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Preface

Since 1909, when my Differential Geometry of Curves and Surfaces was
published, the tensor calculus, which had previously been invented by
Ricei, was adopted by Finstein in his General Theory of Relativity, and
has been developed further in the study of Riemannian Geometry and
various generalizations of the latter. In the present book the tensor
caleulus of cuclidean 3-space is developed and then generalized so as to
apply to a Riemannian space of any number of dimensions. The tensor
calculus as here developed is applied in Chapters IIT and IV to the
study of diffcrential geometry of surfaces in 3-space, the material treated
being equivalent to what appears in general in the first eight chapters
of my former book with such additions as follow from the introduction
of the concept of parallelism of Levi-Civita and the content of the tensor
calculus.

Of the many exercises in the book some involve merely direct appli-
cation of the text, but most of them constitute an extension of it.

In the writing of the book I have reccived valuable assistance and
criticism from Professor H. P. Robertson and from my students, Messrs.
Isaac Battin, Albert J. Coleman, Douglas R. Crosby, John Giese, Donald
C. May, and in particular, Wayne Johnson.

The excellent line drawings and half-tone illustrations were conceived
and executed by Mr. John H. Lewis.

Princeton, September 27, 1940 LuTHER PFAHLER EISENHART.

In this edition a number of errors have been corrected in the text.
On page 298 there are notes dealing with revisions not incorporated
in the text.

Princeton, April 9, 1947 LuTHER PFAHLER EISENHART.
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CHAPTER 1
Curves in Space

1. CURVES AND SURFACES. THE SUMMATION
CONVENTION

Consider space referred to a set of rectangular axes. Instead of
denoting, as usual, the coordinates with respect to these axes by z, y, z
1 2 3 . . . .
we use z, 27, 2°, since by using the same letter z with different super-
scripts to distinguish the coordinates we are able often to write equa-
tions in a condensed form. Thus we refer to the point of coordinates
«', 2%, 2° as the point z¢, where ¢ takes the values 1,2, 3. We indicate
a particular point by a subscript as for example z1, and when a point
is a general or representative point we use z* without a subscript.
When the axes are recetangular, we call the coordinates cartesian.
In this notation parametric equations of the line through the point
i . . . 1 2 3 *
z1 and with direction numbers u, u°, u* are

(1.1) =z + 't (:=1,2,3).

This means that (1.1) constitute three equations as z takes the values
1,2, 3. Here ¢ is a parameter proportional to the distance between the
points zi and z*, and ¢ is the distance when u® are direction cosines,
that is, when

(1.2) 2 W) =1,
1
which we write also at times in the form
Z b = 1.
An equation of a plane is
(1.3) ar' + art + a2’ +a =0,

where the a’s are constants. In order to write this equation in con-
densed form we make use of the so-called summation convention that
when the same index appears in a term as a subscript and a superseript
this term stands for the sum of the terms obtained by giving the index

*Sce C. G., p. 85. A reference of this type is to the author’s Coordinate Geom-
etry, Ginn and Company, 1939.

1



2 CURVES IN SPACE [CH. I

each of its values, in the present case the values 1, 2, 3. By means of
this convention equation (1.3) is written

(1.4) ax' + a = 0.

This convention is used throughout the book. At first it may be
troublesome for the reader, but in a short time he will find it to be
preferable to using the summation sign in such cases. A repeated index
indicating summation is called a dummy tndex. Any letter may be used
as a dummy index, but when a term involves more than one such index
it is necessary to use different dummy indices. Any index which is not
a dummy index and thus appears only once in a term is called a free
indez.
Since two intersecting planes meet in a line, the two equations

(1.5) az' +a=0ba +b=0,
that is,
oz’ + e’ + ar® + a = 0, bir' + box® + b’ + b = 0,

arc equations of a line, provided that the ratios a;/b1, as/bs, as/bs are
not equal; if these ratios are equal the planes are coincident or parallel
according as a/b is equal to the above ratios or not.*

An equation (1.4) is an equation of a plane in the sense that it picks
out of space a two dimensional set of points, this set having the property
that every point of a line joining any two points of the set is a point of
the set; this is Euclid’s geometric definition of a plane. In like manner
any functional relation between the coordinates, denoted by

(1.6) f@, & 7’) =0,

picks out a two dimensional set of points, by which we mean that only
two of the coordinates of a point of the locus may be chosen arbitrarily.
The locus of points whose coordinates satisfy an equation of the form
(1.6) is called a surface. Thus

(1.7) 22’z + 2077 +b =0,

where the a’s and b are constants, is an cquation of a sphere with center
at the point —a; and radius r given by

P = E aia; — b.t

* C. G., pp. 100, 101.
t C. G, p. 128, Ex. 14.
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Whenever throughout this book we consider any function, it is under-
stood that the function is considered in a domain within which it is
continuous in all its variables, together with such of its derivatives as
are involved in the discussion.

Since an equation which does not involve one of the coordinates does
not impose any restriction on this coordinate, such an equation is an
equation of a cylinder. Thus

(1.8) f@', 2% =0

is an equation of a cylinder whose generators, or elements, are parallel
to the z’-axis, each generator being determined by a pair of values
satisfying (1.8). If 21, zi are two such values, the generator is defined
by the two equations

2t = 21, 2 = a2},

these being a special form of (1.5) in this case. It does not follow that
when all three coordinates enter as in (1.6) that the surface is not a
cylinder, but that if it is a eylinder the generators are not parallel to
one of the coordinate axes. Later (§12) there will be given a means
of determining whether an cquation (1.6) is an equation of a cylinder.

Two independent equations

(19) fl(xly 12; x3) = 0’ f2(x1) zzy z3) =0

define a curve, a one dimensional locus, for, only one of the coordinates
of a point on the locus may be chosen arbitrarily. A line is a curve,
its two equations being lincar, as for example in (1.5). A curve, being
one dimensional, may be defined also by three equations involving a
parameter, as

(1.10) f=10,

which are called parametric equations of the curve. These are a gen-
eralization of equations (1.1). The functions f* in (1.10) are under-
stood to be single-valued and such that for no value of ¢ are all the first
derivatives of f* equal to zero; the significance of this requirement
appears in §3.

If (u) is a single-valued function of u, and one replaces ¢ in equations
(1.10) by t = ¢(u), there is obtained another set of parametric equa-
tions of the curve, namely

(1.11) 2 = file(w) = ¢'(u).

[

Since all the first derivatives Z——-Z are not to be zero for a value of u,
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. .. d .
there is the added condition on ¢ that E% # 0; this means that the
equation ¢ = ¢(u) has a unique inverse.*
Thus the number of sets of parametric equations of a particular curve
is of the order of any function satisfying the above condition. When,
in particular, one of the coordinates, say z°, is taken as parameter, the

equations are
(1.12)  =f'@a"), L =7E") =47,

the forms of the f’s depending, of course, upon the eurve. From the
form of (1.12) it follows that the curve is the intersection of the two
cylinders whose respective equations arc the first two of (1.12).

When all the points of a curve do not lie in a plane, the curve is said
to be skew or twisted. The condition that a curve with equations (1.10)
be a plane curve, that is, all of its points lic in a plane, is, as follows
from (1.4), that the functions f* be such that

(1.13) aff 4+ a =0,
that is
af + aof + a:f + a =0,

where the a's are constants. Differentiating equation (1.13) three
times with respect to ¢ and denoting differentiation by primes, we ob-
tain the three equations

(1.14) af'=0, af =0 af =0.
In order that the a’s be not all zero, we must havef
TR S
(1.15) flu fzu fsll =0.
fllll lell falll

Conversely, we shall show that if three functions fi(f) satisfy this
condition, constants a; and a can be found satisfying (1.13); and conse-
quently that the curve z° = f'(f) is plane. If (1.15) is satisfied there
exist quantities b;, ordinarily functions of ¢, such that
(1.16) bf =0,  bf =0 bf =04%

* Fine, 1927, 1, p. 55. References of this type are to the Bibliography at the
end of the book.

tC. G, p. 114.

tC. G., p. 116.
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Assuming that the b’s in these equations are functions of ¢ and differ-
entiating the first two of these equations with respect to ¢, the resulting
equations are reducible to

(1.16") bif =0, biff =o.

The b’s in the first two of (1.16) arc proportional respectively to the
cofactors of the clements of the last row in the determinant (1.15).*
The same is true of the b”’s in (1.16’). Consequently we have

If we denote the common value of these ratios by ¢'(f), we have on
integration

b.‘ = a.-e",

where the a’s are constants. Substituting in the first of (1.16) and
discarding the factor ¢®, we obtain

aift = 0.

On integrating this equation with respect to ¢, we obtain an equation
of the form (1.13). Hence we havef

(1.1] A curve with equations (1.10) is a plane curve, if and only if the
Sunctions f* satisfy equation (1.15).

When for the curve with the equations

(1.17) =ct, o =ocff, 2 =ct

the expressions for z are substituted in an equation of a plane (1.4),
we obtain a cubic equation in ¢ for each of whose roots the corresponding
point of the curve lies in the given plane. The curve (1.17) is called a
twisted cubic. When a curve meets a general plane in n points, it is
called a twisted curve of the n*® order.

*C. G, p. 104.

t In the numbering of an equation or equations, as in (1.3), the number pre-
ceding the period is that of the section and the second number specifies the par-
ticular equation or equations. The same applies to the number of a theorem but
in this case brackets are used in place of parentheses. This notation is used
throughout the book.
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From (1.17) we have that the projections of the curve upon the
coordinate planes have the respective equations

cdrf — @)’ =0 =0,
(1.18) ez’ — cs(z)® = 0, =0,
a@) - aE) =0, 2 =0.

These curves are shown schematically as follows for positive values of
the c’s:

B
P
2

Fia. 1

From (1.18) it is seen that the curve is the intersection of the three
cylinders whose equations are the first of each pair of equations
(1.18), the generators of these cylinders being parallel to the z’-,
z’- and z'-axes respectively.

It will be found that many formulas and equations can be put in
simpler form by means of quantities e;jx and e'” defined as follows:

0 when two or threec of the indices have the same

values;
(1.19) esjk| _ /1 when the respective indices have the values 1, 2, 3;
' e* 72,3 10r3,1,2;

—1 when the respective indices have the values 1, 3, 2;
3,2,10r2,1,3.

Consider, for example, the two equations
ez’ = 0, a.-y" = 0,

from which it follows that*

2
(120) a:02:a3 = :

v ¢ vy Y
*C. G., p. 104.
»
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Thus, denoting by 1/r the factor of proportionality, we have
ray = epd’yt = ey’ + end’y’ = 2y’ — oy,
and consequently (1.20) may be written
ra; = e;px’y".

Applying this process to the last two of equations (1.14) we have

J? e

ra; = eqnf 17,

and when these expressions for a; are substituted in the first of equations
(1.14) we obtain

(1.21) e f T =0,

which is equation (1.15), as one verifies by forming the sum indicated
by the summation convention as each of the indices independently takes
the values 1, 2, 3.

EXERCISES

1. Parametric equations of a line normal to the plane (1.4) and passing through
a point of the curve (1.10) are

(i) X¥=['0 + a,

where u i8 a paramcter; as ¢ and u take all values equations (i) give the coordi~
nates of points on the cylinder whose generators pass through points of the curve
and are normal to the plane (1.4); when in equations (i) we put

1 .
=T {' ;. ’
u E (a (a ’Z a,f’)

the resulting equations are parametric equations of the projection of the curve
(1.10) on the plane (1.4).
2. The equation

cacs(tils + tats + tat1)xt — cics(t + ta + £3)x? 4 cicax® — cicaCstilats = 0

is an equation of the plane through three points of the twisted cubic (1.17) with
parameterst; , tzand ¢; .
3. The plane

3eaciart — 3ciczax? + c1c22® — cicocsad = 0

for each value of the constant a meets the curve (1.17) in three coincident points
at the point ¢t = a.

4. There pass through a given point z{ in space three planes with equations
of the form of the equation of Ex. 3, and if a,, a2, as denote the corresponding
values of a, we have

1 2 3
atata="2 aotantas= &, 10203 = ic-1;
%] C Cs

13
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from this result and Ex. 2 it follows that an equation of the plane through the
three points in which these three planes meet the cubic (each in three coincident
points) is

3cs(zixt — zl2?) + cica(2® — 23) = 0,

which plane passes through the point z¥ .

5. Four planes determined by a variable chord of the cubic (1.17) and four
fixed points of the cubic are in constant cross-ratio.

6. The curve

z! = a cos t, z? = q sin (, 23 = b sin 2t

is the intersection of a circular cylinder and a hyperbolic paraboloid.
7. Determine f(t) so that the curve

! = a cos (, z? = a sin (, = f(t)

shall be plane; what is the form of the curve?
8. By means of the quantities e and e¢”* one has
a;y Q2 dig
an an @n|= e auapar = € a;ayas,
a1 Qs a3
and, if the determinant is denoted by a, then

€k @ = €™ Gy amjan .
9. Show that

Z eijnerih = 8ikdj1 — 81 bk,
h
where
8 = 1 or 0 according as i = jor i # j;
from this result it follows that

Z (esjnextn + ejkneitn + exinejm) = 0.
W

2. LENGTH OF A CURVE. LINEAR ELEMENT

Consider a curve with the equations

(2.1) 7' = f(1),

and the arc of the curve between the points Py and P, for which the
parametric values are {y and f, respectively. Consider also inter-
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mediate points Py, P;, ... for which the values of the parameter are
ti, ta, «++ . The length I; of the chord PyPxy: is given by

= VS ) = F
= Vi[f'l(gjﬁ (tk+1 — 1)
where Eo= b + 0ty — t) 0<6 <1,

the second expression for I following from the mean value theorem of
the differential calculus, where the prime denotes the derivative. As
the number of intermediate points P increases indefinitely and each
i approaches zero, the limit of the sum of the Ii’s is the definite integral

. ,,
“ dft dfé
..... t.
fzo /‘/Z dt dt d
By definition this is the length of the arc PoP,. If then s denotes the

length of the are from the point of parameter ¢, to a representative
point of parameter ¢, we have

= [T

This gives s as a function of 4; we denote it by
(2.3) s = ¢(t),

where ¢ involves {, also.
From (2.2) we have

(2.4) ds’ = (dz")* + (dzD)? + (@2’ = Z dx' dx’,

where dz* = (C%Z dt. As thus expressed ds is called the element of length,

or linear element, of the curve.

As remarked in §1 there is a high degree of arbitrariness in the choice
of a parameter for a curve. In what follows we shall often find that it
adds to the simplicity of a result, if the arc s is taken as parameter.
From (2.2) we have

[2.1] For a curve with equations (2.1) the parameter t is the length of the
curve measured from a given point, if and only of

25 L
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It is evident that s is defined by (2.2) except when

daf* df* _
(2.6) ); =

Since it is understood now, and in what follows, that we are considering
only real functions f* of a real parameter, that is, one assuming only
real values, there is no real solution of (2.6) other than f* constant, that
is, the locus is a point. If we admit complex functions of a complex
parameter, the curves for which (2.6) hold are called curves of length
zero, or minimal curves. There are cases in which it is advisable to
consider such curves, but unless otherwise stated they are not involved
in what follows.

Consider a curve defined in terms of the arc s as parameter. Let P
and P of coordinates z* and Z* be points for which the parameter has
the values s and s + e. By Taylor’s theorem we have

@1 &= et e e (= 1,29).
Here and in what follows an z with one or more primes means that the
arc s is the parameter and the primes indicate derivatives with respect

to s; if the parameter is other than s, we write % and similarly for

higher derivatives.
In this notation (2.5) is

2.8) 22 =1
Differentiating this equation with respect to s, we have

(2.9) > =0
7
If we denote by I the length of the chord PP, it follows from (2.7),
(2.8) and (2.9) that

d ‘u/

(2.10) !_z ST @ = =1+ D+

From this result it follows that as P approaches P along the curve the
ratio of the chord to the arc e approaches unity as limit.
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3. TANGENT TO A CURVE. ORDER OF CONTACT.
OSCULATING PLANE

The quantities &' — a;‘ in (_2.10) are direction numbers of the line
through P and P, and (' — z°)/l are its direction cosines. From (2.7)
and (2.10) it follows that

x .
= lim

Since by definition the limiting position of the line through P and P
as P approaches P along the curve is the tangent to the curve at P, we
have

[3.1] When for a curve x* are expressed in terms of the length of the arc
from a given point as parameter, the quantities x* are direction cosines of
the tangent at a point z'.

If 2* for a curve are expressed in terms of a parameter ¢, the quantities
T

% are direction numbers of the tangent. Thus the tangent is not

defined if all of these quantitics are zero, which possibility was excluded
in §1.

As a result of this theorem we have as parametric equations of the
tangent to a curve at a point '

(3.1) X'=z'+2"4q,

where X" are coordinates of a representative point on the tangent and
d is the distance from the point z° to the point X** We define positive
sense along the tangent as that for which d in (3.1) is positive, this
means that a half line drawn from the origin parallel to the tangent
makes with the coordinate axes angles whose cosines are z*. This
same convention applies to any line associated with a curve when direc-
tion cosines of such a line are given in terms of quantities defining the
curve.t

*C. G, p. 8.

t Here we define sense by means of direction cosines, which means that a line
has two sets of direction cosines, differing in sign. This is not the convention
adopted in C. G., pp. 77, 78.
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1f we denote by o' the direction cosines of the tangent, we have from
the above result and (2.2), when the parameter ¢ is any whatever,

dx'

/‘/Z dx dx‘.
dtdt
The plane through a point of a curve and normal to the tangent at

the point is called the normal plane at the point; an equation of this
plane is

(3.3) 2 (X' =aa' =0,

3.2)

where o are given by (3.2).*
Parametric equations of any line through the point z* of a curve are

(3.4) X' =z +
where u' are direction cosines of the line. The square of the distance
of the point P(z') from this line is given byt

-1 1 =2 2.2
T —x . ‘

|
d =]

[
)
)
w

(3.5)

When the point P is a point of the curve, its coordinates being given
by (2.7), the expression (3.5) becomes

= [(x“zf — e + - ( Vit — 2 ) é

» 2
(3()) _+_ |.13 (x“" u2 _ leu ’ul)éa + . :|

H1E = e+ P - et

Thus d is of the order of € unless the u' are proportional to z''; since in
the latter case both of these scts of quantities are by theorem [3.1]
direction cosines, it follows that u* = ez’ where e is +1 or —1, and
that the distance of a point on the curve nearby z* is of the second, or

*C. G., p. 92.
tC. G, p. 96.
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higher, order. The distance is of the third order if also =" are pro-
portional to z*, and of the (n + 1)** order if =", """, ..., 2™ are
proportional to . In general, n = 1 and the contact of the tangent
with the curve is said to be of the first order; for n > 1, the contact is
of the n*® order.

If the equations of the curve are in terms of a general parameter ¢,

as (2.1), we have since ¢ is a function of s

) i 2, 1 2 3 2 i 2
@n & _ddt d'z _dx(dt) dz' d’t

ds  dt ds’ dst  dit \ds dt ds’ T

Hence the tangent at a point ¢ for which ¢ satisfies for some value of n
(> 1), if any, the equations

d'zt d dfd
i dE_ dp
dat  dat dD?
dat At dt
has contact of the n*® order.

By definition the osculating plane of a curve at a point P(z’) is the
limiting position of the plane determined by the tangent at P and a
point P of the curve as P approaches P along the curve. Since the
plane passes through P its equation is of the form

(3.8)

(3.9) a(X' — z) =0,

where a; being direction numbers of the normal to the plane must be
such that

(3.10) az’ = 0.

Equations (3.9) and (3.10) express the condition that the tangent at P

lies in the plane.* Substituting in (3.9) for X* the expressions (2.7)
for ' and making use of (3.10) we obtain

1 g 1 e _
(311) ai(éx +|‘3x €+ )—0

As P approaches P, that is, as . approaches zero, we have in the limit

(3.12) az’ = 0.

*C. G., p. 120.
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In order that equations (3.9), (3.10) and (3.12) be satisfied by a’s not
all zero, we must have*

X' -2 X*-4 Xa-xa'
(3.13) 7 % 2 = e(X' — 2’ "’

177 911 377
x z x

=()’

which is an equation of the osculating plane at the point z°.
When the curve is defined by (2.1) in terms of a general parameter ¢,
it follows from (3.7) that an equation of the osculating plane is

X' -2 XP—2 X*— 2

(3.14) dt dt dt = 0.
ds dtat a2’
dt? e e

If the tangent at a point has contact of higher order than the first,
equation (3.14) is satisfied identically. In this case from (3.11) and
(3.7) it follows that an cquation of the osculating planc at a point for
which the tangent has contact of order n — 1 is

X'-4d xX*-2 X*-4°

@
dt dt da | =0.

e 4

dt» dtr dir

When a curve is plane and its plane is taken for the plane z° = 0,
equation (3.13) is equivalent to 2° = 0, that is, the osculating plane
of a plane curve is the plane of the curve. Conversely, when all the
osculating planes of a curve coincide, the curve is a plane curve since
all of the points of the curve lie in this plane.

EXERCISES
1. The curve
! = a cos ¢, z? = @ 8in t, ¥ = bt
lies on a circular cylinder (see Fig. 2); find the dircction cosines of the tangents

to the curve and show that the tangent makes a constant angle with the generators
of the cylinder; the curve is called a circular heliz.

*C. G., pp. 115, 121.
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Fi1a. 2. Circular helix

2. By definition a cylindrical heliz is a curve lying on a cylinder and which
meets all the generators under the same angle; if this constant angle is denoted
by 6,

= f1(t), 2*=f(t), 2*=cotd f V¥ (P,

are parametric equations of a cylindrical helix; is any cylindrical helix so defined?

3. By definition a conical heliz is a curve lying on a cone which meets all the
generators of the cone under the same angle; if this angle is denoted by 6, z* = fi(¢)
are equations of a conical helix, if the functions f* satisfy the conditions

ar(fH? + as(fM)? + as(f*)? = 0,

2 S = coso \/;J"J" VE‘f"f".

where the a’s are constants not all of the same sign; is any conical helix so defined?
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4. Find an equation of the osculating plane of the twisted cubic (1.17) and
compare the result with Ex. 3 of §1. -

5. The distance of a point P on a curve from the osculating planc at a nearby
point P is of the third order at lcast in the are PP; and for any other plane through
P not containing the tangent at P the distance is of the first order; discuss the
case of planes containing the tangent at P.

6. The curve with the equations

o = %(1 - ") + Y — S0,
2= 2(1 + ) = i) + 4w,
@ = {f"() — [,

where i = /=1, f(t) is any function of ¢, and primes indicate differentiation
with respect to the parameter ¢, is a minimal curve, and any minimal curve is so
defined; discuss the case when f(¢) = ¢t + c¢at + c3, where the ¢’s are constants,
7. If at every point of a curve the tangent has contact of the second order
with the curve, the latter is a straight line.
8. In terms of the arc s as parameter equations of the cireular helix (Ex. 1) are

s 8
- s 2 = in — -, 3= — T,
Va + 1 aSJn\/az+b2 v Va + b

each osculating plane of the helix meets the circular cylinder on which it lies
in an ellipse.
9. The curve

' = a cos k2

It = a 8in? ¢, 22 = @ 8in { cos ¢, 28 = acost

is a spherical curve, that is, lies on a sphere; its normal planes pass through the
center of the sphere; the curve has a double point at (a, 0, 0), and the tangents
to the curve at this point are perpendicular to one another.

10. Find an equation of the osculating plane of the curve

! = acost + bsint, 22 = asint + b cost, 28 = ¢ sin 2¢;

find also two equations of the form (1.9) as equations of the curve.

‘/4. CURVATURE. PRINCIPAL NORMAL. CIRCLE OF
CURVATURE

Let P and P be two points on a curve C, As the length of the arc
between these points, and Af the angle of the tangents at P and P,
that is, the angle between two half-lines through any point and having
Al
: As
proaches zero, measures the rate of change of the direction of the
tangent at P. This limiting value, denoted by «, is called the curvature
of C at P, and its reciprocal, denoted by p, the radius of curvature; from

the positive senses of the two tangents. The limit of as As ap-
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their definition it follows that x and p are non-negative. When C is a
plane curve, the definition of curvature here given is that usually given
in the differential calculus.

In order to derive in terms of s an expression for « in terms of the
quantities defining a curve C, we consider the auxiliary curve I' with
the equations
$ dx'
(4.1) X' = L
which in consequence of (2.8) is a curve upon the sphere of unit radius
with center at the origin. The radius of the sphere at any point of T
is parallel to the tangent to C at the corresponding point, that is, the
point with this tangent. The curve T is called the spherical indicatriz
of the tangents to C. 1f we denote by ¢ the arc of I', it follows from
(4.1) and (2.4) that

2, 4 g2 t
(4.2) ded

T ds? ds2

From the definition of « we have

xk = lim
As=0

Aoi . 'A() As|
—| = lim
Ag As

Since A8 is the length of the are of the great circle between the points
on the unit sphere corresponding to P and P on C, the limit of 40 is

unity in consequence of the result at the closc of §2 and the fact that
Af and As have a common chord. Consequently as follows from (4.2)

d*z’ d*a

4.3
(4.3) 1/ 2

For a straight line, with equations (1.1) in which ¢ is the are, one has
x = 0, which is evident also geometrically from the fact that the tangent
to a straight line at each point is the line itself. In order to obtain the
expression for « when the equations of the curve arc in terms of a
general parameter ¢, we observe that from (2.3) we have

dt 1 d*t o

(4.4) s o gt = g

where primes denote differentiation with respect to ¢, and from (2.2)

(4.5) F=TI e =2



18 CURVES IN SPACE [Cu. I

the second following from the differentiation of the first. Substituting
in (4.3) from (3.7) and making use of (4.4) and (4.5), we obtain

d'ﬁ—vﬁ—
> (‘de) — "

(4.6) K= S
12

From (2.9) it follows that the line through the point z* of a curve

2,1

and with direction numbers is perpendicular to the tangent at the

ds?
point, and thus is one of an endless number of normals to the curve at
the point. If we define quantities 8* by

dz.'l?.. 3
(4-7) dNS? = kB,

it follows from (4.3) that B* are direction cosines of the positive sense
of this normal.* Its equations are

(4.8) X' =z + B4,

where d denotes the distance of the point X' from the point z* of the
curve. This normal is called the principal normal of the curve at the
point. When the expressions (4.8) are substituted in the equation
(3.13) of the osculating plane, the cquation is satisfied for all values of d,
in consequence of (4.7), that is, the principal normal at a point lies in
the osculating plane at the point. Hence the osculating planc at a
point of a skew curve is the plane determined by the tangent and
principal normal of the curve at the point.
The circle in the osculating plane with center at the point

(4.9) X'=2' 48 =2+ %B‘

and of radius p is called the circle of curvature of the curve at the point
z* and its center the center of curvature of the curve for the point z’.
Evidently this circle and the curve have a common tangent at z'.

EXERCISE

1. When a curve is defined in terms of a general parameter ¢ by (1.10), the
direction cosines 8° of the principal normal arc given by
T P rei’ 1pi’
B =— (" — "),
1

where ¢(t) is defined by (2.3), and primes denote differentiation with respect to t.

* See the statement about positive sense after equations (3.1).
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2. For a cylindrical helix, as defined in §3, Ex. 2,

o) =csc oV ()24 (2),  p=0,

K= _]_' =¢e (;s_(:;o (fllfg'l _ fl'lﬁl),
P "
where e is +1 or —1 so that « is positive.

3. Let P be a point of a curve; a circle C with a common tangent to the curve
at I’ is determined by requiring that it pass through another point Q of the
curve; the limiting cirele as Q approaches P along the curve is the circle of curva-
ture of the given curve at P.

4. Find the function ¢(t) so that the curve

! = f¢(t) sin ¢ dt, = f(p(l) cos ¢ dt, 7 = f¢(t) tan ¢ dt

shall be a curve of constant curvature.
5. Determine the form of the function ¢(t) so that the principal normals to
the curve

! = {, z? = 8in ¢, = o(1)
are parallel to the z2z3-plane.

6. The circle of curvature of a curve at a point of the curve has contact of the
second order with the curve; every other circle which lies in the osculating plane
and is tangent to the curve has contact of the first order; accordingly a circle of
curvature is called an osculating circle of the curve.

7. Find equations of the surface consisting of the principal normals of a circu-
lar helix (see §3, Iox. 1), and show that the locus of the center of curvature is a
circular helix.

8. Find the coordinates of the center of curvature of the curve

z! = q cos ¢, z? = q sin (, z¥ = a cos 2t.

5. BINORMAL. TORSION

The normal to a curve at a point P which is normal to the osculating
plane at P is called the binormal at P. Evidently it is perpendicular
to the tangent and to the principal normal at P. From (3.13) it follows
that

o g T VY

9t grr |? 377 100 (? 1 g
T x z T
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are direction numbers of the binormal. In order to find direction co-
sines of the binormal we make use of the identity

in’xi’ Exi'xi"
' i

Z it E R
(5.1) ! '

The reader should verify that this is an identity whatever be the quanti-
ties involved without any use of the primes as indicating derivatives.
When in particular the quantities 2" and z°”" have the meaning aseribed
to them in §2, it follows from (2.8), (2.9) and (4.3) that the left-hand
member of (5.1) is equal to . Hence direction cosines y* of the bi-
normal and the positive sense along the latter are defined by

r

1 _ p(xw N 9:31), V= p(le 2 - B xl’)’

(5-2) ’ 1’ rr ’
73 — p(xl P L ).
These expressions may be written in the form

’r irr

(5.3) v =@ "~ 2 ),

with the understanding that ¢, j, k£ take the values 1, 2, 3 cyclically.
Hence equations of the binormal are

(5.4) Xi=z2'4+4'd

The significance of the choice of sign in (5.2) is scen when we observe
that the expressions (3.2), (4.7) and (5.2) for o', 8°, and v respectively
are such that

al a2 aa
(5.5) g 8 B =+

71 72 73
as is readily verified since the right-hand member of (5.1) is cqual to «°.
The result (5.5) means that the positive directions of the tangent,

principal normal and binormal of a curve at cach point of a curve have
the mutual orientation of the z'-, z’- and z*-axes respectively (Fig. 3).*

*C. G., p. 162.
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From the equations

Zaiﬁi=0, Za;7(=0, 26“”{:0’

Lat=1, XT=1 X4 =1

and from (5.5) it follows that cach element in the determinant equation
(5.5) is equal to its cofactor.* This result may be written

(B7) o =g = 8%, B =7 -+, ¥ =B - o'

(5.6)

as 1, j, k take the values 1, 2, 3 cyclically.

bn.

F1a. 3

From the definition of the binormal it follows that the binormals of
a plane curve are the normals to the plane at points of the curve, and
consequently have the same direction at all points of the curve. For a
skew curve the direction of the binormal changes. If Af is the angle
of the positive directions of the binormals at two points of parameters

sand s 4+ As, the limit of 2—2 as As approaches zero measures the rate

of change of the direction of the binormal at the point of parameter s,
and consequently the rate of change of the orientation of the osculating

*C. G, p. 161,
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plane. This limit is called the {orsion of the curve and is denoted by 7.
Sometimes the curvature, as defined in §4, and the torsion are called
the first and second curvatures respectively of the curve.

In order to obtain an expression for 7, we introduce the spherical
indicatriz of the binormal, that is, the curve defined by

(5.8) X' =4t

Evidently this is a curve upon the unit sphere with center at the origin,
and such that the radius of the sphere to any point of the curve is
parallel to the positive binormal to the given curve at the point with
the same value of the parameter s. The linear element of the indicatrix
;s given by

dv' d’y
E ds ds

By an argument similar to that used in §4 we have

dvy* d'y
(5.9) 2 ds ds’

1]

In order to find expressions for — & we differentiate with respect to

d )
s the equations

27‘7‘ =1 2d¥=0,

and obtain
(5.10) Z‘,y"d—“’i= Z<a"ﬂ+7‘§‘£> = 0.

' T ds ’ : ds ds
From (4.7) and (3.2) we have
(5.11) do’ _ 8,

ds

from which and the third of (5.6) it follows that the second of (5.10)
reduces to 2_ « 3—7 = (0. From this equation and the first of (5.10)

we have* in consequence of the second set of equations (5.7) that
1

% is proportional to 8, and from (5.9) that the factor of proportionality

*C. G., p. 104.



§51 BINORMAL. TORSION 23

is 7 or —7. Thus far 7 is defined by (5.9) to within sign; we choose the
sign so that we have

dy'
ds
We are now in position to obtain an expression for 7 in terms of the

derivatives of z'. In fact, if we differentiate (5.3) with respect to s,
the result may be written in consequence of (5.12)

ldp

(5.12) = 78",

1/3'. 7 + oz ik g ,,,zk,)-

If this equation is multipliod by 8° and summed with respect to %, the
result becomes in consequence of the third of (5.6) and (4.7)

. o ,
T T z*
L e g g
(5.13) T= -5z T T
K
xl x2 z.’i

From the definition of torsion it follows that 7 is zero for a plane
curve. Conversely, if 7 is zero at every point of a curve, the latter is
plane in accordance with theorem [1.1] and equation (5.13). At points
of a curve, if any, for which the determinant in (5.13) is zero the osculat-
ing plane is said to be stationary.

EXERCISES

1. When a curve is defined in terms of a general parameter ¢ by (1.10), the
direction cosines 4* of the binormal are given by

‘ylzﬁ;’,(ﬂlfkn —fi”fk)
14

as 1, j, k take the values 1, 2, 3 eyclically, where ¢(t) is defined by (2.3) and primes
denote differentiation with respect to ¢; also the torsion of the curve is given by

fl, j,zl f.'il

1 i ” X

r = _;2.;76 I /3 i
/l’,, lell fa',,

2. The curvature and torsion of a circular helix, as defined in §3, Ex. 1, are
constants, namely
a -b
T= .
a + ¥’ at + b?

K =
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3. For a cylindrical helix, as defined in §3, Ex. 2,
cot 0 (jl’ﬁll — fl"fl’)x
T T (0 + (R
from which result and that of §4, Ex. 2 it follows that

T = —ex cot 0,

that is, x/7 is a constant.
4. Find the curvature and torsion of the curve

t=¢, at=c¢", T =+/2¢
5. The curvature and torsion of the curve
zt = a3t — 13), 22 = 3al?, 28 = a3t + t9)
are given by
1

K= —7 =

6. ¥ind the points of the curve of §3, Ex. 9 at which the torsion is equal to zero.

7. When two curves are symmetric with respect to a point, or a plane, their
curvatures at corresponding points are equal and their torsions differ in sign.

8. A nccessary and sufficient condition that the cirele of curvature have con-

d
tact of the third order with the curve at a point is that at the point r = 0, :if =0
s

(see §4, Ex. 6); at such a point the circle is said to superosculate the curve.
9. If 6 and ¢ are the angles made with a fixed line in space by the tangent
and binormal respectively of a curve,

singdy
sin ¢ dop h

K
T
T

10. A necessary and sufficient condition that the principal normals of a curve
are parallel to a fixed plane is that the curve be a cylindrical helix.
11. If the curve z*(s) is a cylindrical helix so also is the curve with the equations

Xt = pai—fﬂ‘ds.
12. The curvature and torsion of the curve
Z! = ff(t) sin ¢ dt, 22 = ff(t) cosidt, z*= ff(t)'p(t) dt

are given by

Lo ity L _¥ItHe

W+ * Sl +e e

K =

from this result it follows that the curves for which « or 7 is a constant can be
found by quadratures.



§6) THE FRENET FORMULAS 25

6. THE FRENET FORMULAS. THE FORM OF A CURVE
IN THE NEIGHBORHOOD OF A POINT

If the second set of equations (5.7), that is,
i ’Yialc _ ’Ykaj
as 1, j, k take the values 1, 2, 3 cyclically, are differentiated with respect
to s, the result is reducible by (5.11), (5.12) and (5.7) to
16" ; ; : : P
B — 8 =) 1@ — B o) = —(ea’ + 7).
Gathering together this result, (5.11), and (5.12), we have the following
set of equations fundamental in the theory of skew curves and called
the Frenet formulas:
dg’

do’ i ; ; :
> = «f — = —(ka' + 7v"), &= 6.

(6.1) s = K &

. i . 1 i
On replacing B* in the second set of equations (6.1) by — ' (see
K

equations (4.7)), the resulting equations are reducible to

(6.2) " = —ka’ + d B — kry'.
ds
Differentiating with respect to s and making use of (6.1), we obtain
T 3 dl(2 i d* 3 2) i d dK] i
(6.3) = = 2-(—1501 —{—(d—s—z K kt ) B CTS(KT)-{-T[[S v

We observed following equation (5.5) that the positive directions of
the tangent, principal normal and binormal at each point of a curve
have the mutual orientation of the coordinate axes. If then we take
for coordinate axes these lines at a point Py of a curve and measure
the arc from the point, we have at P,

(6.4) o =01, =28, =48,

where 8 are Kronecker deltas defined by

(6.5) 8! = 1 or0according as = jor< # j.

By Maclaurin’s theorem we have that the coordinates z* of any point
on the curve are given by

1, o

TG

6.6) z'= (z")os + %(x‘”)os’ + —é(av’.m)os3 +

K
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where a subscript zero indicates the value of the quantity at P,. From
(3.2), (4.7) and (6.4) we have

(z")y = 8, (=)o = Kobt.

From these results, (6.2), and (6.3) we have from (6.6) for this choice
of coordinate axes

2 2
S N A
TS 16<ds)os o

2 Mg i(é&)a _1(&_3_ )
6.7 = 28 +|§dsos -I-Ié K KT os+~--,

s_ _xTos 11 d de | 4
T = s |g[ds(KT)+ths:ls+-"'

6

It follows from these equations that in the neighborhood of a point,
if any, at which x = 0 the curve approximates a straight line. Also
if x % 0 the curve with s increasing crosses the osculating plane at the
point, from the positive to the negative side when 7 > 0 and vice-versa
when 7 < 0; in the former case the curve is said to be left-handed and
in the latter right-handed at the point. At a stationary point, that is,
when 7 = 0, the curve remains on the same side of the osculating plane
in the neighborhood of the point (provided dr/ds 5 0), since in this
case the sign of z* does not change with s for.sufficiently small values
of s.

These results follow in fact when we consider only the first terms in
each of equations (6.7), that is, the approximate curve
82’ = _ko7o sa,

1 2 _
(6.8) z =s, z 5

Ko
2
in which xo and 7, are constants. This curve is a twisted cubic, whose
projections upon the coordinate planes are shown in Fig. 1, the z'-,
z’-, and z"-axcs being respectively the tangent, principal normal, and
binormal of the curve at the point of the given curve which is the origin
of the coordinate system used.

The coordinates X* of a point in the osculating plane to a twisted
curve are given by

(6.9) X =1+ ua + 8

for suitable values of u and ». We raise the question of determining
u and v as functions of s so that the locus of the points of coordinates
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X' given by (6.9) shall be an orthogonal trajectory of the osculating
planes. Differentiating (6.9) with respect to s and making use of
(6.1), we obtain

dX‘ _ du 3 dv i §
d;—<1+£ vx)a +<un+£)ﬂ vTY .

. dX . .
Since ds are direction numbers of the tangent to the desired locus,

dX . i .
uw and v must be such that s e proportional to ¥, that is, the co-
ds

efficients of o' and 8 must be zero. If we introduce the parameter o,

defined by
c = f Kk ds,

this gives the following conditions to be satisfied:
(6.10) du 1o P,
de  « do

Differentiating the second of equations (6.10) with respect to ¢ and
substituting from the first of (6.10), we obtain

d*v 1

11 — = ",

6.11) do? +o K
From the theory of linear ordinary differential equations it follows that
the general solution of equation (6.11) may be obtained by quadratures.
When such a solution has been obtained and substituted in the second
of equations (6.10), u is given directly. Hence we have
[6.1] The orthogonal trajectories of the osculating planes of a skew curve
can be obtained by quadratures.

S XERCISES
1. For a planc curve the Frenet formulas are

i i
licf = Kﬂi’ d—B‘ = —xai (1 = 1: 2)7

ds ds

and equations of the curve are

i) 7! = fcos o ds, 1= fsin o ds,
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8
¢r=f x ds;
)

from equations (i) it follows that ¢ is the angle which the tangent to the curve
makes with the z!-axis.

2. When all the osculating planes of a curve have a point in common, the
curve is plane.

3. The locus of the centers of curvature of a twisted curve of constant curva-
ture is an orthogonal trajectory of the osculating planes of the curve, and is a
curve of constant curvature.

4. A tangent to the locus of the centers of curvature of a twisted curve C is
perpendicular to the corresponding tangent to C; it coincides with, or is per-

where

. - . . d
pendicular to, the principal normal to C only at points for which r = 0, or e 0.

ds
5. When for a cylindrical helix (see §3, Ex. 2) the generators of the eylinder
are parallel to the z%-axis, then o® = cos 6, and from the Frenet formulas it
follows that

. dy?
(i) g =0, X 0, xad - 798 = 0.
ds
If a function o is defined by
a! = gin 6 cos o, o? = gin 6 8in o,
then
. . do
Bl = —esing B = e co8 o, x = ¢ 8in 8 —,

ds
where ¢ is +1 or —1 8o that « is positive, and

v? = esin 6, T = —ex cot 0

(see §5, Ex. 3).
6. For a curve for which r/x = ¢, where ¢ is a constant, it follows from the
Frenet formulas that

7‘ = cot + biy
where b? are constants, from which it follows that 2 o’b’ = const., that is, the

L]
curve makes a constant angle with the lines of direction numbers b*, and hence
is a cylindrical helix.
7. The equations

g=—a f (v dv* — ¥+ dv)

a8 ¢, j, k take the values 1, 2, 3 cyclically, whgre a is a constant, and ~* are func-
tions of a single parameter such that 2 vy% = 1, are equations of a curve of
+

torsion 1/a and +* are direction cosines of the binormal. Does it follow from



§6] THE FRENET FORMULAS 29

this result that any curve on the unit sphere can serve as the spherical indicatrix
of the binormals of a curve of constant torsion?
8. If C is a curve of constant torsion, for the associated curve with the equa-

tions
i
T = g + f Y ds
T

the curvature is constant.

9. When two twisted curves are in one-to-onc correspondence with tangents
at corresponding points parallel, the principal normals at corresponding points
are parallel, and also the binormals; two curves so related are said to be deducible
from one another by a transformation of Combescure.

10. The equations

(i) #* = z* + o'a,
where @ is a constant, are cquations of a curve € whose points are on the tangents
to the curve 2*(s) and at the constant distance a from the corresponding points

of contact; the arc §, the direction cosines &' of the tangent, and the curvature
« of C arc given by

8 — + i
5= f V1 +anrds, & = -"‘-ﬂé:,
o V1 + awe

FAY]
Kz<1 + ax?+ a _")
K ds azxlr?

(1 + a2e?)3 a+ azxzji ;

=2

the tangents to C are parallel to the corresponding osculating planes of the
given curve. ~
11. In order that the curve C in Ex. 10 be a straight line it is necessary and

1
sufficient that + = 0 and a® + == ce®/%, where c is an arbitrary constant. If
K

we put ¢ = a?, we have

1 ds
g = fxds = —f ————— = cos1e7/0.
a \/e“/“ 1

From this result and Ex. 1 we have

o= —aqectle, g2= f\/l — el gs,

from which and equation (i) of Ex. 10 for i = 1 we have that the locus C is the
z2-axis. The curve is called the tractriz. In terms of ¢, the angle which the
tangent makes with the zl-axis, equations of the curve are

8in? ¢ .
2= —acoso, x’=a[ do = a [log (sec ¢ + tan ¢) — sin g].
co8 o
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12. A curve whose principal normals are the principal normals of another
curve is called a Bertrand curve; if z* and 2* are the coordinates of corresponding
points on the respective curves C and C and s and 3 corresponding arcs, one has

= z' + b,

. d3 . dh . .
d—= (1 —xh) o + — g — i
azd8 ( xh) o +dsﬂ Thy

Since B* = ¢g' by hypothesis, where ¢ is +1 or —1, it follows that h is a constant;
denoting by w the angle between the osculatmg p]anes of C and its conjugate C,
one has @' = cos w a’ 4 s8in w+*; 7* = ¢ (—sin w o' 4+ cos wy*); from the Frenet
formulas for C it follows that wis a constarlt and

sin » dg hr
k8iNw — 7COSw = — , b UL
h ds sin w
Also x and 7 for C are given by
_ = [ 8in? w
x+ercotw+}1=0, = i

thus ¢ is to be chosen so that % is non-negative.
13. A curve for which

ak + br =1,

where a and b are constants different from zero, is a Bertrand curve; the equa-
tions (see §5, Ex. 12)

! = ff(t) sin ¢ dt, 7= ff(t) cos ¢ dt, s = ff(t)w(t) dt,

where ¢ (t) is any function of ¢ and

f) =ay /LT
1+ 1+ g2 4y’

a and b being constants different from zero, are equations of a Bertrand curve.

14. A circular helix is a Bertrand curve; it has an infinite number of conju-
gates, each lying on a circular cylinder with the same axis as that of the given
helix.

15. A necessary and sufficient condition that the osculating planes of a Bert-
rand curve and of its conjugate coincide is that the curve be a plane curve; any
curve parallel to the given curve is a conjugate curve.

16. If C is a curve of constant torsion, the curve with equations

i‘aazi+b<ﬂ—+f7ids),
T

where a and b are constants, is a Bertrand curve.
17. The binormals of a curve are the binormals of another curve, if and only
if the given curve is plane.
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18. In order that the principal normals of a curve C be the binormals of a
curve C, it is necessary and sufficient that

0] k= a(x? + 77),
where a is a constant; then equations of C are
& = 2 4+ ap’;

curves C satisfying the condition (i) can be found by quadratures (sce §5, Ex. 12).

7. INTRINSIC EQUATIONS OF A CURVE

When equations (6.3) arc differentiated successively with respect to
s and in each case the derivatives of o', 8%, and v’ are replaced by their
expressions from the Frenet formulas (6.1), we find that each derivative
of z! is expressible linearly and homogeneously in o, 8, and v°, the
coefficients being functions of «, 7, and their derivatives of various orders
with respeet to s.  Consequently the coefficients of further terms in
(6.7) as derived from (6.6) involve only the values of «, 7, and their
derivatives for s = 0, because of the particular values (6.4) at the origin
in the coordinate system used. Hence, if for two curves the functions
«x and 7 of s are the same functions, the expressions for z* for each curve
relative to the axes consisting of the tangent, principal normal, and
binormal of cach curve at the point s = 0 are the same. Since either
set of axes can be brought into coincidence with the other by a rigid
motion, we have:

[7.1] Two curves whose curvature and torsion are the same functions re-
spectively of the arc are congruent.

* From this it follows that a curve is determined to within its position
in space by the expressions for « and 7 in terms of s. Consequently

(7.1) x = fi(s), T = fas)

are equations of the curve. Since they are independent of the coordin-
ate system used, they are called intrinsic equations of the curve.
From the manner in which equations (6.7) were obtained, it follows
that « and 7 derived from these equations by means of (4.3) and (5.13)
are power series in s, the coefficients being values of «, =, and their
derivatives evaluated for s = 0. Consequently if we have any two
equations (7.1) in which fi(s) is a non-negative function of s, the cor-
responding equations (6.7) are equations of the curve for which (7.1)
are the intrinsic equations. Although this method of obtaining z* as
functions of s gives the equations of a curve for given functions f and
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f2 in equations (7.1), it gives these equations as infinite series. We
shall consider another approach to this problem which may in certain
cases lead to finite expressions for z*.

The three sets of quantities ', 8°, and y* as 7 takes the values 1, 2, 3
are seen from (6.1) to be solutions of the following system of ordinary
differential equations where « and 7 are given functions of s:
du dv

5= - = — (ku + Tw),

(7.2) ds

w
— = TU.
ds
”

. 3 1 1 1 2 2 2 3 3 3
[f we have three sets of solutions, w', v, w'; v, v", w"; u’, v", w" of these
cquations, which may be denoted by ', v*, w* for 7 = 1, 2, 3, and put

(7.3) w4 o + ww’ = ¢V (,7=1,2,3)
)

we find by differentiation that in consequence of (7.2) the ¢’s are con-
stants.  We define quantities by

i

) - . . .
(7.4) a = qu, B = ai”, v = g’

where the a’s are constants, and seck under what conditions these a’s
can be chosen so that

(7.5) oo’ + B8 + vy =87 G4 =1,23),
where
(7.6) 8" = 1 or 0 according as i = jor ¢ # j.

"This choice is made in order that o, 8%, and v* shall be direction cosines
of threce mutualy perpendicular vectors. Substituting from (7.4) in
(7.5) and making use of (7.3) we have

T .
7.7) aaic” = 8.
If the determinant | ¢* | is different from zero,
kL
C TrX; = 0

is an equation in homogencous coordinates z; , 2 , 3 of a non-degenerate
conic in the plane. With respect to this conic a , a3, a3 ; ai, a3, a3 ;
al, ad, a3 satisfying (7.7) arc the coordinates of the vertices of a self-
polar triangle, and consequently an endless number of sets of a; sabis-
fying (7.7) can be found.* For such a set of a! the quantitics o, 8°, v°
defined by (7.4) are solutions of equations (7.2), that is, we have equa-
tions (6.1), the signs of a} having been chosen so that equation (5.5)
holds.

* Veblen and Young, 1910, 1, p. 282.
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If then we define z* by
(7.8) T = f o ds,

for the curve so defined s is the arc and o' direction cosines of the tan-
gent. Also from (7.8) and (6.1) we obtain by differentiation equations
(4.7) and (6.2), from which it follows that x and 7 are the curvature and
torsion of the curve, and 8° and »° direction cosines of the principal
normal and binormal respectively.

Thus we have shown that three sets of solutions of equations (7.2)
for given functions « and = of s lead by quadratures (7.8) to a curve
for which « and 7 are the curvature and torsion, provided that the de-
terminant | ¢*' | is not equal to zero. That there are scts of solutions of
cquations (7.2) satisfying this condition follows from the theory of such
sets of cquations, namely that there exists a unique solution for a given
set of initial values of %, » and w.* Since ¢*' are constants, it follows
that one has only to choose the initial values of the three sets of solu-
tions so that it shall follow from (7.3) that the determinant of the ¢’s is
not equal to zero.

EXERCISES

1. A solution of the equation

du d d*u d (1 1 dx dr du d [«

- _ = 2= 2= 22T e 2 | = 2 (= -
d ds B e T |:de’<;:> tosa T ’]ds s (1') u=0,

and v and w given by

_ldu we - LT _ldcdu
v ds = ds?  xdsds ")

constitute a solution of equations (7.2); and any solution of (7.2) is expressed
in terms of three sets of solutions by (7.4) for suitable values of the constants aj .

2. If u, v, w are solutions of equations (7.2) such that u? + v2 4 w? = 1, the
quantities ¢ and o defined by

1£+iv 14w
l—w u-—1

ut+ww 1—w
I+w u—1w

= -

= a,

are solutions of the Riccati equation
B_irf e g
ds 2 T :

* Goursat, 1924, 1, vol. 2, p. 368.
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3. The general integral of an equation of Riccati

de
- = L 4+ 2M6 + N¢?,
ds

where L, M, N are functions of s, is of the form

gL+ Q
T aR+ 8’

where a is an arbitrary constant, and P, @, R, S are functions of s.

4. From theorem [7.1] and §6 Ex. 2 it follows that a necessary and suflicient
condition that a curve be a circular helix is that its curvature and torsion be
constant; show also by means of Ex. 1 that this condition is sufficient.

5. Establish the statement made about the number of solutions of equations
(7.7) by purely algebraic methods.

8. INVOLUTES AND EVOLUTES OF A CURVE
As shown in §3 the equations
(8.1) X' =2+ ud

are parametric equations of the tangents to the curve C defined by z'
as functions of the arc s. For a particular tangent u is the distance
between the points z* and X' If u is replaced in cquations (8.1) by a
function of s, the resulting equations are cquations of a curve I' whose
points lie on the tangents to the given curve. ‘Differentiating equation
(8.1) with respect to s, one has in consequence of (3.2) and (6.1)

dx* ( du

(8.2) I ={1+4 Eg) o' + xuf'.

i

Since (Pf are direction numbers of the tangent to I', if the latter curve

ds
is to be such that its tangent at each point is perpendicular to the
tangent to C through the point, it is necessary and sufficient that

(dX
Lo =0

Since Z «'8' = 0, this condition is that
(8.3) LR )
ds

from which it follows that

(8.4) u=c— s,
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where ¢ is an arbitrary constant. Hence there is an infinity of such
curves I, each defined by

(8.5) X' =z'+ (c — 9)a'

for a particular value of ¢. They are called the involutes of the given
curve. From (8.4) it follows that the length of the segment of any
tangent to the curve determined by two involutes has the same value,
the difference of the c’s of the two involutes.

Fic. 4. Involute of the circular helix of Fig. 2

When a curve C is defined in terms of a general parameter ¢, the
determination of s requires a quadrature (2.2), and then the involutes
are given directly by (8.5).

An involute when ¢ — s is positive may be described mechanically as
follows: Take a string of length ¢, fasten one end at the point of the
curve for which s = 0 and bring the string into coincidence with the
curve; when the string is unwound from the curve and is kept taut, the
other end point describes the involute as is seen from (8.5).

From (8.2) and (8.4) we have
(8.6) % = (c — s)xpB'.

Hence we have

[8.1] A curve has an infinity of involules; a tangent to an involute at a
point X.' 1s parallel to the principal normal to the curve at the corresponding
point x'.
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If T is an involute of a curve C, we say that C is an evolute of T', that
is, it is a curve whose tangents are normal to I'.  Suppose then that we
start with a curve of coordinates z’, and seek its evolutes. Since the
points of an evolute lie in the normal planes to the curve, its equations
are of .the form

(8.7) X' =2+ up' + vy,
where « and v are functions of s to be determined. From these equa-

tions in consequence of (3.2) and (6.1) we have by differentiation with
respect to s

ax’ K d i g
88) =1 - uda + (dis‘ + vr>/3 + (Zi; - ur)'y.

Since these quantities are direction numbers of the tangent to an evolute,
they must be proportional to X° — z', that is, to ug* 4 vy*, which as
follows from (8.7) are direction numbers of the line joining the points
X*and «*. Consequently we must have © = 1/xand

v(dgg-}-w):u(%lg—ur).

When this equation is written in the form

dv du _ 0 o
u va—;——(u + o),

we see that its integral is
(8.9) :i = tan (w + ¢),
where by definition

(8.10) o= [rds,

and ¢ is an arbitrary constant. Substituting these results in (8.7), we
obtain

i i Lo i
(8.11) X' =z +’~((ﬂ + tan (w + ¢) ¥).
For each value of ¢ these are equations of an evolute. Consequently a

curve has an infinity of evolutes. Since the curve is an involute of each
evolute, we have
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8.2] A curve C has an infinity of evolutes; the principal normal to an evolute
is parallel to the tangent to C at the corresponding point.

From equations (8.11) and (4.9) it follows that the points of all of
these evolutes corresponding to a given point on the given curve lie on
the line, called the polar line, parallel to the binormal and through the
zenter of curvature for the given point on the curve. Morcover from
(8.9) it follows that » + ¢ is the angle which the line joining a point on
the curve to the corresponding point on an evolute makes with the
»sculating plane of the curve at this point. Hence we have

8.3] When each of the normals to a curve C which are tangent to an evolute
s turned through the same angle aboul the corresponding tangent to C, the
inormals in their new postition are tangeni to another evolute of C.

From (8.11) and (8.10) it follows that it is possible to choose ¢ so that
the points of the corresponding evolute lie in the -osculating planes only
n casc w 1s & constant, in which case + = 0, that is, when the curve is
plane. In this exceptional case this evolute is the locus of the centers
of the circle of curvature and is a plane curve, except when the given
surve is a circle, in which case the locus is the center of the circle.
I'his evolute is the one which in the differential calculus is called the
svolute of the plane curve. However, a plane curve has an infinity of
wvolutes, as ¢ in equations (8.11) takes all possible values.  Irom the
‘orm of these equations it follows that these evolutes lie on the eylinder
whose generators are the normals to the plane of the given curve at
points of the evolute in the plane, that is, the evolute for which ¢ = —aw.
Moreover, from the remark preceding theorem [8.3] it follows that the
tangents to cach evolute make constant angles with the generators of
this cylinder and consequently these evolutes are cylindrical helices
(see §3 Ex. 2). Hence we have

8.4] A plane curve other than a circle has an infinity of evolutes, each of
which is a heliz of the cylinder whose right section by the plane of the curve
ts the plane evolute of the curve.

EXERCISES

1. The involutes of a circular helix (§3, 1¢xs. 1, 8) are plane curves, which
also are involutes of circular sections of the circular cylinder upon which the
helix lies.

2. For an involute (8.5) for which ¢ — s is positive the arc, direction cosines
of the tangent, principal normal, binormal, and the curvature and torsion are
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given by

i)

MU AN T
’

c—s (c— 9k + )

3. A necessary and sufficient condition that the involutes of a twisted curve
be plane curves is that the curve be a cylindrical helix (sece §6, Ex. 6).

4. Find the evolutes of the curves of §5, Exs. 4 and 5.

5. For an evolute (8.11) the arc, direction cosinces of the tangent, principal
normal, and binormal, and the curvature and torsion are given by

3= ‘/.[—d—<l>+Ztan(w+c)]scc(w+c)ds,
o ds \k X

a = cos (w + ¢)B + sin (0 + ¢)vi, B= — ed,
7' = e[— sin (o + ¢)8* + cos (v + c)v],

ex cos (w+¢), — «sin (w + ¢)

sec (w +¢) [i <1) + ” tan (w+0)]
ds \« K .

where e is +1 or —1 8o that x is positive.

9. THE TANGENT SURFACE OF A CURVE. THE POLAR
SURFACE. OSCULATING SPHERE

K, 7=

When for any curve the two parameters s and « are eliminated from
the three parametric equations of its tangents, namely

(9.1) X' = z'(s) + ua'(s),

we obtain a single equation in the X*. Consequently (see §1) the locus
of points on the tangents to a curve is a surface, called the tangent
surface of the curve, and each of the tangent lines is called a generator
of the surface. When the curve is defined in terms of a general param-
eter ¢ equations of the tangent surface are

i d:c"
9.2) X —x(t)+um,

where now u is not the distance of the point X* from the point ' as
it is in (9.1). '
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When s and » in (9.1) are given particular values, equations (9.1)
give the coordinates of a point on the surface. Thus the locus is two
dimensional, which is another proof that the locus is a surface. If in
(9.1) we replace u by a function of s, say ¢(s), the resulting equations
are parametric equations of a curve on the surface. In particular, if
we put u = ¢ — s, where ¢ is a constant, then, as follows from §8, the
curve for each value of ¢is an involute of the given curve. Consequently

F1c. 5. Tangent surface of the circular helix of Fig. 2

all the involutes of a curve lie on its tangent surface. They are the
curves which intersect the generators of the surface at right angles,
that is, the involutes are the orthogonal trajectories of the generators.
Since there is only one sct of orthogonal trajectories of a set of lines, we
have

[9.1] The orthogonal trajectories of the generators of the tangent surface of
a curve are the tnvolutes of the curve.

According as u in equation (9.1) has a positive or negative value the
point lies on the portion of the tangent drawn in the positive direction
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from a point on the curve or in the opposite direction. Hence the
surface consists of two parts, or sheets, one part consisting of all the
points for which » = 0, the other of the points for which w < 0. Thus
the curve forms a common boundary of the two sheets.

In order to get an idea of the form of the surface in the neighborhood
of the curve, we recall from §6 that in the necighborhood of the point
Py (s = 0) the curve approximates the twisted cubic

K Sz Ko T Sa
9.3) z' = s, =22 2= -0

2 6 ’

where x and 79 are the curvature and torsion of the given curve at the
point P, , the tangent, principal normal, and binormal at P, being the
coordinate axes. Noting that s is the arc of the given curve but not
of the cubic, we have that equations of the tangent surface to the curve
(9.3) are

2 3
8 \ 3 KoTo [ S 2

94) X' =s+u X = =+ su X=—H(— su).
( ) + i Ko ) + /’ 9 3 +

In this coordinate system the plane ' = 0 is the plane normal to the
given curve and to the cubic at Py, and cuts this tangent surface in
the curve I for which ¥ = —s. From the second and third of equa-
tions (9.4) it follows that equations of this plane section are

X0 xto RS oy ks
o o2 -3

On ecliminating s from the second and third equations we sce that the
curve is a semi-cubical parabola with the negative half of the principal
normal for cuspidal tangent. Since this is the case at every ordinary
point of the curve, that is, every point at which neither x nor r is zero,
we have

[9.2] The tangent surface of a curve consists of two sheets which are tangent
to one another along the curve, and thus form a sharp edge, namely the curve.

The curve is called the edge of regression of the surface. An idea of
the form of the surface in the neighborhood of the curve may be had

from Figs. 5 and 6.
The line with the cquations

(9.5) X =1+ o8 + w'

for each value of s is the polar line, as defined in §8, corresponding to
the point z' on the curve for this value of s, and the parameter v is the
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distance of a point on the line from the corresponding center of curva-
ture, namely the point z* 4+ p8’. Since equations (9.5) involve two
parameters, s and u, it follows that the totality of the polar lines of a
curve constitute a surface; it is called the polar surface of the curve.
We shall show that this surface is the tangent surface of another curve
defined by (9.5) when w is replaced by a suitable function of s.

Fic. 6

If w is any function of s, we have from (9.5) in conscquence of (3.2)
and (6.1)
1\"‘ i du 3
(9.6) X dp+ru[3+ o)y
ds ds ds
These are direction numbers of the tangent to the curve (9.5) for u a
given funection of . If the polar line with respeet to the given curve is
to be the tangent to the curve (9.5) for u equal to some function of s,
the direction numbers must be proportional to v'.  This requirement is
1 dp

-. Hence we have
T ds

satisfied, if and only if v =
[9.3] The polar surface of a curve ts the tangent surface of the curve with
the cquations

Ldp

( i P
(9.7) X'=2"+of = oo

Consider the sphere 2 with center at the point of coordinates (9.7)
for a given value of s and passing through the corresponding point z*
on the curve, that is, the point for this value of 5. Evidently the circle
of curvature for the point z* lies on Z, and the square of radius R of £

2
is p’ + <1 de> . We shall show that ¥ has contact of the third order
T ds
with the curve at P, that is, if R + & denotes the distance between the
center of ¥ and a point P on the curve such that the arc PP is s, then
8 is of the order of s*.  In order to establish this result we make use of
equations (6.7). The center of the sphere corresponding to the point
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Fi1c. 7. A twisted curve with normal planes, centers of curvature, an evolute, and
the polar developable
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of the curve at the origin of the coordinate system used in (6.7) is at
1dp

the point (0, p, —-

. Hence we have
T ds

, 1 2
R+8=8"+06-+ (—-‘51’? - x)
T ds
On substituting for & from (6.7) we find that 2Rs + &° is cqual to an
expression in the fourth and higher powers in s as was to be proved.
Hence we have

[9.4] The sphere through an arbitrary point P of a skew curve and with
center given by (9.7) has contact of the third order with the curve at P.

This sphere is called the osculating sphere of the curve at the point P.
Henee we have

[9.5] The polar line for a point of a curve s tangent to the locus of the
center of the osculating sphere of the curve at the corresponding poind.

The previous results are represented in Fig. 7 in which the curve
is the locus of the points M, M, , M., --. ; the points C, C,, Cy, - -
are the corresponding centers of curvature; the planes MCN,
M,C\N,, - .- are normal to the curve; the lines CP, C1F,, --- are the
polar lines; and the locus of the points P, Py, ... is the edge of regres-
sion of the polar surface.

A curve all of whose points lie on a sphere is called a spherical curve.
The normal planes to such a curve pass through the center of the
sphere.  The coordinates of the center are given by equations (8.7),

]—“ = 0. From (8.8)

. (
where w and » must be such funetions of s that d
ds

it follows that u = L. p and that
K

dp dv
. =0 — pr = 0.
(9.8) ds + , ds pr =20
From the first of these equations we have v = — 1 (% and hence the
T G

coordinates of the point are given by (9.7). When this value of » is
substituted in the second of (9.8), we have the following condition to
be satisfied by p and 7:

d(ldp\ _
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From (9.7) it follows that the square of the distance between the points
2
Xfand 2'is p° + <} %) , which is a constant when the condition (9.9)
T

is satisfied.
Conversely, when the condition (9.9) is satisfied it follows from (9.7)
ax’

that el 0. Thus, when equation (9.9) is satisfied, all the normal
s

planes to the curve pass though a fixed point, which is at the same
distance from the points of the curve. Hence we have:

[9.6] A necessary and suflicient condition that a curve be spherical is that
its intrinsic equations satisfy the condition (9.9).

Also we have proved incidentally that

[9.7] When all the normal planes to a curve have a point in common, the
curve 1s spherical.

EXERCISES

1. The tangent surface of the cubic (1.17) is an algebraic surface of the fourth
order.

2. The osculating plane of the curve (9.3) at the point s = 0 is the plane
z% = 0, which meets the tangent surface (9.4) in the generator and in the parabola
! = 25/3, x* = Kkos?/6, whose curvature is }xo ; thus the osculating plane at a
point P’ of a curve meets the tangent surface in a generator and in a curve whose
curvature at P is three-fourths of the curvature of the curve at P.

3. The polar surface of a plane eurve is a eylinder, whose right section is the
plane evolute of the curve.

4. Any sphere which contains the circle of curvature for a point I’ of a non-
spherieal twisted curve and which is not the osculating sphere at P has contact
of the second order with the curve at P.

5. The angle between the radius of the osculating sphere of a twisted curve
at a point I’ and the locus of the center of the sphere is equal to the angle between
the radius of the cirele of curvature and the locus of its center.

6. When a twisted curve is spherieal, the center of eurvature for a point is the
orthogonal projection of the center of the sphere upon the osculating plane.

7. The only spherical curves of constant curvature are circles.

10. PARAMETRIC EQUATIONS OF A SURFACE.
COORDINATES AND COORDINATE CURVES
IN A SURFACE

Equations (9.2) and (9.5) of the tangent surface and polar surface
of a curve respectively are particular cases of three equations of the
form

(10.1) ' = fi(u, o) G =1,273).



§10] PARAMETRIC EQUATIONS OF A SURFACE 45

Suppose now that one has three such equations where f* are one-valued
functions of two variables «' and 4°. If the functions f* are such that
it is possible to eliminate »' and w* from these equations and obtain a
single equation

(10.2) P, 2%, %) = 0,

then in accordance with the definition of a surface in §1 equations (10.1)
are equations of a surface. This idea was used in §9 in establishing
that equations (9.2) are equations of a surface.

In order to determine whether three equations (10.1) in which the
f’s are functions of the u’s are equations of a surface, we define quanti-
ties A¥ thus

o of
9 "’ J dul 9w . .
(103) AY = 6%’,{173 = af. afj (’L,] = 1: 2: 3: 1 ])7
ou? 6u2\

that is, A” is the jacobian of f* and f’ with respect to «' and u’. If
A" is identically equal to zero, then there is a functional relation be-
tween ' and 2°, that is, ¢ (2!, 2°) = 0.* If also A™ = 0, there is a func-
tional relation ¢y(z', 2°) = 0, and thus the locus is a curve and not a
surface (see §1). It is readily shown thatif A" = A" = 0 then A = 0.
Hence we have

[10.1] Three equations (10.1) are equations of a surface, if the jacobian
matrix

o ot o
(10.4) 'au‘ out  out
' oft of* of°

u out oull
is of rank two, that vs, not all of the determinants of order two are identically
zero.

1t is to be obscrved, as just remarked, that if two of these determinants
are identically zcro, the third also is, and the rank is less than two
(see Iix. 6).

The definition of a surface by three equations in terms of two variables
u' and * as in (10.1) was introduced by Gauss.t Formerly a surface

* Fine, 1927, 1, p. 257.
11827, 1.
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was defined by a single equation (10.2), until Monge used the particular
form

(10.5) 2t = ', ©°).

The latter had advantages over the form (10.2) in the investigation of
certain types of surfaces. However, the method of Gauss is in many
respects superior to both the other methods. It is customary to refer
to cquations of the form (10.1) as parametric equations of a surface.
In particular, the method of Monge is cquivalent to the following
equations:

(10.6) ' =1, = o, 2t = f(a', 2%,

where now z' and 2° are the variables u' and .

Another interpretation of theorem [10.1] is that %' and «* are inde-
pendent variables, and thus that the locus is two dimensional.  When
in equations (10.1) «' and «’ are given particular values, these equations
give the coordinates of a pomnt m the surface, as viewed from space in
which the surface lies, that is, the enveloping space.  However, one may
consider the situation in the surface itself without reference to the
enveloping space, and say that «' and w* are coordinales in the surface
of a point in the surface.  An example of this is the use of latitude and
longitude as coordinates in the surface of the carth.

It should be remarked that, if one eliminates ' and w* from equations
of the form (10.1) and obtains an equation of the form (10.2) it may be
that equations (10.1) apply to only a portion of the surface with the
resulting equation (10.2) (sce Ex. 3). However, in eonsequence of
theorem [10.1] it follows that two of the equations (10.1) ean be solved
for %' and w’, namely two for which the corresponding A” is not iden-
tically zero, and when these values are substituted in the third one ob-
tains an cequation similar to (10.5). This equation defines the same
surface or portion of a surface as equations (10.1), and thus for the
coordinates z' of a point in the surface ¥' and w«* arc uniquely defined.

When in equations (10.1) «® is given a constant value and u' varies,
the locus is a curve, as viewed from the enveloping space, its equations
being of the form (1.10) with »' as parameter; morcover, it is a curve in
the surface. There is an infinity of such curves in the surface, one for
each value of u*; we call them the coordinate curves u* = const., and also
the u'-coordinate curves. In like manner there is an infinity of coordinate
curves u' = const., and called also the u’-coordinate curves. They are
the analogue of the lines parallel to the coordinate axes in the planc
referred to a cartesian system. When the plane is referred to polar
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coordinates, they are the analogue of the lines through the pole of the
system, and of the circles with center at the pole (sce Fig. 8).
The surface with equations of the form

(10.7) g =fw), &=70), =0
is a cylinder whose equation of the form ¢(z', z*) = 0 is obtained on the
elimination of u' from the first two of equations (10.7); in this case the

curves u' = const. are the generators of the cylinder, and the character
of the curves 4’ = const. depends upon the form of the function f°.

Fic. 8. Coordinate curves in a surface

In general the coordinate curves are not straight lines but curves.
Accordingly some writers call u' and w’ curvilinear coordinates in the
surface, but we call them simply coordinates in the surface.

If in equations (10.1) we replace u* by
(10.8) W = o(uh),
the resulting equations are equations of a curve, as viewed from the
enveloping space. Since this curve is in the surface, an equation of
the form (10.8) is an equation of a curve in the surface expressed in
terms of the coordinates ' and % in the surface, as is also an equation
of the form

(10.9) (U, u?) = 0.
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For example, for a cylinder (10.7) the equation (sce §3, Ex. 2)
@, ') — cot 8 / VY + () ddt =0

is an equation of a curve in the cylinder which intersects the generators
under the constant angle 6, that is, the curve is a eylindrieal helix.  Also
cach of the equations

3 1 2
Su,w) =c
as ¢ takes the values 1, 2, 3 and the ¢'s are constants, is an equation of
the family of curves in which the corresponding planes 2" = ¢' in space

cut the surface with equations (10.1).
If in (10.1) we substitute for %' and «* the expressions

(10.10) w = o, u'”) (a« =1, 2),

. . . 1 2 .
where the ¢'s are independent functions of «”* and w’%, that is,

(¢, ¢
10.1 ST ()
(10.11) o(u', u'?) #0,

we obtain another set of parametric equations of the surface, say
(10.12) = @t u) (G =12 3).

Consequently there is great generality in the choice of two coordinates
in terms of which a surface is defined by means of equations of the
form (10.1).

We refer to (10.10) as a transformation of coordinates in the surface.
If the jacobian (10.11) is identically zero, this means that there is a
functional relation between the ¢’s, say F(o', ¢°) = 0, and then from
(10.10) it follows that the coordinates w'* for @ = 1, 2 apply only to
the curve F(u', %*) = 0 and not to the whole surface.  Another signifi-
cance of the condition (10.11) is that equations (10.10) can be solved
for v’ * say

(10.13) W= o, ub),
which equations give the coordinates u’® of a point of coordinates u*

in the u-system. Iquations (10.13) define the znverse of the transforma-
tion (10.10).

It should be remarked that even if (10.11) holds, there may be values
of w'® for which the jacobian is equal to zero. Ior such values there is

* Fine, 1927, 1, p. 334.
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not a unique inverse (10.13), and special consideration has to be given
to such cases. However, the discussion which follows presupposes that
for the domain considered the condition (10.11) holds. Clearly for
such a domain no two of the u'- or w’-coordinate curves can intersect.

From (10.10) it follows that the coordinate curves u® = ¢® in the
u-system have the equations

a

1 2
) =c¢

in the w'-system, and from (10.13) that the coordinate curves »'* =
¢’* in the uw'-system have the equations

ra

et ul) =

in the u-system. However, for a transformation

(10.14) =g,  u =)
or
(10.15) = o' (u?), W = o (u'")

. . o 1
the net of coordinate curves, that is, the two families of curves v =
2 . .
const. and w~ = const., is not changed but the coordinates arc changed,
as 1s readily verified.
EXERCISES
The equations
2! = a sin u! cos u?, x? = a sin u!sin u?, ¥ = a cos u,
where a is a constant, are parametric cquations of a sphere of radius a. What

are the coordinate curves u! = const. and u? = const.?
2. A surface with the equations

(1) ! = u! cos u?, 2% = ulsin u? 3 = p(ul)
is the surface generated when the p!sme curve with equations
3 = (1), z?2 =0

is revolved about the z3-axis; such a surface is called a surface of revolution. What
arc the coordinate curves u! = const. and u? = const.? The latter are called
the meridian curves; by what change of coordinates ean the equations of Iix. 1

be given the form (i)?
3. The equations

=+ /‘/ a'___(a‘ wh) (a; — w)

(a| - a;) (a; - ak)
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in which the a’s are constants, and ¢, j, k take the values 1, 2, 3, cyclically, are
equations of a central quadric; it is

an ellipsoid when a; > u! > a3 > u? > a; > 0,
an hyperboloid of one sheet when a1 > u! > as > 0 > ay > u?,
an hyperboloid of two sheets when a; > 0 > a2 > u! > ay > ul.

4. A surface which is the locus of a line perpendicular to a fixed line, called
the axis, and satisfies a further condition is called a right conoid; equations of a
right conoid are

! = ul cos u?, 2?2 = y! sin u?, 8 = o(u?);

when ¢(u?) = a cot u? + b, where a and b are constants, the conoid is a hyperbolic
paraboloid.

5. Find equations of a right conoid whose axis is the z3-axis and which contains
the ellipse

(22)? (292
z! = a, L s =
b? c?

6. When the rank of the jacobian matrix (10.4) is two and one of the deter-

minants of the second order is identically zero, the surface is a cylinder.
11. TANGENT PLANE TO A SURFACE

The tangent at a point P to a curve upon a surface

(11.1) = fieut, u’) G=123)

is called a tangent to the surface at P. It is evident that there are an
infinity of tangent lines to a surface at a point. We shall show that
ordinarily these lines lic in a plane, called the tangent plane to the surface
at the point.

If we define a curve through a point z* by the equations

(11.2) u® = ¢%(t) (a =1,2),
we have from (11.1)
de' _ of du' | of du’

W owd Todd

Hence equations of the tangent at z° are (see §3)
i i afi dul 6fi du2

— = (90U o] au),

== <6u1 dt + ot dt )’

@ g

where [ is a parameter. Eliminating l»&-z and [ i from these equa-
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tions, we obtain
X' -2 X*-4F X*-2
ot ot

(11.3) aul au aul | =0.
of' of* of*
| ou? ou? ou?

For particular values of u' and %, that is, at a point on the surface,
this is an equation of a planc. Since the equation is independent of
the functions ¢' and ¢ in (11.2), it follows that this plane contains all
the tangent lines to the surface at the point, and consequently is an
cquation of the tangent plane at the point. At points of the surface,
if any, for which the cofactors of the elements of the first row in the
determinant (11.3) are simultancously equal to zero, the equation (11.3)
is not defined.  Such points are called singular points of the surface,
and all other points are called ordinary points. Hence we have

[LL.1]) The tangents at an ordinary point on a surface to the curves on the
surface through the point lie in @ plane; when the surface vs defined by para-
melric equations (11.1), equation (11.3) is an equation of the tangent
plane at the point x'.

For the tangent surface to a curve with the equations (9.1) the equa-
tion (11.3) reduces to

X' — 2 X X4

o o o =0,
8 g g |
which by means of (5.7) is

2 (X =)y = 0.

Since this equation does not involve u, the tangent plane at one point
of the surface is tangent to the surface at each point of the generator
through the given point. Comparing this equation with (3.13), we
have in consequence of (4.7)

[11.2] The tangent plane to the tangent surface of a curve is the same at
all points of a generator; it vs the osculating plane of the curve at the point
where the generator 1s tangent to the curve.
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In order to obtain an equation of the tangent plane to the polar sur-
face of a curve, we note that in consequence of equations (6.1) we have

from (9.5)
0X* _ (dp ).-_ ; ax'
aé‘—<d’é+urﬁ PTY , - =7

Hence in this case equation (11.3) is reducible to
‘X‘—xl X-2d X-2
‘ g g g | =0

1 2 3
Y Y Y
where in this equation X' are current coordinates. In consequence of
(5.7) this equation reduces to

2 (X' =2’ =0

From the form of the equation and the fact that it does not involve v’
we have

[11.3]. The tangent planc to the polar surface of a curve is the same at all
points of a generator; it is the normal plane to the curve at the point whose
polar line is this corresponding generator of the polar surface.

In order to find an equation of the tangent plane to a surface defined
by a single equation

(11.4) fl', 2t Y =0,

we assume that ¢’ for the surface are expressed in the form (11.1) in
terms of two coordinates u' and «’.  When these expressions are sub-
stituted in (11.4) the resulting equation is an identity in «' and %, and
consequently the derivatives of this identity with respeet to @' and ut
are equal to zero. Hence we have

T oxt ou! ’ T 0xt ou?

af of" af of"
AT o, XY

| _ . . .. of .
From these equations it follows that the quantities P are proportional

to the cofactors of the elements of the first row in equation (11.3).*
Jonsequently an equation of the tangent plane to the surface (11.4)

*C. G, p. 104.
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at a point z° is
(11.5) SHx - =0

EXERCISES

1. Find an equation of the tangent plane to the sphere with equations of the
form in §10, Iix. 1, and show therefrom that the tangent plane at a point is normal
to the radius of the sphere at the point.

2. Find an equation of the tangent planc at a point of a eylinder with equa-
tions (10.7), and show that the tangent planes at all points of a generator are
the same planc.

3. Find an equation of the tangent plane at a point of the cone azt’ + anz?’ +
azd = 0, where the a’s arc not all of the same sign, and show that the tangent
plancs at all points of a generator are the same plane.

4. For a surface with the equation (10.5) an equation of the tangent plane is
of af

P (X2 =) 7 = (X =) = 0;

(Xt — )
IZ

this result follows also from (10.6) and (11.3).
5. The tangent plane to the right conoid (see §10, Ex. 4)

! = ul cos u?, 2 = ul sin u?, 3 = a sin u?
at a point on the generator u2 = 0 meets the conoid in the generator and in an

ellipse.
6. The tangent plancs at points of a generator of the right conoid
z! = ul cos u?, 22 = ulsin w2, 2} = a y/tan u?
mect the plane 2 = 0 in parallel lines.
7. The normal to the tangent planc to a surface at the point of tangencey is
called the normal to the surface at the point; the normals to any right conoid
(see §10, Iix. 4) at points of a generator are one family of rulings of a hyperbolic

paraboloid.
8. A surface with equations of the form

! = ul cos u?, 22 = u! sin u?, 8 = ¢(ul) + au?,

where a is a constant, is called a helicoid; the coordinate curves u! = const are
circular cylindrical helices; find an equation of the tangent plane.

9. The distance of a point  on a surface from the tangent plane to the surface
at a nearby point P is of the second order at least in comparison with the length
of the are PQ.

12. DEVELOPABLE SURFACES. ENVELOPE OF A
ONE-PARAMETER FAMILY OF SURFACES

¥From the form of the equation (11.3) of a tangent plane to a surface
it follows that ordinarily this equation involves both of the parameters
u' and v, and consequently in general there is a double infinity of
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tangent planes to a surface. This is the case, for example, with a
sphere, the tangent planc at a point being normal to the radius of the
sphere at the point, as one sces geometrically (see §11, Ex. 1). How-
ever, we have secen that the tangent planes along a generator of the
tangent surface of a curve coincide, this tangent plane for any gencrator
being the osculating plane of the curve at the point of tangency of the
given generator. Likewise the tangent planes to a cylinder, or a cone,
along a generator are the same as is evident geometrically. Hence the
tangent plancs to a tangent surface of a curve, to a cone, or to a cylinder
involve only one parameter, and consequently these surfaces are the
envelopes of a one-parameter family of planes. They are called
developable surfaces, since any such surface can be developed upon a
plane, that is, rolled out without stretching or contracting any part of
it. It is evident that this can be done with a cylinder or a cone.

We desire to show that with the exception of cylinders and cones
every developable surface is the tangent surface of some curve. We
consider first the more general problem of finding the envelope of a
one-parameter family of surfaces.

An equation

(12.1) f', 2% 2% ut)y =0

involving a parameter u' as well as the z’s is an equation of a one-
parameter family of surfaces, each of which is defined by (12.1) when
u' is assigned a particular value. Consider now the curve of intersec-
tion of the surfaces (12.1) and f(z', «*, 2°; »' + Au') = 0 for particular
values of «' and Au'. This curve is the curve of intersection also of
(12.1) and the surface

f@&@, 2 2% ut + au') — f(2, 2, 255 ) 0

Y B =0.
There is such a curve unless f(z', ©*, 1°; ¥") = o(z', 2°, 2%) + ¢@'), in
which case the preceding equation does not involve z'. We assume,
therefore, that u' does not enter in this manner. As Au' approaches
zero this curve approaches a limiting curve defined by (12.1) and

’ of _
(12.2) ol = 0
The curves defined by (12.1) and (12.2) as u' takes all values are called
the characteristics of the family of surfaces (12.1). They form a surface
E, called the envelope of the surfaces (12.1). Each surface of the family
and the envelope have one of the characteristics in common, and, as we
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shall show, are tangent to one another along this characteristic; that is,
at each point of the characteristic the surface and envelope have the
same tangent planc.

Let the coordinates ' of a point on the envelope be expressed in terms
of ' and some second parameter v’ say z' = f'(u', w*). With this
choice of coordinates the coordinate curves »' = const. are the char-
acteristics. When these cxpressions for z' are substituted in (12.1),
the resulting equations are identities in «' and «’, and consequently
the derivatives of this expression with respect to «' and * are equal
to zero. In consequence of (12.2) we have

E of oz’ _ > oz’ _
ot gul 0, T or' ou?
From these equations it follows that the cofactors of the elements of
the first row in the equation (11.3) of the tangent plane to the envelope
are proportional to %, and consequently an equation of the tangent

plane to the envelope at the point z' is
S-aL oo
B ort
This is an equation of the tangent plane to a surface (12.1) for a given
value of w', as follows from (11.5). Since %’ does not enter in g%, it

follows that at each point of a characteristic the corresponding surface
(12.1) and the envelope have the same tangent plane.

We consider now in addition to equations (12.1) and (12.2) the
cquation

(12.3) ?2_{’, =o.

We denote by
(12.4) = fi(u)

the common solution, if any, of equations (12.1), (12.2) and (12.3).
Equations (12.4) are equations of a curve on the envelope of the sur-
faces (12.1) since they are solutions of (12.1) and (12.2), and for a
value u' = a' the corresponding point of the curve (12.4) is a point of
the characteristic u' = a'. We wish to show that at this point the
curve and the characteristic have a common tangent line.

If the expressions (12.4) are substituted in (12.1) and (12.2) the re-
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sulting equations arc identities in %', and consequently their derivatives
with respect to u' are equal to zero. In consequence of (12.2) and (12.3)
the result of differentiating (12.1) and (12.2) with respect to u' is

(12.5) pILIN S S SLCF I LS

T or' T ouloxt

where the prime indicates differentiation with respect to »'. At a point
of the curve (12.4) the quantities f* are direction numbers of the tangent
to the curve at the point.

A characteristic u' = a' is the intersection of the surfaces defined by
(12.1) and (12.2) for this value of «'. From (11.5) it follows that the
tangent planes to these two surfaces at the point 2} = f'(a') are re-
spectively

i iy of _ i i 62f _

LN —adgp=0 DX =) =0
Taken together these are equations of the line of intersection of these
two planes, that is, the tangent at zi to the characteristic »' = a'.
From these cquations and (12.5) it follows that f* are direction numbers
of the tangent at zi to the characteristic.  Consequently the charac-
teristics are tangent to the curve (12.4), and accordingly the latter is
the envelope of the characteristics. It is called the edge of regression
of the envelope K of the surfaces (12.1). Gathering together these
results we have

[12.1] The envelope of a one-parameter family of surfaces is a surface
which is tangent to each surface of the family along a curve, the characteristic
corresponding to the particular surface; the characteristics are langent to a
curve, the edge of regression of the envelope.

When all the characteristics have one and only one point in common,
that is, when equations (12.1), (12.2) and (12.3) admit a common solu-
tion only for a particular value of ', this point is a degenerate edge of
regression.

We apply these results to a one-parameter family of planes with the

cquation
(12.6) az' +a =0,

where a; and a are functions of a parameter ©' with the understanding
that a; arc not proportional to a set of constants ¢, , that is, that the
planes of the family are not parallel.* In this case equations (12.2)

*C. G., p. 101
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and (12.3) are respectively

" i

(12.7) az' +a =0, ailz'+a’ =0,

where the primes denote differentiation with respect tou'. From (12.6)
and the first of (12.7) it follows that the characteristics are straight lines.
If the determinant A, defined by

QG aa.
(12.8) A=|a, ai ai

" ”" "
1ay az ag

is not identically zcro, equations (12.6) and (12.7) admit a unique solu-
tion (12.4), and by theorem [12.1] the envelope is the tangent surface
of the curve (12.4), unless the functions fi@) in (12 4) are constants.
If f'(u") are constants ¢’, then from (12.6) we have a = —auc’, in which
casc all of the planes of the family pass through the point ¢’. When
all the planes (12.6) have a point in common, the envelope is a cone,
unless all the planes have a line in common. In the latter case the line
of intersection of the planes (12.6) and the first of (12.7) must be in-
dependent of '; that is, that line and the one with equations (12.7)
must coincide.  The condition for this is that the matrix

lar a a3 a |

! ’ ’
a; (42 as a
" " " "
ay as as a |

(12.9)

be of rank less than three.* Henee we have

[12.2] The envelope of a one-parameler family of non-parallel planes
(12.6) for which A, defined by (12.8), is not identically zero is the tangent
surface of a curve, or a cone; in the latter case @ = —aic’, where the ¢’s are
constants, and ¢* are the coordinates of the vertex of the cone.

We consider next the case when 4 = 0. In this case there are quanti-
ties h', k%, K’ such thatt

(12.10) Ba; =0, hRai=0, h'ai =0.

Differentiating the first two of these equations, we obtain in consequence
of the third

(12.11) Ba; =0, h'a;=0.

*C. G, p. 125.
t C. G., p. 116.
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From these equations and the first two of (12.10) it follows that a! are
proportional to the corresponding a;, and consequently a; are propor-
tional to constants c¢;, the factor of proportionality being a function
of u!, in which case the planes (12.6) are parallel. Since this case has
been excluded from this discussion, it follows that the h’s are constants
so that equations (12.11) do not exist. Since a; are direction numbers
of normals to the planes,* it follows from the first of (12.10) that all of
the planes are parallel to a line of direction numbers hi. Conscquently
the envelope is a cylinder, or all the planes have a line in common.
The former case arises when the three equations (12.6) and (12.7) do not
have a common solution, that is, when the matrix (12.9) is of rank threet.
As remarked above, the planes pass through a line when the rank of
the matrix is less than three. Hence we have

(12.3] When for a family of non-parallel planes a;x’ + a = 0 the deter-
minant (12.8) is identically zero, the envelope of the plancs is a cylinder or
all the planes have a line tn common according as the rank of the augmented
matriz (12.9) is three or less than three.

We seek now a necessary condition upon a function f(z', 2%, z*) in order
that the surface

(12.12) fla', 2%, 2% =0

shall be a developable surface.  Assume that the surface is defined by
the equations z* = ¢'(u', u°), where «' = const. are the generators and
w’ = const. another set of coordinate curves. When these expressions
for «' are substituted in (12.12), the resulting equation is an identity in
u' and %, and consequently

]

or or;

(12.13) i i) i i 0,

where f; = {?i‘ , and the summation convention isapplied. Anequation
of the tangent plane to the surface (12.12) at the point z* is

(12.14) (X — 2, = 0.

Since equation (12.14) does not involve «* by hypothesis its derivative
with respect to u* is equal to zero. Therefore, in consequence of the

*C. G., p. 92.
t C. G., p. 126.
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second of (12.13) we have

. . axl'
12.15 L P
(1215) (X' =205 =0,
where
_of
Ji = i

Since u' = const. are the generators of the surface by hypothesis, their
equations are given in accordance with (12.1) and (12.2) by (12.14) and

[(XZ i)fi] =0

au‘

which in consequence of the first of (12.13) reduces to
i i axj _
(12.16) (X' — ) fy Fovika 0

On comparing equations (12.15) and (12.16) with (12.13), we see that
(12.17) (X' = 2ii = if;,

where t is a factor of proportionality. In order that the three equations
(12.17), and (12.14) be consistent, it is necessary* that the equation

fu fie fiu N
(12.18) fa fu fu fe _ 0
fa fa fu f3|

i fe fs O

be satisfied in consequence of (12.12) or identically.

Conversely, if this condition is satisfied and z* = ¢'(u, u*) are equa-
tions of the surface, that is, satisfy (12.12) identically, when these
expressions for z are substituted in (12.18) the resultmg equatlon is an
1dentxty in «' and . Hence there exist functions @’ and a of u' and
u’ such that

(12.19) afij +af; =0, a¥fi =0.

If any one of the quantities f; is equal to zero identically, then (12.18)
is satisfied identically and the surface is a cylinder whose generators are

*C. G., p. 139.
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parallel to a coordinate axis. There remains to consider the case when
each f; is not identically zero, and we write the equation (12.14) of the
tangent plane to the surface (12.12) in the form

1 2f2 3f3 I'f.' _
(12.20) X +X T + X nT R
The quantities fo/f1 , f3/f1 , and z'f/f1 are functions of u' and u’, their
form depending upon the functions ¢*(u', %*). In order that the surface
(12.12) be developable it is necessary and sufficient that therc be co-
ordinates «’* and »’* in the surface such that fo/fy, fs/f., and z'f:/fi
shall be functions of one of them, say »’'. This means that these three
quantities must be functions of the same function, say ¥(u', u%), in
which case v = ¢(u', «*) and w” is any other function of %' and
such that the jacobian of this function and ¢ is not identically zero.
If this condition is satisfied, the surface is developable and the curves
¥(u', u*) = const. are its gencrators. Hence a sufficient condition that
the surface be developable is that when (12.19) are satisfied the jacobian
of each pair of the quantitics f2/f1 , f3/f1 , and z'f;/f, with respect to u'
and u* be identically zero. The jacobian of the first two of these quanti-
ties is
J J
1 (fifei = fofus) 3%1 (fifsi = fafii) gi—l
N i )
B it = 250 22 Gt = o0 22,

which is equal to*

fi fa fs
. v
fl' au1 fz’ au‘ fui 8_1'[1 .
7
fl' 61 ou? fz' 6u2 fa, au2

In consequence of (12.19) and (12.13) this determinant is equal to zero.
Because of this result and (12.13) the jacobian of z'fi/fi and each of
the quantities f2/fi and f3/fi can be shown to be equal to zero. Heuce
we have

[12.4] A necessary and sufficient condition that f(z', 2, 2°) = 0 be an
equation of a developable surface is that equation (12.18) be satisfied in
consequence of the equation f(z', 2%, ) = 0 or identically.

* Fine, 1904, 1, p. 505.
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Consider the equation

(12.21) ¢y,
axt

where the ¢’s are constants. Evidently any solution of this equation
satisfies (12.18) identically. Also (12.21) is the condition that the

normals to such a developable surface be perpendicular to a line with
direction numbers ¢'. Hence we have

[12.5] A necessary and sufficient condition that a surface f(z', 2°, z°) =0
be a cylinder is that f be a solution of an equation (12.21) in whick the
¢’s are constants.

EXERCISES

1. The envelope of the planes normal to a curve is the polar surface (see §11);
the polar surface is also called the polar developable.

2. The envelope of the plane normal to the prineipal normal to a curve at a
point of a curve is called the rectifying developable of the curve; equations of its
characteristies are

Xt =20 + (ra' — kv,

where ¢ is a parameter, and equations of its edge of regression are

. . (rat — kv )k
Xi= g ~— T,
a+ dx dr

Tds “ds

3. If each of the generators of a developable surface, other than a cone or
cylinder, is revolved through the same angle about the tangent to an orthogonal
trajectory of the generators at the point of intersection, the locus of the resulting
lines is a developable surface whose edge of regression is an evolute of the given
trajectory.

4. The edge of regression of the family of planes

(U —wta! + (1 + u?a? + 2uz® + f(u) = 0,

where ¢ = 4/=1 and u is the parameter, is a minimal curve; the envelope is
called an isotropic developable surface.

5. Find the edge of regression of the developable surface which envelopes the
hyperbolic paraboloid az® = z'z? along the curve in which the paraboloid is cut
by the parabolic cylinder z* = bzt

6. The curvature and torsion of the edge of regression of the family of planes
a;x' 4+ a = 0, where the a’s are functions of a parameter u, are given by

A3 A?
3
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where

aQ Qg as a
ay a3 a; ’ ’
ay Qs as a

' ' ’
A=|a ay ag "
a Ay aj a
” ” "
a, as; ay " " " "

ay as as a

primes denoting differentiation with respect to u.
7. For a family of spheres

> @~ a)af —a) —ar =0,

in which the a's are functions of the arc of the curve C of centers, the edge of
regression consists of two parts with corresponding points symmetric with respect
to the corresponding osculating plane of C, unless

@) a*(l — a?) — ol — (aa")']? = 0,
where p is the radius of curvature of C; when the condition (i) is satisfied, the

edge is a single curve, C; , its points lying in the osculating planes of C, and the
spheres of the family are the osculating spheres of C, .



CHAPTER 11

Transformation of Coordinates.
Tensor Calculus

13. TRANSFORMATION OF COORDINATES. CURVILINEAR
COORDINATES

In the preceding chapter z*(; = 1, 2, 3) denote cartesian coordinates
of space referred to rectangular axes. There are many such coordinate
systems, and the relation between two such systems z* and 2’ is given
by equations of the form
(13.1) ' = ale’’ 4+ b
The coordinates ' refer to a set of rectangular axes whose origin in the
z-system is b, and a} , o} , a} are the direction cosines of the z'™-axis
with respect to the z-system. These direction-cosines satisfy the
conditions*

(13.2) 2 aiai =8x, 2 didf =",

where the quantities 8 and 8%, called Kronecker deltas, are defined by
(13.3) d;x and 8™ = 1 or 0 according asj = k or j # k.

Moreover the determinant of the quantities a} , that is,

1 1 1
as Qas ag

(13.4) la} | =|al ai a}
a a d

is equal to +1.f .
If we denote by a;’ the cofactor of a! in the determinant (13.4) divided
by the determinant, then

(13.5) aiai* =8, aja’ =3},

where 8} , also called Kronecker deltas, are defined by

(13.6) 8 = 1 or 0 according as i = j or i # j.
*C. G., pp. 161-164.
tC. G, p. 162.

63



64 TRANSFORMATION OF COORDINATES [CH. II

The second set of equations (13.5) is equivalent to the statement that
the sum of the products of the elements of the jth column and the co-
factors of the corresponding elements of the #*" column is equal to the
determinant or zero according as ¢ = jor ¢ ¥ j.* If then we multiply
equation (13.1) by a:* and sum with respect to i, we obtain

(13.7) aif(@’ = bY) = afald’’ = 882" = 2™

Hence the loci z* = const. are parallel planes for which the quantities
ai¥ are direction numbers of the normals to these planes in the z-system.t
However, if the first set of equations (13.2) for j # k arc not satisfied,
the axes of the z’-system are not mutually perpendicular, as follows
from the remark following equations (13.1). Hence in this case the
z’-system is an oblique system of coordinates.

We consider next the case, when the determinant (13.4) is equal to
zero. In this case equations (13.1) in the z’’s are consistent only when
the three determinants obtained on replacing the elements of a column
in the determinant (13.4) by z' — b', ¥ — V%, 2° — b® respectively are
equal to zero.} Consequently in this case the quantities z’* are defined
only at points of the locus with these equations, and thus are not co-
ordinates for the space.

Equations (13.7) define the ¢nverse of the transformation (13.1).
Moreover, equations (13.1) define the inverse of the transformation
(13.7) as follows from (13.5).

Polar coordinates constitute another type of coordinates frequently
used in space, partncularly in astronomy With reference to a cartesian
coordinate system z* polar coordinates «'* are defined by

. 3 ’ 2
(13.8) ' =2 sing?cosz®, 2'=z"sinz?sing?®, z*=z"cosz”

The inverse of this transformation is
' — 3 2
(13.9) 2" = VX 2z, 2% =cos’ ——f—_w, z”® = tan™ (_E_l‘
i \/Z 'z z
¢
From these equations it follows that 2’ is the distance of the point P(z’)
from the origin O of the z-system; 2’ is the angle which the line OP
makes with the z’-axis; and 2’ is the angle which the projection of OP
on the z'z’-plane makes with the positive z'-axis.
From (13.9) it follows that the loci ' = const. are spheres with O

*C. G., p. 110.
t C. G., pp. 92-93.
1 C. G, pp. 124.
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as center; the loci 2> = const. are right circular cones each of which
has its vertex at O and the 2’-axis for axis; and the loci z”° = const. are
planes through the z-axis. We call these surfaces the coordinate
surfaces in the z’-system. In like manner the coordinate surfaces of
the #’-system defined by (13.1) and (13.7) are planes, which as shown
are mutually orthogonal only in case equations (13.5) are satisfied.
Equations (13.1) and (13.8) are particular cases of equations

(13.10) g’ = oia", 2", 2"),

where the ¢’s are one-valued functions of z”*, z”%, 2”°. For any such
functions ¢', these are equations of transformation to a general set of
coordinates z'*, z”*, z°, provided that the functions ¢ are independent.
If they were not independent there would be one, or two, relations of the
form F(¢', ¢, ") = 0, and in that case (13.10) are not equations of a
transformation of space; they have meaning only at points of the
locus with this equation, or equations. A necessary and sufficient
condition that the functions ¢’ be independent is that their jacobian,
namely

1 1

6«,01 d¢ de
o o ot
i 0¢' B¢’ Bg°

" 9x’t 8z'7 ax'*

_ a(pz 6(,02 6992 _,

axr't 9z’ 9z"

de
(13.11) ‘5;,

6<p3 6<p3 6«.03
3z ar't 8x"

be not identically zero* (see (1.19)).
When this condition is satisfied, there may be particular values of
z"* for which the jacobian is zero, but in general this is not the case,

that is, about a point 2’* for which } gf, ' # 0 there is a domain for which

this inequality holds. For such values of z'* equations (13.10) can be
solved for z'*; we denote such a solution by
(13.12) o = ¢, 2, )1

These equations define the tnverse of the transformation (13.10).
For equations (13.1) the jacobian (13.11) is the determinant (13.4).
When this determinant is not equal to zero, the a;* exist and equations

* Fine, 1927, 1, p. 253.
t Fine, 1927, 1, p. 253.
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(13.7) are the inverse of equations (13.1) and give the coordinates z’°
for a point in terms of the z’s of the point.

For equations (13.8) the jacobian (13.11) is found to be equal to
(=) sin . Since this quantity is not identically zero, polar coordi-
nates apply to all points of space, but they are not uniquely defined
when 2" = 0 or when sin z”* = 0, that is, at O or on the z*-axis. Thus
at 0, 2" = 0 and z’* and z’° can take any values, that is, all the co-
ordinate surfaces z'’-const. and z'*-const. pass through O. For any
point on the 2’-axis, 2'* can take any value, that is, all the coordinate
planes 2’* = const. meet in the 2’-axis. In these cases the coordinate
surfaces are degenerate, thatis, 2* = 0 is a point, and 2’* = 0, =, a line.
But for all other points equations (13.9) hold and are the equations of
the inverse.

When the expressions (13.12) for 2'* are substituted in (13.10) we have

2" = 'e", 0" ") = 0,
which are identities in the z’s, as follows from the definition of (13.12).
Since they are identities, the left-hand member does not vary with any

of the 2’s, and consequently the derivative with respect to each z’ is
equal to zero. Hence we have

oz _ 9y" d¢”
ar’  dp'* oxi’

where k is a dummy index. Since z* and &’ for ¢ # j are independent,
the left-hand member is +1 or 0 according as ¢ = jor¢ # j. Accord-
ingly these equations may be written

¢ _ ozt o
T ax’t gx’

(13.13)

where 8! are defined by (13.6). Since 7 and j take the values 1, 2, 3
there are nine equations in the set (13.13).

If we consider the expressions (13.10) for z* substituted in (13.12), we
obtain analogously to (13.13)

o’ 8zt _
ark 8zt "

(13.14)

When the jacobian of the transformation (13.10), namely (13.11)

denoted by ’ 9= , is multiplied by the jacobian of the inverse (13.12),

or’
one obtains in consequence of (13.13) a determinant in which each
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element of the main diagonal is +1 and every other element is zero.

Hence we have
(13.15) oz

Ez

o _
ax’

)

that is, either jacobian is the reciprocal of the other. Thus the relation
between equations (13.10) and (13.12) is such that either is the set of
equations of the inverse transformation of the other.

If in equations (13.13) we give 7 a fixed value and let j take the values
1, 2, 3, we have three equations of the first degree in ;,(;’—;71, (%:% a gfﬁs .
Solving these equations for these quantities, we obtain (see Ex. 1)

oz’ . |ox/
0z cofactor of T in o
(13.16) ==
ox’? ox’
o

Although we started this section, interpreting z* as cartesian co-
ordinates in space, and took equations (13.10) as equations of a trans-
formation from such coordinates to any other, in deriving the properties
of the transformation (13.10) and the inverse (13.12), no use has been
made of the fact that z* were cartesian coordinates. Therefore all the
results of this section apply equally well when equations (13.10) give
the relation between the coordinates of any two general systems what-
ever in space. Thus, if 2 are any set of coordinates, equations (13.1)
and (13.8) define a transformation of coordinates; but the geometric
interpretation of the new coordinates in these two cases given above
applies only to the case when z* are cartesian coordinates.

We consider now in connection with a transformation (13.10) a second
transformation

(13.17) zn' = \I/‘(ZNI, xlﬂ’ .’12”3),

!

it being understood that the jacobian is not identically zero.

az”’
When these expressions for z'° are substituted in equations (13.10),
the resulting equations denoted by

(13.18) zt = '@, 2 "

define a transformation from z' into z'’*, called the product of the trans-
formations (13.10) and (13.17). Since
or' _ 9z’ aa”
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it follows from the rule of multiplication of determinants that

| oz | _|oz| |0z’
ox”’ ox’ ax”’

— . ,

and hence that the jacobian of the product of two transformations «
coordinates is the product of the jacobians of these transformation
We say that transformations of coordinates have the group proper
by which we mean that the product of any two such transformations is
transformation of coordinates.

If 2* are cartesian coordinates, each of equations (13.12) for a parti
ular value of an 2’ is evidently an equation of a surface in space, an
for three particular values of z'', z’* and z* these are equations of thre
surfaces in space intersecting in the point with these coordinates in tt
z'-system, as discussed above in the case of linear equations (13.1) an
polar coordinates (13.8). In like manner for particular values «
cartesian coordinates z', equations (13.10) are equations in the c
ordinates 2’* of the planes through the point z* parallel to the coordina
planes z* = 0.

If z° and 2'* are any coordinates whatever, equations (13.12) fc
particular values of z'', z”*, z° are equations of three surfaces, define
in terms of the coordinates z*, which pass through the point («/*, 2%, z’°
and similarly for equations (13.10).

Another way of stating the above remarks is that in any coordinai
system each of the equations

(13.19) =, L=¢ 2d=c

for particular values of the constants ¢ is an equation of a surface fc
which one of the coordinates is a constant for all points of the surfac
the values of the other two coordinates determining a particular poir
on the surface. Thus equations (13.19) are equations of surfaces whic
are the analogue of planes parallel to the coordinate planes of a re
tangular coordinate system. As the constant ¢’ in any one of thes
equations takes on a continuum of real values, the equation is a
equation of a family of surfaces. Thus each of these equations

an equation of an endless number of coordinate surfaces. In the z
system defined by (13.10) equations of these coordinate surfaces a1
o' (@, %, £®) = ¢'. There passes one and only one surface of eac
family through each point in space for which the jacobian of the tran:
formation from cartesian coordinates to the coordinates in question

not zero. At points where the jacobian vanishes the new coordinate
are not uniquely defined, as remarked in the case of equations (13.8
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Any two of equations (13.19) for particular values of the c’s are
equations of the curve of intersection of the corresponding coordinate
surfaces. Along such a curve the remaining coordinate is a parameter;
thus z' is a parameter for (any) one of the curves z* = ¢’ and z* = ¢’
We call these curves coordinate curves, and, in particular, an z'-coordi-
nate curve one for which z* alone varies, and thus will serve as a param-
eter. These curves are the analogues of lines parallel to the coordinate
axes in cartesian coordinates. Since these curves are not in general
straight lines, the corresponding coordinates are called curvilinear.

From the above discussion it follows that whatever be the coordinates
' in general the locus defined by an equation f(z', 2, 2°) = 0is a surface,
and the locus defined by two independent equations fi(z', 2%, 2°) = 0,
f2(x', 2, 2°) = 01is a curve. This is equivalent to the definition of a
surface as a two-dimensional locus, and of a curve as a one-dimensional
locus (see §1).

EXERCISES
1. It follows from (13.5) that
lajl-lai* | =1,
and that o} is the cofactor of @}’ in the determinant |a;’| divided by the

determinant.
2. From (13.3) and (13.6) it follows that

85 = 8,

and conscquently 8%/ is the cofactor of §;; in the determinant I 8i;5 I (see (13.16))
3. From (13.6) it follows that

8 = i =3.
T
4, From (13.4) and (1.19) it follows that
eipalahal = {a} | eimn ;
elitalalal = | a} | etmn
5. By giving to 7 and j different values one verifies that the cofactor of a; in
the determinant (13.4) is given by
yeitte, . aral.
6. Determine the coordinate surfaces z’* = const. for each of the following

transformations, in which zi are cartesian, and find the points for which the
jacobian is equal to zero:

@) ! = z'lz'3 cos x'3, x? = z'iz'? gin '3, 223 = (z'1)? — (x'?)?%;

. [(zu — @) (z"? — a')(z'® — ai):li
z = ,

- (ai — a')(a* — a’)

(i)
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where 1, j, k take the values 1, 2, 3 in cyclic order, thatis 1, 2, 3;2, 3, 1; 3, 1, 2,
and where a! > a? > a®* > 0.

7. Discuss the coordinate curves for each of the systems in Ex. 6 and also
for (13.8).

14. THE FUNDAMENTAL QUADRATIC FORM OF SPACE

We have seen in §2 that for a curve in space defined by equations of
the form

(14.1) ' = (),
the 2’s being cartesian, the differential of length of the curve is given by

s’ = Z <df ')2 ar.

dt

Accordingly we say that the element of length, or linear element, ds of
space is given by

(14.2) ds* = (dz")* + (d2*)* + (dz°)’,

by which we mean that, when the differentials dz’ from (14.1) are
substituted in (14.2), the expression for ds obtained therefrom is the
differential of arc length of the curve (14.1). The right-hand member of

(14.2) is called the fundamental quadratic form of space.
In terms of any other coordinate system z’* we have from (13.10)

(14.3) di' = ==, dx"”,
and from (14.2)

(14.4) ds* = Z (ax dz”)(%k dx"’) = aj; dz"” dz"*,

oz’
where

(14.5) ah = }: 0z’ o2

/7 a$”‘ )

3

from which it follows that aj; = q,,f .
Since the coordinate system z’* is any whatever, it follows that in any
coordinate system z* the fundamental quadratic form is

(14.6) ds® = a;; dz’ do’,
where a;; is symmetric in the indices 7 and j, that is, a;; = a;;. When, in

particular, the coordinates z° are cartesian, we have (14.2), and con-
sequently

(14.7) ai; = 5‘; ) dsz = 5.',' d:c‘ dx".
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In the case of polar coordinates (13.8) we have from (14.5)
(148) . an=1, an=@@", au= @7 sn’z?
ai; = 0 for ¢ # j.
Hence in polar cqordinates the fundamental form is
(14.9) ds’ = (dz'")’ + (=) ((dz'*)’ + sin’ 2* (dz’®)?).

We desire now to find the relation between the coefficients a;; and aﬁ_,-
of the fundamental form in any two coordinate systems z*' and z'".
Since the element of length ds does not depend upon a coordinate system,
the fundamental forms in any two coordinate systems are equal. Hence
we have

a;,-da:‘dx" = ai; dx"‘ d(t’l.
Substituting for dz* and dz’ from equations of the form (14.3), we have
( oz’ oz’

’ kgl _
i 57 5 T a“) dz"dz” = 0.
Since this equation must hold for arbitrary values of the dz’’s, and the
expression in parentheses is symmetric in & and [, it follows that
oz’ oz’
ax’* az't’
In order to obtain this result, one takes dz’* # 0, dz”* = dz’* = 0, and
gets equation (14.10) for ¥ = [ = 1. In like manner, as one takes
every other two of the differentials equal to zero, one gets (14.10) for
k =1=1,2 3. In order to obtain the remaining three equations
(14.10) for k # 1, one takes one of the differentials equal to zero at a time,
and the others not equal to zero. That there are only three of these
equations follows from the fact that in any coordinate system ax = an,
as previously shown.

(14.10) a = i

1k 13
If we multiply (14.10) by %% %%. and sum with respect to k£ and [,
we have on making use of (13.13)
o0t _oa ot oa’ oz
* ok o Y ar'* gr* ax’t orm™

= a.-,-&;';éf,. = Qhm.
Hence, on changing indices, we have the following equations

l
, oz oz’

(14.11) Qij = A 3 97’
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connecting the a’s and a”’s which are equivalent to (14.10), but in
inverse form.

If we denote by a’ and a the determinants of the quantities a;; and a;;
respectively, we have from the rule for the multiplication of deter-
minants

1] az"‘

oz’ 8z’
Ui 32 o

A
ar’

ox
oz’

(14.12) o' =|aul| =

For the values §;; of the a’s, that is, when the coordinates are cartesian,
the determinant is +1. From this result and (14.12) we have

[14.1] The determinant of the coefficients of the fundamental form of euclid-
ean space tn any coordinate system is posttive.

Since a # 0, functions a™ are defined uniquely by
(14.13) a*aj = 6} .

In fact, on solving these equations for ¢ in the manner which led to
(13.16) from (13.13) we have

cofactor of ax; In a

(14.14) a* =
a

Since a;; = a;; , it follows from (14.14) that a™ = ¢*, that is, the quanti-
ties @’ are symmetric in the indices, in this case superseripts. In
particular, when a;; = 8;;, we have a”’ = 8" (see §13, Ex. 2).

If @ denotes the determinant of the quantities a®, it follows from
(14.13) that the product of the determinants ¢ and a is equal to the
determinant for which cach element of the main diagonal is +1, and
every other element is zero. Hence

(14.15) i=|a’| =",

For any other coordinate system z'* the coefficients ai; of the funda-
mental form are given by (14.10). By means of equations of the form
(14.13) functions a’* are uniquely defined. We shall show that the
following relations hold between the functions a’* and a*':

i gt o
(14.16) a @ o e

In fact, if we take the equations

e l-
e am = b,
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which are of the form (14.13), and substitute for as expressions of the
form (14.11), we obtain

Ko ax’* ax'™ !
im T, ToE &
dz* axh

7

z .
, and sum with respect to I, we have

If now we multiply by {;x

kil ax“ 312” ’ ax"" Kkl
ark ax! " oxt
7 'm

. or” . i . . .
Since 9 18 equal to o, 6;3}‘" we can write the above equations in the

il o ax'j Bx"
kh 73 = Oh o, = .
axt oxt ok

form

" Z X m
a“ (?xf aj;,, a‘{m - 6:" ax,, =
ozF oz’ oz ’

(we say equations, because j and h being free indices there are 9 of these
equations). For a fixed value of j as h takes the values 1,2, 3 we have
three equations, lincar and homogeneous in the three expressions in

'
parentheses as m takes the values 1, 2, 3. Since !@ # 0, we have on

changing indices
ax™ oz ;
O T g — 8 = 0.
axk ozt
Multiplying by @’™ and summing with respect to m, we obtain finally
(14.16).
LXERCISES
1. Show that \/a.i dzt is the differential of length of an z!'-coordinate curve;

apply this result to the case when the z's are polar coordinates.
2. Show that when in (14.13) a;; = 0 for ¢ # j, then

at = - a’ =0 (t # 7).

3. Show that in any coordinate system z* the expression
an(dzl)? 4 2a1, dxt d2? + aaa(da?)?

is the square of the differential of length of a curve on any coordinate surface
z® = const., the curve being defined by ! = fi(¢), 22 = f2(¢).

4. When the coordinates z' are cartesian, the coefficients ai; of the funda-
mental form in the coordinates z’¢ for a transformation (13.1) are given by

A
aij = Z atal,
A
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and the determinant a’ of these quantities is given by
o’ = |aj|%
consequently the coefficients ai; are constants.
5. Show that the fundamental quadratic forms of space in the coordinates z'*
of §13, Ex. 6 are respectively »
(i) [(z™)3 4 ()% [(dz")? + (dz')? + (2"12")*(dz"?)?;
1 (x;j — x”) (:c'k _ zri) (dz’i)’
47T @ — a) (2 — a?) (2 — a?)’

(ii)
where j and k are the numbers 1, 2, 3 other than <.

15. CONTRAVARIANT VECTORS. SCALARS
From the equations (13.12) of a transformation of coordinates, namely

(15.1) g = (', &, o),
we have
, 7
(15.2) dz' = 9% gz
ozt

Thus whatever be the coordinates in two systems in transforming from
one system to the other differentials undergo a linear homogeneous
transformation, the coefficients being in general functions of the co-
ordinates. In this sense a transformation of coordinates induces a
linear homogeneous transformation of differentials of the coordinates.
If equations (15.2) are multiplied by gg,] and summed with respect to j,
we have in consequence of (13.13)

ax' , ,; oz ax”

h _ ot h 0
ax,] - 5‘17’ ’55;. dz - 6hdz - dx,

(15.3)

as the inverse of (15.2). Equations (15.3) are, in fact, equations (14.3),
which were obtained from the inverse of (15.1). If in (15.3) we replace

i oz .
dz'’ by dz'’ = 3277 dz""* obtained from (13.17), we have
P A LY. T
(15.4) dx = ax/i ax"i‘ "= é;;’—’k dx" .

Hence the set of induced transformations has the group property (see
§13).

If 2" in (15.1) are cartesian coordinates, the differentials dz* are direc-
tion numbers of a direction in space, the direction being that of the line
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. segment with end points z* and z* + dz** The differentials dz’’ given
by (15.2) determine the same direction in the z’-system, since a direc-
tion is independent of a coordinate system. However, whereas when
the z’s are cartesian coordinates the direction determined by fixed dz® is
the same everywhere in space, the corresponding values of dz'* given by
(15.2) depend upon the point at which the direction is considered, unless

7
0z 7

the a’s being constants. From these equations we obtain in this ex-
ceptional case by integration equations (13.1), “in which case the co-
~ ordinates 2’* are cartesian or oblique according as equations (13.2) hold
or not. Consequently, although for any transformation of cartesian
coordinates into other coordinates by equations not of the form (13.1)
differentials dz’* determine a direction at a point, they are not direction
numbers of a line in space in the sense that the same values of dz’
determine the direction of the line at every point of it, as is the case with
differentials of cartesian coordinates.
In §3 we saw that for a curve with equations

(15.5) zt = (),
where the coordinates z° are cartesian, the quantities
i d.Ti
{) = —
£ i

evaluated at a point of the curve are direction numbers of the tangent
vector at the point. If for a coordinate system z’* we put

s _ (iain'
£ =%,
we have in consequence of (15.2)
7" _ a}f
(15.6) 0 = #0 5

Thus the quantities £ () determine at each point of the curve its tangent
vector in the z’-system. _

We consider now three functions of cartesian coordinates z* which we
denote by A(z). The values of these functions at each point in space

*C.G, p. 4.
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may be taken as direction numbers of a vector at the point. Such a
set of vectors is called a vector-field. If we put

15.7) dz' = p\',

where p is any function of the 2’s, these values of the differentials at each
point of space are also direction numbers of the vector determined by
A* at the point. Consider for any other coordinate system z’* the
functions of the z'’s denoted by N*(z’) and defined by

(15.8) i) = )J(x) oz ;,
when the z’s in the right-hand members are replaced by their expressions
in the z”’s which define the transformation of coordinates. When we
compare these equations and (15.7) with (15.2), we sce that

(15.9) dz’"* = p\'(2"),

that is, the quantities N(z") define in the z”’s the vector-ficld defined by
N(z) in the 2’s.  Just as equations (15.3) were obtained from (15.2), so
equations (15.8) are equivalent to

(15.10) N@) = V@) o

and thus equations (15.8) and (15.10) are reciprocal in character.
For a third coordinate system z’’* we have analogously to (15.10)

N(z) = )\”"(x”) o

2k

From these two sets of equations we have
)\”(x’) )\uk( u) ”711:
1h

If we multiply this equation by 651’ and sum with respect to 7, we have

in consequence of (13.14)
)\/h(fl:') )\//k( //) ¢ mé

Hence the equations (15.10) have the group property, and consequently
in any two coordinate systems z* and 2’* the quantities \’(z) and \"*(2’),
which in the respective systems determine at each point the vector of a
vector-field, are in the relation (15.10). The quantities A* and A"’ are
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called the components in the z-system and z’-system respectively of a
contravariant vector. As thus defined there is a contravariant vector at
each point in space, that is, a vector-field. When the coordinates are
cartesian, they are direction numbers of the vector; their geometric
significance in any other coordinate system is shown in §16.

From the foregoing discussion it is secen that a contravariant vector
is entirely defined by its components in any one coordinate system,
and then its components in any other system are determined. Hence
one may assign arbitrary functional expressions to A* in the z-system.
For example, one may take \* as constants, and then in general the
components in another coordinate system are not constants. If the
coordinates z' are cartesian and the A’ are constants, all the vectors are
parallel, since they have the same direction numbers. But in a general
coordinate system constant components do not define parallel vectors.

At times in the consideration of a geometric problem one arrives at
equations of the form (15.10) connecting certain quantities A’ and A’
in any two coordinate systems. In this case we say that the geometric
entity thus defined analytically is a contravariant vector whose com-
ponents are A\ and A’ in the respective coordinate systems.

If functions A’ and A"’ defined at points of a curve and not throughout
space, satisfy equations of the form (15.8), \' are said to be the compo-
nents of a contravariant vector at points of the curve; an example is
afforded by equations (15.6).

Consider the differential equations

(15.11) dz _dz _ dr

where A’ are the components of a contravariant vector. From the
theory of such equations it follows that their integral is given by two
equations of the form

(1512) fl(xl: x21 x3) =0, fi(xl: 2?2, 23) = C2,

where the ¢’s are arbitrary constants,* and that f; and f, are two inde-
pendent functions which are solutions of the equation

i of _
(15.13) N =0,

For each pair of values of ¢, and ¢; equations (15.12) are equations of a
curve. Through a point in space for which the functions fi and f2

* Fine, 1927, 1, pp. 322, 325.
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are single-valued there passes one and only one curve of the family.
Such a two-parameter family of curves is called a congruence.

From the discussion of equations (15.7) and (15.9) it follows that in
any other coordinate system z’* the equations (15.11) are

and that their integral consists of the equations in the z”s obtained
from (15.12), when the z’s are replaced by the functions of the z'’s
which define the transformation of coordinates.

From (15.11) and (15.13) we have

9 § 0 i
a'];l" dz' =0, 5% dz' = 0.
From these equations it follows that when the z’s are cartesian dz’,
and consequently \’, are direction numbers of the tangent vector at a
point to the curve of the congruence (15.12) through the point. Hence
in any coordinate system M\’ are the components of such a tangent vector.

If f is any function of z* and f” the function of z* obtained from f when
' are replaced by the functions of 2’* which define the transformation of
coordinates, we have

(15.14) @, 2, )= f'(", =7, z°).

Either of these functions is called the transform of the other. From
this equation we have

of _ of ox”
(15.15) L=

From this result and (15.10) we have

=\’ 9.71 o =\ wali
1

¢ 0f _ 0z 9f 92"
(15.16) - X g5 = N 53 ar o oz’ rga

Hence the transforms of the solutions of an equation (15.13) are solu-
tions of the equation
; 00

(15.17) N P =

Any function f(z', 2°, 2°) and its transform in any other coordinate
system define in their respective coordinate systems an entity called a
scalar. Whenever in considering a problem one arrives in two coordi-
nate systems at quantities which are transforms of one another in the
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sense of (15.14), one says that the entity so defined is a scalar. For
example, since either of the first and last members in (15.16) is a trans-

f

form of the other, we say that A\’ % is a scalar, meaning that its transform

in any other coordinate system is the analogous expression, in this case
12 af !
A &'Ti.
EXERCISES

1. For a linear transformation z¢ = az'/, where the a’s are constants, the
coordinates are components of a contravariant vector in the two coordinate
systems; in consequence of Euler’s theorem the most general transformation for
which this is true is when ¢* in (13.10) are homogeneous functions of the first
degree in z'%.

2. Show that in any coordinate systems A}, 0, 0; 0, A}, , 0; 0, 0, A}, are com-
ponents of the tangents to the coordinate curves, the subscript of a X indicating
that it applies to the curve of parameter x*, where 7 has the value of this sub-
script; also that these components may be written

® M= ew

where the subscript k| for h = 1, 2, 3 denotes the vector, the &'s arc defined by
(13.6), and the ¢’s are non-zero functions of the z’s.
3. Show that in any other coordinate system z’¢ the components of the vectors
(i) of Ex. 2 are given by
’e az’t
M=o 5_1:7 .

4. What are the components in any coordinate system z’* of the veector whose
components in the z’s are

where [ are any functions of z!, z?, z* which involve z! at least?

5. Three contravariant vectors of components A}, in which hl forh=1,2,3
indicates the vector, are tndependent, that is, there are no functions a; of the z’s
such that

(l) a;)\il + a,)§| + aa)\;.l = 0,
if and only if the determinant I ) | is not identically zero. Show that in this
case any vector A* is expressible in the form

N o= b} 4+ b, + b, = bAA]

for suitable values of the b’s as functions of the z's.

6. Show that when the determinant in Ex. 5 is equal to zero there exist func-
tions a, , as, as such that equations (i) hold; discuss the geometric meaning of
the cases when all the a’s are different from zero and when one of them is equal
to zero.
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7. Given a contravariant vector Af in any coordinate system z°; show that,
d
if ¢! and ¢? are independent solutions of the equation \¢ al-' =0, and &3 i8 a solution
T

d¢

i}
of the equation )\"a—P, = 1, the jacobian
I

# 0; also that in the coordinate

system z'* defined by z’¢ = ¢/(z) the components of the given vector are 0, 0, 1.

16. LENGTH OF A CONTRAVARIANT VECTOR. ANGLE
BETWEEN TWO VECTORS

Let N’ be the components of a contravariant vector in any coordinate
system z’ and consider the quantity a;A'\’, where a;; are the coefficients
of the fundamental form (14.6). In consequence of (15.10) and (14.11)
for any other coordinate system 2'* we have, using (13.14),

ndr'* 8z’ ar'' ox’

A ’ "
ai; AN = auN"N —

(16.1) ot o or o

’ h kol ’ k
ak1>\/ )\'"'Bh&,,. = (lu)\l )\” .

I

Hence for any contravariant vector A* the expression a;;A'\’ is a scalar
(see §15). In cartesian coordinates a;\'\’ assumes the form D A*\,
7

as follows from (14.7). At each point it is the square of the length of the
line-segment whose orthogonal projections upon the coordinate axes are
\'; that is, \' are the rectangular components of the vector. Hence we
have

[16.1] If \* are components in any coordinate system of a coniravariant

vector and a;; are the coefficients of the fundamental form in this coordinate

system, the quantity a; AN’ is a scalar; it is the square of the length of the -
line-segment whose rectangular components are the corresponding N's in a

carlestan coordinate system.

Hence in any coordinate system a set of components \* define at
each point in space a vector whose length and direction are determined
by A'. Presently we shall see what the geometric significance of the
components A’ is in any coordinate system.

When, in particular, A’ are such that

(16.2) G\ =1,
we say that the vector is a wunit vector. In this case the components

A'in a certesian system are direction cosines of the vector at each point.
For two vectors A; and A; we have

(16.3) aij)\;..)\; = aA* A’ )
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as follows directly when we proceed as in the case of (16.1). Thus
ai;M\; is a scalar. If the coordinates are cartesian, in which case the
components are direction numbers, this scalar is E)\})\’z. If this
quantity is divided by V/( (Z AL ( Z)\ A3), the resulting expression is

the cosine of the angle of the two vectors * Hence we have:

116.2] If A and A} are the components of two contravariant vectors in any
coordinate system, the angle (< 180°) between the two vectors at a point 18
given by

Qij )\'; A
V(@ N (auNsN)

(16.4) cosf =

As a corollary we have:

[16.3] 4 necessary and sufficient condition that at each point the contra-
variant vectors Ny and \; be perpendicular vs that the equalion

(16.5) @A\ =0
be an identity in z'.

When the vectors A} and A} are not perpendicular at every point in space,
that is, when (16.5) is not an identity, they are perpendicular at each
point of the surface whose equationin the 2’s is given by (16.5).

For an z*-coordinate curve dz’ = 0 for ¢ # k; consequently 8; for &
fixed and 7 = 1, 2, 3 are components of the contravariant vector tangent
to the curve. From (16.4) we have that the angle at a point between the
tangents to the z*- and z'-coordinate curves is given by

i si :
@01 01 _ G

V(00550 (amdi07)  Vawan

Hence we have

[16.4] In any coordinate system the cosine of the angle between an z'-
coordinate curve and an x’-coordinate curve at any point is equal to the
value of a:;/\/ aia;; at the point.

If at a point a;; = O for 7,5 = 1, 2, 3 and ¢ # j, the three coordinate
curves are mutually perpendicular, and consequently at the point the
tangent planes to the three surfaces are mutually perpendicular. In
this case we say that the coordinate surfaces through the point are
orthogonal to one another at the point. If this situation exists at every

*C. G., p. 86.
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point, we say that the coordinate surfaces form a triply orthogonal family
of surfaces. Hence we have

[16.5] The coordinate surfaces for a given coordinate system form a triply
orthogonal system, if and only if the coefficients a;;(t # j) of the funda-
mental quadratic form in this coordinate system are equal to zero identically.

Suppose now that we consider any vector A’ and find the angle which
it makes with each of the vectors

(16.6) A, 0,0;  0,2%,0; 0,0\,

which are tangent vectors to the z'-, z’-, and z’-coordinate curves re-
spectively. If we denote these respective angles by 6; for 1 = 1, 2, 3,
we have from (16.4)

aiN B

@i NN

Since the lengths of the vectors (16.6) are

V au )\l, V Qg2 )\2, \/&; )\37

the sum of the projections of these lengths upon the line of the vector A
is in consequence of (16.7)

(16.7) vV a;; cos 6; =

__(1.',')\i>\i
Vaghn?
that is, v/a; A'N which is the length of the vector M. This means that

the vector ' at a point P is the diagonal from P of the parallelopiped
whose sides are the lengths of the vectors (16.6). Hence we have

[16.6) For a contravariant vector X' in any coordinate system the geometric
significance of the components X' is that the length of the vector at any point P
18 the diagonal of the parallelopiped whose edges are line segments, with P as
initial point, tangential to the coordinate curves at P and of the respective
lengths \/ai; M.

When the coordinate curves through a point are mutually perpen-
dicular, the parallelopiped is rectangular, but only when the coordinates
are cartesian are A’ the lengths of orthogonal projections of the length of
the vector upon the tangents to the coordinate curves at the point.

EXERCISES

1. When space is referred to polar coordinates (13.8), the coordinate surfaces
form a triply orthogonal system.
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2. Determine the character of the coordinate surfaces z’ = const. for the
transformation

z! = z'l cos z'?, z? = z'l gin 2", 23 = z'3,
and show that they form a triply orthogonal system; the coordinates z'i are
called cylindrical.
3. If \¥ and p' are unit contravariant vectors perpendicular to onc another,
(arjdik — Gpe@i)MNpiN ke = 1,
4. If ' and »* are contravariant vectors perpendicular to a contravariant
vector A%, 8o also uu* + wvv* for any values of u and v are the components of a

contravariant vector perpendicular to A¥; for two sets of values u;, v, and usy, v2
such that

wikaaipin’ + (Uwe + uwi)aip’vi + vwagpivi =0
the vectors wuip* + vt and usu® + vov' are perpendicular.
5. If Nj, are the components of three mutually perpendicular unit contra-
variant vectors, where h for h = 1, 2, 3 denotes the vector and 7 the components,

then
Y i
E A =a
h

17. COVARIANT VECTORS. CONTRAVARIANT AND
COVARIANT COMPONENTS OF A VECTOR

Given any function f(z', 2%, 2°) in any coordinate system, we have

of  of ox"
17.1 A
az.1) axrt 9z axrt’
where f’ is the transform of the given f for the transformation of the z’s
into any other coordinates z'°.  When we compare these equations with

(15.10) we see that gl and 5852 are not components of a contravariant
vector in their respective coordinate systems. However, they do belong
to a new class of functions A; and \; of the 2’s and z’’s respectively (with

indices as subscripts) related thus

' 9z"
If one has two sets of functions so related and multiplies these equa-
tions by ::,k and sums with respect to 7, one obtains
oz’ ax” 8zt i
(17.3) Noon = ,’.35 = Ao =M,

which shows that the relation is reciprocal, as was shown to be the case
with contravariant vectors (see Ex. 1).
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Two sets of functions A; and A{ of the z’s and z"’s related as in (17.2)
are said to be the components in their respective coordinate systems of a
covariant vector, there being a vector at each point of space. We observe
that the indices of a covariant vector are written as subscripts, whereas
for a contravariant vector they are written as superscripts, and that
the partial derivatives enter in different manners in (15.10) and (17.2);
but that in each case the dummy index applies to one coordinate system
and the free index to the other. As remarked in the case of contra-
variant vectors, a covariant vector is completely determined by its com-
ponents in one coordinate system, and its components in any other
system are determined by the above equations. Also whenever one
has, no matter how derived, two sets of functions satisfying equations
(17.2) or (17.3), one concludes that the entity under consideration is a
covariant vector. For example, from (17.1) it follows that for any

function f of the z’s the derivatives of

ozt

and the derivatives with respect

to 2’ of the transform of f are components in their respective systems
of a covariant vector; this covariant vector is called the gradient of f.
Hence we have

[17.1] The gradient of a scalar is a covariant vector.

If ' and A? are components of a contravariant vector in coordinate
systems z' and z'*, we have from (14.10) and (15.8)

ax' ox’ . ax"‘

Ptk
L A
(17.4) o s
hgi O i 0%
= a.',')\ '} ath = ;A é.’ifl .

We note that these equations are of the form (17.3), which means that
the linear combinations a;;\* of the components of the given contra-
variant vector in the z-system, and the linear combination a;;\"* in the
z'-system are components in their respective systems of a covariant
vector. In this sense we have

(17.2] If \' are the components of a contravariant veclor, a:;\’ are the com-
ponents of a covariant veclor.

From (14.16) and (17.3) we have

i h
k1 a(l?” 6:1:" BIJ

ihy ! _
R R
(17.5)
. th th
= a'klxial'c ‘ai. = aklkkg_a.:d.

ozt ozt
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Comparing this result with (15.8) we have

[17.3] If \; and \; are the components of a covariant vector in their respec-
tive coordinate systems, a”’\; and a'“\; arc the components in these
respective systems of a contravariant vector.

When we apply this theorem to the covariant vector of components
a;;\, we have in consequence of (14.13)

a""aj;)\" = 5?)\’ = )\h,
that is, we obtain the vector A’ from which the covariant vector was
derived in accordance with theorem [17.2]. Similarly, if we start with
a covariant vector A;, find the corresponding contravariant vector by
theorem [17.3], and then from it the corresponding covariant vector by
theorem [17.2], we obtain the original vector X;.

In view of the above results we say that A’ and A; are the contra-
variant and covariant components respectively of the same vector, if

(176) i = a,~,~)\’, A\ = a“)\j,

either of which set of equations, as we have seen, implies the other.
When the coordinates are cartesian, in which case a;; = §;;, a"’ = 8",
the corresponding contravariant and covariant components are equal

(see Ex. 6) and are direction numbers of the vector, as shown in §15.
In consequence of the first of (17.6) and (14.13) we have

(177) aij)\.')\j = a”(lh,‘)\hak,‘)\k = 6};)\hak,-)\k = ajkkj)\".
Since the last of these quantities is a scalar, as shown in §16, the first
quantity is a scalar. From this result and theorem [16.1] we have

(17.4] The square of the length of a vector whose covariant components are
\i 28 equal to the scalar aA.\; .

If Ajs and Nej; are the covariant components of two vectors, and AL
and \; their respective contravariant components, by a procedure
similar to that used in (17.7) we obtain

(17.8) a“NMiihaii = @i AN
From this result, equation (17.7), and theorem [16.2] we have

[17.5] The angle 6 (< 180°) between the vectors at a point of two vectors
whose covariant components are Ay|; and Ny ; ts given by

a‘j)\u.')z],'
V(@ M) (@ Aaghars)

(17.9) cosf =
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The geometric significance of the contravariant components of a vec-
tor is stated in theorem [16.6]. Now we derive the geometric signifi-
cance of the covariant components. In consequence of the first of
(17.6) we may write (16.7) in the form

(17.10) VNN cos §; =~

where 0; is the angle which the vector at a point makes with the z*-coor-
dinate curve through the point. The left-hand member of (17.10) is
the length of the orthogonal projection upon the tangent to the
z'*-coordinate curve of the length of the vector A* at the point. Hence
we have

[17.6] The geometric significance of the covariant components \; of a vector
1s that at each point P N;/\/a;; 1s the length of the orthogonal projection
of the vector upon the tangent at P to the x'-coordinale curve through P.

In §§15 and 16 we introduced the concept of a contravariant vector
and derived properties of such vectors. At the beginning of the present
section we defined the concept of a covariant vector. When one com-
pares equations (15.10) and (17.2) giving the relations between the
components of the two types of vectors in two coordinate systems, one
observes that they are essentially different and might conclude that the
two vectors are different entities. However, it has been shown with
the aid of the eocfficients a;; of the fundamental form that the two
entities are in fact identical, but that it is their determining components
which have different geometric significance.

Were it not for the existence of the fundamental form a.; dz‘ dz’, we
should be compelled to treat contravariant and covariant vectors as
different geometric entities. There are types of geometry in which no
such form occurs as part of the theory, and in these geometries a dis-
tinction is made.

Consider in connection with the above remarks a covariant vector A; .
From (17.2) and (15.3) it follows in consequence of (13.13) that

Nidzt = ] dz”
that is, A; dz' is a scalar. Hence the equation
(17.11) Aidz' =0

is of the same form in any coordinate system. If diz’ and dsz’ are two
sets of differentials satisfying this equation which are not proportional,
it follows from the equations

Ndig' =0,  Adez' =0,
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and (17.11) that any solution of the latter is of the form*
dz" = C1 dxl“. + Ca dzxi.

Hence at each point in space every direction dz’ satisfying equation
(17.11) is in the plane determined by the point and by the directions
diz’ and dpz’. Consequently we say that a covariant vector determines
a plane at each point in space.

It is not true that every equation of the form (17.11) admits an
integrating factor, that is, a function ¢ of the z’s such that (see Ex. 9)

(17.12) thide’ = do,

where ¢ is some function of the 2’s. But when such an integrating
factor exists, ¢ = const. is an integral of the equation, and we have as
equivalent to.(17.11) the equation

¢ . i _

e dz' = 0.
This is the condition that each set of differentials satisfying the original
equation determines at a point a tangent to the surface ¢ = const.
through the point. Hence when the equation (17.11) admits an inte-
grating factor, the planes determined by the vector \; are the tangent
planes to a family of surfaces.

Suppose now that we invoke the metric properties of space based
upon the fundamental form a:; dz’ dz’, and that we replace \; in (17.11)
by a;\’, obtaining

a,-.-)\j dx‘ = 0.
In consequence of theorem [16.3] we have that the directions dz’ satis-
fying equation (17.11) are perpendicular to the vector A’. Consequently
at each point the given \; are the covariant components of the normal
to the plane determined by A; . When furthermore the equation admits

an integrating factor, A; are the covariant components of the normal to
the surfaces ¢ = const. Hence we have

[17.7] When a covariant vector is the gradient of a function ¢, or its com-
ponents are proportional to the components of a gradient, the vector-field
conststs of vectors normal to the surfaces ¢ = const.

EXERCISES

1. Show that equations (17.2) possess the group property, as defined in §13
after equation (13.18).

*C. G., pp. 115-116.
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2. If A%, u; and A5, p; are the components in the z-system and z’-system respec-
tively of a contravariant and covariant vector, Niu; = )\’fu,'- , thatis, Niu;is a scalar.

3. When z* are polar coordinates, the covariant components of the vector with
contravariant components A* are

AL A2(z1)2, A3(z! sin z?)2.

4. If for two sets of quantities u;(z) and u;(z') we have
@) BiMy = wiM),
where the M| and A3} for k = 1, 2, 3 are the components of three independent
contravariant vectors (see §15, Ex. 5), then the u; and u. are the components in
their respective coordinate systems of a eovariant veetor. Does this follow if
equations (i) hold for fewer than three contravariant vectors?

5. If A}, for h = 1, 2, 3 are threc independent contravariant vectors (see §15,
Ex. 5), and M| is the cofactor of A}, in the determinant [)\,‘;, I divided by the
determinant, then \*! are the components of a covariant vector for each value of k.

6. In order that corresponding contravariant and covariant components of a
vector be equal in the coordinate system z‘, the contravariant components A¢
must satisfy the equations

@) (as; — 85N =0,

that is, the rank of the determinant | ai; — 8ij | must be less than 3. For equa-
tions (i) to hold for every veetor the coordinate system must be cartesian.

7. From theorems [16.6] and [17.6] it follows that \;/+/a;; is equal to the sum
of the orthogonal projections upon the tangent to the z*-coordinate curve of the
lengths of the vectors (16.6).

8. Show that the equations

dat_dzt_ o

MM N
in one system of coordinates do not transform to equations of the same form in
another system. Compare with equations (15.11).

9
9. From equations (17.12) one has 55‘_ = ¢ \; from which one obtains

92, 9
14 Pide.

at
dziozi ozt + t'i_:tf)\'. ’

noting that equations obtained from these by interchanging ¢ and 7 must hold,
and multiplying these equations by e*/*\; and summing with respect to ¢ and j,
one obtains

o ONg
ik 3 =
O o™ 0

as a necessary and sufficient condition that an equation (17.11) shall admit an
integrating factor.
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18. TENSORS. SYMMETRIC AND SKEW SYMMETRIC
TENSORS

The equations (14.10) connecting the coefficients of the fundamental
quadratic form in two coordinate systems are of the type

oz oz’

'
(181) bkl(zl) = bij(x) W‘ 55:71.

There is a similarity between these equations and (17.3) in the sense
that the indices are subscripts in both cases and that the derivatives
occur in similar manner. We say that functions by, and bi; of the z'’s
and «’s respectively related as in (18.1) are the components in their
respective coordinate systems of a covariant tensor of the second order,
and that a covariant vector is a covariant tensor of the first order, in
each case thé~order being equal to the number of subscripts. Also we
refer to the subscripts in each case as covariant indices.
Similarly equations (14.16) are of the type

oz’ az"

(18.2) ) = b7() o

There is a similarity between these equations and (15.8) in the sense
that the indices are superscripts in both cases and that the derivatives
occur in similar manner. We say that functions b and b" related as
in (18.2) are the components in their respective coordinate systems of a
contravariant tensor of the second order, and that a contravariant vector
is & contravariant tensor of the first order. Also we refer to the super-
scripts in cach case as contravariant tndices.

If A" and p; are the components of a contravariant and a covariant
vector respectively, it follows from (15.8) and (17.3) that

k
! 8z’ oz’
Nui = N 5 9zt 9z’

These equations are of the type

az™ oz’

(18.3) b)) = bie) o o

We say that functions b*; and b*; are the components in their respective
coordinate systems of a mized tensor of the second order. The com-
ponents have one contravariant and one covariant index, and so we say
that the tensor is contravariant of the first order and covariant of the
first order.
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From (18.1) we have

poat ogt . oa' ox 0z aa”
(18.4) M orh 9zm i 92 3z 3x* axm

= by;838% = bam.

In like manner, we have from (18.2) and (18.3)

axi axi i
(18.5) M =
and
4 07 8
(18.6) 'axlk '-é;; = b,‘.

These results show the reciprocal character of the equations of tensors
of the second order, that is, all coordinate systems are on a par.
Equations (17.3) and (18.1) are particular cases of the equations

az’l x‘? m
(18.7) Dt sraevirm = bagagoy O 0T 02T
az/ 1 ax’ 2 ax/ m

the b’s and b”’s being functions of z’s and z"’s respectively and having m
indices (subscripts), where m is any positive integer. In this case the
b’s and b’’s satisfying these equations by means of the transformation
equations are said to be the components in the z-system and z’-system
respectively of a covariant tensor of the mth order.

Equations (15.8) and (18.2) are particular cases of the equations

ooy 027 0T ax'™
o' 9x™ ax'"

(18.8) b,r,..,rm = bul.. ,
the b’s and b”’s being functions of z’s and z”’s respectively and having m
indices (superscripts), where m is any positive integer. The b’s and
b”’s satisfying these equations are said to be the components in the
z-system and z’-system respectively of a contravariant tensor of the mth
order.

Equations (18.3) are a particular case of the equations

/71 /Tm q1 an
(18.9)  byrigm = piim 0% ™ ox 9z

e .. ,
" oz ax'™ 9x'™ ax'?

the b’s and b’’s being functions of z’s and z"’s respectively and having m
upper indices and n lower indices, where m and n are positive integers.
The b’s and b"’s satisfying these equations are said to be the components
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in the z-system and z -system respectively of a mized tensor of order
m + n, contravariant of order m and covariant of order n.

We observe that in each set of equations (18.7), (18.8) and (18.9)
the number of sets of partial derivatives entering in the equations is
equal to the order of the tensor, but the way in which they enter depends
upon whether the indices are conlravariant (supersecripts) or covariant
(subscripts). In the case of a scalar, as defined in §15, there are no
such sets of derivatives in the one equation (15.14) which expresses the
equality of a function and its transform. Hence a scalar is called a
tensor of order zero.

When one applies to a tensor of any order and type the processes
used to obtain (18.4), (18.5), and (18.6) from (18.1), (18.2), and (18.3)
respectively, one obtains equations which are the inverses of (18.7),
(18.8), and (¥8.9) respectively. This shows that the equations giving
the relations between the components of any tensor in two coordinate
systems are reciprocal in character, and thus that no one coordinate
system has a preferred position in the definition of a tensor.

From the above definition of tensors it follows that one may choose
arbitrarily the components of a tensor in one coordinate system, and
then the components in any other coordinate system are determined by
(18.7), (18.8) or (18.9) (see Ex. 1). Frequently in the consideration of a
geometric problem we deal with a geometric entity and find that its
(analytical) components in two coordinate systems are related as in
(18.7), (18.8) or (18.9). Then we say that we are dealing with a tensor.
For example, at the beginning of this section we observed that equations
(14.10) are of the type (18.1), and so we say that the coefficients of the
fundamental quadratic form are components of a covariant tensor of
the second order, or briefly that a;; is a covariant tensor of the second
order. We call it the covariant metric tensor, because, as we have seen,
it enters into the determination of arc lengths, magnitudes of vectors
and of angles. In like manner, we call a”’ the contravariant metric tensor.

Because of the linear homogeneous character of equations (18.7),
(18.8) and (18.9) and their inverses we have

[18.1] If all the components of a tensor are equal to zero in one coordinate
system, they are equal to zero in every system.

Such a tensor is called a zero tensor.

From the form of equations (18.7), (18.8) and (18.9) it is clear that
the relative order (position) of the indices plays a role in these equations.
It may be, however, that in the case of certain tensors when two contra-
variant (or covariant) indices are interchanged the new component is
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equal to the original one. In this case the relative order of thes
particular indices is immaterial. From the form of equations (18.7)
(18.8) and (18.9) it follows that if this is true for certain indices in ont
coordinate system it is true for the corresponding indices in ever:
system. For example, suppose that bu,sye;. .6, = bageyeg-..s,, then fron
(18.7) we have

' oz 9z oz'™

brirgrs - tm = Dagoragay —om —m 0 v ——

(18.10) az'™ 9z’ ax'™
= byyriraeeorm-

When the relative order of two or more indices is immaterial, we saj
that the tensor is symmetric with respect to these indices. When tha
relative order of all the indices is immaterial, the tensor is said to be ¢
symmetric tensor. Thus the metric tensors a;; and a'’ are symmetri
tensors. A general tensor of the second order, whether contravariant o:
covariant, has 9 different components, whereas a symmetric tensor ha
only 6 different components.

When for a tensor two components obtained from one another by ths
interchange of two particular indices, either contravariani or covariant
differ only in sign, the tensor is said to be skew-symmetric with respect t
these indices. It can be shown that if a tensor is skew symmetric i
any two indices in one coordinate system, it has this property in ever
system. For example, if the tensor bs,s,...s,, is skew-symmetric in the
first two indices we have (18.10) with a minus sign in the second anc
third members of these equations. When a tensor, whether contra
variant or covariant, is skew-symmetric with respect to every pair o
indices, it is called a skew-symmetric tensor.

From equation (14.12) and the definition of a scalar in §15 it follow:
that a is not a scalar. When one has two functions b’ and b of the =’
and z’s such that

b'(z") = b(x)

)

ox
oz’
we say that b is a relative scalar of weight p. Thus the determinant ¢
of the components a;; of the covariant metric tensor is a relative scala
of weight 2, and from (14.15) and (14.12) it follows that the determinan
of the contravariant metric tensor is a relative scalar of weight —2

A relative scalar of weight 1 is called a scalar density.
In similar manner if the b”’s and b’s are such that instead of equation

b4
(18.7), (18.8) and (18.9), we have equations with the factor it

/
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the right-hand members of these equations, we say that the b’’s and b’s
are the components in their respective coordinate systems not of tensors
but of relative tensors of weight p of the order and type determined by
the character of their indices. In consequence of (13.15) and the above
observation concerning the reciprocal character of equations (18.7),
(18.8) and (18.9) it follows that the corresponding equations for relative
tensors are reciprocal.

For a transformation of coordinates for which the jacobian

Fr

is positive, we have from (14.12)

(18.11) Vd =vVa

_6_:1:_
ax’

If the jacobian is negative, by a change of the sign in one of the equa-
tions of the transformation the resulting jacobian is positive. Hence
there is no loss in generality in understanding that equation (18.11)
holds. Thus v/a is a scalar density. From (18.11) and the definition
of relative tensors we have:

[18.2] If b;i..5i™ are the components of a relative tensor of weight p, then
bit i /a!® are the components of a tensor.

EXERCISES

1. If the Kronecker deltas 8} are taken as the components of a mixed tensor
in one coordinate system, the components in cvery other coordinate system are
of the same kind; that is, 8} is a mixed tensor of the second order.

2. If b;; and ¢*i are components of covariant and contravariant tensors respec-
tively, the quantities b;;c’* are components of a mixed tensor of the second order,
and b;jc'i is a scalar.

3. If b;; and ¢;; are two symmetric tensors such that

byjew — baci + bjxca — bucij =0,

then ¢;; = pbij, where p is a scalar.

4. How many functions arc required to definec a skew-symmetric covariant
tensor of the seccond order?

5. For any skew-symmetric tensor all the components having two, or more,
indices alike are equal to zero.

6. If b;; is a skew-symmetric tensor and A\’ is a contravariant vector, then
bsiA\i = 0; conversely, if b;;A'\i = 0 for an arbitrary vector, b;; is a skew-
symmetric tensor.
oz dz' dxi 9z
| = ik
LK az'd 9z’ dx'm
are the components of a relative tensor of weight —1; efi* are components of a
relative tensor of weight +1.

7. Since eam (see §13, Ex. 4), the quantities ei
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8. The quantities
€&k = \/a €ijk, ek = 7

are the components of covariant and contravariant tensors respectively of the
third order, when the jacobian (13.11) is positive.

9. The rank of the determinant | b;; | of a tensor b;; is called the rank of the
tensor; show that the rank is invariant under any transformation of coordinates.

10. When the rank of a covariant tensor b;; is three, the cofactors of b;, in the
determinant | b;;| are components of a relative contravariant tensor of
weight two.

11. When the rank of a covariant tensor b;; is two, there exist two relative
contravariant vectors A\* and u* each of weight one, such that the cofactor of b;;
in the determinant | b;; | is equal to Au?; when b;; is symmetric, A\* and u* are
the same vectors.

19. ADDITION, SUBTRACTION AND MULTIPLICATION OF
TENSORS. CONTRACTION

From the form of equations (18.7), (18.8) and (18.9) it follows that
the sum or difference of two tensors of the same type and order is a
tensor of the same type and order. The same is true of any linear
homogeneous combination of tensors of the same type and order, the
coefficients being constants or scalars.

If we take two tensors of any type and order, and form all possible
products of a component of one tensor and a component of the other,
we obtain a tensor whose order is the sum of the orders of the two given
tensors. The number of contravariant, or covariant, indices is equal to
the sum of the numbers of contravariant, or covariant, indices of the
given tensors. For example, we have from (18.9)

. 4 1 oz’ oz’ ax’* ax* ax”
(19.1) b/pqrclt = b]kcmgg -b—x—l Eﬂ 5;,;67”,
and thus b*ic's are components of a mixed tensor of order 5, contra-
variant of order 3 and covariant of order 2. This process is general, so
that by multiplying the components of any number of tensors we obtain
a tensor, called the product or outer product of the given tensors, which
is contravariant and covariant of orders which are the respective sums
of the contravariant and covariant orders of the tensors multiplied.

Another process for obtaining a tensor from a given tensor, or a
product of tensors, is called contraction. We have used this process in
obtaining the covariant components of a contravariant vector in equa-
tions (17.4). Thus the product a;;\* of the metric tensor a;; and the
vector \' is a mixed tensor of the third order, contravariant of the first
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order and covariant of the second order. Each quantity a;;\* of this
tensor for particular values of j is the sum of three components of this
mixed tensor, and from (17.4) it follows that these quantities are com-
ponents of a covariant vector; that is, by the summation of one contra-
variant and one covariant index we have obtained a tensor of order 2
less, the contravariant and covariant orders being each one less than
for the original tensor. This process is called contraction. It applies
also to any mixed tensor, and we have

[19.1] By the contraction of any contravariant index with any covariant
index there is oblained a tensor of order one less contravariant and one less
covariant.

For example,

;PfI = il ax'? ax’® 92* ax' ax™
Tpe kim a; 55]— -a?/' b;;’; axh
(19.2) L L
51 07" 0z oz ;i 0z’ ar* ox
= biimd: = biim

oxi 3zt az’t 81 8x'r ax'*
When, in particular, contraction is applied to the product of two tensors,
the resulting tensor is called an inner product of the two tensors.

The process of contraction may be applied in more than one way,
and more than once. Thus from (19.2) we have

’pu
qpr bum

When, in particular, we apply contraction twice to the product tensor
ai\*\!, we obtain the scalar a;;A'\’ which by theorem [16.1] is the square
of the length of the vector \*. This is a particular case of the following
theorem, which is a consequence of theorem [19.1]:

[19.2] When as the result of contraction of one or more pairs of indices
there remain no free indices, the resulting quantity is a scalar.

An application of contraction, which is used frequently in tensor cal-
culus, is what is called lowering a contravariant index by means of the
covariant metric tensor a;; and raising a covariant index by means of
the contravariant metric tensor a”. This process was used in obtaining
the covariant components of the vector A’ and the contravariant com-
ponents of the vector \;. In carrying out this process it is important
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that the position of the index affected be not ambiguous. For example,
we have the following tensors derived from the tensor by ;

Lol . 1o i . 1kl .
19.3 b ik = a be,’k ) bix =a Lbiik ) bz'j =a bn‘jk )
( * ) blm il jmb . bl m o __ il kmb . blmp il_jm _kp
kr=a a ik 3 ;i = aa ik y =aa a b,‘,‘k.
In similar manner we have
ik ijk , k ik, ik
b = aub ) bim = ailajmb ’ blmp = ailajmakpb .

We remark that this process is reversible. Thus from the first of
(19.3) we have

! il ;
Amb ik = Q1m0 bijk = Ombijk = bmik,

which is the tensor from which b';; was obtained.

At times in order to indicate the position from which an index has
been raised or lowered a dot is placed in the original position of the
index; thus the first of (19.3) would be b!;x. This notation emphasizes
the position of an index.

Instead of referring to the quantities by, bk, ---, b'™ in (19.3)
as different tensors, we shall say that the quantities of each set are a
set of components of the same tensor. Any set of components deter-
mines the tensor, but in different manner according to the character
of the indices, as was seen in §17 to be the case with the contravariant
and covariant components of a vector. When we apply this process to
the tensor a;; itself, we obtain

alata;; = e’ = o',
and hence we refer to a;; and a”/ as the covariant and contravariant
components respectively of the metric tensor.

Let now b} and b,%7 be functions of z* and z’* respectively, such that
biim\' and b2\ are components in their respective coordinate systems
of a tensor, and \* and \’* components of a contravariant vector. From
this hypothesis it follows that

, 8’7 3z’ ax* az™ i oz’ 9z'” az™

b::"l e _ t';»mx 9x " or” 8z 9z _ ”mxl’ Lz
N I i = PO L i v ar’"’

that is,

e ™ 9r* 927 ox’" 9x'* ozt
If these equations hold for every contravariant vector A\’, and conse-
quently for any three independent vectors, the quantity in parentheses

= 0.
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is equal to zero, and hence bf} ., is a mixed tensor of the fifth order. By
a similar argument we have

(19.3] If a set of functions b’z and bet'. )™ of &' and z'i respectively
are such that b}L.7m ..., N* and billlim. . N for any ps and g, are
components of a tensor, where X' and N'* are components of an arbitrary
vector in these respective coordinates, then the given functions are com-
ponents of a tensor.

A similar theorem holds if \* is replaced by any arbitrary tensor, and
a covariant, or contravariant, index is contracted with a contravariant,
or covariant, index of [the given functions. Indeed, it suffices to take
a tensor which is the product of distinct arbitrary vectors, in which
case the result follows by repeated application of Theorem [19.3]. This
is sometimes called the quotient law of tensors.

EXERCISES
1. Show that it follows from the identity

bij = 3(bii + bji) + 4(bi; — bji)

that any covariant tensor of the second order is the sum of a symmetric and a
skew-symmetric tensor; is the same true of a contravariant tensor of the second
order?
2. If b;; = biyij + barij, where by ; is symmetric in the indices and by 4; is
skew-symmetric, then
bij dxt dzi = byygj dz’ dzi.

3. If bijM*A7 is a scalar for A¥ an arbitrary contravariant vector, then b;; + bj;
are components of a tensor; if b;; are symmetric in the indices, then b;; are the
components of a tensor.

4. If bh;\'uivy is a scalar for arbitrary vectors \f, u*, and »;, b*; is a tensor.

5. If byjx dz’ dxi dz* = 0 for arbitrary values of the differentials, then

bias + bass + bara + byss + bsas + bas = 0;

what is the condition when b;j; is symmetric in ¢ and j?

6. If b%i are components of a tensor, and ab’i + cbi® = 0, where a and c are
scalars, b'/ is either a symmetric or skew symmetric tensor.

7. When the coordinates are cartesian, the various components in (19.3) with
the same values of the indices are equal.

8. Show that

Aiyiy Qiy53 Qiygg
Qigiy Qigig Qigiy | = €irigda€irizialal,
QAigiy Aiziy Giydy
and consequently these determinants are the components of a covariant tensor

of the sixth order which is the outer product of the tensor e;;x (§18, Ex. 8) with
itself.



98 TRANSFORMATION OF COORDINATES [Cu. II

20. THE CHRISTOFFEL SYMBOLS. THE RIEMANN TENSOR

At times equations involving the first derivatives of the components
of the metric tensor are given simpler form by means of the following
symbols:

. _ 1{0au | dajr _ aa‘-,-)
@-D 6, = 5+ % - o),
(20.2) {Z} = a™[ij, K].

Observe that from their definition [¢j, k] and {z} are symmetric in 2
and j. The symbols defined by (20.1) and (20.2) are called the Chris-
toffel symbols of the first and second kinds respectively.* We now derive
equations involving these symbols which are of frequent use.

From (20.2) and (14.13), namely

(20.3) day = 8,
we have
(20.4) an {:;} = sild, k] = [, .

Also from (20.1) we have

0a;x

(20.5) o

= [ij, k] + [kj, <].

Differentiating (20.3) with respect to z', we have

aa’ + ¥ 0aix

— = 0.
ox' ox

Qsk

Multiplying by a**, summing with respect to k, and substituting from
(20.5), we have

ih
da” _ i ks 0aa

o o =~ (LR + (R, ),

from which we have, in consequence of (20.2),

(20.6) %—: = - ("“{3} + ““{l{l})'

* The forms of these symbols as defined by Christoffel, 1869, 1, p. 49, were
[1,':] and {"':} , but we have adopted the above forms because they are in keeping

with the summation convention.
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If we denote by A*/ the cofactor of a;; in the determinant a = | ay;|
and apply to this determinant the rule for the differentiation of a
determinant, we have

0 _ 00y g0 _ 30y
oz* oxk azk

the last expression being a consequence of (14.14). From this result
and (20.5) we have

da _ ¢ 00
ox* oxk

= aa* ([ik, 7] + ik, 1)) = 2a{;},

and consequently

(20.7) olog vVa _ { ’}

A oxk ik

where since ¢ is repeated the summation convention applies, that is,
the right-hand member is the sum of three symbols. Dummy indices
often occur in expressions involving Christoffel symbols.

We now find the relation between the Christoffel symbols of the
second kind in two coordinate systems. To this end we differentiate
with respect to z'” the equations

1 J
(20-8) alpq = Gy :—;;; g;x/; (7': j’ P, g =1, 2; 3))

and obtain
8ay, _ dai; 81° 92’ o1’ s o 'z o o'
dzx't  dx* dx'P 9z’ ox'r Y\ oz'? ox'99x"r ' 8x'v 0x'?02'r)"

By suitable changes of free and dummy indices in the above equation,
we have the following equations

dar, _ day; 9z’ ox’ ax* +a or* o' or’  o'a’
or’®  ox' 9x'® 9x’e dx™ ' \ox'’r 0x'99z’? ' ozt 9z’P9z’")’
0a,, _ daw 03' 02 ot | oa' o' | ox '@
dzr'e  92f 9x'? 9z'? 9x'r Y \dz'? ar'edz’r * 9x'r 9x’?ax’e)’

If from the sum of these equations we subtract (20.9) and divide the
resulting equation by 2, we have in consequence of (20.1)
oz’ 9z’ ozt or' 9’7’

(20.10)  [pg, r)' = [, K] o= o=, o= + &

" 9z'r 9x'Pdx'e’

where [pg, 7]’ is formed with respect to the tensor a;; .
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From (14.16) we have

;e 0" g 87"

oz’ ot

If we multiply the left- and right-hand members of equation (20.10) by

rar ax
ox'e

consequence of (20.2)

2,
(o) o = 2 2 sk st T

oz’ az'® ax'e dx'r oz'e’

a and ¢ %a;_ respectively, and sum with respect to r, we have in

which reduces to

o'z R\ 8z' oz’ s\’ a2
20.11 - P e e = .
(20.11) dz'? oz’ * {zj} az'? oz’ {pq} az's
These are the relations which we set out to obtain. On comparing

(20.10) and (20.11) with (18.7), (18.8) and (18.9), we see that neither

[4, k] nor ’; are components of a tensor (see Ex. 5).

If we differentiate equation (20.11) with respect to 2z, and subtract
the resulting equation from the one obtained therefrom on interchanging
the indices ¢ and r, we obtain

o [hl_ o [kl oz’ o2 oa
axr’ \ik az* \4j| / ax'® ox'e ax'r
L ( o'at od | da L)
ij) \dx'Pox’'? ax’r  9x'?ax'r 9x'¢
_(_Us o })a_
ax’e 11)7‘ ax’r \pq) /) ox'¢

n s\ o' _ s o2
pr| ar"az’e  \pg| d8x’*ox’’
On substituting for the second derivatives in this equation their ex-
pressions from equations of the form (20.11), we obtain
oz’ ox’ oz . oz
(20.12) Bl 5o i oz~ 7

where by definition

(20.13) R = 5%,{30} aik {h} + {zlk}{:;} B {1.17}{{;‘}’
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(! being a dummy index indicates summation), and where R’*,,, is the
similar expression in the Christoffel symbols formed with respect to a’;; .

’t
If equations (20.12) be multiplied by % and summed with respect
to h, we have

. , oz’ oz’ ax* ax
(2014) R’ por = ik 5;,; ‘a-qu 55,; 5; .

From the form of these equations it follows that R";;: , which are called
Riemann symbols of the second kind, are the components of a tensor
contravariant of the first order and covariant of the third order (see
(18.9)). It is called the Riemann tensor of the fourth order. From
(20.13) it follows that this tensor is skew-symmetric in the indices j
and k. .

The quantities B;;;x which are defined by

(20.15) Rujx = anR'iix, R = aU‘Ru,’k

are called Riemann symbols of the first kind. They are the components
of the Riemann tensor with all four indices covariant.

When the coordinate system is cartesian, the coefficients of the funda-
mental form arc constants, namely 8;;. In this case the Christoffel
symbols of either kind are zero, as follows from (20.1) and (20.2).
From (20.13) it follows that in this case the components of the Riemann
tensor are equal to zero, and by theorem [18.1] that the components
are zero in every coordinate system. Hence we have

[20.1] The Riemann tensor of euclidean 3-space ts a zero tensor.

This does not mean that the Christoffel symbols in any coordinate
system are equal to zero, but that the functions (20.13) of these symbols
are equal to zero.

If g;; is any symmetric covariant tensor such that the determinant g
of g;; is not zero, that is,

(20.16) g=|gil#0,
quantities g* are defined uniquely by
(20.17) 9 gn = 8.

As in the case of a* in §14 it can be shown that g*’ is a symmetric con-
travariant tensor.

Similarly to (20.1) and (20.2) we can define Christoffel symbols by
means of g;; and g* in which case it is advisable at times to use the
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notation { ;Ic} toindicate thisfact. Likewise a Riemann tensor in terms
[
of these symbols can be defined by (20.13). Ordinarily the Riemann
tensor so defined is not a zero tensor (see §23).
EXERCISES
1. Show that

da;; Oa;,

at  om Lik, 4] — 44, k).

2. Show thatifa;; = 0forz =5

i laloga,-.» i) _ 19dlogai
Wl 2 ax i 2 oz '

i 1 daj; Ii R
= - = =0 k
{,- } a5 02"’ ljk} 3,k ),

where a repeated index does not indicate summation and the notation (¢, 7, k #)
means that no two of 7, j, k are equal.

3. When z* are polar coordinates (see (14.8)) all the Christoffel symbols are
equal to zero except the following:

{122} = {133} = % {212} == {313} = —aisintal,

{;3} = cot'z2, {;} = — gin z? cos 22 .

4. When z* are cartesian, one has from (20.11)

Z a’zh ?E [ ]/
5 8z'Pdx'e 3z’ P4, X

Show that from these equations one may derive equations of the form (20.11) in
general coordinate systems z'* and z''*.

5. For any linear transformation (13.1) the Christoffel symbols of the second
kind are related as components of a mixed tensor of the third order.

6. Show that for Christoffel symbols formed with respect to any tensor g;;
satisfying (20.16)

] h\ a 3 . .
”‘”iﬁ‘i{ikj = a_;i['k’ ] - {ik} ([hg, 1) + i, h).

7. Using (20.15), (20.13) and Ex. 6 show that

. a . 9 .. h h .
(i) Ry = Py [ik, 1) — Fys l#, 1 + {”} [k, h] — {ik} [, A,
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where the symbols [ij, k] are formed with respect to any g;; satisfying (20.16);
-and that in terms of g;; we have

. 1/ gu 03g,; Mgy ?gix
Ricie = - _ —
(ll) lijk 2 (ax‘. ax{ + zl ok az‘ Fys ax'azi

+ g*m([i7, mlllk, B) — [ik, mlllj, h)).
8. Show that it follows from Ex. 7 (ii) that

i) Ruje = —Rap = —Rukj = B,
and
(ii) Riipe + Rijni + Ruj = 0.
9. Show that
Rhyje = 0.

10. From (20.14) it follows that for the quantities R;; defined by
Rsj = RMjn = g™Raijn
one has
R 9z% ogi

v = Bii oo ogta

and consequently R;; are the covariant components of a tensor of the second
order, which is called the Ricci tensor;* from (20.13) and equations analogous to
(20.7) one has

PR SV (AW LAV AR (AR LRV
Y7 bzidxi  oxb \ij (Y i ozt '

where g is defined by (20.16).

11, If jlk and jlk are Christoffel symbols formed with respect to sym-
a ¢
metric tensors a;; and g;; such thatl ai;i| # 0 and]| g;; l # 0, then the quantities
1 1
{j } - {'k are components of a tensor of the third order.
J
e 0

21. THE FRENET FORMULAS IN GENERAL COORDINATES

If the coordinates z'* are cartesian and z* are any general coordinates,
equations (20.11) become

2, % . h l
(21.1) _ﬁ_x___ +{z}ax ox =0,

3oz ' \M| oz’ 9z’

* See 1904, 2, p. 1234.
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since the a’s are constants in the this case and consequently the
> )7/
Christoffel symbols {;k} are all zero.

We consider now a curve with the equations 2”* = f*(t). When these
expressions are substituted in the equations z° = ¢'(z", z*, 2’*) con-
necting the two sets of coordinates z' and z'*, we obtain equations of

T

the curve in terms of z° and ¢. The derivatives ddxt are given by

de oz’ dz”
21.2 > =2 2
(21.2) dt  ox" dt’

i
from which it is seen that % arc the components of the contravariant
X

vector whose components - i cartesian coordinates z'* arc direction
¢

numbers of the tangent to the curve. Differentiating equations (21.2)
with respect to ¢{ we have
da _ o'a' dx’dz" | 0a' d'a”
dt? dx'7ox’* dt dt oz’ dir ’
which in consequence of (21.1) may be written in the form
9 0 . hogd 2 15 i
(21.3) d*a’ + fll‘ix dr’ _ d’a” ?fl
de T O\Rl db di dt* oz’

'l: / 2 17
i arc zero, - .,
be given the same form as the left-hand member of (21.3), namely
d2 z ]\/ dz/k dx/l
L+ @ 0
dt ki “dt dt

(15.6) and (15.10), we have

(21.1] For a curve defined in terms of any coordinales z' the quantities

Since for cartesian coordinates z’* the symbols may

Consequently on comparing this result with

2 1 . 7 k
dd% + {;k} ddﬁt d;; are components of a coniravariant vector, meaning that
in any coordinate system the components have this form.

If the arc s is the parameter we have from (21.2) and (3.2)

d.’l)i _ oz’ i
(21.4) ES\ = 5‘271. a ,
where o'’ are components in the z’s of the direction cosines of the
tangent to the given curve, and consequently of the unit vector tangent
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to the curve. From equations (21.4) and (15.10) it follows that o
defined by

(21.5) of =%
ds
arc the contravariant components in the z’s of the unit vector tangent
to the curve. This result is in keeping with the observation in §15
that when a coordinate system is cartesian the contravariant components
of a ur}it vector are direction cosines of the vector. Accordingly if 8
and '* are direction cosines of the principal normal and binormal of a
curve defined in cartesian coordinates z'*, that is, their contravariant
components in these coordinates, the contravariant components of these
respective unit vectors in any coordinate system z* are given by
Te : oz : oz’
21.6 i g 9% i 0T
(21.6) Br=8" Y ="
In cartesian coordinates z'* we have from (4.7)
d*z" ;
(21.7) %2' = Kﬂ”,

where « is the curvature of the curve. In any coordinates z' in conse-
quence of (21.6) and (21.7) we have from (21.3)

[i de d2*

ds? 17/6} ds ds 8
which because of (21.5) may be written

dai ) ) dek i
21, Pl = g
(21.8) ds + \]k}a ds <8

If we differentiate cquations (21.6) with respect to s, and make use
of the Frenet formulas (6.1) and equations (21.1) and (21.6), we obtain
o'’ dz™

e o

ax' 9x’* ds

ka2 gl 0a oz de”
(Ka +T7 )31_;,- 6 {hl}'axq ox’* ds

77777 (Ka” _|__ T‘Y”)

61”

It

I }.dl‘
"'(Ka +7'Y)_\hl EIS,

dy' e fq ,,ax ox' dx’* i__fi} » dz’
as P ax" TS axiaa ds =P wlf " ds
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From these results and (21.8) we have

[21.2] When a curve is defined tn terms of general coordinates z‘,- the
Frenet formulas are

do’ | i\ ;ddt _
% + {jk! a 78_ = Kﬂ y
03 . k
(21.9) %% + {;}c} g’ ((iiis = —(xa' 4 17%),
d‘Yi ZI ,-d:c" —
;i; {JkJ Y E = 78,

where o', B°, and v* are the contravariant components of unit vectors having
the directions of the tangent, principal normal, and binormal respectively
of the curve, s being the arc of the curve, and x and 7 the curvature and
torsion respectively.

Consider now the equations of motion in cartesian coordinates z'*

d'z” _ a8V

(21.10) W - axl,'

of a particle of mass m in a field of potential V. From Theorem [21.1]
it follows that in general coordinates the left-hand members of these
equations are the expressions given in Theorem [21.1] multiplied by m,
and that they are contravariant components of a vector. Consequently
the right-hand members in general coordinates must appear as contra-
variant components of a vector. In §17 it was shown that in any

. a .
coordinate system 5:;—,—‘ are covariant components of a vector and that

a" (;—g are its contravariant components. Hence in general coordinates
* equations (21.10) are
&'z i\ dz’da*\ _ iy oV
(21.11) m(azf +{jk}ﬁ?ﬁ> = —a 2
Another way of artiving at this result is to note that
d’z’ i)\ dz’ dx") 14
m(?u‘z +{ij3{3{ Tl

are the components of a contravariant vector. From (21.10) we have
that the components of this vector in cartesian coordinates are equal
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to zero, and consequently they are equal to zero in any coordinate
system, and one obtains (21.11) in any coordinate system.

EXERCISES
1. In any coordinate system the equations
L { i} da da*
ds? k| ds ds
are the differential equations of the straight lines in space.
2. When z* are polar coordinates equations (21.11) are (see §20, Ex. 3)

d2z! dz?\2 L na dz3\? :2'%4
ar ~ “\at @' sint 2t 5 oz’
¢z 2daidst (YL LY
e g nTSTL ) |T T@as

l:d’ 28 | 2dztdz dz? dx’] 1 v
m 2 Z——

— cot 22 — — - —.
e at dt + dt dt 7! 8in 22)2 023

3. If Ni(s) are components of a contravariant vector at points of a curve z¢(s),
the quantities

d\fé 7 dz*
. AN’ iy, d
@ ds +{Jk} A ds

are components of a contravariant vector at point of the curve.

4. If Ai(s) in Ex. 3 are such that the quantities (i) are identically zero, the
vectors ¥ are parallel, that is, the components of the vectors in any cartesian
system are constants.

22, COVARIANT DIFFERENTIATION

By theorem [17.1] we have that the partial derivatives of a scalar,
that is, a tensor of order zero, are the components of a covariant vector,
that is, a tensor of the first order. In this section it will be shown that
this is the only case in which the derivatives of a tensor are components
of a tensor, but at the same time we shall find expressions involving
derivatives of a tensor which are components of a tensor.

We consider first a contravariant vector \', and differentiate with
respect to z’ the equations

"» oz
(22.1) No=AT
with the result
(22.2) 2": = ﬂ"’_‘”_': _'3_””: + A7 o'z’ oat

ar’  9z'v 927 9z'P az'? 9z’ ox’
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In consequence of (20.11) the right-hand member of this equation is
equal to

o | on” oz x,,,( LVor' _[il aa' oa®
o2 | az'e ox'? pef 3z \hk| 9z’ 3r'e
ANV KD EANE A
dx’ \ox'e rq) /) oz'» hk ox’ oz'e

_ aN'"? ) D ! 6zi ax'? t h ok
= (a?«“ {rq 77w k[N %

Hence equation (22.2) may be written

aN L o fi\ (N . p ') oz’ 9z’
A {hj} - (et {rq o' oxi”

Consequently, if we define \; by

i o\’ ISR
and similarly \'? ,, equation (22.3) is
iy Bx" ax'
Na=NTo

Hence by (18.6) \'; and \'’”, are the components in their respective
coordinate systems of a mixed tensor of the second order. We say
that the component \*; is obtained from the contravariant vector A* by
covariant differentiation with respect to z’.
If we differentiate the equations
X; = )\,‘ aa—;,;

with respect to z’° and make usc of (20.11), we obtain

ozt 9z’
(22.5) )\;,q = Xi,;‘ Er—;; 67“1,
where
AN h
(22.6) Nij = i N {ij}’

and similarly for ', ,. Consequently \;; are components of a covariant
tensor of the second order, which is said to be obtained from the co-
variant vector A; by covariant differentiation.
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Consider next the covariant tensor b;; , and differentiate with respect
to z'" the equations

, o' 9z’
(22.7) bpq = bll m ax—,q.

Making use of equations of the form (20.11), we obtain
0bpe _'8by 0% 0x’ da' \ea' _ fi]oa ot
ax’" ~ ork 8x'P 9x't 9x'" ax «\\prf a2~ \hkf oz’ oz

o ([tVe [ et adt
ax’» \\grj ox" hk| az'e ax'7) |’

from which by means of (22. 7) and suitable choice of dummy indices
we have

e _ 4, 0
ax'r b {pr} Iqr}

- (S - u{ff - [A )f’x‘ oz’ oat
! \ kf P \jkf) o ax o

6b

@9 =)

and b’y for the left-hand member of the above equation, we have that
b;;.x are components of a covariant tensor of the third order, which we
say is obtained from b;; by covariant differentiation.

By proceeding in like manner one may show that

Hence, if we put

i; hj ‘k th
(22.9) b, ax; + b {hk { +b {hk}
and
(22.10) Vi = ab’+ b"{ } b {]’}c}

are mixed tensors of the third order, which we say are obtained by
covariant differentiation.

By referring to (22.4), (22.6), (22.8), (22.9) and (22.10), one observes
that in every case covariant differentiation is indicated by a covariant
index preceded by a comma; that each expression contains the deriva-
tive of the original tensor with respect to z*, where k is this index; and
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that corresponding to each contravariant index there is added a term
involving a Christoffel symbol, and corresponding to each covariant
index there is subtracted such a term. All of these expressions are
particular cases of the following general rule for covariant differentiation:

b:l = ab:: sp + Z b o ram1iTat1' ' Tm {ra}
1 'p T T T Ly Dapeeeiiiiieniiinen P i
(22.11) J

............... j
Z bl] ceg—1788+1" n, {Sgi}.

(22.12) 2o - a;.,{ } + aa {]};c}

we see from (22.8) that

(22.13) aijx = 0.

Also when equations (20.6) are compared with (22.9), we see that
(22.14) a“y = 0.

By §18 Ex. 1, 5! are the components of a mixed tensor. From (22.10)
it follows that

(22.15) oy =0.
Hence we have

[22.1] The tensors a;;, a*, and 8} behave as constants in covariant differ-
entiation.

When the Christoffel symbols are formed with respect to any tensor
gi; such that the determinant g = 0, the above results concerning
covariant differentiation hold equally well. However, it is advisable
in such a case to use the term covariant differentiation based upon gi; .
Thus we should say that the results of the first part of this section
involve differentiation based upon the metric tensor a;; of space.
Since we shall have occasion later to use covariant differentiation not
based upon the metric tensor of space, it is understood in what fol-
lows that we are dealing with properties of covariant differentiation
based upon a general tensor g;; .

From the form of equations (22.11) it follows that the covariant
derivative of the sum, or difference, of two tensors of the same order
and type is equal to the sum, or difference, of the covariant derivatives
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of the two tensors. We consider next the covariant derivative of the
product of two tensors, and in particular the following:

B = -2 i) = & (bw {zfn} + bar {;ﬁ})
+ b ( g {hk } e {hin}> = bijn + b,

which is the same as the rule for ordinary differentiation of a product.
Since & tensor formed by multiplication and contraction is a sum of

products, we have in particular

(22.17) (b.‘,‘cﬂ),m = le b,'j,m + b.‘jcﬂ_m.

The results for these particular cases illustrate the following general
theorem: .

(22.16)

[22.2] Covariant differentiation of the sum, difference, oulter and inner
product of tensors obeys the same rules as ordinary differentiation.

If we differentiate covariantly the tensor \; ; defined by (22.6), we
have

o= (B l) - @D - @
- e (5) - i - o) -
-n (it - et - Bl

Since
8 f[on d (oA
1 8 (oMY _ 6 (oM
(22.18) ar* (ay) ax’! (ax">’
we have in consequence of (20.13)
(22.19) Moik = Niki = MR

In like manner for a tensor b;; we have
(22.20) bijar — bije = bR + bR jur

and in general

1....'m
(22.21)  byyevoorpit = byt = 2 ey sbranse oo B rakt
a
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Thus far we have been dealing with covariant tensors. We shall
now find the corresponding results for contravariant and mixed tensors.
Instead of proceeding directly to do so we make use of the fact that
¢".; = 0 by an argument similar to that which led to Theorem [22.1].

Thus, considering A\’ as the contravariant components of the co-

variant vector A;, we have
N = (@"N).e = @M)w = ¢ M-
From this result, (22.19), and (20.15) we havc
Nov = Mg = " Ouie = M) = §'Ng" "Rt = ¢"'N" Rt -
From equations (ii) of §20 Ex. 7 and the second set of (20.15), we have
g Rmiit = —g"Rimjx = —R'mit -
Consequently
(22.22) M = Naj= =N"Ripna .
Similarly it can be shown that

hi hi miph hmyyi
b ,]'k_b ki = -b ij/;_b Rmik-

From reshlts of this type and (22.21) we have the following general
formula:

Letp :

L Tm et Pl rm

bﬂ]"'-‘lp-ik - bxl"‘xp &= Z bal--'ka_llx,,+l"-apR 347k
a

(22.23)

The equations (22.19) to (22.23) are known as Ricci vdentities after
Ricci to whom they are due.*

From the manner in which equations (22.19) were derived it follows
that, when they are satisfied, equations (22.18) follow. Since similar
results follow from cquations (22.20)-(20.23), we have that when co-
variant differentiation is used, Ricci identities take the place of the
ordinary conditions of integrability, that is, that equations such as
(22.18) are satisfied (see §23).

Although the tensor calculus as developed thus far has been in terms
of three coordinates the results apply in general to any number of
coordinates. In the remaining two chapters the tensor calculus is
applied in the case of two coordinates. In General Relativity it is

* Cf. Ricci and Levi-Civita, 1901, 1, p. 143.
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applied to spaces of four dimensions. Its use is fundamental in Rie-
mannian Geometry of n dimensions.*

EXERCISES

1. Show that X;,; = XAj.i, if and only if \; is a gradient.
2. Show that for covariant differentiation based upon the metric tensor a;;

.19 ,
M —:/&a:c"(\/ax)'

The scalar N,; is called the divergence of \'.

3. Show that a nccessary and sufficient condition that the second covariant
derivative of an arbitrary tensor be symmetric in the indices of covariant differ-
entiation is that the differentiation be based upon the metrie tensor a;; of euelid-
ean space.

4. Given any contravariant unit vector A%, we have along a curve

; dat ;
Mgy T

where p' is a contravariant vector; at cach point of the integral eurves of equa-
tions (15.11) pf is the principal normal vector to the curve (see (21.9)).

5. Kven if the curve in Ex. 4 is not an integral curve of equations (15.11), the
veetor ut is perpendicular to the vector A at each point of the curve.

6. For any scalar f the quantity a'if,;; is a sealar, and it is equal to the ex-
pression

19 o
— g1,
Va oz (\/a ¢ 6;r:i>
7. In cartesian coordinates the equation
() a'if,;; =0
is
3
2 =0

1]
and thus (i) is the equation of Laplace in general coordinates; in polar coordinates
it is
a1 ¥y 1 af 29 1

— — + af
et A s 2 2 0.
axt® " (a1)2 82" ' (2! sin 2?)? azs? | glax | (a1) cot Py

8. When \‘ satisfy the equations
}“./ = 0:

they are the contravariant components of a field of parallel vectors.

* See, 1926, 1.



114 TRANSFORMATION OF COORDINATES [Cu. II

23. SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS OF
THE FIRST ORDER. MIXED SYSTEMS

In this section we discuss the existence of solutions of certain systems
of partial differential equations of the first order of the kind which
arise in various geometric' problems; that is, whether there exist funec-
tions of the independent variables which satisfy the equations iden-
tically.

Consider the system of equations
(231) 'Z_i“-=¢’?(ol""}om;zly“',x") (l:::i:..::,:l,))
where the y’s are functions of the 8’s and the 2’s. It is understood that
the following treatment applies to a domain in which the functions ¥ '
are continuous and have continuous derivatives up to the order entering
in the treatment. Equations (23.1) are equivalent to the system of
total differential equations

(23.2) do® = y¢ da',

as is seen when equations (23.2) are written

a6 a i
(b;;—‘- ¢’(> dz’ = 0,

and it is required that these equations hold for arbitrary values of the
differentials. .

Differentiating equations (23.1) with respect to 2’ and in the result
replacing the derivatives of the #’s by their expressions from (23.1),
we obtain

0" _ oy¢ aw.

arox’ az'

‘pﬁ

Since the left-hand member of these equations is symmetric in ¢ and j,
it follows that the right-hand member must be equal to the expression
obtained from it on interchanging 7 and j, that is, it is necessary that
the functions ¢ be such that by

a\bl a‘pi B _ a\bi aWI [} Q, B = 1; s, My
(23'3) a: aoﬁ‘p axt lﬁ (Lj:l]...,fn)'

The conditions imposed upon the functions y; by equations (23.3) are
called conditions of integrability of equations (23.1), meaning that if
equations (23.1) are to admit solutions, either equations (23.3) are
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identities in 8 and z*, or there are relations between these quantities
which must be satisfied by 8” to be solutions of the system (23.1).

When equations (23.3) are identities in the 8% and z' the system is
said to be completely integrable, or to be a complete system. With regard
to such systems Darboux* has established the theorem

(23.1] A complete system of equations (23.1) admits one and only one set
of solutions 8% such that for arbitrary initial values z; of the s the functions
0” reduce to arbitrary constants c*.

We consider next the case when equations (23.3) are not identities
in the 6’s and the z’s, and refer to them as the set of equations E, .
If m of these equations, say ¢' = 0, ---,¢™ = 0, are independent,
that is, if the jacobian of the ¢’s with respect to the 6’s isnot identically
zero, these equations can be solved for the 6’s as functions of the z’s,
and the solution of these equations is unique.t If then any other of the
set E is independent of the above equations, and the expression for the
0’s are substituted in this equation, there results a relation between the
z’s, which is contrary to the hypothesis that the z’s are independent.
Consequently, if there are more than m independent equations in the
set By, equations (23.1) do not admit a solution. If there are exactly
m independent equations ¢' = 0, -- - , ™ = 0, we differentiate each of
these equations with respect to z', ..., z", thus obtaining mn equa-
tions, and in them substitute for the derivatives of the 6’s the expressions
¥ from (23.1). If these equations are satisfied identically when the
solutions % of the equations ¢' = 0, ..., ¢™ = 0 are substituted, then
6% constitute a solution of equations (23.1), and the only solution. If
these equations are not satisfied identically, equations (23.1) do not
have a solution.

If the number of independent equations in the set E; is less than m,
we differentiate the independent ones with respect to the z’s, substitute
from (23.1) for the derivatives of the 8’s and denote the resulting set of
necessary conditions by E,. If the number of independent equations
in the sets E; and Ej is greater than m, there is no solution of equations
(23.1), as shown by the argument used above. If the number is m,
by the process described above we determine whether there is a solution
(which is unique) or not. If this number is less than m, we differentiate
the equations of the set K, substitute from (23.1) and denote the
resulting set of equations by E; .

Proceeding in this manner we get a sequence of sets of equations.

* 1910, 2, pp. 326-335.
t Fine, 1927, 1, p. 253.
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If all of the equations of one of these sets are not equivalent to equa-
tions of the preceding sets, the set introduces at least one additional
condition upon the 8’s. Consequently, if equations (23.1) are to admit
a solution, there must be a positive integer N such that the equations of
the (N + 1) set are satisfied because of the equations of the preceding
N sets; otherwise more than m independent equations would be ob-
tained, and thus there would be a relation between the z’s. Moreover,
from the above argument it follows that N < m.

Suppose then that there is a number N(= m) such that the equations
of the sets

(23.4) Ey, -, Ey

are consistent but that each of the sets introduces one or more condi-
tions upon the 6’s independent of the conditions imposed by the equa-
tions of the preceding sets, and that all of the equations of the set

(23.5) Evn

are satisfied in consequence of the equations of the sets (23.4). Suppose
that there are p(< m) independent conditions imposed by (23.4), say
Gi6;z) =0forj =1,...,p. This means that the jacobian matrix
of the G’s with respect to the 8’s is of rank p, that is, if p < m at least
one of the determinants of order p of the matrix is not identically zero,
and consequently the equations G; = 0 can be solved for at least one
set of p of the #’s as functions of the remaining 6’s and the z’s. If
p = m, the equations G; = 0 can be solved for the 8’s in terms of the
2’s, and these 6’s are a solution of equations (23.1), since they satisfy
the equations of the sets (23.4) and (23.5).

We consider now the casc when p < m. By a suitable renumbering

of the 6’s, if necessary, the equations G; = 0 can be solved for
9', ..., 6", which result we write as follows:
(23.6) =@, ..., 60 =0 (=1.-.,p).

From thesc equations we have by differentiation
L P _
oo i (@=ptdem).

Replacing the derivatives of the 6’s by means of (23.1), we have

, 00 . 03¢
27 i T ,'—-——.=0,
(23.7) 4 a0° ot
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which equations are satisfied in consequence of (23.4) and (23.5), as
follows from the method by which the sets (23.4) and (23.5) were
obtained. From (23.7) and the preceding set of equations we have by
subtraction

_ai—- _‘Py go_c— ) = Il=1,---’p;
(23.8) axt vi - 86° (ax" \b') 0 (a—p-{-l,-..,m)'

Consider now the set of equations

30 -
(23.9) o - ¢ =0,
where ¢} are the functions of 8%, ..., 6™, and the z’s obtained from
¥i when @, for v = 1, ... | p, arc replaced by their expressions from
(23.6). For any solution of equations (23.9) we have from (23.8)

0
(23.10) o ¥ )
where ¥ are the functions obtained from y! when 01,_ ..., 67 arereplaced
by the functions in terms of §”*), ..., 8™, and z° as given by (23.6).

Jonsequently any given solution of (23.9) and 6" from (23.6) constitute
a solution of (23.1).

We take up now the question of the solution of equations (23.9).
The conditions of integrability of these equations result from

OVT L OWIOD | WIAD _dyT | vial | avior (v=1,...,p;

or’ 98¢’ 8x’ © 96" 0x'  9x* 96 o' 99" ox* \o,7=p-+1,...,m)’

when 6" are replaced by their expressions from (23.6). From (23.3) for
=p+1,...,m we have

VT | AWE . 0T oE L ov
oz’ t YA + a6 vi= ar a6

a‘l/;
a6"

llb! \l’ (0:T=P+17"'ym);
and these are identities when the expressions (23.6) for 6" are substi-
tuted, since (23.6) satisfies all of the sets (23.4) and (23.5). Substituting
the expressions (23.6) for 8” in both sets of the above equations and
subtracting, we have

oy A A (Q"_" ) o] <_ - )
P (ax' %) 00" <ax7 “”) T A i)+ a6 \or' v )
which equations are satisfied in consequence of (23.9) and (23.10).

Hence the system (23.9) is a complete system, and by theorem [23.1]
its solution involves m — p arbitrary constants. Consequently we have
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[23.2] In order that a system of equations (23.1) which is not complete
admit a solution, it s necessary and sufficient that there exist a positive
integer N(< m) such that the equations of the sets Ey, - - - , Ey are con-
sistent for all values of = in the domain under consideration, and that the
equations of the sets Eyiy are satisfied because of the equations of the
preceding sets; if p(< m) is the number of independent equations in the
first N sets, the solution involves m — p arbitrary constants; if p = m,
the solution is completely determined.

It is evident from the above discussion that when a positive integer
N exists such that the conditions of the theorem are satisfied, they are
satisfied also for any integer larger than N, since if the set Ey4i are
satisfied so also are all subsequent ones. However, it is understood in
the theorem and in any of its applications that N is the least integer for
which the conditions are satisfied.

The above~ theorem applies also to the case when there are g func-
tional relations between the 6’s and 2’s which must be satisfied in addi-
tion to the differential equations (23.1), say

(23.11) f'6;2) =0 r=1,---,9.

Equations (23.1) and (23.11) are said to constitute a mized system. In
the case of a mixed system we denote the set of equations (23.11) by
E, and include in the set E; of the theorem also such conditions as arise
from (23.11) by differentiation and substitution from (23.1). Then the
theorem holds with the difference in this case that we have the sets
Ey, E,, ..., Ey instead of the sets E,, ..., Ey, and that the equa-
tions of the set Ex,. are satisfied because of the equations of the pre-
ceding sets.

As an application of the preceding results, if we define quantities p’, by

or h

(23.12) P = P»,

equations (20.11) may be written

Py

aT'h«= {}p” “+{pq}

ap’; — h r\’ h
32’7 {] pppq+ pq pr

(23.14) 'y = a"ip; Pi .

(23.13)

and (20.8) as
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Equations (23.12), (23.13) and (23.14) constitute a mixed system for
which z* and p% are the dependent variables, that is, they are the 6's
of equations (23.1), and z'” are the independent variables. Moreover,
equations (23.14) are the set E, referred to above.

From (23.12) it follows that we must have

dz'c  ax'r’

h h
(23.15) 9Py _ 9P

which are satisfied identically by (23.13), and the conditions of integra-
bility of (23.13) are

(23.16) R upypiph = R"ep

as follows from (20.12). Since equations (20.11), and consequently
(23.13) were obtained by differentiating (23.14) it follows that no condi-
tions are imposed by differentiating the equations of the set E, in this
case, and consequently equations (23.16) are the set E; .

Although the above results were developed from the fundamental
tensor a,; of euclidean 3-space, they apply equally well to any covariant
tensor g¢;; , provided only that the determinant g of the g;;’s is not, zero,
as discussed at the close of §20.

From the definition (20.13) of the Riemannian tensor it is seen that
only if the Riemann tensor is a zero tensor is it possible to have all the

! .
Christoffel symbols {;q} equal to zero for some coordinate system z’".

. ’
If there are coordinates z’* for which {z:q} are zero, equations (23.13)

become
h B )
(23.17) 0y _ s _ _ {h} P}
and equations (23.16) reduce to
R':jupy Pip; = 0.

Since the tensor Rz is a zero tensor, these equations are satisfied
identically, and consequently the system (23.17) and (23.12) is a com-

ox'’>
can be chosen arbitrarily, as follows from theorem [23.1], and then the

plete system. This means that initial values of the z*and p}, <= oz )
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2’s as functions of the z'’s are completely determined as solutions of the
system of equations (23.17), which are in fact

o’z + R\ oz’ o’ _
ox'razr's ' \ijf a2'» ar’e
Furthermore it follows from the manner in which equations (20.11) were
derived from (20.8) that the solutions are such that
ox' ox’ p

gii azlp a.’l'/q = 0pq

where the g”’s are constants. That they are constants follows from
equations of the form (20.5) when the corresponding Christoffel symbols

r ’
{ } are zero.
pq

Iftg>0it follows from an equation of the form (14.12) that ¢’ > 0.
If the quantities gi; > 0 are not equal to 8;; , it follows from the theory of
algebraic quadratic forms that there exist linear transformations* with
constant coefficients by means of which the quadratic form is trans-
formed into (14.2). Hence we have

[23.3] A symmetric covariant tensor g, ; for which the determinant is positive
18 the metric tensor of euclidean 3-space, if and only if the Riemann tensor
formed with respect to g:; is a zero tensor.

Although this result has been derived for the case when n = 3, there
is nothing in the proof which limits the result to this value for =, that is,
it applies to any case for n > 1.

Although euclidean space of any dimensions # is characterized by the
property that there exist coordinate systems for which the Christoffel
symbols are equal to zero, we shall show that for any space there exist
coordinate systems for which at a given point the Christoffel symbols
are all equal to zero. In fact, if the space is referred to a general co-

ordinate system z* and \ k\ denote the values of the Christoffel symbols

for this coordinate system at the point z§ , and coordinates z'* are de-
fined by

"o iz lk
=zt +z %{]k} z

* See Bocher, 1907, 1, Chapter 10.
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then the point z’* = 0 is the point z§ , and at this point

ozt _ . ’ [
L A R )
!
Substituting these values in (20.11), we find that {prq} = 0 at the point,

as was to be proved. Hence we have

[23.4] Even when the Riemann tensor based upon a tensor g;; is not a zero
tensor, a coordinate system can be found such that at a given point all of the
Christoffel symbols in this coordinate system are equal to zero.

In this coordinate system at the origin, that is, ’* = 0, the covariant
derivative of a tensor is the ordinary derivative. In particular, we have

Ry = o o & JIV & [LV
par, o7’ ax'e 9z’ \pr oz’ ox’ \pqf’

as follows from (20.13). From these equations we have
R,lpqr.s + R’lpra,q + R/lpsq.r = 0.

The left-hand members of these equations are components of a tensor.
Since they are equal to zero at the point in one coordinate system, they
are equal to zero at this point in any coordinate system. Moreover,
this result can be obtained at each point of the space, and consequently
we have

[23.5] For any space and in any coordinate system

(23.18) R'istm + B jtmi + R'jmey = 0.

Since the covariant derivatives of g* are equal to zero, we have
Riism = (@"Rai).m = g™ Rhitiim .

From this result and (23.18) it follows, since the determinant of g™
is not equal to zero, that (on changing indices)

(23.19) Rijptm + Rijimpk + Rijmea = 0.

Equations (23.18) and (23.19) are called the Bianchi identities. They
hold in any space of any dimensionality and in any coordinate system.*

* See 1902, 1, p. 351.
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EXERCISES
1. Find the mixed system of differential equations of the type (23.1) for which

u = ax! + bz?, v = az'z?, w = b(z!)? + a(z)?

is the general solution, @ and b being arbitrary constants; what is the system
E; in this case?

2. When the functions y§ in (23.1) are linear and homogeneous in the ’s,
the equations of the sets E, , --- , Ex have this property; and in order that the
equations (23.1) have a solution, it is necessary and sufficient that there exist
a positive integer N (£ m) such that the rank of the matrix of the sets of equa-
tions Ey, --- , Enism — ¢ (¢ 2 1), and that this be the rank also of the equa-
tions of the sets E,, -+, Eny1 .

3. Consider the Riemann tensor R;;u based upon a tensor g;;, where 7, j =
1, -+, n; because of equations (i) of §20, Ex. 8 there are n; = n(n — 1)/2 ways
in which the first pair of indices are like the second pair, and na(n, — 1)/2 ways
in which the first and second pairs are different, and consequently there are
na(ne: + 1)/2 distinet components as regards equations (i); however, there are
n(n — 1)(n — 2)(n — 3)/4! equations of the form (ii) of §20, Ex. 8; hence there
are n?(n? — 1)/12 distinet components of the tensor.

4. For n = 3 there are 6 distinct components of the tensor R;ju, and there
are 6 equations

Rix = g% Rijm ;

show that the solutions for R;;u of these equations are given by
R
Riju = gaRjx + gixRa — g Ry — gaRa + 3 (gicgin — gargin),

where
R = giiRs; .
5. Since
R = Rij,
one has from (23.18) on contracting for < and [
Ritm — Rimk + Rijmei = 0;

if this equation is multiplied by g7* and summed with respect to j and k, one
obtains ’
1 0R

Fmi =3 oam’



CHAPTER 1II
Intrinsic Geometry of a Surface

24. LINEAR ELEMENT OF A SURFACE. FIRST
FUNDAMENTAL QUADRATIC FORM OF A
SURFACE. VECTORS IN A SURFACE

Consider upon a surface with the equations
(24.1) 2 = (), ) (=123,

z' being cartesian coordinates in the space in which the surface is im-
bedded, a curve defined by expressing ' and ” as functions of a param-
eter ¢, thus

(24.2) u® = o%(t) (@ = 1,2).*

Looked upon as a curve in space, its element of length ds is given by

(see §2).

(24.3) ds’ = 2_ da’ dr’.
From (24.1) we have

T aft a _a_x_' a
(24.4) dz' = %du = du”,

where as follows from (24.2)

« _ de”
(24.5) du® = il dt.
Substituting from (24.4) in (24.3) we have
(24.6) ds® = gap du® du®,

where the quantities g.s are defined by

oz’ oz’
@ o8 = 2 5 G

* In general in what follows Latin indices take the values 1, 2, 3 and Greek
indices the values 1, 2.

123
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The expression for ds given by equation (24.6) is called the linear
element of the surface in terms of coordinates %' and w?. The right-hand
member of (24.6) is called the first fundamental quadratic form of the
surface. Although the linear element was derived in seeking the
element of length of a curve on the surface looked upon as a curve in
the euclidean 3-space in which the surface is imbedded, the significance
of the linear element of the surface is that once it has been obtained
for a surface the arc of any curve (24.2) is given by

% dubp
S=f Vaﬂd;t g = f\/gw "of .

In particular, for the coordinate curves 4’ = const. and u' = const.
the respective elements of length are given by

(24.8) dst = gu(du')’,  ds; = ga(du®)’.

Consequently gu > 0 and gs2 > 0 unless the respective coordinate curves
are minimal curves (see §2). Hence, if we are dealing with real surfaces
and real coordinates, we have that gn and g, are positive functions.

A change of coordinates to a new set u’’, w”* is defined by means of
equations

(24.9) u® = ¢ W, u? (@=1,2),
provided the jacobian (('Ifl ‘//,2) is not identically zero. From (24.9)
we have

(24.10) du® = ::7 du' (a,7 = 1,2).

When these expressions are substituted in (24.6) we obtain

(24.11) ds® = g’y du’™ du”’,
where

' ou® '
(24.12) Gos = Gas 555 S

From (24.7) it follows that g.s = gsa, that is, the ¢g’s are symmetric
in the indices. Since equations (24.12) are of the form (18.1) we say
that g.s are the components of, or that g.s is, the covariant metric tensor
of the surface; it is symmetric and of the second order.
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If we denote by g the determinant of the g’s, that is

gu g2
(24.13) g = = |gas |,
Jr2 g2
we have from (24.7), analogously to (5.1),
(24.14) 0= ga| = (A" + (4" + (4"},

where A are defined by (10.3).

On the understanding that we arc dealing only with real quantities
1t follows from (24.14) that g is never a negative quantity. It is equal
to zero only in case

(24.15) A® = A® = AY = 0.

These equations cannot be identities in the u’s, as follows from theorem
[10.1]. However, equations (24.15) may be satisfied by certain values
of ' and %’. The points having such values for coordinates are called
singular points, as remarked in §11; they may be isolated points, or
constitute one or more singular curves on the surface. Only ordinary
points, that is, non-singular points, on a surface are considered in this
book, unless the contrary is stated.
Since g # 0 functions g** are uniquely defined by

(24.16) 908, = 55,
where
(24.17) 65 = 1 or 0 according as @ = v or a % ¥.

In fact, equations (24.16) are equivalent to

(24.18 u_ gz 2 _ a1 _ e n_ gu
(2418) ¢ A o :

As in §14 it can be shown that it follows from (24.12) that .
(24.19) ¢ = g ou* o’

u'r au'®’

where g'® bear to gag the relation (24.18). Thus g is a contravariant
tensor; it is called the contravariant metric tensor of the surface and is
of the second order.

We observe that equations (24.12) and (24.19) are of the same form
as (14.10) and (14.16) respectively, which refer to the fundamental
quadratic form of euclidean 3-space in two general systems of coordi-
nates z* and z'°.
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As stated in §10, the use of two coordinates u® in the definition of a
surface, as in equations (24.1), was introduced by Gauss. He used
p and ¢ as coordinates and wrote (24.6) in the form

s’ = E dp* + 2F dp dq + G dg".

This notation, at times with  and v used in place of p and ¢, has been
followed generally, but in what follows we use (24.6), since it enables
one to write equations in simpler form with the use of the summation
convention.

From (24.4) it follows that at each point of the surface differentials
du' and du’ determine in the enveloping space a direction tangential to
the surface (see §11) for which dx* are direction numbers. Accordingly
we say that at each point of a surface differentials du® determine
a vector in the surface. Moreover, since equations (24.10) for a trans-
formation of coordinates in the surface are of the form (15.10), we say
that du® are the contravariant components of the vector at each point.
One would expect from geometric considerations that for a curved sur-
face vectors with the same components du® at different points would
have different directions as viewed from the enveloping space. This
expectation is verified analytically by (24.4), since ordinarily the quan-

oz’
ua
to point in the surface.

Consider two sets of functions \*(u', 4*) and N*(«", w’*) in two co-

ordinate systems »“ and v’ in the surface related as follows

tities are functions of the w’s, and consequently vary from point

(24.20) A= o

which are equivalent to

ra __ B au"'
(24.21) A by S
in view of the identities
out au® ou" uf e
(24.22) e "0 o b O

these being analogues of (13.13) and (13.14). Since (24.20) and (24.21)
are of the form (15.10) and (15.8) respectively, we say that A® and
N are the components in their respective coordinate systems of a
coniravariant vector in the surface, there being one such vector at each
point of the surface.
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If we define quantities ¢* by

(24.23) F=x
ou*

it follows from (24.20) that

oz’
ou't’

(24.24) g =2

The quantities gi—l and gﬁ are direction numbers in the enveloping space

of the tangents to the coordinate curves «’ = const. and «' = const.
respectively in the surface, that is, the u'-coordinate curves and the
u’~coordinate curves. Since £' are linear homogeneous combinations
of these direction numbers, they are direction numbers of a line tangent
to the surface, as follows from the results of §11, and consequently are
the components in the enveloping space of the contravariant vector
whose components in the surface are \®.

Two sets of functions N.(u', u*) and N, (u’, w*) which are related as
follows

8 8

(24.25) Ae = \g % Ao = Ag ga“—
(either set of equations being equivalent to the other in consequence
of (24.22)) are the components in their respective coordinate systems
of a covariant vector in the surface (see §17). From the results of §19,
which apply to any number of coordinates, it follows that if A® are
components of a contravariant vector in the surface, then

(24.26) Aa = gash’

are the components of a covariant vector, since g.s is a covariant
tensor. Also if A, are the components of a covariant vector, then

(24.27) A = g\

are the components of a contravariant vector, since g is a contra-
variant tensor. As in §17, we say that two sets of functions A* and A,
of u® related as in (24.26) and (24.27) are the contravariant and covariant
components respectively of the same vector in the surface. The geomet-
ric significance of these components is shown in §25.

From (24.23), (24.7), and (24.27) we have

(24.28) ; EE = ANMNgas = 000" Negas = 97 M N85 = ¢\ e
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The first member of these equations is the square of the length of the
vector as viewed from the enveloping space (see §16 following (16.1)).
From §19 it follows that g.sA“\® and g*"\.\, are scalars. Hence we have

[24.1] For a vector whose contravariant and covariant components are
A% and A, respectively each of the scalars gusA"N° and g**A\.\s is equal to
the square of the length of the vector.

As a corollary we have

[24.2] A necessary and sufficient condition that \* and \. are the contra-
variant and covariant components of a unit vector in the surface is that

(24.29) GaAN =1, g\ = 1.

EXERCISES

1. For a sphere with equations of the form in §10, Ex. 1 the coefficients g.s
of the linear element are given by

gu = a? giz = 0, g22 = a?sin? ul.

2. When equations of the tangent surface of a curve with equations z¥ =
fi(u?), where u! is the arc, are written in the form (see (8.5))

. . dz’
X' =2+ (u? — ul)d_u"
the curves u? = const. are the orthogonal trajectories of the generators, and in
consequence of (2.8), (2.9), and (4.3) one has
gu = «2(ut — u)? gz = 0, g2 = 1.

3. For any surface of revolution, when the equations are given in the form
in §10, Ex. 2,

gu=1+¢% gu=0, gu=u

where the prime indicates the derivative.
4. The equations

. u!
z! = u! cos u?, z? = u' sin u?, 23 = a cosh™! —
a

. 28
are equations of the surface of revolution of the catenary z! = a cosh — about
a

the z3-axis (see §10, Ex. 2); thié surface is called the catenoid. In this case

- ut .
. P
\/1 + o't = \/—l, 580 that for the coordinates u’l, u? where u't = \/ul - a?
u’ —a

gu =1, g1z =0, g2z = a? 4+ (u'1)%

Does this change of coordinates change the coordinate curves?
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5. For a right conoid with equations of the form in §10, Ex. 4,
=1 gua=0 gu=u’ 4o
6. On a surface with the equations
! = ul cos ul, 2?2 = u! gin u?, 3 = o(ul) + au?,

where a is a constant, the curves u! = const. are circular helices (see §3, Ex. 1),
and

g=14¢", gu=uae, gu=u'+ay

such a surface is called a helicoid; all the curves u? = const. are congruent plane
curves; a is called the helicoidal parameter.
7. When in Ex. 6 ¢(u!) = 0, the helicoid is a right-conoid as follows from §10,

Ex. 4, and
gu=1 gu=0 gn=a+u’
this surface for any non-zero value of a is called a skew helicoid.
8. Along any curve on a surface the quantities %u;a are the contravariant com-

ponents of the unit tangent vector.

25. ANGLE OF TWO INTERSECTING CURVES IN A
SURFACE. ELEMENT OF AREA

We have seen in §24 that values of du® determine at each point of a
surface a vector tangent to the surface whose components dz* in the

enveloping space are given by (24.4). From the standpoint of the en-
(3

veloping space the direction cosines o’ of this tangent vector are %
(see §3). In consequence of (24.4) and (24.6) we have
i _dz’ ou®
(25.1) o == m .
Since dz* are direction numbers of such a tangent to the surface,
and the quantities g—g; are functions of the u’s, it follows from (24.4)

that the direction of a vector of components du® depends not only
upon these components but also upon the point of tangency. However,
values of the differentials du® determine a direction at each point of
the surface.

For a curve on the surface defined by equations of the form (24.2)
we can find from (25.1) the expressions for o in terms of ¢, giving the
direction cosines in the enveloping space of the tangent at any point of



130 INTRINSIC GEOMETRY OF A SURFACE [Cx. III

the curve. Equations (24.5) give values in the surface of the compo-
nents du” of this vector.

Suppose now that at a point on a surface we have two vectors in
the surface of components dju® and d;u® and we denote by o and o}
the direction cosines of the tangent vectors so determined in the en-
veloping space. An angle 6 between these tangents is given by

cos f = E o a; = ,
i V/ (Gap dr u* d1uP) (g3 dz u” da ud)

which because of (24.7) becomes

Gop dru” dp v/

(25.2) o8l = e 2 R .
V (gap dy u dy 1P) (gys d2u dz2ud)

In terms of a; and a; we have

Zai,ai Z_aia§
1 1
Safal Tail
i %

. 2 2
sin“f =1 —cos" @ =

1 212 2 32 3 112 %

[+3} ay ay ay a1 [+ 31

= 1 2 2 3 3 1

ag Q3 Qg QO Qg asg

From (25.1) we have
.y ) C ) . R
ox' dyu” 9z’ dyu” ar'  9x’| |diw dyu
ai all ou® dis  ou* dis oul oul| | dis dis
. = . " = . N 1 2 .

as  aj 3z’ dpu™ 0z’ dpu” ar' ox’| |deu  dau

ou® dgs  ou® dss ur out| | des  das

d1 ul MZ lz

2 dis dis
sin“ g =g
du.{1 dau?
ds 8 dzs l

* See remark following (5.1); also C. G., p. 80.
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Thus far 6 is one of two angles whose sum is 360°, and the formula
(25.2) does not distinguish between these two angles. This ambiguity
is removed, if we take

1,2 2, 1
(25.3) Sin 6 = /g — du' e’ — diu’dau '
V (gas dru® div?) (g dow” dru?)

The significance of this choice is shown later.

From (25.2), and also from (25.3), it follows that the angle between
tangents of components diyu® and d;u® depends not only upon these
components but also upon the point of tangency unless gn.s are con-
stants. We show later that g.s are constants only in case of developable
surfaces, and then only for particular sets of coordinates.

If two curves defined by equations

u® = oi(h), U= ¢i(t)

have a point in common, for values of ¢ and ¢ at the point we can
obtain from (25.2) and (25.3) the angle 8 between the tangents to the
curves at the point of intersection, that is, the angle of the two inter-
secting curves.

In order to find at a point the angle w of the coordinate curves u* =
const. and %' = const., for the directions in which ' and «* respectively
are increasing, we take

(254) dw'>0, du'=0, du'=0 dw’>0,
and obtain from (25.2) and (25.3)

(25.5) cosw = 92 sinw = \/aw,
\/911922 grugae

Thus w is the angle formed by the vectors at the point in the directions
in which %' and «® respectively are increasing and such that
0 < w < 180°

From the first of these equations we have

[25.1] A necessary and sufficient condition that at each point of a surface
the coordinate curves meet at right angles, that is, are orthogonal to one
another, 1s that g2 = 0.

In this case the coordinate curves are said to form an orthogonal net
(see §24, Exs. 1-5, 7).

We next apply equations (25.2) and (25.3) to find the angle 6, in
which a curve upon the surface meets a coordinate curve u* = const.
If at the point of intersection the components of the tangent to the
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curve are denoted by du® and we use the first two of (25.4), replacing
du® in (25.2) and (25.3) by du®, we obtain

8
256)  cosbo= ——22%___ Gng = ___l/-_g_@i__,
\/g gy du? dub \/gu gys du? dul
and consequently
_ Vi 6 du?

From the second of (25.6) it follows that the angle between the direc-
tions for which ' is increasing on a curve «’ = const., and «’ is increas-
ing on the given curve lies between 0° and 180°. Thus 6, is the angle
(0 < 6, < 180°) through which the vector du' > 0, du’ = 0 must be
rotated to be brought into coincidence with the tangent vector to the
curve in the direction for which du® > 0. This is the sense in which
the first of these vectors is rotated through the angle » to be brought
into coincidence with the vector du' = 0, du* > 0, and may be called
the positive sense of rotation.

We shall show that the angle @ through which the vector dju® must
be rotated in the positive sense to be brought into coincidence with
the vector dpu” is given by (25.3). We say that this is the angle which
the vector dyu® makes with the vector d,u®. In fact, if 6,, and 6,, denote
the angles made at a point by the vectors dyu” and d;u® with the vector
du' > 0, du’ = 0, it follows from (25.6) that

) - ﬂ dguzgmdlus - d1u2g1,dgu7

911 N/ (Gap dy u® dy uP) (gys dyu? daud)
The right-hand member of this equation reduces to the right-hand
member of (25.3). If now 6, < 6y, 6§ = 6, — 6y,, and if 6;, > 6,
6 = 2 — 6,, + 0y, ; in either case the left-hand member of the above

equation is sin 6.
For a transformation of coordinates (24.9) we have from (24.12) that

(25.8) 9 =9 [»M»Z—) ]2,

where ¢’ and g are the determinants of ghs and gas respectively. Also
for this transformation of coordinates equation (25.3) becomes

sin (920 - 010

dlu'l dluﬂ dlull (ilut2
_ldis dis | a(ul, w) S| dis s
. — T — !
sin 6 = \/g dzun dz’ll’z a(u”, u/g) :l:\/g dzu” dzulz ’

A.o A.e A.o A.o
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the plus or minus sign to be used according as the jacobian is positive
or negative. If we denote by «’ the angle between the coordinate
curves u'® = const., and if @ denotes this angle in the u-system, we
hm{: from (25.5)

sin 6 = =+ sin .

This means that positive sense with respect to the u-system and u/'-
system is the same or opposite according as the jacobian is positive or
negative. Hence we say that a transformation of coordinates is positive
or negative according as the jacobian is positive or negative. However,
if a transformation is negative, and if in the equations of the transforma-
tion one replaces u’* or w? by —u’* or —u%, the sign of the jacobian is
changed, and the new transformation is positive. This change does not
change the coordinate curves u’* = const., but merely the positive sense
on one family of coordinate curves. Hence there is no loss of generality,
if we understand in what follows that a transformation is positive unless
there is a statement to the contrary.

Consider now two vectors of contravariant components A\{} and Az).
If at a point on the surface we take differentials dyu” and du” given by

du® = N, dw =g,
we have from (25.2) and (25.3)

a B
cosf = - gaﬂ?L&l _
V(gasAi M) (9N M)

(25.9)
. D VP LIRS HP ¥
sinf = /g- - = e,
V (gas NN (grs M M)
6 being the angle which the vector Az, makes with the vector Af .
We have, on changing dummy indices,

GasM N = Gasg Mg Aais = ¢ Nihaisde = g% Niahais
and
MAZ = M2 = ¢ Miag™Mis — 0" Mg Nois
@"9" — (@"™))Aaidaiz — Aipahara).

From these results, (25.9), (24.18) and theorem [24.1] we have

cosf = 9" Miahsis
)
(25.10) V(0% MiaMig) (g7 Naty Mais)
- sin § = 1 Atindaiz — Mz

76 V(g MiaMig) (97 Maly Asia) )
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From the first of equations (25.9) and (25.10) we have

[25.2] A necessary and sufficient condition that at a point the vectors Af)
and A3, be perpendicular is

GathiNS) = MpNG, = AfAaia = 9% M1jahais = 0,
AMia and Agja being the covariant components of the respective vectors.

When, in particular, we denote by 6; and 6. the angles which the vector
A% makes with the vectors A, 0 and 0, A’ respectively, that is, the angles
which the vector \* makes with tangents to the curves w’-const. and

1 )
u = const. respectively, we have from (25.9)

gak cos b = 92N

Vgugas AN’ Vg2gas NN

If then in the tangent plane at a point P, we lay off the vectors \*%;
2,0; 0, \*, and note that the lengths of the last two vectors are 4/gy; A!
and +/gs2 \? respectively, we have from (25.11) that the projection of
these lengths upon the line of the vector A\* are respectively

(25.11)  cos6, =

a1 )\a )‘1 V a2 xa )\2
Vgas NN’ Vgas NN

The sum of these two vectors is V/g.sA*M?, that is, the length of the
vector \*. Again from (25.11) we have that the projections of the
vector A* upon the tangents to the curves u* = const. and «' = const.
at P are respectively

gar N N

A% gu, vV gzz'

Noting that the numerators of these expressions are the covariant
components of the vector A*, we have (see theorems [16.6] and [17.6])

[25.3] At any point P of a surface the vector \* is the diagonal from P of
the parallelogram whose sides are segments of the tangents at P to the curves
w* = const. and u' = const. of the respective lengths /gy \' and \/ga \*;
and the projections of the vector upon these tangents are the covariant com-
ponents of the vector divided by \/gy and \/ga respectively.

We define two sets of numbers e,s and e* as follows:

(2512) €11 = €2 = e“ = 622 = 0, €1 = eu = 1, e = 621 = —1.
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For a transformation of coordinates in the surface we have

s o’ ou Uk _ 0
“ouwtaut T ot gt T

out o’ _ a(u,w) _ o ou” ol
® ou ou ~ a(uL, u) @ ut

If the transformation is positive, we have

(25.13) Vi =/ 2, w) o, )

{')(u’l u'?)’

consequently

ou® o’
(2] \/g = €ap \/.(3

ou'r Bus’

In like manner it can be shown that

Hence we have

[25.4] The quantities
(25.14) s = Vg, =2
8V § \/g

are the components under a positive transformation of a skew-symmetric

covartant and contravariant tensor of the second order respectively.
From (25.14) and (25.12) we have

(25.15) € Tegy = € e = 85 .

Also the second of equations (25.9) may be written

a8
(2516) sinf = - €ap );1] A2y _.
\/ (gaﬂ)\;‘] )\1|) (g‘ya )\;', )‘21)

Hence we have

[25.5] A necessary and sufficient condition that a unit vector \;, makes a
right angle with a unit vector \y| is that

(25.17) AN = 1.
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Consider a unit vector A® and the vector whose covariant components
ke are given by

(25.18) o = Epa)\ﬁ.

Since uA* = 0 it follows from theorem [25.2] that u, is perpendicular
to the vector \*. Its contravariant components are given by

w = g%us = g% e = (¢N' — g™ N) Vg
=" = ¢"9™) Vg = €N,

~ From (25.18), (25.19), and (25.15) we have

(25.19)

e = N = 1,
that is, 4 is a unit vector, and
(25.20) €\ 1 = €A %€A, = A\, = 1.
Hence by theorem [25.5] we have

[25.6] The quantities u. defined by (25.18) are the covariant components
of the unit vector which makes a right angle with the unit vector \°.

Consider next upon a surface the curvilinear quadrilateral formed by
the coordinate lines, the vertices being the four points P(u', u®),
Q' + du', ¥, R(, v’ + du), S(u' + du', v’ + dv’). To within
terms of higher order the lengths of the sides PQ and PR are /gy, du'
and /g du’, and the sides opposite them have these respective lengths
to within terms of higher order. Since the distances of @ and R from
the tangent plane to the surface at P are of the second order in com-
parison with PQ and PR (sce §11, Ex. 9), it follows that when @, R,
and S are projected orthogonally upon the tangent plane to within
terms of higher order these projections are the vertices of a parallclogram
of sides v/gy du' and /gy du’. The area of this parallelogram is
equal to

sin w Vgn du' Ve du’ = \/g du' di,

the latter expression following from (25.5). Accordingly we have that
the element of area do of a surface is given by

(25.21) do = /g du' di,
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by means of which may be found by integration the area of any portion
of a surface by evaluating the definite integral

ff Vg du' &

EXERCISES

1. Find the angle of the coordinate curves of a helicoid defined in §24, Ex. 6.

2. When the coordinate curves on a surface are the curves in which the surface
is intersected by the planes z! = const. and 22 = const., the parametric equations
of the surface are

for appropriate limits.

=g, a=a, 2= [,
the linear element is

ds? = (1 + p}) dzt’ 4+ 2p1pedatdz? + (1 + pi)dr”,
af . L
where po = 3-';, and the angle » of the coordinate curves is given by
z

1Pz
COS w = — = Pp

VA + )+ D)

3. When the coordinates of the enveloping space are genceral coordinates z,
equations (24.7) are replaced by

dx' oxi

fap = @ij 5;, PR
where a;; is the covariant metric tensor of space.

4. When the coordinates of the enveloping space arc general coordinates zf,
the form of equations (24.23) is not changed.

5. Find the clement of area of a sphere of radius a as defined in parametric
formin §10, Ex. 1 (sce §24, Ex. 1), and use the result to find the area of the sphere.

6. If 6, and 62, denote the angles at a point on a surface which the vectors
diu~ and d.u> make with the vector du! > 0, du? = 0 at the point

cos (629 — 0;9) = cos 6, sin (63 — 6,,) = sin 6,

where cos 6 and sin 6 are given by (25.2) and (25.3). In particular,

d a
cos (w — ) = —= gag u , sin (w — 8y) = /‘/i‘ﬁ‘.l,
‘\/022 g2 ds

where w and 8 are given by (25.5) and (25.6).
7. From (25.15) it follows that

Bepg = 2.
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8. From (25.12) and (25.14) it follows that

. 1

@ € guy gos = geys, eapg™ > = fgm:
(i) P gaygss = ey, s g =1
(iii) 9P eyactp = gy, Japer® 8 = g3,
(iv) €19 g,5 = egag®.

26. FAMILIES OF CURVES IN A SURFACE. PRINCIPAL
DIRECTIONS

Upon a surface defined in terms of coordinates u® an equation
(26.1) f@t, u?) =0

is an equation of a curve, as remarked in §10. If this curve is defined
also by equations

u® = %),
in terms of a parameter ¢, and these expressions are substituted in (26.1)
the resulting equation being an identity in ¢ does not vary with ¢ and
consequently the derivative with respect to ¢ is equal to zero; that is,
of do”

us dt
From this equation and (24.5) we have that differentials du® determining
the tangent at any point of the curve satisfy the equation

(26.2) Y gy =0,

ou*
Thus one of the differentials may be chosen arbitrarily (# 0), and the
other is given by (26.2) when the values of u' and v’ for the point are

of

substituted in — .
ou®
Consider an equation
(26.3) J', o) =,

where ¢ is an arbitrary constant. For each value of ¢ equation (26.3)
is an equation in the coordinates u® of a curve in a surface defined by
equations of the form (24.1). Through each point of the surface for
which f is single-valued there passes a curve of the family of curves
(26.3). In fact, when the curvilinear coordinates ', %’ of a point are
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substituted in (26.3), a value of c is uniquely determined, and evidently
the equation (26.3) in which ¢ is given this value is an equation of a
curve through the point.

An equation

(26.4) fiw!, ub) = ¢

is an equation of the same family as (26.3), if f; is a function of f, that
is, fi(u', v’) = F(f(u', u*)). For, in this case a locus of points for which
f is a constant is also a locus for which f; is a constant. Conversely, if
every curve of the family (26.4) is a curve of the family (26.3), then fi
must be a function of f. For, as follows from (26.2) the differentials
du® determining the tangent to the curve of each of the families (26.3)
and (26.4) are given by

af a afl a _
e du® =0, o du® = 0.
If then each curve of one family is to coincide with a curve of the other
family, we must have
of of
o0, 1) _ W o) _
a(u!, u?) of oh
au?  ou?

i

from which it follows that f and f; are functions of each other.
Consider next the differential equation

(26.5) M.du® = 0,

where M, and M, are functions of the u’s. In accordance with the
theory of such equations there exists a function t(u', ), called an
integrating factor,* such that a function f is defined by

of _ —
(26.6) po i tM, (a=1,2),
and thus
tM, du® = df.

Consequently f(u', *) = ¢, where ¢ is an arbitrary constant, is an inte-
gral of (26.5). If there is another integral of (26.5), say fu(u', u’) = ¢,
corresponding to another integrating factor f;, it follows from (26.6)

* Fine, 1927, 1, p. 292.
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and similar equations in f; and ¢ that the jacobian of f and f; with re-
spect to ' and 4’ is equal to zero, and consequently f; is a function of
f. Accordingly, and in view of the results of the preceding paragraph,
an equation (26.5) is an equation of one, and only one, family of curves
on the surface. We say that this family of curves is the family of
integral curves of the equation (26.5).

We seek now the differential equation whose integral curves are the
orthogonal trajectories of the integral curves of equation (26.5). If we
substitute in equations (26.5)

du' = pM,, d’ = —pM,,

this equation is satisfied whatever be p. If then we substitute these
expressions in place of dyu' and dp’ in the equation

(26.7) Gap dau® dy® = 0,

which from (25.2) is the condition that at a point of the surface the
vectors diu” and d;u”® are perpendicular, we obtain on discarding the
factor p

(g1sM2 — gasMy) dwf = 0.
Hence we have

[26.1] The orthogonal trajectories of the integral curves of an equation
M, du® = 0 are the integral curves of the equation

(26-8) (glle - 912M1) dul + (gmMz - gzle) du2 = 0.
As a corollary we have (setting M, = 0 and M; = 0 successively)

[26.2] The orthogonal trajectories of the coordinate curves u' = const.
are the integral curves of the equation

(26.9) gz du' + gndu’ = 0;
and of the curves u* = const. they are the integral curves of
(26.10) gn du' + gdu’ = 0.
If f(u', ¥°) is any function, for a change of coordinates in the surface
we have
o _ o o’
qu*  ou'P gue’
where f’ is the transform of f (see §15). From (24.25) it follows that
of

B 2TC covariant components of a vector, the gradient of f(§17).
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From this result and (26.6) one has that the quantities M, in equation
(26.5) are covariant components of a vector. Since its contravariant
components are g**M,, , we have

Gosg "M, A’ = 5§M, du’ = My du® = 0.

Hence from (25.2) we have that M, in equation (26.5) are the covariant
components of the field of normals to the integral curves of the equa-
tions (26.5), these normals being tangent to the surface at the cor-
responding points of the integral curves.

Consider next a differential equation of the first order and second
degree of the form

(26.11) @gg du” dl¥ = ay(du’)’ + 2055 du' du’ + as(du’)’ = 0,
where anas — aiz 7 0. This equation is equivalent to the two equations

(au + \/afz - auUaz) du' + andu’ = 0,
(26.12) T
(@ — Vak — anam) du' + amdu® = 0.
We seek the condition that the integral curves of these equations, and
consequently the two families of integral curves of equation (26.11),
are orthogonal to one another, that is, form an orthogonal net (see §25).
These integral curves are real or conjugate imaginary according as
an@x — ai; is a negative or positive quantity. If we denote the dif-
ferentials in the two equations (26.12) by diu” and d.u” respectively,
solve these equations for d;u® and dqu®, and substitute in (26.7), we have

[26.3] T'he two families of tniegral curves of an equation a.s du® du® =0
form an orthogonal net, if and only if

(26.13) guldz — 2guaz + gzan = 0.
Under a change of coordinates the equation (26.11) becomes
(26.14) ays du’ du” = 0,
where
' ou® o’ , ou' u
(2615) Ay = Aap WY b;;’b, Ao = Ay a‘; auﬁ .

Thus a.s are the components of a covariant tensor of the second order,
and there is no loss in generality in assuming that it is a symmetric
tensor (see §19, Ex. 2). In consequence of (24.18) the condition (26.13)
may be written

(26.16) 9%a.5 = 0.
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The left-hand member is a scalar quantity, whose vanishing is the condi-
tion that the integral curves of equation (26.11) form an orthogonal net.
We consider now the equations

(26.17) (Gag — 7 gag) N = 0,

from which it follows that quantities A* are determined to within a

common factor for each root r of the determinant equation
LY

(2618) ‘aaﬂ - gaﬁl = 0.

It is evident that equations (26.17) do not admit a common solution
other than A* = 0 unless r is a root of equation (26.18). Since a,s and
gas are covariant tensors, it follows that in any other coordinate system
the left-hand member of equation (26.18) is equal to

l a’ ., ' I a(un{En))z

@7 T ) )
Since the jacobian is different from zero, we have in the coordinates
% an equation of the form (26.18), and since r is unaltered by a change

of coordinates, it is a scalar. Moreover, the equations (26.17) trans-
form into

’ 1y o8 0u” ou
Qo — T N— — =0
(@ gx) due aup ’
which are equivalent to (ahs — rghe)\"° = 0, where

5
” = )\ﬁ aul

A R

that is, each set of quantities A’ satisfying (26.17) for suitable values of
r are the contravariant components of a vector.

When the determinant (26.18) is expanded, one obtains the quadratic
equation

(26.19) (gugz — gi2)r" — (auge + angu — 200g12)7 + (anax — als) = 0.
The discriminant of this equation, namely

(augz + ngu — 20ugu)’ — 4(guge — giz) (auon — ab),
reduces to
(26.20) (augz — angu)’ + 4(augu — Gugiz)(Guge — Gxng).

Since the roots of equation (26.18) are scalars, if they are real and
distinet or equal in one coordinate system, the same is true in any co-
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ordinate system. Suppose then that the coordinate curves form a real
orthogonal net. For such a system the expression (26.20) reduces to

(augn - azzgn)z + 41132911922 y

which is non-negative since gn and g are positive (§24). Hence the
roots of (26.18) are real. They are distinct, unless the above expression
is equal to zero. In this case

M2 aw=0,

gu g22
that is, @ss = Ugas, in which case r = ¢, and equations (26.17) are
identities, and thus do not determine quantities A’.

We consider now the case when a.s are not the same multiple of gas ,
that is, the tensor a.g is not proportional to the tensor g,s. We denote
by 71 and 7, the roots of equation (26.18), and by A, and A3, the corre-
sponding vectors; thus we have

(26.21) (Gas — T1gap)Nl1 = 0,  (Gap — Togag)Ns) = O.

If we multiply these respective equations by A3, and A} , sum with re-
spect to « in each case and subtract the resulting equations, on changing
indices suitably we get

(7‘2 - Tl)gaa)\ﬁ)\gl = 0.
Since 2, % 71 we have the first of the equations
(26.22) gaﬂxfl)\gl = 01 aaﬁxfl)‘gl = 0!

the second being a consequence of the first and either of (26.21). From
the first of (26.22) it follows from theorem [25.2] that the two vectors
At and Az) are orthogonal, that is, the two vectors at each point are
perpendicular.

These two vectors at each point are the tangents to the curves of an
orthogonal net on the surface. In order to obtain the differential
equation of which these curves are the integral curves, we replace A°
by du” in equations (26.17) and eliminate r from the two equations, as
a takes the values 1, 2. The result is
apd’ g did’

(26.23)

)

J18 dua J28 duB

which upon expansion is

(angrz — agn) dul’ + (ange — Gn2g11) du' du’
(26.24)

]

+ (arages — Gmgns) du® = 0.
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Since these integral curves form an orthogonal net, when they are
the coordinate curves we have in this coordinate system the first of
the equations

(2625) Ji2e = 0, Ay = 0,

and the second follows from the fact that in this coordinate system the
coefficients of du'" and du’ in (26.24) are cqual to zero, since (26.24)
must be satisfied separately by du' = 0 and du’ = 0, and gy, and gz
are different from zero. In this coordinate system the directions of the
integral curves of equation (26.11) are given by

' _ /e
dut s’

and consequently these directions are equally inclined to the curves
u’ = const. as follows from (25.7). As a result of the foregoing discus-
sign we have

[26.4] If a.s s a tensor not proportional to the fundamental tensor gus ,
the integral curves of the equation (26.23) form a real orthogonal net, and
bisect the angles of the integral curves of the equation a.p du® du® = 0.

We call the directions determined by (26.17), that is, the directions
of the integral curves of equation (26.23), the principal directions for
the tensor a,s .  Another property of these directions and the significance
of the roots of equation (26.18) follow from the consideration of the
expression

_ aas\*N

(26.26) T

At a point the value of r depends not only upon the point, but also upon
the direction A® at the point. The maximum and minimum values of

9" _ 0, that s,

r at a point are given by the directions for which e

g.,a)\")\‘aap)\ﬁ - a.,ak")\‘gapxa = 0.

By means of (26.26) this is expressible in the form (26.17), and we
have

[26.5] At a point of a surface the maxzimum and minimum values of the
expression (a.A"N°)/(gash“N°) are given by the principal directions for
the tensor aag , these directions being perpendicular.
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EXERCISES

1. Find upon a sphere the two families of curves which bisect the angles be-
tween the meridians and parallels, and then find the linear element of the sphere
when these are the coordinate curves (see §10, Ex. 1 and §24, Ex. 1).

2. By definition a curve upon a surface of revolution which meets the meridians
under constant angle is a lozodromic curve; the equation of loxodromic curves is

(see §10, Ex. 2 and §24, Ex. 3) is

f ;lr V1 + o dut 4 but + ¢ = 0,
where b, ¢ are constants, —b being the cotangent of the constant angle.
3. On the skew helicoid (see §24, Ex. 7)
z! = u! cos u?, z? = u! sin u?, 8 = qu?
the integral curves of the equation
(dut)? — (' + a?)(du?)? = 0

form an orthogonal net.
4. An angle 6 between the integral curves of the equations

Mo du® = 0, May du® =0
is given by
9% M1a Mg
V(¢ Mo Mrp) (™ My M)

cos b =

5. By mcans of (24.18) and (25.14) equation (26.8) may be written
€aBg*"M duf = 0.

6. Derive the result expressed by equation (26.16) by showing that this scalar
is equal to zero when the integral curves of (26.11) form an orthogonal net and
are the coordinate curves.

7. For the paraboloid

. 2 .
! = au' cos u? 2% = bu! sin u? 28 = 3ul” (a cos?u? + b sin?u?),

where a and b are constants, find an equation of a curve on the surface such
that the tangent planes along the curve make a constant angle with the z'z2-plane;
find the edge of regression of the developable surface which is the envelope of
the tangent planes to the surface along one of these curves.

8. For a surface S with equations of the form

Il = e"“’f(ul) cos(ut + u?), z? = e"“’f(ul) sin(u! + u?), 3 = e’“"«:(ul),

where h is a constant, the curves u! = const. lie on the quadric cones

1 12 2 x-”z
fz(r + z*) —-;-0,
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and cut the generators of the cone under constant angle, that is, they are conical
helices (see §3, Ex. 3). Such curves are also called spirals, and the surface S is
called a spiral surface.

9. The first fundamental form of the surface S of Ex. 8 is

dst = e®?((f1 + f1 + o) dut + 2hff" + f* + hoy!) dut dut
+ (R + f* + h2?) du?'],

where a prime indicates a derivative with respect to u!; the orthogonal trajec-
tories u’? = const. of the curves u! = const. can be found by quadratures and
the linear element is reducible to the form

ds? = e/} (dut® 4 yr(u) du't),

u’t being a suitable function of ul.

27. THE INTRINSIC GEOMETRY OF A SURFACE.
ISOMETRIC SURFACES

In §§24-26 it has been shown that the metric properties of a surface,
that is, lengths of curves, angles between intersecting curves, and areas,
are expressible completely by means of the first fundamental form of
the surface. It is true that these results have been obtained by the
consideration of these quantities from the standpoint of the enveloping
euclidean space. In this sense the metric properties of the surface are
induced by the euclidean metric of the enveloping space. However,
once the formulas for the measurement of length, angle, and area have
been found in terms of the first fundamental form of the surface, there-
after these metric formulas may be used without considering the surface
as imbedded in space. For example, since the first fundamental form
of a sphere of radius a is (see §24, Ex. 1)

(27.1) ds’ = a’((du')’ + sin® u'(du’)?),

the coordinate curves being meridians and parallels of latitude, all the
metric properties of the sphere are obtainable by the use of the formulas
of §§24-26 applied to the form (27.1).

In the next chapter we consider geometric properties of a surface in-
volving its shape as viewed from the enveloping space and we find that
they are expressible in terms of the first fundamental form and another
quadratic differential form, called the second fundamental form of the
surface. In order to distinguish between the properties expressible
entirely in terms of the first form from those expressible only in terms
of the two forms, we say that the intrinsic geometry of a surface consists
of the properties expressible in terms of the first form alone.

When two surfaces are such that there exists a coordinate system on
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each in terms of which the first fundamental forms of the two surfaces
are identical, the intrinsic geometry of the two surfaces is the same.
This means that so far as measurement on the two surfaces is concerned
there is no difference in the two surfaces, no matter how different the
surfaces may appear to be as viewed from the enveloping space. Two
such surfaces are said to be isometric. From (24.12) it follows that, if
the fundamental forms of two surfaces are identical for one coordinate
system on each, they are identical when any and the same transforma-
tion of coordinates is applied to the two surfaces.

An example of isometric surfaces is afforded by the catenoid and the
skew helicoid (see §24, Exs. 4, 7). From geometrical considerations it
follows that a cylinder and a cone are isometric with the plane, since
either may be rolled out upon a plane and thus brought into coincidence
with a portion of the plane. In the case of a cylinder this is shown
analytically in Ex. 1, the coordinate curves »'® = const. on the surface
corresponding to a rectangular cartesian system in the plane.

In §12 it was noted that in general the tangent planes to a surface
constitute a two parameter family, but that thereis a group of surfaces
whose tangent planes constitute a one parameter family. Such a sur-
face is called a developable surface, since it can be rolled out upon a
plane, just as a cylinder or cone can be. In view of this property it is
evident that a developable surface is isometric with a plane. It was
shown also that with the exception of cones and cylinders a developable
surface is the tangent surface of a curve, the tangent planes to the
surface being the osculating planes of the curve.

In §24, Ex. 2 it was stated that the first fundamental form of the
tangent surface of a curve is

(u? — u")* du' + du®,
u' being the arc of the curve. Since this expression does not involve
the torsion 7 of the curve, it follows that the tangent surfaces of the
curves which have the same first intrinsic equation « = fi(u') but
different second intrinsic equations r = fa(u') (see (7.1)) are isometric.
In particular, when 7 = 0 we have the tangent surface of the given
twisted curve isometric with the plane, the correspondence being be-
tween points of the surface, and points of the tangents to a plane curve
with the same intrinsic equation x = fi(u') as the given twisted curve.
Since the tangent planes to the surface are the osculating planes of the
curve of which the surface is the tangent surface, when the developable
surface is rolled out upon the plane, the tangents of the curve become
the tangents to the plane curve of the same curvature « and the principal
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normals of the former become the normals to the plane curve in its
plane. With respect to a rectangular coordinate system in the plane
the direction cosines of the tangent «” and of the normal 8% are such
that

(27.2) o = %», éd% = k3%, (—i(% = — ka",

as follows by processes for the plane which gave the Frenet formulas
for a twisted curve; they follow also from (6.1) for 7 = 0.

In §12 we showed that any developable surface other than a cylinder
or a cone is the tangent surface of some curve C, it being the envelope
of the osculating planes of C. For a point z* on € the coordinates of
any point in the corresponding osculating planc are given by (see §6)

(27.3) X'=12" 4 ua' + v,

for suitable values of u and ». When the developable surface is rolled
out upon a plane, the curve C becomes a planc curve I'.  The tangent
and principal normal to C at a point go into the tangent and normal
to T at the corresponding point, and consequently the point X* given
by (27.3) goes into the point of coordinates

(27.4) X = 2"+ ua" + v8%

where X* and Z° are cartesian coordinates and where %, o, and 8* are
appropriate functions of s, which is the same for both curves, and u
and v are the same numbers as in (27.3). Differentiating equations
(27.4) with respect to s, and making use of (27.2), we have

ax® du . dv o
(27.5) i <1 + yri xv) o + ((7‘; + xu> 8°.
If u and v are such that
\ du _ dv |
(27.6) E KU + 1= 0, ;]Tg + ku = 0,

then X* are constants, that is, such values of « and v determine in cach
osculating plane of the curve a point such that all these points go into
the same point in the plane when the surface is developed upon the
plane. Equations (27.6) being the same as (6.10), whose solutions
u and v determine an orthogonal trajectory of the osculating planes,
we have

[27.1] When a developable surface, other than a cone or cylinder, is de-
veloped upon a plane, all the points of an orthogonal trajectory of the
tangent planes to the surface go into one and the same point of the plane.
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EXERCISES
1. When equations of any cylinder are given in the form
b= fi(u), 2 =fi(w), =

the first fundamental form is
(fi* + f29) (du)? + (du?)2

In terms of parameters »’! and u'? defined by

wh= f\/mdu‘, ut =y

the form is (du't)? + (du’?)2, What are the coordinate curves in this case?
2. On a cylinder with equations as in Ex. 1 the helices, that is, the curves which
meet the generators under constant angle, are defined by

af\/f;=+f;=dul+bu=+c=o,

where a, b, ¢ are constants.
3. Given a surface of revolution with equations as in §10, Ex. 2 and a right
conoid with the equations (see §10, Ex. 4)
! = u'l cos u'? z? = u't sin u'?, 8 = y(u'?);
in order that a surface of revolution and a right conoid be isometric with the

meridians of the former corresponding to rulings on the latter, it is nccessary

and sufficient that »’? = f(u?), and
12

I u
V1 ¥ o2dut = dun, un? 4yt = F;

show that it follows that the surface of revolution is a catenoid (sce §24, Ex. 4)
and the right conoid is a skew helicoid (sce §24, Ex. 7).

4, When the polar developable of a curve (see §12, Ex. 1) is developed upon a
plane, the points of the curve go into one, and the same, point of the plane.

28. THE CHRISTOFFEL SYMBOLS FOR A SURFACE. THE
RIEMANNIAN CURVATURE TENSOR. THE GAUSSIAN
CURVATURE OF A SURFACE

From the definition (20.2) of Christoffel symbols of the second kind,
and (24.18) it follows that the Christoffel symbols formed with respect
to the first fundamental form of a surface are (no indices being summed)

@ 1 80 aa 00aa agag>
= 0 aa . — Qg5 g
{aa} 2g (gﬂﬂ ous + 9 ouf 928 = )

8 1 ( 3G e 3G 6gaa)
. = & Yo = Yaa T3 2 aa T~
(28.1) {aa} 29\ "9 us T 9 s T oux)’

@ 1 aqaa ag,gg
= 99\ 5 T 98 hya =1,2; ,
{aﬂ} 2g (gﬁﬂ auﬂ Jas aua> (a, 6 , 4y a # ﬂ)
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From (20.5), (20.6) and (20.7) we have

3. 5
a0 {Bv} o { }

30“”___«5 Bl _ w)a
(28.2) dur - Y {6‘7} g {67}’
dlog vg _ {B\
ou“ ﬁaf’

in all of which the summation convention applies.

From the expression in §20, Ex. 7 for the covariant components of
the Riemann tensor it follows that the tensor is skew-symmetric in the
first two indices and also in the last two 1nd1ces Consequently for a
surface

(28.3)  Raapy = Rapyy = 0, R = Run = — Rone = — R,

Hence every non-zero component is equal to R, or to its negative.
From the form (ii) of Ex. 7 in §20, we have

Ryp = 1(2 _____Bzgm — agg“ - 62922
2\"oulawr  ou? gu”

sl - Gl

When a surface is isometric with the plane, there necessarily exist
upon it orthogonal nets with respect to which as coordinate curves

(28.4)

gu = g = 1, g1z = 0,

the net in the plane consisting of lines parallel to the coordinate axes.
Hence Rz = 0 in this coordinate system and consequently in every
coordinate system by theorem [18.1]. Conversely, if the Riemann
tensor for a surface is a zero tensor, it follows from theorem [23.3],
which applies to any n-space for n > 1, that there exist coordinate
systems on the surface with respect to which the above equations hold.
Hence we have

[28.11 A surface is isometric with the plane, if and only if the Riemann
tensor 18 a zero tensor.

The quantity K defined by

(28.5) K = Buo
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is called the Gaussian curvature of a surface, and also the total curvature
of a surface. As thus defined it is an intrinsic property of the surface
as was shown by Gauss.* The geometric significance of the Gaussian
curvature of a surface as viewed from the enveloping space is treated
in §46.

From (28.5), (28.3) and (25.14) we have
(28.6) Rogys = Keageys
and consequently (see §25, Ex. 7)
(28.7) K = 1Rugsee.
Hence from theorems [25.4] and [19.2] it follows that (see Ex. 8)
[28.2] The Gaussian curvature of a surface is a scalar.

From (28.2) and analogously to theorem [22.1] we have
[28.3] The covariant derivatives of gas and of g* are equal to zero.

We leave it as an exercise to show that in consequence of the third of
equations (28.2)
[28.4] The covariant derivatives of e, and of € are equal to zero.
Although we have defined K to be the Gaussian curvature of a surface
with the first fundamental form gas du® du’, it is advisable also to speak
of K as the curvature of the quadratic form ga.sdu®du®. In §26 we
considered the integral curves of the equation a.sdu®du’ = 0 and
pointed out that these curves are real only in case the determinant
@ = anay — ai is non-positive. When this determinant is negative,
which is the condition that there be two distinct families of real curves,
we say that the farm a.s du® du® is indefinite just as we say that the first
fundamental form of a surface is definite with ¢ > 0. When a is nega-
tive, it is possible to find real coordinates @* such that

s du® du® = tda' did’,

where ¢ is some factor. In this case 4® = constant are the integral
curves. We wish to consider particularly the case when ¢ = 1. In this
case the curvature of the right-hand member is zero, and consequently
this case can arise only when the curvature of the left-hand number is
zero since curvature is a scalar.

*1827, 1, p. 236.
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When ¢t = 1, we factor the left-hand member of the above equation
and write the equation as follows

(\/adu +“"J\r/;_l/ adu)<\/—du+ \/z_l/_du)

= du' da’
We replace this equation by the two

6“(\/a—udul+am+\/ du)— 7,
\/au
e (\/21: dut + 42~ - V=a du) = d’,
\/1111
where ¢* and ¢ ¥ are to be determined. Evidently they arc integrating
factors of their respective equations. Clonsequently u is such that

9 M — _i ua12+v—_(l>_
o Vo) = g (£ X2) =0

V) — a—(_“a—u—_yz_i—:—g> = 0.

. . 9 a J—— cus
From these two equations one can obtain 551 and -6—52 Their condition

of integrability is necessarily satisfied by the fact that the curvature of
the above form is zero. Hence p can be found by a quadrature and
then @' and @ by further quadratures from (28.8). We accordingly have

(28.8)

[28.5] When a quadratic form a.s du® du® is indefinite and its curvature is
zero, real coordinates u' and @ can be found by quadratures in terms of
which the form is equal to di' d@’

When the form is definite, @' and @’ as derived by the above processes
are conjugatc imaginary. If then @' and @ are replaced by @' + 7@’
and @' — ¢ respectively we have the following theorem:

[28.6] When a quadratic form a.e du® du is definite and its curvature is
zero, real coordinates @' and @ can be found by quadratures in terms of
which the form is (da')* + (d’)’

As a corollary of this theorem we have

[28.7] Upon a developable surface cartesian coordinates can be found by
quadratures, that is, the coordinales are cartesian when the surface is
developed upon a plane.
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EXERCISES

1. When the coordinate curves on a surface form an orthogonal net, the cor-
responding Christoffel symbols are (see §20, Ex. 2)

{a}=010g\/ﬂaa {5} 1 agaa
aa ou” ! aa| = 2ggg B’
_ 8 # a),
[ 0 log ‘\/gaa
ol = ouf ’

from which and (28.4) it follows that
1/02g, | gy 1 [ /3gu\? , 9gudgs 1 | (09g:2\* | Ogudga
Ry = 2(6142’ + out? +4gn w2 + dul dul +4gn dut + 9z du?
1 ) dg2e i) 1 3911)]
1 [ )V — e
2 \/guyu [au‘ ('\/ﬂuyzz out ) o (’\/911921 ou?

2. The components of the Ricei tensor (sce §20, Ex. 10) for a surface
are given by

Rog = UwR'vaﬂE = _UT:t} Rias,

and the scalar curvature K of the surface by

1 1 Ryon
—=R = ——g“ﬂR g=—".
2 2 “ 9

3. For a sphere of radius a with the cquations of the form in §10, Ex. 1 it fol-
lows from Ex. 1 and §24, Ex. 1 that

lglilﬂ _ _1_

guga at’

K=

4. For a surface of revolution with the equations
z! = u! cos u?, 22 = u!sin u?, 2% = o(ul),

it follows from Ex. 1 and §24, Ex. 3 that

gngu = w'(1 + g:'_’~)2.
5. For a surface with the first fundamental form
a?[cos? w(dul)? 4 sin? w(du?)?,

where w is a function of u! and u?

. 2w 0w
Rz = a? 8in w €os w S )
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8. The integral curves of the equation
9ap du® duf = 0

are conjugate imaginary curves of length zero, that is, minimal curves (see §3).
7. The equations
ul 4 u? (W — W) wu — 1

=g a
14+ ww’ 14+ wtut’ 14+ utu?’

r'=aq

where a is a constant, i = 4/—1, and u! and u? are conjugate imaginary, are para-
metric equations of a sphere of radius a; the coordinate curves are minimal lines.
8. In consequence of the remark following (28.3)

ou'e aulﬂ aul1 au16
Rnu out au’ Bul ou? R{gu

YT T g
g a(uw, w)
consequently K is a scalar.

9. From equations analogous to (20.15) and from (28.3) and (28.5) it follows
that

Raﬂ75

Reys = K (55058 — d38y).
10. From §20, Ex. 7 and (28.5) it follows that

L [ g Ogu_ 1 9n
“svilsala v e~ v 00)
+ 2 (2 O _ 1 dgu _ _gu__aﬂu)]
dur \/g out \fau gu\/g our

)

and in consequence of (25.5)

OV gn 9V hu oq,
1 0% 9 dul ou?
K=- 7 8u‘6u2+8;1  ai
g Vg sin @
(ii)
a\/_; V97 ¢o5 0
+ ol ow aut
ou \/g—n sin w

11. When the equations of a surface are of the form in §25, Ex. 2 the Christoffel
symbols have the values

{B‘Y} = —fﬂfﬂh

where g = 1+ f1 + /3, and fgy —@?f;
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12. From the definition (§22) of the covariant derivative based upon g of
the contravariant components \* of a vector, namely

() g AT { 57}

and from (28.2) one obtains
. d -
(if) s (V2) = Ve,

The scalar \* , is called the divergence of the vector \* (see §22, Ex. 2).
13. For the covariant derivative \4,g of the covariant components A, of a vector

one has that
N, O\
af - —— J,
s = 7 (Ga i)

is a scalar, called the curl of the vector A, ; when the curl is equal to zero, the
vector is a gradient (see §17).

14. If X* and A, are the contravariant and covariant components of a unit
vector, one has A%ghs = A gA% = 0, from which it follows that

A8 = 48, N = pa¥,

where u* is the vector perpendicular to the given vector, and vg is some vector.
15. When the coordinates are chosen so that an indefinite quadratic form
reduces to 2a,; du! du? the curvature of the form is given by

K 1 & 1
P YR F g tuz-

29. DIFFERENTIAL PARAMETERS

. . d .
If ¢ is any function of ' and %, &% are the covariant components

of a vector, the gradient of ¢, as observed in §26. Consequently the
quantity A defined by

— 0B a‘P a‘P
(29-1) Ao = g aua aug

is a scalar (see theorem [19.2]). It is the square of the length of the
gradxent, by theorem [24.1]. Also

— aB a‘ﬁl a(PZ
(29.2) Al(‘ﬁl) W) =9 aua auﬁ’

where ¢; and ¢, are any functions of u' and %’ is a scalar.
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Consider also the quantity

_ 1 8(er, ¢2) _ ap 01 D2

(29-3) 91(401’ ‘Pﬁ) = 7& a(ul,Tz) = € (:)Z& W
In consequence of theorem [25.4] this quantity is a scalar for a positive
transformation.

The scalars Ay, Ai(pr1, ¢2), 01(p1, ¢2) are called differential parameters
of the first order, involving as they do derivatives of the first order.

In order to give a geometric interpretation to these differential
parameters, we note that for any function ¢ of 4' and * one has

(29.4) éf; du® = 0,

where du”® are the contravariant components of the tangent vector at
a point of each curve of the family o(u', *) = const. From (29.4)
and theorem [25.2] it follows that this tangent vector and the vector

5%% at each point are perpendicular.
For two families of curves ¢y(u!, ¥’) = ¢ and @(u', ¥®) = c» the
angle § which the normal vector %‘i at a point makes with the normal

vector guﬂ at the point, and consequently an angle between the curves

at the point, is given by
(29.5) cosf = Algﬂ*_w’—m:), sin § = .,_QLﬂ_‘ﬁ)__,
VAiprAip Vhier- B
as follows from (25.10), (29.2), and (29.3) (see Ex. 5).
From (29.5) we have

[29.1] Two families of curves p1(u', u*) = const. and @o(u’, u*) = const.
form an orthogonal net, if and only if Ai(er, ¢2) = 0.

From (29.5) it follows that the following identity holds between the
differential parameters of the first order:

(29.6) (Ar(er, 2) + Ouler, ¢2))" = Migr- Dagr .

When, in particular, we take ¢, = u', p» = u*, we have from (29.1),
(29.2), and (24.18) in the coordinate system u°

A1u1=gu=%3, A1u2=gn=ggl—1,
(29.7)
A, ) =g = =22,

q
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Since differential parameters are scalars, when Aw!', A, A}, u%)
are written out in another coordinate system u’'®, we have

(29.8) g = g au® ou’

that is, equations (24.19). Since g1, go2 and ¢ are positive quantities
when ' and u* are real coordinates (see §24), it follows from (29.7)
that Ay is a positive scalar when ¢ is a real function.

Let ¢ be a solution of the differential equation

(29.9) A = 1,
and ¢ a solution of the equation
(29.10) Alp, ¥) = 0,

in which ¢ is the given solution of (29.9). By theorem [29.1] the curves
¢ = const. and ¢ = const. form an orthogonal net. If they are taken
as the parametric curves «' = const. and «* = const. respectively,
it follows from (29.7) that gi» = 0, ¢’ = ¢'ug’=, and

and consequently the linear element is

(29.11) ds* = (u)’ + gao(du'®)’.

From this result it follows that along a curve ¢ = w* = const., ds =

du’', and thus the distance along this curve from a curve ¢ = ¢; to a
curve ¢ = czis equal to ¢c; — ¢;. Since this distance is the same along
all curves ¢ = const., we say that the curves ¢ = const. are parallel
curves.

Since Aj;p has been shown to be positive for a real function ¢, if Ay
is a positive function of ¢, say

(29.12) A = F(p),
a real function f(p) is defined by

de
f(‘P) =f\/17(?>-

From (29.1) one has for any function f(¢)

Aufe) = (d%)z big.
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Hence for the above function f(p) one has A;f(p) = 1. Accordingly
f(p) = const. are parallel curves, and therefore ¢ = const. are. Hence
we have

[29.2] If ¢ is any real function of real coordinates u® and A = F(p),
the curves ¢ = const. are parallel curves.

For example, when the linear element is

ds’ = o' (u')(du')’ + gn(du®)’,

At = as follows from (29.7) and consequently the curves u' =

1
¢Hu)’
const. are parallel.

The quantities ¢,as, defined by

(29.13) o= 20 _ 00 [
: = durauf  du \aB)’

being the second covariant derivatives of ¢, are the components of a
symmetric covariant tensor of the second order. Consequently the
quantity Azp defined by

(29.14) Bop = §%0.8

is a scalar. It is called the fundamental differential parameter of ¢ of
the second order; it involves derivatives of the second and first orders.
The differential parameters Ajp and Ay were introduced by Lamé*
for space referred to general coordinates in his study of physical prob-
lems. They were introduced in the study of the geometry of a surface
by Beltrami.t

In order to write Ay in another form, we note from the definition
(22.4) of the covariant derivative of a contravariant vector that the

covariant derivative of the vector g*” 561% (= 9%%¢.2) is given by

(29.15) (0™ p.as = é%,, 07 ¢.a) + 9% 00 {;’B}

By theorem [28.3] the left-hand member of the above equation is equal
to g*p.s . From this result and (29.15) it follows that (29.14) can be
written

_ 0, ap ad B
Arp = Eu_g (g i".a) + g Pa {5 }-

* 1859, 1, pp. 5, 17.
t 1864, 1, pp. 359, 365.
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In consequence of this result and (28.2) we have

(29.16) Mg = \/ au, (V97 e.a),
which because of (24.18) may be given the form
dp dp
1 — ¥
(29.17) Azp = \7_ '_3% g2 — au‘ — O Jut + _i gu au2 — 2 s
g Vg ou? Vg
EXERCISES
1. Show that
)
P brp = 200,008y
2. Show that
Aru® = — gBY {;} (a=1,2).

3. The following are differential parameters of the second order:
A1l1p, A, Ar19), Bile, Are),
A1, ¥), A1(A1p, A1Y), B1(Are, ArY).

4. If f and g are any functions of u! and u?,

a
Alf= (a';;) ul + 2 af1 a_liAl( ! u?) +< f) Ayu?,

ag af o af @ a
alf, g = o “lAl +( J 99 +“"£ _q')Al(ul u?) + —"—.~—g.'31u2

du! du duldur  duroul dur dus
92

Azf ‘i Agu“ + —l; A;u + 2 ——— f A;(u‘, u’) + -—'[,A,u’.
dul du? dul

7]
5. At a point of a curve ¢(u!, u?) = 0 the unit normal vectorﬁ;/\/m‘p makes

duc s
a right-angle with the unit tangent vector—és— when the latter is chosen in direc-

tion so that by theorem (25.6]
de — d‘uﬂ
dus ™ Ve gy

If for two intersecting curves ¢ (u!, u?) = 0 and ¥ (u!, u?) = 0 one has respectively

;) d.u Yy dauf
ue = /Aip ey — ds’ un = Ay éﬂa ’

the expression (29.5) for sin 0 is equal to (25.3) (see (25.15)).
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6. On a surface of revolution (see §10, Ex. 2) the curves u! = const., that is,
the orthogonal trajectories of the meridian curves, are parallel curves (see §24,
Ex. 3). .

7. For a helicoid, as defined in §24, Ex. 6, the helices are parallel curves, and
their orthogonal trajectories are the integral curves of the equation

ay’
W+

du! + du? = 0;

find the linear element of the surface when the helices and their orthogonal
trajectories are the coordinate curves, and show that any given helicoid is iso-
metric with some surface of revolution.

8. When there exists upon a surface an orthogonal coordinate net such that
the quantities g1 and gis are functions of u! alone or u? alone, the surface is
isometric with a surface of revolution.

9. If pis asolution of the equation A,p = 0, the curvesy = const. are imaginary,
as follows from (29.7).

10. Of the differential parameters Aip, Ai(p, ¥), Azp, O1(¢, ¢) the last is the only
one which changes sign (but not magnitude) when a transformation is negative.

11. When the coordinate nct is orthogonal,

19
Agu® = —— — o /988 (8 # a);

Vang® V g
from this result and (29.7) it follows that if u* are solutions of the equation
(i) Ailp, A1) = 2820(A1p — 1)
other than those for which A = 1, then

a p—
— (l——i’-‘ﬁ'>=0 8 # a).
ou* 988

In this case the fundamental form may be written
(i1) ds? = cos? 0 dut® + sin? 0 du? ;

if ¢ 18 any solution of (i) such that Aip # 1, the function ¥ of the orthogonal
trajectories ¢ = const. of the curves ¢ = const. can be chosen so that the funda-
mental form is

ds? = cos? @ dp® + sin? § dy?.

12. When the linear element is the form (ii) of Ex. 11 and one effects the trans-
formation of coordinates

ul = uw't 4 w2, ut=u't —u'?
the linear element becomes
(1) ds? = (du'))? + 2 cos w du't du’? + (du'?)?,

where w(= 20) is the angle of the new coordinate curves. A net with respect to
which as coordinate the linear element is of the form (i) is called a Tchebychef
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net; a necessary and sufficient condition that the coordinate curves form such a

net is
{“}=o (a # B).

Q,

When the linear element is g.g du® duf and one effects the transformation

wim [ Viaw,  w= [ Vimaw,

the new coordinate curves form a Tchebychef net; the determination of all such
nets is equivalent to the solution of equation (i) of Ex. 11.

30. ISOMETRIC ORTHOGONAL NETS. ISOMETRIC
COORDINATES

When the coordinate curves on a surface form an orthogonal net
such that gy = g = £, in which case the lincar element of the surface is

(30.1) ds' = {(du” + du),

the elements of length of the u'- and u’-coordinate curves are ¢du'
and ¢ du’ respectively. Hence the coordinate curves divide the surface
into small squares to a first approximation. Such a net is called an
isometric orthogonal net and u® isometric coordinates.

* From (29.7) it follows that a necessary and sufficient condition that
two families of curves ¢(u', u’) = const. and Y(u', 4*) = const. form
an isometric net and that ¢ and ¥ be isometric coordinates is that

(30.2) A = Ay,  Milp¥) = 0.
In this case the linear element of the surface is
(30.3) s’ = {(do" + dy’),

where £ is the reciprocal of the common value of the two members of
the first of equations (30.2).

When the linear element is in the form (30.3) it follows from (29.17)
that

Azu" =0 (a = 1, 2)
It will now be shown conversely that each real solution of the equation
A0 = 0 determines an isometric orthogonal net.

If ¢ is a solution of the differential equation of the second order Aqf =
0, we have from (29.16)

(304) o (V0" 0a) + o5 (Vi g™ ) = 0.
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From this equation it follows that a function ¢ is defined by

(30.5) V99 o = id =y, V99 ea = —i‘l{i = —y,,

ou? ou

since (30.4) expresses the condition of integrability of equations (30.5).
If these equations are multiplied by g¢,1 and g,. respectively and the
resulting equations are added, we have

o 1
9697 0.0 = \_/ZI (gr1¥.2 — gra¥).

The left-hand member of this equation reduces to ¢,,. For the values
v = 1andy = 2 these equations are reducible, in consequence of (24.18),
to

(30.6) en=Vg"Vs, 2= —Vg¢ V.

Expressing the condition of integrability of these equations, we have

Ba
au"‘ (Vg g™ vs) =0,

which by (29.16) is equivalent to the condition Ay = 0.
If equations (30.5) are multiplied by ¢, and ¢, and the resulting
equations added, we have
VG 97008 = o2 — 0¥,
which in consequence of (29.1) and (25.14) may be written

(30.7) Mo = oabs.

Likewise, if equations (30.6) are multiplied by ¥ and ¥, respectively
and the resulting equations are subtracted, we have

(30.8) Pos = Ay

From these two equations we have the first of equations (30.2).

Again, if equations (30.5) are multiplied by ¢, and ¢, and the
resulting equations are added, we have the second of equations (30.2).
Hence we have

[30.1] Any real solution ¢ of the equalion A0 = 0 and the function
obtained by quadrature from the corresponding equations (30.5) are vso-
metric coordinates of an isometric orthogonal net.

If now we define coordinates %' and u* by

(30.9) e =), ¢ =f{),
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the linear element (30.3) becomes
(30.10) ds* = £(fi'du*" + fi'du™).

Thus the linear element is no longer of the form (30.1), but the coordi-
nate curves are the same as before (see (10.14)). For the form (30 10)

gn Uf
30.11 LA
( ) o TY

where U, and U, are functions of «' and u* respectively.
Conversely, if for an orthogonal net on a surface the quantities gn
and g are in the relation (30.11), the linear element is of the form

(30.12) ds* = £(Uidu" + Ujdu®).

If then we define coordinates u’* by
' = f U, du', u? = f Uxdid,

the coordinate curves are the same as before, but the linear element is
ds' = £(du™ + du'™).

Hence we have

[30.2) When for an orthogonal coordinate met, the condition (30.11) s

satisfied, the net vs isometric, and the isometric coordinates can be obtarined
by quadratures.

If any function of ¢, say f(e) is a solution of the equation Axf = 0, in
which case f(p) is one of a pair of isometric coordinates, we have from
(29.16)

(30.13) Doef'(0) + Aief"(p) = 0,
where the primes indicate derivatives with respect to ¢. When this
equation is written in the form

Lo _ _["(o)
Aip (o)’

we have that, if Axp/Awp is a function of ¢, say F(e), then the function

f(p) obtained by two quadratures from

(30.14) (o) = e~ JFexe _ —[(Bre/a1e)de
is such that f(¢) is an isometric coordinate. Hence we have

[30.3] A necessary and sufficient condition that a family of curves ¢ =
const. and their orthogonal trajectories form an 1sometric net is that Axp = 0
or that the ratio of Ay and A be a function of ¢.
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From (30.4) it follows that (30.13) may be written in the form

o O (VT 0.0) + 50 (f’(¢)\/g 9" ¢.a) = 0.
Hence a function ¢ is defined by

(30.15) f(D)VIT 0 =V2, SDVIT 0 = =¥,

and ¢ is such that the second of (30.2) is satisfied, that is, the curves
¥ = const. are the orthogonal trajectories of the curves ¢ = const. and
form with the latter an isometric net.

Equations (30.15) follow also from (30.5) when ¢ is replaced by f(e).
Consequently in place of (30.6) we have

(30.16)  f'(@ea=V9dVs, F@er= Vg Vs
From (30.15) and (30.16) we have similarly to (30.7) and (30.8)

1
(P = P oats = 7= MY,
f(e)Are P.a¥.s e W
that is, in place of the first of (30.2) we have
(30.17) Ay = [*(p) dg.

From this result, equations (29.7), and (30.14) we find that the linear
element is

(30.18) ds2____ A}_‘P‘(d‘pZ_*_GZI(Azw/AnO)dtﬁd‘pZ)‘

If u' and «* are isometric coordinates of an isometric orthogonal net,
that is, if the linear element is of the form (30.1) and functions ¢ and ¢
are defined by
-(3019) ¢+ W = J@t x ad), o — i = L Fad),
where f and f, are conjugate functions, we have

det + d¥* = ffo(du® + du™).
Consequently the linear element is
ds* = (d + dy?),
f f

and hence ¢ and ¢ are isometric coordinates of a real isometric orthogonal
net, different from the given one since ¢ and ¥ are not functions of ut
and u’ respectively, or of 4’ and u' respectively.
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When the linear element is of the form (30.1), equations (30.5) become
O _ oy dp _ _ oY

ot u’ owt - au’
that is, the Cauchy-Riemann equations,* the integrals of which are
given by (30.19). Hence we have

[30.4] When one vsometric orthogonal net is known for a surface, all other
such nets may be obtained directly by equations of the form (30.19).

EXERCISES

1. The meridians and their orthogonal trajcctories on a surface of revolution
(see §24, Ix. 3) form an isometric net.

2. The rulings on a skew helicoid and their orthogonal trajectories form an
isometric orthogonal net (see §24, Ex. 7).

3. When the eoordinate curves of a surface form an isometric orthogonal net,
the curves

ul! 4+ u? = const., u! — u? = const.

are the bisectors of the angles of the coordinate net, and form an isometric orthog-
onal net.

4. When on a surface two families of curves ¢ = const. and ¥ = const. form
an isometrie orthogonal net such that

A = A = [lo)

the surface is isometric with a surface of revolution.
5. For a plane referred to cartesian coordinates the equations

u 4 u? = ;
! — 122

define an isometric orthogonal net consisting of two families of circles.
6. For a central quadric with parametric equations of §10, Ex. 3
u(u® — uf)

T 4 — w) (as — u?) (a5 — u®)’

Faa gap =0 (e, 8=1,2; a5 B),

hence the coordinate curves form an isometric orthogonal net.
7. The equations

a—a 1 a;—a
2= 4 2 e, 2= 4 — /‘/-’—-—-—‘(1 + an?)(1 + ayu?),
A Qg ap
1a, ap
28 m = —— (1 + ant + au?),
a; g

* Fine, 1927, 1, pp. 408, 409.
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in which the a’s are constants are equations of a paraboloid. For the coordinate
system u®

foa = a — a; (= uf) ai(a; — a2)u* — a,
aa - R

4!1: (1 + a u%) ) gasg =0 (‘!: B=12;a ﬁ),

and consequently the coordinate curves form an isometric orthogonal net.

31. ISOMETRIC SURFACES

In this section there is derived a necessary and sufficient condition
that two surfaces S and S’ be isometric (see §27), their respective first
fundamental forms being

(31.1) asdudul’, gupdu’ “du’®.
The surfaces are isometric if there exist two independent equations
(B12) o, W) = W', W), Y, uw) = Y@, v’

establishing a one-to-one correspondence between points of S and §'
such that by means of (31.2) either of the quadratic forms (31.1) is
transformed into the other. Since differential parameters are scalars,
it follows that a necessary condition that S and S’ be isometric is that

(313) AI‘P = A{‘PI’ Al(‘P) 'l’) = All.(‘p’; ‘p’)) Al‘p = A{'I”y

where the differential parameters on the left and right are formed with
respect to the respective forms (31.1). Conversely, the conditions
(31.3) are sufficient conditions that S and S’ be isometric. In fact, if
the curves ¢ = const., ¢ = const. are taken as coordinate on S and
¢’ = const., ¢y’ = const. on ', in consequence of (29.7) the respective
quadratic forms may be written in the form

A de’ — 280, ¥) dody + Arpdy’
AgAiy — AY(e, ¥) '
ALy do" — 281(¢", W) do' Ay’ + ALy dY”
A’ ATy — ALY, V) '
Hence when there exist two independent equations (31.2) such that
(31.3) are satisfied, the surfaces S and S’ are isometric.
Since by theorem [28.2] the Gaussian curvature is a scalar, a necessary

condition that surfaces S and 8’ with the fundamental forms (31.1) be
isometric is that

(31.4) K@, ¥ = K'@", u?),
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where K and K’ are the Gaussian curvatures of S and $’ respectively.
We now seek a necessary and sufficient condition that S and S’ be
isometric.

We consider first the case when K and K’ are equal constants, that is,

(315) Rmu = ag, R(zm = ag'.

If @ = 0, each surface is isometric with the plane by theorem [28.1),
and consequently with the other.

In order to discuss the case @ # 0 we remark that equations (31.5)
are equivalent to

(31.6) Raprs = 0(gurfos — Gasfor),  Rapws = 0(gert'ss — gst'sn)-
We apply to this case the discussion of equations (23.12) and (23.13)

for the functions u® of u”, u”* and the functions p§ = 9% Because of

ou't’
(31.6) the corresponding equations (23.16) are satisfied in consequence of

’ a B

Juw = GaBPuPv,
that is, equations (24.12). These equations, three in number, are the
set Eo, and all the sets E,, --- are satisfied because of the set E,.

Since there are six functions %, p, and three equations in the set Eo ,
we have in consequence of theorem [23.2]

[81.1]) Two surfaces of equal constant Gaussian curvature are isomelric,
the equations giving the one-to-one correspondence tnvolving three arbitrary
constants.

In this connection it must be remarked that such correspondence
is limited to domains for which theorem [23.2] applies.

When K is not a constant, we consider in addition to (31.4), the
equation

(31.7) AK = A K.

We note that A,K # 0 for K real (see §29). If then equations (31.4)
and (31.7) are independent, these equations cstablish a correspondence
between S and S’ which is isometric, if and only if

(31.8) AlK, AK) = Al(K', AIK"),  AMAK = AAK'

If equations (31.4) and (31.7) are not independent, and they are to be
satisfied, we must have

(31.9) MK = f(K), &K' = f(K),
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where f is some positive function of K and K’ respectively. Tn this case
we may take for equations (31.2) equations (31.4) and

(31.10) AK = MK,
unless
(31.11) 4K = fi(K), MK = fi((K').

If equations of the form (31.11) do not exist, then equations (31.4),
(31.9), (31.10) and
(31.12)  A(K, AK) = A(K', &K'), A AK = AAK'
constitute a necessary and sufficient condition that S and S’ be isometric.
We consider finally the case when both (31.9) and (31.11) are satisfied,
including the possibility fi(K) = fi(K") = 0. If fi(K) 5 0, the ratio of
A2K and AK is a function of K, and by thcorem [30.3] the curves K =
const. and their orthogonal trajectories ¢ = const. form an isometric
net, the function ¥ being obtained by a quadrature (see §30). Further-
more, the respective quadratic forms are by (30.18)

1 1
J(K) F[0:9)
and when AK = 0, A;K’ = 0, by (30.3), they are
sy KA, s K g,

In either case it is seen from (31.13) and (31.14) that the equations
K=K, ¢==¢+aq

where a is an arbitrary constant, define the isometric correspondence of

the two surfaces.
We have thus treated all possible cases and as the result have

(31.13) (dK* 4 &P gy, (K + &]UDx gy,

(31.14)

[81.2] Given two surfaces whose Gaussian curvatures are mot constant;
it can be delermined directly, that is, without quadratures, whether the
surfaces are isometric.

When (31.9) and (31.11) are not both satisfied, the equations deter-
mining the correspondence are given directly, whereas in the case when
(31.9) and (31.11) are both satisfied, the determination involves a
quadrature. In this case the correspondence can be effected in an
infinity of ways. What this means geometrically follows from the
observation that from the forms (31.13) and (31.14) it is seen that S and
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S’ are isometric with a surface of revolution (see §24, Ex. 3). When one
considers a surface of revolution from the standpoint of the enveloping
space, one sees that a surface of revolution is isometric with itself in an
infinity of ways, each such correspondence being given by a suitable
rotation of the surface about its axis.

It should be remarked that for any two surfaces in isometric corre-
spondence such correspondence is established only for the domains for
which the equations given above, such as (31.4), (31.7), and (31.10),
are independent in each of the cases considered.

EXERCISES
1. When the linear element of a surface is written in the form
M dst = dut’* + gy, du’,
one has
.. 3 log v/gx 1 9/gs
(i) aut=1, Au = T K=- m ot

from which it follows that
Aul, Aqul) = —K — (Ajul)
Hence for any function ¢ the equation
Aile, Azp) = —K — (Aw)?

is an identity.
2. If cquations (31.4) and (31.9) are satisfied, for the functions o and o’ defined
by
dK , dK’
o= e g = iy
f(K)’ S(K")
the cquation (31.10) reduces to A = A/, and the equation Ay(s, Aw) =
A (o, A;a’) is a consequence of (31.10) and (31.4) (see Ex. 1).

3. The equation (i) of Ex. 1 is the lincar element of a surface isometric with a
surface of revolution if gs; is a function of u! alone (see §24, Ex. 3). In order that
the surface have constant Gaussian curvature gz, must be a solution of the third
of equations (ii) of Ex. 1, in which K is a constant. If K # 0, there are the
two cases

. 1 w
(1) K= -, \/g,z=bcosli+csin;,

1 1
(i) K=-", \/g*,,=bcosh%+csinh%,

a?

where b and ¢ are arbitrary constants.
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4. For a surface with the linear element
du® + du’

W= e )

where a i8 a constant, the Gaussian curvature is equal to 4a.

32. GEODESICS

’
The Christoffel symbols { /;y } and {:,,} in two coordinate systems u”

and u'“ respectively in a surface are in the relation

o u” o) ouf ou” A au®
32.1 ——r — = —.

(82.1) ou'r ou' + {B‘Y} ou'* gu” {uv} ou’
This result follows from (20.11), which result is general and applies to
any transformation of coordinates in any number of variables, provided
only that the determinant of the covariant tensor with respect to which
the Christoffel symbols are formed, in the present case g,s, is not equal to
zero.

For any curve on the surface defined by »” as functions of s, and for
any transformation of coordinates, we have

du’  ou™ du” du® _ ou® du”
(32.2) & " ow ds’  ds ouh ds
Thus A* defined by
a _ au
(32.3) A= s

are contravariant components of the tangent vector to the curve, and
it is a unit vector since from (24.6)

h i _
9t Gs ds
Differentiating the second set of equations (32.2) with respect to s and
making use of (32.1), we have

4*_u“_a_1fdiy_'_“+( Mot fal ol @u_>fzu_du
ds? ou ds? wr| ou* By ou's du”) ds ds’

from which it follows that"

(32.5) d*u + {a \dof du’ _ ou® (dzu”‘ {)\\' du” du")

I Ty @~ a\de T \wf ds ds

(32.4)
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If we differentiate (32.4) with respect to s, we obtain

du du® | 0gas du” du’ du”
e 5 a5 T ow ds a5 ds "0

From this result and (28.2) we have

du® a) du’ du’) d’
(826) ot (—d.sT + {67} @ ds)ds
If then we put (changing dummy indices)

du | fa\d du’ _ .
(32.7) 7&7+{ﬁy}E o =AY

it follows from (32.5) that u* are the contravariant components of a
vector at each point of the curve, which may be a zero vector (that is,
u*=0). From (32.6) it follows that if the vectors u* at points of a curve
are not zero vectors they are perpendicular to the tangents at the cor-
responding points; this case is considered in §34.

We consider now the curves at each point of which the vector u*is a
zero vector, that is, the curves for which »* as functions of s are solutions
of the equations

d’u® a) dv’ du”
(628) Fra {m} & a5 =
These curves are called geodesics.

Before considering geodesics on a general surface, we observe that, if

the surface is a plane and the coordinates are cartesian, equations (32.8)
2, a

reduce to i{?uz = 0, the integral of which is
u® = a® 4+ b,

when the a’s and b’s are constants. Hence the geodesics of a plane are
straight lines, and conversely any straight line is a geodesic. The reader
should compare the results in this section concerning geodesics on any
surface with the properties of straight lines in the plane. From the
form of equation (32.8) it follows that isometric surfaces (§27)
have the same equations of geodesics. In particular, the geodesics on a
developable surface are such that they become straight lines when the
surface is rolled out upon a plane. A characteristic property of geodes-
ics on a surface as viewed from enveloping space is shown in §44.
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A solution of equations (32.8) is determined by initial values of u*

du’

and & , that is, the values when s = 0. For such values we obtain
2 a
from (32.8) the corresponding initial values of ddzz ,and from the result

of differentiating (32.8) corresponding initial values of all higher deriva-
tives of u® In accordance with the theory of the existence of integrals
of ordinary differential equations,* the corresponding integral of equa-
tions (32.8) is given by

a_ . a du" 1 dzu" 2 l(dau“> 3
(329) U = U +(E'>os+é<d‘8{>os +B -g‘;a—os—{—...’

for values of s for which the series converge, the subscript 0 indicating
initial values. If we differentiate the equation

du® duf
(32.10) Gop = = = const.,

we obtain (32.6), and consequently any integral of equations (32.8)
satisfies (32.10). Hence, in order that s in a solution (32.9) shall be the

.. . - du”
are, it is necessary and sufficient to choose the initial values ( s SO
ds /o

that (32.4) ve satisfied.

initial point ug , we have the following fundamental theorem:

[32.1]1 Through each point in a surface and in any given direction there
passes a unique geodesic.

From (32.8) and (32.6) we have

[82.2] The coordinate curves u® = const. for @ = 1 or 2 are geodesics, if
and only f

a = = . =
(32.11) {Bﬁ}—o (a=1lor2;8=2o0rl).

du~ dp*
* If we put o p°, these equations and & + { * } pPp7 = 0, which are equa-
ds ds By
tions (32.8), are of the form discussed by Darboux (see §23).
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When the coordinate curves form an orthogonal net, equations (32.11)

reduce to g‘f}f = 0 (see §28, Ex. 1). Hence we have

(32.3] When the coordinate curves on a surface form an orthogonal net, a
necessary and sufficient condition that the curves u® = const. be geodesics is
that ggs , where B % a, be a function of u® alone.

Thus for example, the meridians on a surface of revolution are geodesics
(see §24, Ex. 3), as are the rulings on a right conoid (sec §24, Ex. 5).

Returning to the consideration of the series (32.9), and the remarks
preceding (32.9), we see that if we put

du®
(32.12) @ =s|--),

ds /o
we have

- _12 _1._2 _22
u* — uf = 4% + a*@" + bu'd + ah + ..,
. 1 .

where a, b, ¢, - - -, are functions of us, and uj. These series are con-

vergent for values of @' and @ in absolute value less than some fixed
quantity. Since the jacobian of u* with respect to @*(a, 8=1, 2) for @ =
0 is equal to +1, these series may be inverted giving @* as power series
in.u' — uy and «> — wug , which are convergent so long as u* — u§ in
absolute value are less than some fixed quantity.* For such values of
u® — ug the values of @ are uniquely determined, and consequently
there passes only one geodesic through the points ug and u®. Moreover,
from (32.4) and (32.12), it follows that the length of the arc of the geo-
desics between these points is given by

2 —
s = (g.,,g)ou“u"’.
Hence we have

[32.4] Through two sufficiently near points on a surface there passes one
and only one geodesic.t

In order to find the rate of change with respect to s along a geodesic
of the angle 6, which the geodesic makes with the curves «* = const.,
we differentiate with respect to s equation (25.7) written in the form

du’
ST
du®
gla %

6 = tan™

* See Goursat, 1924, 1, vol. 1, p. 474.
t See Darboux, 1889, 1, p. 408.
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Making use of (28.2) and (24.6), the resulting equation is reducible
to
IV (L
ds ds? ds ds?

1 2 2 du’ du® du
32.13 | g1a - Gea
( ) +gu (91 {ﬁ% g {51} {aﬂ}) ds ds ds]
e (E((iz_u”+ﬁdudu> Vg [2)\ du®
*? ds \ds? ds ds g \lef ds’
where ¢, are defined in (25.14). This result holds for any curve on a

surface. When the curve is a geodesic, the above equation reduces in
consequence of equations (32.8) to

(32.14) ' ‘fi"s" ‘gﬁ{ }E'O

Consider now in a surface an orthogonal net of coordinate curves for
which the curves «* = const. are geodesics. By theorem [32.3] the
coordinate ' can be chosen so that the linear element is

(32.15) ds® = du' + gudu®.

From this result it follows that the length of the segment of a curve
u’ = const. between the curves u' = ¢; and u' = ¢ is given by

fdu‘=cz—cl.

Since this length does not depend upon %’ the lengths of the segments of
all the geodesics 4> = const. between any two orthogonal trajectories
are equal. In consequence of this result and theorem [32.1] we have
the following theorem of Gauss:*

[32.5] Given any curve C upon a surface and the geodesics orthogonal to C;
when equal lengths are measured from C along these geodesics, the locusof
their end points is an orthogonal trajectory of the geodesics.

The curves thus defined are called geodesic parallels to the curve C.
From the discussion of equations (29.9) and (29.11) it follows that the
curves there called parallel are geodesic parallels. From theorem [29.2],
and the above discussion we have

[32.6] A necessary and sufficient condition that a family of curves ¢ =
const. be geodesic parallels is that A = F(p), where F(p) is any positive

* 1827, 1, p. 241.
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Sfunction of ¢; ¢ is the length of the geodesics measured from one of the curves
¢ = const., if and only if A = 1.

Suppose then that P; and P, are points of a surface through which
there passes only one geodesic, and that we take this for the curve
u’ = 0 of a system of geodesic parallels 4> = const. and for «' = const.
their orthogonal trajectories, so that we have the linear clement (32.15).
An equation of any other curve which passes through P, and P; is of
the form u* = ¢(u'), and the length of the arc PP, of this curve is given
by

ul S
s = flz \YA ! + gzz<p’2 du',
uy

where u; and w3 (> wu;) are the values of u' at the points P, and P,
respectively. Since the arc P,P; of the given geodesic is v — ui , and
g22 being positive the quantity 1 + gae’ is greater than one, we have the
following fundamental theorem:

[32.7] If two point; in a surface are such that only one geodesic passes
through them, the length of the segment of the geodesic is the shortest distance
in the surface between the two points.

If one has a solution (u', ¥’, @) of the equation

(32.16) Ay =1

such that -g-z involves the constant a, when the solution is substituted in

(32.16) and the resulting identity is differentiated with respect to a,
we have

dp\ _
(32.17) Ay <¢, 5&) =0.
Consequently for each value of a the curves
dp _
(32.18) o =b,

where b is a constant, are geodesics, being the orthogonal trajectories
of the curves ¢ = const., which by theorem [32.6] are geodesic parallels.
For a particular point uy the components du® of the tangent to a geodesic
8290
daou*
versely, if du® are given, the corresponding value of a is determined by

through the point are given by du” = 0for each value of a. Con-
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this equation since a geodesic is uniquely determined by a point and a
direction. Then b is determined by the equation

dp(us, w5, ) _
da ’

Hence all of the geodesics in a surface are given by (32.18), and we have

[32.8] If o(u', ¥’, @) is a solution of the equation Mg = 1 such that -(;f
a
tnvolves the constant a, the equation

9 _
%

for all values of the constant b is the finite equation of the geodesics of the
surface, and the arc of the geodesics is measured by o.

A surface possessing an orthogonal parametric net with respect to
which the linear element is

(32.19) ds’ = (4, + A»)(Bidu" + Bidu™),

where 4, and B, arc functions of u* alonc is called a surface of Liouville.
For such a surface equation (32.16) is reducible to

IWETAY 1 {ay
5 (o) - 4= - (o) +

We seek the solution of this equation such that cach member of this
equation is equal to a constant @, and find that ¢ is given by the two
quadratures

o= fBl VA + adu' + fBM/A, —adu.
Hence by theorem [32.8] an equation of the geodesics is

(32.20) B e,

\/Al + a f \/Az —-a
and we have

[382.9] The geodesics on a surface of Liouville, when its linear element s
given in the form (32.19), can be found by two quadratures.
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We close this section with the derivation anew of the equations of
geodesics, using the property of geodesics in theorem [32.7]. To this
end we consider a curve C with the equations

(32.21) u® = f4(1),

and two points P; and P; on the curve with the respective values ¢; and
t, of the parameter {. Any curve in the neighborhood of C and passing
through the points Py and P; is defined by

(32.22) u = ) + ew?(t)

for a sufficiently small absolute value of the constant ¢, and for functions
w”(t) such that

(32.23) W) = (k) = 0.
The arc s of C between PyPs is given by

(3221) s = _/:2 vgaﬂfa/ﬁ di E£2¢(f1’f21f1,1f2,) dtl

and the arc 8 of C; by

123
(32.25) s = f of' + e, P+ e, [+ e, [+ ew’) d,
L .
where the primes indicate differentiation with respect to ¢. In order
that the are s of C be the minimum of the arcs of the curves through P;
and P, in the neighborhood of C, it is necessary that the derivative of
s with respect to e be zero for e = 0, that is,

.
: 09 o 0p  ar
Z- s, t = 0.
[1 (af““’ T >d

Since it is understood that the derivatives involved are continuous in the
interval {;, {z , on integrating by parts the second term in the integrand,
we obtain in consequence of (32.23)

“ofep d 3<p>
'/l-lw<5f'; C‘It'affa, dt—O

Since this equation must hold for arbitrary functions »® such that
(32.23) is satisfied, we have the equations of Euler

(32.26) Jt 6-1:';, - —('{f: = 0
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From the definition (32.24) of ¢ we have, noting that f*is

du® du® du”
, pudl 1 3gpy du”
d _ guf _a de _ 20w dt &t
R A
dt dt
Substituting these expressions in (32.26), we obtain
. d's
| Oges du” du’ _ 1 dgsy du’ du” d’ e _
Yo g T Al Al 2w dt & Pd i
dt
which is reducible by means of (28.2) to
&'
SO (sharad_atar)
9os | “ar2 dt dt ~ dt ds
dt.
Since g # 0, it follows that
d's
&P Bldu"du® dufde
(82.27) 'd7+{ }“d? Fri
dt

When the parameter ¢ is the arc these equations reduce to (32.8).

EXERCISES

1. The great circles on a sphere are its geodesics.

2. A necessary and sufficient condition that there exist upon a surface a family
of geodesics whose orthogonal trajectories also are geodesics is that the surface
be isometric with the plane.

3. The geodesics on a cylinder are helices (see §27, Ex. 2).

4. When the linear element of a surface of revolution is written in the form
(see §24, Ex. 3)

0] dst = (1+ ¢ dut’ + wt* du?’,

du?
from the second of equations (32.8) one obtains by integration ut? —d—- = ¢, where
s

c is an arbitrary constant. From this result and (i) it follows that

dut \/ul — ¢

d c
ds ul-\/1+¢m ds ot
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Vite?

From this result one obtains that u? = #c¢ f = du! 4+ d, where d is
ut \/ ult” — ¢t

a constant, i8 an equation of the geodesics.
5. When the linear element of a surface of revolution is written in the form
ds? = dut® + y2(ut) du?’,

+ f LA
- c | —————
vV -

where ¢ and d are constants, i8 an equation of the gcodesics in the surface, and
consequently in any surface isometric to it.

6. If a family of geodesics and their orthogonal trajectories on a surface form
an isometric net, the surface is isometric with a surface of revolution.

7. A necessary and sufficient condition that u?* = ¢(u!) be an equation of a
geodesic is that

o ~{aen (B -2{af) o G2 (af) o (3] -0

where the primes indicate differentiation with respect to ut.

8. A necessary and sufficient condition that ¢ be a solution of the equation
Ajp = 118 that ds? — de? be a perfect square.

9. If ¢ = ab; + 62, where 6, and 0: are functions of u! and u?, are solutions
of the cquation Ajp = 1 for all values of the constant a, the curves 6; = const.
arc minimal curves, and the curves 6; = const. are geodesic parallels.

10. When the linear element of a spiral surface is written in the form (see
§26, Ex. 9)

ds? = en’dut’ + U\ (ut) du?’],
the equation A = 1 admits the solution e"z\l/(u‘), where ¢ i8 any solution of the
2
cquation y'? + ;— = 1; by the integration of this equation one obtains all the
1

geodesics in the surface.
11. The orthogonal trajectories of the curves 6(u!, u?) = const. arc integral
curves of the equation (see thcorem [26.1])

9290, dul — ¢%0,s du? = 0.
The integral ¢(u!, u?) = const. of this equation is given by

a¢ 2 dep

14
= —— gy g0, =2 e g0,
aul \/g ey g70, ow \/g eyg o,

where ¢ is an integrating factor. If the curves 6 = const. are geodesics, by a
suitable choice of ¢ the function ¢ is such that A, = 1. Hence ¢ is given by

Lﬂ
=, O er g™ baerigls.

t!
By means of §25, Ex. 8 the right-hand member of this equation reduces to ;mo
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and consequently ¢ is given by the quadrature
Vi (

o= | —7——=

VA0

12. If the integral curves of an equation M, du® = 0 arc geodesics, their orthog-
onal trajeetories are given by the quadrature

/' \/_ 92 M, dut — gﬂl Mg du?) €ys g% M o du”
o= - L = o=

g /9B M o Mg g Mo Mg
de

13. Ifd—u1 = y(ul, u?, a), where a is a constant, is a first integral of the equa-

a0 a9 1
0% Gt = o md“’) = f S,
1

tion of Ex. 7, it follows from theorem [32.8] and Ex. 12 that the finitc equations
of the geodesics is

_3_‘/‘(9”:}-“013#) dut + (gi2 + gay) du? _
da \/Un + 291y + gaoy?

14. Surfaces isometric with surfaces of revolution and the quadrie surfaces
(sce §30, Exs. 6 and 7) are surfaces of Liouville.

15. A surface of constant Gaussian curvature is a surface of Liouville, in con-
sequenee of theorem [31.1] and §31, Ex. 3.

16. For a surface of Liouville with the lincar element (32.19) the angle 0o
which a geodesic makes with the curves u? = const. is given by

Aysin2 0o — Ay cos? 6y + a = 0,

where a is the constant appearing in (32.20).

33. GEODESIC POLAR COORDINATES. GEODESIC TRIANGLES

In accordance with theorem [32.1] through a point P of a surface there
passes a geodesic in each dircction. Consider a domain about P such
that no two geodesics through P meet again within the domain. When
then the geodesics through P are taken for the parametric curves u’ =
const. and their orthogonal trajectories the curves »' = const. the linear
element of the surface for the domain under consideration is of the form
(32.15) by a suitable choice of the parameter »' . If u'is replaced by u'
plus a constant, the form (32.15) is unaltered. It follows from the
discussion following (32.15) that «' may be chosen so that it is the dis-
tance along each geodesic from the point P. Thus each curve u' =
const. is the locus of a point at a constant distance from P, this distance
being measured along the geodesics through P.  In this sense the curves
u' = const. are geodesic circles.

i

Since at P 222 = 0, it follows from (24.7) that g = 0 at P, as is

also g1z = 0. The former result follows also from the fact that the arc
of a curve u' = const. between two geodesics «* = 0 and w* = ¢, is
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cy
given by f /g2 du’, and this quantity approaches zero in the limit as u'
0

approaches zero. In like manner the angle at P between these geodesics

is given by
f V gz du? f 8\/9,2 du?

1
lim =——— au

T
ul=0 ul ul-»o

the right-hand member being obtained by the use of differentiation to
evaluate the indeterminate form of the left-hand member. Con-
sequently a necessary and sufficient condition that the coordinate u?
be the angle made at P with the geodesic ¥> = 0 by the coordinate
OV g
oul
are called geodesic polar coordinates, because they are analogous to polar
coordinates in the plane. Hence we have

curves u’ = const.is that ( > L= 1. In this case the coordinates
ule0

[33.1] A necessary and sufficient condition that the coordinates in terms of
which the linear element 1s

(33.1) ds* = du” + gn du®
be geodesic polar coordinates is that
_ IVgn\ _
(33.2) (g2)utmo = 0, (-aT wlem0
Consider, for example, the sphere with the equations
1 _ . ul ) 2 _ . ul . 2 3 _ ul
T = @ sin— cos u, 2" = asin — sin u’, 2 = a cos —.
a a a

The curves v’ = const. are the great circles through the point (0, 0, a).
1
Now gy = 1, gz = 0, goe = a* sin’ % , which satisfy the conditions of

theorem [33.1].
From §28, IEx. 1 we have that for the linear element in the form (33.1)
the Gaussian curvature (28.5) of the surface is given by

__ 1 & von
(33.3) K== =™

If K=0,1gn = au' + b, where @ and b do not involve u!. In
order that the conditions (33.2) be satisfied, we must have a = 1,
b = 0, that is,

(33.4) ds* = du" + u"du®.
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This is the linear element of the plane in polar coordinates, and conse-
quently, the surface is isometric with the plane. Conversely, if a
surface is isometric with the plane, its linear element can be given the
form (33.4). Thus we have another proof of theorem [28.1].

If K 5 0 for a surface referred to polar geodesic coordinates, it follows
from (33.3) and (33.2) that

5
?22 =0,
oul uled

(33.5) _ (?’_ v Ea} .
K, = aul‘ ulmd = _ (a V gza)
0 3 ,——gn au‘a wlm0 ’
ulm0

out

where K is the value of K at the pole of the coordinate system.
From (33.2) and (33.5) we have

— 1
\/gzz":u]— Koula"{"---.

[l

Hence the perimeter and area respectively of a geodesic cirele of radius u'
are given by

2r
(33.6) -/o‘ Vg2 d? = 2r (ul — ‘—lK(,u,13 + .. .>,

ul 2x 14
(33.7) f Vg du' du’ = w(u” — Kow + .. )

o Yo 12

We consider next the integral of the absolute value of the Gaussian

curvature over a geodesic triangle, that is, a triangle whose three sides
are geodesics, the triangle being of such size that no two geodesics
through a vertex meet again within or on the triangle, and such that
that K has the same sign within and on the triangle. Such a triangle
is shown in Fig. 9. We choose a geodesic polar coordinate system with
pole at P. and with the sides PP, and PP; as the geodesics «* = 0 and
' = a. In consequence of (33.3) the integral is

.
338) I= effK\/Eduldu’ - —ef TV g g,

out

where e is +1 or —1 according as K is positive or negative. Integrating
with respect to «' between the limits 0 and ', we have, in consequence

of (33.2),
I=e/(l—9$’ .
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From (32.14) we have along the geodesic PP,

_ 0V 2
do = ——;alizdu,

and consequently

(33.9) I=e(j;adu2+/:ﬂd0> =ela+B+7y— ).

We say that I defined by (33.8) measures the total curvature of the triangle.

From (33.9) it follows that for a geodesic triangle such that no two
geodesics through at least one of the vertices meet again within or on the
triangle, and such that the Gaussian curvature has the same sign at all
points of the same, the total curvature of the triangle is equal to the
excess over 180° of the sum of the angles of the triangle or to the deficit

Fic. 9

from 180° according as the Gaussian curvature is positive or negative.
If for a geodesic triangle geodesics through each vertex meet again
within the triangle and thus there does not exist a polar geodesic system
with one of the vertices as pole which system applies to the whole
triangle, it is possible to subdivide the given triangle into a number n
of smaller geodesic triangles, for each of which a polar geodesic system
holds, in consequence of theorem [32.4]. Equation (33.9) applies to
each of these triangles, and when the corresponding equations are added
one obtains e times the sum of all the angles of the n triangles minus nwr.
The situation at all the vertices of the smaller triangles except at the
vertices of the given triangle is the same as when a plane triangle is
subdivided into n small triangles. In this case the sum of all the angles
is nr, and since the sum of those at the vertices is =, it follows that the
sum of all the others is (n — 1)r. Hence in the case of a geodesic
triangle divided into n geodesic triangles when we subtract (n — 1)x
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which is the sum of the angles not at the vertices of the given triangle we
obtain the right-hand member of equation (33.9). Hence we have the
celebrated theorem of Gauss*

[33.2] The total curvature of a geodesic triangle such that at all points K
has the same sign is equal to the excess over 180° of the sum of the angles of
the triangle or the deficit from 180° according as K s posilive or negative.

As a consequence of this theorem we prove the following:

[33.3] T'wo geodesics on a surface of negative curvature cannot meet in two
points and enclose a simply connected area.

For suppose two geodesics through a point A meet again in a point B,
and enclose a simply connected area, as in Fig. 10. In consequence of
theorem [32.4] it is possible to find two points C and D on the two
geodesics sufficiently near to 4 so that there is a unique geodesic through
C and D, thus forming two geodesic triangles ACD and BCD. The total
curvature of these two triangles is equal to 27 minus the angles

C

D

F1a. 10

at A, B, C and D. But the sum of the angles at C and D is 2r, and thus
the total curvature of the two triangles is a negative quantity, whereas
it is understood to be positive, as defined in (33.8). Hence the theorem
is proved.

It follows from theorem [32.6] that if 6 is a solution of A6 = 1, the
curves § = const. are geodesic parallels, and 6 is the arc of the orthogonal
geodesics measured from one of the parallels. If then we take two curves
C and C; not geodesically parallel, their geodesic parallels form a net.on
the surface. If u' and % denote the geodesic distances of these parallels
from C; and C; respectively, they are solutions of A;8 = 1, and in the
coordinate system u® we have from (29.7)

(33.10) m _ u _ g,
g [
From these equations and (25.5) we have
o _cosw
fu =02 = G 92 = Gnte’

* 1827, 1, p. 246.
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where w is the angle of the two coordinate families of geodesic parallels.
Hence the linear element of the surface is

_ du' + 2 cos wdu' du® + du*
sin’ w :

(33.11) ds*

A similar result follows, if we take for coordinate curves geodesic circles
with centers at two points F; and F, on the surface.

Conversely, equations (33.10) follow from (33.11), and consequently
when the linear element of a surface is of the form (33.11), the co-
ordinate curves are geodesic parallels which may be two families of
geodesic circles.

If we put

(33.12) R O T A )

a curve " = const. or u'”® = const. is the locus of a point such that the
sum or difference of the geodesic distances from C; and C: , or the points
F: and F, as the case may be, is a constant. In the latter case these
curves are analogous to ellipses and hyperbolas in the plane. Ac-
cordingly they are called geodesic ellipses and hyperbolas not only in this
case, but also when the distances are measured from curves C; and Cb.
From (33.12) and (33.11) we find that in terms of the coordinates »'®
the linear element of the surface is

12 7242
(33.13) gt = @) | (@)

inz2 @ 2 @ )

sin? 5 cos’ 5
Conversely, by means of (33.12) the linear element (33.13) is trans-
formed into (33.11), and consequently when the linear element of a

surface is expressible in the form (33.13), that is, when 1 + 1. 1,

gu g2
the coordinate curves are geodesic ellipses and hyperbolas. As in the

case of confocal ellipses and hyperbolas in the plane, we have

[33.4] A set of geodesic ellipses and hyperbolas form an orthogonal net.
EXERCISES

1. The angles of any two families of geodesic parallels on a surface are bisected
by the corresponding geodesic ellipses and hyperbolas.

2. In order that a coordinate system of geodesic ellipses and hyperbolas on a
surface form an isometric orthogonal net, it is necessary that the linear element be
reducible to the form

dst = (U, + Us)(dut® + dut'),

where U, and U, are positive functions of u! and u? respectively.
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3. When the plane is referred ¢ a system of confocal ellipses and hyperbolas,
whose foci are at the distance 2a apart, the linear element can be written

da? = (ut? — ") (_fd}.‘.l_’__ + __dﬁ,i_) .

w—ar | g2 — st
4. A necessary and sufficient condition that an orthogonal coordinate net on a
surface be a system of geodesic ellipses and hyperbolas is that
U, U
g 922

=1,

where U, and U, are positive functions of u! and u? respectively.

5. If an orthogonal coordinate net is to be a system of geodesic ellipses and
hyperbol‘as in two ways it is necessary and sufficient that there be two sets of
positive functions Ugg(a-= 1, 2), where Uq1 and Ug: are functions of u! and u?
respectively such that

. Uam , Ux
O =g =y
gn g2

in this case the linear clement of the surface is reducible to the form in Ex. 2.
6. If the conditions (i) of Ex. 5 are satisfied, it follows that

tUn+ (1 —t)Un +tU12+ (1 —)Ux =1
g g2

’

which for ¢ a constant is of the form (i); consecquently, if an orthogonal net con-
sists of a system of geodesic ellipses and hyperbolas in two ways, it is such a
system in an endless number of ways.

7. When two families of geodesics on a surface meet under constant angle and
their orthogonal trajectorics are the curves u= = const., the angle w in (33.11) is
a constant, and consequently the surface is isometric with the plane.

8. When g2, in theorem [33.1] is a function of w! alone, it follows from (33.2)
‘and (33.3) that for a surface of constant Gaussian curvature one has (see §31,
Ex. 3)

1 Lout
(i) K=;2, gu=a’sm7; ;
1 . ul
(ii) K= - g2 = a?sinh? —,
a a

9. If C denotes the circumference of a geodesic circle of radius a, the Gaussian

3@2ma — C
curvature K at the center of the circle is given by lim Ll—a—)
a

a—0
from (33.6).

, as follows

34. GEODESIC CURVATURE

We return to the consideration of equations (32.7) when u® is not a
zero vector, that is, when the curve is not a geodesic. From (32.6) it
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follows that this vector is perpendicular to the tangent vector to the

a

curve, that is, to the unit vector %Ls— We replace p® in (32.7) by

keu” and obtain
d’u“ [a) du’ du” ,,
(34.1) Iﬁ'Y} ds ds V= kg,

where now it is understood that u” is the unit vector which makes a

right angle with the unit vector d(—i%— , that is, (see theorem [25.5]),

a1

st Tt T Uy

Since y‘; in (34.1) is a unit vector, the absolute value of &, is the length
of the vector whose components are the left-hand members of equations
(34.1). We call the vector u® the curvature vector of the curve at a point,

and «, the geodesic curvature of the curve.
From (34.1) and (34.2) we have

- [du (&’ 2\ &’ du’)
=V [ (ds2 +{ﬂv}7s ds
o’ (d 1)\ dv’ du")]
(34.3) ds (‘d"s? + {Bv} ds ds
o dut (dzuﬁ_i_{ﬂ}du’@i‘)
T s \dse " \vé[ ds ds /)°

For a geodesic x, = 0 as follows from (34.1) and (32.8). Conversely,
if k, = 0, it follows from the first form of (34.3) that

(34.2)

d*u® o) du® du” du®
Es’f+{ﬂv}ﬁﬁ_‘% (a=1,2),
where ¢ is a factor to be determined. In consequence of (32.6) we have
u® du’

that ¢t = 0, since gap d & = 1. Hence we have

[84.1] A necessary and sufficient condition that a curve be a geodesic ts
that the geodesic curvature of the curve be zero.

When the coordinate curves form an orthogonal net, for a curve u* =
du! _ 1
ds Vo'’
that is, we take the tangent vector in the direction of u' increasing.
By means of §28, Ex. 1 we have from (34.3)

_ _ 1 odlogvygu
(34.4) K1 = m T .

const. we denote the geodesic curvature by x,; and take
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2
In like manner for a curve ' = const., if we take wo_ —l_—_, the
ds \/ g2
geodesic curvature g is given by
(34.5) o = — — 108 Vo
L V4 gu ou
1 2
From (34.2) and the choice d 71‘:_ in the first case and o _
ds Vgu ds
- —lg— in the second case it follows that in the first case u? is positive, and
22

in the second case p' is positive. Hence in the first case the normal u*
is tangent to the curve »' = const. and in the direction in which % is in-

P,

Fia. 11

creasing, and in the second case it is tangent to the curve 4’ = const.
and in the direction in which «' is increasing.

Consider now any curve C on the surface, and two nearby points P and
Pyon C. At P and P, draw the unique geodesics g and ¢, tangent to C,
and denote by @ their point of intersection and by Ay the angle under
which they meet, as shown in Fig. 11. We shall prove the following
theorem:

[84.2] The limit of the ratio %l: as P, approaches P along the curve ts the
geodesic curvature of C at P.

In order to prove this theorem we take the curve C as the curve u' = 0
of an orthogonal coordinate net;, The tangent geodesic at P makes
with the curve #* = ¢ (>¢)) the angle 3r/2 and with the curve «* = ¢
the angle * 4+ a, hence A6y = a — 7/2. From (33.9) applied to the
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geodesic triangle QPR we have

I=e(A¢+12’+a—1r) = e(AY + AG,).
As P, approachs P along the curve, ZIE approaches zero and consequently

%‘g approaches — %, the latter being given by (32.14). Hence we have

Ay _ \/g{} f__ 1 dlogVin
As ds g ds Vgu ut
and thus in consequence of (34.5) the theorem is proved.

In view of this result geodesic curvature of a curve on a surface is a
generalization of curvature of a plane curve, and from theorem [34.1]
we have that a geodesic is a generalization of a straight line in the plane.
The geometric significance of geodesic curvature as viewed from the
enveloping cuclidean space is established in §44.

We shall show in what manner the quantity «, for a curve o(u!, u*) =
const., is expressible in terms of differential parameters of ¢. To this
end we observe that for the coordinate system used in establishing
equation (34.4) we have from (29.7), (29.2), and (29.16)

1 1 a‘\/gzz 2 ‘] /‘/g'u
M’ ==, A, = Mg .
1 g’ 1( \/gﬁ) In Y R 2 gugzz T2

By means of these expréssions equation (34.4) can be written in the form

2 u1 ( 2 1 )]
Kg1 = — = A | w y ——— .
ql I: ‘\/A; u? ' ‘\/A1 u?

In any other coordinate system the curves u* = const. are defined by
an equation o(u', u*) = const., and consequently we have the theorem
of Beltrami:*

[34.3] The geodesic curvature of a curve ¢ = const. is given by

A 1
’ Ve \ Ve
By means of (29.16) the quantity in brackets is equal to
aw‘!(\/gg ‘P¢)+ga¢ i( 1 >
Vg VP o.aps : Viteyes’

* 1865, 1, p. 83.
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and consequently (34.6) may be written in the following form due to
Bonnet :*

1 "
(34.7) K= = (i-‘lli’__)
Vg \Ngr s
In particular, if x,n and ., denote the geodesic curvatures of the
curves w = const. and u' = const. respectively of any coordinate

system, we have (see (24.18))

1 <\/g gﬂ‘r
Kga = = a*—-jy —
(34.8) VeV ) 6 # a)

1 4] }7«!5 _ )
\/g (aua \/g aup \/gua

of which (34.4) and (34.5) are particular cases when the coordinate
curves form an orthogonal net.

Equation (32.13) gives the rate of change with s of the angle 6, which a
curve makes with the curves 4’ = const. By means of this result the
geodesic curvature of the curve, as given by (34.3), is expressible in the
form

Vg [2)\dv”
(34.9) Ky = ds+ Au alJ e

With the aid of this equation we establish an important result due to
Bonnet. To this end we use the formula of Green, namely

(34.10) f f (i’fiﬂ _ a“‘) dut du? = fc pr dut + g il
S

Jul ou?

In this formula the surface integral is applied to a simply connected
portion of the surface, and the curvilinear integral to the contour C,
the positive sense of the latter being such that as a point describes C in
this sense the portion of the surface is on the left.t It is understood
that u;, up and their first derivatives are finite and continuous within
and on the contour.

From (34.10) and (34.9) we have

(34.11) fcdﬁb B f wh = ;f ({11} ' + {122} du’)
~ff["’“’< gu { }> (;ﬁg{lz})]du‘ ddt.

* 1860, 1, p. 166.
t Fine, 1927, 1, p. 337.
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Since the left-hand member of this equation is independent of the co-
ordinate system u® the same is true of the right-hand member. By
(25.21) the element of area in any coordinate system isdo = /g du' du’.
If then the coordinate system is such that the linear element is of the
form (33.1), one finds by means of §28, Ex. 1 that the quan'}ity in
brackets in (34.11) multiplied by 1/v/y reduces to — L ‘?‘X.‘Z?l,
Vg ou!

as the reader should verify. From this result and (33.3) it follows that
in any coordinate system the integrand of the right-hand member of
(34.11) is K do.

If the contour C consists of arcs of curves forming a curved polygon
with exterior angles 6, , - - - , 6,, the first integral in (34.11) is equal to

1:p
2r — Z 6; . Hence we have the Gauss-Bonnet theorem:*
[34.4] For a simply connected portion S of a surface for which the Gaussian

curvature K 1is finite and continuous and the geodesic curvature «, of the
contour C 1s finite and continuous

(34.12) Lﬁw+ffwiﬁw=ar:$%

where 6, , - - -, 8, are the exterior angles at the vertices of the contour C
if any.

When the coordinates «® undergo any transformation, the quantities
e in the right-hand member of (34.10) are seen to be the covariant
components of a veator. The integrand in the left-hand member of
(34.10) is equal to (uzy — m2)du'du’. In terms of the quantities ¢

defined in (25.14) equation (34.10) may be written

(34.13) f po du® = — f f € lias Vg du' du’.
c
]

If A" is any vector, then u, defined by
(34.14) Ba = €saN’

are the covariant components of a vector since e, are the covariant
components of a tensor (see theorem [25.4]). When the expressions
from (34.14) are substituted in the left-hand member of (34.10), we

* See 1848, 1, p. 131.
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obtain in consequence of (25.14), (28.2) and §28, Ex. 12

JJ [ = gt oo = [ [ o v/t a

= ffk‘f’,, Vg du' did’.

8

Hence another form of the formula of Green is
4.15 A% Vg du' di’ = o\ "=—f d
(34.15) {f “a Vg du' du ];Gﬁ N du Cvpk ds,

where

d
(34.16) g = g o

thus »s are the covariant components of the unit vector which makes a

% by theorem [25.6], and whose di-

rection depends upon the sense of rotation (§25).

right-angle with the unit vector

EXERCISES

1. The parallels on a surface of revolution are curves of constant geodesic
curvature.

2. A small circle on a sphere has constant geodesic curvature.

3. When a surface has an orthogonal net such that the curves of one family
are geodesics, and those of the other family have constant ( 0) geodesic curva-
ture, the surface is isometric with a surface of revolution.

4. For a family of loxodromic curves upon a surface of revolution (see §26,
Ex. 2), that is, curves which make the same constant angle with the meridians,
the geodesic curvature of all these curves is the same at their points of inter-
section with a parallel.

5. For a surface with the linear element

U X

(U + Un)?
where U, is a function of u« alone, x; = U, , x;z = U} , where the primes indicate
differentiation with respect to the argument, that is, the coordinate curves have
constant geodesic curvature. Conversely, when the curves of a coordinate
orthogonal net have constant geodesic curvature the linear element is reducible
to the above form.

6. If the curves of one family of an isometric orthogonal net have constant
geodesic curvature, the curves of the other family have the same property.
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7. The geodesic curvature of the integral curves of the equation M, du® = 0
is given by

Ky = — 1 ‘\/I”’apMa)
‘ \/yau" Vg M, My

8. Derive the theorem of Gauss [33.2] from theorem [34.4].
9. From (34.8) and (25.5) one has

1 L J
Kga = —_\75 [51—“ (cos w ggg) - 9 0“] (8 # a).

auf

10. From the discussion of (34.11) it follows that

<= Vil Celi)) - Gt}

this should be verified by means of (28.5), (28.2) and (20.13).
11. From §28, Ex. 10 and (34.8) one obtains the formula of Liouville

K= el et o (Voasd) 4 5 W) |

12, When the coordinate curves form an orthogonal net, the formula of Liou-
ville may be written

1 o s 2
K = T out a; -\/_ é:’ — Kg1 — Kg2,

and equation (34.9) may be written (see §28, Ex. 1)
dé, .
Kg = 7: =+ o8 foxgr — 8in oxgs.
13. From (29.2) and (29.14) one has

[fAl(v, ¥) do = .[f[(garﬂ«,'w).‘3 — baol do,

from which and (34.15) it follows that

ffAl(w, ¥) dv+ff'ﬁAwd = - Llﬁﬂ“"&.ﬂﬂdl
S S

14. From (29.16) and §28, Ex. 12 one has
fwa Vg dudus = ff—(\fg«ﬁ, op) dut dup = ff(g"’:y,g),,\/;du‘du’,
s

and from this result and (34.15)

ffAupdw = —Ln{l"‘"tp.ﬁd&.
8
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35. THE VECTOR ASSOCIATE TO A GIVEN VECTOR WITH
RESPECT TO A CURVE. PARALLELISM OF VECTORS

Let C be any curve upon a surface defined by u” = f*(s), where s is
the arc of C, and let A" be the components of a family of unit vectors one
at each point of C, A® being functions of s. Since the vectors are unit
vectors,

(35.1) Japh "N = 1.

Differentiating this equation with respect to s and making use of (28.2),
we obtain

(@ 1 wfee)
(35.2) Jag N (ds + A {76} i) = 0.

The components NM'* of these vectors in any other coordinate system
u'® are given by
u” o ou™
\o Ou”

A”‘ —

a: “‘—.,,
(35.3) =2 -

Differentiating the first of these equations with respect to s and making
use of (32.1), we may write the resulting equation in the form

dx® 7aM_W@W "WW)
(54) g5 2 {w} & “awr\ds TN Vel @)
Hence, if we put

A\ |y faldd .

(35.5) T + X {7/9} Pl
it follows from (35.4) that »* are the contravariant components of a
vector, and from (35.2) that the vector »* at a point is perpendicular
to the vector \” at the point. Following Bianchi* we call »* the vector
assoctate to \* with respect to the curve C.

When in particular the vector A® is the tangent vector dgg’ v" is the
vector k,u” in equation (34.1), and we have

[35.1] The vector associate to the tangent vector with respect to a curve is
the geodesic curvature vector of the curve.

Following McConnellf we call the left-hand member of (35.5) the

* 1922, 1, p. 161.
11931, 1, p. 179-181; see also Synge, 1926, 2.
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intrinsic derivative of \* for the curve C and denote it by % , that is,

A% _d\° o) dvf
35.6 — =4\ -—.
(35.6) 68 ds + {713} ds
Thus the intrinsic derivative of a contravariant vector for a curve is a
contravariant vector. In like manner by means of (32.1) it can be
shown that the intrinsic derivative of a covariant vector A\, defined by

Mo _ dha v\ dvf
. = S =\ ——
(357) és  ds v {aﬂ} ds
is a covariant vector.
If A% and A\, are the contravariant and covariant components of a
vector defined at all points of a surface, then for a curve one has
DY dv’ o\ dv’
35.8 — = A% = = = Naf —m -
(35.8) ds N.s ds’ ds # s
In like manner if one has a tensor ag...5." defined at all points of a
surface, at points of a curve the quantities

a1 ay
(35.9) ‘?f%& = afllP ‘Zﬁ
are the components of a tensor of the same order. The results con-
. cerning intrinsic differentiation follow from equations (32.1), just as the
results concerning ¢ovariant differentiation in §22 are a consequence of
the corresponding equations (20.11). Hence for intrinsic differentiation
the rules of the ordinary calculus as regards the differentiation of the
sum, difference and product of quantities apply (see §22). Also just
as the covariant derivative of a scalar is the ordinary derivative of the
scalar, so the intrinsic derivative of a scalar is the ordinary derivative.
From the above results and theorems [28.3] and [28.4] we have

[35.2] For any curve

8gas _ 5% _ Beas _ 0 _
(35.10) Y =q, =0, 0, 0.

From (25.16) we have that the angle § made with the unit vector ‘fils

tangent to a curve C by a unit vector A" at all points of C and not
tangent to C is given by

. du’®
(85.11) Sin 0 = €ap 7;: 2.
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In conséquence of (35.10), (34.1) and (35.5) the intrinsic derivative of
equation (35.11) is reducible to

8 _ (st 4 8
(35.12) 008068 €ap (K,y N+ s v).

When C is a geodesic, that is, when x, = 0, the condition that the
angle 6 be a constant is

E,g% =0,

that is, either +* is a zero vector (Y = 0), or the vector »* is tangent

]
to C. In the latter case we should have from (35.2) g.g\* % = 0, the
e . N du® . .
intrinsic derivative of which is g,gv* & 0; that is, »* is normal to C.

ds
Hence »* = 0 and we have

[35.3] The unit vectors \* at points of a geodesic make equal angles with
the geodesic, if and only if

A _ A\, aldd
(35.13) == + A {‘yﬂ} il 0
When the surface is a plane, in which case a geodesic is a straight line,
the vectors A\* are parallel in the euclidean sense. Accordingly it is a
natural generalization to say that the family of vectors A* satisfying
(35.13) are parallel with respect to the geodesic involved.

Although we have introduced the notion of the patallelism of vectors
at points of a geodesic, we make a further generalization and say that
given any curve, where u” are functions of the arc, the functions A®
satisfying (35.13) are the components of a family of parallel vectors with
respect to the curve; this concept is due to Levi-Civita (see §45). From
the theory of differential equations of the form (35.13) it follows that
any such family of parallel vectors is completely determined by the
values of the components at some point of the curve, that is, by initial
values of A\* for the value of s at the point. Since equations (35.13)
involve the equations of the curve, it follows that if one has two curves
intersecting at two points P; and P, , and finds with respect to each of
the curves the families of parallel vectors having the same values at
P,, in general the vectors at P, will be different for the two families.
Thus parallelism as just defined is relative to a curve. When the surface
is a plane referred to cartesian coordinates, equations (35.13) reduce to

% = 0, that is, A" are constants, and parallelism is absolute, that is,
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it is not relative to a curve. In this case the vectors are parallel in the
euclidean sense.

Since for \* = (fils equations (35.13) are equations of geodesics, we
have that the tangents to a geodesic are parallel with respect to the
curve, and in this sense geodesics may be called the straightest lines on
the surface. In this connection it is interesting to observe that for the
domain about a point P within which no two geodesics through P meet
again coordinates %* can be chosen in terms of which equations of the

geodesics through P are given by (32.12), that is,

@ = s(‘i“f)
ds Jo’

where u* is a given set of coordinates on the surface. Thus in this
coordinate system equations of the geodesics through P are of the form
of equations of straight lines in the plane referred to cartesian coordi-
nates. The equations of geodesics not through P do not have this
simple form in this coordinate system.

Since equations (35.13) involve only the first fundamental form of a
surface, parallelism is an intrinsic property of a surface. As a conse-
quence we have

[35.4] If \® are the components of a family of parallel vectors with respect
to a curve on a surface, they are the components of vectors parallel with
respect to the corresponding curve on a surface isometric with the given
surface.

If A\* are the contravariant components of a unit vector-field such that

(35.14) A% =0,

the vectors of the field at two points Py and P, are parallel with respect
to every curve through the two points and thus are absolutely parallel.
In particular, for the plane referred to cartesian coordinates equations

a

(35.14) reduce to giuﬁ = 0, that is, A” = const. The conditions of

integrability of equations (35.14), namely the Ricci identities (see
(22.22))

(35.15) Mgy — Aiyg = — A R%gy = — X‘ngdB‘n

are satisfied identically for a plane, or any surface isometric with the
plane. In this case equations (35.14) are completely integrable, that is,
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a field of absolutely parallel vectors is determined in any coordinate
system by initial values of \“.

Conversely, in order that there be a field of absolutely parallel unit
vectors in a surface, its contravariant components must be solutions of
equations (35.14), and consequently from (35.15) one has that
MRas, = 0, which equations are equivalent to (see (28.3))

MRy = 0,  MNRum = 0.

Hence Ryz2 = 0 and we have

[35.5] A necessary and sufficient condition that there be a field of abso-
lutely parallel unit vectors in a surface is that the surface be isometric with
the plane.

In the plane the angle of two vectors not at the same points is by
definition the angle between either vector at its point of application
and a vector at this point parallel to the other vector. In consequence
of theorem [35.5] this definition does not apply to a general surface.
However, we can speak of the angle of two vectors relative to a curve,
this angle being the angle between either vector at its point of applica-
tion and a vector at this point parallel to the other vector with respect to
the curve. The angles thus formed at each point are equal, these being
the angles referred to in Ex. 2.

We return to the consideration of equations (35.5) when »* = 0, and
recall that the vector »* is perpendicular to the vector \*. We write
equations (35.5) in the form

, NN, o aldd .

where now »* is the unit vector which makes a right angle with the
vector A%, In this case the absolute value of r is the length of the
associate vector.

Differentiating intrinsically the equation

g,.g)\"v" = O,
we have in consequence of (35.10) and (35.16)

o _
gag)\ 3;‘*‘7'-—0

Since »® is a unit vector and —\* makes a right angle with it, we have

analogously to (35.16) %1: = —'A’.  On substitution in the above equa-
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tion we find that ' = r. Hence we have
o _ Y o\ du? _ a
(35.17) = ds + v {‘yﬂ}% = — r\%

When, in particular, A\* is the unit tangent vector to a curve, »* is the
curvature vector of the curve, and r is the geodesic curvature. Conse-
quently we have

[35.6] If A\* and p® are the contravariant components of the unit tangent
vector and unit curvature vector of a curve on a surface, then

DN d? «

) ds

(35.18) yo e wld ;
o _ o ylalaw e
55 ds TH {'yﬁ,' ds koA

These are the Frenet formulas of a curve in a surface (see §21).

If the unit vectors A%(s) are parallel with respect to a curve C, the
angle 6 which A\* makes with a unit vector u*(s) at each point of C is
given by (see (25.16))

sin § = eagp.a)\ﬂ.

Taking the intrinsic derivative of this equation and making use of the
first of (25.9) and (35.13), one obtains

8 (% §£) -

X (ua ds " 5s
In consequence of Ex. 2 the expression in parentheses is independent
of the choice of the parallel vectors A\ and consequently

do _ u® 5

c—i—s €ap s B
When, in particular, u® is the unit tangent vector to C, this equation
becomes, in consequence of theorems [35.1] and [25.5],

do
(35.19) ES = — Ky,
where «, is the geodesic curvature of C. Hence we have*

[35.7] If a vector undergoes a parallel displacement along a curve C the
arc-rate of change of the angle which the vector makes with the curve s the
negative of the geodesic curvature of C.

* See 1927, 2, p. 136.
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Consider a smooth closed curve C in a surface, enclosing a simply
connected region, and a vector A at a point P of the curve. Let this
vector be displaced parallel to itself around C in the positive sense, and
denote by A its final position at P, and by ¢ the angle A makes with A.
This angle is equal to its rotation relative to the tangent to C plus the
rotation of the tangent about C, namely 2r. In consequence of (35.19)
we have

(35.20) o = 2r — fc K, ds = ff K+/g du' d’,
S

the last expression being a consequence of theorem [34.4]. We observe
that this result is independent of the position of the point P on C' and
of the vector .

EXERCISES

1. The covariant components A, of a set of unit vectors parallel with respect to
a curve are solutions of the equation

d\g duf
=AY —=0.
ds 1{ } ds

2. For two families of unit vectors A and A\j parallel with respect to a curve
the angle between the vectors at a point is the same for all points of the curve.

3. A necessary and sufficient condition that the unit tangent vectors to the
curves u® = const. for a = 1 or 2 be parallel with respect to a curve C is that the
latter be an integral curve of the equation

{“}du7=0 (8% a).
By

4. The unit tangent vectors to a family of geodesic parallels (§32) at points of
intersection with each of the orthogonal geodesics are parallel with respect to
the geodesic.

5. When the coordinate curves of a surface form a Tchebychef net (§29, Ex. 12),
in which case the linear element is dut® + 2 cosw du! du? + du”, the tangents to
the parametric curves of either family at their points of meeting with a curve of
the other family are parallel with respect to the latter.

6. Let Py, Py, Py be the vertices of a geodesic triangle on a surface, and
6., 62, 65 the interior angles at these respective points; when the tangent vector
at P; to the geodesic PP, is transported parallel to itself around the triangle in
the direction P,P,P;P, it makes the angle = — 8, — 6, — 0; with its original direc-
tion at P, .

7. If Ae(s) is a solution of equations (35.13) and one puts A* = u%(s), where
¢(8) is any function of s, then

Loy DB R U DY Loy AL
“’(da*'“ {ﬂa} ds) “l(de+”{ﬁa}ds 0
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is independent of ¢(8), and this is the condition that a family of non-unit vectors
be parallel with respect to the curve.

8. Show that theorem [34.2] is a consequence of equation (35.19).

9. Given a field of unit vectors A= and the curves C to which these vectors are
tangent; from (35.18) one has

(i) N

where u= is the unit vector at each point P of a curve C normal to C and «, is the
geodesic curvature of C at P. Since u%, = 1, A%y, = 0, one has (see §28, Ex. 14)
Bip = VgAY,

from which and the second of equations (i) it follows that Myg = — &, and con-
sequently u%, = —x,.

36. CONFORMAL CORRESPONDENCE OF TWO SURFACES

In §27 we defined as isometric two surfaces such that there exists on
each a coordinate system in terms of which the first fundamental forms
of the two surfaces are identical. For two isometric surfaces corre-
sponding lengths are equal, and corresponding angles are equal as
follows from (25.2) and (25.3). The converse is not true, that is, the
equality of lengths is not a consequence of the equality of angles. We
consider now the case when two surfaces are in one-to-one correspond-
ence such that corresponding angles are equal. In this case the corre-
spondence is said to be conformal.

Given two surfaces S and S expressed in terms of coordinates u® and
%%, a one-to-one correspondence is established between points of the
two surfaces by equations of the form

u® = ¢a(u1’ az)v
provided the jacobian of the ¢’s with respect to the @'s is not identically
zero. If then we change the coordinates @* on S into coordinates u*
by means of the above equations, corresponding points on the two
surfaces have the same coordinates. In terms of these coordinates we
denote by g.s and §.s the components of the first fundamental tensors
of S and S respectively.

The orthogonal trajectories of the curves u' = const. on the two
surfaces are the integral curves of the respective equations (see [26.2])

(361) 012 dul + J22 du2 = 0, T2 dul + Jo2 du2 = 0.
Since these trajectories correspond, we must have

g _ gn
[}t gn'
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In like manner from the equations
(362) Jn du' + J12 duz = 0, Ju dul + J12 d’llc2 =0

of the orthogonal trajectories of the curves u* = const. we must have

Iu _ g
gu Ja )
Hence we have the three equations
(363) L‘ﬂ =7 (a9 B=1, 2)’
Gap
where r is a function of 4' and u’. Consequently
(36.4) ds® = 7 ds’.

Conversely when (36.3) is satisfied it follows from (25.2) and (25.3) that
any two corresponding angles on the two surfaces are equal, and we have

[36.1] A necessary and sufficient condition that two surfaces having two
corresponding nets of curves as coordinate curves be in conformal correspond-
ence with points having the same coordinates corresponding is that the first
fundamental forms of the two surfaces be proportional.

We say that the correspondence is direct or inverse according as corre-
sponding angles have the same or opposite sense.

In §30 it was shown that the first fundamental form of a surface is
expressible in the form

(36.5) Hdu' + du)

and that in terms of real coordinates u'* defined by (see (30.19))

(36.6) u + w’? = fu' £, W' — W’ = fo(u F ),

where f and f, are conjugate functions, the first fundamental form is
2

113

Thus the equations »'* = u* determine a conformal correspondence of

the surface upon itself, and from theorem {30.4] it follows that the most
general correspondence is defined by (36.6). Hence we have

(36.7) ((du™)? + (du™)?).

[36.2] When a pair of isometric coordinates u”* of a surface are known, the
most general conformal correspondence of the surface with itself is obtained
by making the point (u', u*) correspond to the point (u”, u'®), where w'*
are defined by equations (36.6).
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Also we have

[36.3] When for each of two surfaces a pair of isometric coordinates u*
and u’® are known, the equations w'® = u” define a conformal correspondence
of the surfaces, and by means of equations of the form (36.6) applied to one of
the surfaces all the conformal correspondences of the two surfaces are
obtained.

Thus a conformal correspondence can be established between any two
surfaces and in a great variety of ways, but it is not possible to establish
an isometric correspondence of any two surfaces, that is, the particular
conformal correspondence for which r = 1 (see §31).

If we denote by 6, and 85 the angles made at a point by a curve with
the curves u* = const. and u”* = const. on a surface with the funda-
mental forms (36.5) and (36.7) respectively, it follows from (25.6) that

. du”, du”
V(dud)? + (dud?’ V(@) + (du?)?’

which in each case is an abbreviated way of writing two equations.
From these expressions we have, since ¢”° = cos 6, + 7 sin 6, ,

. ’ . ’
cos by, sinfy = cos by, sin Gy =

1 1 . 2 1 . 2
2 _ € ° _ du +idu A — du” 4+ idu’

€ ; T .3 = S,
e dul —idu?’ du't — tdu'?

From these equations according as the first or second signs are used in
(36.6) we have

(36.8) U0 = e+ i?l}) RO _ f:(“u_rl_— ) )

folu' — )’ folu' + iu?)
If 8, and 8; are the angles made by a second curve with the curves
u’ = const. and u® = const. respectively, it follows from the first of
(36.8) that 6, — 6, = 6, — 6y, and from the second that 8, — 6=
— (8 — 6,). Consequently we have

[36.4] In the conformal correspondence of a surface with itself defined by
(36.6), angles have the same or opposite sense according as the first or
second signs are used in (36.6).

From the foregoing discussion it follows that conformal correspond-
ence is intimately related to functions of a complex variable. In treat-
ments of the latter there is extensive study of conformal correspondence
in the plane (see Exs. 1, 2).
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EXERCISES
1. For the plane referred to cartesian coordinates the equation

2
B4 ift = —

! — 12?2

defines a conformal correspondence of the plane upon itself such that the lines
z* = const. correspond to two families of circles all passing through the origin
with the centers of the circles of each family on one of the coordinate axes; also
corresponding points are on a line through the origin and their distances r and
7 from the origin are in the relation 77 = c2.

2. In terms of coordinates u® in the plane defined by

ul = gl 4 7z}, u? = x! — iz}
where z* are cartesian coordinates, an equation of any real circle not passing
through the origin is of the form
(1) aulu? + bu' + cu? +d = 0,
where a and d are real numbers, and b and ¢ are conjugate imaginaries. The
equations
_udta 2 o DB b

.s 1= — o
(u) u as ul + Ay ! u b; u? + b4

define a conformal correspondence of the planc upon itself such that circles
correspond to circles or straight lines.
3. For the unit sphere with the equations

ul + u? , i —w) ,_wur—1

= — 2= -— = ——
14+ wtu?’ 14 utu? ' 1+ wtuz’

xl
u! and u? being conjugate imaginaries, cquation (i) of Ex. 2 is an equation of a
circle on the sphere, and equations (ii) of Ex. 2 define a conformal correspondence
of the sphere with itself in which circles correspond to circles.
4. When in Ex. 3 the second of equations (ii) in Ex. 2 is replaced by

w = Q@ — a;

—a @+ a1 ’

the correspondence of the spherc with itself is isometric, and defines a rotation of

the sphere into itself, when the a’s are chosen so that the correspondence is real.
5. The equations of Ex. 3 and

= é(u’ + u?), it = (u? — )

)
2
for the plane define a conformal correspondence of the sphere and the plane, such

that corresponding points are on the line with the equations

xt X x-1
ut 4wt (u?—ul) -2’
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where X are cartesian coordinates in space; thus corresponding points lie on a
line through the point P (0, 0, 1), and consequently a line in the plane corresponds
to the circle on the sphere which is its intersection by the plane determined by
P and the line; this correspondence is called the stereographic projection of the
sphere on the plane.

6. When two surfaces S and S are referred to coordinates u® and g = §, cor-
responding elements of area (sce §25) are equal, and the correspondence is said
to be equivalent. 1f g > §and one effects the change of coordinates u't = (ul, u?),
u’? = u? on S, where ¢ is defined by

Vgl w) = \/a(w,u)a 1

then g’'(u"t, u'?) = §(u'l, u’?), and consequently an equivalent correspondence
between S and S is defined by the equations u’t = ut, u’* = ut.

7. Let S and 8 be two surfaces such that the points with the same coordinates
ue correspond, and let g.s and §.s be the first fundamental tensors of S and §
respectively; if.the correspondence is not conformal, on each surface the integral
curves of the equation obtained from equation (26.24) when a.p are replaced by
§as form an orthogonal net, as follows from theorem [26.4]; if the correspondence
is conformal, any orthogonal net on one surface corresponds to an orthogonal
net on the other surface.

37. GEODESIC CORRESPONDENCE OF TWO SURFACES

In this section we consider the relation between two surfaces S and 8
in one-to-one correspondence such that to each geodesic on either surface
there corresponds a geodesic on the other, corresponding points having
the same coordinates, as shown in §36. In this case the two surfaces
are said to be in geodesic correspondence.

Since the arc of a curve is peculiar to the curve and thus cannot be
taken as a common parameter of corresponding curves on the surfaces
S and S, it is necessary to express the equations of the geodesics in
terms of some common parameter ¢, that is, 4* as functions of ¢. In
consequence of (32.27) we have as equations of the geodesics on the
surface S in terms of a general parameter ¢

du' (d* { 2\ d® du’) du’ (d’u‘ {1}du’ du") _
(87.1) az(zﬁ+mmaf a\ae T\evf @t &)
In like manner equations of geodesics on S are

du' (& | (2 dv’ du") du’ (dzul T\ d’ du’) _
(87.2) 747(%2“+{37 @ a) a\aE e a @)=
o«
By i
fundamental tensor §.s of S. Since it is understood that the coordinate

where the Christoffel symbols are formed with respect to the
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curves on S and S are such that the points on the two surfaces with
the same coordinates correspond and that the parameter ¢ is the same
for both surfaces, on subtracting equations (37.1) from (37.2), we obtain

du' dit | >du’9 du”
(37.3) <EZ agy — W Qagy "g{ W

where

wo  wef)

If we denote by {;y} and { Bo;} the Christoffel symbols for a coor-

dinate system ' it follows from equations (32.1) and analogous equa-
tions for S that

=0,

« 0P ou n ou’

WY um gu M g
which are equivalent by (24.22) to

2 ap, 300
W T Bl u” dus
Hence, ag, are the components of a mixed tensor, contravariant of the
first order and covariant of the second order (see §20, Ex. 11), sym-
metric in the indices 8 and v as follows from (37.4).

Equation (37.3) must be satisfied identically; otherwise we should
have an equation of the first order and third degree satisfied by all the
geodesics; this would mean that through each point there would pass
at most three geodesics. Thus it could not be true that a geodesic
passes through a given point in any given direction. In order to obtain
the conditions upon the tensor ag, so that equation (37.3) shall be an
identity, we observe that this equation may be written in the form

duf du” du'
a B ek @ ;LT T =
(8 aby — 8oy dt dt dt

for @ # u and that the latter is an identity for @ = u. If these equa-
tions are to be satisfied identically, we must have (see §19, Ex. 5)
8l ah, — dhagy + 05 dye — dsaqe + S5aks — dyags =0.

Contracting for u and ¢, that is, putting 4 = ¢ and summing with
respect to ¢, and noting that 5; = 2 and that ag, is symmetric in g8
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and vy, we obtain as a necessary condition
3agy = dgaye + 850
Since ag, is a tensor, a5, is a covariant vector, which we denote by
3a, (see §19). From this result and (37.4) we have
37.5 “\={"‘\+a"a + 8505
(87.5) {ﬂvf Byf T T

When these expressions are substituted in (37.2), the resulting equation
reduces to (37.1), and consequently (37.5) are sufficient as well as
necessary conditions that S and S be in geodesic correspondence.

Contracting equations (37.5) for « and 8, we have in consequence.of
the third of equations (28.2)

From (25.8) it follows that §/g is a scalar, and consequently a, is the

gradient, that is a, = —:—:;' , where ¢ = élog g Hence we have

[37.1] A necessary and sufficient condition that two surfaces with funda-
mental tensors g.s and Jas be in geodesic correspondence s that their
Christoffel symbols be in the relation

(37.6) {5‘; } = {"‘7} + 850y + 05045

the function ¢ is equal to é log g

If we denote by B, the Riemann tensor for g.s , we find from (37.6)
and (20.13)

(37.7) R'sys = R'sys + 8508y — 85 081,
where
(37.8) P8y = Py — PBPa,

¢.8y being the second covariant derivative of ¢ based upon gags .
From (28.5) and (28.3) we have

(37.9) Ry = ¢'"Rapys = K(8798 — 3igsr)-
Contracting for ¢ and §, we obtain, since §; = 2,

(37.10) Rp, = —Kgp., .
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Contracting (37.7) for ¢ and 8, we have

(37.11) Rey = Roy + ey,
from which, (37.10), and a similar equation for Bs, we have
(37.12) voy = Kggy — Kgﬁ'm

where K is the Gaussian curvature of S.
We consider, in particular, the case when K is a constant. From
(37.8) and (37.12) we have

(3713) Pap = PaP.B + Kgaﬂ - Kﬁaﬂ .
Finding the covariant derivative based upon the tensor g.s , we have

(37.14) Py = Py @8 T CaPpy — K.vgaﬂ - Kgaﬂ.'v .

From equations similar to (28.2) we have

00ap _ 81, . [3)
Pl gsa{mj + Jas {ﬂ'y}’

from which on substituting from (37.6), we obtain

Japr = 2Jap 0y + oy 0 + Jav 0.8 -

Substituting this expression in (37.14) and replacing the §.s by their
expressions from (37.13), we obtain

Papy = 2(¢.a eoy T 08Pra t o ‘P.aﬂ) — 400080,y

(37.15) _
— K(2¢as ¢v + G5y 0.0 + Gra08) — Koyfas

from which it follows that

Py — Pavs = K(fay 0.8 — Jap 0.7) — K.vgaﬂ + K.ﬁga‘r .
From the appropriate Ricci identity (22.19) and (37.9) we have

Puapy = Cavp = ¢, Rapy = ¢,.K(55{]a7 - 5;9-15) = K(fay 086 — ap 7))
and consequently
K.'/gaﬁ - K.ﬂga'/ = 0.

From these equations we have that K is a constant, since the deter-
minant of §n.s is not equal to zero. Hence we have the theorem of
Beltrami:*

*1869, 2, p. 232.
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[37.2] The only surfaces in geodesic correspondence with a surface of con-
stant Gaussian curvature are surfaces of constant Gaussian curvature.

We consider in particular the case when K = 0 and assume that the
coordinates u” are cartesian. In this case the covariant derivatives
of ¢ in (37.15) are ordinary partial derivatives. If then we put ¢ =
—3 log 6 and thus understand that 6 > 0, equation (37.15) reduces in
this case to

X
(37.16) oo O

and from (37.13) we have

Jap = 4Kr~02 (200 0,,0,3).

The integral of (37.16) is
0 = aguy’ + bau® + ¢,

where aqs , be and ¢ are constants. By suitable transformations of the
cartesian coordinates this expression for 8 is reducible to one or the
other of the forms*

0 = au™ + ¢, 0 = au' + 2bu’ + ¢,

depending on the values of a.s. The expressions for §.s for these ex-
pressions for 6 are respectively

37.17) gu, f, 02 a(au’” + o), —mau' v, a(au” + ¢)

g = — —

K(a.u™ + ) '
and

. a(2bu? + ¢), —abu!, —b*
37.18 , iz, = - : .
( ) Ju, G2, G2 K(auﬂ T 2w + o)

From these expressions we have respectively

mee —ab’
Ka.u"* + ¢)* K(au' + 20u* + ¢)¥
The constants and the domains of the variables must be such that

§ > 0. Also both §i; and §z2 must be positive. This means for (37.18)
that K is negative, since 6 is necessarily positive.

g:

*C. G, p. 227.
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We return to the consideration of the general case and assume that
the surfaces S and S are referred to the orthogonal net on 8 which cor-
responds to an orthogonal net on S (see §36, Ex. 7). In this coordi-

nate system equations (37.6), on putting ¢ = —3% log 0, reduce to (see
§28, Ex. 1)
0108 faa _ 9 Joa 910g Jea _ O Jaa
i L L v i v

Tos 9 g 0 6~ a)
Expressing the condition of integrability of the first two of these equa-
o log 0
ou! u?
and U, are functions of u' and u® respectively, both having the same
sign since 6 must be positive. Then from the first two of the equations

tions, we obtain = 0 and consequently 6 = U,U,, where U,

we have fo. = —(%'—ZT (8 # a). When these expressions are substituted
alUp
in the third of the above equations we find that
Jaa = (U« - Uﬂ)ﬁaa(ua)'

Hence by a suitable choice of the coordinates without changing the
coordinate lines the fundamental forms of S and S are reducible to the
respective forms

12 92
(37.19) (U — Ua)(du™ + du®), (U12 - %)(‘% + %)
Consequently we have the theorem of Dini* (see §32):
[37.3] A necessary and sufficient condition that a surface be in geodesic
correspondence with another surface ts that it be a surface of Liouville.
EXERCISES
1. When the equation (37.3) is written

dut\? dul \? du? du! [dut\? du?\?
ot () + st - (5 ) 5+ et =2t G (5) - o () =0
the condition that it be an identity is
ai, = 2‘132 —ap = 20{2 —ajy=aj; =0,

which are equivalent to

aj, = % (85a}, + 83a3,) = 85a, + 85a,.

* 1870, 1, p. 278.
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2. The results of Ex. 1. follow also from the equation of §32, Ex. 7.
3. Since the first of the forms (37.19) is not altered when U, and U, are replaced
by U1+ aand U: + a, where a is a constant, the second of (37.19) may be replaced

by
11 dut® | _du’
Ui+a Ui+a/\Ui+a Us+a)’

4. For asurface with the first fundamental form

w* - u")(v’(u') dut* + ¢ (%) du”),
u

1 1
the correspondence defined by u! = ' ut=— is a geodesic correspondence of the
u

surface with itself.
5. From (37.7) and (37.11) one finds that

Wegys = Wi,
where
Wegys = Reg,s + 6,Rg — 8iRy,,

and similarly for W'ﬁ,, . Thus the tensor W¢z,; has the same components for two
surfaces in geodesic correspondence. Determine under what conditions it is a
zero tensor.

6. From (37.6) one has II§, = II§,, where

R G

and similarly for I, . Thus the quantities II§, are equal for two surfaces in
geodesic correspondence. In terms of these quantities equations (37.1) and
(37.2) become

(Bf} ‘12_1‘2_1_112 (ilfgu_" ___(,112 112_1{‘+n‘ _d_uﬂ@ =90
dt \ de BT dr dt dt \ de Brdt dt



CHAPTER 1V
Surfaces in Space

38. THE SECOND FUNDAMENTAL FORM OF A SURFACE

In the preceding chapter we considered a surface in space defined by
three equations

(381) g = f‘.(ul’ u2) (= 1, 2, 3)1

where z° are cartesian coordinates. Applying the euclidean metric we
found that lengths of arcs and angles between curves in the surface are
expressible in terms of the first fundamental tensor g.s defined by

_ ox' 3z’ _ "
(38.2) gt = 20 o (a8 =1,2).

Thus the euclidean metric of space induces a metric on a surface ex-
pressible in terms of the tensor g, . Throughout the preceding chapter
we considered the geometry of a surface in terms of this tensor, and
without any further reference to the character of the surface as viewed
from the enveloping space. From this point of view any two de-
velopable surfaces are equivalent to one another, and to a plane, that is,
have the same metric properties. Also any surface isometric with a
surface of revolution is equivalent to the latter. However, as viewed
from the enveloping space two such surfaces may be entirely different
in form. It is this question of the geometry of a surface as viewed
from the enveloping space which is the subject of the present chapter.
This study involves the consideration of the form of a surface in the
neighborhood of an ordinary point and its position relative to the
tangent plane at the point.
In §10 quantities A* were defined by

1o a(fi’ fl)
(38.3) AV = Bt )’
and it was shown in §11 that the tangents to all the curves through an

ordinary point z*, that is, one for which the three quantities 4" are not

* In what follows Latin indices take the values 1, 2, 3 and Greek indices the
values 1, 2.

212
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all equal to zero, lie in a plane containing this point, called the tangent
plane, and that an equation of the plane is

(jl _ xl)A23 + (1.:2 _ I2)A31 _+_ (23 _ xﬂ)Al‘Z — 0,

where z* are current coordinates.
In consequence of the identity

(384) g =|ga| = gugn — gio = (A% + (4% + (4",
established in §24, the quantities X* defined by

oz’ ax"
. 1 . 1 |out  ou!
(38.5) X'= A= . ) ,
Vg V| ort
ou?  ou?

where 7, 7, £ take the values 1, 2, 3 cyclically, are such that
(38.6) XX =1

Accordingly an equation of the tangent planc is

(38.7) 2 X'(@E - 1) =0,

and X" are direction cosines of the normal to the surface at the point z°,
that 1s, the normal to the tangent plane at the point.
From (38.5) it follows that*

(38.8) X gi =0 (a = 1,2),

and using (38.4) one may verify that
[ A

ou'  ou' ou!

(38.9) oz’ oa' or’ = Vgt
au?  ou? oul
X' x* X

oz . . .
-, are the direction cosines
L

1
We have fr 24.4) and (24.8) that - —
e have from (24.4) and (24.8) tha Via o

* C. G., Theorem [26.4].
t In (38.5) and (38.9) /g means the positive square root; this convention is
always used.
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of the vector from a point 4” on a surface tangent to the curve u’ =
const. and in the direction in which u' is increasing; and similarly for

Lo
Vg2 0u?
surface is an orthogonal net, equation (38.9) expresses the fact that the
positive tangent vectors of components %, %ﬁ and the normal vector
X' have the same mutual orientation as the z'-, 2°-, and z’-axes.* If
the coordinate curves do not form an orthogonal net, we consider the

and the curve u' = const. Hence if the coordinate net on a

)

X

u?- const.
1 o
Vg., ou"
Fic. 12

result of applying a positive transformation so that the new coordinate
curves shall be the given curves u* = const. and their orthogonal
trajectories, the equations of such a transformation being of the form
' = o', ¥), w* = w*. Then equation (38.9) transforms into an

equation of the same form in consequence of (25.13) and positive sense
in the surface is unaltered as shown in §25. Hence the mutual orienta-
. 1 o' 1 92
tOrs ——— |
tion of the vectors Va0’ Viw 0w’
ever be the coordinate curves.

*C. G., p. 162.

X’ is as shown in Fig. 12 what-
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For a curve in the surface through two nearby points z* and z° we
have

i $ dx‘ 1 d’x" 2
1 = il i (el
(38.10) =z +(ds)os+2(ds,>os + ...,

where a subscript zero indicates the value of a quantity at z* and s is
the arc from the point 2°. Since ' are functions of the coordinates u®,
we have

dr' _ 9z’ du® &z’ 82 dutdd’ | o7’ du”

@ID) = Gn T dF ~owaw ds ds T wr e

Consequently because of (38.8) the distance p of the point P;(Z) from
the tangent plane (38.7) at P(z) is given by*

_1 du® du
(38.12) p= (wgg 3 + B,

where B indicates the sum of terms of the third and higher orders in s,
and where by definition

. 62 Ii
1 g = ' .
(38.13) das Z X ou® oup

In consequence of (38.8) equations (38.13) are equivalent to

(38.14) dag = 2 X'hag,
7
where x’.s is the second covariant derivative of z°, that is,

i ' ' [y
(8.18) ot = G ow {aﬁ}‘

Since z' being functions of u* are scalars as regards a change in the
coordinates u°, as are also X°, it follows from (38.14) that d.s are the
components of a symmetric covariant tensor of the second order, being
the sum of three covariant tensors each multiplied by a scalar. It is
called the second fundamental quadratic tensor of the surface, and
dag du® du’ is called the second fundamental quadratic form of the surface.
It is shown in §39 that a surface is completely characterized by its first
and second fundamental forms and thus that the distinction between
two isometric surfaces as viewed from the enveloping space is based
upon their respective second fundamental forms. Two surfaces which
have the same first fundamental form but different second fundamental
forms are said to be applicable.

*C. G., p. 9.
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Gauss,* who introduced the second fundamental form, used the ex-
pression Ddp’ + 2D'dpdg + D" dg’, as have many subsequent
writers. We have adopted the expression d.s du® du’, since it enables
one to write equations in simpler form with the use of the summation
convention.

From (38.13) and (38.8) we have

axX* ox' aX* oz
(38.16) daﬁ = - Z u* auﬂ Z 6115 6?&“.

Since X' are scalars as regards a change of coordinates %, it follows
again from (38.16) that d.s are the components of a symmetric covariant
tensor of the second order.

If we differentiate equations (38.2) with respect to 4’ we obtain

5 02 s S o
du® qu duP T oufouY dur  Qur’
If we permute the indices «a, 8, v cyclically twice, we obtain the two
equations

018 due au“ FI% T ow out P qus’

Z oz’ 8’z 9z’ _ agay

> E ghfi ) 3’z 07 _ 8¢

T 0w ouP gu T oucouf gur 0w
Subtracting from the sum of these two equations the preceding one, and
making use of the definition (20.1) of the Christoffel symbols of the
first kind, we obtain

o'z' ozt
(38.17) Z us dubf gu”

From this result and (38.15) we have (see (20.4))

oz' ax* P>
Z xaﬂ a y [aﬁy 7] u,y aua {a } [aﬂ, ’Y] {aﬂ} = 0.

Comparing these equations with (38.8), we have that z',s is some
multiple of X, say 2las = hesX'. Multiplying by X* and summing
with respect to 7, we have from (38.6) and (38.14) ks = das , and conse-
quently the following equations of Gauss:t

(38.18) Ths = dap X'

* 1827, 1, p. 234.
t 1827, 1, pp. 233, 234.

[C‘B) 'Y]-
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We wish now to find expressions for g . From (38.6) it follows that

X’
za: X' e 0

from which it is seen that (;—‘:f; for each value of « are direction numbers

of a vector orthogonal to the normal. Hence each such vector is a

linear homogeneous function of the two tangential vectors % . Thus
we have

X' p) oz’
ous % ouf’

where the expressions for # are to be determined. In order to find

these expressions, we multiply both sides of the above equation by Z—E

and sum with respect to 7, and in consequence of (38.16) and (38.2)
obtain

—day = tigﬂfv .

Multiplying both sides of this equation by g”° and summing with respect
to v, we obtain because of (24.16)

£ = —dug™.
Consequently the desired equations are

aX'. _ ¥8 a.’l)i

(3819) qus ayd W

EXERCISES

1. When d,s = 0, it follows from (38.19) that the surface is a plane.
2. When

du_dn_dn

— = (#0),
gu 2 ¢gn
axXs oz .. . i
it follows from (38.19) that = tﬁ . From thc conditions of integrability
ua a

of these equations it follows that ¢ is a constant, since g 0. Hence X* = —tz* 4 a’,
and the surface is a sphere.

2yt

. . . . diz .
3. If a straight line lies entirely on a surface, Pl 0 along the line. From
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(38.11) and (38.13) it follows that the line is one of the integral curves of the equa-
tion

dog dus duf = 0.
4. For a surface of revolution with the equations
' = u! cos u? z? = yu! 8in u?, = o(ul),
one finds that
— ! —_— ’ H
X1, X2, Xt = @' cos u?, — ¢’ sinu?, 1

V147 ’
" 1,/

dlly dmy dyg = '&u .

\/1 + o

5. For a helicoid with the equations (see §24, Ex. 6)

! = u! cos u?, z? = ulsin us, 8 = o(ul) + au?,
one finds that

asinu? — ulp’ cos u?, — (acos u? + u! ¢’ sin u?), u!

X1, X1, X* = ,
Vul(l + ¢ + a?
u]'P”v —a, ul’ ¢,
dll; dl’y dn = e .
w1+ +a

6. Two points z‘ and £ are symmetric with respect to the point z§ , if and only
if ' + &' = 2z}. Two surfaces symmetric with respect to a point are isometric,
and their second fundamental forms differ only in sign.

7. For any surface

Mzt =1- X2 A, 2h) = - XiXi @ 3,

where the differential parameters are formed with respect to gag (see §29).

39. THE EQUATION OF GAUSS AND THE EQUATIONS OF
CODAZZI

In order that tensors g.s and d.s be the fundamental tensors of a
surface it is necessary that the conditions of integrability of the equa-
tions (38.18) be satisfied, that is,

(39.1) x.iaﬁv - x.iavﬁ = x.iaR’ah ’

as follows from equations of the form (22.19). By means of (38.19)
these equations of condition are reducible to

or’
ou’

(da'ydﬁ. - d"ﬂd7‘ - R‘aﬁ‘Y)gﬂ + (daﬂ,1 - du‘y,ﬁ) X“ = 0,
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since R'apy = ¢ ‘Reapy (see (20.15)). If these equations are multiplied
by 2_25 and summed with respect to 7, we get, by means of (38.2), (38.8),

and (24.16), the first of the following equations, and the second, when
the above equations are multiplied by X' and summed with respect to ¢:

Qaydps — dapdys — Riapy = 0,
daﬂ,‘y - day,ﬁ = 0

Because of (28.3) the first set of equations (39.2) which are not satisfied
identically are equivalent to

(39.2)

(39.3) duds — dis = Rus .
From this result and (28.5) we have the equation of Gauss*
(39.4) K = Buon _ dudn — di

g gngee — gha

Since d.s is a symmetric tensor, the second set of equations (39.2)
consists of the two equations

(39.5) dan.ﬁ - dﬂB,ﬂ = 0 (a ;é ﬂ);

they are known as the equations of Codazzi because they are equivalent
to equations derived by him.f Equivalent equations had been derived
earlier by Mainardi.f When the expressions for the covariant deriva-
tives in (39.5) are written out, these equations become

ddea  9dap 8 s\ _
(39.6) P Bl das {aﬁ} + dss {aa} =0 (a # B).

When equations (38.19) are differentiated covariantly with respect
to «’, on noting that the covariant derivative of g.s is zero by theorem
[28.3] and making use of (38.18), one obtains

‘ a' ‘
X,a! = - gw (da-r.& a—z—a + da'ydeX ) .

Since X' are scalars, the condition of integrability of (38.19) is X s =
X% . This condition is satisfied because of the second set of (39.2),
that is, the Codazzi equations.

Having shown that the first and second fundamental tensors of a

* 1827, 1, p. 234.
1 1869, 3, p. 275.
11856, 1, p. 395.
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surface satisfy the equations (39.3) and (39.5), we inquire whether two
tensors satisfying these equations are the fundamental tensors of a
surface. This means that there must exist solutions z* and X" of equa-
tions (38.18) and (38.19) which satisfy the equations (38.2), (38.6) and
(38.8). In order to answer this question we put

6117‘ i
(39.7) e Da
in terms of which equations (38.18) and (38.19) are

apfx i) ) ¢
(39.8) o = P {aﬁ} + ds X', e

and equations (38.2), (38.6) and (38.8) are
(39.9) 2 pipi=gs, 2X'X'=1 X X'pi=0.

= —d,,,gwp; )

Equations (39.8) and (39.9) constitute a mixed system of the type con-
sidered in §23. The conditions of integrability of equations (39.8) are
satisfied because of (39.3) and (39.5), this being in fact the manner in
which equations (39.3) and (39.5) were obtained. Equations (39.9) are
the set K, in the terminology of §23. When they are differentiated it is
found that the resulting equations are satisfied in consequence of (39.8),
and consequently there are no sets E,, E,, --- ,in the terminology of
§23, to be satisfied. Equations (39.9) constitute six conditions upon
the nine functions p% and X*, and thus by theorem [23.2] for a mixed
system the solution of the mixed system involves three arbitrary con-
stants. When such a solution is given the equations of the surface are
given by the quadratures

(39.10) 2t = f Padu® + 1,

as follows from (39.7), where b* are three additional constants. From
the second and third of (39.9) it follows that X* are the direction cosines
of the normal to this surface.

We give an interpretation of the six arbitrary constants involved in
the present problem. We observe that if z° and X* constitute a solu-
tion of equations (38.2), (38.6), (38.8), (38.18), and (38.19), so also do
the quantities &° and X* defined by

(39.11) & =dz +0, X=X

where the a’s and b’s are constants and the a’s are subject to the six
conditions
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(39.12) 2 il = 8. (G, k=1,23).

From the form of the first set of equations (39.11) and from (39.12)
it follows that two surfaces defined by z* and &' may be obtained from
one another by a rotation and a translation, that is, by a motion. Since
these equations of motion involve the same number of arbitrary con-
stants as the general solution of the present problem, it follows from
the above discussion that any two surfaces with the same tensors g.g
and d,g are transformable into one another by a motion in space. Hence
we have

[39.1] T'wo sets of functions g.g and d.s which salisfy the equations of Gauss
and Codazzr and such that g > O are the components of the first and second
Jundamental tensors of a surface which is determined to within a motion
in space.

EXERCISES

1. When a surface is defined by an cquation z3 = f(z!, 2?) (see §25, Ex. 2), one
finds that

— o, =, 1
X0 X0, X0 = By iy dy = TR
T+ pi+p; '\/l+pl+p2

where

0z 0223

Pa=a?; Taﬁ=agé_;g (ayﬁ" 112)

2. For a right conoid with the equations (see §10, Ex. 4)
! = ul cos u?, 2?2 = yu! sin u?, 3 = p(u?),
one finds that
sin u?¢’, —cos uy’, u!
Vot
0, —¢, ule”

Ver+ut!

the locus of the normals to the surface along a generator is a hyperbolie
paraboloid.
3. For a central quadric with the equations in §10 Ex. 3 one finds that

xé 1/ ajarla; — u) (a; — u)
= ulut(a; — ag) (e —ap)’

X, X2, Xt =

du, dlz, dn =
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where ¢, j, k take the values 1, 2, 3 cyclically, and

1 aya:as u® — uﬁ
dog = —> 1/ . dy=0.
4 wwr (a — u®(az — u®) (as — u%) Ba), da=0

4. For a paraboloid with the equations of §30, Ex. 7 one finds that
Xy, Xa, X»

_a*Va - e Vi Ve Ve —a VI F a1 + aw), — Vaa

A
i — a _ o8
daa = ! 1/ﬁ @ gz)‘(}"“—‘lf) (8 # a), diy = 0,

a: Au*(l + ayu®

where

A = V(e — el — a [ar(ar — an)u? — as).

40. NORMAL CURVATURE OF A SURFACE. PRINCIPAL
RADII OF NORMAL CURVATURE

Consider any curve C upon a surface. Its tangent vector %% at
any point P is perpendicular to the principal normal and binormal to
the curve and the normal vector X' to the surface. These three vec-
tors are shown in Fig. 13 lying in the plane of the paper, and it is under-
stood that the tangent vector to the curve at P is normal to the plane
of the paper and is directed toward the reader; the line PR represents
the line of intersection of the plane of the paper and the tangent plane
to the surface at P. Denote by & (see Fig. 13) the angle made by the
normal vector X* with the principal normal, whose components are
denoted by 8.  Hence on making use of (4.7) we have

23
(40.1) cos & = ZX‘p":pZX‘%g,
where p is the radius of curvature of C at P. In consequence of (38.11),
(38.8), (38.13), and (24.6) we obtain from this equation

cos & _ dagdu”du’

(40.2) = radudi

Thus co%o is equal to the ratio of the values of the second and first

fundamental quadratic forms of the surface for the direction of the
curve at P, that is, for differentials du” giving the direction of the
tangent to the curve at P.

Since the right-hand member of (40.2) is completely determined by
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the values of the differentials du®, it follows that the quantity E(—)%—‘-"
is the same for all curves through P having a common tangent at P,
denoted by PT. Since by hypothesis p is a positive quantity, it follows
that according as cos & is positive or negative for one of these curves it
is the same for all of the curves. For a curve whose direction at P
satisfies the equation ’

(40.3) das du” du’ = 0,

either 1/p = 0 at P or the osculating plane at P is the tangent plane
to the surface at P as follows from (40.2).

X

1

bn.

F1a. 13

Consider, in particular the plane curve in which the surface is cut by
the plane determined by the normal to the surface at P and the tangent
PT called the normal section of the surface for the direction PT. In
this case & is 0° or 180° according as the principal normal to C' and the
normal X* have the same or opposite directions. If we denote by pn
the radius of curvature of this plane curve at P, assumed to be positive,
we have

(40.4) coS @ e

)
4 Pn

where ¢ is +1 or —1, according as the principal normal to C and the
normal X* have the same or opposite directions.
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Hence we have the theorem of Meusnier:*

[40.1] The center of curvature at a point P for a curve on a surface is the
projection upon its osculating plane of the center of curvature of that
normal section of the surface which s tangent to the curve at P.

If now we define a quantity R for a direction du® at a point u* by

1 cosa  dapdu*du®
(40.5) R™ b gudwdd

it follows from (40.4) that the absolute value of R is the radius of
curvature of the normal section of the surface for the given direction,
and that R is positive or negative according as the normal of the plane
section at u® and the normal X to the surface have the same or opposite
directions. The quantity R defined by (40.5) is called the radius of
normal curvature of the surface at a point «* for the direction du®.

A normal section of a plane being a straight line, 1/R = 0 in this
case. A normal section of a sphere being a great circle R is equal to
the radius of the sphere. In both these cases the value of R does not
vary with the direction du®. Conversely, if R is not to vary with du®,
it is necessary and sufficient that des = 0, or that d,s be proportional
t0 gas ; in the former case the surface is a plane, and in the latter a
sphere (see §38, Exs. 1 and 2).

In order to find the directions at a point on a surface for which 1/R
is 8 maximum or minimum, we note that equation (40.5) is of the form
(26.26). Consequently these directions are given by the values of du”
satisfying the equations

(40.6) <d‘,‘9 — }ggaﬁ) au’ =0,

as follows from (26.17) and the discussion following (26.26), and the
corresponding values of 1/R are the roots of the determinant equation
|

(40.7) = 0.

1
deg — B 9=

Thus the directions sought are the principal directions for the tensor dag ;
these directions are called the principal directions of normal curvature.
They are given by the equation

dm du" dza du“

(40.8) =

)

Gra dU”  goo du”
* 1776, 1, p. 489.
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as follows from (26.23), and they are real by theorem [26.4]. When
theorem [26.5] is applied to this case, we have

[40.2] At each point of a surface, other than a plane or a sphere, equation
(40.8) determines the two directions for which the normal curvature is a
maximum or minimum, these directions being perpendicular.

The values of R for these directions, called the principal radii of
normal curvature, are the roots of the equation (40.7), that is

(409) (dndzg - dfz)R2 - (dugn + dzzgu - 2dl2gﬂ)R + g = 0.

If these roots are denoted by p; and pq , it follows from (40.9) and (39.4)
that

(40.10) 1 _dudn—dir _

K,
p1p2 g

(40.11) K, = lv + 1 - guds + gudu — 2gi2die

= g% d.s.
p1 P2 g g i’

From (40.10) we have the following theorem of Gauss:*

[40.3] The curvature K at a point of a surface s equal to the reciprocal of
the product of the principal radiv of normal curvature at the point.

The quantity % + 5, denoted by K, is called the mean curvature
1 2

of the surface at a point. Equation (40.11) gives its expression in terms
of the two fundamental tensors of the surface.

Ordinarily the principal radii at a point are unequal, but there may
be points at which they are equal. Such a point is called an umbilical
point. From (40.10) and (40.11) it follows that

[40.4] A necessary and sufficient condition that a point u® be an umbilical
point is that at the point

o 4
(40.12) (97 dap)® = g(du e — dia).

From geometric considerations it follows that every point on a sphere
is an umbilical point. For this reason an umbilical point is sometimes
called a spherical point.

The centers of curvature of the principal normal sections of a surface

* 1827, 1, p. 231,
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at a point, that is, the normal sections in the principal directions, are
given by

(40.13) i =z’ + p X", s = 2 4+ ;X

These centers are called the principal centers of curvature for the point.

When the Gaussian curvature K is positive at a point P of a
surface, the principal radii have the same sign. Since in this case
dudes — diz > 0, as follows from (40.10), the second quadratic form
das du® du® has the same sign at a point for all values of du®, there
being no real values of du® for which the quadratic form is equal to
zero. Consequently it follows from (38.12) that points in the neighbor-
hood of P lie entirely on one side of the tangent plane. A surface at
all points of which K is positive is called a surface of positive curvature.

When K < 0 at a point P, the principal radii differ in sign. In this
case equation (40.3) defines two real directions at P for each of which
R is infinite. From theorem [26.4] we have that the bisectors of the
angles between these directions are the principal directions at P. Since
the principal radii differ in sign and since the second fundamental form
for a point can change sign only at the directions given by (40.3), it
follows that in the neighborhood of P part of the surface lies on one side
of the tangent plane and part on the other, these parts being separated
by the two branches of the curve in which the surface is cut by the
tangent plane at P, the tangents at P to these branches having the
directions given by (40.3). A surface at all points of which K < 0
is called a surface of negative curvature. From the considerations of
this and the preceding paragraph it follows from geometric considera-
tions that ellipsoids, hyperboloids of two sheets and elliptic paraboloids
are surfaces of positive curvature, and that hyperboloids of one sheet
and hyperbolic paraboloids are surfaces of negative curvature.

When K = 0 at a point, the directions given by (40.3) coincide,
since in this case dude — diz = 0, and for this direction R is infinite.
In this case the coefficient of 4s’ in (38.12) is a perfect square and the
question of whether the distance phas always the same sign dependson the
terms of higher order. Consider, for example, a cylinder whose cross-
section has a simple inflection at a point P. K = 0 for all points of the
surface, and the surface lies on both sides of the tangent plane along the
generator through P.

EXERCISES

1. If a segment equal to twice the radius of normal curvature for a direction
PT at a point P on a surface is laid off from P on the normal to the surface in the
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appropriate direction, and a sphere is described with the segment as diameter, the
circle in which the sphere is met by the osculating plane of any curve through P
and with the direction PT is the circle of curvature of the curve.

2. When the coordinate curves of a surface are such that g13 = di2 = 0, 1/R
is & maximum or minimum in the direction of the coordinate curves, and

I _du 1 du
P gn ’ P2 g !
in this coordinate system the points, if any, for which dy1g22 — dag1n = 0 are
umbilical points.
3. Show analytically that each point of a sphere is an umbilical point.
4. The tangent to the merdians and parallels of a surface of revolution are the
principal directions at each point of the surface; the principal radii of a surface
with the equations of §10, Ex. 2 are given by

’

1 wl’ l p
p (14 )32’ o ul(l 4 o2)/2’

(see §24, Ex. 3 and §38, Ex. 4); p, is the segment of the normal between the point
of the surface and the axis of the surface.

5. Let Py denote the center of normal curvature in the direction bisecting the
principal directions at a point P of a surface, and P, and P, the centers of normal
curvature in directions equally inclined to this bisector; then P, P, , Py , Paform a
harmonic range.

6. Let R, R2, --- , R, denote the radii of normal curvature for m (> 2) direc-
tions such that the angle of two adjoining directions is 2= /m; then

el o) -1(4d)
m\R: R, Rm 2\p  m/’

7. From §30, Ex: 6 and §39, Ex. 3 it can be shown that the points

a\a — — a
o= :h/‘/ 1y a:)’ 2 =0, = & /‘/ai(f_’ l)
a, — as a — as

are umbilical points of an ellipsoid, and

a:‘=i/t/a'(a'_a’), xz___i/‘/az(az—ax)’ o =0

a) = Qz as —

of a hyperboloid of two sheets; and that there are no umbilical points on a hyper-
boloid of one sheet.

8. The principal radii of normal curvature of the surface of revolution of a
parabola about its directrix are in constant ratio.

9. The surface of revolution of a circle of radius a about a line in the plane of
the circle at the distance b(> a) from the center of the circle is called a torus; the
Gaussian curvature of the surface at a point P is positive, zero, or negative ac-
cording as the distance of P from the axis is greater than, equal to, or less than b.
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41. LINES OF CURVATURE OF A SURFACE

The integral curves of the differential equation (40.8), that is, the
equation

(dugrz — dign) du” + (Augn — dngy) du' du’
+ (digmr — dge) ™ = 0,

are called the lines of curvature of a surface. We have seen that they
form a real orthogonal net, and that the tangents to the two curves of
the net at a point are the principal directions of normal curvature at the
point. We now give another characteristic property of the lines of
curvature.

The normals to a surface at points z* of a curve C form a ruled surface,
whose equations in parametric form are

(41.2) i =2+ X,

(41.1)

the quantities z*, X* being expressed in terms of the arc s of C, and ¢
being a second parameter, namely the distance of the point &* from
the point z°. In order that the ruled surface be the tangent surface of
a curve I', and thus a developable surface, the normals to the given
surface being the tangents to T, the equation ¢t = f(s) of the curve I'

=t

must be such that % are proportional to X*. From (41.2) it follows

that this condition is
(41.3) + t + X' = hX".

Multiplying these equations by X' and summing with respect to 7, we
have in consequence of (38.6) and (38.8) that

dt _
(41.4) L=k
and consequently (41.3) reduce to
(41.5) d_”- + t‘ﬁ = 0.

In order that the normals to the surface along a curve shall form a
cone, it is necessary that the equation ¢ = f(s) be such that the point i
defined by (41.2) be the vertex of the cone, in which case % =0. In
this case we have (41.3) with A = 0, and from (41.4) ¢ = const., and
again we have equations (41.5).
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When equations (41.5) written in the form

oz’ X"\ du®
41.5)' Z o) =
(41.5) (au“ + au"> ds 0
i
are multiplied by g—';—ﬂ and summed with respect to ¢, we obtain in conse-

quence of (38.16)
du®
(41.6) (gas — tdap) s = 0.

Since these equations are equivalent to (40.6) with ¢ = R, and the
equations (40.8) are a consequence of (40.6), we have

[41.1] A necessary and sufficient condition that the normals to a surface
along a curve form a developable surface is that the curve be a line of curva-
ture; when the developable surface vs the tangent surface of a curve, equa-
tions of this curve are (41.2) where t is the principal radius of normal
curvature of the line of curvature concerned; the developable surface is a
cone, if and only if the corresponding principal radius is a constant along
the curve.

The proof of this theorem is not complete until one considers the

possibility of the normals forming a cylinder, that is, % = 0. In
this case we have, using (38.16),
ar' dX' az* aX* du® du’
—— = —— — — — af 5 = U = ] 2 .
.Z ou~ ds T ouc ouf ds d P ds (a %)

A -curve for which these two equations hold is evidently an integral
curve of equation (40.8), and consequently is a line of curvature. In
order that the above equations for & = 1, 2 be consistent we must have
dudy — diz = 0along the curve. Hence from (39.4) and theorem [28.1]
either the surface is a developable surface and the curve is a generator,
or K = 0 at least at all points of the curve.

L]

Since the condition d% = 0 holds along each generator of a develop-

able surface, we have

[41.2] The lines of curvature of a developable surface are its generators and
their orthogonal trajectories.

In order that the coordinate curves be lines of curvature, it is neces-
sary and sufficient that

(417 du iz — di gu = 0, diz g2 — dzs g2 = 0,
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as follows from equation (41.1). Consequently g1 = diz = 0, unless
the two fundamental forms are proportional, which is the case only when
the surface is a plane or sphere (see §38, Exs. 1, 2). Hence we have

[41.3] A necessary and sufficient condition that the lines of curvature be
coordinate, that 1s, the coordinate curves, on a surface other than a plane or
sphere 1s that

(41.8) di = g = 0;
any orthogonal net on a plane or sphere salisfies these conditions.

When the lines of curvature are coordinate, equations (38.19) re-
duce to

0X' _ 14

41. —
(41.9) ou® Pa OU*

(a = 1,2; anot summed),

in consequence of (41.8) and (24.18), the principal radii being given by

L_du 1 _dn

(41.10) , .
, gu P2 J22

When the lines of curvature are coordinate, the Codazzi equations
(39.6) reduce to (see §28, Ex. 1)

dadn 1 (dn da\ 9gn
— —=4+=)==0
du? 2 (gu + gzz> ou? '

ddze 1{dn |, da2\ 99z
L =4 ) 2 =),
oul 2 <gu + gzz> ou!

In consequence of (41.10) these equations are expressible in the form

9 (1 1/1 1\aloggn _
s@(&)*é(a ;) i O

d (1 1/1 1\ 9 log g
— — — — — = 0
ou! (m) + 2 (pz m) out

EXERCISES

(41.11)

(41.12)

1. When a line of curvature is a plane curve and the normals to the surface
along the curve lie in the plane of the curve, the developable surface of the normals
consists of the tangent lines to the plane evolute of the curve.

2. The lines of curvature of the tangent surface of a curve are the tangents to
the curve and its involutes.

3. The meridians and parallels of a surface of revolution are the lines of curva-
ture of the surface (see §24, Ex. 3 and §38, Ex. 4).
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4. The coordinate curves on a central quadric with the parametric equations
in §10, Ex. 3 are the lines of curvature of the quadric (see §30, Ex. 6 and §39, Ex. 3).

5. The coordinate curves on a paraboloid with the parametric equations in §30,
Ex. 7 are the lines of curvature of the paraboloid (see §39, Ex. 4).

6. The lines of curvature of a spiral surface as defined in §26, Ex. 8 can be found
by quadratures.

42. CONJUGATE DIRECTIONS AND CONJUGATE NETS.
ISOMETRIC-CONJUGATE NETS

Consider a curve C on a surface and the tangent planes to the surface
at points of the curve. The envelope of this one parameter family of
tangent planes is a developable surface (§12). Through each point of
the curve there passes a generator of the developable surface. The
generator of the surface and the tangent to the curve at the point are
said to have conjugate directions. In order to find an analytic expression
for conjugate directions we consider the equation of the tangent plane

(42.1) LX@E -2) =0,

where Z" are current coordinates, and X and z* are functions of the arc
along the curve. On differentiating (42.1) with respect to s we have in
consequence of (38.8)

0Xi -1 R du" _
(42.2) Z g & =) o= =0.

This equation and (42.1) are equations of the generator of the de-
velopable through the point z'. The quantities &' — z° are direction
dz'
ou”
du”® are differentials in the direction conjugate to the tangent to the
curve at the point (see (24.4)). In consequence of this observation
and equations (38.16) we have from (42.2)

(42.3) dagdu®8u® = 0,

numbers of the generator, and they are proportional to ou’, where

which gives the relation between the differentials du® for C and éu” for
its conjugate direction. From the form of (42.3) it is seen that con-
jugacy of directions is reciprocal, that is, if a direction is conjugate to a
given direction, the latter is conjugate to the former.

Comparing equations (42.3) and (26.7), we observe that the second
fundamental tensor bears to conjugacy the same relation which the first
fundamental tensor bears to orthogonality.
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The directions conjugate to each of the curves
(42.4) o(u', ¥*) = const.
at each point of the curve are given by (see (26.2))

(42.5) (du ;%’; — dy %) ou' + (dw Z—;% — das %) ol = 0.
Looking upon this equation as a differential equation in §u® we have
that its integral curves and the curves ¢ = const. form a net, such
that a curve of each family passes through a point of the surface and
at the point their directions are conjugate. Such a net is called a
conjugate net.

From (42.3) it follows that the curves conjugate to the curves u’* =
const. are the integral curves of the equation

(426) duéul + duauz = 0.

In order that they be the curves u' = const. we must have dj, = 0,
and conversely. Hence we have

[42.1] A necessary and sufficient condition that the coordinate curves form
a conjugale net is that dys be zero.

From this theorem and theorem [41.3] we have

(42.2] The lines of curvature of a surface form a conjugate net, and the
only conjugate net which is an orthogonal net.

From equations (38.18) it follows that when the coordinate curves
form a conjugate net each of the coordinates z* is a solution of an equa-
tion of the form
3% 100 . 590

(42.7) oul du? ta out T e T 0,
where in general a.l and o’ are functions of u”.
Conversely, if z* for ¢ = 1, 2, 3 are linearly independent solutions of

an equation of this type, then

o'z o't 3’7’

qu'gu® oulou? oulgu?
o' o’ 8’ | _ 0
ou! ul u! !
oz ax* 9z°
ou? du? ou?
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from which and from (38.5) and (38.13) it follows that dis = 0. Hence
we have

[42.3] If f'(u', u’) for i = 1, 2, 3 are three linearly independent solutions
of an equation of the form (42.7), the coordinate curves form a conjugate
net on the surface with the equations z* = f*(u', u?).

When the lines of curvature are coordinate, we havé, since g1z = 0,
Z%%=
du! ou?
In this case not only are z* solutions of an equation of the form (42.7)
but also the sum of their squares, that is 2_; z'z’, is a solution as one

verifies by substitution, and conversely. Hence we have the theorem
of Darboux:*

[42.4] A necessary and sufficient condition that the coordinate curves be
the lines of curvature on the surface defined by three linearly independent
solutions of an equation of the form (42.7) is that the sum of the squares
of these solutions is also a solution.

Darbouxt has applied this result to the proof of the following theorem:

[42.5] When a surface S is transformed into a surface S; by an tnversion,
the lines of curvature of S are transformed inlo the lines of curvature of Sy .

An tnverston, or a transformation by reciprocal radii, is defined by

i dE@—w)
(42.8) % “"Exx—xMx—xO

where ¢ is a constant, and the point x4 is the center of the transforma-
tion. From (42.8) it follows that

2 (@ = @) — @)l 2 (0" = w)(@’ — ab) = ¢,

(42.9) AHzi — i)
2zl — 2@} — )’

7

= x5 =

which shows the reciprocal character of the transformation. _

Suppose now that z° are solutions of an equation (42.7), then z}
given by (42.8) are functions of u® which are solutions of the equation
in 6 resulting from the substitution

6

(42.10) = 2 (&t — i) (2l — «b)

* 1887, 1, p. 136.
11887, 1, p. 208.
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in equation (42.7), as follows from the second of equations (42.9), z;
being constants. If O_;z'z’ is a solution of (42.7), then as follows from
the first of (42.9) and (42.10) ¢' is a solution of the equation in 6,
which consequently is of the form (42.7). Since (42.7) admits unity
for a solution, it follows from (42.10) that the equation in 6; admits
the solution 2.;ziz: , and theorem [42.5] follows in consequence of
theorem [42.4].

For a surface of positive or negative curvature, dydss — diz , denoted
by d, is not equal to zero. Consequently quantities d** are uniquely
defined by

(42.11) d*dgy = 85 ;
in fact
n_ d 2 _ (Eg 22 d_u
(42.12) R - T
If then we define quantities Ap and &,(p, ¥) by
(42.13) bio = d¥paps, Bile, ¥) = dPouvs,

these are scalars for a transformation of coordinates u° since it follows
from (42.11) as in §14 that d* is a symmetric contravariant tensor.
From (42.13) we have

Zlul =d" = d—{;—’, Zluz =d% = (_%_1’
(42.14)
B, o) = d* = =02,

and consequently in terms of any net ¢ = const., ¢ = const., the second
fundamental form may be written
A1y de’ — 2Bi(e, V) de dy + B dy’
Aiphy — Bl(e, ¥)
We define also the quantity Az;p by an equation analogous to (29.16),
namely

(42.15)

- 1 4
= af
Ao \/El—i ou (Ved d @)

where e is +1 or —1 according as K is positive or negative for the
portion of the surface under consideration. If then ¢ is any real solu-



§42] ISOMETRIC-CONJUGATE NETS 235

tion of the equation Ay = 0, a real function ¢ is obtained from (see
(30.5))

(42.16) \/t;d—d"‘qa,., =y, Vedd2p, = —y,

by a quadrature. Proceeding as in §30, we find from these equations
that

e1=eVvedd™ys,  pa= —eVedd'y,,
and
ZI‘P = 631\[/, Zl(‘Pl \b) = 0;

8o that the second fundamental form (42.15) becomes
L (4 + eap).
Aﬂp

In case the coordinates are such that the second fundamental form is
(42.17) Mdu® + e du®),

the coordinate curves are said to form an isometric-conjugate net.
When for a conjugate net on a surface

‘Z_ll = fl(ul)
de  fo(u?)’
new coordinates can be chosen in terms of which the second fundamental
form assumes the form (42.17). The coordinates are called tsometric-
conjugate when the second fundamental form is of the particular form
(42.17).

Proceeding as in §30, we have analogously to theorem [30.3]

(42.18)

[42.6] A necessary and sufficient condition that a family of curves ¢ =
const. and their conjugate trajectories form an isometric-conjugate net is
that Agp = 0 or that the ratio of Ay and Ayp is a function of ¢.

EXERCISES
1. The coordinate curves on a surface defined by
) zt = fi(u) + fi(u?)

form a conjugate net. Each of the curves u? = const. may be obtained from the
curve z¢ = fi(u!) by a suitable translation, and the curves u! = const. by a suitable
translation of the curve z* = f}(u?); and the tangents to one coordinate family at
points of a curve of the other family are parallel. A surface with equations of the
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form (i) is called a surface of translation, and the curves z* = fi(u!) and z* = f}(u?)
are called the generating curves.

2. The coordinate curves form a conjugate net on the surface
) + s

Fu) + o(u?)

3. The meridians and parallels on a surface of revolution form an isometric-
conjugate net (see §38, Ex. 4.)

4. The lines of curvature on a central quadric and on a paraboloid form an iso-

metric-conjugate net (see §39, Exs. 3 and 4).
5. The coordinate curves form an isometric-conjugate net on the surface

2t = fiuer(u?), 2 = fa(ulei(u?), 23 = @2(u?).

6. When the coordinate curves of a surface form an isometric-conjugate net

.
V'

1

. . . . eN? 1
and the coordinates are isometric-conjugate, then K = 7 If one puts - =
P

then d,; = ﬁ, day = \/g, and the equations of Codazzi (39.6) are
14 4

(2

N R
us g o aB € 88 a,f=1,2;8#a).

7. When the coordinate curves on a surface are isometric-conjugate and the
coordinates are isometric-conjugate, equations (42.16) reduce to

o1 =V, @1=—eda.
When e = 1, asolution of these equationsise + 1y = f(u! + 1u?), and whene = —1,
e = filut + u?) + fa(u! —w), ¥ = Si(ut + u?) = fa(ut — ul).

8. When a planc is subjected to an inversion it is tranformed into a plane or a
sphere according as the given plane passes through the center of the inversion or
not; when a line is subjected to an inversion it is transformed into a line or a circle
according as the given line passes through the center of the inversion or not.

9. From (42.8) one obtains

¢t Y daidzi
E dz} dz} !

T =[$(:c"-—x';)(:c"—;’;~)]—?'

and consequently a transformation by reciprocal radii is conformal.

10. When a cone of revolution is subjected to a transformation by reciprocal
radii whose center is not on the cone, the lines of curvature on the new surface are
circles, and this surface is the envelope of a family of spheres having a point in
common, the spheres being the transforms of the tangent planes to the cone.

11. A necessary and sufficient condition that a conjugate net on a surface be a
Tchebychef net (see §29, Ex. 12) is that the surface be a surface of translation.
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43. ASYMPTOTIC DIRECTIONS AND ASYMPTOTIC LINES.
MEAN CONJUGATE DIRECTIONS. THE
DUPIN INDICATRIX

A direction at a point in a surface which is self-conjugate is called
asymplotic. From equation (42.3) it follows that the asymptotic
directions at each point of a surface are given by :

(43.1) dos du® du” = 0.

The integral curves of this differential equation of the first order and
second degree are called the asymptotic lines of the surface. Accordingly
an asymptotic line is a curve whose tangent at any point is an asymp-
totic direction at the point. From (43.1) it follows that the asymptotic
directions upon a surface are conjugate imaginary, real and distinct, or
real and coincident according as diydsy — dis is positive, negative, or
equal to zero. From this result and (39.4) we have

[43.1] The asymptotic lines are conjugaie vmaginary, real and distinct, or
real and coincident on a surface, or any portion of a surface, for which
the Gaussian curvature is postiive, negative, or equal to zero.

From theorem [26.4] applied to equation (43.1) and equation (40.8)
we have
[43.2] On a surface, or portion of a surface, for which the Gaussian curva-
ture is not equal to zero, the lines of curvature bisect the angles formed by
the asymptotic lines.

When a straight line lies entirely in a surface, the tangent plane to
the surface at each point of the line contains the line. From the
definition of asymptotic lines it follows that (see §38, Ex. 3):

[43.3] When a straight line lies entirely in a surface, it is an asymplotic
line of the surface.

In §41 we saw that the generators of a developable surface are also
lines of curvature. From (40.1) and (40.2) we have

[43.4] The osculating planes of a curved asymplotic line are tangent to the
surface along the curve.

From equation (43.1) we have

[43.5] A necessary and sufficient condition that the asymplotic lines be
coordinate s that

(43.2) dy = dn = 0.
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From this result and (40.11) it follows that the asymptotic lines form
an orthogonal net, if and only if K,, = % + :~ = 0. A surface for which
1 2

the mean curvature K, is equal to zero is called a minimal surface;
the property of such a surface which justifies the term minimal is
established in §50. From (40.11) it follows also that when the minimal
curves (§2) on such a surface are coordinate, that is, gn = g2 = 0,
then diz = 0. Hence we have

[43.6] On a minimal surface the asymptotic lines form an orthogonal net
and the minimal lines a conjugate net; each of these properties characterizes
a minimal surface.

From theorem [43.5] and equations (38.18) it follows that, when the
asymptotic lines are coordinate, the quantities z° as functions of '
and u® are solutions of two equations of the form
2’6 36 e a0 a6

(88) Fan T T R TR

a6
= an P + are

where in general the a’s are functions of 4®. By an argument similar
to that which led to theorem [42.3] we have

[43.7] When two equations of the form (43.3) admit three linearly inde-
pendent solutions f'(u', u*) for i = 1, 2, 3, the coordinale curves are the
asymptotic lines on the surface with the equations z* = f'(u', u®).

When equations (43.2) are satisfied, and we put 1/p = dis/A/g, then
the Gaussian curvature is given by

(43.4) K=-

’

o, —

and the Codazzi equations (39.6) reduce to

dlogp _ /2 alogvp _[1
(43.5) ol {12}, T e \12 ,

by means of equations (28.2), namely

(43.6) 2 lofu:/b - { :a}

The conditions of integrability of (43.5) are

o f1 a [2
(43.7) 5«?{12} B 5175{12}’
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from whiclr and (43.6) we have also

3 [2) _ a1
(43.8) 551{22 [ = Eﬁz{u}'

Conversely, if three real functions g.s such that ¢ > 0 satisfy the
condition (43.7) and these functions and the function p determined to
within sign by the quadrature (43.5) satisfy the equation

(43.9) R%“ - -1

p
then gos , dn = de = 0, d1z = /g/p satisfy the equations of Gauss and
Codazzi, and in accordance with theorem [39.1] we have

[43.8] If a real tensor g.g for which g > 0 satisfies the equation (43.7),
and g.s and a function p determined to within sign by (43.5) satisfy the
equation (43.9), then g.s 1s the first fundamental tensor of a surface of
negative curvature upon which the asymptotic lines are coordinate; this
surface 18 determined in space to within a motion and a symmeltry with
respect to a point.

The possibility of symmetry with respect to a point (see §38, Ex. 6)
is due to the fact that the sign of p is not determined by (43.5).

When the lines of curvature of a surface are coordinate, and the
angles which a pair of conjugate directions at a point make with the
tangent to the curve u* = const. at the point are denoted by 6 and ¢,
that is (see (25.7)),

= i ST
(43.10) tan @ V oo i’ tan 0 on b’

the equation (42.3) with dy; = 0 may be written in the form

(43.11) tan 6 tan §' = —E*,
1
where
4512 1_dy 1 _da
) p1 gu’ P2 gn'

From this equation we obtain

p2cot @ + p; tan 6
P1L— P2 '

(43.13) tan (6 — 6') =

If we equate to zero the derivative with respect to tan 6 of the right-
hand member of this equation, we find that the values of tan 6 for
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which this derivative is zero are =/p;/p; , and that for tan 8 = \/p/py,
when | p1| > | p2 | then tan (¢ — 6') is a minimum. This direction is
real only at a point for which K is positive, and from (43.11) we have
that in this case tan ' = — tan 6, that is, the two conjugate directions
are equally inclined to the lines of curvature. Conversely if the latter
condition holds, it follows from (43.11) that tan® 8 = p,/p,. Hence
we have

[43.9] A necessary and sufficient condition that there exist a pair of real
conjugate directions at a point P in a surface which make equal angles
with the langenls to the lines of curvature al P is that the Gaussian curvature
be positive at P; the angle 6 of one of these directions is given by tan 0 =
V/pa/p1 ; an angle between these directions is the minimum of the angles
between conjugale directions at P.

From (43.10) it follows that these conjugate directions are given by

0 fn v fo
du! g22p1’ dut gaap1
For both of these directions the radius of normal curvature is given by

(43.14) _ gndd’ 4 gndd” _ pi 4 o

audul,ﬂ#‘gdzg du“ - 2 !

in consequence of (43.12). Thus the radius of normal curvature is the
mean of the principal radii of curvature. Accordingly we call these
directions the mean-conjugate directions.

When the lines of curvature are coordinate and 6 denotes the angle
which a direction at a point P makes with the curve «* = const. at P,
the equation (40.5) may be written in the form

1 '9  sin’0
(43.15) =2l My

R P P2
in consequence of (25.6) and (43.12). This equation is called the equa-
tion of Euler. From it we have that the angle 8 which an asymptotic
direction makes with the curve «* = const. at the point is given by

(43.16) tan®g = -2,
P1
This result follows also from (43.11) and the definition of asymptotic
directions as self-conjugate.
We have remarked in §40 that at a point of a surface at which K > 0
the principal radii have the same sign, and that R for any other normal
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section has the same sign. If in the tangent plane at such a point P,
we take P for the origin of a cartesian coordinate system, and the
tangents to the directions of the principal radii p; and p. for the z- and
y-axes respectively, and lay off on each line through P and in both direc-
tions from P line segments of length 4/| R |, where R is the correspond-
ing radius of normal curvature, an equation of the locus of the end points
of these segments is found from (43.15) to be
2 2

(43.17) Lo+ Yo

FARry
Thus the locus is an ellipse, whose principal axes are the principal direc-
tions at P, and from (43.11) it follows that conjugate diameters of the
ellipse* are conjugate directions on the surface.

Fic. 14 Fia. 15

When K < 0, the principal radii p; and p. differ in sign, and certain
values of R are positive and others are negative. In this case the
locus of the end points of the segments 4/| R |, as shown in Fig. 15,
consists of the two conjugate hyperbolas with the equations

2 2 2 2
(43.18) Ty¥oy, T4¥ =1
p1 P2 P1 P2

2 2
The asymptotes of these hyperbolas are given by I+ i’— = 0, which
P1 2

equation is equivalent to equation (43.16), that is, the asymptotes are
the asymptotic directions at the point, which accounts for the name of
these directions. In this case also equation (43.11) gives conjugate
diameters of the hyperbolast as well as conjugate directions on the
surface.

According as K is positive or negative at a point the conic defined
by equation (43.17) or (43.18) is called the Dupin indicatriz at the point.

*C. G., p. 192.
tC. G., p. 192.
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Hence a point of a surface at which K is positive or negative is some-
times called elliptic or hyperbolic.

EXERCISES

1. The asymptotic lines on a surface of revolution can be found by quadratures
(see §38, Ex. 4).

2. When the coordinate curves on a surface form an isometric-conjugate net,
the asymptotic lines can be found by quadratures.

3. The coordinate curves on a surface of translation with the equations

7t = f(ul), 2 = p(u?), 2 = fi(u) + e1(u?)

are plane curves, the planes of one family being perpendicular to those of the other
family, and the curves form an isometric-conjugate net.

4. The catenoid (see §24, Ex. 4) and the skew helicoid (see §24, Ex. 7) are ap-
plicable minimal surfaces.

5. From (43.8) and theorem [43.7] it follows that a necessary condition that two
equations of the form (43.3) admit three linearly independent solutions is that
day _ dag
our  oul’

6. For asurface of constant negative curvature —1/a?referred to its asymptotic
lines the coordinates can be chosen so that

gu = g2 = a%, g1z = a’co8 w,
where w i8 a solution of the equation

02w

—— = 8in w.
oulou?

7. The integral curves of an equation a.sdu®du? = 0 form a conjugate net, if
and only if
ands + adn — 2a12d12 = 0.
8. The surface with the equations
2! = ac(u! + u?), 22 = be(u! — u?), 8 = 2culu?,

where g, b, ¢ arc constants, is a hyperbolic paraboloid referred to its rulings, that
is, its asymptotic lines; find the equations (43.3) in this case.

9. The surface with the equations
o2 w4, 1w u -

a’ b ¢ 1+ wlu?

where a, b, c are constants, is a hyperboloid of one sheet referred to its rulings, that
is, its asymptotic lines; find the equations (43.3) in this case.

10. A necessary and sufficient condition that the asymptotic lines on a surface
form a Tchebychef net (sce §29, Ex. 12) is that the surface have constant Gaussian
curvature.
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11. For a minimal surface referred to its lines of curvature one has from equa-
tions (41.12) that

gu = pUs, g2z = p1Ua,

where U, and U, are functions of u! and u? respectively; hence the lines of curva-
ture on a minimal surface form an isometric net (see (30.11)).

12. Given two surfaces S and S with the respective second fundamental forms
dap du= duf and das du* duf; a necessary and sufficient condition that the asymptotic
lines on S correspond to a conjugate system on S, corresponding points being
those with the same values of u* on the two surfaces, is that

dn aﬂ + d Eu — 2d;, 312 = 0;

when this condition is satisfied the asymptotic lines on S correspond to a con-
jugate system on S.
13. On the two surfaces of Ex. 12 the integral curves of the equation

Ela du® aza du®
dia du®  dyq du®

form a conjugate net on each surface (see theorem [26.4]).
14. From (43.14), (40.10) and (40.11) it follows that the radius of normal
curvature in either mecan-conjugate direction is given by
1 B
R == g_g_fl;;
2d]\ d22 - d12
when this expression for R is substituted in (40.5) the integral curves of the re-
sulting equation are the mean-conjugate curves of the surface.
15. When the mean-conjugate curves of a surface of positive curvature are
coordinate

dy _ dn
[2%% g2

y d]z = 0.

44. GEODESIC CURVATURE AND GEODESIC TORSION
OF A CURVE

Consider any curve C upon a surface and the tangent plane to the
surface at a point P of C. Project orthogonally upon this tangent
plane the portion of the curve in the neighborhood of P and let C’
denote the resulting plane curve. The curve C’ is a normal section of
the projecting cylinder and C is a curve upon this cylinder, and con-
sequently theorem [40.1] may be applied to the cylinder to determine
the relation between the radius of curvature p of C and r of C’. This
relation is

(44.1)

l cos ¥
r )

p
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where ¢ is the angle which the principal normal to C makes with the
tangent plane to the surface at P, that is, with the normal to C’ in this
plane. From this result it follows that the normal to the osculating
plane of C at its center of curvature for the point P meets the tangent
plane to the surface at P in the center of curvature of C’ for the point
P, and by theorem [40.1] this same normal meets the normal plane
section of the surface at P and tangential to C in the center of curva-
ture of the normal section. In Fig. 13 C, is the latter point, and C;
and C, the centers of curvature of C and C’ respectively.

In order to find the coordinates of the center of curvature of C’, we
make usc of the components X* of the unit normal vector to the pro-
jecting cylinder. Since this normal is perpendicular to the tangent to
C and lies in the normal plane, we have

> )’(f(gl 0, XXX =0

These conditions are satisfied by

Si  da* . dz’
. X=X -X=
(44.2) ds ds’
where 1, j, k take the values 1, 2, 3 cyclically, from which we have
> X'X' = 1. By the choice (44.2) the positive sensc given to the

i

vector X’ is such that the tangent to C, that is, the vector (%, the

vector X, and the vector X* have the same mutual orientation as the
1 2 3 .
z'-, -, and z’-axes*, since

dz' d:rz de*
ds ds ds
' X' x Xa\
If we put
oi _ o 0T dr* _ du® 97’
(44.4) Sl T el

then u® and % are the components in the surface of the tangent vectors
dz!

ds
*C. G, p. 162.

X' and respectively (see (24.23)). From the discussion following
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(38.9) we have from (44.3) that the vector »* makes a right-angle with
the vector ‘-i(—i%. Hence from (25.19) and the first of (44.4) we have

duf oz’
" ds dus

Xt' — e‘yag

(44.5) . .
=L (g% - d’
Vg 9 Gy gw aul ds’
The angle ¢ in (44.1) is equal or supplementary to the angle between
the principal normal to C and the vector X' according as the latter is

in the direction PC, in Fig. 13 or in the opposite direction. Hence from
(44.1) we have

(44.6) 3_42“,

where ' are direction cosines of the principal normal to C at P, and
where ¢ is +1 or —1 according as the angle between the principal
normal and the vector X* is acute or obtuse. In consequence of (4.7),
(44.5), and (38.17) we have

e _ yu v 02 d'a
r 9y Eau ds?

g (7 o
Gre ds due \oulouc ds ds oud ds?

o ,eu( a0
= € (48 [653 ]ds ds + Jas ds? y

where [8¢, a] are Christoffel symbols of the first kind formed with re-

spect to the tensor gus. Since ¢*°fys, 8] = {%} by (20.2), by means of

the identities of §25, Ex. 8, the above equation may be written with a
change of indices in the form

e dut(d® | [ B8) du” du’

(44.7) ;e E(}ié’z‘ + { ds ds
Comparing this result with equation (34.3) we have that ¢/r is equal
to the geodesic curvature x, of the curve C, defined intrinsically in
§34, and that «, is positive or negative according as the vector X' is in

the direction PC, in Fig. 13, or in the opposite direction. Accordingly
the center of curvature of the projected curve C’ for its point of contact
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with the given curve C is called the center of geodesic curvature of C for
this point. In view of the above results we have

[44.1] The normal to the osculating plane of a curve C on a surface at the
center of curvature for a point P of C meets the tangent plane to the surface
at P in the center of geodesic curvature of C for the point P, and the length
of the line segment with end points P and the center of geodesic curvature is
equal to the reciprocal of the absolute value of the geodesic curvature of C
for the point P.

From the above discussion, equation (44.1), and theorem [34.1] we
have

[44.2] A necessary and sufficient condition that a curve be a geodesic on a
surface s that its principal normal at each point of the curve be normal to
the surface at the point.

When a curve C is defined by an equation o(u', ¥*) = 0, or as an
integral curve of a differential equation M, du® = 0, its geodesic curva-
ture &, can be found directly (see (34.7) and §34, Ex. 7). From (40.2)

we have that @;_g; may be found directly. Also from (44.1) we have

(448) Ky = S_l%—w ’

sincey = & — g or %’r — @ according as eis +1 or —1. Hence p and
& can be found directly. We shall show that the torsion 7 of the curve
also may be obtained in terms of @ and the fundamental tensors of the
surface. Consequently the intrinsic equations in space of the curve
C can be found directly.

From the definition of @ in §40 it follows that
(44.9) sin @ = Z ¥
where v* are the direction cosines of the binormal of C. Differentiating
equation (44.9) with respect to s, and making use of the Frenet formulas
(6.1) and equation (40.1), we obtain

(44.10) cos cb(—- - ‘r) Z (—lfxi ~das g™ % DI oz

d 3 ur’

the last expression following from (38.19). Since the binormal is in
the plane of the vectors X' and X*, we have

= aX*' + bX",
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where a and b are to be determined. The vector v* makes with the
vectors X' and X’ the angles o — g and & — = respectively (see Fig. 13).

On multiplying the above equations by X " and summing with respect
to 7, and also by X' and summing with respect to ¢, we find that a =
sin @, b = — cos @. Consequently
v =sine X' — cosa X',
When these expressions are substituted in the right-hand member of
(44.10), the result is reducible, in consequence of (38.8) and (44.5), to
c0S @ das g € du’ du— o’ (?xA = —CoS®T
P@ldad € Yos S @5 G our au B 9T
where
du® du?

Ty = € das 0y — U ds

1
(4411) = i — [(dnjm - (112(]11) du

\/g Gagdu® dub
+ ((111022 - d22.(111) du' du’

+ (dirges — daagra) du).
Consequently (44.10) reduces to

- fdo
COS w({{; T+ r,,) = 0.

When cos @ # 0, that is, when the curve is not an asymptotic line,
we have

do
(44.12) =% 4.

ds

We consider now the exceptional case when the curve is an asymptotic
line, and assume that the asymptotic lines are coordinate, that is,
dn = dyp = 0. With thxs choice the dlrectxon cosines of the tangent
o' and of the binormal v° of a curve «’ = const. are given by
i 1 ()I
o = T — —'—17
Vgn 9u
where e is +1 or —1 as the case may be. From (5.7) we have for the
direction cosines of the principal normal

k J
i e ,-ax _ k _a_.’li
b= Vo (X o X aw)

as 1, j, k take the values 1, 2, 3 cyclically.

'Yi = eXiv
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From the Frenet formulas (6.1) we have

_ id_‘Yi ax’ 28
T=2 6% \/g—,z.:‘3 i \/5-"“9 2’3

the last expression following from (38.19). Substituting the above ex-
pressions for §8°, we obtain in consequence of (38.9)

i -
r=- g
Vg

In like manner the torsion of an asymptotic line u' = const. can be
shown to be equal to v/—K. Hence we have the theorem of Enneper:

up’

[44.3] The square of the torsion of an asymptotic line at a point of a surface
18 equal to the absolute value of the Gaussian curvature at the point; the
torsions of the two asymptotic lines through a point differ in sign.

In both of the above cases + = 7, as follows from (44.11). Con-
sequently equation (44.12) holds alsoin this case since @ is constant for
an asymptotic line. Since 7, is a function only of a point and a direc-

tion at a point as follows from (44.11), the quantity r — :-i]—? is the same

for all curves at a point having a common tangent. It is equal to =
for any curve for which & is a constant, and in particular for the geodesic
through the point in this direction. Accordingly 7, is called the
geodesic torsion of a curve. From (44.11) and (41.1) we have

[44.4] A necessary and sufficient condition that the geodesic torsion of a
curve be zero at a point is that the curve be tangent to a line of curvature
at the point.

EXERCISES

1. A plane curve on a surface is a geodesic, if and only if the tangent planes to
the surface along the curve are perpendicular to the plane of the curve.

2. On the rectifying developable of a twisted curve (see §12, Ex. 2) the given
curve is a geodesic, and thus becomes a straight line when the developable surface
is rolled out upon a plane.

3. Straight lines on a surface are the only geodesic asymptotic lines.

4. At each point of an orthogonal net on a surface the geodesic torsions of the
two curves of the net differ only in sign.

5. A geodesic line of curvature is a plane curve, and a plane geodesic line is a
line of curvature.

6. When two surfaces meet under a constant angle, the geodesic torsions of the
curve of intersection with respect to the two surfaces are equal; if the curve of
intersection is a line of curvature of one of the surfaces, it is for the other also;
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if two surfaces intersect along a curve which is a line of curvaiure of each, they
intersect under constant angle.

7. When a surface is met by a plane or a sphere under constant angle, the curve
of intersection is a line of curvature of the surface.
8. The geodesic torsion of a curve is given by

where 6 is the angle made by the curve and the line of curvature at the point for
which p; is the radius of normal curvature.

9. A necessary and sufficient condition that the curves u? = const. on a surface
be straight lines, and thus that the surface be a ruled surface, is that

2
din =0, {11} = 0.

10. Upon a surface straight lines are the only plane asymptotic lines.

11. Show that
. 1 1 .
Azt = ('—‘ + —"> X‘;
P1 P2

from this it follows that any family of parallel plancs intersect a minimal surfac¢
in curves which together with their orthogonal trajectories form an isometric net.

45. PARALLEL VECTORS IN A SURFACE

In §35 we gave an intrinsic definition of parallelism in a surface.
We now interpret parallelism from the view-point of the space in which
the surface may be considered as imbedded. Denoting by ¢’ the com-
ponents in space referred to cartesian coordinates z° of the unit vectors
A% at points of a curve C, we have

i aaxi
(45.1) =2 Pt

Differentiating with respect to s, we obtain
dg _d\ ot |, 8’ 4

5.2) ds  ds au® duauf ds
' (e, a\duﬁ>ai" Y dd
~(71?+)\ {’Yﬁleg 3u“+}\ d"ds X

the last expression being a consequence of (38.18). Since Z £t =1,

we have analogously to (35.5) that the vector 5' associate to the vector
¢ in space is given by

dE‘ o ‘
(45.3) a—‘; =7. .
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The vector 7’ is in general different from the associate vector of A* in
the surface (see theorem [45.1] and Ex. 3). If then equation (45.2)

is multiplied by %f?ﬂ and summed with respect to 7, one obtains in

consequence of (38.2), (38.8), and (45.3)

du
454 —% = fa Y \
o S = oG+l )

If the vectors at points of a curve are parallel as viewed from the
enveloping space, their components in this space are constant, that is
dg’
ds
and, since g # 0 the quantities N\* satisfy (35.13). The same result

= 0. Hence the right-hand member of (45.4) is cqudl to zero,

follows if Z 7 —u— = 0, that is, if the vectors associate to the vectors

£ are normal to the surface. Conversely, if equations (35.13) are
satisfied, either the associate vector 5" is a zero vector, or it is normal
to the surface. Hence we have

[45.1] A necessary and sufficient condition that vectors along a curve in a
surface be parallel with respect to the curve is that the vectors be parallel
as viewed from the enveloping space or that the associate vectors in this
space be normal to the surface.

We have remarked that the tangents to a curve are parallel with respect
to the curve, if and only if the latter is a geodesic. In this case the
vector ' in (45.3) is the principal normal (see (4.7)), and consequently
theorem [44.2] is a particular case of theorem [45.1].

As a consequence of theorem [45.1] we have

[45.2] If two surfaces are tangent to one another along a curve, vectors
parallel with respect to this curve in either surface are parallel also in the
other surface.

From this theorem we have that if the vectors A\* at points of a curve
C in a surfacc S are parallel with respect to C, they are parallel with
respect to C in the developable surface which is the envelope of the
tangent planesto S at the points of C, and conversely. In consequence
of theorem [35.4], when this developable surface is rolled out upon the
plane the set of parallel vectors go into vectors which are parallel in
the euclidean sense. If then one has such a developable surface and
C’ is the curve into which C goes, in order to find geometrically a set of
vectors parallel with respect to C, one has only to take a set of vectors
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parallel in the cuclidean sense at points on C’, and when the develop-
able is rolled back over the surface the resulting vectors are parallel
with respect to C.

The notion of parallelism of vectors in a Riemannian space of any
number of dimensions is due to Levi-Civita.* He introduced the
notion of infinitesimal parallelism which in terms of a surface imbedded
in a euclidean space is as follows: Given two nearby points P, and P,
of a curve in a surface corresponding to values s and s 4+ ds of the arc
of the curve, and vectors A*(s) and

A(s + ds) = N (s) + N ds,
ds

terms of higher degree in ds being neglected; by definition the vector at
P, is parallel to the vector A* at P, , if as viewed from the enveloping
space it makes the same angle with an arbitrary vector tangential to
the surface at Py as the vector A® at Py does. Such a tangential vector

is given by o b . The components of the vector at P; as a vector of
g ou? p

the enveloping space are given by
i dfl et @ ax‘ ¥ (fua .'>
E + E.; ds = E + <l’ é_i?' + A d76 ds X Ods,

which follows from (45.2) and (35.5). The condition that the two
angles mentioned be equal is

32 (3 g, ) =

;a auﬂ<" u™ Ty ds X ods 0.

In consequence of (38.2) and (38.8) this equation reduces to
@’ (gapv™)o ds = 0.

Since the a’s are arbitrary, and the determinant g > 0, we have vy = 0,
that is, the vector \* must satisfy equations (35.13) at Po, and con-
sequently depends upon the direction PyP; on the surface. Having
arrived at this result, Levi-Civita} used equations (35.13) to define a
family of vectors A\* parallel with respect to a curve.

EXERCISES

1. When the coordinates z* of the enveloping space are any whatever, the

equations (45.3) are
S AL
e tE {hj}., s "

*1017, 1.
1017, 1, p. 179.
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where the Christoffel symbols {}:j}a are formed with respect to the metric tensor
a;; of space.

2. A necessary and sufficient condition that vectors in a surface parallel with
respect to a curve C be parallel as viewed from the enveloping space is that the
direction of the vector at each point of C be conjugate to C.

3. A necessary and sufficient condition that the associate vector with respect
to a curve C of a tangent vector to a surface coincide with the associate vector
with respect to C of the tangent vector as looked upon as a vector in the surface
is that the latter be conjugate to the curve C.

4. In order that the normals to a surface along a curve C be parallel, it is neces-
sary that diids: — d?, = 0 along C'; in this case C is an asymptotic line.

5. Show by means of cquations (38.19) that a necessary and sufficient condition
that the vector associate to the normal vector to a surface with respect to a curve
C on the surface be tangent to C is that C be a line of curvature.

6. Show by means of equations (38.19) that a necessary and sufficient condition
that the vector associate to the normal vector to a surface with respect to a
curve C on the surface be perpendicular to C is that the curve be an asymptotic
Jine.

46. SPHERICAL REPRESENTATION OF A SURFACE.
THE GAUSSIAN CURVATURE OF A SURFACE

The Gaussian curvature of a surface has been derived as an intrinsic
property of a surface and it has been shown that it is equal to the
reciprocal of the product of the principal radii of normal curvature,
when the surface is considered as imbedded in space. These results
are due to Gauss, who has also given an interpretation of curvature as
a generalization of the concept of curvature of a curve. In arriving at
this result Gauss* introduced the concept of the spherical representation
of a surface. In accordance with this concept one takes the unit sphere,
that is, the sphere of unit radius with center at the origin, and makes
correspond to each point P of the surface the point P in which the sphere
is met by the radius parallel to and with the same sense as the normal
X* to the surface at P. Thus to a point of coordinates z* corresponds
the point of coordinates ', where

(46.1) i =X
We denote by d3 the linear element of the sphere, written

(62) o = Tdi'as =3 %‘;ﬁ %i_(ﬁ Qo = hop du di,

* 1827, 1, p. 226.
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hag being thus defined. In consequence of (38.19) the quantities hus
are expressible in the form

2X' a " or' oz’
(46.3) Z due a_uf’ = dar" dpug” E o o’

which in consequence of (24.7) and (24.18) reduces to
(46.4) hap = day dgs 9.
In order to give these expressions another form, we have
hy = didi ¢° + didis ¢ = dudys g"° + ¢°(die dis — dut das)
= dudug” + ¢*(dh — dudn) = duKn — guK,

in consequence of (40.10) and (40.11). Proceeding in like manner we
have

(46.5) heg = degKm — gagK.

Accordingly the linear element of the spherical representation may be
written in the form

(46.6) ds’ = K, das du® du’ — Kgas du® du®,
and in consequence of (40.5) in the form
(46.7) ds = <‘%" - K) ds'.

If & denotes the determinant of the quantities h.s, we have from
(46.4) and the expression (40.10) for K

(46.8) V'h = eK~/g,
where e is +1 or —1 according as K is positive or negative at the point
under consideration.

If we denote by X' the vector normal to the sphere at the point
Z', we have analogously to (38.5)

X’ ox*

o1 |oul aut

46.9 === ,
(46.9) Vh|axi ax*
wd u?

as 1, j, k take the values 1, 2, 3 cyclically. Substituting from (38.19)
and making use of (38.5) and (46.8), we have

; 1 [dwg™ ding™
X = Vh 1
hldryg™  dayg™

ll 12

dll d12
K dudn|

‘.-—
12 22
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which reduces in consequence of (15.5) and (39.4) to
(46.10) X' = X,

where e is +1 or —1 accordingas K > 0 or K < 0.

From this result it follows that according as a point of a surface is
elliptic or hyperbolic, that is, K > 0 or K < 0, the vectors X' and
X' have the same or opposite sense, that is, the positive sides of the
tangent planes to the surface and to the unit sphere arc the same or
opposite. This is seen also from equations (41.9) when the lines of

3
curvature are coordinate, since for an elliptic point the vectors g—X;
have the same sense as the corresponding vectors (;j;a or both have the
opposite sense, whereas for a hyperbolic point one has the same sense
and the other opposite sense.

If then we have a bounded portion of a surface such that K has the
same sign at all points and on the boundary C, and we denote by C
the contour of the corresponding bounded portion of the unit sphere,
it follows that as a point P describes the curve C the corresponding
point P on the sphere describes the curve C in the same or opposite
sense according as K is positive or negative. The areas of two such
portions of the sphere and surface are given by

f\/ﬁduldu2 = ff eKA/g du' dil®, f\/gduldu2

respectively, the limits of integration being the same for the two inte-
grals. From this result it follows that the limit of the ratio of these
two integrals as the portion of the surface shrinks to a point (and con-
sequently also the portion of the sphere) is equal to the value of eK at
the point. When K = 0 at all points of a bounded portion of a surface
and on the boundary, this portion of the surface is developable. Since
the normals to a developable surface at all points of a gencrator are
parallel, it follows that the spherical representation of C for a developable
surface is the segment of a curve, and consequently of zero arca. Hence
the above result applies to the case K = 0 also, and we have the following
theorem of Gauss*:

[46.1] T'he limit of the ratio of the area of the spherical representation of a
bounded portion of a surface and the area of this bounded portion as the
latter shrinks to a potnt is equal to the absolute value of the Gaussian curva-
ture at the point.

* 1827, 1, p. 226.
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We consider now further consequences of the preceding results. Since
the radius of normal curvature of a surface at a point depends upon the
direction of the normal section unless the surface is a plane or a sphere
(see §40), it follows from (46.7) that the correspondence between a
surface other than a plane or a sphere and its spherical representation
is conformal (see §36), if and only if K,, = 0, that is, when the surface
is a minimal surface. For a sphere L_1_1_ :l:l, where a is the

R P1 P2 a

radius of the sphere; in this casc d§® = 12
a

ds’. Hence we have
[46.2] A surface and its spherical representation are in conformal cor-
respondence, if and only if the surface is a sphere or a minimal surface.

In both of these cases to an orthogonal net on the surface corresponds
an orthogonal net on the unit sphere. From (46.5) it follows that the
coordinate curves on a surface and the unit sphere are orthogonal nets
only in case K,, = 0 or dy, = 0. Hence we have

[46.3] The lines of curvature of a surface are represented on the unit sphere
by an orthogonal net; this is a characteristic property of the lines of curva-
ture of a surface which is not a minimal surface nor a sphere.

This theorem is also a corollary of the following theorem:

[46.4] The tangents to a curve in a surface and to its spherical representa-
tion at corresponding points are parallel, if and only if the curve is a line
of curvature.

In order to establish this thcorem we assume that the surface is referred
to a coordinate system such that the given curve is a curve 4’ = const.
and that the coordinate curves form an orthogonal net. For the given

curve the quantities %)zf_‘ and %z-l must be proportional, being direction
numbers of parallel lines by hypothesis. Hence from (38.19) we have
—dng™ = 0. Since g” = 0 for an orthogonal coordinate net and
g # 0, we have dj; = 0 and the theorem is proved.

In what follows we derive for a surface various results which are
expressible in terms of the two tensors d,s and hag . Equations (41.5)’
express the condition that the normals to a surface along the curve

whose unit tangent vector has components %ﬁ form a developable

surface. If these equations are multiplied by %i—{,} and summed with
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respect to 7, the resulting equation in consequence of (38.16) and (46.3)
is

(46.11) (dos = the) 2 = 0 @ =1,2.
Eliminating ¢ from these two equations, we obtain

dla dua d2a d u"
hiedu®  hoqdu”

’

which in consequence of (46.5) is equivalent to the equation (40.8) of
the lines of curvature, as was to be expected.

In order that quantities ddls be determined by (46.11), ¢ must be a
solution of the determinant equation
|dnB - thaﬁl = 0.

In §41 preceeding theorem [41.1] it was shown that ¢ is one of the
principal radii of normal curvature (see Ex. 7). Hence the principal
radii p; and p; are roots of the equation

(46 12) (hnh22 - h212)R2 - (dllh22 + dgghy — 2d12hu)R
. + (dudzs — diz) =0.
Hence we have

oL + p2 = duhzz + dzz’}:u - 2d12h12 — dughap,

_ dudn — dis
PLpy = =g

(46.13)

where the quantities A*® are defined uniquely by

h®hs, = 82,
that is (see (24.20)),
u _ he 12 _ _h12 2 _ hu -
(46.14) h =5 K= T h =5

From (38.16), (46.10), and (46.3) it follows that the coefficients of
the second fundamental form of the spherical representation are given by
X' ox* aX* ox*

B M2 S

= e — ——
ou* oub T ou® ouf
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From this result, (46.10), and equations of the form (38.18) we have for
the spherical representation

ox oy

(46.15) Fyero

R
where the Christoffel symbols are formed with respect to the form (46.2).
By means of equations (38.19), that is,

X’ 92
= da( A 3!
ou” oul

Q

(46.16)

equations (46.15) may be given the form

o’ X' . o' [y \ _ _ :
(46.17) s T dned Tm{aﬁ}‘ has X

If we differentiate (46.16) covariantly based upon g.s and make use of
(38.18), we obtain

’’x’ axX [y _ o 6:1: “
du= auP W{aﬁ} = = dacsd g dacdas X',

on noting that the covariant derivative of g" is equal to zero. In
consequence of (46.16) and (46.4) these equations may be written

62Xi \ 1] ax — i
ﬁx—m+<d1¢{ 6J+daeﬂ> a—“" hﬂX

From these equations and (46.17) we have

¥\ _ 'yl & 02" _
(dn +an{ = () B0

i

Multiplying by %%y and summing with respect to ¢, we obtain

darg + Ao {;’ﬁ} — dy, { :ﬁ} =0,

(46-18) a g = da7 {VB} + dwl ﬁ}

If we multiply these equations by d”, as defined by (42.11), and sum
with respect to », we obtain

_3— . adav ] Y
(46.19) {aﬂ} =d'Te —d d,..,{yﬁ}.

that is,
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The left-hand member of equations (46.15) is the second covariant
derivative of the scalars X* based on hes. We indicate such covariant
derivatives by placing a bar over the index of covariant differentiation;
thus we write (46.15) in the form

(46.20) Xiss = — heX'.

Differentiating covariantly with respect to 4" and noting that h.s,; = 0,
we obtain
X'
Xiap; = — hap —.
viBy = T hes o
Applying the appropriate Ricci identities (22.19) to this covariant
differentiation, namely

X' -5

Xiags = Xiaip = s Repr

where R’., are of the form (20.13) in terms of the symbols {62;3}, we

obtain

ox* oX' _ oX'

- haﬂ 5’—7 + ha‘y Baﬁ = au" aB‘y-
i

?935( and summing for ¢, we obtain in

Multiplying these equations by
consequence of (46.3)

(46.21) hayhge — haghye = hB!RsaB'r = Rmﬁv;

which expresses the fact that the Gaussian curvature of the sphere is
equal to +1.

In terms of this covariant differentiation of d., based upon ha.s equa-
tions (46.18) are expressible in the form

(46.22) arp + day <{v } {%})

from which it follows that

(46.23) duvg — dog; = O.
We now derive an important set of formulas. Since
=X X _ g,

ou®
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and the equations

ZX‘ <X; X _Xk aXJ) =0,

qu ou”

where 2 indicates the sum as 7, j, k that the values 1, 2, 3 cyclically,
are identities, it follows that
ax* r 09X’ ax’ ax’
2 d L = G o+
(46.24) X ue - X aus gt T g

where 4, j, k take the values 1, 2, 3 cyclically, and the a’s are to be

determined. Multiplying these equations by ?95" and summing with

respect to 7, the resulting left-hand member is equal to zero identically,
and we have

0 = aalhla + aa2h2n .

Again multiplying the equations (46.24) by iX— (8 # «) and summing

with respect to 7, we have in consequence of (46.9) and (46.10)
+vhe = Guhig + Cashos

where the sign on the left is + or — accordingasa = 1,8 = 20ra = 2,
B = 1. From these two sets of equations we obtain

ay = — hise Q= hie any = — hae e = hye
u = 7 12 =, 1= = = —,
Vh Vh V'h Vk
and consequently equations (46.24) are

90X ,,aX’ e 20
X = X = V(b ) = VRS,
(46.25) ;X ox’ X' X axX
" e X" 3 10X

9t _ ¢ (- B o2 ) = —

au2 - X Fo \/h,( ha 9l + hie > \/hh 3 )

as 4, J, k take the values 1, 2, 3 cyclically, where e is +1 or —1 according
as the Gaussian curvature is positive or negative.

EXERCISES

1. The spherical representation of the lines of curvature of a surface of revolu-
tion is an isometric orthogonal net.

2. The osculating planes of a line of curvature and its spherical representation
are parallel (see §6, Ex. 9).

3. If xand k denote the radii of curvature of a line of curvature and its spherical



260 SURFACES IN SPACE [Cr. IV

representation, and x; and &, the radii of geodesic curvature of these respective
curves, then

xds = kds, xgds = &, ds.

4. The spherical representation of a plane line of curvature is a circle.

5. The tangents to a curve on a surface and to its spherical representation at
corresponding points are orthogonal, if and only if the curve is an asymptotic line.

6. The angles between the asymptotic lines at a point on a surface and their
spherical representation are equal or supplementary according as the Gaussian
curvature of the surface is positive or negative at the point.

7. The principal directions for the tensor hap (sec §26) are the principal direc-
tions of normal curvature; find the relation between r in (26.17) and R for this case.

8. When the asymptotic lines are coordinate, it follows from (46.18) that

B-lahele G-lah @l e

9. When the coordinate curves form a conjugate net, it follows from (46.18) that

"o\ _010gdaa_ [ @ al_ _ds[8 a\ _ _dss[B
{aa}‘ o {aa}’ {aﬂ}‘ a‘;{aa}’ {ﬁs}‘ E;{aﬁ} (6 # o).

10. The asymptotic lines on a minimal surface form an isometric orthogonal
net, as do also their spherical representation.
11. From (46.4) one obtains

ap = daydgsh"®
and from (46.5)
gag = (p1 + p2)dag — p1p2hag .

12. A necessary and sufficient condition that the linear element of a surface
referred to a conjugate net be expressible in the form

ds? = p(hydut’ — 2h1adutdu? + hosdut’)

i8 that the Gaussian curvature of the surface be positive and that the coordinate
conjugate net be the mean-conjugate net (see §43).
13. Theorem [46.4] and Ex. 5 are equivalent respectively to Exs. 5 and 6 of §45.

47. TANGENTIAL COORDINATES OF A SURFACE

From the equation of the tangent plane to a surface at the point
z', namely
(47.1) 2 X@E -4) =0,
where & are current coordinates, we have that the algebraic distance
W of the origin from the tangent plane is given by
(47.2) W =2 X'z
t
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Looking upon this equation as an identity in u”, we have in conse-
quence of (38.8)

X’ &
(47.3) au“ Z qus

(;X and ox*

components of independent vectors, as follows from (38.6) and

(47.4) zX ?f =0

For each point P on a surface the quantities X* > are the

Accordingly the direction numbers z* of the line segment OP, where
0 is the origin, are expressible in the form

' =aX' '+ b° X.
ou”

In order to determine a and b* we multiply these equations by X *and

]

sum with respect to ¢, and again by (?2( and sum with respect to i,
with the result, in consequence of (47.2), (47.3), and (46.3),

ow
= ’a aB = —53-

a=W, h* Rag P

If the second set of these equations is multiplied by h’*, where the

latter are defined by (46.14), and summed with respect to 8, we obtain

hﬂ'r dW = b® haﬁ hﬂ*r =},
Hence we have

i ; ” X' oW
(47.5) = WX+ KT

If these equations are differentiated covariantly based on kg, we
have in consequence of (46.20) and the fact that the covariant deriva-
tive of h** is equal to zero

o8 aX‘ W

uf

II

az’ "
P +XW+

- aX

W — h""ha,X‘g
(47.6)
woX Ly

our

Wﬁ'v
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From these equations we have (see (38.2) and (38.16))

os = S (W2 40 ) (w2 e 2 X W)

(47.7) ou* our
= Whag + 2WW a5 + h* W W ;3,
and
X ,wr
(47.8) dag = 2 6u”‘< v + A T Waa)

= —(Wiz + has W).

Conversely, given any four functions X' and W of coordinates u®
such that D; X*X' = 1, we have (47.4), and cquations (46.20) follow
from the definition (46.3) of has and the discussion in §46. From (47.6)
we have

Sx ¥

T ou”
Consequently X are direction cosines of the normal to the surface for
which z’ as functions of u* are given by (47.5). Since (47.2) follows
from (47.5), W is the algebraic distance of the origin from the tangent
plane at the corresponding point. Four such functions X* and W are
called tangential coordinates of the surface. There can be no relation
between the X’s and W of the form a,.X* + bW = 0, where the a’s and
b are constants. For, if there were, it would follow from (47.8) and
(46.20) that dus = 0, and consequently the surface for which z* are
given by (47.5) would be a plane (see §38, Ex. 1), in which case the
X’s would be constants. Hence we say that X* and W are linearly
independent (constant coeffictents) and we have

[47.1] Four linearly independent (constant coefficients) functions X' and
W of coordinates u* for which Y ; X'X* =1 are tangential coordinates
of a surface whose equations ' = f'(u', u?) are given by (47.5), and whose
two fundamental tensors are given by (47.7) and (47.8).

If one has any four functions 6', 6, 6°, 6* linearly independent (con-

stant coefficients) and one puts
.o 4 )
(47.9) X =", =7 (z=12,3),
® ¢

where ¢* = 6" 4+ 6" 4+ 6%, then X' and W satisfy the conditions of
theorem [47.1]. Consequently from four linearly independent (con-
stant coefficients) functions of u' and u’ one obtains the tangential



§47] TANGENTIAL COORDINATES OF A SURFACE 263

coordinates of four different surfaces according as one chooses three

of the functions to define X by (47.9), that is, as one chooses the three

functions which are direction numbers of the normal to the surface.
When the coordinate lines on a surface form a conjugate net, the

tangential coordinates X* and W are solutions of an equation of the
form

&0
outou? aﬂﬂ + %,

as follows from (46.20) and (47.8). Conversely, if X’ and W are four
linearly independent (constant coefficients) solutions of an equation
(47.10) such that >,; X'X’ = 1, it follows from equation (47.10) and

(46.20) that
<a" - {{12}) %—‘:f; + (b + hlZ)X" = 0.

From these equations we have

a" — {fz}’ b = —hl2y

and consequently for the surface with equations (47.5) we have dj2 = 0,
as follows from (47.8). Hence we have

(47.10)

[47.2] Four linearly independent (constant coefficients) solutions X\ w
of an equation of the form (47.10) such that 3 ; X'X* = 1 are the tangential
coordinates of a surface upon which the coordinate curves form a conjugate
net.

If one has any four linecarly independent (constant coefficients)
solutions 6', - .-, 6* of an equation of the form (47.10), the functions
X*, W defined by (47.9) are solutions of an equation of the form (47.10)
and satisfy the conditions of theorem [47.2]. Hence we have

[47.3] Four linearly independent (constant coefficients) solutions of an
equation of the form (47.10) determine four surfaces upon each of which
the coordinate curves form a conjugate net; each surface is determined by
which three of the four solutions are direction numbers of the normals to
the surface.

When the asymptotic lines upon a surface of negative Gaussian curva-
ture are coordinate, that is, du = dz» = 0, the tangential coordinates
X" and W are solutions of two equutions of the form

0°0 9’0

(4711) 511,—1, + (llz + b;a 5&? au‘ + Gaz + b20
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as follows from (46.20) and (47.8). By an argument similar to that
which led to theorem [47.2] we obtain

(47.4] Four linearly independent (constant coefficients) solutions X', W
of two equations of the form (47.11) such that _; X'X* = 1 are the tangen-
tial coordinates of a surface upon which the coordinate curves are the
asymptotic lines.

Also by an argument similar to that which led to theorem [47.3] we
obtain

[47.5] When two equations of the form (47.11) admit four linearly inde-
pendent (constant coefficients) solutions, these solutions determine four
surfaces upon each of which the coordinale curves are the asymptotic lines;
each surface is determined by which three of the four solutions are direction
numbers of the normals to the surface.

From (47.6) and (47.8) we have
£)'q

our’

ax_ - _ duﬁhg.,

(47.12) =

For a surface of negative Gaussian curvature referred to its asymptotic
lines we have

(4713) du = dzz = 0, du = \/hp,
where from (46.13) p* = — pipz . In consequence of (46.14) equations
(47.12) are in this case expressible in the form

oz’

-2 (s ax’ 5 ()¢
ul_\/ﬁ u—é;ﬁ_ 11-3;'2*;

oz’ _ b 3 Xi_h ‘?_(1)
ol VR "® 25t )

which in consequence of (46.25) are equivalent to

(),

(47.14)

out ul out
(47.15) . N

aI‘ _ .Xj 3X Xk aXJ

e = T\X s~ X )

where ¢, j, k take the values 1, 2, 3 cyclically. If then we define func-
tions »' by

(47.16) v =1 X',
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these equations become

oz at o oz’ ok o
4717 %% = -+ 2 = Y
( ) dul <,, U au) u? 4 " )

where 7, j, k take the values 1, 2, 3 cyclically.
For the values (47.13) equations (46.23) reduce to

(47.18) a%llog Vp = {E} - {E} 6%2101; Ve = {;2;} - {;1;}

Analogously to (28.2) we have

dlog \/h g\
47.1 - =
(47.19) ou” {aﬁ J

and consequently (47.18) are equivalent to

(47.20) olog v _ —{7} dlog vip _ —{T}

oul 12]° du? 12f°

In consequence of this result and equations (46.15) we have from (47.16)

2 1 2
(47.21) v _ (1 Vo _ h12> s,

du' u? /p oul du?

from which it follows that the conditions of integrability of (47.17) are
satisfied.
Conversely, we have

[47.6]) If o', %, ¥* are any three linearly independent (constant coefficients)
solutions of an equation of the form

0’0
47.22 e = N
( ) oul ou? ’
where N is a function of u*, the coordinate curves on the surface whose
coordinates are given by the corresponding quadratures (47.17) are the
asymptotic lines, and the Gaussian curvature of the surface is equal to

=1/(2a%)"

For, the conditions of integrability of (47.17) are satisfied by solutions
of (47.22). If then we define X* by (47.16) with p = >_, %', equations
(47.17) are reducible to (47.15), from which we obtain

az' X" az' oX' az* X" -
E aul qu! E ot 0, e = — E aut aut Ve,
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the last being a consequence of (46.9) and (46.10). From this result
and (46.13) it follows that K = —1/(D_:»%")™
Equations (47.17) are called the formulas of Lelieuvre.*

EXERCISES
1. On the envelope of the family of planes

Z (Ui + U + U, + U, = 0,

where U}, Uy are functions of u!, and U}, U, of u2, the coordinate eurves form a
conjugatc net of plane curves.
2. On the envelope of the family of planes

cos ul 2! 4 sin u! 22 + cot w22 + U, + U, = 0,

where U, and U, are functions of u! and u? respectively, the coordinate curves are
plane lines of curvature.

3. The conditions of integrability of equations (47.12) are equivalent to equa-
tions (46.23).

4. In consequence of (47.19) equations (46.23) are equivalent to

9 day 3 dap | dev (8] , d» 6}_@{5}_@{?}=0
0uf A/h U \h  A/h \BS Vh ey Vh\vé Ve -

5. When a surface is referred to its asymptotic lines, the equations of Ex. 4
reduce to

0 diz —E

Lo 22~ 9 # a).

dus 8 VR {a } (8 # o)

6. A necegsary condition that the coordinate curves on the unit sphere are the
represcntation of the asymptotic lines on a surface is that

? (1) _ 2 [2).
aul{IZ} B au’{lz}'

when this condition is satisfied, the coordinate curves on the spherc are the
representation of the asymptotic lines on a family of surfaces, which are homo-
thetic transforms of one another, and the equations ¥ = f*(u!, u?) of the surfaces
can be found by quadratures.

7. In order that equations of the form (47.11) admit four linearly independent
(constant coefficients) solutions it is necessary that

a 9

ézz an = a_ul Qg2 .

8. The most general right conoid is defined by equations (47.17) for the values

ylo= yl, v = y? ¥ = o(u?).

* 1888, 1, p. 126.
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9. When a surface is referred to its asymptotic lines, a necessary and sufficient
condition that the lines u? = const. be straight, and thus that the surface be ruled,
is that the normals to the surface along each curve u? = const. be parallel to a
plane, as can be shown by means of equations (47.17).

10. When the asymptotic lincs in one system on a surface are represented on the
sphere by great circles, the surface is a ruled surface.

11. When the equations of the unit sphere are of the form of §28, kEx. 7 with
a = 1, the coordinate curves are the agymptotic lincs of the sphere and equation
(47.21) is ‘ ’

(1 + wlu)? = —20,

92
ouldu?
of which the general integral is

we(ul) + uly(u?) ,
=25 T 20 oy,
1+ utu?
where ¢ and ¢ are arbitrary functions of u! and u? respectively.
12. Find the equation (47.21) when the surface is a hyperboloid of one sheet;
when a hyperbolic paraboloid. (Sec §43, Iixs. 8, 9).
13. When the coordinate curves on the unit sphere satisfy the condition

a (1 3 (9) - 1N (2
) (11 _ 9 21=2 /2 ,
oul |12 du? |12 12) |12
they represent the asymptotic lines on a surface whose total curvature is of the
form
-1
) G —
le(ul) + y(u)]?
14. When the coordinate curves on the unit sphere form an orthogonal net a

necessary and sufficient condition that the curves u? = const. be circles, that is,
curves of constant geodesic curvature, is that

1@ )
=== — log V'hu = ¢(u?).
V by O
15. When upon the unit sphere the curves of one family of an orthogonal iso-
metric net are circles, so also are the curves of the other family (see §34, Ex. 6).
16. When the equations of the unit sphere are

2ul, 2u?, w? 4+ w? -1

w4+ w41

X1, X2, X0 =

the coordinate curves are circles whose planes are
zt+ ul(@® —1) =0, 224 ut(z*— 1) =0,
and they form an orthogonal net, since the linear clement is

4(du'® + dut?)

Rl O )
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T'hese curves are the spherical representation of the plane lines of curvature of

surfaces for which
U
weo it U
w4+ w41

where U, and U, are arbitrary functions of u! and u? respectively.
17. When the equations of the unit sphere are

\/1 — a? 8in u), —-\/1 — a? sinh u?, cos u! + a cosh u?

X1, X2, X* =
’ cosh u? + a cos u!

where a is a constant (| a | < 1), the coordinate curves are circles whose planes are
s 1

V1 —a?z — tanu! (28 — a) = 0, \/l — a? 22 — a tanhu? (I’——) = 0,
a

and they form an orthogonal net, since the linear element is

_ 1 — a?)(du'* + du?®)
" (cosh u? + a cos u)?’

These curves are the spherical representation of the plane lines of curvature of
surfaces for which

_V1i-a W+

cosh u? + a cos u! ’

where U, and U, are arbitrary functions of u! and u? respectively.

18. Whena = 0in Ex. 17, the curves u? = const. on a surface with this spherical
representation lie in parallel planes and the planes of the curves u! = const.
envelope a cylinder.

48. SURFACES OF CENTER OF A SURFACE. PARALLEL
SURFACES

In §41 it was shown that the normals to a surface S along the lines
of curvature Cy and C. through a point P on a surface form two develop-
able surfaces D, and D, , and that the coordinates of the points P; and
P, on the edges of regression of these surfaces corresponding to P, that
is, on the normal to S at P, are given by

(48.1) zi = 2' + p X', o = 2' 4+ pX',

where p; and p; are the principal radii of normal curvature at P. The
surfaces S; and S, , which are the'loci of the points P; and P, respec-
tively, are called the surfaces of center of the surface S. When S is a
sphere, in place of two surfaces of center, there is only the center of
the sphere. Also it is evident geometrically that the normals to a
surface of revolution at points of a parallel form a right circular cone
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with vertex on the axis of the surface, and consequently, the axis is one
of the surfaces of center (see Exs. 1, 2,3). In what follows we consider
only the case where neither of the surfaces S; and S is degenerate.

The edges of regression I'; and I'; of the developable surfaces D, and
D, lie on the respective surfaces S; and S;. Since the normal at P is
tangent to I'y at P, and to I'; at P, , this normal is a common tangent
to S; and S;, and consequently the normals to S are common tangents
of the surfaces S; and S,. Since the generators of D, are tangent to
8:, it follows that D is the envelope of the tangent planes to S; along
a curve I'; , and that at P, the directions of T, and T; are conjugate as
follows from the definition of conjugate directions in §42. In like man-
ner the developable D, envelops S; along a curve I'; and at Py the direc-
tions of T and T} are conjugate.

The tangent planes to D, and D. along their common generator,
namely the normal at P, are perpendicular, since they are determined
by this normal and the tangents to C, and C,; at P. This tangent
plane to D, is the osculating plane of Ty at P;, and is perpendicular to
the tangent plane to S; at P, since the tangent plane to D, is this
tangent plane to S;. Hence I'; is a geodesic on S; by theorem [44.2],
and similarly T is a geodesic on S;. Accordingly we have

[48.1] The edges of regression of the developable surfaces consisting of the
normals to a surface along the lines of curvature of one family are geodesics
on the surface which s the locus of these edges; the developable surfaces
which consist of the normals to the surface along the lines of curvature of
the other family envelope this surface of center along the curves conjugate
lo the edges; the osculating planes of the edges on one surface of centers
are tangent to the other surface of centers.

We now obtain in an analytical manner the results which have just
been deduced geometrically. We assume that the surface S is referred
to its lines of curvature, and that p; and p; are the radii of principal
curvature for the directions of the respective curves u’ = const. and
u' = const. at a point. Accordingly we have

1 _ dn

(48.2) = =

1
— d — = 0‘
P ogu’ pr ga 2= gu

Making use of (41.9), we obtain from the first of (48.1)

9Tl 9p1 i Tt Op1 i ( p1> oz’
. =R Sl PR ¢ 1-2)=
(48.3) dut aulx’ qur  Qut + pa/ ou?’
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F1c. 16. A surface and its two surfaces of center
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from which one finds for the components ghs of the first fundamental
tensor of the surface of centers S,

(48.4) ALY = 91 9m ’=‘,3£_12+1_P_12
o aut) T qwaw T \aw o)

Hence the linear element of S; may be written

2
(48.5) dst = dpf + <l — p_1> 922du22,
P2
from which it follows that the curves u* = const., that is, the edges of
regression of the developable surfaces D,, are geodesics (see (32.15)),
and their orthogonal trajectories arc the curves for which p, = const.

From (48.3) we have Y ; 9z 9z,

au que 0 (¢ = 1, 2), from which it

follows that (;%1 are direction numbers of the normal to S;, a result

which we obtained previously from geometrical considerations. Hence
the direction cosines of the normal to S, are given by

; or’
(48.6) Xi= 9%
\/gu ou'
where € is +1 or —1 so that there shall hold for S; the results analogous
to (38.9). By substitution it is found that this means that ¢ is +1
or —1 according as (m - 1> Z%ll is positive or negative.
P2
If d.s denotes the second fundamental tensor of S;, one finds from
cquations analogous to (38.13) on making use of (41.9) and (38.17)

dy = —a Y
p1 ou
(48.7)

%sz<_ﬂ%:@Wn%

2v/gu p/oul py A/guou

the last expression being a consequence of (41.12). Since djz = 0, the
second part of theorem [48.1] is established anew.

In like manner from the second of equations (48.1) we obtain as the
fundamental tensors of the second surface of centers S,

| " apz : P2 : "o apz apz "o apz 2
(48.8) gu = (@) + <1 - o I, g = 30l st ga2 = )’

n_ P2 gu 9p "o 1 _ &V g op
(48.9) dn = 62;% \/g—”a—up diz = 0, doy = T, o
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where the normal X to S; is given by

i oz’
(48.10) Xj=-2_ %
vV 922 6u2

From the foregoing results we have by (40.10) that the total curva-
tures K; and K, of S, and 8, respectively are given by

i Y

1 ou! 1 ou?

811) K= — L o I S U
( ) ! (p1 — p2)*8p1 : (pz — p1)? p2
oul qu?

We inquire next under what conditions the normals to a-surface S
are normal to a second surface S. The equations of such a surface 8
are given by

(48.12) =1 +1X
where ¢ is to be determined so that

;0%
2. X =0

i

that is,

fox' | ot ax*
D o — X'+t )=0.
; <6u" + ou”* + Bu“) 0
It follows from these equations in consequence of (38.8) and (47.4)
that ¢ is a constant, and that for any constant ¢ these cquations are

satisfied. Hence we have

[48.2] If segments of constant length are laid off along the normals to a
surface from points of the surface, the locus of their other end points is a
surface with the same normals as the given surface.

Two surfaces in such relation are said to be parallel. 1t is evident that
there is an endless number of surfaces parallel to a given surface, that
the lines of curvature correspond on all these surfaces in consequence
of theorem [41.1], and that the family of parallel surfaces have the
same surfaces of center.

If §ag and dug denote the first and second fundamental tensors of the
surface S with equations (48.12), we obtain in consequence of (38.16)
and (46.3)

_ 0 9t 2
Jas = Z P gas — 2tdag + € hag,
(48.13)

3 = dap‘— th.g.
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Since the surfaces S and S have the same surfaces of center, it follows
from (48.1) and similar equations for § that the principal radii of normal
curvature of S are given by
(4814) = p1 — t, p2 = pg — L.
If S is a surface of constant total curvature 1/a*, we have
(31 + (2 + 1) = d.

When in particular ¢ = =a, this equation reduces to

1 1 -1

—+ = =+4-,

P1 P2 a
and we have the following theorem of Bonnet*:
[48.3] Among the surfaces parallel to a surface of constant total curvature

1/a’, there are two of constant mean curvature ==1/a respectively at the
distances + a from the given surface.

Also we have conversely

[48.4] Among the surfaces parallel to a surface of constant mean curva-
ture one has constant positive total curvature and another constant mean
curvature.

From (48.3) it follows that the normals to the surface S are tangents
to the curves u* = const. on S;, which from (48.5) are seen to be geo-
desics. We shall prove the converse theorem

[48.5] The tangents to the geodesics on any surface are normal lo a family
of parallel surfaces.

We assume that the surface is referred to a family of geodesics u* =
const. and their orthogonal trajectories, and write the linear element in
the form (see (32.15))

(48.15) ds* = du" + gm du®.
The tangents to the geodesics have equations of the form

gy 07
(48.16) F=c +’5%i’

from which we have

i = a_x_l_(l + 5?1>du1 + (a_x Lo >du2
oul

(48.17) du dur | gu? oul
) Ozx‘ 1 62 .'1:'. 2)
+ r<au" du + P auZdu .

* 1853, 1, p. 437.
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In order that the tangents to the geodesics be normal to a surface (48.16)
r must be such that Z - dz = 0 for all values of du' and du’. Since

dz* oz oz’ or' az’ oz’
(48.18) Z owiow b Z o= 0 E it g I

from which we have

(48.19) -« ot o O

one finds that the conditions upon r are

1+ 25 =0, T =o.

Consequently
(48.20) r=c—u,

where c is an arbitrary constant. Each value of ¢ determines a partic-
ular one of the family of parallel surfaces normal to the tangents to
the geodesics u* = const. on S, and the theorem is established.

The given surface S is one of the surfaces of center of these parallel
surfaces. In order to find the other surface of center S we note from
theorem [48.1] that (48.16) are equations of S provided that r is such
that dz’ are direction numbers of the tangent to the edge of regression
of the envelope of the tangent planes to S along a curve conjugate to
the geodesics u* = const. Since this tangent must lie in the correspond-
ing tangent plane to S which is also the corresponding osculating plane

of the edge on S, the direction numbers of whose normal are g%;,
r must be such that g——ft; di* = 0. In consequence of (48.18), (48.19),
and ‘
Za:f’ax Egai'ﬁ_‘_= ’ Eax &’z 19gm
au2 T ou! du! gu? T 0wt dul ou? 2 dul
which result from (48.18), we have

Z%Z}di"=<2z+ragn> d = 0.

2 ou!
Hence

(48.21) % 9 log Vign
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and equations of S are
_ 1 o

d log /g ou'”

out

From (34.5) it follows that r given by (48.21) is the radius of geodesic
curvature of the curves ' = const. and consequently (48.22) gives the
centers of geodesic curvature of these curves. If then we say that the
surface S defined by equations (48.22) is the surface complementary to

the surface S as determined by the family of geodesics u* = const.
on S, we have

(48.22) F=2d

[48.6] A complementary surface of a surface S is the locus of the centers
of geodesic curvature of the orthogonal trajectories of the geodesics on S
which determine the complementary surface.

It follows from the above definition that either surface of centers of
a given surface is a complementary surface of the other. Moreover,
from equation (48.5) of the linear element of the surface of center S; it
follows that the geodesics which determine the other surface of center
S: as a complementary surface of S; are the orthogonal trajectories of
the curves p; = const. on S;. Also from the linear element of the
surface S, , namely,

2
ds; = gn<1 - ?) du* + dps’,
1

which follows from (48.8), one has that the surface S; is the complemen-
tary surface of S; which is determined by the geodesics orthogonal to
the curves p» = const. on S;. Hence we have the following theorem
of Beltrami*:

[48.7] The centers of geodesic curvature of the curves py = const. on Sy
and of p2 = const. on S, are corresponding points on S and S, respectively,
corresponding points being the points of tangency of a common tangent to
the two surfaces.

EXERCISES

1. One of the surfaces of center of a surface of revolution is the axis, and the
other is the surface of revolution of the evolute of the meridian curve of the
surface.

2. For the envelope of a one-parameter family of spheres one of the surfaces
of center is the curve of centers of the spheres.

* 1865, 1, p. 18.
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3. Inorder that the surface of center S, be a curve, it is necessary and sufficient
that gl,g7s — g12 = 0; it follows from (48.4) that in this case p; is a function of u?
alone.

4. The surfaces of center of a helicoid (see §38, Ex. 5) are helicoids with the
same axis and the same parameter as the given helicoid.

5. The surface

_a’—b’ wud , »\/az_bz\/ba_uxz xa_»\/az__bz ul\/uz’_a:

x! ’
ab  ul 4w’ b u 4+ u? a ul 4+ u?

has the following properties: the coordinate curves are plane lines of curvature;
p1 = u?, ps = —ul; the surface is algebraic of the fourth order; the surfaces of
center are focal conics.

6. A necessary and sufficient condition that the asymptotic lines correspond on
the two surfaces of center of a surface is that there be a functional relation be-
tween the principal radii of the surface. When there is such a functional relation
the surface is called a surface of Weingarten.

7. Equations of the lines of curvature on S; and S; are respectively

gu 9py 9py 2 gu 9o \* | g120p 9ps  gugn
= O dw 22 i — 00)2 | dutdu?
powau™ [pa <au2 BETTT Rt ki

g2 8p1 9
p2 dur dut

gu 9p 0p: 2 g1 9p1 9p2 g2 [ 9pa ? gu gz
a8 2o LA SR Al s A i — 0,)2 | durdus
ol out + [:pf burdu p3 \u! pip} or = )t | it

22

=0,

g22 0py 0p2 2
T Tdut =0
toibwan ™ =0

a necessary and sufficient condition that the lines correspond on the two surfaces
is that pi — p2 = a, where ais a constant, in which case K, = K, = —1/a? and the
asymptotic lines on the two surfaces correspond.

8. Show that, in consequence of (41.12), Ajpy = 1, Ajpy = , where the

p1 — p2
differential parameters are formed with respect to (48.4); then from (34.6) it fol-
lows that the radius of geodesic curvature of the curves p; = const. on S; is cqual
to p; — p1 , from which follows theorem (48.7].

9. The surfaces parallel to a developable surface are developable surfaces.

10. The surfaces parallel to a surface of revolution are surfaces of revolution.

11. Lines of curvature on two parallel surfaces arc the only corresponding
conjugate nets.

12. A necessary and sufficient condition that the asymptotic lines on a surface
correspond to a conjugate system on a parallel surface is that the twosurfacesbe
surfaces of constant mean curvature in the relation of theorem (48.4].

13. From (48.20) and (48.21) it follows that the principal radii of normal curva-
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ture of the parallel surfaces normal to the tangents to the geodesics u? = const.
of a surface S with the linear element (48.15) are given by

1
p=u—c, p=ul—Cc— —,
log Vs

dut

14. If S is a surface applicable to a surface of revolution, the tangents to the
curves corresponding to the meridians of the surface of revolution are normal to a
family of surfaces of Weingarten as follows from Exs. 6 and 13.

15. From theorem [26.4] it follows that the left-hand member of equation (41.1)
of the lines of curvature of a surface is an indefinite quadratic form (see §28).
When the lines of curvature are coordinate, this form divided by 4/ is reducible
by (41.10) to

1 1

(— - —) Vg g dut dut ;

P2
by means of (41.12) and §28, Ex. 15 the curvature of this form is reducible to
2p1p2 3oy, p2) |

Vgugn (o — p)? 3(ut, )’

hence the curvature is equal to zero for a Weingarten surface and in consequence
of theorem [28.5] the lines of curvature on a surface of Weingarten can be found by
quadratures.

49. SPHERICAL AND PSEUDOSPHERICAL SURFACES

A surface whose Gaussian curvature K is a constant not zero is called
a surface of constant curvature. According as K is positive or negative
the surface is called spherical or pseudospherical.

We consider first spherical surfaces and put K = 1/a’. When such
a surface is referred to a family of geodesics ¥’ = const. and their
orthogonal trajectories, the linear element is of the form

(49.1) ds’ = du'® + ga du®.
From (28.5) and §28, Ex. 1 we have that ges is such that

(49.2) Ve _ _ 1 o

out* a?

The integral of this equation is

1 1
(49.3) Vin = o) cos% + ¥() sin %
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From (34.5) we have that the geodesic curvature & of the coordinate
curves u' = const. is given by
_ _9log Vg

(49.4) ko= — o,
If, in particular, the coordinate curves are chosen so that the curve

= 0 is a geodesic, the curves u' = const. the geodesic parallels to
this geodesic, and the curves u’ = const. their geodesic orthogonal
trajectories, it follows from (49.4) for the curve ' = 0 that y(u”) =
in (49.3). Hence by a suitable choice of the coordinate %’ the linear
element becomes

1
(49.5) d$ = du** + ¢ cos’ % a,

where ¢ is a constant. From this it follows that c(ui — u";) is the arc
of the geodesic u' = 0 between the curves v’ = u; and u® = ui .

From the foregoing discussion it follows that all spherical surfaces of
the same Gaussian curvature are isometric, and consequently all these
surfaces have the same intrinsic properties. However, there is a dis-
tinction between spherical surfaces of the same curvature as viewed
from the enveloping space. This is seen, in particular, when we con-
sider spherical surfaces of revolution.

A surface of revolution with the z*-axis for axis of revolution is de-
fined by the equations

(49.6) g = a'cosw’, 2=7du'sind, 2= o@),

the function ¢ determining the character of the rotated curve. In
terms of these coordinates the linear element is

(49.7) ds* = (1 + ¢'(@)?) da"* + a" da®.

When we compare this equation with (49.5), we have
1
=1+ @M di", a =c cos%, @ =,

from which it follows that

f\/—12 d‘”= ,‘/1—~—s1n2u du'.

Consequently equations of a surface of revolution with the linear
element (49.5) are

1 1

1 u 2 2 U . .2

Z = ¢COS—COSU, Z = ccos—snu,
a a

¢ . qul
z =f 1 — —251n2—du1.
a a

(49.8)
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There are three cases to be considered according as ¢ is equal to, greater
than, or less than a.
CasE 1°. ¢ = a. Now equations (49.8) are
1 1 1
1 u u . P . u
(49.9) 2' = acos — cos ¥, 2'=acosLsinu?, o =asin’ ,
a a

which are seen to be equations of the sphere of radius a with center at
the origin. '

We observe before taking up the other two cases that the expression
for 2° in (49.8) is an elliptic integral and consequently in cach case z°
is expressible by means of appropriate elliptic functions.

F1c. 17. A spherical surface of revolution of the hyperbolic type

CasE 2°. ¢ > a. From the expression in (49.8) for z° it follows that
1 2
sin’% < Z—zand consequently v/c* — a? < %' < ¢. Since &° is periodic,

the surface consists of a succession of like parts or zones each of which is
bounded by minimum parallels of radius V& = @, the greatest parallel
of each zone being of radius c, as shown in Fig. 17. The angle which
the tangent to a meridian curve makes with the plane 2° = 0 is given by

c2 . ul

,‘/1 —-Ezs.m’;

tang= -+ @ @
c . u

- sln —
a a

These spherical surfaces are said to be of the hyperbolic type.
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CasE 3°. ¢ < a. In thiscase 0 < @' < ¢, @ being equal to zero

when «' = mar/2 where m is any odd integer. At these points the
meridian curve meets the axis under the angle sin™ 2. Since z* is

periodic, the surface consists of a succession of like zones each being
spindle-shaped as shown in Fig. 18, the greatest parallel of each zone
being of radius c. These spherical surfaces are said to be of the elliptic
type.

Fia. 18. A spherical surface of revolution of the elliptic type

If the linear element of the sphere (49.9) is written in the form
1
ds* = dv"* + a® cos® % dv*

u” having been replaced by v*, the equations

C 2
V=, V=Zu
a
establish an isometric correspondence between the sphere and the sur-

faces of cases 2° and 3° such that meridians of the latter correspond to
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great circles o* = const. of the sphere. The points of either of the former
surfaces whose coordinates are such that

1 1 2
u};uguz, 2r 2 u 2 0,

are the points of the zone of the surface between the parallels »' = u;
and ' = u;. The coordinates »* of the corresponding points of the
sphere are such that

2mc 2
— v
a

0.

1 1 1
w v = ug,

v
v

Hence when ¢ > a and the surface is applied upon the sphere the zone
of the surface not only covers the corresponding zone of the sphere,
but there is an overlapping; whereas when ¢ < a the zone of the surface
fails to cover the zone of the sphere.

The form (49.5) was obtained from (49.3) by taking o(u’) = ¢,
Y(u*) = 0. For any constant values of ¢ and ¥ the expression (49.3)
can be written in the form

1
(49.10) Vg = ¢ cos (—l;- + b>,
where b and ¢ are arbitrary constants. According as we take b = 0,

— 7/2, or — 7w/4 we get the following respective forms of the linear
element

1
i) ds' = du'" + ¢ cos® %— duz?,
1
(49.11) (i) ds® = du" + ¢’ sin’ % du”,
1
(iii) ds* = du'” + ¢* cos® <% - ;—r> du®.

We have seen that for first of these forms the curve «' = 0 is a geo-
desic. For the form (ii) u' and cu’/a are polar geodesic coordinates by
theorem [33.1], and for the form (iii) the curve u' = 0 has geodesic
curvature 1/a.

For a pseudospherical surface of curvature —1/a’ one has in place
of (49.3)

1 1
(49.12) Vin = o) cosh% + ¢(?) sinh %.
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When (i) the curve «' = 0 is a geodesic, (ii) the coordinates ', cu’/a
are polar geodesic, or (iii) the curve ' = 0 has geodesic curvature
— 1/a, the linear element has the following forms respectively:

1
@) ds' = du' + ¢ cosh?® % du®,
1
(19.13) 40y ds* = " + & sink? L
(iii) dst = du'* + ™' du,

Any case other than these for which ¢(u”) and ¥(u*) are constants may
1

be obtained by taking for +/g,, either of the values ¢ cosh (% + b)
1
or ¢ sinh <% + b), where b and c are constants. By change of the co-

ordinate u', the corresponding linear elements are reducible to (i) or
(ii). Hence the forms (49.13) are general for the case when o(u?) and
¥(u*) are constants.

The forms (49.13) are linear elements of surfaces of revolution whose
equations are given by (49.6) where for the respective forms we have

1 —

. - u u
(i) @' = ¢ cosh —, = f 1-2 smh2 du';
a a?

1 T l
(49.14)  (ii) @ =c sinh%, = f1/1 - c-zcoshw—- du';

_ 1 2ul x
(iii) a =ce’, @’ —f/‘/ "’“d

In considering these three cases in detail we remark that the integrals
in (i) and (ii) are elliptic and consequently in each of these cases z* is
expressed by means of appropriate elliptic functions.

1
CasE (i). The maximum and minimum values of sinh® = are a’/c

and 0, respectively and consequently the maximum and minimum
values of the radius @' are v/a? + ¢ and c respectively. At points of a
maximum parallel the tangents to the meridian curve are perpendicular
to the axis of rotation and at points of a minimum parallel they are
parallel to this axis as follows from the value of dz*/di'. Since 2’ is
periodic the surface consists of a succession of spool-like zones, see Fig.
19, the maximum parallels being cuspidal edges. These pseudospherical
surfaces are said to be of the hyperbolic type.
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Cask (ii). In order that the surface be real, ¢ £ a’, a restriction not

necessary in either of the other cases. If we putc = asin 6, the maximum
1
and minimum values of cosh’% are csc’d and 1 respectively, and the

corresponding values of the radius @' are acos 8 and 0. The tangents
to the meridians at points of the maximum circle are perpendicular to the
axis of rotation and at points for which @' = 0, the tangents make the
angle 6 with the axis. The surface is made of a succession of zones

Fic. 19 F1a. 20

Fic. 19. A pseudospherical surface of revolution of the hyperbolic type
Fia. 20. A pseudospherical surface of revolution of the elliptic type

similar in shape to hour glasses. Fig. 20 represents such a zone, the
maximum parallel being a cuspidal edge. These pseudospherical
surfaces are said to be of the elliptic type.

Case (iii). If we make the substitution sinf = Z ¢ in (49.14)
(iif), we obtain

%' = asin 6, 2 = afcos 8 — log (csc 6 + cot 6)].
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3

From this result we have that % = cot 6, and consequently 6 is the
angle which the meridian makes with the axis of rotation. One finds
that the length of the segment of a tangent to a meridian from the point
of contact to the axis of rotation is a, and consequently the meridian
curve is a tractrix (see §6, Ex. 11). These pseudospherical surfaces are
said to be of the parabolic type. They are called pseudospheres. See

Fig. 21.

Fia. 21, A pscudosphere (pscudospherical surface of revolution of the
parabolic type)

From (49.4) we find that the geodesic curvature of the parallels of the
surfaces with the linear elements (49.13) are given by the respective
expressions

. 1 ut . 1 u 1
@O - A tanh L (ii) 2 coth rE (iif) r

Since no one of these expressions can be transformed into any other,
if ' is replaced by ' + ¢, where ¢ is a real constant, it follows that two
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pseudospherical surfaces of revolution of different types are not appli-
cable to one another with merdians in correspondence, whereas we have
just found this to be the case between different types of spherical surfaces
of revolution.

The results (49.11) and (49.13) constitute another proof of the first
part of theorem [31.1], and more particularly we have

(49.1] The linear element of any surface of constant curvature 1/a® or
— 1/a® is reducible to the respective forms (i), (i), (iii) of (49.11) or
(49.13) according as the coordinate geodesics are (i) orthogonal to a
geodesic, (ii) pass through a point, or (iii) are orthogonal to a curve of
constant geodesic curvature.

We proceed now to the consideration of surfaces of constant curvature
when the lines of curvature are coordinate. To this end we assume
that the Gaussian curvature of the surface is equal to ¢/a’, where e is
+1 as —1 according as the surface is spherical or pseudospherical.
If such a surface is referred to an isometric-conjugate net (see §42),
we have

(49.15) dy _,dm 1y,

Vi Vg a ,
When the expressions for diy, de in (49.15) are substituted in the Codazzi
equations (39.6), the resulting equations are reducible, in consequence of
(28.1) and (28.2), to

ad a 9 9 9 d
g“<iu e %92 _ 2—!]—1—2)-}-9 <gu_ Q22+2 gu>=0’

ou? 6u2 out ou ou! ou?
Ogu 3922 g1 3911 agzz 6912)
9 Sou _ 2e =0.
gu <au2 Cow 2 au1> tgn <au1 i
Since g # 0, these equations are equivalent to
il
(gu — egn) + 2¢ _51_1_2 =Y,
(49.16) s 2
iz __
6—172(911 — egn) — 25? = 0.
These equations are satisfied by
(49.17) gu — egae = const., gz =0;

hence we have

[49.2] The lines of curvature on a surface of constant Gaussian curvature
form an tsometric-conjugate net.



286 SURFACES IN SPACE [Cu. IV

For the case of spherical surfaces the equations (49.17) are satisfied by
(49.18) gy = a*cosh® 6, g = 0, g = o sinh’® 6,
and from (49.15) we have
(49.19) diy = dx = asinh 8 cosh 6, die = 0.

When these values are substituted in the Gauss equation (40.10), where
K is given by (28.5) and §28, Ex. 1, one obtains

2 2
(49.20) 9702 + 9-20, + sinh 6 cosh § = 0.
ou ou

Conversely, in consequence of theorem [39.1] we have

[49.3] For each solution of equation (49.20) the quantities (49.18) and
(49.19) determine a spherical surface, the lines of curvature being coordinate.

For the case of pseudospherical surfaces the equations (49.17) are
satisfied by

(49.21) gu = & cos’ 6, gz = 0, gn = a’ sin’ 9,
and from (49.15) we have

(49.22) dy = —dy = asin 6 cos 6, dip = 0.
When these values are substituted in the Gauss equation, one obtains
2 2
(49.23) 6—% - a—f; — sin@cosf = 0.
du ou

Hence we have

[49.4] For each solution of equation (49.23) the quantities (49.21) and
(49.22) determine a pseudospherical surface, the lines of curvature being
coordinate.

EXERCISES

1. The lines of curvature and the asymptotic lines on a surface of constant
Gaussian curvature can be found by quadratures (see §48, Ex. 15).
2. When the linear element of a pseudospherical surface is in the form (49.13)
(1ii), the surface defined by
. . azt
L S S sl
B=z—a bt
is pseudospherical, and the tangent planes to the two surfaces at corresponding
points are perpendicular.
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3. The helicoids

h2
Z! = u! cos u?, 2? = ul! sin u?, zd = f ,‘/ e et 1du' + hu?,

where a, b, and k are constants, are spherical surfaces.

4. A helicoid whose generating curve is a tractrix is a pseudospherical surface;
it is called a surface of Dini.

5. For a pseudospherical surface defined by (49.21) and (49.22) the linear ele-
ment of the spherical representation is

ds? = sin? 0 du’ + cos? @ du?®.

6. The surfaces of center of a pseudospherical surface are applicable to a
catenoid.

7. On a surface of constant curvature the area of a geodesic triangle is in a
constant ratio to the difference between the sum of the angles of the triangle and
two right angles (see theorem [33.2]). )

8. When upon a surface there is more than one family of geodesics which
together with their orthogonal trajectories form an isothermal system, the surface
is of constant curvature.

9. When the equations of the sphere with center at the origin and radius a are
written in the form

z! = a 8in u! cos u?, z? = a sin u! sin u?, z = a cos ul,

the linear element is
@) ds? = a2(du'® + sin? u! du?®).
The equation of any great circle of the sphere is of the form
(i1) A sin u! cos u? + B sin u! sin u? + C cos u! = 0,
where 4, B, C are constants not all zero; this is an equation of the geodesics on any
surface of Gaussian curvature 1/a? in terms of the coordinate system for which
the linear element is (i).

10. When in equation (ii) of Ex. 9 u! and u? are expressed as functions of a

general parameter ¢ and this equation is differentiated twice with respect to ¢,
and A, B, and C are eliminated from the three equations, one obtains

dul | d?u? du! du? du?| d*w! du?\?
1o -——— — 1 1 - 0,
@ [du +2eotut dt] dt I:dz’ sin ! cos u (dt)] ;
since this is the equation (37.1) for the case when the linear element is (i) of Ex. 9,
this is an analytic proof of the fact that equation (ii) is an equation of the geo-
desics of the surface with this linear element.

11. When the coordinates on a pseudospherical surface are such that the
linear element is

ds? = a*(dut® + sinh%u! du?’),
an equation of the geodesics is
i) Atanh u! cos u* + B tanh u! 8in u? + C = 0,
a8 may be verified by the process used in Ex. 10.
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12. When equation (ii) of Ex. 9 is divided by cos u! and the terms multiplying
A and B in this equation are equated to z and y and similarly the terms multiply-
ing A and B of equation (i) of Ex. 11, these equations define the correspondence
between the surface and the plane in accordance with which geodesics on the sur-
face are represented by straight lines in the plane.

13. When the coordinates on a pseudospherical surface are such that the linear
element is of the form (iii) of (49.13), an equation of the geodesics is

Aare'le 4 ¢u?’) + Bewr + C = 0,
as may be verified by the process used in Ex. 10; in this case the equations
1
T = cu, = ge™v /¢

determine a conformal representation of the surface upon the plane such that any
geodesic in the surface is represented in the plane by a circle with its center on
the z-axis or by a line perpendicular to this axis.

50. MINIMAL SURFACES

In §43 a minimal surface was defined as one whose mean curvature is
equal to zero. In this section we establish a property of minimal
surfaces which accounts for their name, and then derive other properties
of such surfaces.

Consider a surface S in space defined by the equations

(50.1) = f, W)

Consider upon this surface a simply connected region R with curve C
as contour and for this region consider the integral

(50.2) I= ‘/"/.Ldu’l di,
R

where L is a function of the z’s and their first derivatives % Let

w*(u', ¥) be three arbitrary functions such that

(50.3) w'@!, u¥) = 0 along C.
Then
(50.4) F =1+ ea,

where ¢ is an infinitesimal, define another surface S nearby S and con-
taining the curve C. When these expressions are substituted in the
function L in (50.2), we have for S the corresponding integral

(50.5) I= f L(z" + e 9z + € 91) du du’.
¢ ou” ou®
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In order that I shall be a minimum for all the surfaces passing through
C it is necessary that the derivative of I with respect to e be equal to
zero for e equal to zero. From (50.5) we have that this condition is

; AL dw 2 _
f f <ax' ax: aw*)d du

where xf,, = gz%( This equation may be written in the form

]G e i o+ [ 55

In consequence of (50.3) the second of these integrals is equal to zero
and, since the first integral must be equal to zero for arbitrary functions
w' subject to the condition (50.3), we have

(50.6) 0 oL L _,,

ous ori, axt

)du du® = 0.
ozt

These arc the generalized equations of Euler. When these conditions
are satisfied the surface S is said to be an extremal for the integral (50.2).

We consider now the particular case when the integral (50.2) is the
integral of area, namely,

(50.7) I= f f Vg du* du’.
In this case the equations (50.6) are

9 3vg _ Vg _
(508) e R

where g is the determinant | gqs | and
(50.9) Gap = D Tialip-
Now we have

3vVg_ 1 3 dgsy _ L(ay S 4 9 a)

0 24/g 08y 0% /g \aa 0gas
= Vg (g™l + ¢™z}p) (8 # a)
= Vg gz,
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From these equations we have in consequence of (28.2)

o (o) = oo o+ 0 (o i - {2))

+ ¢* o’ ]

du™ u”
=y 0 Tay = vy 97" day X,
the last expression being a consequence of (38.18).
From (50.9) it follows that 4/g does not involve z'; consequently the
second term of (50.8) is identically zero. Hence for the equations

(50.8) to hold we must have g*"d,y, = 0, which by (40.11) is the condition
that the mean curvature be equal to zero. Hence we have

[50.1] A minimal surface is an extremal for the integral of area.

The determination of whether this is the minimum area for a given
contour involves derivatives of higher order and is an important problem
in the calculus of variations. However, any surface satisfying theorem
[50.1] is called a minimal surface.

Lagrange using the equation of a surface in the Monge form (see §10)
derived as the differential equation of minimal surfaces (see §39, Ex. 1)

(1 + p)ru — 2piperie + (1 + pi)ree = 0

in this notation the left-hand member is the expression for mean curva-
ture. Lagrange raised the question of finding the minimal surface for a
given contour. Plateau gave a physical realization of this problem by
means of a glycerine film, it being a consequence of surface tension of such
a film that the surface would assume the form having a minimum area.
Accordingly, this problem proposed by Lagrange is now known as the
Plateau problem. The mathematical solution of this problem for a given
contour has been the subject of study by mathematicians up to the
present time.

From (40.11) it follows that when minimal curves on a minimal
surface are coordinate, these curves form a conjugate net. In this case
gu = g = diz = 0. From the first two of these equations it follows
from (28.1) that

(50.10) {112} - {122} -o.
o’z

From these results we have from (38.18) that Few i 0 and con-
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sequently
(50.11) = Ui + Ui,

where U} and Uj are functions of i and u} respectively. These func-
tions must be such that

(50.12) > (6U§>2 =0, > (aU;‘)Z =0,

T\ oul T\ 0u?

which are the conditions that g,y = g2 = 0. Since the first of equations
(50.12) expresses that the sum of the squares of three quantities is zero,
1
2
property, it follows that the most general solution of the first of equations
(50.12) consists of the above expressions multiplied by an arbitrary
function of «', say, F(u'). Since the same argument applies to the
second of equations (50.12), we have for equations (50.11) satisfying the
conditions (50.12)

#=1
2

and since the three quantities %(1 —u"), 2 (1 + u"), and u' possess this

f A — dFO) dit + ; f (1 — YHE) dod,
(50.13) z* = %f(l + WP du' — gf(l + u*")H(u®) du’,

= fulF(ul) du' + fugH(ug) du’.
From these equations we have that the linear element of the surface is
(50.14) ds’ = (1 4+ v F(u)H () du' du’.

From this it is seen that for the surface to be real «' and 4’ must be
conjugate imaginary and H must be the function conjugate to F. It
was in order to effect this result that the negative sign was used before
the second integral in the second of equations (50.13).

From (50.13) we have for the direction cosines of the normal to the
surface

W + o), i’ = ), (W'’ — 1)

14 wlu? ’
from which one finds that the linear element of the spherical representa-
tion is

(50.15) XL XX =

2 _ 4dul du2
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Also by means of (38.13) one finds
(50.17) dy = —F(u)), diz = 0, dye = —H®).

From (50.14) and (50.17) one finds that the differential equations of the
lines of curvature and of the asymptotic lines are respectively

(50.18) Fuhdu” — H@)d" = 0,
(50.19) F@hdu" + H@)du” = 0.
From the form of these equations we have

[50.2] When the minimal lines of a minimal surface are coordinate, the
equations of its lines of curvature and of its asymptotic lines can be found
by quadratures. '

Equations (50.13) are known as the equations of Enneper.* From
these equations it is seen that the problem of minimal surfaces is that of
functions of a single complex variable (see Ex. 5).

Weierstrass,T who also derived equations (50.13), remarked that these
equations can be put in a form free of all quadratures. This is done by
replacing F(«') and H(u’) by f”/(u') and h"’(u’) respectively, where the
primes indicate differentiation, and then integrating by parts. This
gives the equations

1_
1 _
TE

u f”(ul) + ulf/(ul) __f(ul) + .li_2*u_ hll(uZ)
+ WK (%) — k),

12 23
2= L EL ) — ) + i) — i )

(50.20)
+ W’ B (u?) — h(u?),
2 = (W) = @) + PR = B,

It is clear that the surface so defined is real when f and k are conjugate
imaginary functions of the conjugate imaginary coordinates u' and u”.
In this case (50.20) may be written

2= RIA — )W) + 20 @) — 2 @),
(60.21) 2 = R + u") @) — 2 (') + 20D,
2 = R — 2 (u)),

* 1864, 2, p. 107.
11866, 1, p. 619.



§50] MINIMAL SURFACES 293

where in these equations ® denotes the real part of the expression
following . Equations (50.20) are of particular value in the study of
algebraic surfaces, for it is evident that when f and k are algebraic on the
elimination of %' and u’ from these equations the resulting equation
will be algebraic in z', 2°, and 2°. The converse of this is also true.*

EXERCISES

1. A minimal surface is a surface of translation (see §42, Ex. 1); when its equa-
tions are of the form (50.13) a necessary and sufficient condition that the gener-
ating curves be congruent is that

i = (1)

2. When equations (50.11) arc equations of a minimal surface, so also are the
equations

zl = P Ui + ¢ U]} (G=1279,

where i = v/ =1 and a is a constant. These minimal surfaces as a takes different
values arc called associate minimal surfaces; the normals to thesc surfaces at
points with the same coordinates u* are parallel.

3. When ain Ex. 2is equal to m/2, the surfacc is called the adjoint of the surface
with the equation (50.11); the lines of curvature on either surface correspond to
the asymptotic lines on the other, and the tangents to the curves with the same
equation ¢(u', u?) = 0 on the two surfaces are orthogonal.

4. If 2! denote the coordinates of the adjoint surface of the surface with the
equation (50.11), the equations of Ex. 2 may be written

zl =cosar +8inazi ;

the plane determined by the origin of coordinates, a point P’ on a minimal surface,
and the corresponding point on its adjoint contains the corresponding point on
every associate surface and the locus of these points is an ellipse with center at
the origin.

5. From §44 Ex. 11 it follows that for a minimal surface A; 2* = 0; when the co-
ordinate curves form an isometric orthogonal net, we have that 2 are solutions
of the harmonic equation

926 a29
— — =0,

au? ' ou??
from which it follows that for any real minimal surface
25 = fiut + du?) + fi(ut — du?),

where f% and f} are conjugate imaginary functions, which is in accord with equa-
tions (50.13).

* 1909, 1, p. 261.
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6. When in equations (50.13)
b ' b ea
F)=gwm  HW =35

"1, .=2 21,.-2
where a and b are constants, and one puts u! = e %" and u? = ¢ +%°, one ob-
tains equations of the following form

z! = b(cos a cosh u! cos 4? — sin a sinh %' 8in %2)
z? = b(cos a cosh 4! sin %? + sin a sinh %! cos 4?),
z8 = b(— %! cos a 4+ #u?sin a),

which are equations of minimal helicoids (sec §24, Ex. 6).

7. When a = 0 in Ex. 6, the surface is the catenoid (see §24, Ex. 4); when ¢ =
/2, the surface is the skew helicoid (see §24, Ex. 7).

8. If two minimal surfaces correspond in such manner that at corresponding
points the tangent planes are parallel, the minimal eurves on the two surfaces
correspond; for two such surfaces the locus of the point which divides in constant
ratio a line-segment joining corresponding points is a minimal surface.

9. The spherical representation of the lines of curvature of a minimal surface
is an isometric orthogonal net (see §43, Ex. 11 and (46.5)).

10. If one family of the lines of curvature on a minimal surface are plane
curves, those of the other system are plane curves also (sce §46, Ex.4; §47, Ex. 15).

11. Show that the surface

2 = aqu! + sin u' cosh u?,
z? = u? 4+ a cos u! sinh 2,
28 = /1 — a? cos u' cosh u?

is minimal and that its lines of curvature are plane curves.

12. The surfaces of center of a minimal surface arc applicable to one another
and to the surface of revolution of the evolute of the catenary.

13. The surface for which F = H = const., say 3, is called the minimal surface
of Enneper; it possesses the following properties:

(a) it is an algebraic surface of the ninth degree whose equation is unaltered
when 21, 22, 28 are replaced by 22, 2!, — 3% respectively;

(b) it meets the plane z® = 0 in two orthogonal straight lines;

(c) if we put u! = @' — tu?, the equations of the surface are

= 3@ 4 3aa”’ - @®, @t = 3wt 4 3atar— @', o =3a’ — 3a?

and the curves ! = const., %2 = const. arc the lines of curvature;
(d) the lines of curvature are rectifiable unicursal curves of the third order and
they are plane curves, the equations of the planes being

o 4 @ — 3@t — 2!’ = 0, 22 — @izt — 32 — 242 = 0;

(e) the lines of curvature are represented on the unit sphere by a double family
of circles whose planes form two pencils with perpendicular axes which are tangent
to the sphere at the same point;
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(f) the asymptotic lines are twisted cubics;

(g) thesections of the surface by the planes z! = 0 and 2? = 0 are cubics, which
are double curves on the surface and the locus of the double points of the lines of
curvature;

(h) the associate minimal surfaces are positions of the original surface rotated
through the angle —a/2 about the 23-axis,where a has the meaning of Ex. 2.

(i) the surface is the envelope of the plane normal, at the midpoint, to the join
of any two points, one on each of the focal parabolas

2! = 44}, z?=0, 2= 2" — 1; =0, z? = 4u? r=1- 212”;

the planes normal to the two parabolas at the extremities of the join are the
planes of the lines of curvature through the point of contact of the given plane.
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NOTES

p. 51: The definition of singular points requires restatement, the
cofactors in equation (11.3) may not be all zero in one coordinate
system and yet all vanish inanother. Forexample, in the coordinates

w'®, where u!' = u'?’, u? = u'?* the quantities % = ;—1{1 2u’! are
equal to zero for ! = 0 and consequently the cofactors in the u"’s,
even if all the cofactors in the u’s are not zero for u! = 0. Accord-
ingly we say that a point is singular, if it is impossible to choose a
coordinate system in which all of the cofactors are different from
zero.

p. 79, Ex. 1: Replace ‘“are’ in second line by ‘‘are related as”.

p. 120, line 10 and Theorem [23.3]: Replace “If g > 0” by “If the
quadratic form g,;dx'dx’ is positive definite.”

p. 152, second line above Theorem [28.5]: Insert after ‘“‘imaginary”’
the clause, ‘‘since u is a pure imaginary as follows from the above
equations.”

p. 164: Replace (30.19) by
(30.19) ' + u? = fle + i), u' — w? = fole — ).

Then, ds? = Pf'fo(de! + dy?),

where f is obtained from ¢ on replacing u! and u? by their values from
(30.19).

p. 188, third line from bhottom: After ‘“‘net,” insert the clause, ‘of
which the curves u? = const. are geodesics (see Theorem [32.5]).”
And in last line replace 7 + a by 27 — a.

p- 202, beginning line 17: See Note, p. 164.

p. 221, Theorem [39.1]: Replace ‘“such that ¢ > 0” by “such that
gapdu®du® is positive definite.”

298



- Index

aij, @', a, 70, 72,

o, 12,

Angle, of curves in a surface, 130-132,
137, 145; of vectors, 133.

Applicable surfaces, 215; see Isometric
surfaces.

Arc of a curve, 9.

Area, element of, 136; minimum, 290.

Associate, vector, 194, 250, 252; mini-
mal surface, 293.

Asymptotic directions, 237, 241.

Asymptotic lines, 237-239, 243; co-
ordinate, 237, 238, 242, 260, 266;
orthogonal, 238; straight, 237, 267;
geodesic, 248; spherical representa-
tion of, 260, 266, 267; plane, 249;
osculating plane of, 237; tangential
coordinates, 264, 265.

g, 18.

Beltrami, 158, 189, 208, 275.
Bertrand curves, 30.
Bianchi, 194.

Bianchi identities, 121.
Binormal of a curve, 19.
Bonnet, 190, 273.

Calculus of variations, 290.

Catenoid, 128, 242, 204.

Center of curvature, of a curve, 18; of a
curve in a surface, 227; principal, of a
surface, 226.

Characteristics of a family of surfaces,
54.

Christoffel symbols, for space, 98, 102,
121; as components of a tensor, 100,
102, 103; for a surface, 149, 153, 154;
relations between for a surface and
its spherical representation, 257, 260.

Circle, of curvature, 18; osculating, 19;
superosculating, 24.

Circles, orthogonal system, on the
sphere, 267.

Codazzi equations, 219, 230, 236, 238.

Combescure transformation of curves,
29.

Complementary surfaces, 275.

Conformal correspondence, of two
surfaces, 201-205; of a surface and its
spherical representation, 255; of a
surface with itself, 203; of a plane
with itself, 204; of a sphere with the
plane, 204; of a sphere with itself,
204; of a surface of constant-curva-
ture with the plane, 288.

Congruence of curves, 78.

Conjugate directions, 231, 241.

Conjugate net, 232, 243; coordinate,
232, 235, 236; orthogonal, 232; of
plane curves, 266; spherical represen-
tation, 260; tangential coordinates,
263; isometric-, 235, 236; mean-, 240,
243, 260.

Conjugate systems in correspondence,
243.

Cone, 53, 57.

Conoid, right, 50, 53, 129, 149, 221, 266.

Coordinates, in space, 63-68; cartesian,
63, 70, 88; cylindrical, 83; see Polar
coordinates, Tangential coordinates;
in a surface, 48; z!, 22 a8, 137, 221.

Coordinate curves, in space, 69; in a
surface, 46, 127.

Coordinate, net, 49; surface, 68, 81.

Contraction of indices, 95.

Contravariant, index, 89; tensor, 89,
90, 91; vector, 77, 82, 126; compo-
nents, 85, 88, 127, 134.

Covariant differentiation, 107-112; of
sum, difference, outer and inner
product of tensors, 111; of ai;, a'/, 8},
110; of gas, g°#, €as, €%, 151.

Covariant, index, 89; tensor, 89, 90, 91;
vector, 84, 127; components, 85, 86,
88, 127, 134.

Cubic, twisted, 5, 7, 8, 16, 44.

Curvature of a curve, 16; radius of, 16;
center of, 18; circle of, 18; constant,

209
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19, 23, 24, 28; first, 22; second, 22;
geodesic, see Geodesic curvature.
Curvature of a surface, total, 151; see

Gaussian curvature, Mean curvature,

Curvature, of a quadratic form, 151; of
a triangle, 183.

Curvature, normal, of a surface, 224;
radius of, 224, 227; center of, 224;
principal radii of, 225; principal
centers of, 226.

Curvature tensor, see Riemann tensor.

Curve, definition, 3; plane, 4; twisted,
or skew, 4; length of, 9; arc of, 9;
minimal, or of length zero, 10; form
of, 26; of constant curvature, 19, 24,
28; of constant torsion, 24, 28, 29, 30.

Curvilinear coordinates, 47, 69.

Cylinder, 3, 53, 61, 149.

dog, d°8, 215, 216, 221, 234, 262.

5, 849, 85, 8, 25, 32.

85, 125.

D, D', D’, 216.

Aip, Ao, 02), B(p1, @2), 155, 156, 159,
160.

Azp, 158, 159.

Darboux, 115, 173, 233.

Developable surface, 54, 57-61, 152;
tangent planes, 147, 148; isotropic,
61; polar, 61, 149; rectifying, 61, 248;
edge of regression, 61; tangent sur-
face of a curve, 57; isometric with a
plane, 147; Gaussian curvature, 150;
geodesic in a, 178; of normals to a
surface, 229; lines of curvature, 229,

Differential parameters, of the first
order, 155, 156, 159, 160; of the second
order, 158, 159.

Dini, 210.

Dini, surface of, 287.

Direction cosines, of tangent, 12; of
principal normal, 18; of binormal,
20, 23.

Divergence of a vector, 113, 155.

Dupin indicatrix of a surface, 241.

E,F, G, 126.
ek, €%, 6, 93, 94.
&4, €75, 04, 97,

INDEX

€ap, €2, 134, 138.

eap, €8, 135, 137, 138, 151.

Edge of regression, 56, 61.

Element, of area, see Area; linear, see
Linear Element.

Ellipsoid, 50; see Quadrics, central.

Elliptic point of a surface, 242.

Enneper, 248, 292.

Enneper, minimal surface of, 294.

Envelope, of a one-parameter family of
surfaces, 54-56; edge of regression,
56, 62; of characteristics, 56; of a one-
parameter family of planes, 57, see
Developable surfaces; of a family of
spheres, 62.

Equations, parametric, of a line, 1; of
a curve, 3; of a surface, 46.

Equivalent representation of surfaces,
205.

Euler, equation of, 240; equations of,
177, 289.

Evolute of a curve, 36, 38.

Family, one-parameter, of surfaces, 54;
characteristic, 54; of planes, 57; of
spheres, 62; of curves in a surface,
138-141; of geodesics, 174.

Formula, of Green, 190, 192; of Liou-
ville, 193.

Frenet formulas, 25, 27; in general
coordinates, 106; in a surface, 199.
Fundamental quadratic form, of space,
70; first, of a surface, 124; second, of

a surface, 215.

Fundamental tensor, of space, 91; first,
of a surface, 125, 262; second, of a
surface, 215, 262.

g, 101, 125.

giiy g7, 101.

gag, 9°%, 123, 125, 137, 151, 262.

v 20.

Gauss, 45, 151, 174, 184, 216, 219, 225,
252, 254.

Gauss, equations of, 216; equation of,
219,

Gauss-Bonnet theorem, 191.

Gaussian curvature of a surface, 151,
154, 193, 225, 255.
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Generator, of a developable surface, 59;
of a surface of translation, 236.

Geodesics, 170-179, 187, 246; equations
of, 171, 179, 197; coordinate, 173;
plane, 248; in a surface of Liouville,
176.

Geodesic correspondence of two sur-
faces, 205-211; of constant curvature,
209.

Geodesic curvature, 186-193, 199, 201,
243-245; center of, 246, 275; radius of,
276; curves of constant, 192, 267.

Geodesic, circles, 180, 186; ellipses and
hyperbolas, 185, 186.

Geodesic parallels, 174, 200.

Geodesic polar coordinates, 180-182.

Geodesic torsion, 247-249.

Geodesic triangle, 183, 184, 200.

Gradient, 84.

Group property, 68.

h, 253.

hag, ko8, 253, 256.

Helicoid, 53, 129, 218; parameter of a,
129; isometric with a surface of revo-
lution, 160; surfaces of center, 276;
spherical, 287; pseudospherical, 287;
minimal, 294.

Helicoid, skew, 129, 145, 165, 242, 294.

Helix, circular, 14, 16, 19, 23, 30, 34, 37;
conical, 15; cylindrical, 15, 19, 24, 28,
37, 38, 149, 178.

Hyperbolic point of a surface, 242.

Hyperboloid, 50, 242; rulings, 242; see
Quadrics, central.

Index, dummy, 2; free, 2; contra-
variant, 89; covariant, 89; lowering,
95; raising, 95.

Indicatrix, of Dupin, see Dupin;
spherical, of tangent, 17; of binormal,
22.

Inner product of tensors, 95.

Intrinsic, equations of a curve, 31, 147;
geometry of a surface, 146; deriva-
tive, 195.

Inversion, 233, 236; preserves lines of
curvature, 233.

Involute of a curve, 35, 37, 39.
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Isometric surfaces, 147, 150, 166-169,
171, 197.

Isometric, orthogonal net, 161-165;
coordinates, 161; -conjugate net, 235,
236.

K, 151, 154, 193, 225.
K, 225.

x, 16.

K 187, 245.

Kronecker deltas, 25, 63.

Lagrange, 290.

Lamé, 158.

Lelieuvre, formulas of, 266.

Levi-Civita, 196, 199, 251.

Line of curvature, 228, 229; equation,
228, 277; coordinate, 230; conjugate,
232, 233; normal curvature of, 229;
geodesic torsion of, 248; geodesic,
248; two surfaces intersecting in a,
248; spherical representation of, 255;
osculating plane of, 259; plane, 230,
249, 260, 266, 268, 276; spherical, 249;
under an inversion, 233.

Linear element, of a curve, 9; of space,
70; of a surface, 124; of the spherical
representation, 252.

Linearly independent (constant coeffi-
cients), 262.

Lines of length zero, see Minimal lines.

Lines of shortest length, 175.

Liouville, formula of, 193; surface of,
176.

Loxodromic curve, 145.

Mainardi, 219.

McConnell, 194.

Mean-conjugate net, 240, 243, 260.

Mean curvature of a surface, 225.

Meridian of a surface of involution, 49.

Metric tensor, of space, 91; of a surface,
124, 125.

Meusnier, theorem of, 224.

Minimal curve, 10, 16; on a surface, 124;
on a sphere, 154.

Minimal surface, 238, 249, 288-295;
asymptotic lines, 238, 260, 292;
minimal lines, 238, 291; spherical
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representation, 255, 260, 294; heli-
coidal, 242, 294; of revolution, 242;
lines of curvature, 243, 292, 294;
algebraic, 293 ; surfaces of center, 294;
adjoint, 293; associate, 293; of En-
neper, 294.

Monge, 46, 290.

Normal plane to a curve, 12.

Normal section of a surface, 223; princi-
pal, 225, 229; radius of curvature of,
223, 224; center of curvature of, 227.

Normal to a curve, 18; see Principal
normal, Binormal.

Normal to a surface, 53, 213, 229.

Order of contact, 13, 16.

Orthogonal net, 131, 141, 144, 156, 205;
coordinate, 131, 193; of geodesics,
178; see Isometric orthogonal net.

Orthogonal coordinate surfaces, 81.

Orthogonal trajectories, of a family of
curves, 140; of a family of geodesics,
174, 175, 180.

Osculating circle of a curve, 19.

Osculating plane, 13, 16; equation of,
14; stationary, 23; through a fixed
point, 28; tangent plane of tangent
surface, 51; edge of regression, 57;
of asymptotic line, 237; orthogonal
trajectories, 27, 148.

Osculating sphere, 43, 44.

Outer product of tensors, 94, 97.

Paraboloid, 145, 165, 242; fundamental
quantities, 166, 222; rulings, 242;
lines of curvature, 231, 236; of nor-
mals to a ruled surface, 221.

Parallel curves on a surface, 157, 158,
174.

Parallels, geodesic, 174.

Parallel surfaces, 272, 273, 276; funda-
mental quantities, 272; lines of
curvature, 272, 276; of surface of
constant curvature, 273; of surface
of revolution, 276; asymptotic lines,
276.

Parallel vectors, in space, 107, 113; in
a surface, 196-200; 249-252,

INDEX

Parametric equations of a line, 1; of a
curve, 3; of a surface, 46.

Partial differential equations of the
first order, 114-118, 122; mixed sys-
tem, 118.

Plane, 1, 217; surface isometric with a,
150.

Plane curve, 4, 5; curvature, 17; in-
trinsic equations, 147.

Plateau problem, 290.

Point of a surface, ordinary, 51; singu-
lar, 51; elliptic, 242; hyperbolic, 242;
umbilie, 225, 227.

Polar coordinates, 64, 82, 88, 102, 107,
113.

Polar line of a curve, 37.

Polar, surface of a curve, 41, 52; de-
velopable, 61, 149.

Principal center of normal curvature,
226.

Principal directions, for a tensor a,s,
144; of normal curvature, 224.

Principal normal of a curve, 18, 24, 30,
31.

Principal radii of nermal curvature,
225.

Pseudosphere, 284.

Pscudospherical surface, 277, 281-284,
286; of revolution, 281-284; lines of
curvature, 285, 286; asymptotic lines,
242, 286; geodesics, 184, 287, 288; of
Dini, 287; surfaces of center, 287.

Quadratic form, definite, 151, 152;
indefinite, 151, 152, 155; see Funda-
mental quadratic form.

Quadrics, central, equations, 49; funda-
mental quantities, 165, 221; lines of
curvature, 231, 236; asymptotic lines,
242, ’

Rhjx, Rai, 100-103, 150, 151, 207.

p, 16.

Rectifying developable, 61, 248.

Representation, equivalent, 205; see
Spherical representation.

Riccati equation, 33, 34.

Ricci, tensor, 103, 122, 153; identities,
112.



INDEX

Riemann, symbols, 101; tensor, 101,
103, 120-122, 150, 153.

Scalar, 78, 91; relative, 92; density, 92.

Singular, point on a surface, 51, 125;
curve on a surface, 125,

Skew curve, 4.

Sphere, 49, 53, 128, 145, 154, 217, 258,
267.

Spheres, family of, 62, 275.

Spherical curve, 16, 43, 44.

Spherical indicatrix, of the tangents
to a curve, 17; of the binormals of a
curve, 22,

Spherical point of a surface, 225.

Spherical representation of a surface,
252-260; fundamental quantities, 253,
260; lines of curvature, 255; asymp-
totic lines, 260, 267; conjugate net,
260; area of closed portion, 254;
isometric net, 267.

Spherical surface, 277-281; parallels to,
273; of revolution, 278-281; geodesics,
287; lines of curvature, 285, 286;
asymptotic lines, 286.

Spiral surface, 146, 179, 231.

Stereographic projection, 205.

Summation convention, 1.

Superosculating circle, 24.

Surface, definition, 2; imbedded in
space, 123.

Surfaces of center, 268-272; fundamen-
tal quantities, 271; Gaussian curva-
ture, 272; asymptotic lines, 276; lines
of curvature, 276.

Surface of constant mean curvature,
273.

Surface of constant Gaussian curva-
ture, 170, 186, 287; see Spherical
surface and Pseudospherical surface.

Surface of Liouville, 176, 180.

Surface, of positive curvature, 226; of
negative curvature, 226.

Surface of revolution, 49, 149, 160;
meridian, 49, 165; fundamental quan-
tities, 128, 218; Gaussian curvature,
153; loxodromic curve, 145, 192;
geodesics, 178, 192; lines of curva-
ture, 230, 236, 259; asymptotic lines,
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242; of constant curvature, 169;
surface isometric with a, 160, 165,
169, 179, 277; principal radii, 227;
surfaces of center, 275; parallel
surfaces, 276.

Surface of translation, 236, 242, 293;
generating curves, 236.

Surface of Weingarten, 276, 277.

Symmetry with respect to, a point, 24,
218; a plane, 24.

Synge, 194.

T, 22.

Tgy 247.

Tangent, to a curve, 11; positive sense,
11; to a surface, 50.

Tangent plane to a surface, 50; distance
to, 53; osculating plane of asymptotic
line, 237.

Tangent surface of a curve, 38; edge of
regression, 40; form of, 40; tangent
plane, 51; generators, 38; lines of
curvature, 230; linear element, 128.

Tangential coordinates of a surface,
260-264.

Tchebychef net, 160, 200, 236, 242.

Tensor, contravariant, 89, 90; co-
variant, 89, 90; mixed, 89, 90; order,
90, 91; zero, 91; symmetric, 92, 97;
skew-symmetric, 92, 93; relative, 93,
94; addition, subtraction, multiplica-
tion of tensors, 94; inner product, 95;
outer product, 94, 97; quotient law,
97.

Torus, 227.

Torsion, of a curve, 22, 23; constant, 23,
24, 28, 29, 30; of an asymptotic line,
248; of a geodesic, 248.

Tractrix, 29; surface of revolution of a,
284; helicoid whose generating curve
is a, 287.

Transform of a function, 78.

Transformation of coordinates, in
space, 64-68; inverse, 65; linear, 63,
79; product, 67; in a surface, 124;
positive, 133.

Transformation, of Combescure, 29;
by reciprocal radii, see Inversion.
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Triply orthogonal family of surfaces,
82.

Twisted curve, 4; cubie, 5, 7, 8, 16, 44;
of nth order, 5.

Umbilical point, of a surface, 225, 227;
of a quadric, 227.

Vector in space, contravariant, 77;
covariant, 84; length, 80, 85; unit, 80;
significance of components, 82, 86;
contravariant and covariant com-

* ponents, 85, 88.

Vectors in space, independent, 79, 88;
angle of two, 81, 85; perpendicular,
81, 83.

INDEX

Vector in a surface contravariant, 126;
covariant, 127; length, 128; unit, 128;
contravariant and covariant com-
ponents, 127; significance of com-
ponents, 134.

Vectors in a surface, angle of, 133;
perpendicular, 134, 135, 136; asso-
ciate, 194, 250, 252; parallel, 196-200,
249-252.

W, 260.

Wgys 211.

Weierstrass, 292.

Weingarten, surface of, 276; lines of
curvature, 277.

































