what A should be:
i)
= ——dV' + V
am =y [[f r EUAY

where y is an arbitrary scalar function. (This degree of freedom is known

as gauge invariance.)
To find the curl of B, we apply identity (3.30) to (D.22):

VxB_ny<Vxﬂf|J(' )
:yv< JI[ J‘_frl dv)_wz {Ir |l'jg,1’|dV’

Reconsidering Egs. (D.11) and (D.15), we can see that the components of
the last term equal those of 4nyj(r). For the “divergence” term, we bring
V inside the integral and appeal to

Vit —r)= —Vflr—r)

(here V operates on r, and V' operates on r) to write

Vﬂf\’(r av' = - [[io)- ( l)dV’
- f f f V- |rj(_rl_|dV’ (D.24)

+fff|r—_—r71V’-j(r’)dV’

For magnetostatics, V + j = 0, and the divergence theorem produces

v Hf |,](_r | = —ﬂs ‘rj(_r')r/l -+ dS’ (D.25)

Since we are integrating over a region containing all the current sources
j(r), the enclosing surface has no currents; thus, j = 0 on the right in (D.25)
and we ultimately have Ampere’s law:

V x B(r) = 4nyj(r) (D.26)

Egs. (D.23) and (D.26) are the basic laws of magnetostatics. It is some-
times convenient to apply Stokes’ theorem to (D.26), yielding the equation

ﬁjB-dr=4mﬂ‘sj-dS=4nyl

where the surface S is bounded by the curve C and I is the total current
crossing S.
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The typical problem in magnetostatics involves solving (D.23) and (D.26)
subject to certain boundary conditions between different media. We defer
discussion of the latter for the moment.

D.3 ELECTRODYNAMICS

In time-varying (nonstatic) situations, the previous equations must be
modified. First of all, observe that, in accordance with the equation of
continuity (D.19), the term V - j in Eq. (D.24) should not be dropped, but
in general that it should be replaced by —dp/dt. Hence, instead of (D.26),
we find

we= 5 (v [[f 1 v ) ] 50 0
—yV fff (if(i)l/"at> dV' + 4nyj(r)

- —y%VJ‘ff%dV' + 4myj(r)

I

v OE(r) .
= - — 4
AT + 4nyj(r)
by Eq. (D.11) and (D.12). Thus, we write
_ 7 JE
V x B =4nyj + X or (D.27)

for dynamic situations. Notice that (D.27) implies that magnetic induction
fields are produced not only by currents j but also by changing electric fields.
Maxwell, the discoverer of this effect, called (1/4nk)(JE/dt) the “displacement
current.”

Another necessary modification in the equations was discovered experi-
mentally by Faraday. It involves the magnetic flux ® across an oriented

surface S:
@:ffsB-ds

Faraday observed that when the flux through S changes, an electric field is
produced around the curve C forming the boundary of S, in accordance with

%=‘ffs%?-d8=—égscli'dr

where a is another positive constant.
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Applying Stokes’ theorem, we find

HS— as=—[[[VxE-ds

and since this holds for arbitrary surfaces S we conclude that a changing
magnetic induction field produces an electric field, so that Eq. (D.4) must be
modified for dynamic situations to read
0B
VXE=—u o
Actually Faraday’s law is more general than we have described. We have
assumed that the flux @ through S changed because the B field, itself, changed.
In fact, ® can also change if the surface S is moving or turning, in which case
the Eq. (4.72) must be used to compute d®/dt. Faraday observed that the
same electric field is induced regardless of the mechanism that produces
the change in ®. This situation is relativistic and we refer the reader to
the references for elaboration, but we remark that one consequence of the
analysis is the identification of the constants o and 7,

=7 (D.28)

and we incorporate this fact in our subsequent equations.
The four main equations that we have examined above,

Vv E = 4nkp (D.14)
V:-B=0 (D.23)
°B
= - —— 2
VxE M5 (D.29)
y OE
VXB=47WJ+E_6? (D.27)

are known as Maxwell’s equations, and they can be used to find E and B when
the charges p and currents j are known throughout all space. The charges,
in turn, are subjected to the Lorentz force, obtained by adding (D.2) and
(D.17):

F= fﬂp(E +nv x B)dV (D.30)

So, in general, the coupled system of Maxwell’s equations and Lorentz’s
equation describes how the charges produce, and are influenced by, the fields.
If the charge sources are known only in a region D, Maxwell’s equations
have to be supplemented with boundary conditions. These can be derived
from the equations themselves, as follows: Suppose the region D is bounded
by the smooth surface S. Consider an infinitesimal “Gaussian pillbox”, i.e.,
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n,

FIGURE D.2

a very short circular cylinder with axis normal to S and with a face on either
side of S, as in Fig. D.2.

Regarding the height of the cylinder as much shorter than the diameter
of the faces, we apply Gauss’ law (D.8) to find

(E; *n; + E; - my)(area of base) = 4nk (charge enclosed)

charge
. _ =4
ng (El E2) 7Zk < area

) = 4nk (surface charge density)

Thus, the normal component of E jumps by an amount 4zk times the surface
charge density as the surface is crossed.

Since V + B = 0, the analogous argument shows that the normal com-
ponent of B is continuous as the surface is crossed.

Now we consider an infinitesimal loop crossing the surface, as in Fig.
(D.3). We compute the line integral of E around this path, again treating the
height ¢ as negligible compared to the length é. If E, denotes the relevant

FIGURE D.3
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vector component of E, we have
9813 - dr = (E,, — E,))?

Applying Stokes’ theorem and Eq. (D.29), we have

B
ot

B
(B, —E,)6=—n [[ = -ds=—7"0
where B, is the indicated component of B. Since we are neglecting ¢ in
comparison with J, this equation implies E, = E,, ; i.e., the tangential com-
ponent of E is continuous as S is crossed.
If we integrate B around the same loop and use (D.27) and Stokes’
theorem, we find

(B, — Bo)d = 4m(j) + a; : 5e

Again, we neglect the last term; however, the term j might be appreciable
if there is a surface current density. Checking the orientations, we conclude
that the tangential component of B jumps by an amount 4ry times the
surface current density, in a direction perpendicular to the latter, as S
is crossed.

Summarizing, we introduce ¢ as the surface charge density and K as
the surface current density, and we say that the normal and tangential
components of E and B jump by amounts

AE, orma = 4nko

ABnormal =0
AEtangemial = 0
ABtangemial = 41'6})[( xn

as we go from side 2 to side 1.

When there are material media inside the region of interest, the physics
of the situation often makes it convenient to distinguish between free and
bound charges, and free and bound currents. This is aided by splitting E
into an electric displacement vector D and an electric polarization vector P,
and by splitting B into a magnetic field vector H and a magnetization vector
M. The details of these decompositions depend on the material properties,
so we leave this matter to the references.

We wish to derive two results involving the interplay of the mechanical
motions and the fields. The point charge g with mass m and velocity v has
kinetic energy m|v|>. According to Eq. (C.7), the effect of a force F is to
change the kinetic energy, at arate F - v. If we sum Eq. (C.7) over the charges,
call the total kinetic energy &, and replace F by the Lorentz force, we find

dAx

E—=Zq(E+nva)-v=ZqE°v
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or, in continuous form,

= [JfouE-vav = [[[E-jav

Using (D.27) to eliminate j and then invoking (3.28), we find

1 OE
—=fffE'<%V"Bm—m)dV

=_4—nkﬂ E- —dV+471wfff(B-VxE+V-(BxE))dV

Applying (D.29) and the divergence theorem,

—z: 47tkfffE _dV_47ryfffB V+“HBXE a8

where the surface integral is taken over the boundary of the region. Con-
sequently,

[E|? 11|B|2 ExB.
dt I:f + fff(&rk 8my ff 4my
This equation leads one to postulate that the electromagnetic field itself

has an energy distributed throughout space with a density

[BP IBI2
8nk ’7

and that the energy of the electromechanical system is carried off by the field,
with a flux density 22 known as the Poynting vector:

ExB
47y

A similar derivation can be carried out for momentum. If P denotes
the total mechanical momentum, then

_=ZF=ﬂf(pE+nij)dV
-] (V-E)EdV+Z%fff(VXB)XBdV

— ﬂ — x BdV (D.31)

using Maxwell’s equations. Invoking the identity

0 JE B
&(EXB)_EXB—FEXE
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and using (D.29) and (D.23), we rewrite (D.31) as

%ltiu%(ﬁfﬂE_a’t‘_B)dV=Hh%E[(vxE)xE+(V-E)E]dV

+fff4iw[(VxB)xB+(V-B)B]dV

Employing tensor notation, we find (D.32)

[(VXE)x E+ (V- EE]; = 8ijk8jt’m(aé’Em)Ek + (6,E,)E;
= &4i€emj(OrEm)Ex + (0-E/)E;
= (Oxz Oim — Otam 0i2) (O Em)Ex + (0,E )E;
= (0,E)E, — (O:En)E, + (0.E/)E;

E,?
= O/EE) — 0; (T)

2
= at’<Eé’Ei - ?%il)

Hence, the ith component of (D.32) can be expressed

P, ¢ J(E x B); _
_ E/E; B,B; [E[>  n[BJ?
where T, = Ik +7 dmy ¢ (8 Tk + 877

If we think of i as fixed, the right side of (D.33) looks like a divergence;
therefore, the momentum equation becomes

% + (IS ”aa}"_@m):—k% av = [ Tonds (D.34)

where n, represents the components of the outward unit normal n. The
interpretation of Eq. (D.34) is to regard n(E x B)/4nk as momentum stored
in the field, and T ; as a “flux dyadic” or “stress tensor” giving, component-
wise, the flow of momentum flux through the surface S. Elaboration of this
Maxwell stress tensor will be found in the references.

Exercises

1. In free space with p = 0, j = 0, show that both E and B satisfy the wave equation

VZE _ﬂﬁE
B/ k o*\B
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2. In many electric conductors the currents and fields obey an experimental law known
as Ohm’s law: j = oE where ¢ is a constant depending on the conductor; it is called
the conductivity. If Ohm’s law holds and p = 0, show that both E and B satisfy the

telegrapher’s equation
E\ #ny é* (E o (E
V2 =2 4 il
<B> koz\B) T 5 \B

3. If a wire loop is moved through a magnetic induction field B(r), the conduction
.electrons “feel” a force ngv x B, where v is the velocity of the wire. However, an
observer moving with the wire is unaware of any velocity and postulates that the
source of this force is an electric field E. Use the flux transport theorem [Eq. (4.72)]
to analyze this situation, and derive the relation (D.28) from Faraday’s law.

References

1. Jackson, J.D., Classical Electrodynamics, New York: John Wiley and Sons, Inc.,
1962.

2. JerrreYS, H., and JEFFREYS, B.S., Mathematical Physics, 3rd edition, New York:
Cambridge University Press, 1956.

3. Panorsky, Wolfgang K.H., and PHILLIPS, M., Classical Electricity and Magnetism,
2nd edition, Reading, Mass.: Addison-Wesley, 1962.



Answers and Notes

Important: Not all the notes given here will be understood by a beginner. Some are
intended for graduate students or teachers who may be teaching vector analysis for the
first time.

In this book, vectors are represented by bold-faced letters such as A, B, C,. ..
Since you cannot conveniently imitate thés, the authors suggest that you either underline
the letter, A, or put an arrow above it, A. Be sure to distinguish between the number 0
and the vector 0.

SECTION 1.1

Note: If the reader has studied modern algebra or logic, he will recognize that a vector
is an equivalence class of directed line segments. Note that parallel vectors having the
same length in feet will also have the same length in meters or centimeters. That is,
vector equality is not a metric property; it does not depend on choice of unit of length.

SECTION 1.2

1. Arrow extending from the same initial point and forming the diagonal of the
parallelogram determined by the two vectors, as shown in Fig. 1.2.

2. Noticethat C~A=C+ (—A)=(—-A)+C.
3. Yes, the statement is correct (the parallelogram may be “flat”).

4. This is easy if you observe that a regular hexagon is composed of six equilateral
triangles. (a) B — A, —A, —B, A — B, (b) the zero vector. .

314
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5. In problems of this kind, think of the vectors as displacements. The displacement
C can be obtained by first moving backward along F, then moving along E, then
upward in a direction opposite to D. Hence, C= —F + E — D.

6. G=-K+C+D-E.

7. x=F-B=A.

8. x=D-E-H=G.

Note: This kind of addition was called geometrical addition when it was first introduced
by Mébius and others over a century ago. Observe that the length of A + B does not
equal the length of A plus the length of B. A student once announced happily that he
had won a bet in a tavern by showing an instance in which three units added to four units
produced five units (see Exercise 4, Sec. 1.4).

SECTION 1.3

1. No, length is never negative.
2. [4A| =12, |-2A| = 6, |sA| < 6.
3. |sA|=1,|—sA| = 1.
Note: If sis a nonzero number and A is a vector, the vector s~ ' A is sometimes said to be

“A divided by s”. Thus, if we divide a nonzero vector by its own length, we obtain a
vector of unit magnitude. This is the point of the first part of Exercise 3.

4. Equals the magnitude of A4.

. No, A might be the zero vector.

Yes.

. Not necessarily true, since the vectors may not point in the same direction.

® N !

. Two. Think of the plane as the top of your desk. One of the vectors points upward
and the other downward. Many students say, “There are infinitely many.” This is
incorrect, since we do not distinguish between vectors that are equal.

9. Infinitely many. Think of the line as perpendicular to the xy plane. The unit

vector might make any angle # with the x axis.

10. Two, pointing in opposite directions.

11. C=4(A + B).

12. [A|=|A-B+B|<|A—B|+B]
Hence |A| — [B| < |A — B|. If you prefer a less tricky method, draw a diagram
and use a well-known theorem in geometry.

13. a= —2,b = c=11is one possible answer. There are others.

SECTION 1.4

Note: 1 think the only reason some students have trouble with some of these exercises
is that they think more is expected of them than simply writing down the answer. When
1 work one of these problems by drawing a diagram and looking at it, students some-
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times say, “Oh, is that all you want?” It is not necessary to use any equations or
formulas in giving the answer to a trivial exercise.

1. 1. 9. (a) 4 + 1./3j.

2. 0. (b) 3/3i - 3j.

3.2 (© 3i+4%j.

4.5, (d) 5+ 5/3), 3 — 33
5. —i —j 32+ 120 () (/2 +12i).

6. A=i—3j 10. 10,3, 1 + 54 1.

7. Ay = |A] cos 0, A, = |A|sin 6. 11. 2i + 6j.

8. A4, =33,4,=3.

SECTION 1.5

1. 5,3, 5. 11. xi+ yj + zk
2. 5i+ 6j — k, 4j + 4k. 12. s=2,t=3,r=—1.
3. 42 13. 2, - %, 4.
4. +1. 14. Use the pythagorean theorem.
5. %+ 4§ 15. Cone concentric with the
6. (a) 4 \/j (b) yz plane. positive x axis.
7. cos o = 2. 16. Two.
8. +ij. 17. —cos a, cos f, cos .
9. /3. 18. £330+ + K.
10. i — 5j— k.

SECTION 1.6

1. 2i — 5§ — 8k. 4, 10 miles.
2. i+ 2j+ 9% 5. 7 pounds.
3. 32j — 26k.

SECTION 1.7

2. fA+B+C+D=0and A= —CthenB= —D.

3. Hint: Let the sides be A, B, and B — A. If parallel to A, the line segment is —iB +
A+iB-A) =1A

4. Use the technique illustrated in Example 1.3 of the text.

6. cos™!(—%)

7. cos™t (3/3).



10.

11.
12.
13.
14.
15.
16.
17.
18.
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cos ™ £r4/1435, cos ™ . /246.
90° — cos™ ! 1.

(i+j+k)-(xi+yj+2zk)=0 if and only if x +y+ z=0. Hence, § =90° if,
andonlyif, x +y+z=0.

True. 19. The single point (2,— 3,4).

True. 20. The three coordinate planes.

True. 21. S.

False (radius is 3). 22, 8.

=22+ -3+ —-4*=9. 23. 1.

x? 4+ y? =4, 24. Cone of two sheets concentric

Line. with z axis.

y axis. 25. Ellipsoid.

SECTION 1.8

1. x=3,y=—-2tz="T. 5. +(5i+2j + 2k).

2. x=1y=2 6. +(35/19i — 35/19j + 15/19K).
3.y=2,z=3. 7. x=3%y=~z

4. +@3i+¢j) 8 x=3y=4.

9. x — 1= —%(y — 4) = &(z + 1). This may be written in other forms.
10. +,/42
11. cos™ ! 3,/42, about 74°.
14. (a) O0<i<o0; —1<i<0;—0<i< —1.
15. (a) (2,2,3). (c) No intersection (parallel lines).

(b) The lines coincide. (d) No intersection.

SECTION 1.9

17.
19.

20.

A o

19. 8. 2.

8427 — 12=23. 9. 15./26.

20. 10. \/5i + /5j.

cos™! £ 11. Nothing. But A =0.

cos™! 3. 13. (a) Circle with diameter |A|.
-2 (b) Sphere with diameter |A.
0 14. |sin 6.

Expand (A + B) - (A + B) + (A — B) - (A — B).
@ —G+j+Kk) + (7 — 2j — 5k)

() 32i—j—2k) +0

(©) 0+ (6i — 3j — 6k).

2145 373 330
—%ol + 39) — Yok
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SECTION 1.10

Note: Quite often we speak of the equation of a plane where it would be better to
speak of an equation, since distinct equations may represent the same plane. For
example, x + y + 2z = 3 and 2x + 2y + 4z = 6 both represent the same plane.

L (@) +Gi+3j+3k). 9. (i+j+3k)-(2i— 8j + 2k) = 0.
(b) +(/2i — 3/2Kk). 10. sin~! 3./3, about 74°.
© +(—337j + 5/37k). 11. 90° — cos ™! §./3.
d) +i. 12.3x —y=C,z=0.
() £Gv2i—1y2K). 13. 32
() +(G+/2i -2 14. 3x + 2y =11,z =0.
2. x~4y+2z=0. 15. 2x + 2y +z=4.
3.2x—2y+z+3=0. 16. +3.
4. 3x+y—z=3. 17. (a) The point (-—2,1,5).
5. No. (b) No intersection.
6. 16. () Thelinex=y+3= -4z
(d) No intersection.
7. (a) /14. (b) 32.(c) 2.
8. 1./3.

SECTION 1.11

Note to instructor: A k-dimensional vector space (or k-dimensional subspace) is
oriented by selecting a linearly independent ordered set consisting of k vectors. Any
other such linearly independent ordered set is said to have “positive” orientation if it
can be obtained from the given set in the proper order by a linear transformation with
positive determinant. Ifan n-dimensional space has been oriented, and ifalso an (n — 1)-
dimensional subspace of the same space is oriented by an ordered set A;, A,, ..., A,—1,
then the same orientation of the subspace can be prescribed just as well by selecting a
single vector C not in the subspace, using the following convention: the ordered set
A A, ..., A, -, C must have positive orientation.

1. Numerically they are equal to the areas of the projections of the area on the co-

ordinate planes.

SECTION 1.12

=

1. (a) 2i + 14j + 4k. . 0. A and B are parallel.

(b) —8i +23j — k. 5.+ — /11§ + /1K),
8 k—“'*ﬂ +k 6. fx—2=—H(y-3)=-3-7.
(e)j;-i. 7. x=—3y=1z

8

9

2. /%6 . —064j + 16k, 16i — 16j + 16k. No.
3. %\/a .17x—y+9z=43.
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10. +55./5(5i + 6j — 8k). 4. r=3s=-3%.
11. sin (Y — 0) = sin Y cos 8 — cos ¥ sin 6. 15. One of them is zero.

13. \/65/4/26. 16. +8i.

(b) 3x — 3% = —4y + 32 =z — 4. (This answer can be written in many other
ways, so don’t be discouraged if your answer differs from this in appearance.)

(©) 4/4/21.

18. x? + y* 4 22 — xy — yz — zx = 2; a cylinder of radius 2,/3 ft.

SECTION 1.13

1. (a) 30.(b) —13.(c) 5.(d) 1. 5 1
2. 5. 6. 3x — 17y —4z=0.
3.0 7. 3x - Ty+z=—-20.
4, 3. »
8. (a) Their triple scalar product is zero. Alternatively, all three are perpendicular
toi+j+k
b) x+y+2z=0.
9. (a) C3 =2.(c) Draw a diagram. 13. (a) Compare A-iand A - w.
10. &./38. (b) A.
11. Yes. 15. Only (a), (b), (¢), (g), and

12. They are coplanar. (h) have meaning.

SECTION 1.14

5. (0 - R)o — (o - ®)R. 6. No. 7.0.

SECTION 1.15

These exercises appeared already in Sec. 1.14.

SECTION 2.1

Note: Since different rules can be used to define the same function, the definition of
vector function given in the text is now regarded as old-fashioned. The more modern
way is to define a function as a set of pairs determined by some rule. For further details
on the “new mathematics” listen to the appropriate Tom Lehrer record; most mathe-
maticians find the old-fashioned definition quite adequate.
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1. (a) costi—sintj.
(b) Truesince k - F'(¢) = 0.
(c) t=nn

n=0+1,+2,...).

(d) Yes, /2.
(e) Yes, 1.
(f) —sinti—costj.

2. (a) 3i+ 343
(b) costi— e

(© —2i+ (¢ + 59 + (¢' — 30k

(d) (cos ¢ + 363G + j + 2K).
© 0.
3. (a) 6t — 10t sin t — 5t* cos t.

SECTION 2.2

(b) (82+/8Z + 1)/(82 + 1).
(© 1— 126

. Use Theorem 2.4, noting that

one term vanishes in this case.

. (a) 7.

(b) 33.
(©) 8i+ 5j— 6k.
() o.

e) —2.

() 3i+3j+%k

(8 —42i + 66j — k.
(h) B.

(i) BxC.

. No, the tangent may be parallel to the y axis.
. The arc t%i + £3j has a cusp at ¢t = 0. Physically, a particle can follow a curve with

a sharp corner by decelerating to zero speed at the corner, then resuming with a

different direction of velocity.
x2—y*=1,z=0.

. At (0,0,0), corresponding to ¢t = 0.

. (i + 27j)//1 + 4.

. Along a straight line, T is constant.

. (@) [§ V1ddt = /14

straight.

8. (2 V2(e—1. (b) x=

XA AW

s+\/§
2

TR
9. (a) 2./572
(b) £/5(sin ti + cos tj + 2K).
(©) $/5(=j + 2K).
10. i.

NG

SECTION 2.3

1. (a) \/fe‘.
(b) a, = ﬁe', a, = \/ie‘.

() +\/2[(cos t — sin t)i + (sin ¢ + cos 0)]].

(d) 3267

cos log<

S+\/§sinlog<s+\/§>,z=0.

(b) Distance between points is /14, and the path is

s+\/§

)
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2. (a) /9% + 25.
(b) 9¢/</922 + 25, [9(t? + 4) — 81£2/(9¢% + 25)]%.
3(cos t — t sin t)i + 3(sin ¢ + ¢t cos 1)j + 4k

© V9% + 25
(d) 3(9¢* + 5262 + 100)2/(9¢* + 25)3.
3. (a) /3¢

(b) a, = /3¢, a, = \/2¢"
(©) $+/3[(cos t — sin #)i + (sin ¢ + cos t)j + k].
(d) $/2e7
4. (a) 10./5.
(b) a,=0, a, = 80.
(©) $/5(2 cos 4ti — 2 sin 4tj + k).
@ 7.
5.(a) v=3.
(b) a = —cos t(i — j) — sin (i + j).
(c) —%sint(i—j) +%cost(i+j)+ 3k
(d) k=42/9
203t* + 23 — 312 — 2t + 2)%

6. 3(2t* — 413 + 102 4+ 1)
.43
8. 6,1, 0, circle of radius 2 in the plane x = y.
9. F x dF . d°F
) dt ar*’
10. (a) 1. (f) .
(b) 0. (g 1.
(©) a = d>s/dt>. (h) k.
@ o. (1) —IN.
(e) ds/dt.

13. (a) False. (b) False. (c) True.

SECTION 24

1 [ﬁ - 3£(ﬂ1§>2 - 3rﬁi2—0:'u + |:3ﬁﬁ + 3ﬁdi€ + r@ - r(d—9>3:|u
“ld Tdr\ae de de* | i dt  Tded® T ar de) |

3. v =4b[(sin O)u, + (1 — cos O)u,]
a = 16b[(2 cos 8 — D)u, + (2 sin Ou,].

4. v = b[(cos tu, — e7'(1 + sin fjuy]
a=Db([—sint—e (1 +sin &)]u, + e 1 + sin t — 2 cos t]u,).

5. If the particle is moving parallel to the field no force will be exerted. (In elementary
books it is sometimes stated that the force is proportional to the rate at which the
particle “cuts” the lines of flow.)
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6.

10.

11.

Answers and Notes

v/r [B|. [qv |Bf must equal the component a, discussed in Sec. 23]
(a) The second term.

(b) The second and third terms.

(c) All are nonzero.

(d) Many possibilities.

. Yes, except when its velocity is zero.
. (a) m?r cm/sec? (if r is in cm) directed towards the center. Note that 30 rev/min =

7 rad/sec.
(b) 4mu, cm/sec.
24r, since dr/dt = 3 and d0/dt = 4n.

m(dr\* m/ df\? [ dr de
pom(d m( df\* dr a9 . .
5 <dz> + 3 <r dt) ﬁ) <F, + Fyr )dt. Now differentiate and use

d
o L wde= s

SECTION 3.1

N A W=

i =)

10.
11.
12.

13.
14.
15.
16.
17.
18.
19.

. (a) 0. (b) —%
@3 (b -3
. (a) 10.

. (a) (cosx +ye?)i+ xe®j+k  (b) —R/RP.  (¢) k.
. yz plane, where x = 0.

f depends only on y.

. Sy =x*+yz + C.
. Unit vector directed away from the z axis, except at points on the z axis, where

it is not defined.

© -% (@ &/14

(b) The maximum rate of increase of r? is in the direction of R, where
d 2 d 2
== =2
Is ) o (r*)=2r

which equals 10 at (3,0,4).

. 150./5. This function equals s°, where s is the distance to the y axis. We have

(d/ds)(s®) = 6s° = 150./5 at this point.

Any scalar multiple of 4i + j + k.

2x +4y —z=21.

(a) From your diagram you see that any scalar multiple of i + k will do.
(b) 4i + 4k.

X+ 2y — 8z = —28.

x=y,z=0.

+ /14031 — j + 2K).

4x + 6y — z = 13.

+4/2( — j). In (), let R = 2 sin ti + 2 cos ¢ + +/5k.
cos™! 3L

sin~! £./2.
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SECTION 3.2

1.
2.

3.
4.

See Fig. 3.3.

@ x(z+a=-Lyz+b=—1.

b) x(z—3)=—-1L,yz-3)= —L

Half lines extending from the origin.
The gradient is normal to these surfaces.

SECTION 3.3

B W N =

.y + x cos Xy — 2x cOs zx sin zx.

3.

. 6y°z + 18x%yz.
. Zero except at the origin, where the field is not defined. The magnitude of this field

at any point is 1/r%, so this field can be thought of as the electric field intensity due
to a charge of suitably chosen magnitude at the origin. A physicist or electrical
engineer might say that the divergence is “infinity” at the origin, since the divergence
of an electrostatic field is proportional to the charge density, and the charge density
at a point charge is “infinity”.

6. Let F-grad ¢ = 0.

7. F = yi + zj + xk is one example.

8. There are infinitely many possible answers, for example F = — xi.

9. Again there are infinitely many acceptable answers. Two of them are e*i and

10.
11.

12.

i+ yetj.

False (e.g., a constant field).

Divergence is zero everywhere, since dF/0x = 0, F, = 0, and (we assume) F; = 0.
Some students observe that F = Cyi for some constant C, and then compute the
answer using the formula for the divergence. This is clever, but not the point of
the exercise.

Divergence is zero everywhere. For example, consider point P. Along the x axis,
F; =0, s0 0F;/0x = 0 at P. As we move through P along the flow line indicated,
F, takes on its maximum value |F|, therefore 0F,/0s = 0 at P, where s is measured
along the flow line. But at point P we are moving parallel to the y axis, so 0F,/0y =
0F,/0s at P, hence is zero at this point. Another method: Conjecture that F =
—yi + xj and use the formula.

SECTION 3.4

W N =

.xi—yj+ y(1 - 2x)k.

— 22 sin yz2 i 4 (y cos xy — xe*)k.

. — () + z9)i + 2zxj.
L@ 1+z22+x+y.

(b) zi + 2xzj + yk.
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5. The paddle wheel will not tend to rotate.

6. Think of the velocity field of a fluid swirling about the x axis. Assume constant
angular velocity @. The v = x R, and since curl F = 2@ as stated in the text
(to be proved later) we have o = i and

v=ixR=1ix(xi+yj+2k)=yk — zj

This is one possible answer. Another is 2yk, which represents a shearing motion
parallel to the xz plane.

7. No (Fig. 3.13).

8. No.
SECTION 3.5
1. 16. 6. Vector field.
2. 12i+4j+ k. 7. 3,0.
3. 64. 8. (x2 + z%)e*.
4. (a) 2xy + 1. 9. Always 0.
(b) —2i +j— x°k. 10. Always 0.

(©) 2yi + 2xj.
5. Scalar field.

SECTION 3.6
1. 20x3yz3 + 6x3yz. (e) Zero vector field.
2. 0 except at the origin. (fg \I\;Ieaninﬁglecsl&
3. —2yz2(1222 4 3x272 ENENN (g) Vector field.
) Y2 (172 4+ 33727 4 6xyk (h) Vector field.
- (a) aqd (b). Als‘; © R (i) Meaningless.
provided that p* = ¢°. () Vector field.
5. (a) Vector field. . . . .
(b) Scalar field, 6. (b) sin x sinhy sin %x sinh 2y'
(c) Vector field. sinh 5 sinh 10

(d) Scalar field.

SECTION 3.7

5. As written, the right side is symmetrical in F and G, but the left side is not, since
FxG#GxF.

SECTION 4.1
1. (@) 326 + j). 2. (a) \/2dx or \/2dy.
(b) i. (b) dx.

© —j (c) —dy.
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3. () dR =dxi+dyj=dxi+dxj=(y2i+3y2j)2dx = Tds.

(b) dR =dxi+dyj=idx=Tds.

() dR=dxi+dyj=dyj=Tds.
4. (a) Along this path, F = /1 — x? i — xjand

dR = dx i~ 9
I —x?
% dx 1 dx
F-dR=——— and fF'dR—f_lm—n

(b) =.

5.F-dR = —d(tan! y/x) = —df.

6. (a) 8. (b) 8.

7. 36. (Caution: R - dR = s ds in this case because the points are collinear with the
origin.)

8. +8r, depending on direction.

9. 40. (This can also be done by observing that F - dR = d¢ where ¢ = x%y + zy,
so that the integral is ¢(3,4,1) — $(1,0,2). See Sec. 4.3 for further discussion of this
“trick™.)

10. Zero.

11. 4

12. (a) 0. (F is perpendicular to dR.)
(b) %(601 — ).

SECTION 4.2

Note: In this book, any set of points is a region and a region is a domain if and only if
it is open and connected. In some books other conventions are used; there is no standard
agreement: for example, some books use domain to mean domain of definition and those
domains that are open and connected are called regions.

1.
. Simply connected domain.
. Simply connected domain.
. Not a domain. (Points on the plane z = 0 are not interior.)

@ N N WU AW N

Domain, not simply connected.

. Simply connected domain.

. Domain, not simply connected.
. Simply connected domain.

. Not a domain (not connected).

SECTION 4.3

1.

The integral over C equals that over C, minus that over C,, so if the first of these
is zero the other two are equal.
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[S]

. Many possibilities.

w

. Many possibilities.

. 2n or — 2, depending on which way the circle is oriented.

. ¢ is a multiple-valued function, and hence not a scalar field as we have defined it.
. ¢ =yx +sinxz + C.

. F =grad ¢ where ¢ = x?y + yz.

i - | B N

SECTION 4.4

1. (a) Conservative, ¢ = 6x%y + xyz + C.
(b) Conservative, ¢ =™ + C.
(c) Conservative, ¢ = —cos x +3y* + ¢ + C.
(d) Not conservative.
() Conservative, ¢ = In(x? + y?) + z°.
2. (e), since the domain of definition is not simply connected. You must explicitly
construct ¢.
3. Yes. ¢+ .
6. ¢(1,2,3) = —f4+/14and ¢(23,5) = —35+/38; hence the work done is

(23,5 — ¢(1,2,3) = 15/14 — 35/38

7. No, provided the path avoids the origin.

Note: Conservative fields are sometimes called potential fields. The term irrotational
is also used. It is not possible for a flow line of such a field to be a closed curve, for the
integral of a field about a closed flow line is nonzero, and this would contradict (ii).
Therefore the flow lines either have no endpoints (i.e., if they “extend to infinity” in both
directions) or perhaps they start at a point (called the “source”) and perhaps end at
another point (called the “sink”). For this reason, such fields are also called source fields.
A simple example is the electrostatic field due to a positive point charge at the origin.
The origin is the “source” and the flow lines extend radially away from the origin.

SECTION 4.5

2. —ix?%k.

3. If F = V¢, a vector potential is given by ¢G.

SECTION 4.6
This section makes no pretense to rigor. © Jq J‘l -y dxdy
3. (@) $/3G +j+K). o Jo  lcosy|

() k-n=33. (d) 33
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. JAx2 + 4y? + 1dx dy.

. 1L

SECTION 4.7

1. 18x.
2. (a) 8.

11.

12.

13.

. Zero.

3na“.
(b) 16. —1.

(©) 24. . () No.
(d) 0. (b) Yes.
(€ 0. (©) 4.
() o. 10. 133
(® 0.

J6f372F Sxdydx = 1.

. |E| = A/2neqr.

[I- S - N

1/r — 1/a

@ T,=T,+ — (T, — T,).

1/b—1/a

(b) No.

The term source is used rather than sink in Exercise 11 because in electrostatics

it is conventional to take the electric field to be the negative of the potential.

(a) By Gauss’s law and symmetry, F = 0 within the sphere so ¢ is constant within
the sphere, and at the center r = a is a constant so ¢ = g/a = 4na’s/a.

(b) By Gauss’s law and symmetry, the electric field outside the sphere is the same as
that due to a point charge of magnitude 4na’c located at the center.

(@) 8n. (Point is within sphere.)

(b) *#x. (Point is outside sphere.)

207 :

SECTION 4.8

3.

X

4. (a) 3.

(b) 3.
(¢) This will be discussed later.
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5. 3v.

6. n(1 — e 1)

7. V-E = p/e, at each point in space. Here we assume charge to be distributed
continuously, i.e., no point charges in the domain.

8. (a) ¥n.  (b) ¥=n

9. £%./85x.

SECTION 4.9

6. (a) 0. (d) 0.
(b) —2. € —1.
() 4.

7. The divergence is identically zero, so the desired integral equals the negative of the
integral over the missing top, which, in this case, is trivial to compute.

8. The field is $x°1 + $)°j.
10. +2n, depending on direction of integration.
11. (a) 16.8 if volume is proportional to the cube of the minimal diameter.
(b) Yes.
12. Sg,.
13. (a) 4nb*.
(b) To avoid a triple integral, take dV = 4nr? dr, so that the integral is

f * 16713 dr
0

14. 8=

16. 0.

17. (a) Use (3.20). 18. (a) 108
(b) 228n. (b) 1944x.

[Exercise 17(a) does not apply in part (b) since this function is not harmonic.]

SECTION 4.10

1. In applying the fundamental theorem of calculus.

2. To ensure that the volume integral of div F over the bounded domain D exists.

5. cos y = 0, so the expression dx dy/|cos y| is meaningless.

6. 30.

7. 5v.

8. Yes.

9. (a) An outer sphere with n pointing away from the origin and an inner sphere with

n pointing towards the origin.
(b) Sum of two integrals.
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(c) They are equal.
(d) No.
(e) 4m.
11. (b) The lumpiness equals the negative of the laplacian.
(c) The lumpiness is zero.

12. Second hint: In steady state, rate of heat flow out of a domain equals the rate of
heat flow into the domain; otherwise the temperature would be changing. Hence,

o9
ﬂ5w=o

over arbitrary closed surfaces. Also note that the limit, as ¥V — 0, of

v J1J, veoav

as the domain D shrinks down to a point, is the value of V3¢ at that point, if V2¢
is continuous.

13. cp(0¢/0t) = kV2.
Note: These derivations can be placed on a more rigorous level by making use
of the theorem that if f is continuous and

ff fx,p,2)dV =0

for every domain D, then f is identically zero. For instance, in Exercise 13 this
theorem is used, taking

0
f=ep 2 kg

14. —4n¢(P). 18. (a) —4n¢(0,1,0) = —20.
15. They are equal. (b) —4n¢(2,1,3)=0.
17. 4n¢(0,0,0) = 20m. 19. Zero.

SECTION 4.11

6. Zero.
7. —36m, since curl F - k = —4 and area enclosed by C is 97.
8. (a) 67 (b) 6.
9. (a) —16. (b) —16. (c) Second term.
10. 28x.
11. What is the title of Sec. 1.11?

SECTION 4.12

L. The curl of a vector field F points in the direction of maximum swirl and its magni-
tude equals this maximum swirl.
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2. (a) Zero.
(b) Zero.
(c) Zero. More rigorously, use the theorem mentioned in the answer to Exercise 13,
Sec. 4.10, to avoid having to speak of “very small” Jaundry bags.
(d) diveurl F =0.
Note: The divergence of a vector field at a point is sometimes called the source density
of the field at that point. This is because the divergence of the electric intensity of an
electrostatic field is equal (within a factor) to the charge density, and electric charge is
the “source” or “cause” of the field. The statement “a field has zero divergence in any
region that is free of sources” has an intuitive appeal to many students. The above
exercise can be worded: the curl of a vector field is another vector field that is free of
sources.
3. (a) Zero. (b) Zero. (c) Zero.
4. (a) Zero. (b) Zero. (¢) Zero vector. (d) curl grad ¢ = 0.
Note: The curl of a vector field at a point is sometimes called the vortex density of the
field at that point. This is because, in some sense, the curl describes the “eddy” or
“whirlpool” nature of the field. Note that vortex density is a vector quantity. Just as
engineers sometimes think of a point source as a point where the divergence is “infinite”,
so also do they think of a vortex filament as a curve in space along which the magnitude
of the curl is “infinite”. The central part of a tornado provides an approximate idea.
We leave to the reader the precise formulation of the definition. The intuitive content
of Exercise 4 is that any field that can be derived from a scalar potential must be vortex-
free. It should be noted, however, that if we allow the scalar potential to be a multiple-
valued function, it is sometimes possible to find a scalar potential for the velocity field
of fluid swirling about a vortex filament. We heartily recommend the chapter on vector
analysis in Mathematics of Circuit Analysis, by E. A. Guillemin (Wiley, 1949), in which
these matters are taken up in greater detail.
Let us now briefly review and extend some of the earlier ideas. We consider only
continuously differentiable vector fields.
If a vector field defined in a domain D has any one of the following properties, it
has all of them:

(i) Its curl is zero at every point.
(i) Tts integral around any closed contour is zero, provided that there is a surface
enclosed by the contour entirely within D.
(iii) Tt is the gradient of a scalar function, but this function may possibly be multiple-
valued.

If the domain D is simply connected, we can omit the clauses starting “provided
that .. ” and “but this .. .” from these properties. When D is simply connected, the
following terms are used for these fields: conservative field, irrotational field, potential
field, source field.

Similarly, any one of the following properties of a continuously differentiable vector
field implies the others:

(i) Its divergence is zero at every point in D.
(ii) Its integral over every surface is zero, provided that we consider only closed surfaces
enclosing points all of which are in D.
(iii) It is the curl of another (possibly multiple-valued) vector field.
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These statements are not precise and should not be taken very seriously. Terms
sometimes used for such fields are: solenoidal field, rotational field, turbulent field,
source-free field, vortex field. The terminology is not standardized; in modern usage,
the term “turbulent” has an altogether different meaning. In applications, vector fields
that are discontinuous along a surface are of considerable importance. We have not
discussed such fields because they arise more naturally in courses dealing with applica-
tions, where the motivation for studying them is more apparent. The above statements

are utterly false for such fields.

6.

(a) 2z 7.
(b) —Sk.
() —20m.

SECTION 5.1

6. See the end of Sec. 5.2.

(a) 27n.
(b) 0.

nrle,.

Lo,

(d) Zero.

(—2cos ¢ e, —sin ¢ e,)/r’.

8. All zero. (Except, of course, at the origin.)
9. n. 13.
10. /2 +log (1 +4/2). 14.
11. Zero. 15.
12. 2n. 16.
3 .
17. V-F =24 cot ¢ — 509
r sin ¢
V x F=cot¢cos¢9e,—20050e¢+2e9.
18. 2n.
20. n= 2.
21. All n.
22. (a) F,=r"*1(m + 3).
SECTION 5.2
4. (1/uy)du, du, dus,.
5. (12uguy + 12uyu3 + 3)/4u;,.
6. (a) Yes.
(®) x = (u, + U)/2, Yy =(uy —uy)/2, z = u3/2.
) h = %\/Z hy, = %\/i hy = %
oY o o%f
d) Vf =2 27 14 .
e T A e Bk W
© 2u, + /2u, + 4u,.
7. @) x=%Qu; +u,),y= 3y — uy), z = tus.

(c) This coordinate system is not orthogonal.
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8. (b) h1 = hz = 2(1412 + UZZ)%, h3 =1.
g 0%y d%g
4 2 2 .
(C) (aulz + auzz / (“1 + Uy )+ au32
uy(us + u3)
2(u? + u?)?
VxF=e /2?4 u2) +e,
+ (duy? + 2u,® — 2uyuz)es/(us? + uy?).
10. (a) No. (b) The element of volume in spherical coordinates is different in shape
and pesition from that in cartesian coordinates.
11. This coordinate system is not right-handed, hence the usual formula for curl does
not apply.
12. (a) 1/uv.
(b) 2w/uv.
13. 8f/onin the u, direction is (3f/du,)/h, and its surface integral over abed is hyhs du, dus
times this, and so the surface integral over this face and the opposite face is

8 <h2h3 of

OB D) gy duy d
ouy \ by 8u1) t a2 Gk

d V-F=

and similarly for the other pairs of faces. The laplacian is the overall sum divided
by the volume h,h,h; du, du, dus,.

SECTION 5.3

L@l OO -1 7 ©[-2] @[ -1 7 10

5
4
@ -1 7 @10 0 —10
2 0 1| 0 10 10|
1 -1 7 0 —10 20

10. Check your answer by substituting into the equations.
15. In general, no. (Yes, if they commute.)

SECTION 5.4

2. b)[ cosy O siny
0 1 0
—siny 0 cosy
6. f'=x2+y? V' =xiV +y§ + K
Vf=2xT + 2y} V.-V =3 VxV =0
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11. ds = (dx'? + dy'? + dz'?)*.
12. dV' =dx'dy dz'.

4. x=—-y,y=272,2= —-x.
18. The line is along i — j — k. The angle around this axis is — /3.
19. (d) Take the determinant.

20-22. Elaborate on the technique in Exercise 18; or read “Coordinate-Free Rotation
Formalism,” by J. Mathews, Amer. Jnl. of Physics, 44, 1210 (1976).

23. (c) The transformation might be left-handed.

REVIEW PROBLEMS

1. (a) &+/29
(b) &/77.

(c) Any scalar multiple of 6i + 4j + 5k.
3. 90° — cos™11,/35. 8
4. (a) Any scalar multiple of 5i — j — k 9.

(a) 13.
(b) £&./27. (b) i— 3j— 4k.
N © 3
6.4 =)= —4y—2)= —4e-1) ) ~12
7. (a) 4(101), 10. (@) 326
(b) x — 11y — 14z + 43 = 0, ®2
©) ﬁ\/ﬁ. (c) cos™ 1.

11. Let C be the center, 4, B the ends of diameter, and let P be another point on the
circumference. Write PA and PB in terms of PC and CA or CB; then show
PA - PB=0. You will need to use the fact that |CA| = |BC| = |PC|.

12. Show that the vector sum of the medians is the zero vector.

13. (a) Infinitely many.  (b) w=(19i + 10j + 17k)/,/750.
Note thatu - (a/a)) = u - (b/]b() u-axb=0 and ju = 1 determine +u. How do
we know the answer just given is u and not —u?

14. ux v)-(uxv)=u-vx (ux v). Expand the triple vector product. The answer is
uu u-v
u-v vy

15. No.

16. Either u = +v or both u and v are perpendicular to w.

17. 7. (Simply the distance |AB|.)

18. 6. (No calculations are required.)

19. 3.

20. 3x + 2y + z = 18,

21. The vectori + 8j + 12k is tangent to the curve and perpendicular to the plane at the
point (2,8,8).

22. (2,4,8). (The vector extending from the center of the sphere to this point is per-
pendicular to the given plane.)
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23
24

25.
26.
27.

28.

29.

30. cos ! &4 /21. (¢) 2r%A.
31. (a) 4xi+ j. (d) 4(A - RPA.
(b) 3. (e) (A-R)/r.
(©) 4 (f) (A-RA.
32. (d) zi — 4xzj + (4xy — )k (g) 0.
(a) 2i. (h) 2A.
(b) 2k. - @6
(© —2 37. (a) Any scalar multiple of 6i + 3j + 2k.
33. 40[(z — y)i + (x — 2)j + (y — K] (b) 7.
34. 61 + 3j + 2k. 38. (@) x+y—4z+6=0.
35. 2A. Eb)) )2c3+2=y—4=—%(z—2).
C) .
?b)) ;ﬁ ‘xAA. 39. 90° — (cos™ " 5354/122).
40. Zero vector field except where r = 0; not defined where r = 0.
41. div (curl F) = 0. Hence2 + C=0and C = —2.
42. 0. By symmetry, it is fairly clear that a paddle wheel in such a force field will not
tend to rotate, no matter how the wheel is oriented.
43. Vx (Vx E)=V x (—dH/ot) = —6/ot(V x H) = — 0°E/or?

. (1,1,1). [The gradient of x? + 2y* + 3z is parallel to i + 2j + 3k at (1,1,1).]

. (1,1,2). (At this point the tangent to the curve is perpendicular to grad ¢. Of course,
this can also be done without using vector methods, by observing that ¢ = 1> —
6t + t* has its minimum at t = 1.)

(1,1,2). This is the preceding exercise in a different format.

90° — cos™ 1 98/(,/157 1/65).

A region to the right of P, approximately cigar-shaped, with major axis parallel
to the y axis.
R d(R i+ R,j+ R3k) R +R di+R dj+R ak
(R == = it =
ar g TR TR =g T T e T
By example 2.6, di/dt is perpendicular to i. Therefore,

di

O i k

at oy ]+ %y

. dj

Similarly, a9 ozk + ol

dt

o osi + dgj
Differentiating both sides of i - j = 0, we obtain i * (dj/df) + (di/dr)- j = 0. Hence
oy = —oy. Similarly, a5 = —o, and og= —a;. Let o =a3i —aj+ ok and

verify that ® x R = R, di/dt + R, dj/dt + R; dk/dt (see also Appendix C).

If T is a unit tangent to the ellipse, V(R;| + |[R,|) - T = 0 (why?). Also, V[R,| and
V|R,| are unit vectors in the directions R and R, respectively, so the cosine of the
angle between V|R,| and T equals the cosine of the angle between VIR,| and —T.

Also,Vx (Vx E)= —V2E + V(V-E)= — V’E
Hence V2E = 8%E/0t>. The derivation for H is similar.
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45. Since § = tan ¢, the two functions have the same isotimic surfaces, so Vi and V¢
are parallel.

46. Since V¢ and Vy are parallel, every isotimic surface of ¢ is also an isotimic surface
of y and vice versa.

47. (a) Vw - Vu x Vo = (uVv + vVu) - Vu x Vv

=u(Vv* Vu x Vv) + o(Vu -+ Vu x Vo) =
(b) At any point in space, the isotimic surfaces u = constant and v = constant
intersect in a curve along which both u and v and, hence, ware constant. Vu x Vo
is tangent to this curve and, hence, perpendicular to Vw.

48. If u, v, and w are functionally related, Vw - Vu x Vv = 0.

49. No.div(F x G)=0.

50. 60. The z component of F can be ignored, so replace F by G = yi + (x + 2)j.
Div G = 0 so (by the divergence theorem) the desired integral is the negative of the
integral of G over the four flat faces of a certain five sided closed surface. Only two
faces contribute nonzero values to the integral. The average value of x + 2 over the
face in the xz plane is 7 and the average value of y over the face in the yz plane is
3 so the arithmetic is 2(3)(4) + 2(3)(4) = 60.

51. Interchanging the role of x and y amounts to reflecting the plane in the line y = x;
following this by an inversion (replacing x by —x and y by —y) we obtain an
integral that “means” the same as before. But the effect of these replacements is to
change the sign of the integrand. Therefore, the integral equals its own negative
and must be zero. If this seems too abstruse, let x = acos §, y = asin §, ds = ad9
and the integral becomes [§" a®cos20d = 0.

52. 0. Use Stokes’ theorem and the preceding problem.

53. (F-dR =4[{xdy — ydx. Let x=acosf,y=hsinf. The integral becomes
13" abd0 = nab.
54. —1. The integral is independent of the path.

55. [ffV:FdV =[[F-ndS leads to C- {f{VpdV =C- {f¢nds and, since this is
valid for every constant vector C, the identity follows.

56. In the divergence theorem, let F = A x C where C is a constant vector field, and
proceed as in the preceding problem.

57. (a) Vf.
(b) V x F. (Make use of the two preceding problems.)

58. h,=h,=Ju> + v h, =1

59. (u* + v dudv dz.

1
60. (a) ——— o ( (Vu? +vA,,)+—\/u +vAu)>
) o
()*+F+(u2+vz)?=0.
APPENDIX A

1. Simply multiply (u,i + u,j + uzk)(v,i + v,j + v3k).
2.@ w+vu=(—-u-v+uxv)+(—v-u+wvxu). The cross products disappear.
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3. (a) This is simple vector algebra. (See Fig. 1.20).

(b) v =v—2(v-mn=0v+ (n+ nv)n=r0v+ vnn + non. Butn+n= —nnandsince
nis a unit vector nn = —1. Sov' = v — v + non = nvn.
4. nn=—( n)+n x n=—cos 30 — usin 30.

5. Since u is a unit vector, u? = —1,so0u® = —y, u* = 1,u’ =u,...and
1+ du+ 22! + ¢*ud/31 + -+ '
= (1= G220+ $HAL— )+ (§— Y31+ Ju

6. v* = OPupe™ 1D,



Acceleration, 72-77, 286

centripetal, 72

Coriolis, 85

normal to curve, 74, 77

tangential to curve, 74, 77
Addition (see Sum)
Ampere’s law, 306
Angle:

direction, 19

positive sense, 34-36
Angle between planes, 32
Angle between vectors, 17
Angular momentum, 85, 286, 295-296

velocity, 39, 108, 294
Arc (see Curve)
Arc length, 67-69

in orthogonal coordinates, 240
Area:

cosine principle, 161-164

of a surface, 160
Antisymmetric matrix, 258

Binormal, 79
Boundary, oriented, 155-156
Boundary conditions, 308-310

Cartesian coordinates, 7-8, 259
Center of mass, 14, 288
Components, 9

Conservative, 138

Index

Continuity equation, 104-105
Coordinates, 18
Cartesian, 7-8, 259
cylindrical, 221-229
orthogonal, 237-244
polar, 82-84
right-handed, 187
spherical, 229-235
Coriolis:
acceleration, 85
law, 294
Cosine law, 18
Cosine principle, 161-164
Cosines, direction, 19
Cramer’s rule, 257
Cross product (see Vector product)
Curl, 106-109
formula, 109
in orthogonal coordinates, 243
physical significance, 106-109, 203
Current, electric, 304
Curvature, 73, 76, 79
Curve, 62-67
arc length, 67-69
characteristic, 98
closed, 66
curvature, 73, 76, 79
oriented, 66
parametric equations, 62, 70
regular, 66
smooth, 66
space, 62
tangent to, 64
Cylindrical coordinates, 221-229
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v,114
O(i, 123
Bij, 53
Darboux vector, 82
Degenerate line segment, 1
Del, 112-114
Delta, Kronecker, 53
Derivative:
directional, 91-92, 282
as an operator, 114
Desargues’s theorem, 56
Determinant, 38, 45,52
Cramer’s rule, 257
Jacobian, 267, 270
symbolic, 38
Direction:
angles, 10
cosines, 11
Directional derivative, 91-92, 282
Displacement, 12-13, 63
current, 307
Divergence, 100-102
formula, 102
in orthogonal coordinates, 242
physical significance, 100-102, 105,
192
Divergence theorem, 183, 191
and Gauss’s law, 184
heuristic proof, 183-184
rigorous proof, 189-192
Division, points of, 25
Domain, 133-137
simply connected, 135-136
star-shaped, 137, 148
Dot product (see Scalar product)
Dual vectors, 254
Dyadic, 117-118

€jik» 52
Electric field, 170, 298
Electrostatics, 170, 298-303
potential, 299
Energy:
electromagnetic, 311
kinetic, 287, 296, 310
potential, 287
Equipotential, 90
Equivalence of line segments, 1
Euler:
angles, 296
equations, 295
expansion formula, 212
theorem, 269
Evolute, 89

Factor, scale, 239
Faraday, 307

Index

Field:
conservative, 138
irrotational, 145
scalar, 90
solenoidal, 152
vector, 97
velocity, 100
Flow:
fluid, 170
heat, 169-170
Flow line, 98
Fluid flow, 170
Flux, 101, 166, 208, 307
Force, 3, 13, 286
central, 85
centrifugal, 72
centripetal, 72
lines of, 98
Lorentz, 308
Frenet formulas, 79-81
Functions: (see also Field)
harmonic, 116
linear, 259-268
and operators, 114
vector-valued, 58

Gauss’s law, 170-172, 300, 302
Gradient, 92-93

in orthogonal coordinates, 241-242

physical significance, 92-93
Green’s formulas, 194, 195

theorem, 195-198

Harmonic, 116
Heat flow, 169-170, 172, 194

Identities:
algebraic, 49
analytic, 120
Identity matrix, 253
Inertia:
moment of, 188, 296-297
tensor, 295
Inner product (see Scalar product)

Integrals (see Line integrals, Surface inte-

grals, etc.)
Inverse of a matrix, 253
Irrotational, 145
Isobar, 91
Isotherm, 91
Isotimic surface, 87

Jacobian, 267, 270



Index

Kepler’s second law, 85
Kronecker delta, 53

Laplace’s equation, 116
Laplacian, 115-117
formula, 115
in orthogonal coordinates, 243
physical significance, 116, 194
Law of cosines, 18
Line,
equations, 20-23, 25
flow, 98
stream, 98
Line integrals, 127-129
dependence on path, 139, 145
Lines of force, 98
Lorentz force, 308

Magnetic field, 303-307
Magnitude of a vector, 2
Mass, 286
Matrix, 248-257

antisymmetric, 258

column, 248

identity, 253

inverse, 254-255

orthogonal, 258, 261

row, 248

symmetric, 258, 295

transpose, 258, 261
Maximum principle, 27
Maxwell equations, 308

stress tensor, 312
Mechanics (see Force, Velocity, etc.)
Mirror reflection, 12, 28, 281
Mobius strip, 156
Momentum, 286

angular, 85, 286, 295-296
Multiplication (see Product, Scalar

product, Vector product, etc.)

Nabla, 114
Neighborhood, 133-134
Newton’s second law, 286

third law, 290, 303
Nonorientable surface, 156
Normal:

to a curve, 74, 77

to a plane, 31

to a surface, 154-155, 158

Operators, 114
Orientation, 33-36

of arcs, 66

of boundaries, 155-156

339

of planes, 34
of surfaces, 154-156
Orthogonal curvilinear coordinates,
237-244 :
Orthogonal transformation, 259-268,
293
Orthogonal matrix, 258, 261
Orthogonal projection, 9, 118
Osculating circle, 74

Parabolic cylindrical coordinates, 276
Parallel-perpendicular decomposition,
28, 43-44
Parallelepiped, volume of, 46
Parallelogram:
area, 37
equality, 29
geometry of, 3
Parametrization, 21, 30, 157
Planes:
angle between, 32
distance between, 32
equations, 30-31, 47
normals to, 31
Point:
boundary, 134
interior, 134
Point of division, 25
Polar coordinates, 82-84
Position vector, 12, 20
Potential, 138, 143
vector, 152, 305-306
Power, 287
Poynting vector, 311
Principal normal, 77
Product, 42 (see also Scalar product,
Vector product)
matrix, 250-251
of a vector by a scalar, 6
Pythagorean theorem, 8, 10

Quaternions, 277-280

Radius of curvature, 73, 76, 79
Reflection, 12, 28, 281
Reynold’s transport theorem, 211
Right-hand system, 35, 187
Rigid body, 292

Rotations, 13-14, 296

z,52
Scalar, 3
field, 90
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Scalar product, 26-27
triple, 45-47
Scale factor, 239
Screw sense, 34
Simply connected, 135-136
Solenoidal, 152
Solid angle, 176, 218
Speed, 63
Spherical coordinates, 229-235
Stokes’s theorem, 184, 202
heuristic proof, 185-186
rigorous proof, 201-203
Substitution tensor, 53
Sum:
forces, 13
matrix, 250
vector, 3-5, 10
Summation convention, 53
Surface:
area, 160
closed, 156
equipotential, 90
isobaric, 91
isotimic, 87
moving, 206
normal to, 154, 155, 158
oriented, 154-156
parametric equations, 157
piecewise smooth, 155
second fundamental form, 165
smooth, 155
Surface integrals, 165-166
Swirl, 203
Symmetric matrix, 258, 295
tensor, 295

Tangent:
to a curve, 64
to a surface, 97

Index

Telegrapher’s equation, 313
Tensor:
inertia, 295
notation, 51-55, 87, 123-125
Tetrahedron, volume of, 48
Torque, 36, 286
Torsion, 80
Torus, 219
Transport theorems, 205-212
Transpose of a matrix, 258, 261
Triple scalar product, 45-47
significance of sign, 46
Triple vector product, 49-50

Unit vector, 6
maximum principle, 27
normal to a surface, 154, 155, 158
tangent to a curve, 64, 71

Vector, 1 (see also Field, Position
vector, etc.)
Vector potential, 152, 305-306
Vector product, 36-38
triple, 49-50
Velocity, 63
angular, 39, 108, 294
Velocity field, 100
Volume:
of a parallelepiped, 46
of a tetrahedron, 48
Volume integral, 176-177, 241

Wave equation, 312
Work, 27
as a line integral, 132
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