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Preface

. The numerical interpretation ... is however necessary. ... So long
as it is not obtained, the solutions may be said to remain incomplete and
useless, and the truth which it is proposed to discover is no less hidden
in the formulae of analysis than it was in the physical problem itself.

~Joseph Fourier, The Analytic Theory of Heat

This book covers most of the standard topics in multivariate calculus, and a
substantial part of a standard first course in linear algebra. The teacher may
find the organization rather less standard.

There are three guiding principles which led to our organizing the material
as we did. One is that at this level linear algebra should be more a convenient
setting and language for multivariate calculus than a subject in its own right.
We begin most chapters with a treatment of a topic in linear algebra and then
show how the methods apply to corresponding nonlinear problems. In each
chapter, enough linear algebra is developed to provide the tools we need in
teaching multivariate calculus (in fact, somewhat more: the spectral theorem
for symmetric matrices is proved in Section 3.7). We discuss abstract vector
spaces in Section 2.6, but the emphasis is on R", as we believe that most
students find it easiest to move from the concrete to the abstract.

Another guiding principle is that one should emphasize computationally ef-
fective algorithms, and prove theorems by showing that those algorithms really
work: to marry theory and applications by using practical algorithms as the-
oretical tools. We feel this better reflects the way this mathematics is used
today, in both applied and in pure mathematics. Moreover, it can be done with
no loss of rigor.

For linear equations, row reduction (the practical algorithm) is the central
tool from which everything else follows, and we use row reduction to prove all
the standard results about dimension and rank. For nonlinear equations, the
cornerstone is Newton's method, the best and most widely used method for
solving nonlinear equations. We use Newton’s method both as a computational
tool and as the basis for proving the inverse and implicit function theorem,
rather than basing those proofs on Picard iteration, which converges too slowly
to be of practical interest.



Jean Dieudonné, for many
years a leader of Bourbaki, is the
very personification of rigor in
mathematics. In his book In-
finitesimal Calculus, he put the
harder proofs in small type, say-
ing “ ... a beginner will do well
to accept plausible results without
taxing his mind with subtle proofs

Following this philosophy, we
have put many of the more diffi-
cult proofs in the appendix, and
feel that for a first course, these
proofs should be omitted. Stu-
dents should learn how to drive be-
fore they learn how to take the car
apart.

xii Preface

In keeping with our emphasis on computations, we include a section on
numerical methods of integration, and we encourage the use of computers to
both to reduce tedious calculations (row reduction in particular) and as an
aid in visualizing curves and surfaces. We have also included a section on
probability and integrals, as this seems to us too important a use of integration
to be ignored.

A third principle is that differential forms are the right way to approach the
various forms of Stokes’s theorem. We say this with some trepidation, espe-
cially after some of our most distinguished colleagues told us they had never
really understood what differential forms were about. We believe that differ-
ential forms can be taught to freshmen and sophomores, if forms are presented
geometrically, as integrands that take an oriented piece of a curve, surface, or
manifold, and return a number. We are aware that students taking courses
in other fields need to master the language of vector calculus, and we devote
three sections of Chapter 6 to integrating the standard vector calculus into the
language of forms.

The great conceptual simplifications gained by doing electromagnetism in
the language of forms is a central motivation for using forms, and we will apply
the language of forms to electromagnetism in a subsequent volume.

Although most long proofs have been put in Appendix A, we made an excep-
tion for the material in Section 1.6. These theorems in topology are often not
taught, but we feel we would be doing the beginning student a disservice not
to include them, particularly the mean value theorem and the theorems con-
cerning convergent subsequences in compact sets and the existence of minima
and maxima of functions. In our experience, students do not find this material
particularly hard, and systematically avoiding it leaves them with an uneasy
feeling that the foundations of the subject are shaky.

Different ways to use the book

This book can be used either as a textbook in multivariate calculus or as an
accessible textbook for a course in analysis.

We see calculus as analogous to learning how to drive, while analysis is
analogous to learning how and why a car works. To use this book to “learn
how to drive,” the proofs in Appendix A should be omitted. To use it to “learn
how a car works,” the emphasis should be on those proofs. For most students,
this will be best attempted when they already have some familiarity with the
material in the main text.

Students who have studied first year calculus only
(1) For a one-semester course taken by students have studied neither linear

algebra nor multivariate calculus, we suggest covering only the first four chap-
ters, omitting the sections marked “optional,” which, in the analogy of learning
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to drive rather than learning how a car is built, correspond rather to learning
how to drive on ice. (These sections include the part of Section 2.8 concerning
a stronger version of the Kantorovitch theorem, and Section 4.4 on measure
0). Other topics that can be omitted in a first course include the proof of the
fundamental theorem of algebra in Section 1.6, the discussion of criteria for
differentiability in Section 1.9, Section 3.2 on manifolds, and Section 3.8 on
the geometry of curves and surfaces. (In our experience, beginning students
do have trouble with the proof of the fundamental theorem of algebra, while
manifolds do not pose much of a problem.)

(2) The entire book could also be used for a full year’s course. This could be
done at different levels of difficulty, depending on the students’ sophistication
and the pace of the class. Some students may need to review the material
in Sections 0.3 and 0.5; others may be able to include some of the proofs in
the appendix, such as those of the central limit theorem and the Kantorovitch
theorem.

(3) With a year at one’s disposal (and excluding the proofs in the appendix),
one could also cover more than the present material, and a second volume is
planned, covering

applications of differential forms;

abstract vector spaces, inncr product spaces, and Fourier series;
electromagnetism;

differential equations;

eigenvalues, eigenvectors, and differential equations.

We favor this third approach; in particular, we feel that the last two topics
above are of central importance. Indeed, we feel that three semesters would
not be too much to devote to linear algebra, multivariate calculus, differential
forms, differential equations, and an introduction to Fourier series and partial
differential equations. This is more or less what the engineering and physics
departments expect students to learn in second year calculus, although we feel
this is unrealistic.

Students who have studied some linear algebra or multivariate
calculus

The book can also be used for students who have some exposure to either
linear algebra or multivariate calculus, but who are not ready for a course in
analysis. We used an earlier version of this text with students who had taken
a course in linear algebra, and feel they gained a great deal from seeing how
linear algebra and multivariate calculus mesh. Such students could be expected
to cover Chapters 1-6, possibly omitting some of the optional material discussed



We view Chapter 0 primarily
as a resource for students, rather
than as part of the material to be
covered in class. An exception is
Section 0.4, which might well be
covered in a class on analysis.

Mathematical notation is not
always uniform. For example, |A|
can mean the length of a matrix
A (the meaning in this book) or
it can mean the determinant of
A. Different notations for partial
derivatives also exist. This should
not pose a problem for readers
who begin at the beginning and
end at the end, but for those who
are using only seclected chapters,
it could be confusing. Notations
used in the book are listed on the
front inside cover, along with an
indication of where they are first
introduced.
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above. For a less fast-paced course, the book could also be covered in an entire
year, possibly including some proofs from the appendix.

Students ready for a course in analysis

If the book is used as a text for an analysis course, then in one semester one
could hope to cover all six chapters and some or most of the proofs in Appendix
A. This could be done at varying levels of difficulty; students might be expected
to follow the proofs, for example, or they might be expected to understand them
well enough to construct similar proofs. Several exercises in Appendix A and
in Section 0.4 are of this nature.

Numbering of theorems, examples, and equations

Theorems, lemmas, propositions, corollaries, and examples share the same num-
bering system. For example, Proposition 2.3.8 is not the eighth proposition of
Section 2.3; it is the eighth numbered item of that section, and the first num-
bered item following Example 2.3.7. We often refer back to theorems, examples,
and so on, and hope this numbering will make them easier to find.

Figures are numbered independently; Figure 3.2.3 is the third figure of Sec-
tion 3.2. All displayed equations are numbered, with the numbers given at
right; Equation 4.2.3 is the third equation of Section 4.2. When an equation
is displayed a second time, it keeps its original number, but the number is in
parentheses.

We use the symbol A to mark the end of an example or remark, and the
symbol O to mark the end of a proof.

Exercises

Exercises are given at the end of each chapter, grouped by section. They range
from very easy exercises intended to make the student familiar with vocabulary,
to quite difficult exercises. The hardest exercises are marked with a star (or, in
rare cases, two stars). On occasion, figures and equations are numbered in the
exercises. In this case, they are given the number of the exercise to which they
pertain. .

In addition, there are occasional “mini-exercises” incorporated in the text,
with answers given in footnotes. These are straightforward questions contain-
ing no tricks or subtleties, and are intended to let the student test his or her
understanding (or be reassured that he or she has understood). We hope that
even the student who finds them too easy will answer them; working with pen
and paper helps vocabulary and techniques sink in.
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Web page
Errata will be posted on the web page
http://math.cornell.edu/~ hubbard/vectorcalculus.

The three programs given in Appendix B will also be available there. We plan
to expand the web page, making the programs available on more platforms, and
adding new programs and examples of their uses.

Readers are encouraged to write the authors at jhh8@cornell.edu to signal
errors, or to suggest new exercises, which will then be shared with other readers

via the web page.
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0

Preliminaries

0.0 INTRODUCTION

This chapter is intended as a resource, providing some background for those
who may need it. In Section 0.1 we share some guidelines that in our expe-
rience make reading mathematics easier, and discuss a few specific issues like
sum notation. Section 0.2 analyzes the rather tricky business of negating math-
ematical statements. (To a mathematician, the statement “All seven-legged
alligators are orange with blue spots” is an obviously true statement, not an
obviously meaningless one.) Section 0.3 reviews set theory notation; Section
0.4 discusses the real numbers; Section 0.5 discusses countable and uncountable
sets and Russell’s paradox; and Section 0.6 discusses complex numbers.

0.1 READING MATHEMATICS

We recommend not spending
much time on Chapter 0. In par-
ticular, if you are studying multi-
variate calculus for the first time
you should definitely skip certain
parts of Section 0.4 (Definition
0.4.4 and Proposition 0.4.6). How-
ever, Section 0.4 contains a discus-
sion of sequences and series which
you may wish to consult when we
come to Section 1.5 about conver-
gence and limits, if you find you
don’t remember the convergence
criteria for sequences and series
from first year calculus.

The most efficient logical order for a subject is usually different from the
best psychological order in which to learn it. Much mathematical writing
is based too closely on the logical order of deduction in a subject, with too
many definitions without, or before, the examples which motivate them,
and too many answers before, or without, the questions they address.—
William Thurston

Reading mathematics is different from other reading. We think the following
guidelines can make it easier. First, keep in mind that there are two parts to
understanding a theorem: understanding the statement, and understanding the
proof. The first is more important than the second.

What if you don’t understand the statement? If there's a symbol in the
formula you don’t understand, perhaps a §, look to see whether the next line
continues, “where § is such-and-such.” In other words, read the whole sentence
before you decide you can’t understand it. In this book we have tried to define
all terms before giving formulas, but we may not have succeeded everywhere.

If you’re still having trouble, skip ahead to ezamples. This may contradict
what you have been told—that mathematics is sequential, and that you must
understand each sentence before going on to the next. In reality, although
mathematical writing is necessarily sequential, mathematical understanding is
not: you (and the experts) never understand perfectly up to some point and

1



The Greek Alphabet

Greek letters that look like Ro-
man letters are not used as mathe-
matical symbols; for example, A is
capital a, not capital a. The letter
x is pronounced “kye,” to rhyme
with “sky”; ¢, ¥ and £ may rhyme
with either “sky” or “tea.”

alpha
beta
gamma
delta
epsilon
zeta
eta
theta
iota
kappa
lambda
mu

nu

xi
omicron
pi

rho
sigma
tau
upsilon
phi

chi

psi
Oomega

TR >»Z2 S DINNAN 2R

s
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In Equation 0.1.3, the symbol
3 k=1 says that the sum will have
n terms. Since the expression be-
ing summed is aykbk,;, each of
those n terms will have the form
ab.

2 Chapter 0. Preliminaries

not at all beyond. The “beyond,” where understanding is only partial, is an
essential part of the motivation and the conceptual background of the “here and
now.” You may often (perhaps usually) find that when you return to something
you left half-understood, it will have become clear in the light of the further
things you have studied, even though the further things are themselves obscure.
Many students are very uncomfortable in this state of partial understanding,
like a beginning rock climber who wants to be in stable equilibrium at all times.
To learn effectively one must be willing to leave the cocoon of equilibrium. So
if you don’t understand something perfectly, go on ahead and then circle back.

In particular, an example will often be easier to follow than a general state-
ment; you can then go back and reconstitute the meaning of the statement in
light of the example. Even if you still have trouble with the general statement,
you will be ahead of the game if you understand the examples. We feel so
strongly about this that we have sometimes flouted mathematical tradition and
given examples before the proper definition.

Read with pencil and paper in hand, making up little examples for yourself
as you go on.

Some of the difficulty in reading mathematics is notational. A pianist who
has to stop and think whether a given note on the staff is A or F will not be
able to sight-read a Bach prelude or Schubert sonata. The temptation, when
faced with a long, involved equation, may be to give up. You need to take the
time to identify the “notes.”

Learn the names of Greek letters—not just the obvious ones like alpha, beta,
and pi, but the more obscure psi, xi, tau, omega. The authors know a math-
ematician who calls all Greek letters “xi,” (£) except for omega (w), which he
calls “w.” This leads to confusion. Learn not just to recognize these letters, but
how to pronounce them. Even if you are not reading mathematics out loud, it
is hard to think about formulas if £, 9, 7,w, ¢ are all “squiggles” to you.

Sum and product notation

Sum notation can be confusing at first; we are accustomed to reading in one
dimension, from left to right, but something like

n
2 a,-,,,bk‘j 0.1.1
k=1

requires what we might call two-dimensional (or even three-dimensional) think-
ing. It may help at first to translate a sum into a linear expression:

X :
S r=2042 427 0.1.2
i=0
or
n
Cij = Z“i,kb'w = a.-‘lbl‘j + a’:‘,2b2,j +oe 4 ai.nbn,j~ 0.1.3

k=1
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Two Y placed side by side do not denote the product of two sums; one sum
is used to talk about one index, the other about another. The same thing could
be written with one }_, with information about both indices underneath. For

example,
I : : s 4
il Y36+ = X G+9)
H : : i=1 j=2 i {from lzto.'f‘.
: : : j from 2 to
4o EB EBE} 4 4 4
: i : = 1+5 ]+ 2+5 | + 3+ 1.
3| [T Eee (X_; J) (22 J) ; j 0.14
7 : ; = = i
L 2 St o I s S =(Q+2)+(1+3)+(1+4)
+(2+2)+(2+3)+(2+4))
o e +((3+2)+(3+3) +(3+4));
: ' ; — this double sum is illustrated in Figure 0.1.1.
] 2 3 i Rules for product notation are analogous to those for sum notation:
FIGURE 0.1.1. ﬁag=a1~a2--~a,.; for example, f[i=n!.
In the double sum of Equation =l =1

0.1.4, each sum has three terms, so
the double sum has nine terms. Proofs

We said earlier that it is more important to understand a mathematical state-
ment than to understand its proof. We have put some of the harder proofs in
the appendix; these can safely be skipped by a student studying multivariate
calculus for the first time. We urge you, however, to read the proofs in the main
text. By reading many proofs you will learn what a proof is, so that (for one
thing) you will know when you have proved something and when you have not.

When Jacobi complained that In addition, a good proof doesn’t just convince you that something is true;
Gauss's proofs appeared unmoti- it tells you why it is true. You presumably don’t lie awake at night worrying
vated, Gauss is said to have an-  ahout the truth of the statements in this or any other math textbook. (This
swered, You build the building and i }noom oc “proof by eminent authority”; you assume the authors know what

remove the scaffolding. Our sym- . X .
pathy is with Jacobi's reply: he they are talking about.) But reading the proofs will help you understand the

likened Gauss to the foz who material. ) .
erases his tracks in the sand with If you get discouraged, keep in mind that the content of this book represents

his tail. a cleaned-up version of many false starts. For example, John Hubbard started
by trying to prove Fubini’s theorem in the form presented in Equation 4.5.1.
When he failed, he realized (something he had known and forgotten) that the
statement was in fact false. He then went through a stack of scrap paper before
coming up with a correct proof. Other statements in the book represent the
efforts of some of the world’s best mathematicians over many years.
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0.2 HOW TO NEGATE MATHEMATICAL STATEMENTS

Statements that to the ordi-
nary mortal are false or meaning-
less are thus accepted as true by
mathematicians; if you object, the
mathematician will retort, “find
me a counter-example.”

Even professional mathematicians have to be careful not to get confused

when negating a complicated mathematical statement. The rules to follow are:

(1) The opposite of
[For all z, P(z) is true] 02.1
is [There exists z for which P(z) is not true].

Above, P stands for “property.” Symbolically the same sentence is written:
The opposite of Vz,P(z) is 3z|not P(z). 0.2.2

Instead of using the bar | to mean “such that” we could write the last line
(3z)(not P(z)). Sometimes (not in this book) the symbols ~ and ~ are used

to mean “not.”

(2) The opposite of
[There exists = for which R(z) is true]

is [For all z, R(z) is not true].

0.2.3

Symbolically the same sentence is written:
The opposite of (3z)(P(z)) i8 (Vz) not P(z). 0.2.4

These rules may seem reasonable and simple. Clearly the opposite of the
(false) statement, “All rational numbers equal 1,” is the statement, “There
exists a rational number that does not equal 1.”

However, by the same rules, the statement, “All seven-legged alligators are
orange with blue spots” is true, since if it were false, then there would exist a
seven-legged alligator that is not orange with blue spots. The statement, “All
seven-legged alligators are black with white stripes” is equally true.

In addition, mathematical statements are rarely as simple as “All rational
numbers equal 1.” Often there are many quantifiers and even the experts have
to watch out. At a lecture attended by one of the authors, it was not clear to
the audience in what order the lecturer was taking the quantifiers; when he was
forced to write down a precise statement, he discovered that he didn’t know
what he meant and the lecture fell apart.

Here is an example where the order of quantifiers really counts: in the defi-
nitions of continuity and uniform continuity. A function f is continuous if for
all z, and for all € > 0, there exists § > 0 such that for all y, if |z — y| < 6, then
|f(z) — f(y)|] < €. That is, f is continuous if

(Vz)(Ve > 0)(36 > 0)(Vy) (le —yl < 6 == |f(z) - f@)l <€). 025
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A function f is uniformly continuous if for all € > 0, there exists § > 0 for
all z and all y such that if ]z — y| < 4, then |f(z) — f(y)] < e. That is, fis
uniformly continuous if

(Ve > 0)(36 > 0)(Vz)(Vy) (lx — ¥l < 6 = |f(z) - f(W)I < €). 0.2.6

For the continuous function, we can choose different § for different x; for the
uniformly continuous function, we start with € and have to find a single § that
works for all z.

For example, the function f(z) = z? is continuous but not uniformly con-
tinuous: as you choose bigger and bigger x, you will need a smaller § if you
want the statement |z — y| < 6 to imply |f(z) - f(y)| < €, because the function
keeps climbing more and more steeply. But sinz is uniformly continuous; you
can find one § that works for all z and all y.

0.3 SET THEORY

There is nothing new about
the concept of “set” denoted by
{alp(a)}. Euclid spoke of geo-
metric loci, a locus being the set
of points defined by some prop-
erty. (The Latin word locus means
“place”; its plural is loci.)

At the level at which we are working, set theory is a language, with a vocab-
ulary consisting of seven words. In the late 1960’s and early 1970’s, under the
sway of the “New Math,” they were a standard part of the elementary school
curriculum, and set. theory was taught as a subject in its own right. This was a
resounding failure, possibly because many teachers, understandably not know-
ing why set theory was being taught at all, made mountains out of molehills. As
a result the schools (elementary, middle, high) have often gone to the opposite
extreme, and some have dropped the subject altogether.

The seven vocabulary words are
“is an element of”

€
{a}p(a)} “the set of a such that p(a) is true”
C “is a subset of” (or equals, when A C A)

n “intersect”: AN B is the set of elements of both A and B.
U “union”: AU B is the set of elements of either A or B
or both.
X “cross”: A x B is the set of pairs (a,b) with a € A and
beB.
- “complement”: A — B is the set of elements in A that
are not in B.

One set has a standard name: the empty set ¢, which has no elements.
There are also sets of numbers that have standard names; they are written in
black-board bold, a font we use only for these sets. Throughout this book and
most other mathematics books (with the exception of N, as noted in the margin
below), they have exactly the same meaning:



N is for “natural,” Z is for
“Zahl,” the German for number,
Q is for “quotient,” R is for “real,”
and C is for “complex.” Mathe-
matical notation is not quite stan-
dard: some authors do not include
0in N.

When writing with chalk on a
black board, it’s hard to distin-
guish between normal letters and
bold letters. Black-board bold
font is characterized by double
lines, as in N and R.

Although it may seem a bit
pedantic, you should notice that

Ut and {llnez}
neZ

are not the same thing: the first
is a subset of the plane; an ele-
ment of it is a point on one of
the lines. The second is a set of
lines, not a set of points. This
is similar to one of the molehills
which became mountains in the
new-math days: telling the differ-
ence between ¢ and {®}, the set
whose only element is the empty
set.
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“the natural numbers” {0,1,2,...}

“the integers,” i.e., signed whole numbers {...,-1,0,1,...}
“the rational numbers” p/q, with p,g € Z, ¢ #0

“the real numbers,” which we will think of as infinite decimals
“the complex numbers” {a + ib| a,b € R}

aRONZ

Often we use slight variants of the notation above: {3,5, 7} is the set consist-
ing of 3,5, and 7, and more generally, the set consisting of some list of elements
is denoted by that list, enclosed in curly brackets, as in

{n|neNandniseven}={0,2,4,...}, 0.3.1

where again the vertical line | means “such that.”
The symbols are sometimes used backwards; for example, A O B means
B C A, as yon probably guessed. Expressions are sometimes condensed:

{reR|zisasquare} means {z|z€Randzisasquare}, 032

i.e., the set of non-negative real numbers.

A slightly more elaborate variation is indezed unions and intersections: if
S, is a collection of sets indexed by a € A, then

n Sa denotes the intersection of all the S,, and
a€A

U Sa denotes their union.
acA

For instance, if 1, C R? is the line of equation y = n, then ¢z I is the set
of points in the plane whose y-coordinate is an integer.

We will use exponents to denote multiple products of sets; A x A x --- x A
with n terms is denoted A™: the set of n-tuples of elements of A.

If this is all there is to set theory, what is the fuss about? For one thing,
historically, mathematicians apparently did not think in terms of sets, and
the introduction of set theory was part of a revolution at the end of the 19th
century that included topology and measure theory. We explore another reason
in Section 0.5, concerning infinite sets and Russell’s paradox.

0.4 REAL NUMBERS

Showing that all such construc-
tions lead to the same numbers is
a fastidious exercise, which we will
not pursue.

All of calculus, and to a lesser extent linear algebra, is about real numbers.
In this introduction, we will present real numbers, and establish some of their
most useful properties. Our approach privileges the writing of numbers in base
10; as such it is a bit unnatural, but we hope you will like our real numbers
being exactly the numbers you are used to. Also, addition and multiplication
will be defined in terms of finite decimals.



There are mniore elegant
approaches to defining real num-
bers, (Dedekind cuts, for instance
(see, for example, Michael Spivak,
Calculus, second edition, 1980, pp.
554-572), or Cauchy sequences of
rational numbers; one could also
mirror the present approach, writ-
ing numbers in any base, for in-
stance 2. Since this section is par-
tially motivated by the treatment
of floating-point numbers on com-
puters, base 2 would seem very
natural.

The least upper bound prop-
erty of the reals is often taken as
an axiom; indeed, it characterizes
the real numbers, and it sits at
the foundation of every theorem in
calculus. However, at least with
the description above of the reals,
it is a theorem, not an axiom.

The least upper bound sup X
is sometimes denoted l.u.b.X; the
notation max X is also sometimes
used, but suggests to some people
that max X € X.
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Numbers and their ordering

By definition, the set of real numbers is the set of infinite decimals: expressions
like 2.95765392045756. . ., preceded by a plus or a minus sign (in practice the
plus sign is usually omitted). The number that you usually think of as 3 is the
infinite decimal 3.0000. .., ending in all zeroes.

The following identification is absolutely vital: a number ending in all 9's is
equal to the “rounded up” number ending in all 0's:

0.34999999 - - - = 0.350000... ..

Also, +.0000--- = —.0000.... Other than these exceptions, there is only one
way of writing a real number.

Numbers that start with a + sign, except +0.000..., are positive; those
that start with a — sign, except —0.00..., are negative. If  is a real number,
then —z has the same string of digits, but with the opposite sign in front. For
k > 0, we will denote by [z]i the truncated finite decimal consisting of all the
digits of = before the decimal, and exactly k digits after the decimal. To avoid
ambiguity, if z is a real number with two decimal expressions, [z}, will be the
finite decimal built from the infinite decimal ending in 0’s; for the number in
Equation 0.4.1, [z]3 = 0.350.

Given any two different numbers z and y, one is always bigger than the other.
This is defined as follows: if z is positive and y is non-positive, then £ > y. If
both are positive, then in their decimal expansions there is a first digit in which
they differ; whichever has the larger digit in that position is larger. If both are
negative, then z > y if —y > —z.

0.4.1

The least upper bound property

Definition 0.4.1 (Upper bound; least upper bound). A number a is
an upper bound for a subset X C R if for every z € X we have z < a. A
least upper bound is an upper bound b such that for any other upper bound
a, we have b < a. The least upper bound is denoted sup.

Theorem 0.4.2. Every non-empty subset X C R that has an upper bound
has a least upper bound sup X.

Proof. We will construct successive decimals of sup X. Let us suppose that
T € X is an element, (which we know exists, since X # ) and that @ is an
upper bound. We will assume that z > 0 (the case = < 0 is slightly different).
If £ = a, we are done: the least upper bound is a.



Recall that [a]; denotes the fi-
nite decimal consisting of all the
digits of a before the decimal, and
j digits after the decimal.

We use the symbol O to mark
the end of a proof, and the symbol
A to denote the end of an example
or a remark.

Because you learned to add,
subtract, divide, and multiply in
elementary school, the algorithms
used may seem obvious. But un-
derstanding how computers sim-
ulate real numbers is not nearly
as routine as you might imagine.
A real number involves an infinite
amount of information, and com-
puters cannot handle such things:
they compute with finite decimals.
This inevitably involves rounding
off, and writing arithmetic subrou-
tines that minimize round-off er-
rors is a whole art in itself. In
particular, computer addition and
multiplication are not commuta-
tive or associative. Anyone who
really wants to understand numer-
ical problems has to take a serious
interest in “computer arithmetic.”
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If z # a, there is a first j such that the jth digit of x is smaller than the jth
digit of a. Consider all the numbers in [r,a] that can be written using only j
digits after the decimal, then all zeroes. This is a finite non-empty set; in fact
it has at most 10 elements, and (a]; is one of them. Let b; be the largest which
is not an upper bound. Now consider the set of numbers in [b), a] that have
only j + 1 digits after the decimal point, then all zeroes. Again this is a finite
non-empty set, so you can choose the largest which is not an upper bound; call
it bj4+1. It should be clear that b;4) is obtained by adding one digit to b;. Keep
going this way, defining numbers b;42,b;43, ..., each time adding one digit to
the previous number. We can let b be the number whose kth decimal digit is
the same as that of by; we claim that b = sup X.

Indeed, if there exists y € X with y > b, then there is a first digit k of y
which differs from the kth digit of b, and then bx was not the largest number
with k digits which is not an upper bonnd, since using the kth digit of y would
give a bigger one. So b is an upper bound.

Now suppose that ¥ < b is also an upper bound. Again there is a first digit
k of b which is different from that of &'. This contradicts the fact that b, was
not an upper bouud, since then b > ¢'. O

Arithmetic of real numbers

The next task is to make arithmetic work for the reals: defining addition, mul-
tiplication, subtraction, and division, and to show that the usual rules of arith-
metic hold. This is harder than one might think: addition and multiplication
always start at the right, and for reals there is no right.

The underlying idea is to show that if you take two reals, truncate (cut) them
further and further to the right and add them (or multiply them, or subtract
them, etc.) and look only at the digits to the left of any fixed position, the
digits we see will not be affected by where the truncation takes place, once it is
well beyond where we are looking. The problem with this is that it isn’t quite
true.

Example 0.4.3 (Addition). Consider adding the following two numbers:
.222222...222. ..
TTTTTT...TT8. ..

The sum of the truncated numbers will be .9999...9 if we truncate before the
position of the 8, and 1.0000...0 if we truncate after the 8. So there cannot
be any rule which says: the 100th digit will stay the same if you truncate after
the N'th digit, however large N is. The carry can come from arbitrarily far to
the right.

If you insist on defining everything in terms of digits, it can be done but
is quite involved: even showing that addition is associative involves at least



I stands for “finite decimal.”

We use A for addition, M for
multiplication, and S for subtrac-
tion; the function Assoc is needed
to prove associativity of addition.

Since we don’t yet have a no-
tion of subtraction in ., we can't
write {x -y} < ¢, much less 3~ (x, -
¥)? < €. which involves addition
and multiplication besides. Our
definition of k-close uses only sub-
traction of finite decimals.

The notion of k-close is the cor-
rect way of saying that two num-
bers agree to k digits after the dec-
imal point. It takes into account
the convention by which a num-
ber ending in all 9s is equal to the
rounded up number ending in all
0’s: the numbers .9998 and 1.0001
are 3-close.

The functions A4 and 3 sat-
isfy the conditions of Proposition
0.4.6; thus they apply to the real
numbers, while A and Af without
tildes apply to finite decimals.
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six different cases, and although none is hard, keeping straight what you are
doing is quite delicate. Exercise 0.4.1 should give you enough of a taste of
this approach. Proposition 0.4.6 allows a general treatment; the development
is quite abstract, and you should definitely not think you need to understand
this in order to proceed.

Let us denote by I the set of finite decimals.

Definition 0.4.4 (Finite decimal continuity). A mapping f :D"* - D
will be called finite decimal continuous (D-contimious) if for all integers N
and k, there exists [ such that if (z,...,%,) and (y1,...,yn) are two elements
of D™ with all |z;], Jus} < N, and if |z; — ;| < 10~ for all i = 1,...,n, then

1f @1y o1 Zn) = f(W10.- 2 0n)| < 107F. 0.4.2

Exercise 0.4.3 asks you to show that the functions A(x,y) = z+y, M(z,y) =
xy, S(x,y) = r — y, Assoc(z,y) = (z +y) + 2z are D-continuous, and that 1/z
is not.

To see why Definition 0.4.4 is the right definition, we need to define what it
means for two points x,y € R™ to be close.

Definition 0.4.5 (k-close). Two points x,y € R™ are k-close if for each
i=0,...,n, then |[z:]x — [gslx| < 107%.

Notice that if two numbers are k-close for all k, then they are equal (see
Exercise 0.4.2). -
If f:5" — T is D-contimious, then define f : R® — R by the formula

f(x) = sup ‘iuf fzae .- [zalt). 0.4.3
k zk

Proposition 0.4.6. The function f: R™ — R is the unique function that
coincides with f on D" and which satisfies that the continuity condition for
all k € N, for all N € N, there exists | € N such that when x,y € R" are
l-close and all coordinates z; of x satisfy |z;| < N, then f(x) and f (y) are
k-close.

The proof of Proposition 0.4.6 is the object of Exercise 0.4.4.
With this proposition, setting up arithmetic for the reals is plain sailing.
Consider the D-continuous functions A(z,y) = z+y and M(z,y) = zy; then

we define addition of reals by setting
rt+y= Z(z, y) and zy= IW(:. y). 0.4.4

It isn't harder to show that the basic laws of arithmetic hold:



1t is one of the basic irritants
of elementary school math that
division is not defined in the world
of finite decimals.

All of calculus is based on this
definition, and the closely related
definition of limits of functions.

If a series converges, then the
same list of numbers viewed as a
sequence must converge to 0. The
converse is not true. For example,
the harmonic series

1 1
1+ 3 + 3 +...
docs not converge, although the
terms tend to 0.
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T+y=y+z Addition is commutative.
(z+y)+z=1+(y+2) Addition is associative.

z+(-z)=0 Exzistence of additive inverse.

Ty = YT Multiplication is commutative.

(zy)z = z(yz) Multiplication is associative.
z(y+2z)=zy+22 Multiplication is distributive over addition.

These are all proved the same way: lct us prove the last. Cousider the
function D® — D given by

F(z,y,2) = M(z,A(y, 2)) - A(M(z,y), M(z, z)). 0.4.5
We leave it to you to check that F is D-continuous, and that
F(z,y,2) = M(z, A(y,2)) - j(ﬁ(z,y), M(z.z)). 0.4.6

But F is identically 0 on D?, and the identically 0 function on R3 is a function
which coincides with 0 on D® and satisfies the continuity condition of Proposi-
tion 0.4.6, so F vanishes identically by the uniqueness part of Proposition 0.4.6.
That is what was to be proved.

This sets up almost all of arithmetic; the missing piece is division. Exercise
0.4.5 asks you to define division in the reals.

Sequences and series

A sequence is an infinite list (of numbers or vectors or matrices ... ).

Definition 0.4.7 (Convergent sequence). A sequence a, of real numbers
is said to converge to the limit a if for all ¢ > 0, there exists N such that for
all n > N, we have |a — an| < €.

Many important sequences appear as partial sums of series. A series is a
sequence where the terms are to be added. If a),a2,... is a series of numbers,
then the associated sequence of partial sums is the sequence sy, sz, . .., where

0.4.7

N
=Y o

n=]1

For example, if a; = 1,82 = 2,a3 =3,and soon, then 84 =1 + 2+ 3+ 4.



Example of geometric series:
2.020202 =
2 +2(.01) +2(.01)% + ...

-2
T 1 (.0)
-

99’

It is hard to overstate the im-
portance of this problem: prov-
ing that a limit exists without
knowing ahead of time what it
is. It was a watershed in the his-
tory of mathematics, and remains
a critical dividing point between
first year calculus and multivari-
ate calculus, and more generally,
between elementary mathematics
and advanced mathematics.
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Definition 0.4.8 (Convergent series). If the sequence of partial sums of
a series has a limit S, we say that the series converges, and its limit is

> <]
2 an =S 0.4.8
n=1

Example 0.4.9 (Geometric series). If [r| <1, then

o0
Y arn= e . 0.4.9
1-r

n=0
Indeed, the following subtraction shows that S,(1 - r) = a —ar™*!:
S,=a+ar+ar’+ar’+---+ar"
1

= 2 34... n n+
Spr = ar+ar‘+ar®+---+ar" +ar 0.4.10

Sa(1-7)=a -ar™t!
But lim,—..c ar™*! = 0 when |r| < 1, so we can forget about the —ar™*!: as
n — oo, we have S, —a/(1-71). A

Proving convergence

The weakness of the definition of a convergent sequence is that it involves the
limit value. At first, it is hard to see how you will ever be able to prove that a
sequence has a limit if you don’t know the limit ahead of time.

The first result along these lines is the following theorem.

Theorem 0.4.10. A non-decreasing sequence a,, converges if and only if
it is bounded.

Proof. Since the sequence a, is bounded, it has a least upper bound A. We
claim that A is the limit. This means that for any ¢ > 0, there exists N such
that if n > N, then |a, — A] < e. Choose € > 0; if A - a, > € for all n, then
A — ¢ is an upper bound for the sequence, contradicting the definition of A. So
there is a first N with A — ay < ¢, and it will do, since when n > N, we must
have A—a, < A-any<e. O

Theorem 0.4.10 has the following consequence:

Theorem 0.4.11. If a,, is a series such that the series of absolute values

[~ <] o0
> lanl  converges, then so does the series Y an.

n=1 n=1



One unsuccessful 19th century
definition of continuity stated that
a function f is continuous if it sat-
isfies the intermediate value the-
orem: if, for all a < b, f takes
on all values between f(a) and
f(b) at some ¢ € [a,b]. You are
asked in Exercise 0.4.7 to show
that this does not coincide with
the usual definition (and presum-
ably not with anyone’s intuition of
what continuity should mean).
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Proof. The series 2:;, an + |an| is a series of non-negative numbers, and
so the partial sums b,, = Y, (@n + |an]) are non-decreasing. They are also
bounded:

b= 3 (0 + fonl) < gmanl —2Y leal $2Y feal 041

n=1 na=] n=l

So (by Theorem 0.4.10) the b,, form a convergent sequence, and finally

20 o0 00
Yan =3 (an+lanl) + (= X leal) 0412

n=1 n=1 n=1
represents the series oo, a, as the sum of two numbers, each one the sum of
a convergent series. O

The intermediate value theorem

The intermediate value theorem is a result which appears to be obviously true,
and which is often useful. Moreover, it follows easily from Theorem 0.4.2 and
the definition of continuity.

Theorem 0.4.12 (Intermediate value theorem). If f : [a,b] — R is
a continuous function such that f(a) < 0 and f(b) > 0, then there exists
¢ € [a, b] such that f(c) =0.

Proof. Let X be the set of z € [a,b] such that f(z) < 0. Note that X is
non-empty (a is in it) and it has an upper bound, namely b, so that it has a
least upper bound, which we call c. We claim f(c) = 0.

Since f is continuous, for any € > 0, there exists § > 0 such that when
|z - c] < 4, then |f(x) — f(c)| < e. Therefore, if f(c) > 0, we can set € = f(o),
and there exists § > 0 such that if |z - ¢| < 6, then [f(z) - f(c)| < f(c). In
particular, we see that if £ > ¢ - /2, f(z) > 0, so ¢ — 6/2 is also an upper
bound for X, which is a contradiction.

If f(c) < 0, a similar argument shows that there exists § > 0 such that
f(c+6/2) < 0, contradicting the assumption that c is an upper bound for X.
The only choice left is f(c) =0. O

0.5 INFINITE SETS AND RUSSELL’S PARADOX

One reason set theory is accorded so much importance is that Georg Cantor
(1845-1918) discovered that two infinite sets need not have the same “number”
of elements; there isn’t just one infinity. You might think this is just obvious,
for instance because there are more whole numbers than even whole numbers.
But with the definition Cantor gave, two sets A and B have the same number of



This argument simply flabber-
gasted the mathematical world;
after thousands of years of philo-
sophical speculation about the in-
finite, Cantor found a fundamen-
tal notion that had been com-
pletely overlooked.

It would seem likely that IR and
R? have different infinities of ele-
ments, but that is not the case (see
Exercise 0.4.5).
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elements (the same cardinality) if you can set up a one-to-one correspondence
between them. For instance
01234 5 6
0 246 8 10 12
establishes a one to one correspondence between the natural numbers and thc
even natural nuinbers. More generally, any set whose elements you can list has
the same cardinality as N. But Cantor discovered that R does not have the
same cardinality as N: it has a bigger infinity of elements. Indeed, imagine
making any infinite list of real numbers, say between 0 and 1, so that written
as decimals, your list might look like
.154362786453429823763490652367347548757 . ..
.987354621943756598673562940657349327658 . . .
.229573521903564355423035465523390080742 . . .
.104752018746267653209365723689076565787 . . .

.026328560082356835654432879897652377327 . ..

0.5.1

0.5.2

Now consider the decimal formed by the elements of the diagonal digits (in bold
above) .18972. .., and modify it (almost any way you want) so that every digit
is changed, for instance according to the rule “change 7's to 5's and change
anything that is not a 7 to a 7”: in this case, your number becomes .77757....
Clearly this last number does not appear in your list: it is not the nth element
of the list, because it doesn’t have the same nth decimal. .

Sets that can be put in one-to-one correspondence with the integers are called
countable, other infinite sets are called uncountable; the set R of real numbers
is uncountable.

All sorts of questions naturally arise from this proof: are there other infinities
besides those of N and R? (There are: Cantor showed that there are infinitely
many of them.) Are there infinite subsets of R that cannot be put into one to
one correspondence with either R or Z? This statement is called the continuum
hypothesis, and has been shown to be unsolvable: it is consistent with the other
axioms of set theory to assume it is true (Godel, 1938) or false (Cohen, 1965).
This means that if there is a contradiction in set theory assuming the continuum
hypothesis, then there is a contradiction without assuming it, and if there is
a contradiction in set theory assuming that the continuum hypothesis is false,
then again there is a contradiction without assuming it is false.

Russell’s paradox

Soon after Cantor published his work on set theory, Bertrand Russell (1872-
1970) wrote him a letter containing the following argument:



This paradox has a long his-
tory, in various guises: the Greeks
knew it as the paradox of the bar-
ber, who lived on the island of Mi-
los, and decided to shave all the
men of the island who did not
shave themselves. Does the bar-
ber shave himself?
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Consider the set X of all sets that do not contain themselves. If X € X,
then X does contain itself, so X ¢ X. But if X ¢ X, then X is a set which
does not contain itself, so X € X.

Russell's paradox was (and remains) extremely perplexing: Cantor’s reaction
was to answer that Russell had completely destroyed his work, showing that
there is an inconsistency in set theory right at the foundation of the subject.
History has been kinder, but Russell’s paradox has never been quite “resolved.”
The “solution,” such as it is, is to say that the naive idea that any property
defines a set is untenable, and that sets must be built up, allowing you to take
subsets, unions, products, ... of sets already defined; moreover, to make the
theory interesting, you must assume the existence of an infinite set. Set theory
(still an active subject of research) consists of describing exactly the allowed
construction procedures, and seeing what consequences can be derived.

0.6 CoMPLEX NUMBERS

Complex numbers (long consid-
ered “impossible” numbers) were
first used in 16th century Italy,
as a crutch that made it possi-
ble to find real roots of real cubic
polynomials. But they turned out
to have immense significance in
many fields of mathematics, lead-
ing John Stillwell to write in his
Mathematics and Its History that
“this resolution of the paradox of
v/—1 was so powerful, unexpected
and beautiful that only the word
‘miracle’ seems adequate to de-
scribe it.”

Complex numbers are written a + bi, where a and b are real numbers, and
addition and multiplication are defined in Equations 0.6.1 and 0.6.2. It follows
from those rules that i = v/—1.

The complex number a + ib is often plotted as the point (§) € R?. The
real number a is called the real part of a + ib, denoted Re (a + ib), and the real
number b is called the imaginary part, denoted Im (a + ib). The reals R can be
considered as a subset of the complex numbers C, by identifying a € R with
a +1i0 € C; such complex numbers are called “real,” as you might imagine.
Real numbers are systematically identified with the real complex numbers, and
a + 10 is usually denoted simply a.

Numbers of the form 0 + ib are called purely imaginary. What complex
numbers, if any, are both real and purely imaginary?' If we plot a + ib as the
point (g) € R?, what do the purely real numbers correspond to? The purely

imaginary numbers??

Arithmetic in C
Complex numbers are added in the obvious way:
(a1 +ib1) + (a2 + ib2) = (a1 + az) + i(by + b3). 0.6.1

Thus the identification with R? preserves the operation of addition.
! The only complex number which is both real and purely imaginary is 0 = 0 + 0:.

2The purely real numbers are all found on the z-axis, the purely imaginary numbers
on the y-axis.



Equation 0.6.2 is not the only
definition of multiplication one
can imagine. For instance, we
could define (a1 +ib1 ) * (a2 +ib2) =
(@1a2) + i(b;b2). But in that case,
there would be lots of elements
by which one could not divide,
since the product of any purely
real number and any purely imag-
inary number would be 0:

(a1 + t0) = (0 + ib2) = 0.

If the product of any two non-zero
numbers a and 8 is 0: a8 = 0,
then division by either is impossi-
ble; if we try to divide by a, we
arrive at the contradiction 8 = 0:

By _Pa_0_
ﬂ—-&a—- Pl =0.

These four properties, concern-
ing addition, don’t depend on the
special nature of complex num-
bers; we can siinilarly define addi-
tion for n-tuples of real numbers,
and these rules will still be true.

The multiplication in these five
properties is of conrse the special
multiplication of complex num-
bers, defined in Equation 0.6.2.
Multiplication can only be defined
for pairs of real numbers. If we
were to define a new kind of num-
ber as the 3-tuple (a,b,c) there
would be no way to multiply two
such 3-tuples that satisfies these
five requirements.

There is a way to define mul-
tiplication for 4-tuples that satis-
fies all but commutativity, called
Hamilton’s quaternions.
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What makes C interesting is that complex numbers can also be multiplied:
(@) + b1 )(az + ibe) = (a1az — bybz) + i(a;b2 + azbs). 0.6.2

This formula consists of multiplying a, + ib; and ap + iby (treating i like the

variable z of a polynomial) to find
(a1 + iby)(az + iby) = ayag + i(arby + azb) +i%(b1b2) 0.6.3

and then setting i2 = ~1.

Example 0.6.1 (Multiplying complex numbers).
(a) (2+¢)(1-3i)=(2+3)+i(1—6)=5-"5¢ by (1+3)2=2i. A 064
Addition and multiplication of reals viewed as complex numbers coincides
with ordinary addition and multiplication:
(a+0)+ (b+i0)=(a+b)+i0  (a+i0)(b+i0) = (ab) + 0.

Exercise 0.6.1 asks you to check the following nine rules, for z;,2; € C:

0.6.5

'(1) (214+22)+23 = 21+ (22+23) Addition is associative.
2 zn1+22=22+2 Addition is commutative.
B)z+0=2 0 (i.e., the complex number 0 + 0¢)
is an additive identity.
(—a —~ ©b) is the additive inverse
of a + ib.

(4) (a+ib)+(-a—ib) =0

Multiplication is associative.
Multiplication is commutative.

1 (i.e., the complex number 1 + 0i)
is a multiplicative identity.

If 2 # 0, then 2 has a multiplicative
inverse.

Multiplication is distributive over
addition.

(5) (2122)23 = 21(2223)

(6) 2122 = 2223

(M 1z2=2

(8) (a+1b) (22 — iabys ) = 1

(9) 21(z2 + 23) = 21220 + 2123

\

The complex conjugate

Definition 0.6.2 (Complex conjugate). The complex conjugate of the
complex number 2 = a + ib is the number Z = a — ib.

Complex conjugation preserves all of arithmetic:

z2+w=2Z+wW and ZW=ZW. 0.6.6



F1GURE 0.6.1.

When multiplying two complex
numbers, the absolute values are
multiplied and the arguments (po-
lar angles) are added.
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The real numbers are the complex numbers z which are equal to their complex
conjugates: Z = z, and the purely imaginary complex numbers are those which

are the opposites of their complex conjugates: Z = —z.
There is a very useful way of writing the length of a complex number in
terms of complex conjugates: If z = a + ib, then 2% = a2 + b>. The number

lz) = Va2 + 2 = VzZ 0.6.7
is called the absolute value (or the modulus) of z. Clearly, |a+ib| is the distance
from the origin to ( g)

Complex numbers in polar coordinates

Let z = a+ib % 0 be a complex number. Then the point (g) can be represented

in polar coordinates as ( ;gfnsg). where
r=+va?+ b =|z|, 0.6.8
and 6 is an angle such that
cosf = e and sinf = 2, 0.6.9
r r
so that
z = r(cosf + isin#). 0.6.10

The polar angle 6, called the argument of z, is determined by Equation 0.6.9
up to addition of a multiple of 2r.

The marvelous thing about this polar representation is that it gives a geo-
metric representation of multiplication, as shown in Figure 0.6.1.

Proposition 0.6.3 (Geometrical representation of multiplication of
complex numbers). The modulus of the product z)2, is the product of
the moduli |21 |z,].

The polar angle of the product is the sum of the polar angles 6,, 0,:
(ri(cosy +isin01))(rg(cos03+isin02)) - rlra(ooa(ﬂl +6a) +isin(6 +65).

Proof. Multiply out, and apply the addition rules of trigonometry:
006(9] + 92) = co8 6, cosf, — sin 6, sin@,

. .6.1
sin(6, + 62) = sin 6, cosf; + cosf, sinf,. O 0611

The following formula, known as de Moivre’s formula, follows immediately:
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FIGURE 0.6.2.

The fifth roots of z form a reg-
ular pentagon, with one vertex at
polar angle /5, and the others ro-
tated from that one by multiples of
2% /5.

Immense psychological difficul-
ties had to be overcome before
complex numbers were accepted
as an integral part of mathemat-
ics; when Gauss canie up with
his proof of the fundamental the-
orem of algebra, comnplex num-
bers were still not sufficiently re-
spectable that he could use them
in his statement of the theorem
(although the proof depends on
them).
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Corollary 0.6.4 (De Moivre’s formula). If z = r(cosf + isin), then
2" = r"*(cosnf + isinnf). 0.6.12

De Moivre's formula itself has a very important consequence, showing that in
the process of adding a square root of —1 to the real mumbers, we have actually
added all the roots of complex numbers one might hope for.

Proposition 0.6.5. Every complex number z = r(cos8 + isin 0) withr #0
has n distinct complex nth roots, which are the numbers

i/ (cos 8 +n2k" +isin? +:k") 0.6.13.

, k=0.....n-1

Note that r1/® stands for the positive real nth root of the positive number
r. Figure 0.6.2 illustrates Proposition 0.6.5 for n = 5.

Proof. All that needs to be checked is that
(1) (r¥/")" =r, which is true by definition;

2
@ 8 + 2k7

=siné, 0.6.14

=cosf and sinn

0+ 2kn
cos N ————
n

which is true since n‘i*%ﬁ'-' = 0 + 2kn, and sin and cos are periodic with
period 27; and
(3) The numbers in Equation 0.6.13 are distinct. which is true since the
polar angles do not differ by a multiple of 27. O
A great deal more is true: all poly ial equati coefficients
have all the roots one might hope for. This is the content of the fundamen-
tal theorem of algebra, Theorem 1.6.10, proved by d’Alembert in 1746 and by
Gauss around 1799. This milestone of inathematics followed by some 200 years
the first introduction of complex nuinbers, about 1550, by several Italian math-
ematicians who were trying to solve cubic equations. Their work represented
the rebirth of mathematics in Europe after a long sleep, of over 15 centuries.

with c l

(i

Historical background: solving the cubic equation

We will show that a cubic equation can be solved using formulas analogous to
the formula

—b+ Vb - 4ac

2a
for the quadratic equation az? + br + ¢ = 0.

0.6.15



Here we see something bizarre:
in Example 0.6.6, the polynomial
has only one real root and we can
find it using only real numbers,
but in Example 0.6.7 there are
three real roots, and we can't find
any of them using only real num-
bers. We will see below that it is
always true that when Cardano’s
formula is used, then if a real poly-
nomial has one real root, we can
always find it using only real num-
bers, but if it has three real roots,
we never can find any of them us-
ing real numbers.
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Let us start with two examples; the explanation of the tricks will follow.

Example 0.6.6 (Solving a cubic equation). Let us solve the equation
z3 + £ + 1 = 0. First substitute z = u — 1/3u, to get
3
1 1 s 11 1
- = - — =y - —_—— - —+1=0. 0.6.16
(" 3u) + (“ Su) Hl=w vt e T T

After simplification and multiplication by u® this becomes
1
u® +u - 3 =0 0.6.17

This is a quadratic equation for u, which can be solved by formula 0.6.15, to
yield

1 31
3=_ |- b~ A A ey —1. 0.6.1
u=3 ( 1+ 27) 0.0358 1.0358 6.18
Both of these numbers have real cube roots: approximately u; = 0.3295 and
up = —-1.0118.
This allows us to find £ = u — 1/3u:
1
= —_—— = - — = —0.6823. A 0.6.19
=1 30 U 30 0.68:

Example 0.8.7. Let us solve the equation 23 — 3z + 1 = 0. As we will explain
below, the right substitution to make in this case is z = u + 1/u, which leads

to
3
(u+l) —3(u+l)+1=0.
u u

After multiplying out, canceling and multiplying by 2, this gives the quadratic
equation

0.6.20

143
w+u+1=0 with solutions vy, = iT“/g = cos 2?" +isin -2—; 0.6.21
The cube roots of v; (with positive imaginary part) are
cos 2T 1 isin 2T cos BT 4 igin & cos 1T 4 gip 14 0.6.22
9 9,0089 sng,cosg+zsmT. .6.

In all three cases, we have 1/u = %, so that u + 1/u = 2Reu, leading to the
three roots

2
T) = 2c0s o ~ 1.532088, 1 = 2cos o & —1.879385,

9 9

O 0.6.23
T3 = 2cos o ~0.347296. A



The substitutions & = u—1/3u
in Example 0.6.6 and 2 = u +
1/u in Example 0.6.7 were special
cases.

Eliminating the term in z?
means changing the roots so that
their sum is 0: If the roots of a cu-
bic polynomial are a,,a;, and a3,
then we can write the polynomial
as

p=(r-a)(z - a)(z — as)
=2 — (a1 + a2 + a3)x?

+ (@162 + a1a3 + a2a3)x

— a)aza;.
Thus eliminating the term in z?
means that a) + az + as = 0. We
will use this to prove Proposition
0.6.9.
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Derivation of Cardano’s formulas

If we start with the equation 1% + ax? + bz + ¢ = 0, we can eliminate the term
in 22 by setting = y — a/3: the equation becomes

2 ab 2a%

3 _ —p- % - — + =—. 0.6.24
v+py+qg=0, wherep=1b 3andq c 3+27
Now set y = u — £; the equation y* + py + ¢ = 0 then becomes
P
W+quld-= =0, 0.6.25

27
which is a quadratic equation for u3. .
Let v, and v; be the two solutions of the quadratic equation v + qv — 2L7’
and let u;,u; 2, u; 3 be the three cubic roots of v; for i = 1,2. We now have
apparently six roots for the equation z3 + pz + ¢ = 0: the numbers

i=12 j=12,3. 0.6.26

W 3y

Exercise 0.6.2 asks you to show that —p/(3u, ;) is a cubic root of vz, and
that we can renumber the cube roots of v so that —p/(3u; ;) = uz,;. If that is
done, we find that y, ; = y2; for j = 1,2,3; this explains why the apparently
six roots are really only three.

Vij=u

The discriminant of the cubic

Definition 0.6.8 (Discriminant of cubic equation). The number A =
27¢* + 4p® is called the discriminant of the cubic equation z° + pz + q.

Proposition 0.6.9. The discriminant A vanishes exactly when z3+pz+q = 0
has a double root.

Proof. If there is a double root, then the roots are necessarily {a,a, —2a} for
some number a, since the sum of the roots is 0. Multiply out
(z - a)*(z+2a) = 2° — 30’z + 24, s0 p=—30% and ¢ = 23,

and indeed 4p° + 27¢> = —4-27a% + 4. 2745 = 0.

Now we need to show that if the discriminant is 0, the polynomial has a
double root. Suppose A = 0, and call a the square root of —p/3 such that
20® = g; such a square root exists since 4a® = 4(—p/3)° = —4p3/27 = g% Now
multiply out

(z-a)*(z+20) =2° + 2(-4a® + o) + 20° = 8 + pz + g,

and we see that « is a double root of our cubic polynomial. 0O



FIGURE 0.6.3.

The graphs of three cubic poly-
nomials. The polynomial at the
top has three roots. As it is varied,
the two roots to the left coalesce to
give a double root, as shown by the
middle figure. If the polynomial
is varied a bit further, the double
root vanishes (actually becoming a
pair of complex conjugate roots).
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Cardano’s formula for real polynomials

Suppose p, g are real. Figure 0.6.3 should explain why equations with double
roots are the boundary between equations with one real root and equations

with three real roots.

Proposition 0.6.10 (Number of real roots of a polynomial). The
real cubic polynomial 3 + px + q has three real roots if the discriminant
27¢% + 4p® < 0, and one real root if 27¢% + 4p® > 0.

Proof. If the polynomial has three real roots, then it has a positive maximum
at —y/=p/3, and a negative minimum at /-p/3. In particular, p must be
negative. Thus we must have

() 42 (/Z)+0) () -+ (T ) <. va

After a bit of computation, this becomes the result we want:

3
@+ %”7- <0. O 0.6.28

Thus indeed, if a real cubic polynomial has three real roots, and you want to
find them by Cardano’s formula, you must use complex numbers, even though
both the problem and the result involve only reals. Faced with this dilemma,
the Italians of the 16th century, and their successors until about 1800, held
their noses and computed with complex numbers. The name “imaginary” they
used for such numbers expresses what they thought of them.

Several cubics are proposed in the exercises, as well as an alternative to
Cardano’s formula which applies to cubics with three real roots (Exercise 0.6.6),
and a sketch of how to deal with quartic equations (Exercise 0.6.7) .

0.7 EXERCISES

Exercises for Section 0.4:
Real Numbers

0.4.1 (a) Let = and y be two positive reals. Show that z + y is well defined
by showing that for any k, the digit in the kth position of [z]x + [y]~ is the
same for all sufficiently large N. Note that N cannot depend just on k, but
must depend also on z and y.



Stars (*) denote difficult exer-
cises. Two stars indicate a partic-
ularly challenging exercise.

Many of the exercises for Chap-
ter 0 are quite theoretical, and
too difficult for students taking
multivariate calculus for the first
time. They are intended for use
when the book is being used for a
first analysis class. Exceptions in-
clude Exercises 0.5.1 and part (a)
of 0.5.2.

. digit 0 1
position
even left right
odd right left
Table 0.4.6
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*(b) Now drop the hypothesis that the numbers are positive, and try to
define addition. You will find that this is quite a bit harder than part (a).

*(c) Show that addition is commutative. Again, this is a lot easier when the
numbers are positive.

**(d) Show that addition is associative, i.e., z + (y + z) = (z +y) + z. This
is much harder, and requires separate consideration of the cases where each of
z, y and z is positive and negative.

0.4.2 Show that if two numbers are k-close for all k, then they are equal.

*0.4.3  Show that the functions A(z,y) = z +y, M(z,y) = zy, S(z,y) =
z -y, (z +y) + z are D-continuous, and that 1/z is not. Notice that for A and
S, the ! of Definition 0.4.4 does not depend on N, but that it does for M.

**0.4.4 Prove Proposition 0.4.6. This can be brokeun into the following steps.
(a) Show that supy infi>k f([£1)i, . . ., [Ta]) is well defined, i.e., that the sets
of numbers involved are bounded. Looking at the function S from Exercise
0.4.3, explain why both the sup and the inf are there.
(b) Show that the function j~ has the required continuity properties.

(c) Show the uniqueness.

*0.4.5 Define division of reals, using the following steps.
(a) Show that the algorithm of long division of a positive finite decimal a by
a positive finite decimal b defines a repeating decimal a/b, and that b(a/b) = a.
(b) Show that the function inv(z) defined for z > 0 by the formula

inv(z) = ir’:f 1/[z]x

satisfies zinv(z) = 1 for all z > 0.
(c) Now define the inverse for any z # 0, and show that zinv(z) = 1 for all
z#0.

**0.4.6 In this exercise we will construct a continuous mapping v : [0,1] —
R2, the image of which is a (full) triangle T. We will write our numbers in [0, 1]
in base 2, so such a number might be something like .0011101000011 ..., and
we will use Table 0.4.6.

Take a right triangle T. We will associate to a string s = s, 89,... of digits
0 and 1 a scquence of points Xy, X;,Xz,... of T by starting at the right angle
Xo(s), dropping the perpendicular to the opposite side, landing at x,(s), and
deciding to turn left or right according to the digit s,, as interpreted by the
bottom liuie of the table, since this digit is the first digit (and therefore in an
odd position): on 0 turn right and on 1 turn left.

Now drop thie perpendicular to the opposite side, landing at x2(8), and turn
right or left according to the digit s, as interpreted by the top line of the table,
etc.
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This construction is illustrated in Figure 0.4.6.

(a) Show that for any string of digits (s), the sequence x,(s) converges.

(b) Suppose a number ¢ € [0,1] can be written in base 2 in two different
. ways (one ending in 0’s and the other in 1’s), and call (), (s) the two strings
"\ of digits. Show that

N A\X Jim xn(s) = lim xq(s)-
3 X Hint: Construct the sequences associated to .1000... and .0111....
FIGURE 0.4.6. This allows us to define ¥(t) = limp—o0 Xn(8).
This sequence corresponds to  (c) Show that v is continuous.
the string of digits (d) Show that every point in 7 is in the image of 4. What is the maximum
00100010010. ... number of distinct numbers ¢,,...,t such that y(t,) = --- = 4(tx)? Hint:

Choose a point in T, and draw a path of the sort above which leads to it.

0.4.7 (a) Show that the function
| .
_ fsing ifz#0
ﬂ”‘{o ifz=0
is not continuous.
(b) Show that f satisfies the conclusion of the intermediate value theorem:
if f(z1) = a1 and f(z2) = a2, then for any number a between a, and a,, there
exists a number z between z, and z, such that f(z) = a.

Exercises for Section 0.5 0.5.1 (a) Show that the set of rational numbers is countable, i.e., that you
Infinite Sets can list all rational numbers.

and Russell’s Paradox (b) Show that the set I of finite decimals is countable.

0.5.2 (a) Show that the open interval (—1,1) has the same infinity of points
as the reals. Hint: Consider the function g(z) = tan(rz/2).

*(b) Show that the closed interval {1, 1] has the same infinity of points as
the reals. For some reason, this is much trickier than (a). Hint: Choose two
sequences, (1) ap = 1,a;,az,...; and (2) by = —1,b;,bs,... and consider the
map

g9(z) =z if z is not in either sequence.
g(an) = an41.
9(bn) = bny1.
*(c) Show that the points of the circle
z 21,2, .2 _
((5) w1422 -1)

have the same infinity of elements as R. Hint: Again, try to choose an appro-
priate sequence.



Exercise 0.5.4, part (h): This
proof, due to Cantor. proves that
transcendental numbers  exist
without exhibiting a single one.
Many contemporaries of Cantor
were scandalized. largely for this
reason.

Exercise 0.5.5 is the one-dimen-
sional case of the celebrated Brou-
wer fired point theorem, to be dis-
cussed in a subsequent volume. In
dimension one it is an easy con-
sequence of the intermediate value
theoreni, but in higher dimensions
(even two) it is quite a delicate re-
sult.

Exercises for Section 0.6:
Complex Numbers

For Exercise 0.6.2, see the sub-
section on the derivation of Car-
dano's formulas (Equation 0.6.26
in particular).
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*(d) Show that R? has the same infinity of elements as .

*0.5.3 s it possible to make a list of the rationals in {0. 1], written as deci-
mals. so that the entries on the diagonal also give a rational mmmber?

*0.5.4  An algebraic number is a root of a polynomial equation with integer
coefficients: for instance, the rational number p/q is algebraic, since it is a
salution of ¢r — p = 0, and so is V2. since it is a root of r2 — 2 = 0. A number
that is not algebraic is called transcendental. It isn't obvious that there are any
transcendental numbers; the following exercise gives a (highly unsatisfactory)
proof for their existence.

(a) Show that the set of all algebraic numbers is countable, Hint: List the
finite collection of all roots of linear polynomials with coefficients with absolute
valne < 1. Then list the roots of all quadratic equations with coefficients < 2
(which will include the linear equations, for instance 0r? + 2z ~ 1 = 0), then
all roots of cubic equation with coefficients < 3, etc.

{(b) Derive from part (a) that there cxist transcendental numbers, in fact
uncountably many of them.

0.5.5 Shaw that if f : [a.b] — [a.b] is continuous. there exists ¢ € [a, b] with

fle)y=c

0.5.6 Show that if p(x) is a polynomial of odd degree with real coefficients,
then there is a real number ¢ such that f(c) = 0.

0.6.1  Verify the nine rules for addition and multiplication of complex num-
bers. Statements (5) and (9) are the only ones that arc not iinediate.

0.6.2 Show that —p/(3u, ;) is a cubic root of v2. and that we can renumber
the cube roots of v, so that —p/(3u, ;) = uz ;.

0.6.3 (a) Find all the cubic roots of 1.
(b) Find all the 4th roots of 1.

*(c) Find all the 5th roots of 1. Use your formula to construct a regular
pentagon using ruler and comnpass construction.

(d) Find all the 6th roots of 1.

0.6.4 Show that the following cubics have exactly one real root, and find it.
(a) ¥* - 18r+35=0
b)r¥+3r2+2+2=0

0.6.5 Show that the polynomial 2® — 7z + 6 has three real roots, and find
them. '



In Exercise 0.6.6. part (a). nse
de Moivre's formula:

cos nf+isinnd = (cos§+ising)".

Exercise 0.6.7 uses results from
Section 3.1.

FIGURE 0.6.7(A).

The two parabolas of Equation
0.7.1: note that their axes are re-
spectively the y-axis and the z-
axis.

o/
X f
o v 4
;

FIGURE 0.6.7(B).
The three pairs of lines that
go throngh the intersections of the
two parabolas.
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0.6.6 There is a way of finding the roots of real cubics with three real roots,
using only real numbers and a bit of trigonometry.
(a) Prove the formula 4 cos®6 — 3cos8.-— cos30 =0 .

(b) Set y = ax in the equation x® + pz + ¢ = 0, and show that there is a
value of a for which the equation becomes 4y* — 3y — ¢; = 0; find the value of
a and of qy.

(c) Show that there exists an angle 8 snch that 36 = g precisely when
27¢% 4+ 4p* < 0, i.e.. precisely when the original polynomial has three real roots.

(d) Find a formula (involving arccos) for all three roots of a real cubic poly-
nomial with three real roots.

*0.6.7 In this exercise, we will find formulas for the solution of 4th degree
polynomials, known as guartics. Let w' + aw® + bu? + e + d be a quartic
polynomial.

(a) Show that if we set w = x — a/4, the gnartic equation becomes

4 prltgrtr=0,
and compute p,q and » in terms of a. b,c.d.

(b) Now set y = z2 + p/2, and show that solving the quartic is equivalent to
finding the intersections of the parabolas ') and I’z of equation

2

2—y+p/2=0 and y2+qa:+r—%=0

respectively, pictured ir® Figure 0.6.7 (A). :
The parabolas T’y and T'; intersect (nsually) in four points, and the curves
of equation

2
fm(“:)=a:2—y+p/2+m y2+qr+7'—p— =0 0.7.1
Y 4

are exactly the curves given by quadratic equations which pass through those
four points; some of these curves are shown in Figure 0.6.7 (C).

{c) What can you say about the curve given by Equation 0.7.1 when m = 1?7
When m is negative? When m is positive?

{(d) The assertion in (b) is not quite correct: there.is one cnrve that passes
through those four points, and which is given by a quadratic equation. that is
missing from the family given by Equation 0.7.1. Find it.

{e) The next step is the really clever part of the solution. Among these enrves,
there are three, shown in Figure 0.6.7(B), that consist of a pair of lines, i.e.,
each such “degenerate” curve consists of a pair of diagonals of the quadrilateral
formed by the intersection points of the parabolas. Since there are three of
these, we may hope that the corresponding values of m are solntions of a cnbic
equation, and this is indeed the case. Using the fact that a pair of lines is not
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a smooth curve near the point where they intersect, show that the mmmbers
m for which the equation f,, = 0 defines a pair of lines, gnd the coordinates
z,y of the point where they intersect, are the solutions of the system of three
equations in three unknownsg, ’
P2 2
Y+or+r— T+m(:l:" -y-p/2)=0
2y—-m=0
q+ 2z =0.
(f) Expressing z and y in-terms of m using the last two equations, show that
m satisfies the equation
m® - 2pm? + (p> —4r)ym+¢* =0

for m; this equation is called the resolvent cubic of the original quartic equation.

FIGURE 0.6.7 (3). The curves fy (;) =a?—y+p/2+m (y" +qr+r— “Tz) =0
for seven different values of m.

Let m;,mz and m3 be the roots of the equation, and let (:;l' ) R (';:) and

(;: ) be the corresponding points of intersection of the diagonals. This doesn’t
quite give the equations of the lines forming the two diagonals. The next part

gives a way of finding them.
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(g) Let (;1' ) be one of the points of intersection, as above, and consider the

line /i through the point (;]‘ ) with slope k, of equation

y-y =kx-z).
Show that the values of k for which Ii is a dlagonal are alw the values for which
the restrictious of the two quadratic functions y2 + gz + 7 — P— and 22—y —p/2
to l; are proportional. Show that this gives the equations
1_ -k kz) —y +p/2
k2 7 2k(~kzi+uy1) +q T kz —y)Z—p A+

which can be reduced to the single quadratic equation

B2 -y +a/2) =y? +br - a*/a+c

Now the full solution is at hand: compute (m,z,.y;) and (m2, z2,y2); you
can igfore the third root of the resolvent cubic or use it to check your an-
swers. Then for each of these compute the slopes k;, and k; 2 = —k;, from the
equation above. You now have four lines, two through A and two through B.
Intersect them in pairs to find the four intersections of the parabolas.

(h) Solve the quartic equations
-4 +z41=0 and r'+428+2r-1=0.
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Vectors, Matrices, and Derivatives

It is sometimes said that the great discovery of the nineteenth century was
that the equations of nature were linear, and the great discovery of the
twentieth century is that they are not.—~Tom Korner, Fourier Analysis

1.0 INTRODUCTION

In this chapter, we introduce the principal actors of linear algebra and multi-
variable calculus.

By and large, first year calculus deals with functions f that associate one
number f(z) to one number z. In most realistic situations, this is inadequate:
the description of most systems depends on many functions of many variables.

In physics, a gas might be described by pressure and temperature as a func-
tion of position and time, two functions of four variables. In biology, one might
be interested in numbers of sharks and sardines as functions of position and
time; a famous study of sharks and sardines in the Adriatic, described in The
Mathematics of the Struggle for Life by Vito Volterra, founded the subject of
mathematical ecology.

In micro-economics, a company might be interested in production as a func-
tion of input, where that function has as many coordinates as the number of
products the company makes, each depending on as many inputs as the com-
pany uses. Even thinking of the variables needed to describe a macro-economic
model is daunting (although economists and the government base many deci-
sions on such models). The examples are endless and found in every branch of
science and social science.

Mathematically, all such things are represented by functions f that take n
numbers and return m numbers; such functions are denoted f : R® — R™. In
that generality, there isn’t much to say; we must impose restrictions on the
functions we will consider before any theory can be elaborated.

The strongest requirement one can nake is that f should be linear; roughly
speaking, a function is linear if when you double the input, you double the
output. Such linear functions are fairly easy to describe completely, and a
thorough understanding of their behavior is the foundation for everything else.

The first four sections of this chapter are devoted to laying the foundations of
linear algebra. We will introduce the main actors, vectors and matrices, relate
them to the notion of function (which we will call transformation), and develop
the geometrical language (length of a vector, length of a matrix, ... ) that we
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will need in multi-variable calculus. In Section 1.5 we will discuss sequences,
subsequences, limits and convergence. In Section 1.6 we will expand on that
discussion, developing the topology needed for a rigorous treatment of calculus.
Most functions are not linear, but very often they are well approximated by
linear functions, at least for some values of the variables. For instance, as long
as there are few lares, their number may well double every year, but as soon
as they become numerous, they will compete with each other, and their rate of
increase (or decrease) will become more complex. In the last three sections of
this chapter we will begin exploring how to approximate a nonlinear function
by a linear function—specifically, by its higher-dimensional derivative.

1.1 INTRODUCING THE ACTORS: VECTORS

The notion that one can think
about and manipulate higher di-
ional spaces by c«
point in n-dimensional space as a
list of its n “coordinates” did not
always appear as obvious to math-
ematicians as it does today. In
1846, the English mathematician
Arthur Cayley pointed out that a
point with four coordinates can be
interpreted geometrically without
recourse to “any metaphysical no-
tion concerning the possibility of
four-dimensional space.”

dering a

“Vol” denotes the number of
shares traded, “High” and “Low,”
the highest and lowest price paid
per share, “Close,” the price when
trading stopped at the end of the
day, and “Chg,” the difference be-
tween the closing price and the
closing price on the previous day.

Much of linear algebra and multivariate calculus takes place within R™. This
is the space of ordered lists of n real numbers.

You are probably used to thinking of a point in the plane in terms of its two
coordinates: the familiar Cartesian plane with its z,y axes is R2. Similarly, a
point in space (after choosing axes) is specified by its three coordinates: Carte-
sian space is R3. Analogously, a point in R™ is specified by its n coordinates;
it is a list of n real numbers. Such ordered lists occur everywhere, from grades
on a transcript to prices on the stock exchange.

Seen this way, higher dimensions are no more complicated than R? and R3;
the lists of coordinates just get longer. But it is not obvious how to think about
such spaces geometrically. Even the experts understand such objects only by
educated analogy to objects in R? or R3; the authors cannot “visualize R*” and
we believe that no one really can. The object of linear algebra is at least in part
to extend to higher dimensions the geometric language and intuition we have
concerning the plane and space, familiar to us all from everyday experience. It
will enable us to speak for instance of the “space of solutions” of a particular
system of equations as being a four-dimensional subspace of R”.

Example 1.1.1 (The stock market). The following data is from the Ithaca
Journal, Dec. 14, 1996.

LocAL NYSE STOCKS
Vol High Low Close Chg

Airgas 193 241/, 2313 235 -3/
AT&T 36606 391/, 38% 39 3
Borg Warner 74 383 38 38 -3
Corning 4575 443, 43 441, V),
Dow Jones 1606 331/, 3215 331/, 1
Eastman Kodak 7774 805/ 791/, 79% -3/,
Emerson Elec. 3335 97% 95% 955/ -1/
Federal Express 5828 421 41 4155 11



Each of these lists of eight num-
bers is an element of R®; if we were
listing the full New York Stock Ex-

change, they would be elements of
R33%6.

The Swiss mathematician Leon-
hard Euler (1707-1783) touched on
all agpects of the mathematics and
physics of his time. He wrote text-
books on algebra, trigonometry,
and infinitesimal calculus; all texts
in these fields are in some sense
rewrites of Euler’s. He set the no-
tation we use from high school on:
sin, cos, and tan for the trigono-
metric functions, f(z) to indicate
a function of the variable = are
all due to him. Euler's complete
works fill 85 large volumes—more
than the number of mystery nov-
els published by Agatha Christie;
some were written after he became
completely blind in 1771. Euler
spent much of his professional life
in St. Petersburg. He and his
wife had thirteen children, five of
whom survived to adulthood.
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We can think of this table as five columns, each an element of RS:

193 24 23Ys
36606 391/ 383f
74 383/s 38
= 4575 443/, | 43
Vol=| 1606 | High=| g3, | Low=1{ 5,
7774 805/s 79
3335 973/ 955/8
5828 421/ 1
235/g [ —38
39 s
38 -3
_{ 4 T _ 1
Close = 331/, Chg = Ve AN
793/g -3
955/g -1
415/ [ 114,

Note that we write elements of R as columns, not rows. The reason for
preferring columns will become clear later: we want the order of terms in matrix
multiplication to be consistent with the notation f(z), where the function is
placed before the variable—notation established by the famous mathematician
Euler. Note also that we use parentheses for “positional” data and brackets for
“incremental” data; the distinction is discussed below.

Points and vectors: positional data versus incremental data

An element of R™ is simply an ordered list of n numbers, but such a list can
be interpreted in two ways: as a point representing a position or as a vector
representing a displacement or increment.

Definition 1.1.2 (Point, vector, and coordinates). The element of R"

with coordinates z;,z3,- - ,Z, can be interpreted in two ways: as the point
z )

, or a8 the vector ¥ =

Zn Zn

X =

, which represents an increment.

Example 1.1.3 (An element of R? as a point and as a vector). The
element of R? with coordinates z = 2, y = 3 can be interpreted as the point

2\ . - . .
( 3)in the plane, as shown in Figure 1.1.1. But it can also be interpreted as
the instructions “start anywhere and go two units right and three units up,”
rather like instructions for a treasure hunt: “take two giant steps to the east,



FiGURE 1.1.1.

The point (g) .

FIGURE 1.1.2.
All the arrows represent the

2
same vector, 3|

As shown in Figure 1.1.2, in the
plane (and in three-dimensional
space) a vector can be depicted as
an arrow pointing in the direction
of the displacement. The amount
of displacement is the length of the
arrow. This does not extend well
to higher dimensions. How are we
to picture the “arrow” in R33%6
representing the change in prices
on the stock market? How long is
it, and in what “direction” does it
point? We will show how to com-
pute these magnitudes and direc-
tions for vectors in R™ in Section
14.
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and three to the north”; this is shown in Figure 1.1.2. Here we are interested in
2 .
the displacement: if we start at any point and travel 3 how far will we have

gone, in what direction? When we interpret an element of R™ as a position, we
call it a point; when we interpret it as a displacement, or increment, we call it
a vector. A
Example 1.1.4 (A point as a state of a system). It is easy to think of a
point in R? or R? as a position; in higher dimensions, it can be more helpful to
think of a point as a “state” of a system. If 3356 stocks are listed on the New
York Stock Exchange, the list of closing prices for those stocks is an element
of R3356, and every element of R33%6 is one theoretically possible state of the
stock market. This corresponds to thinking of an element of R33% as a point.
The list telling how much each stock gained or lost compared with the pre-
vious day is also an element of R33%, but this corresponds to thinking of the
element as a vector, with direction and magnitude: did the price of each stock
go up or down? How much? A

Remark. In physics textbooks and some first year calculus books, vectors are
often said to represent quantities (velocity, forces) that have both “magnitude”
and “direction,” while other quantities (length, mass, volume, temperature)
have only “magnitnde” and are represented by numbers (scalars). We think
this focuses on the wrong distinction, suggesting that some quantities are always
represented by vectors while others never are, and that it takes more information
to specify a quantity with direction than one without.

The volume of a balloon is a single number, but so is the vector expressing
the difference in volume between an inflated balloon and one that has popped.
The first is a number in R, while the second is a vector in R. The height of
a child is a single number, but so is the vector expressing how much he has
grown since his last birthday. A temperature can be a “magnitude,” as in “It
got down to -20 last night,” but it can also have “magnitude and direction,” as
in “It is 10 degrees colder today than yesterday.” Nor can “static” information
always be expressed by a single number: the state of the Stock Market at a
given instant requires as many numbers as there are stocks listed—as does the
vector describing the change in the Stock Market from one day to the next.
A

Points can’t be added; vectors can

As a rule, it doesn’t make sense to add points together, any more than it makes
sense to “add” the positions “Boston” and “New York” or the temperatures 50
degrees Fahrenheit and 70 degrees Fahrenheit. (If you opened a door between
two rooms at those temperatures, the result would not be two rooms at 120



We will not consistently use
different notation for the point
zero and the zero vector, although
philosophically the two are quite
different. The zero vector, i.e., the
“zero increment,” has a universal
meaning, the same regardless of
the frame of reference. The point
zero is arbitrary, just as “zero de-
grees” is arbitrary, and has a dif-
ferent meaning in the Centigrade
system and in Fahrenheit.

Sometimes, often at a key point
in the proof of a hard theorem,
we will suddenly start thinking of
points as vectors, or vice versa;
this happens in the proof of Kan-
torovitch's theorem in Appendix
A.2, for example.

ay-by

FiGURE 1.1.3.

The difference a — b between
point a and point b is the vector
joining them. The difference can
be computed by subtracting the
coordinates of b from those of a.
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degrees!) But it does make sense to measure the difference between points (i.e.,
to subtract them): you can talk about the distance between Boston and New
York, or about the difference in temperature between two rooms. The result
of subtracting one point from another is thus a vector specifying the increment
you need to add to get from one point to another.

You can also add increments (vectors) together, giving another increment.
For instance the vectors “advance five meters east then take two giant steps
south” and “take three giant steps north and go seven meters west” can be
added, to get “advance 2 meters west and one giant step north.”

Similarly, in the NYSE table in Example 1.1.1, adding the Close columns on
two successive days does not produce a meaningful answer. But adding the Ckg
columns for each day of a week prodices a perfectly meaningful increment: the
change in the market over that week. It is also meaningful to add increments
to points (giving a point): adding a Chg column to the previous day's Close
column produces the current day’s Close—the new state of the system.

To help distinguish these two kinds of elements of R", we will denote them
differently: points will be denoted by boldface lower case letters, and vectors
will be lower case boldface letters with arrows above them. Thus x is a point
in R2, while X is a vector in R2. We do not distinguish between entries of
points and entries of vectors; they are all written in plain type, with subscripts.
However, when we write elements of R™ as columns, we will use parentheses for

a point x and square brackets for a vector X: in R?, x = (;' ) and X = [2’ ]
2 2

Remark. An element of R” is an element of R"—i.e., an ordered list of
numbers—whether it is interpreted as a point or as a vector. But we have very
different images of points and vectors, and we hope that sharing them with you
explicitly will help you build a sound intuition. In linear algebra, you should
just think of elements of R™ as vectors. However, differential calculus is all
about increments to points. It is because the increments are vectors that linear
algebra is a prerequisite for multivariate calculus: it provides the right language
and tools for discussing these increments.

Subtraction and addition of vectors and points

The difference between point a and point b is the vector ajb, as shown in
Figure 1.1.3.
Vectors are added by adding the corresponding coordinates:

n w) v +w
v2 w2 v2 +wy
A P . H 1.1.1
Un Wy Un + Wn
v w V+w



If we were working with com-
plex vector spaces, our scalars
would be complex numbers; in
number theory, scalars might be
the rational numbers; in coding
theory, they might be elements of
a finite field. (You may have run
into such things under the name of
“clock arithmetic.”) We use the
word “scalar” rather than “real
number” because most theorems
in linear algebra are just as true
for complex vector spaces or ratio-
nal vector spaces as for real ones,
and we don’t want to restrict the
validity of the statements unnec-
essarily.

The symbol € means “element
of.” Out loud, one says “in." The
expression “X,y € V" means “X €
Vand ¥ € V.” If you are unfamil-
iar with the notation of set theory,
see the discussion in Section 0.3.
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the result is a vector. Similarly, vectors are subtracted by subtracting the
corresponding coordinates to get a new vector. A point and a vector are added
by adding the corresponding coordinates; the result is a point.

In the plane. the sum ¥ + W is the diagonal of the parallelogram of which
two adjacent sides are ¥ and W, as shown in Figure 1.1.4 (left). We can also
add vectors by placing the beginning of one vector at the end of the other, as
shown in Figure 1.1.4 (right).

gz

FIGURE 1.1.4. In the plane, the sum V + W is the diagonal of the parallelogram at
left. We can also add them by putting thein head to tail.

Multiplying vectors by scalars

Multiplication of a vector by a scalar is straightforward:

T, ar; 3 3v3
for example, V3 |-1]={-1V3
2 2V3

In this book, our vectors will be lists of real numbers, so that our scalars—
the kinds of numbers we are allowed to multiply vectors or matrices by—are
real numbers.

1.1.2

al i )=f s

Tn azy

Subspaces of B

A subspace of K" is a subset of R" that is closed under addition and multipli-
cation by scalars.! (This R should be thought of as made up of vectors, not
points.)

'In Section 2.6 we will discuss abstract vector spaces. These are sets in which
one can add and multiply by scalars, and where these operations satisfy rules (ten of
them) that make them clones of R™. Subspaces of R™ will be our main examples of
vector spaces.



To be closed under multiplica-
tion a subspace must contain the
zero vector. so that

0-v=0.

The notation for the standard
basis vectors is ambiguous; at
right we have three different vec-
tors, all denoted €. The subscript
tells us which entry is 1 but does
not say how many entries the vec-
tor has—i.e., whether it is a vector
in B2, B2 or what.

The standard basis vectors in
R? and K> are often denoted 7, J,
and k:

We do not use this notation but
mention it in case you encounter
it elsewhere.
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Definition 1.1.5 (Subspace of R"). A non-empty subset V' € R" is called
a subspace if it is closed under addition and closed under multiplication by
scalars; i.e., V is a subspace if when

X, y€V,anda € R, then X+yeVandaxeV.

For example, a straight line through the origin is a subspace of R? and of R®.
A plane through the origin is a subspace of R3. The set consisting of just the
zero vector {0} is a subspace of any F", and R" is a subspace of itself. These
last two, {0} and R", are considered trivial subspaces.

Intuitively, it is clear that a line that is a subspace has dimension 1, and
a plane that is a subspace has dimension 2. Being precise about what this
means requires some “machinery” (mainly the notions of linear independence
and span), introduced in Section 2.4.

The standard basis vectors

We will mect one particular family of vectors in R™ often: the standard basis

vectors. In & there are two standard basis vectors, €, and &;; in R3, there are
three:
i 0 ] 1 0 0
inR2:€,=[0],“g=[l]; in2d: 8 =0, 6=]|1],8=1]0
0 0 1

Similarly, in B3 there are five standard basis vectors:

1

o
[
—oo0oo

o

=

Il
cCooo -
coo~o

Definition 1.1.6 (Standard basis vectors). The standard basis vectors
in R™ are the vectors €; with n entries, the jth entry 1 and the others zero.

Geometrically, there is a close connection between the standard basis vectors
in R? and a choice of axes in the Euclidean plane. When in school you drew
an z-axis and y-axis on a piece of paper and marked off units so that you could
plot a point, you were identifying the plane with R?: each point on the plane
corresponded to a pair of real numbers—its coordinates with respect to those
axes. A set of axes providing such an identification must have an origin, and
each axis must have a direction (so you know what is positive and what is



FIGURE 1.1.5.
The point marked with a cir-
cle is the point (g)

orthogonal coordinate system.

in this non-

FIGURE 1.1.6.

A vector field associates a vec-
tor to each point. Here we show
the radial vector field

2(z\ _ [z

F ( y) - [ y] '
Vector fields generally are easier to
depict when one scales the vectors

down, as we have done above and
in Figure 1.1.7.
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negative) and it must have units (so you know, for example, where z = 3 or
y=2is).

Such axes need not be at right angles. and the units on one axis need not
be the same as those on the other, as shown in Figure 1.1.5. However, the
identification is more useful if we choose the axes at right angles (orthogonal)
and the units equal; the plane with such axes, generally labeled z and y, is
known as the Cartesian plane. We can think that & measures one unit along
the z-axis, going to the right, and &; measures one unit along the y-axis, going
‘Aup'”

Vector fields

Virtually all of physics deals with fields. The electric and magnetic fields of
electromaguetism, the gravitational and other force fields of mechanics, the
velocity fields of fluid flow, the wave function of quantum mechanics, are all
“fields.” Fields are also used in other subjects, epidemiology and population
studies, for instance.

By “field” we mean data that varies from point to point. Some fields, like
temperature or pressure distribution, are scalar fields: they associate a number
to every point. Soine fields, like the Newtonian gravitation field, are best mod-
eled by vector fields, which associate a vector to every point. Otbhers, like the
electromagnetic field and charge distributions, are best modeled by form fields,
discussed in Chapter 6. Still others, like the Einstein field of general relativity
(a field of pseudo inner products), are none of the above.

Definition 1.1.7 (Vector fleld). A vector field on R" is a function whose
input is a point in R and whose output is a vector (also in R") emanating
from that point.

We will distinguigh between functions and vector fields by putting arrows on
vector fields, as in F in Example 1.1.8.

Example 1.1.8 (Vector fields in [2). The identity function in R?

z\ _(z
1(3)=() 113
takes a point in K2 and returns the same point. But the vector field
s(z\_ [z
F(y)—[y] 1.14

takes a point in R? and assigns to it the vector corresponding to that point, as
shown in Figure 1.1.6. To the point with coordinates (1,1) it assigns the vector

1 . . .
Nk to the point with coordinates (4,2) it assigns the vector [ ;]



Actually, a vector field simply L . .
associates to each point a vector; & point in &2 and assigns to it the vector -y
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Similarly, the vector field F (:) = [?_‘;] , shown in Figure 1.1.7, takes

Ty ~-2 N

how you imagine that vector is up . .
to you. Bn:‘tgl it is always helpful Vector fields are often used to describe the flow of fluids or gases: the vector

to imagine each vector anchored assigned to each point gives the velocity and direction of the flow. For flows that
at, or emanating from, the corre-  don't change over time (steady-state flows), such a vector field gives a complete

sponding point.

description. In more realistic cases where the flow is constantly changing, the
vector field gives a snapshot of the flow at a given instant. Vector fields are also
used to describe force fields such as electric fields or gravitational fields.

1.2 INTRODUCING THE ACTORS: MATRICES

N~ Probably no other area of mathematics has been applied in such numerous

By f, TV .~ and diverse conterts as the theory of matrices. In mechanics, electro-
/ P . - magnetics, statistics, economics, operations research, the social sciences,
P . N " , and so on, the list of applications seems endless. By and large this is

PR Tl due to the utility of matriz structure and methodology in conceptualiz-
7 :fé..f..g_f’;\:~-[_,T.< . ing sometimes complicated relationships and in the orderly processing of
/. /. ’ L. e o~ NN\ otherwise tedious algebraic calculations and numerical manipulations.—
N NN AN James Cochran, Applied Mathematics: Principles, Techniques, and Ap-
-~ RN \\\\\ ph'catiom

e e s 0N \\\\\

I SN - . .

- ; The other central actor in linear algebra is the matriz.
FiGURE 1.1.7.
The vector field Definition 1.2.1 (Matrix). An m x n matrix is a rectangular array of

i(;) = ?:02]'

When a matrix is described,
height is given first, then width:
an m X n matrix is m high and
n wide. After struggling for years
to remember which goes first, one
of the authors hit on a mnemonic:
first take the elevator, then walk
down the hall.

entries, m high and n wide.

We use capital letters to denote matrices. Usually our matrices will be arrays
of numbers, real or complex, but matrices can be arrays of polynomials, or of
more general functions; a matrix can even be an array of other matrices. A
vector V € R™ is an m x 1 matrix.

Addition of matrices, and multiplication of a matrix by a scalar, work in the
obvious way:

Example 1.2.2 (Addition of matrices and multiplication by a scalar).

1 0 0 -3 1 -3

2 -1{+|1 ~2/=|3 -3| and 2[;;]=[22] A

s 2 |3 1] |7 3 - -4

So far, it's not clear that matrices gain us anything. Why put numbers (or
other entries) into a rectangular array? What do we gain by talking about the



How would you add the matri-
ces

125 1 2],
[023] and [o 2]'

You can't: matrices can be added
only if they have the same height
and same width.

Matrices were introduced by
Arthur Cayley, a lawyer who be-
came a mathematician, in A Mem-
oir on the Theory of Matrices,
published in 1858. He denoted the
multiplication of a 3 x 3 matrix by

z
the vector |y | using the format
z
(a, b, clz,y2)
a , b , ¢
P

«

. when Werner Heisenberg
discovered ‘matrix’ mechanics in
1925, he didn't know what a ma-
trix was (Max Born had to tell
him), and neither Heisenberg nor
Born knew what to make of the
appearance of matrices in the con-
text of the atom.”—Manfred R.
Schroeder, “Number Theory and
the Real World,” Mathematical
Intelligencer, Vol. 7, No. 4
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a

2 x 2 matrix [Z s] rather than the point b € R*? Thc answer is that the

o6

matrix format allows another operation to be performed: matriz multiplication.
We will see in Section 1.3 that every linear transformation corresponds to mul-
tiplication by a inatrix. This is one reason matrix multiplication is a natural
and important operation; other important applications of matrix multiplication
are found in probability theory and graph theory.

Matrix multiplication is best learned by example. The simplest way to mul-
tiply A times B is to write B above and to the right of A. Then the product
AB fits in the space to the right of A and below B, the i, jth entry of AB
being the intersection of the ith row of A and the jth column of B, as shown in
Example 1.2.3. Note that for AB to exist, the width of A must equal the height
of B. The resulting matrix then has the height of A and the width of B.

Example 1.2.3 (Matrix multiplication). The first entry of the product
AB is obtained by multiplying, one by one, the entries of the first row of A by
those of the first column of B, and adding these products together: in Equation
1.2.1, (2 x 1) + (=1 x 3) = —1. The second entry is obtained by multiplying
the first row of A by the second column of B: (2 x 4) + (=1 x 0) = 8. After
multiplying the first row of A by all the columns of B, the process is repeated
with the second row of A: (3 x 1)+ (2 x 3) =9, and 8o on.

B
1 4 -2
[=] [+ 6 73)
[4][B] = [AB] - L s 6 A
[a][4=] (3] [ )
[ —
4 4B 1.2.1
Given the matrices
10
f1 0 _fo 1 1 -1 1 a
A‘[2 3] B‘[o 1] C_[l 0 -1] D=12 21,

what are the products AB, AC and CD? Check your answers below.2 Now
compute BA. What do you notice? What if you try to compute CA?3

,AB=[01, _[r -1 17, [ o
0 5|7 AC=[s o | ©P 0 -1j°

3Matrix multiplication is not commutative; BA = z g], which is not equal to

1
AB = [g 5]. Although the product AC exists, you cannot compute CA.



Definition 1.2.4 says nothing
new, but it provides some prac-
tice moving between the concrete
(multiplying two particular matri-
ces) and the symbolic (express-
ing this operation so that it ap-
plies to any two miatrices of appro-
priate dimensions, even if the en-
tries are complex numbers or even
functions, rather than real num-
bers.) In linear algebra one is
constantly moving from one form
of repres: ion (one “I ge”)
to another. For example, as we
have seen, a point in R" can be
considered as a single entity, b, or
as the ordered list of its coordi-
nates; matrix A can be thought of
as a single entity or as a rectangu-
lar array of its entries.

In Example 1.2.3, Aisa2x 2
matrix and B is a 2 x 3 matrix, so
that n = 2, m = 2 and p = 3; the
product C is then a 2 x 3 matrix.
If we set i = 2 and j = 3, we see
that the entry c2 3 of the matrix C
is

C2.3 = azabia + az22b23
=(3--2)+(2-2)
=-6+d4=-2.

Using the format for matrix
multiplication shown in Example
1.2.3, the i, jth entry is the entry
at the intersection of the ith row
and jth column.
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Below we state the formal definition of the process we've just described. 1f
the indices bother you, do refer to Figure 1.2.1.
Definition 1.2.4 (Matrix multiplication). If A is an m x n. matrix whose

(i, 7)th entry is a;j, and B is an n x p matrix whose (¢, j)th entry is b ,.
then C = AB is the m x p matrix with entries

n
cij = aixb;
k=1

= @i1by,j +aigbj + - + @inbn;.

) P
by
& -2k
B -3 g

" faise) (] | U o
;_;'. - T El'

FIGURE 1.2.1. The entry ¢;,; of the matrix C = AB is the sum of the products of
the entries of the ¢, of the matrix A and the corresponding entry by, of the matrix
B. The entries @, x are all in the ith row of A; the first index 7 is constant. and the
second index k varies. The eutries by, are all in the jth column of B: the first index
k varies, and the second index j is constant. Since the width of A equals the height
of B, the entries of 4 and those of B can be paired up exactly.

Remark. Often people write a problem in matrix multiplication in a row:
[A]l[B] = [AB]. The format shown in Example 1.2.3 avoids coufusion: the
product of the ith row of A and the jth column of B lies at the intersection of

that row and column. It also avoids recopying matrices wheu doiug repeated
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A || aB ;
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FIGURE 1.2.2.

The ith column of the product
AB depends on all the entries of
A but only the ith column of B.

B

T ._,._'

A AB |

!

|

y {

U |

FiGURE 1.2.3.

The jth row of the product AB
depends on all the entries of B but

only the jth row of A.
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multiplications, for example A times B times C times D:

(=) [e) 2],

[A] [(AB)] [(AB)C] [(ABC)D]

123

Multiplying a matrix by a standard basis vector

Observe that multiplying a matrix A by the standard basis vector &; selects out
the ith column of A, as shown in the following example. We will use this fact
often.

Example 1.2.5 (The ith column of A is A&;). Below, we show that the
second column of A is Aé;:
&

-2 —2
3-2 0 -9 7 multiplies the 2nd column by 1: : x1= i
2 1 2 1 0 0
0 4 3 4
1 0 2 0
I —
A Aé&a
A 124

Similarly, the ith column of AB is Ab;, where b; is the ith column of B, as
shown in Example 1.2.6 and represented in Figure 1.2.2. The jth row of AB is
the product of the jth row of A and the matrix B, as shown in Example 1.2.7
and Figure 1.2.3.

Example 1.2.6. The second column of the product AB is the same as the
product of the second column of A and the matrix B:

B b,
—~
1 4 -2 4
3 0 2 0
1.2.5
2 -1 -1 8 -6 2 -1 8
3 2 9 12 -2 3 2 12
N’ vatm———, it/ N, e N
A AB A AB,

Example 1.2.7. The second row of the product AB is the same as the product
of the second row of A and the matrix B:



In his 1858 article on matrices,
Cayley stated that matrix multi-
plication is associative but gave no
proof. The impression one gets is
that he played around with ma-
trices (mostly 2 x 2 and 3 x 3)
to get some feeling for how they
behave, without worrying about
rigor. Concerning another matrix
result (the Cayley-Hamilton theo-
rem) he verifies it for 3 x 3 matri-
ces, adding I have not thought it
necessary to undertake the labour
of a formal proof of the theorem in
the general case of a matriz of any

degree.
q
e

o[ A |[aglfa
|- !
FIGURE 1.2.4.

This way of writing the ma-
trices corresponds to calculating

(AB)C.
]

m|B || BC

[«
p|C

n| A |ladc|
I

m J

FIGURE 1.2.5.
This way of writing the ma-

trices corresponds to calculating
A(BC).
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B
pr——
[14—2] —_
2 -
30 B
2 -1 -1 8 -6
3 2 9 12 -2 (3 2] [ 9 12 -2]
Nt e e e
A AB

Matrix multiplication is associative
When multiplying the matrices A, B, and C, we could set up the repeated

multiplication as we did in Equation 1.2.3, which corresponds to the product
(AB)C. We can use another format to get the product A(BC):

[ o]
(2] [ ¢ ]
A aB| | 4By o [B] [(BC) ] 1.2.7
[ ] [ ] [ ] [A] [A(BC)]

Is (AB)C the same as (AB)C? In Section 1.3 we give a conceptual reason why
they are; here we give a computational proof.

Proposition 1.2.8 (Matrix multiplication is associative). If A is an
n X m matrix, B is an m x p matrix and C is & p x ¢ matrix, so that (AB)C
and A(BC) are both defined, then they are equal:

(AB)C = A(BC). 1.2.8

Proof. Figures 1.2.4 and 1.2.5 show that the i, jth entry of both A(BC) and
(AB)C depend only on the ith line of A and the jth column of C (but on all the
entries of B), and that without loss of generality we can assume that A is a line
matrix and that C is a column matrix, i.e., that n = g = 1, so that both (AB)C

and A(BC) are numbers. The proof is now an application of associativity of
multiplication of numbers:

(AB)C = Xp: (Zm:akbk.[) C
1=1 \k=1

ith entry of AB

. " ) 129
=Y Y aba=) a (E bk,,c,) =A(BC). O
=1 k=1 k=1 =1

[
kth entry of BC



Exercise 1.2.2 provides prac-
tice on matrix multiplication. At
the end of this section, Example
1.2.22, involving graphs, shows a
setting where matrix multiplica-
tion is a natural and powerful tool.

The main diagonal is also called
the diagonal. The diagonal from
bottom left to top right is the ant:-
diagonal.

Multiplication by the identity
matrix I does not change the ma-
trix being multiplied.

The columns of the identity
matrix I, are of course the stan-

dard basis vectors €),...,&n:
1000
Io = 0100
001 0
0001
&, &; &3 &
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Non-commutativity of matrix multiplication

As we saw earlier, matrix multiplication is most definitely not commutative. It
may well be possible to multiply A by B but not B by A. Even if both matrices
have the same number of rows and columns, AB will usually not equal BA, as

shown in Example 1.2.9.

Example 1.2.9 (Matrix multiplication is not commutative). If you

multiply the matrix [(l) ; ] by the matrix [? (l)], the answer you get will
[t 1]

11

A 1.210

is not equal t
is not equal to 0 1 L1
10 1

depend on which one you put first:
01
10
01 10
11 11
The identity matrix
The identity matrix I plays the same role in matrix multiplication as the number

1 does in multiplication of numbers: A = A = Al.

Definition 1.2.10 (Identity matrix). The identity matrix I, is the n x n-
matrix with 1’s along the main diagonal (the diagonal from top left to bottom
right) and 0’s elsewhere.

For example,
1 0 0 O
{1 o0 _f(0o 1 0 o
I, = [0 l] and I; = 00 1 0 1.2.11
0 0 0 1
If A is an n x m-matrix, then
IA= Al = A, or, more precisely, I,A=Al, = A, 1.2.12

since if n # m one must change the size of the identity matrix to match the
size of A. When the context is clear, we will omit the index.

Matrix inverses

The inverse A~! of a matrix A plays the same role in matrix multiplication as
the inverse 1/a does for the number a. We will see in Section 2.3 that we can
use the inverse of a matrix to solve systems of linear equations.



We will see in Section 2.3 that
only square matrices can have a
two-sided inverse, i.e., an inverse.
Furthermore, if a square matrix
has a left inverse then that left in-
verse is necessarily also a right in-
verse; similarly, if it has a right in-
verse, that right inverse is neces-
sarily a left inverse.

It is possible for a non-square
matrix to have lots of left inverses
and no right inverse, or lots of
right inverses and no left inverse,
as explored in Exercise 1.2.20.

While we can write the inverse
of a number z either as ™! or as
1/z, giving zz™! = r(1/z) = 1,
the inverse of a matrix A is only
written A™!. We cannot divide
by a matriz. If for two matrices
A and B you were to write A/B,
it would be unclear whether this
meant

B™'A or AB™.
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The only number that does not have an inverse is 0, but many ma..trices.do
not have inverses. In addition, the non-commutativity of matrix multiplication
makes the definition more complicated.

Definition 1.2.11 (Left and right inverses of matrices). Let A be a
matrix. If there is another matrix B such that

BA=1,
then B is called a left inverse of A. If there is another matrix C such that
AC =1,

then C is called a right inverse of A.

It is possible for a nonzero matrix to have neither a right nor a left inverse.

Example 1.2.12 (A matrix with neither right nor left inverse). The
matrix [ é g] does not have a right or a left inverse. To see this, assume it

has a right inverse. Then there exists a matrix [z Z] such that

HIPET

But that product is 8 8 , i.e., in the bottom right-hand corner, 0 = 1. A

similar computation shows that there is no left inverse. A

Definition 1.2.13 (Invertible matrix). An invertible matrix is a matrix
that has both a left inverse and a right inverse.

Associativity of matrix multiplication gives us the following result:

Proposition and Definition 1.2.14. If 3 matrix A has both a left and a
right inverse, then it has only one lef: inverse and oue right inverse, and they
are identical; such a matrix is called the inverse of A and is denoted A=,

Proof. If a matrix A has a right inverse B, then AB = I. If it has a left
inverse C, then CA=1I. So

C(AB)=CI=C and (CA)B=IB=B, so C=B. O 1.2.14

We discuss how to find inverses of matrices in Section 2.3. A formula exists
for 2 x 2 matrices: the inverse of

A=[° "] is A =1 {d "b], 1215

c d



We are indebted to Robert Ter-
rell for the mnemonic, “socks on,
shoes on; shoes off, socks off.” To
undo a process. you undo first the
last thing you did.

1
Ifv= [0} . then its transpose
1
is
v'=[101).

Do not confuse a matrix with
its transpose, and in particular,
never write a vector horizontally.
If you write a vector written hor-
izontally you have actually writ-
ten its transpose; confusion be-
tween a vector (or matrix) and its
transpose leads to endless difficul-
ties with the order in which things
should be multiplied, as you can
see from Theorem 1.2.17.
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as Exercise 1.2.12 asks you to confirtn by matrix multiplication of AA~! and
A~'A. (Exercise 1.4.12 discusses the formula for the inverse of a 3 x 3 matrix.)

Notice that a 2 x 2 matrix is invertible if ad — bc # 0. The converse is also
true: if ad — bc = 0, the matrix is not invertible, as you arc asked to show in
Exercise 1.2.13.

Associativity of matrix multiplication is also used to prove that the inverse
of the product of two invertible matrices is the product of their inverses, in
reverse order:

Proposition 1.2.15 (The inverse of the product of matrices). If A
and B are invertible matrices, then AB is invertible, and the inverse is given
by the formula

(AB)"'=B"'Aa"" 1.2.16

Proof. The computation
(AB}(B™'A™") = A(BB ')A ' = AA" ' =1 1.2.17

and a similar one for (B~!A~')(AB) prove the result. O

Where was associativity used in the proof? Check your answer below.*

The transpose

The transpose is an operation on matrices that will be useful when we come to
the dot product, and in many other places.

Definition 1.2.16 (Transpose). The transpose AT of a matrix A is formed
by interchanging all the rows and columns of 4, reading the rows from left
to right, and columns from top to bottom.

1 4 -2 13
For example, if A = ,thenAT =] 4 o0
3 0 2 -2 9

The transpose of a single row of a matrix is a vector; we will use this in
Section 1.4.

4 Associativity is used for the first two equalities below:

p (EF) (DE) F
(AB)(B“'A")=\.4L(?(B"A"))=A((BB“')A“‘ =A(JA™ Y)Y =1

(AB) c A (BC)
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Theorem 1.2.17 (The transpose of a product). The transpose of a
The proof of Theorem 1.2.17 product is the product of the transposes in reverse order:

Eé:i:ﬁ??ﬁm and is left as ( AB)T =BTA". 1.2.18

11 0] Some special kinds of matrices
1 0 3
0 3 0
A symmetric matrix Definition 1.2.18 (Symmetric matrix). A symmetric matrix is equal to
its transpose. An anti-symmetric matrix is equal to minus its transpoee.
0 1 2
["1 0 g} Definition 1.2.19 (Triangular matrix). An upper triangular matrix is a
-2 -3 square matrix with nonzero entries only on or above the main diagonal. A
An anti-symmetric matrix lower triangular matrix is a square matrix with nonzero entries only on or
below the main diagonal.
o2 0y Definition 1.2.20 (Diagonal matrix). A diagonal matrix is a square
0010 matrix with nonzero entries (if any) only on the main diagonal.
0 00O
An upper triangular matrix What happens if you square the diagonal matrix [8 2]? If you cube it?®
2000 Applications of matrix multiplication: probabilities and graphs
02 00
0010 While from the perspective of this book matrices are most important because
00 01 they represent linear transformations, discussed in the next section, there are

A diagonal matrix other ir.n.portant. applications of matrix multiplication. Two good examples are
probability theory and graph theory.

Exercise 1.2.10 asks you to show
that if A and B are upper trian- Example 1.2.21 (Matrices and probabilities). Suppose you have three

gular n x n matrices, then so is reference books on a shelf: a thesaurus, a French dictionary, and an English

AB. dictionary. Each time you consult one of these books, you put it back on the
shelf at the far left. When you need a reference, we denote the probability that
it will be the thesaurus P, the French dictionary P; and the English dictionary
P;. There are six possible arrangements on the shelf: 123 (thesaurus, French
dictionary, English dictionary), 132, and so on.

s[a 0]°_Ja* 0].[a 0]°_[a® o
0 a] [0 d&®J'|0 o] " |0 &*)



For example. the move from
(213) to (321) has probability P3
(associated with the English dic-
tionary). since if you start with
the order (213) (French dictio-
nary, thesaurus, English dictio-
nary), consult the English dictio-
nary, and put it back 1o the far
left, you will then have the order
(321). So the entry at the 3rd
row, 6th column is P. The move
from (213) to (312) has proba-
bility 0, since moving the English
dictionary won't change the posi-
tion of the other books. So the
entry at the 3rd row, 5th column
is 0.

A situation like this one, where
each outcome depends only on the
one just before it, it called a
Markov chain.

Sometimes easy access isn't
the goal. In Zola’s novel Au Bon-
heur des Dames. the epic story of
the growth of the first big depart-
ment store in Paris, the hero has
an inspiration: he places his mer-
chandise in the most inconvenient
arrangement possible, forcing his
customers to pass through parts
of the store where they otherwise
wouldn’t set foot, and which are
mined with temptations for im-
pulse shopping.
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We can then write the following 6 x 6 transition matrix, indicating the prob-
ability of going from one arrangement to another:

(1,2,3) (1,3,2) (2,1,3) (2,3.1) 3,1,2) (3.2,1)
0 0 0

1,23 PR Py Py

(1.3,2) O P P 0 Ps 0
213 A 0 P 0 0 Ps
2.3,1) P 0 0 P, 0 Ps
(3.1,2) 0 P 0 P, Py 0
3.21) 0 P, 0 P, 0 Ps

Now say you start with the fourth arrangement, (2,3,1). Multiplying the line
matrix (0,0,0,1,0,0) (probability 1 for the fourth choice, 0 for the others) by the
transition matrix T gives the probabilities P;,0,0, P;,0, P3. This is of course
just the 4th row of the matrix. The interesting point here is to explore the
long-term probabilities. At the second step, we would multiply the line matrix
P,,0,0, P,,0, P; by T; at the third we would multiply that product byT,....
If we know actual values for P;, P, and P; we can compute the probabilities
for the various configurations after a great many iterations. If we don’t know
the probabilities, we can use this system to deduce them from the configuration
of the bookshelf after different numbers of iterations.

This kind of approach is useful in determining efficient storage. How should a
lumber yard store different sizes and types of woods, so as little time as possible
is lost digging out a particular plank from under others? For computers, what
applications should be easier to access than others? Based on the way you use
your computer, how should its operating system store data most efficiently? A

Example 1.2.22 is important for many applications. It introduces no new
theory and can be skipped if time is at a premium, but it provides an enter-
taining setting for practice at matrix multiplication, while showing some of its
power.

Example 1.2.22 (Matrices and graphs). We are going to take walks on
the edges of a unit cube; if in going from a vertex V; to another vertex Vi we
walk along n edges, we will say that our walk is of length n. For example, in
Figure 1.2.6. if we go from vertex V) to Vg, passing by V, and Vj, the total
length of our walk is 3. We will stipulate that each segment of the walk has to
take us from one vertex to a different vertex; the shortest possible walk from a
vertex to itself is of length 2.

How many walks of length n are there that go from a vertex to itself, or, more
generally, from a given vertex to a second vertex? As we will see in Proposition
1.2.23, we answer that question by raising to the nth power the adjacency
matriz of the graph. The adjacency matrix for our cube is the 8 x 8 matrix



You may appreciate this result
more if you try to make a rough
estimate of the number of walks
of length 4 from a vertex to itself.
The authors did and discovered
later that they had missed quite
a few possible walks.

As you would expect, all the 1's
in the adjacency matrix A have
turned into 0's in A*; if two ver-
tices are connected by a single
edge, then when n is even there
will be no walks of length n be-
tween them.

Of course we used a computer
to compute this matrix. For all
but simple problems involving ma-
trix multiplication, use Matlab or
an equivalent.
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whose rows and columns are labeled by the vertices V;,..., Vs, and such that
the %, jth entry is 1 if there is an edge joining V; to V;, and 0 if not, as shown in
Figure 1.2.6. For example, the entry 4,1 is 1 (underlined in the matrix) because
there is an edge joining V4 to V;; the entry 4,6 is 0 (also underlined) because
there is no edge joining Vj to Vs.

i o V3 Vg Vs Vs V2 W

w0 1 0 1 0 1 0 O

V21 0 1 0 0 O 1 O

vz Vv 0 1 0 1 0 O O 1
A=V, 1 0 1 0 1 0 0 0

V& 0 0 0 1 0 1 0 1

Ve 1 0 0 0 1 0 1 O

" 0 1 00 0 1 0 1
V& 0 0 1 0 1 0 1 0O

FIGURE 1.2.6. Left: The graph of a cube. Right: Its adjacency matrix A. If two
vertices V; and V; are joined by a single edge, the (i,3)th and (j,i)th entries of the
matrix are 1; otherwise they are 0.

The reason this matrix is important is the following.

Proposition 1.2.23. For any graph formed of vertices connected by edges,
the number of possible walks of length n from vertex V; to vertex V; is given
by the i, jth entry of the matrix A™ formed by taking the nth power of the
graph’s adjacency matrix A.

For example, there are 20 different walks of length 4 from V5 to V7 (or vice
versa), but no walks of length 4 from V; to V; because

21 0 20 0 20 0 20 O
0 21 0 20 0 20 0 20
20 0 21 0 20 0 20 0
At = 0 20 0 21 0 20 0 20
20 0 20 0 21 0 20 0
0 20 0 20 0 21 0 20
20 0 20 0 20 0 21 O
0 20 0 20 0 20 0 21

Proof. This will be proved by induction, in the context of the graph above;
the general case is the same. Let B, be the 8 x 8 matrix whose i,jth entry is
the number of walks from V; to V; of length n, for a graph with eight vertices;



Like the transition matrices of
probability theory, matrices repre-
senting the length of walks from
one vertex of a graph to another
have important applications for
computers and multiprocessing.

Exercise 1.2.15 asks you to con-
struct the adjacency matrix for a
triangle and for a square. We
can also make a matrix that al-
lows for one-way streets (one-way
edges), as Exercise 1.2.18 asks you
to show.
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we must prove B, = A". First notice that B; = A' = A: the number A;; is
exactly the number of walks of length 1 from v; to v;.

Next, suppose it is true for n, and let us see it for n + 1. A walk of length
n+ 1 from V; to V, must be at some vertex Vi at time n. The number of such
walks is the sum, over all such Vi, of the number of ways of getting from V; to
Vi in n steps, times the number of ways of getting from Vi to Vj in one step.
This will be 1 if V4 is next to V;, and 0 otherwise. In symbols, this becomes

(Bn+l)t.1 = E : (Bn)ik (Bl)k,j
N’ k=1 N’ N
No. of ways ~~~ No. waysito No: ways k to
itoj in n+1 steps for all k in n steps J in 1 step
vertices k 1.2.19

S
1
= (A™)ik Ak; = (A" ),
k=1 v
=1 v Def.
inductive def. 7574
hypothesis of A "<

which is precisely the definition of A®*!. O

Above, what do we mean by A"? If you look at the proof, you will see that
what we used was

ar = ((...(a)4)4)4. 1.2.20

Matrix multiplication is associative, so you can also put the parentheses any
way you want; for example,

A" = (A(A(A) )) 1221
In this case, we can see that it is true, and simultaneously make the associativity
less abstract: with the definition above, B,Byn = Bn+m. Indeed, a walk of

length n + m from V; to Vj is a walk of length n from V; to some V, followed
by a walk of length m from Vi to V. In formulas, this gives

8
(Bn+m)i,j = Z(Bn)i,k(Bm)k,j- 1.2.22
k=1

1.3 WHAT THE AcTORS Do: A MATRIX

AS A TRANSFORMATION

In Section 2.2 we will see how matrices are used to solve systems of linear
equations, but first let us consider a different view of matrices. In that view,
multiplication of a matrix by a vector is seen as a linear transformation, a
special kind of mapping. This is the central notion of linear algebra, which



The words mapping (or map)
and function are synonyms, gen-
erally used in different contexts.
A function normally takes a point
and gives a number. Mapping is a
more recent word; it was first used
in topology and geometry and has
spread to all parts of mathemat-
ics. In higher dimensions, we tend
to use the word mapping rather
than function, but there is noth-
ing wrong with calling a mapping
from R®> — R® a function.

7
—

FiGure 1.3.1.
A mapping: every point on the
left goes to only one point on the

FIGURE 1.3.2.
Not a mapping: not well de-
fined at a, not defined at b.

The domain of our mathemati-
cal “final grade function” is R"; its
range is [R. In practice this func-
tion has a “socially acceptable”
domain of the realistic grade vec-
tors (no negative numbers, for ex-
ample) and also a “socially accept-
able” range, the set of possible fi-
nal grades. Often a mathemati-
cal function modeling a real sys-
tem has domain and range consid-
erably larger than the realistic val-
ues.
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allows us to put matrices in context and to see them as something other than
“pushing numbers around.”

Mappings

A mapping associates elements of one set to elements of another. In common
speech, we deal with mappings all the time. Like the character in Moliére's play
Le Bourgeois Gentilhomme, who discovered that he had been speaking prose
all his life without knowing it, we use mappings from early childhood, typically
with the word “of” or its equivalent: “the price of a book” goes from books to
money; “the capital of a country” goes from countries to cities.

This is not an analogy intended to ease you into the subject. “The father of”
is a mapping, not “sort of like” a mapping. We could write it with symbols:
f(z) = y where z = a person and y = that person’s father: f(John Jr.) =
John. (Of course in English it would be more natural to say, “John Jr.’s father”
rather than “the father of John Jr.” A school of algebraists exists that uses
this notation: they write (z)f rather than f(z).)

The difference between expressions like “the father of” in everyday speech
and mathematical mappings is that in mathematics one must be explicit about
things that are taken for granted in speech.

Rigorous mathematical terminology requires specifying three things about a
mapping:

(1) the set of departure (the domain),

(2) the set of arrival (the range),

(3) a rule going from one to the other.

If the domain of a mapping M is the real numbers R and its range is the
rational numbers Q, we denote it M : R — Q, which we read “M from R to
Q."” Such a mapping takes a real number as input and gives a rational number
as output.

What about a mapping T : R® — R™? Its input is a vector with n entries;
its output is a vector with m entries: for example, the mapping from R™ to R
that takes n grades on homework, tests, and the final exam and gives you a
final grade in a course.

The rule for the “final grade” mapping above consists of giving weights to
homework, tests, and the final exam. But the rule for a mapping does not
have to be soincthing that can be stated in a neat mathematical formula. For
example, the mapping M : R — R that changes every digit 3 and turns it into
a 5 is a valid mapping. When you invent a mapping you enjoy the rights of an
absolute dictator; you don’t have to justify your mapping by saying that “look,
if you square a number z, then inultiply it by the cosine of 27, subtract 7 and
then raise the whole thing to the power 3/2, and finally do such-and-such, then



Note that in correct mathemat-
ical usage, “the father of” as a
mapping from people to people is
not the same mapping as “the fa-
ther of” as a mapping from peo-
ple to men. A mapping includes a
domain, a range, and a rule going
from the first to the second.
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if  contains a 3, that 3 will turn into a 5, and everything else will remain
unchanged.” There isn't any such sequence of operations that will “carry out”
your mapping for you, and you don’t need one.®

A mapping going “from” &" “to” Z" is said to be defined on its domain R".
A mapping in the mathematical sense mnust be well defined: it must be defined
at every point of the domain, and for each, must return a unique element of
the range. A mapping takes you, unambiguously, from one element of the set
of departure to one element of the set of arrival, as shown in Figures 1.3.1 and
1.3.2. (This does not mean that you can go unambiguously (or at all) in the
reverse direction; in Figure 1.3.1, going backwards from the point d in the range
will take you to either a or b in the domain. and there is na path from ¢ in the
range to any point in the domain.)

Not all expressions “the this of the that” are true mappings in this sense.
“The daughter of.” as a mapping fromn people to girls and women, is not ev-
erywhere defined. because not everyone has a daughter; it is not well defined
because some people have more than one daughter. It is not a mapping. But
“the number of daughters of,” as a mapping from women to numbers, is every-
where defined and well defined, at a particular time. And “the father of,” as
a mapping from people to men, is everywhere defined, and well defined; every
person has a father, and only one. (We speak here of biological fathers.)

Remark. We use the word “range” to mean the space of arrival, or “target
space”; some authors use it to mean those elements of the arrival space that are
actually reached. In that usage, the range of the squaring function F: R —
given by F(z) = .r? is the non-negative real numbers, while in our usage the
range is R. We will see in Section 2.5 that what these authors call the range,
we call the image. As far as we know, those authors who use the word range to
denote the image either have no word for the space of arrival, or use the word
interchangeably to mean both space of arrival and image. We find it useful to
have two distinct words to denote these two distinct objects. A

SHere's another “pathological” but perfectly valid mapping: the mapping M : & —
I that takes every number in the interval [0, 1j that can be written in base 3 without
using 1's, changes every 2 to a 1, and then considers the result as a number in base 2.
If the number has a 1, it changes all the digits after the first 1 into 0’s and considers
the result as a number in base 2. Cantor proposed this mapping to point out the need
for greater precision in a number of theorems, in particular the fundamental theorem
of calculus. At the time it was viewed as pathological but it turns out to be important
for understanding Newton’s method for cubic polynomials in the complex. Mappings
Jjust like it occur everywhere in complex dynamics—a surprising discovery of the early
1980’s.



FIGURE 1.3.3.
An onto mapping, not 1-1, a
and b go to the same point.

FIGURE 1.3.4.
A mapping: 1-1, not onto, no
points go to a or to b.

“Onto” is a way to talk about
the ezistence of solutions: a map-
ping T is onto if there is a solution
to the equation T'(z) = b, for every
b in the set of arrival (the range
of T). “One to one” is a way to
talk about the unigueness of solu-
tions: T is one to one if for every
b there is at most one solution to
the equation T'(z) = b.
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Existence and uniqueness of solutions

Given a mapping T, is there a solution to the equation T'(z) = b, for every b in
the range (set of arrival)? If so, the mapping is said to be onto, or surjective.
“Onto” is thus a way to talk about the ezistence of solutions. The mapping
“the father of” as a mapping from pcople to men is not onto, because not all
men are fathers. There is no solution to the equation “The father of z is Mr.
Childless.” An onto mapping is shown in Figure 1.3.3.

A second question of interest concerns uniqueness of solutions. Is there at
most one solution to the equation T'(z) = b, for every b in the set of arrival, or
might there be many? If there is at most one solution to the equation T'(z) = b,
the mapping T is said to be one to one, or injective. The mapping “the father
of” is not one to one. There are, in fact, four solutions to the equation “The
father of z is John Hubbard.” But the mapping “the twin sibling of,” as a
mapping from twins to twins, is one to one: the equation “the twin sibling of =
= y" has a unique solution for each y. “One to one” is thus a way to talk about
the uniqueness of solutions. A one to one mapping is shown in Figure 1.3.4.

A mapping T that is both onto and one to one (also called bijective) has
an inverse mapping T ! that undoes it. Because T is onto, T~ is everywhere
defined; because T is one to one, T~! is well defined. So T~! qualifies as a
mapping. To summarize:

Definition 1.3.1 (Onto). A mapping is onto (or surjective) if every element
of the set of arrival corresponds to at least one element of the set of departure.

Definition 1.3.2 (One to one). A mapping is one to one (or injective) if
every element of the set of arrival corresponds to at most one element of the
set of departure.

Definition 1.3.3 (Bijective). A mapping is bijective if it is both onto and
one to one. A bijective mapping is invertible.

Example 1.3.4 (One to one and onto). The mapping “the Social Security
number of” as a mapping from Americans to numbers is not onto because there
exist numbers that aren’t Social Security numbers. But it is one to one: no two
Americans have the same Social Security number.

The mapping f(z) = z? from real numbers to real positive numbers is onto
because every real positive number has a real square root, but it is not one
to one because every real positive number has both a positive and a negative
square root. A



A composition is written from
left to right but computed from
right to left: you apply the map-
ping g to the argument r and
then apply the mapping f to the
result. Exercise 1.3.12 provides
some practice.

When computers do composi-
tions it is not quite true that com-
position is associative. One way of
doing the calculation may be more
computationally effective than an-
other; because of round-off errors,
the computer may even come up
with different answers, depend-
ing on where the parentheses are
placed.

Although composition is asso-
ciative, in many settings,

((fog)oh) and (fo(goh))

correspond to different ways of
thinking.  Already, the “father
of the maternal grandfather” and
“the paternal grandfather of the
mother” are two ways of thinking
of the same person; the author of a
biography might use the first term
when focusing on the relationship
between the subject's grandfather
and that grandfather’s father, and
use the other when focusing on the
relationship between the subject’s
mother and her grandfather.
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Composition of mappings

Often one wishes to apply, consecutively, more than one mapping. This is
known as composition.

Definition 1.3.5 (Composition). The composition f o g of two mapping,
f and g, is

(f 0 9)(z) = f(9(=))- 13.1

Example 1.3.6 (Composition of “the father of” and “the mother of”).
Consider the following two mappings from the set of persons to the set of persons
(alive or dead): F, “the father of,” and M, “the mother of.” Composing these
gives:

FoM (the father of the mother of = maternal grandfather of)

Mo F (the mother of the father of = paternal grandmother of).
It is clear in this case that composition is associative:

Fo(FoM)=(FoF)oM. 1.3.2

The father of David’s maternal grandfather is the same person as the paternal
grandfather of David’s mother. Of course it is not commutative: the “father of
the mother” is not the “mother of the father.”) A

Example 1.3.7 (Composition of two functions). If f(z) = z -1, and
g(z) = 72, then

(fog)z) = flo(z)) =2*-1. A 1.33

Proposition 1.3.8 (Composition is associative). Composition is asso-
ciative:

fogoh=(fog)oh=fo(goh). 134

Proof. This is simply the computation

((fog) o h)(z) = (f 0 9)(h(z)) = f(g(h(z))) whereas
(folgoh))(x) = f((goh)(z)) = f(9(h(z))). O 1.3.5
You may find this “proof” devoid of content. Composition of mappings is

part of our basic thought processes: you use a composition any time you speak
of “the this of the that of the other.”



The words transformation and
mapping are synonyms, SO we
could call the matrix A of Figure
1.3.5 a mapping. But in linear al-
gebra the word transformation is
more common. In fact, the matrix
A is a linear transformation, but
we haven't formally defined that
term yet.

Mathematicians usually denote
a linear transformation by its as-
sociated matrix; rather than say-
ing that the “dinners to shopping
list” transformation is the multi-
plication Ab = &, they would call
this transformation A.
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Matrices and transformations

A special class of mappings consists of those mappings that are encoded by
matrices. By “encoded” we mean that multiplication by a matrix is the rule
that turns an input vector into an output vector: just as f(z) = y takes a
number z and gives y, AV = W takes a vector V and gives a vector w.

Such mappings, called linear transformations, are of central importance in
linear algebra (and every place else in mathematics). Throughout mathemat-
ics, the constructs of central interest are the mappings that preserve whatever
structure is at hand. In linear algebra, “preserve structure” means that you can
first add, then map, or first map, then add, and get the same answer; similarly,
first multiplying by a scalar and then mapping gives the same result as first
mapping and then multiplying by a scalar.) One of the great discoveries at the
end of the 19th century was that the natural way to do mathematics is to look
at sets with structure, such as R”, with addition and multiplication by scalars,
and to consider the mappings that preserve that structure.

We give a mathematical definition of linear transforinations in Definition
1.3.11, but first let’s see an example.

Example 1.3.9 (Frozen dinners). In a food processing plant making three
types of frozen dinners, one might associate the number of dinners of various
sorts produced to the total ingredients needed (beef, chicken, noodles, cream,
salt, ... ). Asshown in Figure 1.3.5, this mapping is given by multiplication (on
the left) by the matrix A, which gives the amount of each ingredient needed for
each dinner: A tells how to go from b, which tells how many dinners of each kind
are produced, to the product &, which tells the total ingredients needed. For
example, 21 pounds of beef are needed, because (.25x 60)+(.20 x 30)+(0x 40) =
21. For chicken, (0 x 60) + (0 x 30) + (.45 x 40) = 18.

6 Dinners

produced

60 stroganoff
30 ravioli
40 fried chicken

21 1b of beef
18 Ib of chicken
+-+1b of noodles

---1b of rice

Ibs. of beef — .25 .20 0
Ibs. of chicken — 0 0 45
Ibs. of noodles —

Ibs. of rice —

liters of cream — -+ - liters of cream

beef stroganoff ravioli fried chicken

A lngudientT per dinner e ‘l‘oulv needed
FIGURE 1.3.5. The matrix A is the transformation associating the number of dinners

of various sorts produced to the total ingredients needed. A



Notice that matrix multiplica-
tion emphatically does not allow
for feedback. For instance, it does
not allow for the possibility that
if you buy more you will get a
discount for quantity, or that if
you buy even more you might cre-
ate scarcity and drive prices up.
This is a key feature of linearity,
and is the fundamental weakness
of all models that linearize map-
pings and interactions.

T(2x)=2T(x)

X
FIGURE 1.3.6.
For any linear transformation
)

T(ax) = aT(x).
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Example 1.3.10 (Frozen foods: composition). For the food plant of
Example 1.3.9, one might make a matrix D, 1 high and n wide (n being the
total number of ingredients), that would list the price of each ingredient, per
pound or liter. The product DA would then tell the cost of each ingredient in
each dinner, since A tells how much of each ingredient is in each dinner. The
product (DA)b would give the total cost of the ingredients for all b dinners.
We could also compose these transformations in a different order, first figuring
how much of each ingredient we need for all b dinners—the product Ab. Then,
using D, we could figure the total cost: D(Ab). Clearly, (DA)b = D(Ab),
although the two correspond to slightly different perspectives.

Real-life matrices

We kept Example 1.3.9 simple, but you can easily see how this works in a more
realistic situation. In real life—modeling the economy, designing buildings,
modeling airflow over the wing of an airplane—vectors of input data contain
tens of thousands of entries, or more, and the matrix giving the transformation
has millions of entries.

We hope you can begin to see that a matrix might be a very useful way of
mapping from R” to R™. To go from IR3, where vectors all have three entries,

v w
vV = |v2|, to B, where vectors have four entries, W = z: , you would
V3 wy
multiply V on the left by a 4 x 3 matrix:
u
v2
v3
w ] - 1.3.6
wo
w3
Wy

One can imagine doing the same thing when the n and m of R® and R™ are
arbitrarily large. One can somewhat less easily imagine extending the same idea
to infinite-dimensional spaces, but making sense of the notion of multiplication
of infinite matrices gets into some deep water, beyond the scope of this book.
Our matrices are finite: rectangular arrays, m high and n wide.

Linearity
The assumption that a transformation is linear is the main simplifying assump-
tion that scientists and social scientists (especially economists) make to under-

stand their models of the world. Roughly speaking, linearity means that if you
double the input, you double the output; triple the input, triple the output ... .



The Italian mathematician Sal-
vatore Pincherle, one of the early
pioneers of linear algebra, called
a linear transformation a distribu-
tive transformation (operazioni
distributive), a name that is per-
haps more suggestive of the formu-
las than is “linear.”

Every linear transformation is
given by a matrix. The matrix can
be found by seeing how the trans-
formation acts on the standard ba-
sis vectors

1 0
~ 0 . :
e = ] 1€n = 0

0 1
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In Example 1.3.9, the transformation A is linear: each frozen beef stroganoff
dinner will require the same amount of beef, whether one is making one dinner
or 10,000. We treated the price function D in Example 1.3.10 as linear, but in
real life it is cheaper per pound to buy 10,000 pounds of beef than one. Many,
perhaps most, real-life problems are nonlinear. It is always easier to treat them
as if they were linear; knowing when it is safe to do so is a central issue of
applied mathematics.

Definition 1.3.11 (Linear transformation). A linear transformation
T :R" — R™ is a mapping such that for all scalars ¢ and all ¥, W € R,

T(¥+ W) =T(¥)+T(W) and T(a¥)=aT(¥). 1.3.7

The two formulas can be combired into one (where b is also a scalar):

T(a¥ + bW) = aT(¥) + bT(W). 1.3.8

Example 1.3.12 (Linearity at the checkout counter). Suppose you need
to buy three gallons of cider and six packages of doughnuts for a Halloween
party. The transformation T is performed by the scanner at the checkout
counter, reading the UPC code to determine the price. Equation 1.3.7 is noth-
ing but the obvious statement that if you do your shopping all at once, it will
cost you exactly the same amount as it will if you go through the checkout line
nine times, once for each item:

T(3gal.cider +6 pkg. doughnuts) =3(T(1 gal.cider))+6(T(1 pkg. doughnuts)),

unless the supermarket introduces nonlinearities such as “buy two, get one free.”

Example 1.3.13 (A matrix gives a linear transformation). Let A be an
m x n matrix. Then A defines a linear transformation T : R® — R™ by matrix
multiplication:

T(V) = AV. 139
Such mappings are indeed linear, because A(V+W) = AV+AW and A(c¥) =
cAV, as you are asked to check in Exercise 1.3.14. A

The crucial result of Theorem 1.3.14 below is that every linear transformation
R™ — R™ is given by a matrix, which one can construct by seeing how the
transformation acts on the standard basis vectors. This is rather remarkable. A
priori the notion of a transformation from R™ to R™ is quite vague and abstract;
one might not think that merely by imposing the condition of linearity one could
say something so precise about this shapeless set of mappings as saying that
each is given by a matrix.



To find the matrix for a linear
transformation, ask: what is the
result of applying that transforma-
tion to the standard basis vectors?
The ith column of the matrix for
a linear transformation T is T'(€,);
to get the ith column of the ma-
trix, just ask: what does the trans-
formation do to &,?

1
FIGURE 1.3.7.
The orthogonal projection of
the point %) onto the z-axis

is the point ((l)) “Projection”
means we draw a line from the
point to the z-axis. “Orthogonal”
means we make that line perpen-

dicular to the z-axis.

FIGURE 1.3.8.
Every point on one face is re-
flected to the corresponding point Exampie 1.3.15 (Finding the matrix of a iinear transformation). What

of the other.
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Theorem 1.3.14 (Linear transformations given by matrices). Every
linear transformation T : R® — R™ is given by multiplication by the m x n
matrix [T), the ith column of which is T(&;).

Putting the columns together, this gives T(¥) = (T]¥. This means that
Example 1.3.13 is “the general” linear transformation in R".

Proof. Start with a linear transformation T : R® — R™, and manufacture the
matrix [T according to the rule given immediately above: the ith column of
[T) is T(€;). We may write any vector V € R" in terms of the standard basis
vectors:

m 1 0 0
v2 0 1 :
v=|:]=u +va |0 +-- 4w, 1.3.10
: : : 0
Un 0 0 1
N e’
& & &n
We can write this more succinctly:
n
V =116 + v282 + - -- + v,&,, or, with sum notation, V=) ;. 1.3.11
i=1
Then by linearity,
n n
TE)=T) vé =3 uT(&), 1.3.12
=1 i=1
which is precisely the column vector [T]V. O
If this isn’t apparent, try translating it out of sum notation:
n T(8) T(&2) T(&n)
TE) =Y vT(&)=n +u ] +otvn H
= 1 2nd col
st col. . nth col.
of
o of 7] 1.3.13
n
V2
= [ T ] | =T
Un

is the matrix for the transformation that takes any point in R? and gives its
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orthogonal (perpendicular) projection on the z-axis, as illustrated in Figure
1.3.7? You should assume this transformation is linear. Check your answer in

the footnote below.” '
What is the orthogonal projection on the linc of equation z =y of the point

(_:l?‘)? Again, assume this is a linear transformation, and check below.S

Example 1.3.16 (Reflection with respect to a line through the origin).
Let us show that the transformation that reflects a point through a line through
the origin is linear. This is the transformation that takes a point on one side
of the line and moves it perpendicular to the line, crosses it, and continues the
same distance away from the line, as shown in Figure 1.3.8.

We will first assume that the transformation T is linear, and thus given by a
matrix whose ith column is T(§;). Again, all we have to do is figure out what
the T does to €, and €;. We can then apply that transformation to any point
we like, by multiplying it by the matrix. There’s no need to do an elaborate
computation for each point.

To obtain the first column of our matrix we thus consider where €) is mapped
to. Suppose that our line makes an angle 8 (theta) with the z-axis, as shown
cos 260

sin 26 ] To get the second column, we

in Figure 1.3.9. Then &, is mapped to [

7The matrix is [l g , which you will note is consistent with Figure 1.3.7, since

0
1 0]f1 1 . . . . .
o oll1] =lol If you had trouble with this question, you are making life too
hard for yourself. The power of Theorem 1.3.14 is that you don’t need to look for the
transformation itself to construct its matriz. Just ask: what is the result of applying
that transformation to the standard basis vectors? The ith column of the matrix for
a linear transformation T is T(€;). So to get the first column of the matrix, ask, what.
does the transformation do to &7 Since €, lies on the z-axis, it is projected onto

1

OT

standard basis vector, &, lies on the y-axis and is projected onto the origin, so the

itself. The first column of the transformation matrix is thus & = . The second

second column of the matrix is g .

8The matrix for this linear transformation is [1/ 2 1/2

1/2 1/2
line from [ (l)] to the line of equation z = y intersects that line at (M%), as does

] , since the perpendicular

the perpendicular line from (; . To determine the orthogonal projection of the point

1
(__:1’), we multiply [1;3 :ﬁ] [_::] = [:] Note that we have to consider the

point —:l; as a vector in order to carry out the multiplication; we can’t multiply a

matrix and a point.
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see that & is mapped to

cos(20 - 90°)] _[ sin26 . 1.3.14
sin (20 ~ 90°) — cos 26

So the “reflection” matrix is

i€
05 26} 9 in 26
T ia20 [0 _omael- 1315
. For example, we can compute that the point with coordinates z = 2,y =1
. 6. &1 . 2cos20 +sin26| .
reflects to the point 2sin 26 — cos 26 | S11°e
A sin 20 cos20  sin20] [2] _ [2cos26 +sin26
T(ezb['msze [sin20 —cos20] [1] - [2sin20—oos20] : 1.3.16
The transformation is indeed linear because given two vectors ¥ and w, we
. have T(¥ + W) = T(V) + T(W), as shown in Figure 1.3.10. It is also apparent
F'Gl_’RE 1.3.9. from the figure that T(c¥) = cT(¥V). A
The reflection maps
&= [l] to [cm 20 Example 1.3.17 (Rotation by an angle §). The matrix giving the trans-
0 sin26 )" formation R (“rotation by 6 around the origin”) is
and .
o o cosf@ —siné
&= [o] 0 [ sin 20 [RE)R@) =G0 cos 9] :
1 —cos20]°

The transformation is linear, as shown in Figure 1.3.11: rather than thinking
of rotating just the vectors ¥V and W, we can rotate the whole parallelogram
P(V,w) that they span. Then R(P(¥,w)) is the parallelogram spanned by
R(V), R(W), and in particular the diagonal of R(P(¥,W)) is R(V+W). A

Tivew) =
T(VHT(W)

Exercise 1.3.15 asks you to use
composition of the transforination
in Example 1.3.17 to derive the
fundamental theorems of trigo-
nometry.

FIGURE 1.3.10. Reflection is linear: the sum of the reflections is the reflection of
the sum.
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Exercise 1.3.13 asks you to find the matrix for the transformation R3 — R3
that rotates by 30° around the y-axis.
Now we will see that composition corresponds to matrix muitiplication.

Theorem 1.3.18 (Composition corresponds to matrix multiplica-

tion). Suppose $:R” = R™ and T : R™ — R! are linear transformations
R(Www) = given by the matrices [S] and [T respectively. Then the matrix of the com-
‘K(V”’R(w) position T o S equals the product [T)[S] of the matrices of S and T:

DN [T o S) = [T][S). 13.17

él

A oz wPrt:»ot‘. This is a statement about matrix multiplication and cannot be proved
! "/ without explicit reference to how matrices are multiplied. Our only references
to the multiplication algorithm will be the following facts, both discussed in

Section 1.1.

(1) A€ is the ith column of A (as illustrated by Example 1.2.5);
(2) the ith column of AB is Ab;, where b; is the ith column of B (as
illustrated by Example 1.2.6).

FicUre 1.3.11. Now to prove the theorem; to make it unambiguous when we are applying
Rotation is linear: the sum of g ¢ransformation to a variable and when we are multiplying matrices, we will
the rotations is the rotation of the write matrix multiplication with a star x.
sum. The composition (T o S) is itself a linear transformation and thus can be
given by a matrix, which we will call [T o S}, accounting for the first equality
Many mathematicians would below. The definition of composition gives the second equality. Next we replace
say that Theorem 1.3.18 justifies S by its matrix [S], and finally we replace T by its matrix:

oo e oy e o [ToS]+& = (To$)(@) = T(S(&)) = T((S]»&) = 7]+ (18] +&). 13.18
novice, who probably feels that So the first term in this sequence, [T o S] * &;, which is the ith column of
composition of linear mappings is [T o S] by fact (1), is equal to

more baroque than matrix multi- 5

plication. uH [T} * the ith column of {S], 1.3.19

which is the ith column of [T] * [S] by fact (2).
Each column of [T o §] is equal to the corresponding column of [T} * [S], so
the two matrices are equal. O

Exercise 1.3.16 asks you to con- We gave a computational proof of the associativity of matrix multiplication
firm by matrix multiplication that in Proposition 1.2.8; this associativity is also an immediate consequence of
reflecting a point across the line, Thegrem 1.3.18.
and then back again, lands you
back at the original point. Corollary 1.3.18. Matrix multiplication is associative: if A, B, C' are matri-

ces such that the matrix multiplication (AB) C is allowed, then so is A (BC),
and they are equal.

Proof. Composition of mappings is associative. [
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1.4 GEOMETRY OF R"

The dot product is also known
as the standard inner product.

. To acquire the feeling for calculus that is indispensable even in the
most abstract speculations, one must have learned to distinguish that
which is “big” from that which is “little,” that which is “preponderant”
and that which is “negligible. "—Jean Dieudonné, Calcul infinitésimal

Whereas algebra is all about equalities, calculus is about inequalities: about
things being arbitrarily small or large, about some terms being dominant or
negligible compared to others. Rather than saying that things are exactly true,
we need to be able to say that they are almost true, so they “become true in
the limit.”

For example, (5 + h)® = 125 + 75h + ..., so if h = .01, we could use the
approximation

(5.01)% ~ 125 + (75 - .01) = 125.75. 14.1

The issue then is to quantify the error.

Such notions cannot be discussed in the language about R" that has been
developed so far: we need lengths of vectors to say that vectors are small, or
that points are close to each other. We will also need lengths of matrices to say
that linear transforinations are “close” to each other. Having a notion of dis-
tance between transformations will be crucial in proving that under appropriate
circumstances Newton’s method converges to a solution (Section 2.7).

In this section we introduce these notions. The formulas are all more or
less immediate generalizations of the Pythagorean theorem and the cosine law,
but they acquire a whole new meaning in higher dimensions (and more yet in
infinitely many dimensions).

The dot product

The dot product in R™ is the basic construct that gives rise to all the geometric
notions of lengths and angles.

Definition 1.4.1 (Dot product). The dot product X - ¥ of two vectors
X, yeR" is:

z h
o o T2 Y2
Xy=|.1].|==n+2an+ - +Inln. 14.2
Zn Yn

For example,

1 1
[2][(1)} =(1x1)+(2x0)+(3x1)=4.
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The dot product is obviously commutative:
X-§y=y X, 143
and it is not much harder to check that it is distributive, i.e., that
£-(h +¥2) = (X-§1) + (X ¥2), and
(F +%)-§= (% -¥)+ (X2 ¥)-
The dot product of two vectors can be written as the matriz product of the
transpose of one vector by the other: X-§ =%y =§ ' X.

144

n
) n Y2
z2 v . :
N N is the same as
: : Yn
zal Lya (21 T2 Za) [Zagn +Tov2 + o + Tatm].
2. tnnsp:se xT i;i

145

Conversely, the i, jth entry of the matrix product AB is the dot product of

the jth column of B and the transpose of the ith row of A. For example, the

What we call the length of a entry 1,2 of AB below is 5, which is the dot product of the transpose of the
vector is often called the Euclidean  first row of A and the second column of B:

norm. B
Some texts use double lines to ‘ 13 N

denote the length of a vector: ||¥]| 1 l] 1 3

rather than |V¥]. We reserve double ; 5= [ . [ ] 14.6

lines to denote the norm of a ma- [1 2] [3 5 ] 2 1

trix, defined in Section 2.8. Please 3 4] [7 13 tranapose, 2nd col.

=g

do not confuse the length of a vec- — TiF 1st row of A of
tor with the absolute value of a
number. In one dimension, the

two are the same; the “length” of  Definition 1.4.2 (Length of a vector). The length |%| of a vector X is
the one-entry vector V = [~2] is

VE =2, [ = VE R=fal+2}+ - +22 1.4.7

1
What is the length |¥] of ¥ = [1]79
1

Length and dot product: geometric interpretation in R? and R®

In the plane and in space, the length of a vector has a geometric interpretation:
|X| is then the ordinary distance between 0 and X. As indicated by Figure 1.4.1,

°Its length is || = VIZ+ 12 + 12 = V3.



Definition 1.4.2 is a version of
the Pythagorean theorem: in two
)
z2
is the hypotenuse of a right trian-
gle of which the other two sides
have lengths z) and z3:

x2 = 312 + zz’.

dimensions, the vector X =

FIGURE 1.4.2.
The cosine law gives

[R=F1" = %" +I51* ~2I]|¥] cos .
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this is exactly what the Pythagorean theorem says in the case of the plane; in
space, this it is still true, since OAB is still a right triangle.

c
| /|B
L Y
] Va2sb2 \
: ‘b ¢
J a | b
| 2 a+
b A

FIGURE 1.4.1. In the plane, the length of the vector with coordinates (a,d) is the
ordinary distance between 0 and the point : . In space, the length of the vector with
coordinates (a, b, c) is the ordinary distance between 0 and the point with coordinates
(a,b,c).

The dot product also has an interpretation in ordinary geometry:

Proposition 1.4.3 (Geometric interpretation of the dot product).
If %, § are two vectors in R? or R3, then

X-§ =|%||¥| cosa, 14.8
where a is the angle between X and §.

Remark. Proposition 1.4.3 says that the dot product is independent of the
coordinate system we use. You can rotate a pair of vectors in the plane, or in
space, without changing the dot product, as long as you don’t change the angle
between them. A

Proof. This is an application of the cosine law from trigonometry, which says
that if you know all of a triangle’s sides, or two sides and the angle between
them, or two angles and a side, then you can determine the others. Let a
triangle have sides of length a, b, ¢, and let v be the angle opposite the side with
length c. Then

c? = a? + b? — 2abcos . Cosine Law 1.4.9

Consider the triangle formed by the three vectors X, ¥ and X — §, and let a be
the angle between X and ¥, as shown in Figure 1.4.2.



If you don’t see how we got
the numerator in Equation 1.4.12,
note that the dot product of a
standard basis vector €; and any
vector V is the ith entry of ¥. For
example, in R?,

ol

=0+v2+0=v,

FIGURE 1.4.3.

The projection of § onto the
line spanned by % is Z. This gives

X-§ = |X]|¥|cosx

- 12 _
= Iyl iy = IXiE.
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Applying the cosine law, we find
1% - §1? = I%]® + |¥® - 2%||§| cos a. 1.4.10
But we can also write (remembering that the dot product is distributive):
- § = (X-§) - X-§) = (-5 %) - (X-5)¥)
=X-X)-(F-X)-X-$H+F 5 1411
=(%-%)+(F9) - 22§ = |%P + 9" - 2% 5.
This leads to
%-§ = [%||¥| cosa, (1.4.8)
which is the formula we want. O

Example 1.4.4 (Finding an angle). What is the angle between the diagonal
of a cube and any side? Let us assume our cube is the unit cube 0 < z, ¥,2<1,
1

so that the standard basis vectors &), &;, &; are sides, and the vectord = | 1
1

is a diagonal. The length of the diagonal is |d] = v/3, so the required angle o
satisfies

[-%}
2,

14.12

a
o,
3~

cosa =

Thus a = arccos /3/3 = 54.7°. A

Corollary 1.4.5 restates Proposition 1.4.3 in terms of projections; it is illus-
trated by Figure 1.4.3.

Corollary 1.4.5 (The dot product in terms of projections). If X and
¥ are two vectors in R? or R?, then X - § is the product of |%| and the signed
length of the projection of ¥ onto the line spanned by X. The signed length
of the projection is positive if it points in the direction of %; it is negative if
it points in the oppoasite direction.

Defining angles between vectors in R*

We want to use Equation 1.4.8 backwards, to provide a definition of angles in
R™, where we can’t invoke elementary geometry when n > 3. Thus, we want to
define

- =

V-w VoW
@ = arccos —r—-, i.e., define a so that cosa = ——. 1.4.13
¥’ ’ i)



Y

FIGURE 1.4.4.

Left to right: a positive dis-
criminant gives two roots; a zero
discriminant gives one root; a neg-
ative discriminant gives no roots.
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But there’s a problem: how do we know that

1< <, 14.14
[ViIw]
so that the arccosine exists? Schwarz’s inequality provides the answer.'0 It is
an absolutely fundamental result regarding dot products.

Theorem 1.4.6 (Schwarz’s inequality). For any two vectors V and W,
1¥- Wl <[] |w). 14.15

The two sides are equal if and only if V or W is a multiple of the other by a
scalar.

Proof. Consider the function |¥+ tW|2 as a function of t. It is a second degree
polynomial of the form at? + bt + c; in fact,

IV + tW]? = [tw + V]2 = |W[%? + 2(V - W)t + [V]%. 1.4.16

All its values are > 0, since it is the left-hand term squared; therefore, the
graph of the polynomial must not cross the t-axis. But remember the quadratic
formula you learned in high school: for an equation of the form at? +bt+c =0,

= b Vb —dac 5_4‘”. 1.4.17
2a
If the discriminant (the quantity 2 —4ac under the square root sign) is positive,
the equation will have two distinct solutions, and its graph will cross the t-axis
twice, ag shown in the left-most graph in Figure 1.4.4.
Substituting |W|? for a, 2¥-W for b and |¥|? for ¢, we see that the discriminant
of Equation 1.4.16 is

t

47 - w)? — 4|V |w|>. 14.18
All the values of Equation 1.4.16 are > 0, so its discriminant can’t be positive:
4(V-W)? — 4|¥|*|W|* <0, and therefore |V-W| < [V||W],

which is what we wanted to show.
The second part of Schwarz’s inequality, that |V - w| = |V||W]| if and only
if ¥ or W is a multiple of the other by a scalar, has two directlons. If W is a

multiple of V, say W = tV, then

V- %) = |tlI¥1% = (I¥))(1¢l1¥]) = ¥]1%], 1.4.19

'°A more abstract form of Schwarz's inequality concerns inner products of vectors
in possibly infinite-dimensional vector spaces, not just the standard dot product in
R". The general case is no more difficult to prove: the definition of an abstract inner
product is precisely what is required to make this proof work.



The proof of Schwarz's inequal-
ity is clever; you can follow it
line by line, like any proof which
is written out in detail, but you
won't find it by simply following
your nose! There is considerable
contention for the credit: Cauchy
and Bunyakovski are often consid-
ered the inventors, particularly in
France and in Russia.

We see that the dot product of
two vectors is positive if the angle
between them is less than 7 /2, and
negative if it is bigger than 7 /2.

We prefer the word orthogonal
to its synonym perpendicular for
etymological reasons. Orthogonal
comes from the Greek for “right
angle,” while perpendicular comes
from the Latin for “plumb line,”
which suggests a vertical line. The
word normal is also used, both
as a noun and as an adjective, to
express a right angle.

A
Ix+yl i iyl
|
P
/[~ Il
|
FIGURE 1.4.5.

The triangle inequality:
1%+ ¥ < |%] + |51
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so that Schwarz's inequality is satisfied as an equality.
Conversely, if |V - W| = |V¥||w/|, then the discriminant in Equation 1.4.18 is
zero, so the polynomial has a single root to:

|¥+toW[2=0, ie, V=—tow 1.4.20

and ¥ is a multiple of w. O

Schwarz’s inequality allows us to define the angle between two vectors, since
we are now assured that

L

o
IN
=

(1.4.14)

.
o

Definition 1.4.7 (The angle between two vectors). The angle between
two vectors V and W in R is that angle a satisfying 0 < a < 7 such that

14.21

Corollary 1.4.8. Two vectors are orthogonal if their dot product is zero.

Schwarz’s inequality also gives us the triangle inequality: when traveling
from London to Paris, it is shorter to go across the English Channel than by
way of Moscow.

Theorem 1.4.9 (The triangle inequality). For any vectors % and § in
R™,
1%+ ¥l < I%] + [¥1. 1.4.22

Proof. This inequality is proved by the following computation:

[R+517 = RE+2RFHF? < RPH2ARIFIHT? = (R+151)°, 1.4.28

Schwarz

so that %+ 7| < [%] + 19| O

This is called the triangle inequality because it can be interpreted (in the
case of strict inequality, not <) as the statement that the length of one side of
a triangle is less than the sum of the lengths of the other two sides. If a triangle
has vertices 0, X and X + ¥, then the lengths of the sides are %], X +¥ - %| = |¥|
and |X + ¥|, as shown in Figure 1.4.5.



In some texts, |A| denotes the
determinant of the matrix A. We
use det A to denote the determi-
nant.

The length |A| is also called
the Minkowski norm (pronounced
MinKOVski). We find it simpler
to call it the length, generalizing
the notion of length of a vector.
Indeed, the length of an n x 1
matrix is identical to the length
of the vector in R" with the same
entries.

You shouldn’t take the word
“length” too literally; it's just a
name for one way to measure ma-
trices. (A more sophisticated mea-
sure, considerably harder to com-
pute, is discussed in Section 2.8.)

Thinking of an m x n matrix
as a point in R™™, we can see
that two matrices A and B (and
therefore, the corresponding linear
transformations) are close if the
length of their difference is small;
i.e., if |A — Bl is small.
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Measuring matrices

The dot product gives a way to measure the length of vectors. We will also
need a way to measure the “length” of a matrix (not to be confused with either
its height or its width). There is an obvious way to do this: consider an m x n
matrix as a point in R™™, and use the ordinary dot product.

Definition 1.4.10 (The length of a matrix). If A is an n x m matrix,
its length |A| is the square root of the sum of the squares of all its entries:

n m
a2 =3"35"a, 14.24
i=1j=1
For example, the length |A| of the matrix A = [ (1) f is /6, since 1 +4 +
0+ 1 = 6. What is the length of the matrix B = [: g ; m

If you find double sum notation confusing, Equation 1.4.24 can be rewritten
as a single sum:

AP =3 af;:

i=l..n
J=l...,m

As in the case of the length of a vector, do not confuse the length |A| of a

matrix with the absolute value of a number. (But the length of the 1 x 1 matrix
consisting of the single entry [n] is indeed the absolute value of n.)

we sum all o ; for i from 1 to n and j from 1 to m.

Length and matrix multiplication

We said earlier that the point of writing the entries of R™" as matrices is
to allow matrix multiplication, yet it isn’t clear that this notion of length, in
which a matrix is considered simply as a list of numbers, is in any way related
to matrix multiplication. The following proposition says that it is.

Proposition 1.4.11. (a) If A is an n x m matrix, and b is a vector in R™,
then

|AB| < |A|[B|. 1.4.25
(b) If A is an n x m matrix, and B is a m x k matrix, then
|AB| < |A||B. 1.4.26

"Bl =4,since 1 +4+0+14+1+9=16.



Proposition 1.4.11 will soon be-
come an old friend; it is a very use-
ful tool in a number of proofs.

Of course, part (a) is the spe-
cial case of part (b) (where k = 1),
but the intuitive content is suffi-
ciently different that we state the
two parts separately. In any case,
the proof of the second part fol-
lows from the first.

Remark 1.4.12. It follows from
Proposition 1.4.11 that a linear
transformation is continuous. Say-
ing that a linear transformation A
is continuous means that for every
€ and every x € R", there exists
a & such that if [X — ¥| < 4, then
|AX — Ay¥| < e. By Proposition
14.11,

| A%~ AF| = |A(X~¥)| < |A||%~¥].

So, set

5= -5,
|4
Then if we have [X — §| < §,
- €
X — < —
®-91< g
and
L A
A% ~ L.
|A% ~ Ay| < Al €

We have actually proved more:
the § we found did not depend on
X; this means that a linear trans-
formation R™ — R™ is always uni-
formly continuous. The definition
of uniform continuity was given in

Equation 0.2.6. A
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Proof. First note that if the matrix A consists of a single row, i.e., if A = a"
is the transpose of a vector &, the assertion of the theorem is exactly Schwarz’s
inequality:

|Ab| = |a- b| < |&|[b] = |4||B|. 14.27
~~

ey’
T
la” |ibj

-T =

la"b|

The idea of the proof is to consider that the rows of A are the transposes of
vectors aj,...4ay,, as shown in Figure 1.4.6, and to apply the argument above
to each row separately. Remember that since the ith row of A is &; , the ith
entry (AE)i of Ab is precisely the dot product a; - b. (This accounts for the
equal sign marked (1) in Equation 1.4.28.)

b
ar a, - b= (Ab),
a az - b = (4b),
&, a, b= (4b),
matrix A vector Ab

FIGURE 1.4.6. Thil’l_k of the rows of A as the transposes of the vectors &), dz, ... ,an.
Then the product a; b is the same as the dot product a;-b. Note that Ab is a vector,
not a matrix.

This leads to

JAb]? = 2": (Ab)? 1.4.28

i=]

5 > (ai-B)%

i=1

Now use Schwarz’s inequality (2); factor out |l’f|2 (step 3), and consider (step
4) the length squared of A to be the sum of the squares of the lengths of &;.
(Of course, |a;|? = |&T|?). Thus,

D (B < Y |afBP
i=1

2 =1 (
This gives us the result we wanted:

|AB? < |A]?B2.

|AP%B2.

S ) B2 -
(;l&l)lbfz &

CHll

1.4.29



When solving big systems of
linear questions was in any case
out of tbe question, determinants
were a reasonable approach to the
theory of linear equations. With
the advent of computers they lost
importance, as systems of linear
equations can be solved far more
effectively with row reduction (to
be discussed in Sections 2.1 and
2.2). However, determinants have
an interesting geometric interpre-
tation; in Chapters 4, 5 and espe-
cially 6, we use determinants con-
stantly.

Recall that the formula for the

inverse of a 2 x 2 matrix A =
a .
s

c d]’

a1 d -b
Sl by s [—c a] )
So a 2 x 2 matrix A is invertible if

and only if det A # 0.

In this section we limit our dis-
cussion to determinants of 2 x 2
and 3 x 3 matrices; we discuss de-
terminants in higher di ions in

Section 4.8.
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For the second, we decompose the matrix B into its columns and proceed as
above. Let 51,. .., bx be the columns of B. Then

k k k -e D o
|AB? =} _|Ab,* <3 |AP[b, = |4 Y |b,* = [A|B, 1430
i=1 i=1 Jj=1

which proves the second part. O

Determinants in R?
The determinant is a function of square matrices: it takes a square matrix as

input and gives a number as output.

Definition 1.4.13 (Determinant in R2). The determinant of a 2 x 2

. ay b] .
matrix 18
[az ba

det [:; z;] = arby — agby. 1431

The determinaut is an interesting number to associate to a matrix because
if we think of the determinant as a function of the vectors & and b in R?, then
it has a geometric interpretation, illustrated by Figure 1.4.7:

Proposition 1.4.14 (Geometric interpretation of the determinant in
R?). (a) The area of the parallelogram spanned by the vectors

cefa] wes- 2
is | det[a, b]|

(b) The determinant det|a, b) is positive if and only if b lies counterclock-
wise from &; it is negative if and only if b lies clockwise from &.

Proof. (a) The area of the parallelogram is its height times its base. Its base

is [b] = /b2 + B2. Its height h is
h = sin6|a] = sin64/a} + a3. 1.4.32
We can compute cos 6 by using Equation 1.4.8:

;E _ alb)+azbg

0= ——= = . 1.4.33
lallb]  /af + a3 \/b} + b3
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So we get sin @ as follows:
. g _ [ (6} +a3)(b] + b3) — (a1bs + azbs)?
sinf = ‘“°°""’=\/ @R

A+ AR+ B+ a3t — ] —2mbasha— B | 4
T+ + 8)

- (a1b2 — azb1)? ]
v @ +ad) (& +5)

Using this value for sin 0 in the equation for the area of a parallelogram gives

Area = |b| |a|sinf

base height

— azby)?

= /b + b2 /a2 + a2 (@16; — azby = |aybg — azby].

FIGURE 1.4.7. Vo1 2‘\/01 N E+DHE+5) 21 Ijbz .aaLll
base

The area of the parallelogram
spanned by & and b is | detfa, b}j.

1.4.35

height
(b) The vector C obtained by rotating & counterclockwise by 7/2 is € =
-az] , and we see that &- b = det|a, b):

\c a
| 2 -
b~ [ “2] [ ] = —azby + ayby = det “; :;J 1.4.36
\ e
c\ b a Since (Proposition 1.4.3) the dot product of two vectors is positive if the angle
\ / between them is less than 1r/2 the determinant is positive if the angle between
\\ bandcmlessthmn/Q Sobhesoounterclockwiseﬁ'oma,asshownml“lgure
a 148. O
K
R VL —b Exercise 1.4.6 gives a more geometric proof of Proposition 1.4.14.

FIGURE 1.4.8.
In the two cases at the top, the Determinants in RS

angle between b and € is less than
/2, so det(d, B) > 0; this cor- Definition 1.4.15 (Determinant in R®). The determinant of a 3 x 3
responds to b being counterclock- matrix is
::el t‘r:::: a. A:_; the bottom, the a b o b o B

e between b and € is more = - a
than #/2; in this case, S_is clock- det[:: : g] aldet["s 03] Md‘t[ba ]+aad°t[b3 c2
wise from 4, and det(a, b) is neg-
ative. = a1(bacs — b3cz) — az(bic — bycy) + as(brcz — bacy).



Exercise 1.4.12 shows that a
3 x 3 matrix is invertible if its de-
terminant is not 0,

For larger matrices, the formu-
las rapidly get out of hand; we will
see in Section 4.8 that such de-
terminants can be computed much
more rcasonably by row (or col-
umn) reduction.

The determinant can also be
computed using the entries of the
first row, rather than of the first
column, as coefficients.

The cross product exists only in
R?® (and to some extent in R7).
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Each entry of the first column of the original matrix serves as the coefficient
for the determinant of a 2 x 2 matrix; the first and third (a, and a3) are positive,
the middle one is negative. To remember which 2 x 2 matrix goes with which
coefficient, cross out the row and column the coefficient is in; what is left is the
matrix you want. To get the 2 x 2 matrix for the coefficient as:

a bl C b
=[b' °‘]. 1.4.37
ap b3 c3 3 C3
Example 1.4.16 (Determinant of a 3 x 3 matrix).
3 1 -2
det|1 2 4 =3det[2 ‘;]—ldet[l —f]+2det{l 'Z]
2 0 1 0 0 2 1.4.38

=3(2-0)-(1+0)+2(4+4)=21 A

The cross product of two vectors

Although the determinant is a number, as is the dot product, the cross product
is a vector:

Definition 1.4.17 (Cross product in R?). The cross product a x b in

RS is
det [“2 "2]
a; b :3 :3 azb3 — agb;
a|x|b|= det[a; b;] = | —aybs + azh, 1.4.39
a3 bs a1 b a1b2 — azby
det[az b,]

Think of your vectors as a 3 x 2 matrix; first cover up the first row and take
the determinant of what's left. That gives the first entry of the cross product.
Then cover up the second row and take minus the determinant of what’s left,
giving the second entry of the cross product. The third entry is obtained by
covering up the third row and taking the determinant of what’s left.



Like the determinant, the cross
product has a geometric interpre-
tation.

The right-hand rule: if you
put the thumb of your right hand
on & and your index finger on b,
while bending your third finger,
then your third finger points in the
direction of & x b. (Alternatively,
curl the fingers of your right hand
from a to b; then your right thumb
will point in the direction of axb.)
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Example 1.4.18 (Cross product of two vectors in R3).

det [
—det [

det [

01
1 4

3 2

1

3 2
01

1.4.40

[ﬂ A

Proposition 1.4.19 (Geometric interpretation of the cross product).
The cross product a x b is the vector satisfying three properties:

(1) It is orthogonal to the plane spanned by a and b; i.e.,

a-(axb)=0 and b-(axb)=

1.4.41

(2) Its length |a x b| is the area of the parallelogram spanned by a and

h

(3) The three vectors a,b and a x b satisfy the right-hand rule.

Proof. For the first part, it is not difficult to check that the cross product
a x b is orthogonal to both a and b: we check that the dot product in each
case is zero (Corollary 1.4.8). Thus a x b is orthogonal to & because

Definition 1.4.17 of axb

a
a-(axb)= [az] : [
as

azbs — azb;
~aybs + azb;
aybz — axby

1.4.42

= a1a2b3 — 61a3b2 — aja2b3 + aza3b; + a1a3bs — azazh; = 0.

. Foi the second part, the area of the parallelogram spanned by & and b is
|a] - [b|sin 8, where 6 is the angle between a and b. We know (Equation 1.4.8)

that
cosd =

so we have

sin@ = /1 — cos?26 \/ -

®1
U'x

X
=x}

- ayby + az2be + azbs 1.4.43
Vaf+al+al /bl + b2+ b2 -
(Glbx + aby + asbs)?
(a? + a2 + a2)(b? + b2 + b2)
1.4.44

(a1b1 + azbg + a3bs)?

_ \/(a%+a2+a3)(b3+ 2 + b3) —

2+ a2)(b? + b3 + b2) ’



The last equality in Equation
1.4.47 comes of course from Defi-
nition 1.4.17.

You may object that the middle
term of the square root looks dif-
ferent than the middle entry of the
cross product as given in Defini-
tion 1.4.17, but since we are squar-
ing it,

(—a1bs + asby)® = (a1bs — asby)?.

70 Chapter 1. Vectors, Matrices, and Derivatives

so that
|al|bisind = \/(a? + a2 + a3)(b% + bZ + B3) — (a1by + @zbz + a3bs)?.  1.4.45

Carrying out the multiplication results in a formula for the area that looks
worse than it is: a long string of terins too big to fit on this page under one
square root sign. That’s a good excuse for omitting it here. But if you do the
computations you'll see that after cancellations we have for the right-hand side:

\/afb§+ a2b? — 2alblazbg+gfb§ + adb? ~ 2a,b103b3 +&2b§ + a2b2 — 2azbya3bs,

(a1ba—azb )2 (a1b3~agby)? (azbs—asb3)?

1.4.46
which conveniently gives us

Area = |a||b|sin6 = \/{a1bs — azb1)? + (a1bs — a3b1)? + (az2bs — azby)?

=|& x b|.

1.4.47

So far, then, we have seen that the cross product axbis orthogonal to a
and b, and that its length is the area of the parallelogram spanned by a and b.
What about the right-hand rule? Equation 1.4.39 for the cross product cannot
actually specify that the three vectors obey the right-hand rule, because your
right hand is not an object of mathematics.

What we can show is that if one of your hands fits &, &,, &, then it will also
fit a,b,a x b. Suppose a and b are not collinear. You have one hand that fits
a,b,ax b;ie., you can put the thumb in the direction of &, your index finger in
the direction of b and the middle finger in the direction of ax b without bending
your knuckles backwards. You can move & to point in the same direction as
€}, for instance, by rotating all of space (in particular b, a x b and your hand)
around the line perpendicular to the plane containing & and &;. Now rotate all
of space (in particular a x b and your hand) around the z-axis, until b is in the
(z,y)-plane, with the y-coordinate positive. These movements simply rotated
your hand, so it still fits the vectors.

Now we see that our vectors have become

a - b| o 0
a=10 and b= |b|, so axb=]| 0 |. 1.4.48
0 0 ab,

Thus, your thumb is in the direction of the positive z-axis, your index finger
is horizontal, pointing into the part of the (z, y)-plane where y is positive, and
since both a and b, are positive, your middle finger points straight up. So
the same hand will fit the vectors as will fit the standard basis vectors: the
right hand if you draw them the standard way (z-axis coming out of the paper
straight at you, y-axis pointing to the right, z-axis up.) A



The word parallelepiped seems
to have fallen into disuse; we've
met students who got a 5 on the
Calculus BC exam who don’t
know what the term means. It is
simply a possibly slanted box: a
box with six faces, each of which
is a parallelogram; opposite faces
are equal.

The determinant is 0 if the
three vectors are co-planar.

FIGURE 1.4.9.
The determinant of &, b, € gives

the volume of the paralielepiped
spanned by those vectors.
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Geometric interpretation of the determinant in B3

The determinant of three vectors &, b and € can also be thought of as the dot
product of one vector with the cross product of the other two, a-(bxé:

bzcz]

b3 C3

a)
bhhall|_ b2 c2| _ b ¢ b
[a2]~ —det[ c3] —andet[b3 cs azdet[ + azdet by 2|’

det

o>

3 bs c3

b] C
det [ by 2 ]

1.4.49
As such it has a geometric interpretation:

Proposition 1.4.20. (a) The absolute value of the determinant of three
vectors &, b, € forming a 3 x 3 matrix gives the volume of the parallelepiped
they span.

(b) The determinant is positive if the vectors satisfy the right-hand rule,
and negative otherwise.

Proof. (a) The volume is height times the area of the base, the base shown
in Figure 1.4.9 as the parallelogram spanned by b and €. That area is given
by the length of the cross product, |b x €|. The height h is the projection of &
onto a line orthogonal to the base. Let’s choose the line spanned by the cross
product b x C—that is, the line in the same direction as that vector. Then
h = |&] cos 8, where 8 is the angle between a and b x ¢, and we have

Volume of parallelepiped = |b x ¢| |&]|cosf = |a - (b x €)|. 1.4.50
N e N’ N o’
base height determinant

(b) The determinant is positive if cos > 0 (i.e., if the angle between a and
b x € is less than 7/2). Put your right hand to fit b x ¢, b, &; since b x € is
perpendicular to the plane spanned by b and €, you can move your thumb in
any direction by any angle less than m/2, in particular, in the direction of a.
(This requi.res a mathematically correct, very supple thumb.) A

Remark. The correspondence between algebra and geometry is a constant
theme of mathematics. Figure 1.4.10 summarizes the relationships discussed in
this section. A
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Correspondence of Algebra and Geometry
Operation Algebra Geometry
dot product Vow =Y vw V- W = |V||W|cosf
geteénrgn::!t of det [ 1] ayby — agh det [a' b ” = Area of parallelogram
X & matrix “laz be ° az b
a by azbs — boas (xb)La (axb)Llb
ag | x (b2 | = | braz —arbs Length = area of parallelogram
cross product ag b3 ajby — azb Right-hand rule
determinant a b o . - )
of 3 x 3 matrix det [az b2 c3| =a-(bx¢) Idet[a. b,€]| = Volume of parallelepiped
ag b3 C3

FIGURE 1.4.10. Mathematical “objects” often have two interpretations: algebraic

and geometric.

1.5 CONVERGENCE AND LIMITS

The inventors of calculus in the
17th century did not have rigor-
ous definitions of limits and con-
tinuity; these were achieved only
in the 1870s. Rigor is ultimately
necessary in mathematics, but it
does not always come first, as
Archimedes acknowledged about
his own work, in a manuscript
discovered in 1906. In it Archi-
medes reveals that his deepest re-
sults were found using dubious in-
finitary arguments, and only later
proved rigorously, because “it is of
course easier to supply the proof
when we have previously acquired
some knowledge of the questions
by the method, than it is to find it
ith 4 any pr o l:_ 1, _lJ n
(We found this story in John Still-
well’s Mathematics and Its His-
tory.)

In this section, we collect the relevant definitions of limits and continuity.
Integrals, derivatives, series, approximations: calculus is all about convergence
and limits. It could easily be argued that these notions are the hardest and
deepest of all of mathematics. They give students a lot of trouble, and his-
torically, mathematicians struggled to come up with correct definitions for two
hundred years. Fortunately, these notions do not become more difficult in sev-
eral variables than they are in one variable.

More students have foundered on these definitions than on anything else in
calculus: the combination of Greek letters, precise order of quantifiers, and
inequalities is a hefty obstacle. Working through a few examples will help you
understand what the definitions mean, but a proper appreciation can probably
only come from use; we hope you have already started on this path in one-
variable calculus.

Open and closed sets

In mathematics we often need to speak of an open set U; whenever we want to
approach points of a set U from every sidc, U must be open.

Think of a set or subset as your property, surrounded by a fence. The set is
open (Figure 1.5.1) if the entire fence belongs to your neighbor. As long as yon
stay on your property, you can get closer and closer to the fence, but you can



©)

FI1GURE 1.5.1.

An open set includes none of
the fence; no matter how close a
point in the open set is to the
fence, you can always surround it
with a ball of other points in the
open set.

FIGURE 1.5.2.
A closed set includes its fence.

Note that {x ~ y| must be less
than r for the ball to be open; it
cannot be = r.

The symbol C used in Defini-
tion 1.5.3 means “subset of.” If
you are not familiar with the sym-
bols used in set theory, you may
wish to read the discussion of set
theoretic notation in Section 0.3.
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never reach it. No matter how close you are to your neighbor’s property, there
is always an epsilon-thin buffer zone of your property between you and it—just
as no matter how close a non zero point on the real number line is to 0, you
can always find points that are closer.

The set is closed (Figure 1.5.2) if you own the fence. Now, if you sit on your
fence, there is nothing between you and your neighbor’s property. If you move
even an epsilon further, you will be trespassing.

What if sone of the fence belongs to you and some belongs to your neighbors?
Then the set is neither open nor closed.

Remark 1.5.1. Even very good students often don’t see the point of specifying
that a set is open. But it is absolutely essential, for example in computing
derivatives. If a function f is defined on a set that is not open, and thus contains
at least one point z that is part of the fence, then talking of the derivative of f
at z is meaningless. To compute f(z) we need to compute

1'@) = Jim 2 (f(z + 1)~ f(@),

but f(z + h) won't necessarily exist for h arbitrarily small, since z + h may be
outside the fence and thus not in the domain of f. This situation gets much
worse in R".12 A

In order to define open and closed sets in proper mathematical language, we
first need to define an open ball. Imagine a balloon of radius r, centered around
a point x. The open ball of radius r around x consists of all points y inside
the balloon, but not the skin of the balloon itself: whatever Y you choose, the
distance between x and y is always less than the radius r.

15.1

Definition 1.5.2 (Open ball). For any x € R" and any r > 0, the open
ball of radius r around x is the subset

B,(x) = {y € R" such that [x - y| < r}. 152
We use a subscript to indicate the radius of a ball B; the argument gives the
center of the ball: a ball of radius 2 centered at the point y would be written
By (y).
A subset is open if every point in it is contained in an open ball that itself
is contained in the subset:

Definition 1.5.3 (Open set of R"). A subset U C R" is open in R" if for
every point x € U, there exists r > 0 such that B,(x) c U.

21t is possible to make sense of the notion of derivatives in closed sets, but these
results, due to the great American mathematician Hassler Whitney, are extremely
difficult, well beyond the scope of this book.



Note that parentheses denote
an open set: (a, b), while brackets
denote a closed set: {a,b]. Some-
times, especially in France, back-
wards brackets are used to denote
an open set: a,b[= (a,b).

The use of the word domain in
Example 1.5.6 is not really mathe-
matically correct: a function is the
triple of

(1) aset X: the domain;

(2) aset Y: the range;

(3) arule f that associates an
element f(z) € Y to each
element z € X.

Strictly speaking, the formula
1/(y — z?) isn’t a function until
we have specified the domain and
the range, and nobody says that
the domain must be the comple-
ment of the parabola of equation
y = z2: it conld be any subset of
this set. Mathematicians usually
disregard this, and think of a for-
mula as defining a function, whose
domain is the natural domain of
the formula, i.e., those arguments
for which the formula is defined.
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However close a point in the open subset U is to the “fence” of the set, by
choosing 7 small enough, you can surround it with an open ball in R" that is

entirely in the open set, not touching the fence. '
A set that is not open is not necessarily closed: an open set owns none of its

fence. A closed set owns all of its fence:

Definition 1.5.4 (Closed set of R™). A closed set of R", C CR", is a set
whose complement R™ — C is open.

Example 1.5.5 (Open sets).
(1) If a < b, then the interval
(a,b)={zeR|la<z<b}

is open. Indeed, if z € (a,b), set r = min{z — a,b — z}. Both these
numbers are strictly positive, since a < r < b, and so is their minimum.
Then the ball {y| y — z < r} is a subset of (a,b).

(2) The infinite intervals (a,c0), (—00,b) are also open, but the intervals

153

(a,))={zeR|la<z<b} and[e,b={recR|la<z<b} 1.5.4
are not.
(3) The rectangle
_(z 2
(a,b)x(c,d)—{(y)elk|a<z<b,c<y<d} 1.5.5

is also open. A

Natural domains of functions

We will often be interested in whether the domain of definition of a function—
what we will call its natural domain—is open or closed, or neither.

Example 1.5.6 (Checking whether the domain of a function is open
or closed). The natural domain of the function 1/(y — x?2) is the subset of R?
where the denominator is not 0, i.e., the natural domain is the complement of
the parabola P of equation y = z2. This is more or less obviously an open set,
as suggested by Figure 1.5.3.

We can see it rigorously as follows. Suppose (g) ¢ P, so that |b—a?| =
C > 0, for some constant C. Then if

lul, |v] < min {1. g %} =r, 1.5.6



F1GURE 1.5.3.

It seems obvious that given a
point off the parabola P, you can
draw a disk around the point that
avoids the parabola.  Actually
finding a formula for the radius of
such a disk is more tedious than
you might expect.
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we have!3
I(b+) — (a+u)?| = [b—a® +v—2au— | 2 C = (jo] + 2lallul + [u]*)
c C C
- (Z+2+=})=0 1.5.7
>C (3+3+3) 0

Therefore, (gi:) is not on the parabola. This means that we can draw

a square of side length 2r around the point (g) and know that any point in
that open square will not be on the parabola. (We used that since |u| <1, we
have |u)? < |u].)

If we had defined an open set in terms of squares around points rather than
balls around points, we would now be finished: we would have shown that the
complement of the parabola P is open. But to be complete we now need to point
out the obvious fact that there is an open ball that fits in that open square.
We do this by saying that if |(§1 %) - (§)| < r e, if (§17) is in the
circle of radius r around (g)) then |u|,|v] < r (i.e., it is also in the square
of side length 2r around (g)). Therefore the complement of the parabola is
open.

This seems like a lot of work to prove something that was obvious to begin
with. However, now we can actually compute the radius of an open disk around
any point off the parabola. For the point (g), what is the radius of such a
disk? Check your answer below.!4 The answer you get will not be sharp: there

are points between that disk and the parabola. Exercise 1.5.6 asks you to find
a sharper result; Exercise 1.5.7 asks you to find the exact result. A

Example 1.5.7 (Natural domain). What is the natural domain of the
function

(%)= 3, 158

i.e., those arguments for which the formula is defined? If the argument of the
square root is non-negative, the square root can be evaluated, so the first and
the third quadrants are in the natural domain. The z-axis is not (since y =0
there), but the y-axis with the origin removed is in the natural domain, since

13How did we make up this proof? We fiddled, starting at the end and seeing what
r should be in order for the computation to come out. Note that if a = 0, then C/(6|a|
i8 infinite, but this does not affect the choice of r since we are choosing a minimum.

MForz=2,y=3wehave C=|y—z°|=|3-4| = l,sor=min{1,%,allﬂ} =
1/12. The open disk of radius 1/12 around (%) does not intersect the parabola.



FIGURE 1.5.4.
The natural domain of the func-

tion f(z) ) \/§

is neither open nor closed.

Infinite decimals are actually
limits of convergent sequences. If
ag = 3.61 = 3.1,62 = 3.14,
...,@p = T to n decimal places,
how large does M have to be so
that if n > M, then |an — 7| <
10-3? The answer is M = 3: m —
3.141 = .0005926.... The same
argument holds for any real num-
ber.
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z/y is zero there. So the natural domain is the region drawn in Figure 1.5.4.
A

Several similar examples are suggested in Exercise 1.5.8.

Convergence

Unless we state explicitly that a sequence is finite, sequences will be infinite.
A sequence of points a),az... converges to a if, by choosing a point aps far
enough out in the sequence, you can make the distance between all subsequent
points in the sequence and a as small as you like:

Definition 1.5.8 (Convergent sequence). A sequence of points a;,8az. ..
in R™ converges to a € R™ if for all ¢ > 0 there exists M such that when
m > M, then |a., — a| < e. We then call a the limit of the sequence.

Exactly the same definition applies to a sequence of vectors: just replace a
in Definition 1.5.8 by &, and substitute the word “vector” for “point.”

Convergence in " is just n separate convergences in R:

Proposition 1.5.9. A sequence (a,) = a,,8z,... with a; € R" converges
to a if and only if each coordinate converges; i.e., if for all j with1<j<n
the coordinate (a); converges to a;, the jth coordinate of the limit a.

The proof is a good setting for understanding how the ¢ ~ M game is played
(where M is the M of Definition 1.5.8). You should imagine that your opponent
gives you an epsilon and challenges you to find an M that works, i.e., an M
such that when m > M, then |(en); — @;] < €. You get extra points for style
for finding a small M, but it is not necessary in order to win the game.

(am)
Proof. Let us first see the easy direction: the statement that a,, =

(am)n
converges implies that for each j = 1,...,n, the sequence of numbers (a,);
converges. The challenger hands you an epsilon. Fortunately you have a team-
mate who knows how to play the game for the sequence a,,, and you hand her
the epsilon you just got. She promptly hands you back an M with the guaran-
tee that when m > M, then |a,, —a] < € (since the sequence a,, is convergent).
The length of the vector a,, — a is

lam = al = /((@m)s = 02)2 + - + ((@m)a - 2n)7,



This is typical of all proofs
involving convergence and limits:
you are given an ¢ and challenged
to come up with a § (or M or
whatever) such that a certain
quantity is less than e.

Your “challenger” can give you
any € > 0 he likes; statements
concerning limits and continuity
are of the form “for all epsilon,
there exists ... ."
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s0 you give that M to your challenger, with the argument that
[(8m); — a;] < |am —a| <e. 1.5.9

He promptly concedes defeat.

Now let us try the opposite direction: the convergence of the coordinate se-
quences (ar,); implies the convergence of the sequence a,,. Again the challenger
hands you an € > 0. This time you have n teammates, each of whom knows how
the play the game for a single convergent coordinate sequence (am);. After a
bit of thought and scribbling on a piece of paper, you pass along ¢/\/n to each
of them. They dutifully return to you cards containing numbers M, ... M,,
with the guarantee that

€
l(am); —aj] < 7 when m > M. 1.5.10

You sort through the cards and choose the one with the largest number,
M = max{M, ... M,}, 1.5.11

which you pass on to the challenger with the following message:
ifm>M,thenm > M, foreachj=1.--=n,s0 l(am); — aj| < €/v/n, so

lam = a] = /((@m)1 = 01) + - + ((am)n — an)’
NCORCOR R

The scribbling you did was to figure out that handing ¢/4/n to your team-
mates would work. What if you can’t figure out how to “slice up” € so that the
final answer will be precisely ¢? In that case, just work directly with ¢ and see
where it takes you. If you use ¢ instead of ¢/+/n in Equations 1.5.10 and 1.5.12,
you will end up with

1.5.12

lam — a] < ev/n. 1.5.13

You can then see that to land on the exact answer, you should have chosen
e/Vn.

In fact, the answer in Equation 1.5.13 is good enough and you don’t really
need to go back and fiddle. Intuitively, “less than epsilon” for any ¢ > 0 and
“less than some quantity that goes to 0 when epsilon goes to 0” achieve the
same goal: showing that you can make some quantity arbitrarily small. The
following theorem states this precisely; you are asked to prove it in Exercise
1.5.12.



Recall that Br denotes a ball of
radius R; the ball Bgr(0) is a ball
of radius R centered at the origin.
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Theorem 1.5.10 (Elegance is not required). Let u(¢), with e > 0, be
a function such that u(e) — 0 as ¢ — 0. Then the following two statements

are equivalent:
(1) For all € > 0, there exists a § > 0 such that when [x — Xo| < J, then
1£(x) = f(x0)] < u(e).
(2) For all € > 0, there exists a 6 > 0 such that when |x — xo| < 4, then
|£(x) = f(x0)| <e.

In practice, the first statement is the one mathematicians use most often.

The following result is of great importance, saying that the notion of limit
is well defined: if the limit is something, then it isn’t something else. It could
be reduced to the one-dimensional case as above, but we will use it as an
opportunity to play the ¢, M game in more sober fashion.

Proposition 1.5.11. If the sequence of points a;,8; ... in R" converges to
aandtob, thena=b.

Proof. Suppose a # b, and set g = (]a—b})/4; our assumption a # b implies
that o > 0. Thus, by the definition of the limit, there exists M, such that
lan — a] < €9 when n > M,, and M; such that [a, — b| < ¢y when n > M,.
Set M = max{M,, Mz}. If n > M, then by the triangle inequality (Theorem
1.4.9),

la—b| =|(a—an)+(an - b)| < Ja - an| +|an — b] < 2 = J]a - b]/2. 1.5.14
f N I S
<eo <eo

This is a contradiction, soa=b. O

Theorem 1.5.13 states rules concerning limits. First, we need to define a
bounded set.

Definition 1.5.12 (Bounded set). A subset X C R" is bounded if it is
contained in a ball in R™ centered at the origin:

X C Bp(0) for some R < oo. 1.5.15

The ball containing the bounded set can be very big, but its radius must be
finite.



Illustration for part (d): Let
cm =1/m and m..=(31)
Then c. converges to 0, but
lim (cmam) # 0.
m—00

Why is the limit not 0 as in part
(d)? Because ap is not bounded.

Exercise 1.5.13 asks you to
prove the converse: if every con-
vergent sequence in a set C C R"
converges to a point in C, then C
is closed.
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Theorem 1.5.13 (Limits). Let am, bm be two sequences of points in R,
and ¢, be a sequence of numbers. Then
(a) If a,, and by, both converge, then so does am + b, and

ml'i—g‘oo(a'n + b"‘) = mﬁ-‘}looam + mli—lonoo bm‘
(b) If am, and ¢, both converge, then so does ¢mam, and

Jim (emom) = (Jim, em) ( Jim am)
(c) If a,, and by, both converge, then so does am - bm, and

i, (8 ) = ((fim o) - (fm ).
(d) If a,, is bounded and c, converges to 0, then
lim (cmam) =0.
M —+00

We will not prove Theorem 1.5.13, since Proposition 1.5.9 reduces it to the
one-dimensional case; the proof is left as Exercise 1.5.16.

There is an intimate relationship between limits of sequences and closed sets:
closed sets are “closed under limits.”

Proposition 1.5.14. If x,,X,... is a convergent sequence in & closed set
C c R*", converging to a point xo € R™, then xq € C.

Intuitively, this is not hard to see: a convergent sequence in a closed set can’t
approach a point outside the set without leaving the set. (But a sequence in a
set that is not closed can converge to a point of the fence that is not in the set.)

Proof. Indeed, if xo ¢ C, then xo € (R — C), which is open, so there exists
r > 0 such that B.(xp) C (R" — C). Then for all m we have |x, — xo| > 7.
On the other hand, by the definition of convergence, we must have that for any
€ > 0 we have [xm — Xo| < € for m sufficiently large. Taking ¢ = r/2, we see
that this is a contradiction. O

Subsequences

Subsequences are a useful tool, as we will see in Section 1.6. They are not
particularly difficult, but they require somewhat complicated indices, which are
scary on the page and tedious to type.



Sometimes the subsequence
Qi(1),Qi(2)5- - -

is denoted a;,, ai,, - . ..

The proof of Proposition 1.5.16
is left as Exercise 1.5.17, largely
to provide practice with the lan-

guage.

The closure of 4 is thus A plus
its fence. 1f A is closed, then
A=A
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Definition 1.5.15 (Subsequence). A subsequence of a sequence a1, a3, ...
is a sequence formed by taking first some element of the original sequence,
then another element further on, and yet another, yet further along ... . It
is denoted a;(1), 8i(2), - - ., where i(k) > i(j) when k > j.

You might take all the even terms, or all the odd terms, or all those whose
index is a prime, etc. Of course, any sequence is a subsequence of itself. The
index i is the function that associates to the position in the subsequence the
position of the same entry in the original sequence. For example, if the original
sequence is

111111 o111
1" 3 15 6 and the subsequence is 2°'1'6
a; az a3 a4 as ag @i(1) @i(2) Bi(3)

we see that i(1) = 2, since 1/2 is the second entry of the original sequence.
Similarly, i(2) = 4,i(3) = 6,.... (In specific cases, figuring out what i(1),i(2),
etc. correspond to can be a major challenge.)

Proposition 1.5.16. If a sequence ay converges to a, then any subsequence
of ay converges to the same limit.

Limits of functions

Limits like limx_x, f(x) can only be defined if you can approach xo by points
where f can be evaluated. The notion of closure of a set is designed to make
this precise.

Definition 1.5.17 (Closure). If A C R" is a subset, the closure of A,
denoted 4, is the set of all limits of sequences in A that converge in R™.

For example, if A = (0,1) then 4 = [0, 1]; the point 0 is the limit of the
sequence 1/n, which is a scquence in A and converges to a point in R.

When x, is in the closure of the domain of f, we can define the limit of
a function, limx_.x, f(x). Of course, this includes the case when Xo is in the
domain of f, but the really interesting case is when it is in the boundary of the
domain.

Example 1.5.18. (a) If A = (0,1) then 4 = [0, 1], so that 0 and 1 are in A.
Thus, it makes sense to talk about
lim (1 + z)V/= 1.5.16
z—0

because although you cannot evaluate the function at 0, the natural domain of
the function contains 0 in its closure.



FIGURE 1.5.5.

The region in example 1.5.18,
(c). You can approach the origin
from this region, but only in rather
special ways.

Definition 1.5.19 is not stan-
dard in the United States but is
quite common in France. The
standard version substitutes 0 <
|x — xo] < & for our |x — xo| < 4.
The definition we have adopted
makes little difference in applica-
tions, but has the advantage that
allowing for the case where x = xo
makes limits better behaved un-
der composition. With the stan-
dard version, Theorem 1.5.22 is
not true.

A mapping f : R* - R™ is
an “R™-valued” mapping; its ar-
gument is in R™ and its values are
in R™. Often such mappings are
called “vector-valued” mappings
(or functions), but usually we are
thinking of its values as points
rather than vectors. Note that
we denote an R™-valued mapping
whose values are points in R™
with a boldface letter without ar-
row: f. Sometimes we do want to
think of the values of a mapping
R™ — R" as vectors: when we are
thinking of vector fields. We de-
note a vector field with an arrow:
Forf.
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(0 . £
(b) The point { q ) is in the closure of

{(‘;) eR?*|0<?+yP < l} (the unit disk with the origin removed)
(c) The point ( 8) is also in the closure of U (the region between two parabo-
las touching at the origin, shown in Figure 1.5.5):

U={(:)€R2| Iy|<z’} u]

Definition 1.5.19 (Limit of a function). A function f : U — R™ has
the limit a at xo:

lim f(x) =a 1.5.17
xX—Xo

if xo € U and if for all € > 0, there exists § > 0 such that when |x — xo| < 4,
and x € U, then |[f(x) - a] <e.

That is, as f is evaluated at a point x arbitrarily close to Xo, then f(xo) will
be arbitrarily close to a.

Since we are not requiring that xo € U, f(xo) is not necessarily defined, but
if it is defined, then for the limit to exist we must have

Jim £(x) = £(xo). 1518

Limits of mappings with values in R™

As is the case for sequences (Proposition 1.5.9), it is the same thing to claim
that an R™-valued mapping f : R® — R™ has a limit, and that its components
have limits, as shown in Proposition 1.5.20. Such a mapping is sometimes
written in terms of the “sub-functions” (coordinate functions) that define each
new coordinate. For example, the mapping f : R? — R3,

zy h
z3y can be written f={( fo !, 1.5.19
T~y fa

where f1(x) = zy, f2(x) = 2%, and f3(x) =z ~y.



Recall (Definition 1.5.17) that
U denotes the closure of U: the
subset of R™ made up of the set of
all limits of sequences in U which
converge in R"™.

If you gave ¢/\/m to your team-
mates, as in the proof of Proposi-
tion 1.5.9, you would end up with

If(x) - a| <k,

rather than [f(x) — a] < ey/m. In
some sense this is more “elegant.”
But Theorem 1.5.10 says that it is
mathematically just as good to ar-
rive at less than or equal to epsilon
times some fixed number or, more
generally, anything that goes to 0
when € goes to 0.
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fi(x)
Proposition 1.5.20. Let f(x) = : be a function defined on a do-
fn0)) '
main U C R", and let xo € R® be a point in U. Then limy—.x, f = a exists
if and only if each of limy_.x, f; = a; exists, and

limy—x, f1 ap
; le, a= I I
Gm

Proof. Let’s go through the picturesque description again. The proof has an
“if” part and an “only if” part.

For the “if” part, the challenger hands you an ¢ > 0. You pass it on to a
teammate who returns a § with the guarantee that when |x — x| < 4, and
f(x) is defined, then [f(x) — a] < €. You pass on the same 4, and g, to the
challenger, with the explanation:

lim f= 1.5.20

X—Xo

limy 1, frm

|fi(x) — a;] < |f(x) —a] <e. 1.5.21

For the “only if” part, the challenger hands you an ¢ > 0. You pass this ¢ to
your teammates, who know how to deal with the coordinate functions. They
hand you back &),...,0m. You look through these, and select the smallest one,
which you call §, and pass on to the challenger, with the message

“If |x — x| < 4, then [x; — (20)i| < § < &;, s0 that |fi(x) — a;| < ¢, s0 that

1£(x) —a|=\/(f,(x) - 01)2+~- +(fm(x) = tl,m)2 <Ve+--. 46 =eym,

m terms

1.5.22
which goes to 0 as € goes to 0. You win!

Theorem 1.5.21 (Limits of functions). Let f and g be functions from
U — R™, and h a function from U — R.

() If limyx, £(x) and limy..x, g(x) exist, then limy._.x, (f+g)(x) exists,
and

Jim £() + lim g(x) = lim (£ +g)(x). 15.23

(b) If limx—.x, f(x) and limy_.x, h(x) exist, then limy..,, hf(x) exists,
and

xli:go h(x) xlin;o f(x) = xlin}g hf(x). 1.5.24



We could substitute

— fore
2(Ig(xo)| + €)

in Equation 1.5.29, and

S S— for €
2(If (x0)] + €)

in Equation 1.5.30. This would
give
1£(x) - g(x) — £(xo0) - &(xo)]
< s €lf (x0)|
= 2(Ig(x0)l +€)  2(If(x0)] + €)
<e
Again, if you want to land exactly

on epsilon, fine, but mathemati-
cally it is completely unnecessary.
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(c) If limy_.x, f(x) exists, and limx_.x, h(x) exists and is different from 0,

then limx_z, (§)(x) exists, and

limy _x, () -
limy_x, B(X) x—xo

li

Al

f

h

)

1.5.25

(d) If Limx—x, f(x) and limy_.x, g(x) exist, then so does limyx_x, (f - 8),

and

x]il?m f(x) - xlin}q g(x) = xl;l!l;o(f - g)(x).

(e) If f is bounded and limy_.x, h(x) = 0, then
lim (hf)(x) = 0.
x—Xo

(£) If limyx_.x, £(x) = 0 and h(x) is bounded, then
Jim (rf)(x) = 0.

1.5.26

1.5.27

1.5.28

Proof. The proofs of all these statements are very similar; we will do only (d),
which is the hardest. Choose ¢ (think of the challenger giving it to you). Then

(1) Find a 4 such that when |x — x| < 41, then

|8(x) — g(xol < e

(2) Next find a §2 such that when |x — xo| < d2, then

1£(x) — £(x0)| < €.
Now set & to be the smallest of §, and J2, and consider the sequence of inequal-

ities
I£(x) - g(x) — £(x0) - &(xo0)|

= |f(x) - g(x) —f(xo) - &(x) + (x0) - &(x) —f(xo) - &(x0)!

< [f(x) - g(x) — £(xo) - 8(x)| + [f(x0) - &(x) — £(xo) - B(x0)]
=|(£(x) - f(x0)) - 8(x)| + [f(x0) - (8(x) — 8(x0))|
< |(£(x) - f(x0))| I8(X)f + If(x0)l | (8(x) — 8(x0))|

=0

< elg(x)] + €lf(x0)| = €(I8(x)! + |f(xo0)1)-

Now g(x) is a function, not a point, so we might worry that it could get big faster
than € gets small. But we know that when [x —xg| < d, then |g(x) — g(xo)| < ¢,

which gives

|8(x)| < € + |g(x0)l-

1.5.29

1.5.30

1.5.31

1.5.32
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So continuing Equation 1.5.31, we get

e(18(x)! + |£(x,)]) < €(e + |8(x0)l) + elf (x0)l; 1.5.33
which goes to 0 as ¢ goes to 0. a

Limits also behave well with respect to compositions.

Theorem 1.5.22 (Limit of a composition). IfU C R*, V C R™ are
subsets, and f : U — V and g : V — R* are mappings, so that go f
is defined, and if yo & lim,_.,, f(x), and limy_.y, g(y) both exist, then
limy—.x, g © f(x), exists, and

There is no natural condition . ,
that will guarantee that xll'.'i, gof(x) = ,ll.“,‘,., g(y) 1.5.34
£(x) # f(x0);

if we had required x # Xo in our Proof. For all ¢ > 0 there exists 6, such that if |y — yo| < d1, then |g(y) —
definition of limit, this argument g(y,)| < €. Next, there exists § such that if [x—Xo| < 4, then |f(x)—f(xo)| < d).
would not work. Hence

|8(£(x)) — g(f(x0))] <€ when |x—xo/<é. O 1.5.35

Theorems 1.5.21 and 1.5.22 show that if you have a function f : R® —» R
given by a formula involving addition, multiplication, division and composition
of continuous functions, and which is defined at a point xg, then limy_., f(x)
exists, and is equal to f(xo).

Example 1.5.23 (Limit of a function). We have
lim _ z%sin(zy) = 3%sin(—3) ~ —1.27.... 1.5.36
()-(=)
In fact, the function z2sin(ry) has limits at all points of the plane, and the
limit is always precisely the value of the function at the point. Indeed, zy is the

product of two continuous functions, as is z2, and sine is continuous at every
point, so sin(zy) is continuous everywhere; hence also z2sin(zy). A

In Example 1.5.23 we just have multiplication and sines, which are pretty
straightforward. But whenever there is a division we need to worry: are we
dividing by 07 We also need to worry whenever we see tan: what happens
if the argument of tan is 7/2 + k7? Similarly, log, cot,sec, csc all introduce
complications.

In one dimension, these problems are often addressed using I’Hépital’s rule
(although Taylor expansions often work better).

Much of the subtlety of limits in higher dimensions is that there are lots
of different ways of approaching a point, and different approaches may yield
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FI1GURE 1.5.6.
The function of Example 1.5.24
is continuous except at the ori-

gin. Its value is 1/e along the
“crest line” y = =+z?, but van-
ishes on both axes, forming a very
deep canyon along the z-axis. If
you approach the origin along any
straight line y = mz with m #
0, the path will get to the broad
valley along the y-axis before it
reaches the origin, so along any
such path the limit of f exists and
is 0.
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different limits, in which case the limit may not exist. The following example
illustrates some of the difficulties.

Example 1.5.24 (A case where different approaches give different lim-
its). Consider the function
e itoro

0 ifz=0,

1.5.37

shown in Figure 1.5.6. Does lim(z) (o) f(;) exist?
v) " \o
A first idea is to approach the origin along straight lines. Set y = mz. When
m = 0, the limit is obviously 0, and when m # 0, the limit becomes

lim |ﬂ| 12l 1.5.38
z—0! T
this limit exists and is always 0, for all values of m. Indeed,
lim Le=V* = 1im 2 =0. 1.5.39
t—0 ¢ s—o0 €

So however you approach the origin along straight lines, the limit always exists,
and is always 0. But if you set y = kz? and let  — 0, approaching 0 along a
parabola, you find something quite different:

lim |kje~!¥ = |k|e~1*, 1.5.40
z—0

which is some number that varies between 0 and 1/e (see Exercise 1.5.18). Thus
if you approach the origin in different ways, the limits may be different. A

Continuous functions

Continuity is the fundamental notion of topology, and it arises throughout
calculus also. It took mathematicians 200 years to arrive at a correct definition.
(Historically, we have our presentation out of order: it was the search for a
usable definition of continuity that led to the correct definition of limits.)

Definition 1.5.25 (Continuous function). Let X C R". Then a mapping’
f : X — R™ is continuous at xo € X if
Jim_ £(x) = f(xo);

f is continuous on X if it is continuous at every point of X.

1.5.41



A map f is continuous at xo if
you can make the difference be-
tween f(x) and f(xo) arbitrarily
small by choosing x sufficiently
close to xo. Note that [f(x) —
f(xo)| must be small for all x “suf-
ficiently close” to xo. It is not
enough to find a § such that for
one particular value of x the state-
ment is true. However, the “suffi-
ciently close” (i.e., the choice of §)
can be different for different val-
ues of x. (If a single § works for all
x, then the mapping is uniformly
continuous.)

We started by trying to write
this in one simple sentence, and
found it was impossible to do so
and avoid mistakes. If defini-
tions of continuity sound stilted,
it is because any attempt to stray
from the “for all this, there exists
that...” inevitably leads to ambi-
guity.

Note that with the definition of
limit we have given, it would be
the same to say that a function
f : U — IR™ is continuous at
xo € U if and only if limx—x, f(x)
exists.
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There is a reformulation in terms of epsilons and deltas:

Proposition 1.5.26 (Criterion for continuity). The map f : X — R™
is continuous at Xo if and only if for every ¢ > 0, there exists § > 0 such that
when |x — xo| < &, then |f(x) — f(xo)| < €.

Proof. Suppose the ¢,8 condition is satisfied, and let x;, i = 1,2,... be a
sequence in X that converges to xo € X. We must show that the sequence
f(x,), i = 1,2,... converges to f(xo), i.e., that for any € > 0, there exists N
such that when n > N we have |f(x) — f(xo)| < €. To find this N, first find
the & such that [x — xo| < § implies that |f(x) — f(xo)] < €. Next apply the
definition of a convergence sequence to the sequence x;: there exists N such
that if n > N, then [x, — xo| < é. Clearly this N works.

For the converse, remember how to negate sequences of quantifiers (Section
0.2). Suppose the ¢,d condition is not satisfied; then there exists g > 0 such
that for all 4, there exists x € X such that [x — xo| < d but |f(x) — £(xo)| > €o.
Let 6, = 1/n, and let x, € X be such a point; i.e.,

1
Ixn — %0| < 5 and 1£(xn) — £(x0)| 2 €o. 1.5.42

The first part shows that the sequence x,, converges to x, and the second part
shows that f(x,) does not converge to f(xo). O

The following theorem is a reformulation of Theorem 1.5.21; the proof is left
as Exercise 1.5.19.

Theorem 1.5.27 (Combining continuous mappings). Let U be a sub-
set of R", f and g mappings U — R™, and h a function U — R.

(a) If f and g are continuous at x,, then so is f + g.

(b) If f and h are continuous at xo, then so is kf.

(c) If f and h are continuous at xo, and h(xo) # 0, then then so is £.
(d) If f and g are continuous at xg, then so isf - g

(e) If f is bounded and h is continuous at xg, with h(xo) = 0, then hf is
continuous at Xg.

We can now write down a fairly large collection of continuous functions on
R™: polynomials and rational functions.

A monomial function on R™ is an expression of the form z¥' ...k with
integer exponents ky,...,k, > 0. For instance, z2yz% is a monomial on R3,

and z,7,z} is a monomial on R* (or perhaps R™ with n > 4). A polynomial

function is a finite sum of monomials with real coefficients, like %y 4+ 3yz. A
rational function is a ratio of two polynomials, like 3:—37
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Corollary 1.5.28 (Continuity of polynomials and rational functions).
(a) Any polynomial function R™ — R is continuous on all of R”.
l (b) Any rational function is continuous on the subset of R" where the
denominator does not vanish.
i

HH s
I O Series of vectors
S4
As is the case for numbers (Section 0.4), many of the most interesting sequences
5 \ ; arise as partial sums of series.
T5'1\ Definition 1.5.29 (Convergent series of vectors). A series Y -, &; is
convergent if the sequence of partial sums
........ S n
X §,=) & 1.5.43
! i=1
1
FIGURE 1.5.7. is a convergent sequence of vectors. In that case the infinite sum is
A convergent series of vectors. oo
The kth partial sum is gotten by Ya-= Jim &, 1.5.44
putting the first k vectors nose to i=1

tail.

Proposition 1.5.30 (Absolute convergence implies convergence).

00 0
If Zli;l converges, then Ei’.- converges.

Absolute convergence means
i=1

that the absolute values converge. =1

Proof. Proposition 1.5.9 says that it is enough to check this component by
component; in one variable, it is a standard statement of elementary calculus
(Theorem 0.4.11). O

Proposition 1.5.30 is very im-

portant; we use it in particular R
to prove that Newton's method’s Geometric series of matrices

converges. ) A .
When he introduced matrices, Cayley remarked that square matrices “comport

themselves as single quantities.” In many ways, one can think of a square
matrix as a generalized number; many constructions possible with numbers are
also possible with matrices. Here we will see that a standard result about the
sum of a geometric series applies to matrices as well; we will need this result
when we discuss Newton’s method for solving nonlinear equations, in Section
2.7. In the exercises we will explore other series of matrices.

Definitions 1.5.8 and 1.5.29 apply just as well to matrices as to vectors, since
when distances are concerned, if we denote by Mat (n,m) the set of n x m



Example: Let
_fo 1/4
A= [0 0 ] . Then

A? = 0 (surprise!), so that the
infinite series of Equation 1.5.48
becomes a finite sum:

T-A'=1+A4,

and

HE G ]

We will see in Section 2.3 that if
a square matrix has either a right
or a left inverse, that inverse is
necessarily a true inverse; check-
ing both directions is not actually
necessary.
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matrices, then Mat (n, m) is the same as R"™. In particular, Proposition 1.5.9
applies: a series

20
S A 15.45
k=1

of n x m matrices converges if for each position (¢, j) of the matrix, the series
of the entries (A, )(; ;) converges.

Recall (Example 0.4.9) that the geometric series S = a + ar + ar? + - --
converges if |r| < 1, and that the sum is a/(1 — 7). We want to generalize this
to matrices:

Proposition 1.5.31. Let A be a square matrix. If |A| < 1, the series
S=I+A+A*+--- 1.5.48
converges to (I — A)~!.

Proof. We use the same trick used in the scalar case of Example 0.4.9. Denote
by Si the sum of the first k terms of the series, and subtract from Sy the product
SkA, to get Sy(I — A) = I — Ak+1:

Sp = I+A+ A2+ A% +... 4+ A*
SiA = A+ AT+ A%+ ... 4 Ak 4 AR 1.5.49
Si(I-A) =1 AR+
We know (Proposition 1.4.11 b) that
|44 < |APFIAl = |4, 1.5.50

80 lim_.o A¥*! = 0 when |A| < 1, which gives us
S(I-A)= lim Si(I - A) = lim (I - A**!) =1 lim A**' =] 1551
k—oo k—oo k—oc
0

Since S(I ~ A) = I, S is a left inverse of (I — A). If in Equation 1.5.49 we
had written ASy instead of Sy A, the same computation would have given us
(I — A)S = I, showing that S is a right inverse. So by Proposition 1.2.14, S is
the inverse of (1 - A). O

Corollary 1.5.32. If|A| < 1, then (I — A) is invertible.

Corollary 1.5.33. The set of invertible n x n matrices is open.

Proof. Suppose B is invertible, and |H| < 1/|B-|. Then | — B~'H| < 1, s0
I+ B~'H is invertible (by Corollary 1.5.32), and

(I+B7'H)™'B~' = (BU+B'H)) ™' = (B+ H)"". 1.5.52
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Thus if |H| < 1/|B~!|, the matrix B + H is invertible, giving an explicit
neighborhood of B nade up of invertible matrices. O

1.6 Four BiG THEOREMS

When they were discovered, the
examples of Peano and Cantor
were thought of as aherrations. “I
turn with terror and horror from
this lamentable scourge of contin-
uous functions with no derivatives
... wrote Charles Hermite in
1893. Six years later, the French
mathematician Henri Poincaré
lamented the rise of “a rahhle of
functions ... whose only job. it
seems, is to look as little as pos-
sible like decent and useful func-
tions.”

“What will the poor student
think?” Poincaré worried. “He
will think that mathematical sci-
ence is just an arbitrary heap of
useless subtleties; either he will
turn from it in aversion, or he will
treat it like an amusing game."

Ironically, although Poincaré
wrote that these functions, “spe-
cially invented only to show up the
arguments of our fathers,” would
never have any other use, he was
ultimately responsihle for show-
ing that seemingly “pathological”
functions are essential in describ-
ing nature, leading to such fields
as chaos and fractals.

Definition 1.6.1 is amazingly
important, invading whole chap-
ters of matheniatics; it is the hasic
“finiteness criterion” for spaces.
Something like half of inathemat-
ics consists of showing that some
space is compact.

In this section we describe a number of results, most only about 100 years
old or so. They are not especially hard, and were mainly discovered after vari-
ous mathematicians (Peano, Weierstrass, Cantor) found that many statements
earlier thought to be obvious were in fact false.

For example, the statement a curve in the plane has area 0 may seem obvi-
ous. Yet it is possible to constriict a continuous curve that completely fills up a
triangle, visiting every point at least once! The discovery of this kind of thing
forced mathematicians to rethink their definitions and statements, putting cal-
culus on a rigorous basis.

These results are usually avoided in first and second year calculus. Two
key statements typically glossed over are the mean value theorem and the inte-
grability of continuous functions. These are used—indeed, they are absolutely
central—but often they are not proved.!® In fact they are not so hard to prove
when one knows a bit of topology: notions like open and closed sets, and max-
ima and minima of functions, for example.

In Section 1.5 we introduced some basic notions of topology. Now we will
use them to prove Theorem 1.6.2, a remarkable non-constructive result that will
enable us to prove the existence of a convergent subsequence without knowing
where it is. We will use this theorem in crucial ways to prove the mean value
theorem and the fundamental theorem of algebra (this section), to prove the
spectral theorem for symmetric matrices (Theorem 3.7.12) and to see what
functions can be integrated (Section 4.3).

In Definition 1.6.1 below, recall that a subset X C R" is bounded if it is
contained in a ball centered at the origin (Definition 1.5.12).

Definition 1.6.1 (Compact set). A subset C C R" is compact if it is
closed and bounded.

The following theorem is as important as the definition, if not more so.

Theorem 1.6.2 (Convergent subsequence in a compact set). If a
compact set C C R™ contains a sequence x,,Xg, ..., then that sequence has
a convergent subsequence X;(1), Xi(2), ... whose limit is in C.

Note that Theorem 1.6.2 says nothing about what the convergent subse-
quence converges to; it just says that a convergent subsequence exists.

'*One exception is Michael Spivak’s Calculus.



FIGURE 1.6.1.

1f the large box contains an infi-
nite sequence, then one of the four
quadrants must contain a conver-
gent subsequence. If that quad-
rant is divided into four smaller
boxes, one of those small boxes
must contain a convergent subse-
quence, and so on.

Several more properties of com-
pact sets are stated and proved in
Appendix A.17.
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Proof. The set C is contained in a box —10¥ < z; < 10V for some N.
Decompose this box into boxes of side 1 in the obvious way. Then at least one
of these boxes, which we'll call By, must contain infinitely many terms of the
sequence, since the sequence is infinite and we have a finite number of boxes.
Choose some term X;(g) in Bo, and cut up By into 10™ boxes of side 1/10 (in
the plane, 100 boxes; in R3, 1,000 boxes). At least one of these smaller boxes
must contain infinitely many terms of the sequence. Call this box B, choose
x;q) € By with i(1) > i(0). Now keep going: cut up B, into 10" boxes of
side 1/102; again, one of these boxes must contain infinitely many terms of
the sequence; call one such box Bz and choose an element x;2) € Bz with
i(2) > i(1) ...

Think of the first box By as giving the coordinates, up to the decimal point,
of all the points in By. (Because it is hard to illustrate many levels for a decimal
system, Figure 1.6.1 illustrates the process for a binary system.) The next bax,
B, gives the first digit after the decimal point.'® Suppose, for example, that
By has vertices (1,2), (2,2), (1,3) and (2,3); i.e., the point (1,2) has coordinates
z =1,y = 2, and so on. Suppose further that B, is the small square at the top
right-hand corner. Then all the points in B, have coordinates (z =1.9...,y =
2.9...). When you divide B, into 102 smaller boxes, the choice of By will
determine the next digit; if B, is at the bottom right-hand corner, then all
points in B, will have coordinates (z = 1.99...,y =2.90...), and so on.

Of course you don't actually know what the coordinates of your points are,
because you don’t know that B, is the small square at the top right-hand corner,
or that B; is at the bottom right-hand corner. All you know is that there exists
a first box By of side 1 that contains infinitely many terms of the original
sequence, a second box B) € By of side 1/10 that also contains infinitely many
terms of the original sequence, and so on.

Construct in this way a sequence of nested boxes

By>By,D>B;>... 1.6.1
with By, of side 10-™, and each containing infinitely many terms of the se-
quence; further choose X;(m) € Bm with i(m + 1) > i(m).

Clearly the sequence X;(m) converges; in fact the mth term beyond the dec-

imal point never changes after the mth choice. The limit is in C since C is
closed. O

You may think “what’s the big deal?” To see the troubling implications of
the proof, consider Example 1.6.3.

Example 1.6.3 (Convergent subsequence). Consider the sequence
Ty = sin 10™. 1.6.2

16To ensure that all points in the same box have the same decimal expansion, we
should say that our boxes are all open on the top and on the right.



Remember (Section 0.3) that U
means “union”: AU B is the set of
elements of either A or B or both.

-3n» 12 12 n

-1

FIGURE 1.6.2.

Graph of sin27z. If the frac-
tional part of a number z is be-
tween 0 and 1/2, then sin 27z > 0;
if it is between 1/2 and 1, then
sin 2wz < 0.

1.6 Four Big Theorems 91

This is certainly a sequence in the compact set C = [-1,1], so'it DINake.
a convergent subsequence. But how do you find it? The first step ot the’
construction above is to divide the interval {—1, 1] into three syb-intervals {ous

“boxes”), writing
[-1,1) = [--1,0) U [0,1) U {1}.

Now how do we choose which of the three “boxes” above shoul\be ¥ first!
box By? We know that z,, will never be in the box {1}, since sint =uifgns
only if § = /2 + 2kn for some integer k and (since = is irrational) 10™ cannot
be 7/2 + 2kn. But how do we choose between (—1,0) and [0,1)? If we want
to choose [0, 1), we must be sure that we have infinitely many positive . So,
when is z,,, = sin 10™ positive?

Since sin 4 is positive for 0 < § < =, then z,, is positive when the fractional
part of 10™/(2n) is greater than 0 and less than 1/2. ( By “fractional part”
we mean the part after the decimal; for example 5/3 = 1 + 2/3 = 1.666...;
the fractional part is .666....) If you don’t see this, consider that (as shown in
Figure 1.6.2) sin 2ra depends only on the fractional part of a:

=0 if a is an integer or half-integer
sin2ra{ > 0 if the fractional part of o is < 1/2 164
< 0 if the fractional part of a is > 1/2
If instead of writing z,, = sin 10™ we write
Tm = sin 21!’10—"—' ie = m
m 2r’ or '
we see, as stated above, that z,, is positive when the fractional part of 10™/(2)
i8 less than 1/2.

So if a convergent subsequence of z,, is contained in the box [0, 1), an infinite
number of 10™ /(27) must have a fractional part that is less than 1/2. This will
ensure that we have infinitely many z,, = 8in10™ in the box [0,1).

For any single ., it is enough to know that the first digit of the fractional
part of 10™/(27) is 0, 1, 2, 3 or 4: knowing the first digit after the decimal
point tells you whether the fractional part is less than or greater than 1/2. Since
multiplying by 10™ just moves the decimal point to the right by m, knowing
whether the fractional part of every 10™ /(2r) starts this way is really a question
about the decimal expansion of 5%: do the digits 0,1,2,3 or 4 appear infinitely
many times in the decimal expansion of

1.6.5

1
— =.1591549...7 1.6.6
27

Note that we are not saying that all the 10™/(2r) must have the decimal
point followed by 0,1,2,3, or 4! Clearly they don’t. We are not interested in
all the z,,; we just want to know that we can find a subsequence of z,, that



The point. is that although the
sequence I, = sinl0™ is a se-
quence in a compact set, and
therefore (by Theorem 1.6.2) con-
tains a convergent subsequence,
we can't begin to “locate” that
subsequence. We can't even say
whether it is in [-1,0) or [0,1).

Recall that compact means
closed and bounded.

Although the use of the words
least upper bound and sup is com-
pletely standard, some people use
mazimum as another synonym for
least upper bound. not a least up-
per bound that is achieved, as
we have defined it.  Similarly,
some people use the words greatest
lower bound and minimum inter-
changeably; we do not.
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converges to something inside the box [0, 1). For example, x; is not in the box
[0,1), since 10 x .1591549... = 1.591549...: the fractional part starts with 5.
Nor is z2, since 102 x 1591549 ... = 15.91549 ... ; the fractional part starts with
9. But z3 is in the box [0.1), since the fractional part of 103 x .1591549... =
159.1549. .. starts with a 1.

Everyone believes that the digits 0,1,2,3 or 4 appear infinitely many times in
the decimal expansion of 2!15 : it is widely believed that = is a normal number.
i.e., where every digit appears roughly 1/10th of the time, every pair of digits
appears roughly 1/100th of the time, etc. The first 4 billion digits of @ have
been computed and appear to bear out this conjecture. Still, no one knows how
to prove it; as far as we know it is conceivable that all the digits after the 10
billionth are 6's, 7°s and 8's.

Thus, even choosing the first “box” By requires some god-like ability to “see”
this whole infinite sequence, when there is simply no obvious way to doit. 4

Theorem 1.6.2 is non-constructive: it proves that something exists but gives
not the slightest hint of how to find it. Many mathematicians of the end of
the 19th century were deeply disturbed hy this type of proof; cven today. a
school of mathematicians called the intuitionists reject this sort of thinking.
They demand that in order for a munber to be deternined, one give a rule
which allows the computation of the successive decimals. Intuitionists are pretty
scarce these days: we have never met one. But we have a certain sympathy
with their views, and much prefer proofs that involve effectively computable
algorithms, at least implicitly.

Continuous functions on compact sets

We can now explore some of the consequences of Theorem 1.6.2.

One is that a continuous function defined on a compact subset has both a
maximum and a minimum. Recall from first year calculus and from Scction
0.4 the difference between a least upper bound and a mazimum (similarly, the
difference between a greatest lower bound and a minimum).

Definition 1.6.4 (Least upper bound). A number z is the least upper
bound of a function f defined on a set C if z is the smallest numher such
that f(a) < z for alla € C. It is also called supremum, abbreviated sup.

Definition 1.6.5 (Maximum). A number z is the mazimum of a function
f defined on a set C if it is the least upper bound of f and there exists b € (7
such that f(b) = z.



On the open set (0, 1) the great-
est lower bound of f(x) = 22 is
0. and f has no minimum. On
the closed set (0,1]. 0 is both the
greatest lower bound and the min-

imum of f.

Recall that “compact™ ineans
closed and bounded.
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For example, on the open set (0,1) the least upper bound of f(x) = 2% is
1, and f has no maximum. On the closed set [0,1], 1 is both the lcast npper
bound and the maxiimm of f.

Definition 1.6.6 (Greatest lower bound, minimum). A number y is
the greatest lower bound of a function f defined on a set C if y is the largest
number such that f(a) > z for all a € C. The word infimum, abbreviated
inf, is a synonym for greatest lower bound. The number y is the minimum
of f if there exists b € C such that f(b) = y.

Theorem 1.6.7 (Existence of minima and maxima). Let C C R" be a
compact subset, and f : C — R be a continuous function. Then there exists
a point a € C such that f(a) > f(x) for all x € C, and a point b € C such
that f(b) < f(x) forallx € C.

Here are some examples to show that the conditions in the theorem are
necessary. Consider the function

0 whenz=0
flz) = { L . 1.6.7
z Otherwise,
defined on the compact set [0,1. As z — 0, we see that f(x) blows up to
infinity; the function does not have a maximum (it is not bounded). This
function is not continuous, so Theorem 1.6.7 does not apply to it.

The function f(zx) = 1/z, defined on (0,1], is continuous but it has no
maximum either; this time the problem is that (0,1} is not closed, hence not
compact. And the function f(z) = z, defined on all of B, is not bounded cither;
this time the problein is that R is not bounded, hence not compact. Fxercise
1.6.1 asks you to show that if A C R" is any non-compact subsct, then there
always is a continuous unbounded function on A.

Proof. The proof is by contradiction. Assume f is unbounded. Then for
any integer N, no matter how large, there exists a point xx € C such that
|f(x~n)| > N. By Theorem 1.6.2, the scquence x, must contain a convergent
subsequence X x;), which converges to some point b € C. Since f is continuous
at b, then for any ¢, therc cxists a § > 0 such that when |[x — b| < §, then
£(x) — F(B)] < € iie., [F(X)] < |f(B)| +e.

Since the x ;) converge to b, we will have |xy(;) — b| < § for j snfficiently
large. But as soon as N(j) > |f(b)| + ¢, we have

If(xn)l > N(G) > |£(b)] +e, 1.6.8

a contradiction.

Thercfore, the set of values of f is bounded, which means that f has a least
upper bound M. What we now want to show is that f has a maximum: that
there exists a point a € C such that f(a) = M.



Stated in terms of cars, the
mean value theorem may seem ob-
vious. But notice that the theo-
rem does not require that the deriv-
ative be continuous: even if it were
possible for a car to jump from go-
ing 59 mph to going 61 mph, with-
out ever passing through 60 mph,
it would still be true that a car
that traveled 60 miles in an hour
would have at some instant to be
going 60 mph.
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There is a sequence x; such that
lim f(x;) =M. 169
1~+00

We can again extract a convergent subsequence X;(,,) that converges to some
point a € C. Then, since a = limy, —.e0 Xi(m),
f(a) = lim f(xim)) =M. 1.6.10

The proof for the minimum works the same way. O

We will have several occasions to use Theorem 1.6.7. First, we need the
following proposition, which you no doubt proved in first year calculus.

Proposition 1.6.8. If s function g defined and differentiable on an open in-
terval in R has a maximum (respectively 8 minimum) at c, then its derivative
atcis0.

Proof. We will prove it only for the maximum. If g has a maximum at c, then
g(c) ~g(c+h) 20,50

g(c) —g(c+h) {20 ifh>0 ie., lim 9@ —gle+h) o0y
R <0 ifh<0; h—0 h

is simultaneously <0 and > 0,s0itis0. O

An essential application of Theorem 1.6.7 and Proposition 1.6.8 is the mean
value theorem, without which practically nothing in differential calculus can be
proved. The mean value theorem says that you can’t drive 60 miles in an hour
without going exactly 60 mph at one instant at least: the average change in f
over the interval (a, b) is the derivative of f at some point ¢ € (a,b).

Theorem 1.6.9 (Mean value theorem). If f : [a,b] — R is continuous,
and f is differentiable on (a,b), then there exists ¢ € (a,b) such that

F= %(—‘Q 1.6.12

Note that f is defined on the closed and bounded interval [a, b}, but we must
specify the open interval (a,b) when we talk about where f is differentiable.!?
If we think that f measures position as a function of time, then the right-hand
side of Equation 1.6.12 measures average speed over the time interval b — a.

'7One could have a left-hand and right-hand derivative at the endpoints, but we
are not assuming that such one-sided derivatives exist.



FIGURE 1.6.3.

A race between hare and tor-
toise ends in a dead heat. The
function f represents the progress
of the hare, starting at time a and
ending at time b. He speeds ahead,
overshoots the mark, and returns.
Slow-and-steady tortoise is repre-
sented by g(z) = f(a) + m(z - a).

Even if the coefficients a, are
real, the fundamental theorem of
algebra does not guarantee that
the polynomial has any real roots;
the roots may be complex.
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Proof. Think of a function f as representing distance traveled (by a car or, as
in Figure 1.6.3, by a hare). The distance the hare travels in the time interval
b—ais f(b) — f(a), so its average speed is

S Okt (O} 16.13

b—a

The function g represents the steady progress of a tortoise starting at f (a) and
constantly maintaining that average speed (alternatively, a car set on cruise
control):

9(z) = f(a) + m(z - a).

The function h measures the distance between f and g:
h(z) = f(z) — 9(z) = f(z) - (f(a) + m(z — a)). 1.6.14

It is a continuous function on [a,b], and h(a) = h(b) = 0. (The hare and the
tortoise start together and finish in a dead heat.)

If h is O everywhere, then f(z) = g(z) = f(a) + m(x — a) has derivative m
everywhere, so the theorem is true.

If h is not 0 everywhere, then it must take on positive values or negative
values somewhere, so it must have a positive maximum or a negative minimum,
or both. Let ¢ be a point where it has such an extremum; then c € (a,b), so h
is differentiable at c, and by Proposition 1.6.8, h'(c) = 0.

This gives 0 = h'(c) = f'(c) — m. (In Equation 1.6.14, z appears only twice;
the f(z) contributes f’(c) and the —mz contributes —m.) O

The fundamental theorem of algebra

The fundamental theorem of algebra is one of the most important results of
all mathematics, with a history going back to the Greeks and Babylonians. It
was not proved satisfactorily until about 1830. The theorem asserts that every
polynomial has roots.

Theorem 1.6.10 (Fundamental theorem of algebra). Let
p2)=z"+ar 12"+ tap 1.6.15
be a polynomial of degree k > 0 with complex coefficients. Then p has a
root: there exists a complex number zy such that p(z) = 0.
When k = 1, this is clear: the unique root is 29 = —aq.
When k = 2, the famous quadratic formula tells you that the roots are
—a) £/ 24
_“l_#. 1.6.16



Niels Henrik Abel, born in
1802, assumed responsibility for a
younger brother and sister after
the death of their alcoholic father
in 1820. For years he struggled
against poverty and illness, trying
to obtain a position that would al-
low him to marry his fiancée; he
died from tuberculosis at the age
of 26, without learning that he
had been appointed professor in
Berlin.

Evariste Galois, born in 1811,
twice failed to win admittance to
Ecole Polytechnique in Paris, the
second time shortly after his fa-
ther’s suicide. In 1831 he was
imprisoned for making an implied
threat against the king at a repub-
lican banquet; he was acquitted
and released about a month later.
He was 20 years old when he died
from wounds received in a duel.

At the time Gauss gave his
proof of Theorem 1.6.10, complex
numbers were not sufficiently re-
spectable that they could be men-
tioned in a rigorous paper: Gauss
stated his theorem in terms of real
polynomials. For a discussion of
complex numbers, see Section 0.6.

The absolute value of a com-
plex number z = z + iy is

|1z| = Vz2 + 92,
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(Recall above that the coefficient of 22 is 1.) This was known to the Greeks
and Babylonians.

The cases k = 3 and k = 4 were solved in the 16th century by Cardano and
others; their solutions are presented in Section 0.6.

For the next two centuries, an intense search failed to find anything analogous
for equations of higher degree. Finally, around 1830, two young mathematicians
with tragic personal histories, the Norwegian Hans Erik Abel and the French-
man Evariste Galois, proved that no analogous formulas exist in degrees 5 and
higher. Again, these discoveries opened new fields in mathematics.

Several mathematicians (Laplace, d’Alembert, Gauss) had earlier come to
suspect that the fundamental theorem was true, and tried their hands at proving
it. In the absence of topological tools, their proofs were necessarily short on
rigor, and the criticism each heaped on his competitors does not reflect well on
any of them. Although the first correct proof is usually attributed to Gauss
(1799), we will present a modern version of d’Alembert’s argument (1746).

Unlike the quadratic formula and Cardano’s formulas, our proof does not
provide a recipe to find a root. (Indeed, as we mentioned above, Abel and
Galois proved that no recipes analogous to Equation 1.6.16 exist.) This is a
serious problem: one very often needs to solve polynomials, and to this day
there is no really satisfactory way to do it; the picture on the cover of this
text is an attempt to solve a polynomial of degree 256. There is an enormous
literature on the subject.

Proof of 1.6.10. We want to show that there exists a number 2 such that
p(z) = 0. The strategy of the proof is first to establish that |p(z)| has a
minimum, and next to establish that its minimum is in fact 0. To establish
that |p(2)| has a minimum, we will show that there is a disk around the origin
such that every z outside the disk gives a value |p(2)| that is greater than |p(0)].
The disk we create is closed and bounded, and |p(z)| is a continuous function,
so by Theorem 1.6.7 there is a point 2o inside the disk such that |p(zp)| is the
minimum of the function on the disk. It is also the minimum of the function
everywhere, by the preceding argument. Finally—and this will be the main
part of the argument—we will show that p(zo) = 0.

We shall create our disk in a rather crude fashion; the radius of the disk we
establish will be greater than we really need. First, |p(z)| can be at least as
small as |ag), since when z = 0, Equation 1.6.15 gives p(0) = ap. So we want to
show that for |z| big enough, |p(z)| > |ag|- The “big enough” will be the radius
of our disk; we will then know that the minimum inside the disk is the global
minimum for the function.

It it is clear that for |z| large, |2*| is much larger. What we have to ascertain

is that when |z| is very big, |p(z)] > |ao|: the size of the other terms,
fak-12F"" + - + ay2 + ag), 1.6.17

will not compensate enough to make |p(z)| < |ao|-



The notation

sup{lax-1l,...

means the largest of

The triangle inequality can also

lag-1l,. ..

be stated as
¥l - W] < |V + W],

s laol}

+aol-
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First, choose the largest of the coefficients |ak-1|, ..., ]ao| and call it A:
A = sup{lak-1],...,|a0l}. 1.6.18
Then if |z2| = R, and R > 1, we have
lak—12*"1 + -+ a1z+ao| < AR*'+.--+ AR+ A

< AR*'4...4 AR*' + AR*! = kAR,
1.6.19
To get from the first to the second line of Equation 1.6.19 we multiplied all
the terms on the right-hand side, except the first, by R', R%... up to R¥"!in
order to get an R*~1 in all k terms, giving kAR*~! in all. (We don’t need to
make this term so very big; we're being extravagant in order to get a relatively
simple expression for the sum. This is not a case where one has be delicate
with inequalities.)
Now, when |z| = R, we have
(@) =125 +ak12* 7+ +al, 1.6.20
R* abs. value <kARk-1
so using the triangle inequality,
Ip(2)] 2 2] ~ lak—12*"1 + -+ + a1z + aq

1.6.21
> R¥ — kARF-! = R*"Y(R - kA).

FIGURE 1.6.4. Any z outside the disk of radius R will give |p(2)| > |ao|.

Of course R*~!|R — kA| > |ag) when R = max{kA + |ao|,1}. So now we
know that any z chosen outside the disk of radius R will give [p(z)| > |ao|, as
shown in Figure 1.6.4. If the function has a minimum, that minimum has to
be inside the disk. Moreover, we know by Theorem 1.6.7 that it does have a
minimum inside the disk. We will dcnote by zy a point inside the disk at which
the function achieves its minimum.



You might object, what hap-
pens to the middle terms, for ex-
ample, the 2a220u in a2(zo+u)? =
@223 + 2a220u + az2u*? But that is
a term in u with coefficient a222o,
so the coefficient a22z0 just gets
added to by, the coefficient of u.
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The big question is: is zo a root of the polynomial? Is it true that lp(20)| = 0?7
Earlier we used the fact that for |z| large, |2*| is very large. Now we will use the
fact that for |z| small, |2*| is very small. We will also take into account that we
are dealing with complex numbers. The preceding argument works just as well
with real numbers, but now we will need the fact that when a complex number
is written in terms of its length r and polar angle 8, taking its power has the
following effect:

(r(cos + isin 6))* = r*(cos§ + i sin6). 1.6.22

As you choose different values of 8 then z = r(cos 6 + i sin §) travels on a circle
of radius r. If you raise that number to the kth power, then it travels around a
much smaller circle (for r small), going much faster—k times around for every
one time around the original circle.

The formulas in this last part of the proof may be hard to follow, so first we
will outline what we are going to do. We are going to argne by contradiction,
saying that p(zo) # 0, and seeing that we land on an impossibility. We will
then see that p(z) is not the minimum, because there exists a point z such that
[p(2)| < |p(20)|. Since we have already proved that |p(zo)| is the minimum, our
assumption that p(zo) # 0 is false.

We start with a change of variables; it will be easier to consider numbers in
a circle around 2 if we treat zo as the origin. So set z = zo + u, and consider
the function

p2) =z +ax12" '+ tao= (o +u) +aki(o+u) M+ +ap

=u* 4 b0 By = g(u),
1.6.23

where
bo =25 +ax_125"" + -+ + a0 = p(z0). 16.24

This is a polynomial of degree k in u. We have grouped together all the terms
that don’t contain u and called them b;.

Now, looking at our function g(u) of Equation 1.6.23, we choose the term
with the smallest power j > 0 that has a nonzero coefficient. (For example, if
we had g(u) = u* + 2u? + 3u + 10, that term, which we call b;u?, would be 3u;
if we had g(u) = u® + 2u? + 5u + 1, that term would be 5u3.) We rewrite our
function as follows

qu)=bo+ bl +  (bjd T 4 4 ub), 1.6.25

abe.val. smaller than |bju’| for small u

Exercise 1.6.2 asks you to justify that [(bj« u?*! +--- + u*)| < [b;ju!| for small
u. The construction is illustrated in Figure 1.6.5.



Because there may be lots of
little terms bj41u?*' +- - -+u*, you
might imagine that the first dog
holds a shorter leash for a smaller
dog who is running around him,
that smaller dog holding a yet
shorter leash for a yet smaller dog
who is running around him ... .

Exercise 1.6.6 asks you to prove
that every polynomial over the
complex numbers can be factored
into linear factors, and that every
polynomial over the real numbers
can be factored into linear factors
and quadratic factors with com-
plex roots.

Recall that p is pronounced

“rho.”
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b()+bj UJ p(z)

&)

leash
. 0 0

FIGURE 1.6.5. The point p(z0) = by (the flagpole) is the closest that p(z) ever comes
to the origin, for all 2. The assumption that the flagpole is different from the origin
(bo # 0) leads to a contradiction: if Ju| is small, then as 2 = 20 + u takes a walk
around 2o (shown at left), p(z) (the dog) goes around the flagpole and will at some
point be closer to the origin than is the flagpole itself (shown at right).

Now consider our number u written in terms of length p and polar angle 6:

u = p(cos@ + isinb). 1.6.26

The numbers z = 2 + u then turn in a circle of radius p around z as we
change the angle §. What about the numbers p(z)? If we were to forget about
the small terms grouped in parentheses on the right-hand side of Equation
1.6.25, we would say that these points travel in a circle of radius p’ (smaller
than p for p < 1) around the point by = p(29). We would then see that, as
shown in Figure 1.6.5, that if p’ < |bp|, some of these points are between by and
0; i.e., they are smaller than by. If we ignore the small terms, this would mean
that there exists a number z such that |p(z)| < |p(20)|, contradicting the fact,
which we have proved that |p(29)] is the minimum of the function.

Of course we can’t quite ignore the small terms, but we can show that they
don’t affect our conclusion. Think of by as a flagpole and by + b;u?, with |u| = p
as a man walking on a circle of radius |b;|o? around that flagpole. He is walking
a dog that is running circles around him, restrained by a leash of radius less than
[bjle?, for p sufficiently small. The leash represents the small terms. So when
the man is between 0 and the flagpole, the dog, which represents the point ?(2)),
is closer to 0 than is the flagpole. That is, {p(2)| is less than |by] = |p(20)]. This
is impossible, because we proved that |p(z9)| is the minimum of our function.
Therefore, our assumption that p(2) # 0 is false. O

The proof of the fundamental theorem of calculus illustrates the kind of thing
we meant when we said, in the beginning of Section 1.4, that calculus is about
“some terms being dominant or negligible compared to other terms.”
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1.7 DIFFERENTIAL CALCULUS: REPLACING NONLINEAR

The object of differential cal-
culus is to study nonlinear map-
pings by replacing them with linear
transformations; we replace non-
linear equations with linear equa-
tions, curved surfaces by their tan-
gent planes, and so on.

TRANSFORMATIONS BY LINEAR TRANSFORMATIONS

Born: I should like to put to Herr Einstein a question, namely, how
quickly the action of gravitation is propagated in your theory ... .
Einstein: It is extremely simple to write down the equations for the case
when the perturbations that one introduces in the field are infinitely small.
... The perturbations then propagate with the same velocity as light.
Born: But for great perturbations things are surely very complicated?
Einstein: Yes, it is a mathematically complicated problem. It is especially
difficult to find ezact solutions of the eguations, as the equations are
nonlinear.—Discussion after lecture by Einstein in 1913

As mentioned in Section 1.3, in real life (and in pure mathematics as well) a
great many problems of interest are not linear; one must consider the effects of
feedback. A pendulum is an obvious example: if you push it so that it moves
away from you, eventually it will swing back. Second-order effects in other
problems may be less obvious. If one company cuts costs by firing workers, it
will probably increase profits; if all its competitors do the same, no one company
will gain a competitive advantage; if enough workers lose jobs, who will buy
the company’s products? Modeling the economy is notoriously difficult, but
second-order effects also complicate behavior of mechanical systems.

The object of differential calculus is to study nonlinear mappings by replacing
them with linear transformations. Of course, this linearization is useful only if
you understand linear objects reasonably well. Also, this replacement is only
more or less justified. Locally, near the point of tangency, a curved surface may
be very similar to its tangent plane, but further away it isn’t. The hardest part
of differential calculus is determining when replacing a nonlinear object by a
linear one is justified.

In Section 1.3 we studied linear transformations in R®. Now we will see
what this study contributes to the study of nonlinear transformations, more
commonly called mappings.

This isn’t actually a reasonable description: nonlinear is much too broad a
class to consider. Dividing mappings into linear and nonlinear is like dividing
people into left-handed cello players and everyone else. We will study a limited
subset of nonlinear mappings: those that are, in a sense we will study with care,
“well approximated by linear transformations.”

Derivatives and linear approximation in one dimension

In one dimension, the derivative is the main tool used to linearize a function.
Recall from one variable calculus the definition of the derivative:



Limiting the domain as we do
in Definition 1.7.1 is necessary, be-
cause many interesting functions
are not defined on all of R, but
they are defined on an appropriate
open subset U C R. Such func-
tions as logz,tanz and 1/z are
not defined on all of R; for exam-
ple, 1/z is not defined at 0. So if
we used Equation 1.7.1 as our def-
inition, tan z or log z or 1/z would
not be differentiable.

We discussed in Remark 1.5.1
why it is necessary to specify an
open set when talking about de-
rivatives.

Exercises 1.7.1, 1.7.2, 1.7.3,
and 1.7.4 provide some review of
tangents and derivatives.
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The derivative of a function f : R — R, evaluated at a, is
f'(a) = lim & (f(a+h) f(a)).
Although it sounds less friendly, we really should say:

1.7.1

Definition 1.7.1 (Derivative). Let U be an open subset of R, and f :
U — R a function. Then f is differentiable at a € U if the limit

f'(a) = h (f(a +h) - f(a)) exists. 1.7.2

Students often find talk about open sets U € R and domains of definition
pointless; what does it mean when we talk about a function f : U — R? This
is the same as saying f : R — R, ezcept that f(z) is only defined if z is in U.
Example 1.7.2 (Derivative of a function from R — R). If f(z) = z2,
then f/(z) = 2z. This is proved by writing

RN 2_ .2y _ i L 2y _ N

f(z) —’lll_.n})h((z+h) z?) = lim —(2zh + h )—2:c+’ll|_.n})h—2z. 1.7.3

The derivative 2z of the function f(x) = z2 is the slope of the line tangent
to f at x; one also says that 2z is the slope of the graph of f at z. In higher
dimensions, this idea of the slope of the tangent to a function still holds, al-
though already in two dimensions, picturing a plane tangent to a surface is
considerably more difficult than picturing a line tangent to a curve. A

Partial derivatives

One kind of derivative of a function of several variables works just like a de-
rivative of a function of one variable: take the derivative with respect to one
variable, treating all the others as constants.

Definition 1.7.3 (Partial derivative). Let U be an open subset of R®
and f : U — R a function. The partial derivative of f with respect to the
ith variable, and evaluated at a, is the limit

ay a)
. : :

D;f(a) = hm i flai+h|—-f]{ a; R 1.74
Qn an

if the limit exists, of course.



The partial derivative D, f
measures change in the direction
of the vector &;; the partial deriv-
ative D2 f measures change in the
direction of the vector &2; and so
on.

Different notations for the par-
tial derivative exist:

8,
le=a—:;. sz=a%';

g=2
D.f =5t

(]

A notation often used in partial
differential equations is

fz, = Dif.
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We can rewrite Equation 1.7.4, using standard basis vectors:

D.f(a) = Jim w 175

since all the entries of &; are 0 except for the ith entry, which is 1, so that

a)

Qn
The partial derivative D; f(a) answers the question, how fast does the func-
tion change when you vary the ith variable, keeping the other variables con-

stant? It is computed exactly the same way as derivatives are computed in first
year calculus. To take the partial derivative with respect to the first variable

of the function f (:c) = zy, one considers y to be a constant and computes

Dif =y.
What is D, f if f (:) = 23+ 2%y + y2? What is D, f? Check your answers

below.!S

Remark. There are at least four commonly used notations for partial derive-
tives, the most common being

of of af

Bor Bon’ B 1.7.7
for the partial derivative with respect to the first, second, ... ,ith variable. We
prefer the notation D; f, because it focuses on the important information: with
respect to which variable the partial derivative is being taken. (In problems
in economics, for example, where there may be no logical order to the vari-
ables, one might assign letters rather than numbers: D, f for the “wages”
variable, Dy, f for the “prime rate,” etc.) It is also simpler to write and looks
better in matrices. But we will occasionally use the other notation in examples
and exercises, so that you will be familiar with it. A

Pitfalls of partial derivatives

One eminent French mathematician, Adrien Douady, complains that the no-
tation for the partial derivative omits the most important information: which
variables are being kept constant.

"D f = 322 + 2zy and D.f = z% +2y.



All notations for the partial
derivative omit crucial informa-
tion: which variables are being
kept constant. In modeling real
phenolnena, it can be difficult even
to know what all the variables are.
But if you don't, your partial de-
rivatives may be meaningless.

Note that the partial derivative
of a vector-valued function is a
vector.

We use the standard expres-
sion, “vector-valued function,”
but note that the values of such
a function could be points rather
than vectors; the difference in
Equation 1.7.8 would still be a vec-
tor.

We give two versions of Equa-
tion 1.7.10 to illustrate the two no-
tations and to emphasize the fact
that although we used z and y to
define the function, we can evalu-
ate it at variables that look differ-
ent.

1.7 Differential Calculus 103

For instance, consider the very real question: does increasing the minimum
wage increase or decrease the number of minimum wage jobs? This is a question
about the sign of

D minimum wage fv
where z is the economy and f(z) = number of minimum wage jobs.

But this partial derivative is meaningless until you state what is being held
constant, and it isn’t at all easy to see what this means. Is public investment to
be held constant, or the discount rate, or is the discount rate to be adjusted to
keep total unemployment constant, as appears to be the present policy? There
are many other variables to consider, who knows how many. You can see here
why economists disagree about the sign of this partial derivative: it is hard if
not impossible to say what the partial derivative is, never mind evaluating it.

Similarly, if you are studying pressure of a gas as a function of temperature,
it makes a big difference whether the volume of gas is kept constant or whether
the gas is allowed to expand, for instance because it fills a balloon.

Partial derivatives of vector-valued functions

The definition of a partial derivative makes just as good sense for a vector-
valued function (a function from R" to R™). In such a case, we evaluate the
limit for each component of f, defining

ay a)
- 1 : D f\(a)
D,’f(&) = ,{l_l'f}] ”: fl a; +h ~f a. = : 1.7.8
an an D;ifm(a).
Example 1.7.4. Let f : R? — R® be given by
z
h ( y) =zy
z . z ry
f2 ( ) =sin(z+y), written more simply f( ) = | sin(z +y)
y y 2?2 ~ 2
T\ _.2_.2
f3 ( y) -y
1.7.9
The partial derivative of f with respect to the first variable is
— Y b
z\ _ of (a
an(y) = 005(;:1/) o B b) = | cos(a+b) 1.7.10
2a



Partial derivatives measure the
rate at which f varies as the vari-
able moves in the direction of the
standard basis vectors. Direction-
al derivatives measure the rate at
which f varies when the variable
moves in any direction.

Some authors consider that
only vectors V of length 1 can be
used in the definition of directional
derivatives. We feel this is an un-
desirable restriction, as it loses the
essential linear character of the di-
rectional derivative as a function
of ¥.
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What is the partial derivative with respect to the second variable?!’¥ What

are the partial derivatives at (g) of the function

2
z\ _ [ €Y\,
f(y) - ((:osy)'
How would you rewrite the answer, using the notation of Equation 1.7.77%0

Directional derivatives

The partial derivative
lim M)_—_@ 1.7.11
h—0 h
measures the rate at which f varies as the variable x moves from a in the
direction of the standard basis vector &;. It is natural to want to know how f
varies when the variable moves in any direction v:

Definition 1.7.5 (Directional derivative). The directional derivative of
f at a in the direction V,

lig £@*AV) — (@) 1712
h—0 h

measures the rate at which f varies when x moves from a in the direction V.

Example 1.7.6 (Computing a directional derivative). Let us compute

1 T
the derivative in the direction v = | 2| of the function f | ¥ | = zysinz,
1 z
1 1 h
evaluated at the point a = 1 ). We have h = h |2| = |2h|, so
w/2 1 h
Equation 1.7.12 becomes
f(a+hv) f(a)
lim & (14 h)(1 + 2h)sin(* + h) = (1-1-sin 1.7.13
Jim & sin(3 + )—-(1- smi). 1.
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Using the formnula sin(a + b) = sina cosb + cosasinb, this becomes

=1 =0

—~— -
.1 . T T Can T
;l.'.%l_;(((l + h)(1 4 2h)(sin 3 cos h + cos 2 sinh)) —sin 2)

—lim L 2 - 1.7.14
= m}h(((l + 3k + 2h%)(cos b)) 1)

1

3hcosh + lim ~2h2cosh=0+3+0=3. A
h h—0 h

.1 -
='ll|lx})—’;(cosh- l)+'l'!£{)

The derivative in several variables

Often we will want to see how a system changes when all the variables are
allowed to vary; we want to compute the whole derivative of the function. We
will see that this derivative consists of a matrix, called the Jacobian matriz,
whose entries are the partial derivatives of the function. We will also see that
if a function is differentiable, we can extrapolate all its directional derivatives
from the Jacobian matrix.

Definition 1.7.1 from first year calculus defines the derivative as the limit

changein f = flath) - fla) 1.7.15
change in h

as h (the increment to the variable =) approaches 0. This does not generalize
well to higher dimensions. When f is a function of several variables, then an
increment to the variable will be a vector, and we can't divide by vectors.

It is tempting just to divide by |h|, the length of h:

£1@) = im o (f(a+ ) - (@), 17.16

This would allow us to rewrite Definition 1.7.1 in higher dimensions, since we
can divide by the length of a vector, which is a number. But this wouldn’t
work even in dimension 1, because the limit changes sign when h approaches
0 from the left and from the right. In higher dimensions it’s much worse. All
the different directions from which h could approach 0 give different limits. By
dividing by [h| in Equation 1.7.16 we are canceling the magnitude but not the
direction.

We will rewrite it in a form that does generalize well. This definition will
emphasize the idea that a function f is differentiable at a point a if the increment
Af to the function is well approximated by a linear function of the increment
h to the variable. This linear function is f’(a)h.



When we call f'(a)h a linear
function, we mean the linear func-
tion that takes the variable h and
multiplies it by f'(a)—i.e., the
function h — f'(a)h (to be read,
“h maps to f'(a) h”). Usually the
derivative of f at a is not a linear
function of a. If f(z) = sinz or
f(zx) = z°, or just about anything
except f(z) = z2, then f'(a) is not
a linear function of a. But h —
f'(a)h is a linear function of h.
For example, h — (sinz)h is a lin-
ear function of h, since (sin z)(h1+
h2) = (sinz)h, + (sinz)ha.

Note the difference between —
(“maps to”) and — (“to”). The
first has a “pusher.”
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Definition 1.7.7 (Alternate definition of the derivative). A function

f is differentiable at a, with derivative m, if and only if

af lineoz lxt:iion

i 2((@rn-7@) - @h )-o

The letter A, named “delta,” denotes “change in”; Af is the change in
the function; Az = h is the change in the variable z. The function mh that
multiplies h by the derivative m is thus a linear function of the change in x.

We are taking the limit as h — 0, so h is small, and dividing by it makes
things big; the numerator—the difference between the increment to the function
and the approximation of that increment—must be very small when h is near
0 for the limit to be zero anyway (see Exercise 1.7.11).

The following computation shows that Definition 1.7.7 is just a way of re-
stating Definition 1.7.1:

1.7.17

f'(a) by Equation 1.7.2

e s,
Jim 2 (@ + 1) - (@) - £ @) = i XM= 1@ (00

= f'(a) - f'(a) = 1.7.18
Moreover, the linear function h +— f’(a)h is the only linear function satisfying

Equation 1.7.17. Indeed, any linear function of one variable can be written
h +— mh, and

0= hm ((f(a+h) f(a)) -

mh

-5 =f)-m,
1.7.19

) i @+ 1) = f(@)
h—0 h

so f'(a) =

The derivative in several variables: the Jacobian matrix

The point of rewriting the definition of the derivative is that with Definition
1.7.7, we can divide by |h] rather than k; m = f'(a) is also the unique number
such that

FIGURE 1.7.1.
The mapping

z)_(z*+
((3)-("
takes the shaded square in the

square at top to the shaded area
at bottom.

. af linear function of h
Jim, o ((f(a +h) = f(a) - (f'(a)h) ) =0.

It doesn’t matter if the limit changes sign, since the limit is 0; a number close
to 0 is close to 0 whether it is positive or negative.

Therefore we can generalize Equation 1.7.20 to mappings in higher dimen-
sions, like the one in Figure 1.7.1. As in the case of functions of one variable, the

1.7.20



Note that in the Jacobian ma-
trix we write the components of f
from top to bottom, and the vari-
ables from left to right. The first
column gives the partial deriva-
tives with respect to the first vari-
able; the second column gives the
partial derivatives with respect to
the second variable, and so on.
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key to understanding derivatives of functions of several variables is to think that
the increment to the function (the output) is approzimately a linear function
of the increment to the variable (the input): i.e., that the increment

Af = f(a+ h) ~ f(a) 1.7.21

is approximately a linear function of the increment h.

In the one-dimensional case, A f is well approximated by the linear function
h— f’'(a)h. We saw in Section 1.3 that every linear transformation is given by
a matrix; the linear transformation k — f’(a)h is given by multiplication by
the 1 x 1 matrix [f’(a)).

For a mapping from R™ — R™, the role of this 1 x 1 matrix is played by a
m x n matrix comnposed of the partial derivatives of the mapping at a. This
matrix is called the Jacobian matriz of the mapping f; we denote it [Jf(a)):

Definition 1.7.8 (Jacobian matrix). The Jacobian matrix of a function

f is the m x n matrix composed of the partial derivatives of f evaluated at
a:

D;fl(a) oo D,.fl(a)

[f(a)] = : 1.7.22

D\ fm(8) ... Dnpfm(a)
Example 1.7.9. The Jacobian matrix of the function in Example 1.7.4 is

y T
[Jf(;)] = |cos(z+y) cos(z+y)]. 1.7.23
2z -2
The first column of the Jacobian matrix gives D_; f, the partial derivative with

respect to the first variable, z; the second column gives Dof, the partial deriv-
ative with respect to the second variable, y. A

z3y
What is the Jacobian matrix of the function f (;) = ( 2222 |7 Check
zy
your answer below.?!
3%y 2 .
#[ar(z)] = [424® 42y |. The first column is Dy (the partial derivatives
v T
with respect to the first variable); the second is Ef. The first row gives the partial
derivatives for f ( ;) = z°; the second row gives the partial derivatives for f (; =

227y, and the third gives the partial derivatives for f (;) =zy.



The fact that the derivative of
a function in several variables is
represented by the Jacobian ma-
trix is the reason why linear alge-
bra is a prerequisite to multivari-
able calculus.

We will examine the issue of
such pathological functions in Sec-
tion 1.9.
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When is the Jacobian matrix of a function its derivative?

We would like to say that if the Jacobian matrix exists, then it is t.h_e derivative
of f. That is, we would like to say that the increment f(a + h) — f(a) is

approximately [Jf(a)]h, in the sense that

lim —l..- ((f(a +h) - f(a)) - [Jf(a)]ﬁ) =0. 1.7.24
h—0 {h|

This is the higher-dimensional analog of Equation 1.7.17, which we proved
in one dimension. Usually it is true in higher dimensions: you can calculate
the derivative of a function with several variables by computing its partial
derivatives, using techniques you already know, and putting them in a matrix.

Unfortunately, it isn’t always true: it is possible for all partial derivatives of
a function f to exist, and yet for f not to be differentiable! The best we can do
without extra hypotheses is the following statement.

Theorem 1.7.10 (The Jacobian matrix and the derivative). If there
is any linear transformation L such that
1 - .
lim —( (f(a+h) - f(a)) - (L(h )=0, 1.7.25
tim o= (604 ) - 0) - (206
then all partial derivatives of f at a exist, and the matrix representing L is
[Jf(a)). In particular, such a linear transformation is unique.

Definition 1.7.11 (Derivative). If the linear transformation of Theorem
1.7.10 exists, f is differentiable at a, and the linear transformation represented
by [Jf(a)] is its derivative [Df(a)): the derivative of f at a.

Remark. 1t is essential to remember that the derivative [Df(a)] is a matriz
(in the case of a function f : R — R, a 1 x 1 matrix, i.e., a number). It is
convenient to write [Df(a)] rather than writing the Jacobian matrix in full:

Difi(a) ... Dnfi(a)
(Df(a)] = [Jf(a)] = : 1.7.26
Difm(a) ... Dafm(a)
But when you see [Df(a)], you should always be aware of its dimensions. Given
a function f : R® — R?, what are the dimensions of its derivative at a, [Df(a))?
Check your answer below.22 A

*?Since f : 133 — IR? takes a point in R® and gives a point in R?, similarly, [Df (a)]
takes a vector in B* and gives a vector in R?. Therefore [Df(a)) is a 2 x 3 matrix.



In Equation 1.7.27 for the di-
rectional derivative, we use the in-
crement vector hV rather than h
b we are ing the de-
rivative only in the direction of a
particular vector V.

Example: You are standing at
the origin on a hill with height

f(;) = 3z + 8y.

When you step in direction Vv =

; , your rate of ascent is

[ps(8)]v=m a[}] =1
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We will prove Theorem 1.7.10 after some further discussion of directional
derivatives, and a couple of extended examples of the Jacobian matrix as de-
rivative.

Extrapolating directional derivatives from partial derivatives

If a function is differentiable, we can extrapolate all its directional derivatives
from its partial derivatives—i.e., from its derivative:

Proposition 1.7.12 (Computing directional derivatives from the de-
rivative). If f is differentiable at a, then all directional derivatives of f at
a exist; the directional derivative in the direction V is given by the formula

f(a+ h¥) - f(a
h

im ) _ Df(a)}¥. 1.7.27

Exampie 1.7.13 (Computing a directional derivative from the Jaco-

bian matrix). Let us use Proposition 1.7.12 to compute the directional de-
z

rivative of Example 1.7.6. The partial derivatives of f | y | = zysinz are
z
Dyf = ysinz,Dof = zsinz and D3f = zycosz, so its derivative evaluated

at the point 1 is the one-row matrix [1, 1, 0]. (The commas may be
/2
misleading but omitting them might lead to confusion with multiplication.)

Multiplying this by the vector v = ; does indeed give the answer 3, which
is what we got before. A '
Proof of Proposition 1.7.12. The expression

r(h) = (f(a + h) - f(a)) — [Df(a)]h 1.7.28

defines the “remnainder” r(h)—the difference between the increment to the
function and its linear approximation—as a function of the increment h. The
hypothesis that f is differentiable at a says that

. r(h) -
lim E(—..-l =0. 1.7.29
Substituting AV for h in Equation 1.7.28, we find

r(hV) = f(a + hV) - f(a) — [Df(a))~V, 1.7.30



To follow Equation 1.7.32, re-
call that for any linear transforma-
tion T, we have

T(a¥) = aT(¥).

The derivative [Df(a)] gives a lin-
ear transformation, so

[Df (a)]h¥ = h{Df(a)}¥.

Once we know the partial deri-
vatives of f, which measure rate of
change in the direction of the stan-
dard basis vectors, we can com-
pute the derivatives in any direc-
tion.

This should not come as a sur-
prise. As we saw in Example
1.3.15, the matrix for any linear
transformation is formed by see-
ing what the transformation does
to the standard basis vectors: The
ith column of the matrix [T)] is
T(&;),. One can then see what T
does to any vector V by multiply-
ing [T]V. The Jacobian matrix is
the matrix for the “rate of change”
transformation, formed by seeing
what that transformation does to
the standard basis vectors.
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and dividing by h gives

_ r(h¥) f(a+ hv)—f(a) . .
= ~ [Df(a)]¥, 1.7.31
91 . IDt(a)]
where we have used the linearity of the derivative to write
[Df@)h¥ _ ADE@IV _ 1py¢q))y. 1.7.32
h h
The term
r(hV)
—_ 1.7.33
hIv|

on the left side of Equation 1.7.31 has limit 0 as h — 0 by Equation 1.7.29, so

Jim w —[Df@)F=0. O 1.7.34

h—0

Example 1.7.14 (The Jacobian matrix of a function f : R? — R?). Let’s
see, for a fairly simple nonlinear mapping from R? to R2, that the Jacobian
matrix does indeed provide the desired approximation of the change in the
mapping. The Jacobian matrix of the mapping

z\ _ zy . N _|y =
£ (y) - (z’ -y’) i [Jf(v)] - [2:: -2y] ’
since the partial derivative of zy with regard to z is y, the partial derivative of
h
£l
Plugging this vector, and the Jacobian matrix of Equation 1.7.35, into Equa-
tion 1.7.24, we get

(G0 - ([ 5] (1) =

k[ ]o P

1.7.35

zy with regard to y is z, and so on. Our increment vector will be

f(-+ﬁ) Jacobian matrix §
1.7.36

The vAZ + k2 at left is |h|, the length of the increment vector (as defined in

Equation 1.4.7). Evaluating f at ( at h) and at ( a)' we have

b+k b

[:]lfl[gJﬁ((((a&ll;P—(b(;ﬁ)z)‘( 2y )) B [227:;:1:]); 0

1.7.37



(1)

For example, at (Z)
the function

f(;)- (=2)
(y a? - y?
of Equation 1.7.35 gives f (‘;) =

( (1])‘ and we are asking whether

1 1 1] [h
(1) + s =] (i
_(1+h+k
T\ 2h-2k
is a good approximation to

1+h

1(31%)
_f 1+h+k+hk
T\2h-2k+h%2-k*)"

(That is, we are asking whether
the difference is smaller than lin-
ear. In this case, it clearly is: the
first entry differs by the quadratic
term hk, the second entry by the
quadratic term h? — k2.)
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After some computations the left-hand side becomes
. 1 ab + ak + bh + hk — ab — bh — ak
[h]'““[o] JRET K2 | @ + 2ah + h? — b? — 2bk — k? — a® + 6% — 2ah + 2bk |’
k|70
1.7.38
which looks forbidding. But all the terms of the vector cancel out except those

that are underlined, giving us

[] []¢,7a'lm[ hk ];[g] 1.7.39

Indeed, the hypotenuse of a triangle is longer than either of its other sides,
0< |k < VRZ+ K2 and 0 < |k| < VAT + K2, s0

0< = k| < |k|, 1.7.40
‘|\/h’+k2 l\/h’+k2 Ikl < ¥
and we have
squeezed between
0and0
< lim __hk l< lim |k|= 1.7.41
T [a]fo VRZEZ T[] o o
k ] k]“ o]
Similarly,
0< < + < |h| + k|, 7.
"|¢h2+1?2| Illml Bl + k| 1.7.42
S0
squeezed between
0and0
|h|+|k|) 0+0=0. 1.7.43

h+k

ST



When we speak of Mat(n,n)
as the space of n X m matrices
we mean that we can identify an
n X n matrix with an element of
R™. In Section 2.6 we will see
that Mat (n,n) is an example of
an abstract vector space, and we
will be more precise about what
it means to identify such a space
with an appropriate RY.

If you wonder how we found the
result of Equation 1.7.45, look at
the comment accompanying Equa-
tion 1.7.48.

We could express the deriva-
tive of the function f(z) = z? as
f'(z) : h— 2zh.

Equation 1.7.48 shows that
AH+ HA

is exactly the linear terms in H of
the increment to the function, so
that subtracting them leaves only
higher degree terms; i.e., AH+HA
is the derivative.
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Example 1.7.15 (The derivative of a matrix squared). In most serious
calculus texts, the first example of a derivative is that if f(z) = z2, then
f'(z) = 2z, as shown in Equation 1.7.3. Let us compute the same thing when
a matrix, not a number, is being squared. This could be written as a function
R™ — R™, and you are asked to spell this out for n = 2 and n = 3 in Exercise
1.7.15. But the expression that you get is very unwieldy as soon as n > 2, as
you will see if you try to solve the exercise. This is one time when a linear
transformation is easier to deal with than the corresponding matrix. It is much
easier to denote by Mat (r, n) the space of n x n matrices, and to consider the
mapping S : Mat (n,n) — Mat (n,n) given by

S(A) = A2, 1.7.44

(The S stands for “square.”)

In this case we will be able to compute the derivative without computing the
Jacobian matrix. We shall see that S is differentiable and that its derivative
{DS(A)] is the linear transformation that maps H to AH + HA:

(DS(A)|H = AH + HA, also written [DS(A)] : H — AH + HA.  1.7.45

Since the increment is a matrix, we denote it H. Note that if matrix multipli-
cation were commutative, we could denote this derivative 2AH or 2H A—very
much like the derivative f' = 2z for the function f(z) = z2.

To make sense of Equation 1.7.45, a first thing to realize is that the map

[DS(A)] : Mat (n,n) — Mat(n,n), Hw— AH+ HA 1.7.46

is a linear transformation. Exercise 2.6.4 asks you to check this, along with
some extensions.

Now, how do we prove Equation 1.7.457
Well, the assertion is that

. 1
lim —|(S(A+ H) - S(4)) ~ (AH+HA) |=0. 1747
H—o |H| increment ._linear function of
to to variable

Since S(A) = A2,

IS(A+ H) - S(A) - (AH + HA)|= |(A+ H)? - A> - AH — HA|
=|A2+ AH + HA+ H? - A> - AH ~ HA|
=|H?. 1.7.48

So the object is to show that

2
lim HY _

Hm, —lH—| =0. 1.7.49



Exercise 1.7.20 asks you to
compute the Jacobian matrix and
verify Proposition 1.7.16 in the
case of 2 x 2 matrices. It should
be clear from the exercise that us-
ing this approach even for 3 x 3
matrices would be extremely un-
pleasant.

Since H — 0 in Equation 1.7.51,
we can assume that |A~'H| < 1,
so treating (I + A~'H)~! as the
sum of the series is justified.
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Since |H?| < |H|? (by Proposition 1.4.11), this is true. A

Exercise 1.7.18 asks you to prove that the derivative AH + HA is the “same”
as the Jacobian matrix computed with partial derivatives, for 2 x 2 matrices.
Much of the difficulty is in understanding S as a mapping from RY - R,

Here is another example of the same kind of thing. Recall that if f(z) = 1/z,
then f’(a) = —1/a®. Proposition 1.7.16 generalizes this to matrices.

Proposition 1.7.16. The set of invertible matrices is open in Mat(n,n),
and if f(A) = A™}, then f is differentiable, and

[Df(A)H = -A"1HA™L. 1.7.50

Note the interesting way in which this reduces to f’(a)h = —h/a® in one
dimension.

Proof. (Optional) We proved that the set of invertible matrices is open in
Corollary 1.5.33. Now we need to show that

m T <(A +H)'-A"' - -A'HAT! ) =0. 1.7.51
e e e
to i linear fi jon of H

Our strategy (as in the proof of Corollary 1.5.33) will be to use Proposition
1.5.31, which says that if B is a square matrix such that |B| < 1, then the
series ] + B + B2 + - converges to (I — B)~!. (We restated the proposition
here changing the A’s to B’s to avoid confusion with our current A’s.) We also
use Proposition 1.2.15 concerning the inverse of a product of invertible matrices.
This gives the following computation:

. Prop.1.2.16
(A+H)™' = (Al + A'H)) = (I+A'H)'A™!
= (I-(-A"'H)™' A
e Y
sum of series in linc below

= (1 +(~A7'H) + (-A'H)? + ) A? 1.7.52

series I+ B+B3+...,where B=—A-1H

(Now we consider the first term, second terms,
and remaining terms:)

=A"' - A“HA‘ +((-ATTH + (-AT'H) + ... ) A
N ~
1st 2nd others
It may not be immediately obvious why we did the computations above. The
point is that subtracting (A~! — A~'HA™!) from both sides of Equation 1.7.52
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gives us, on the left, the quantity that really interests us: the difference between
the increment of the function and its approximation by the linear function of
the increment to the variable:

Switching from iatrices to

lengths of matrices in Equation ((A+H)1 - A'll - (= A'IHA—l)

1.7.54 has seyeral.:llxportant con- merememt to fametion linear fonction of
sequences. First, it allows us, via increment to variable
Proposition 1.4.11, to establish an
i = 12 4 (AT 4. )40
inequality. Next, it explains why = ((‘A H)?+(-A7'H)’ + )A 1.7.53

we could multiply the |A~"'|2 and L2 X . .
|A~Y to get |A™'|*: matrix mul- =(A"'H) (l+ (-A7*H)+ (-A"'H) +...)A" .
tiplication isn't commutative, but

multiplication of matrix lengthsis, NOW applying Proposition 1.4.11 to the right-hand side gives us

since the length of a matrix is a —1_4-1 -1 -1
number. Finally, it explains why I(A +H) AT +ATHA |
the sum of the series is a fraction <|A7'H)? ll +(-AT'H) + (~A7'H)? 4 ... !'A-ll;

rather than a matrix inverse.
and the triangle inequality gives

convergent geometric series 1.7.54
< lA"HI’IA"l(l +|-AH|+ |- AT'H? + --4)
1
S|HPATP ———.
_I l' Il‘lA_lHl
Recall (Exercise 1.5.3) that the Now suppose H so small that |[A~!H| < 1/2, so that
triangle inequality applies to con-
vergent infinite sums. 1
—_— <
1=1A1H] S 2 1.7.55
We see that
llm T |(A +H)T' - AT+ ATTHATY < Jim 21H||A- P=o.
0O 1.7.56

Proving Theorem 1.7.10 about the Jacobian matrix

Now it's time that we proved Theorem 1.7.10. We restate it here:

Theorem 1.7.10 (The Jacobian matrix as derivative). If there is any
linear transformation L such that

(f(ﬂ+h) ~ f(a)) - L(B)
L ||

[t::(n ﬁl] partial derivatives of f at a exist, and the matrix representing L is
a

=0, (1.7.25)



This proof proves that if there
is a derivative, it is unique, since a
linear transformation has just one
matrix.
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Proof. We know (Theorem 1.3.14) that the linear transformation L is repre-
sented by the matrix whose ith column is L€;, so we need to show that

L&, = Dif. 1.7.57

I-)—gi' being by definition the ith column of the Jacobian matrix [3f(a)].
Equation 1.7.25 is true for any vector h, including t&;, where ¢ is a number:
i (@ 18) —S()) ~ LEE) _, 1.7.58
t&,—0 |te:]
We want to get rid of the absolute value signs in the denominator. Since
|t&;| = |t||€;] (remember ¢ is a number) and |€;| = 1, we can replace |t&;| by |t|.
The limit in Equation 1.7.58 is 0 for ¢ small, whether ¢ is positive or negative,
so we can replace |t| by t:

jim f@*18) — fl@) L&) _ 1.7.59
té;—0 t
Using the linearity of the derivative, we see that
L(t&,) = tL(&;), 1.7.60

so we can rewrite Equation 1.7.59 as
im f(a +t€,) - f(a)

8, —0 t
The first term is precisely Definition 1.7.5 of the partial derivative. So L(€;) =
D;f(a): the ith column of the matrix corresponding to the linear transformation

L is indeed DTf . In other words, the matrix corresponding to L is the Jacobian
matrix. O

— L(&) =0. 1.7.61

1.8 RULES FOR COMPUTING DERIVATIVES

In this section we state rules for computing derivatives. Some are grouped in
Theorem 1.8.1 below; the chain rule is discussed separately, in Theorem 1.8.2.
These rules allow you to differentiate any function that is given by a formula.

Theorem 1.8.1 (Rules for computing derivatives). Let U C R" be an
open set.

(1) Iff:U — R™ is a constant function, then f is differentiable, and its de-
rivative is 0] (i.e., it is the zero linear transformation R® — R™, represented
by the m x n matrix filled with zeroes)

(2) If t:R™ — R™ is linear, then it is differentiable everywhere, and its
derivative at all points a is f:

[Df(a)}¥ = £(¥). 181



Note that the terms on the
right of Equation 1.8.4 belong to
the indicated spaces, and therefore
the whole expression makes sense;
it is the sum of two vectors in R™,
each of which is the product of a
vector in R™ and a number. Note
that {Dg(a)]V is the product of a
line matrix and a vector, hence it
is 8 number.

The expression f,g : U — R™
in (4) and (6) is shorthand for
f:U -+ R"andg: U — R™.
We discussed in Remark 1.5.1 the
importance of limiting the domain
to an open subset.

(5) Example of fg: if
J(@)=a" snd g(a)= (822 ).
then fg(z) = (:3 gj;;;) .
(6) Example of f - g: if
()= %) at0)= (7).

then their dot product is

(f-8)(z) = zsinz + z° cos z.
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3 Iffi,....fm:U—>Rarem scalar-valued functions differentiable at a,
then the vector-valued mapping

i
f=| : |:U—R™ isdifferentiable at a, with derivative
fm 182
[Dfi(a)}¥
Df@F=|
[Dfm(a)¥
(4) If f,g:U — R™ are differentiable at a, then so is f + g, and
[D(f + g)(a)] = [Df(a)] + [Dg(a)}. 183

(5) If:U—Randg:U — R™ are differentiable at a, then so is fg, and
the derivative is given by
[Dfg(a)lV = f(a) [Dg(a)}¥ + f'(a)¥ g(a) .

184

(6) If f,g:U — R™ are both differentiable at a, then so is the dot product
f-g:U — R, and (as in one dimension)

(D(f - g)(a)]¥ = [Df (a)]¥ - :a) + f\.(:l -[Dg(a)¥.

g 1.8.5
~—
) L R™

As shown in the proof below, the rules are either immediate, or they are
straightforward applications of the corresponding one-dimensional statements.
However, we hesitate to call them (or any other proof) easy; when we are
struggling to learn a new piece on the piano, we do not enjoy seeing that it has
been labeled an “easy piece for beginners.”

Proof of 1.8.1. (1) If f is a constant function, then f(a + h) = f(a), so the
derivative [Df(a)] is the zero linear transformation:

1 - - 1
lim — (f h) - f(a) - = lim —0= 8.
s~o|h|((°+ )-f(a)- Qh -) ll\l—-olmo 0 1.8.6
([Df(a)]h
(2) Suppose f(a) is linear. Then [Df(a)] = f:
1 - -

lim —(f h)-f(a)-f =

lim 5 (E@+B) - (@) - £(h)) =0, 18.7

since f(a + h) = f(a) + f(h).
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(3) Just write everything out:
fila+h) h(a) [Dfi(a)}h

lim % : - : - N
PO\ fmla+ B) fm(@)) |Dfm(a)h
1 . - 1.8.8
limg_, z (fi(a+h) - fi(a) — [Dfi(a)lh)
= : = 0.
limg_, %(f,,.(a +5) — fn(a) - [Dfm(a)])
them;ﬂ;ss::e;;?:i?: 6:;:3; (4) Functions are added point by point, so we can separate out f and g:
e ey y  (f+8)(@+E)~ (£ +g)(a) - (IDf(a)] + [Dg(a)})h 189
Qas 0 1’8 eas! see - - —,
whenover he himself couldn’t ro = (f(a+B) - f(a) - [Df(a)lh) + (g(a + ) - g(a) - [Dg(a)]k).

member the details of how his rea- N0/ givide by [k, and take the limit as |h| — 0. The right-hand side gives

soning went, hut was sure“h)s €1 40 =0, so the left-hand side does too.
clusions were correct. 1 never

come across one of Laplace’s ‘Thus  (5) By part (3), we may assume that m = 1, i.e., that g = g is scalar valued.
it plainly appears’ without feeling Then
sure that I have hours of hard work

Jacobi: trix of
before me to fill up the chasm ocoblen mavrix offs

and find out and show how it [Dfg(a))h = i(D, f9)(a),-.., (D,.jg)(an.l' 1.8.10
R e s, =/(®)(Dig)(®) + (Drf)(@)g(a), .., (a)(Dag)(a) + (Dnf)(@)g(@)]
Bowditch. in one vuioble.'(/g)’=lg’+f'g
= f(@)((D19)(8), .-, (Dag)(@)]h + [(Di)(a), - -, (Dnf)(a)]g(a)n
Jacobian matrix of g Jacobian matrix of f

= f(a)([Dg(a)]h) + ([Df(a)lh)g(a).

(6) Again, write everything out:

def. of
- dot prod.

Dt g)@li “ 2 DY fig)(@lh = 3 (D (i) )]

=1

(O] n - .,
= Y (IDfi(a)lh)gi(a) + fi(a)([Dgi(a))h) 1811

=1

=" ([Df(a)}h) -g(@) + f(a)- ([Dg(a)h).

The second equality uses rule (4) above: f - g is the sum of the figi, 8o the
derivative of the sum is the sum of the derivatives. The third equality uses rule
(5). A more conceptual proof of (5) and (6) is sketched in Exercise 1.8.1. O
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The chain rule

One rule for differentiation is so fundamental that it deserves a subsection of
its own: the chain rule, which states that the derivative of a composition is the
composition of the derivatives, as shown in Figure 1.8.1.

Some physicists claim that the

chain rule is the most important  heorem 1.8.2 (Chain rule). Let U C R®,V C R™ be open sets, let
theorem in all of all mathematics. g:U — V and f: V — RP be mappings and let a be a point of U. If g is
differentiable at a and f is differentiable at g(a), then the compasition f o g
is differentiable at a, and its derivative is given by
The chain rule is proved in Ap-
pendix A.1. [D(f o g)(a)] = [Df(g(a))] o [Dg(a)). 1.8.12

In practice, when we use the chain rule, most often these linear transforma-
tions will be represented by their matrices, and we will compute the right-hand
side of Equation 1.8.12 by multiplying the matrices together:

[D(f 0 g)(a)] = [Df(g(a))][Dg(a))- 1.8.13

[Dg(a))[Df(b)] #= .
(D(f gXa)l% -

[Dg@)¥__

g f
—( 5@

v
Dg@)¥ 4
[Dg@)DEb)) =

[DXf gXa)l¥

FIGURE 1.8.1. The function g maps a point a € U to a point g(a) € V. The function
f maps the point g(a) = b to the point f(b). The derivative of g maps the vector ¥
to [Dg(a)(¥) = W. The derivative of fo g maps V to [Df(b)}(W).

Remark. One motivation for discussing matrices, matrix multiplication, linear
transformations and the relation of composition of linear transformations to
matrix multiplication at the beginning of this chapter was to have these tools
available now. In coordinates, and using matrix multiplication, the chain rule
states that

Dj(fog)i(a) = Y Diufi(g(a)) Djgk(a). 18.14
k=1



In Example 1.8.3, R® plays the
role of V in Theorem 1.8.2.

You can see why the range of
g and the domain of f must be
the same (i.e., V in the theorem,;
R? in this example): the width of
[Df£(g(t))] must equal the height
of [Dg(t)] for the multiplication to
be possible.

Equation 1.7.45 says that the
derivative of the “squaring func-
tion” f is

[Df(A)H = AH + HA.

In the second line of Equation
1.8.19, g(A) = A~! plays the role
of A above, and —A~'HA™! plays
the role of H.

Notice the interesting way this
result is related to the one-variable
computation: if f(z) = z~2, then
f'(z) = —2z73. Notice also how
much easier this computation is,
using the chain rule, than the
proof of Proposition 1.7.16, with-
out the chain rule.
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We will need this form of the chain rule often, but as a statement, it is a disaster:
it makes a fundamental and transparent statement into a messy formula, the
proof of which seems to be a computational miracle. A

Example 1.8.3 (The derivative of a composition). Suppose g: R — RS
and f : R® — R are the functions

x t
f(y) =z?+y2+75  gt)=|8].
z t3

The derivatives (Jacobian matrices) of these functions are computed by com-
puting separately the partial derivatives, giving, for f,

z
[Df (y)} = [2z, 2y, 22].

(The derivative of f is a one-row matrix.) The derivative of f evaluated at g(t)
is thus [2t, 2t,2¢%]. The derivative of g at t is

1
{Dg(t)] = [2: } .
3t2

So the derivative at ¢ of the composition fog is

1.8.15

1.8.16

1.8.17

1
[D(fog)(t)] = [Df(g()]o[Dg(t)] = [2t,26%,26%] | 2t | = 2t +4£> +6t°.

2
s L

[Dg(e)]
A 1818

Example 1.8.4 (Composition of linear transformations). Here is a case
where it is easier to think of the derivative as a linear transformation than as
a matrix, and of the chain rule as speaking of a composition of linear transfor-
mations rather than a product of matrices. If A and H are n x n matrices, and
f(A) = A%,g(A) = A~!, then (f 0 g)(A) = A~2. To compute the derivative of
f 0g we use the chain rule in the first line, Proposition 1.7.16 in the second and
Equation 1.7.45 in the third:

[Dfog(A)H = [Df(9(A))}[Dg(A)H
= [Df(g(A))(~ATTHA™")
=AY -ATTHA )+ (-A'HA HA!
= —(A""HA" + A”HA").

1.8.19

Exercise 1.8.7 asks you to compute the derivatives of the maps A — A~3
and A— A7,
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1.9 THE MEAN VALUE THEOREM AND CRITERIA FOR
DIFFERENTIABILITY
I turn with terror and horror from this lamentable scourge of con-

tinuous functions with no derivatives.—Charles Hermite, in a letter to
Thomas Stieltjes, 1893

In this section we discuss two applications of the mean value theorem (The-
orem 1.6.9). The first extends that theorem to functions of several variables,
and the second gives a criterion for when a function is differentiable.

The mean value theorem for functions of several variables

The derivative measures the difference of the values of functions at different
points. For functions of one variable, the mean value theorem says that if
f :le.b] — R is continuous, and f is differentiable on (a.b), then there exists
¢ € (a.b) such that

f(®) = f(a) = f'(c)(b— a). 19.1

The analogous statement in several variables is the following.
Theorem 1.9.1 (Mean value theorem for functions of several vari-

ables). Let U C R™ be open, f: U — R be differentiable, and the segment
[a,b] joining a to b be contained in U. Then there exists ¢ € (a, b] such that

f(b) - f(a) = [Df(c)l(b~a). 1.9.2

Corollary 1.9.2. If f is a function as defined in Theorem 1.9.1 , then
15®) = @) < (s |01 )b~ al. 193
c€la.b]

Proof of Corollary 1.9.2. This follows immediately from Theorem 1.9.1 and
Proposition 1.4.11. O

Proof of Theorem 1.9.1. Note that as t varies from 0 to 1, the point
(1-t)a+tb moves from a to b. Consider the mapping g(t) = f((1-t)a+tb). By
the chain rule, g is differentiable, and by the one-variable mean value theorem,
there exists to such that

9(1) — 9(0) = ¢'(to)(1 - 0) = ¢'(to). 1.9.4
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Set ¢ = (1 — tg)a + tob. By Proposition 1.7.12, we can express g'(to) in terms
of the derivative of f:

glto+3s)—glto) _ fle+sb-2)) = f(O) _\pricyn_a).

glto) = }i_']}, s $ 1.9.5
So Equation 1.9.4 reads
f(b) - f(a) = [Df(c)i(b~a). O 1.9.6

Criterion for differentiability

Most often, the Jacobian matrix of a function is its derivative. But as we
mentioned in Section 1.7, this isn’t always true. It is perfectly possible for all
partial derivatives of f to exist, and even all directional derivatives, and yet
for f not to be differentiable! In such a case the Jacobian matrix exists but
does not represent the derivative. This happens even for the innocent-looking
function

2
z\_ _TY
j(y)'22+y2'
a Actually, we should write this function
2
FIGURE 1.9.1. z e[z 0
[# w()#0)

T 4y
The graph of f is made up of f (1/) - T 0
straight lines through the origin, 0 if ( ) = ( 0),

so if you leave the origin in any —

direction, the directional deriva- Shown in Figure 1.9.1. You have probably learned to be suspicious of functions

tive in that direction certainly ex- that are defined by different formulas for different values of the variable. In this
z ) approaches

ists. Both axes are among the lines case, the value at (g) is really natural, in the sense that as ( v
tional derivatives in those direc- (8), the function f approaches 0. This is not one of those functions whose
tions are 0. But clearly there is value takes a sudden jump; indeed, f is continuous everywhere. Away from the
ly there
no tangent plane to the graph at OTigin, this is obvious; f is then defined by an algebraic formula, and we can
the origin. compute both its partial derivatives at any point ( ;) # ( 8) .
That f is continuous at the origin requires a little checking, as follows. If
72 +y? =r?, then |z| < r and |y| < 7 50 |z2y| < r°. Therefore,

1.9.7

making up the graph, so the direc-

lf(;)ls-:;:r, and lim f(;')=o. 1.9.8

z)\_ (o0
v o
“Vanish” means to equal 0. . X
“Identically” means “at every S0 f is continuous at the origin. Moreover, f vanishes identically on both axes,
point.” so both partial derivatives of f vanish at the origin.



1f we change our function, re-
placing the z?y in the numera-
tor of the algebraic formula by zy,
then the resulting function, which
we'll call g, will not be continu-
ous at the origin. If z = y, then
T
Yy
gets to the origin: we then have

2
gy -z _1
g(r) =Ty

g = 1/2 no matter how close
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So far, f looks perfectly civilized: it is continuous, and both partial deriva-
tives exist everywhere. But consider the derivative in the direction of the vector

[}] , i.e., the directional derivative

f((g)H[i]) -1(6) LA 1.9.9

Jimy t T eh2s

This is not what we get when we compute the same directional derivative by
multiplying the Jacobian matrix of f by the vector [}], as in the right-hand
side of Equation 1.7.27:

lD.f(g),Dgf(g)l[:] =[o,o][}] =0 1.9.10

Jacobian m:trlx [3s0)

Thus, by Proposition 1.7.12, f is not differentiable.

In fact, things can get worse. The function we just discussed is continuous,
but it is possible for all directional derivatives of a function to exist, and yet
for the function not to be continuous, or even bounded in a neighborhood of 0,
as we saw in Example 1.5.24; Exercise 1.9.2 provides another example.

Continuously differentiable functions

‘The lesson so far is that knowing a function’s partial derivatives or directional
derivatives does not tell you either that the function is differentiable or that it
is continuous. Even in one variable, derivatives alone reveal much less than you
might expect; we will see in Example 1.9.4 that a function f : R — R can have
a positive derivative at z although it does not increase in a neighborhood of !

Of course we don’t claim that derivatives are worthless. The problem in
these pathological cases is that the function is not continuously differentiable: its
derivative is not continuous. As long as a function is continuously differentiable,
things behave nicely.

Example 1.9.3 (A function that has partial derivatives but is not
differentiable). Let us go back to the function of Equation 1.9.7, which we
just saw is not differentiable:

o[ F G0
o ()-0)
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and reconsider its partial derivatives. We find that botén partials are 0 at the
origin, and that away from the origin—i.e., if ( y) # (0) then
3

(z? + y%)(2zy) — 2?y(2z) _ _ 2zy
2t (5)= @ +y*)? T @+ 19.11
(@2 +3)(z?) - 2y(2y) _ =t - 2% o
2ut () = (@ +y?)? T @+

These partial derivatives are not continuous at the origin, as you will see if
you approach the origin from any direction other than one of the axes. For

example, if you compute the first partial derivative at the point ( :) of the
diagonal, you find the limit

. t) _ 2t4 _1
lim i (£) = Gay = 3 1912
which is not the value of
Dif(J)=0 & 19.13

Example 1.9.4 (A differentiable yet pathological function in one vari-
able). Consider the function

=% 22nl
f(z) = 3+ sin-, 1.9.14
a variant of which is shown in Figure 1.9.2. To be precise, one should add
f(0) = 0, since sin1/z is not defined there, but this was the only reasonable
value, since
lim % sin = = 0. 1.9.15
z—0 T
Moreover, we will see that the function f is differentiable at the origin, with
derivative
rO =3 19.16

This is one case where you must use the definition of the derivative as a limit;
you cannot use the rules for computing derivatives blindly. In fact, let’s try.

We find
FIGURE 1.9.2. , 1 1, 1 1 1 1 1

Graph of the function f(z) = (z) = 3t 2zsin il (cos ;) (-F) =5+ 2zsin S meos-. 1.9.17
2 4 6z%sin L. The derivative of f i . .
d’m not, ha\:e a limit at the origin, This (t;or;:gl;(;s certainly correct for x # 0, but f’(z) doesn’t have a limit when
but the curve still has slope 1/2 z—=0 '
there. .1 .11

ll_%i +2zsm; =3 1.9.18



The moral of the story is: only
study t ly differentiabl
functions.

A function that is continuously
differentiable—i.e., whose deriva-
tive is continuous—is known as a
C! function.

If you come across a function
that is not continuously differen-
tiable (and you may find such
functions particularly interesting)
you should be aware that none of
the usual tools of calculus can be
relied upon. Each such function
is an outlaw, oheying none of the
standard theorems.
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does exist, but cos 1/z oscillates infinitely many times between —1 and 1. So f’
will oscillate from a value near —1/2 to a value near 3/2. This does not mean
that f isn’t differentiable at 0. We can compute the derivative at 0 using the
definition of the derivative:
1/0+h g, 1 .1 (h 5. l)
4 _um o (2T -\ = (2L 2
f(O)—lle},h( 2 +(0+h) 8"10+h) 'l'l_lgh 2+ sin & Loto

1, ., 11
=g thmhsing =2
since (by Theorem 1.5.21, part (f)) limp—o & sin { exists, and indeed vanishes.
Finally, we can see that although the derivative at 0 is positive, the function
is not increasing in any neighborhood of 0, since in any interval arbitrarily close

to 0 the derivative takes negative values; as we saw above, it oscillates from a
value near —1/2 to a value near 3/2. A

This is very bad. Our whole point is that the function should behave like its
best linear approximation, and in this case it emphatically doesn’t. We could
easily make up examples in several variables where the same occurs: where the
function is differentiable, so that the Jacobian matrix represents the derivative,
but where that derivative doesn’t tell you much.

Determining whether a function is continuously differentiable

Fortunately, you can do a great deal of mathematics without ever dealing with
such pathological functions. Moreover, there is a nice criterion that allows us
to check whether a function in several variables is continuously differentiable:

Theorem 1.9.5 (Criterion for differentiability). IfU is an open subset
of R*, and f : U — R™ is 8 mapping such that all partial derivatives of f
exist and are continuous on U, then f is differentiable on U, and its derivative
is given by its Jacobian matrix.

Definition 1.9.6 (Continuously differentiable function). A function
is continuously differentiable on U C R™ if all its partial derivatives exist and
are continuous on U.

Most often, when checking that a function is differentiable, the criterion of
Theorem 1.9.5 is the tool used. Note that the last part, “... and its derivative is
given by its Jacobian matrix,” is obvious; if a function is differentiable, Theorem
1.7.10 tells us that its derivative is given by its Jacobian matrix. So the point
is to prove that the function is differentiable. Since we are told that the partial
derivatives of f are continuous, if we prove that f is differentiable, we will have
proved that it is continuously differentiable.



In Equation 1.9.20 we use the
interval (a,e + h), rather than
(a, b), making the statement

Flo =Lt hz - fla)

or

hf'(c) = f(a+h) - f(a).

It will become clearer in Chap-
ter 2 why we emphasize the di-
mensions of the derivative [Df (a)).
The object of differential calculus
is to study nonlinear mappings by
studying their linear approxima-
tions, using the derivative. We
will want to have at our disposal
the techniques of linear algebra.
Many will involve knowing the di-
mensions of a matrix.
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(What are the dimensions of the derivative of the function f described in
Theorem 1.9.5? Check your answer below.23)

Proof. This is an application of Theorem 1.6.9, the mean value theorem. What
we need to show is that

lim —f(a+ F) - f(a) - [Jf(a)JF = 0. 19.20
h—0 ,h'

First, note (Theorem 1.8.1, part (3)), that it is enongh to prove it when
m=1 (ie, f: U = R).

Next write
a +h a)
- a2 + hy az
fla+h)-f(a)=f . -f] . 19.21
an+h, e,
in expanded form, subtracting and adding inner terms:
fa+h)- f(a) =
a+h ay
az + hy az + ha
2 I :
an + by Gn + by
subtracted
a) ay
a2 + h. P
2 i Y B 1.9.22
an + h, ap + hy
added
+...
ay ay
az a2
+f . -1
an + h, an

23The function f goes from a subset of R™ to R™, so its derivative takes a vector

in R™ and gives a vector in R™. Therefore it is an m x n matrix, m tall and n wide.
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By the mean value theorem, the ith term above is

ay a) a)
az a2 a2
f a, +h -f a; = h;Dif b; 1.9.23
aiy1 + hin aiy1 +hip Qiy1 + hip
an + h, an + hn @+ hn
ith :errn

for some b; € [a;, a; + hi]: there is some point b; in the interval lai, ai+ ki) such
that the partial derivative D; f at b; gives the average change of the function f
over that interval, when all variables except the ith are kept constant.

Since f has n variables, we need to find such a point for every i from 1 to n.
We will call these points c;:

a
a2
: 3 "
= by i thisgives  f(a+h)-f(a) =3 hiDif(ci).
Gip1 + hiv =1
an + hn

Thus we find that

n
fla+h)~ f(a)~ 3" Dif(a)hi = Y hi(Dif(c:) - Dif(a)).  19.24
——— 4
=5o, Difteon
So far we haven't used the hypothesis that the partial derivatives D;f are
continuous. Now we do. Since D; f is continuous, and since c; tends to a as

h— 0, we see that the theorem is true:

The inequality in the second
line of Equation 1.9.25 comes from Ty Dif(a)hi

the fact that |h,|/|h| < 1. - >
lim |[f(a+h)-f(a)- [If(a)h |
A0 R

= 1im S D e - Dy
= ﬁh_rf:).g; lﬁ' lD'f(c') ‘le(a)l

IA

ll'i_r.l‘:).ZID"J'(‘?-‘) - D;f(a)| = 0.
= O 1925
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Example 1.9.7. Here we work out the above computation when f is a function
on R%:

a+h
f(a;+h;>_f(g;)
0
a;+h a
=f(a;+h;)—f(a2+hq)+f(a2+h2)'f(a;)

=mDus [, %, | +memet [ 2]

=h D1 f(c1) + haDy f(c2). A

1.9.26

1.10 EXERCISES FOR CHAPTER ONE

Exercises for Section 1.1: 1.1.1 Compute the following vectors by coordinates and sketch what you did:

- o L]+ ool 0[] o e

1.1.2 Compute the following vectors:

3 1 1 1
4 o 4 S
(a) [71'} + [\—/%J (b) ; +& (¢ ;, -&

1.1.3 Name the two trivial subspaces of R™.

1.1.4 Which of the following lines are subspaces of R? (or R™)? For any that

is not, why not?
@y=-2-5 (b)y=22+1 ()y=2=

=13 ® F(Z)-[5]  © @)
@ FG)=[5] @G- 0 fE-[7
(7) ()

(8 F

(a) F



Exercises for Section 1.2:
Matrices

In Exercise 1.2.2, remember to

use the format:
1 2 3
4 5 6

R

Matrices for Exercise 1.2.4
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1.1.6 Suppose that in a circular pipe of radius a, water is flowing in the
direction of the pipe, with speed a2 — 12, where r is the distance to the axis of
the pipe.

(a) Write the vector field describing the flow if the pipe is in the direction of
the z-axis.

(b) Write the vector field describing the flow if the axis of the pipe is the
unit circle in the (z, y)-plane.

1.2.1 (a) What are the dimensions of the following matrices?

wsts] oty @ [;1; EJ

1001 100
d (010 1] () |01 0].
1010 001

(b) Which of the above matrices can be multiplied together?

1.2.2 Perform the following matrix multiplications when it is possible.
7 8 1 4
1 2 3 1 2
(a) [ ] 9 0f; (b) [ ] -1 3
4 5 6 1 2 0 3 _2 2
1 - 01 -1 7 1 5
(c) -1 -1 1 21; (d) -1 0 [_4]
-1 2 0 -2 2 3

1
0
1
1 2 1 4 0 1], 02 1]fo0o 1
() [o 3] [—1 3] [—1 3]' ® [1 3 2] [3 5]
1.2.3 Compute the following without doing any arithmetic.
7 2 V34 ‘1) 6a 2 32 21 8 6
(a) [6 8 a2 2 ) |4 2va 2 é,(c)[ ]63
3 V8 e 7|0 5 12 3 32 V3 4

1.2.4 Given the matrices A and B in the margin at left,
(a) Compute the third column of AB without computing the entire matrix
B.

(b) Compute the second row of AB, again without computing the entire
matrix AB.

1.2.5 For what values of a do the matrices

11 10 .
A=[l 0] and B=[a l] satisfy AB = BA?



10
“[10]
_[1 01
B‘[lOl]

110
C=11 01

110

Matrices for Exercise 1.2.9

Recall that Mat (n, m) denotes
the set of n x m matrices.
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1.2.6 For what values of a and b do the matrices

A=V % and B=|! O satisty 4B =BA?
a 0 b1

1.2.7 From the matrices below, find those that are transposes of each other.

1 2 3 1 z 1 1 22 2
(a) [z 0 \/i] (b) [2 0 ﬁ] () [z 0 V3
2

1 z2 3 2 2 1 2 3
3 V3 2 1 z 1 1 2 3
d {2 o = (e) 122 0 2 f) {z 0 =2
1 z 1 2 V3 3 1 V3 2

. . 10 10 1]
1.2.8 Given the two matrices A = [l 0] and B= {2 1 0].
(a) What are their transposes?
(b) Without computing AB what is (AB)7?
() Confirm your result by computing AB.

T(d) What happens if you do part (b) using the incorrect formula (AB)T =
ATBT?

1.2.9 Given the matrices A, B, and C at left, which of the following expres-
sions make no sense?

(a) AB (b) BA (c) A+ B (d) AC

(e) BC (f)CB (g) %ﬂ (h)BTA (i) BTC

1.2.10 Show that if A and B are upper-triangular n x n matrices, then so is
AB.

0 a

(b) If we identify Mat (2,2) with R? in the standard way, what is the angle
between A and A~'? Under what condition are A and A~! orthogonal?

1.2.11 (a) What is the inverse of the matrix A = [a b] for a # 0?7

1.2.12 Confirm by matrix multiplication that the inverse of
_ |6 b . -1 _ 1 d -b
A-[c d] s 4 _ad—bc[-c a]'
1.2.13 Prove that a matrix [z ZJ is not invertible if ad — bc = 0.

1.2.14 Prove Theorem 1.2.17: that the transpose of a product is the product
of the transposes in reverse order:

(AB)T =BA".



“Stars” indicate difficult exer-
cises.

Graphs for Exercise 1.2.18
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1.2.15 Recall from Proposition 1.2.23, and the discussion preceding it, what
the adjacency graph of a matrix is.

(a) Compute the adjacency matrix Ar for a triangle and As for a square.

(b) For each of these, compute the powers up to 5, and explain the meaning
of the diagonal entries.

(c) For the triangle, you should observe that the diagonal terms differ by 1
from the off-diagonal terms. Can you prove that this will be true for all powers
of AT?

(d) For the square, you should observe that half the terms are 0 for even
powers, and the other half are 0 for odd powers. Can you prove that this will
be true for all powers of Ag?

*(e) Show that half the terms of the powers of an adjacency matrix will be 0
for even powers, and the other half are 0 for odd powers, if and only if you can
color the vertices in two colors, so that every edge joins a vertex of one color to
a vertex of the other.

1.2.16 (a) For the adjacency matrix A corresponding to the cube (shown in
Figure 1.2.6), compute A2, A% and A*. Check directly that (42)(A?) = (A%)A.

(b) The diagonal entries of A* should all be 21; count the number of walks
of length 4 from a vertex to itself directly.

(c) For this same matrix A, some entries of A™ are always 0 when n is even,
and others (the diagonal entries for instance) are always 0 when n is odd. Can
you explain why? Think of coloring the vertices of the cube in two colors, so
that each edge connects vertices of opposite colors.

(d) Is this phenomenon true for Ar, As? Explain why, or why not.

1.2.17 Suppose we redefined a walk on the cube to allow stops: in one time
unit you may either go to an adjacent vertex, or stay where you are.

(a) Find a matrix B such that B}, counts the walks from V; to V; of length
n.

(b) Compute B2, B3 and explain the diagonal entries of BS.

1.2.18 Suppose all the edges of a graph are oriented by an arrow on them.
We allow multiple edges joining vertices, so that there might be many (a su-
perhighway) joining two vertices, or two going in opposite directions (a 2-way
street). Define the oriented adjacency matrix to be the square matrix with both
rows and columns labeled by the vertices, where the (3, 7) entry is m if there
are m oriented edges leading from vertex i to vertex ;.

What are the oriented adjacency matrices of the graphs at left?



“Stars” indicate difficult exer-
cises.

Exercises for Section 1.3:
A Matrix as a Transformation
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1.2.19 An oriented walk of length n on an oriented graph consists of a se-
quence of vertices Vo, V1,.. ., V.. such that V;, V4, are, respectively, the begin-
ning and the end of an oriented edge.

(a) Show that if A is the oriented adjacency matrix of an oriented gra?h,
then the (i, j) entry of A™ is the number of oriented walks of length n going
from vertex i to vertex j.

(b) What does it mean for the oriented adjacency matrix of an oriented graph
to be upper triangular? lower triangular? diagonal?

00
1.2.20 (a) Show that [‘; (1) 2] is a left inverse of [l 0].

01
00
(b) Show that the matrix |1 0 ( has no right inverse.
01

(c) Find a matrix that has infinitely many right inverses. (Try transposing.)

1.2.21 Show that

1 ab 1 z y
0 1 c| hasaninverseof theform |0 1 2|,
001 001

and find it.

*1.2.22 What 2 x 2 matrices A satisfy
A’=0, A*’=1, A’=-I7

1.3.1  Are the following true functions? That is, are they both everywhere
defined and well defined?

(a) “The aunt of,” from people to people.

(b) f(z) = 1, from real numbers to real numbers.

(c) “The capital of,” from countries to cities (careful—at least two countries,
the Netherlands and Bolivia, have two capitals.)

1.8.2 (a) Give one example of a linear transformation 7' : R¢ — R2.

(b) What is the matrix of the linear transformation S, : R® — R corre-
sponding to reflection in the plane of equation z = y? What is the matrix
corresponding to reflection S; : R® — R3 in the plane y = 2? What is the
matrix of S) 0 S3?

1.3.3  Of the functions in Exercise 1.3.1, which are onto? One to one?

1.3.4 (a) Make up a non-mathematical transformation that is bijective (both
onto and one to one). (b) Make up a mathematical transformation that is
bijective.



In Exercise 1.3.9, remember

that the height of a matrix is given
first: a 3 x 2 matrix is 3 tall and 2
wide.

1 301
(a)A=(0 3 1 5.

1 201

ay b

a2 b
(b) B=|as b

a4 b4

as bs

2

we=[g 4 5 ]

D=[1 0 -2 s5].
Matrices for Exercise 1.3.10
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1.3.5 (a) Make up a non-mathematical transformation that is onto but not
one to one. (b) Make up a mathematical transformation that is onto but not

one to one.

1.3.86 (a) Make up a non-mathematical transformation that is one to one but
not onto. (b) Make up a mathematical transformation that is one to one but
not onto.

1.3.7 The transformation f(z) = 22 from real numbers to real positive num-
bers is onto but not one to one.
(a) Can you make it 1-1 by changing its domain? By changing its range?
(b) Can you make it not onto by changing its domain? By changing its
range?

1.3.8 Which of the following are characterized by linearity? Justify your
answer.

(a) The increase in height of a child from birth to age 18.

(b) “You get what you pay for.”

(c) The value of a bank account at 5 percent interest, compounded daily, as
a function of time.

(d) “Two can live as cheaply as one.”

(e) “Cheaper by the dozen”

1.3.9  For each of the following linear transformations, what must be the
dimensions of the corresponding matrix?

(a) T:R? - R3 (b) T:R3 - R3

(c) T:R* - R?2 dT:R*-R

1.3.10 For the matrices at left, what is the domain and range of the corre-
sponding transformation?

1.3.11 For a class of 150 students, grades on a mid-term exam, 10 homework
assignments, and the final were entered in matrix form, each row corresponding
to a student, the first column corresponding to the grade on the mid-term, the
next 10 columns corresponding to grades on the homeworks and the last column
corresponding to the grade on the final. The final counts for 50 percent, the
mid-term counts for 25 percent, and each homework for 1.5 percent of the final
grade. What is the transformation 7 : R!2 — R that assigns to each student
his or her final grade?

1.3.12 Perform the composition fogoh for the following functions and values
of r.

(a) flz) =2" -1, g(z) =3z, h(z) = -z + 2, for z = 2.



In Exercise 1.3.18 note that the
symbol — (to be read, “maps to")
is different from the symbol — (to
be read “to”). While — describes
the relationship between the do-
main and range of a mapping, as
in T : R? — R, the symbol — de-
scribes what a mapping does to a
particular input. One could write
f(z)=2%as f:z— 22

o] [

1 1
(C) [—1] (d) [_2}
1 2

Vectors for Exercise 1.4.2

Exercises for Section 1.4:
Geometry in R
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(b) f(z) =22, g(z)=2-3, h(z)=z-3,forz=1.
1.3.13 Find the matrix for the transformation from R3 — R that rotates by
30° around the y-axis.

1.3.14 Show that the mapping from R™ to R™ described by the product AV
is indeed linear.
1.3.15 Use composition of transformations to derive from the transformation
in Example 1.3.17 the fundamental theorems of trigonometry:

cos(#, + 62) = cosf, cosf; — sin b, sinf;

sin(6) + 02) = sin 8, cos @, + cosd, sin ;.

1.3.16  Confirm (Example 1.3.16) by matrix multiplication that reflecting a
point across the line, and then back again, lands you back at the original point.

1.3.17 If A and B are n x n matrices, their Jordan product is

AB+ BA
2 .
Show that this product is commutative but not associative.

1.3.18 Consider R? as identified to C by identifying (g) to z = a+1b.
Show that the following mappings C — C are linear transformations, and
give their matrices:

(a) R: z— R(z) (the real part of 2);

(b) & : 2z~ (2) (the imaginary part of z);

(c) ¢: z— Z (the complex conjugate of z, i.e., Z=a —ibif z = a + ib);
(d) my, : 2 — w2z, where w = u + iv is a fixed complex number.

1.3.19 Show that the set of complex numbers {z|R(wz) = 0} with fixed
w € C is a subspace of R? = C. Describe this subspace.

1.4.1 If ¥ and W are vectors, and A is a matrix, which of the following are
numbers? Which are vectors?

Vxw; V-w; |V, |A]; detd; AV.
1.4.2 What are the lengths of the vectors in the margin?

1.4.3 (a) What is the angle between the vectors (a) and (b) in Exercise 1.4.2?
(b) What is the angle between the vectors (c) and (d) in Exercise 1.4.27

1.4.4 Calculate the angles between the following pairs of vectors:



50
b a

FiGURE 1.4.6.

(When figures and equations
are numbered in the exercises,
they are given the number of the
exercise to which they pertain.)

1 0 2
(@) [3 ;] ®) [g ‘ ;]
© [:

1 2 -6]
d) o 1 -3
10 -2

LR )
WL
~ W

E

Matrices for Exercise 1.4.9

(a) [—

B
[ )
N - W

a b ¢
(b) o d e
00 f

a o
oo

a
() |e
e f g

Matrices for Exercise 1.4.11
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1 1 1 1
(a) H H w | I
0 1 0 1

1
1
(c) limp—o (angle between i as vectors in R™).

OO0 O =

1.4.5 Let P be the parallelepiped 0 <2 <a, 0<y<b, 0<z<c

(a) What angle does a diagonal make with the sides? What relation is there
between the length of a side and the corresponding angle?

(b) What are the angles between the diagonal and the faces of the paral-
lelepiped? What relation is there between the area of a face and the corre-
sponding angle?

1.4.6 (a) Prove Proposition 1.4.14 in the case where the coordinates a and b
are positive, by subtracting pieces 1-6 from (a; + b;)(a2 + b), as suggested by
Figure 1.4.6.

(b) Repeat for the case where b, is negative.

1.4.7 (a) Find the equation of the line in the plane through the origin and
perpendicular to the vector [_f]

(b) Find the equation of the line in the plane through the point ( g) and
perpendicular to the vector [_i]
1.4.8 (a) What is the length of ¥, = &, +--- + &, € R"?
(b) What is the angle a,, between ¥, and & ? What is lim, .o an?
1.4.9 Compute the determinants of the matrices at left.
1.4.10 Compute the determinants of the matrices
2 -1 11 a b
@[} o] el
1.4.11 Compute the determinants of the matrices in the margin at left.
1.4.12 Confirm the following formula for the inverse of a 3 x 3 matrix:
P 1 | becs—bsc bzer —bics  bicz — bocy
a2 b c = GetA | 332~ @20 @iz —aa ae-a .

a3 b3 c3 @zb3 — agb2 aszby —aybs ab; - azby
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1.4.13 (a) What is the area of the parallelogram with vertices at

(@). (2)- (1) (7)

(b) What is the area of the parallelogram with vertices at

(8). (3)- (1) ()

1.4.14 Compute the following cross products:

NN

1.4.15 Show that the cross product of two vectors pointing in the same di-
rection is zero.

1 2 1
1.4.16 Given the vectors d = [2] , V= [OJ , W= [ OJ :

1 1 -1
(a) Compute i x (Vv x W) and (d x V) x W.
(b) Confirm that ¥ - (V x W) = 0. What is the geometrical relationship of ¥
and vV x w?
1.4.17 Given two vectors, V and W, show that (V x W) = —(W x V).

1.4.18 Let A be a 3 x 3 matrix with columns &, b, €, and let Q4 bethe3x3
matrix with rows
bBx®T,Exa),@xb)T.

(a) Compute Q4 when

1 2 0
In part (c) of Exercise 1.4.18 A4=10 -1 1}.
think of the geometric definition of
the cross product, and the defini-
tion of the determinant of a 3 x 3 (b) What is the product Q4 A in the case of (a) above?

matrix in terms of cross products. (c) What is Q4 A for any 3 x 3 matrix A?
(d) Can you relate this problem to Exercise 1.4.12?

1.4.19 (a) What is the length of
n
Wn =8 +286+ - +na =) &7

i=1
(b) What is the angle ay » between W, and & ?

*(c) What are the limits

o  limoann o lm o



Exercises for Section 1.5:
Convergence and Limits

1 e ¢
B=|0 1 €],
0 01

Matrix for Exercise 1.5.1

_|1 =€
B—[+e l]’

Matrix for Exercise 1.5.2
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where [n/2] stands for the largest integer not greater than n/2?

1.4.20 For the two matrices and the vector

B

(a) compute |A[,|B]. |€];
(b) confirm that: |AB| < |A||B|, |A€| < |A||E], and |BéE| < |BJ|€].
1.4.21 Use direct computation to prove Schwarz’s inequality (Theorem 1.4.6)

in R? for the standard inner product (dot product); i.e., show that for any
numbers z,, 12, ¥1, y2, we have

lz1y1 + z2y2| < /2} + 23 \/yf +43.

1.5.1 Find the inverse of the matrix B at left, by finding the matrix A such
that B = I — A and computing the value of the series S = I+ A+ A2+ A3 +.. ..
This is easier than you might fear!

1.5.2  Following the procedure in Exercise 1.5.1, compute the inverse of the
matrix B at left, where [¢| < 1, using a geometric series.

1.5.3 Suppose Y 2, x; is a convergent series in R". Show that the triangle
inequality applies:

20
< lei|~

i=1

3
2o
i=1

1.5.4 Let A be a square n x n matrix, and define

64=§:_1_,4k=1+A+1A2+1A3+
i 5

k=0 3

(a) Show that the series converges for all A, and find a bound for |e4| in
terms of |A| and n.

(b) Compute explicitly e/ for the following values of A:

ofs 3] off 5] @2 i)

For the third above, you might look up the power series for sinz and cosz.
(c) Prove the following, or find counterexamples:

(1) Do you think that e4*+® = a4e? for all A and B? What if AB = BA?
(2) Do you think that e?4 = (a“‘)z for all A?

1.5.5 For each of the following subsets X of R and R2, state whether it is
open or closed (or both or neither), and prove it.
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o T 2 2
() {zeR|0<z <1} (b){(y)elR2|l<z +y <2}

© {(3) e2*1av 20} @ {(%) er?y=0}
*(e) {Q C R} (the rational numbers)

1.5.6 (a) Show that the expression

(&)-3)f

is a polynomial p(z) of degree 4, and compute it.

(b) Use a computer to plot it; observe that it has two minima and a maxi-
muni. Evaluate approximately the absolute minimum: you should find some-
thing like .0663333. ...

(c) What does this say about the radius of the largest disk centered at ( g)

which does 1ot intersect the parabola of equation y = z2. Is the number 1/12
found in Examnple 1.5.6 sharp?

(d) Can you explain the meaning of the other local maxima and minima?

1.5.7 Find a forinula for the radius r of the largest disk centered at (%) that

doesn’t intersect the parabola of equation y = 12:2, using the following steps:
(a) Find the distance squared I( g) - ( :2 )I as a 4th degree polynomial in
z.
(b) Find the zeroes of the derivative by the method of Exercise 0.6.6.

(c) Find 7.

1.5.8 For each of the following formulas, find its natural domain, and show
whether it is open, closed or neither.

(a) sin # (b)log/z2—y  (c) loglogz
(d) arcsin 25 (e) veerss o (f) L
1.5.9 What is the natural domain of the function
lim(1+ z)Y/%  of Example 1.5.187

1.5.10 (a) Show that if U C R" is open, and V is an open subset of U, then
V is an open subset of R™.

(b) Show that if A is a closed subset of R" and B is closed in A, then B is
closed in R™.

1.5.11  Show that if X is a subset of R™, then X is closed.
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1.5.12 Suppose that ¢ : (0,00) — (0,00) is a function such that lim,_o ¢(¢) =

0.
(a) Let a;,az,... be a sequence in R™. Show that this sequence converges

to a if and only if for any € > 0, there exists N such that for n > N, we have

|an — al < ¢(e).
(b) Find an analogous statement for limits of functions.

1.5.18 Prove the converse of Proposition 1.5.14: i.e., prove that if every con-
vergent sequence in a set C C R™ converges to a point in C, then C is closed.

1.5.14 State whether the following limits exist, and prove it.

. 2 " |z|
G
(C)(’)“T(g) \/—a—:z—h—'}% (d)(:)li:l.l(l):c’+y3—3

v v 2
Wt W
v v 1]
*(g) z)lim , (2® + y*)(log |zy|), defined when zy # 0.
v) "\o

(h) lim (22 +y?)log(z® +¢?)
0
G
1.5.15 (a) Let D* C R? be the region 0 < z2+y? < 1,and let f: D* - R
be a function. What does the following assertion mean?
lim f(%)=a
m1(3)
v 0

(b) For the two functions below, either show that the limit exists and find
it, or show that the limit does not exist:

,(z)=m 9(2) = (1ol + lvl) log(=® + 4*)

Y /32 + y2
1.5.16 Prove Theorem 1.5.13.

1.5.17 Prove Proposition 1.5.16: If a sequence & converges to &, then any
subsequence converges to the same limit.



cosmb sinméb

Am = [——sian cos mb

Sequence for Exercise 1.5.20
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1.5.18 (a) Show that the function f(z) = |z]e~1#! has an absolute maximum
at some z > 0.
(b) What is the maximum of the function?

(c) Show that the image of f is [0,1/e].
1.5.19 Prove Theorem 1.5.27.

1.5.20 For what numbers @ does the sequence of matrices A, (shown at left)
converge? When does it have a convergent subsequence?

1.5.21 (a) Let Mat (n,m) denote the space of n x m matrices, which we will
identify with ®"™. For what numbers a € R does the sequence of matrices

A™ € Mat (2,2) converge as n — 0o, when A = [: Z]? What is the limit?
(b) What about 3 x 3 matrices filled with a’s, or n x n matrices?

1.5.22 Let U C Mat (2,2) be the set of matrices A such that I—A is invertible.
(a) Show that U is open, and find a sequence in U that converges to I.
(b) Consider the mapping f : U — Mat (2,2) given by
f(A)=(A-D@A-D
Does lim4_.; f(A) exist? If so, what is the limit?

*(c) Let B = (1) _(lj , and let V C Mat (2,2) be the set of matrices A

such that A — B is invertible. Again, show that V is open, and that B can be
approximated by elements of V.
*(d) Consider the mapping g : V — Mat (2,2) given by
9(4) = (A* - B*)(A-B)™".

Does lim4_, g g(A) exist? If so, what is the limit?

1.5.23 (a) Show that the matrix A = [(2) ?] represents a continuous map-

ping R? — R2.
*(b) Find an explicit § in terms of e.
(c) Now show that the mapping

[Z] — [z 3] [:] is continuous for any a, b, d, c.

3.14...

1.5.24 Let a, = [2 78

]; i.e., the two entries are 7 and e, to n places.

e

<1047

How large does M have to be so that < 10-3? How large does M

et

have to be so that




Exercises for Section 1.6:
Four Big Theorems
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1.5.25 Which of the following functions are continuous at ( 8 )?

®f(3) = prtry ®) f(2)=vi-Z -7

Tt +y°+1
© £(3) =@ +)logle+yl (@) f(F) = (e + 47 log(a? + 247)

©1(;) =t

1.6.1 Let A C R be a subset that is not compact. Show that there exists a

continuous unbounded function on A.
Hint: If A is not bounded, then consider f(x) = |x|. If A is not closed, then
consider f(x) = 1/|x — a| for an appropriate a.

1.8.2 In the proof of the fundamental theorem of algebra (Theorem 1.6.10),
justify the statement (Equation 1.6.25) that

[(bj+107* + -+ u¥)| < |bju?|  for small u.
1.8.3 Set z =z + iy, where z,y € R. Show that the polynomial
p(z) = 1+ %2
has no roots. Why doesn’t this contradict Theorem 1.6.107

1.6.4 Find, with justification, a number R such that there is a root of p(z) =
2%+ 42° + 3iz — 3 in the disk |z] < R. (You may use that a minimum of Ip| is
a root of p.)

1.6.5 Consider the polynomial
p(2) =ze+4z4+z+2=zs+q(z).

(a) Find R such that |z5] > [g(z)| when |2| > R.

(b) Find a number R, such that you are sure that the minimum of Ip(2)]
occurs for |z| < R,.

1.6.6  Prove that:
(a) Every polynomial over the complex numbers can be factored into linear
factors.

(b) Every polynomial over the real numbers can be factored into linear factors
and quadratic factors with complex roots.

1.6.7 Find a number R for which you can prove that the polynomial
p(2) =242+ 35 +... 4 10z + 11

has a root for |z| < R. Explain your reasoning.



Exercises for Section 1.7:
Differential Calculus

You really must learn the nota-
tion for partial derivatives used in
Exercise 1.7.7, as it is used prac-
tically everywhere, but we much
prefer D,f, etc.
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1.7.1 Find the equation of the line tangent to the graph of f(z) at ( f(t:z))
for the following functions:

(a) f(z) =sinz, a=0 (b) f(z) =cosz, a=m/3

(c) f(z) =cosz, a=0 (d) f(z) = 1/z, a=1/2.

1.7.2  For what a is the tangent to the graph of f(z) = e~ % at (cga) a line
of the form y = mz?
1.7.3 Example 1.7.2 inay lead you to expect that if f is differentiable at a,
then f(a + k) ~ f(a) — f'(a)h has something to do with h2. It is not true that
once you get rid of the linear term you always have a term that includes h2.
Try computing the derivative of

() f(z) =|zl>2at 0 (b) f(z) =zlog |z| at 0 (c) f(z) = z/log|z], also
at 0

1.7.4  Find f'(z) for the following functions f.

(a) f(z) =sin®*(z® +cosz)  (b) f(z) = cos?((z + sin1)?)

(¢) f(z) = (cosz)*sinz (d) f(z) = (z +sinz)3

s 23 . 3

© /@ = BTIE 0 f0) - sin (52
1.7.5 Using Definition 1.7.1, show that vz2 and ¥/z2 are not differentiable
at 0, but that vz9 is.
1.7.6  What are the partial derivatives D, f and D, f of the following func-
tions, at the points ( %) and ( _%):

@7 (3)=va+u ®) 7 (3) ==+,

T\ _ . T\ _ zy?

(C)f(y)—coszy+ycosy, (d)f(y)— Nererd
1.7.7 Calculate the partial derivatives
of
) and ﬁ for the vector-valued functions:
T oy

cosST \ /x2 + y2

(a)f(;)= 2y + 42 and (b)f(;): zy .
sin(z? — y) sin?zy

1.7.8 Write the answers to Exercise 1.7.7 in the form of the Jacobian matrix.
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1.7.9 (a) Given a vector-valued function
. [2 2 +y) cos(x?+
f (z) = ( 2) , with Jacobian matrix [ :L‘CO:S:V v) Ece"‘ v)
what is D, of the function f,? D, of the function f;? D, of f2?

(b) What are the dimensions of the Jacobian matrix of a vector-valued func-

()

1.7.10 What is the derivative of the function f : R® — R" given by the
formula f(x) = [x[?x?

’

tion

1.7.11 Show that if f(z) = |z|, then for any number m,
Ain})(f(o +h) - £(0) — mh) =0,
but that
L1
Jim 1 (/(0+ h) = £(0) = mh) =0

never exists: there is no number m such that mh is a “good approximation” to
f(h) = £(0) in the sense of Definition 1.7.7.

1.7.12 (a) Show that the mapping
Mat (n,n) — Mat (n,n), A+ A3
is differentiable, and compute its derivative.
(b) Compute the derivative of the mapping
Mat (n,n) — Mat (n,n), A~ A* for any integer k > 1.

1.7.13 (a) Define what it means for a mapping F : Mat (n,m) — Mat (k,1)
to be differentiable at a point A € Mat (n, m).

(b) Consider the function F : Mat (n,m) — Mat (n,n) given by
F(A) = AAT.
Show that F is differentiable, and compute the derivative (DF(A)).

1.7.14 Compute the derivative of the mapping A — AAT.

1.7.15 LetA=[a b] a,ndA2=[a' b'],
c d a d



a a;
by _| &
5 c| la
d di

The function of Exercise 1.7.15

Hint for 1.7.20 (a): Think of
a

A= [: Z] as the element b

d
of R%. Use the formula for com-

puting the inverse of a 2 x 2 matrix
(Equation 1.2.15).
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(a) Write the formula for the function S : R* — R* defined at left.

(b) Find the Jacobian matrix of S.
(c) Check that your answer agrees with Example 1.7.15.
(d) (For the courageous): Do the same for 3 x 3 matrices.

sinfzy) ¢ (%) #
(a) f(;)=sin(e‘“’) (b) f(;)= = +y (y)

A ()

©f(3)=le+ul @ £(3)= . ()

1.7.17 Find the Jacobian matrices of the following mappings:
T\ _ . TY _ o(z*+4?)
@ 7 (5) =sin@y) b 5 (5)=e
z\ _ [ = T\ _ (rcosd
© f(y) = (z fy) 4 f(o) = (rsinﬂ)
1.7.18 In Example 1.7.15, prove that the derivative AH + HA is the “same”
as the Jacobian matrix computed with partial derivatives.

1.7.19 (a) Let U C R™ be open and f : U — R™ be a mapping. When is f
differentiable at a € U? What is its derivative?
(b) Is the mapping f : R® — R™ given by
f(X) = |X|X

differentiable at the origin? If so, what is its derivative?

1.7.20 (a) Compute the derivative (Jacobian matrix) for the function f(A4) =
A~! described in Proposition 1.7.16, when A is a 2 x 2 matrix.

(b) Show that your result agrees with the result of Proposition 1.7.16.

1.7.21  Considering the determinant as a function only of 2 x 2 matrices, i.e.,
det : Mat (2,2) — R, show that
[D det(I)]H = hl,l + hq'g,

where I of course is the identity and H is the increment matrix

hiy k2
H= M1 haj
[hz,l hz.z]



Exercises for Section 1.8:
Rules for Computing Derivatives

Hint for Exercise 1.8.2: think of
the composition of

tH(t‘z) and
G-/

both of which you should know
how to differentiate.

9
s+sins’
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1.8.1 (a) Prove Leibnitz's rule (part (5) of Theorem 1.8.1) directly when
f:U—Rand g:U — R™ are differentiable at a, by writing

i |18+ Bg(a+ B~ f@)a(a)— @) (IPe@)F) - ((Ds)R) s@)]
Ao Ihl '
and then developing the term under the limit:

(fla+ By - s) EREU=ER) 4 g (

. ( f@a+h) - f(a) - [Df(a)lﬁ) ¢(a).

g(a+h) —gla) - rDs(a)lﬁ)
IR

[h|
(b) Prove the rule for differentiating dot products (part (6) of Theorem 1.8.1)
by a similar decomposition.
(c) Show by a similar argument that if f, g: U — IR3 are both differentiable
at a, then so is the cross product f x g : U — R3. Find the formula for this
derivative.

1.8.2 (a) What is the derivative of the function

0= [

(b) When is f increasing or decreasing?

‘3

—————, defined for s > 1?
8+sins

1.8.3 Consider the function

) n—-1 :2
fl:]= z ZiTiy1 and the curve v : R — R given by ~(t) = | .
Ty i=1 t;'

What is the derivative of the function ¢t — f(y(t))?

1.8.4 True or false? Justify your answer. If f : R? — R? is a differentiable

function with
£(@)=(1) e [oe(@)]=[1 1]
there is no smooth mapping g : R? — R? with

5(1)=(5) ma ros(5)=(2).

1.8.5 Let ¢ :R — R be any differentiable function. Show that the function
1(%) =wolz* -9



Hint for part (b): What is the
“partial derivative of f with re-
spect to the polar angle 6”7

Exercises for Section 1.9:
Criteria for Differentiability

1.10 Exercises for Chapter One 145

satisfies the equation
22t (5)+5200 (5) =37 ()

1.8.8 (a) Show that if a function f : R? — R? can be written p(x? + y?) for
some function ¢ : R — R, then it satisfies

zEf—yEf: 0.

*(b) Show the converse: every function satisfying zD,f — yD:1f = 0 can be
written o(z2 + y?) for some function ¢ : R — R.
1.8.7 Referring to Example 1.8.4: (a) Compute the derivative of the map
A A3

(b) Compute the derivative of the map 4 +— A™".
1.88 Iff (;) = (;—tg) for some differentiable function ¢ : R — R, show
that

zD\f +yDyf =0.

1.8.9 Trueor false? Explain your answers. (a) If f : R? — R? is differentiable,
and [Df(0)] is not invertible, then there is no function g : R? — R? such that
gof(x) =x.

(b) Differentiable functions have continuous partial derivatives.

1.9.1 Show that the function
£+2%sinl ifz#0

ﬂ”={o ifz=0
is differentiable at 0, with derivative f'(0) = 1/2.

1.9.2 (a) Show that for

o [55 0) )

o #(5)-0)

all directional derivatives exist, but that f is not differentiable at the origin.

(b) Show that there exists a function which has directional derivatives ev-
erywhere and isn’t continuous, or even bounded. (Hint: Consider Example
1.5.24.))
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—E o if ( 1)¢< 0) 1.9.3  Consider the function defined on R? given by the formula at left.
f( z )___ Tty y/"\0 (a) Show that both partial derivatives exist everywhere.
v 0 if ( z)=<g) (b) Where is f differentiable?
y
1.9.4 Consider the function f : R2 — R given by

L[ () ()
W G-

(a) What does it mean to say that f is differentiable at (0)?

Function for Exercise 1.9.3

(b) Show that both partial derivatives Dyf (§) and Dyf (§) exist, and
. . compute them.
Hint for Exercise 1.9.4, part 0
(c): You may find the following (c) Is f differentiable at ( 0)?

fact useful: |[sinz] < z for all
1.9.5 Consider the function defined on R? defined by the formulas

zeR.
0
qu
z T+y +2
flyj=
z

(a) Show that all partial derivatives exist everywhere.
(b) Where is f differentiable?

#

0 if

NoR oy N
[
© © oo o
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Solving Equations

Some years ago, John Hubbard was asked to testify before a subcommittee
of the U.S. House of Representatives concerned with science and technol-
ogy. He was preceded by a chemist from DuPont who spoke of modeling
molecules, and by an official from the geophysics institute of California,
who spoke of exploring for oil and attempting to predict tsunamis.

When it was his turn, he explained that when chemists model mole-
cules, they are solving Schrédinger’s equation, that ezploring for oil re-
quires solving the Gelfand-Levitan equation, and that predicting tsunamis
means solving the Navier-Stokes equation. Astounded, the chairman of
the committee interrupted him and turned to the previous speakers. “Is
that true, what Professor Hubbard says?” he demanded. “Is it true that
what you do is solve equations?”

2.0 INTRODUCTION

In every subject, language is in-
timately related to understanding.

“It is impossible to dissociate
language from science or science
from language, because every nat-
ural science always involves three
things: the sequence of phenom-
ena on which the science is based;
the abstract concepts which call
these phenomena to mind; and the
words in which the concepts are
expressed. To call forth a con-
cept a word is needed; to portray a
phenomenon, a concept is needed.
All three mirror one and the same
reality.”—Antoine Lavoisier, 1789.

“Professor Hubbard, you al-
ways underestimate the difficulty
of vocabulary.”—Helen Chigirin-
skaya, Cornell University, 1997.

All readers of this book will have solved systems of simultaneous linear equa-
tions. Such problems arise throughout mathematics and its applications, so a
thorough understanding of the problem is essential.

What most students encounter in high school is systems of n equations in n
unknowns, where n might be general or might be restricted ton = 2 and n = 3.
Such a system usually has a unique solution, but sometimes something goes
wrong: some equations are “consequences of others,” and have infinitely many
solutions; other systems of equations are “incompatible,” and have no solutions.
This chapter is largely concerned with making these notions systematic.

A language has evolved to deal with these concepts, using the words “lin-
ear transformation,” “linear combination,” “linear independence,” “kernel,”
“span,” “basis,” and “dimension.” These words may sound unfriendly, but
they correspond to notions which are unavoidable and actually quite trans-
parent if thought of in terms of linear equations. They are needed to answer
questions like: “how many equations are consequences of the others?”

The relationship of these words to linear equations goes further. Theorems
in linear algebra can be proved with abstract induction proofs, but students
generally prefer the following method, which we discuss in this chapter:

Reduce the ttoa t about linear equations, row reduce
the resulting matriz, and see whether the statement becomes obvious.

44, 4 é,
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If so, the statement is true; otherwise it is likely to be false.

Solving nonlinear equations is much harder. In the days before computers,
finding solutions was virtually impossible; even in the good cases, where math-
ematicians could prove that solutions existed, they were usually not concerned
with whether their proof could be turned into a practical algorithm to find the
solutions in question. The advent of computers has made such an abstract ap-
proach unreasonable. Knowing that a system of equations has solutions is no
longer enough; we want a practical algorithm that will enable us to solve them.
The algorithm most often used is Newton’s method. In Section 2.7 we will show
Newton’s method in action, and state Kantorovitch’s theorem, which guaran-
tees that under appropriate circumstances Newton’s method converges to a
solution.; in Section 2.8 we discuss the superconvergence of Newton’s method
and state a stronger version of Kantorovitch’s theorem, using the norm of a
matrix rather than its length.

In Section 2.9 we will base the implicit and inverse function theorems on
Newton’s method. This gives more precise statements than the standard ap-
proach, and we do not believe that it is harder.

2.1 THE MAIN ALGORITHM: Row REDUCTION

Suppose we want to solve the system of linear equations
2z+y+3z2=1
z -y =1 2.11
2z +z2=1

We could add together the first and second equations to get 3z + 3z = 2.
Substituting (2 — 3z)/3 for z in the third equation will give z = 1/3, hence

= 1/3; putting this value for z into the second equation then gives y = —2/3.

In this section we will show how to make this approach systematic, using row
reduction. The big advantage of row reduction is that it requires no cleverness,
as we will see in Theorem 2.1.8. It gives a recipe so simple that the dumbest
computer can follow it.

The first step is to write the system of Equation 2.1.1 in matrix form. We can
write the coefficients as one matrix, the unknowns as a vector and the constants
on the right as another vector:

2 13 T 1
1 -1 0 v 1
2 01 z 1
[ —-
coefficient matrix (A) vector of unknowns () constants (b)

Our_system of equations can thus be written as the matrix multiplication
AX =b:



The matrix A uses position to
impart information, as do Arabic
numbers; in both cases, 0 plays
a crucial role as place holder. In
the number 4 084, the two 4’s have
very different meanings, as do the
1’s in the matrix: the 1 in the first
column is the coefficient of z, the
1’s in the second column are the
coefficients of y, and that in the
third column is the coefficient of
z.

Using position to inpart infor-
mation allows for concision; in Ro-
man numerals, 4084 is

MMMMLXXXIIIL

(To some extent, we use position
when writing Roman numerals, as
in IV = 4 and VI = 6, but the Ro-
mans themselves were quite happy
writing their numbers in any or-
der, MMXXM for 3020, for exam-
ple.)

The ith column of the matrix A
corresponds to the ith unknown.

The first subscript in a pair of
subscripts refers to vertical posi-
tion, and the second to horizontal
position: a),5 is the coefficient for
the top row, nth column: first take
the elevator, then walk down the
hall.

The matrix [A,b) is shorthand
for the equation AX = b.

2
1
2

2.1 The Main Algorithm: Row Reduction

13
-1 0
01

m{»—-»—-—- N @ b)}xn
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We now use a shorthand notation, omitting the vector X, and writing A and b
as a single matrix, with b the last column of the new matrix:

2
[1
2

1 31
-1 01 ]
0 11
~~
A b

More generally, we see that a system of equations

Q1,171

i the same as AX = b:

a1 - G1p x)
Gm,1 *** Qmp Tn
A X

+-+ a1azZ, =b
Gm,1Z) +: '+ GmaTn = bm
b a1 an b
]y ode, | : .
bm Qm,1 @m,n bm
B (AB)

2.1.3

2.1.4

2.1.5

We denote by (A, l;], with a comma, the matrix obtained by putting side-by-
side the matrix A of coefficients and the vector b, as in the right-hand side of
Equation 2.1.5. The comma ig intended to avoid confusion with multiplication;

we are not multiplying A and b.

How would you write in matrix form the system of equations

z+32=2

22+y+2=0

2y+2=1?



Remark 2.1.2. We could just as
well talk about column operations,
substituting the word column for
the word row in Definition 2.1.1.
We will use column operations in
Section 4.8.
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Check your answer below.!

Row operations

We can solve a system of linear equations by row reducing the corresponding
matrix, using row operations.

Definition 2.1.1 (Row operations). A row operation on a matrix is one
of three operations:

(1) Multiplying a row by a nonzero number;
(2) Adding a multiple of a row onto another row,
(3) Ezchanging two rows.

Exercise 2.1.3 asks you to show that the third operation is not necessary;
one can exchange rows using operations (1) and (2).

There are two good reasons why row operations are important. The first
is that they require only arithmetic: addition, subtraction, multiplication and
division. This is what computers do well; in some sense it is all they can do.
And they spend a lot of time doing it: row operations are fundamental to most
other mathematical algorithms.

The other reason is that they will enable us to solve systems of linear equa-
tions:

Theorem 2.1.3. If the matrix [A, b] representing a system of linear equa-
tions AX = b can be turned into [A',b'] by a sequence of row operations,
then the set of solutions of AR = b and set of solutions of A'R = b' coincide.

Proof. Row operations consist of multiplying one equation by a nonzero num-
ber, adding a multiple of one equation to another and exchanging two equations.
Any solution of A% = b is thus a solution of A’% = b'. In the other direction,
any row operation can be undone by another row operation (Exercise 2.1.4), so
any solution A'X = b’ is also a solution of AR =b. O

Theorem 2.1.3 suggests that we solve A% = b by using row operations to
bring the system of equations to the most convenient form. In Example 2.1.4
we apply this technique to Equation 2.1.1. For now, don’t worry about how
the row reduction was achieved; this will be discussed soon, in the proof of
Theorem 2.1.8. Concentrate instead on what the row reduced matrix tells us
about solutions to the system of equations.

1 {1 0 3 2 1 0 3] (= 2
211 0|;ie, [2 1 1] [y)=]0[
0211 02 1)}z 1



We said not to worry about
how we did the row reduction in
Equation 2.1.7. But if you do
worry, here are the steps: To get
(1), divide Row 1 by 2, and add
~1/2 Row 1 to Row 2, and sub-
tract Row 1 from Row 3. To get
from (1) to (2), multiply Row 2 by
—2/3, and then add that result to
Row 3. From (2) to (3), subtract
half of Row 2 from Row 1. For (4),
subtract Row 3 from Row 1. For
(5), subtract Row 3 from Row 2.

1 12 32 172
(1) [o -3/2 -3/2 1/2]
0 -1 -2 0

[1 1/2 3/2 1/2
@fo 1 1 -1/3
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Example 2.1.4 (Solving a system of equations with row operations).
To solve

we can use row operations to bring the matrix

2
1
2

13
-1 0
01

2z+y+3z=1
z-—y=1
2r+2z=1,

1

1

1 0
1 to the form [0 1
00

0 1/3
0 -2/3.

b

1 1/3
——

A

|

2.1.6

2.1.7

(To distinguish the new A and b from the old, we put a “tilde” on top: Ab) In
this case, the solution can just be read off the matrix. If we put the unknowns
back in the matrix, we get

0 0 -1 _1/3] Echelon form

101 2/3

@310 1 1 -1/3

001 1/3

100 1/3

410 11 -1/3

001 1/3

100 1/3

5){0 1 0 -2/3].

001 1/3
Echelon form is generally con-
sidered best for solving systems of

linear equations. (But it is not
quite best for all purposes. See
Exercise 2.1.9.)

|

z 0
0y
00

0 1/3
0 -2/3}
z 1/3

or

z= 1/3
y=-2/3 A
z= 1/3

2.1.8

Of course some systems of linear equations may have no solutions, and others
may have infinitely many. But if a system has solutions, they can be found by
an appropriate sequence of row operations, called row reduction, bringing the
matrix to echelon form, as in the second matrix of Equation 2.1.7.

Definition 2.1.5 (Echelon form). A matrix is in echelon form if:
(1) In every row, the first nonzero entry is 1, called a pivotal 1.

Clearly, the identity matrix is in echelon form.

(2) The pivotal 1 of a lower row is always to the right of the pivotal 1 of
a higher row;

(3) In every column that contains a pivotal 1, all other entries are 0.
(4) Any rows consisting entirely of 0's are at the bottom.

Example 2.1.6 (Matrices in echelon form). The following matrices are in
echelon form; the pivotal 1’s are underlined:

|

100
010
001

3
-2
1

|

1100
0010
0001

| [

(=R

3
0
0

o= o

|
onvo

O - W

-~ o o

—4
1
2



Row reduction to echelon form
is really a systematic form of elim-
ination of variables. The goal is to
arrive, if possible, at a situation
where each row of the row-reduced
matrix corresponds to just one
variable. Then, as in Equation
2.1.8, the solution can be just be
read off the matrix.

Essentially every result in the
first six sections of this chapter is
an elaboration of Theorem 2.1.8.

In MATLAB, the command
rref (“row reduce echelon form")
brings a matrix to echelon form.

Once you've gotten the hang
of row reduction you'll see that it
is perfectly simple (although we
find it astonishingly easy to make
mistakes). There’s no need to look
for tricks; you just trudge through
the calculations.

Computers use algorithms that
are somewhat faster than the one
we have outlined. Exercise 2.1.9
explores the computational cost of
solving a system of n equations in
n unknowns. Partial row reduc-
tion with back-substitution, de-
fined in the exercise, is roughly a
third cheaper than full row reduc-
tion. You may want to take short-
cuts too; for example, if the first
row of your matrix starts with a
3, and the third row starts with
a 1, you might want to make the
third row the first one, rather than
dividing through by 3.
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Example 2.1.7 Matrices not in echelon form). The following matrices
are not in echelon form. Can you say why not??

100 2 1101 000 01 030 -3
001 -1, {0 0 20|,j2 00,00 -111 1
010 1 0001 010 00 0O01 2

Exercise 2.1.5 asks you to bring them to echelon form.

How to row reduce a matrix

The following result and its proof are absolutely fundamental:

Theorem 2.1.8. Given any matrix A, there exists a unique matrix Ain
echelon form that can be obtained from A by row operations.

Proof. The proof of this theorem is more important than the result: it is an
explicit algorithm for computing A. Called row-reduction or Gaussian elimina-
tion (or several other names), it is the main tool for solving linear equations.

Row reduction: the algorithm. To bring a matrix to echelon form:

(1) Look down the first column until you find a nonzero entry, called a pivot.
If there is none, look down the second column, etc.

(2) Put the row containing the pivot in the first row position, and then divide
it by the pivot to make its first entry a pivotal 1, as defined above.

(3) Add appropriate multiples of this row onto the other rows to cancel the
entries in the first column of each of the other rows.

Now look down the next column over, (and then the next column if necessary,
etc.) starting beneath the row you just worked with, and look for a nonzero
entry (the next pivot). As above, exchange its row with the second row, divide
through, etc.

This proves existence of a matrix in echelon form that can be obtained from
a given matrix. Uniqueness is more subtle and will have to wait; it uses the
notion of linear independence, and is proved in Exercise 2.4.10. O

Example 2.1.9 (Row reduction). Here we row reduce a matrix. The R’s
refer in each case to the rows of the immediately preceding matrix. For example,
the second row of the second matrix is labeled R; + Ra, because that row is
obtained by adding the first and second rows of the preceding matrix.

?The first matrix violates rule (2); the second violates rules (1) and (3); the third
violates rule (4), and the fourth violates rule (3).



Just as you should know how
to add and multiply, you should
know how to row reduce, but the
goal is not to compete with a com-
puter, or even a scientific calcula-
tor; that’s a losing proposition.

This is not a small issue. Com-
puters spend most of their time
solving linear equations by row re-
duction. Keeping loss of precision
due to round-off errors from get-
ting out of hand is critical. En-
tire professional journals are de-
voted to this topic; at a university
like Cornell perhaps half a dozen
mathematicians and computer sci-
entists spend their lives trying to
understand it.
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1231 1 2 31 1 2 31

-1 10 2|->R+R |0 3 3 3] -5R/3f0 1 11

101 2 R;-R, |0 -2 -2 1 0 -2 -2 1
Ry-2R;[1 0 1 -1 101-1
- 011 1|-— 011 1
R3;+2R; |0 0 0 3 R3/3(0 0 0 1

Note that in the fourth matrix we were unable to find a nonzero entry in the
third column, third row, so we had to look in the next column over, where there
isa3. A

Exercise 2.1.7 provides practice in row reducing matrices. It should serve also
to convince you that it is indeed possible to bring any matrix to echelon form.

When computers row reduce: avoiding loss of precision

Matrices generated by computer operations often have entries that are really
zero but are made nonzero by round-off error: for example, a number may be
subtracted from a number that in theory is the same, but in practice is off by,
say, 1050, because it has been rounded off. Such an entry is a poor choice
for a pivot, because you will need to divide its row through by it, and the row
will then contain very large entries. When you then add multiples of that row
onto another row, you will be committing the basic sin of computation: adding
numbers of very different sizes, which leads to loss of precision. So, what do
you do? You skip over that almost-zero entry and choose another pivot. There
is, in fact, no reason to choose the first nonzero entry in a given column; in
practice, when computers row reduce matrices, they always choose the largest.

Example 2.1.10 (Thresholding to avoid round-off errors). If you are
computing to 10 significant digits, then 1+ 1071° = 1.0000000001 = 1. So
consider the system of equations

10702 42y =1
2.1.9
z+y=1,
the solution of which is
1 1-10"10
2= V=5 o 2.1.10

If you are computing to 10 significant digits, this is £ = y = .5. If you actually
use 10710 as a pivot, the row reduction, to 10 significant digits, goes as follows:
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10°10 2 1 N 2.1010 10! o[
1 11 1 1 1 0

- 100
01 5/
The “solution” shown by the last matrix reads z = 0, which is badly wrong: z
is supposed to be .5. Now do the row reduction treating 107! as zero; what
do you get? If you have trouble, check the answer in the footnote.® A
Exercise 2.1.8 asks you to analyze precisely where the troublesome errors
occurred. All computations have been carried out to 10 significant digits only.

2.1010 1010
-2-1010 -10%

2.1.11

2.2 SoLvING EqQuaTioNs UsING Row REDUCTION

Recall (Equations 2.1.4 and
2.1.5) that AX = b represents a
system of equations, the matrix A
giving the coefficients, the vector X
giving the unknowns (for example,
for a system with three unknowns,
z
v |), and the vector b con-
z
tains the solutions. The matrix
{A,B] is shorthand for A% = b.

X =

In this section we will see, in Theorem 2.2.4, what a row-reduced matrix
representing a system of linear equations tells us about its solutions. To solve
the system of linear equations :4:'(‘ = b, form the matrix [A, 5] and row reduce
it to echelon form, giving [4,B]. If the system has a unique solution, it can
then be read off the matrix, as in Example 2.1.4. If it does not, the matrix will
tell you whether there is no solution, or infinitely many solutions. Although
the theorem is practically obvious, it is the backbone of the entire part of linear
algebra that deals with linear equations, dimension, bases, rank, and so forth.

Remark. In Theorem 2.1.8 we used the symbol tilde to denote the echelon
foml of a matrix: A is the echelon form of A, obtained by row reduction. Here,
[4,B)  represents the echelon form of the entire “augmented” matrix [4, b: ie.,
it is [ALS]. We use two tildes rather than one wide one because we need to tatk
about b independently of A. A

In the matrix [A,b], the columns of A correspond in the obvious way to
the unknowns z; of the system AX = b: the ith column corresponds to the
ith unknown. In Theorem 2.2.4 we will want to distinguish between those
unknowns corresponding to pivotal columns and those corresponding to non-
pivotal columns.

Definition 2.2.1 (Pivotal column). A pivotal column of A is a column
of A such that the corresponding column of A contains a pivotal 1.

*Remember to put the second row in the first row position:

R B B P B PR B TR ]



The terms “pivotal” and “non-
pivotal” do not describe some in-
trinsic quality of a particular un-
known. If a system of equations
has both pivotal and non-pivotal
unknowns, which are pivotal and
which are not may depend on the
order in which you order the un-
knowns. as illustrated by Exercise
2.2.1.

The row reduction in Example
2.2.3 is unusually simple in the
sense that it involves no fractions;
this is the exception rather than
the rule. Don’t be alarmed if your
calculations look a lot messier.

In Example 2.2.3 the non-
pivotal unknown z corresponds to
the third entry of X; the system of
equations

2r+y+32=1
z-y=1
T+y+2z=1

corresponds to the multiplication
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A non-pivotal column is a column of A such that the corresponding coluinn
of A does not contain a pivotal 1.

Definition 2.2.2 (Pivotal unknown). A pivotal unknown (or pivotal
variable) of a system of linear equations AX = b is an unknown corresponding
to a pivotal column of A: z; is a pivotal unknown if the ith column of A
contains a pivotal 1. A non-pivotal unknown corresponds to a non-pivotal
column of A: x; is a non-pivotal unknown if the jth column of 4 does not
contain a pivotal 1.

Example 2.2.3 (Pivotal and non-pivotal unknowns). The matrix

. 2 1 3 1

[Ab)j=[1 -1 0 1

1 I 2 1

corresponding to the system of equations
2x+y+3z=1 1 01 0
z—y=1 row reduces to 0 1 1 o0
T+y+2z=1 0 0 01
|A.B)

so z and y are pivotal unknowns, and z is a non-pivotal unknown. A
Here is what Theorems 2.1.3 and 2.1.8 do for us:

Theorem 2.2.4 (Solutions to linear equations). Represent the system
Ax = b, involving m linear equations in n unknowns, by the m x (n + 1)

matrix [A, b), which row reduces to |4, b]. Then

(1) If the row-reduced vector b contains a pivotal 1, the system has no
solutions.

(2) If b does not contain a pivotal 1, then:
(a) if there are no non-pivotal unknowns (i.e., each column of A
contains a pivotal 1), the system has a unique solution;
(b) if at least one unknown is non-pivotal, there are infinitely many
solutions; you can choose freely the values of the non-pivotal

unknowns, and these values will determine the values of the
pivotal unknowns.

There is one case where this is of such inportance that we isolate it as a
scparate theorem, even though it is a special case of part (2a).



The nonlinear versions of these
two theorems are the inverse func-
tion theorem and the implicit
function theorem, discussed in
Section 2.9. In the nonlinear case,
we define the pivotal and non-
pivotal unknowns as being those
of the linearized probiems; as in
the linear case, the pivotal un-
knowns are implicit functions of
the non-pivotal unknowns. But
those implicit functions will be de-
fined only in a small region, and
which variables are pivotal and
which are not depends on where
we compute our linearization.

Note, as illustrated by Equa-

tion 2.2.2, that if B (i.e., the last
column in the row-reduced matrix
[A,b]) contains a pivotal 1, then
necessarily all the entries to the
left of the pivotal 1 are zero, by
definition.

In this case, the solutions form
a family that depends on the single
non-pivotal variable, z; A has one
column that does not contain a
pivotal 1.
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Theorem 2.2.5. A system AX = b has a unique solution for every b if and
only if A row reduces to the identity. (For this to occur, there must be as
many equations as unknowans, i.e., A must be square.)

We will prove Theorem 2.2.4 after looking at some examples. Let us consider
the case where the results are most intuitive, where n = m. The case where the
system of equations has a unique solution is illustrated by Example 2.1.4. The
other two—no solution and infinitely many solutions—are illustrated below.

Example 2.2.6 (A system with no solutions). Let us solve

2c+y+3z2=1
z-y=1 2.2.1
z+y+22=1
The matrix
2 1 3 1 1 0 1 0
1 -1 0 1 rowreducesto |0 1 1 O 2.2.2
1 1 2 1 0 0 0 1

so the equations are incompatible and there are no solutions; the last row tells
usthat0=1. A

Example 2.2.7 (A system with infinitely many solutions). Let us solve

2c+y+3z=1
-y =1 2.2.3
z+y+2z2=1/3.
The matrix
2 1 3 1 101 23
1 -1 0 1 row reduces to 011 ~-1/3 2.2.4
1 1 2 1/3 000 0

The first row of the matrix says that z + z = 2/3; the second that y + z =
—1/3. You can choose z arbitrarily, giving the solutions

2/3-2
-1/3-2z|; 2.2.5
z

there are as many solutions as there are possible values of z—an infinite number.
In this system of equations, the third equation provides no new information; it
is a consequence of the first two. If we denote the three equations R, R; and
Rj respectively, then Ry = 1/3(2R, - Ry):



If we had arranged the columns
differently, a different variable
would be non-pivotal; the four
variables here play completely
symmetrical roles.

|

FIGURE 2.2.1.

Case 1: No solution._
The row-reduced column b con-
tains a pivotal 1; the third line
reads 0 = 1. (The left-hand side
of that line must contain all 0's;
if the third entry were not 0, it
would be a pivotal 1, and then b
would contain no pivotal 1.)

=

o
S Ol
(=R =]

1
1
0

- o o
ot

coom
como
om=oco
o Figist

FIGURE 2.2.2.

Case 2a: Unique solution.
Each column of A contains a piv-
otal 1, giving

o) =by; zz=7>z; T3 = bs.
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2R, 4z +2y+6z2= 2
—-Ry -z + ¥y =-1
2R, — R2 =3R3 3c+3y+6z2= 1 A

In the examples we have seen so far, b was a vector with numbers as entries.
What if its entries are symbolic? Depending on the values of the symbols,
different cases of Theorem 2.2.4 may apply.

Example 2.2.8 (Equations with symbolic coefficients). Suppose we want
to know what solutions, if any, exist for the system of equations

I +Z2=0a)
223 = a2 2.26
T3+ T4 =0a3
T4+ T) = 0q.
Row operations bring the matrix
1100 a 1 00 1 a) + a3 — a2
0110 a 010 -1 az - a3
2.2.7
0011a| ¥ oo1 1 a3 ,
1 0 01 a4 0 00 O ax+ag—a)—a3

so a first thing to notice is that there are no solutions if a; +aq —a, —a3 # 0: we
are then in case (1) of Theorem 2.2.4. Solutions exist only if a;+a64—a1—a3 = 0.
If that condition is met, we are in case (2b) of Theorem 2.2.4: there is no pivotal
1 in the last column, so the system has infinitely many solutions, depending
on the value of the single non-pivotal variable, z4, corresponding to the fourth
column. A

Proof of Theorem 2.2.4. Case (1). If the row-reduced vector b contains a
pivotal 1, the system has no solutions.

Proof: The set of solutions of Ax = b is the same as that of A% = g by

Theorem 2.1.3. Ifg,' is a pivotal 1, then the jth equation of A% =breads0=1
(as illustrated by the matrix in Figure 2.2.1), so the system is inconsistent.

Case (2a). If b does not contain a pivotal 1, and each column of A contains
a pivotal 1, the system has a unique solution.

Proof: This occurs only if there are at least as many equations as unknowns
(there may be more, as shown in Figure 2.2.2). If each column of A contains

a pivotal 1, and b has no pivotal 1, then for each variable z; there is a unique
solution z; = b;; all other entries in the ith row will be 0, by the rules of row
reduction. If there are more equations than unknowns, the extra equations
do not make the system incompatible, since by the rules of row reduction,



~= [L0-1h
[Abl=10 1 2 b
00 00
.= [L030 2%
B.B=[0 110 0%
00011 b
FIGURE 2.2.3.

Case 2b: Infinitely many solu-
tions (one for each value of non-
pivotal variables).
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the corresponding rows will contain all 0's, giving the correct if uninformative
equation 0 = 0.

Case (2b) If b does not contain a pivotal 1, and at least one column of A
contains no pivotal 1, there are infinitely many solutions: you can choose freely
the values of the non-pivotal unknowns, and these values will determine the
values of the pivotal unknowns.

Proof: A pivotal 1 in the ith column corresponds to the pivotal variable ;.
The row containing this pivotal 1 (wlnch is often the ¢th row but may not be,
as shown in Figure 2.2.3, matrix 5B) contains no other pivotal 1’s: all other non-
zero entries in that row correspond to non-pivotal unknowns. (For example, in
the row-reduced matrix A of Figure 2.2.3, the -1 in the first row, and the 2 in
the second row, both correspond to the non-pivotal variable z3.)

Thus if there is a pivotal 1 in the jth row, corresponding to the pivotal
unknown z;, then z; equals b; minus the sum of the products of the non-pivotal
unknowns z; and their (row-reduced) coefficients in the jth row:

= b; - Z: &j'kzk [m] 2.2.8

sum of products of the
non-pivotal unknowns in
jth row and their coefficients

For the matrix A of Figure 2.2.3 we get
T =31 +z3 and =z =33 — 2z3;

we can make z3 equal anything we like; our choice will determine the values of
the pivotal variables z; and z;. What are the equations for the pivotal variables
of matrix B in Figure 2.2.374

How many equations in how many unknowns?

In most cases, the outcomes given by Theorem 2.2.4 can be predicted by con-
sidering how many equations you have for how many unknowns. If you have n
equations for n unknowns, most often there will be a unique solution. In terms
of row reduction, A will be square, and most often row reduction will result in
every row of A having a pivotal 1; i.e., A will be the identity. This is not always
the case, however, as we saw in Examples 2.2.6 and 2.2.7.

4The pivotal variables z1,72 and 4 depend on our choice of values for the non-
pivotal variables z3 and zs:
= 5. - 31'3 - 23'5
3= 32 -3

-~
T4 = b3 —z5.



FIGURE 2.2.4.

Top: Two lines meet in a sin-
gle point, representing the unique
solution to two equations in two
unknowns. Middle: A case where
two equations in two unknowns
have no solution. Bottom: Two
lines are colinear, representing a
case where two equations in two
unknowns have infinitely many so-
lutions.
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If you have more equations than unknowns, as in Exercise 2.1.7(b), you would
expect there to be no solutions; only in very special cases can n — 1 unknowns
satisfy n equations. In terms of row reductign, in this case A will have more
rows than columns, and at least one row of A will not have a pivo_EaJ 1. A row
of A without a pivotal 1 will consist of 0s; if the adjacent entry of b is non-zero
(as is likely), then the solution will have no solutions.

If you have fewer equations than unknowns, as in Exercise 2.2.2(e), you would
expect infinitely many solutions. In terms of row reduction, A will have fewer
rows than columns, so at least one column of A will contain no pivotal 1: there

will be at least one non-pivotal unknown. In most cases, b will not contain a
pivotal 1. (If it does, then that pivotal 1 is preceded by a row of 0’s.)

Geometric interpretation of solutions

These examples have a geometric interpretation. The top graph in Figure 2.2.4
shows the case where two equations in two unknowns have a unique solution.
As you surely know, two equations in two unknowns,
az+by=c
az + bz!l =c2,

2.29

are incompatible if and only if the lines £, and ¢, in R? with equations a,z +
b1y = c1 and ayz + byy = c; are parallel (middle graph, Figure 2.2.4). The
equations have infinitely many solutions if and only if ¢, = ¢, (bottom graph,
Figure 2.2.4).

When you have three equations in three unknowns, each equation describes
a plane in R®. The top graph of Figure 2.2.5 shows three planes meeting in a
single point, the case where three equations in three unknowns have a unique
solution.

There are two ways for the equations in R® to be incompatible, which means
that the planes do not intersect. One way is that two of the planes are parallel,
but this is not the only, or even the usual way: they will also be incompatible
if no two are parallel, but the line of intersection of any two is parallel to the
third, as shown by the middle graph of Figure 2.2.5. This latter possibility
occurs in Example 2.2.6.

There are also two ways for equations in R3 to have infinitely many solutions.
The three planes may coincide, but again this is not necessary or usual. The
equations will also have infinitely many solutions if the planes intersect in a
common line, as shown by the bottom graph of Figure 2.2.5. (This second
possibility occurs in Example 22.7.)



IFIGURE 2.2.5.

Top: Three equations in three
unknowns meet in a single point,
representing the unique solution
to three equations in three un-
knowns. Middle: Three equations
in three unknowns have no solu-
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Solving several systems of linear equations with one matrix

Theorem 2.2.4 has an additional spinoff. 1f you want to solve several systems
of n linear equations in n unknowns that have the same matrix of coefficients,
vou can deal with them all at once. usiug row reduction. This will be useful

when we compute inverses of matrices in Section 2.3.

Corollary 2.2.9 (Solving several systems of equations simultane-
ously). Several systems of n linear equations in n unknowns. with the same
coefficients (e.g. AX =b;, ..., AX =Dby)can be solved at once with row

reduction. Form the matrix

[A,by,...,bix] and row reduce it to get [A,By, ..., by
If A is the identity, then b, is the solution to the ith equation AX = b;.

If A row reduces to the identity. the row reduction is completed by the time
one has dealt with the last_row of A. The row operations needed to turn Ainto
A affect each b,. but the b; do not affect each other.

Example 2.2.10 (Several systems of equations solved simultaneously).
Suppose we want to solve the three systems

2r+y+3:=1 2r+y+32=2 2r+y+3:=0
() r—y+ z=1 (2) r-y+ 2=0 (3) z-y+ z=1
r+y+2:=1 r+y+22=1 r+y+2:=1
We form the matrix
2 1.3 120 100 -2 2 -5
1 -1 1 1 0 1. whichrowreducesto {0 1 0 -1 1 -2
1 1.2 111 0 01 2 -1 4
A B Gs bq 1 B B B
-2 I -2
The solution to the first system of equationsis | —1|,ie. |y ]| = | =1; the
2 z 2
2 -5
solution to the second is 1 |: the solution to the thirdis | -2 |. A
-1 4

tion. Bottom: Threc equn- 9 3 MATRIX INVERSES AND ELEMENTARY MATRICES

tions in three unknowns
have infinitely many solutions.

In this section we will see that matrix inverses give another way to solve equa-
rions. We will also introduce the modern view of row reduction: that a row
operation is equivalent to multiplving a matrix by an elementary matra.



Only square matrices can have
inverses: Exercise 2.3.1 asks you
to (1) derive this from Theorem
2.2.4, and (2) show an example
where AB = I, but BA # |I.
Such a B would be only a “one-
sided inverse” for A4, not a real
inverse; a “one-sided inverse” can
give uniqueness or existence of so-
lutions to AX = b, but not both.

To construct the matrix {A|I] of
Theorem 2.3.2, you put A to the
left of the corresponding identity
matrix. By “corresponding” we
mean that if A is n x n, then the
identity matrix I must be n x n.
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Solving equations with matrix inverses

Recall from Section 1.2 that the inverse of a matrix A is another matrix 4!
such that AA~! = A~1A = I, the identity. In that section we discussed two
results involving inverses, Propositions 1.2.14 and 1.2.15. The first says that if
a matrix has both a left and a right inverse, then those inverses are identical.
The second says that the product of two invertible matrices is invertible. and
that the inverse of the product is the product of the inverses, in reverse order.

Inverses give another way to solve equations. If a matrix A has an inverse
A1, then for any b the equation AX = b has a unique sohution, namely ¥ =
Ab.

One _can verify that A~1b is a solution by plugging it into the equation
AX=Db:

A(A™'B) = (AA" )b =Ib=b. 2.3.1

This makes use of the associativity of matrix multiplication.
The following computation proves uniqueness:
AR =B, so AT'A% = A7'b; we have X = A~'b.
2.3.2
Again we use the associativity of mnatrix multiplication. Note that in Equation
2.3.1 the inverse of A is on the right; in Equation 2.3.2 it is on the left.
‘The above argument, plus Theorem 2.2.5, proves the following proposition.

since A 'A% =X,

Proposition 2.3.1. A matrix A is invertible if and only if it row reduces to
the identity.

In particular. to be invertible a matrix must be square.

Computing matrix inverses

Computing matrix inverses is rarely a good way to solve linear equations, but
it is nevertheless a very important construction. Equation 1.2.15 shows how
to compute the inverse of a 2 x 2 matrix. Analogous formulas exist for larger
matrices, but they rapidly get out of hand. The effective way to compute matrix
inverses for larger matrices is by row reduction:

Theorem 2.3.2 (Computing a matrix inverse). If A is a n x n atrix,
and you construct the n x 2n augmented matrix [A|I] and row reduce it, then
either:

(1) The first n columns row reduce to the identity, in which case the last
n columns of the row-reduced matriz are the inverse of A, or

(2) The first n columns do not row reduce to the identity, in which case
A does not have an inverse.



We haven’t row reduced the
matrix to echelon form; as soon
we see that the first three columns
are not the identity matrix, there's
no point in continuing; we already
know that A has no inverse.
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Example 2.3.3 (Computing a matrix inverse).

2 1 3 3 -1 -4
A=[l -1 1J has inverse A"=[ 1 -1 -1}, 233
1 1 2 -2 1 3
because
2 13 100 100 3 -1 —4
[1 -11 01 0} row reduces to [o 10 1 -1 -1/. 234
1 12 001 001 -2 1 3

Exercise 2.3.3 asks you to confirm that you can use this inverse matrix to
solve the system of Example 2.2.10. A

Example 2.3.4 (A matrix with no inverse). Consider the matrix of Ex-
amples 2.2.6 and 2.2.7, for two systems of linear equations, neither of which has
a unique solution:

2 1 3
A=|1 -1 O0]. 2.3.5
1 1 2
This matrix has no inverse A~ because
2 13 1 0 0 101 1 0 -1
1 -1 0 0 1 0| rowreducesto |0 1 1 -1 0 2
1 1 2 00 1 0 00O -2 1 3
A 236

Proof of Theorem 2.3.2. Suppose [A|I] row reduces to [I|B)]. Since A row
reduced to the identity, the ith column of B is the solution X; to the equation
AX; = §&;.

This uses Corollary 2.2.9. In Example 2.2.10 illustrating that corollary, AB
row reduced to !ﬁ, so the ith column of B (i.e., b;) is the solution to the
equation AX; = b;. We repeat the row reduction of that example here:

2 13 120 100 -2 2 -5

1-11 10 1| rowreducesto |0 1 0 -1 1 =2,

1 12 111 001 2 -1 4
A B, B2 bBs I By By Bs

so AE, = E,'.
Similarly, when A row reduces to IB, the ith column of B (i.e., 5;) is the
solution to the equation AX; = €;:
2 13 100 1 0 3 -1 -4
1-11 01 0] rowreducesto |0 0 1 -1 -1}, 237
1 1.2 001 0 1 -2 1 3
A by b2 bs

@ &; &



1
10 0 0
01 0 0
00 T 0f:q
00 ... 0 ... 1
Type 1: E;(i,z)

OO O =
(=N -]
oNnoOo
[l = =]

Example type 1: E)(3,2)

Recall (Figure 1.2.3) that the
ith row of E) A depends on all the
entries of A but only the ith row
of Ey.

i J
1 0 0 0
0 1 z 01
0 0 1 0]J
0.0 0

Type 2: Ez(i,j,z)

1 0 -3
01 o
00 1

Example type 2: E(1,3, —3)
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S0 Asi = &;. So we have:

A [sl, 52, e Sn] = lé‘], 62, e é‘ﬂ]; 238

B 1
This tells us that B is a right inverse of A: that AB = I.

We already know by Proposition 2.3.1 that if A row reduces to the identity it
is invertible, so by Proposition 1.2.14, B is also a left inverse, hence the inverse
of A. (At the end of this section we give a slightly different proof in terms of
elementary matrices.) O

Elementary matrices

After introducing matrix multiplication in Chapter 1, we may appear to have
dropped it. We haven’t really. The modern view of row reduction is that any
row operation can be performed on a matrix by multiplying A on the left by an
elementary matrix. Elementary matrices will simplify a number of arguments
further on in the book.

There are three types of elementary matrices, all square, corresponding to the
three kinds of row operations. They are defined in terms of the main diagonal,
from top left to bottom right. We refer to them as “type 1,” “type 2,”and “type
3,” but there is no standard numbering; we have listed them in the same order
that we listed the corresponding row operations in Definition 2.1.1.

Definition 2.3.5 (Elementary matrices).

(1) The type 1 elementary matrix E, (4, z) is the square matrix where every
entry on the main diagonal is 1 except for the (%, 7)th entry, which is z # 0,
and in which all other entries are zero.

(2) The type 2 elementary matrix E(i, j, ), for i # j, is the matrix where
all the entries on the main diagonal are 1, and all other entries are 0 except
for the (4, j)th, which is z. (Remember that the first index, i, refers to which
row, and the second, j, refers to which column. While the (3, J)th entry is z,
the (j,4)th entry is 0.)

(3) The type 3 elementary matrix Ej3(i,5), i # j, is the matrix where the
entries ,j and j,i are 1, as are all entries on the main diagonal except 4,1
and j, j, which are 0. All the others are 0.

© Multiplying A on the left by E, multiplies the ith row of A by z: E;A is
identical to A except that every entry of the ith row has been multiplied by z.

e Multiplying A on the left by E, adds (z times the jth row) to the ith row.
¢ The matrix E3A4 is the matrix A with the ith and the Jjth rows exchanged.



The type 3 elementary matrix
E3(3, j) is shown at right. It is the
matrix where the entries ¢,j and
Jj.i are 1, as are all entries on the
main diagonal except 7,2 and j, j.
which are 0. All the others are 0.

o O -
o= O

00

N e/
elementary matrix

Multiplying A by this elementary
matrix multiplies the third row of

Aby 2.

The proof is left as Exercise

2.3.13.

0
0
2
0

-0 oCc

—_ O = N O =

}

— R NO =~ =NO
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i J A

1 0 ... 0 0

0 0 ... 1 0| ¢

0 0 1 0 0 10000

0 1 ... 0 ... o Jj 00100

0 0 0 0 1 0 01000

: oo : 00010

Lo 0 0 1 00001

i - 2 o - -

T . Es(i, j Example type 3
ype 3: Es(i, ) Es(2,3)

Example 2.3.6 (Multiplication by an elementary matrix). We can
multiply by 2 the third row of the matrix A, by multiplying it on the left by
the type 1 elementary matrix E)(3,2) shown at left. A

Exercise 2.3.8 asks you to confirm that multiplying a matrix A by the other
types of elementary matrices is equivalent to performing the corresponding row
operation. Exercise 2.1.3 asked you to show that it is possible to exchange rows
using only the first two row operations. Exercise 2.3.14 asks you to show this
in terms of elementary matrices. Exercise 2.3.12 asks you to check that column
operations can be achieved by multiplication on the right by an elementary
matrix of types 1,2, and 3 respectively.

Elementary matrices are invertible

One very important property of elementary matrices is that they are invertible,
and that their inverses are also elementary matrices. This is another way of
saying that any row operation can be undone by another elementary operation.
It follows from Proposition 1.2.15 that any product of elementary matrices is
also invertible.

Proposition 2.3.7. Any elementary matrix is invertible. More precisely,

(1) (Ex(i,2)) "' = Ei(i, 1): the inverse is formed by replacing the z in
the (i,3)th position by 1/x. This undoes multiplication of the ith row
by z.

2) (E2(i. 3, z:))_l = Ey(i,j,—z): the inverse is formed by replacing the
z in the (i, j)th position by —z. This subtracts = times the jth row
from the ith row.

(3) (Bs(i,5))~" = Es(i,j): multiplication by the inverse exchanges rows
i and j a second time, undoing the first change.



Of course in ordinary arith-
metic you can’t conclude from 4 x
6 = 3x8that 4 = 3 and 6 =
8, but in matrix multiplication if
(E)[AlI) = [1|B), then [E][A] = I
and [E][I] = B, since the multipli-
cation of each column of A and of
I by [E] occurs independently of
all other columns:

(A1)
[E] [(EA|EI].

Equation 2.3.10 shows that
when row reducing a matrix of the
form [A|I], the right-hand side of
that augmented matrix serves to
keep track of the row operations
needed to reduce the matrix to
echelon form; at the end of the
procedure, I has been row reduced
to Ex...Ey = B, which is pre-
cisely (in elementary matrix form)
the series of row operations used.
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Proving Theorem 2.3.2 with elementary matrices

We can now give a slightly different proof of Theorem 2.3.2 using elementary

matrices.
(1) Suppose that [A]I] row reduces to {I|B]. This can be expressed as mul-

tiplication on the left by elementary matrices:

Ey ... E\[A|l}) = (I)B]. 2.3.9
The left and right halves of Equation 2.3.9 give
E....Ey,A=1 and E;...E\]=B. 2.3.10

Thus B is a product of elementary matrices, which are invertible, so (by Propo-
sition 1.2.15) B is invertible: B~! = E;’'... E;!. Moreover, substituting the
right equation of 2.3.10 into the left equation gives BA = I, so B is a left
inverse of A. We don’t nced to check that it is also a right inverse, but doing so
is straightforward: multiplying BA = I by B~! on the left and B on the right
gives

I=B"'IB=B"'(BA)B=(B"'B)AB = AB. 2.3.11

So B is also a right inverse of A.

(2) If row reducing [A[I] row reduces to [A’|A”], where A’ is not the identity,
then (by Theorem 2.2.5), the equation AX; = €; either has no solution or has
infinitely many solutions for each i = 1,...n. In either case, A is noninvert-
ible. O

2.4 LINEAR COMBINATIONS, SPAN, AND LINEAR

INDEPENDENCE

In 1750, questioning the general assumption that every system of n linear
equations in n unknowns has a unique solution, the great mathematician
Leonhard Euler pointed out the case of the two equations 3z ~2y = 5 and
dy = 6x — 10. “We will see that it is not possible to determine the two
unknowns z and y,” he wrote, “since when one is eliminated, the other
disappears by itself, and we are left with an identity from which we can
determine nothing. The reason for this accident is immediately obvious,
since the second equation can be changed to 6z — 4y = 10, which, being
Jjust the double of the first, is in no way different from it.”

Euler concluded by noting that when claiming that n equations are sufficient
to determine n unknowns, “one must add the restriction that all the equations
be different from each other, and that none of them is included in the others.”
Euler’s “descriptive and qualitative approach” represented the beginning of a



More generally, these ideas ap-
ply in all linear settings, such as
function spaces and integral and
differential equations. Any time
the notion of linear combination
makes sense one can talk about
linear independence, span, ker-
nels, and so forth.

Example 2.4.1 (Linear combi-

nation). The vector [ 2

ear combination of the standard
basis vectors &, and &z, since

[{]-sfa]+[3]

But the vector

] is a lin-

4 | is not a linear
1
combination of the vectors

=T
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new way of thinking.® At the time, mathematicians were interested in solving
individual systems of equations, not in analyzing them. Even Euler began his
argument by pointing out that attempts to solve the system fail; only then did
he explain this failure by the obvious fact that 3z — 2y = 5 and 4y = 6z — 10
are really the same equation.

Today, linear algebra provides a systematic approach to both analyzing and
solving systems of linear equations, which was completely unknown in Euler’s
time. We have already seen something of its power. Row reduction to echelon
form puts a system of linear equations in a form where it is easy to analyze.
Theorem 2.2.4 then tells us how to read that matrix, to find out whether the
system has no solution, infinitely many solutions, or a unique solution (and, in
the latter case, what it is).

Now we will introduce vocabulary that describes concepts implicit in what
what we have done so far. The notions linear combinations, span and linear
independence give a precise way to answer the questions, given a collection of
linear equations, how many genuinely different equations do we have? How
many can be derived from the others?

Definition 2.4.2 (Linear combinations). If ¥,,...,¥; is a collection of
vectors in R™, then a linear combination of the ¥; is a vector W of the form

k
1'6=Ea;95.

i=1

241

for any scalars a;.

In other words, the vector W is the sum of the vectors ¥),...,Vx, each
multiplied by a coefficient.

The notion of span is a way of talking about the ezistence of solutions to
linear equations.

Definition 2.4.3 (Span). The span of ¥,,...,¥; i8 the set of linear com-
binations @, V) + - - - + ax¥s. It is denoted Sp (¥y,..., V).

The word span is also used as a verb. For instance, the standard basis vectors
€, and &; span R? but not R3. They span the plane, because any vector in the
plane is a linear combination a, &, + a; &,.

Geometrically, this means that any point in the z, y plane can be written in
terms of its z and y coordinates. The vectors & and ¥ shown in Figure 2.4.1
also span the plane.

®Jean-Luc Dorier, ed., L 'Enseignement de | ‘algébre linéaire en question, La Pensée
Sauvage, Editions, 1997. Euler’s description, which we have roughly translated,
is from “Sur une Contradiction Apparente dans la Doctrine des Lignes Courbes,”
Mémoires de I’Académie des Sciences de Berlin 4 (1750).
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You are asked to show in Exercise 2.4.1 that Sp (¥, ... , V) is a subspace of
R" and is the smallest subspace containing ¥i, ... V.

Examples 2.4.4 (Span: two easy cases). In simple cases it is possible to
see immediately whether a given vector is in the span of a set of vectors.

2 2
(1) Is the vector @ = | 1| in the span of W = 0 ? Clearly not; no
1 1

multiple of 0 will give the 1 in the second position of .
(2) Given the vectors

1 -2 1 0
0 -1 1 - 0
V] = ol Vz = 1 \."3 = —1l V4= 1] 2.4.2
-1 0 1 0
_ is ¥4 in the span of {¥, V2, V3}? Check your answer below.®

€
Example 2.4.5 (Row reducing to check span). When it’s not immediately
FIGURE 2.4.1. obvious whether a vector is in the span of other vectors, row reduction gives
The vectors i and ¥ span the the answer. Given the vectors

plane: any vector, such as &, can 2 1 3 3
be expressed as the sum of com- wy= (1], We=|-1], w3=]0], V=]3], 24.3

ponents in the directions @ and V, 1 1 2 1
i.e., multiples of G and . is V in the span of the other three? Here the answer is not apparent, so we

can take a more systematic approach. If ¥ is in the span of {W, W2, W3}, then
ZT\W) + ZoW2 +T3W3 = ¥, i.e., (Writing W), W2 and W3 in terms of their entries)
there is a solution to the set of equations

27y +x2 +323=3

Like the word onto, the word IR 2 =3 2.4.4
span is a way to talk about the _
existence of solutions. Ty +72 +253 =1
Theorem 2.2.4 tells us how to solve this system; we make a matrix and row

ed M reduce it:

We u ATLAB to row reduce

the matrix in Equation 2.4.5, as 2 133 101 2

we don’t enjoy row reduction and 1 -1 0 3 row reduces to 011 -1]. 24.5
tend to make mistakes. 1 121 000 O

SNo. It is impossible to write V4 as a linear combination of the other three vectors.
Since the second and third entries of V) are 0, if V4 were in the span of {V1,V2,V3},
its second and third entries would depend only on ¥ and V3. To achieve the 0 of the
second position, we must give equal weights to V2 and V3, but then we would also
have a 0 in the third position, whereas we need a 1.



The vectors € and & are lin-
early independent. There is only

one way to write in terms of

3
4
61 and 63:
1 0 3
o] ++[2] = (3]
But if we give ourselves a third

then we can

vector, say V = g ,

RG]

The three vectors €),&; and V are
not linearly independent.
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Since the last column of the row reduced matrix contains no pivotal 1, there
is a solution: ¥ is in the span of the other three vectors. But the solution
is not unique: A has a column with no pivotal 1, so there are infinitely many
ways to express V as a linear combination of {W,, W, w3}. For example,

V =2W, - Wa =W, — 2W2 + W3. A
0 1 2 1
Is the vector ¥ = | 1] in the span of the vectors [0|,[1],and [3[? Is
1 1 1 0
0 2 -2
w=|1]inthespanof [2]|,|—1|,and |[1]? Check your answers below.”
1 0 2 0

Linear independence

Linear independence is a way to talk abonut uniqueness of solutions to linear
equations.

Definition 2.4.6 (Linear independence). The vectors Vy,...,V; are
linearly independent if there is at most one way of writing a vector W as a
linear combination of ¥y,... ,Vy, i.e., if

& k
w = z:zﬁ,- = Zyﬁg implies z, =y, Z2=Y2,... , Tk =Y. 2.4.6
i=1 i=1
(Note that the unknowns in Definition 2.4.6 are the coefficients z;.) In other
words, if V1,...,Vj are linearly independent, then if the system of equations
W=V, +ZaVo+ -+ KV 2.4.7

has a solution, the solution is unique.

1 2 1
"Yes, ¥ is in the span of the others: ¥ = 3 0] -2 [l] + [3] , since the matrix
1 1 0

1 210 100 3
0 1 3 1 rowreducesto [0 1 0 -2|. No, W is not in the span of the
1101 001 1

2 1
others (as you might have suspected, since | 2| is a multiple of [1} ). If we row
0

0
10 1/20
reduce the appropriate matrixweget |0 1 0 0]: the system of equations has
00 0 1

no solution.



Like the term one to one, the
term linear independence is a way
to talk about uniqueness of solu-
tions.

The pivotal columns of a ma-
trix are linearly independent.

Non-pivotal is another way of
saying linearly dependent.

Saying that V¥ is in the span of
the vectors W), W2, W3, W4 means
that the system of equations has
a solution; since the four vectors
are not linearly independent, the
solution is not unique.

In the case of three linearly in-
dependent vectors in R?, there is a
unique solution for every b € R3?,
but uniqueness is irrelevant to the
question of whether the vectors
span R3; span is concerned only
with existence of solutions.
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Example 2.4.7 (Linearly independent vectors). Are the vectors

1 -2 -1
w =12, wp= 1{, wW3= 1{,
3 2 -1

linearly independent? Theorem 2.2.5 says that a system Ax = b of n equations
in = unknowns has a unique solution for every b if and only if A row reduces
to the identity. The matrix

1 -2 -1 1 00

2 1 1] row reducesto 01 0],
3 2 -1 001

W1 W2 W

so the vectors are linearly independent: there is only one way to write a vector
¥; in R® as the linear combination @;W; + byW + ¢, W3. These three vectors
also span R®, since we know from Theorem 2.2.5 that any vector in R? can be
written as a linear combination of them. A

Example 2.4.8 (Linearly dependent vectors). If we make the collection
of vectors in Example 2.4.7 linearly dependent, by adding a vector that is a
linear combination of some of them, say W4 = 2W, + W3:

1 -2 -1 -5
wi=|2|, W= 1|, ws=]| 1|, w=]| 3|, 248
3 2 -1 3
-7
and use them to express some arbitrary vector® in R3, say ¥ = | —2 |, we get
1
1 -2 -1 -5 -7 1 000 -2
2 1 1 3 -2 which row reduces to 0102 3
3 2 -—-1 3 1 0011 -1
4.9

Since the fourth column is non-pivotal and the last column has no pivotal 1, the
system has infinitely many solutions: there are infinitely many ways to write ¥
a8 a linear combination of the vectors W;, W3, W3, W4. The vector ¥ is in the
span of those vectors, but they are not linearly independent. A

It is clear from Theorem 2.2.5 that three linearly independent vectors in R3
span R3: three linearly independent vectors in R® row reduce to the identity,

1

SActually, not quite arbitrary. The first choice was | 1

1

messy fractions, so we looked for a vector that gave a neater answer.

, but that resulted in



Calling a single vector linearly
independent may seem bizarre;
the word independence seems to
imply that there is something to
be independent from. But one can
easily verify that the case of one
vector is simply Definition 2.4.6
with k& = 1; excluding that case
from the definition would create
all sorts of difficulties.

Linear independence is not re-
stricted to vectors in R™: it also
applies to matrices (and more gen-
erally, to elements of arbitrary vec-
tor spaces). The matrices A, B
and C are linearly independent if
the only solution to

A+ aB+azC =0 is

a;:az=03=0.
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which means that (considering the three vectors as the matrix A) there will be

a unique solution for A% = b for every b eR3.
But linear independence does not guarantee the existence of a solution, as

we see below.

Example 2.4.9. Let us modify the vectors of Example 2.4.7 to get

’

-1 -7
1] . |-2
ol =1 2.4.10
1 1

The vectors i, iz, i3 € R* are linearly independent, but ¥ is not in their span:

1 -2
2 1
W= |g), d=] ,
0 -1
the matrix
1 -2 -1 -7
2 1 1 -2
3 2 -1 1
0 -1 1 1

row reduces to

00
00
10 2.4.11
01

10
01
00
00

The pivotal 1 in the last column tells us that the system of equations has no
solution, as you would expect: it is rare that four equations in three unknowns

will be compatible. A

Example 2.4.10 (Geometrical interpretation of linear independence).

(1) One vector is linearly independent if it isn't the zero vector.

(2) Two vectors are linearly independent if they do not both lie on the same

line.

(3) Three vectors are linearly independent if they do not all lie in the same

plane.

These are not separate definitions; they are all examples of Definition 2.4.6.

Alternative definitions of linear independence

Many books define linear independence as follows, then prove the equivalence
of our definition:

Definition 2.4.11 (Alternative definition of linear independence).
A set of k vectors V,,... , ¥, is linearly independent if and only if the only

solution to
uVr+ate+ - +av =0

Gi=op=--=a,=0. 2412



More generally, more than n
vectors in R™ are never linearly in-
dependent, and fewer than n vec-
tors never span.

The matrix of Equation 2.4.16
could have fewer than four pivotal
columns, and if it has four, they
need not be the first four. All that
matters for the proof is to know
that at least one of the first five
columns must be non-pivotal.

The matrix of Equation 2.4.18,

(91,92, 9,94, ),
N e’

A B
corresponds to the equation

a1 ]
a2
as

34 ]
U1l V1,2 V1,3 Vi4 w)
V2,1 V22 V2,3 V24 w2
¥31 vU32 V33 U3« w3
V4,1l V4,2 V4,3 Vg4 Wy

vs,1 V52 Us53 Us4 | Ws J
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In one direction, we know that 0V; 4+ 0¥z + - - - + 0¥ = 0, so if the coefficients
do not all equal 0, there will be two ways of writing the zero vector as a linear
combination, which contradicts Definition 2.4.6. In the other direction, if

v +...0kV and V) +... CkVk 2.4.13

are two ways of writing a vector i as a linear combination of ¥y, ..., ¥, then
by —c)Vi +...(bk —ck)Vi =0. 24.14
But if the only solution to that equation is by — ¢, =0,...,b¢ = cx = 0, then
there is only one way of writing i as a linear combination of the ¥;.
Yet another equivalent statement (as you are asked to show in Exercise 2.4.2)
is to say that ¥; are linearly independent if none of the ¥ is a linear combination
of the others.

How many vectors that span R” can be linearly independent?

The following theorem is basic to the entire theory:

Theorem 2.4.12. In R™, n + 1 vectors are never linearly independent, and
n — 1 vectors never span.

Proof. First, we will show that in R*, five vectors are never linearly indepen-

dent; the general case is exactly the same, and a bit messier to write.
If we express a vector w € R* using the five vectors

61,62,63,64”1, 2.4.15

at least one column is non-pivotal, since there can be at most four pivotal 1’s:

1000 %

0100 @ @
0010 @ 24.16
000 1 % s

(The tilde indicates the row reduced entry: row reduction turns v, into #,.)
So there are infinitely many solutions: infinitely many ways that W can be
expressed as a linear combination of the vectors V,, V2, V3, V4, Q.

Next, we need to prove that n — 1 vectors never span R®. We will show that
four vectors never span R%; the general case is the same.

Saying that four vectors do not span R® means that there exists a vector
W € R® such that the equation

a1V +a2V2 + a3vz + aVy =W 24.17
has no solutions. Indeed, if we row reduce the matrix

Ivly 62, V.37741 “;']
A

2.4.18



What gives us the right to set
ws to 1 and set the other entries of
w to 0?7 To prove that four vectors
never span R®, we need to find
just one vector w for which the
equations arc incompatible. Since
any row operation can be undone,
we can assign any values we like to
our W, and then bring the echelon
matrix back to where it started,
(V1,V2,V3,V4, W). The vector W
that we get by starting with

£
it
—~cocoo

and undoing the row operations
is a vector that makes the system
incompatible.
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we end up with at least one row with at least four zeroes: any row of A must
either contain a pivotal 1 or be all 0’s, and we have five rows but at most four

pivotal 1's:

1000 @
010 0
001 0 @ 2.4.19
00 0 1
000 0 s

Set ws = 1, and set the other entries of W to 0; then s is a pivotal 1, and the
system has no solutions; W is outside the span of our four vectors. (See the box
in the margin if you don’t see why we were allowed to set w5 =1.) O

We can look at the same thing in terms of multiplication by elementary
matrices; here we will treat the general case of n — 1 vectors in R™. Suppose
that the row reduction of [Vy,..., V,_)] is achieved by multiplying on the left
by the product of elementary matrices E = E ... E), so that

E([%,,.... V)=V

is in echelon form; hence its bottom row is all zeroes.
Thus, to show that our n—1 vectors do not span R", we want the last column
of the augmented, row-reduced matrix to be

2.4.20

0
0

g
1]
1]

. €n; 24.21
1
we will then have a system of equations with no solution. We can achieve that

by taking W = E~1&,: the system of linear equations a,V; + -+ + @n—1Vn—y =
E "€, has no solutions.

A set of vectors as a basis

Choosing a basis for a subspace of R”, or for R™ itself, is like choosing axes
(with units marked) in the plane or in space. This allows us to pass from
non-coordinate geometry (synthetic geometry) to coordinate geometry (analytic
geometry). Bases provide a “frame of reference” for vectors in a subspace.

Definition 2.4.13 (Basis). Let V C R” be a subspace. An ordered set of
vectors Vy,...,V, € V is called a basis of V if it satisfies one of the three
equivalent conditions.

(1) The set is a mazimal linearly independent set: it is independent, and
if you add one more vector, the set will no longer be linearly independent.



The direction of basis vectors
gives the direction of the axes; the
length of the basis vectors provides
units for those axes.

Recall (Definition 1.1.5) that
a subspace of R" is a subset of
R"™ that is closed under addition
and closed under multiplication by
scalars. Requiring that the vectors
be ordered is just a convenience.

1 0
0 0
& =(0],...,&8=]0
0 1

The standard basis vectors

FIGURE 2.4.2.
The standard basis would not
be convenient when surveying this
yard. Use a basis suited to the job.
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(2) The set is a minimal spanning set: it spans V, and if you drop one
vector, it will no longer span V.
(3) The set is a linearly independent set spanning V.

Before proving that these conditions are indeed equivalent, let’s see some
examples.

Example 2.4.14 (Standard basis). The fundamental example of a basis is
the standard basis of R™; our vectors are already lists of numbers, written with
respect to the “standard basis” of standard basis vectors, €},...,&,.

Clearly every vector in R" is in the span of &;,... ,€n:

ay
=a18 + -+ anén; 2.4.22

Qn

and it is equally clear that &),... ,&, are linearly independent (Exercise 2.4.3).

Example 2.4.15 (Basis formed of n vectors in R"). The standard basis
is not the only one. For instance,

[:][_i] form a basis in R?, as do [g][ﬂg] (but not [g],["é"’] )

A

In general, if you choose at random n vectors in R", they will form a basis.
In R?, the odds are completely against picking two vectors on the same line; in
R3 the odds are completely against picking three vectors in the same plane

You might think that the standard basis should be enough. But there are
times when a problem becomes much more straightforward in a different basis.
The best examples of this are beyond the scope of this chapter (eigenvectors,
orthogonal polynomials), but a simple case is illustrated by Figure 2.4.2. (Think
also of decimals and fractions. It is a great deal simpler to write 1 /7 than
0.142857142857 ..., yet at other times computing with decimals is easier.)

In addition, for a subspace V C R™ it is usually inefficient to describe vectors
using all n numbers:

Example 2.4.18 (Using two basis vectors in a subspace of R®). In the
subspace V C R® of equation z + y + z = 0, rather than writing a vector by
giving its three entries, we could write them using only two coefficients, a and
1 1
b, and the vectors Wy = | -1 | and W =| 0]. For instance,
0 -1

V = aw; + bw,. 2.4.23



One student asked, “When n >
3, how can vectors be orthogonal,
or is that some weird math thing
you just can't visualize?” Pre-
cisely! Two vectors are orthogonal
if their dot product is 0. In R? and
R3, this corresponds to the vectors
being perpendicular to each other.
The geometrical relation in higher
dimensions is analogous to that in
R? and R?, but you shouldn't ex-
pect to be able to visualize 4 (or
17, or 98) vectors all perpendicu-
lar to each other.

For a long time, the impossi-
bility of visualizing higher dimen-
sions hobbled mathematicians. In
1827, August Moebius wrote that
if two flat figures can be moved in
space so that they coincide at ev-
ery point, they are “equal and sim-
ilar.” To speak of equal and sim-
ilar objects in three dimensions,
he continued, one would have to
be able to move them in four-
dimensional space, to make them
coincide. “But since such space
cannot be imagined, coincidence
in this case is impossible."
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What other two vectors might you choose as a basis for V7°

Orthonormal bases

When doing geometry, it is almost always best to work with an orthonormal
basis. Below, recall that two vectors are orthogonal if their dot product is zero

(Corollary 1.4.80).

Definition 2.4.17 (Orthonormal basis). A basis ¥, V2... Vy of a sub-
space V C R" is orthonormal if each vector in the basis is orthogonal to
every other vector in the basis, and if all basis vectors have length 1:

Vi-¥;=0 fori£j and |¥;|=1 foralli<k.

The standard basis is of course orthonormal.

The reason orthonormal bases are interesting is that the length squared of
a vector is the sum of the squares of its coordinates, with respect to any or-
thonormal basis. If ¥,,... Vx and W,,... Wy are two orthonormal bases, and

a1V + -+ axVk = bW, +--- + bWy, then a§+~-+ai=bf+-'-+bi.

The proof is left as Exercise 2.4.4.

If all vectors in the basis are orthogonal to each other, but they don’t all have
length 1, then the basis is orthogonal. Is either of the two bases of Example
2.4.15 orthogonal? orthonormal?1©

Proposition 2.4.18. An orthogonal set of nonzero vectors Viye.., Vi is lin-
early independent.

Proof. Suppose aj¥y + --- + axVi = 0. Take the dot product of both sides
with ¥;:

(@Vy+ - +apV) -V =0-¥ =0. 2.4.24

-1 0 -1/2 1

*Thevectors [ 0|, | 1| are a basis for V,asare | —-1/2], [ =1]; the vectors

1 1 0
just need to be linearly independent and the sum of the entries of each vector must
be O (satisfying = +y +z = 0). Part of the “structure” of the subspace V is thus built
into the basis vectors.

!%The first is orthogonal, since [: ] . [_: ] =1-1 = 0; the second is not, since

2 0.5 X .
[0] . [_3] =1+0= 1. Neither is orthonormal; tbe vectors of the first basis each
have length v/2, and those of the second have lengths 2 and 1/9.25.



The surprising thing about
Proposition 2.4.18 is that it al-
lows us to assert that a set of vec-
tors is linearly independent look-
ing only at pairs of vectors. It
is of course not true that if you
have a set of vectors and every pair
is linearly independent. the whole
set is linearly independent; con-
sider, for instance, the three vec-

IR0

By “nontrivial,” we mean a so-
lution other than

a=a=-=a,=b=0.

2.4 Linear Independence 175

So

(- F) + a4t a(Te ) =00 2425

Since the V; form an orthogonal set, all the dot products on the left are zero

except for the ith, so a;(¥; - V;) = 0. Since the vectors are assumed to be
nonzero, this says that a; =0. O

Equivalence of the three conditions for a basis

We need to show that the three conditions for a basis given in Definition 2.4.13
are indeed equivalent.

We will show that (1) implies (2): that if a set of vectors is a maximal linearly
independent set, it is a minimal spanning set. Let V C R™ be a subspace. If
an ordered set of vectors Vy,... ,Vx € V is a maximal linearly independent set.
then for any other vector w € V, the set {V),... , Vi, W} is linearly dependent,
and (by Definition 2.4.11) there exists a nontrivial relation

an"l + 4 ak\-'-k +bw =0. 2.4.26

The coefficient b is not zero, because if it were, the relation would then involve
only the ¥'s, which are linearly independent by hypothesis. Therefore we can
divide through by b, expressing W as a linear combination of the ¥'s:
Yo+ + % = W 2.4.27
b b
Since w € V can be any vector in V, we see that the ¥’s do span V.
Moreover, V,,...,Vy is a minimal spanning set: if one of the V;'s is
omitted, the set no longer spans, since the omitted ¥; is linearly independent
of the others and hence cannot be in the span of the others.
This shows that. (1) implies (2); the other implications are similar and left
as Exercise 2.4.7.
Now we can restate Theorem 2.4.12:

Corollary 2.4.19. Every basis of R™ has exactly n elements.

Indeed a set of vectors in R™ ncver spans B" if it has fewer than n elements,
and it is never linearly independent if it has more than n elements (see Theorem
2.4.12).

The notion of the dimension of a subspace will allow us to talk abont such
things as the size of the space of solutions to a set of equations, or the number
of genuinely different equations.

Proposition and Definition 2.4.20 (Dimension). Every subspace E C
R™ has a basis, and any two bases of a subspace E have the same nunber of
elements, called the dimension of E.



We can express any w; as a lin-
ear combination of the ¥; because
the ¥; span E.

It might seem more natural to
express the Ww’s as linear combi-
nations of the ¥’s in the following
way:

W1 =a11V1 + - + a1 .V

Wp =apaV1 + - +apaVi.

The a’s then form the transpose of
matrix A we have written. We use
A because it is the change of basis
matrix, which we will see again in
Section 2.6 (Theorem 2.6.16).

The sum in Equation 2.4.28 is
not a matrix multiplication. For
one thing it is the sum of products
of numbers with vectors; for an-
other, the indices are in the wrong
order.
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Proof. First we construct a basis of E. If E = {0}, the empty set is a basis of
E. Otherwise, choose a sequence of vectors V,,V,... in E as follows: choose
¥) # 0, then ¥, ¢ Sp(¥,), then V3 ¢ Sp(¥,,V2), etc. Vectors chosen this
way are clearly linearly independent. Therefore we can choose at most n such
vectors, and for some m < n, ¥,...,V, will span E. (If they don’t span, we
can choose another.) Sincc these vectors are linearly independent, they form a

basis of E.
Now to see that any two bases have the same number of elements. Suppose
V1,...,Vx and W), ..., W, are two bases of E. Then there exists an k x p matrix

A with entries a; ; such that

k
W= a;i 2.4.28

i=1
i.e., that W; can be expressed as a linear combination of the ¥;. There also
exists a p x k matrix B with entries ¥ ; such that

P
vi= th..'ﬁh.
=1

Substituting the value for ¥; of Equation 2.4.29 into Equation 2.4.28 gives

k P P k
W, = Zai.j th,iﬁl = Z (Z bl,iai,j) wi.
1=

i=1 I=1 \i=1

2.4.29

2.4.30

1,jth entry of BA

This expresses w; as a linear combination of the W's, but since the W’s are
linearly independent, Equation 2.4.30 must read

Wj = 0W) +0Wo 4+ + 19, + - + 0W,. 2.4.31

So (3=, br,ia,;) is 0, unless I = 7, in which case it is 1. In other words, BA=1.
The same argument, exchanging the roles of the #'s and the w’s, shows that
AB =I. Thus A is invertible, hence square, and k = p. O

Corollary 2.4.21. The only n-dimensional subspace of R™ is R™ itself,

Remark. We said earlier that the terms linear combinations, span, and linear
independence give a precise way to answer the questions, given a collection of
linear equations, how many genuinely different equations do we have. We have
seen that row reduction provides a systematic way to determine how many of
the columns of a matrix are linearly independent. But the equations correspond
to the rows of a matrix, not to its columns. In the next section we will see that
the number of linearly independent equations in the system A% = b is the same
as the number of linearly independent columns in A.
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2.5 KERNELS AND IMAGES

The kernel is sometimes called
the “null-space.” In Definition
2.5.1, the linear transformation 7
is represented by a matrix (7).

-2
The vector | —1 ] is in the ker-
3

1 11
nelof[2 -1 1J,beca.use

AL

It is the same to say that b is
in the image of A and to say that
b is in the span of the columns of
A. We can rewrite AX = b as

8121 + 82Z2 + -+ + finTn = b.

If A% = b, then b is in the span of
&1,...8n, since it can be written
as a linear combination of those
vectors.

The kernel and the image of a linear transformation are important but rather
abstract concepts. They are best understood in terms of linear equations. Ker-
nels are related to uniqueness of solutions of linear equations, whereas images
are related to their existence.

Definition 2.5.1 (Kernel). The kernel of a linear transformation T, de-
noted kerT', is the set of vectors X such that T'(X) = 0. When T is repre-
sented by a matrix [T, the kernel is the set of solutions to the system of
linear equations [T]X = 0.

Kernels are a way to talk about uniqueness of solutions of linear equations.

Proposition 2.5.2. The system of linear equatnons T(X) = b has at most
one solution for every b if and only if ker T = {0} (that is, if the only vector
in the kernel is the zero vector).

Proof. If the kernel of T is not 0, then there is more than one solution to
T(X) = 0 (the other one being of course x = 0).

In the other direction, if there exists a b for which T(X) = b has more than
one solution, i.e.,

T(X,)=T(X;)=b and % # X2, then
T(xl - Xz) = T(Xl) - T(X2) = b - b =0.

2.5.1
So (X, — X2) is a nonzero element of the kernel. O

The image of a transformation is a way to talk about existence of solutions.

Definition 2.5.3 (Image). The image of T, denot/ed Img T, is the set of
vectors b for which there exists a solution of T(®) =

For example, [;] is in the image of [ 9 g] since

HEIBEKE

Remark. The word image is not restricted to linear algebra; for example, the
image of f(z) = 2 is the set of positive reals. A



The image is sometimes called
the “range”: this usage is a source
of confusion since many authors,
including ourselves, use “range”
to mean the entire set of arrival:
the range of a transforination T :
R™ - R™ is R™.

The image of T is sometimes
denoted im T, but we will stick to
Img T to avoid confusion with “the
imaginary part.” which is also de-
noted im. For any complex ma-
trix, both “image” and “imaginary
part” make sense.

The following statements are
equivalent:

(1) the kernel of A is 0;

(2) the only solution to the
equation AX =0is X = 0;

(3) the columns & making up
A are linearly independent;

(4) the transformation given by
A is one to one;

(5) the transformation given by
A is injective;

(6) if the equation AX = b has
a solution, it is unique.
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Given the matrix and vectors below, which if any vectors are in the kernel
of A? Check your answer below.!!

0 1 0

1011 9 ol . 4
A=l2 11 3, fi=| |, %= B=| ,
1022 o 0 _2

The image and kernel of a linear transformation provide a third language
for talking about existence and uniqueness of solutions to linear equations, as
summarized in Figure 2.5.1. It is important to master all three and understand
their equivalence. We may think of the first language as computational: does a
system of linear equations have a solution? Is it unique? The second language,
that of span and linear independence of vectors, is more algebraic.

The third language, that of image and kernel, is more geometric, concerning
subspaces. The kernel is a subspace of the domain (set of departure) of a linear
transformation; the image is a subspace of its range (set of arrival).

Algorithms Algebra Geometry
Row reduction Inverses of matrices

Solving linear equations | Subspaces
Existence of solutions | Span Images
Uniqueness of solutions | Linear independence Kernels

FIGURE 2.5.1. Three languages for discussing solutions to linear equations: algo-
rithms, algebra, geometry

This may be clearer if we write our definitions more precisely, specifying
the domain and range of our transformation. Let T : R® — R™ be a linear
transformation given by the m x n matrix [T]. Then:

(1) The kernel of T is the set of all vectors ¥ € R™ such that [T]V =
0. (Note that the vectors in the kernel are in R", the domain of the
transformation.)

(2) The image of T is the set of vectors w € R™ such that there is a vector
vV € R™ with [T)¥ = w. (Note that the vectors in the image are in R™,
the range of T'.)

'The vectors ¥, and ¥3 are in the kernel of A, since A¥; = 0 and AV¥; = 0. But

2
V2 is not, since AV2 = | 3|. The vector | 3| is in the image of A.
3 3



Proposition 2.5.4 means that
the kernel and the image are closed
under addition and under multi-
plication by scalars; if you add two
elements of the kernel you get an
element of the kernel, and so on.
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Thus by definition, the kernel of a transformation is a subset of its domain,
and the image is a subset of its range. In fact, they are also subspaces of the

domain and range respectively.

Proposition 2.5.4. If T : R* — R™ is a linear transformation given by the
m x n matrix A, then the kernel of A is a subspace of R", and the image of
A is a subspace of R™.

The proof is left as Exercise 2.5.1.
Given the vectors and the matrix T below:

2 1321 1 2 1
T=[1 013 0|,%=|2|,W= | W=|0] W=
2 -1 10 1 3 9

OO =N

which vectors have the right height to be in the kernel of T? To be in its image?
Can you find an element of its kernel? Check your answer below.!?

Finding bases for the image and kernel

Suppose A is the matrix of T. If we row reduce A to echelon form A, we can
find a basis for the image, using the following theorem. Recall (Definition 2.2.1)
that a pivotal column of A is one whose corresponding column in A contains a

pivotal 1.

Theorem 2.5.5 (A basis for the image). The pivotal columns of A form
a basis for Img A.

We will prove this theorem, and the analogous theorem for the kernel, after
giving some examples.

' Example 2.5.6 (Finding a basis for the image). Consider the matrix A

below, which describes a linear transformation from R to R?:

12The matrix T represents a transformation from R® to R3; it takes a vector in
R® and gives a vector in R®. Therefore W4 has the right height to be in the kernel
(although it isn’t), and W) and Ws have the right height to be in its image. Since the

0

1

sum of the second and fifth columns of T is 0, one element of the kernel is | 0.
0
1



The vectors of Equation 2.5.3
are not the only basis for the im-
age.

Note that while the pivotal
columns of the original matrix A
form a basis for the image, it is
not necessarily the case that the
columns of the row reduced matrix
A containing pivotal 1's form such
a basis. For example, the matrix

[+ 2] 2

row reduces to o ol

The vector : forms a basis for

the image, but [(1)] does not.
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10130 10130
01120 . < |01 120
A= 1125 1] which row reduces to A = 00001
00000 00O0O0O

The pivotal 1's of the row-reduced matrix A are in columns 1, 2 and 5, so
columns 1, 2 and 5 of the original matrix A are a basis for the image:

1 01 0
(1’ , : , and (1) 253
ol Lol 0

For example, the W below, which is in the image of A, can be expressed
uniquely as a linear combination of the image basis vectors:

r7 1 0 0
& = 28, + 8 — &y + 28, — 385 = g =7 ‘l’ +4f)|-3 ‘1) 2.5.4
Lo 0 0 0

Note that each vector in the basis for the image has four entries, as it must,
since the image is a subspace of R*. (The image is not of course R* itself; a
basis for R4 must have four elements.) A

A basis for the kernel

Finding a basis for the kernel is more complicated; you may find it helpful to
refer to Example 2.5.8 to understand the statement of Theorem 2.5.7.

A basis for the kernel is of course a set of vectors such that any vector
in the kernel (any vector W satisfying AW = 0) can be expressed as a linear
combination of those basis vectors. The basis vectors must themselves be in
the kernel, and they 1nust be linearly independent.

Theorem 2.2.4 says that if a system of linear equations has a solution, then
it has a unique solution for any value you choose of the non-pivotal unknowns.
Clearly AW = 0 has a solution, namely w = 0. So the tactic is to choose
the values of the non-pivotal unknowns in a convenient way. We take our
inspiration from the standard basis vectors, which each have one entry equal to
1, and the others 0. We construct one vector for each non-pivotal column, by
setting the entry corresponding to that non-pivotal unknown to be 1, and the
entries corresponding to the other non-pivotal unknowns to be 0. (The entries
corresponding to the pivotal unknowns will be whatever they have to be to
satisfy the equation AV; =0.)



In Example 2.5.6, the matrix A
has two non-pivotal columns, so
p = 2; those two columns are the
third and fourth columns of A, so
ky =3 and k2 = 4.

An equation AX = 0 (i.e, AX =
b where b = 0) is called homoge-
neous.

These two vectors are clearly
linearly independent; no “linear
combination” of ¥; could produce
the 1 in the fourth entry of Vg,
and no “linear combination” of V2
could produce the 1 in the third
entry of V,. Basis vectors found
using the technique given in The-
orem 2.5.7 will always be linearly
independent, since for each entry
corresponding to a non-pivotal un-
known, one basis vector will have
1 and all the others will have 0.

Note that each vector in the
basis for the kernel has five entries,
as it must, since the domain of the
transformation is RS.
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Theorem 2.5.7 (A basis for the kernel). Let p be the number of non-
pivotal columns of A, and ki, . .., k, be their positions. For each non-pivotal
column form the vector ¥; satisfying AV; = 0, and such that its k;th entry
is 1, and its k;th entries are all 0, for j # i. The vectors V1,...,Vp form a
basis of ker A.

We prove Theorem 2.5.7 below. First, an example.

Example 2.5.8 (Finding a basis for the kernel). The third and fourth
columns of A in Example 2.5.6 above are non-pivotal, so the system has a
unique solution for any values we choose of the third and fourth unknowns. In
particular, there is a unique vector ¥; whose third entry is 1 and fourth entry
is 0, such that AV, = 0. There is another, v, whose fourth entry is 1 and third
entry is 0, such that AV, =0:

2.5.5

<
-
1}
~
I
- O

(=2

Now we need to fill in the blanks, finding the first, second, and fifth entries of
these vectors, which correspond to the pivotal unknowns. We read these values
from the first three rows of [4,0] (remembering that a solution for Ax = 0 is
also a solution for Ax = 0):

101300 1+ 23+ 3z4=0
s 011200 .
[4,0) = 0000 10| ie., To+23+224=0 2.5.6
0000O0O0OO z5 =0,
which gives
T = —-Z3 — 314
zy = —I3 — 2%4 2.5.7

z5 =0.

So for %), where z3 = 1 and z4 = 0, the first entry is z; = —1, the second is
—~1 and the fifth is 0; the corresponding entries for ¥, are —3, ~2 and 0:

-1 -3
-1 -2

Vi=| 1|; V=0 258
0 1

0 0
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These two vectors form a basis of the kernel of A. For example, the vector
0
-1 )
vV = 3| is in the kernel of A, since AV = 0, so it should be possible to
-1
0 .
express V as a linear combination of the vectors of the basis for the kernel.

Indeed it is: V=3V, — V2. A

Now find a basis for the image and kernel of the following matrix:

1 1 2 1 0 0 0 1

2 1 3 1 1 0 1 0
1 -1 0 1|, whichrow reducesto 0 1 1 0f, 259

checking your answer below.!3

Proof of Theorem 2.5.5 (A basis for the image). Let A = [&,...&n).
To prove that the pivotal columns of A form a basis for the image of A we need
to prove: (1) that the pivotal columns of A are in the image, (2) that they are
linearly independent and (3) that they span the image.

(1) The pivotal columns of A (in fact, all columns of A) are in the image,
since Aé, = i.'.

(2) The vectors are linearly independent, since when all non-pivotal entries
of X are 0, the only solution of AX = 0 is X = 0. (If the pivotal
unknowns are also 0, i.e., if X = 0, then clearly AX = 0. This is the only
such solution, because the system has a unique solution for each value
we choose of the non-pivotal unknowns.)

(3) They span the image, since each non-pivotal vector ¥ is a linear com-
bination of the preceding pivotal ones (Equation 2.2.8). O

Proof of Theorem 2.5.7 (A basis for the kernel). Similarly, to prove
that the vectors ¥; = ¥,,...,V, form a basis for the kernel of A, we must show

-1

2 1 1

13The vectors [l] R [—l] ,and [l] form a basis for the image; the vector -:
1 1 1

0

is & basis for the kernel. The row-reduced matrix [4,0) is

10100 z1+z23=0
0110 0], ie, Za+z3=0
00010 ze=0.

The third column of the original matrix is non-pivotal, so for the vector of the basis
of the kernel we set z3 = 1, which gives z; = —1,z2 = -1.
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that they are in the kernel, that they are linearly independent, and that they
span the kernel.

(1) By definition, AV; = 0, so V; € ker A.

(2) As pointed out in Example 2.5.8, the ¥; are linearly independent, since
exactly one has a nonzero number in each position corresponding to
non-pivotal unknown.

(3) Saying that the ¥; span the kernel means that any X such that AX = 0

For a transformation T : R™ —
R™ the following statements are
equivalent:

(1) the columns of [T] span R™;
(2) the image of T is R™;

(3) the transformation T is onto;
(4) the transformation T is surjec-
tive;

(5) the rank of T is m;

(6) the dimension of Img(T) is m.
(7) the row reduced matrix T has

can be written as a linear combination of the V;. Indeed, suppose that
AX = 0. We can construct a vector W = g, V) + Tg, V2 + -+ + T,V
that has the same entry zx, in the non-pivotal column k; as does X.
Since AV; = 0, we have AW = 0. But for each value of the non-
pivotal variables, there is a unique vector X such that AX = 0. Therefore
Xx=w. O

no row containing all zeroes.
(8) the row reduced matrix T has .
a pivotal 1 in every row. Uniqueness and existence: the dimension formula

For a transformation from R" Much of the power of linear algebra comes from the following theorem, known
to R", if ker(T) = 0, then the as the dimension formula.
image is all of R".
Theorem 2.5.9 (Dimension formula). Let T : R® — R™ be a linear
transformation. Then

dim (kerT) + dim(Img T) =n, the dimension of the domain.  2.5.10

Recall (Definition 2.4.20) that
the dimension of a subspace of R"
is the number of basis vectors of
the subspace. It is denoted dim.

The dimension formula says

there is a conservation law con-
cerning the kernel and the image: ~ Definition 2.5.10 (Rank and Nullity). The dimension of the image of

saying something about unique-  a linear transformation is called its rank, and the dimension of its kernel is
ness says something about exis- called its nullity.
tence.
Thus the dimension formula says that for any linear transformation, the rank
plus the nullity is equal to the dimension of the domain.
The rank of a matrix is the
most important number to asso-
ciate to it.

Proof. Suppose T is given by the matrix A. Then, by Theorems 2.5.5 and
2.5.7 above, the image has one basis vector for each pivotal column of A, and
the kernel has one basis vector for each non-pivotal column, 3o in all we find

dim(ker T') + dim(Img T) = number of columns of A =n. [

Given a transformation T represented by a 3 x 4 matrix [T] with rank 2, what
is the domain and its range of the transformation? What is the dimension of
its kernel? Is it onto? Check your answers below.14

'“The domain of T is R* and its range is R®. The dimension of its kernel is 2, since
the dimension of the kernel and that of the image equal the dimension of the domain.
The transformation is not onto, since a basis for R® must have three basis elements.



The power of linear algebra
comes from Corollary 2.5.11. See
Example 2.5.14, and Exercises
2.5.10, 2.5.16 and 2.5.17. These
exercises deduce major mathemat-
ical results from this corollary.

Since Corollary 2.5.11 is an “if
and only if” statement, it can also
be used to deduce uniqueness from
existence; in practice this is not
quite so useful.
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The most important case of the dimension formula is when the domain and
range have the same dimension. In this case, one can deduce existence of
solutions from uniqueness, and vice versa. Most often, the first approach is
most useful; it is often easier to prove that TQ?) = 0 has a unique solution
than it is to construct a solution of 7'(X) = b. It is quite remarkable that
knowing that T(X) = 0 has a unique solution guarantees existence of solutions
for all T(X) = b. This is, of course, an elaboration of Theorem 2.2.4. But
that theorem depends on knowing a matrix. Corollary 2.5.11 can be applied
when there is no matrix to write down, as we will see in Example 2.5.14, and
in exercises mentioned at left.

Corollary 2.5.11 (Deducing existence from uniqueness). If T: R* —
R" is a linear transformation, then the equation T(X) = b has a solution for
any b € R" ifand only if the only solution to the equation T(X) = 0 isX = 0,
(i.e., if the kernel is zero).

Proof. Saying that T(%X) = b has a solution for any b € R" means that R" is
the image of T, so dim Img T = n, which is equivalent to dim ker(T) =0. O

The following result is really quite surprising: it says that the number of
linearly independent columns and the number of linearly independent rows of
a matrix are equal.

Proposition 2.5.12. Let A be a matrix. Then the span of the columns of
A and the span of the rows of A have the same dimension.

One way to understand this result is to think of constraints on the kernel of
A. Think of A as the m x n matrix made up of its rows:
——A -~

——Ap- -

A= 2.5.11

—— Ay - —

Then the kernel of A is made up of the vectors X satisfying the linear constraints
AX =0,...,AnX = 0. Think of adding in these constraints one at a time.
Before any constraints are present, the kernel is all of R”. Each time you add
one constraint, you cut down the dimension of the kernel by 1. But this is only
true if the new constraint is genuinely new, not a consequence of the previous
ones, i.e., if A; is linearly independent from Ay, A

Let us call the number of linearly independent rows A; the row rank of A.
The argument above leads to the formula

dimker A = n — row rank(A4).



We defined linear combinations
in terms of linear combinations of
vectors, but (as we will see in Sec-
tion 2.6) the same definition can
apply tu linear combinations of
other objects, such as matrices,
functions. In this proof we arc ap-
plying it to row matrices.

The rise of the computer, with
emphasis on computationally ef-
fective schemes, has refocused at-
tention on row reduction as a way
to solve linear equations.

Gauss is a notable exception;
when he needed to solve linear
equations, he used row reduction.
In fact, row reduction is also called
Gaussian elimination.
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The dimension foriula says exactly that
dim ker A = n — rank(A),

so the rank of A and the row rank of A should be equal.

The argument above isn’t quite rigorous: it used the intuitively p!ausib!e but
unjustified “Each time you add one constraint, you cut down the .dxmensmn of
the kernel by 1.” This is true and not hard to prove, but the following argument
is shorter (and interesting too).

Proof. Given a matrix, we will call the span of the columns the column space
of A and the span of the rows the row space of A. Indeed, the rows of A
are linear combinations of the rows of A, and vice versa since row operations
are reversible. In particular, the row space of A and of A coincide, where A
row-reduces to 4. _

The rows of A that contain pivotal 1's are a basis of tlie row space of A: the
other rows are zero so they definitely don’t contribute to the row space, and
the pivotal rows of A are linearly independent, since all the other entries in a
column containing a pivotal 1 are 0. So the dimension of the row space of A
is the number of pivotal 1’s of A, which we have seen is the dimension of the
column space of A. O

Corollary 2.5.13. A matrix A and its transpose A" have the same rank.

Remark. Proposition 2.5.12 gives us the statement we wanted in Section 2.4:
the number of linearly independent equations in a system of linear equations
AX = b is the number of pivotal columns of A. Basing linear algebra on row
reduction can be seen as a return to Euler’s way of thinking. It is, as Euler said,
immediately apparent why you can’t determine z and y from the two equations
3z —2y = 5 and 4y = 6z — 10. (In the original, “La raison de cet accident
saute d’abord aux yeux”: the reason for this accident leaps to the eyes). In
that case, it is obvious that the second equation is twice the first. When the
linear dependence of a system of linear equations no longer leaps to the eyes,
row reduction provides a way to make it obvious.

Unfortunately for the history of mathematics, in the saine year 1750 that Euler
wrote his analysis, Gabriel Cramer published a treatment of linear equations
based on determinants, which rapidly took hold, and the more qualitative ap-
proach begun by Euler was forgotten. As Jean-Luc Dorier writes in his essay
on the history of linear algebra,!®

- even if determinants proved themselves a valuable tool for study-
ing linear equations, it must be admitted that they introduced a certain
complezity, linked to the technical skill their use requires. This fact had
the undeniable effect of masking certain intuitive aspects of the nature of
linear equations ...

13J.-L. Dorier, ed., L'Enseignement de l'algébre linéaire en question, La Pensée
Sauvage, Editions, 1997.



Note that by the fundamen-
tal theorem of algebra (Theorem
1.6.10), every polynomial can be
written as a product of powers
of degree 1 polynomials (Equa-
tion 2.5.12). Of course finding the
a;, means finding the roots of the
polynomial, which may be very
difficult.
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Now let us see an example of the power of Corollary 2.5.11.

Example 2.5.14 (Partial fractions). Let
p(z)=(z—a))™ - (z—ar)™ 2.5.12
be a polynomial of degree n = nj + - - - + nx, with the a; distinct; for example,
22 - 1=(z + 1)(z ~ 1), witha; = —1,62 = I;n) =nz = 1, sothatn =2
-2 +z=12(z - 1)2, witha; = 0,a2 = 1;n; = 1,n; =2, so thatn =3.
The claim of partial fractions is the following:
Proposition 2.5.15 (Partial fractions). For any such polynomial p of

degree n, and any polynomial q of degree < n, the rational function q/p can
be written uniquely as a sum of simpler terms, called partial fractions:

0@ __a@) e
mj - (Z - 01)'“ (.’t — a,,)"k ’ 2.5.13

with each g; a polynomial of degree < n;.

For exaniple, when g(z) = 2z + 3 and p(z) = z2? — 1, Proposition 2.5.15
says that there exist polynomials g, and g2 of degree less than 1 (i.e., numbers,
which we will call Ap and By, the subscript indicating that they are coefficients
of the term of degree 0) such that

2243 _ A + By

2-1 z+4+1 z-1
If g(z) = 2% — 1 and p(z) = (z + 1)(z — 1)2, then the proposition says that
there exist two polynomials of degree 1, q1 = Az + Ao and g2 = Byz + By,
such that

2.5.14

-1 _A|I+Ao Byz + By
(z +1)%(z - 1)? (z+1)2 (z-1)2°
In simple cases, it's clear how to find these terms. In the first case above, to
find the numerators Ay and By, we multiply out to get a common denominator:

2z +3 Ao B, Ao(z ~ 1)+ Bo(z +1) _ (Ao + Bo)z + (B — Ao)

2.5.15

2-1 z4+1 z-1 z2-1 z2 -1 !
so that we get two linear equations in two unknowns:
~Ao+Bo=3 5 1
i.e., the constants By = -, Ag = —=. 2.5.
Ao + Bo =2, 0 2 0 2 516

We can think of the system of linear equations on the left-hand side of Equation
2.5.16 as the matrix multiplication

[ lE]-6)
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What is the analogous matrix multiplication for Equation 2.5.157'6
What about the general case? If we put the right-hand side of Equation
2.5.13 on a common denominator we see that g(z)/p(z) is equal to

@ (z)(z —a2)™.. (z —ax)™ +q(z)(z —a1)™ (z —a3)™.. . (z —ax)"™* + - -~ +gk(z)(z —a1)™ ... (z —ax_1)"*? )

Corollary 2.5.11: if T: R" —
R" is a linear transformation, the
equation T(X) = b has a solution
for any b € R™ if and only if
the only solution to the equation
T(X)=0isX=0.

We are thinking of the transfor-
mation T both as the matrix that
takes the coefficients of the ¢; and
returns the coefficients of ¢, and
as the linear function that takes
@i, .-.,qx and returns the polyno-
mial g.

- n - nz — Tk
(z —a1)™(z ~a2)".. (z — ax) 2518

As we did in our simpler cases, we could write this as a system of linear
equations for the coefficients of the ¢; and solve by row reduction. But except
in the simplest cases, computing the matrix would be a big job. Worse, how
do we know that the system of equations we get has solutions? We might
worry about investing a lot of work only to discover that the equations were
incompatible.

Proposition 2.5.15 assures us that there will always be a solution, and Corol-
lary 2.5.11 provides the key.

Proof of Proposition 2.5.15 (Partial fractions). Note that the matrix we
would get following the above procedure would necessarily be an n x n matrix.
This matrix gives a linear transformation that has as its input a vector whose
entries are the coefficients of q;,...gx. There are n such coefficients in all.
(Each polynomial ¢; has n; coefficients, for terms of degree 0 through (n; — 1),
and the sum of the n; equals n.) It has as its output a vector giving the n
coefficients of g (since g is of degree < n, it has n coefficients, 0...n — 1.)
Thus the matrix can be thought of a linear transformation 7 : R® — R", and
by Corollary 2.5.11, Proposition 2.5.15 is true if and only if the only solution
of T(q1,.--,qx) =018 gy = .-+ = g = 0. This will follow from Lemma 2.5.16:

1®Multiplying out, we get

2%(A1 + B1) + 2*(=241 + Ao + 2By + Bo) + (A — 240 + By + 2Bo) + Ao + Bo
(z+1)%(z - 1)2 !

80
Ao+ Bp=-1 (coefficient of term of degree 0)
A1 -24A0+B1+2Bo= 0  (coefficient of term of degree 1)
~2A1+Ao+2By1+Bo= 0 (coefficient of term of degree 2)
Ai+B =1 (coefficient of term of degree 3);
ie.,

0 10 1]JA -1

1 -2 1 2| 4] _] o

-2 1 21 B~ 0

1 010 Bo 1



The numerator in Equation 2.5.21
is of degree < n;, while the denom-
inator is of degree n;.

This example really put linear
algebra to work. Even after trans-
lating the problem into linear alge-
bra, via the linear transformation
T, the answer was not clear; only
after using the dimension formula
is the result apparent. The dimen-
sion formula (or rather, Corollary
2.5.11, the dimension formula ap-
plied to transformations from R"
to R™) tells us that if T : R* —
RR™ is one to one (solutions are
unique), then it is onto (solutions
exist).

Still, all of this is nothing more
than the intuitively obvious state-
ment that either n equations in
n unknowns are independent, the
good case, or everything goes
wrong at once-the transformation
is not one to one and therefore not
onto.
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Lemma 2.5.16. If g; # 0 is a polynomial of degree < n;, then

gi(z)

e 2.5.19
| (z - ai)™

= 0C.

That is, if ¢; # 0, then g;(z)/(z — a;)™ blows up to infinity.

Proof. It is clear that for values of z very close to a;, the denominator (z—a;)™

will get very small; if all goes well the entire term will then get very big. But

we have to work a bit to make sure both that the numerator does not get small

equally fast, and that the other terms of the polynomial don’t compensate.
Let us make the change of variables u = z — a;, so that

¢i(z) = gi(u+a;), which we will denote g;(u). 2.5.20
Then we have
im |E®| Z o if g #0. 2.5.21
u—0| u

Indeed, if g; # 0, then §; # 0, and there exists a number m < n; such that
2.5.22

ny—1

Gi(u) =amu™+ -+ an,_1u
with a,, # 0. (This a, is the first nonzero coefficient; as u — 0, the term anu™
is bigger than all the other terms.) Dividing by u™ we can write

Gw) _ 1

uni | ym-m
where the dots ... represent terms containing u to a positive power, since
m < n,;. In particular,

2.5.23

(@m+...),

1

un—m

as u—0, 2.5.24

l—aoo and (@m +...) = @m.

We see that as z — a;, the term ¢;(z)/(z ~ a;)™ blows up to infinity: the

denominator gets smaller and smaller while the numerator tends to a,, # 0.
This ends the proof of Lemma 2.5.16.

Proof of Proposition 2.5.15, continued. Suppose g; # 0. For all the other

terms g;,j # ¢, the rational functions

gi(z)
Gy 2.5.25

have the finite limits ¢;(a;)/(a; — a;)™ as z — a;, and therefore the sum
9(=) _ _a(=) a(z)
) (z-a)m (z = ax)m’

has infinite limit as z — a; and ¢ cannot vanish identically. So T(q1,... ,qx) # 0

if some ¢; # 0, and we can conclude— without having to compute any matrices

2.5.26
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or solve any systems of equations—that Proposition 2.5.15 is correct: for any
polynomial p of degree n, and any polynomial g of degree < n, the rational
function g/p can be written uniquely as a sum of partial fractions. O

2.6 AN INTRODUCTION TO ABSTRACT VECTOR SPACES

We have already used vector
spaces that are not R": in Section
1.4 we considered an m x n matrix
as a point in R™™, and in Example
1.7.15 we spoke of the “space” Pi
of polynomials of degree at most
k. In each case we “identified” the
space with R" for some appropri-
ate N: we identified the space of
m X n matrices with R"™, and we
identified P. with R**!, But just
what “identifying” means is not
quite clear, and difficulties with
such identifications become more
and more cumbersome.

You may think of these eight
rules as the “essence of R",” ab-
stracting from the vector space
R" all its most important proper-
ties, except its distinguished stan-
dard basis. This allows us to work
with other vector spaces, whose el-
ements are not naturally defined
in terms of lists of numbers.

In this section we give a very brief introduction to abstract vector spaces,
introducing vocabulary that will be useful later in the book, particularly in
Chapter 6 on forms.

As we will see in a moment, a vector space is a set in which elements can
be added and multiplied by numbers. We need to decide what numbers we
are using, and for our purposes there are only two interesting choices: real
or complex numbers. Mainly to keep the psychological load lighter, we will
restrict our discussion to real numbers, and consider only real vector spaces,
to be called simply “vector spaces” fromn now on. (Virtually everything to be
discussed would work just as well for complex numbers.)

We will denote a vector in an abstract vector space by an underlined bold
letter, to distinguish it from a vector in R™: v € V as opposed to ¥ € R".

A vector space is anything that satisfies the following rules.

Definition 2.6.1 (Vector space). A vector space is a set V of vectors
such that two vectors can be added to form another vector, and a vector can
be multiplied by a scalar in R to form another vector. This addition and
multiplication must satisfy the following eight rules:

(1) Additive identity.  There exists a vector 0 € V such that for any
veV,04v=uyv.

(2) Additive inverse. For any v € V, there exists a vector —y € V such
that v+ (-v) = 0.

(3) Commutative law for addition. Forallv,w €V, wehavey +w =
w+y.

(4) Associative law for addition.  For all v,,v,,v; € V, we have v, +
(V2 +¥3) = (v; + ¥3) + ¥

(5) Multiplicative identity. For all y € V we have ly =y.

(6) Associative law for multiplication.  For all a, 8 € R and all vevV,
we have a(8y) = (af)y.

(7) Distributive law for scalar addition.  For all scalars a, 8 € R and all
v €V, we have (a + f)v = av + fy.

(8) Distributive law for vector addition.  For all scalars & € R and
Y, W € V, we have a(v + w) = av + aw.



Note that in Example 2.6.2 our
assumption that addition is well
defined in C(0, 1] uses the fact that
the sum of two continuous func-
tions is continuous.  Similarly,
multiplication by scalars is well
defined, because the product of a
continuous function by a constant
is continuous.

[

In some sense, this space “is
R?, by identifying fa » with [‘;] €

R?; this was not obvious from the
definition.
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The primordial example of a vector space is of course R™ itself. More gen-
erally, a subset of R" (endowed with the same addition and multiplication by
scalars as R™ itself) is a vector space in its own right if and only if it is a
subspace of R™ (Definition 1.1.5).

Other examples that are fairly easy to understand are the space Mat (n,m)
of n x m matrices, with addition and multiplication defined in Section 1.2, and
the space Py of polynomials of degree at most k. In fact, these are easy to
“identify with R™.”

But other vector spaces have a different flavor: they are somehow much too
big.

Example 2.6.2 (An inflnite-dimensional vector space). Consider the
space C(0,1) of continuous real-valued functions f(z) defined for 0 < z < 1.
The “vectors” of this space are functions f : (0,1) — R, with addition defined as
usual by (f + g)(z) = f(z) + 9(z) and multiplication by (af)(z) = a f(z). A

Exercise 2.6.1 asks you to show that this space satisfies all eight requirements
for a vector space.

The vector space C(0,1) cannot be identified with R™; there is no linear
transformation from any R™ to this space that is onto, as we will see in detail in
Example 2.6.20. But it has subspaces that can be identified with appropriate
R™’s, as seen in Example 2.6.3, and also subspaces that cannot.

Example 2.6.3 (A finite-dimensional subspace of C(0,1)). Consider the
space of twice differentiable functions f : R — R such that D?f = 0 (i.e.,
functions of one variable whose second derivatives are 0; we could also write
this f” = 0). This is a subspace of the vector space of Example 2.6.2, and is
a vector space itself. But since a function has a vanishing second derivative if
and only if it is a polynomial of degree at most 1, we see that this space is the
set of functions

fap(z) = a+bz. 2.6.1

Precisely two numbers are needed to specify each element of this vector space;
we could choose as our basis 1 and z.

On the other hand, the subspace C'(0,1) C C(0,1) of once continuously
differentiable functions on (0,1) also cannot be identified with any R¥; the
elements are more restricted than those of C(0,1), but not enough so that an
element can be specified by finitely many numbers.

Linear transformations

In Sections 1.2 and 1.3 we investigated linear transformations R® — R™. Now
we wish to define linear transformations from one (abstract) vector space to
another.



Equation 2.6.2 is a shorter way
of writing both

T(v, +¥;) = T(¥;) + T(¥2)
and
T(ay,) = aT(y,).

In order to write a linear trans-
formation from one abstract vec-
tor space to another as a ma-
trix, you have to choose bases:
one in the domain, one in the
range. As long as you are in finite-
dimensional vector spaces, you can
do this. In infinite-dimensional
vector spaces, bases usually do not
exist.

In Example 2.6.6, C[0, 1] is the
space of continuous real-valued
functions f(z) defined for 0 < z <
1.

The function g in Example 2.6.6
is very much like a matrix, and
the formula for T, looks a lot like
3" 9i.;f;. This is the kind of thing
we meant above when we referred
to “analogs” of matrices; it is as
much like a matrix as you can hope
to get in this particular infinite di-
mensional setting. But it is not
true that all transformations from
C[0,1] to C[0,1] are of this sort;
even the identity cannot be writ-
ten in the form Tj,.
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Definition 2.6.4 (Linear transformation). If V and W are vector spaces,
a linear transformation T : V — W is a mapping satisfying

T(av, + By,) = aT(v,) + BT(v,)
for all scalars o, € R and all v,,v, € V.

2.6.2

In Section 1.3 we saw that every linear transformation T : R™ — R" is given
by the matrix in Mat (n, m) whose ith column is T'(€;) (Theorem 1.3.14). This
provides a complete understanding of linear transformations from R™ to R™.

In the setting of more abstract vector spaces, linear transformations don’t
have this wonderful concreteness. In finite-dimensional vector spaces, it is still
possible to understand a linear transformation as a matrix but you have to work
at it; in particular, you must choose a basis for the domain and a basis for the
range. (For infinite-dimensional vector spaces, bases usually do not exist, and
matrices and their analogs are usually not available.)

Even when it is possible to write a linear transformation as a matrix, it may
not be the easiest way to deal with things, as shown in Example 2.6.5.

Example 2.6.5 (A linear transformation difficult to write as a matrix).
If A € Mat(n,n), then the transformation Mat (n,n) — Mat (n,n) given by
H — AH + HA is a linear transformation, which we encountered in Example
1.7.15 as the derivative of the mapping S : A~ A2:

[DS(A)H = AH + HA.

Even in the case n = 3 it would be difficult, although possible, to write this
transformation as a 9 x9 matrix; the language of abstract linear transformations
is more appropriate. A

2.6.3

Example 2.6.6 (Showing that a transformation is linear). Let us show
that if g (¥ ) is a continuous function on [0, 1] x [0, 1], then the transformation
T, : C[0,1] — C[0,1] given by

(Te(N))(2) = / g (Z) fw)dy 2.6.4

1
(i
is a linear transformation. For example, if g (:) = |z -y, then we would have

the linear transformation (T,(f))(z) = fol |z -yl f(y) dy.
To show that Equation 2.6.4 is a linear transformation, we first show that

Ty(fr + f2) = Ty(f1r) + Ty(f2), 2.6.5

which we do as follows:



The linear transformation in
Example 2.6.7 is a special kind of
linear transformation, called a lin-
ear differential operator. Solving
a differential equation is same as
looking for the kernel of such a
linear transformation. The coeffi-
cients could be any functions of x,
so it’s an example of an important
class.
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definition of addition
in vector space

@+ )@= [ 0(Z) i+ = [ o(3) Tor+ 76D @
01 T I
=/0 (y(y)fx(y)+y(y)fz(y)) dy

1 1
= /0 9(3) nway +/0 9(%) rwdy
= (Ty(f))(2) + (Ty(f2) (2) = (Ty(h1) + Ty(f2)) (). 266

Next we show that Ty(af)(z) = aTy(f)(z):

Tan@ = [ 9(2)@NWar=a [ o(2) f0)ds = T)Ge). 267

Example 2.6.7 (A linear differential operator). The transformation T :
C?(R) — C(R) given by the formula

(T(H)(2) = (@ + 1DSf"(2) - 2f'(2) + 2f(x) 268

is a linear transformation, as Exercise 2.6.2 asks you to show.

Linear independence, span and bases

In Section 2.4 we discussed linear independence, span and bases for R™ and
subspaces of R". Extending these notions to arbitrary real vector spaces re-
quires somewhat more work. However, we will be able to tap into what we have
already done.

Let V be a vector space and let {v} = v,,...,v,, be a finite collection of
vectors in V.

Definition 2.6.8 (Linear combination). A linear combination of the
vectors v,,...,V,, is a vector v of the form

m
x=za,~!,~, with a),...,am €R. 2.6.9

i=1

Definition 2.6.9 (Span). The collection of veetors {v} = v,,...,v,, spans
V if and only if all vectors of V are linear combinations of v,,...,v,,.



2.6 Abstract Vector Spaces 193

Definition 2.6.10 (Linear independence). The vectors v,,...,V,, are
linearly independent if and only if any one (hence all) of the following three
equivalent conditions are met:

(1) There is only one way of writing a given linear combination; i.e., if

m m

S aiv, =) by, implies ay=by, a2 =bs,..., Gm =bm.  26.10
i=1 i=1

(2) The only solution to

a1¥; +a2¥, 4+ +am¥,, =0 8 ay=a=---=an =0 2611

(3) None of the y; is a linear combination of the others.

Definition 2.6.11 (Basis). A set of vectors v,,...,v,, € V is a basis of V
if and only if it is linearly independent and spans V.

The following definition is central. It enables us to move from the concrete
world of R™ to the abstract world of a vector space V.

Definition 2.6.12 (“Concrete to abstract” function ®(y}). Let V be
a vector space, and let {v} = v,,...,v,, be a finite collection of vectors in
V. The “concrete to abstract” function ®(y) is the linear transformation
(v} : R™ — V given the formula
The concrete to abstract func-

tion ®;y; (“Phi v") takes a col- *

umn vector & € R™ and gives an By} : =a1Vy + - + am¥y,. 2.6.12

abstract vector vy € V. am

Example 2.6.13 (Concrete to abstract function). Let P; be the space of
polynomials of degree at most 2, and consider its basis v, = 1, v, = , vy =z2
a)
Then ®(y} | a2 | = a1 + a2z + a3z? identifies P, with R®. A
as

Example 2.6.14 (To interpret a column vector, the basis matters). If
V =R? and € is the standard basis, then

s (i) -[i] e w () 2o

(If V = R", and {&} is the standard basis, then (5 is always the identity.)



Choosing a basis is analogous
to choosing a language. A lan-
guage gives names to an object or
an idea; a basis gives a name to
a vector living in an abstract vec-
tor space. A vector has many em-
bodiments, just as the words book,
livre, Buch ... all mean the same
thing, in different languages.

In Example 2.6.14, the func-
tion ®(y) is given by the matrix

[ o

domain and the range are R?.

in this case, both the

You were asked to prove Propo-
sition 2.6.15 in the context of sub-
spaces of R™, in Exercise 2.4.9.

Why study abstract vector
spaces? Why not just stick to R™?
One reason is that R™ comes with
the standard basis, which may not
be the best basis for the problem
at hand. Another is that when
you prove something about R",
you then need to check that your
proof was “basis independent” be-
fore you can extend it to an arbi-
trary vector space.

Exercise 2.4.9 asked you to
prove Proposition 2.6.15 when V
is a subspace of R™.
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. .o 1{ - 1
If instead we used the basis ¥, = ¥ =] 1) then

a - = a+b|.
o0 ([3]) =eomrom= 23]

[Z] in the new basis equals [: t :] in the standard basis. A

2.6.14

Proposition 2.6.15 says that if {v} is a basis of V, then the linear transfor-
mation ®(y) : R™ — V allows us to identify R™ with V, and replace questions
about V with questions about the coefficients in R"; any vector space with a
basis is “just like” R™. A look at the proof should convince you that this is just
a change of language, without mathematical content.

Proposition 2.6.15 (Linear independence, span, basis). IfV is a
vector space, and {v} =V,,...,V, are vectors in V, then:

(1) The set {v} is linearly independent if and only if ®(y) is one to one.
(2) The set {v} spans V if and only if ®(y) is onto.

(3) The set {v} is a basis of V if and only if ®(y) is one to one and onto
(i.e., invertible).

When {v} is a basis, then ®{,) is the “abstract to concrete” transformation.
It takes an element in V and gives the ordered list of its coordinates, with
regard to the basis {v}. While ®(y) synthesizes, Q(‘x') decomposes: taking the
function of Example 2.6.13, we have

a)
Py |2 | = a1 + 027 + aga?
a3
2.6.15
a)
Q("_,') (a1 + a2z + a32%) = | a2
a3

Proof. (1) Definition 2.6.10 says that v,,...,v, are linearly independent if

m m
Y aiv, =Y biv, implies a)y=by, a2 =by,..., G = brn.

i=1 =1

2.6.16

That is exactly saying that ®(y)(&) = Q(!)(S) if and only if & = b, i.e., that
&y} is one to one.



The use of ®(y) and its in-
verse to identify an abstract vector
space with R" is very effective but
is generally considered ugly; work-
ing directly in the world of ab-
stract vector spaces is seen as more
aesthetically pleasing. We have
some sympathy with this view.

Exercise 2.6.3 asks you to show
that in a vector space of dimen-
sion n, more than n vectors are
never linearly independent, and
fewer than n vectors never span.

How do we know that &7}, and
@, exist? By Proposition 2.6.15,
the fact that {v} and {w} are
bages means that ®(y) and &,
are invertible.

It is often easier to understand
a composition if one writes it in
diagram form, as in

R* - V — R?,
-1
v %

in Equation 2.6.18. When writing
this diagram, one reverses the or-
der, following the order in which
the computations are done.

Equation 2.6.18 is the general
case of Equation 2.4.30, where we
showed that any two bases of a
subspace of R™ have the same
numher of elements.
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(2) Definition 2.6.9 says that {v} = v,,...,V,, span V if and only if all
vectors of V are linear combinations of v;,...,¥,; i.e., any vector v € V can
be written

v=a1v, + - +an¥, = ) (d). 2.6.17

In other words, ®(y) is onto.
(3) Putting these together, v,,...,¥, is a basis if and only if it is linearly
independent and spans V, i.e., if (v} is one to one and onto. 0O

The dimension of a vector space

The most important result about bases is the following statement.

Theorem 2.6.16. Any two bases of a vector space have the same number of
elements.

The number of elements in a basis of a vector space V is called the dimension
of V, denoted dim:

Definition 2.6.17 (Dimension of a vector space). The dimension of a
vector space is the number of elements of a basis of that space.

Proof of Theorem 2.6.18. Let {v} and {w} be two bases of a vector space
V: {v} the set of k vectors v,,...,V,, so that &) is a linear transformation
from R to V, and {w} the set of p vectors w,, ..., Wp, 80 that ®(y} is a linear
transformation R? to V. Then the linear transformation

¥) 0%y R 2R (ie. R* -V — R), 2618

2w Pw

change of basis matrix

is invertible. (Indeed, we can undo the transformation, using @(v') od (!}.) But
it is given by an p x k matrix (since it takes us from R* to R?), and we know
that a matrix can be invertible only if it is square. Thus k =p. O

Remark. There is something a bit miraculous about this proof; we are able
to prove an important result about abstract vector spaces, using a matrix that
seemed to drop out of the sky. Without the material developed earlier in this
chapter, this result would be quite difficult to prove. The realization that the
dimension of a vector space needed to be well defined was a turning point in
the development of linear algebra. Dedekind’s proof of this theorem in 1893
was a variant of row reduction. A



With our definition (Definition
2.6.11), a basis is necessarily finite,
but we could have allowed infinite
bases. We stick to finite bases be-
cause in infinite-dimensional vec-
tor spaces, bases tend to be use-
less. The interesting notion for
infinite-dimensional vector spaces
is not expressing an element of
the space as a linear combination
of a finite number of basis ele-
ments, but expressing it as a lin-
ear combination that uses infin-
itely many basis vectors i.e., as an
infinite series 3 2 aiy, (for ex-
ample, power series or Fourier se-
ries). This introduces questions of
convergence, which are interesting
indeed, but a bit foreign to the
spirit of linear algebra.

It is quite surprising that there
s a one to one and onto map from
R to C[0,1]; the infinities of ele-
ments they have are not different
infinities. But this map is not lin-
ear. Actually, it is already surpris-
ing that the infinities of points in
R and in R? are equal; this is il-
lustrated by the existence of Peano
curves, described in Exercise 0.4.5.
Analogs of Peano curves can be
constructed in C[0, 1].
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Example 2.6.18 (Change of basis). Let us see that the matrix A in the
proof of Proposition and Definition 2.4.20 (Equation 2.4.28) is indeed the change
of basis matrix

- . k
Q(!') 0Py RP — R", 2.6.19

expressing the new vectors (the W’s) in terms of the old (the ?’s.)1
Like any linear transformation R? — Rk, the transformation <I>(‘!) o@u) has

al,j
a k x p matrix A whose jth column is A(€;). This means
a;w'
a5
= A(E;) = @;\_}, 0@, (&) = ¢(;) (W;), 2.6.20
akvj
or, multiplying the first and last term above by ®(y),
ayj
2(v) =a Vit +akiVi =W, A 2.6.21
akyj

Example 2.6.19 (Dimension of vector spaces). The space Mat (n,m) is a
vector space of dimension nm. The space P of polynomials of degree at most
k is a vector space of dimension k+1. A

Earlier we talked a bit loosely of “finite-dimensional” and “infinite-dimen-
sional” vector spaces. Now we can be precise: a vector space is finite dimen-
sional if it has a finite basis, and it is infinite dimensional if it does not.

Example 2.6.20 (An infinite-dimensional vector space). The vector
space C[0, 1] of continuous functions on [0, 1], which we saw in Example 2.6.2,
is infinite dimensional. Intuitively it is not hard to see that there are too many
such functions to be expressed with any finite number of basis vectors. We can
pin it down as follows.

Assume functions fi,..., f, are a basis, and pick n + 1 distinct points 0 =
Z) < T2°++ < Znyr = 1in [0,1]. Then given any values ¢),...,cn41, there
certainly exists a continuous function f(x) with f(z;) = c;, for instance, the
piecewise linear one whose graph consists of the line segments joining up the

. T
points ( C: )

If we can write f = >"¢_, ax fx, then evaluating at the z;, we get

f@)=ci=Y afulz:), i=1,....n+1 2.6.22
k=1
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This, for given ¢;s is a system of n+ 1 equations for the n unknowns ay, ... ,@n;
we know by Theorem 2.2.4 that for appropriate ¢;'s the equations will be in-
compatible. Therefore there are functions that are not linear combinations of
firee.sfnr 80 f1,. .., fn do not span C[0, 1].

2.7 NEWTON’S METHOD

Recall that the derivative
[Df(ao)} is a matriz, the Jacobian
matrix, whose entries are the par-
tial derivatives of f at ag. The in-
crement to the variable, x — ay, is
a vector.

We put an arrow over f to in-
dicate that elements of the range
gf f are vectors; ag is a point and
f(ao) is a vector. In this way f is
like a vector field, taking a point
and giving a vector. But whereas
a vector field F takes a point in
one space and turns it into a vector
in the same space, the domain and
range of f can be different spaces,
with different units. The only re-
quirement is that there must be as
many equations as unknowns: the
dimensions of the two spaces must
be equal. Newton's method has
such wide applicability that being
more precise is impossible.

When John Hubbard was teaching first year calculus in France in 1976,
he wanted to include some numerical content in the curriculum. Those
were the early days of programmable calculators; computers for under-
graduates did not then ezist. Newton's method to solve cubic polynomials
just about fit into the 50 steps of program and eight memory registers
available, so he used that as his main ezample. Writing the program was
already a problem, but then came the guestion of the place to start: what
should the initial guess be?

At the time he assumed that even though he didn’t know where to start,
the experts surely did; after all, Newton’s method was in practical use all
over the place. It took some time to discover that no one knew anything
about the global behavior of Newton’s method. A natural thing to do was
to color each point of the complez plane according to what root (if any)
starting at that point led to. (But this was before the time of color screens
and color printers: what he actually did was to print some character at
every point of some grid: x’s and 0’s, for example.)

The resulting printouts were the first pictures of fractals arising from
complex dynamical systems, with its archetype the Mandelbrot set.

Theorem 2.2.4 gives a quite complete understanding of linear equations. In
practice, one often wants to solve nonlinear equations. This is a genuinely hard
problem, and when confronted with such equations, the usual response is: apply
Newton'’s method and hope for the best.

Let f be a differentiable function from R™ (or from an open subset of R")
to 112". Newton's method consists of starting with some guess ag for a solution
of f(x) =~6. Then linearize the equation at ag: replace the increment to the
function, f(x) — f(ag), by a linear function of the increment, [Df(ao)](x - ap).
Now solve the corresponding linear equation:

f(a0) + [Df(a0)](x - ao) = 0.

This is a system of n linear equations in n unknowns. We can rewrite it

(Df(20)](x - ag) = —f(ao).
A b B

2.7.1

2.7.2



Note that Newton's method re-
quires inverting a matrix, which is
a lot harder than inverting a num-
ber; this is why Newton’s method
is so much harder in higher dimen-
sions than in one dimension.

In practice, l;ather than find
the inverse of [Df(a)), one solves
Equation 2.7.1 by row reduction,
or better, by partial row reduction
and back substitution, discussed
in Exercise 2.1.9. When applying
Newton’s method, the vast major-
ity of the computational time is
spent doing row operations.

How do you come by your ini-
tial guess ap? You might have a
good reason to think that nearby
there is a solution, for instance be-
cause |f(ao)| is small; we will see
many examples of this later: in
good cases you can then prove that
the scheme works. Or it might
be wishful thinking: you know
roughly what solution you want.
Or you might pull your guess out
of thin air, and start with a collec-
tion of initial guesses ao, hoping
that you will be lucky and that at
least one will converge. In some
cases, this is just a hope.
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Remember that if a matrix A has an inverse A~, then for any b the equ_gtion
A% = b has the unique solution A~!b, as discussed in Section 2.3. So if [Df (ao))
is invertible, which will usually be the case, then

x = a — [Df(a0)] ~f(20); 273
Call this solution a,, use it as your new “guess,” and solve
[Df(ﬂl)](x —a)= —f(al), 2.74

calling the solution a2, and so on. The hope is that a, is a better approximation
to a root than ag, and that the sequence ag,a,,... converges to a root of the
equation. This hope is sometimes justified on theoretical grounds, and actually
works much more often than any theory explains.

Example 2.7.1 (Finding a square root). How do calculators compute
the square root of a positive number ? They apply Newton’s method to the
equation f(z) = 22 — b = 0. In this case, this means the following: choose
ao and plug it into Equation 2.7.2. Our equation is in one variable, so we can
replace [Df(ao)] by f’(ao) = 2ao, as shown in Equation 2.7.5.

This method is sometimes introduced in middle school, under the name divide
and average.

1 1 b
a1=ao—m(a§—b)= 5(004';) 2.7.5

Newton'’s method divide .n'd average

(Exercise 2.7.3 asks you to find the corresponding formula for nth roots.)

The motivation for divide and average is the following: let a be a first guess
at v/b. If your guess is too big, i.e., if a > v/b, then b/a will be too small, and the
average of the two will be better than the original guess. This seemingly naive
explanation is quite solid and can easily be turned into a proof that Newton’s
method works in this case.

Suppose first that ag > v/b; then we want to show that vb<a < ap. Since
a) = }(ao + b/ao), this comes down to showing

2
b< (%(mwgo)) < d},

ey

2.7.6

or, if you develop, 4b < a + 2b + f; < 4ad. To see the left-hand inequality,
subtract 4b from each side: ’
b? b b)\?
2 2
+2b+ 5 ~db=qaf-2b4+ — = - = . 7.
ag Py ag +a§ (ao ao) >0 277



Two theorems from first
year calculus.

(1) If a decreasing sequence is
bounded below, it converges (see
Theorem 0.4.10).

(2) If an is a convergent se-
quence, and f is a continuous
function in a neighborhood of the
limit of the an, then

lim f(an) = f(lima,).

FIGURE 2.7.1.
Newton’s method: each time
we calculate an41 from a, we are
calculating the intersection with
the z-axis of the line tangent to
the parabola y = 22 — b at a,.
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The right-hand inequality follows immediately from b < a2, hence b?/a} < a}:

b2
2 — 2. 2.7.8
ag+ 2b + ag < 4dag
<23
<a?

Recall from first year calculus (or from Theorem 0.4.10) that if a decreasing
sequence is bounded below, it converges. Hence the a; converge. The limit a
must satisfy

1 b 1 b
= | cr=lim=-{a+—)== - ie., =vb 27
amdman=tin g (ot 2) =3 (a+F) ie a=vE 279

What if you choose 0 < ao < vb? In this case as well, a; > Vb:

4a§<4b<a§+2b+:2—2. 2.7.10
(J

4a?
We get the right-hand inequality using the same argument used in Equatiozn
2.7.7: 2b < af + %, since subtracting 2b from both sides gives 0 < (ao - ;";) )
Then the same argument as above applies to show that a3 < a;.

This “divide and average” method can be interpreted geometrically in terms
of Newton’s method: Each time we calculate a,4, from a, we are calculating
the intersection with the z-axis of the line tangent to the parabola y = z2 — b
at a,, as shown in Figure 2.7.1.

There aren't many cases where Newton’s method is really well understood
far away from the roots; Example 2.7.2 shows one of the problems that can
arise, and there are many others.

Example 2.7.2 (A case where Newton’s method doesn’t work). Let’s
apply Newton's method to the equation

:ca-:c+‘/7§=o, 2.7.11

starting at z =0 (i.e., our “guess” gy is 0). The derivative f'(z) = 322 — 1, so
f’(o) = —11 and f(o) = ‘/5/21 Sivms

a1 . _@-a+¥f 2 i
a1 =ag f,(ao)f(ﬂo)—ao W—Oi—-l——T. 2.7.12

Since a, = v/2/2, we have f'(a;) = 1/2, and

a2=¥—2(\/75—\/?§+-‘2—§)=0. 2.7.13



Don’t be too discouraged by
this example. Most of the time
Newton’s method does work. It
is the best method available for
solving nonlinear equations.

This uses Equation 0.4.9 the
sum of a geometric series: If |r| <
1, then

n=0

We can substitute 3¢? for r in that
equation because €? is small.

Remember that we said in the
introduction to Section 1.4, that
calculus is about “ ... about some
terms being dominant or negli-
gible compared to other terms.”
Just because a computation is
there doesn’t mean we have to do
it to the bitter end.

If we continue, we'll bounce be-
tween a region around % and a
region around 0, getting closer and

closer to these points each time.
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We're back to where we started, at ag = 0. If we continue, we’ll bounce back
and forth between 32@ and 0, never converging to any root:

V2

2.7.14

Now let’s try starting at some small ¢ > 0. We have f'(e) = 3¢ — 1, and
f(€) = € — e+ V/2/2, giving us

1 (s V2 \/5 1
S —e4 Y2 o - 7.15
ay € 362—1(6 €+ 2) e+(e €+ — 13 2.7.15
Now we can treat
] 1352 as the sum of the geometric series (1 + 3¢Z + 9¢* +...).
This gives us
a = €+(€3~€+‘\-/§—2)(1+3€2+9€4+...). 2.7.16
Now we just ignore terms that are smaller than €2, getting
a = e+ (%—E - e)(l + 3¢2) 4+ remainder
2.7.17
V2 | 3V2¢? .
= — + remainder.
2 2
Ignoring the remainder, and repeating the process, we get
V33 (P + 3P - (P42 + f
az =~ —- 2.7.18
2 (L2 + 1}562)2 -1
This looks unpleasant; let’s throw out all the terms with €2. We get
a2~£_M [-L@——Q \/5-—0 that
) 3y 1 2 1 T 2772 so tha
az = 0+ ce2, where c is a constant.
2.7.19

We started at 0 + ¢ and we’ve been sent back to 0 + ce?!
We’re not getting anywhere; does that mean there are no roots? Not at all.!”

Let’s try once more, with ap = ~1. We have
a=ao—“°—“°+°2£ 203~ 37 2.7.20
! 3a -1 32 -1" -

70f course not. All odd-degree polynomials have real roots by the intermediate
value theorem, Theorem 0.4.12



As we said earlier, the reason
Newton’s method has become so
important is that people no longer
have to carry out the computa-
tions by hand.

Any statement that guarantees
that you can find solutions to non-
linear equations in any generality
at all is bound to be tremendously
important. In addition to the im-
mediate applicability of Newton's
method to solutions of all sorts
of nonlinear equations, it gives a
practical algorithm for finding im-
plicit and inverse functions. Kan-
torovitch’s theorem then gives a
proof that these algorithms actu-
ally work.
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A computer or programmable calculator can be programmed to keep iterating
this formula. It’s slightly more tedious with a simple scientific calculator; with
the one the authors have at hand, we enter “1 +/— Min” to put —1 in the
memory (“MR”) and then:

(2x MR x MR x MR - 2,/div2)div(3 x MR x MR - 1).

We get @, = —1.35355...; entering that in memory by pushing on the “Min”
(or “memory in”) key we repeat the process to get:

a; = —1.26032. .. aq = —1.25107...
a3 = —1.25116... as = —1.25107....

It’s then simple to confirm that ag is indeed a root, to the limits of precision of
the calculator or computer. A

Does Newton’s method depend on starting with a lucky guess? Luck some-
times enters into it; with a fast computer one can afford to try out several
guesses and see if one converges. But, you may ask, how do we really know
that solutions are converging? Checking by plugging in a root into the equa-
tion isn’t entirely convincing, because of round-off errors. We shall see that
we can say something more precise. Kantorovitch's theorem guarantees that
under appropriate circumstances Newton’s method converges. Even stating the
theorem is difficult. But the effort will pay off.

2.7.21

Lipschitz conditions

Imagine an airplane beginning its approach to its destination, its altitude rep-
resented by f. If it loses altitude gradually, the derivative f' allows one to
approximate the function very well; if you know how high the airplane is at the
moment ¢, and what its derivative is at ¢, you can get a good idea of how high
the airplane will be at the moment ¢ + A:

ft+h) = f(t) + f'(t)h.

But if the airplane suddenly loses power and starts plummeting to earth, the
derivative changes abruptly: the derivative of f at t will no longer be a reliable
gauge of the airplane’s altitude a few seconds later.

The natural way to limit how fast the derivative can change is to bound the
second derivative; you probably ran into this when studying Taylor’s theorem
with remainder. In one variable this is a good idea. If you put an appropriate
limit to f” at t, then the airplane will not suddenly change altitude. Bound-
ing the second derivative of an airplane’s altitude function is indeed a pilot’s
primary goal, except in rare emergencies.

To guarantee that Newton’s method starting at a certain point will converge
to a root, we will need an explicit bound on how good an approximation

[Df(xo)]h is to f(xo + B) — £(xo). 2.7.23

2.7.22



In Definition 2.7.3, U can be
a subset of R"; the domain and
the range of f do not need to have
the same dimension. But when
we use this definition in the Kan-
torovitch theorem, those dimen-
sions will have to be the same.

A Lipschitz ratio tells us some-
thing about how fast the deriva~
tive of a function changes.

It is often called a Lipschitz
constant. But M is not a true con-
stant; it depends on the problem
at hand; in addition, a mapping
will almost always have different
M at different points or on differ-
ent regions. When there is a sin-
gle Lipschitz ratio that works on
all of R", we will call it a global
Lipschitz ratio.

Example 2.7.4 is misleading:

there is usually no Lipschitz ratio
valid on the entire space.

202 Chapter 2. Solving Equations

As in the case of the airplane, to do this we will need some assumption on how
fast the derivative of f changes.

But in several variables there are lots of second derivatives, so bounding the
second derivative doesn’t work so well. We will adopt a different approach:
demanding that the derivative of f satisfy a Lipschitz condition.

Definition 2.7.3 (Lipschitz condition). Let f : U — R™ be a differen-
tiable mapping. The derivative [Df(x)] satisfies a Lipschitz condition on a
subset V C U with Lipschitz ratio M if for all x,y € V

|IDf(x)) - [DE(Y)]| <M [x -] 2.7.24
e — — oy o’
bete}:::nzﬂv. botsi:::n pegints

Note that a function whose derivative satisfies a Lipschitz condition is cer-
tainly continuously differentiable. Having the derivative Lipschitz is a require-
ment that the derivative is especially nicely continuous (it is actually close to
demanding that the function be twice continuously differentiable).

Example 2.7.4 (Lipschitz ratio: a simple case). Consider the mapping

f:R? - R?

2
T\ _(Tr— T2 . o ) |1 =2z
f (12) = (:cf +:cz) with derivative [Dt'(:,:2 )] = [2:“ 1 ] . 2.7.25

Given two points x and y,

[pe(2)] - [pe(2)] = [m. ° L s vz)] . 216
Calculating the length of the matrix above gives
Hg(zlo_ n) _2(120— yz)” =2J(@ - n)2+ @ -p)l= 2'::2 B y2|
80
[IDeC)] - (DEY))| = 21x - yi; 2121

in this case M = 2 is a Lipschitz ratio for [Df].

Example 2.7.5 (Lipschitz ratio: a more complicated case). Consider
the mapping f : R? — R? given by

I — 13 2

£ x, — 2 xy 1 —312

( 3:2) (-’”:15 + zz) , with derivative [Df ( s )] [ 32 1 | 2.7.28
Given two points x and y we have

o) [or(s)) = sy 5],

2.7.29



FIGURE 2.7.2.
Equations 2.7.31 and 2.7.32 say
z T
that when (y:) and y: are

in the shaded region above, then
3A is a Lipschitz ratio for [Df(x)].
It is not immediately obvious how
to t late this stat: t into a
condition on the points

x=(2) = =(2):

By sup{(z1 + 11)*, (22 + 12)°}
we mean “the greater of (z1+1)?
and (2 + ¥2)°.” In this compu-
tation, we are using the fact that
for any two numbers a and b, we
always have

(a +b)* < 2(a® + b%),

since 0 < (a - b)%.
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and taking the length gives

|[or(3)] - [oe(2)]] 2730

=3v/(@1 - 1)@ +1)? + (72 - 12)* (22 + 32)*

Therefore, when
@ +n)? S A® and (z2+3) < A% 2.7.31

as shown in Figure 2.7.2, we have

z
lfoe(z)] - el <Al (3) - ()} 272
i.e., 3A is a Lipschitz ratio for [Df(x)].

When is the condition of Equation 2.7.31 satisfied? It isn’t really clear that
we need to ask this question: why can’t we just say that it is satisfied when it
is satisfied; in what sense can we be more explicit? There isn’t anything wrong
with this view, but the requirement in Equation 2.7.31 describes some more or
less unimaginable region in R*. (Keep in mind that Equation 2.7.32 concerns
points x with coordinates z,,z2 and y with coordinates y;, y2, not the points of
Figure 2.7.2, which have coordinates z,,y: and z2,y2 respectively.) Moreover,
in many settings, what we really want is a ball of radius R such that when two
points are in the ball, the Lipschitz condition is satisfied:

|[Df(x)] - [DE(Y)]l < 34jx —y| when |x|<R and |y|<R 2733
If we require that [x|2 = 22 + 22 < A%/4 and |y|® = y} + y3 < A?/4, then

sup{(z1 +3)%, (z2+¥2)%} < 2z + 2+ 22 +93) = 2(xP +|yl) < A% 2734
Thus we can assert that if
A
Ixl.lyl < 5, then l[Df(x)] - [Df(y)]l <3AIx-y|. & 2735

Computing Lipschitz ratios using higher partial derivatives

Most students can probably follow the computation in Example 2.7.5 line by
line, but even well above average students will probably feel that the tricks
used are way beyond anything they can be expected to come up with on their
own. Finding ratios M as we did above is a delicate art, and finding M’s
that are as small as possible is harder yet. The manipulation of inequalities is
a hard skill to acquire, and no one seems to know how to teach it very well.
Fortunately, there is a systematic way to compute Lipschitz ratios, using higher
partial derivatives.

Higher partial derivatives are essential throughout mathematics and in sci-
ence. Mathermatical physics is essentially the theory of partial differential equa-
tions. Electromagnetism is based on Maxwell's equations, general relativity



Originally we introduced higher
partial derivatives in a separate
section in Chapter 3. They are so
important in all scientific applica-
tions of mathematics that it seems
mildly scandalous to slip them in
here, just to solve a computa-
tional problem. But in our expe-
rience students have such trouble
computing Lipschitz ratios—each
problem seeming to demand a new
trick—that we feel it worthwhile
to give a “recipe.”

Different notations for partial
derivatives exist:
&f

D;(Dif)(a) = m(ﬂ)

= fziz,(a).

As usual, we specify the point a at
which the derivative is evaluated.

In Example 2.7.7 we evaluated
the partial derivatives of f at both
a z
b | and at [ y | to emphasize

c 2
the fact that although we used z,y
and z to define f, we can evaluate
it on variables that look different.

Recall that a function is C2?
if it is twice continuously differ-
entiable, i.e., if its second partial
derivatives exist and are continu-
ous.
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on Einstein’s equation, fluid dynamics on the Navier-Stokes equation, quan-
tum mechanics on Schrodinger’s equation. Understanding partial differential
equations is an prerequisite for any serious study of these phenomena. Here,
however, we will use them as a computational tool.

Definition 2.7.8 (Second partial derivative). Let U C R™ be open,
and f : U — R be a differentiable function. If the function D;f is itself
differentiable, then its partial derivative with respect to the jth variable,

D J (le ))
is called a second partial derivative of f.

Example 2.7.7 (Second partial derivative). Let f be the function

x a
fly | =2z+zy°+2y22.  Then Dy(D:f)| b | =Dy (2+b%) =3b2
z c N
D, f
z
Similarly, D3(D2f) | y | = D3 (3zy® + 22%) =42. A
2 _,—/

D2 f
We can denote Dy(D, f) by Dif, Dao(D2f) by D2f, .... For the function
£ (%) =29 +sinz, what are D}f, D3f, Dy(D,f), and Dy(D, f) 718
Proposition 2.7.8 says that the derivative of f is Lipschitz if f is of class C2.

Proposition 2.7.8 (Derivative of a C? mapping is Lipschitz). Let
U CR" be open, and f : U — R" be a C? mapping. If|DiD; fi(x)| < cij
for all triples of indices 1 < i, j,k < n, then

E (Q,j,k)z

1<i,jk<n

1/2

|[Df(u)] - [DE(v)]] < ju—v]. 2.7.36

Proof. Each of the D; f; is a scalar-valued function, and Corollary 1.9.2 tells
us that

Dy f =y® + cosz and D, f = 2z, so
Dif = Di(y* + cosz) = —sinz, D}f = Dy(2zy) = 2z,
Di(D2f) = Di(2zy) =2y, and Da(Dif) = Da(3? + cosz) = 2.
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Equation 2.7.37 uses the fact
that for any function g (in our

n 1/2
case, D"f')’ IDjf;(a + E) - Djfx‘(a)' < (Z(ci,j.k)z) 'ﬂ' 2.7.37
|sta+B) - g(@)| =

S\ - iti
< (Tugl[Dg(a + th)]l) |&l: By definition
0,

1/2
remember that [Df(a + ﬁ)] - [Df(a)]| = (Z (Djfi(a+ h) — Djj;(a))z) . 2738
IIDg(a + ¢h)| =1
s (Dug(a + tﬁ))2 n n vz 2\ /2
k= So |[Df(a+B) - [Df@)< | 3 (( (c.~,,~_k)2> Ih|)
ij=1 \ \k=1

2.7.39

1/2
=( b (q.j.m) IBl.
1€ij.k<n

The proposition follows by setting u =a + h,andv=a 0O

Example 2.7.9 (Redoing Example 2.7.5 the easy way). Let’s see how

much easier it is to find a Lipschitz ratio in Example 2.7.5 using higher partial
derivataives. First we compute the first and second derivatives, for f; = z, -3

and f = 7} + z2:
Dif =1; Dyfy =-373 Dif,=3z% D=1 2.7.40
In Equation 2.7.41 we use the This gives

fact that crossed partials of f are
cepral (Theorem 3.3.9). Dy\D\fy =0; DyDyfy = DoDyfy =0; DpDsfy = 6z
Dllez = 61'1; D]szz = Dlefz = 0; D2D2f2 =0.

So our Lipschitz ratio is 1/36z2 + 3622 = 6,/Z2 + z2: again we can assert that
if

2.7.41

Ixl.Iy| < B, then |[Df(x)]-[DE(Y)I<6Bx~yl. & 2742

Using higher partial derivatives, recompute the Lipchitz ratio of Example 2.7.4.
Do you get the same answer we did?!®

1%The higher partial derivative method gives 2v/2; earlier we got 2, a better result.
A blunderbuss method guaranteed to work in all cases is unlikely to give results as
good as techniques adapted to the problem at hand. But the higher partial derivative
method gives results that are good enough.



By fiddling with the trigonom-
etry, one can get the v/86 down to
V78 =~ 8.8, but the advantage of
Proposition 2.7.8 is that it gives
a systematic way to compute Lip-
schitz ratios; you don’t have to
worry about being clever.

To go from the first to the sec-
ond line of Equation 2.7.44 we use
the fact that |sin| and |cos| are
bounded by 1.

The Kantorovitch theorem says
that if certain conditions are met,
the equation

fx)=0

has a unique root in a neighbor-
hood Up. In our airplane analogy,
where is the neighborhood men-
tioned? It is implicit in the Lip-
schitz condition: the derivative is
Lipschitz with Lipschitz ratio M
in the neighborhood Up.

Remember that acceleration
need not be a change in speed—it
can also be a change in direction.
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Example 2.7.10 (Finding a Lipschitz ratio using second derivatives: a
second example). Let us find a Lipschitz ratio for the derivativc of F ( ‘;) =

(sin(:c + y)), for |z| < 2,|y] < 2. We compute
cos(zy)

D\D\F, = -sin(z +y), D;D\F\, = D\D;F, = —sin(zy),
D,D;F, = —sin(z + y);

D\D\F; = —y*cos(zy), DyD1F; = DyDaF; = —(sin(zy) + yz cos(zy)),
D,;DyF; = z2 cos zy. 2.743

This gives

\/4 sin®(z + y) + y4 cos? zy + z* cos? zy + 2(sin Ty + zy cos Ty)? 9744

SVA+y + 2t +2(1 + [zy])2

So for |z] < 2,|y| < 2, we have a Lipschitz ratio M < 4+ 16+ 16450 =
V86 <9.3;ie.,

|[Df(u)] - DEW)| <93u-vI. & 2.7.45

Kantorovitch’s theorem

Now we are ready to tackle Kantorovitch’s theorem. It says that if the product
of three quantities is < 1/2, then the equation f| (x) = 0 has a unique root in
a neighborhood Uy, and if you start with initial guess ay in that neighborhood,
Newton'’s method will converge to that root.

The basic idea is simple. The first of the three quantities that must be small
is the value of the function at ay. If you are in an airplane flying close to
the ground, you are more likely to crash (find a root) than if you are several
kilometers up. The second quantity is the square of the inverse of the derivative
of the function at ay. In one dimension, we can think that the derivative must
be big.2 If your plane is approaching the ground steeply, it is much more likely
to crash than if it is flying almost parallel to the ground.

The third quantity is the Lipschitz ratio M, measuring the change in the
derivative (i.e., acceleration). If at the last minute the pilot pulls the plane out
of a nose dive, some passengers or flight attendants may be thrown to the floor
as the derivative changes sharply, but a crash will be avoided.

2Why the theorem stipulates the square of the inverse of the derivative is more
subtle. We think of it this way: the theorem should remain true if one changes the
scale. Since the “numerator” f(ao)M in Equation 2.7.48 contains two terms, scaling
up will change it by the scale factor squared. So the “denominator” |IDf(a0)) 1|2
must also contain a square.



Note that the domai‘n and the
range of the mapping f have the
same dimension. In other words,
setting f(x) = 0, we get the same
number of equations as unknowns.
This is a reasonable requiretnent.
If we had fewer equations than un-
knowns we wouldn't expect tbem
to specify a unique solution, and
if we had more equations than un-
knowns it would be unlikely that
there will be any solutions at all.

In addition, if n # m, tben
[Df(ag)] would not be a square
matrix, so it would not be invert-
ible.

The Kantorovitch tbeorem is
proved in Appendix A.2.
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But it is not each quantity individually that must be small: the product
must be small. If the airplane starts its nose dive too close to the ground. even
a sudden change in derivative may not save it. If it starts its nose dive from
an altitude of several kilometers, it will still crash if it falls straight down. And
if it loses altitnde progressively, rather than plummeting to earth, it will still
crash (or at least land) if the derivative never changes.

Theorem 2.7.11 (Kantorovitch’s theorem). Let ag be a point in R", U
an open neighborbooq of ag in R™ and f : U — R" a differentiable mapping,
with its derivative [Df (ag)] invertible. Define

Ry = —[Df(ao)] 'f(a0) , ai=ao+ho |, Uo={x| lx—allslﬁol}.

If the derivative [Df(x)] satisfies the Lipschitz condition 2146
|[Df(w)] - [DF(w2)]] < Mlw — wa| for all points u,uz € Uy, 2.7.47

and if the inequality
[f(ao)] |[DE @) M < 3 2.7.48

is satisfied, the equation f (x) =0 has a unique solution in Uy, and Newton’s
method with initial guess ag converges to it.

If Inequality 2.7.48 is satisfied, then at each iteration we create a new ball
inside the previous ball, and with at most half the radius of the previous: U} is
in Uy, Uz is in Uy, ..., as shown to the right of Figure 2.7.3. In particular, the
Lipschitz condition that is valid for Uy is valid for all subsequent balls. As the
radius of the balls goes to zero, the sequence ag, a,,... converges to a, which

we will see is a root.
\h
a
a,

o)
ag
FIGURE 2.7.3. Equation 2.7.46 defines the neighborhood Up for which Newton's

U
method is guaranteed to work when the inequality of Equation 2.7.48 is satisfied.
Left: the neigbborbood Uy is the ball of radius |hg| = |a)1 — &y around a;. so ay is on
tbe border of Uo. Rigbt: a blow-up of Up, showing the neighborhood U,.




Equation 2.7.48:
[f(ao)| |(DF o) " <

A good way to check whether
some equation makes sense is to
make sure that both sides have
the same units. In physics this is
essential.

We “happened to notice” that
sin2 — 1 = —.0907 with the help
of a calculator. Finding an initial
condition for Newton’s method is
always the delicate part.

The Kantorovitch theorem
does not say that the system of
equations has a unique solution; it
may have many. But it has one
unique solution in the neighbor-
hood Up, and if you start with the
initial guess ap, Newton’s method
will find it for you.

Recall that the inverse of
_fa b .
A= [c d] is

-1__ 1
A _ad—bc[—c a]’
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The right units. Note that the right-hand side of Equation 2.7.48 is the
unitless number 1/2:

[f(a0)] |(Df (30)) " M < % 2.7.49

All the units of the left-hand side cancel. This is fortunate, because there is
no reason to think that the domain U will have the same units as the range;
although both spaces have the same dimension, they can be very different. For
example, the units of U might be temperature and the units of the range might
be volume, with f measuring volume as a function of temperature. (In this
one-dimensional case, f would be f)

Let us see that the units on the left-hand side of Equation 2.7.48 cancel. We'll
denote by u the units of the domain, U, and by r the units of the range, R". The
term |F| (a0)| has units 7. A derivative has units range/domain (typically, dis-
tance divided by time), so the inverse of the derivative has units domain/range
= u/r, and the term |[Df(ap)]~"|? has units u?/r2. The Lipschitz ratio M is the
distance between derivatives divided by a distance in the domain, so its units
are 7 /u divided by u. This gives the following units:

u?

T
TX =5 X

Z X2 2.7.50

both the r’s and the u’s cancel out.

Example 2.7.12 (Using Newton’s method). Suppose we want to solve
the two equations

cos(z—y) =y e, 1;-.'(::) - [095(:0'9)‘?] = [0].

2.7.
sin(z + y) = z, y sin(z+y) -z 0 751

We just happen to notice that the equation is close to being satisfied at (%)

cos(1-1)~1=0 and sin(1+1)—-1=-.0907.... 2.7.52

Let us check that starting Newton's method at ag = (%) works. To do this

we must see that the inequality of Equation 2.7.48 is satisfied. We just saw that
|F(a0)) ~ .0907 < .1. The derivative at ap isn’t much worse:

- _ 0 -1 = _ 1 2 1
[DF(M)]‘{COS2—-1 COS2J’ so [DF(&O)] ‘=cos2—l [l EO:OS2 0]
and 2.7.53
’[Dﬁ(ao)]-'r = m«mz)? +1+(1 - cos2)?) ~ 1.1727 < 2,

as you will see if you put it in your calculator.



|IDF(21)) - IDA(E2))| =

The Kantorovitch theorem
does not say that if Inequality
2.7.48 is not satisfied, the equation
has no solutions; it does not even
say that if the inequality is not sat-
isfied, there are no solutions in the
neighborhood Us. In Section 2.8
we will see that if we use a different
way to measure [Df(ao)], which is
harder to compute, then inequal-
ity 2.7.48 is easier to satisfy. That
version of Kantorovitch's theorem
thus guarantees convergence for
some equations about which this
somewhat weaker version of the
theorem is silent.

The MATLAB program “New-
ton.m” is found in Appendix B.1.
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Rather than compute the Lipschitz ratio for the derivative using higher par-
tial derivatives, we will do it directly, taking advantage of the helpful formulas
|sina —sinb| < [a —b|, |cosa—cosb| < |a— b).2! These make the computation
manageable:

—sin(z1 — 1) +sin(z2 — ¥2) sin(z1 — 1) - sin(z2 - y2) ]
cos(z) +y1) — cos(z2 — y2)  cos(z1 + y1) — cos(z2 — ¥2)
< l [=(z1—w)+ (@2 —w)| |(&1-w)- (22— yz)l]

(@1 +3)~ (@2—g2) |21 +y) - (22— 1)l
= VaE -z + - =2|(5) - (2)]-

Thus M = 2 is a Lipschitz constant for [Dﬁ] Putting these together, we see
that

2.7.54

- - 2
|F(ao)] I[DF(ao)]“l M<1.2.2=4<35 2.7.55
so the equation has a solution, and Newton’s method starting at ({) will
converge to it. Moreover,

Fo= 1 [ cos2 1 0 9%’;2 064
ho_cos?—l[l—cos2 0] [s|n2 1] o , 2.7.56

so Kantorovitch’s theorem guarantees that the solution is within .064 of (9%6 )

The computer says that the solution is actually (ggg

places. A

, correct to three decimal

Example 2.7.13 (Newton’s method, using a computer). Now we will
use the MATLAB program to solve the equations

2 —y+sin(z-y)=2 and y>-z=3, 2.7.57
starting at (%) and at (_g)
The equation we are solving is
2
z\_ | -y+sm(z y) -2 0
F(y)—[ s J [0}. 2.7.58

21By the mean value theorem, there exists a c between a and b such that
|sina - sinb| = | cos c||a — b|;
oin’ ¢

since | cos c| < 1, we have |sina ~ sinb| < |a — b|.



In fact, it superconverges: the
number of correct decimals rough-
ly doubles at each iteration; we
see 1, then 3, then 8, then 14 cor-
rect decimals. We will discuss su-
perconvergence in detail in Section
2.8.
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Starting at ( %) the MATLAB Newton program gives the following values:

2 21 _ (2.10131373055664
Xo = (2) X = (2.2‘7)v X2 = (2.25868946388913)'

2.10125829441818 _ (2.10125829294805
X3 = (2.25859653392414)’ X4 = (2.25859653168689)’

and the first 14 decimals don’t change after that. Newton's method certainly
does appear to converge.
But are the conditions of Kantorovitch’s theorem satisfied? The MATLAB
program prints out a “condition number,” cond, at each iteration, which is
- - 2
|F ()] l[DF(x.-)]"I . Kantorovitch’s Theorem says that Newton’s method

will converge if cond - M < 1/2, where M is a Lipschitz constant for [DF] on
U;.

We first computed this Lipschitz constant without higher partial derivatives,
and found it quite tricky. It’s considerably easier with higher partial derivatives:

2.7.59

D\D\fi =2 -sin(z —y); D1Dyfy =sin(zx —y); DD, f, = —sin(z — y)
DyD\f; =-1; D1D2fy =0; DD, f; =2, 2.7.60
$0

E(D,'Djfk)2 = (2 - sin(z - y))® + 2(sin(z - )’ + (sin(z - 9))* + 4;
1

> (DiD; i)’

4J

<9+2+1+4=16 2.7.61

M =4 is a Lipschitz constant for F on all of R2.

Let us see what we get when cond - M < 1/2. At the first iteration, cond
= 0.1419753 (the exact value is v/46/18), and 4 x 0.1419753 > .5. So Kan-
torovitch’s theorem does not assert convergence, but it isn’t far off. At the next
iteration, we find cond = 0.00874714275069, and this works with a lot to spare.

What happens if we start at ( _g)? The computer gives

Xp = (-22) X = (—1.78554433070248) L Xg = (—1.82221637692367) ,

1.30361391732438 1.10354485721642
_ ( —1.82152790765992 _ (—1.82151878937233
X3 —( 1.08572086062422 ) Xy = ( 1.08557875385529 )

_ (-1.82151878872556)
X5 =\ 1.08557874485200 )@ -

and again the numbers do not change if we iterate the process further. It
certainly converges fast. The condition numbers are

0.3337, 0.1036, 0.01045, .... 2.7.62



increment
point in in domain
domain

. B0 ~[Df(a0))™" f(a0)
N

vector
in range

point minus vector equala point
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The computation we had made for the Lipschitz constant of the derivative is
still valid, so we see that the condition of Kantorovitch’s theorem fails rather
badly at the first step (and indeed, the first step is rather large), but succeeds
(just barely) at the second. A

Remark. Although both the domain and the range of Newton’s method are
n-dimensional, you should think of them as different spaces. As we mentioned,
in many practical applications they have different units. It is further a good
idea to think of the domain as made up of points, and the range as made up of
vectors. Thus f(m) is a vector, and h; = —[Df(m)]“t‘ﬁai) is an increment in
the domain, i.e., a vector. The next point a;;) = a; + h; is really a point: the
sum of a point and an increment.

Remark. You may not find Newton’s method entirely satisfactory; what if you
don’t know an initial “seed” ag? Newton’s method is guaranteed to work only
when you know something to start out. If you don’t, you have to guess and hope
for the best. Actually, this isn’t quite true. In the nineteenth century, Cayley
showed that for any quadratic equation, Newton's method essentially always
works. But quadratic equations form the only case where Newton’s method
does not exhibit chaotic behavior.22

2.8 SUPERCONVERGENCE

Kantorovitch’s theorem is in some sense optimal: you cannot do better than
the given inequalities unless you strengthen the hypotheses.

Example 2.8.1 (Slow convergence). Consider solving f(z) = (x-1)2%=0
by Newton’s method, starting at ap = 0. Exercise 2.8.1 asks you to show that
the best Lipschitz ratio for f’ is 2, so the product

2
1ol [(£ (@) =1 (-3) 2=, 281

and Theorem 2.7.11 guarantees that Newton’s method will work, and will con-
verge to the unique root a = 1. The exercise further asks you to check that
by =1/2"+150 g, = 1-1/2"+1, exactly the rate of convergence advertised. A

Example 2.8.1 is both true and squarely misleading. If at each step Newton’s
method only halved the distance between guess and root, a number of simpler
algorithms (bisection, for example) would work just as well.

2For a precise description of how Newton's method works for quadratic equations,
and for a description of how things can go wrong in other cases, see J. Hubbard and
B. West, Differential Equations, A Dy ical Syst Approach, Part I, Texts in

Applied Mathematics No. 5, Springer-{lerlag, N.Y., 1991, pp. 227-235.




As a rule of thumb, if Newton's
method hasn'’t converged to a root
in 20 steps, you've chosen a poor
initial condition.

The 1/2 in 2o = 1/2 is unre-
lated to the 1/2 of Equation 2.8.2.
If we were to define superconver-
gence using digits in base 10, then
the same sequence would super-
converge starting at 3 < 1/10.
For it to start superconverging at
o, we would have to have zo <
1/10.
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Newton's method is the favorite scheme for solving equations because usually
it converges much, much faster than in Example 2.8.1. If, instead of allowing
the product in Inequality 2.7.48 to be < 1/2, we insist that it be strictly less
than 1/2:

- - _ 1
|f(a0)lIDf(20)] ' PM =k < 3, 28.2
then Newton’s method superconverges.

How soon Newton’s method starts superconverging depends on the problem
at hand. But once it starts, it is so fast that within four more steps you will
have computed your answer to as many digits as a computer can handle. In
practice, when Newton’s method works at all, it starts superconverging soon.

What do we mean when we say that a sequence ao, @y, . .- superconverges?
Our definition is the following:

Definition 2.8.2 (Superconvergence). Set z; = |ai4+1 —ail; i.e., z; repre-
sents the difference between two successive entries of the sequence. We will
say that the sequence ao,a1,... superconverges if, when the z; are written
in base 2, then each number z; starts with 2* — 1 = 2* zeroes.

For example, the sequence Tnpy1 = 2, starting with zo = 1/2 (written
.1 in base 2), superconverges to zero, as shown in the left-hand side of Figure
2.8.1. By comparison, the right-hand side of Figure 2.8.1 shows the convergence
achieved in Example 2.8.1, again starting with 2o = 1/2.

zo=.1 zo=.1

z; = .01 z; = .01
z2 = .0001 z2 = .001
z3 = .00000001 z3 = .0001

z4 = .0000000000000001. z4 = .00001.

FIGURE 2.8.1. Left: superconvergence. Right: the convergence guaranteed by Kan-
torovitch's theorem. In both cases, numbers are written in base 2: .1 = 1/2,.01 =
1/4,.001 = 1/8,....

‘We will see that what goes wrong for Example 2.8.1 is that at the root ¢ = 1,
f'(a) = 0, so the derivative of f is not invertible at the limit point: 1/f(1)
does not exist. Whenever the derivative is invertible at the limit point, we do
have superconvergence. This occurs as soon as Equation 2.8.2 is satisfied: as
soon as the product in the Kantorovitch inequality is strictly less than 1/2.
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Theorem 2.8.3 (Newton’s method superconverges). Let the condi-
tions of the Kantorovitch theorem 2.7.11 be satisfied, but with the stronger

assumption that

- = 1
|F(ao) IIDF(a0)] "M =k < 5. (282)
1-k, = WM
Set c= 1-2k 2k"Df(ao)] I? 2.8.3
I al <2, then |Bgml < - " 2.84
'hnl > %7 en +m| S P 2 . 8.

Equation 2.8.4 means superconvergence. Since b, = |lan+1 — x|, starting at
step n and using Newton’s method for m iterations causes the distance between
a, and a,4m to shrink to practically nothing before our eyes. For example, if

m = 10:
Even if k is almost 1/2, 0 that 1024
¢ is large, the factor (1/2)%" will -~ <l (1
soon predominate. IBnsm| < c \2 : 285

The proof requires the following lemma, proved in Appendix A.3.
Lemma 2.8.4. If the conditions of Theorem 2.8.3 are satisfied, then for all i,
Bisa] < ofhsf. 2.8.6

Proof of Theorem 2.8.3. Let z; = c[h;|. Then
Tip1 = | < A2 = 22, 28.7

Our assumption that |h,| < & tells us that T, < 1/2. So

21
1 1
ZTntl Slﬁ5—=(§) )

4
1 1\*
T2 < (Tnn)’ S 23 < T (5) ’ 2838

)zm.

Since |Ba) < &, we have the result we want, Equation 2.8.4:

L

Zngm <22 < (

it lhal< L, then Bam<t (1) O 289
_ch +m_c 2 . Q.



Multiplication by the matrix A
of Example 2.8.6 can at most dou-
ble the length of a vector; it does
not always do so; the product Ab,

|12 0 ~_ |0
where A = 0 l] and b = [1 ,

is [(l) , with length 1.

There are many equations for
which convergence is guaranteed if
one uses the norm, but not if one
uses the length.
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Kantorovitch’s theorem: a stronger version (optional)

We have seen that Newton’s method converges much faster than guaranteed
by Kantorovitch’s theorem. In this subsection we show that it is possible to
state Kantorovitch’s theorem in such a way that it will apply to a larger class
of functions. We do this by using a different way to measure linear mappings:
the norm || Al of a matrix A.

Definition 2.8.5 (The norm of a matrix). The norm ||A|| of a matrix A
is
| A]l = sup|AX|, when |%| = 1. 2.8.10
This means that || A|| is the maximum amount by which multiplication by A
will stretch a vector.

Example 2.8.6 (Norm of a matrix). Take

_12 0 -_ |z _ |2z
A—[O 1] andx—[y],sothatAx—[y].
Since by definition |X| = \/z2 + y2 = 1, we have

||All = sup |AX| =supv4z2+y2=2. A
xX|=1 N —— p—
= setting z=1,y=0

2.8.11

In Example 2.8.6, note that || A|| = 2, while |A] = v/5. It is always true that
llAll < [4; 2.8.12

this follows from Proposition 1.4.11, as you are asked to show in Exercise 2.8.2.

This is why using the norm ||A|| rather than the length |A| makes Kan-
torovitch’s theorem stronger: the theorem applies equally as well when we use
the norm rather than the length to measure the derivative [Df(x)] and its in-
verse, and the key inequality of that theorem, Equation 2.7.48, is easier to
satisfy using the norm.

Theorem 2.8.7 (Kantorovitch’s Theorem: a stronger version). Kan-
torovitch’s theorem 2.7.11 still holds if you replace all lengths of matrices by
norms of matrices.

Proof. In the proof of Theorem 2.7.11 we only used the triangle inequality
and Proposition 1.4.11, and these hold for the norm Il All of a matrix A as well
as for its length |A|, as Exercises 2.8.3 and 2.8.4 ask you to show. 0O



2

FIGURE 2.8.2.
The diagram of the trigonomet-
: circle for Example 2.8.8.
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Unfortunately, the norm is usually much harder to compute than the length.
In Equation 2.8.11 above, it is not difficult to see that 2 is the largest value of
\/4z? + y2 compatible with the requirement that V/z? + y? = 1, obtained by
setting z = 1 and y = 0. Computing the norm is not often that easy.

Example 2.8.8 (Norm is harder to compute). The length of the matrix
A= [(l) :] is VIZ+ 12 + 12 = /3, or about 1.732. The norm is '—"'5\5, or

about 1.618; arriving at that figure takes some work, as follows. A vector [':]
with length 1 can be written [g?::], and the product of A and that vector is

cost +sint
sint

] , so the object is to find

sup y/(cost + sint)2 + sin’t . 2.8.13

At its maximum and minimum, the derivative of a function is 0, so we need
to see where the derivative of (cost + sint)? + sin’¢ vanishes. That derivative
is sin 2t + 2 cos 2t, which vanishes for 2t = arctan(—2). We have two possible
angles to look for, ¢, and t;, as shown in Figure 2.8.2; they can be computed
with a calculator or with a bit of trigonometry, and we can choose the one that
gives the biggest value for Equation 2.8.13. Since the entries of the matrix A
are all positive, we choose t,, in the first quadrant, as being the best bet.

By similar triangles, we find that

cos2t) = —% and sin2t; = % 28.14

Using the formula cos 2t; = 2cos?t; — 1 = 1 — 2sin®¢, we find that

'l 1 , ’1 1
costy = 5 (1 - 7'5_’), and sint) = 5 (l+ 75), 2.8.15

which, after some computation, gives

. 2
costy +sint) _3+\/§
[ o, ” =2, 28.16
11 145
and finally  |}A] = | [0 1]||= 2‘/-. 28.17

Remark. We could have used the following formula for computing the norm
of a 2 x 2 matrix from its length and its determinant:

A2 + /| Al* — 4(det A)?
uAu=\/" VIAT- S AF 2818
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In higher dimensions things are much worse. It was to avoid this kind of com-
plication that we used the length rather than the norm when we proved Kan-
torovitch’s theorern in Section 2.7. A

In some cases, however, the norm is easier to use than the length, as in the
following example. In particular, norins of multiples of the identity matrix are
easy to compute: such a norm is just the absolute value of the multiple.

Example 2.8.9 (Using the norm in Newton’s method). Suppose we

“Mat” of course stands for . 2_| 8 1 .
“matrix"; Mat (2,2) is the space want to find a 2 x 2 matrix A such that A% = [_1 10l So we define F :
of 2 x 2 matrices. Mat (2,2) — Mat (2.2) by

_ae_[ 81
You might think that some- Fla)y=4 [—l 10] ! 28.19
S 31
thing like [_l 3] would be even  and try to solve it by Newton’s method. First we choose an initial point Ag. A
better, but squaring that gives logical place to start would seem to be the matrix
8 6

6 sl In addition, starting
with a diagonal matrix makes our
computations easier.

_13 0 2_1[9 0
Ag = [0 3] , Sothat Aj= [0 9] . 2.8.20
We want to see whether the Kantorovitch inequality 2.7.48 is satisfied, i.e., that

IF(40)]- MIIDF(40)) ™' < 5. 28.21

You may recognize the AB +  First, compute the derivative:
BA in Equation 2.8.22 from Equa- ’ pute the derlvative:
tion 1.7.45, Example 1.7.15. [DF(A))B = AB + BA. 2.8.22

The following computation shows that A s [DF(A)] is Lipschitz with re-
spect to the norm. with Lipschitz ratio 2 on all of Mat (2, 2):

IIDF(40)] - DF(42)} = sup |(iDF(A)] - [DF(42)]) B
= ”s;'xfl |A1B + BA, — A;B ~ BA,y| = IZ?EI |(Ay — A2)B + B(A; — A)|
< S [(A1 — A2)B| + |B(A: - Az)| < Sup, |Ay = A2||B| + | B||A; - Aq|
< !Z‘IIEI 2|B||A; — Az| = 2|4, ~ A, 2.8.23
Now we insert A, into Equation 2.8.19, getting
F(Ao) = [g g] - [_f 1‘0] = [i ::] 2824

so that [F(4o)| = VA =2.



Trying to solve Equation 2.8.19
without Newton's method would
be unpleasant. In a draft of this
book we proposed a different ex-
ample, finding a 2 x 2 matrix 4
such that

2 11
Ay A= [] 1] .
A friend pointed out that this
problem can be solved explicitly
(and more easily) without New-
ton’s method, as Exercise 2.8.5
asks you to do.
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Now we need to compute ||[[DF(Ag)|~"||2. Using Equation 2.8.22 and the
fact that Ap is three times the identity, we get

[DF(A)|B = AoB + BAo = 3B + 3B = 6B. 28.25
So we have
-1 B
DF(4))™'B = 5.
B
IDF(Al = sup 1B/6 = sup D1 =176, 2826
1B|=1 |B|=1

1
—y2 _ 2
IDF(A0)) I = 35
The left-hand side of Equation 2.8.21 is 2 - 2- 1/36 = 1/9, and we see that

. 0
the inequality is satisfied with room to spare: if we start at 3] and use

0
8 1
Newton's method, we can compute the square root of -1 10/

2.9 THE INVERSE AND IMPLICIT FUNCTION

The inverse and implicit func-
tion theorems are a lot harder
than the corresponding linear the-
orems, but most of the hard work
is contained in the proof of Kan-
torovitch's theorem concerning
the convergence of Newton's me-
thod.

“Implicit” means “implied.”
The statement 22 — 8 = 0 implies
that x = 4; it does not say it ex-
plicitly (directly).

THEOREMS

In Section 2.2 we completely analyzed systems of linear equations. Given
a system of nonlinear equations, what solutions do we have? What variables
depend on others? Our tools for answering these questions are the implicit
function theorein and its special case, the inverse function theorem. These two
theorems are the backbone of differential calculus, just as their linear analogs,
Theorem 2.2.4 and its special case, Theorem 2.2.5, are the backbone of linear
algebra. We will start with inverse functions, and then move to the more general
case.

Inverse functions in one dimension

An inverse function is a function that “undoes” the original function. If f(z) =
2z, clearly there is a function g(f(z)) = z, mainly, g(y) = y/2. Usually finding
an inverse isn’t so straightforward. But the basic condition for a continuous
function in one variable to have an inverse is simple: the function must be
monotone.

Definition 2.9.1 (Monotone function). A function is monotone if its
graph always goes up or always goes down: if z < y always implies f(z) <
f(y), the function is monotone increasing; if z < y always implies f(z) >
f(y), the function is monotone decreasing.



FIGURE 2.9.1.

The function f(z) = 2z +sinz
is monotone increasing; it has an
inverse function g(2z + sinx) = z,
but finding it requires solving the
equation 2z +sinz = y, with z the
unknown and y known. This can
be done, but it requires an approx-
imation technique; you can't find
a formula for the solution using al-
gebra, trigonometry or even more
advanced techniques.

Part (c) justifies the use of im-
plicit differentiation: such state-
ments as
1

st
arcsin’(z) = ——.
@ 1-z2
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If a function f that expresses z in terms of y is monotone, then its inverse
function g exists expressing y in terms of z. In addition you can find g(y) by a
series of guesses that converge to the solution, and knowing the derivative of f
tells you how to compute the derivative of g.

More precisely:

Theorem 2.9.2 (Inverse function theorem in one dimension). Let
f : [a,b] = [c, d] be a continuous function with f(a) = c , f(b) = d and with
f increasing (or decreasing) on [a,b] . Then:

(a) There exists a unique continuous function g : [¢,d] — [a,b] such that

f(9(y)) =y, forally € [¢,d], and 29.1
9(f(z)) = z, for all z € [a, ). 2.9.2

(b) You can find g(y) by solving the equation y — f(z) = 0 for z by bisection
(described below).

(c) If f is differentiable at z € (a,b), and f'(z) # 0, then g is differentiable
at f(z), and its derivative satisfies ¢’(f(z)) = 1/f'(z) .

You are asked to prove Theorem 2.9.2 in Exercise 2.9.1.

Example 2.9.3 (An inverse function in one dimension). Take f(z) =
2z +sin z, shown in Figure 2.9.1, and choose la, b] = [k, kn] for some positive
integer k . Then

f(a) = f(~km) = ~2kn + sin(—kn) and f(b) = f(km) = 2kn + sin(kn); 2.9.3

e —

ie., f(a) = 2a and f(b) = 2b, and since f'(z) = 2 + cosz, which is > 1, we
see that f is strictly increasing. Thus Theorem 2.9.2 says that y = 2z +sinz
expresses z implicitly as a function of y for y € [~2kn, 2kmn]: there is a function
9 ¢ [~2km, 2kx) — [—km, kx] such that 9(f(z)) = 9(2z +sinz) = z.

But if you take a hardnosed attitude and say, “Okay, so what is g(1)?", you
will see that this question is not so easy to answer. The equation 1 = 2z+sinz,
is not a particularly hard equation to “solve,” but you can’t find a formula for
the solution using algebra, trigonometry or even more advanced techniques.
Instead you must apply some approximation technique. A

In several variables the approximation technique we will use is Newton'’s
method; in one dimension, we can use bisection. Suppose you want to solve
f(z) =y, and you know a and b such that f(a) <y and f(b) > y. First try the
Z in the middle of [a,b], computing f(2§2). If the answer is too small, try the
midpoint of the right half-interval; if the answer is too big, try the midpoint of
the left half-interval. Next choose the midpoint of the quarter-interval to the



D

FIGURE 2.9.2.

The function graphed above is
not monotone and has no global
inverse; the same value of y gives
both z = B and z = C. Similarly,
the same value of y gives ¢ = A
and z = D. But it has many local
inverses; the arc AB and the arc
CD both represent z as a function
of y.

The inverse function theorem is
really the “local” inverse function
theorem, carefully specifying the
domain and the image of the in-
verse function.

As in Section 1.7, we are using
the derivative to linearize a non-
linear problem.

Fortunately, proving this con-
structivist version of the inverse
function theorem is no harder than
proving the standard version
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right (if your answer was too small) or to the left (if your answer was too big).
The sequence of ,, chosen this way will converge to g9(y)-

Note, as shown in Figure 2.9.2, that if a function is not monotone, we cannot
expect to find a global inverse function, but there will usually be monotone
stretches of the function for which local inverse functions exist.

Inverse functions in higher dimensions

In one dimension, monotonicity of a function is a sufficient (and necessary)
criterion for an inverse function to exist, and bisection can be used to solve the
equations. The point of the inverse function theorem is to show that inverse
functions exist in higher dimensions, even though monotonicity and bisection
do not generalize. In higher dimensions, we can’t speak of a mapping always
increasing or always decreasing. The requirement of monotonicity is replaced
by the requirement that the derivative of the mapping be invertible. Bisection
is replaced by Newton’s method. The theorem is a great deal harder in higher
dimensions, and you should not expect to breeze through it.

The inverse function theorem deals with the case where we have as many
equations as unknowns: f maps U to W, where U and W are both subsets of
R”. By definition, f is invertible if the equation f(x) = y has a unique solution
xeUforeveryye W.

But generally we must be satisfied with asking, if f(xo) = yo, in what neigh-
borhood of yo does there exist a local inverse? The name “inverse function
theorem” is somewhat misleading. We said in Definition 1.3.3 that a transfor-
mation has an inverse if it is both onto and one to one. Such an inverse is
global. Very often a mapping will not have a global inverse but it will have a
local inverse (or several local inverses): there will be a neighborhood V C W of
Yo and a mapping g : V — U such that (fog)(y) =y forally e V.

The statement of Theorem 2.9.4 is involved. The key message to retain is:
If the derivative is invertible, the mapping is locally invertible.

More precisely:

If the derivative of a mapping f is invertible at some point xo, the mapping
is locally invertible in some neighborhood of the point f(xo)

All the rest is spelling out just what we mean by “locally” and “nelghbor-
hood.” The standard statement of the inverse function theorem doesn’t spell
that out; it guarantees the existence of an inverse, in the abstract: the theorem
is shorter, but also less useful. If you ever want to use Newton’s method to
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compute an inverse function, you’ll need to know in what neighborhood such a
function exists.??

We saw an example of local
vs. global inverses in Figure 2.9.2;
another example is f(z) = z°.
First, any inverse function of f can
only be defined on the image of
£, the positive real numbers. Sec-
ond, there are two such “inverses,”
9a(y) = +/7 and 92() = -7,
and they both satisfy f(g(y)) =
¥, but they do not satisfy

9(/ (x)) =z.

However, g1 i8 an inverse if the
domain of f is restricted to z > 0,
and g is an inverse if the domain
of f is restricted to z < 0.

The statement “suppose that

Theorem 2.9.4 (The inverse function theorem). Let W CR™ be an
open neighborhood of xo, and f : W — R™ be a continuously differentiable
function. Set yo = f(Xo), and suppose that the derivative L = [Df(xo)] is
invertible.

Let R > 0 be a number satisfying the following hypotheses:

(1) The ball Wy of radius 2R|L | and centered at x, is contained in W.

(2) In Wy, the derivative satisfies the Lipschitz condition

Lipechits ratio
P S——y

IIDE()] - AW < grz=rs Iu-VI-

There then exists a unique continuously differentiable mapping g from the
ball of radius R centered at yo (which we will denote V') to the ball Wp:

such that 2.9.5

294

g:v_’WO’

f(g(y)) =y and [Dg(y)] = [DE(&(y)) " 2.9.6

the derivative L = [Df(xo)] is
invertible” is the key condition of
the theorem. Moreover, the image of g contains the ball of radius R; around xo, where

Ry = 2R|L'P ( |L? + 1 ILI) . 2.9.7

We could write f(g(y)) = y as IL-TP

the composition

(fog)(y) =y.

On first reading, skip the last
sentence concerning the little ball
with radius Ri, centered at xo.
It is a minor point, and we will
discuss it later. Do notice that we
have two main balls, Wy centered
at xo and V centered at yo =
f(xo), as shown in Figure 2.9.3.

The theorem tells us that if certain conditions are satisfied, then f has a
local inverse function g. The function f maps every point in the lumpy-shaped
region g(V') to a point in V, and the inverse function g will undo that mapping,
sending every point in V to a point in g(V').

Note that not every point f(x) is in the domain of g; as shown in Figure
2.9.3, f maps some points in W to points outside of V.. For this reason we had .
to write f(g(y)) =y in Equation 2.9.6, rather than g(f(x)) = x. In addition,
the function f may map more than one point to the same point in V, but only
one can come from Wy (and any point from Wy must come from the subset
g(V)). But g maps a point in V to only one point. (Indeed, if g mapped the
same point in V' to more than one point, then g would not be a well-defined

The ball V gives a lower bound
for the domain of g; the actual
domain may be bigger.

2*But once your exams are over, you can safely forget the details of how to compute
that neighborhood, as long as you remember (1) if the derivative is invertible, the
mapping is locally invertible, and (2) that you can look up statements that spell out
what “locally” means.
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mapping, as discussed in Section 1.3.) Moreover, that point is in Wo. This may
appear obvious from Figure 2.9.3; after all, g(V) is the image of g and we can
see that g(V') is in Wy. But the picture is illustrating what we have to prove,
not what is given; the punch line of the theorem is preclsely that “ ... then
there exists a unique continuously differentiable mapping from ... V to the ball

Wo."

BR,"‘G’ -

FIGURE 2.9.3. The function f : W — R™ maps every point in g(V) to a point in
V; in particular, it sends x5 to yo. Its inverse function g : V — Wj sends every point
in V to a point in g(V'). Note that f can well map other points outside Wy into V.

Do you still remember the main point of the theorem? Where is the mapping

LAY Ty
f ( y ) - (:1;2 -y )
guaranteed by the inverse function theorem to be locally invertible?24

24You're not being asked to spell out how big a neighborhood “locally” refers to, so
you can forget about R, V', etc. R ber, if the derivative of a mapping is invertible,
the mapping is locally invertible. The derivative is

PGl = (2 &)

The formula for the inverse of a 2:x 2 matrix

fae 8] . ,a_ 1 [ d -b
-[c d]mA " ad-bc|—c a]‘

and here ad — be = —2(z? + y?), which is 0 only if z = 0 and y = 0. The function

is locally invertible near every point except f ( ;) = (8) To determine whether

a larger matrix is invertible, use Theorem 2.3.2. Exercise 1.4.12 shows that a 3 x 3
matrices is invertible if its determinant is not 0.
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FIGURE 2.9.4.

The graph of “best Lipschitz
constant” Mp for [Df] on the ball
of radius 2R|L™!| increases with
R, and the function

1

2R|L-1|2
decreases. The inverse function
theorem only guarantees an in-
verse on a neighborhood V of ra-
dius R when

1

m<Mﬁ.

The main difficulty in apply-
ing these principles is that Mg
is usually very hard to compute,
and |L™!|, although usually easier,
may be unpleasant too.
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In emphasizing the “main point” we don’t mean to suggest that the details
are unimportant. They are crucial if you want to compute an inverse function,
since they provide an effective algorithm for computing the inverse: Newton’s
method. This requires knowing a lower bound for the natural domain of the
inverse: where it is defined. To come to terms with the details, it may help to
imagine different quantities as being big or little, and see how that affects the
statement. First, in an ideal situation, would we want R to be big or little?
We'd like it to be big, because then V will be big (remember R is the radius
of V) and that will mean that the inverse function g is defined in a bigger
neighborhood. What might keep R from being big? First, look at condition (1)
of the theorem. We need Wy to be in W, the domain of f. Since the radius of
Wo is 2R|L™Y|, if R is too big, Wy may no longer fit in W.

That constraint is pretty clear. Condition (2) of the theorem is more delicate.
Suppose that on W the derivative [Df(x)] is locally Lipschitz. It will then be
Lipschitz on each Wy C W, but with a best Lipschitz constant Mg which starts
out at some probably non-zero value when Wj is just a point (i.e., when R = 0),
and gets bigger and bigger as R increases (it’s harder to satisfy a Lipschitz
ratio over a large area than a small one). On the other hand, the quantity
1/(2R|L™|?) starts at infinity when R = 0, and decreases as R increases (see
Figure 2.9.4). So Inequality 2.9.4 will be satisfied when R is small; but usually
the graphs of Mg and 1/(2R|L~"|?) will cross for some Rp, and the inverse
function theorem does not guarantee the existence of an inverse in any V with
radius larger than R,.

The conditions imposed on R may look complicated; do we need to worry
that maybe no suitable R exists? The answer is no. If f is differentiable, and
the derivative is Lipschitz (with any Lipschitz ratio) in some neighborhood of
Xo, then the function Mg exists, so the hypotheses on R will be satisfied as
soon as R < Ryp. Thus a differentiable map with Lipschitz derivative has a local
inverse near any point where the derivative is invertible: if L—! exists, we can
find an R that works.

Do we really have to check that the derivative of a function is Lipschitz?
The answer is no: as we will see in Corollary 2.7.8, if the second partial
derivatives of f are continuous, then the derivative is automatically Lipschitz
in some neighborhood of xo. Often this is enough.

Remark. The standard statement of the inverse function theorem, which
guarantees the existence of an inverse function in the abstract, doesn’t require
the derivative to be Lipschitz, Jjust continuous.?® Because we want a lower

**Requiring that tbe derivative be continuous is necessary, as you can see by looking
at Example 1.9.3, in which we described a function whose partial derivatives are not
continuous at the origin; see Exercise 2.9.2
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Newton's method applied to the
equation fy(x) = 0 starting at xo
converges to a root in Up. Kan-
torovitch’s theorem tells us this is
the unique root in Up; the inverse
function theorem tells us that it is
the unique root in all of Wj.

We get the first equality in
Equation 2.9.10 by plugging in ap-
propriate values to the definition
of ho given in the statement of
Kantorovitch’s theorem (Equation
2.7.46):

ho = —[Df(a0)] ™ f(a0).

Recall that in Equation 2.9.10
we write ho(y) rather than ho be-
cause our problem depends on y:
we are solving f, = 0.
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bound for R (to know how big V is), we must impose some condition about how
the derivative is continuous. We chose the Lipschitz condition because we want
to use Newton’s method to compute the inverse function, and Kantorovitch’s

theorem requires the Lipschitz condition.

Proof of the inverse function theorem

We show below that if the conditions of the inverse function theorem are sat-
isfied, then Kantorovitch’s theorem applies, and Newton’s method can be used

to find the inverse function. .
Given y € V, we want to find x such that f(x) = y. Since we wish to use

Newton’s method, we will restate the problem: Define
fy(x) E () =y =0.
We wish to solve the equation fy(x) = 0 for y € V, using Newton’s method
with initial point xo.
We will use the notation of Theorem 2.7.11, but since the problem depends
on y, we will write ho(y), Up(y), etc. Note that

298

[Dfy(xo)] = [Df(x0)] = L, and fy(xo) =f(Xo) -y =yo—-y,  29.9
-
=Yo
so that
ho(y) = - [Dfy (x0)) ™ £y (%0) = =L~ (yo ~ y). 2.9.10
N et

L

This implies that |hg(y)| < [L~Y|R, since yyq is the center of V, y is in V,
and the radius of V is R, giving |y, —y| <_R. Now we compute x, = xo+ﬁo(y)
(as in Equation 2.7.46, where a, = ay + hy). Since lﬁo(y)l is at most half the
radius of Wy (i.e., half 2R|L~!|), we see that Up(y) (the ball of radius [ho(y)|
centered at x;) is contained in W, as suggested by Figure 2.9.5.

Now we see that the Kantorovitch inequality (Equation 2.7.48) is satisfied:

I 1
£y (x0)| |[Df(x0)) !> M < N — ==
(o)l DK P M S R o =50 20
lyo—-yI<R L=z ———

M

Thus Newton’s method applied to the equation fy(x) = 0 starting at X
converges; denote the limit by g(y). Certainly on V, f o g is the identity: as
we have just shown, f(g(y)) =y. O

We now have our inverse function €- A complete proof requires showing that
€ is continuously differentiable. This is shown in Appendix A 4.

Example 2.9.5 (Where is f invertible?). Where is the function



F1GURE 2.9.6.

Top: The square —.6 < z <
.6,-2.2 < y < 1. Bottom: Its im-
age under the mapping f of Ex-
ample 2.9.5. Note that the square
is folded over itself along the line
T +y = —m/2 (the line from B to
D); f is not invertible in the neigh-
borhood of the square.
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£(2)= ( sin(z + y)) 29.12

v 22 —y?
locally invertible? The derivative is

[Df( 2 )] = [COS(;z+ v COS(_-‘;;- v ) 2.9.13

which is invertible if —2y cos(z +y) ~ 2z cos(z+y) # 0. (Remember the formula
for the inverse of a 2 x 2 matrix.2%) So f is locally invertible at all points f (zg)
that satisfy —y # z and cos(z + y) #0 (ie, z+y #n/2+kn). A

Remark. We strongly recommend using a computer to understand the map-
ping f : R2 — R? of Example 2.9.5and, nore generally, any mapping from R? to
R2. (One thing we can say without a computer’s help is that the first coordinate
of every point in the image of f cannot be bigger than 1 or less than -1, since
the sine function oscillates between —1 and 1. So if we graph the image using
x,y coordinates, it will be contained in a band between z = ~1 and z = 1.)
Figures 2.9.6 and 2.9.7 show just two examples of regions of the domain of f
and the corresponding region of the image. Figure 2.9.6 shows a region of the
image that is folded over; in that region the function has no inverse. A

FIGURE 2.9.7. The function f of Example 2.9.5 maps the region at left to the region
at right. In this region, f is invertible.

Example 2.9.6. Let C) be the circle of radius 3 centered at the origin in R2,
and C; be the circle of radius 1 centered at (lé)) What is the loci of centers
of line segments drawn from a point of C) to a point of Cp?

26[0 b] l= 1 d -b
c d ad—bc|-c a]’




It follows from the formula for
the inverse of a 2 x 2 matrix that
the matrix is not invertible if its
determinant is 0; Exercise 1.4.12
shows that the same is true of
3 x 3 matrices. Theorem 4.8.6
generalizes this to n X n matrices.

Does Example 2.9.6 seem arti-
ficial? It’s not. Problems like this
come up all the time in robotics;
the question of knowing where a
robot arm can reach is a question
just like this.

We say “guaranteed to exist”
because the actual domain of the
inverse function may be larger
than the ball V.
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The center of the segment joining

(ggﬁfg) €eC to (cossﬁ];m) cC

2.9.14

is the point

F(9)=%(3COSO+COS¢+10). 2915

7] 3sinf +siny

We want to find the image of F. A point (g) where [DF (g)] is invertible
will certainly be in the interior of the image (since points in the neighborhood

of that point are also in the image), so the candidates to be in the boundary of
the image are those points F (g) where [DF (g)] is not invertible. Since

det[DF(8)] = :lldet ["35“‘0

@ 3cos 2.9.16

—sing
cos

= _—i-(sinacosw — cosfsinyp) = —_—z sin(8 — ),

which vanishes when 6 = ¢ and when 8 = ¢ +m, we see that the candidates for
the boundary of the image are the points

F(5)=(53°) nd Fodn)=("5n5°):

i.e., the circles of radius 2 and 1 centered at p = (g) The only regions whose
boundaries are subsets of these sets are the whole disk of radius 2 and the
annular region between the two circles. We claim that the image of F is the

2.9.17

annular region, since the symmetric of C; with respect to p is the circle of
radius 1 centered at the origin, which does not intersect C), so p is not in the
image of F. A

Example 2.9.7 (Quantifying “locally”). Now let's return to the function
f of Example 2.9.5; let’s choose a point xo where the derivative is invertible and
see in how big a neighborhood of f(x¢) an inverse function is guaranteed to exist.
We know from Example 2.9.5 that the derivative is invertible at xo = (0)

™
_1]
, SO

This gives L = [Df(?r)] = [-(l) —or

- 1 =20 1 -
Ll:ﬁ[ 0 —1]*‘“‘d|L =

4n? +2

e 2.9.18



For the first inequality of Equa-
tion 2.9.19, remember that

|cosa — cosb| < |a - b],
and set a = ui+uz and b = vy +vs.

In going from the first square
root to the sccond, we use

(a+b)% < 2(a® + %),

settinga = w1 —v; and b = uz —vz.

Since the domain W of f is
R2, the value of R in Equation
2.9.20 clearly satisfies the require-
ment that the ball Wy with radius
2R|L7}) bein W.
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Next we need to compute the Lipschitz ratio M (Equation 2.9.23). We have

|[Df(u)] - (DE(V)]|

cos(u; + ug) — cos(vy + v2) cos(uy + uz) — cos(vy + 02)]
[ 2(uy —v1) 2(v2 —n1)

Uy +uz—v1—v2 U +uz—v —'vz}
2(uy —v1) 2(vz — u2)

= V2((u1 ~ ) + (w2 = v2)” +4((w1 — 012 + (w2 — 02)?)

= \/4((141 —v1)2 + (u2 — v2)2) + 4((u1 — 1) + (v2 — v2)?)

= VBlu-v|. 2.9.19
Our Lipschitz ratio M is thus v/8 = 2v/2, allowing us to compute R:
1 47?
— 1 23 so R=—2"  ~016825. 2920
2RI V2, s 42 (4n? + 2)

The minimum domain V of our inverse function is a ball with radius = 0.17.
What does this say about actually computing an inverse? For example, since

£(9) = (), and (_33) is within .17 0f ( _92),
then the inverse function theorem tells us that by using Newton’s method we
can solve for x the equation f(x) = ( _(i& ) A

The implicit function theorem

We have seen that the inverse function theorem deals with the case where we
have n equations in n unknowns. Forgetting the detail, it says that if U c R"
is open, f : U — R" is differentiable, f(xy) = yo and [Df(xo)] is invertible,
then there exists a neighborhood V of y, and an inverse function g : V — R"®

with g(yo) = xo, and fog(y) = y. Near ( ;‘; ), the equation f(x) = y (or
equivalently, f(x) — y = 0) expresses x implicitly as a function of y.
Stated this way, there is no reason why the dimensions of the variables x and

y should be the same.

Example 2.9.8 (Three variables, one equation). The equation z2 + y2 +
0

22 —1 = 0 expresses z as an implicit function of ( ;) near | 0 |. This implicit
1

v1—-22 - 42; you can solve for z as a

function can be made explicit: z =
functionof z andy. A



Recall that C* nieans continu-
ously differentiable: differentiable
with continuous derivative. We
saw (Theorem 1.9.5) that this is
equivalent to requiring that all
the partial derivatives be contin-
uous. As in the case of the in-
verse function theorem, Theorem
2.9.9 would not be true if we did
not require [DF(x)] to be contin-
uous with respect to x. Exercise
2.9.2 shows what goes wrong in
that case. But such functions are
pathological; in practice you are
unlikely to run into any.

Theorem 2.9.9 is true as stated,

but the proof we give requires that
the derivative be Lipschitz.
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More generally, if we have n equations in n + m variables, we can think of
m variables as “known,” leaving n equations in the n “unknown” variables,
and try to solve them. If a solution exists, then we will have expressed the n
unknown variables in terms of the m known variables. In this case, the original
equation expresses the n unknown variables implicitly in terms of the others.

If all we want to know is that an implicit function exists on some unspecified
neighborhood, then we can streamline the statement of the implicit function
theorem; the important question to ask is,“is the derivative onto?”"

Theorem 2.9.9 (Stripped-down version of the implicit function the-
orem). Let U be an open subset of R**™. Let F : U — R™ be a C! mapping
such that F(c) = 0, and such that its derivative, the linear transformation
[DF(c)), is onto. Then the system of linear equations [DF(c)}(x) = O has
n pivotal variables and m non-pivotal variables, and there exists a neighbor-
hood of ¢ for which F = 0 implicitly defines the n pivotal variables in terms
of the m non-pivotal variables.

The implicit function theorem thus says that locally, the mapping behaves
like its derivative—i.e., like its linearization. Since F goes from a subset of
R™*™ to R™, its derivative goes from R™™ to R™. The derivative [DF(c)]
being onto means that it spans R™. Therefore [DF(c)| has n pivotal columns
and m non-pivotal columns. We are then in the case (2b) of Theorem 2.2.4;
we can choose freely the values of the m non-pivotal variables; those values will
determine the values of the n pivotal variables. The theorcm says that locally,
what is true of the derivative of F is true of F.

The full statement of the implicit function theorem

In Sections 3.1 and 3.2, we will see that the stripped-down version of the implicit
function theorem is enough to tell us when an equation defines a smooth curve,
surface or higher dimensional analog. But in these days of computations, we
often need to compute implicit functions; for those, having a precise bound on
the domain is essential. For this we need the full statement.

Note that in the long version of the theorem, we replace the condition that
the derivative be continuous by a more demanding condition, requiring that the
derivative be Lipschitz. Both conditions are ways of ensuring that the derivative
not change too quickly. In exchange for the more demanding hypothesis, we
get an explicit domain for the implicit function.

The theorem is long and involved, so we'll give some commentary.



The assumption that we are
trying to express the first n vari-
ables in terms of the last m is a
convenience; in practice the ques-
tion of what to express in terms of
what will depend on the context.

We represent by a the first n
coordinates of ¢ and by b the last
m coordinates. For example, if
n=2and m = |, the point ¢ € R*
1

might be (0) . with a = ([1]) €
2

R andb=2€R.

If it isn’t clear why L is invert-
ible, see Exercise 2.3.6.

The 0 stands for the m x n zero
matrix; I'r, is the m x m identity
matrix. So L is (n+m) x (n+m).
If it weren’t square, it would not
be invertible.

Equation 2.9.25, which tells us
how to compute the derivative of
an implicit function, is important;
we will use it often. What would
we do with an implicit function if
we didn’t know how to differentiate
it?
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First line, through the line immediately following Equation 2.9.21: Not only is
[DF(c)] is onto, but also the first n columns of [DF(c)] are pivotal. (Since
F goes from a subset of R"+™ to K", so does [DF(c)]. Since the matrix of
Equation 2.9.21, formed by the first n columns of that matrix, is invertible, the
first n columns of {DF(c)] are linearly independent, i.e., pivotal, and [DF(c)]
is onto.)

The next sentence: We need the matrix L to be invertible because we will use
its inverse in the Lipschitz condition.

Definition of W,: Here we get precise about neighborhoods.

Equation 2.9.23: This Lipschitz condition replaces the requirement in the
stripped-down version that the derivative be continuous.

Equation 2.9.24: Here we define the implicit function g.

Theorem 2.9.10 (The implicit function theorem). Let W be an open
neighborhood of ¢ = () € R™*™, and F : W — R™ be differentiable, with
F(c) = 0. Suppose that the n x n matrix :
[DyF(c),..., D,F(c)), 2.9.21
representing the first n columns of the derivative of F, is invertible.
Then the following matrix, which we denote L, is invertible also:

[D1F(c), 0 yDpF(c)] [Dps1F(c),..., D,,.F(c)]] ) 2.9.22

m

Let Wy = BgmL—!l(C) C R™™ be the ball of radius 2R|L~| centered at
c. Suppose that R > 0 satisfies the following hypotheses:

(1) It is small enough so that Wy C W.
(2) In Wy, the derivative satisfies the Lipscbitz condition

|IDF(w) - [DF())| < o L s - v 2.9.23

Then there exists a unique continuously differentiable mapping

g: Br(b) - Bygyy-1(a) such that F (sg,v)) =0 forally € Bg(b),
2.9.24
and the derivative of the implicit function g at b is

[Dg(b)] = ~[D\F(c), .., DnF(c)) " [Dp41F(c),... s DnymF(c)). 2.9.25

partial denv. for partial de.rlv. for
pivotal variables non-pivotal variables




Since the range of F is R",
saying that [DF(c)] is onto is the
same as saying that it has rank
n. Many authors state the implicit
function theorem in terms of the
rank.

The inverse function theorem
is the special case of the implicit
function theorem where we have
2n variables: the unknown n-
dimensional variable x and the
known n-dimensional variable y,
and where our original equation is
f(x) — y = 0; it is the case where
we can separate out the y from

x
F ( x ) ‘

There is a sneaky way of mak-
ing the implicit function theorem
be a special case of the inverse

function theorem; we use this in
our proof.

Equation 2.9.28: In the lower
right-hand corner of L we have the
number 1, not the identity matrix
I ; our function F goes from R? to
R,son=m =1, and the 1 x 1
identity matrix is the number 1.
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Summary. We assume that we have an n-dimensional (unknown) variable
x, an m-dimensional (known) variable y, an equation F : R"+™ — R", and a

point (ﬁ) such that F (g) = 0. We ask whether the equation F (;) =0

expresses x implicitly in terms of y near (la)) The implicit function theorem
asserts that this is true if the linearized equation

[oe(2)] [v] -

expresses u implicitly in terms of v, which we know is true if the first n columns
of [DF(g)] are linearly independent. A
The theorem is proved in Appendix A.5.

2.9.26

Example 2.9.11 (The unit circle and the implicit function theorem).
The unit circle is the set of points ¢ = (z) such that F(c) = 0 when F is the

function F (;) =22 + y? — 1. The function is differentiable, with derivative

DF (§) =20, 2. 2.9.27

In this case, the matrix of Equation 2.9.21 is the 1 x | matrix [2a], so requiring
it to be invertible simply means requiring a # 0.

Therefore, if a # 0, the stripped-down version guarantees that in some neigh-
borhood of (g), the equation z2 + y2 — 1 = 0 implicitly expresses z as a func-

tion of y. (Similarly, if b # 0, then in some neighborhood of (g) the equation

22 + y2 — 1 = 0 expresses implicitly y as a function of z.)
Let's see what the strong version of the implicit function theorem says about
the domain of this implicit function.

The matrix L of Equation 2.9.22 is

_[2a 2b a_ 11 -2»
L—[o l]’ and L =5 [0 2a]' 2.9.28
So we have
1 V5
L7 ===V1+4a2 + 462 = —. 9.
1IL77) %a] +4a% + 2] 2.9.29
The derivative of F is Lipschitz with Lipschitz ratio 2:
u) — v = _ -
I[Df(uz )] [DF(vz )” = (21 = 201, 2uz = 203 2.9.30

= 2”111 -V, U2 — 02" < 2|u - V[,

so (by Equation 2.9.23) we can satisfy condition (2) by choosing an R such that



Equation 2.9.31: Note the way
the radius R of the interval around
b shrinks, without ever disappear-
ing, as a — 0. At the point

:l:(l)) , the equation

2t 4 yz -1=0
does not express z in terms of y,

but it does express z in terms of y
when a is arbitrarily close to 0.

Of course there are two possible
z’8. One will be found by starting
Newton’s method at a, the other
by starting at —a.

In Equation 2.9.33 we write
1/D)F rather than (D1F)~' be-
cause D) F is a @ x 1 matrix.
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1 1 a?
=— e = =% 2.9.31
=smrp e REqpE T
We then see that W, is the ball of radius
2
2a® V5 |af 2.9.32

since W is all of R?, condition (1) is satisfied.
Therefore, for all (g) when a # 0, the equation z2 + y? — 1 = 0 expresses

z (in the interval of radius |a|/v/5 around a) as a function of y (in the interval
of radius a?/5 around b).

Of course we don’t need the implicit function theorem to understand the unit
circle; we already knew that we could write x = /1 — y2. But let’s pretend
we don’t, and go further. The implicit function theorem says that if we know
that a point (‘b') is a root of the equation z2+y2—1 = 0, then for any y within

a?/5 of b, we can find the corresponding z by starting with the guess zp = a
and applying Newton's method, iterating

F(%n 2 9
-1
z,,+|=a:,.——(y) =:c,.—£"++. JAN 2.9.33
n

z
DiF ( y")
Example 2.9.12 (An implicit function in several variables). In what
neighborhood of (8 ) do the equations

z’—y =a
y2-z=b 2.9.34
22—z =0

T 0
determine { y | as an implicit function g (g), with g ( 8) = (0) ? Here,
z 1]

n =3, m = 2; the relevant function is F : R® — RR3, given by

z2-y—-a
=fy-2-b}];
22—z

2z -1 0 -1 o0
=l 0 2 -1 o0 -1|, 2036

2.9.35

the derivative of F is |Df
-1 0 2z 0 0

TONRE g nw oy
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and M = 2 is a global Lipschitz constant for this derivative:

2z, -1 0o -1 0 2z, -1 0o -1 0
0 2y -1 0 ~1|- 0 2y, -1 0 -1

-1 0 22z 0 O -1 0 222 0 O

I T2
%N Y2
=2V/(@1-22)2 + (—-w)? + (-2 < 2| &1 |- 2 ||- 2.9.37
a) a2
b b2
Setting £ = y = z = 0 and adding the appropriate two bottom lines, we find
that
0 -1 o][-1 O 0o 0 -1 0 O
0o 0 -1 0 -1 -1 0 0 -1 0
L= [—1 0 0] 0o o0f|, L'=| 0 -1 0 0 -1
0o 0 O 1 0 0o 0 o0 1 o
[ 0 0 0] 0 l] 0o 0 0 o0 1
2.9.38

Since the function F is defined on all of R®, the first restriction on R is
vacuous. The second restriction requires that

1 1
—_— > < = 9.
WLOE 2 e R 2.9.39

The (g) of this discussion is  TDUS We can be sure that for any (g) in the ball of radius 1/28 around the
the y of Equation 2.9.24, and the origin (i.e., satisfying VaZ+b? < 1/28), there will be a unique solution to
origin here is the b of that equa- Equation 2.9.34 with
z
()
z

tion.
2V7 1
2.10 EXERCISES FOR CHAPTER TwoO

< —=—. 2.9.4
<958 =3/ 9.40

Exercises for Section 2.1: 2.1.1 (a) Write the following system of linear equations as the multiplication
Row Reduction of a matrix by a vector, using the format of Exercise 1.2.2.

3z+y—42=0
u+z=4
z-3y=1

(b) Write the same system as a single matrix, using the shorthand notation
discussed in Section 2.1.



In Exercise 2.1.9 we use the fol-
lowing rules: a single addition,
multiplication, or division has unit
cost; administration (i.e., relabel-
ing entries when switching rows,
and comparisons) is free.
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(c) Write the following system of equations as a single matrix:
Ty —Tr2+2z3= 1
) —3r= 2
2z, — 2z, = —1.

2.1.2 Write each of the following systems of equations as a single matrix:

y—2=0 2z + 3z —ax3= 1
(a) -2z+y+22=0; (b) 2z +a3= 2
r—-52=0 11—2113=-1.

2.1.3 Show that the row operation that consists of exchanging two rows is
not necessary; one can exchange rows using the other two row operations: (1)
multiplying a row by a nonzero number, and (2) adding a multiple of a row
onto another row.

2.1.4 Show that any row operation can be undone by another row operation.
Note the importance of the word “nonzero” in the algorithm for row reduction.

2.1.5 For each of the four matrices in Example 2.1.7, find (and label) row
operations that will bring them to echelon form.

2.1.6 Show that if A is square, and A is what you get after row reducing A
to echelon form, then either A is the identity, or the last row is a row of zeroes.

2.1.7 Bring the following matrices to echelon form, using row operations.

L 2 3 1 -1 1 1 2 3 5
(a) [4 5 e] ®|-1 0o 2| ©[2 3 0o -1
-1 1 1 01 2 3
1 3 -1 4 1 1 1 1
@l 2 1 2] @2 -3 3 3
37 1 9 1 -4 2 2

2.1.8 For Example 2.1.10, analyze precisely where the troublesome errors
occur.

2.1.9 _In this exercise, we will estimate how expensive it is to solve a system
AX = b of n equations in n unknowns, assuming that there is a unique solution,
i.e., that A row reduces to the identity. In particular, we will see that partial
row reduction and back substitution (to be defined below) is roughly a third
cheaper than full row reduction.

In the first part, we will show tLlat the number of operations required to row
reduce the augmented matrix {A|b] is

R(n) = n® +n?%/2 - n/2.



Hint: There will be n — k +
1 divisions, (n — 1)(n — k£ + 1)
multiplications and (n—1)}{(n—k+
1) additions.

1 » = * E,
0 1 = * b
000 1 bn

Exercises for Section 2.2:

Solving Equations
with Row Reduction
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(a) Compute R(1), R(2), and show that this formula is correct when n = 1
and 2.

(b) Suppose that columns 1....,k — 1 each contain a pivotal 1, and that
all other entries in those columns are 0. Show that you will require another
(2n - 1)(n — k + 1) operations for the same to be true of k.

(c) Show that

N
(SIS

n
Z(zn-l)(n—k+1)=n3+1‘2~ -
k=1

Now we will consider an alternative approach, in which we will do all the steps
of row reduction, except that we do not make the entries above pivotal 1’s be
0. We end up with a matrix of the form at left, where * stands for terms which
are whatever they are, usually nonzero. Putting the variables back in, when
n = 3, our system of equations might be

T+2y—z2= 2

y—3z=-1

= 5, which can be solved by back substitution as follows:

z=25, y=-14+32=14, r=2-2y+2=2-2845=-21.
We will show that partial row reduction and back substitution takes
3 2

2 4 1 .
Q(n) = 3" + ™ T 1 operations.

(d) Compute Q(1), Q(2), Q(3). Show that Q(n) < R(n) when n > 3.

(e) Following the same steps as in part (b), show that the number of op-
erations needed to go from the (k — 1)th step to the kth step of partial row
reduction is (n - k + 1)(2n — 2k + 1).

(f) Show that

- 25,1, 1
dn-k+1)2n~2k+1)==n%+ 2n? - =n.
k=1 3 2 6

(g) Show that the number of operations required by back substitution is
n?—1.

(h) Compute Q(n).

2.2.1 Rewrite the system of equations in Example 2.2.3 so that y is the first
variable, z the second. Now what are the pivotal unknowns?

2.2.2 Predict whether each of the following systems of equations will have
a unique solution, no solution, or infinitely many solutions. Solve, using row



For example, for k = 2 we are
asking about the system of equa-
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operations. If your results do not confirm your predictions, can you suggest an
explanation for the discrepancy?
(a) 22+13y-3z2=-7 (b) z—-2y—122=12 (c) z+y+z2= 5

z+y= 1 2r+2y+2z= 4 z—y—z= 4

z+7z= 22 2z +3y+4z= 3 2z + 6y + 6z =12
(d) () z+2y+z—-4w+v=0
z+3y+z2= 4 T+2y—-z+2w-v=0
“r-y+z=-1 2z+4y+z-5w+v=0
2z+4y= 0 T+2y+32-10w+2v=0

2.2.3 Confirm the solution for 2.2.2 (e), without using row reduction.

2.2.4 Compose a system of (» — 1) equations in » unknowns, in which b
contains a pivotal 1.

2.2.5 On how many parameters does the family of solutions for Exercise
2.2.2(e) depend?

2.2.6 Symbolically row reduce the system of linear equations

T+y+2z=1
rT—y+az=>H
2z - bz =0.

(a) For what values of @, b does the system have a unique solution? Infinitely
many solutions? No solutions?

(b) Which of the possibilities above correspond to open subsets of the (a, b)-
plane? Closed subsets? Neither?

2.2.7 (a) Row reduce the matrix

1 -1 3 0 -2
-2 2 -6 0 4

0 2 5 -1 0

2 -6 -4 2 -4

(b) Let vi, k= 1,...5 be the columns of A. What can you say about the

systems of equations
)
[vlr'*‘rvkl = Vi4l

Tk

A=

for k=1,2,3,4.



Exercises for Section 2.3:

Inverses and
Elementary Matrices

2 13 a
A=1(1 -1 1 b

1 1 2 ¢

2 13
B=|1 -1 1
1 1 2

Matrices for Exercise 2.3.2

1 -2 4
C=]0 5 -5
3 a b

Matrix for Exercise 2.3.5

000
000

Example of a “0 matrix.”

1 -6 3
A=|2 -7 3
4 -12 5

Matrix for Exercise 2.3.7
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2.2.8 Given the system of equations
T — To— I3—-3z4+ T5=1
T+ T2 - 5r3— T4+ Tz5=2
~Z)+ 270+ 223+ 224+ 25=0
=27 + 5z — x5 + 924 + Tz5 = 3,

for what values of 3 does the system have solutions? When solutions exist, give
values of the pivotal variables in terms of the non-pivotal variables.

2.3.1 (a) Derive from Theorem 2.2.4 the fact that only square matrices can
have inverses. (b) Construct an example where AB = I, but BA # I.

2.3.2 (a) Row reduce symbolically the matrix A at left.
(b) Compute the inverse of the matrix B at left.
(c) What is the relation between the answers in parts (a) and (b)?

2.3.3 Use A™! to solve the system of Example 2.2.10.

2.3.4 Find the inverse, or show it does not exist, for each of the following
matrices:

w[y 3 ® 53] © [; 3 gJ @ (11, g]

01 2

3 2 -1 10 1 :;;1
(101 11; (|21 -1]; (g

83 9 11 -1 13 6 10

14 10 20

2.3.5 (a) For what values of a and b is the matrix C at left invertible?
(b) For those values, compute the inverse.

2.3.6 (a) Show that if A is an invertible n x n matrix, B is an invertible m xm
matrix, and C is any n x m matrix, then the (n + m) x (n + m) natrix

['3 g] ,  where 0 stands for the m x n 0 matrix, is invertible.

(b) Find a formula for the inverse.

2.3.7  For the matrix 4 at left, (a) Compute the matrix product AA.
(b) Use the result in (a) to solve the system of equations

z —-6y+32=5
2r —Ty+32=7
4z — 12y + 52 = 11.



1n both cases, remember that
the elementary matrix goes on the
left of the matrix to be multiplied.

2
1
1
1

- o Wwo

1 1
1 3
0 1
2 3

The matrix A of Exercise 2.3.10

1 3 -2
02 3
10 4

The matrix B of Exercise 2.3.11

Exercises for Section 2.4:
Linear Independence
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2.3.8 (a) Confirm that multiplying a matrix by a type 2 elementary matrix as
described in Definition 2.3.5 is equivalent to adding rows or multiples of rows.

(b) Confirm that multiplying a matrix by a type 3 elementary matrix is
equivalent to switching rows.

1 0 -1
2.3.9 (a) Predict the effect of multiplying the matrix [2 1 1| by each
01 2

of the elementary matrices, with the elementary matrix on the left.

100 100 100
) [o 3 0} 2 [0 0 1] 3) [0 1 0] .
001 010 2 01
(b) Confirm your answer by carrying out the multiplication.

(c) Redo part (a) and part (b) placing the elementary matrix on the right.
2.3.10 When A4 is the matrix at left, multiplication by what elementary ma-
trix corresponds to:

(a) Exchanging the first and second rows of A?

(b) Multiplying the fourth row of A by 3?

(c) Adding 2 times the third row of A to the first row of A?

2.3.11 (a) Predict the effect of multiplying the matrix B at left by each of
the matrices. (The matrices below will be on the left.)

1 0 -3 1 00 100
(o1 o 2) |0 2 0 3) (0 0 1
00 1 001 010
(b) Verify your prediction by carrying out the multiplication.

2.3.12 Show that column operations (Definition 2.1.11) can be achieved by
multiplication on the right by an elementary matrix of type 1,2 and 3 respec-
tively.

2.3.13 Prove Proposition 2.3.7.

2.3.14 Show that it is possible to switch rows using multiplication by only
the first two types of elementary matrices, as described in Definition 2.3.5.

2.3.15 Row reduce the matrices in Exercise 2.1.7, using elementary matrices.

2.4.1  Show that Sp (¥1,...,Vk) is a subspace of R™ and is the smallest
subspace containing V,,. .., V.

2.4.2 Show that the following two statements are equivalent to saying that a
set of vectors Vy,... ,Vy is linearly independent:



Recall that Mat (n, m) denotes
the set of n x m matrices.
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(a) The only way to write the zero vector 0 as a linear combination of the
v, is to use only zero coefficients.

(b) None of the ¥, is a linear comnbination of the others.
2.4.3 Show that the standard basis vectors &),... .€x are linearly indepen-
dent.
2.4.4 (a) For vectors in R?, prove that the length squared of a vector is the

sum of the squares of its coordinates, with respect to any orthonormal basis:
i.e., that if ¥,....V, and W,,... W, are two orthonormal bases, and

aVi+ Ve =biWi + - +b,W,, then af4-- 402 =02+ 482

(b) Prove the same thing for vectors in R3.
(c) Repeat for R™.
1 1 0
2.4.5 Consider the following vectors: |1, 2|.and | 1].
0 1 a
(a) For what values of a are these three vectors linearly dependent?
(b) Show that for each such a the three vectors lic in the same plane, and
give an equation of the plane.

2.4.6 (a) Let ¥,...,% be vectors in R™. What does it mean to say that
they are linearly independent? That they span R"? That they form a basis of
R"?

(b) Let 4 = ; f . Are the elements /, A, A%, A® linearly independent in

Mat (2,2)? What is the dimension of the subspace V C Mat (2,2) that they
span?

(c) Show that the set W of matrices B € Mat (2,2) that satisfy AB = BA
is a subspace of Mat (2,2). What is its dimension?

(d) Show that V C W. Are they equal?

2.4.7 Finish the proof that the three conditions in Definition 2.4.13 are equiv-
alent: show that (2) implies (3) and (3) implies 1).

- 1 -
2.4.8 Let v, = 1 and V; = [; . Let z and y be the coordinates with
respect to the standard basis {8),8,} and let % and v be the coordinates with
respect to {¥1,V,}. Write the equations to translate from (z,y) to (u,v) and

back. Use these equations to write the vector in terms of ¥, and V.

-5



Hint for Exercise 2.4.10, part
(b): Work by induction on the
number m of columns. First check
that it is true if m = 1. Next, sup-
pose it is true for m — 1, and view
an n X m matrix as an augmented
matrix, designed to solve n equa-
tions in m — 1 unknowns.

After row reduction there is a
pivotal 1 in the last column ex-
actly if &~ is not in the span of
a),...,8m-1, and otherwise the
entries of the last column satisfy
Equation 2.4.10.

(When figures and equations
are numbered in the exercises,
they are given the number of the
exercise to which they pertain.)

Exercise 2.4.12 says that any
linearly independent set can be ex-
tended to form a basis. In French
treatments of linear algebra, this
is called the theorem of the incom-
plete basis; it plus induction can
be used to prove all the theorems
of linear algebra in Chapter 2.
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2.4.9 Let Vy,... .V, be vectors in R™, and let Pg;:R" — B™ be given by

= Za,‘\"‘,‘.

¥, are linearly independent if and only if the map

a)
Py

Qn

(a) Show that vy,...
P(y) is one to one.

(b) Show that vy,...

(¢) Show that v,,...
and onto.

,Vn span R™ if and only if Py} is onto.
, ¥, is a basis of R™ if and only if P, is one to one

2.4.10 The object of this exercise is to show that a matrix A has a unique
row echelon form A: i.e., that all sequences of row operations that turn A into
a matrix in row echelon form produce the same matrix, A. This is the harder
part of Theorem 2.1.8.

We will do this by saying explicitly what this matrix is. Let 4 be ann x m
matrix with columns &), ...,&a,. Make the matrix A = [&)....,ay) as follows:

Let i) < --- < ix be the indices of the columns that are not linear combina-
tions of the earlier columns; we will refer to these as __the unmarked columns.

Set &, = €;; this defines the marked columns of A.

If &, is a linear combination of the earlier columns, let j(I) be the largest
unmarked index such that j(!) < [, and write

Q)
i _ :
a4 =) aja;, setting & = 0’1‘0(1) 2.4.10
i=1
This defines the unmarked columns of A 0
(a) Show that 4 is in row echelon form.
(b) Show that if you row reduce A, you get A
2.4.11 Let Vy,..., V be vectors in R", and set V = [¥,..., V]

(a) Show that the set ¥y, ...,V is orthogonal if and only if VTV is diagonal.
(b) Show that the set ¥,,..., Vi is orthonormal if and only if VTV = I.

2.4.12 (a) Let V be a finite-dimensional vector space, and V1,...V, € V
linearly independent vectors. Show that there exist ¥i,,,...,V, such that
V1,...,Vn € V is a basis of V.

(b) Let V be a finite-dimensional vector space, and ¥,...Vx € V be a
set of vectors that spans V. Show that there exists a subset i,,is,...,i;, of
{1,2,...,k} such that ¥,,,.... ¥, is a basis of V.
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Kernels and Images
@[; 3¢

[

111
(|1 2 3
2 3 4

Matrices for Exercise 2.5.2.

btk
- - N
= W

=[]

1 2 a
B={a b a
b b a

Matrices for Exercise 2.5.6.

1 13 6 2
A=]2 -1 0 4 1
4 1616 5
_f2 136 2
B‘[2—1041]

Matrices for Exercise 2.5.7
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2.5.1 Prove that if T : R® — R™ is a linear transformation, then the kernel
of T is a subspace of R™, and the image of T is a subspace of R™.

2.5.2 For each of the matrices at left, find a basis for the kernel and a basis
for the image, using Theorems 2.5.5 and 2.5.7.

2.5.3 True or false? (Justify your answer). Let f: R™ — RFand g : R® —
R™ be linear transformations. Then

fog=0 implies Imgg = ker f.
2.5.4 Let P, be the space of polynomials of degree < 2, identified with R3 by
a

identifying a + bz +cxto | b |.
c

(a) Write the matrix of the linear transformation T : P, — P, given by
(T(p))(z) = 29/ (z) + 29" (2).
(b) Find a basis for the image and the kernel of T.

2.5.5 (a) Let Py be the space of polynomials of degree < k. Suppose T : P, —
R*+! is a linear transformation. What relation is there between the dimension

of the image of T and the dimension of the kernel of T?
p(0)
p(1)

(b) Consider the mapping Tx : P, — R**! given by Ti(p) = What

p(k)
is the matrix of T, where P, is identified to R3 by identifying a + bz + cz? to
a
b ]? (c) What is the kernel of T}.?
[

(d) Show that there exist numbers cy, ..., cx such that

n k
/ p(t)dt = Z ¢;p(i) for all polynomials p € Py.
0 i=0
2.5.6 Make a sketch, in the (a,b)-plane, of the sets where the kernels of
the matrices at left have kernels of dimension 0,1,2,.... Indicate on the same
sketch the dimensions of the images.

2.5.7 For the matrices A and B at left, find a basis for the image and the
kernel, and verify that the dimension formula is true.
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2.5.8 Let P be the space of polynomials of degree at most 2 in the two
variables z,y, which we will identify to RS by identifying

ay
a + 2% + azy + as7? + asTy + agy®  with [ : } .
Qg

(a) What are the matrices of the linear transformations S,T : P — P given
by
T\ _ T T\ _ z),
S(p) (y) =zDip (y) and T(p) (y) yD”’(y)
(b) What are the kernel and the image of of the lincar transformation

p—2p-S(p) - T(p)?
2.5.9 Let a,...,a4,b),...,bx be any 2k numbers. Show that there exists a
unique polynomial p of degree at most 2k — 1 such

p(i) =ai, P@E)=b
for all integers ¢ with 1 < i < k. In other words, show that the values of p and
p' at 1,...,k determine p. Hint: you should use the fact that a polynomial pof
degree d such that p(i) = p'(i) = 0 can be written p(z) = (z —i)?q(z) for some
polynomial ¢ of degree d — 2.

2.5.10 Decompuose the following into partial fractions, as requested, being
explicit in each case about the system of linear equations involved and showing
that its matrix is invertible:

(a) Write
z +2? as A + B + C
(z+1)(z +2)(z+3) z+1 z+2 z+3
(b) Write
z + 3 as Az+B  Cz2+ Dz+F
@+1)2(z-1)° +1)2 (z-1)p3

2.5.11 (a) For what value of a can you not write
r-1 _ A Bz + By ?
(x+1)(z2+az+5) z+1 z2+azx+5
(b) Why does this not contradict Proposition 2.5.15?
2.5.12 (a) Let f(z) = z+ Az?+ Bz®. Find a polynomial g(z) = z+az?+fz?
such that g(f(z)) - z is a polynomial starting with terms of degree 4.
(b) Show that if



The polynomial p which Ex-
ercise 2.5.16 constructs is called
the Lagrange interpolation poly-
nomial, which “interpolates” be-
tween the assigned values.

Hint for Exercise 2.5.16: Con-
sider the map from the space of
P, of polynomials of degree n to
R™*? given by

p(zo)
p— |
p(zn)
You need to show that this map
is onto; by Corollary 2.5.11 it is
enough to show that its kernel is

{0}.
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k
flz)=z+ Zagr' is a polynomial, then there exists a unique polynomial
i=2

k
9(z) =z + Z bixr' with go f(x) =z + z"“p(z) for some polynomial p.
=2

2.5.13 A square n x n matrix P such that P2 = P is called a projector.

(a) Show that P is a projector if and only if / — P is a projector. Show that
if P is invertible, then P is the identity.

(b) Let V; = ImgP and Vo, = ker P. Show that any vector Vv € ®R" can
be written uniquely v = v, + v, with ¥, € V; and V2 € V2. Hint: Vv =
P(V) + (V = P(V).

(c) Show that there exists a basis V), ..., V, of R" and a number k < 7 such
that P(‘?l) = \71. . ,P(\?k) = ‘-iksP(‘-'kq-l) =0,.. ,P(“I‘n) =0.

(d) Show that, if P, and P, are projectors such that P\ P, = 0, then Q =
Py, + P, — (P2 P)) is a projector, ker Q = ker P; Nker P,, and the image of Q is
the space spanned by the image of P, and the image of ;.

2.5.14 Show that if A and B are n x n matrices, and AB is invertible, then
A and B are invertible.

*2.5.15 Let T}, T, : R® — R" be linear transformations.

(a) Show that there exists S : R” — K" such that T} = S o T if and only if
ker T> C ker T;.

(b) Show that there exists S : R® — R" such that T} = T 0 § if and only if
ImgTh C Img T.

*2.5.16 (a) Find a polynomial p(z) = a 4 bz + cz? of degree 2 such that

p(0)=1, p(1) =4, and p(3)=-2.

(b) Show that if if xo, ..., z, are n+1 distinct points in R. and ao, .. ., a, are
any numbers, there exists a unique polynomial of degree n such that p(z;) = a;
for eachi =0,...,n.

(c) Let the z; and a; be as above, and let by,...,b, be some further set of
numbers. Find a number & such that there exists a unique polynomial of degree
k with

p(zi)=a; and p'(z;)=b; foralli=0,...,n.

*2.5.17  This exercise gives a proof of Bezout’s Theorem. Let 1 and p; be
polynomials of degree k) and k; respectively, and consider the mapping

T:(q1,42) = pr1ay + P2g2,



Exercises for Section 2.6:
Abstract Vector Spaces

Note: To show that a space is
not a vector space, you will need
to show that it is not (0}.
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where g; and ¢, are polynomials of degrees k; — 1 and k; — 1 respectively, so
that p;q1 + p2g2 is of degree< ky + k2 — 1.

Note that the space of such (g1, ¢2) is of dimension k; + k2, and the space of
polynomials of degree k; I kz — 1 is also of dimension ki + k2.

(a) Show that ker T = {0} if and only if p; and p; are relatively prime (have
no common factors).

(b) Use Corollary 2.5.11 to show that if p1, p2 are relatively prime, then
there exist unique ¢; and ¢, as above such that

g1+ p2g2 =1 (Bezout’s Theorem)

2.6.1 Show that the space C(0,1) of continuous real-valued functions f(z)
defined for 0 < r < 1 (Example 2.6.2) satisfies all eight requirements for a
vector space.

2.6.2 Show that the transformation T : C2(R) — C(R) given by the formula
(T(N))(z) = (& + 1)f"(z) — 2f'(z) + 2f(2)
of Example 2.6.7 is a linear transformation.

2.6.3 Show that in a vector space of dimension n, more than n vectors are
never linearly independent, and fewer than n vectors never span.

2.6.4 Denote by £(Mat (n,n), Mat (n, n)) the space of linear transformations
from Mat (n, n) to Mat (n,n).

(a) Show that £(Mat (n,n), Mat (n,n)) is a vector space, and that it is finite
dimensional. What is its dimension?

(b) Prove that for any A € Mat (n,n), the transformations

La, Ra : Mat (n,n) — Mat (n,n) given by
La(B) =AB, R4(B)=BA
are linear transformations.
. (c})i What is the dimension of the subspace of transformations of the form
A Ra?

(d) Show that there are linear transformations T : Mat (2,2) — Mat (2,2)
that cannot be written as L4 + Rp. Can you find an explicit one?

2.6.5 (a)Let V be a vector space. When is a subset W C V' a subspace of V?

(b) Let V be the vector space of C! functions on (0,1). Which of the following
are subspaces of V:

D{feV]|flz)=f(z)+1};

ii) {f e V] f(z) =zf'(z) };

iii) {f € V| f(z) = (f'(x))*}.



Exercises for Section 2.7:
Newton's Method

2.10 Exercises for Chapter Two 243

2.6.6 Let V,IW C R" be two subspaces.
(a) Show that V N W is a subspace of R™.

(b) Show that if V U W is a subspace of R™, then either V.C W or W C V.

2.6.7 Let P; be the space of polynomials of degree at most two, identified to
R3 via the coefficients; i.e.,

a
p(z) = a+ bz +cx? € P, is identified to ( b) .
C

Consider the mapping T : P, — P; given by
T(p)(z) = (2* + 1)p"(z) - zp'(z) + 2p(a).

(a) Verify that T is linear, i.e., that T(ap; + bp2) = aT(p1) + bT(p2).

(b) Choose the basis of P, consisting of the polynomials p;(z) = 1,p,(z) =
z,p3(z) = z2. Denote ®(,) : R® — P; the corresponding concrete-to-abstract
linear transformation. Show that the matrix of

2 0 2
ot oTo®, is 01 0}.
{r} 00 2

(c) Using the basis 1,z,z2,...z", compute the matrices of the same differ-
ential operator T, viewed as an operator from P; to Pj, from PytoPy,..., P,
to Pn (polynomials of degree at most 3, 4, and n).

2.6.8 Suppose we use the same operator T : P, — P, as in Exercise 2.6.7,
but choose instead to work with the basis

Q@) =2% @)=z +z, g3(z) =22 +z 4+ 1.
Now what is the matrix @a') oTo®(?

2.7.1 (a) What happens if you compute v by Newton’s method, i.e., by
setting

1 b 5 .
Gn4) = 5 |@n + — ], starting with ag < 0?
2 a,

(b) What happens if you compute Vb by Newton’s method, with b > 0,
starting with ag < 07

2.7.2  Show (a) that the function |z| is Lipschitz with Lipschitz ratio 1 and
(b) that the function ,/]z] is not Lipschitz.

2.7.3 (a) Find the formula ap;, = 9(a,) to compute the kth root of a number
by Newton’s method.
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(b) Interpret this formula as a weighted average.

2.7.4 (a) Compute by hand the number 91/3 to six decimals, using Newton’s
method, starting at ap = 2.

(b) Find the relevant quantities ho.a1, M of Kantorovitch’s theorem in this
case.

(c) Prove that Newton’s method does converge. (You are allowed to use
Kantorovitch’s theorem, of course.)

2.7.5 (a) Find a global Lipschitz ratio for the derivative of the mapping F :
R? — R? given by
z\ _ (z2-y-12
F(y) = (yz—z—ll)'

(b) Do one step of Newton's method to solve F (;) = (8) starting at

(4)-

(c) Find a disk which you are sure contains a root.

2.7.6 (a) Find a global Lipschitz ratio for the derivative of the mapping F :
R? — R? given by
In Exercise 2.7.7 we advocate X
using a program like MATLAB F (I) = (S'H(I -y + yz) )
(Newton.m), but it is not too cum- y cos(z+y) —
bersome for a calculator.
(b) Do one step of Newton’s mnethod to solve

F(5)-(8)=(8) sanneor (3)

(c) Can you be sure that Newton’s method converges?

2.7.7 Consider the system of equations

cosz+y=11
z4cos(r+y)=.9

(a) Carry out four steps of Newton's method, starting at (8 ) How many

decimals change between the third and the fourth step?

(b) Are the conditions of Kantorovitch’s theorem satisfied at the first step?
At the second step?



For Exercise 2.7.8, note that
I =181 e,

2 00]° [800
020 =|0o s of.
00 2 00 8

Hint for Exercise 2.7.14 b: This
is a bit harder than for Newton's
method. Consider the intervals
bounded by a. and b/ak~}, and
show that they are nested.

A drawing is recommended for
part (c), as computing cube roots
is considerably harder than com-
puting square roots.
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2.7.8 Using Newton'’s method, solve the equation

90 1
A=]0 70
02 8

2.7.9 Use the MATLAB program Newton.m (or the equivalent) to solve the
systems of equations:

o T e (3.

) B -y+ sm(:z—_yi : : starting at (%) , (‘%) .
(a) Does Newton’s method appear to superconverge?
(b) In all cases, determine the numbers which appear in Kantorovitch’s the-
orem, and check whether the theorem guarantees convergence.
2.7.10 Find a number € > 0 such that the set of equations
z+y’=a
y+22=b has a unique solution near 0 when |al, |b],[c| < €.
z4+z=c¢
2.7.11 Do one step of Newton’'s method to solve the system of equations
SN e )
2.7.12 (a) Write one step of Newton’s method to solve z° —z—6 = 0, starting
at g = 2.
(b) Prove that this Newton’s method converges.

2.7.13 Does a 2 x 2 matrix of the form I + ¢B have a square root A near

1 0f,

0 -1y’
2.7.14 (a) Prove that if you compute +/b by Newton’s method, as in Exercise
2.7.3, choosing ag > 0, then the sequence a, converges to the positive nth root.

(b) Show that this would still be true if you simply applied a divide and
average algorithm:



Exercises for Section 2.8:
Superconvergence

Hint for Exercise 2.8.5: Try
a matrix all of whose entries are
equal.
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(c) Use Newton's method and “divide and average” (and a calculator or
computer, of course) to compute /2, starting at ap = 2. What can you say
about the speeds of convergence?

2.8.1 Show (Example 2.8.1) that when solving f(z) = (z - l).2 =0 by New-
ton’s method, starting at ag = 0, the best Lipschitz ratio for f’ is 2, so

- 2 1
ol (Fao) ™ Pa =1 (-3) 23

and Theorem 2.7.11 guarantees that Newton’s method will work, and will con-
verge to the unique root a = 1. Check that h, = 1/2"*! s0 an =1-1 J2n+,
on the nose the rate of convergence advertised.

2.8.2 (a) Prove (Equation 2.8.12) that the norm of a matrix is at most its
length: [|A]} < |A|.

(b) When are they equal?
2.8.3 Prove that Proposition 1.4.11 is true for the norm ||A|| of a matrix A

as well as for its length |A|: i.e., prove:
(a) If A is an n x m matrix, and b is a vector in R™, then

ll4B{l < Al 1B
(b) If A is an n x m matrix, and B is a m x k matrix, then
[lAB(l < Al I BII-

2.8.4 Prove that the triangle inequality (Theorem 1.4.9) holds for the norm
J|A}| of a matrix A,i.e., that for any matrices A and B in R",

1A + Bl < li4ll + || BIl-
2.8.5 (a) Find a 2 x 2 matrix A such that

2, 4 (11
A+A—[l 1].

(b) Show that when Newton’s method is used to solve the equation above,
starting at the identity, it converges.

2.8.6 For what matrices C can you be sure that the equation A2+ A = C in
Mat (2, 2) has a solution which can be found starting at 07 At I?

2.8.7 There are other plausible ways to measure matrices other than the
length and the norm; for example, we could declare the size |A| of a matrix A
to be the absolute value of its largest element. In this case, |A+ B| < |A|+|B|,
but the statement |A%X| < |A||X]| is false. Find an ¢ so that it is false for

1 1 1+4¢ 1
A=10 0 O0 |, and xX=1{1].
00 0 0



Starred exercises are difficult;
exercises with two stars are par-
ticularly challenging.

Exercises for Section 2.9:

Inverse and Implicit
Function Theorems
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**288 IfA= {Z 3] is a 2 x 2 real matrix, show that

1/2
2 JTAR =
1Al = (&LLA!—M) ,  where D = ad — bc = det A.

2.9.1 Prove Theorem 2.9.2 (the inverse function theorem in 1 dimension).

2.9.2 Consider the function
+a:2sm- ifz #0,
fla)= { ifz=0,
discussed in Example 1.9.4. (a) Show that f is differentiable at 0 and that the
derivative is 1/2.
(b) Show that f does not have an inverse on any neighborhood of 0.
(c) Why doesn’t this contradict the inverse function theorem, Theorem 2.9.2?

2.9.3 (a) See by direct calculation where the equation y2 +y +3z+1 =10
defines y implicitly as a function of x.

(b) Check that your answer agrees with the answer given by the implicit
function theorem.

2.9.4 Consider the mapping f : R — (8) — R? given by

(=? 2% +4%)
f(y) ( xyy( yi) )
Does f have a local inverse at every point of R??
2.9.5 Let y(z) be defined implicitly by
P +eV =0.
Compute y’(z) in terms of  and y.

2.9.8 (a) True or false? The equation sin(zyz) = z expresses r implicitly as
a differentiable function of y and z near the point

()-(F)

(b) True or false? The equation sin(zyz) = z expresses z implicitly as a
differentiable function of z and y near the same point.

2.9.7 Does the system of equations
T+y+sin(zy) =a
sin(z? + y) = 2a
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have a solution for sufficiently small a?

2.9.8 Consider the mapping S : Mat (2,2) — Mat (2, 2) given by S(A) = A2.
Observe that S(—17) = I. Does there exist an inverse mapping g, i.e., a mapping
such that S(g(A)) = A, defined in a neighborhood of /. such that g(/) = —1?

2.9.9 True or false? (Explain your answer.) There exists r > 0 and a differ-
entiable map

g:B,({_g _g])-.Mat(z,z)suchmatg([‘g _g])=[,; _f]

and (g(A))? = A for all A € B, ([‘g _2])

2.9.10 True or false? If f : k3 — P is continuously differentiable, and

a a
D,f (b) #0 , Dif (b) #0, then there exists

[ c

a function h of (¥ b (h(g))
n h o (z).deﬁnednear (C),suchthat f v =0.

2.9.11 (a) Show that the mapping

F ( Z) = ( ;}I _:' ee_!’y) is locally invertible at every point (Z) € R

(b) If F(a) = b, what is the derivative of F~! at b?

2.9.12 True or false: There exists a neighborhood U  Mat (2, 2) of [ g (5)]
and a C' mapping F : U — Mat (2, 2) with

(3 4)=[s 2o
(2) (F(A)2 = A

You may use the fact that if S : Mat (2, 2) — Mat (2,2) denotes the squaring
map S(A) = A2 then [DS(A)|B = AB + BA.



3

Higher Partial Derivatives,

Quadratic Forms, and Manifolds

Thomson [Lord Kelvin] had predicted the problems of the first [transat-
lantic] cable by mathematics. On the basis of the same mathematics he
now promised the company a rate of eight or even 12 words a minute.
Half a million pounds was being staked on the corvectness of a partial
differential equation.—T.W. Korner, Fourier Analysis

3.0 INTRODUCTION

When a computer calculates
sines, it is not looking up the an-
swer in some maimnmoth table of
sines; stored in the computer is a
polynomial that very well approx-
imates sinz for z in some particu-
lar range. Specifically, it uses the
formula

sinz = 1 + a3z’ + asz’ + arx’
+ a9z’ +anz' + e(z),
where the coefficients are
a3 = —.1666666664

as = .0083333315
a7 = —.0001984090
ag = .0000027526
a); = -.0000000239.

When |z| < 7 /2, the error is guar-
anteed to be less than 2 x 1079,
good enough for a calculator which
computes to eight significant dig-
its.

This chapter is something of a grab bag. The various themes are related, but
the relationship is not immediately apparent. We begin with two sections on
geometry. In Section 3.1 we use the implicit function theorem to define just what
we mean by a smooth curve and a smooth surface. Section 3.2 extends these
definitions to nore general k-dimensional “surfaces” in R", called manifolds:
surfaces in space (possibly, higher-dimensional space) that locally are graphs of
differentiable mappings.

We switch gears in Section 3.3, where we use higher partial derivatives to
construct the Taylor polynomial of a function in several variables. We saw in
Section 1.7 how to approximate a nonlinear function by its derivative; here we
will sce that, as in one dimension, we can make higher-degree approximations
using a function’s Taylor polynomial. This is a useful fact, since polynomials,
unlike sines, cosines, exponentials, square roots, logarithms, ... can actually
be computed using arithmetic. Computing Taylor polynomials by calculating
higher partial derivatives can be quite unpleasant; in Section 3.4 we give some
rules for computing them by combining the Taylor polynomials of simpler func-
tions.

In Section 3.5 we take a brief detour, introducing quadratic forms, and seeing
how to classify them according to their “signature.” In Section 3.6 we see
that if we consider the second degree terms of a function’s Taylor polynomial
as a quadratic form, the signature of that form usually tells us whether at a
particular point the function is a minimum, a maximum or some kind of saddle.
Tn Section 3.7 we look at extrema of a function f when f is restricted to some
manifold M C &"™.

Finally, in Scction 3.8 we give a brief introduction to the vast and important
snbject of the geometry of curves and surfaces. To define curves and surfaces in

249
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the beginning of the chapter, we did not need the higher-degree approximations
provided by Taylor polynomials. To discuss the geometry of curves and surfaces,
we do need Taylor polynomials: the curvature of a curve or surface depends on
the quadratic terins of the functions defining it.

3.1 CURVES AND SURFACES

As familiar as these objects are,
the mathematical definitions of
smooth curves and smooth sur-
faces exclude somne objects that we
ordinarily think of as smooth: a
figure eight, for example. Nor are
these familiar objects simple: al-
ready, the theory of soap bubbles
is a difficult topic, with a compli-
cated partial differential equation
controlling the shape of the film.

Recall that the graph I'(f) of a
function f: R" — R:

I(f) c k™!

is the set of pairs (x,y) € K" x R
such that f(x) = y.

Remember from the discussion
of set theory notation that I x J
is the set of pairs (z,y) with z €
I and y € J: e.g., the shaded
rectangle of Figure 3.1.1.

Everyone knows what a curve is, until he has studied enough mathematics
to become confused through the countless number of possible exceptions—
F. Klein

We are all familiar with smooth curves and surfaces. Curves are idealizations
of things like telephone wires or a tangled garden hose. Beautiful surfaces are
produced when you blow soap bubbles, especially big ones that wobble and
slowly vibrate as they drift through the air, almost but not quite spherical.
More prosaic surfaces can be imagined as an infinitely thin inflated inner tube
(forget the valve), or for that matter the surface of any smooth object.

In this section we will see how to define these objects mathematically, and
how to tell whether the locus defined by an equation or set of equations is a
smooth curve or smooth surface. We will cover the same matcrial three times,
once for curves in the plane (also known as plane curves), once for surfaces in
space and once for curves in space. The entire material will be repeated once
more in Section 3.2 for more general k-dimensional “surfaces” in R™.

Smooth curves in the plane

When is a subset X C R? a smooth curve? There are many possible answers,
but today there seems to be a consensus that the objects defined below are the
right curves to study. Our form of the definition, which depends on the chosen
coordinates, might not achieve the same consensus: with this definition, it isn’t
obvious that if you rotate a smooth curve it is still smooth. (We will see in
Theorem 3.2.8 that it is.)

Definition 3.1.1 looks more elaborate than it is. It says that a subset X € R?
is a smooth curve if X is locally the graph of a differentiable function, either of
z in terms of y or of y in terms of z; the detail below simply spells out what
the word “locally” means. Actually, this is the definition of a “C! curve”; as
discussed in the remark following the definition, for our purposes here we will
consider C! curves to be “smooth.”

Definition 3.1.1 (Smooth curve in the plane). A subset X CR?is a
C! curve if for every point (g) € X, there exist open neighborhoods I of a

and J of b, and either a C! mapping f: I — J or a C! mapping g: J — I
(or both) such that X N (I x J) is the graph of f or of g.



Note that we do not require
that the same differentiable map-
ping work for every point: we can
switch horses in mid-stream, and
often we will need to, as in Figure
3.1.1.

A function is C? (“twice con-
tinuously differentiable”) if its first
and second partial derivatives ex-
ist and are continuous. It is C? if
its first, second, and third partial
derivatives exist and are continu-
ous.

Some authors use “smooth” to
mean “infinitely many times dif-
ferentiable”; for our purposes, this
is overkill.

Exercise 3.1.4 asks you to show
that every straight line in the
plane is a smooth curve.

3.1 Curves and Surfaces 251

FIGURE 3.1.1. Above, I and I, are intervals on the z-axis, while J and J, are
intervals on the y-axis. The darkened part of the curve in the shaded rectangle I x J
is the graph of a function expressing z € I as a function of y € J, and the darkened
part of the curve in Iy x J; is the graph of a function expressing y € Ji as a function
of z € I. Note that the curve in I) x J) can also be thought of as the graph of
a function expressing =z € I; as a function of y € Ji. But we cannot think of the
darkened part of the curve in I x J as the graph of a function expressing y € J as a
function of z € I; there are values of x that would give two different values of y, so
such a “function” is not well defined.

Remark 3.1.2 (Fuzzy definition of “smooth”). For the purposes of this
section, “smooth” means “of class C'.” We don’t want to give a precise defi-
nition of smooth; its meaning depends on context and means “as many times
differentiable as is relevant to the problem at hand.” In this and the next sec-
tion, only the first derivatives matter, but later, in Section 3.7 on constrained
extrema, the curves, surfaces, etc. will need to be twice continuously differen-
tiable (of class C2), and the curves of Section 3.8 will need to be three times
continuously differentiable (of class C3). In the section about Taylor polyno-
mials, it will really matter exactly how many derivatives exist, and there we
won’t use the word smooth at all. When objects are labeled smooth, we will
compute derivatives without worrying about whether the derivatives exist.

Example 3.1.3 (Graph of any smooth function). The graph of any
smooth function is a smooth curve: for example, the curve of equation y = z2,
which is the graph of y as a function of z, or the curve of equation z = y2,
which is the graph of z as a function of y.

For the first, for every point (Z) with y = 22, wecantake I =R, J =R

and f(r) =22 A



Think of I = (-1,1) as an
interval on the z-axis, and J =
(0,2) as an interval on the y-axis.

Note that for the upper half circle
we could not have taken J = R.
Of course, f does map (—1,1) —
R, but the intersection
Sn((-1,1) xR)

(where R is the y-axis) is the
whole circle with the two points

() ()

removed, and not just the graph of
f, which is just the top half of the
circle.

FIGURE 3.1.2.
The graph of f(z) = |z| is not
a smooth curve.

FIGURE 3.1.3.
The graph of f(z) = z'/3 is

a smooth curve: although f is
not differentiable at the origin, the
function g(y) = y° is.
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Example 3.1.4 (Unit circle). A more representative example is the unit
circle of equation z2 + y2 = 1, which we denote S. Here we need the graphs of
four functions to cover the entire circle: the unit circle is only locally the graph

of a function. For the upper half of the circle, made up of points (:) with
y > 0, we can take

I=(-1,1), J=(0,2) and f:I— Jgivenby f(z)=+1-22. 3.1.1

We could also take J = (0,00), or J = (0,1.2), but J = (0,1) will not do, as
then J will not contain 1, so the point 1) which is in the circle, will not be
in the graph. Remember that I and J are open.

Near the point ((l)), S is not the graph of any function f expressing y as
a function of z, but it is the graph of a function g expressing z as a function
of y, for example, the function g : (—1,1) — (0,2) given by z = /1 —32. (In
this case, J = (—1,1) and I = (0,2).) Similarly, near the point (-6), S is the
graph of the function g : (—1,1) — (—2,0) given by z = —,/1 — ¢2.

For the lower half of the circle, when y < 0, we can choose I = (~1,1), J =
(0,-12), and the function f: I — J given byf(z) = —v1—22. A

Above, we expressed all but two points of the unit circle as the graph of
functions of y in terms of x; we divided the circle into top and bottom. When
we analyzed the unit circle in Example 2.9.11 we divided the circle into right-
hand and left-hand sides, expressing all but two (different) points as the graph
of functions expressing = in terms of y. In both cases we use the same four
functions and we can use the same choices of I and J.

Example 3.1.5 (Graphs that are not smooth curves). The graph of the
function f : R = R, f(z) = |z|, shown in Figure 3.1.2, is not a smooth curve; it
is the graph of the function f expressing y as a function of z, of course, but f is
not differentiable. Nor is it the graph of a function g expressing z as a function

of y, since in a neighborhood of (g) the same value of y gives two values of z.
The set X c R? of equation zy = 0 (i.e., the union of the two axes) is also
not a smooth curve; in any neighborhood of ( 8), there are infinitely many y’s
corresponding to z = 0, and infinitely many z’s corresponding to y = 0, so it
isn’t a graph of a function either way.
In contrast, the graph of the function f(z) = z'/3, shown in Figure 3.1.3, is

a smooth curve; f is not differentiable at the origin, but the curve is the graph
of the function z = y?, which is differentiable.

Example 3.1.6 (A smooth curve can be disconnected). The union X of
the z and y axes, shown on the left in Figure 3.1.4, is not a smooth curve, but

X - {( g )} is a smooth curve—even though it consists of four distinct pieces.



F1GURE 3.1.4.

Left: The graph of the £ and y
axes is not a smooth curve. Right:
The graph of the axes minus the
origin is a smooth curve.

FIGURE 3.1.5.

Top: The tangent line. Middle:
the tangent space. Bottom: The
tangent space at the tangent point written
and translated to the origin.
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Tangent lines and tangent space

Definition 3.1.7 (Tangent line to a smooth plane curve). The tangent
line to a smooth plane curve C at a point ( f?a)) is the line of equation

y — f(a) = f'(a)(z — a). The tangent line to C at a point (g&b)) is the line
of equation = — g(b) = ¢'(b)(y — b).

You should recognize this as saying that the slope of the graph of f is given
by f'.

At a point where the curve is neither vertical nor horizontal, it can be thought
of locally as either a graph of z as a function of y or as a graph of y as a function
of z. Will this give us two different tangent lines? No. If we have a point

(5)- () - (9) <

where C is a graph of f : I — J and g : J — I, then go f(z) = z (ie.,
9(f(z)) = z). In particular, ¢’(b)f'(a) = 1 by the chain rule, so the line of
equation y~- f(a) = f’(a)(z—a) is also the line of equation z—g(b) = ¢’ (b)(y—-b),
and our definition of the tangent line is consistent.!

Very often the interesting thing to consider is not the tangent line but the
tangent vectors at a point. Imagine that the curve is a hill down which you are
skiing or sledding. At any particular moment, you would be interested in the
slope of the tangent line to the curve: how steep is the hill? But you would also
be interested in how fast you are going. Mathematically, we would represent
your speed at a point a by a velocity vector lying on the tangent line to the
curve at a. The arrow of the velocity vector would indicate what direction you
are skiing, and its length would say how fast. If you are going very fast, the
velocity vector will be long; if you have come to a halt while trying to get up
nerve to proceed, the velocity vector will be the zero vector.

The tangent space to a smooth curve at a is the collection of vectors of all
possible lengths, anchored at a and lying on the tangent line, as shown at the
middle of Figure 3.1.5.

Definition 3.1.8 (Tangent space to a smooth curve). The tangent
space to C at a, denoted TuC, is the set of vectors tangent to C at a: ie.,
vectors from the point of tangency to a point of the tangent line.

'Since ¢'(b)f'(a) = 1, we have f'(a) = 1/¢’(b), so y — f(a) = f'(a)(z — a) can be
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FI1GURE 3.1.6.

The unit circle with tangent
spaces at (6) and at '(_l) .
The two tangent spaces are the
same; they consist of vectors such
that the increment in the z direc-
tion is 0. They can be denoted
& = 0, where & denotes the first

entry of the vector

a coordinate of a point in the tan-
gent line.

z ; it is not

The tangent space will be es-
sential in the discussion of con-
strained extrema, in Section 3.7,
and in the discussion of orienta-
tion, in Section 6.5.

Note that a function of the
form F (; = c is of a different

species than the functions f and
g used to define a smooth curve;
it is a function of two variables,
while f and g are functions of one
variable. If f is a function of one
variable, its graph is the smooth
curve of equation f(z) —y = 0.
Then the curve is also given by

the equation F : = 0, where

F(;) = f(z) -y
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The vectors making up the tangent space represent increments to the point a;
they include the zero vector representing a zero increment. The tangent space
can be freely translated, as shown at the bottom of Figure 3.1.5: an increment
has meaning independent of its location in the plane, or in space. Often we
make use of such translations when describing a tangent space by an equation.
In Figure 3.1.6, the tangent space to the circle at the point where z = 1 is
the same as the tangent space to the circle where z = —1; this tangent space
consists of vectors with no increment in the z direction. (But the equation for
the tangent line at the point where £ = 1 is z = 1, and the equation for the
tangent line at the point where z = —1 is z = —1; the tangent line is made
of points, not vectors, and points have a definite location.) To distinguish the
tangent space from the line z = 0, we will say that the equation for the tangent
space in Figure 3.1.6 is £ = 0. (This use of a dot above a variable is consistent
with the use of dots by physicists to denote increments.)

Level sets as smooth curves

Graphs of smooth functions are the “obvious” examples of smooth curves. Very

often, the locus (set of points) we are asked to consider is not the graph of any
function we can write down explicitly. We can still determine whether such a
locus is a smooth curve.

Suppose a locus is defined by an equation of the form F (;) = ¢, such as
z? -~ 22% — % = —2. One way to imagine this locus is to think of cutting the
graph of F (;) = z2 - 22 — 42 by the plane z = —2. The intersection of the
graph and the plane is called a level curve; three such intersections, for different
values of 2, are shown in Figure 3.1.7. How can we tell whether such a level set
is a smooth curve? We will see that the implicit function theorem is the right
tool to handle this question.

Theorem 3.1.9 (Equations for a smooth curve in R?). () IfU is open
inR2, F:U — R is a differentisble function with Lipechitz derivative, and
Xe={xeU| F(x) = c}, then X, is a smooth curve in R? if [DF(a)) is onto
for all a € X,; i.e., if

[PF(3)] #0 orar a=(3)ex. 313
(b) If Equation 3.1.3 is satisfied, then the tangent space to X, at a is
ker[DF(a)]:

TuX. = ker[DF(a)].



The condition that [DF(a)] be
onto is the crucial condition of the
implicit function theorem.

Because (DF(a)) is a 1 x 2 ma-
trix (a transformation from R? to
R), the following statements mean
the same thing:

forall a= (g) € X,

(1) [DF(a)} is onto.

(2) [DF(a)] #0.

(3) At least one of D, F(a) or
Dy F(a) is not 0.

Note that

[DF(a)] = [D1F(a), D2F(a)};
saying that [DF(a)] is onto is say-
ing that any real number can be
expressed as a linear combination
D,F(a)a + D:F(a)B for some

a 2
[ ﬁ] R

Part (b) of Theorem 3.1.9 re-
lates the algebraic notion of
ker|DF(a)] to the geometrical no-
tion of a tangent space

Saying that ker[DF(a)) is the
tangent space to X, at a says that
every vector V tangent to X, at a
satisfies the equation

|DF(a)}¥ = 0.

This puzzled one student, who ar-
gued that for this equation to be
true, either [DF(a)] or V must be
0, yet Equation 3.1.3 says that
[DF(a)] # 0. This is forgetting
that ([DF(a)] is a matrix. For ex-
ample: if [DF(a)] is the line ma-

trix (2, -2, then (2, 2] [i] =0.

3.1 Curves and Surfaces 255

o e
e A
<4 (;;,’-;///i(»fqg&%
1) / /,/ "y‘\ N

“r
NY

Ary
(‘7‘1\‘ B W

FIGURE 3.1.7. The surface F ; = 7% — .21* — y? sliced horizontally by setting

z equal to three different constants. The intersection of the surface and the plane

2 = c used to slice it is known as a level set. (This intersection is of course the same
as the locus of equation F (; ) = ¢.) The three level sets shown above are smooth

curves. If we were to “slice” the surface at a maximum of F, we would get a point,
not a smooth curve. If we were to slice it at a saddle point (also a point where the
derivative of F is 0), we would get a figure eight, not a smooth curve.

Example 3.1.10 (Finding the tangent space). We have no idea what the
locus X, defined by z° + 2z° + y + y° = c looks like, but the derivative of the

function F(;’) =24+ 2% +y+y°is

z\] _ q.8 2 4
[DF(y)] = [92° + 627, 1 + 5y, 3.14
D, F D;F
which is never 0, so X_. is a smooth curve for all c. At the point ( %) € X, the

derivative [DF( ; )] is [15, 6], so the equation of the tangent space to X; at
that point is 15 + 6y = 0.

Proof of Theorem 3.1.9. ( g) € X. The hypothesis
[DF(a)] # 0 implies that at least one of D, F (z) or DoF (g) is not 0; let

(a) Choose a =

us suppose Do F (g) # 0 (i.e., the second variable, y, is the pivotal variable,
which will be expressed as a function of the non-pivotal variable z).



Note that the derivative of the
inplicit function, in this case f'. is

evaluated at a, not at a= | §

If you know a curve as a graph.
this procedure will give you the
tangent space as a graph. If you
know it as an equation, it will
give you an equation for the tan-
gent space. If you know it by a
parametrization, it will give you
a parametrization for the tangent
space.

The same rule applies to sur-
faces and higher-dimensional man-
ifolds.
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This is what is needed in order to apply the short version of the implicit
function theorem (Theorem 2.9.9): F ( ‘5) - 0 then expresses y implicitly as a
function of z in a neighborhood of a.

More precisely. there exists a neighborhood U of a in k. a neighborhood V' of
b, and a continuously differentiable mapping f : U — V such that F ( f(z:l:)) =
0 for all z € U. The implicit function theorem also guarantees that we can
choose U and V' so that when z is chosen in U, then f(z) is the only y € V
such that F ;) = 0. In other words, X N (U x V) is exactly the graph of f,
which is our definition of a curve.

(b) Now we need to prove that the tangent space TaX_ is ker(DF(a)]. For
this we need the formula for the derivative of the implicit function, in Theorem
2.9.10 (the long version of the implicit function theorem). Let us suppose that
D,F(a) # 0, so that, as above, the curve has the equation y = f(z) near
a= (g), and its tangent space has equation § = f’(a)z.

The implicit function theorem (Equation 2.9.25) says that the derivative of
the implicit function f is

f'(a) = [Df(a)] = ~D,F(a)~'D,F(a). 3.15
Snbstituting this value for f’(a) in the equation § = f’(a)i, we get
§ = -DyF(a)~! D, F(a)z. 3.1.6
Multiplying through by D, F(a) gives DoF(a)y = —D, F(a)z, so
0 = D,F(a) + DoF(a)j = (D1 F(a), DyF(a)] [ ; ] .o 317

[DF(a)]

Remark. Part (b) is one instance of the golden rule: to find the tangent space
to a curve, do unto the increment ;] with the derivative whatever you did to

points with the function to get your curve. For instance:
o If the curve is the graph of f, i.e, has equation y = f(z), the tangent space
at (fga)) is the graph of f’(a), i.e. has equation y = f'(a)z.

o If the curve has equation F (;) = 0, then the tangent space at ( ';g) has

equation [DF(%0)] [; ] =0.



FIGURE 3.1.8.

The locus of equation z° +y* +
22 —y? = —1/4 consists of the two
points at +1/v2 on the y-axis; it
is not a smooth curve. Nor is the
figure eight, which is the locus of
equation z4+y*+22—y? = 0. The
other curves are smooth curves.
The arrows on the lines are an
artifact of the drawing program.

“Smooth curve” means some-
thing different in mathematics and
in common speech: a figure eight
is not a smooth curve, while the
four separate straight lines of Ex-
ample 3.1.6 form a smooth curve.
In addition, by our definition the
empty set (which arises in Exam-
ple 3.1.11 if ¢ < —1/4) is also a
smooth curve! Allowing the empty
set to be a smooth curve makes a
number of statements simpler.
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Why? The result of “do unto the increment ... " will be the best linear
approximation to the locus defined by “whatever you did to points ....” Ja

Example 3.1.11 (When is a level set a smooth curve?). Consider the
function F (;) =z% + y* + 22 — y®. We have

[pr(})] = f&’;:;i’i»:‘vz—:ﬂ = [22(22? +1), (P -1)). 318
t 2

There are no real solutions to 2z2 + 1 = 0; the only places where both partials
vanish are

(8)’ (11?»/5)’ 319
where F takes on the value 0 and —1/4. Thus for any number ¢ # 0 and
¢ # —1/4, the locus of equation ¢ = z* + y* + z2 — y? is a smooth curve.

Some examples are plotted in Figure 3.1.8. Indeed, the locus of equation
z% + y% + 22 — y? = —1/4 consists of precisely two points, and is nothing you
would want to call a curve, while the locus of equation z4 + y4 + 22 —y2 =0 is
a figure eight, and near the origin looks like two intersecting lines; to make it
a smooth curve we would have to take out the point where the lines intersect.
The others really are things one would want to call smooth curves.

Smooth surfaces in R?

Our definition of a smooth surface in R3 is a clone of the definition of a curve.

Definition 3.1.12 (Smooth surface). A subset S C R? is a smooth

a
surface if for every point a= | b | € S, there are neighborhoods I of a, J

of b and K of c, and either a diﬁ':rentiable mapping
e f:IxJ — K, ie., z as a function of (z,y) or
eg:IxK — J, ie.,yasa function of (z,2) or
eh:Jx K — I, ie.,z asa function of (y, z),

such that X N (I x J x K) is the graph of f, g, or h.



We will see in Proposition 3.2.8
that the choice of coordinates
doesn’t matter; if you rotate a
smooth surface in any way, it is
still a smooth surface.

If at a point xo the surface is
simultaneously the graph of z as a
function of z and y, y as a function
of z and z, and z as a function
of y and z, then the corresponding
equations for the tangent planes to
the surface at xo denote the same
plane, as you are asked to show in
Exercise 3.1.9.

As before, £ denotes an incre-
ment in the z direction, y an in-
crement in the y direction, and so
on. When the tangent space is an-

T
chored at a, the vector |y ([ is an
z

a
increment from the point ( b) .
c
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Definition 3.1.13 (Tangent plane to a smooth surface). The tangent
a

plane to a smooth surface S at | b | is the plane of the equations
c

2-e=[01(3)] [325] =00t (§) -0+ 2ar (§) -0
y—b=[Dg( ) [z a] Dig )(z a)+D2g( )(z—c) 3.1.10
z-a=[Da(?) ][g;g]=D,h(c)<,,_b)+p,h(g)<z-c)

in the three cases above.

As in the case of curves, we will distinguish between the tangent plane, given
above, and the tangent space.

Definition 3.1.14 (Tangent space to a smooth surface). The tangent
space to a smooth surface S at a is the plane composed of the vectors tangent

to the surface at a, i.e., vectors going from the point of tangency a to a point
of the tangent plane. It is denoted 7, S.

The equation for the tangent space to a surface is:
+=[or(§))[5] = 2us (8) 4+ 2as (5)
y—[Dg [ ] Dlg( )&+ Dag(8): 3.1.11

- Dh [ ] Dih y+D2h(2)

Example 3.1.15 (Sphere in R3). Consider the unit sphere: the set

T
§?= {(y) such that 22 + 2 + 22 =1} 3.1.12

z

This is a smooth surface. Let

z
Uey = { (y) such that 22 + 2 < 1, 2 = 0} 3113
2



Many students find it very hard
to call the sphere of cquation

22yt =1
two-dimensional. But when we
say that Chicago is “at” z latitude
and y longitude, we are treating
the surface of the earth as two-
dimensional.

In Theorem 3.1.16 we could say
“if [DF(a)) is onto, then X is a
smooth surface.” Since F goes
from U C R? to R, the derivative
[DF(a)) is a row matrix with three
entries, D\F, D,F, and D3F. The
only way it can fail to be onto is if
all three entries are 0.

You should be impressed by
Example 3.1.17. The implicit
function theorem is hard to prove,
but the work pays off. With-
out having any idea what the set
defined by Equation 3.1.16 might
look like, we were able to deter-
mine, with hardly any effort, that
it is a smooth surface. Figuring
out what the surface looks like—
or even whether the set is empty—
is another matter. Exercise 3.1.15
outlines what it looks like in this
case, but usually this kind of thing
can be quite hard indeed.
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be the unit disk in the (z,y)-plane, and R} the positive part of the z-axis.
Then

520 (Usy x RY) 3.1.14

is the graph of the function U, , — R} given by /1 —z2 - 32 o
This shows that S? is a surface near every point where z > 0, and considering
—+/1 —z2 — y? should convince you that S? is also a smooth surface near any

point where z < 0.

In the case where z = 0, we can consider

(1) Uz‘.z and Uy,z;

(2) the half-axes R} and R}; and

(3) the mappings +v1— 22 — 22 and ++/1 -2 - 22,
as Exercise 3.1.5 asks you todo. &

Most often, surfaces are defined by an equation like z2 + y? + 22 = 1, which
is probably familiar, or sin (z + yz) = 0, which is surely not. That the first is a
surface won'’t surprise anyone, but what about the second? Again, the implicit
function theorem comes to the rescue, showing how to determine whether a
given locus is a smooth surface.

Theorem 3.1.16 (Smooth surface in R?). (a) Let U be an open subset
of R3, F: U — R a differentiable function with Lipschitz derivative and

T

X= y

z

If at every a € X we have [DF(a)] # 0, then X is a smooth surface.

(b) The tangent space ToX to the smooth surface is ker[DF(a)).

ER®| F(x)=0 3.1.15

Example 3.1.17 (Smooth surface in R?). Consider the set X defined by
the equation

z
F|y | =sin(zr+yz)=0. 3.1.16
z
The derivative is
3.1.17

= [cos(a + bc), ccos(a + bc), beos(a + be)).
N e’ et e’

a
DF (b
¢ D F D, F DaF

On X, by definition, sin(a + bc) = 0, so cos(a + bc) # 0, so X is a smooth
surface. A



260 Chapter 3. Higher Derivatives, Quadratic Forms, Manifolds

Proof of Theorem 3.1.16. Again, this is an application of the implicit
function theorem. If for instance D, F(a) # 0 at some paint a € X, then the
condition F(x) = 0 locally expresses x as a function h of y and z (see Definition

3.1.12). This proves (a).
For part (b), recall Definition 3.1.11, which says that in this case the tangent

space T, X has cquation
&= [oa(%)] [?;’] 3.1.18

But the implicit function theorem says that
[Dh(';)] = ~[D1F(a)] "' [D;F(a), DsF(a))- 3.1.19

(Can you explain how Equation 3.1.19 follows from the implicit function
theorem? Check your answer below.?)

Substituting this value for [Dh(’c’)] in Equation 3.1.18 gives

& = ~[D\F(a)] ™" [D2F(a). DyF ()] [i’] , 3.1.20

and multiplying through by D, F(a), we get
1

A e .
[D\F(a)] = ~ Dy F(a)] [D1 F(a)] "} [D2F (a), DsF(a)] [ i’] so  3.1.21

[D2F(a). DaF(a)] [ U+ DiF@ =0 e,

i
& i 3.1.22
[DrF(a), D:F(a), DsF(a)] | 4| =0, or [DF(a)]|y|=0
z z

[DF(a)]

So the tangent space is the kernel of [DF(a)). O

?Recall Equation 2.9.25 for the derivative of the implicit function:

(Dg(b)] = ~(DiF(c), ..., DaF(c))~ (Dns1 F(c).. .., DuymF(c)].

partial deriv. for partial deriv. for
pivotal variables non-pivotal variables

Our assumption was that at some point a € X the equation F(x) = 0locally expresses
z as a function of y and 2. In Equation 3.1.19 D, F(a) is the partial derivative with
respect to the pivotal variable, while D>F(a) and D3F(a) are the partial derivatives
with respect to the non-pivotal variables.



For smooth curves in R* or
smooth surfaces in R3, we always
had one variable expressed as a
function of the other variable or
variables. Now we have two vari-
ables expressed as a function of the
other variable.

This means that curves in space
have two degrees of freedom, as
opposed to one for curves in the
plane and surfaces in space; they
have more freedom to wiggle and
get tangled. A sheet can get a lit-
tle tangled in a washing machine,
but if you put a ball of string in
the washing machine you will have
a fantastic mess. Think too of tan-
gled hair. That is the natural state
of curves in R%.

Note that our functions f,g,
and k are bold. The function f,
for example, is

= [13] = (4).
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Smooth curves in R*

A subset X C B3 is a smooth curve if it is locally the graph of either
e y and z as functions of x or
o z and z as functions of y or
e z and y as functions of z.
Let us spell out the meaning of “locally.”

Definition 3.1.18 (Smooth curve in R3). A subset X C R® is a smooth
a

curve if for every a = | b | € X, there exist neighborhoods I of q, Jofb

c
and K of c, and a differentiable mapping

of:I = JxK, ie,y,z as a function of z or
eg:J = IxK, ie.,z,z as a function of y or
ek: K — I x J, ie.,z,y asa function of 2,

such that X N (I x J x K) is the graph of f,g or k respectively.

a
If y and z are functions of z, then the tangent line to X at | b | is the line
c
intersection of the two planes
y—b= fi(a)(z—a) and z-c= fi(a)(z - a). 3.1.23

What are the equations if z and z are functions of y? If z and y are functions
of 2? Check your answers below.?

The tangent space is the subspace given by the same equations, where the
increment z — a is written Z and similarly y — b =9, and 2z — ¢ = 2. What are
the relevant equations?¢

31f z and z are functions of y, the tangent line is the intersection of the planes
z—a=gi(b)(y—b) and z —c = ga(b)(y ~ b).
If z and y are functions of z, it is the intersection of the planes
z—a=kj(c){z—c) and y - b= ki(c)(z — ¢).

fi(a)(@)
f2(a)(&)

o [i]=[Eas]

4The tangent space can be written as [z] = [

] 206



Since the range of [DF(a)] is
R?, saying that it has rank 2 is
the same as saying that it is onto;
both are ways of saying that its
columns span [R2.

In Equation 3.1.24, the partial
derivatives on the right-hand side
a

are evaluated at a = | b|. The

(4
derivative of the implicit function
k is evaluated at c; it is a func-
tion of one variable, z, and is not
defined at a.

Here [DF(a)] is a 2 x 3 matrix,
so the partial derivatives are vec-
tors, not nuinbers; because they
are vectors we write them with ar-
rows, as in D;F(a).

Once again, we distinguish be-
tween the tangent line and the
tangent space, which is the set of
vectors from the point of tangency
to a point of the tangent line.

This should look familiar; we
did the same thing in Equations
3.1.20-3.1.22.
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Proposition 3.1.19 says that another natural way to think of a smooth curve
in &3 is as the intersection of two surfaces. If the surfaces S; and S; are given
by equations f)(x) = 0 and f2(x) = 0, then C = S, NS, is given by the equation
F(x) = 0, where F(x) = (ﬂg;) is a mapping from R* — R2.

Below we speak of the derivative having rank 2 instead of the derivative
being onto; as the margin note explains, in this case the two mean the same
thing.

Proposition 3.1.19 (Smooth curves in R3). (a) Let U C R3 be open,
F : U — R? be differentiable with Lipschitz derivative, and let C be the set
of equation F(x) = 0. If [DF(a)] has rank 2 for every a € C, then C is a
smooth curve in R3.

(b) The tangent vector space to X at a is ker[DF(a)).

Proof. Once more, this is the implicit function theorem. Let a be a point of
C. Since [DF(a)] is a 2 x 3 matrix with rank 2, it has two columns that are
linearly independent. By changing the names of the variables, we may assume
that they are the first two. Then the implicit function theorem asserts that near
a, r and y are expressed implicitly as functions of z by the relation F(x) = 0.

The implicit function theorem further tells us (Equation 2.9.25) that the
derivative of the implicit function k is

[Dk(c)] = —[D,F(a), D;F(a)]"(DsF(a)]. 3.1.24

partial deriv. for for non-
pivotal variables pivotal
variable

We saw (footnote 4) that the tangent space is the subspace of equation
2| _ [k(e)z] _ ;
(3] - [65:] - pwca
where once more Z,y and ; are increments to z,y and z. Inserting the value
of [Dk(c)] from Equation 3.1.24 and multiplying through by [D\F(a), D;F(a))
gives

3.1.25

1

—

- [DiF(a), D;F(a)] (D, F(a), D;F(a)]! [DsF(a)):= (D, F(a), D;F(a)] [;J

- - - I z
so 0= [D,F(a), D;F(a), D3F(a)) [y} i ie, [DF(a)] [y} =0. O
[DF(a)] 2 2
3.1.26



In Equation 3.1.27 we parame-
trize the surface by the variables
z and y. But another part of the
surface may be the graph of a func-
tion expressing z as a function of
y and 2; we would then be locally
parametrizing the surface by the
variables y and 2.
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Parametrizations of curves and surfaces

We can think of curves and surfaces as being defined by equations, but there
is another way to think of them (and of the higher-dimensional analogs we
will encounter in Section 3.2): parametrizations. Actually, local parametriza-
tions have been built into our definitions of curves and surfaces. Locally, as
we have defined them, smooth curves and surfaces come provided both with

equations and parametrizations. The graph of f (; ) is both the locus of equa-

tion z = f ( :)(exprasing z as a function of z and y) and the image of the
parametrization

z
z y . .1.27
(y) - f (z ) 312
y
How would you interpret Example 3.1.4 (the unit circle) in terms of local

parametrizations?®
Global parametrizations really represent a different way of thinking.

ping is & “parametrization” of something.

b
P ;
R \7(\ //7\/_ The first thing to know about parametrizations is that practically any map-

FiGURE 3.1.9.
A curve in the plane, known by
the parametrization

t? —sint
te (Gsintcost)‘

The second thing to know about parametrizations is that trying to find
a global parametrization for a curve or surface that you know by equations
(or even worse, by a picture on a computer monitor) is very hard, and often
impossible. There is no general rule for solving such problems.

By the first statement we mean that if you fill in the blanks of ¢ — ( :),

where — represents a function of ¢t (t3, sint, whatever) and ask a computer

to plot it, it will draw you something that looks like a curve in the plane. If
you happen to choose ¢t ~ ( g?:tt , it will draw you a circle; ¢ ( g:’::)
t2 —sint

6sintcost ) , you will get the curve

parametrizes the circle. If you choose t — (
shown in Figure 3.1.9.

*In Example 3.1.4, where the unit circle z2 + ¥® =1 is composed of points : ) s

we parametrized the top and bottom of the unit circle (y>0and y <0) by z: we
expressed the pivotal variable y as a function of the non-pivotal variable z, using
the functions y = f(z) = V1 - 22 and ¥ = f(z) = =v1—zZ. In the neighborhood

of the points ( (l)) and ( '(l, we parametrized the circle by y: we expressed the

pivotal variable z as a function of the non-pivotal variable y, using the functions
z=f)=Vi-Fandz=fly) = -/T- .
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If you choose three functions of ¢, the computer will draw somnething that
cost
looks like a curve in space; if you happen to choose t — | sint |, you'll get
at

the helix shown in Figure 3.1.10.

If you fill in the blanks of (:f) — | — |, where — represents a function of

FIGURE 3.1.10.

A curve in space, known by the
cost

u and v (for example, sin® % cos v, for some such thing) the computer will draw
you a surface in ¥3. The most famous parametrization of surfaces parametrizes

parametrization ¢ — | sint |. the unit sphere in &3 by latitude « and longitude »:
at

€OS 4 COSU
(:,‘) — | cosusinv | . 3.1.28
sinu
But virtually whatever you type in, the computer will draw you something. For
ucosv
example, if you type in (g) | u?+? |, you will get the surface shown in
v2cosu
Figure 3.1.11.
How does the computer do it? It plugs some numbers into the formulas to
z * find points of the curve or surface, and then it connects up the dots. Finding
FIGURE 3.1.11. points on a curve or surface that you know by a parametrization is easy.
But the curves or surfaces we get by such “parametrizations” are not nec-
essarily smooth curves or surfaces. If you typed random parametrizations into
a computer (as we hope you did), you will have noticed that often what you
get is not a smooth curve or surface; the curve or surface may intersect itself,
as shown in Figures 3.1.9 and 3.1.11. If we want to define parametrizations of
smooth curves and surfaces, we must be more demanding.

In Definition 3.1.20 we could
write “{D4(t)] is one to one” in-  Definition 3.1.20 (Parametrization of a curve). A parametrization of

stead of “F'(t) # 0" ; ¥(t) and  a smooth curve C € R™ is a mapping v : I — C satisfying the following

[D+y(t)) are the same column ma- conditions:

trix, and the linear transformation

given by the matrix [D+(t)] is one (1) I is an open interval of R.

to one exactly when '(t) # 0. (2) v is C!, one to one, and onto

(3) ¥'(t) #Oforevery t € I.
Recall that v is pronounced
gamma. Think of I as an interval of time; if you are traveling along the curve, the

We c‘f‘,"’d l;ep.!ace‘ one to one  parametrization tells you where you are on the curve at a given timc, as shown
and onto” by “bijective. N
in Figure 3.1.12.



In the case of surfaces, saying
that [D+v(u)) is one to one is the
same as saying that the two partial
derivatives Dy, Dy are linearly
independent. (Recall that the ker-
nel of a linear transformation rep-
resented by a matrix is 0 if and
only if its columns are linearly in-
dependent; it takes two linearly in-
dependent vectors to span a plane,
in this case the tangent plane.

In the case of the parametriza-
tion of a curve (Definition 3.1.20),
the requirement that §(t) # 0
could also be stated in these terms:
for one vector, being linearly inde-
pendent means not being 0.

The parametrization
cost
te (sint) '

which parametrizes the circle, is
of course not one to one, but its
restriction to (0,2n) is; unfortu-
nately, this restriction misses the
point ( (1))

It is generally far easier to get
a picture of a curve or surface if
you know it by a parainetrization
than if you know it by equations.
In the case of the curve whose
parametrization is given in Equa-
tion 3.1.29, it will take a computer
milliseconds to compute the coor-
dinates of enough points to give
you a good picture of the curve.
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FIGURE 3.1.12. We imagine a parametrized curve as an ant taking a walk in the
plane or in space. The parametrization tells where the ant is at any particular time.

Definition 3.1.21 (Parametrization of a surface). A parametrization
of a surface S € R3 is a smooth mapping 7 : U — § such that

(1) U C R? is open.
(2) « is one to one and onto.
(3) [D~(u)] is one to one for every u € U.

It is rare to find a mapping v that meets the criteria for a parametrization
given by Definitions 3.1.20 and 3.1.21, and which parametrizes the entire curve
or surface. A circle is not like an open interval: if you bend a strip of tubing
into a circle, the two endpoints become a single point. A cylinder is not like an
open subspace of the plane: if you roll up a piece of paper into a cylinder, two
edges become a single line. Neither parametrization is one to one.

The sphere is similar. The parametrization by latitude and longitude (Equa-
tion 3.1.28) satisfies our definition only if we remove the curve going from the
North Pole to the South Pole through Greenwich (for example).

Example 3.1.22 (Parametrizations vs. equations). If you know a curve
by a global parametrization, it is easy to find points of the curve, but difficult
to check whether a given point is on the curve. The opposite is true if you
know the curve by an equation: then it may well be difficult to find points of
the curve, but checking whether a point is on the curve is straightforward. For
example, given the parametrization
3 o
0s° ¢ — t

yites (° t,“]_”;‘; °°s‘), 3.1.29
you can find a point by substituting some value of ¢, like t = 0 or ¢t = 1. But
checking whether some particular point (g) is on the curve would be very
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difficult. That would require showing that the set of nonlinear equations
— o3t _ 3si
a = cos’t — 3sintcost 3.1.30
b=t*-+¢°

has a solution.
Now suppose you are given the equation

y +sinzy + cos(z + y) = 0, 3.1.31

which defines a different curve. It’s not clear how you would go about finding a
point of the curve. But you could check whether a given point is on the curve
simply by inserting the values for z and y in the equation.? A

Remark. It is not true that if v : I — C is a smooth mapping satisfying
v'(t) # 0 for every t, then C is necessarily a smooth curve. Nor is it true
that if ¥ : U — S is a smooth mapping such that [Dy(u)] is one to one, then
necessarily S is a smooth surface. This is true only locally: if I and U are
small enough, then the image of the corresponding y will be a smooth curve or
smooth surface. A sketch of how to prove this is given in Exercise 3.1.20. A

3.2 MANIFOLDS

A mathematician trying to pic-
ture a manifold is rather like a
blindfolded person who has never
met or seen a picture of an ele-
phant seeking to identify one by
patting first an ear, then the trunk
or a leg.

In Section 3.1 we explored smooth curves and surfaces. We saw that a subset
X € &2 is a smooth curve if X is locally the graph of a differentiable function,
either of z in terms of y or of y in terms of z. We saw that S C R? is a smooth
surface if it is locally the graph of a differentiable function of one coordinate
in terms of the other two. Often, we saw, a patchwork of graphs of function is
required to express a curve or a surface.

This generalizes nicely to higher dimensions. You may not be able to visualize
a five-dimensional manifold (we can’t either), but you should be able to guess
how we will determine whether some five-dimensional subset of R™ is a manifold:
given a subset of R™ defined by equations, we use the implicit function theorem

$You might think, why not use Newton’s method to find a point of the curve given
by Equation 3.1.317 But Newton’s method requires that you know a point of the
curve to start out. What we could do is wonder whether the curve crosses the y-axis.
That means setting r = 0, which gives y + cosy = 0. This certainly has a solution by
the intermediate value theorem: y + cosy is positive when y > 1, and negative when
y < —1. So you might think that using Newton’s method starting at y = 0 should
converge to a root. In fact, the inequality of Kantorovitch’s theorem (Equation 2.7.48)
is not satisfied, so that convergence isn’t guaranteed. But starting at y = —w/4 is
guaranteed to work: this gives

M
M@l < 0027 < %
(£a)



Making some kind of global
sense of such a patchwork of
graphs of functions can be quite
challenging indeed, especially in
higher dimerisions. It is a sub-
ject full of open questions, some
fully as interesting and demanding
as, for example, Fermat'’s last the-
orem, whose solution after more
than three centuries aroused such
passionate interest. Of particular
interest are four-dimensional man-
ifolds (4-manifolds), in part be-
cause of applications in represent-
ing spacetime.

This description is remarkably
concise and remarkably uninfor-
mative. It isn't even clear how
many dimensions X2 and X3 have;
this is typical when you know a set
by equations.

X2, b
ST
// '
/ ]
/ '_,;
Z T Xg
X) - "
FIGURE 3.2.1.

One possihle position of four
linked rods, of lengths I,l,13,
and U4, restricted to a plane.
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to determine whether every point of the subset has a neighborhood in which the
subset is the graph of a function of several variables in terms of the others. If
80, the set is a smooth manifold: manifolds are loci which are locally the graphs
of functions expressing some of the standard coordinate functions in terms of
others. Again, it is rare that a manifold is the graph of a single function.

Example 3.2.1 (Linked rods). Linkages of rods are everywhere, in mechan-
ics (consider a railway bridge or the Eiffel tower), in biology (the skeleton), in
robotics, in chemistry. One of the simplest examples is formed of four rigid
rods, with assigned lengths I,, 12,135,154 > 0, connected by universal joints that
can achieve any position, to form a quadrilateral, as shown in Figure 3.2.1.

In order to guarantee that our sets are not empty, we will require that each
rod be shorter than the sum of the other three.

What is the set X, of positions the linkage can achieve if the points are
restricted to a plane? Or the set X3 of positions the linkage can achieve if
the points are allowed to move in space? These sets are easy to describe by
equations. For X, we have

X, = the set (x),%2,X3,X4) € (R?)* such that
[x3 — x4| = I3,

3.2.1

|x1 —xo| =11, |xz - x3| =1, [xq = x| = L.

Thus X is a subset of RS. Another way of saying this is that X is the subset
defined by the equation f(x) = 0, where f : (R2)* — R? is the mapping

GGG

(@221 + (2 -n)? - 8
(T3 = z2)* + (ys — 12)? - 3
(x4 —23)% + (ya — y3)% - 3
(@1 —za? + (- wa)? - 13

Similarly, the set X3 of positions in space is also described by Equation
3.2.1, if we take x; € R3; Xj is a subset of R!2. (Of course, to make equations
corresponding to Equation 3.2.2 we would have to add a third entry to the
x;, and instead of writing (z2 — £1)% + (y2 — y1)? ~ 1§ we would need to write
(@2 =21’ + (12 - 0)? + (22— 21)* - 12)

Can we express some of the x; as functions of the others? You should feel,
on physical grounds, that if the linkage is sitting on the floor, you can move
two opposite counectors any way you like, and that the linkage will follow in a
unique way. This is not quite to say that x, and x, are a function of x; and x3
(or that x, and x3 are a function of x, and x,). This isn’t true, as is suggested
by Figure 3.2.2.

In fact, usually knowing x, and x; determines either no positions of the
linkage (if the x; and x;3 are farther apart than I + 13 or I3 + 1) or exactly
four (if a few other conditions are met; see Exercise 3.2.3). But x; and x, are
locally functions of x;,x3. It is true that for a given x; and x3, four positions

3.2.2

X3 X2 x3 X4



You could experiment with this
system of linked rods by cutting
straws into four pieces of differ-
ent lengths and stringing thern to-
gether. For a more complex sys-
tem, try five pieces.

If you object that you cannot
visualize what this manifold looks
like, you have our sympathy; nei-
ther can we. Precisely for this rea-
son, it gives a good idea of the kind
of problem that comes up: you
have a collection of equations
defining some set but you have
no idea what the set looks like.
For exaniple, as of this writing we
don’t know precisely when X, is
connected—that is, whether we
can move continuously from any
point in X2 to any other point in
X3. (A manifold can be discon-
nected, as we saw already in the
case of smooth curves, in Exam-
ple 3.1.6.) It would take a bit
of thought to figure out for what
lengths of bars X is, or isn’t, con-
tlected.

X4 X3

X2
Xy

FiGure 3.2.3.

If three vertices are aligned, the
end-vertices cannot move freely:
for instance, they can’t moved in
the directions of the arrows with-
out stretching the rods.
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are possible in all, but if you move x; and x3 a small amount from a given
position, only one position of X2 and x4 is near the old position of x2 and X4.
Locally. knowing x; and x3 uniquely determines x; and X4.

X '
7 / /
\\_/
FIGURE 3.2.2. Two of the possible positions of a linkage with the same X1 and X3
are shown in solid and dotted lines. The other two are X1,X2, X3, X3 and X1, X3, X3, X4.

N

~ e

Even this isn’t always true: if any three are aligned, or if one rod is folded
back against another, as shown in Figure 3.2.3, then the endpoints cannot be
used as parameters (as the variables that determine the values of the other
variables). For example, if x;,x2 and x3 are aligned, then you cannot move x;
and x3 arbitrarily, as the rods cannot be stretched. But it is still true that the
position is a locally a function of x2 and X4.

There are many other possibilities: for instance, we could choose x2 and x4
as the variables that locally determine x; and x3, again making X> locally a
graph. Or we could use the coordinates of x; (two numbers), the polar angle
of the first rod with the horizontal line passing through x; (one number), and
the angle between the first and the second (one number): four numbers in all,
the same number we get using the coordinates of x, and x3.7 We said above
that usually knowing x, and x3 determines either no positions of the linkage or
exactly four positions. Exercise 3.2.4 asks you to determine how many positions
are possible using x, and the two angles above—again, except in a few cases.
Exercise 3.2.5 asks you to describe Xz and X3 when ) =l +l3+1l;. A

A manifold: locally the graph of a function

The set X, of Example 3.2.1 is a four-dimensional manifold in R?; locally, it is
the graph of a function expressing four variables (two coordinates each for two
points) in terms of four other variables (the coordinates of the other two points

"Such a system is said to have four degrees of freedom.



Definition 3.2.2 is not friendly.
Unfortunately, it is difficult to be
precise about what it means to be
“locally the graph of a function”
without getting involved. But
we have seen examples of just
what this means in the case of
1-manifolds (curves) and 2-mani-
folds (surfaces), in Section 3.1.

A k-manifold in B is locally
the graph of a mmapping expressing
n—k variables in terms of the other
k variables.

If U C R™ is open, the U is a
manifold. This corresponds to the
case where E| = R", E; = {0}.

Figure 3.2.4 reinterprets Figure
3.1.1 (illustrating a smooth curve)
in the language of Definition 3.2.2.
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or some other choice). It doesn’t have to be the same function everywhere. In
most neighborhoods, X is the graph of a function of x; and x3, but we saw
that this is not true when x;,x; and x; are aligned; near such points, X is the
graph of a function expressing x, and x3 in terms of x, and x4.5

Now it's time to define a manifold more precisely.

Definition 3.2.2 (Manifold). A subset M C R™ is a k-dimensional man-
ifold embedded in R™ if it is locally the graph of a C' mapping expressing
n—k variables as functions of the other k variables. More precisely, for every
x € M, we can find

(1) k standard basis vectors &;,,...,&;, corresponding to the k variables
that, near x, will determine the values of the other variables. Denote
by E, the span of these, and by E; the span of the remaining n — k
standard basis vectors; let x; be the projection of x onto E), and x
its projection onto E;;

(2) a neighborhood U of x in R";

(3) a neighborhood U, of x, in E,;

(4) a mapping £ : U, — Ey;

such that M NU is the graph of f.

FIGURE 3.2.4. In the neighborhood of X, the curve is the graph of a function ex-
pressing z in terms of y. "The point x, is the projection of x onto E (i.e., the y-axis);
the point x is its projection onto Ep (i.e., the z-axis). In the neighborhood of a, we
can consider the curve the graph of a function expressing y in terms of z. For this
point, E, is the z-axis, and E; is the y-axis.

) SFor some lengths, X2 is no longer a manifold in a neighborhood of some positions:
if all four lengths are equal, then X2 is not a manifold near the position where it is
folded flat.



A curve in R? is a 1-manifold
in R? a surface in R® is a 2-
manifold in R?; a curve in &3 is
a 1-manifold in R3.

Since f : U — R"~*, saying
that [Df(x)] is onto is the same
as saying that it has n — k linearly
independent columns, which is the
same as saying that those n ~ &
columns span R"~*: the equation

[DE(x))¥ = b

has a solution for every b € [#"~*.
(This is the crucial hypothesis of
the stripped-down version of the
implicit function theorem, Theo-
rem 2.9.9.)

In the proof of Theorem 3.2.3
we would prefer to write

f (g(‘:‘)) =0 rather than

f(u + g(u)) =0,

but that’s not quite right because
E, may not be spanned by the
first k basis vectors. We have
u € Ej and g(u) € E; since both
E) and E; are subspaces of R",
it makes sense to add them, and
u + g(u) is a point of the graph
of u. This is a fiddly point; if you

. . . u
find it easier to think of f (g(u) \
go ahead; just pretend that E, is
spanned by €,...,8&k, and E; by
€kt1y--.,En.
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Recall that for both curves in k? and surfaces in R®, we had n—k = 1 variable
expressed as a function of the other k variables. For curves in R3, there are
n — k = 2 variables expressed as a function of one variable; in Example 3.2.1
we saw that for X2, we had four variables expressed as a function of four other
variables: X, is a 4-manifold in R8.

Of course, once manifolds get a bit more complicated it is impossible to draw
them or even visnalize them. So it’s not obvious how to use Definition 3.2.2 to
see whether a set is a manifold. Fortunately, Theorem 3.2.3 will give us a more
useful criterion.

Manifolds known by equations

How do we know that our linkage spaces X, and X3 of Example 3.2.1 are
manifolds? Our argument used some sort of intuition about how the linkage
would move if we moved various points on it, and although we could prove
this using a bit of trigonometry, we want to see directly that it is a manifold
from Equation 3.2.1. This is a matter of saying that f(x) = 0 expresses some
variables implicitly as functions of others, and this is exactly what the implicit
function theoremn is for.

Theorem 3.2.3 (Knowing a manifold by equations). Let U C R" be
an open subset, and f : U — R™~* be a differentiable mapping with Lipschitz
derivative (for instance a C? mapping). Let M C U be the set of solutions
to the equation f(x) = 0.

If [Df(x)) is onto, then M is a k-dimensional manifold embedded in R™.

This theorem is a generalization of part (a) of Theorems 3.1.9 (for curves)
and 3.1.16 (for surfaces). Note that we cannot say—as we did for surfaces in
Theorem 3.1.16—that M is a k-manifold if [Df(x)) # 0. Here |Df(x)] is a
matrix n — k high and n wide; it could be nonzero and still fail to be onto.
Note also that k, the dimension of M, is n — (n — k), i.e., the dimension of the
domain of f minus the dimension of its range.

Proof. This is very close to the statement of the implicit function theorem,
Theorem 2.9.10. Choose n — k of the basis vectors &€; such that the correspond-
ing columns of [Df(x)] are linearly independent (corresponding to pivotal vari-
ables). Denote by E; the subspace of R® spanned by these vectors, and by
E) the subspace spanned by the remaining k standard basis vectors. Clearly
dim E, = n ~ k and dim E, = k.

Let x, be the projection of x onto E,, and x; be its projection onto E,.
The implicit function theorem then says that there exists a ball U; around
X1, a ball U; around x, and a differentiable mapping g : U, — U, such that
f(u + g(u)) = 0, so that the graph of g is a subset of M. Moreover, if U is



Each partial derivative at right
is a vector with four entries: e.g.,

D, fi(x)
- B4
D fa(x)
and so on.

Unfortunately we had to put
the matrix on two lines to make it
fit. The second line contains the
last four columns of the matrix.

FIGURE 3.2.5.

If the points x), x2, and x3 are
aligned, then the first two columns
of Equation 3.2.5 cannot be lin-
early independent: y, — ¥, is nec-
essarily a multiple of z) — z2, and
y2 — ys3 is a multiple of z2 — z3.
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the set of points with E,-coordinates in U; and E»-coordinates in Us, then the
implicit function theorem guarantees that the graph of g is M NU. This proves
the theorem. O

Example 3.2.4 (Using Theorem 3.2.3 to check that the linkage space
X, is a manifold). In Example 3.2.1, X> is given by the equation

I
n
T2 gzz - z:;: + gyz - w;: - :;
Y2 T3 —Z2)°+ (s —y2)° -4 | _
f z3 | T | (ma—z3) + e - )2 - G| 0 323
y3 (T -2+ (- va)* -84
T4
Y4

The derivative is composed of the eight partial derivatives (in the second line
we label the partial derivatives explicitly by the names of the variables):

[D£(x)] = [Ds£(x), Dyf(x), Dsf(x), Daf (), Dsf(x), Def(x), Drf(x), Dsf(x)]

= [D;,£(x), Dy, £(x), Dy, £(x), Dy f(x), Day £(x), Dyyf(x), D f(x), Dy f()].

Computing the partial derivatives gives

2z1—z2) 20 ~y2) —2z1-72) -20m-y2)
D =| O 0 ez mz)  Hw-w) 394
—2($4 - I]) —2(y4 - yl) 0 0
0 0 0 0
-2(z2 —23) —2(y2 - y3) 0 0
(zz—z4)  2ys-va) -2(z3-z4) —2(ys —ya)
0 0 2za—z1)  2(ysa—p1)

Since f is a mapping from R® to R4, so that E; has dimension n—k = 4, four
standard basis vectors can be used to span Ej if the four corresponding column
vectors are linearly independent. For instance, here you can never use the first
four, or the last four, because in both cases there is a row of zeroes. How about
the third, fourth, seventh, and eighth, i.e., the points x; = (;22) \Xg = (;: )?
These work as long as the corresponding columns of the matrix

-‘2(11 - zg) —2(y| - yz) 0 0
2(z2 - z3)  2(y2 —a) 0 0 3.25
0 0 —2(z3 —z4) —2(ys —ya) -
0 0 2Aza—71)  2ya—m1)
Dayf(x) Dy, £(x) D. f(x) Dy £(x)



William Thurston, arguably
the best geometer of the 20th cen-
tury, says that the right way to
know a k-dimensional manifold
embedded in n-dimensional space
is neither by equations nor by
parametrizations but from the in-
side: imagine yourself inside the
manifold, walking in the dark,
aiming a flashlight first at one
spot, then another. If you point
the flashlight straight ahead, will
you see anything? Will anything
be reflected back? Or will you see
the light to your side? ...
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are linearly independent. The first two columns are linearly independent pre-
cisely when x;,X,, and x5 are not aligned as they are in Figure 3.2.5, and the
last two are linearly independent when x3, X4, and x; are not aligned. The same
argument holds for the first, second, fifth. and sixth columns, corresponding to
x, and xa. Thus you can use the positions of opposite points to locally param-
etrize X2, as long as the other two points are aligned with neither of the two
opposite points. The points are never all four in line, unless either one length
is the sum of the other three, or l; + lo = l3 +lg,or I + I3 = la+ 1. In all
other cases, X5 is a manifold, and even in these last two cases, it is a manifold
except perhaps at the positions where all four rods are aligned.

Equations versus parametrizations

As in the case of curves and surfaces, there are two different ways of knowing
a manifold: equations and parametrizations. Usually we start with a set of
equations. Technically, such a set of equations gives us a complete description
of the manifold. In practice (as we saw in Example 3.1.22 and Equation 3.2.2)
such a description is not satisfying; the information is not in a form that can be
understood as a global picture of the manifold. Ideally, we also want to know
the manifold by a global parametrization; indeed, we would like to be able to
move freely between these two representations. This duality repeats a theme of
linear algebra, as suggested by Figure 3.2.6.

Algorithms Algebra Geometry
Linear Row reducti Inverses of matrices Subspaces
Algebra W reduction | gi)ying linear equations | Kernels and images

Differential
Calculus

Newton’s method

Manifolds
Defining manifolds
by equations and parametrizations

Inverse function theorein
Implicit function theorem

Mappings that meet these cri-
teria, and which parametrize the
entire manifold, are rare. Choos-
ing even a local parametrization
that is well adapted to the prob-
lem at hand is a difficult and im-
portant skill, and exceedingly dif-
ficult to teach.

FIGURE 3.2.6. Correspondences: algorithms, algebra, gecometry

The definition of a parametrization of a manifold is simply a generalization
of our definitions of a parametrization of a curve and of a surface:

Definition 8.2.5 (Parametrization of a manifold). A parametrization
of a k-dimensional manifold M C R™ is a mapping 7 : U — M satisfying the
following conditions:

(1) U is an open subset of R™.
(2) v is C*, one to one, and onto;
(3) [D~(u)] is one to one for every u € U.



In this sense, a manifold is a
surface in space (possibly, higher-
dimensional space) that looks flat
if you look closely at a small re-
gion.

As mentioned in Section 3.1.
the tangent space will be essential
in the discussion of constrained
extrema, in Section 3.7. and in
the discussion of orientation, in
Section 6.5.

Part (b) of Theorems 3.1.9 (for
curves) and 3.1.16 (for surfaces)
are special cases of Theorem 3.2.7.

3.2 Manifolds 273

The tangent space to a manifold

The essence of a k-dimensional differentiable manifold is that it is well approx-
imated. near every point, by a k-dimensional subspace of >". Everyone has an
intuition of what this means: a curve is approximated by its tangent line at a
point, a surface by its tangent plane.

Just as in the cases of curves and surfaces. we want to distingnish the tangent
vector space TxM to a manifold Af at a point x € M from the tangent line,
plane ... to the manifold at x. The tangent space T, M is the set of vectors
tangent to Al at x.

Definition 3.2.6 (Tangent space of a manifold). Let M C R" be a
k-dimensional manifold and let x € M, so that

® k standard basis vectors span E;
e the remaining n — k standard basis vectors span E»;
o U, C E,, U C R" are open sets, and
e g: U — E, is a C' mapping,
such that x € U and M NU is the graph of g. Then the tangent vector

space to the manifold at x, denoted Ty M, is the graph of [Dg(x)): the linear
approximation to the graph is the graph of the linear approximation.

If we know a manifold by the equation f = 0, then the tangent space to the
manifold is the kernel of the derivative of f.

Theorem 3.2.7 (Tangent space to a manifold). If f = 0 describes a
manifold, under the same conditions as in Theorem 3.2.3, then the tangent
space TxM is the kernel of [Df(x)).

Proof. Let g be the function of which M is locally the graph, as discussed in
the proof of Theorem 3.2.3. The implicit function theorem gives not only the
existence of g but also its derivative (Equation 2.9.25): the matrix

[Dg(x1)] = (D, f(x), ..., D;,_ £(x)]7'[D;, f(x), ..., D, f(x)] 326

partial deriv. for partial deriv. for
pivotal variables non-pivotal variables

where Dj, ... D, _, are the partial derivatives with respect to the n — k pivotal
variables, and IJ;, ... D;, are the partial derivatives with respect to the k non-
pivotal variables.

By definition. the tangent space to M at x is the graph of the derivative of
g. Thus the tangent space is the space of equation

W ==[D,f(x), ..., D,,_£(x))""[D;,£(x), .... D; £(x)]¥, 3.2.7



One thing needs checking: if
the same manifold can be repre-
sented as a graph in two differ-
ent ways, then the tangent spaces
should be the same. This should
be clear from Theorem 3.2.7. In-
deed, if an equation f(x) expresses
some variables in terms of others
in several different ways, then in
all cases, the tangent space is the
kernel of the derivative of f and
does not depend on the choice of
pivotal variables.

In Theorem 3.2.8, T~! is not
an inverse tnapping; indeed, since
T goes from R™ to R™, such an in-
verse mapping does not exist when
n # m. By T~'(M) we denote
the inverse inlage: the set of points
x € IR” such that T'(x) is in M.

A graph is automatically given
by an equation. For instance, the
graph of f : & — % is the curve of
equation y — f(z) = 0.

Corollary 3.2.9 follows immedi-
ately from Theorem 3.2.8, as ap-
plied to T71:

T(M) = (T"")"Y(M).
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where V is a variable in E), and W is a variable in E;. This can be rewritten

D\ (). .... Dj._ £x)I% + [Di,£(x), ..., Dy f(X)]¥ =0, 3.2.8

which is simply saying [Df(V + W)} =0. O

Manifolds are independent of coordinates

We defined smooth curves, surfaces and higher-dimensional manifolds in terms
of coordinate systems, but these objects are independent of coordinates; it
doesn’t matter if you translate a curve in the plane, or rotate a surface in
space. In fact Theorem 3.2.8 says a great deal more.

Theorem 3.2.8. Let T : R® — R™ be a linear transformation which is
onto. If M C R™ is a smooth k-dimensional manifold, then T-'(M) is a
smooth manifold, of dimension k + n — m.

Proof. Choose a point a € T~!(M), and set b = T'(a). Using the notation of
Definition 3.2.2, there exists a neighborhood U of b such that the subset M NU
is defined by the equation F(x) = 0, where F : U — E, is given by

F(x')=f(xl)—xg=0.

X3 3.29

Moreover, [DF(b)] is certainly onto, since the columns corresponding to the
variables in E; make up the identity matrix.

The set T~}(MNU) = T~!MNT-"(U) is defined by the equation FoT(y) =
0. Moreover,

[DF o T(a)] = [DF(T(a))] o [DT(a)] = [DF(b)] o T 3.2.10

is also onto, since it is a composition of two mappings which are both onto. So
T-'M is a manifold by Theorem 3.2.3.

For the dimension of the smooth manifold T=!(M), we use Theorem 3.2.3
to say that it is n (the dimension of the domain of F o T) minus m — k (the
dimension of the range of FoT), i.e., n — m + k. a

Corollary 3.2.9 (Manifolds are independent of coordinates). If
T : R™ — R™ is an invertible linear transformation, and M C R™ js a
k-dimensional manifold, then T(M) is also a k-dimensional manifold.

Corollary 3.2.9 says in particular that if you rotate a manifold the result is
still a manifold, and our definition, which appeared to be tied to the coordinate
system, is in fact coordinate-independent.
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3.3 TAYLOR POLYNOMIALS IN SEVERAL VARIABLES

Almost the only functions that
can be computed are polynomi-
als, or rather piecewise polynomial
functions, also known as splines:
functions formed by stringing to-
gether bits of different polynomi-
als. Splines can be computed,
since you can put if statements in
the program that computes your
function, allowing you to com-
pute different polynomials for dif-
ferent values of the variables. (Ap-
proximation by rational functions,
which involves division, is also im-
portant in practical applications.)

One proof, sketched in Exercise
3.3.8, consists of using I'Hopital’s
rule k times. The theorem is also
a special case of Taylor’s theorem
in several variables.

In Sections 3.1 and 3.2 we used first-degree approximnations (derivatives) to
discuss curves. surfaces and higher-diniensional manifolds. Now we will discuss
higher-degree approximations, using laylor polynomials.

Approximation of functions by polynomials is a central issue in calculus
in one and several variables. It is also of great importance in such fields as
interpolation and curve fitting, computer graphics and computer aided design;
when a computer graphs a function, most often it is approximating it with cubic
piecewise polynomial functions. In Section 3.8 we will apply these notions to
the geometry of curves and surfaces. (The geometry of manifolds is quite a bit
harder.)

Taylor’s theorem in one variable

In one variable, you learned that at a point z near a, a function is well ap-
proximated by its Taylor polynomial at a. Below, recall that f(") denotes the
nth derivative of f.

Theorem 3.3.1 (Taylor’s theorem without remainder, one variable).
IfU C R is an open subset and f : U — R is k times continuously differen-
tiable on U, then the polynomial

1
Plalath) = f@)+ f@h+ zf @+ + % fO@pt 331
Taylor polynomial
is the best approximation to f at a in the sense that it is the unique poly-
nomial of degree < k such that

tim fla+h)—ph (a+h) —o.

Jim o 3.3.2

We will see that there is a polynomial in n variables that in the same sense
best approximates functions of n variables.

Multi-exponent notation for polynomials in higher dimensions

First we must introduce some notation. In one variable, it is easy to write the
“general polynoniial” of degree k as
k
a0+ a1z +a2% + -+ apz* = Za.-x‘. 3.3.3
i=0
For example,

3+2r -2 +47* = 3%+ 22" — 122 + 023 + 4zt 334



Polynomials in several vari-
ables really are a lot more compli-
cated than in one variable: even
the first questions involving fac-
toring, division, etc. lead rapidly
to difficult problems in algebraic
geometry.
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can be written as

4
Za.»z‘. where a9 =3, a; =2, aa= -1, a3 =0, ag = 4. 335
i=0

But it isn’t obvious how to find a “general notation™ for expressions like

14z +yz+ 12 + zyz + 2z — 2%9°. 3.3.6

One effective if cumbersome notation uses multi-ezponents. A multi-expo-
nent is a way of denoting one term of an expression like Equation 3.3.6.

Definition 3.3.2 (Multi-exponent). A multi-exponent I is an ordered
finite sequence of non-negative whole numbers, which definitely may include

0:
I=(iy,...in). 3.3.7

Example 3.3.3 (Multi-exponents). In the following polynomial with n = 3
variables:

l+c+yz+ 22+ oyz +y%2 - z2y?, (3.3.6)
each multi-exponent I can be used to describe one term:
1=2%°° corresponds to I = (0,0,0)
z=1z'y%2" correspondsto I = (1,0,0) 338

yz =z%'2' correspondsto I=(0,1,1). A

What multi-exponents describe the terms z2, zyz, y?2, and 2y2?°
The set of multi-exponents with n entries is denoted I,
In = {(ir,...in)} 3.39

The set I3 includes the seven multi-exponents of Equation 3.3.8, but many
others as well, for example I = (0, 1,0), which corresponds to the term y,
and I = (2,2,2). which corresponds to the term z2y2z2. (In the case of the
polynomial of Equation 3.3.6, these terms have coefficient 0.)

We can group together elements of Z, according to their degree:

9

2= z%y°2° corresponds to I = (2,0,0).
zyz =z'y'z' corresponds to 1= (1,1,1).

v’z = 222! corresponds to I = (0,2, 1).

2y? = z%y%2° corresponds to [ = (2,2.0).



For example, the set I3 of
multi-exponents with three entries
and total degree 2 consists of
(0,1,1), (1,1,0), (1,0,1),(2,0,0),
(0,2,0), and (0,0, 2).

Recall that 0! = 1, not 0.

For example, if I = (2,0,3),

then I! = 2!0!3! = 12.

The monomial z3z3 is of degree

5; it can be written
x! = x(0:203)

In Equation 3.3.12, m is just
a placeholder indicating the de-
gree. To write a polynomial with
n variables, first we consider the
single multi-exponent I of degree
m = 0, and determine its coeffi-
cient. Next we consider the set I}
(multi-exponents of degree m = 1)
and for each we determine its co-
efficient. Then we consider the
set 72 (multi-exponents of degree
m = 2), and so on. Note that we
could use the multi-exponent no-
tation without grouping by degree,
expressing a polynomial as

T an.
16T

But it is often useful to group
together terms of a polynomial
by degree: constant term, lin-
ear terms, quadratic terms, cubic
terms, etc.

073 = {(1,2),(2,1),(0,3),(3,0);
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Definition 3.3.4 (Degree of a multi-exponent). For any multi-exponent
I € T,,, the total degree of I is deg] =i + -+ +in.

The degree of Tyz is 3, since 1 + 1+ 1 = 3; the degree of y%z is also 3.

Definition 3.3.5 (I!). For any multi-exponent I € Iy,
D=4 ... .d,) 3.3.10

Definition 3.3.6 (ZX). We denote by Z¥ the set of multi-exponents with n
entries and of total degree k.

What are the elements of the set Z3? Of Z3? Check your answers below.

Using multi-exponents, we can break up a polynomial into a sum of mono-
mials (as we already did in Equation 3.3.8).

Definition 3.3.7 (Monomial). For any I € Z,, the function
! on R™ will be called a monomial of degree deg .

x =z...z;

Here 4, gives the power of x,, while i, gives the power of z3, and so on. If
I =(2,3,1), then x! is a monomial of degree 6:

2,31

x' = x®3 = g24321, 3.3.11

We can now write the general polynomial of degree k as a sum of monomials,
each with its own coefficient a;:

3.3.12

Example 3.3.8 (Multi-exponent notation). To apply this notation to the
polynomial
24z — T2x3 + 4112273 + 23:?3:%, 3.3.13
we break it up into the terms:
2=2292323  I=(0,0,0), degree 0, with coefficient 2
1 = 121232 I =(1,0,0), degree 1, with coefficient 1
—zox3 = —12%z3z} I =(0,1,1), degree 2, with coefficient —1
I=(1,1,1), degree 3, with coefficient 4
I=(2,2,0), degree 4, with coefficient 2.

1
4z)2223 = 4z} 737}

2,2 _ 9,2,2.0
22173 = 2717373

Ig ={(L,1, 1)7 (2,1,0),(2,0, l)! (1,2,0),
(1,0,2).(0.2,1),(0,1,2),(3,0,0),(0,3,0),(0,0,3).



We write I € I7" under the sec-
ond sum in Equation 3.3.14 be-
cause the multi-exponents I that
we are summing are sequences of
three numbers, 1,,r; and 3, and
have total degree m.

Exercise 3.3.6 provides more
practice with multi-exponent no-
tation.

Recall that different notations
for partial derivatives exist:
5°

L ()

dx;0z,

D;(Dif)a) =

Of course D; f is only defined if
all partials up to order deg / exist,
and it is also a good idea to as-
sume that they are all continuous,
so that the order in which the par-
tials are calculated doesn’t t
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Thus we can write the polynomial as

4

Z Z alx', where 3.3.14
m=0 1T
@(0.0.0) = 2, an00) =1, apay = -1 33.15
aayy =4 ai220) = 2,

and all other a; = 0, for I € I§*, with m < 4. (There are 30 such terms.) A

What is the polynomial

3
3N e, 3.3.16
m=0 eIy
where a0) = 3. aquo) = -1, auz =3, a@1) = 2, and all the other

coefficients a; are 0?7 Check your answer below.!!

Multi-exponent notation and equality of crossed partial
derivatives

Multi-exponent notation also provides a concise way to describe the higher par-
tial derivatives in Taylor polynomials in higher dimensions. Recall (Definition
2.7.6) that if the function D;f is differentiable, then its partial derivative with
respect to the jth variable, D;(D;f), exists'?; it is is called a second partial
derivative of f.

To apply multi-exponent notation to higher partial derivatives, let

D;f =D'Dy...Dirf. 3.3.17

For example, for a function f in three variables,
D, (D.(Dz(Dg £)) = D¥(D}f) canbe written D}(DE(DSf)), 33.18
which can be written D(;20)f, i.e., D;f, where I = (i1,42,13) = (2,2,0).

What is D() 0,2)f, written in our standard notation for higher partial deriva-
tives? What is D(g,),1)f?7 Check your answer below.!3

(Theorem 3.3.9).

Ut is 3 — z) + 3212} + 22z,

12This assumes, of course, that f : U — R is a differentiable function, and U ¢ R"
is open.

13The first is D)(D3f), which can also be written D, (Ds(Dsf )). The second is
D2(Dsf).



We will see when we define
Taylor polynomials in higher di-
mensions (Definition 3.3.15) that
a major benefit of multi-exponent
notation is that it takes advantage
of the equality of crossed partials,
writing them only once; for in-
stance, D1(D, f) and D;(D, f) are
written Dy ).

Theorem 3.3.9 is a surprisingly
difficult result, proved in Appen-
dix A.6. In Exercise 4.5.11 we give
a very simple proof that uses Fu-
bini’s theorem.

Don’t take this example too se-
riously. The function f here is
pathological; such things do not
show up unless you go looking
for them. You should think that
crossed partials are equal.
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Recall, however, that a multi-exponent I is an ordered finite sequence of
non-negative whole numbers. Using multi-exponent notation, how can we dis-
tinguish between D) (D3f) and D3(D, f)? Both are written D(; o). Similarly,
D could denote Dy(D2f) or Dy(D, f). Is this a problem?

No. If you compute the second partials D;(D3f) and Ds(D; f) of the func-
tion 2 + zy® + zz, you will see that they are equal:

z z
Di(Dsf) (y) = D3(D, f) (y) =1
z 2

Similarly, Dy (D2 f) = Dy(D, f), and Dy(Dsf) = Ds(D.f).

Normally, crossed partials are equal. They can fail to be equal only if the
second partials are not continuous; you are asked in Exercise 3.3.1 to verify that
this is the case in Example 3.3.11. (Of course the second partials do not exist
unless the first partials exist and are continuous, in fact, differentiable.)

3.3.19

Theorem 3.3.9 (Crossed partials equal). Let f: U — R be a function
such that all second partial derivatives exist and are continuous. Then for
every pair of variables ;,z;, the crossed partials are equal:

D;(Dif)(a) = Di(D;f)(a). 3.3.20

Corollary 3.3.10.If f : U — R is a function all of whose partial derivatives
up to order k are continuous, then the partial derivatives of order up to k do
not depend on the order in which they are computed.

For example, D;(D;(Dyf))(a) = Dy (D;(D;f))(a), and so on.
The requirement that the partial derivatives be continuous is essential, as

shown by Example 3.3.11

Example 3.3.11 (A case where crossed partials aren’t equal). Consider

the function f(:) ) xyfszg if (”) ? (3)

o u()-()

5 3,2 4
z) _ 2 -4y’ —zy
and D,f(y)_‘(xuyz)2

2 9 an

3.3.21

422 + 2ty — 5

Then D’f(;) = @+ 22



For example, take the polyno-
mial r + 2r° + 37% (le. ) =
l.az = 2.a3 = 3.) Then

fl(x) = 1 +4r + 9r%. s0

f(0) = 1. indeed. I'ay = 1.

f'(x) =4+ 187, so

f'(0) = 4: indced. 2'a; =4
fO) = 18:

indeed, 3ta; = 6-3 = 18.

Evaluating the derivatives at 0
gets rid of terms that come from
higher-degree terms. For example,
in f”(z) = 4+ 18z, the 18r comes
from the original 3r°.

In Proposition 3.3.12 we use J
to denote the multi-exponents we
sum over to express a polynomial,
and I to denote a particular multi-
exponent.
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when (;) # ( 8) and both partials vanish at the origin. So

v i - ifr#0
0\ _ y ify#0 WL ={" ! =1z,
D'f(y) _{ 0 ify=0 y and le(()) 0 ifr=0

guing Da(Dif) (0) = Da(-y) = -1 and Dy(D2f) (§) = Dula) = 1.

the first for any value of y and the second for any value of x; at the origin, the
crossed partials Do(D, f) and Dy (D f) are not equal. JAN

The coefficients of polynomials as derivatives

We can express the coefficients of a polynomial in one variable in terms of
the derivatives of the polynomial at 0. If p is a polynomial of degree k with
coefficients ag ... ay, i.e..

p(z) = ag + @17 + azz® + - -+ + arz*. 3.3.23
then, denoting by p'*) the ith derivative of p, we have
i, = pM(0); ie. a= {l,p""(O). 3.3.24

Evaluating the ith derivative of a polynomial at 0 isolates the coefficient of
zi: the ith derivative of lower terms vanishes, and the ith derivative of higher
degree terms contains positive powers of z, and vanishes (is 0) when evaluated
at 0.

We will want to translate this to the case of several variables. Yon may
wonder why. Our goal is to approximate differentiable functions by polynomials.
We will sec in Proposition 3.3.19 that if, at a point a, all derivatives up to
order k of a function vanish, then the function is small in a neighborhood of
that point (small in a sense that depends on k). If we can mannfacture a
polynomial with the same derivatives up to order k as the function we want to
approximate, then the function representing the difference between the function
being approximated and the polynomial approximating it will have vanishing
derivatives up to order k: hence it will be small.

So, how does Equation 3.3.23 translate to the case of several variables?

As in one variable, the coefficients of a polynomial in several variables can
expressed in terms of the partial derivatives of the polynomial at 0.

Proposition 3.3.12 (Coefficients expressed in terms of partial
derivatives at 0). Let p be the polynomial

k

PO =" Y anx.

m=0JeIn

3.3.25

Then for any particular I € Z, we have I'a; = D;p(0).



For example, if f(z) = z°. then
fllr) =2

If you find it hard w focus
on this proof written in multi-
exponenl. notation, look at Exam-
ple 3.3.13.

Multi-exponent notation takes
some getting used to: Example
3.3.13 translates multi-exponent
notation into more standard (and
less concise) notation.

3.3 Taylor Polynomials in Several Variables 281

Proof. First. note that it is sufficient to show that
Dix'(0)=1! and D;x’(0) =0 forall J# 1. 3.3.26
We can see that this is enough by writing:

p written in
multi-exponent form

k
= J
D;p(0) = Dy (2 3 ax )(0) 2327

m=0JeIr

k
= Z Z a;D;x’(0);

m=0JeIP
if we prove the statements in Equation 3.3.26, then all the terms asD1x?(0)
for J # I drop out, leaving D;p(0) = I'a,.
To prove that Dyx!(0) = I!, write

Dyx! = Di* ... Dirglt ... .zin = Ditglr. . .Dirgir
1 o+ &n n 1+ n n "
3.3.28
= I]'ln' = I

To prove Dyx’(0) = 0 for all J # I, write similarly
Dyx) = D*...Dirgl - ... . zin = Di*zd* - ... Dirzir. 3.3.29

At least one j,, must be different from i,,, either bigger or smaller. If it is
smaller, then we see a higher derivative than the power. and the derivative is 0.
If it is bigger, then there is a positive power of z,, left over after the derivative,
and evaluated at 0, we get 0 again. O

Example 3.3.13 (Coefficients of a polynomlal in terms of its partlal
derivatives at 0). What is D?D3p, where p = 32%23? We have Dop = 9x3z3,
D32p = 18z2x2, and so on, ending with D, Dy D, D;D2p = 36.
In multi-exponent notation, p = 3%z is written 3x(>3, ie., a;x’, where
I = (2,3) and a(23y = 3. The higher partial derivative D?D3p is written
Dy2,3)p. By definition (Equation 3.3.10), when I = (2,3), I! = 213! = 12.
Proposmon 3.3.12 says

ar = —Dlp(O), here, 'D(z 3p(0) = —6 = 3, which is indeed ¢, 3).

In

What if the multi-exponent [ for the hlgher partial derivatives is not the same
as the multi-exponent J for x? As mentioned in the proof of Proposition 3.3.12,
the result is 0. For example, if we take DZDZ of the polynomial p = 3z2z3, so
that I = (2,2) and J = (2, 3), we get 36x,; evaluated at p = 0, this becomes
0. If I > J, the result is also 0; for example, what is D;p(0) when I = (2,3),
p=asx! ay=3,and J = (2,2)? A

' This corresponds to D?D3(3z3r3): already, D3(3r243) =



Although the polynomial in
Equation 3.3.30 is called the Tay-
lor polynomial of f at a, it is eval-
uated at a + h, and its value there
depends on h, the increment to a.

In Equation 3.3.30, remember
that I is a multi-exponent; if you
want to write the polynomial out
in particular cases, it can get com-
plicated, especially if k or n is big.

Example 3.3.16 illustrates no-
tation; it has no mathematical
content.

The first terin -the term of de-
gree m=0---corresponds to the Oth
derivative, i.e., the function f it-
self.

Remember (Definition 3.3.7)
that x! = 'y similarly,
h! = R} ... R}, For instance, if
I =(1,1) we have
if I =(2,0,3) we have

S o0 .
h' = R0 = pin3.

Since the crossed partials of f
are equal,

Doy f(a)hihy =
1
2
1
+ §Dngf(a)h1h2.

D\D:f(a)h,h,

The term 1/1! in the formula for
the Taylor polynomial gives ap-
propriate weights to the various
terms to take into account the ex-
istelice of crossed partials.

This is the big advantage of
multi-exponent notation, which is
increasingly useful as n gets big:
it takes advantage of the existence
of crossed partials.
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Taylor polynomials in higher dimensions

Now we are ready to define Taylor polynomials in higher dimensions, and to
see in what sense they can be used to approximate functions in n variables.

Definition 3.3.14 (C* function). A C* function on U C R" is a function
that is k-times continuously differentiable—i.e., all of its partial derivatives
up to order k exist and are continuous on U.

Definition 3.3.15 (Taylor polynomial in higher dimensions). Let
U C R™ be an open subset and f : U — R be a C* function. Then the
polynomial of degree &,

k
Phaa+ =Y Y LDif(@K,

m=0IleIm

is called the Taylor polynomial of degree k of f at a.

3.3.30

Example 3.3.16 (Multi-exponent notation for a Taylor polynomial of
a function in two variables). Suppose f is a function in two variables. The
formula for the Taylor polynomial of degree 2 of f at ais then

2
. 1 -
Pla@+h) =3 3 =Dif(a)i’! 3331
m=01eTp
1 1 1
= oot oo/ (@)h2hZ + 175 Doy f(a)hihS + 5 Doy S (@)hSh}

terms of degree 1: first derivatives

f(e)
1 1 1
+ g Do f (a)hhg + T Panf(a)hihe + gmiPoaf (a)hfh3,

terms of degree 2: second derivatives

which we can write more simply as
Pfa(a+h) = f(a) + Dy 0)f(a)hs + Dio.1) f(a)hz
1 1
3P0 f(@)h + Dy f(a)hihe + ,:,D(o,z)f(a)h%- 7AN
Remember that D(, o)f corresponds to the partial derivative with respect to
the first variable, D, f, while D(o,1)f corresponds to the partial derivative with

respect to the second variable, D, f. Similarly, Dy, ,, f corresponds to D, D,f =
D2D: f, and D34, f corresponds to D\D,f. &

3.3.32
+



In Example 3.4.5 we will see
how to reduce this computation to
two lines, using rules we will give
for computing Taylor polynomials.
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What are the terms of degree 2 (second derivatives) of the Taylor polynomial
at a, of degree 2, of a function with three variables?!®

Example 3.3.17 (Computing a Taylor polynomial). What is the Taylor
polynomial of degree 2 of the function f ( ;) = sin(z + y?), at ( 8)'7 The first
term, of degree 0, is f (8) =s5in0 = 0. For the terms of degree 1 we have
Daoyf (%) =cos(@+?) and Diyf(Z)=2ycos(z+y?), 3333
0\ _ 0y _
8o Dy 0)f 0) =1and D, f 0)= 0. For the terms of degree 2, we have

D20, f ( Z’;) = —sin(z + ¢?)
Danf (;) = —2ysin(z + y?) 3.3.34

Do) f (;) = 2cos(z + y%) — 4y®sin(z + ¥%);

evaluated at ( 8 ). these give 0, 0, and 2 respectively. So the Taylor polynomial
of degree 2 is

h 2
P:(o) ([h;])=0+h,+0+0+0+§h§. 3335
'\ o

What would we have to add to make this the Taylor polynomial of degree 3
of f at ( )" The third partial derivatives are

Diof (§) = D1Dif (2) = Dy(=sin(z + ) = - cos(a + 1?)

D3 f (:) = D,D3f (;) = Dy(2cos(z + y?) — 4y®sin(z + )]
= 4ysin(z + y?) — 8y sin(z + ) — 8y° cos(z + y?)

2
1%The third term of  Pla(a+h) =Y 3 %D,f(a)ﬁ'

m=0IeIy
DxADz DLD’ D2Ds3
is. D10 f(a)hihs + Dy 0.1y f(a)hrhs + D(o,1,1)f(a)h2hs
D’ 02 D2

+3 D(z 0 o)f(a)’h + D(o 2 o)f(a)hz + - D(o o2 f(a)h3.
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D (£) = DuDDS (5) = Dal-2ysinte +57) = ~2yeos(a +37)

Daaf (;) = D\D3f (;) = Dy (2cos(z +3?) — 4y* sin(z + %))

= —2sin(z + ¥°) ~ 4y® cos(z + ¥?). 3.3.36

At (8) all are 0 except D(z), which is ~1. So the term of degree 3 is
(—=4Nh3 = —th3, and the Taylor polynomial of degree 3 of f at (8) is

P ([Z;D=h,+hg-%h§. A 3337
#(3)

Taylor’s theorem with remain- 5 . inder in higher dimensions
der is discussed in Appendix A.9. Taylor’s theorem without remaind. high

Theorem 3.3.18 (Taylor’s theorem without remainder in higher di-
mensions). (a) The polynomial P, o8+ h) is the unique polynomial of
total degree k which has the same partial derivatives up to order k at a as
f.
ial P¥ h) i i 1 ial of d <k
Note that since we are dividing (b) The polyn?mz ,'.(a + ) is tbe.umque polynomi . o. legree s
by a high power of |h|, the limit that best approximates f when h — 0, in the sense that it is the unique
being 0 means that the numerator polynomial of degree < k such that
is very small.

f(a+h) - Pt (a+h)

im =0. 3.3.38
h—0 [k]*

To prove Theorem 3.3.18 we need the following proposition, which says that
if all the partial derivatives of f up to some order k equal O at a point a, then
the function is small in a neighborhood of a.
We must require that the par-
tial derivatives be continuous;  Proposition 3.3.19 (Size of a function with many vanishing partial
if the “’e"’t’h thekstt:tement isn’t  derivatives). Let U be an open subset of R* and f : U — R be a C*
true even when k = 1, a5 you  pnoion Ifat a € U all partial derivatives up to order k vanish (including

will see if you go back to Equa- . o e s
tion 1.9.9, where f is the function the Oth partial derivative, i.e., f(a)), then

of Example 1.9.3, a function whose
partial derivatives are not contin- 1 f(a + h)
uous. h—-»o Ihl“

3.3.39



The expression in Equation
3.3.41 is D;p(0), where p = Q'}...

We get the equality of Equation
3.3.41 by the same argument as
in the proof of Proposition 3.3.12:
all partial derivatives where I # J
vanish.
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Proof of Theorem 3.3.18. Part (a) follows from Proposition 3.3.12. Con-
sider the polynomial Q% , that, evaluated at h, gives the same result as the

Taylor polynomial P}“. evaluated at a + h:
k
- - 1 =g
Pf,(a+h)=Qfa(h) = ¥ 51D f(a)h’. 3.3.40
m=0JeI
Now consider the Ith derivative of that polynomial, at 0:

=0Q}.

x 1 - 1 ~

Dy (Z > 5iD1f(a) B’.)(0) = 7 Dr f(a)h!(0). 3.341
m=0 JeI,"n R
coefficient of p

Dip(0)
Proposition 3.3.12 says that for a polynomial p, we have Ila; = D;p(0),
where the a; are the coefficients. This gives

Ith coeff. of
Qja
1
11 (Dif(a) = DiQ5a(0) e, Dif(a) =DiQfa(0). 3342
: vy e’
Ia; Dip(0)

Now, when h = 0, then Pf.(a+ h) becomes Pf,(a), s0
D1Q% ,(0) = D1 Pf,(a), so DiPfa(a) = Dif(a); 3.3.43

the partial derivatives of P;‘, . Up to order k, are the same as the partial deriva-
tives of f, up to order k. Therefore all the partials of order at most k of the
difference f(a+h) — P¥,(a + h) vanish.

Part (b) then follows from Proposition 3.3.19. To lighten the notation, denote
by g(a+ h) the difference between f(a + E) and the Taylor polynomial of f at
a. Since all the partials of g up to order k vanish, Proposition 3.3.19 says that

im $@1H) o 33.44
I;—‘O Ihlk

3.4 RuULES FOR COMPUTING TAYLOR POLYNOMIALS

Computing Taylor polynomials is very much like computing derivatives; in
fact, when the degree is 1, they are essentially the same. Just as we have rules for
differentiating sums, products, compositions, etc., there are rules for comput-
ing Taylor polynomials of functions obtained by combining simpler functions.
Since computing partial derivatives rapidly becomes unpleasant, we strongly
recommend making use of these rules.



“Since the computation of suc-
cessive derivatives is always pain-
ful, we recommend (when it is pos-
sible) considering the function as
being obtained from siinpler func-
tions by elementary operations
(sum, product, power, etc.). ...
Taylor polynomials are inost of-
ten a theoretical, not a practi-
cal, tool.”- -Jean Dieudonné, Cal-
cul Infinitésimal

A famous example of an asymp-
totic development is the prime
number theorem, which states that
if m(z) represents the number of
prime numbers smaller than z,
then, for z near oc,

z z
o) = e +o (i)
(Here 7 has nothing to do with
m 2 3.1415.) This was proved in-
dependently in 1898 by Hadamard
and de la Vallé-Poussin, after be-
ing conjectured a century earlier

by Gauss.

Anyone who proves the strong-
er statement,

_[f1 §+e
(z) _/‘ o 1+ 0 (2147).
for all ¢ > 0 will have proved
the Riemann hypothesis, one of
the two most famous outstand-
ing problems of mathematics, the
other being the Poincaré conjec-
ture.
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To write down the Taylor polynomials of some standard functions, we will
use notation invented by Landau to express the idea that one is computing “up
to terms of degree k": the notation o, or “little 0.” While in the equations of
Proposition 3.4.2 the “little 0’ term may look like a remainder, such terms do
not give a precise. computable remainder. Little o provides a way to bound
one function by another function, in an unspecified neighborhood of the point
at which you are compnting the Taylor polynomial.

Definition 38.4.1 (Little o). Little o, denoted o, means “smaller than,” in
the following sense: if h(z) > 0 in some neighborhood of 0, then f € o(k) if
for all € > 0, there exists § > 0 such that if |z| < §, then

1f(z)] < eh(z). 34.1
Alternatively, we can say that f € o(h) if
. f(z)
Jlim ) =% 3.4.2

in some unspecified neighborhood, |f| is smaller than h: as z — 0, |f(z)]
becomes infinitely smaller than h(z).

Very often Taylor polynomials written in terms of bounds with little o are
good enough. But in settings where you want to know the error for some
particular z, something stronger is required: Taylor’s theorem with remainder,
discussed in Appendix A.9.

Remark. In the setting of functions that can be approximated by Taylor
polynomials, the only functions h(z) of interest are the functions |z|* for k > 0.
In other settings, it is interesting to compare nastier functions (not of class C*)
to a broader class of functions, for instance, one might be interested in bounding
functions by functions (z) such as \/[z] or |z|log|z] ... . (An example of what
we mean by “nastier functions” is Equation 5.3.10.) The art of making such
comparisons is called the theory of asymptotic developments. But any place
that a function is C¥ it has to look like an positive integer power of z. A

In Proposition 3.4.2 we list the functions whose Taylor polynomials we expect
you to know from first year calculus. We will write them only near 0, but
by translation they can be written anywhere. Note that in the equations of
Proposition 3.4.2, the Taylor polynomial is the expression on the right-hand
side ezcluding the little o term, which indicates how good an approximation
the Taylor polynomial is to the corresponding function, without giving any
precision.



Equation 3.4.7 is the binomial
formula.

Propositions 3.4.3 and 3.4.4 are
stated for scalar-valued functions,
largely because we only defined
Taylor polynomials for scalar-
valued functions. However, they
are true for vector-valued func-
tions, at least whenever the lat-
ter make sense. For instance, the
product should be replaced by a
dot product (or the product of a
scalar with a vector-valued func-
tion). When composing functions,
of course we can consider only
compositions where the range of
one function is the domain of the
other. The proofs of all these vari-
ants are practically identical to the
proofs given here.
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Proposition 3.4.2 (Taylor polynomials of some standard function.s).
The following formulas give the Taylor polynomials of the corresponding

functions:

2 n
z=1+:::+—;—!+---+'17;!-+o(:::") 343
. 2 2 z?t! 2n+1
sm(z)=z—§+§—~-+(—l)“(m +o(z*"*) 3.44
12 14 xZn 2
cos(x)=1—-2—!+z!-—---+(—l)“m + o(z*") 345
2 n
log(l +7) =2 — % ot (-1)"+lfn— +o(z™+) 3.46
-1 -1 -2
(1+z)"‘=1+m+m(";! )12+m(m 33("' )z3+...
+ mm-1).. n('m —(n-1) z" + o(z"). 3.4.7

The proof is left as Exercise 3.4.1. Note that the Taylor polynomial for sine
contains only odd terms, with alternating signs, while the Taylor polynomial for
cosine contains only even terms, again with alternating signs. All odd functions
(functions f such that f(—z) = — f(z)) have Taylor polynomniials with only odd
terms, and all even functions (functions f such that f(-z) = f(z)) have Taylor
polynomials with only even terms. Note also that in the Taylor polynomial of

log(1 + ), there are no factorials in the denominators.
Now let us see how to combine these Taylor polynomials.
Proposition 3.4.3 (Sums and products of Taylor polynomials). Let

U C R" be open, and f,g: U — R be C* functions. Then f + g and fg are
also of class C*, and their Taylor polynomials are computed as follows.

(a) The Taylor polynomial of the sum is the sum of the Taylor polynomials:
Pf,ga(a+h) = Pf,(a+h)+ Pt (a+h) 348
(b) The Taylor polynomial of the product fg is obtained by taking the
product
Pfu(a+h) Pf,(a+h) 349
and discarding the terms of degree > k.



Please notice that the composi-
tion of two polynomials is a poly-
notnial.

Why does the composition in
Proposition 3.4.4 make sense?
l’f,,(b - u) is a good approxima-
tion to f(b + u) only when Juj is
small. But our requirement that
g(a) = b gnarantees precisely that

Plala~h) = b+ something small

when h is small.  So it is rea-
sonable to substitute that “some-
thing small” for the increment u
when evaluating the polynomial
Phy(b+ u).

Whenever vou are trving to
compute the Taylor polynomial of
a quotient. a good tactic is to fac-
tor out the constant terms (here.
f(a) + f(b)), and apply Equation
3.4.7 to what remains.
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Proposition 3.4.4 (Chain rule for Taylor polynomials). Let UCR®
and V C 2 be open, and g: U — V and f: V — [ be of class C*. Then
fog:U — % is of class C*, and if g(a) = b, then the Taylor polynomial
Pfog',(a + h) is obtained by considering the polynomial

P;.b(ng.a(a + E))

and discarding the terms of degree > k.

Example 3.4.5 (Computing a Taylor polynomial: an easy example).
Let's use these rules to compute the Taylor polynomial of degree 3 of the

fanction f ( ;) = sin(z + y?), at (8). which we already saw in Example
3.3.17. According to Proposition 3.4.4, we simply substitute z + y? for u in
sinu = u — /6 + o(u?), and omit all the terms of degree > 3:
2\3
sin(r + y?) = (z + ¢4°) - (i-"()y—) +o ((J:2 + y’)"’/"’)

3
= r+y?- % +o ((12 + yz):;/z) ) 3.4.10
N s
error term

Taylor polynomial

Presto: half a page becomes two lines.

Example 3.4.6 (Computing a Taylor polynomial: a harder example).
Let U C ¥ be open, and f : U — = be of class C2. Let V C U x U be the
subset of B2 where f(x) + f(y) # 0. Compute the Taylor polynomial of degree
2 of the function F : V -» [, at a point (g) ev.

F(3)=7ar3 @ 341

Choose (g) €V, and set (‘;) = (‘z::)‘) Then

1

F (;: I :f) = (f(a)+ f’(a)u + f”(a)1 2/2 + 0(u2)) + (f(b) + f! "
[ /() + f(b)r?/2 + o(v?))

a constant (14x)~", where z is the [raction in the denominator

= ! 1 .
(f(a) +f0) L f@u+ f"(@)u?/2 + f'(b)v + f(b)v?/2 )+ o(u* +u*).
fla) + f(b)

3.4.12



The fact that

I+ '=1-r+2"~...

is a special case of Equation 3.4.7.
where m = —1. We already saw
this case in Example 0.4.9. where
we had

>
S ar =

n=0

+
+

It follows from Theorem 3.4.7
that if you write the Taylor poly-
nomial of the implicit function
with undetermined coefficients, in-
sert it into the equation specifying
the implicit function, and identify
like terms, you will be able to de-
termine the coefficients.
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The point of this is that the second factor is something of the form (14+z)"! =

1—x+x%—..., leading to
F(310)
_ 1 - fla)u + f(a)u2/2 + f'(b)v + f'(b)v?/2
= f@)+ f(b) T(a) + f(b) 3.4.13
+ (f (e)u + f”(a)u2/2 + f(b)v + f"(b)v2/2) R}
fla) + f(b) ’
In this expression, we should discard the terms of degree > 2, to find
) - 1 faut SO | S+ ) (f(au+ f1(0)0)*
T T@ ) (@ +50) T 2(f@+f®)° T (f(a) + B)°
34.14

Taylor polynomials of implicit functions

Among the functions whose Taylor polynomials we are particularly interested
in are those furnished by the inverse and implicit function theorems. Although
these functious are only known via some limit process like Newton’s method,
their Taylor polynomials can be computed algebraically.

Assume we are in the setting of the implicit function theoremn (Theorem
2.9.10), where we have an imnplicit function g such that

F (8()9’)) =0 for all y in some neighborhood of b.

Theorem 3.4.7 (Taylor polynomials of implicit functions). If F is of
class C* for some k > 1, then g is also of class C*, and its Taylor polynomial
of degree k is the unique polynomial mapping p : R® — R™ of degree at

most k such that
P%, (b+u)
g.b k
btu ) € o(jul®).

P:(a) ( 3.4.15

b

Example 3.4.8 (Taylor polynomial of an implicit function. The equa-

z

tion F | y | = 2%+ 33+ zy2® - 3 = 0 determines 2 as a function of z and y in
z

1

a neighborhood of | 1

1
), since D3 F (1) =3 # 0. Let compute the Taylor
1 1
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polynomial of this implicit function g to degree 2. . We will set

Y 2o (1) = 14 aqu+ agv + 22te? + 0y quv + 2202 4 o(u? + v7).
a(3) 9(l+v) ot arT T b 2 3416

Inserting this expression for z into z2 + y* + zyz* — 3 = 0 leads to

a
(1+u)?+(14+v)3+ (1 +u) (1+v) (l +ayu+ apv + %u’ + ayouv + %v’)—:} € o(u*+v?).

Now it is a matter of nultiplying out and identifying like terms. We get:

The linear terms could have . _a_
been derived from Equation C?Mtant terms: 3-3=0.
2.9.25, which gives in this case Linear terms: )
[Dg((%))] = —[3]7"(3.4] u+3v+u+rv+3autdaw=0 ie, a=-1 a= -3
= —[1/3](3.4] Quadratic terms:
=[=1,-4/3] U2(1+3a|+3af+ ga|,|)+vz(3+3az+3a§+ga2_2)+uv(l+3a|+3a2+6alaz+3a._z).

Identifying the coefficients to 0, and using @, = —1 and a2 = —4/3 now gives
a)) = —2/3, az2 = —26/9, a2 = 10/9. 3.4.17
Finally, this gives the Taylor polynomial of g:

9(2) = 1-z-1)-§r-1)-3 (-1~ (y=17+ g (z-Dr-1)+o (@~ 1 + (v -1,

3.5 QUADRATIC FORMS

A quadratic form is a polynomial all of whose terms are of degree 2. For
instance, z2+y? and ry are quadratic forms in two variables, as is 422+ zy—y?.
The polynomial zz is also a quadratic form (probably in three variables). But
Tyz is not a quadratic form; it is a cubic form in three variables.
Exercises 3.5.1 and 3.5.2 give a
more intrinsic definition of a qua-  pefinition 3.5.1 (Quadratic form). A quadratic form Q : R® > Ris a
dratic form on an abstract vector oy .
space. polynomial in the variables z,,...,z,, all of whose terms are of degree 2.
Although we will spend much of this section working on quadratic forms that
look like 22+ y2 or 42+ zy—y?, the following is a more realistic example. Most
often, the quadratic forms one encounters in practice are integrals of functions,
often functions in higher dimensions.

Example 3.5.2 (An integral as a quadratic form). The integral

1
Qlp) = /0 (p(t))* dt, 35.1



The quadratic form of Exam-
ple 3.5.2 is absolutely fundamental
in physics. The energy of an elec-
tromagnetic field is the integral of
the square of the field, so if p is
the electromagnetic field, the qua-
dratic form Q(p) gives the amount
of energy between 0 and 1.

A famous theorem due to Fer-
mat (Fermat’s little theorem) as-
serts that a prime number p # 2
can be written as a sum of two
squares if and only if the remain-
der after dividing p by 4 is 1. The
proof of this and a world of analo-
gous results (due to Fermat, Eu-
ler, Lagrange, Legendre, Gauss,
Dirichlet, Kronecker, ... ) led to
algebraic number theory and the
development of abstract algebra.

In contrast, no one knows any-
thing about cubic forms. This has
ramifications for the understand-
ing of manifolds. The abstract, al-
gebraic view of a four-dimensional
manifold is that it is a quadratic
form over the integers; because
integral quadratic forms are so
well understood, a great deal of
progress has been made in under-
standing 4-manifolds. But even
the foremost researchers don’t
know how to approach six-dimen-
sional manifolds; that would re-
quire knowing something about
cubic forms.
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where p is the polynomial p(t) = ag + a1t + azt?, is a quadratic form, as we can
confirm by computing the integral:

1
Qp) = / (ap + a1t + a2t2)2 dt
)
1
=/ (a2 + a2t + a3t! + 20901t + 2a00,t” + 2a105t") dt
0
2431! 2511 [2a00,221"  [2a002t®]’  [2a102t%)
-+ 37« (A7), + [, + [ - 2]
[ao]°+[ 3 o+ 5 Jo 2 Jo 3 Jo 4 Jo

H a1
=a§+93—1+052+aoa +2a°aQ -

3.5.2

Above, p is a quadratic polynomial, but Q(p) is a quadratic form if p is a
polynomial of any degree, not just quadratic This is obvious if p is linear: if
a2 = 0, Equation 3.5.2 becomes Q(p) = a + a?/3 + aoa,. Exercise 3.5.3 asks
you to show that Q is a quadratic forin if p is a cubic polynomial. A

In various guises, quadratic forms have been an important part of mathe-
matics since the ancient Greeks. The quadratic formula, always the centerpiece
of high school math, is one aspect.

A much deeper problem is the question: what whole numbers a can be
written in the form 224427 Of course any number a can be written v/a>+02, but
suppose you impose that z and y be whole numbers. For instance, 22 + 12 = 5,
so that 5 can be written as a sum of two squares, but 3 and 7 cannot.

The classification of quadratic forms over the integers is thus a deep and dif-
ficult probleni, though now reasonably well understood. But the classification
over the reals, where we are allowed to extract square roots of positive numbers,
is relatively easy. We will be discussing quadratic forms over the reals. In par-
ticular, we will be interested in classifying such quadratic forms by associating
to each quadratic form two integers, together called its signature.

In Section 3.6 we will see that quadratic forms can be used to analyze the
behavior of a function at a critical point: the signature of a quadratic form will
enable us to determine whether the critical point is a maximum, a minimum or
some flavor of saddle, where the function goes up in some directions and down
in others, as in a mountain pass.

Quadratic forms as sums of squares

Essentially everything there is to say about real quadratic forms is summed up
by Theorem 3.5.3, which says that a quadratic form can be represented as a
sum of squares of linearly independent linear functions of the variables.



We know that m < n. since
there can't be¢ more than n lin-
early independent linear functions
on 2" (Excrcise 2.6.3).

The term “sum of squares” is
traditional; it would perhaps be
more accurate to call it a com-
bination of squares, since some
squares may he subtracted rather
than added.

Of course more than one qua-
dratic form can have the same sig-
nature. The quadratic forms in
Examples 3.5.6 and 3.5.7 helow
both have signature (2, 1).

The key point is that ax? + Bz
can be rewritien

oo ()" ()
2 2
(e ) - ()"

(We have written a lower case and
B upper case hecause in our appli-

cations, a will be a number. but B
will he a linear function.)which
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Theorem 3.5.3 (Quadratic forms as sums of squares). (a) For any
quadratic form Q(X) on R", there exist m linearly independent linear func-
tions a(X), ... .am(X) such that

Q) = (@(®)” +-- + (@)’ — (a1 (R)* = - = (arsa(R)”. 353

(b) The number k of plus signs and the number | of minus signs in a
decomposition like that of Equation 3.5.3 depends only on Q and not on the
specific linear functions chosen.

Definition 3.5.4 (Signature). The