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Preface

This book of problems is the result of a course in
differential geometry and topology, given at the mechanics-
and-mathematics department of Moscow State University.
It contains problems practically for all sections of the
seminar course. Although certain textbooks and books
of problems indicated in the bibliography list were used
in preparation of this volume, a considerable number of
the problems were prepared for this book expressly.

The material is distributed over the sections as in text-
book [3]. Some problems, however, touch upon topics
outside the lectures. In these cases, the corresponding sec-
tions are supplied with additional definitions and
explanations.

In conclusion, the authors express their sincere gratitude
to all those who helped to publish this work.
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1
Application
of Linear Algebra to Geometry

1.1. Prove that a vector set ay, . . ., ax in a Euclidean space is linearly
independent if and only if

det |(ou, aj)| # 0.

1.2. Find the relation between a complex matrix 4 and the real matrix
rA of the complex linear mapping.
1.3. Find the relations between

det A and det rA, Tr A and Tr rA, det (4 — AE) and det (r4 — \A).

1.4. Find the relation between the invariants of the matrices 4, B and
APB AR B.

Consider the cases of det and Tr.

1.5. Prove the formula

det e* = ™™,
1.6. Prove that
ele? = "B + C'[A, BIC”

for a convenient choice of the matrices C’ and C”, where [A,
Bl = AB — BA. _

1.7. Prove that if A is a skewsymmetric matrix, then e” is an orthogonal
matrix.

1.8. Prove that if A is a skewhermitian matrix, then e* is a unitary
matrix.

1.9. Prove that if [4, A*] = 0, then the matrix A is similar to a diagonal
one.

1.10. Prove that a unitary matrix is similar to a diagonal one with
eigenvalues whose moduli equal unity.

1.11. Prove that a hermitian matrix is similar to a diagonal one with
real eigenvalues.

1.12. Prove that a skewhermitian matrix is similar to a diagonal one
with imaginary eigenvalues.



1.13. Let A = |ay| be a matrix of a quadratic form, and D
= det Jay|isuis«

Prove that A is positive definite if and only if for all k, 1 < k < n,
the inequalities Dy > 0 are valid.

1.14. With the notation of the previous problem, prove that a matrix
A is negative definite if and only if for all £, 1 < k < n, the inequality
(—1)¥Dy > 0 holds.

1.15. Put |A|? = 3, |ai|*. Prove the inequalities

Lk

1A+ Bl < |4l + B,
ML < N AL

iAB| < 14| - |B}.

1.16. Prove that if 42 = E,, then the matrix A is similar to the matrix

Ee 0 ),k+/=n.
0 —E

1.17. Prove that if A2 = —E, then the order of the matrix A
is (2n x 2n), and it is similar to a matrix of the form

0 E,,)
-E, 0]
1.18. Prove that if A = A, then the matrix 4 is similar to a matrix

E
of the form < 0 .
0 0

1.19. Prove that varying continuously a quadratic form from the class
of non-singular quadratic forms does not alter the signature of the form.

1.20. Prove that varying continuously a quadratic form from the class
of quadratic forms with constant rank does not alter its signature.

1.21. Prove that any motion of the Euclidean plane R? can be resolved
into a composition of a translation, reflection in a straight line, and
rotation about a point.

1.22. Prove that any motion of the Euclidean space R® can be resolved
into a composition of a translation, reflection in a plane and rotation
about a straight line.

1.23. Generalize Problems 1.21 and 1.22 for the case of the Euclidean
space R". ’



2
Systems of Coordinates

A set of numbers ¢', ¢%, . . ., g" determining the position of a point
in the space R" is called its curvilinear coordinates. The relation between

the Cartesian coordinates x1, X2, . .., X, of this point and curvilinear
coordinates is expressed by the equalities
xs = x(g', @ - oh @), )]

or, in vector form, by
r=r@q, ¢, . ... Y,

where r is a radius vector. Functions (1) are assumed to be continuous
in their domain and to have continuous partial derivatives up to the third
order inclusive. They must be uniquely solvable with respect to g',

g% ..., q" this condition is equivalent to the requirement that the
Jacobian
Ixs
J = 2)
ag*

should not be equal to zero. The numeration of the coordinates is
assumed to be chosen so that the Jacobian is positive.

Transformation (1) determines »n families of the coordinate
hypersurfaces ¢" = qo. The coordinate hypersurfaces of one and the same
family do not intersect each other if condition (2) is fulfilled.

Owing to condition (2), any n — 1 coordinate hyperplanes which
belong to different families meet in a certain curve. They are called coor-
dinate curves or coordinate lines,

ar R .
The vectors ry = F are directed as the tangents to the coordinate
q

lines. They determine the infinitesimal vector

n

dr = >, rdg*

k=1

in a neighbourhood of the point M(q', 4%, . .., ¢™. The square of its
length, if expressed in terms of curvilinear coordinates, can be found from
the equality

ds* = (dr, dr) = ( > rdg’, D, rkdq"> = 2 g«dg'dg:,

s=1 k=1 s, k=1

where (,) is the scalar product defined in R”.
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The quantities g« = gks = (s, rx) define a metric in the adopted coor-
dinate system.
An orthogonal curvilinear coordinate system is one for which

0, s#k
gsk = (rs, Te) = HE [

The quantities H? are called the Lamé coefficients. Thev are equal to the
moduli of the vectors rs:

ax\ 2 ox2\ 2 axn 2
H; = [t = ~—: + —§'+...+ &)
aq dq g
The square of the linear element in orthogonal curvilinear coordinates

is given by the expression
ds® = Hidg" + Hidg® + ...+ Hidgn’.

. 9x; ... .
2.1. Calculate the Jacobian J = pyr of transition from Cartesian
q
coordinates (x1, ..., X.) to orthogonal curvilinear coordinates 4,

¢*, ..., g") in the space R".

2.2. Calculate the gradient grad f of the function f: R’ > Rin an or-
thogonal curvilinear coordinate system.

2.3. Calculate the divergence div a of a vector a € R® in an orthogonal
curvilinear coordinate system.

2.4. Find the expression for the Laplace operator Af of the function
f:R? - R in an orthogonal curvilinear coordinate system.

2.5. Cylindrical coordinates in R?

gd=r ¢=9¢ &=z
are related to Cartesian coordinates by the formulae

X =rcosyg, y=rsing, 2I=2.

(a) Find the coordinate surfaces of cylindrical coordinates.

(b) Compute the Lamé coefficients.

(¢) Find expression for the Laplace operator in cylindrical coordinates.

2.6. Spherical coordinates in R®

¢=r =0 ¢ =9

are related to rectangular coordinates by the formulae
x = rsinf cosp, y = rsinfsing, z = rcosf.

(a) Find the coordinate surfaces of spherical coordinates.
(b) Compute the Lamé coefficients.
(¢) Find expression for the Laplace operator in spherical coordinates.

10
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x = o yo= O - D - 4, z =z

where ¢ is a scale factor.
(a) Find the coordinate surfaces of elliptic coordinates.
(b) Compute the Lamé coefficients.
2.8. Parabolic coordinates in R®
¢ =N ¢ =pn &=z
are related to Cartesian by the formulae

i
X = 7(#2 -\, ¥ = neZ =z

(a) Express parabolic coordinates in terms of cylindrical.
(b) Find the coordinate surfaces of parabolic coordinates.
(c) Compute the Lamé coefficients.

2.9. Ellipsoidal coordinates in R® are introduced by the equations
(a>b>c)

+ + =1 0N > —cb) (ellipsoid),
a + \ b + A A o+

X y 2z

2 + 2 + 2
a+p b4+ 4

1 (-¢c* > p > —b? (hyperboloid of

one sheet),

x2 }’2 ZZ

+ +
@ +v bP4v 4y

1 (=b*> » > —a% (hyperboloid of

two sheets).
Only one set of values \, g, » corresponds to each point (x, y, z) € R>.
The parameters

9 =N @ = & =

are called ellipsoidal coordinates.

(a) Express Cartesian coordinates x, ), z in terms of ellipsoidal
coordinates \, p, ».

(b) Compute the Lamé coefficients.

(c) Find expression for the Laplace operator in terms of ellipsoidal
coordinates.

H



2.10. Degenerate ellipsoidal coordinates (o, 3, ¢) in R? for a prolate
ellipsoid of revolution are defined by the formulae

x = csinfB cosp, y = csinhasinfsing, 2z = ccosha cosp,
where ¢ is a scale factor, 0 S a < 0, 0 B < 7w, — T< <7

(a) Find the coordinate surfaces in this coordinate system.

(b) Compute the Lamé coefficients.

(¢) Find expression for the Laplace operator.

2.11. Degenerate ellipsoidal coordinate system (o, B, ¢) in R? for an
oblate ellipsoid of revolution is defined by the formulae

X ¢ cosha sin8 cosg, ¥ = c cosha sing sing,

Z = ¢ cosha cose,

0€a<xw, 0L, —1r<ga<7r.

(a) Find the coordinate surfaces for this coordinate system.

(b) Compute the Lamé coefficients.

(c) Find expression for the Laplace operator.

2.12. Toroidal coordinate system (a, 8, ¢) in R® is defined by the
Jormulae

¢ sinho cosg ¢ sinha sine csinf

, 3 = ————,
coshe — cos@ cosha — cosp cosha — cosg8

where ¢ is a scale factor, 0 S a < o, — v < B 7, — 1< ¢ 7
(a) Find the coordinate surfaces in a toroidal coordinate system.
(b) Compute the Lamé coefficients.

(c) Find expression for the Laplace operator.
2.13. Bipolar coordinates in R?
d=a ¢=8 4qg=z

are related to Cartesian coordinates x, y, z by the formulae
a sinha asinf

X = 2 =23

’ y = »
cosha — cosf cosha — cosB
where ¢ is a scale factor.
Compute the Lamé coefficients for a bipolar coordinate system.
2.14. Bispherical coordinates in R
d=a =8 =9

are defined by the formulae

¢ sina cosg ¢ sina sing ¢ sinhf

’ - ’ - ’
coshf — cosa coshf — cosa - coshfB — cosa

where cis a constant factor, 0 S a < 8, — 0 < 8 < 0, -7 < ¢ £ 7.
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These formulae can be written shorter:

o+ i, s
(@ = V& + y9).

Z + ig =cicot

(a) Find the coordinate surfaces in a bispherical coordinate system.
(b) Compute the Lamé coefficients.

(c) Find expression for the Laplace operator.

2.15. Prolate spheroidal coordinates in R®

=\ &= ¢=¢
are defined by the formulae

X = A, = v\ - DA - pdcosy,
Ve = 1)1 - Dsing,

r4

where A 2 1, —1 < p < 1,0 < ¢ < 2x, and c is a constant factor.
Compute the Lamé coefficients for this coordinate system.
2.16. Oblate spheroidal coordinates in R®
g=\ ¢=u qg=¢
are defined by the formulae
x=cwsing, y=cVO = D1 = 43, z=chucose,
A2l —-1lgpu<l, 0<¢<2r
Compute the Lamé coefficients for an oblate spheroidal coordinate
system.

2.17. Paraboloidal coordinates in R®

=\ @=m =9

are defined by the relations
. 1, 2
X = ML COS, Yy = Musing, 2z = ?()\ - u).

(a) Compute the Lamé coefficients for a paraboloidal coordinate
system.

(b) Find the coordinate surfaces.

2.18. Let H,, H», H; be the Lamé coefficients for a certain curvilinear
coordinate system in R®.

Prove the relations

a 1 6H, ad 1 0H, 1 oH, dH,
i Tt T 2T R A aa
dg° H, dq dq- H g H3 dq° dq

13



d 1 13_1-!}+ 9 I 0H, 1 0H> 0H;

2) — b ==
( 3¢ H, o4 o Hs g HY 3q' aq'
9 1 9H, 3 | 8H; | 0H; 8H:
O oo T H oo B o o
q 3 dq q 1 dq H: dq¢° dq
@ O°H\ _ 1 OHy 0H\ 1 OH: 0H,
80> Hy 3¢* 3¢  H, 8¢ ag*’
) FH: _ 1| 3H OH: 1 3H: 9H;,
aqg’dq"  Hy o¢® d¢'  Hs 3g° 3g"’
©) O°H, _ 1 8H:9Hy 1 0H; 9H,

— + —.
aq'ag®  H, dq' oq* H, 3q' 3q4°

2.19. Prove that if functions Hi(q', ¢*, ¢°), Hx(q", &%, ¢*), Hi(q', ¢,
q*) of class C? satisfy the relations of the previous problem, then they
are the Lamé coefficients for a certain transformation

xs = x(g', ¢, @), s = 1, 2, 3.

3
Riemannian Metric

3.1. Prove that the metric ds> = dx* + f(x)dy?, 0 < f(x) <o can be
transformed to the form ds* = g(u, v)(du® + dv?) (isothermal coor-
dinates).

3.2. Prove that local isothermal coordinates can be defined on any real
analytic surface M?. Find the conformal representation of the metric ds.

3.3. Mercator’s projection is defined as follows: rectangular coordinates
(x, y) are defined on a map so that a constant bearing line (where the
compass needle remains undeflected) on the earth’s surface is put into
correspondence with a straight line on the map.

(a) Prove that to a point on the surface of the globe with spherical
coordinates (f, o) on the map, there corresponds, in Mercator’s
projection, the point with coordinates x = ¢, y = In cot8/2.

(b) How can the metric on the terrestrial globe be written in terms of
the coordinates (x, y)?

3.4. Prove that the metric ds® on the standard hyperboloid of two sheets
which is embedded in the pseudo-Euclidean space R? coincides with the
metric on the Lobachevski plane.

14



3.5. Write the metric on the sphere S* in complex form.

3.,6. Find a metric on the two-dimensional space of velocities in
relativity theory.

3.7. Change the coordinates in the previous problem so that v — tanhy
(where v is the velocity of the moving point).

3.8. Write the metric of the previous problem in polar coordinates for
the unit circle.

3.9. Calculate the length of a circumference and the area of a circle
on (a) the Euclidean plane, (b) a sphere, (c) the Lobachevski plane.

3.10. Let the Lobachevski plane be realized as the upper half-plane of
the Euclidean plane. We call Euclidean semicircumferences with centres
on the axis Ox and Euclidean half-lines resting upon the axis Ox and
orthogonal to it “straight lines” of the Lobachevski plane. We call a figure
formed by three points and the segments of “the straight lines” joining
them a triangle in the Lobachevski plane.

Prove that the sum of the angles of a triangle in the Lobachevski plane
is less than .

3.11. (Continuation of Problem 3.10.) Let ABC be an arbitrary triangle
in the Lobachevski plane, a, b, ¢ the non-Euclidean lengths of the sides
BC, AC, AB, and «, 83, y the values of its angles at the vertices A, B,
C. Prove the following relations:

cosa + ¢osf3 cosy.

(1) cosha = - -
sing siny
2 hb cosf3 + cosy cosa
coshb = ;
siny sina
) cosh cosy + cosa cosf
coshe = .

sina sinf

3.12. (Continuation of Problem 3.11.) Prove the analogue of the law
of sines for the Lobachevski plane:

sinha sinhd  sinhc Vo

. . » . . . b4
sino sinB siny sina sinf siny

where Q = cos’a + cos’8 + cos’y + 2cosa cosf cosy — .

3.13. (Continuation of Problem 3.12.) Prove the following formulae ex-
pressing the angles of a triangle in the Lobachevski plane in terms of
its sides:

coshb coshc — cosha

(1) cosax =
sinhb sinhc

15



coshc cosha — coshb

(2) cos8
) sinhc sinha

cosha coshb — coshc
sinha sinhd

(3) cosy =

3.14. (Continuation of Problem 3.13.)

Assume that y = 7/2, ie., the triangle ABC is right. Prove the fol-
lowing relations:

(1) sinha = sinhc sine;

(2) tanhg = tanhc cosf;

(3) tanha = sinhb tana;
(4) coshc = cosha coshb;
(5) coshc = cota cotB;

(6) cosha = cosa/sing.

3.15. Let ABC be a spherical triangle on a sphere of radius R, o, 8,
v the values of the angles at the vertices 4, B, C and ¢, b, ¢ the lengths
of the sides BC, AC, AB. Prove the following relationship

a b c . b . <
COs — = COS — COS — + S§in —sin — cos a.
R R R R R

4
Theory of Curves

4.1, Let C be a plane curve, M, a point of the curve C, and XOY a
rectangular system of coordinates given in the plane of the curve. Denote
the points of intersection of the tangent and the normal to this curve
with the axis OX by T and N, respectively. Let P be the projection of
the point My, onto the axis OX.

(a) Find the equation of the curve C if its subnormal PN is constant
and equal to a.

(b) Find the equation of the curve C if its subtangent PT is constant
and equal to a.

(c) Find the equation of the curve C if the length of its normal MoN
is constant and equal to a (for any point My, on the curve).

4.2. Find the equation of the curve C whose tangent MT is constant
in length and equal to a.

16



4.3. An arbitrary ray OF intersects the circumference

a\? &
xZ + - - = —
2 4

and a tangent to it passing through the point C which is diametrically
opposite to O at points D and E. Straight lines are drawn through the
points D and E parallel to the axes Ox and Oy, respectively, to meet each
other at a point M. Set up the equation of the curve formed by such
points M (witch of Agnesi).

4.4. A point M moves uniformly along a straight line ON which rotates
uniformly around a point O. Form the equation of the path of the point
M (Archimedes’ spiral). '

4.5. A straight line OL rotates around a point O with constant angular
velocity w. A point M moves along the straight line OL with a velocity
which is proportional to the distance |OM]. Form the equation of the
path described by the point M (logarithmic spiral).

4.6. A circle of radius @ rolls along a straight ¥ne without slipping.
Set up the equation of the path of a point M counected to the circle
rigidly and placed at a distance d from its centre (when d = g, this is
a cycloid; when d < a, a curtate cycloid; and vhen d > a, a prolate
cycloid).

4.7. A circumference of radius r rolls without slipping along a circum-
ference of radius R and remains outside it. Form the equation of the path
of a point M of the rolling circumference (epicycloid).

4.8. A circumference of radius r rolls without slipping along a circum-
ference of radius R and remains inside it. Construct the equation of the
path of a point M of the rolling circumference (hypocycloid).

4.9. Find a curve given by the equation r = r(t), c < t < d, if it is
known that r’(¢) = \(f)a, where A\(f) > 0 is a continuous function, and
a is a constant nonzero vector.

4.10. Find a curve given by the equation r = 1(f), —© < t < oo, if
r”(f) = a is a constant nonzero vector.

4.11. A vector function r(f) satisfies the differential equation
r” = [r’ x a], where a is a constant vector. Express (a) [r’ X r”]%;
() (r', r”, r’”) in terms of a and r’.

4.12. Let y be a closed curve of class C'. Prove that, for any vector
a, there is a point x € y at which the tangent to vy is orthogonal to a.

4.13. Two points move in space so that the distance between them
remains constant. Prove that the projections of their velocities onto the
direction of the straight line joining these points are equal.

4.14. Prove that if a vector function r(f) is continuous on a segment
la, b] together with its derivative r’, andr l r’, but r’ # 0 and r # 0,
then the hodograph of the vector function r = r(f) is a siraight line
segment.

2—2018 17




4.15. Prove that if a vector function r = r(f) is continuous on a certain
segment [a, b] together with its two first derivatives r’ and r”, these deriv-
atives are different from zero for all f € [a, b], and collinear, ie, r’ Il r”
for all 7 € [a, b}, then the hodograph of the vector function r = r(7) is
a straight line segment.

4.16. A plane curve is given by the equation r = {¢(f), to(f)}. Under
what condition does this equation determine a straight line?

4.17. Find the function r = r(y), given that this equation describes a
straight line in polar coordinates on the plane.

4.18. Prove that a point describes a plane path under the action of
a central force F = Fr.

4.19. A plane translational motion is given on the plane by the laws
r = r{t) and r = r2(f) of motion of the ends of a solid rod. Find the
equation of the centre surface (a centre surface is the set of all points
of intersection of straight lines passing through the ends of the rod and
perpendicular to the directions of the velocities of its ends).

4.20. The set of instantaneous centres of rotation with respect to a
moving rod is called a centrode it a plane translational motion (see the
previous problem). Set up the equation of a centrode.

4.21. Prove that the linear velocity v of a point in any plane transla-
tional motion is determined by the relation v = w[r], where r is the radius
vector of the point M(R) under consideration with respect to the instan-
taneous centre of rotation (see Problems 4.19, 4.20), and [r] is the vector
obtained from r by rotation through + /2. Express w in terms of ry and
r; and find the velocity v of the point M(R).

4.22. The differential equation of the motion of a material particle M
is as follows:

o= —)\—: O\ > 0.

r
Prove, on the basis of this relation, that the point moves along a curve
of the second order.

4.23. A material particle moves under the action of a central force
F = Fr°. It follows from the result of Problem 4.18 that the motion takes
place in a certain plane. Form the equation of the motion and the dif-
ferential equation of the path in polar coordinates.

Consider the case
rm km
F=-k—=-—51
r r

4.24. The motion of an electron in a constant magnetic field is
determined by the following differential equation

r” = [r' x H], H = const.
Prove that the path is a helix.

18



4.25. Find the curves determined by the differential equation
r' = [wr].

4.26. Find the curves determined by the differential equation
r' = [e X [r X e]],

where e is a constant unit vector.
4.27. Find the curves determined by the differential equation

’

r' = ae + [e Xrj,

where @ = const and e = const.
4.28. Find the curves determined by the differential equation

’

=

I, - -
= —r‘e - rr, e),
5 (

where e = const and |e| = 1.
4.29. Form the equations of the tangent and normal to the following
curves:

(1) r = {acost, bsint} (ellipse);

a i b |
@Qr = {7 (t + —t—> , —;(I - —’—)} (hyperbola);
(3) r = [acos’t, asin’t} (astroid);
@) r = {a(t - sint), al — cost)} (cycloid);
G)r = {Lﬁ - Lt“,it2 + —1—13}
2 4 2 3

at the point 1 = 0;
6) r = f{ap cose, ap sing} (Archimedes’ spiral).
4.30. At what angle do the curves x> + y? = 8 and y* = 2x intersect?
4.31. At what angle do the curves
o+ y =8 YV =x2-%
intersect?
4.32. At what angle do the curves
2 =4y, y=8/( + 4)

intersect?
4.33. Prove that the length of the segment of the tangent to the astroid

x2/3 + y2/3 = a2/3
between the coordinate axes equals a.

19
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equals a.
4.35. Prove that the cardioids

r=a(l + cosp), r = a(l — cosp)

are orthogonal.

4.36. Find the envelope of the family of straight lines joining the ends
of pairs of conjugate diameters of an ellipse.

4.37. Find the envelope of the family of straight lines cutting a triangle
of constant area off the sides of a right angle.

4.38. Find the envelope of the family of straight lines cutting segments
of given area off a given parabola.

4.39. Find the envelope of the family of straight lines cutting a trlangle
of given perimeter off the sides of a given angle.

4.40. Find the envelope of the family of circumferences constructed on
parallel chords of a circumference as on diameters.

4.41. Find the envelope of the family of ellipses that have common
principal axes and a given semi-axis sum.

4.42, A beam of parallel rays falls on a spherical mirror. Find the enve-
lope of the reflected rays (caustic).

4.43. Find the envelope of the family of ellipses that have a given area
and common principal axes.

4.44, Find the envelope of the family of circumferences with centres
on an ellipse and passing through one of its foci.

4.45, Find the envelope of the family of circumferences of radius a and
centres on a curve r = r(v).

4.46. Find the envelope of the normals of a curve r = r(v). The vector
function r(v) is defined, continuous and twice differentiable on a segment
[a, b). The vectors r’ and r” are noncollinear at each point of this
segment.

4.47. Find the envelope of the rays reflected from a circumference if
the luminous point is on the circumference.

4.48. Calculate the curvature of the following curves:

(1) y = sinx at the vertex (sine curve);
(2)x = a(l + m)cosmt — amcos(l + m)t
y = a(l + m)sinmt — amsin(l + m)t (gpicycloid);
(3) y = a cosh(x/a) (catenary curve);
@) *y* = (@ - yH)b + y)* (conchoidal curve);

20



(5) ¥ = d*cos2p (lemniscate);

©) r a{l’ + cosy) (cardioid);
Nr ae (Archimedes’ spiral);
(8) r = {acos®t, asin’t} (astroid).

i

4.49. Calculate the curvature of the following curves:

(1) y = —Incosx;

@Qx=3%y=3-+Fforr =1

(3) x = a(cost + tsinf), y = a(sint — tcost) for ¢ = n/2;
(4) x = a(Rcost — cos2t), y = a(2sint — sin2f).

4.50. Find the curvature of the following curves given in polar
coordinates:

M) r = ag;, Q) r = as’; 3) r = a” at the point ¢ = 0.
4.51. Find the curvature of the curve given by the equation
Fx, y) = 0.

4.52. Curves arc given by their differential equation P(x, y)dx +
+ Q(x, y)dy = 0. Find their curvature.
4.53. Calculate the length of the following curves:

(1) y = a cosh(x/a);

Qy=x"%
By = x5
@) y = Inx;

(5) r = a(l + cosy);
6) r = {a(t — sin?), al — cost)};
r {a(cost + ! sin{), a(sint — fcost)};

@r

g (2cost + cos2i), g(Zsint + sinZI)};

9 r = {acos’t asin’t};
10) y = &%

t
Hr = {a (ln cot? - cost), asint}.

4.54. Find the arc length of the curve
x = —f'(a)sina — f"(a)cosa,

y = f{@)cosa — f”(o)sina.
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The natural equations of a plane curve are equations of the form:
WDk =ks), QFks)y=0 o @)k=k@®, s=s0).

If the natural equations of a curve are given, then the parametrization
of the curve can be given in the form

X = Scosa(s)ds, y = Ssina(s)ds.
4.55. Form the natural equations of the curves:

M) x = acos’t, y = asin’

@y =x"7%

By =x

4y = Inx;

(5) y = a cosh(x/a);
6y =¢€5

!
(N x = a(ln tan; + cosl), y = asint;

@8 r = al + cose);
(®) x = alcost + tsint), y = a(sint — { cosi).

4.56. Find the parametric equations of the curves if their natural
equations are given (here R = 1/k):

() R = as;

52 R?
63 PR 4
3) Rs = &%

@R = a + s¥/a;

(5) s> + 9R* = 16a%;

(6) s> + R* = 16a%;

(7) R? = 2as;

® R* + & = dPe™ ™"

4.57. Let p be the distance from the origin of radii vectors to the tangent
to a curve v at a point M, and r the distance from the point O to the
point M. Prove that
.
rdr

k:

4.58. At a certain point of a curve r = r(s), we have: k # 0, k=0
Having taken the equation of the osculating circumference in the form
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(e — ro — Romg)* = R§, prove that the osculating circumference
intersects the given curve in a neighbourhood of the indicated point.

4.59. Given that the following conditions are fulfilled at a certain point
of a curve: ko # 0, Ko = 0, Ko # 0, prove that the osculating circum-
ference at this point of the curve does not intersect the curve in a
sufficiently small neighbourhood of this point.

4.60. Given an equation R = f(«), where R is the curvature radius of
a curve, and « the angle from a constant vector a to the tangent vector
7 to the curve, form the parametric equations of the curve.

4.61. Given an equation a = f(R) (see the previous problem), form the
parametric equations of the curve.

4.62. Given an equation s = f(«), where s is an arc and o the angle
from a constant vector a to the tangent vector 7 to the curve, form the
parametric equations of the curve.

4.63. Given an equation a = f{(s) (see the previous problem), form the
parametric equations of the curve.

4.64. Given that a beam of luminous rays falls on a plane curver = r(s)
from the origin of radii vectors, form the equation of the envelope of
the reflected rays (caustic).

4.65. What form will the equation of the caustic of a plane curve with
respect to the origin of the radii vectors have if the equation of the curve
is given in the form r = r(#)?

4.66. A beam of parallel rays with the direction of a vector e (Je| = 1)
falls on a plane curve given by an equation r = r(s). Form the equation
of the envelope of the rays reflected from the given curve (caustic).
Consider the cases where the curve is given by an equation r = r(f) and
where it is given by an equation y = f(x).

4.67. Write the equation of the tangent line and the normal plane of
the curve

r= {(u — - 53+ 1, 24° — 16}

at the point where u = 2.
4.68. Find the tangent line and the normal plane at the point
A@3, -7, 2) of the curve

r=(u +u® + 1,48 + 5u + 2 u - ).

4.69. Find the tangent line and the normal plane at the point
A2, 0, —2) of the curve

r= (- 2u+ 3,1 - 2%+ u 23 - 6u+ 2}
4.70. Write the equation of the osculating plane of the curve
r= {4 u ud - 20)

at the point A(9, 3, 7).
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4.71. Show that the curve
r = {au + b cu + d u?}

has the same osculating plane at all points.

4.72, Form the equations of the osculating plane, principal normal, and
binormal of the curve

Y¥=x x=z
at the point (1, 1, D).

4.73. Given a helix

r = |acost asint, bt},
form the equations of the tangent, normal plane, binormal, osculating

plane, and principal normal.
4.74. Given a curve

r = [tzy - f, 13},
form the equations of the tangent, normal plane, binormal, osculating
plane and principal normal at the point ¢ = 1.

4.75. Form the equations of the tangent line and the normal plane of
the curve given by the intersection of two surfaces

Fix, » 2) =0 and Fx » 2 = 0.

4.76. The curve in which a sphere meets a circular cylinder, whose base
radius is twice less and which passes through the centre of the sphere,
is called a Viviani curve. Make up the equation of a Viviani curve in
implicit and parametric forms. Find the equations of the tangent, normal
plane, binormal, principal normal and osculating plane.

4.77. Find the length of the arc of the helix

x = 3acost, y = 3asint, z = 4dat

from the point of intersection with the plane xOy to an arbitrary point
M().

4.78. Find the length of one turn between the two points of intersection
with the plane xOz of the curve

x = a(t — sint), y = a(l — cost), z = 4acost/2.
4.79. Find the length of the arc of the curve
X =3¢, 2xz = d&°

between the planes y = a/3 and y = 9a.
4.80. Find the length of the closed curve

x = cos’t, y = sin’t, z = cos2t.
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4.81. Reparametrize the helix
r = {acost, asint, bt), b > 0,

by the natural parameter.
4.82. Reparametrize the curve

r = [e'cost, e'sint, €'}

by the natural parameter.
4.83. Reparametrize the curve

r = {cosht, sinh¢, ]}

by the natural parameter.
4.84. Find the vectors 7, v, 8 of the Frenet frame for the helix

r = lacost, asint, bt}.

Calculate the curvature and torsion of the helix.
4.85. Given the curve
r= {21 -1 1),
find the vectors 7, », § of the Frenet frame. Calculate the curvature and

torsion of this curve.
4.86. Find the vectors 7, », 8 of the Frenet frame, curvature, and torsion

of a Viviani curve (see Problem 4.76).
4.87. Find the curvature and torsion of the following curves:

() r = {t — sint, 1 — cost, 4sint/2};

@r = (e, e, 2);

(3) r = {e'sint, efcost, €'};

@r = (2, Int, £};

Gyr = (3t — 2,333 + P);

(6) r = [cos’t, sin’t, cos2t}.

4.88. At each point of the curve

X =1 -—sin,, y =1~ cost, 2z = 4sint/2,

a segment equal to four times the curvature at this point is laid off in

the positive direction of the principal normal.
Find the equation of the osculating plane of the curve described by

the end of the segment.
4.89. Calculate the curvature and torsion radii for the curve

x> = 3d%, 2xz = a%
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4,90. Deduce the formulae for the calculation of the curvature and
torsion of the curve given by equations y = y(x) and z = z(x) and find
the Frenet frame for this curve.

4.91. Find the curves intersecting the rectilinear generators of the
hyperbolic paraboloid xy = az at right angles.

4.92. A curve on a sphere that intersects all the meridians of the sphere
at a given angle is called a loxodrome. Find the equation of a loxodrome
and the vectors 7, », 8 of the Frenet frame for this curve at an arbitrary
point. Calculate its curvature and torsion.

4.93. Given a curve

r = {vcosu, vsinu, kv},

where v = v(u), prove that this curve is placed on a cone. Define the
function v(u) so that this curve intersects the generators of the cone at
a constant angle 6.

4.94. The tangent vector T = T(f) # 0is given at each point of a curve
r = r(¢). The function r(7) is defined, continuous, and has a continuous
derivative r’ () on a segment [a, b]. The function T(f) is continuous on
the segment [a, b]. Prove that this curve can be parametrized so that

*_q

dt

4.95. A curve C is given by an equation r = r(?), the function r(s)
is defined on a segment [a, b] and possesses noncoplanar derivatives r’,
r’, r'” at a point M. Prove that the osculating plane of the curve C
at the point M intersects the curve C.

4.96. Prove that if all osculating planes of a curve are concurrent, then
the curve is plane.

4.97. A curve C is given by an equation r = r(f); the function r(z)
is defined on a segment [e, b} and possesses derivatives r’, r”, r’ " at
some point M(f) with r’ # r”. Calculate the limit

lim T3
a0 {Al]

where d is the distance from the point M(z + Af) to the osculating plane
of the curve C at the point M. Consider the special case where the curve
is given by an equation r = r(s) (s being the natural parameter).

4.98. Find a necessary and sufficient condition for the given family
of curves

r= o) + Ne@) (el = 1)

to have the envelope. Find this envelope.
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4.99. For what value of b is the torsion of the helix
r = {acost, asint, bt} (a = const)

at its maximum?

4.100. Prove that if the torsion of a curve C at some of its points M
is other than zero, then the osculating plane of the curve C at the point
M intersects the curve.

4101, Express 1, f, ¥ in terms of r, », B8, k and x.

4.102. Prove that 788 = x.

4.103. Prove that if the principal normals of a curve form a constant
angle with the direction of a vector e, then

d K+ X

s a0
k___
ds k

and conversely, if this relation is fulfilled, then the principal normals of
the curve form a constant angle with the direction of some vector. Find
this vector.

4.104. Prove that if all normal planes of a line contain a vector e, then
this line is either straight or plane.

4.105. Prove that if all the osculating planes of a curve which is not
a straight line contain the same vector, then this curve is plane.

4.106. Prove that if 8 = const, then the curve is plane.

4.107. Prove that if the osculating planes of a curve have the same
inclination, then the curve is plane.

4.108. A space line is called a generalized helix if all its tangents form
a constant angle with a fixed direction.

Prove that a line is a generalized helix if and only if one of the following
conditions is fulfilled:

(a) the principal normals are perpendicular to a fixed direction;

(b) the binormals make a constant angle with a fixed direction;

(¢) the ratio of the curvature to the torsion is constant.

4.109. Prove that the condition ¥fr? = 0 is necessary and sufficient
for a line to be a generalized helix. ’

4.110. Prove that the line X2 = 3y, 2xy = 9z is a generalized helix.

Let r = r(s) be a curve parametrized by the natural parameter. Then
the mapping 7: (¢, b) — R? determines a curve s — 7(s). This curve may

be non-regular. Since |7(s)] = 1, the image 7(s) lies on the sphere with
radius 1 and the origin at its centre. This curve is called the tangent spheri-
cal image of the curve r = r(s). The normal spherical image

s = »(s) and the binormal spherical image s — 8(s) may be defined
similarly.
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4.111. Find the tangent, normal and binormal spherical images of the
helix

r = {acost, asint, bt}.

4.112. Let r = r(s) be a curve parametrized by the natural parameter.
(a) Prove that the tangent spherical image of the curve r = r(s) degener-
ates into a point if and only if r = r(s) is a straight line.
(b) Prove that the binormal spherical image of the curve r = r(s)
degenerates into a point if and only if r = r(s) is a plane curve.
(c) Prove that the normal spherical image of the curve r = r(s) cannot
be a point. _
4.113. Let s be the length of the tangent spherical image of a curve
r = r(s):
i
s = |l @)do.
0
(a) Prove that ~di = k.
ds
(b) Find necessary and sufficient conditions for the tangent spherical
image to be a regular curve.
4.114. Les s* be the length along the normal (resp. binormal) spherical
image of a curve r = r(s). Prove that

# —
(Zss = VK + % (resp. |x|).

4.115. Let r = r(s) be a curve parametrized by the natural parameter,
kx # Q. Prove that the tangent to the tangent spherical image is parallel
to the tangent to the binormal spherical image at the corresponding
points.

4.116. Let r = r(s) be a curve parametrized by the natural parameter.
Prove that if the tangent spherical image of this curve lies in a plane
passing through the origin, then the curve r = r(s) is plane.

4.117. Prove that the curve r = r(s) is a helix if and only if the tangent
spherical image is an arc of a circumference.

By definition, a spherical curve is a curve r = r(#) for which there exists
a constant vector m such that

< ) -m @) - m> = ri

4.118. Let r = r(¢) be a regular curve, and a a point which lies in each
normal plane to r = r(f). Prove that r = r(f) is a spherical curve,
4.119. Prove that ’

r = {—cos2t, —2 cost, sin2t}
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is a spherical curve by showing that the point (—1, 0, 0) lies in every
normal plane.

4.120. Let r = r(s) be a curve which is parametrized by the natural
parameter, kK # 0, » # 0, and ¢ = 1/k, ¢ = 1/x. Assume that
92 + (Q’o)2 = &* = const, @ > 0. Prove that the image of the curve
r = r(s) lies on a sphere of radius a.

4.121. Prove that if r = r(s) is a curve which is parametrized by the
natural parameter, k # 0, x # 0, then r(s) lies on a sphere if and only if

% k; s’ or Ql ’
—_— = X = - — .
k ke € x
4.122. Using the results of the previous problems, prove that a curve

r = r(s) lies on a sphere if and only if there exist constants A and B
such that

—

k(A cosixds + B sinixds)

0 0

4.123. Two curves r = ri(¢) and r = ry(¢) are said to form a pair of
Bertrand curves if for any value of the parameter ¢y, the normal to r(?)
coincides with the normal to r(¢).

(a) Prove that two arbitrary concentric circumferences which lie in the
same plane form a pair of Bertrand curves.

(b) Let

1 1
) = — {— -1 - 2,1 - 72 o},
2 {cost

i

1l

1 1 -
r(f) ————t~1—t2—t,l—tz+t\/l—tz,0}.
2 (cost

Prove that ri(¢) and rz(¢) form a pair of Bertrand curves,

4.124. Prove that the distance between the corresponding points of a
pair of Bertrand curves is constant.

4.125. Prove that the angle between the tangents to the two curves of
a Bertrand pair at corresponding points is constant.

4.126. Let r = ri(s) be a curve parametrized by the natural parameter,
and kx # 0. Prove that the curve r = ra(s) (s is not the natural parameter
of r2(s)) which forms a pair of the Bertrand curves with ri(s) exists if
and only if there are constants A\ and u such that

/8 = k + px.
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4.127. Let r = r(f) be a regular curve of class C*, x # 0. Prove that
r(f) is a circular helix if and only if r(f) possesses at least two different
curves which are related in the sense of Bertrand.

Let m be a constant vector, r = F(s) a curve, ¢(s) = [r(s) — m}z, and
a a positive number. The curve r(s) is said to possess at a point s = 5o
a spherical contact of order j with the sphere of radius a and centre at
the endpoint of m if

c(so)) = &, ¢’(s0) = ¢"(S0) = ... = P (s0) = 0,

U+ D(sp) # 0.

4.128. Given that k # 0, calculate the first three derivatives of the
function ¢(s) in terms of 7, », 8, & and x.

4.129. Prove that a curve r = r(s) possesses a spherical contact of order
2atapoints = s if and only if m = r(so) + »(S0)/k(s0) + MNB(so), where
\ is an arbitrary number.

4.130. Given that x(so) # 0, prove that a curve r = r(s) possesses a
spherical contact of order 3 if and only if

o) - g
v(so) — /T 0)-
k(so) k(s0) x(s0)
4.131. Let a curve r = r(s) be of constant curvature. Prove that the
osculating sphere and the circumference have the same radius.

Let r = r(s), s € [0, @], be a plane piecewise regular curve of class c?
parametrized by the natural parameter. The number

m = r(so) +

a n-1
Skds + D A6
. o i=0
Ies) = "_"““2'1‘__—_’

where k is the curvature of the curve, s{(0 < i € n — 1) are the singular
points, 77 (s:) = lim 7(s), H(s) = lim+ 7(s), and A#; is the angle

S—’S,‘ Eiad ¥l
between the vectors 7~ (s;) and 7+ (), is called the rotation number i
of the curve.

4.132. Compute the rotation number of the curve y represented in
Fig. 1.

4.133. Compute the rotation numbers of the curves given by the fol-
lowing equations (the parametrization is not natural):

Mr = {a + gcost, gsint}, 0 € ¢ £ 2w, |a| < g;
) r = {a + gcost gsint}, 0 t
3r

2r, 0 < g < |af;

£t <
focos2t, —psin2t}, 0 < £ < 27, 0 > 0;
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1
@r = {—i—cost, sint}, 0<t £ 2m;
(5) r = {2cost, — sint}, 0 < ¢t £ 6m;
©r = {1, sin*}, 0 <t < 2.
3 .
(0,45) Arcs of circum-
ferences
of radrus 2
(-1,0) (1,0)
Fig. 1

4.134. Prove that if r(s) is a simple, closed, regular, and plane curve,
then the tangent circular image 7 : [0, L] — S of this curve is a mapping
“onto”, .

An oval is a regular, simple, closed and plane curve for which & > 0.
The vertex of a regular plane curve is a point at which the curvature k£
has a relative maximum or minimum.

Let r(s) be an oval and P a point on r(s). Then there exists a point
P’ such that the tangent 7 to the oval at this point is opposite to the
tangent at the point P, ie., 7(P’) = - 7(P). The tangents at the points
P and P’ are parallel. Thus, for a given point P, there exists a unique
point P’ (said to be opposite of P) on the oval, so that the tangents at
P and P’ are parallel and distinct.

The width w(s) of an oval at the point P = r(s) is the distance between
the tangent lines to the oval at the points P and P’.

An oval is said to be of constant width if its width at a point P is
independent of the choice of P

4.135*% Prove that any oval possesses at least four vertices. (This
statement is known as the four-vertex theorem.)

4.136* Prove that if r(s) is an oval of constant width w, then its length
equals mw.

4.137% Letr = r(s) be an oval of constant width. Prove that the straight
line joining a pair of opposite points P and P’ of the oval is orthogonal
to the tangents at the points P and P’.

4.138* Given that r = r(s) is an oval,prove that 7" is parallel to 7
at least at four points.
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4.139. Prove that the notion of vertex does not depend on the choice
of parametrization.

4.140. Show that the four-vertex theorem (see Problem 4.135) is not
valid if the requirement of closedness is omitted.

4.141. Let r; : [0, @] — R? be a segment of a curve parametrized by
the natural parameter, and ry(s) a curve

r2(s) = ri(s) + (a0 — $)7(s),

where 7(s) is a tangent vector to ri(s) and @y > a a constant. Show that
the unit tangent to ry(s) is orthogonal to 7(s) at every point.

4.142, Let r(s) be a plane curve of constant width. Show that the sum
of the curvature radii 1/k is constant at opposite points and does not
depend on the choice of the points.

4,143, (a) Let r(s) be an oval of length L and with natural parametri-
zation. Denote the angle between the horizontal and tangent vector 7(s)
by 6. Prove that the mapping @ : [0, L] — [0, 2#] is a parametrization
of the oval r(s).

(b) Let g(6) be an oval parametrized by a parameter 4 so that r(s) =
= @(6(s)). Prove that the point which is opposite to r(s) is R(s) =
= o(0(s) + =).

(c) Prove that the curve R(s) is regular.

4.144. Let g(f) be an oval parametrized by an angle § in a manner
similar to that of the previous problem. Let w(f) be the width of the
oval at a point @(#). Prove that

2%
g wdf = 2L,
V]

where L is the length of the oval.
4.145. Let o(f) be an oval parametrized by an angle 8, k() and w(6)
its curvature and width, respectively. Prove that
d*w 1 1
—— W= —— o ——
dy* k@ k(O + 7
The total curvature of a regular space curve r = r(s) parametrized by
L
the natural parameter is the number Skds. Since k = |7'(s)|, the total cur-
0
vature is the length of the tangent image
r:[0, L} - S%

4.146* Prove that if r = r(s) is a regular closed curve, then its tangent
spherical image cannot lic in any open hemisphere.
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4.147* Prove that the tangent spherical image of a regular closed curve
cannot lie in any closed hemisphere except for the case when it is a great
circumference bounding the hemisphere.

4.148% Let v be a closed C'-curve on the unit sphere S°. Prove that
the image C of the curve v is contained in an open hemisphere if

(a) the length / of the curve v is less than 2;

(b) !/ = 2w, but the image C is not the union of two great
semi-circumferences.

4.149* Using the results of Problems 4.146-4.148, prove the following
statement: the total curvature of a closed space curve y is not less than
2% and equal to 2« if and only if v is a plane convex curve (Fenchel
theorem).

4.150% Let  be a space closed curve. Assume that 0 < k < 1/R for
a certain real number R > 0. Prove that the length / of the curve v satis-
fies the inequality / > 2wR.

4.151. Calculate the tangent spherical image for the ellipse

r = {2cost, sinf, 0}, O <t < 2w

What can be said about the image taking the Fenchel theorem into
account?

Let » be an oriented great circumference on the sphere S2. Then there
exists on §* a unique point w associated with w, viz., the pole of the
hemisphere which is on the left when moving along « in the positive
direction (Fig. 2).

Fig. 2

Conversely, every point of §2 is related to a certain orientable great
circumference. Thus, the set of oriented great circumferences is in one-to-
one correspondence with the points of §2.

The measure of the set of oriented great circumferences is the measure
of the corresponding set of points in 2.

If we 8% then wt denotes the great oriented circumference assoc-
iated with w,
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For a regular curve y with the spherical image C, we denote the number
of points in CN w* (which may be infinite) by n,(w). Note that the
number n,(w) does not depend on a parametrization of the curve y.

4.152* Let C be the image on S* of a regular curve y of length /. Prove
that the measure of the set of oriented great circumferences which
intersect C (taking the multiplicities into account) equals 4/. In other
words,

Sgn.,(w)da = 4/ (the Crofton formula).
s

4.153* A closed simple curve v is said to be unknotted if there exists
a one-to-one continuous function g : D* — R*® (D? being the unit disk)
which maps the boundary §' of the disk D? onto the image of the curve
v. Otherwise, the curve is said to be knotted.

Prove that if v is a simple, knotted, and regular curve, then its total
curvature is greater than or equal to 4.

4.154* Using the Crofton formula, prove that for any closed, regular

curve, gkds > 27,
L

We call the number Suds the total torsion of a regular space curve
0
r = r(s) parametrized by the natural parameter.

4.155% Prove that for any real number r, there exists a closed curve
L

v such that its total torsion jxds =r
0
4.156* Prove that the total torsion |xds of a closed curve r = r(s) (s
being the natural parameter) placed on the sphere S? equals zero.
4.157*Let M be a surface in R? such that {xds = 0 for all closed curves
placed on M. Prove that M is a part of a plane or sphere.

4.158* Prove that S % ds = 0 for any closed. spherical curve param-

etrized by the natural parameter.

5
Surfaces

5.1. Make up a parametric equation of the cylinder for which the curve
o = o(u) is directing and whose generators are parallel to a vector e.

5.2. Make up a parametric equation of the cone with vertex at the origin
of the radius vector for which the curve ¢ = g(u) is directing.
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5.3. Make up a parametric equation of the surface formed by the
tangents to a given curve @ = @(u). Such a surface is called a developable
surface,

5.4. A circumference of radius @ moves so that its centre is on a given
curve ¢ = g(s) and the plane in which the circumference is placed is,
at each particular moment, a normal plane to the curve. Make up a pa-
rametric equation of the surface described by the circumference.

5.5. A plane curve x = ¢(v), 2 = ¥(v) revolves about the axis Oz. Make
up parametric equations of the surface of revolution. Consider the special
case where the meridian is given by an equation x = f(2).

5.6. The circumference x = a + bcosy, z = bsinv (0 < b < a) re-
volves about the axis Oz. Make up the equation of the surface of
revolution.

5.7. A straight line moves translationally with a constant velocity while
intersecting another straight line at right angles and uniformly rotating
about it, Make up the equation of the surface which is described by the
moving straight line (right helicoid).

5.8. Make up the equation of the surface formed by the principal nor-
mals of a helix.

5.9. Make up the equation of the surface formed by the family of nor-
mals to a given curve p = g(s).

5.10. A straight line moves so that the point M where it meets a given
circumference moves along it, the straight line remaining in the plane nor-
mal to the circumference at the/eresponding point and rotating through
an angle equal to the angle MOM, through which the point was turned
while moving along the circumference. Make up the equation of the sur-
face described by the moving straight line assuming that the original
position of the moving straight line was the axis Ox and the circumference
is given by two equations x> + y* = 4%, 7z = 0.

5.11. Given two curves r = r(u) and ¢ = g(v). Make up the equation
of the surface described by the middle point of the line segment whose
extremities lie on the given curves (translation surface).

5.12. Make up the equation of the surface formed by the rotation of
the catenary line y = a coshx/a about the axis Ox. This surface is called
a catenoid.

5.13. Make up the equation of the surface formed by the rotation of
the tractrix

¢ = lalntan(n/4 + t/2) — asint, a cost}
about its asymptote (pseudosphere).
5.14. The surface formed by a straight line moving parallel to a given

plane (director plane) so that its generator intersects a given curve
(directing curve) is called a conoid. A conoid is determined by a directing
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line, director plane, and curve which the moving straight line intersects
(i.e., the directing curve). Make up the equation of a conoid if the director

plane yOz, directing line y = 0, z = A, and the directing curve —5- +
a
y2
+ ?2— =1, z = 0 (i.e, ellipse) are given.

5.15. Make up the equation of the conoid for which the directing line,
director plane and directing curve are given by the following equations,
respectively:

@x=ay=0

z=0

© )Y =2pz x = 0.

5.16. We call a cylindroid the surface formed by straight lines which
are parallel to a plane. A cylindroid can be determined by two directing
curves (lying on it) and a director plane (the generators of the cylindroid
being parallel to it). Make up the equation of a cylindroid if its generators
are two circumferences x> + z2 — 2ax = 0,y = Oand y* + 22 — 2ay = 0,
x = 0, and the director plane is the plane xOy.

5.17. A surface given by the parametric equation

r=r( v) = o) + va(u),

where ¢ = g(u) is a vector function determining a certain curve, and
a = a(u) a vector function determining the distribution of the rectilinear
generators of the surface, is said to be ruted. Make up the equation of
a ruled surface whose generators are parallel to the plane y — z = 0 and
intersect two parabolas > = 2px, 7= 0 and 22 = —2px, y = 0.

5.18. Make up the equation of the ruled surface whose generators
intersect the axis Oz, arc parallel to the plane xOy, and intersect the line
xyz = @, x* + y* = b2

5.19. Make up the equation of the ruled surface whose generators
intersect the straight line r = a + ub, curve ¢ = p(v), and are per-
pendicular to a vector n.

5.20. Make up the equation of a ruled surface whose generators are
parallel to the plane xOy and intersect two ellipses

2 2 2

Y Z Y Z

—b—2-+——=l, X =a =+ =1 x= —a

2
2 C2 b2

o

5.21. Make up the equation of a ruled surface. formed by the straight
lines intersecting the curve g = {4, u?, u®), paraliel to the plane xOy,
and intersecting the axis Oz
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5.22. Make up the equation of the surface formed by the straight lines
parallel to the plane x + y + z = 0, intersecting the axis Oz, and circum-
ference ¢ = {b, a cosu, a sinu).

5.23. Make up parametric equations of the surface formed by the
straight lines intersecting the circumference x> + z> =1, y = 0 and
straight lines y = 1, z=1land x =1, 2 = 0.

5.24, Make up the equation of the surface formed by the tangents to
the helix ¢ = (acosy, asiny, bv} (developable helicoid).

5.25. Make up the equation of the conic surface with the vertex at the
point (0, 0, —c¢) and the directing line (x* + y?)* = A*(2 - ¥%)

5.26. Given a straight line 4B and a curve ¢ = g(u) in a plane 7. The
curve g moves uniformly in the plane « so that each of its points travels
parallel to AB. The plane = is, at the same time, in uniform rotation
about AB. Make up the equation of the surface described by the curve
e. This surface is called a helical surface. A special case of a helical sur-
face is a right helicoid (see Problem 5.7); in this case, g = g(u) is a
straight line orthogonal to AB.

5.27. Let r = r(u#) be a curve whose curvature k is other than zero.
Normal planes are drawn through each of its points, and a circumference
with centre on the curve r = r(u#) and given radius @, @ > 0, ak < 1,
is constructed in every such plane. The locus of these circumferences is
a tubular surface S.

(a) Make up the equation of the surface S.

(b) Prove that any normal to the surface S intersects the curve r = r(u)
and is a normal to this curve,

5.28. Find the surface S, given that all its normals meet at one point.

5.29. Show that the volume of the tetrahedron formed by the
intersection of the coordinate planes and the tangent plane to the surface

X=u y=v, z=d/u
does not depend on the choice of the point of tangency on the surface.

5.30. Show that the sum of the squares of the coordinate axis mtercepts
of a tangent plane to the surface

x = wsin®y,  y = wleos’y, z = (@ - u??
is constant.

5.31. Show that the tangent plane meets the conoid

X = ucosv, y = usiny, I = asin2y
in an ellipse.
5.32. Prove that the planes which are tangent to the surface z = xf(y/x)
are concurrent.
5.33. Make up the equation of the tangent plane and normal to the
helicoid
= {vcosu, vsinu, ku}.
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5.34. Make up the equation of the tangent plane to the surface
xyz = a’.

5.35. Given that a surface is formed by the tangents to a curve C, prove
that this surface possesses the same tangent plane at all points of a
tangent to the curve C

5.36. Given that a surface is formed by the principal normals of a curve
C, make up the equation of the tangent plane and the normal at an
arbitrary point of the surface.

5.37. Make up the equation of the tangent plane and the normal to
the surface formed by the binormals of a curve C

5.38. Prove that the normal of a surface of revolution coincides with
the principal normal to the meridian and intersects the axis of rotation.

5.39. Prove that if all normals of a surface intersect one and the same
straight line, then the surface is a surface of revolution.

5.40. A ruled surface (see the definition in Problem 5.17) is said to be
developable if the tangent plane to the surface is the same at all points
of an arbitrary generator.

Prove that the ruled surface

R = r(u) + va(u)
is developable if and only if
r‘aa’ = 0.

5.41. Prove that any developable surface may be partitioned into the
following parts:

(i) a part of the plane;

(ii) a part of a cylinder;

(iii) a part of a cone;

(iv) a part of a figure consisting of the tangents to a certain non-plane
line. In the last case, the indicated line is called an edge of regression.

5.42. Find the envelope and the edge of regression of the family of
ellipsoids )

2 (X + y + c |
(x —— _ - 5 ,
aZ bZ (,Z
where « is the parameter of the family.
5.43. Find the envelope of the family of spheres constructed on the
chords parallel to the major axis of the ellipse

x? y?

+ =1 z=20
aZ bZ

as on diameters.
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5.44. Find the envelope and the edge of regression of the family of
spheres whose diameters are the chords of the circumference

X+ y - 2x=0, z=0,

that pass through the origin.

5.45. Two parabolas are placed in perpendicular planes, possessing the
common vertex and the common tangent to the vertex. Find the envelope
of the family of planes which are tangent to both parabolas.

5.46. Find the envelope of the family of spheres with constant radius,
whose centres are placed on a given curve ¢ = g(s) (canal surface).

5.47. Find the edge of regression of the family of spheres with constant
radius @, whose centres are placed on a curve g = g(5). '

5.48. Find the envelope and the edge of regression of the family of
spheres with radius a, whose centres are placed on the circumference

X+ y¥=b z=0

5.49. Find the envelope and the edge of regression of the family of
spheres passing through the origin and whose centres are placed on the
curve

r = {4 u? u).

5.50. Find the envelope of the family of ellipsoids

x2 y2 zZ

—_— 4 =+ — =1
a b ¢?
whose semi-axis sum
a+b+c=1
is given.
5.51. Find the surface whose tangent planes cut off on the coordinate
axes line segments such that the sum of their squares equals a.
5.52. Find the surface whose tangent planes cut a tetrahedron of
constant volume o’ off the coordinate angle.

5.53. Find the envelope and the edge of regression of the family of
planes

xa? + yo + 7 = 0,

where « is the parameter of the family.
5.54. Find the envelope and edge of regression of the famlly of planes

xsine — ycosa + z = aa,

where « is the parameter of the family.
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5.55. Find the envelope, the characteristics, and the edge of regression
of the family of osculating planes of a given curve.

5.56. Find the envelope, the characteristics, and the edge of regression
of the family of normal planes to a given curve.

5.57. Find the characteristics, the envelope, and the edge of regression
of the family of planes

m+ D =0,n=n), D= D), nj =1,
where u is the parameter of the family.
5.58. Find the developable surface through the two parabolas
(1) y* = dax, z = 0;
Q2 x* = day, z = b

5.59. Show that the surface x = cosv — (4 + v)siny, y = sinv +
+ (u + v)cosv, z = u + 2v is developable.

5.60. Show that the surface x =u® + 1/3 v, y = 2u® + uy,
z = u* + 2/3 u?v is developable.

5.61. Given a paraboloid

x = 2aucosv, y = 2businy, z = 2u*(acos’v + bsin®v),

where a and b are constants, make up the equation of a curve on the
surface so that the tangent planes to the surface may form a constant
angle with the plane xOy along the curve.

Show that the characteristics of this family of tangent planes form a
constant angle with the axis z. Find the edge of regression of the envelope.

5.62. Find the edge of regression of the developable surface which
touches the surface @z = xy at the points where it meets the cylinder
x* = by.

5.63. Show that the developable surface passing through two circum-
ferences x* + y* = a% z = 0 and x* + 2% = b, y = O intersects the
plane x = 0 in an equilateral hyperbola.

5.64. Calculate the first fundamental form of the following surfaces:

(D) r = {ucosucosy, asinucosy, asinv} (sphere);

(2) r = {acosucosy, bsinucosy, csinv} (ellipsoid);

Br = —a~v+Lcosu£v+—l—s'nu'£v+i
T2 y "2 y o v

(hyperboloid of one sheet);

uv + 1 — -1 .
@r = {ﬂ , b Y- U , C kd } (hyperboloid of one sheet);
2v + u v + u vV + u
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B)r = {i<v - L)cosu, —b—(v — —l—)sinu, i(v - l)}
2 v 2 v 2 v

(hyperboloid of two sheets);

2
©r = {v«/,‘;cosu, wasinu, —vz-—} (elliptic paraboloid);

MDr

(@ + vWp, u — v)Vgq, 2uv} (hyperbolic paraboloid);
@)r

{av cosu, bv sinu, cv} (cone);

9 r = {acosy, bsinu, v} (elliptic cylinder);

(10 r = {i<u + —1—), i<u - —]—) v}
2 u 2 u

(hyperbolic cylinder).

5.65. Calculate the first fundamental form of the following surfaces:

(M) r = @(s) + Me, e = const (cylindrical surface);

(2) r = va(s) (conical surface);

(3)r = g(s) + he(s) (Je(s)] = 1) (ruled surface);

@) r = o(s) + v(s)cosg + PB(s)sing (canal surface);

B) r = {p(v)cosu, o(v)sinu, Y(v)} (surface of revolution);

(6) r = {(a + bcosv)cosu, (@ + bcosv)sinu, bsinv} (torus);

(7) r = {vcosu, vsinu, ku) (minimal helicoid);

®) r = p(s) + Ap(s) (surface of principal normals);

9) r = g(s) + MB(s) (surface of binormals).

5.66. The first fundamental form of a surface is the following:

dst = du® + 2 + ad)dv:.

(i) Find the perimeter of the curvilinear triangle formed by the intersect-
ing curves

u= +x172a” v=1

(i1) Find the angles of this curvilinear triangle.

(iii) Find the area of the triangle formed by the intersecting curves

U= xav v =1
5.67. The first fundamental form of a surface is the following:

ds® = du* + W? + ad)avi.
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Calculate the angle at which the curves
u+v=0 u-v=20

intersect each other.
5.68. Find the equations of the curves which bisect the angles between
the coordinate lines of the paraboloid of revolution

X = ucosy, y = usiny, z = 1/2 u%

5.69. Find the curves intersecting the curve v = const at a constant
angle 6 (loxodromes) on the surface

X = ucosv, y = usiny, z = aln@ + Vu* - a).
5.70. Given a surface
r = {usinv, ucosv, vi.

Find:

(i) the area of the curvilinear triangle 0 € ¥ < sinhy, 0 < v < vg;

(ii) the lengths of the sides of this triangle;

(iii) the angles of this triangle.

5.71. Let £ be a curve whose equation is r = r(u), the curvature k(u),
and the torsion x(u), where u is natural parameter of the curve £. Let
S be the surface

r(u, ¢) = r(u) + av(u)cose + apf(u)sing,

where v, 8 are the unit vectors of the principal normal and the binormal
of the curve £, respectively, @ = const > 0, ak(u) < 1. One and the
same point on § is assumed to correspond to the coordinates (u, ¢) and
u, ¢ + 2w).

(i) Find the first fundamental form for the surface S.

(i) Find the curves on S which are orthogonal to the circumferences
u = const.

(iii) Calculate the area of the region on the surface S bounded by the
circumferences u = ), U = uy.

(iv) Using the result of (iii), find the area of the torus obtained by
rotating the circumference (x — b)> + 22 = a@*, b > a > 0, about the
axis z.

(v) Find the area of the surface S in that special case where £ is an
arcof the helix x = rcost, y = rsint, 2 =06, 0 <t < mr>a b #0.

5.72. Given a surface

r = {o(u)cosy, p(u)siny, z(w)},

where o’ (u)? + 2/ = 1, u1 < u < 42,0 < v < Vo, Vo < 27, prove
that it can be placed inside a cylinder x* + y* = ¢* with arbitrarily small
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positive radius e by bending itself. In bending, a self-covering of the sur-
face is possible.
5.73. Find the surface of revolution which is locally isometric to the

helicoid
r = f{usiny, ucosy, v}.

5.74. Show that the following helical surface (conoid)
X = gcosy, y = g@siny, zZ =¢ + Vv
covers (i.e., is locally isometric to) the surface of revolution (hyperboloid

of revolution)
X = rcosp, y = rsing, z = r* -1,

the correspondence of the covering points being given by the equations
¢ =v+tanlo, =g+ 1
5.75. Show that the helical surface

X = gcosy, y = gsiny, z = a(ln—g— + v)
a

covers (is locally isometric to) the surface of revolution
X = rcosep, y = rsing, 2z = av2 In(r + v - a%).
5.76. Show that any helical surface
X = ucosy, y = usiny, z = Fu) + av

covers (i.e., is locally isometric to) a surface of revolution so that the heli-
cal lines are transformed into parallels.

5.77. Prove that with a convenient choice of curvilinear coordinates
on a surface of revolution, its first fundamental form can be transformed
to the following:

ds> = du’ + Gu)dv>.

5.78. Transform the first fundamental form of the sphere, torus,
catenoid, and pseudosphere to the following:

ds? = du* + G@udv.

5.79. A curvilinear coordinate system on a surface is said to be
isometric if the first fundamental form of the surface is, with respect to
these coordinates, as follows:

ds® = A(u, v)(du?® + dv?).

Find isometric coordinates on the pseudosphere.
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5.80. A right-angled triangle whose sides are arcs of great circum-
ferences of a sphere is given on the sphere. Find (a) the relations between
the sides of the triangle, (b) its area.

5.81. A spherical lune is a figure formed by two great semi-
circumferences with common ends. Calculate the area S of a lune with
an angle o at the vertex.

5.82. Prove that any cylindrical surface is locally isometric to the plane.

5.83. Prove that any conical surface is locally isometric to the plane.

5.84. A Liouville surface is one whose first fundamental form can be
transformed to the following:

ds* = (flu) + gMdu® + dvd).

Prove that a surface locally isometric to a surface of revolution is a
Liouville surface.

5.85. Prove that any surface of revolution can be locally conformally
mapped onto the plane.

5.86. Calculate the second fundamental form of the following surfaces
of revolution:

Mr
@r
(3) r = {acoshucosy, acoshusiny, csinhu} (hyperboloid of revolution

of one sheet);

(4) r = {asinhucosv, asinhusiny, ccoshu} (hyperboloid of revolution
of two sheets);

(5) r = (ucosv, usinv, u*) (paraboloid of revolution);

[ Rcosucosv, Rcosusiny, Rsinu} (sphere);

{acosucosvy, acosusinv, csinu} (ellipsoid of revolution);

6) r = {Rcosv, Rsinv, u} (circular cylinder);
(7) r = {ucosv, usiny, ku} (circular cone);

(8) r = {(a + bcosu)cosv, (@ + bcosu)sinv, bsinu} (torus);

u u .
Or = {acosh —cosy, acosh —siny, u} (catenoid);
a a

. S u
(0r = {asmucosv, asinusiny, a(lman— + cosu)}
2

(pseudosphere).
5.87. Calculate the second fundamental form of the right helicoid

X = ucosv, y = usinvy, z = av
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5.88. Calcu‘late the second fundamental form of the catenoid

x = Vu' + acosv,
y = Vur' ¥ a%siny,
z = aln(u + vu® + a?).
3

5.89. Calculate the second fundamental form of the surface xyz = a’.
5.90. Given the surface of revolution

ru, ¢) = {x(u), e(u)cosp, g(u)singl, g(u) > 0,

(i) find the second fundamental form;

(ii) find the total curvature K at an arbitrary point of the surface and
the dependence of the sign of K on the sense of convexity of the meridian;

(iii) calculate K for the special case g(u) = u,

T
x(u) = i(alna—a—g— N u2>, a>0
. u

(pseudosphere);

(iv) find the mean curvature H at an arbitrary point of the surface
of revolution;

(v) select the function ¢ = g(x) for the special case x = w so that
H = 0 on the whole surface.

5.91. Given a curve ¢ = g(w) with the natural parameter u, curvature
k = k(u) # 0, and torsion x = »(u) # 0. Let 7 = 7(u) be the unit
tangent vector of this curve. Find (2) K, (b) H for the surface of tangents

r(u, v) = g(u) + vr(u), v > 0.

5.92. Find the expression for the total curvature of the surface whose
first fundamental form with respect to these coordinates is

ds? = du* + Gu, v)dvi.

5.93. Find the total curvature of a surface whose first fundamental form
is

ds? = du? + e¥dvi.

5.94. Find the total curvature of the surface given by the equation
F(x, y, 2) = 0.

5.95. Find the total and mean curvatures of a surface z = f(x, y).
5.96. Find the principal curvature radii of the surface

2
y = Xxtan —,
a
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5.97. Find the principal curvature radii of the surface
X = cosv — (u + v)siny,

y = sinv + (U + v)cosy,

Z=u+ 2v

5.98. Calculate the total and mean curvatures of the helical surface
X = ucosy, y = usiny, z =4+ v

5.99. Calculate the total and mean curvatures of the surface

X = 3u + 3w? —

y = v — 3y — 34y,

z = 3w — V).

5.100. Show that the mean curvature of the helicoid (see Problem 5.7)
equals zero.
5.101. Show that the principal curvature radii of the right helicoid

X = ucosy, y = usiny, z = f(v),

where f(v) is an arbitrary analytic function of variable v, have unlike
signs.

5.102. Find the total and mean curvatures of the surface formed by
the binormals of a given curve.

5.103. Find the total and mean curvatures of the surface formed by
the principal normals of a given curve.

5.104. Let S be a certain given surface. Mark off segments of the same
length and direction on the normals to the surface S. The ends of these
segments describe a surface S* “parallel” to the surface S. If the equation
of the surface S is r = r(u, v), then the equation of S* is

e = r(y, v) + an(y, v),

where n(y, v) is a unit normal vector of S,

Express the coetficients of the first and second fundamental forms of
the surface S* in terms of the coefficients of the first and second fun-
damental forms of the surface S.

5.105. Express the total curvature K* of the surface S* “parallel” to
a surface S in terms of the total and mean curvatures of the surface S.

5.106. Express the mean curvature H* of the surface S* *“parallel” to
a surface S in terms of the total and mean curvatures of the surface S.

5.107. Make up the equation of the minimal surface S* “parallel” to
a surface S if for the surface S the ratio H/K = const,

5.108. Given a surface of constant mean curvature H, Segments of
length 1/2 H are marked off on all its normals. Prove that the total curva-
ture of the surface so formed and “parallel” to the given one is constant.
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/5.109. Segments of length 1/VK are marked off on all the normals
of a surface with constant positive total curvature K. Prove that the mean
curvature of the surface so formed is constant. Calculate it.

5.110. Prove that the total and mean curvatures at the corresponding
points of two parallel surfaces are related by the formula

H* — 4K H¥ - 4K*

KZ K‘Z

A line on a surface is called a line of curvature if it has the principal
direction at each of its points. Lines of curvature are determined by the
differential equation

dv?  —dudv du?

E F G| =0
L M N
5.111. Find the lines of curvature on the surface
a b uy
x = —(u — v), = —(u +v), 2z = —.
2( ), ¥ 2( 5

5.112. Find the lines of curvature of the helicoid

X = ucosvy, y = usiny, 2z = av
5.113. Prove that, in covering (local isometry) the catenoid
x = Vur + aPcosv, y = vur + a’siny,
z = aln(u + Vu* + %)
with the helicoid
X = ucosy, y = usiny, 2z = av,

the lines of curvature are transformed into asymptotic lines.
5.114. Find the lines of curvature of the surface

r, v) = o) + f(v)a + g(v) [7(u) x a],

where 7(u) = r’(u), |7(u)| = 1, (v(u), a) = O, |a] = 1, a is a constant
vector.

5.115. A plane curve v is given by an equation ¢ = (), where u
is the natural parameter, k = k(u) its curvature (0 < k < l/a), » the
principal normal unit vector of v, e the unit normal vector to the plane
in which the curve y lies. A surface S is given by the equation

r(u, ¢) = o(u) + av(u)cosy + aesing.
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(i) Find the Gaussian curvature of the surface S.
(ii) Find the mean curvature of the surface S.

(iii) Find the lines of curvature of the surface S.
5.116. Find the lines of curvature of the surface

r, ¢) = o(u) + av(u)cosy + aB(u)sing,

where v and 8 are the unit vectors of the principal normal and the binorm-
al to the curve g = p(u) having the natural parameter u, curvature
k(u) < 1/a, and torsion x(u).

5.117. Find the lines of curvature of the surface

1 1
tu, v) = {u (3v2 —_—u — ?), v(3u2 — v = ?>, ZuV}.

Find its total and mean curvatures at each point.

5.118. Prove that > > K. When does the equality hold?

$.119. Let X and Y be orthogonal tangent vectors at some point of
a surface. Prove that

H = %u(x, X) + KY, Y)},

where I(,) is the second fundamental form of the surface.
5.120. Assume that the first fundamental form of a surface is as
follows:
ds® = E du* + Gdv:.
Prove that
oF oG
1 __{)_ v N a ou
WEG | av \ VEG ou \ VEG

5.121. Assume that two surfaces M| and M; meet in a curve C. Let
k be the curvature of C, \; normal curvatures of C in M;, and 6 the angle
between the normals of M, and M,. Prove that

Ksin*0 = A1 + A3 — 2\ \acosf.

Two directions in the tangent plane of a surface which are determined
by two vectors a and b are said to be conjugate if £2(a, b) = 0, ie, if

Laiby + M(aiby + azb1) + Naxb, = 0,

where a = (a1, a2), b = (b1, b2). A net of lines on a surface is said
to be conjugate if the tangent vectors to the lines of different families
of this net are conjugate at each point.
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A direction determined by a vector h is said to be asymptotic if ¢, (h,
h) = 0. A /ine on a surface is said to be asymptotic if the tangent has
the asymptotic direction at each of its points. An asymptotic line is char-
acterized by the equality k, = 0 which is held at all its points. Asymptotic
lines are determined by the differential equation

Ldu* + 2M dudv + Ndv? = 0.

5.122. Find the asymptotic lines of the surface

X
B ESNEAY
y X
2

5.123. Find the asymptotic lines of the surface z = xy°.
5.124. Find the asymptotic lines of the surface
2

x=u+v y=u+uw, z=u+—uv

2

Construct the projections of the asymptotic lines, passing through the
point ¥ = 1, v = 1/2, onto the plane xy.

5.125. Find the asymptotic lines of the surface

x = a(l + cosu)coty, y = a(l + cosu), 2z = acosu/sinv.

5.126. Prove that for an asymptotic line on the surface, »* = —K
(where x is the torsion and K the total curvature).

5.127. Find the torsion of the asymptotic lines of the surface formed
by the binormals to a given curve.

5.128. Find the torsion of the asymptotic lines of the surface formed
by the principal normals to a given curve.

5.129. Show that the coordinate lines of the surface

a b uv
X = —(u + v), =—Ww—v), z.=—
2( ) 2( ) 5

are straight lines. Find the lines of curvature.
5.130. Show that the coordinate lines on the surface

x = fil), y = e@v), z = Lf20u) + e2v)

are plane and form a conjugate system.
5.131. Show that the coordinate lines on the surface

r = M@ + Q)
are conjugate.

5.132. Prove that the sum of the normal curvature radii for each pair
of conjugate directions is the same at an arbitrary point of a surface.
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5.133. Prove that the product of the normal curvature radii for a pair
of conjugate directions attains its minimum for the lines of curvature.

5.134. Prove that the ratio of the principal curvature radii is constant
for the surface of revolution obtained by rotating a parabola about its
directrix.

5.135. Prove that if one of the lines of curvature of a developable sur-
face lies on a sphere, then all the remaining non-rectilinear lines of curva-
ture lie on concentric spheres.

5.136. Prove that the normal curvature of an orthogonal trajectory of
the asymptotic lines of a surface equals the mean curvature of the surface.

5.137. Prove that a line of curvature is plane if its osculating plane
forms a constant angle with the tangent plane to the surface.

We call a line whose principal normal coincides with the normal to
a surface at each of its points a geodesic line of the surface. There is
a unique geodesic line passing through each point of the surface and hav-
ing a given direction.

The length of the projection of the curvature vector kn onto the tangent
plane of a surface is called the geodesic curvaiure k, of a line placed

on the surface.

The geodesic torsion associated with a given direction is the torsion
of the geodesic line passing in this direction.

5.138. Prove that a geodesic line on a surface can be fully determined
by one of the following properties:

(i) The normal to a surface at each point of the line, where its curvature
is other than zero, is a principal normal.

(ii) The normal to a surface lies in the osculating plane of the line at
each of its points where its curvature is other than zero.

(iii) The geodesic curvature equals zero at each point of the line.

(iv) The curvature equals the absolute value of the normal curvature
at each point of the line.

(v) The rectifying plane coincides with the tangent plane to the surface
at each point of the line where its curvature is other than zero.

5.139. Prove that any straight line on a surface is a geodesic line.

5.140. Given that two surfaces touch each other along a line /, prove
that if / is a geodesic line on one surface, then it is geodesic on the other.

5.141. Prove that the differential equation of the geodesic lines of a
surface r = r(u, v) can be represented in the form Ndrd®’r = 0, where
N is the normal vector of the surface.

5.142. Prove that geodesic lines of the plane are straight lines and only
they.

5.143. Find the geodesic lines of a cylindrical surface.

5.144. Find the geodesic lines of a developable surface.

5.145. Find the geodesic lines of the circular cone x* + y* = 2.
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5.146. Find the geodesic lines of the helicoid
r = {ucosy, usiny, hv}.

5.147. Find the geodesic lines of an arbitrary conical surface.
5.148. Prove that the meridians of a surface of revolution are geodesic
lines.

5.149. Prove that a parallel of a surface of revolution is geodesic if
and only if the tangent to a meridian at the points where the meridian
meets the parallel is parallel to the axis of rotation.

5.150. Find the geodesic lines on the sphere.

5.151. Show that the geodesic lines of a surface whose first fundamental
form is

ds* = v(du® + dv®)

are parabolas on the plane u, v

5.152. Prove that a geodesic line is a line of curvature if and only if
it is plane. '

5.153. Prove that a geodesic line is asymptotic if and only if it is
straight.

5.154. Prove that the geodesic curvature of a line u = u(s), v = v(s)
on a surface r = r(&, v) can be calculated by the formula

k, = |mi¥|,
where m is the unit normal vector of the surface.

5.155. Find the geodesic curvature of the helical lines of the helicoid

r = {ucosy, usiny, av}.

5.156. Prove that the geodesic torsion of a line ¥ = u(s), v = v(s)
on the surface v = r(u, v) can be calculated by the formula

¥xg = Frm,
where m is the unit normal vector of the surface.

5.157. Prove the following statement: for a line on a surface to be a
line of curvature, it is necessary and sufficient that the geodesic torsion

should equal zero at each of its points.
5.158. Show that on a surface with the first fundamental form

ds* = [p(u) + Y] (@d® + dv?)

(a Liouville surface) the geodesic lines are determined by the equation
du dv

Vo) + a * YY) — a

where ¢ is an arbitrary constant.
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5.159. Given a triangle 7 whose area is ¢ and the sides are arcs of great
circumferences on a sphere of radius Ry, find the sum of the interior
angles of the triangle 7.

5.160. Let T be a triangle whose sides are geodesic lines constructed
on a surface with constant Gaussian curvature K = —a? < 0. Assuming
that the area ¢ of T is given, find the sum of its interior angles.

5.161. Given that a surface S is cz)btained by a certain bending of a
portion of the ellipsoid -;; + _}bj_{ + —% = 1 determined by the
inequalities x > 0, y > 0, z > 0, find the area ¢* of the spherical image
of the surface S.

5.162, Given that a surface R = Ry, v), 41 < u <uz, vi < v <
< vy, has the first fundamental form ds* = du® + B*(u, v)dv?, find
the area o* of the spherical image of this surface,

5.163. Let v be a closed geodesic line without self-intersections on a
closed convex surface S. Prove that the spherical image of the curve y
divides the Gaussian sphere into two parts equal in area.

5.164. Given that ds* = dg® + sinh?g dg? in the geodesic polar coor-
dinates (g, ¢) on the non-Euclidean plane, find the length s(g), geodesic
curvature kg{@), and rotation II(g) of the geodesic circumference
¢ = const. Calculate lim kg(g), lim II(g). Compare the results obtained

e~ e~
with the similar quantities for the Euclidean plane,

5.165. Given a plane P; with the metric ds*> = du? + cosh2udv?,
—® < u<w, —w <y < o,and a plane P2 on which ds®> = do? +
+ Sinhzgdqoz with respect to the geodesic polar coordinates (g, ¢), prove
that the planes P; and P> (with the first fundamental forms given on
them) are isometric.

5.166. Given that a surface S is defined by a vector function of the
form R = R(u, v) of class C?, verify that the quantity dn? = (dn, dn),
where n is the normal unit vector of the surface S, is a quadratic form
with respect to the differentials du, dv (the so-called third fundamental
Jorm of the surface S). Express dn® in terms of the first and second fun-
damental forms of the surface S.

5.167. Prove that the sum of the squares of the curvature and torsion
of a geodesic. line is equal to —K on a minimal surface.

5.168. Prove that the plane and catenoid are the unique minimal sur-
faces of revolution.

5.169. Prove that among ruled surfaces, the minimal .are the plane and
the right helicoid.

5.170. Prove that for the mean curvature of a surface S, the following
formula is valid:

. do - do*
H = lim —
a—0 2a do
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where do and do* are the corresponding elements of the area of the paral-
lel surfaces S and S*

5.171. Prove that the area of any portion of a minimal surface cannot
be less than the area of the corresponding portion of a parallel surface.

5.172. Prove that the limit of the ratio of the area of spherical represen-
tation of a surface S to the area of the corresponding region of the surface
S equals the total curvature of the surface in magnitude and sign.

5.173. Prove that if one of the principal curvature radii of a surface
is constant, then the surface is the envelope of a family of spheres with
constant radius whose centres lie on a certain curve,

5.174. Given that a circular cylinder is intersected by a plane not parallel
to the axis of the cylinder, what line will the line of intersection be trans-
formed into in covering (locally isometric mapping) the plane with the
cylinder?

5.175. Prove that if a material point moving across some surface is not
acted upon by external forces, then it is moving along a geodesic line.

5.176. Prove that in a locally isometric mapping of surfaces, geodesic
lines are transformed into geodesic.

5.177. Prove that two surfaces of the same constant Gaussian curvature
are locally isometric.

5.178. Prove that any surface of constant positive Gaussian curvature
is locally isometric to the sphere.

5.179. Prove that any surface of constant negative Gaussian curvature
is locally isometric to the pseudosphere.

5.180* Prove that all geodesic lines which are different from meridians
are closed on the surface S given by the equations

1 1 .
X = —i-cosu cosp, Yy = —E-cosu sing,

N .
z = g 1 — —sin®u du,
»\’ 4

T o
—TSMST, 0 <o <2

5.181. Given the differential equation of motion of a point electrical
charge in the field of a magnetic pole, viz.,

r’@®) = cr@®| "3 [r@®, ©’'{H], c¢ = const,
prove that the path of the charge is a geodesic line of a circular cone.
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5.182. Prove that the Gaussian curvature of the metric ds* = ®(u,
v)(du® + dv?) can be represented in the form

1
K = —— Aln®,
2%
a2 2
where A = —=— + -—— is the Laplace operator.
o place op

5.183* Prove that there are no closed geodesic lines on 1-connected
surfaces such that the Gaussian curvature is non-positive at all of their
points.

6
Manifolds

6.1. Prove that an n-dimensional sphere S” determined in R**! by the
equation x3 + x} + ... + ¥ = 1 is a smooth manifold. Construct
the atlas of charts for S".

6.2. Prove that the two-dimensional torus 72 obtained by rotating about
the axis Oz of a circumference lying in the plane Oxz and not intersecting
the axis Oz is a smooth manifold. Construct the atlas of charts.

6.3. Prove that the union of two coordinate axes in R**! is not a
manifold. '

6.4. Show that an atlas consisting of only one chart. cannot be
introduced on the sphere $" C R**!.

6.5. Determine whether the following plane curves are smooth man-
ifolds: (a) a triangle, (b) two triangles with only one common point, viz.,
a vertex.

6.6. Prove that the n-dimensional projective space RP” is a smooth (and
real-analytic) manifold.

6.7. Prove that the n-dimensional complex projective space CP" is a
smooth (and complex-analytic) manifold.

6.8. Prove that the graph of the smooth function xp+1 = f(x1, ...,
Xxz) is a smooth manifold.

6.9. Prove that the group SO (2) is homeomorphic to the circumference.
What manifold is the group O(2) homeomorphic to?

6.10. Prove that the group SO(3) is homeomorphic to the projective
space RP3,

6.11. Prove that the groups GL(n, R), GL(n, C) are smooth manifolds.

6.12. What manifold is the set of all straight lines on the plane R?
homeomorphic to?

Form the equations of the following manifolds in R*:
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6.13. The cylinder with a directing curve ¢ = g(u) and a generator
parallel to a vector e.

6.14. The cone with the vertex at the origin and directing curve g =
e(u).

6.15. The surface made up of the tangents to a curve o = p(u).

6.16. The surface formed by a circumference moving so that its centre
is on a curve ¢ = o(u ) and its plane normal to the curve at each of
its points.

6.17. Prove that the Jacobian matrix of the composite of smooth map-
pings is the product of the Jacobian matrices of the factors.

6.18. Prove that the rank of a Jacobian matrix does not depend on
the choice of a local coordinate system.

6.19. Calculate the rank of the Jacobian matrix of the mapping

fx ») = (x 0) : R* » R%,

6.20. Let f: U — R" be a smooth manifold of an open domain
U C R”, and the Jacobian |df] # 0 at a point p € U

Prove that there exists an open domain V C U p € Vsuch that (V) =
= W is an open set, f|r a homeomorphism, and the inverse mapping
(flv) "' smooth.

6.21. Let f - U — V be a smooth mapping of open domains in R” which
has a smooth inverse mapping.

Prove that the Jacobian |3f] # 0 at each point p € U.

6.22. Set up explicit formulae for a smooth homeomorphism of the

open disk D" = {x € R >, x} < R?} onto the Euclidean space R".
i=1

6.23. Prove that any smooth manifold has an atlas such that each chart
is homeomorphic to a Euclidean space.

6.24. Give an example of a smooth one-to-one mapping which is not
a diffeomorphism.

6.25. Construct a smooth function f(xi, . .., Xx») (of class C) equal
to unity on a ball of unit radius, vanishing outside a ball of radius 2,
and such that 0 € f < 1.

6.26. Let M be a manifold, p € U C M a neighbourhood of a point
p. Prove that there exists a smooth function f such that 0 < f < 1,
M) =1,fx) =0on M\ U

6.27. Let M be a manifold, A = A a closed set, and U D A an open
domain. Prove that there exists a smooth function fsuch that 0 < f < 1,
Sla =1, fluw = 0.

6.28. Prove that any continuous function in R” can be uniformly ap-
proximated, as close as we please, by a smooth function.

6.29. Prove that any continuous mapping of smooth manifolds can be
approximated, as close as we please, by a smooth mapping.
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6.30. Let a torus 7> C R’ be formed by rotating a circumference about
some axis (standard embedding). Prove that coordinates x, y, z are smooth
functions on the torus 72

6.31. Let a torus 72 C R® be standardly embedded in R3, and the
function f: T? — $2 associate each point p € T2 with a vector of unit
length normal to the torus 72 at the point p. Prove that f is a smooth
mapping.

6.32. Prove that a mapping f: 8 — RP? associating a point p on the
sphere 52 with the straight line which passes through the origin and the
point p is a smooth mapping.

6.33. Prove that two smooth structures on a manifold coincide if and
only if the spaces of smooth functions (with respect to these structures)
coincide.

6.34. Let M" be the solution set of the equations

gilx, ..., xv) =0, ((=1...,,N—n),

and the equality for the rank |dgi/dx;|] = N — n be held.

Prove that M" is a submanifold. '

6.35. Let M"C R” be a submanifold. Prove that for any point p € M",
there exists a coordinate set x;;, . . . , Xi, such that the projection of RY
onto the subspace R” = {x;, ..., xi,} is a local diffeomorphism of a
neighbourhood of the point p of the manifold M" onto an open domain
in R",

6.36. Let M" C R” be a submanifold. Prove that the manifold M" is
specified locally by a system of equations gixi,..., xn) = 0
(i = 1,..., N— n), the equality for the rank |dgi/dx;] = N — n being
fulfilled.

6.37. Let M" C R" be a compact submanifold. Prove that there exists
a set of smooth functions f1, ..., fi on R" such that the solution set
of the system of equations fi = f2 = ... = fr = 0 coincides with M"
and the rank of the Jacobian matrix |dfi/dx;| equals N — n (k =2 N
— n).

6.38. Show that the stereographic projection of a sphere onto a tangent
plane from the pole placed opposite the point of contact is a diffeomor-
phism everywhere except the projection pole.

6.39. Prove that the spaces R" and R™ are not diffeomorphic when
n # m.

6.40. Prove that the groups SL(n, R), SL(n, C) are smooth subman-
ifolds in spaces of real (or complex) square matrices of order ».

g.41. Prove that the group SO(n) is a smooth submanifold of the space
R™ of all square matrices of order n. .

6.42. Prove that the groups U(n), SU(n) are smooth submanifolds in
the space C* of complex square matrices of order n.
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6.43, Show that the matrix mapping A — exp(A4) is a smooth homeo-
morphism in a neighbourhood of the null matrix from the inverse image,
and a neighbourhood of the unit matrix from the image. Show that the
inverse mapping can be specified by the corresondence B — In(B).

6.44. Prove that some of the Cartesian ccordinates of the matrix
In(4 ~1X) can be taken as local coordinate systems in a neighbourhood
Us of a matrix A on each of the groups listed in Problems 6.40-6.42.
Show that coordinate changes are smooth functions of class C* respective
to the coordinate systems indicated.

6.45. The Riemann surface of the algebraic function w = Y P(z), where
P(z) is a polynomial, is given by the equation w" — P(z) = 0. Find a
condition for the roots of the polynomial under which the Riemann sur-
face is a two-dimensional submanifold in C2.

6.46. Show that the projection of the direct product X X Y of two
manifolds X and Y onto the factor X is a smooth mapping.

6.47. Prove that a compact smooth manifold M” can be embedded in
the Euclidean space R™ for a convenient dimension N < oo,

6.48. Prove that a smooth function on a compact smooth manifold
M can be represented as a coordinate under a certain embedding
M C RV,

6.49. Prove that the product of spheres can be embedded in RV of
codimension 1.

6.50. Prove that if dim X < dimY and f: X — Y is a smooth map-
ping, then the image of the mapping f does not coincide with Y.

6.51. Prove that a two-dimensional, compact, smooth and closed man-
ifold can be immersed into R3.

6.52. (Whitney lemma.) Prove that a compact, smooth and closed man-
ifold M™ can be embedded in the Euclidean space R***! and immersed
into R*",

6.53. Let f: X — Y be a smooth mapping of a compact and closed
manifold X" into a manifeld Y". Let yo € Y be a regular point of the
mapping f. Prove that the inverse image f~!(¥o) consists of a finite
number of points.

Let f: X — Y be a smooth mapping of smooth manifolds, and M C Y
a smooth submanifold. The mapping f is said to be transverse along the
submanifold M if for every point x € f~ (M), the tangent space Tyu(Y)
to the manifold Y is the sum (generally speaking, not direct) of the
tangent space Tyx (M) to the manifold M and the image 3f(7:(X)) of
the tangent space to the manifold X. Two submanifolds M, and M, of
the manifold X are said to intersect transversally if an embedding of one
of them is transverse along the other.

6.54. Prove that if y € Y is a regular point of a mapping f: X — Y,
then f is a mapping transverse along J.
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6.55. Prove that the definition of a transversal intersection does not
depend on the choice of order in the pair M,, M.

6.56. Prove that if f: X — Y is a mapping transverse along a subman-
ifold M C Y, then the inverse image £~ (M) is a submanifold of the man-
ifold X. Calculate the dimension of f~!(M).

6.57. Investigate whether the following submanifolds intersect
transversally: (a) the plane xy and the axis z in R?; (b) the plane xy and
plane spanned by the vectors {(3, 2, 0), (0, 4, —1)} in R?; (c) the subspace
V x {0} and the diagonal of the product V x V; (d) the spaces of
symmetric and skewsymmetric matrices in the space of all matrices.

6.58. For what values of a will the surface ¥ + y* — z2 = 1 intersect
the sphere x> + y*> + 22 = a transversally?

6.59. Let all the points of a mapping f: X — Y be regular, and X,
Y compact manifolds. Prove that f is a locally trivial fibre map (or fib-
ration), ie., the inverse image f~'(U) of a sufficiently small neigh-
bourhood of each point y € Y is homeomorphic to the direct product
U x f~Y(»). In particular, if Y is a connected manifold, then all subman-
ifolds f~X(»), ¥ € Y are pairwise homeomorphic.

6.60. Let f: S” — RP” be a mapping associating a point x € $" with
the straight line passing through the point x and the origin in R"* ', Prove
that all points of the mapping f are regular.

6.61. Let f: SO(n) — S"~! associate every orthogonal matrix with its
first column. Prove that all points of the mapping f are regular. Find
the inverse image f~ ().

6.62. Let f: U(n) — $*"~ ! associate every unitary matrix with its first
column. Prove that all points of the mapping f are regular. Find the in-
verse image /= '(»).

6.63. Show that the set Vi« of all orthonormal systems consisting of
k vectors from the Euclidean space R"” admits a smooth manifold
structure. Find its dimension. Show that V1 = $"~', V.. = O(n).

6.64. Show that the set Gnx of all k-dimensional subspaces in the
Euclidean space R” admits a smooth manifold structure. Find its
dimension. Show that G, = RP"~,

6.65. Let f: Vwk = Vns, s < k be a mapping associating an orthonor-
mal system consisting of k vectors with its first s vectors. Prove that every
point for the mapping f is regular. Show that the inverse image f~'(y)
is homeomorphic to the manifold V,_s «—-s.

6.66. Let f: O(n) —» G, be a mapping associating every orthogonal
matrix with the subspace generated by the first & columns. Show that
all points for the mapping f are regular. Prove that the inverse image
S~ Y») is homeomorphic to the manifold O(n — k) X O(k).

6.67. Let f: X X Y — M be a smooth mapping, and mp € M a regular
point. Consider the family of mappings f, - X = M, £,(x) = fix, »).
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Prove that the point 1 is regular for the mappings f, almost for all values
of the parameter y, i.e.,, when y ranges over an open, everywhere dense
subset of Y.

6.68. Solve Problem 6.67 if the point my is replaced by a submanifold
N C M, and its regularity by transversality of the mappings along the
submanifold N.

6.69. Verify whether the following manifolds are orientable: (a) a
sphere S"; (b) a torus 7; (c) a projective space RP"; (d) a complex
projective space CP"; (¢) groups GL(n, R), U(n), SO(n).

6.70. Prove that the Klein bottle is a non-orientable, two-dimensional
manifold.

6.71. Prove that an arbitrary complex analytic manifold is orientable,

6.72. Let M be a manifold with boundary dM. Prove that the manifold
M can be embedded in the half-space (xy+1 = 0) of the Euclidean space
R¥*1 50 that M lies in the subspace (xn+1 = 0).

6.73. Let a boundary dM consist of two connected components
oM = M\UM,, My NM, = (. Prove that the manifold M can be
embedded in R™ x [0, 1] so that M, lies in RY x {0}, and M, in
RY x {1].

6.74. Prove that an orientable two-dimensional surface possesses a
complex structure.

6.75. Prove that the manifolds S' x §%*~!, §2"~1 x $?"~! possess a
complex structure.

6.76. Prove that a compact closed odd-dimensional Riemannian man-
ifold of positive curvature is orientable.

A function w = f(z, . . ., 7%, 2 = x* + iy* is said to be holomor-
phic if it is continuously differentiable and its differential is a complex
linear form at each point (z', ..., z%.

6.77. Show that if f is a holomorphic function, then

dRef  dlmf
axk vk’
dlmf _ dRef
ax* k-’
6.78. Let w = fi(z', . . ., 2% be a holomorphic vector function mapping

C" into C™. Find the relation between the real Jacobian matrix of this
mapping and its complex Jacobian matrix.

6.79. Prove that a holomorphic vector function f: C* = C" produces
a local coordinate system if and only if its complex Jacobian is other
than zero.
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6.80. Show that $2 admits a complex analytic structure, Describe the
simplest atlas of charts explicitly.

6.81. Show that complex projective spaces CP? admit a complex
analytic structure. Describe the simplest atlas of charts explicitly.

6.82. Identify S with CP!.

7
Transformation Groups

7.1 Prove that all one-parameter smooth homeomorphism groups on
a compact manifold are in one-to-one correspondence with smooth vector
fields of point trajectory velocities.

7.2. Let X be a smooth connected manifold, and xp, x; two arbitrary
points. Find a one-parameter group of smooth transformations ¢; such
that ¢1(xo) = xi. Show that we can assume, without loss of generality,
all the transformations ¢, to be identity outside a certain compactum.

7.3. Give an example of a vector field on a non-compact manifold
whose trajectories are not generated by the action of any one-parameter
transformation group.

7.4. Let £ be a constant vector field respective to angular coordinates
on the two-dimensional torus T2. Investigate under which conditions for
the coordinates of the field &, the integral curves are closed.

7.5. Generalize the previous problem to the case of the torus T, viz.,
let £ = (£, ..., £ be a constant vector field respective to angular coor-
dinates on the torus 7. Prove that the closure of any trajectory is homeo-
morphic to the torus T%, where & is the number of linearly independent
numbers £, ..., £ over the field of rational numbers.

7.6. Let a finite group G act smoothly on a smooth manifold X. Prove
that if the action of the group G is free (i.e., each point x € X is trans-
formed into itself only under the action of the unit element of the group
G), then the factor space X/G is a manifold.

7.7. Show that the projective space RP" is a factor space S"/Z, under
a certain action of the group Z, on the sphere S".

7.8. Show that the complex projective space CP" is the factor space
§2"*1/8' under the action of the group S' on the sphere §2"*!.

7.9. Let a finite group G act smoothly on a manifold X, and xo € X
be a fixed point under the action of any element of the group G. Prove
that in a neighbourhood of the point xo, there is a local coordinate system
with respect to which the action of the group G is linear.
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7.10. Generalize the previous problem to the case of an arbitrary com-
pact Lie group.

7.11. Prove that the set of all fixed points under the action of a finite
group G on a smooth manifold is the union of smooth submanifolds
(generally speaking, of different dimensions).

7.12. Let G be a Lie group. Show that the action of the group G on
itself via left (or right) translations is smooth.

7.13. Let a Lie group G act on itself via inner automorphisms. Prove
that the set of fixed points coincides with the centre of the group G.

7.14. Prove that the group of isometry of a Riemannian space is a
smooth manifold.

7.15. List all finite-dimensional Lie groups of transformations of the
straight line R'.

7.16. Find the group of all linear fractional transformations preserving
the disk |z| < 1 in the complex plane. Prove that this group is isomorphic
to the group SL(2, R)/Z, and also to the group of all transformations
preserving the form dx?* + dy*> — df? in R3(x, y, #). Establish a relation
to Lobachevskian geometry.

7.17. Prove that the connected component of the unit element of the
isometry group on the Lobachevski plane (under the standard metric of
constant curvature) is isomorphic to SL(2, R)/Z,. Find the total number
of components in the group of motions of the Lobachevski plane.

7.18. A solid ball is pressed in between two parallel planes (which are
tangent to it). With the planes moving (so that they remain parallel and
at the same distance from each other), the ball rotates without slipping
at the points of contact. Consider all motions of the ball induced by the
motion of the upper plane such that the lower point of contact of the
ball describes a closed trajectory on the lower plane, ie., the point of
contact returns to the original position. What part of the group SO(3)
can be obtained by such ball rotations (rotations of the ball are considered
after its centre returns to the original point)?

7.19. Prove that the isometry group of Euclidean space is generated
by orthogonal transformations and parallel displacements.

7.20. Prove that the isometry group of the standard n-dimensional
sphere is isomorphic to the group of orthogonal transformations of the
(n + 1)-dimensional Euclidean space.

7.21. Prove that the groups Sp(l) and SU(2) are isomorphic (as Lie
groups). Prove that they are diffeomorphic to the sphere S°. Establish
the relation to quaternions.

7.22. Prove that in the algebra of quaternions, multlphcatxon by a qua-
ternion 4 : x — Ax generates the transformation group SU(2). Prove that
the transformations of the form x — AxB, where 4, B are quaternions,
generate the group SO(4). Prove that SO¢4) is isomorphic to the factor
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group §° x S°/Z,, where S° is supplied with the structure of the group
SU2) = Sp(1). Find the fundamental group SO(4), and also SO(n) for
any n.

7.23. Prove that the Lie groups SO(n), SU(n), U(n), Sp(n) are
connected. Prove that there are two connected components in the group
O(n). Find the number of connected components in the group of motions
of the pseudo-Euclidean plane of index 1. Prove that the group
SL(2, R)/Z, is connected.

7.24. Let us realize the group U(n) and its Lie algebra u(n) as subman-
ifolds in the Euclidean space of all square complex matrices of order
n X n and consider the natural embedding of unitary and skewhermitian
matrices in this space.

(a) Prove that U(n) C 2"~ ', where the sphere $2"* ! is standardly
embedded in R*” = C™ and has radius V7.

(b) Prove that the Riemannian metric induced on the group SU(n),
which is considered as a submanifold of $%*"~!, coincides with the Car-
tan-Killing metric invariant on the group SU(n).

(¢) Find the intersection U(n) N u(n) by considering these sets as
submanifolds in the space c”.

Solve similar problems for the groups O(n) and Sp(n).

7.25. Find the factor group ®/®p, where ® is the group of motions
of the Lobachevski plane (under the standard metric), & the connected
component of the unit element. Indicate all conformal transformations
of the standard metric.

7.26. Find all discrete subgroups of the group ® of affine transforma-
tions of the straight line R'.

7.27. Describe all discrete normal subgroups of the following compact
Lie groups: O(n), SO(n), SU(n), U(n), Sp(n).

7.28. Find all symmetry groups of all regular polygons. Find all
symmetry groups (groups of motions) of all regular convex polyhedra in
R?, Indicate the non-commutative groups among them.

7.29. Prove that left-invariant vector fields on a Lie group G are in
one-to-one correspondence with the vectors of the tangent space T.(G)
to the group G at the unit element.

7.30. Prove that the Poisson bracket of two left-invariant vector fields
is also a left-invariant vector field, i.e., the commutator operation trans-
forms the space T¢(G) into a Lie algebra.

7.31. Let £ be a left-invariant vector field, and ¢; a one-parameter trans-
formation group associated with it. Prove that ¢, is a right translation
for any ¢, ie., ¢:(g) = ghs, € G.

Let G be a Lie group, and x', ..., x" a local coordinate system in
a neighbourhood of the unit element (we will assume its coordinates to
be zeroes). Then the operation of multiplication induces the vector-valued
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functiong = g(x ») = xyx "'y Lx = (.., XN,y = 0.0
If the function ¢ = q(x, ») is expanded into Taylor’s series, then it will
assume the following form:

g = Dchkxlyt + 6,
Sk
where € is an infinitesimal of the third order with respect to the coor-
dinates x', y'.
The bilinear expression

¢ o= et @ = 1& )
gk
determines a certain operation (called the Poisson bracket of the vectors
& and ) over the tangent vectors in the unit element of the group G.
Thus, the tangent space T.(G) has been transformed into an algebra called
the Lie algebra of the Lie group G. Usually, it is denoted by the small
letter g.

7.32. Show that the following properties are fulfilled in a Lie algebra:

@& a9 = — [n &

() 1[& n), £ + (0o, £, &} + Q5 &, %) = 0.

7.33. Verify that an operation in a Lie algebra g is transformed into
the Poisson bracket of vector fields if a vector £ is associated with a
(right-) left-invariant vector field.

7.34. Let x(¢), y(¢) be two curves passing through the unit element of
the group G,

£ = L3 ()] -2 (V)]
a0 N g W
Show that

[£ 7] = j‘;(x( VD y D x ' Wy W)l = 0

7.35. Let y(¢) be a one-parameter subgroup of a Lie group. Assume
that vy intersects itself. Show that there exists a number L > 0 such that
vt + L) = v(¢) for all ¢ ¢ R.

7.36. Let G be a compact, connected Lie group. Show that each point
x € G belongs to a certain one-parameter subgroup.

7.37. Let G be a compact group acting smoothly on a manifold M.
Show that there is a Riemannian metric on M such that G is the isometry
group.

7.38. Show that a commutative, connected Lie group is locally isomor-
phic to a finite-dimensional vector space.
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7.39. Show that a compact, commutative, connected Lie group is
isomorphic to the torus.

7.40. Show that a commutative, connected Lie group is isomorphic to
the product of the torus and a vector space.

7.41. Let a Lie group G be a subgroup of the matrix group GL(n,
C) C c” = End(n, C). Show that the commutator operation in the Lie
algebra g of the group G, which is understood to be a subspace of End(n,
C), coincides with the usual commutator of matrices, ie., [&
7]]=Eﬂ —17£9 E,T'Eg-

7.42. Describe the Lie algebras of the following matrix Lie groups:

SL(n, C), SL(n, R), U(n), O(n), O(n, m), Sp(n).

7.43. Prove that the operator Y : ¥ — [j X} is determined by a skew-
symmetric matrix. Find the relation between the coefficients of this mat-
rix and the coordinates of the vector 7.

7.44. Let Y, Z be two matrices of vector multiplication operators by
two vectors ¥, z. Prove that the matrix of the vector multiplication operat-
or by [y 2] equals [Y, Z] = YZ — ZY.

7.45. Prove that a finite group cannot operate effectively on R”.

8
Vector Fields

8.1. Prove the equivalence of the three definitions of a tangent vector
to a manifold at a point P:

(a) tensor of rank (1, 0);

(b) differentiation operator of smooth functions at the point P;

(c) a class of osculating curves at the point P.

8.2. Find the derived function f at a point P in the direction of the
vector £;

@f=VE + 2 +25P=(@11,¢=(Q10); \
(b)f= xzy + xZZ - 2; P = (lv 1’ _l), S = (11 _2’ 4);
©f=x +y" —25P=@3,02,¢=(,1,1)

ZP=@ =5
X

@ f == -
y
8.3. Find the derivative of the function f = In(x* + »?) at the point
P = (1, 2) along the curve y* = 4x. :
8.4. Find the derivative of the function f = tan™~!(3/x) at the point
P = (2, —2) along the curve x* + »* — 4x = 0,
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8.5. Find the derivative of the function £ at the point P along the curve
y:

@f=xX+)Y,P=(02,v:x + " =5

xZ 2
LI A
4 2
(C)f=x2~—y2,P= (5,4),')':x2—y2 = 0
df =1In(xy + yz + x2), P = (0,1, 1), y: x = cost, y = sint, z = I;
(e)f=x2+y2+ 22,P= ©, R, ﬂ'd/Z),‘le:Rcos(,y = Rsint,
zZ = al

®f=2y+y,P=F21,x:

2 2
8.6. Find the derivative of the function f = —5 + 2 + —-at an
a c

b2

arbitrary point P = (x, J, z) in the direction of the radius vector of this
point,

8.7. Find the derivative of the function f = 1/5, r = Vx? + y* + 72
in the direction of its gradient.

8.8. Find the derivative of the function f = yze* in the direction of
its gradient.

8.9. Find the derivative of the function f = f(x, 3 z) in the direction
of the gradient of the function.

8.10. Let v be a vector differential operator in R? whose components

are as follows: V = (—?—, i, _6_) Show that
ox dy 9z
(a) gradF = VF;
(b) divX = (V, X);
(©) rotX = [V x X].

8.11. Prove the formula‘
div(uX) = u div X + (X, gradu),

where X is a vector field, and # a function in R3,
8.12. Prove the formula

rot(uX) = u rot X — [X, gradu].
8.13. Calculate divX[X X X].

8.14. Prove that the vector x = u grady is orthogonal to rot X.
8.15. Show that

(a) div (rot X) = 0;
(b) rot rot X = grad divX - AX,

5-—2018
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?* & 9
WhereA=E-xz- + -a—;z' + a—zi

8.16. Let X = (x, » z). Show that
(a) div X = 3;

(b) rot X = 0;

X

div{ —
o (m’)
(d) rot (I—)—()%) = 0;

1 X
(e) grad — = — —

X1 X

Find a function ¢ such that X = grade.

8.17. Let v(x, 3, 2) be the field of velocities of a solid rotating about
some axis. Show that

(a) div(v) = 0;

(b) rot(v) = 2w,
where w is an angular velocity vector.

8.18. Let X = (%, » 2), and Y a constant vector field. Show that
rot[Y X X] = 2Y.

8.19. Show that rot gradF = 0.

8.20. Prove the formula

A(FG) = FAG + GAF + 2(gradF, gradQ).

8.21. Solve the equation rotX = Y if
@Y =(@11;

b Y @2y, 2z, 0);
©Y=10(00c¢-¢)

d) Y = (6%, 6z, 6x);

@Y = 37 -3, —0F + W)

(f) Y = (0, 2cosxz, 0);

@© Y = (—y/(3 + ¥, /(3 + yY), 0)
() Y = (e, 2yz, —(xpze” + 7%).

il

0;

8.22. Prove that to each smooth vector field on a manifold, there corre-
sponds a one-parameter group of diffeomorphisms ¢: whose trajectories
are tangent to the given vector field.
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8.23. Show that the Poisson bracket of vector fields (as differentiation
operators) is a vector field.

8.24. Let ¢, be a one-parameter group of diffeomorphisms associated
with a vector field £, Show that

[ S]—i(?()—)
n & = = (et — ).

8.25. Let &, n be two vector fields, and £ g two smooth functions.
Prove the formula

U gnl = felg 9 + gq(NE - fe@ .

8.26. Let £, 5 be two vector fields, and ¢, ¥+ the one-parameter
transformation groups associated with them. Show that if [£, 4] = 0, then
the transformations ¢, and ¥, commute, .

8.27. Let V be a linear finite-dimensional space of vector fields which
is closed under the Poisson bracket operation, ie., [£ 7] € V when
&, n € V. Show that V is a Lie algebra.

8.28. (See the previous problem.) Show that the Lie group G corre-
sponding to the algebra ¥ acts on a manifold, each field £ € V specifying
a one-dimensional subgroup of the group G whose orbits under this
action are tangent to the vector field &.

8.29. Let B Q be two arbitrary points of the disk D, C R". Find a
diffeomorphism ¢ on R” such that ¢(P) = Q, ¢(x) = x, when x € D,,.

8.30. Let £ be a vector field on a manifold X, P € X. Show that if
&lp # 0, then there exists a local coordinate system (¢!, ..., x") in a
neighbourhood of the point P such that £ = 9/dx".

8.31. Construct three linearly independent smooth vector fields at each
point of the standard sphere S, Find the explicit forms of the integral
curves on these fields.

8.32. Construct the integral curves of the following vector fields on
the plane:

3 3
(a)E=xgc+y5,
3 )
(b)E=y5);—x5;;
d 3
(C)£=x5);—y5;,
d

DE=x+N—+y—
ax
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8.33. Prove that the singular points (zeroes) of the vector fields
gradRe(f(z)), grad Im f(z) coincide with the zeroes of the derivative f7(z).

8.34. Find the integral curves of a flow v,(x) orthogonal to a flow v2(x),
where va(x) = gradf(x), x € R2, f(x) is the magnitude of the angle AxB
(A, B being certain two points of the plane R? and x a variable point).

8.35. Specify the quality characteristics for the integral curve
distribution of the flows v; = grad Re(f(z)), v2 = grad Im(f(z)) of the
complex-analytic functions f(z) listed below. Find the singular points of
the flows vi, v2. Investigate the stability of the singular points. Specify
the quality characteristics of the behaviour of the trajectories of the flows
v1, vz on the sphere §? (extended plane R? : S = R? U o0). Specify the
resolution process of the singularity z = 0 of these vector fields for a
small perturbation of the original function f(z) leading to a function g(2)
with all the singular points of the flows v;, v2 non-degenerate:

(@) fz) = z" (where n is an integer);

(b) f(z) = z + 1/z (Zhukovski function);

© fz) = z + 1/22b (where b is an integer);

dfz) = z + 1/(z — 2)

(©) fz) = 7*@ ~ 5)* + 12z% (investigate in a neighbourhood of
the point z = 0);

0 ) = 2@ - V"% - 2*;

(® fx) = 2z — Inz;

M f@ =1+ '@ - 9% @ - 449" (investigate in a neigh-
bourhood of the point z = 0);

i

it

1l

f

. RS e avPe
i) fz) 100 Inf(z — 2)/(z — I
O SR = 1/ + 22 - 1)

2
=+ 21InZ%
V4

k) f@)

O fz) = 2° + 2nzg;
m) f(z) = 2In(z - 1> - 4/3 In(z + 10)%;
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m f@) = V22 - 1/z - i’

(©) flz) = 2 + 5i/DIn[(4z — 2)/(64z + i)];
| - 1827 — i\?

® SR =0 - i/2) n(m) .

8.36. Prove that the irrotational flow v = (P, Q), where P, Q are the
components of the flow on the plane R%*(x, y), is potential and
v = gradf(x, y) for a certain smooth function f. What can be said about
the potential of f, given additionally that the flow is incompressible, i.c.,
div(v) = 0?

8.37. Let a vector field ¢ satisfy the condition div(¢) = 0. Show that
the displacement operator along the integral curves is unitary.

8.38. Find all homotopy classes of the vector fields on the torus 72

8.39. Prove that if a vector field X on the two-dimensional torus is
homotopic to dei, then it possesses a periodic trajectory.

8.40. Find the greatest number of linearly independent tangent vector
fields on a smooth closed surface M2,

8.41. Prove that the indices of two vector fields on an arbitrary two-
dimensional and closed surface are equal. Does the statement hold for
a manifold of any dimension?

8.42. Let m, n be the rotation numbers of the vector field on the torus
T?, N = (m, n). Prove that this field has X\ periodic solutions (closed
trajectories).

8.43. (The Poincaré-Bendixson theorem.) Prove that if an arbitrary
integral curve of some vector field on the plane is compact and contains
no singular points, then it is periodic.

8.44. Prove that if P on the plane is a limit point for some trajectory
of a vector field, then the trajectory passing through P is limiting for
the original trajectory.

8.45. Prove that the set of vector fields possessing only isolated singu-
larities is connected.

8.46. Prove that the sum of the indices at singularities of a vector field
on a compact and closed manifold is unaltered in smooth deformations.

8.47. Prove that the set of all integral curves of the vector field v(x)
= (!, =x% X, =x?), where x = (% x', X2, ¥ € §? : (x| = 1) C RY,
is homeomorphic to the sphere S. Find the relation to the Hopf map
53 5, §. How is this vector field related to quaternions?

8.48. Let v(x) be a smooth vector field on the plane R?, L a smooth
self-intersecting contour on the plane R?, ji the index of the contour L
in the vector field v(x), J the number of points where the field v and
contour L touch internally, and E the number of points touching
externally.
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Prove that if the number of all points of contact of the field with the
1
contour is finite, then j;r < 7(2 + J — E). Prove that the index of any

isolated singular point of a smooth irrotational vector field v(x)
= gradf(x) is always not greater than unity (note that this singular point
may, certainly, be degenerate).

8.49. How many solutions can the equation sinz = z have over the
field of complex numbers?

8.50. Put 9 = 3 ii; _6_ = 9 + ii. Show that a function
9z ox dy 9z ax ay

9
f is holomorphic if and only if -a_—k () = 0 for all k.
Z
8.51. Show that a vector field £ is holomorphic if and only if it has the

;0 i . . .
form & = a' —, where &' are holomorphic functions, with respect to
a7 P

a local coordinate system (g, ..., z").

9
Tensor Analysis

9.1. Determine the type of the following tensors:

af
Ti—;
@ ax’

2

a
) Ty = 8_% at those points where the gradient of the function f
X

vanishes;
(c) Tj, ie., the components of the matrix of a linear operator on a
vector space;

(d) T}, i.e., the components of the matrix of a bilinear form on a vector
space.

9.2, Let

5 0, when | # j
I, when i =

Show that {48!} yields a tensor of type (1, 1).
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9.3. Let (£} be a tensor of type (2, 0). Show that the numbers »;;
satisfying the condition #/n = d; yield a tensor of type (0, 2).

9.4. Show that if f: V7'— V7' is a linear mapping of tensor spaces,
then the mapping components yield a tensor of type (m, n).

9.5. Determine the dimension of the tensor space V7.

9.6. Show that any tensor of type (2, 0) can be decomposed uniquely
into the sum of a symmetric and a skewsymmetric addend.

9.7. Determine the dimension of the space A* of skew-symmetric
tensors.

9.8. Determine the dimension of the space $* of symmetric tensors.

9.9. Prove the formula

Ay @ V2) = @ Au(V) ® As(V2).

a+B=R

9.10. Calculate the components of the fundamental tensor of the plane
with respect to a system of polar coordinates.

9.11. Calculate the components of the fundamental tensor of R*:

(a) with respect to a system of cylindrical coordinates;

(b) with respect to a system of spherical coordinates.

29.12. Calculate the components of the fundamental tensor of the sphere
S

(a) with respect to a system of spherical coordinates;

(b) with respect to Cartesian coordinates on the stereographic
projection.

9.13. Assuming that the gradient of a function f is the composite of
two operations, viz., that of partial differentiation and that of raising
the indices, write the gradient of the function with respect to:

(a) a system of polar coordinates;

(b) a system of cylindrical coordinates;

(c) a system of spherical coordinates.

9.14. Find the gradient of the function f = Invx? + y* + 2%

9.15. Derive the following formulae for the functions f and g with
respect to an arbitrary system of coordinates:

(a) gradQ\f) = Agradf: A\ = const;
(b) grad (f + g) = gradf =+ gradg;
(c) grad(fg) = fgradg + ggradf;
radf — rad
() grad(f/g) = &fg%gg g0
df

(e) grad(f(g)) = —— gradg.
dg
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9.16. Let f = f(u, v), where u, v are two functions. Show that grad f =

= —%grad(u) - —af— grad(v).
ou av

9.17. Write the formula for the derivative of a function f with respect
to an arbitrary system of coordinates:

(a) in the direction of its gradient;
(b) in the direction of the gradient of the function.

9.18. Derive a formula enabling us to determine the greatest change
of a function f at a given point with respect to an arbitrary system of
coordinates.

9.19. Write a solid medium deformation tensor

Sk = 1(au" +a_l/‘+a_zi'au’
2\ ax* ax'  ax' ox*

with respect to an arbitrary system of coordinates using the fundamental
tensor. Write out separately similar formulae for the terms which are
linear respective to u'.

9.20. Prove that the Christoffel symbols of two connections differ by
addends which are the components of a tensor.

9.21. Show that the covariant derivative along a curve depends on the
value of the Christoffel symbols of this curve.

9.22. Show that if two submanifolds osculate to some curve v, then
the parallel displacement operation does not depend on the choice of a
submanifold.

9.23. Show that the parallel displacement operation can be obtained
on a submanifold by passage to the limit of the composite of a parallel
displacement in the ambient manifold and the orthogonal projection onto
the tangent space to the submanifold.

9.24. Calculate the angle through which the tangent vector to a right
circular cone turns after parallel displacement along a closed curve.
Establish the dependence on the kind of the curve.

9.25. Calculate the angle through which the tangent vector of a sphere
turns after parallel displacement along a curve 7 if:

(a) v is a parallel;

(b) v is made up of two meridians and a part of the equator which
is included in between them;
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(¢) v is made up of two meridians and a part of the parallel which
is included in between them.

9.26. Establish a dependence between the angle of rotation of the
tangent vector to a sphere after parallel displacement along a closed curve
v and the area of the region bounded by the curve .

9.27. Generalize Problem 9.26 to the case of a surface with constant
Gaussian curvature.

9.28. Prove that if the curvature tensor of a Riemannian manifold is
identically equal to zero, then the operation of parallel displacement
along a curve v does not depend on a homotopy of the path y.

9.29. Calculate the scalar curvature of the following Riemannian
manifolds:

(@) $%

(b) the torus T embedded in R3;

(c) the Lobachevski plane;

(d) the right circular cone;

(e) the cylinder;

(f) the group SO(n) with a bi-invariant metric.

9.30. Show that any two sufficiently near points on any compact,
Riemannian manifold can be joined by a geodesic line, the geodesic of
the least length being unique.

9.31. Describe the geodesics in the following Riemannian manifolds:

(a) R%

(b) the torus 77 under the flat metric;

(© 8%

(d) the Lobachevski plane.

5
al { D izl = 1} be the Brieskorn spheres (k = 1, ..., 28). Prove

a=1

that the Riemannian metric induced on these spheres (in embedding

7 . . . .
2~ 8 C € =R") is not a metric with positive curvature.

9.33. Prove that there always exist a pair of conjugate points on a com-
pact, I-connected manifold M”. What happens if M" is not I-connected?
Is there a conjugate point on every geodesic v{/) (the geodesics emanating
from one point)?

9.34. The following kinds of manifolds of strictly positive curvature
are known, being the classical symmetric spaces of rank 1, viz., S”, RP",
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CP", QP", K'®, Calculate the curvature (find the limits within which the
curvature varies) of R(s) on CP", QP", K'6.

9.35. Let ® be a Lie group, and (, ), a bi-invariant metric on &, where
g € ® is the variable point on ®.

Recall that a metric is said to be bi-invariant if it is preserved under
left and right translations, viz.,

Lg 18 > 88 Ry 18— 820

Prove that it follows from the bi-invariance of the metric (,); on ®
that the form (,). is invariant under all transformations of the form
Adg: X — gXg ™.

9.36. Give examples of matrix Lie algebras G such that the quadratic
form (XY). = Tr(XY") is non-singular, where X, Y € G, the bar denotes
complex conjugacy, and Tr transposing.

9.37. Let (,); be a bi-invariant Riemannian metric on a Lie group §.
Let V be a symmetric Riemannian connection on @, compatible with
the metric (,);. Prove that the geodesics of the connection V are the
following trajectories only: one-parameter subgroups of the group & and
their translations (left and right).

9.38. Let X be a left-invariant vector field on a group &. Prove that
the integral curves v(¢) of this field are left translations of a one-parame-
ter (i.e., one-dimensional) subgroup which passes through the unit element
of the group in the direction of the vector X(e), where X(e) is the value
of the field X at a point e € ®.

9.39. let X, Y be two invariant vector fields on a group &, and V
a symmetric connection compatible with a bi-invariant Riemannian
metric on . Prove that V x(Y) = 1/2[X, Y], where [X, Y] = XY — YX
(the Lie group being a matrix).

9.40. Let (,) be a bi-invariant metric on the Lie algebra G of a group
®, and [X, Y] = XY ~ YX the commutator in G. Prove that {[X, Y],
Z) = (X, [¥, Z]).

Note. The operation X — [X, Y] is sometimes denoted as
ady : X — [X, Y]; then the required relation is written as

(adyX, Z) = —(X, adyZ).

9.41. Let @ be a compact Lie group with a bi-invariant metric, and
X, Y, Z left-invariant vector fields on @. Prove that R(X, Y)Z = 1/4 [[X,
Y]) Z]'
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9.42. Let @ be a compact Lie group with the bi-invariant metric
(>, and X, Y, Z, W left-invariant vector fields on ©.
Prove that

Let ® be a compact Lie group, and X, Y two orthogonal unit vectors
(bi-invariant metric (,) is given on &). We call the number o(X,
Y) = (R(X, Y)X; Y) the sectional curvature determined by the
vectors X, Y.

Prove that o(X, Y) 2 0 and ¢(X, Y) = O if and only if [X, Y] = 0.

Hint: o(X, Y) = /4 ([X, Y], [X, Y]) = 1/4 [X, YII* > 0.

10
Differential Forms, Integral Formulae,
De Rham Cohomology

10.1. Prove that if vectors vy, . . ., v, € V are linearly dependent, then
T(vy, ..., vp) = 0 for any form T € AP(V*).
10.2. Prove that if forms ¢, . . . , ¢, € V* are linearly dependent, then
o1 N .. App = 0.
10.3. Let o1,..., ¢n € V* and vy, ..., v, € V. Prove that
1
(@IN .. AV, . .., Va) = = detllpi(v)IIZ ;.

10.4. Prove that the element of volume equals vdet(gi)dx'A . . . Adx",
where gy is the Riemannian metric with respect to the coordinates
oo, X", :

10.5. Show that the exterior differentiation operation of a differential
form can be represented as the composite of the gradient covariant
component operation and that of alteration for an arbitrary symmetric
connection on a manifold.

10.6. Calculate the exterior differential of the following differential
forms:

(@) z2dx A dy + (2% + 2y)dx A dz;
() 13xdx + y*dy + xyzdz;



©) (x + 20°)dz A dx + 172 dyndx);

(d) (xdx + ydy)/(* + y*);

() (vdx — xdy)/(x* + ¥

(0 SO + Y)xdx + ydy);

{g) fdg (f, g being two smooth functions);
(h) fletxl, ..., XNdeg(x', ..., x).

10.7. Prove the validity of the formula
2dw)X, ) = X(W(Y)) - Y(w(X) — w(lX, Y],

where w is a differential form of degree 1 and X, Y two vector fields.
10.8. Generalize the formula in 10.7 to the case of differential forms
of an arbitrary degree.
Given a scalar product on the vector space R", there are two isomorphic
operations. One of them associates each vector X with a linear form
= V(X) such that (X, Y) = V(X)(Y). The other associates each
multilinear skewsymmetric form w of degree p with a form #*(w) of

degree n — p as follows: let wy, ..., w, be the orthonormal basis
consisting of linear forms, and w=f wiyA... AWi,.  Then
*(w) = (- D)%wyA ... AW, where ¢ is parity of the permutation

Gyoovipht o Jn=p)

10.9. Show that the following formulae hold for the space R*:

(a) gradF = V™ \(dF);

(b) divX = *d* V™ '(X);

(©) rotX = —VxdV Y{X).

10.10. Show that Green’s, Stokes’ and Ostrogradsky’s formulae are spe-
cial cases of general Stokes’ theorem for differential forms.

10.11. Derive the formula of integration with respect to the volume
¥V bounded by a closed surface T:

(a) SSSWM + (grade, grady)dv = Cb#<p —— do;

Vv
() SSS PAY — YAp)dv = (?(Jj;<<p—~ - ¢i¢—)da,
on
1 4

where 3/9n denotes the derivative in the direction of the normal to the
surface .
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10.12. Calculate the surface integral ({)%w —Zi’— do with respect to a
<J n

closed surface X:
(@) for ¢ = 2%, ¥ = x* + y* — Z*if £ bounds the region x> + y* +
+ 2 landy > 0;

b for ¢ = 2%, ¢ = ¥ + z* if L bounds the region ¥* + y? < 1
and 0 €z < L;

(©)forp = ¢ = (x + y + 2)/V3if L is the sphere x> + y*> + 2% = %

(d) for ¢ = 1, ¥ = €Ssiny + e'sinx + z if & is the tri-axial ellipsoid

2 2
At a =L

10.13. Find the gradients of the functions with respect to cylindrical
coordinates:

@u = 92 + 2pcosp — esing;

(b) u = pcoseg + zsinlp — e°.

10.14. Find the gradients of the functions with respect to spherical
coordinates:

(@) u = r’cost;
(b) u = 3riind + e‘cosg — r;
(©) u = cos/r*.

10.15. Find divX with respect to cylindrical coordinates:

(@ X = (g, zsing, epcosz);
() X = (etan~'g, 2, —z%€%).

Il

10.16. Find the divergence of the vector field X = (r’, —2cos’e,
e/(r* + 1)) with respect to spherical coordinates.

10.17. Find the rotors of the vector fields with respect to spherical
coordinates:

I

@ X
)y X

(2r + acose, —asing, rcosf), o = const;
(r*, 2cos8, — o).

Il

10.18. Verify that the following vector fields are potential with respect
to spherical coordinates (r, 6, ¢):

(@) X = (2cosb/r, sind/r?, 0);
b)) X = (AN, 0, 0).
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10.19. Find the potentials on the following vector fields with respect
to cylindrical coordinates (g, ¢, 2):

@ X = (1, /g, 1);
(b) X = (a, v/0, 2%
(©) X = (02, 2, g¥);
(d) X = (—eingp, e%osp/g, 27);

(€) X = (pcosz, cosz, — gesing).

10.20. Find the potentials on the following vector fields with respect
to spherical coordinates:

@ X = (,1,0);

(b) X = (2r, 1/rsiné, 1/r);
©) X = (%2, o/sind, 8/r);
(d) X = (cosesing, cosecosf, —sing);

(€) X = (¢'sind, e'cosb/r, 20/(1 + Hrsind).

10.21. Calculate the circulation of the vector field X = (r, O,
(R + r)sinf) with respect to spherical coordinates along the circum-
ference {r = R, 6 = w/2}.

10.22, Calculate the line integral along the line L of the vector field
X, both given with respect to cylindrical coordinates:

@ X = (3 gp, cosy), L is the line-segment o = a, ¢ = 0,
0z 1),

(b) X = (o, 20¢, 2), L is the semi-circumference (o =1, z = 0,
0< o< al; .

(c) X = (e%osy, gsing, @), L is the helix {o =R z=¢,
0<¢<2n);

(d) X = (2 0z @), L is the circumference {g = 1, 2 = 0};

(e) X = (gsing, — %z, @?), L is the circumference {g = R, 7 = R};

(f) X = (zcose, o, ¢*), L is {o = sing, z = 1}.

10.23. Calculate the line integral of the vector field X along the line
L given in spherical coordinates:

(@) X = (e'cosh, 20cose, ), L={r=1¢=0,0< ¢ < 7};
(b) X = @ritane/2, By, cosly), = (o =a/2, 0= x/d,
0<r<1y; '
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(c) X = (sin%0, sing, reh), = ¢ = 7/2, r = 1/sind,
w/4 € 6 < 7/2);

(d)y X = (@9, 0, rsinf), L = {r =1, 0 = w/4};

(&) X = (rsind, 0e°, 0), L = (r = sing, 6 = 1/2, 0 < ¢ < 7};

() X = (0, 0, rph), L is the contour bounding the haif-disk {r € R,
¢ = n/4]}.

10.24. Find the flow of the vector field X on the surface S given in
cylindrical coordinates:

(@) X = (g, —cos¢, 2), S bounds the region {¢ < 2, 0 < z < 2};

(b) X = (0, gp, —22), S bounds the region {¢ < |, 0 < ¢ < 7/2,
-1z 1),

10.25. Find the flow of the vector field X on the surface § given in
spherical coordinates:

(a) X = (1/r%, 0, 0), S encloses the origin;

(b) X = (1, rsind, — 3resind), S bounds the region {r < R, § < n/2};
© X = (%, 0, R%cosg), S = {r = R};

(d) X = (r, 0, 0), S bounds the region {r < R, 0 < #/2};

(& X =(? 0, R%sinfcosg), S bounds the region {r < R,
0< o< a/2 0 < w/2).

10.26. Let f; - X x [0, 1] — Y be a smooth mapping, and w a differen-
tial form on Y, dw = 0. Prove that f&(w) — f¥(w) =dQ for a
convenient form { on X.

10.27. Prove that if a manifold X is contractible, then, for any form
w(dw = 0), the equation dQ = w is solvable.

10.28. Let F be a vector field in a three-dimensional region W with
a smooth boundary W, and n a vector normal to dW.
Prove that

S(dwF)dxdydz = 5 (nF)dA,

w aw

where dA is the element of area on oW.
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10.29. (See the previous problem). Prove that

g(th, mdA = g (hdx, + fidxa + fadxs),
S as

where S is a smooth surface with a smooth boundary 4S.

10.30. Calculate the de Rham cohomology groups of the following
manifolds: (a)S', (b)$2, (C)RP?, (d)T?, (e)T”, (f) the plane with exclusion
of a finite number of ppints.

10.31. Describe the differentials of left-invariant forms on a Lie group
in terms of the commutator in the Lie algebra.

10.32. Prove that the bi-invariant forms are closed on a compact Lie
group.

Prove that bi-invariant forms are not homologous to zero on a compact
Lie group.

10.33. Prove that there is a bi-invariant metric on a compact Lie group.

10.34. Show that the de Rham cohomology on a compact Lie group
is isomorphic to the space of bi-invariant forms.

10.35. Prove that each differential form on a complex manifold with
respect to complex coordinates z', . ., 2% zF = x* + iy* is as follows:

w = Twidz* A d7,

where dzx = dzi, A ... Ndzi, dZ' = dz, A ... A dz,

10.36. Let X be a complex-analytic manifold of dimension n, and w
a holomorphic form of degree n. Show that the integral of the form w
along the boundary of an (# + 1)-dimensional real submanifold in X
equals zero.

10.37. Derive the Cauchy theorem {:f(z)dz = 0 from Stokes’ formula

Y
for a holomorphic function in a region bounded by a curve ~.
10.38. Derive the Cauchy residue theorem from Stokes’ formula.

10.39. Let f: M — N be a smooth mapping of orientable, closed, and
compact manifolds of dimension #, and w an n-dimensional differential
form on the manifold N.

Prove that _{f*(w) = degfg w.

M N

10.40. Let p and g be two arbitrary polynomials in variables (z!, . . .,
Z"), and a, k real numbers. Let there exist a differential form w such that
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dp A w = pdz, dw = adz, dg A w = kdz. Prove that d(p~*~“qw) = 0
(where dz = dz' A ... A dZ").
10.41. Let G = S', ¢ a curvature form, and w a connection form.
Prove that
(@) do = f*(w), dw = 0;
(b) qﬁw are integers for any closed cycle v.
y

10.42. Prove that if #w are integers for any closed cycle, then there exists

¥
a connection such that w is its curvature form.

10.43. Construct a connection in the fibration G = G/H (where G is
a Lie group and H its subgroup) so that the form is invariant with respect
to all the motions.

10.44. Let M? be a smooth, closed and compact manifold, g; the
components of its fundamental tensor, and K(x) the Gaussian curvature.
Let

I(g; M*) = Sz K(x)da(g).
M

Given that 8@/(g, M®) = 0, derive the classical Gauss-Bonnet formula

1 1
— S K(x)do(g) = — S Kx)do = x(MY).
27 5 2T A

M M

10.45. Prove that one-dimensional de Rham cohomology groups are
isomorphic to the group Hom(m;(X), RY.

10.46. Let a smooth triangulation of a manifold M be gwen Prove
that the simplicial cohomology groups with real coefficients are isomor-
phic to the de Rham cohomology groups.

11
General Topology

11.1. Prove that any finite CW-complex can be embedded in a finite-
dimensional Euclidean space R" (of sufficiently large dimension).
11.2. If a compact, smooth and closed manifold is taken as a CW-com-
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plex, then the result formulated in the previous problem can be made
more precise, viz.,

(a) prove that M" can be embedded in the Euclidean space R*"™*, where
k is the number of open balls D" forming a covering of M":

(b) prove that M" can be embedded in the Euclidean space R™%, where
the number k& has been defined in item (a).

11.3. Prove that any compact, smooth and closed manifold M”

(a) can be embedded in the Euclidean space R*"*':
(b) can be immersed into the Euclidean space R*".

11.4. Construct the immersion of the projective plane RP? into the
Euclidean space R*.

11.5. Describe the set of nodes of the immersion of RP? into R’
constructed in Problem 11.4, Indicate the multiplicities of the nodes, i.e.,
how many sheets of the surface intersect at each node of the surface.

11.6. Consider the immersion of RP? into R? described in Problem
11.4. Denote the image of RP? in R® by i(RP?). Consider a line-segment
of length 2¢ orthogonal to i(RP?) with the centre at each point x € i(RP?)
which is not a node of the surface, where € is sufficiently small. Since
i is a smooth mapping, the pencil of orthogonal line-segments obtained
can be additionally defined at each node. In doing so, we shall obtain
as many line-segments at each node as the multiplicity of the node is.
Consider in R? the set consisting of the ends of all the orthogonal line-
segments. Prove that it is the image of a two-dimensional sphere under
a certain smooth immersion into R>.

11.7. Construct an example of a topological space not satisfying the
first countability axiom (resp. the second countability axiom).

11.8. Given two continuous functions f(x), g(x) on the two-dimensional
sphere S? such that f(x) = —f(rx), g(x) = —g(rx), where 7 is the
reflection through the centre of the sphere. Prove that these functions
have a common zero.

11.9. Construct an example of a topological space X such that a certain
of its subsets ¥ C X (indicate Y) is closed and bounded, but not
compact.

11.10. Prove that a one-dimensional cellular complex is a space of type
K(m, 1), where « is a free group.

11.11. Prove that any finite simplicial complex is a subcomplex of a
simplex of sufficiently large dimension. In particular, it can be embedded
in the Euclidean space so that the embedding is linear on each simplex.

11.12. Prove that a contractible space is homotopy equivalent to a
point. .

11.13. Prove that a universal covering space of X is also a covering
space for any other covering space.
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11.14, Prove that any two spaces of type K (m, n) are weakly homotopy
equivalent.
11.15. Prove that

(a) S*A Sk - S"+k;

(b) $7/5% is homotopy equivalent to " v $¥*!, §" \ $* homotopy
equivalent to $" *~! and §" ¥ diffeomorphic to §" ¥~ x R*¥*! if
§% ¢ S" is the standard embedding.

11.16. Prove that a function is continuous on a CW-complex if and
only if it is continuous on each finite subcomplex.

11.17. Let M = X x Y, where X, Y are two topological spaces. We
shall consider a set from M to be open if it is the product of open sets
from X and Y or the union of any number of such sets.

Prove that such a system satisfies all the axioms determining a topology
on the set M.

11.18. Prove that if a space X is both Hausdorff and locally compact,
while a space Y Hausdorff, then, for any space T, the spaces H(X X Y,
T) and H(Y, H(X, T)) are homeomorphic, where H(X, Y) = Y*.

11.19. Prove that the standard fibre map EX = X (Serre fibre map),
where X is a manifold, is a locally trivial fibre map.

11.20. Prove that there exists a homeomorphism of the Cantor
discontinuum onto itself commuting two given points.

11.21. Let a mapping f: E — F be a continuous mapping “onto”, and
let E be compact. Prove that F is compact.

11.22. Prove that the n-dimensional sphere (n < o) is compact. Is it
true for n = oo?

11.23. Let A, B be two connected spaces and A N B # (. Prove that
A U B is connected.

11.24. Prove that if E, F are two connected spaces, then E X F is
connected.

11.25. Let f:E — F be a continuous mapping ‘“onto”, and E
connected. Prove that F'is a connected space.

11.26. Prove that:

(a) the intervals 0 < x < 1, 0 < x € 1, 0 € x < 1 are connected;

(b) if A C R' is connected, then A is of the form ¢ < x < b,
a< x< ba<x<bas<x< b, where a, b may assume the values
400,

1127. Letf: E» FE=AUB A = A, B = B. Then fis continuous
if and only if ﬂA and /]B are continuous. If 4 # A, then, gencrally
speaking, this does not hold. Give an example.
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11.28. Prove that f - E = Fis continuous if and only if £~ '(U) is open
for any open subset U C F.

11.29. Let f: X — Y. Prove that fis continuous if and only if the in-
verse image of every closed set is closed.

11.30. Prove that AUB = AUBand ANB = ANB.

11.31. Let Int(A) = U {G C A: G is open}. Then p € Int(A) if and
only if there exists a neighbourhood U of the point p such that
Ucint(d),peA=N{FDA:Fis closed} if and only if we have
UNA # ¢ for any neighbourhood U 3 p.

11.32. Prove that the open disk (|x| < 1) in Euclidean space is an open
set.

11.33. Let X be a locally path-connected metric space. Prove that if
X is connected, then X is path-connected.

11.34. Let X be a metric, compact and connected space. Can any two
of its points be connected with a continuous path?

11.35. Prove that the cube I" and sphere S” are connected.

11.36. Let G C I' be an open set on a closed line-segment. Prove that
G is the union of disjoint open intervals,

11.37. Let X be a metric space. Prove that each of its one-point subsets
is closed.

11.38. Prove that if the product of two topological spaces is homeomor-
phic to the suspension of some topological space, then either both factors
or one of them is contractible to a point.

11.39. Let X be a compact space, Y a metric space, and f: X — Y a
continuous map. Prove that f is a uniformly continuous map.

11.40.-Prove that if f: X = Y is a sequence of continuous mappings
and f, uniformly converges to f(Y being a metric space), then f is
continuous.

11.41. Let X C Y, and Y a compact space. Prove that X is a compact
space if and only if X is a closed subspace.

1142. Let ANB = ¢, and X = A U B. Prove that if 4 and B are
connected spaces, then X is a connected space.

11.43. Prove that the cube I” is a compact space.

11.44. Prove that the sphere S* and ball D are homeomorphic to

cellular spaces.
n+1

11.45. Prove that the ellipsoid { — = 1} is homeomorphic
a;
i=1

to the sphere S”.
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n

11.46. Prove that the ball { Z xt <€ 1} and the upper hemisphere

n+1 i=1

{ Z =1, Xps1 2 0} are homeomorphic.

i=1

11.47. Prove that the cube {|x] < 1, i=1,2,..., 1)} and the ball

n
{ Z X< 1} are homeomorphic. Prove that an open cube and an

i=1
open ball are diffeomorphic.

11.48. Are the line-segment 0 < x <1 and the letter T
homeomorphic?

11.49. Prove that the interval (—1, 1) is homeomorphic to the straight
line (— o, ). Prove that any two intervals are homeomorphic.

11.50. Are a ball and a sphere homeomorphic?

11.51. Prove that the Hamming metric on the n-dimensional cube
cannot be embedded in any R”, i.., there exists no embedding such that
the Hamming metric is induced by the standard Euclidean metric (the
cube being considered only as the set of its vertices, i.., as a discrete
set, and then the distance g(a, b), where a and b are the vertices of the
cube, equals the number of different coordinates of these two vertices).

11.52. Let £ M* — 52 be a mapping of class C* of a closed, smooth,
and compact manifold M?* onto S?, f being open (ie., the image of any
open set is open) and finitely multiple (i.e., the inverse image of each point
x € §? is a finite number of points).

Prove that M? is diffeomorphic to the sphere S?. What can be said
about a similar mapping f: M" = §™?

11.53. Prove that a metric topological space satisfies Hausdorff separ-
ation axiom.

11.54. Is it true that the distance between two disjoint, closed sets on
the plane (straight line) is always greater than zero?

Recall that the distance between two subsets X and Yof a metric space

Z is the number g(X, Y) = sup inf r(x ») + sup inf r(x, y), where
xeX yeY yeY  xeX

r(x, y) is the distance between two points x and y in the space Z. This
is not the only way of defining the distance between two subsets of a
metric space. Give other examples of the metric (X, Y).

11.55. Prove that a set whose elements are closed subsets of a metric
space can itself be transformed into a metric space in a natural manner
by introducing a metric described, e.g., in Problem 11.32.
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11.56. Prove that any contracting mapping of a metric space is
continuous.

A mapping f: X = X of a metric space X into itself is said to be con-
tracting if there exists a real constant A < 1 such that g(f(x), f(¥)) <
<€ Aa(x, y) for any two points x, y € X.

11.57. Prove that any contracting mapping of a complete metric space
into itself always has a fixed point (which is unique).

11.58. Give an example showing that a condition for a metric space
to be complete (see Problem 11.57) cannot be discarded.

11.59. Show that a group of orthogonal matrices of order 3 X 3 is
a compact topological space.

11.60. Prove that the group of orthogonal transformations of the
n-dimensional Euclidean space is a compact topological space.

11.61. Prove that the group SO(3) considered as a topological space
(in embedding SO(3) in the linear space of all real matrices of order
3 x 3) is homeomorphic to RP’,

11.62. Prove that SO(n) is a connected topological space, and that O(n)
consists of two connected components. Prove that U(n) and SU(n) are
connected topological spaces. _

11.63. Prove that the open disk x> + y* < 1 and the plane R%(x, )
are homeomorphic. Prove that the open square {ix] < 1, ¥} < 1) and
plane R%(x, ) are homeomorphic. Prove that the interval 0 < x < 1
and the open square {|x; < 1, pi < 1} are not homeomorphic.

11.64. Prove that the group of unitary matrices U(n) considered as a
topological space is homeomorphic to the direct product of S! and SU(n)
(as topological spaces).

11.65. Prove that the group GL(n, G) considered as a subset in the
space of all complex matrices of order n X n is an open and connected
subset.

11.66. Prove that the group GL * (n, R) consisting of real matrices of
order n X n with positive determinants is a connected topological space.

11.67. Prove that the group GL(n, R) of real non-singular matrices of
order n X n is a topological space consisting of two connected
components.

11.68. Prove that a Moblius strip is not homeomorphic to the direct
product of a line-segment by a circumference.

11.69. Construct an immersion of a Mébius strip into Euclidean three-
dimensional space so that the boundary circumference of the former may
be standardly embedded in Euclidean two-dimensional plane. ’

ll .70. Prove that the set of all straight lines on the Euclidean plane

% is homeomorphic to a Mabius strip.

11 .71. Prove that for any compact set X C R" there exists a smooth

real-valued function f such that K = £~ !(0).
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11.72. The group SO(3) is, naturally, embeddable, in the Euclidean
space R? (each element of SO(3) is a real matrix of order 3 X 3). Prove
that, virtually, SO(3) C $* C R®, where S® is the sphere of radius V3
standardly embedded in R®,

12
Homotopy Theory

12.1. Represent (a) the torus, (b) Klein bottle and (c) suspension of
a complex K as cellular complexes.

12.2. Prove that the topology of a CW-complex is the weakest of all
topologies respective to which all the characteristic mappings are
continuous.

12.3. Prove that a torus with a disk generated by a meridian are
homotopy equivalent to the wedge S' v 52

12.4. Prove that a torus with a disk generated by a meridian and a
parallel are homotopy equivalent to the sphere S2.

k12.5. Gineralize Problems 12.3 and 12.4 to the case of the product
S* x §"7K

12.6. Prove the homotopy equivalence of the spaces (X x S™)/{(X v §")
and Z"X.

12.7. Prove the homotopy equivalence

(@ Z(XVY) ~LXVIY
) (XA Y) ~ Z(X x Y)/(ZXVY)

12.8. Let {X; A, B} be the space of paths starting at A and ending
at B, and A C B Prove that {X; A, B} contains a subspace homeo-
morphic to A,

129. Let f - X — L be a continuous mapping of simplicial complexes,
and Y C X a subcomplex such that the mapping f is simplicial on it.
Prove that there exists a subdivision of the complex X such that it is
identity on Y and the mapping f is homotopic to a certain simplicial map-
ping g, the homotopy being constant on Y.

12.10. Let X be a simplicial complex, and Sy the star of a vertex x € X,
Prove that any two simplexes of the star S, meet in a certain face.

12.11. Prove that a simplicial mapping of simplicial complexes is
continuous.

12.12. Let X be a simplicial complex, and ¢ > 0. Prove that there exists
a subdivision of the complex X such that the diameter of each new sim-
plex is less than e.
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12.13. Let f be a mapping of the unit line-segment [0, 1] into itself,
and f(0) = 0, f(I) = 1. Prove that there exists a homotopy which leaves
the endpoints of the line-segment fixed and deforms the mapping f into
the identity.

12.14. Is the vector space R" contractible to a point on itself?

12.15. Let a space X be contractible to a point on itself. Prove that
any two paths with the same endpoints are homotopic to each other (a
fixed endpoint homotopy).

12.16. Let a space X be contractible to a subspace Y, with the homotopy
leaving Y fixed (constant). Prove that any path in X with the endpoints
in Y is homotopic to a path wholly lying in Y (a fixed endpoint
homotopy).

12.17. Prove that any two paths are homotopic on the sphere $”, n > 1
(the endpoints are the same, and the homotopy is fixed endpoint).

12.18. Prove that any connected, cellular complex is homotopy equi-
valent to a cellular complex with one vertex.

12.19. Prove that the sphere $”~' can be represented as the union
(" x D""HYUD* x $" 'Y with the common boundary

X Sn—r— l.

12.20. Consider the standard sphere S” ! in the Euclidean space R”"
and two spheres embedded in it:

S’_l= {Xr+1=...=X,,=OI,S”_r“I= [X1=... =Xr=0].

Prove that any pair of points y € §7', x € """ ! can be joined by
a unique arc on a great circle having no other points of intersection with
these spheres.

12.21. Find the topological type of the closed hyperboloid of one sheet

= [x* + y* — 2% = 1} in the projective space RP3.

12.22. Cut a Mobius strip (embedded in R%) along its midline,

Is the manifold obtained orientable?

Repeat the cutting process several times. Describe the manifold
obtained (it is disconnected) and find the linking number of any two
connected components.

12.23. Prove that the space of polynomials of the third degree without
multiple roots is homotopy equivalent to the complement of a trifolium
in the sphere S*. Construct an explicit deformation.

12.24. Consider the set of points C” with pairwise different coordinates.
Show that the space obtained has the same type as the Eilenberg-MacLane
complex K(w, 1).

12.25. Construct an example of two spaces Xi, X», which are not
homotopy equivalent, and also of two continuous one-to-one mappings
J: X1 - Xy, g X; > X, such that the spaces themselves may not be
homotopy equivalent.
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12.26. let h:X — X' be a continuous mapping, and the corre-
spondence ®: {X’, Y] — {X, Y} be defined by the formula
() = o - h.

Prove that the correspondence ¢ transforms homotopic mappings into
homotopic.

12.27. Prove that the following homotopy equivalence holds:
X(S” X Sm) _ Sn+lv Sm+l Vv Sn+m+l.

12.28. Prove that the finite-dimensional sphere $” is contractible to a
point on itself,

12.29. Prove that a connected finitc graph is homotopy equivalent to
the wedge of circumferences VS'.

12.30. Let 2 mapping p - X — Y satisfy the covering homotopy axiom.
Prove that the inverse images of the points are homotopy equivalent.

12.31. Let a space X be contractible to its path-connected subspace A.
Prove that the space X is path-connected.

12.32. Fix two points xp and x; in a space X. Let Y be the space of
paths starting at xo and passing through x,. Prove that the space Y is
contractible.

12.33. Prove that the space of all paths { X; X; X} is contractible to
X C {X; X; X} with X held fixed.

12.34. Let a sequence of spaces X, C X+ be given, and let X, .
be contractible to X, with X, held fixed.

Prove that the space X = U X, is contractible to X, with X, held fixed.

n

12.35. Prove that any open n-dimensional manifold is homotopy equi-
valent to an (n — l)-dimensional complex.

12.36. Prove that if a space X is contractible to a subspace A4 on itself
with A held fixed, then A is homotopy equivalent to X.

12.37. Calculate the sets #(S' x S', §%) and =(5* x §" %, §™).

12.38. Find Cat(RP") and Cat>(RP"), where Cat,(RP") and Cat,(RP")
are the minimal numbers of closed subsets X; such that X = U X; and

the embeddings X; C X are homotopic to constant mappings.

12.39. Calculate Cat((K) and Cat,(K) for the case of a sphere with
three identified points.

12.40. Let M? be a compact, closed, oriented, and 2-dimensional man-
ifold of genus h, ie., M* is the sphere S* with # handles. Find I>M?
(i.e., double suspension) up to homotopy type.

12.41. Consider some standard chart with non-homogeneous coor-

dinates xi, ..., X, in RP". Find the homotopy type of
(@) RP" \ 8% where § = (x} + ... 4 X3er = 1, Xeas = ... =
= x = 0
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(b) RP" \A\//[’g,wherel\:l'5= (X4 o X =X — = XL
— 1 = 0’xk+v2 =...= X, = 0};
(c) S* and M%.

12.42. Consider a small ball D" in the open manifold R” x $"~* and
glue the projective space RP" in its place, ie., identify points x and —x
on the boundary of the ball D" = §"7',

Prove that the space obtained is homotopy equivalent to
RPn -1 V; Sn - k.

12.43. Given a topological manifold M" whose boundary is a topologi-
cal manifold P!, the boundary of P"~! being contractible to a point
in the manifold M".

(a) Prove that the manifold is contractible to a point.

(b) Prove that if the manifold P"~! is l-connected, then the manifold
M™" is homeomorphic to the disk D" (assuming that P"~ ! is contractible
to a point in M").

(¢) Give an example of a pair (M", P"~!) such that the manifold P"~!
is contractible to a point in the manifold M”, but M" is not homeomor-
phic to the disk D". As a corollary, prove that = (P"~') # 0.

12.44. Find the homotopy type of the space C" \ A, where A = U 4y,
Ay = {x € G"|Xi = Xj]- v

12.45. Calculate the number of mappings (up to homotopy):

(a) RP" — RP"; @’y CP* —» CP"

(b) RPn+l - RP"; (br) CPn+l — CPn;
(c) ERP" - RP"; (¢’) ZCP" > CP";
(d) £RP" » RP"*!; (d') ZCP" —» CP"* .

12.46. Prove that

(a) Cat [join(X, Y)] = min[Cat(X), Cat(Y)], where Cat is the Luster-
nik-Schnirelmann category (the spaces X and Y being connected).

(b) Find Cat(S' x §%).

1247. Let spaces X;, 1< i< N, be path-connected, and

X=X X Xz X ... %X Xn.
N

Prove that [Cat(X)] < Cat(X) < 1 + 2, [Cat(Xy) — 1.

i=1

12.48. (a) Calculate Cat(RP"); Cat(T™"); Cat(S™ x S").

(b) Prove that if the sphere S” is covered by g closed sets (not necessarily
connected) Vi, Vs, . .., Va, where ¢ < n, then there always exists at least
one set V; such that it contains two diametrically opposite points of the
sphere S”, viz., —x and x.
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12.49. Let M C R" be an arbitrary subset of Euclidean space (e.g.,
smooth submanifold), and let R* € R"*' be the standard embedding.
Prove that the following homotopy  equivalence holds
R"*'\ M = LR"\ M).

Reminder. Let X be a topological space, and X x [ its direct product
by a line-segment. After identifying the “upper base” X x {1} ¢ X x [
with a point and the “lower base” X x {0} C X X I with another
point, we obtain a factor space called the suspension X of X.

12.50. The relation between the Lusternik-Schnirelmann category and
“cuplong” of a compex (or manifold). Let M" be a smooth, compact,
connected, and closed manifold. Consider the ring H*(M"; G), where
G = Z if M" is orientable, and G = Z, if M" is non-orientable. Denote
by I(M"; G) the greatest integer for which there exists a sequence of
elements x|, xa, . . ., x; of the ring H*(M"; G) (degxa > 0,1 < o < /)
such that x Axa A ... Axare) # 0 in the ring H¥(M"; G). The
number /(M"; G) is denoted by cuplong (M"). Prove that

Cat(M™) > I(M"; G).

12.51. Prove that for any path-connected topological space X and any
of its points xp, the group 71(QX, xo) is Abelian.

12.52. Prove that any contractible space is l-connected.

12.53. Prove that the group 7,(V4S") is a free group with A4 generators.

12.54. Prove that if X and Y are homotopy equivalent, then the isomor-
phisms hold: 7(X) = 7(Y) and mx(X) = m(Y), k 2 2.

12.55. Prove that mi(X V Y) = 7((X) * m,(Y), where 7i(X) * m(Y)
is the free product of the groups 7(X) and = (Y).

12.56. Find the knot group of the trefoil in R® (and also in the sphere
$%) and prove that one cannot “untie” the trefoil, i.e., there exists no
homeomorphism of Euclidean space (or sphere) onto itself which would
transform the trefoil knot into the standardly embedded, unknotted cir-
cumference, i.e., trivial knot.

12.57. Find the knot group of a knot I" in R? given thus: the circum-
ference which represents the knot is placed on the two-dimensional
standardly embedded torus 72 C R?, on which it traverses its parallel
p times, and its meridian g times, p and ¢ being prime to one another.
(The trefoil knot from Problem 12.56 can be represented as such a knot
T", where p = 2, ¢ = 3.) Make out the role of the condition for the
numbers p and ¢ to be prime to one another.

12.58. Let X = YUwZ, where Y, Z, W are finite CW-complexes,
W =YNZ W is path-connected, and X = YUwpZ is the complex
obtained by gluing Y and Z relative to the common subset W. Calculate
the group = (X), given the groups 7(Y), 71{(Z) and =,(W). Consider the
case where W is disconnected separately.
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12.59. Given an arbitrary group G with a finite number of generators
and relations, prove that there exists a finite complex X whose fundamen-
tal group is isomorphic to G. Can a finite-dimensional manifold, e.g.,
four-dimensional. be selected as such a complex X?

12.60. Calculate the group =1(X), where X is the wedge of three
circumferences.

12.61. Construct a two-dimensional complex X whose fundamental
group equals Z/pZ. For which values of p can a two-dimensional,
smooth, closed, and compact manifold be selected as such a complex?

12.62. Calculate the fundamental group of the two-dimensional sphere
with three handles. Check this group on commutativity and find its
commutator subgroup. Calculate the fundamentai group of the two-
dimensional torus.

12.63. Let a simplicial complex X have N one-dimensional simplexes.
Prove that its fundamental group has no more than N generators.

12.64. Prove that m(X) = mi(Xz2), where X is a CW-complex and X>
its two-dimensional skeleton, i.., the union of all cells of dimensions 1
and 2,

12.65. Find m>(X), where X = S' v §%. Is this group finitely generated?

12.66. Find the knot group of the figure-of-eight (i.e., wedge of two
circumferences).

12.67. Let f be a path in X, a € (X, xo), and f(0) = xo. Prove that
there exists a path g such that g(0) = xo, g(I) = f(1) and 2l ea.

12.68. Let X be a path-connected space. Prove that the group T1(X,
Xo) is isomorphic to the group mi(X, y) for any two poinis x, y € X.

12.69. Calculate m1(X) and m,(X), where X is the wedge Stvsn.

12.70. Prove that if X is a one-dimensional CW-complex, then m1(X)
is a free group.

12.71. Prove that the groupG = Z ® Z @ Z ® Z cannot be the fun-
damental group of any three-dimensional manifold.

12.72. Calculate x1(P;), where P, is a two-dimensional, compact,
closed, and orientable surface of genus g.

12.73. Calculate 7(TP;), where TP, is the manifold of linear elements
of a surface of genus g

12.74. Calculate the fundamental group of the Klein bottle by
constructing the covering space with the action of a discrete group.

12.75. Let P be a two-dimensional surface with non-empty boundary
(ie., open surface). Prove that = (P) is a free group.

12.76. Prove that if X is a CW-complex, then m;(X) is a group whose
generators are one-dimensional cells, and the whole set of relations is
determined by the boundaries of two-dimensional cells.
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12.77. Let G be a topological groupoid with identity. Prove that G is
homotopically simple in all dimensions and, as a carollary, that 7 ((G)
is an Abelian group.

12.78. Let X be a topological groupoid with identity, and G C m;(X)
a subgroup. Prove that

(a) it is possible to introduce the operation of multiplication in XG $0
that pg: X — X (where pg is the projection of the covering space Xc
onto X) becomes a homomorphism;

(b) if X is a group, then Xc (i.e., covering space relative to the subgroup
G) is also a group. Consider the example Z, — Spin(n) -
- SOMm), n > 2.

12.79. Prove that the following isomorphism holds

JIp (S ... VS")25,(S)e.. 05 H(ST)
k times £ times

12.80. Prove that the groups 7;(X) are commutative when i > | for
any CW-complex X,

12.81. Demonstrate by way of example that the excision axiom does
not hold for the group #(X, Y) (the axiom being held for the usual (co)
homology theories), i.e., there exist pairs (X, Y) such that

(X, Y) # mi(X/Y).

12.82. Prove that for any path-connected space ¥ and any point xo € Y,
the isomorphism holds (Y, x0) = =, - 1@y, Y, wyy), where Wy, is the
constant loop at the point xo.

12.83. Prove that mi(RP") = Z, n > 1, and m(RP") = mi(S"),
n 2 1, k > 1, where RP" is the real projective space.

12.84. Prove that if

(2) A is a contractible subspace in a space X (X and 4 being CW-com-
plexes) to a point xo € A, then the homomorphism i, : (A, x0) ~ walX,
Xo) is trivial when # > 1, and when n > 3, the decomposition

(X, A, X0) = (X, X0} @ mn-1(A, Xo)
holds;
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(b) i: XV Y= X X Yis an embedding, then the exact sequence is
given rise:

T XV Y) = (X x Y) = 0.

12.85. Prove that m(CP") = 0; mo = (CP") = Z, n > 0;
e = (CP") = m(S*"*"), k > 2.

12.86. Prove that if a CW-complex X has no cells of dimensions from
1 to k inclusive, then m(X) = 0 when / < k.

12.87. Let X, Y be two CW-complexes. Prove that (X X Y) =
= w(X) @ m(Y). Calculate the action of 7(X X Y) on mi(X x Y).
Construct a universal covering of X x Y.

12.88. Find the homotopy groups 74(S™) (0 < ¢ < n) and prove that
7a(S") = Z, where S" is a sphere.

12.89. Prove that 7(S%) = 7:(S%) when i > 3 and, as a corollary, that
T3(8?) = Z.

12.90. Prove that

(@) m1(SOQ)) = Z,, 12(SO3)) = m2(SO) = 0, where SO = liln>SO(n);
(b) m3(SO@) = Z, m(U) = Z, m(U) = 0, where U = lig}U(n) (em-

beddings U(n) C U(n + 1) and SO(n) C SO(n + 1) being standard);
(c) m3(SO(5)) = Z.

12.91. Find the groups m(S' v §"), g > 0.

12.92, Calculate the groups 71(X), m.(X) and action of the group (X)
on the group w.(X) for the following cases: (a) X = RP"; (b) X =
= S' Vv S (c) X = 8B("*"), where B (¢"*') is the division ring of a
non-trivial O(n + 1)-fibration of disks on S'.

12.93. If a mapping f{X, 4) = (Y, B) sets up the isomorphisms
me(X) = me(Y) and m(A) = my(B) for all g, then it sets up the isomor-
phisms m (X, A) = 7(X, B) for all g.

12.94. Calculate the groups .- x(VRx), where VR is the real Stiefel
manifold.

12.95. Prove that the groups w(S") cannot become trivial, as k in-
creases, beginning with a certain number k.

12.96. Prove that 73(S*) = Z, and 7,4 (S") = Z,, when n > 3.

12.97. Find 73(S? Vv §%), m3(S' v §?), and 73(5% v S v S?).

12.98. Calculate the one-dimensional relative homotopy group of the
pair (CP?, §%), where §2 = CP' C CP? standardly.

12.99. Prove that if:

(a) a three-dimensional, compact, and closed manifold M® is
I-connected, then M is homotopy equivalent to the sphere (i.e., M? is a
homotopy sphere);
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(b) M" is a smooth compact and closed manifold such that m;(M") = 0

n . .
when i € [E:I , then M" is homotopy equivalent to the sphere S".

12.100. Construct an example of a three-dimensional, closed, and
compact manifold M? such that M is a homology sphere (i.e., it has the
same integral homology as $°), but m;(M>) = 0. Construct an example
of a finitely generated group G which coincides with its first commutator
subgroup.

12.101. Prove that the set of homotopy classes of mappings [S", X]
is isomorphic to the set of classes of conjugate elements of the group
mn(X, Xo) under the action of 7 (X, xo) (X being a connected complex).

12.102. Calculate m>(R?2, X), where R? is a plane and X a figure-of-eight
embedded into the two-dimensional plane,

12.103. Calculate m:(CP") when i < 2n + 1.

12.104. Let m.(X) = 0, and a finite group G act on X and Y without
fixed points. Prove that there exists, and is unique up to homotopy, a
mapping f: Y — X which commutes with the action of the group G.

12.105. Prove that [CP?, S?] = m4(S?), where {X, Y] is the set of
homotopy classes of mappings of X into Y.

12.106. Let (X, A), X D A, be a pair of topological spaces, and X
path-connected. Let A be the set of paths in the space X starting at a
certain point xo and ending at points of the subspace A. Prove that w,(X,
A, a) = mg_1{A, \s), where X, is an arbitrary path from xo to a € A.

12.107. Prove that the following conditions are equivalent to
n-connectedness:

(a) mo(S9, X) consists of one element when g < n (base-point preser-
ving maps);

(b) any continuous mapping S? = X can be extended to any
continuous mapping of the disk D?*'— X, g < n.

12.108. Prove that mo(X, QQZ) is an Abelian group, where X, Z are
two topological spaces, and QX is the loop space. Prove that X is an
H-space.

12.109. Let 4 be a retract of X. Prove that when n > I, for any point
Xo € A, the homomorphism induced by the embedding

it walA, X0) = X, Xo)

*

is a monomorphism, and when » > 2, determines the following
decomposition into the direct sum

7""(/\,: Xo) = 7|‘,,(A, Xo) ® (X, A, Xo).
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12.110. Prove that mo(XLZ, X) is an Abelian group. Establish a relation
with mo(Z, 29.X).

12.111. Let 7S™ — S” be the standard tangent bundle over the sphere
$". Calculate the homomorphism 9, : 7.(8") = m, - 1(S"~1) from the
exact homotopy sequence of this bundle.

12,112, Let f : X— Y be a continuous mapping (f(xo) = o). Prove that
the induced mapping f,:w(X, Xxo0) = 7n(Y, yo) is a group
homomorphism.

12,113, Let

Y D Fo3dyo
1
X 3 xo

be a fibration witn nxed points xo, Yo and fibre F. Prove that m.(Y, Fo;
o) = wa(X, Xo).

12.114. Let E, X be two topological spaces, X path-connected, and
p:E— X a continuous mapping such that for any points x € X,
y € p~}(x), the isomorphism holds true

p,: TE pTi(x), ») = 71X, x), i = 0
(for i = 0, 1, a set isomorphism is valid, the sets being stripped of the
group structure). Prove that for any points x; and x;, the topological
spaces p~'(x;) and p~'(x2) are weakly homotopy equivalent.

12.115. Prove that for the homotopy groups of a pair (X, A) the exact
sequence is valid

. 7r,~(A) - 7I'i(X) i 7r,-(X, A) g 1r,-_1(A) - ...

12.116. Prove that if X is a smooth, compact and closed submanifold
of codimension one in Euclidean space, then X is orientable.

12.117. Prove that if the fundamental group of a compact closed man-
ifold is trivial, then the manifold is orientable. Prove that if a manifold
X is non-orientable, then there is a subgroup of index two in 7 (X).

12.118. Prove that if X is a non-orientable space, then the suspension
T X is not a manifold.

12.119. Prove that the Euler characteristic X(X) of any compact, closed
manifold is trivial.

12.120. Give examples of

(a) a non-orientable manifold doubly embedded in another manifold
(whose dimension is one greater);
(b) an orientable manifold singly embedded in another manifold.
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12.121. Let X; and X» be two tori (meaning the solids), f: X, — 0X;
a diffeomorphism, and M} = Xi1UrX;. Give examples of diffeomor-
phisms f such that the manifold M} is diffeomorphic to: (a) §°,
(b) §* x S', (c) RP’.

12.122. With the notation of the previous problem, consider the
mapping

£ m(@X) ~ m@X2), ie, LZ®Z-ZLZ®L, «

which is induced by the diffeomorphism between the solid tori X . and
X. It is obvious that the homomorphism f, is given by the integral matrix

a b
c dJ’
Prove that this matrix is unimodular and calculate the fundamental group
of the manifold M} in terms of the matrix f,.
12.123. Let X, be the space of polynomials f(z) (of one complex var-
iable) without multiple roots. Find the groups mi(Xn).

12.124. Prove that a finite CW-complex is homotopy equivalent to a
manifold with boundary.

13
Covering Maps, Fibre Spaces,
Riemann Surfaces

13.1. Let p - X— Y be a covering map such that f, [1(X, xo)] is a norm-
al subgroup of the group mi(Y, yo), p(¥o) = Yo. Prove that each element
« € m(Y, yo) generates a homeomorphism ¢ of the covering, ie.,
po(x) = px).

13.2. Let p:- X — Y be a covering map, p(xo) = yo. Prove that
p.: Ti(X, x0) = 7w1(Y, yo) is a homomorphism.

133. Let p: X — Y be a covering map, and p(xo) = yo. Prove that
the induced mapping p, : 7i(X, Xo) = (Y, yo) is a monomorphism.

13.4. Let p: X — Y be a covering map, and =;(¥Y) = 0. Prove that
each element o € 7((X) is determined by a homeomorphism of the space

. . a . .
Y onto itself, « : Y — Y, and the dlagramy—-—,v/y is commutative.

7--2018 PSP
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13.5. Let p : X — Y be a covering map where the space X is connected,
and let F = p~'(») be the inverse image of a point yp € ¥, xo € F.

Prove that F and m((Y, yo) are in one-to-one correspondence if 7((X,
X()) = 0.

13.6. Let p: X — Y be a covering map, F: P > Y a continuous
function, where I is a square, and f: I' - X also continuous, with
oflt) = F@, 0).

Prove that f can be extended to the mapping G : I? - X, with pG =
G(@, 0) = f(n).

13.7. Let p: X — Y be a covering map, f, g two paths on X, and
f(0) = g(0). Let pf(1) = pg(1), and the paths pf and pg homotopic. Prove
that f(1) = g).

13.8. Let p: X — Y be a covering map, f, g two paths on X, and
f(0) = g(0). Does it follow from pf(l) = pg(l) that S = g(h?

13.9. Let p: X — Y be a covering map, f g two paths on Y, and
£ & two paths on X such that of=f pg=¢g f(O) = g(0).

Prove that if f and g are homotopic, then fand g are also homotopic.

13.10. Let p : X — Y be a covering map, f a path in ¥, and xo a point
in X such that p(xo) = f(0). Prove that there exists, and is unique, a path
g in X such that pg = f.

13.11. Prove that a covering map is a Serre fibre map.

13.12. Prove that any two-sheeted covering is regular. What purely
algebraic fact corresponds to this statement?

13.13. Prove that a three-sheeted covering of a pretzel (i.e., sphere with
two handles) is non-regular.

13.14. Let M? be a non-orientable, compact, smooth and closed man-
ifold. Prove the existence of a two-sheeted covering map p : M% — M?,
where M? is an orientable manifold, and find M? in explicit form. What
is the property of the fundamental group of a non-orientable manifold?

z
13.15. Construct the covering map S" 2 RP" and prove that:

(a) RP" is orientable when n = 2k—1, and non-orientable when
n = 2k;
b) 7(RP") = Z», #mi(RP") = 7i(S™) when n > 1, i > L

13.16. Prove that a covering space is regular if and only if its paths
lying over one path in a basis are either all closed or all non-closed.

13.17. let p: X X be a covering map. Prove that any path in X
can be covered in Xina unique way up to the choice of the origin of
the path in the inverse image, and the multiplicity of tie projection p
is the same at all points of the base space.

13.18. Construct all coverings over the circumference and prove that
7i(S") = Z, 7(S") = 0 when i > 2.
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Z,
13.19. Construct the regular covering map p: Py — P, where

k > 2 and Py is a sphere with & handles.

13.20. Construct a universal covering of VaS' and prove that
7i(VaS') = 0 when i > 1. Find 71(V4SY).

13.21. Construct a covering map ¢ : X — P,, where P, is a pretzel,
such that X is contractible to the graph. Prove, as a corollary, that

(a) a universal covering space P, is contractible, P, ~ K(w, 1);
(b) if M? is a two-dimensional closed manifold and =;(M?) an infinite
group, then M? ~ K(m, 1) (i.e., homotopy equivalent).

13.22. Establish the relation between universal coverings over P (ie.,
sphere with &k handles) and the Lobachevski plane.

13.23. Prove that all covering maps of the torus 7% are regular and
find them. Construct an example of two non-equivalent, but homeomor-
phic covering maps of the torus 72.

13.24. Let X be a finite complex. Find the relation between G C m1(X)
(arbitrary subgroup), x(X) (the Euler characteristic) and x(X¢g) — (Xc)
(covering map constructed relative to the subgroup G C m1(X)).

13.25. Construct a universal covering of the torus P; (i.., sphere with
one handle) and Klein bottle (i.e., sphere with two cross-caps) and calcu-
late the homotopy groups of P; and N,. Can the torus P; be a two-sheeted
‘and regular covering of the Klein bottle? If so, find the covering and
calculate the image of the group w1(P;) in m1(N2) under the covering
monomorphism,

13.26. Prove that if 71(M") = 0 or w,(M") is a simple or finite group
of order p # 2 (where p is prime), then the manifold M" is orientable.

13.27. Construct the explicit form of seven smooth linearly independent
vector fields on the sphere S7. Use the algebra of octaves (Cayley
numbers). Construct the integral curves of these vector fields.

13.28. Prove that if k linear operators Ay, . . . , Ax are given in R” such
that A?= —FE and Aid; + AjAi = 0 (for all j j), then k linearly
independent vector fields can be specified on the sphere §"~! C R™

13.29. If the homotopy groups of the base space and fibre of a fibre
space have finite rank, then the homotopy groups of the total space also
have finite rank, the rank of the g-dimensional group of the total space
not exceeding the sum of the ranks of the g-dimensional homotopy
groups of the base space and fibre.

13.30. Let the fibre map p : E —~ B admit an image set of a section
x:B — E, and ¢y = x(bo). Prove that when n > 1, the mapping p, is
an epimorphism, and when n > 2, it determines a decomposition into
the direct sum 7,(E, e) = wu(B, bo) @ mu(E eo).

13.31. Prove that if all the homotopy groups of the base space and

7%
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fibre are finite, then the homotopy groups of the total space are also finite
and their orders do not exceed the product of the orders of the homotopy
groups of -the base space and fibre of the same dimension.

13.32. Prove that the mapping p : EX = X satisfies the covering homo-
topy axiom (Serre fibre map).

13.33. Prove that if pi2: X2 = X are covering maps and
Im(p:), = Im(py),, then (X1, p1, X) and (X, p2, X) are fibre homeomor-
phic, where Im(p;), C 71(X).

13.34. Prove that there exists a covermg map p. X X over any
connected complex X such that 7n(X) 0 (i.e., existence of a universal
covering).

13.35. Prove that the set of vector bundles with a structural group G
over the sphere S” is isomorphic to 7, -1(G), and that the group Gis
path-connected.

13.36. Show by way of example that there exists no exact homology
sequence of a fibration.

F
13.37. Let p : E — Bbe a locally trivial fibre map, and B, F finite com-
plexes. Then x(E) < x(B) x(F).

13.38. Given that a material particle moves with constant (in modulus)
velocity (a) on the torus 7", (b) sphere 8", find phase space for this
system.

13. 39 Letp: E ER B be a fibre map with path-connected B and F.
Let Cat = Cat—1 be a reduced Lustermk—Schmrelmann category, ie.,
Cat (of a point) = 0. Prove that Cat(E) < Cate(F) Cat(B) + Cat(B) +
+ Catg(F), where Catg(F) is a relative category of the fibre F respective
to E.

13.40. Prove that if p : X = Yis a Serre fibre map, then pis a mapping
“onto”.

13:41. Prove that if p - X — Y is a Serre fibre map, then p ™ '(y;) and
p~1(»2) are homotopy equivalent for any y, »2 € Y.

13.42. Prove that the manifold of linear elements of a manifold M is
a fibration with the base space M.

13.43. Prove that a locally trivial fibration (twisted product) is a Serre
fibration.

13.44. Prove that the space of paths EX whose starting point is fixed
in the space X is a Serre fibre space with the base space X.

13.45. Prove that if M" is a smooth manifold, then the spaces of its
total and unimodular tangent bundles (fibrations) are orientable.

13.46. Prove that the direct product of topological spaces X X Y with
the projection onto one of the factors is a Serre fibration.
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13.47, Let p : X — Y be a covering map, p(xo) = Yo, and f, g two paths
such that f(0) = g(0) = yo, /(1) = g(1). Let fg~' € p, (m1(X, X)) and let
J, g be two coverings of these paths. Prove that f(1) = g(1).

{01
13.48. Represent the torus T2 as 72 = (g}, whereg = ¢ 0 .
0 e'?

Consider the following equivalence relations R:
@) (€1, e*2)R(~€"1), e~"2);
(b) ("1, e*)R(~e 1, —e™"2);
©) (€1, e2)R(e ™1, e~ i¥2),

Find the space X = T2/R and calculate the image L.@(T) C m(X),
where f: T2 = X = T%/X is the projection induced by the relation R.
Is f a covering map?

13.49. How many fibrations are there of the following form:

(a) T* = S! where T? is a three-dimensional torus;

(b) T" — S!, where T" is an n-dimensional torus (fibrations are
considered up to homotopy equivalence)?

13.50. Let C = A * B be the free product of arbitrary groups A and
B. Prove that for any subgroup M C C, the equality M = A * By * F
holds, where A, C 4, B, C B and Fis a free group. Give a topological
proof using covering spaces.

13.51. Let & be a l-connected compact Lie group, and o : ® = @ an
arbitrary involutive automorphism (i.c., > = 1). Put = {g € Go(g) =
=gl; V = {g € ®lo(g) = g7 '). Prove that @ = VSV, ie., any element
g € @ admits a representation in the form

g=vhy, vevV heH

Prove that V = ¢/9 (homogeneous space).

13.52. The following construction (by Cartan) is known. leto: @ - &
be an arbitrary involutive automorphism of a compact connected Lie
group. Put $ = (g€ ®|o(@ =gl; V= {g€Bpo( =g '). Then
V=0/9and V C @ is a totally geodesic submanifold. Therefore, V
is a symmetric space. The submanifold V is called Cartan’s model of the
symmetric space ®/$. Any symmetric space admits Cartan’s model
(which is almost always uniquely determined).

(a) Prove that the projection p:® — V, where ' p@g) = go(g™ )
determines the principal fibration 0 = - @ —» @/ — 0.
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(b) Let V be Cartan’s model, #;(V) = 0, e € V, and e the identity
element in @. Prove that if a point x € V is conjugate of e along a
geodesic y(r) C V in the group @, then the point x is conjugate of e
along v in the manifold ¥V C @ itself.

13.53. Prove that a compact, closed manifold M? with Euler charac-
teristic N can be represented as a (2N + 4)-gon such that some of its
sides are glued together to yield the word

1

-1, - =1
a\d...an+2a1 A2 ... .4N+2

(where ai, a3, . . ., an+2 are the designations of the sides) in traversing
the sides one after another. Prove that the last factor is an% if and only
if M? is orientable.

13.54. Classify compact, closed smooth and connected manifolds M
and calculate their fundamental groups in terms of the generators and
relations.

13.55. Prove that any orientable, two-dimensional, and compact man-
ifold is determined by a unique invariant, viz., the genus of the manifold.

13.56. Prove that any non-orientable, two-dimensional and compact
manifold can be represented as the connected sum of an orientable man-
ifold and several replicas of projective planes.

13.57. Describe the semigroup of two-dimensional manifolds under the
connected sum operation.

13.58. Calculate the homotopy groups =(7;) (i > 1) of a two-
dimensional manifold T; of genus g.

13.59. Let M* be a compact, closed, oriented and two-dimensional
manifold of genus g. Find the homotopy type of L2M?2.

13.60. (a) Prove that RP? \ D? is diffeomorphic to the Mobius strip.

(b) What spaces is the sphere 5%, with a Mobius strip glued into,
homeomorphic to? with two Mébius strips?

13.61. Let S' x S' C R? be the standard embedding of the torus in
Euclidean space. Prove that there exists no homeomorphism of the pair
(R%, S" x S') onto itself whose restriction to the torus is determined by

. 0 1 )
the matrix .
-1 0

13.62. Given two odd functions on the sphere S, prove that they have
a common zero.

13.63. Let = be the fundamental group of a two-dimensional surface,
and f: 7 = 7 an epimorphism. Prove that f is an isomorphism.

13.64. Prove by three totally different techniques that there exists no
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continuous vector field without singular points (i.e., different from zero
at each of its points) on the sphere S

13.65. Let in C?(z, w) the Riemann surface of the algebraic function
w = vV P,(z) be given, where the polynomial P.(z) has no multiple roots.
Prove that this Riemann surface turns, after completing it with a point
at infinity, into a two-dimensional, smooth, compact, and orientable
manifold.

13.66. Find the genus of a two-dimensional manifold described in the
previous problem as a function in the degree n of the polynomial P,.

13.67. Can the two-dimensional projective plane RP? be the Riemann
surface of a certain algebraic function w = w(2) in C%(z, w) in the sense
of Problem 13.65, i.., after completing the Riemann surface with a point
at infinity?

13.68. Prove that the Riemann surface of an algebraic function in C?
is always an orientable manifold.

13.69. Investigate what happens to the Riemann surface of the function
w = v P,(z) when some roots of the polynomial P,(z) merge to yield
a multiple root. For example, what is the structure of the Riemann surface
of the function w = Vz2(z — b)?

13.70. Describe the topological structure of the Riemann surfaces of
the following analytic functions:

w=3¥l+2z z=w+ Uw 2"+ w" =1

13.71. Prove that the Riemann surface of the function w = Inz is
homeomorphic to a finite part of the complex plane.

13.72. Let p: X — Y be a two-sheeted covering. Prove that any path
in Y can then be covered by precisely two paths.

13.73. Construct a universal covering space for the orthogonal group
SO(n).

13.74. Prove that any two-dimensional, closed, oriented and smooth
manifold can be locally isometrically covered by the Lobachevski plane
(which is supplied with the standard metric of constant negative curva-
ture). In other words, prove that the fundamental group of a surface of
the indicated form can be represented as a discrete subgroup (operating
effectively) of the Lobachevski plane isometry group.

Corollary. A two-dimensional, compact, closed, orientable, and
smooth manifold can be supplied with the Riemannian metric of constant
negative curvature.

13.75. What spaces can cover the Klein bottle?

13.76. Let S, be a sphere with g handles. What S, can cover Sg?
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13.77. Prove that for any compact, non-orientable, and two-
dimensional manifold, there is precisely one compact, two-dimensional,
and orientable manifold which serves as its two-sheeted covering.

13.78. Prove that the Beltrami surface (i.e., surface of constant negative
curvature standardly embedded in R?) can be infinitely-sheeted and
locally isometrically covered by a certain region lying in the Lobachevski
plane.

Find this region. Prove that it is homeomorphic to the two-dimensional
disk. Find the corresponding group of this covering (it is the group Z).

13.79. Can a two-dimensional torus be a two-sheeted covering of the
Klein bottle?

13.80. Calculate the permutation group of the sheets of the Rlemann
surface of the algebraic function w = ¥z arising in traversing around the
branch point of this function (point 0).

13.81. Let M? be an ellipsoid, and p one of its vertices. Consider all
geodesics emanating from the point p. Find the locus of the first con-
jugate points (i.e., mark the first conjugate point of p on each geodesic
and describe this set).

13.82. Prove that the fundamental group of a complete Riemannian
manifold of non-positive curvature contains no elements of finite order.
Prove that r;(M) (where M is a complete Riemannian manifold of strictly
negative curvature) possesses the following property: if two elements
commute (ab = ba, a, b € w (M)), then a and b belong to the same cyclic
subgroup.

13.83. Prove that a closed, orientable Riemannian manifold M" of
strictly positive curvature and even dimension is 1-connected.

13.84. (a) Prove that any compact, closed Riemannian manifold of
constant curvature \ is isometric either to the sphere S" or RP” (of radius
1/v/X). Use Problem 13.83.

(b) Let M" be a compact, closed, 1-connected, complete Riemannian
manifold, and C(/) the set of the first conjugate points of a certain point
leM.

Prove that if M" is a symmetric space, then the complement M/C()
is homeomorphic to the open disk.

13.85. Prove that a complete, non-compact Riemannian manifold of
positive curvature and dimension m, where either m = 2 or m > 5, is
diffeomorphic to R™.

13.86. Let x, y be two near points on the standard sphere S2, and a
function f{z) the area of the geodesic triangle with vertices at the points
X ¥ 2

(a) Is the function f(z) harmonic on the sphere S2?
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(b) Investigate the case of the n-dimensional sphere (where f(2) is the
volume of the geodesic simplex whose one face is fixed, and z is a free
vertex).

(c) Investigate the same problem for the Lo rachevski plane.

13.87. Prove that if M" is a complete, 1-connected Riemannian man-
ifold such that n is odd and there exists a point p on M", the set of the
first conjugate points of p being regular and each point of constant order
k, then k = n — 1, M" is homeomorphic to the sphere S" (order of a
point is understood to be its multiplicity).

13.88. Let v C R? be a simple closed curve of length / bounding a
region G of area S (on the plane).

Prove that 2 > 4xS and that the equality holds if and only if ~ is
a circumference.

13.89. Let v C R? be a closed curve (not necessarily simple, i.e., in
contrast with the previous problem, self-intersecting is possible). Prove

that 2 > 4n g w(x)dS, where the function w(x) is the number of rotations
R2
of the curve about a point x € R

13.90. Is it true that if n(x, y) is the refractive index of a planar, transpa-
rent, isotropic, but non-homogeneous substance filling the two-
dimensional plane, then the integral curves of the vector field grad n(x,
») (n = c¢/v) are the trajectories of light rays? (Certainly, not only they.)

14
Degree of Mapping

14.1. Calculate the degree of the mapping f(z):S' — S!, where

f@ =72 =1
~ 14.2. Calculate the degree of the mapping f - §* = S, where f(z) = 2%,
7€ CU {eo}.

14.3. Let M" be an orientable, smooth, and compact manifold. Prove
that the homotopy class of a mapping M" — S" is fully determined by
the degree of the mapping.

14.4. Let f: 82" — §2" be a continuous mapping. Prove that there is
a point for which either f(x) = x or f{x) = —x.
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14.5. Let the degree of the mapping f: S" — S” be equal to 2k + L.
Prove that there exists a point x such that f(x) = —f(—x). Prove that
there exists no even tangent vector field v(x) without singularities (i.e.,
v(—x) = v(x) has no zeroes) on the sphere S**~".

14.6. Let f, g: S" — S" be two simplicial mappings. Prove that:

(a) the inverse image of each interior point consists of the same number
of points (meaning the difference between the numbers of positively
oriented and negatively oriented points);

(b) if £, g are homotopic, then the difference between the number of
positively oriented and negatively oriented points of the inverse image
is the same for the two mappings;

(c) if the difference between the number of positively oriented and
negatively oriented points of the inverse image coincides for the two map-
pings, then they are homotopic.

14.7. Let f: M — S? be a mapping of the normals of a closed surface
in R3. Prove that f*(w) = K(w’) where w and ' are elements of area
and K the Gaussian curvature. Prove that 2 degf = §de and also equals
the Euler characteristic of the surface.

14.8. Prove that any continuous mapping of the ball D” into itself
always has a fixed point.

14.9. Let f: SU(n) — SU(n) be a smooth mapping, and f(g) = g°.
Find deg f.

14.10. Let f : M™ — R’ be a smooth mapping of a connected, compact,
orientable, and closed n-dimensional (n < p) manifold in R”. Let »(f)
be the normal bundle of this immersion, and Sy{(f) the associated fibre
bundle of spheres, ie., Sv(f) = dr(f) is the boundary of a certain
sufficiently small tubular neighbourhood of the submanifold
SM™) C RP. Let T:Sy(f)— S°~' be a usual Gauss (spherical)
mapping.

Find deg T (dimS»(f) = p — 1) if the Euler characteristic of the man-
ifold M" is known. Does deg T depend on the method of immersing M"
into R?? What happens if M” is non-orientable? Separately consider the
case where p = n + L.

14.11. Given that a two-dimensional, orientable, closed, and compact
manifold M? of genus g is embeddable in the Euclidean space R, find
the minimal number of the saddle points (generally speaking, degenerate)
of the function f(p) = z, p € i(M?), where i is an embedding and f the
height function.

14.12. Prove that non-degenerate critical points of a smooth function
on a smooth manifold are isolated.

14.13. Let f(x) be a function on a two-dimensional, compact, orientable
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surface of genus g (i.e., sphere with g handles) having a finite number
of critical points, all of them being non-degenerate. Prove that the number
of minima minus the number of saddle points plus the number of maxima
equals 2g — 2.

14.14. Let f: M" — R be a smooth function on a smooth manifold.
Prove that almost every value of the function f is regular.

14.15. Prove that the alternating sum of singular (critical) points of
a smooth function f(x) (assuming that all its singularities are non-
degenerate) given on a smooth compact manifold does not depend on
the function (by the alternating sum, we understand

n

20 (=10my, where n = dimM,

A=0

M the index of a critical point, and m the number of the critical points
of index \).

14.16. Let f(x) be a complex analytic function of one variable x. Prove
that the set of critical values of the function f(x) : $* = 82 has measure
zero.

14.17. Let M7 = {xf(x) = c¢}. Prove that if M7 contains no critical
points of the function f, then M{? is a submanifold in M”" and
codimM? = 1.

14.18. Prove that the notion of non-degenerate critical point of a
smooth function does not depend on the choice of the local chart
containing this point.

14.19. Show that for the standard embedding of the torus 72 C R?
(i.e., surface of revolution about the axis Oz), the coordinate x orthogonal
to the axis of rotation of T has only non-degenerate critical points.

14.20. (a) Construct functions with only non-degenerate critical points
on RP" and CP" so that their values at all critical points may be different,

(b) Construct functions on RP" and CP” such that f{x\} = A = ind(x)),
where x\ are non-degenerate critical points of index \.

14.21. Let F(x, y) be a non-degenerate bilinear form on R”. Consider
a smooth function f(x) = F(x, x), where x' = 1, ie,, F(x, x) is a function
on the sphere S"" ' C R". Let N0 € M1 € ... £ M- be all the eigen-
values of the form F (recall that all \;, 0 < i < n — 1, are real).

Prove that \; are the critical values of the function F(x, x) on the sphere
S$"~!. Find all the critical points of the function F(x, x). Prove that

\i = inf{maxf(x)}, where S are the standard i-dimensional equators of
st xest

the sphere $"~!.
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14.22. Prove that if a point p is a non-degenerate critical point for a
smooth function f(x) on a smooth manifold, then there exists a local
coordinate system in which the function f(x) in a neighbourhood of the
point p can be represented as a non-singular quadratic form.

14.23. Prove that if M. is a non-critical level for a function f(x) on
a manifold M (i.., the level hypersurface f(x) = ¢ = const not containing
critical points for f(x)), then the neighbourhood M. is diffeomorphic to
M. x I

14.24. If M. and M., are consecutive critical levels, then the interval
between them is diffeomorphic to M. X I, where ¢1 < ¢ < ¢a.

14.25. If there are no critical Jevels between M., and M., (ie., level
hypersurfaces f(x) = const with critical points) and M., and M., are non-
critical either, then they are diffeomorphic.

14.26. (a) Construct a smooth function f(x) having one point of
maximum, one point of minimum (both being non-degenerate), and ano-
ther critical point, perhaps, degenerate, on every compact, orientable,
two-dimensional, and smooth manifold M?. Find the relation between
such a function and the representation of M? as the Riemann surface
of a certain many-valued analytic function. Investigate the case of a non-
orientable two-dimensional manifold M? (e.g., case of the projective plane

RP?),

{b) Construct a smooth function f(x) having only non-degenerate
critical points, precisely one point of maximum, precisely one point of
minimum and s saddle points (find the number s) on every compact man-
ifold M?. Construct the function so that it takes the same value at all
the saddle points. Investigate the non-orientable case. Indicate the relation
to the problem of point (a) and construct the confluence of all the saddle
points into one degenerate critical point.

15
Simplest Variational Problems

1

15.1. Prove that the extremals of the action functional Ely] = Swjzdt
0

on a smooth Riemannian manifold M™ (where (¢) are smooth trajectories
on M”, 0 < ¢ < 1, and 4(¢) is the velocity vector of the curve y(f)) are
geodesics.
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15.2. Establish the relation between the extremals of the length func-
1 1
tional L[y] = Sr'y'dt and action functional Efy] = gﬁ,zdt. Prove that any
0 0
extremal vo(?) of E[v] is that of L[y]. Prove that if so(f) is an extremal
of L{v], then by replacing the parameter ¢ = #(7) by so(?), this trajectory
can be transformed into an extremal of E[y].

15.3. Let S(f) = H VEG — F!dudv be a functional associating each
D

smooth function z = f(x, ¥) which is defined on a bounded region
D = D(x, ¥) C R*(x, y) (where x, y, z are Cartesian coordinates in R*)
with the area of the graph of the function z = f(x, y). Prove that the
extremality of a function f relative to a functional S is equivalent to the
condition H = 0, where H is the mean curvature of the graph of z = f(x,
¥) considered as a two-dimensional, smooth submanifold in R3.

15.4. Prove the statement formulated in the previous problem for the
case of the (n — 1)-dimensional graphs of ¥" = f(x',..., x" ') in R",

15.5. Prove that the action functional E[y] and length functional L[y}
are related by the formula (L[y])*> < Elv], the equality being held if and
only if (¢} is a geodesic.

15.6. Prove that the areal functional

SIF] = 5 5 VEG — Fdudv

D

(where 7 = r (4, v) is a radius vector in R? depending smoothly on (4, v))

E +

. R G
and Dirichlet’s functional D{F [ = S S — dudy are related by the

D
formula S[F’] < DIr'].

15.7. Remember that the radius vector r(u, v) determining a two-
dimensional surface M? in Euclidean three-dimensional space is said to
be harmonic if 7 (4, v) is an extremal of Dirichlet’s functional D[F'} =

1
= —2—SS(E + G)dudv. Prove that if the mean curvature H of a

D

surface M? given by a radius vector (i, v) equals zero, then local coor-

dinates (p, q) can be introduced in a neighbourhood of each point on
the surface so that the radius vector 7 (p, q) in these coordinates becomes
harmonic.
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15.8. Construct an example of a harmonic radius vector »+(u, v) such
that the surface M? C R® described by it may not be minimal (i.., so
that H # 0).

15.9. The Wirtinger Inequality. Let H be a hermitian symmetric positive
definite form in C”, and «: C" — R?*" a realification of C”. Then

H-—»HR=< §

P :), where H =S+ id4, § and A are real

matrices and ST =S, AT= -4, HT = H.

The form S defines the Euclidean scalar product in R?*" and the form
A an exterior 2-form »® in R*". For simplicity, we may assume that

n
— 1
w?® = E :dz" A dz*. Consider the form Q7 = — wA ... Aw, r = n.

[
k=1

(@) If wi, . . ., wy, is an arbitrary orthonormal basis in R*" = C” rela-
tive to the scalar product § = ReH, then

Q7w .y w2) €1 and Q% ..., w2) = ]

if and only if the plane L(w, . . . , w2r) generated by the vectors wy, . . .,
wyr is a complex subspace in R*" = C”.

Hint: Let r = 1, and w;, w2 be an orthonormal pair of vectors. It is
required to prove that w(wi, w2) < 1, where w(wi, w)) = A(w;, w2).
Consider

H = (w1, w2) = (S + iA)Nw, w2) =

= S(wl, 0.)2) -+ iA(wl, wz) = iA(wl, 0)2).

Hence, H(wi, w2) = |A(w1, w2) € i w2 = L. Now, let A(wy, w2) = 1.
Then H(w, w2) = i, ie., S(iw, w2) = 1. Since .w| = iw;’ = 1, it follows
that w, = iw), i.e., the two-dimensional plane spanned by w, w; is the
complex straight line. For r > 1, the relation Q”(w) — w,) = “detg;
should be used, where g;; is the skewsymmetric scalar product defined
by the 2-form »?,

(b) Let W' C C", r < n (r being complex dimension) be a complex
submanifold in C* (if W’ is an algebraic submanifold, then singular
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points on W' are possible). Let V> be a real submanifold in C” such
that VU W = 3Z¥*!, where Z¥*! is a real (2r + 1)-dimensional
submanifold in C" whose boundary is VU W. Let K = VN W. Then
volz,(V \ K) 2 voly (W/K).

Note. This statement means that complex submanifolds W in the
complex space C" are minimal submanifolds, i.e., after any ‘“pertur-
bation” of V, the 2r-dimensional volume (voly;) does not decrease.

Hint: The statement follows from the Wirtinger inequality (see above)
and Stokes’ formula. In fact, consider the exterior 2-form

n
w = 2, dz* A dZ¥,
k=1

and let

Q@) L ;
Q == @A ... Aw (r times).
rt

Since dw = 0, dQ?®” = 0. It follows from Stokes’ formula that

S Q@ = s Q@n,

w 1 4

While integrating the form 9?” with respect to a 2r-dimensional subman- !
ifold, the expression of the sort Q®wi, ..., w2)dx' A ... A dx",
where wi, . . ., w2, is an orthonormal basis in the tangent plane to the
submanifold (with respect to the Riemannian metric induced by the
underlying Euclidean metric in C” = R?") should be considered (in local
coordinates x', ..., x¥). If the submanifold W is complex, then !

Q%(wy, ..., wy) = 1 and vol (W) = SQ(Zr)_

w

If the submanifold V is of general form (i.e., real), then Q%(wy, . . .,
wy) € 1, ie, SQ‘Z” < vol(V), which proves the statement.
v
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(c) Prove that the statement of problem (b) remains valid if C” is re-
placed by any Kéhler manifold, i.e., complex manifold supplied ‘with an
exterior 2-form »® (non-degenerate and closed).

15.10. Consider functions of the form F(x',..., x") on R"(x!, ...,

x") and the functional J [F] = SigradF|do", where D is the domain of
D

the functions F. Let Fyp be an extremal of the functional J. Prove that

the level surfaces Fo (x',..., x") = const considered as hypersurfaces
in R*(x', ..., x™ are locally minimal.



Answers and Hints

2
Systems of Coordinates

21.J = HiH> ... Hy

1 af 1 8f 1 6f}
2.2, rad = N » .
gradf {H, aq"’ H» dq>’ H3 oq’

1 9 d
2.3, diva = —— | —(HHza) + —(H;:Haz) +
H.HLH, [6(11( 2Hian) qu( 3Ha))

d
+ F(HIHMS)] , where a,, a2, a3 are the coordinates of the vector a
q
1 d ( HhH; 9 d (HiH: 9
24. Af = L———— —l<#—£]> + — #——fz) +
H HH; | dq H, dq aq H, dq
N _6_<H1Hz af
g\ H: 3/ ]

2.5. (a) The coordinate surfaces are: cylinders r = const, planes
¢ = const and planes z = const.

(b) H,

It

l,H2=I;H3=1.

1 9 ou 1 d%u *u
@Ay =——\r—) + —

+ —.
rr dg? 372

2.6. (a) The coordinate surfaces are: concentric spheres r = const,
planes ¢ = const and cones 6 = const.

(b) H, = 1, H, = r H; = rsinf.
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1 d /, du 1 a (. _ du
©@Aau = 5 —{(rr—}) + —\sin§ —
re or ar r? sing 39 a0
1

2.7. (a) The coordinate surfaces are: cylinders of elliptic section and
foci at the points x = +¢, y = 0 when A = const, the family of confocal
hyperbolic cylinders x = const and planes z = const.

2_— —
®) By = ¢ |—5—- N oW N # g
-1 ]—p,

28. (a) ¢' —\/erm—z—,q —\/ZFCOS?,Q =z

(b) The coordinate surfaces are: parabolic cylinders with generators par-
allel to the axis z when A\ = const, p = const.

() H = Hy, =N + 2, Hy = 1.

’

@ x = i\/(ma)(u;raxwa)
)c* — a)

*

’

O+ bz)(u + b + b
- b )a* - bY)

t\/()\+c)(y+cz)(u+c)‘

- A - A
T ) 1w - o - N
H = — — T a T, H = — —_—
®) Hy =3 R\ T R*(x)

Hy = L [0 Ne - p
2 RY(»)

where R(s) = V(s + a*)(s + b + ), s =\, p, .
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(©) Au = 4 [( - u)R(x)i’—(R(x) a—“) +
O -0 - - o PY

a du a u
— MNR(u) —{ R(p) — A — wWR@p) — —_— .
+ (v IR (1) aﬂ( (w) aﬂ) + ( wWR(») Y (R(V) ay) ]

2.10. (a) The coordinate surfaces are: prolate ellipsoids of revolution
o = const, hyperboloids of revolution of two sheets 3 = const and planes
¢ = const,

(b) H; = H> = cVsinh®a + sin’B, Hs = ¢ sinha sing.

1

1 [ 1 2 ( b au)
c) Au = - —{ sinhae — ) +
© A(sinh®a + sin’g) Lsinha do da

I 4 . du 1 1 du
+— sin8 — + T + =) T3 =0
sinB 48 a3 sinh“« sin“8/ d¢

2.11. (a) The coordinate surfaces are: oblate ellipsoids of revolution
o = const, hyperboloids of revolution of one sheet 3 = const and planes
¢ = const passing through the axis 2.

(b) H, = H, = cvJeosh®a — sin’B, Hs = c cosha sing.

(© A ! : 9 cosh bu +
¢) Au = . — a —
cosh®>a — sin®B) |cosha da da

1 8. ou 1 1 ) 3 u
+ — —(sing —) + - > = |-
sing a8 B sin“g cosh“a/ d¢

2.12. (a) The coordinate surfaces are: the tori o = const,

2 et e o e e,
(o — ccotha)? + 22 = ( ) @ = V¥ + ),

sinha
the sphere 8 = const,
c 2
(z —ccotB) + o2 = {—]),
sing
and the plane ¢ = const;
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] ( sinho 6u>
) Adu = —|———m™m——

da \cosha — cosf £

. 9 sinho du N 1 du
3B \cosha — cosB a8 (cosha — cosf)sinha d¢®
a
213. Hy = H, = ——— H; = 1.
cosha — cosB

2.14. (a) The coordinate surfaces are: spindle-shaped surfaces of
revolution o = const

2
c

(¢ — ccota)® + 22 = - s
sina

spheres 8 = const,

% + (z — ccotf)’ = ( < )2,
sinhg

c ¢ sinha
MH, = Hy= —""- H, = ——————;
cosha — cosf cosha — cosB

and planes g = const.

c ¢ sing
by H, = H, =

—_—  H; _
coshfB — cosa coshB — cosa

a i 3
© Au = ( sina u) N

_a; coshf3 — cosa 3o

) sina %) . 1 *u
* 3B \coshp — cosa aB sina(coshf — cosa) 9¢°

2 _ 2 2 — 2
215, Hy = ¢ [ Hy = ¢ |——F,

-1 I = p
Hs = cVOZ = ) — D).
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)\2_”2H2=C )\Z_IJ«Z

» ,H=C)\.
N -1 1 — @ ? #

2.16. H1 = C
2.17. (a) H, = H, = \/)\2 + ;;2’ H; = )\I""

(b) The coordinate surfaces are paraboloids A = const, 4 = const of
revolution about the axis of symmetry Oz.

3
Riemannian Metric

3.2. Let the surface M2 C R? be given by equations x; = xi(p, q), i = 1,
2, 3, and the variables p and g have a plane region as their domain. Let
the functions x; = x;(p, q) be real-analytic. The pair (p, g) can be regar-
ded as the coordinates of a point on the surface M. A curve C on M?
is given by the equations

p=pl), q=4q), a<t<bh
An element of arc length s expressed in terms of the vector x = (x|,
X2, X3) thus:
ds® = dxdx = (Xpdp + X,dq) (Xpdp + x4dq),
or
ds® = (xp, Xp)dp® + Axp, X)dpdq + (X4, Xg)dq’
= Edp* + 2Fdpdg + Gdg?,

where E = (Xp, Xp), I = (Xp, Xg), G = (Xg, Xg).

Since the element of length ds’ is always positive, W? = EG — F* is
also positive. Let us find the coordinate system (u, v) with the element
of arc ds® = Mu, v)(du?® + dv?). We have

> = (F + iw) - (F ~ iW)
ds* = (\/Edp T dq) (\/Edp + —JF dq).

Assume that we can find an integrating factor ¢ = g + ioz such that
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o(\/Edp + w—:;z;—ui-)dq> = du + idv.

Then

- F ~ iW)
7( VEd +(—-——-:-——d)=du-idv,
a( D NG q

and, finally, jof’ds® = du® + dv?. Assuming of® = 1/\, we obtain the
required isothermal coordinates («, v). Thus, we have obtained isothermal
coordinates by having found the integrating factor which transforms the
expression

(F + iW)
VEdp + ————d.
p + == da

into a total differential. The differential du + idv can be written in the
following form:

3 3 3 3
du + idv = (—i + i—v)dp + (l + i—"—)dq.
ap ap dq dq

Further,

Eliminating ¢, we obtain

3 ? 5
E(—u- + iﬂ) = (F + iW) (—“— + i~v—),
aq dq ap ap

or

ou ou
_— - F—
o %
ap JEG - P
g _ pou
oy O g W
dg = ~EG - F*
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Similarly,
g _ Pl
ou _ aq ap
ap VEG ~ F?
PG
o _ % 9p @
dq VEG — F*

Therefore, u satisfies the equation

P g L VR 71
] ap dq + d aq ap

3 w ap W

which is called the Beltrami-Laplace equation. Given a second family of
isothermal coordinates (x, y) in a neighbourhood of a point, we have
ds? = p(d + dy?). Using the coordinates (x, y) instead of the coordinates
(, q), weobtain E = G = u, F = 0 and

v Ou 9y _ Ou

ay  ox’

ax dy

’

Thus, the Cauchy-Riemann equations have been obtained, and hence
the functions ¥ and v are conjugate harmonic functions, whereas the
function f = u + iv is analytic in z = x + jy. The Beltrami equation
assumes the form of the well-known Laplace equation 8°u/dx* +
+ d*u/dy* = 0. A complex-valued function f(p, q) defined on M? is said
to be a complex potential on M? if its real and imaginary parts satisfy
equations (1). Thus, the real and imaginary parts of a complex potential
on the manifold M? determine isothermal coordinates in a neigh-
bourhood of every point on M? (the coordinates being local and not serv-
ing, generally speaking, the whole of the two-dimensional manifold;
while transferring from one point to another, the complex potential will
vary).

3.3 (a) Consider some curve ¢ = () on the surface of the sphere.
In moving along this curve, the compass needle forms an angle ¢ with
the direction of motion determined by the relations

do
= sing =2 i
tany = sin o n
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(The angle ¢ is measured from the y axis clockwise.) We obtain on the
map:

d 1
2 tan v o+ ) = - . )
dx 2 tan ¥
It follows from relations (1) and (2) that
dx ox  0x de
. dy de 00 dp db
sinf — = - = — ,
df @ Y de
do 06 dp db
ay dy do \ dp | ox ax do
—_— 4+ — —)—ssinf = - — - — ——, 3)
a0 de db ] do a0 dp db

Since relation (3) must be fulfilled at the point in question for any value
of dp/df, we obtain, by equalizing the coefficients of the same powers
of the derivative dg/df on the right-hand and left-hand sides, that

3
oA 0, = y(8), @
dp
dx
— =0, x = x(o), &
a9 )
_sing 2 - % (6)
0 de

It follows from (4) and (5) that the left-hand side of relation (6) depends
only on 8, whereas the right-hand side only on ¢; therefore, both sides
of this relation should be constant. We put this constant equal to unity.
Thus, in Mercator’s projection, the mapping is given by the formulae

—(—10— = lncoti
=9 V= T Ve 2

(b) ds® = d@® + sin®0d? = sin*0(dxX* + dy?) = (dx* + dy?)/cosh’y.

dzdz

3.5. ds® = —.
(ad + z22)
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av? N vide?

(-5 (-%)

37 ds* = d® + sinh®xde’.

3.6. ds’

(do® + o’dv’)
(l . QZ)Z "

3.9. (a) In polar coordinates,

3.8. ds? =

ds? = dr* + rPde®, 0 € e <21, 0<r < oo,
(b) If the sphere has radius a, then
ds® = a*(de® + sin*bde?), 0< 0 <7 0< ¢ <2m

() ds?* = a*(dy* + sinh’xdg?), 0 < x < oo, 0 € ¢ < 2.

1

In cas ,® =
n case (a) (0

0 . . .
2) , and the equation of the circumference is
r

rit) = R = const, o) =1, 0< 1< 2n,
whereas the length of the circumference is

27
L = S\/det = 27R.
0

The circle is given by the relations 0 € r € R, 0 € ¢ < 2m, and

27 R
its area equals § = S g rdrdg = TR>.
0 0
a* 0 . . .
MG = s 24 ) and the equation of the circumference is
0 a® sin“0

ab(f) = R = const, ap(t) =1, 0 <t < 2wa, 6() = R/a, () = t/a,
whereas the length of the circumference is

2na
1 R
L = a |[sin? — dt = 27asin—.
a a
0

alx
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The circle is given by the relations 0 € af < R, 0 € ¢ < 2m, e,

R .
0<h<—, 0< ¢ < 27, Vg = a*sing,

a

and the area of the circle is

27 R/a
2 o 2 R
S = a® sinfdfdy = 2ma“|{1 — cos—) .
a
0 0
a0
©® = ) . , and the equation of the circumference is
0 a° sinhy

ax(t) = R = const, ae(t) = ¢, 0 < t £ 27na,
and

x() = R/a, o) = t/a,
whereas the length of the circumference is

2ra

R 1 R
L = ‘Sa\/sinhz——-z—dt = 2wa sinh —.
a a a

The circle is given by the relations 0 € ax < R, 0 € ¢ £ 2w, ie,

R — .
0<x <—, 0<¢<2r Vg=dsinhy
a

and the area of the circle is

2%
S=S
0

R/a

O ey

. R
a* sinhxdxde = 27xd? (cosh — - 1) .
a
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4
Theory of Curves

4.1. (a) y* = 2ax — 2Cis the parabola with the axis OX and parameter
p = a. The curve opens leftward when a < 0, and rightward when
a> Q0.

(b) y = Ce ™",

(©) (x — CY* + ¥* = a? is the circumference with radius @ and centre
on the axis OX. '

4.2. The condition for the length of the tangent to be constant is written
in the form

dx\?
y\/1+(dy> = a. (1)

We will consider the curve only in the upper half-plane and therefore put
y=y>0
Consider the angle ¢, 0 < ¢ < 7 determined by the condition

tang = dy/dx. (2)
Replacing dx/dy in (1) by cot ¢, we obtain y/sing = a, or

y = asine.
Hence,

dy = acosede.

But it follows from (2) that

dx = cotedy.
Substituting the expression obtained for dy, we obtain
2
cos”
dx = a do,
Sin¢g
or

dx

i

1 .
a | —— — sing )de.
sing
Integrating termwise, we find
©
X = a(ln tan-i— + COS(p) + C
This curve is called a fractrix.
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43.y = a&*/(x* + a*; x = acott, y = asin’t.
44. r = aep.
4.5. r = ree**, where ¢ = wi.
4.6. x = ar — dsint, y = a — d cosl.
r R + r
47. x = (R + r)cos;—t — rcos 1,
R +r

L

y = (R + r)sin—r—r — rsin
R

48. x = (R — mR)cosmt + mR cos(t — mt),

y = (R — mR)sinmt -~ mR sin(t — mt), m = r/R.
4.9. The equation of the required curve is
() = w(Na + b,

where b is a constant vector, and u(¢) the antiderivative of the function

ND), ¢ < t < d. Geometrically, the following cases are possible: a
d

straight line collinear with a if \ AN(1)dt diverges whent = cand t = d;

¢

d

a ray with the direction of the vector a if \ AO)dt converges when f = ¢,
c

but diverges when ¢ = d; a ray with the direction of the vector —a if

d

5 N\ (¢0)drt diverges when 1 = ¢, but converges when ¢ = d; an open line-

c
d

segment collinear with a if ' A(#)dt converges.
¢

4.10. The equation of the required curve is
! 2
r(n) = ?ta+ tb + ¢,

where b, ¢ are arbitrary constant vectors.

If b # 0, then this equation determines (with b and ¢ fixed) a parabola
with the axis whose direction coincides with that of the vectora. If b = 0,
then we obtain two coincident rays parallel to a.

4.11. @) (') [r’ x a]%
(b -, a) [r x al’.
4.12. Apply the Rolle theorem to the function (a, r(f) — r(%)).
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4.13. Use the equality (r2(f) — ri(1))> = const, where 1y, 1, are radii
vectors of the moving points and 1 is time.

’

r
4.14. Put — = X\, \(¢#) being a function continuous on the segment
r

la, b] and having the same sign on it. We have y* — Ar = 0, whence
r = ae™. Since the derivative of the function €™ equals \e™, it does
not change sign on the segment [a, b}, ie., ¢™ is a monotonic and
continuous function of ¢.

4.15. Applying the method of solution of the previous problem, we

Inar

have r’ = ae! , whence

r = aSeP‘d'dt + b,

The derivative of (e™dr equals e™ > 0; therefore, Sep‘”’dt is a

monotonic increasing function of 7 € [a, b].

416. 1" = [, 0 + 1o’ ), v" = {", 20" + to"}, ¥’ x1"] =
= 2¢'%* — pe”. The given cquation determines a straight line if and only
if 20> — pp” = 0. Solving this equation, we find ¢ = 1/(at + b),
where a and b are constants.

dr ar® dr®

¢ . Since 1’ = fcose, sing},

a1 r =, — =rr + r
dy do
. . dr® . 0 _—
= { —singp, cose}, ie, —d- 1s obtained from r° by rotating it through
©

+ /2. Denote the vector obtained from r® by rotating it through + 7/2
by [r%. Therefore,

dr
— = rr® + .
de
Furthermore,
d’r 0 0 0 0 0
T =+ 2r' % - o = - e+ 2],
de
dr d’r r r 5 ,
X = =2 =" + r = 0.
dy dy r’ —r 2r’
Putting r’ = w, we find
” dw dow | dw
r = — = —p7 = @—,
de dr dr
d 2
21— wr X s o, A ede
dar 7 rdr
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Put o® = p, r* = g, then dp/dg = 2p/q + 1. Solving this equation, we
find that p = ag® ~ g, 0or w* = ar®* — r2, ¢’ = War* — 1. Substituting
1/r = &, we easily obtain

1
— = () Sil’l(go + CZ),
r

where C| and C; are arbitrary numbers.

4.18. F = Fr = mr”. Differentiating, we obtain A'r + A\r’ = mr”;
therefore, the vectors r’, r”, r” are coplanar.

4.19. The radius vector g of an arbitrary point of the centre surface
can be determined by one of the relations:

e =1 + Ari]l = r2 + plrs],
r — r2 + AN[ri]l = pu[rs],

(ri — rrs + Mrilrs = 0,

\ = (rz — ror;

I x ]’
Therefore,
(rz — mrz |
=1 + — [r{],
(4 1 I % v [r{]

and in coordinates,

X2 — x)xi + (2 — yoy:
£=Xl"(2 ! v l Y1,

x{ys — xsyi

2 = x)xi + (2 ~ yn)yz’x,
_ ;.

Xiyi — xsyi

n=Mn

r; — rpr;
4.20. Consider the vector \[r{], where A = —fz—le If this vector
ir{ X 13}
is marked off from the end M, of the rod, then its end will fall on the
instantaneous centre of rotation. The projections of the vector \[r{} onto
the vectors r; — r; and [r2 — ry] are equal, respectively, to
Arilrz — ¢ Arillrz — r
[‘1](2 1) and [ril[r: 1]_
r2 = r rz — ry

Therefore, the equations of the centrode are:

o ® o morifri X (o~ 1)
[r{ x r3), T2 — 1

s>
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(= e r{( — 1y

1 . ’
[rr X 3], 12 — 1y

or
’

((a — xOxi + B2 — yvi) .
X2 — Xy Y2 — Wi

3

xi i -
’ ’]\/(x2 B Xl)z + ()’2 - y1)2
X2 )2

_ {0 — x))x + 2 — yyi} e — x)xi + (V2 — yiyil

R RN

»
xi yi

421.R =1, + p = + £a + gyla], wherea = r; — r1, £ = const,

n = const (point M being rigidly connected with the rod) and
R’ =71{ + £’ + g{a’}. Sinceja' = yr — ry' = const,a’ L a. Therefore,

’

a’ = s[al, r; — ri = s[r2 — 11,
(rs — rDIr{] = slrz — n]lril,

frilrs = s(@x2 — rori,

Irix el 1

(rz — rri I

Thus:
a’ = %[a], [a’] = -y
R = ri+ 2 - La=Lor+ ta) — n.
N 1\ )

On the other hand,
rn + ta + gla] — rp — X[ri] = £a + nla} — A[ri],

r=R-¢g=
[r} = Ne{ — £[a] — na;

therefore,
1

R = —r}, 0w = —.
)\” A
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422.vr" lr, [r,r”} = 0, [rr’]” = [rr”]. Therefore, [rr’] = a = const,
and

i

A ;o2 ,
—3—(r r° — r(r’))

1
far’} = — = [ire'lr] =
r

r'r — rr’ r
- )\—"—2—‘ - _)\(—‘)l‘
r r
Thus,

4 {[ar’] + xi} = 0,
dt r

[ar'] + )\L = b = const.
r

Multiplying both sides of this equality by r and noticing that [ar']r =
= a[r'r] = —a® we have: —a® + \r = br. The motion is in the same
plane perpendicular to the vector a (since it follows from the relation
[rr'] = a that ar = 0). Introducing a polar coordinate system on this
plane and making the pole coincident with the origin of the radii vectors,
while directing the polar axis along the vector b, we obtain —a* + N =
= br cosg, whence r = a*/(\ — b cosy) is a curve of the second order.

&’ F
4.23. u2< Z + u) = - —, u = 1/r, ¢ = const.
dy mc
In the case of the Newtonian force, F = —km/r* = —kmu*, whence

2y

0 +u=oa (ad=k/id.

4.25. The circumferences whose centres are placed on the straight line
passing through the origin of the radii vectors and collinear with the vec-
tor w, whereas the planes of these circumferences are perpendicular to
the indicated straight line.

4.26. The straight lines along which the planes perpendicular to the
vector e intersect with those passing through the straight line drawn thro-
ugh the pole 0 and collinear with the vector e.

4.27. Introducing Cartesian rectangular coordinates with the axis Oz

collinear with the vector e, we have ee + [er] = —yi + xj + ae, and
the given differential equation assumes the following form: x’ = -y,
¥ = x, 2 = a. We find from the relations x’ = -y y’' = x

that x> + »? = C, is the family of circular cylinders whose axes coincide

128



with the straight line passing through the origin of the radii vectors and
collinear with the vector e. Furthermore,

a oy X
dz a’ dz a’
whence
xdy ~ ydx X+ )y xdy — ydx y?
= , a = {1l + —)dz,
dz a X x?
adi
x
s— = dz, and z+Cz=atan“—Z—
A X
XZ

is the family of right helicoids whose axis is the axis of the cylinders
mentioned above. The integral curves are helical, rinally, z = at + Cs.
Now, to express x, ¥, z in terms of  is easy from the relations obtained.
4.28. Semi-circumferences touching the axis Oz (which is collinear with
the vector e) at the origin.
4.31. n/4 and =/2.

4.32. tan " '3.
XZ y2
4.36. 3 + b\ 2 = ], where @ and b are the semi-axes of the
a
(&) ()
given ellipse.

4.37. xy = =+s5/2, where s is the given area.

f Sas® .
4.38. y = ax? + 3 o where the parabola is given by the equation

»y = ax?, and s is the area of a segment.

2

! 2 . .
4.39. | x ~ + = <[ tan %) , where « is the given
cO5 ——
2
angle, and / the semi-perimeter of the triangle.
XZ yZ
4.40. — + 5—2— = 1, where a is the radius of the given circumference.
a a
441. v = {/cos’y, Isin’v}, where / is the given semi-axis sum.
9—-2018
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4.42. x = % (3 cosv — cos3v), y = % (3 sinv — sin3v) is a hypo-
'cycloid.

E
443. xy = = > ve, where ¢ is the given area.

4.44. (x — ¢)® + y* = 44®, where a is the major semi-axis of the ellipse,
¢ = Na* - b2
Ir’]

4.45. e £Tr =% GT|".
r
’2

446. ¢ =1 + [r']

Ir x e’
and in coordinates,
le + y/Z x/2 + y/2
E = x - yl ’ ” " I’ n = y + x, ’ " ” I.
x'y” — x"y x'y" — x"y

4.47. A cardioid.

4am(l 2
448 () 1; @ demd +m ey 2
1 + 2m 2 a

a(y* — 2y + a*b%** ©) a
y2aPb — ¥ - 3p? ] 3r’

4 1 + 23372
© —acos L5 (1) a LEEL
3 2 2 + ¢
(8) 3ajsint cost|.
3

2
4.49. (1) [cosx|; (2) 1/6; (3) — m; (4) ——.
) feoss; ) 1/6; (3) — 7 () o

2

2+ ¢
450. 1) ———————:
( ) a(l + ¢2)3/2

k(k + 1) + ¢
a¢k—l(k2 + ‘p2)3/2’

@

1

3) ——.
()\/1 + In%a
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Foxe Fyp Fy

mod(Fy By F,
451 k = F, F, 0
(F2 + Fi?
3 ap P
pe 2 r) ol o)
452 k = x 4 4 X/7d

(P2 ¥ Q2)3/2

X

4.53. () s = S\/l ¥ y'ldx = %(e"/” _ gy
0

X

@) s = S\/l + y'%dx = -517—[(4 + 9x)>? — 8];

0

—_— 1
B)s = S\/I +y'2dx=—’2‘—x/1 +4x2+-4—ln(2—x+\/l + 4x%);
0

X

@s = S\/1+y’2dx=\/l+x2+ln 1+

X

-2 - In(v2 - 1);

-

@
2 dr\’ . ¢
B)s = r* + {— ) dp = 4asin—;
de 2
b
t
— t

©6) s = S Vx'? + y2dr = 4a(1 — cos —2‘>,

[

t

at®

(7) s = S x/Z + y/Zdt = __2_;

0

t
® s = S Nx'T¥ y72dr = —sin—;-;

0
9*



t
9 s = g NVx't + ydt = %a—sinzt;

0
x

a0) s = S\/l + y'dx

0

o 1 Vi+ e -1 :
=+l + e +—i—ln———~——__ﬁz_1+ex+l~ 2 - In(v2 - 1)

t

S Wdt = ¢ In sint
2

4.54. fl@) + f" (o).

4.55. (1) R? + 4s> — 6as = 0;

36R> ]°
2) (27 8 = (4 + 9————— |
@) @75 + 8 [+ (27s+8)2]

(3)s——4— fx/4R — 1+ VIR +—4—ln[ F/IE’— 1 +i/ﬁ].

(4) The parametric natural equations are

v 2 -1
=\/1+x2+ln—lL————andk= d
x

il

ay s

a + Y
5)R = a + s%/=;
(6) The parametric natural equations are
- \/l + e¥ — 1 'd
s = 1+e2"+-——l and k = —————;
1+ e”+1 1 + e

MR + a* = aze"“/"

8) s + 9R* = 16a°;

(9) R*> = 2as.

4.56. (1) r = Ce*, a logarithmic spiral;

) x —a—< b sin (a+b)t+ b sina—bt),

2 \a+ b b a-—>b b
i( b o arb ° a—bt)
= - - cos :
r =2 a+ b b a-b b



5 s

52 52
B)r = { cos — ds, sin — dst, a clothoid;
2a 2a
0

0

@ x

a In tan

, a catenary line;

7r+t y =
4 2| cost

Gr = {%(sirmt + 25sin2¢), — -Z—(cos4t + 2 cosZt)};

]

®r {a(2¢t + sin2f), a2 — cos2t)}, a cycloid;

(7 r = {a(cost + tsint), a(sint — tcost)}, the evolute of the
circumference;

T t . .
®r = {a cost, a In tan T + E—I - a smt}, a tractrix.

4.57. p = . Assume that rn > 0. Then p = rn. Hence

b _ m+rm= —rk = —ritk = —rik = —rik,
ds : ds

whence the required relation.

4.58. Rewrite the equation (@ — ro — Romp)’> = R} in the form
(@ — ro)*> — 2Romg(@ — To) = 0 and consider the function ¢(s) = (r —
— 10 — 2Rono(r — ry). We have ¢'(s) = 2t ~ ro)r — 2Roner,
¢'(s0) = 0, ¢’(s) = 2 + 2km(r — ro) — 2Romokm, ¢"(s0) = O,
" (s) = 2kn(r — 1) — 2k*r(m - mg) — 2Rompkm + 2Rempkr,
¢” (S0) = —2Roko # 0; therefore ¢(s) changes sign when s crosses thro-
ugh so, and since o(s) is the index of the point on the circumference,
the proposition has been proved.

4.59. See the solution to the previous problem. We have

@' (s0) = ¢”(s0) = ¢"(s0) = 0,

¢®(s) = 2kn(x — ro) — 2kkr(x — vo) — dkkr(x — o) —
— 2K%n(r — ro) — 2k* — 2Romokm + 2Ronokkr + 4Rnokkr+
+ 2Ronok’n,

¢®(s0) = —2k3 — 2Roko + 2k} = 2Roky # 0.

Therefore, the index of a point on the osculating plane does not change
sign in crossing through so.
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4.60. — = k =
ds

1
fle)’

S cosaf(o)de, y

X

ds = fla)da,

j sinaf(a)da.

4.61. da/ds = 1/R, f'(R)dR/ds
| cosARIRS” (R)dR,

I/R, ds = Rf'(R)dR,

X

y = 5 sin[f(R)IRS" (R)dR.

4.62. x = 5cosaf’(a)da, y = Ssian'(a)da.
4.63. x = gcos[f(s)]ds, y = Ssin[f(s)]ds.
464. R =t + 2kr2":- — (mn ~ (7).

_ [r'r] , "o s
4.65. R = o 3 e T - ),
466.R = r + —:% {n(en) — 7(er)].

If the curve is given by an equation r = r(¢), then,

[r', e]
2[r’, "]

’

R =r+ {[e’,e]lr'] — (@', e)r’}.

If the curve is given by an equation y = f(x), then

_Im - P P I + mf'(x)

X

H

2f7(x) 2f" (%)
Y = fio) + m — If 0P (m — IfF ) + mf’ (x)) ey
2/ () 21" (x)

where [/ = {l m}.
4.67. (x + 1)/2 = (y — 13)/3 2/6,2x + 3y + 6z — 37 = 0.
4.68. u = —1 at the point A. The tangent is (x — 3)/6 = (y + 7)/
(—17) = (z — 2)/7, and the normal plane 6x — 17y + 7z — 151 = 0.
4.69. u =1 at the point A. Since r’(1) =0 and r"(1) = {2, 2,
12} # 0, the direction of the tangent is determined by this vector, or {1,
1, 6} collinear with it. The tangent is (x — 2)/1 = y/1 = (z + 2)/6, and
the normal plane x + ¥y + 6z + 10 = 0.

470. 9 - 27y —z + 7 = 0.
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4.71. For the osculating plane we find the equation cx — ay = bc —
ad not containing the parameter u. Substituting the expression for x, y
in terms of u in this equation, we obtain an identity, whence the curve,
in fact, lies in its osculating plane.

4.72. The osculating plane is 6x — 8y — z + 3 = 0, the principal nor-
mal x=1-3I\, y=1-26\, z=1+ 22\, and the binormal
x=1+6\y=1-8\2=1—-A\

4.73. The tangent is

r = [acost — Aasing, asint + akcost, b(A + D)},
The normal plane

ax sint — ay cost — bz + b* = 0,

The binormal

r = {acost + Absin{, asint — b cost, bt + \aj,
The osculating plane

bx sint — by cost + az — abt = 0,

The principal normal

r = {(@ + Ncost, (@ + Nsint, bt}.

4.74. The tangent is x =1 + 2\, y = =\, 2 =1 + 3\,
The normal plane 2x — y + 32 — 5 = 0,

The binormal x =1 — 3\, y = =3\, 2 =1+ X\,

The osculating plane 3x + 3y — 2 — 2 =0,

The principal normal x = 1 — 8\, y = LI\, 2 =1 + 9\,
4.75. The tangent is

JdF oF
d [
X=x+ A Y 2 ,
F, OF
oy az
oF, IF,
az ax
Y=y + N\
oF; oF;
9z Ix
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dF, oF,

dox ay
Z =z + A

oF, 0F;

ox ay

The equation of the normal plane is

X-x Y-y Z-¢

oF R R |
ax dy az -
aF; Q.Fi _3&

K ay 0z

4.76. Having chosen a convenient coordinate system, we shall write the
equations of the Viviani curve in the form

2 2
a a
¥+ ¥+ =4 - =) + ==
2 4
orxX* + ¥ + 22 =a% X + y* - ax = 0.
To make up the parametric equations, we put
a a a .
X — — = —cost, y = —sint
2 2
Then
2 2
2

[4] a . . t
— (1 + cost)* + —sin®*t + 22 = @% z = asin—
4 4 2

(sign can be omitted, since if 27 is added to ¢, then x and y are unaltered
and z changes sign). Thus,

r = a (1 + cost) —a—sint asin—t—
2 T2 2 )

The equation of the tangent is
a . a . L 1

r = J]—( + cost) — A sinf, — sint + \ cost, @ sin — + A cos — ¢,
2 2 2 2

that of the normal plane

. t
X sint — ycost — zcos; = 0,



of the binormal

a t
r = {? (1 + cost) + Asin — (2 + cosf).
2

t {
"g‘sint - )\cos?(l + cost), asin; + 2)\},

of the principal normal
a , ¢
ro= -—2—(1 + cost) + A\| —cos —2—(1 + cost) — 2cost],
t t
—q—sint - lsint(6 + cosi), asin — — \sin—1},
2 2 2

and that of the osculating plane

! t
sin?(Z + cost)x — cos—zf(l + cost)y + 2z

t
— isin—(5 + cost) = 0.
2 2

4.77. s = Sat.

4.78. s = 8av2.
4.79. s = 9q.

4.80. s = 10, The curve has four cusps with ds/dt changing sign at
the points ¢ = 0, #/2, @, 3%/2.

s Y bs
481. r = ]acos ————, asin , at.
{ va* + b? vVa® + b? \/a2+b2}
s + 3 s+ V3
482. r = cos In s
{ NE) V3
s sinlns+\/§ s+ V3
V3 NE TN E I N
' 2+ 8 s s 2 + 5
83.r = —, Inl— .
483. ¢ L} 2 u/?“(ﬁ*J > )}
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1
V& + b
v = {—cost, —sinf, 0},

484, 7 = { —a sint, a cost, b},

1
= ————— {bsint, - b cost, a),
B (—az + bZ{ ]
a b
k= —5——7, x=—5—-7.
a® + b? @ + b
{2t, —1, 3r%)
T =
V1 o+ 42 + 9t

{1 — 9%, 2t + 92, 3t + 61°)
Vad = 9% @ + 99 + (Bt + 67

(=3¢ -3% 1}

B= ———'—zﬁ’
VT ¥ 9F + 9

P o 2+ 9% + 9r*)'? B 3
A+ 42 + 92 X7 4oy oo
. t

{—smt, cOSt, COS ?}

4.86. v = ,
t
1 + cos*—
2

t 1 t
{—-cosz-z-(l + cost) — 2 cost, —Esint(6 + cost), —sin E}

5 ,
t 1 t
J[—coszi(l + cost) — 2cost] + Zsin21(6 + cost)? + sinzi

2 t t
= [——— {sin— (2 + cost), —cos — (1 + cosi), 2¢,
B '\’13+3cost{ 2( ) 2( ) }

t
12 cos —
.2

13 + 3 cost
3 X = —.
t 1 3
2<l + cos? ?> a(13 + 3 cos!)
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!
) cos 7 (cos t — 5)
t
487. ) k = — {1 + sin? —, x = :
4 2

43 — cost)

S

-2
@k = ———y X = o
(e + e ")? (@ + e ")
G) k = 2t

-2t
— . x =
a + 277

a + 2%

V2 1
4 k= —, = - ;
@ 3e' X 3e*
S) k -
Oy k =x= 3+ 1)
4
©) k = 3 X =

25 sint cost 25 sint cost
4.88. y

1]

1

2\ 2 2N\ 2
4.89. R %(%J,Zixz_) ,=_i(ﬁ+ a>.

‘/ynZ + zul + (ylzll // /)2
4.90. k = LA R
Vi + y? o+ 2%
yn 7" ym z”

X =

n2 + z//Z + (y/Z// n /)2

th y’, 2"}

NI y/2 + z2’
- l_ z __yy y -z (y/ ”

I ")y (yl Il_zly”)+z”]
/ //)]2+[z” +y (yl ” z/y//)]2
ﬁ _ ly/ ” y”zr’ _z,,’ y,,]

\/(y' ” yllzr)2+z//2 + y”Z'

V@' 2"y Y P -2 02
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4,91. The two families of curves are:

(@ »* + 22 = const, xy = az;
and

) > + 7

It

const, xy = az.
4.92. Let the equation of the sphere be of the form:
F = [acosvcosu, acosvsiny, asinv}.

Then the equation of the loxodrome is

T v
=t Int —_ 4+ —,
u an0nan(4 2)

where 4 is the given angle.
1 = cosf{ —sinv cosu — sinu tanf, —sinv sinu + cosu tanf,cosv};

cosé

. osu 2
p = ————=——1] — cosu cosv + tanv sinu tanf — tan“0,
; tan2@ cosvy
cos?v
sinu cosv sinu __ , .
- - tan“§ — tanv tanfcosu, —sinvg;
cosv cosv
{ ) tanf }
siny, —cosu,
cosv
B = = ;
tan“9
1+ 3
cos“v
cosf tan?f tand
k= Lt — s X =
a cos“v a(cos”v + tan®d)
u coté
VIEE
493. v = Ce
1 l"l'”l"” . . 1 )
4.97. — ———————, and in the special case, — kjx.
6 |[r' x r"}l 6
4.98. The necessary and sufficient condition is ¢’ = 0, g’ee’ = 0,
while the equation of the envelope
Qlel
r=g¢ — e.
e,z
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4.99. When a

= b
4101t = 7, F =

kv, T = —k’tr + kv + kxB.

4.103. ev = C e(—kr + xB) = 0, er — %eﬂ =0,

x\ o o+ 5
evk = {—)ef + —er = 0,e8 = C——.
(k)a - 6

Differentiating once again, we obtain the required relation. Note that
in view of the above relations, we may assume

x k* + Ko+ %
e=——"—7+ v+ ——8.

LG) )

If the relation is held

K+

 \
k —_
)

then this vector is constant. This constant vector e forms with the vector
v an angle whose cosine equals 1/ie| = const.

4.104. er = 0, kev = 0; hence either £k = 0 (straight line) or
ev = 0; if e» = 0, then e(—k7 + xB8) = 0, whence x = 0 (plane line).

4.105. ef = 0; xev = 0; hence x = 0, since, if the inequality x x 0
were held, we would have ey = 0, e(—k7 + xf8) = 0,ker = 0, er # 0.
Therefore, kK = 0, and the line is straight.

4106. f = —xv = 0, x = 0.

4.108. (a) Let a be a unit vector with a fixed direction. Then

+ x = 0,

ar = cosv (v = const). )
We have (a7)" = a7 = 0. Therefore, kav = 0. Excluding the case where
k = 0 (ie., of straight lines), we obtain

ar = 0. (2)
Therefore, the normals are perpendicular to the fixed direction.

Conversely, if » is perpendicular to the fixed direction, then equality

(1) holds.
(b) Let » # 0. It follows from (2), with the use of the third Frenet

formula, that
ag = 0,
whence ag = const.
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Conversely, differentiating this formula, we obtain (2).
(c) Differentiating (2), we obtain

kar = xaf,
whence
k ag
—— = —— = const.
x ar

Conversely, it follows from the first and third Frenet formulae that

- — =0,

k x

whence

x .
“k‘1+3—0,~—1+ﬁ=const=a

Multiplying scalarly by », we obtain ar = 0. Therefore, condition (2) has
been fulfilled.
4.109. Take into account that

and use the previous problem.

5
Surfaces
Slr = g + ve
52.r = vo.
53.r = ¢ + vo'.
54.r = p(s) + p(s)cosyp + PB(s)sing.
55. r = {e(V)cosu, o(V)sinu, y(v)}.

In the special case, r = [f(v)cosu, f(v)sinu, v}.

56.r = {(a + bcosv)cosu, (@ + bcosv)siny, b sinv}.

5.7. Let the moving straight line coincide with the axis Ox at the initial
moment, and the second line in question with the axis Oz. Then the
equation of the right helicoid is of the form

r = {vcosu vsiny, kuj,

where v is the distance of a point of the helicoid from its axis (i.e., the
axis Oz), and u the longitude of the point.
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5.8. If the equation of the helix is given in the form

o = {acosu, asinu, buj,

then the vector n = {—cosu, —siny, 0} is the principal normal vector.
Hence, the required equation

r=p — M = {(@ + Ncosu, (@ + Nsiny, bu} =

= {[vcosu, vsinu, bu}

is that of a right helicoid.

59. r = p(s) + Mn(s)cose(s) + b(s)sing(s)}, where o(s) is an
arbitrary function of the variable s.

5.10. The normal plane to the circumference ¢ = {a cosu, a sinuy, 0}
is determined by the vectors n = {cosw, siny, 0} and {0, 0, 1}. The
vector lying in the normal plane and inclined at the angle u to the vector

-misa = n cosu + k sinu. Therefore, the equation of the required surface
is

-
Il

{a cosu, asiny, 0} + va

{a cosu + vcos®u, asinu + vsinucosu, vsinu).

Eliminating the parameters 4 and v, we find

2

cos“u .
X = acosu + - Z = cotu(a sinu + z cosu),
sinu
x 2
y = asinu + zcosu, — = coty, —— = (@ + Z cotu)?,
¥y sin“u

2
¥y (1 + 12—) = (a + ﬁ-) , or YA + ¥y = (ay + xz)%,
Yy y
a surface of the fourth order.

511.R = % {r(u) + a(v)}

v

v . .
512.t = {v, a cosu cosh —, a sinu cosh }, where u is the

a a

longitude and v the oriented distance from a point of the surface to the
gorge section of the catenoid.

T t . .
513.r = {a In tan (T + ?) — a sint, a cost cosu, a cost smu}.
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5.14. The equation of the given straight line is ry = {u, 0, h}, and
that of the ellipse .

r; = {acosy, bsinv, 0}.
Furthermore,

rn — r»= {u — acosv, —bsiny, A}, u — acosv

= 0,
rn - rn = {0, —bsinv, h},
and the required equation of the conoid is
r = {acosy, bsiny, 0} + N[0, —bsiny, & }
= {acosv, b(1 — Nsiny, M},

Eliminating the parameters A and v, we obtain the implicit equation of
the conoid

¥ 2 2
1-2) (£-1) -Z =
a h b
2 2
515.r; = {a, O, u}, r2 = {O,v,v—},r,—r2= {a, —v,u—v—},
2p

2p
v? o

, It —r = {u —v, 0},
o » 1 2 { }

v v
r = {O, v, —} + Aa, —v, 0} = ya)\, vl — N), —},
2p N 2p

or

a*y* = 2pz(x — a)’.

5.16. The parametric equations of the given circumferences are

r = {a(l + cosu), 0, asinu}, r; = {0, a(l + cosv), asinv}.
We find
rn —rn =

{fa(l + cosu), —a(l + cosv), a(sinu — sinv)]j.
We have sinu — sinv = 0, whence

v =u+ 2kn

Qv=71—u+ 2kn
In the first case, we have

rn —r, = fall + cosu), —a(l + cosw), 0) Il {1, —1, 0},
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and thus obtain the elliptic cylinder
e = {a(l + cosu), 0, asinu} + \{l, —1,0} =
= {a (1 + cosu) + N\, —\, asinuj.
In the second case,
rn — rn = {al + cosu), —a(l — cosu), 0},

and the second surface making up the given cylindroid is determined by
the equation

R fa(t + cosu), 0, asinu} +

+ Aa(l + cosu), —a(l — cosu), 0} =

{fal + N + cosu), —an(l — cosu), a sinu}.

Eliminating the parameters A and u, we obtain

2+ Zlx - ¥ - 2a(x + y)] + 4a’xy = 0.

2 2
5171 = 1= wol,rn=1-2"0 !,
2p 2p

w o+ v
r—r = d—, u, —vi.
2p

The condition for this vector to be collinear with the plane y — z = 0
is given by the relations

Uu+v=0v=—ur—-r={u/puyul,

and the required equation is the following:

u? u? u?
r=—, 0} +vi—,uut = {— (A + 2v),u(l + v),uv{.
2p 4 2p

Eliminating the parameters u and v, we obtain y* — 22 = 2px, a

hyperbolic paraboloid.
5.18. The equation of the axis Oz is of the form: r; = {0, 0, u} and
the equation of the given curve

3
. a
r; = {bcosy, bsiny, ——————1;
b~ cosv sinv

hence
P
rz — r, = }bcosy, bsiny, ————— — uy,
b* cosv sinv
10-- 2018
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(13

=—————, 1~ n = {bcosy bsiny 0J,
b cosv sinv

a .
r= 40,0, — ¢ *+ M b cosv, bsiny, 0}
b” cosv sinv

&
= Ab COosYy, b siny, (-
b* cosv sinv

Eliminating the parameters A and v, we obtain
bxyz = a*(x* + y?).

.n —
519. (a + ub — o = 0, u — 2 = @
nb
n(g — a
atub— o= e o
nb
n(p — a
R=Q+)\{ @ -9 Q+a}
nb
5.20. Take the equations of the given ellipses in the form:
ri = {a bcosy csinu}, r» = {—a ccosy, bsinv},
n - r; = {2a, bcosu — ccosy, csinu — bsinv},

csinu — bsinv = 0,
i € V /57 iy
siny = — siny, cosyv = £ —Vb* — ¢°sin‘u,
b b
C Vb — Fsinta.
rn — r2 = 124 bcosu £ — Vb* — c°sin“u, 0¢.
b
The required equation is

R = {a b cosy, csinu} + v{2a, b cosu + —Z— Vb? = P sinfu, O}

or

R = {a + 2av, b cosu} + v{b cosu =+ -% Vb? - ¢?sin*u, ¢ sinu}
5.21. The equation of the axis Oz is p {0, 0, v}, and we find
3 3 -

—v), W —-v=0 v=u,

it

e — p = [u’ u2,u
p = (0,0, ).
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The required equation is

r=p+vie - p) = (0,0, 4’} + viu u? 0} = (uy u’y, v’}
522. r = {bv, avcosu, (b + acosu)(l — v) + asinuj.
5.23. The equations of the given straight lines are ¢ = {u, 1, 1} and

p = (1, v, 0}. The equation of the straight line passing through two
arbitrary points of these straight lines is the following:

r = {1, v, 0} + \u, 1, 1}.
For the point where this straight line meets the plane xOz, we have:
v+A=0, A= -yvr={L,v,0} —-v{u 1,1} = {1 —uv,0, —v}.
This point must lie on the circumference

X =cosp, y =0, 2z = sing.

Therefore,
1 — uv = cosp, Vv = —sing,
whence
1 — cose 7]
U = ———— = —tan —.
—sing 2

It remains to make up the equations of the straight line passing through

the points (—tan %’ 1, 1) and (1, —sing, 0). Finally, we obtain:

¢ = (I, —sing, 0} + \[/({l, _sing, 0} — {——tan%, 1 1})

= {1 + \I/<l + tan%), —sing — Y(1 + sing), —11/}.

524, r = {a(cosv — usinv), a(sinv + u cosv), b(u + v)}.

5.25. 2 + y)? = AP - ¥ + o>

5.26. We will assume that rectangular Cartesian coordinates (£, 5) are
given on the plane =. Then the equation of the curve ¢ = @(u) can be
written in coordinate form thus: ¢ = £(u), 4 = n(u). In addition, we
assume that the straight line AB is the axis z in space and that the axis
7 of the moving plane = slips along it. For the appropriate choice of the
axes x, y and positive directions on the coordinate axes, we have:

R(u, v) = {&u)cosv, Eu)siny, n(u) + av).
5.27. R(u, v) = r(u) + av(u)cosv + aB(u)sinv, where » and 8 are

the principal normal and binormal unit vectors to the curve r = r(u),
and the points (4, v) and (4, v + 2w) regarded as identical.
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5.28. Take the point of intersection of the normals to be the origin
“of the radii vectors. Then

rrp,=0,r-r =0,

. whence r?> = const. Therefore, the given surface is either a sphere or a
part of a sphere.
5.29. The volume of the tetrahedron is 9a3/2.
5.30. The tangent plane is determined by the equation
X y z N

+ + = = a%.

u sinv u cosv NP

The required sum equals a®.

5.31. The equations of the line of intersection in curvilinear coordinates
are u = wcos(v + vi1)/cos2v; (except for the generator v = v;), where
uy, v, are the coordinates of the point of contact. The parametric
equations of the same line in Cartesian coordinates are

cos(v + wv1) cos(v + vi)

X = 4y —————=—¢osV, Yy = u ——————— siny,
cos2v, cos2v

Z = asin2y,
The equation of its projection on the plane xy is
2 uy .
X + y2 = ——— (xcosv; — ysinv)).
cos2v,

Since the projection is a circumference, the line itself (being a plane line)
is an ellipse.
5.32. The equation of the tangent plane is

Z - xf = (f— if')(x — %) + (Y — pf, or
X
z = <f—lf')X+ Y,
X

and all the tangent planes pass through the same point, viz., the origin.
Besides, it is also clear from the fact that the given equation determines
a cone with vertex at the origin (z being a homogeneous function in x
and y).

5.33. The tangent plane has the equation

kx sinu ~ kycosu + vz — kuv = 0,
and the normal

r = {vcosu + MNcsinu, vsinu — Nk cosu, ku + Av}.
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X Y Z
5. — + — + — = 3.
X y z
5.35. Let the equation of the curve C be ¢ = g@(s). The equation of
the surface is as follows: r = @ + A7, where 7 is the unit vector of the
tangent to the curve C. We find that

0
£=T+)\kv, lel—=‘r, i,—L = NKGB;
ds i an ds

when s = const (i.e., at the points of the same tangent), this vector has
the same direction (for then 8 = const), from which it follows also that
the tangent plane to such a surface at all points of the curve C is the

osculating plane to this curve.
5.36. The equation of the surface is

ar
r=¢ + A, — =7+ M—kr + , T =0
e v Py T (—k71 x) an v
ar Odr
— — | =1 — NO)B — Axr.
[as 8)\] ¢ »

The equation of the tangent plane is

R -0 - M)B — MB — I1) =0,
or

RB — MD — o8B — M) + Nx = 0,
and that of the normal

R =190+ M + (B — 7).

5.37.r=9+)\6,%=‘r—)\;w,£=6,
s

)N
ar or
—, — | = —v ~ Ax7.
ds I

The equation of the tangent plane is
R -0 - M)y + M) =0,
or
R — @)y + Ax1) = 0.
The equation of the normal is
R =90+ M + &» + ).
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5.39. If a is the direction vector of the given straight line, and the origin
of the radii vectors is taken on it, then the vectors r, a,

and i a— lie in the same plane, while
u’ v
refa |25 20 2o
ou v

Hence,

5 () (D)

But this equality can be written as the vanishing of the functional deter-
minant, viz.,
o 9 or?
— =@ )-——( -1 =0,
du dv v
from which it follows that the entities r> and a - r are in the functional
dependence

* = faa -,

Choosing the axis Oz along the vector a, we obtain x* + y*> = f(z), a
surface of revolution.
2

2
5.42. 47° <—2 + %) = 1, the edge of regression being imaginary.
a

2

543. x* + ¥ + = dk

a* + b?

5.44. The envelope has the equation (x** + »* + 22 — x)* = ¥
+ y?, and the edge of regression degenerates into the point (0, 0, 0).

5.45. Taking the equation of the parabolas in the form y* = 2px, z = 0
and y* = 2gz x = 0, we obtain the equation of the envelope in the
form y* = 2px + 2gz, ie., a parabolic cylinder with Vp®> + ¢* as a
parameter.

5.46. (R — Q) = % leferentlatmg with respect to s, we obtam
R - 92 0. Hence R — ¢ Ab + pv. Since R — @)?
= & \ o= d, andwecanput

N = acosg, p = asing

so that the equation of the envelope is
R = g + a(bcosy + vsing).
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5.47. The edge of regression is a curve whose points are obtained by
intersecting the curvature axes of the curve o = g{s) with the corre-
sponding spheres of the given family.

5.48. The equation of the family is the following:

(x — bcosp)? + y — bsinp + 22 — & = 0,
and the envelope is a torus whose equation may be obtained by

oF
eliminating ¢ from the equations F = 0 anda— =007+ + 25+
7

+ b* — a*? — 4b*(x* + y*) = 0 is a surface of the fourth order. The
edge of regression when a > b is reduced to the two points

0,0, + vV &> - b?
or one point (0, 0, 0) if a = b.
5.49. The equation of the family is as follows
2+ Yy 4+ 2 - 2% — 2y — 2uz = 0.
We shall find the envelope by eliminating # from this equation and from
3ux + 2uy + z = 0.
Thus, the equation of the envelope is:
IxX[9x02 + ¥+ D) — 21 + w903 + ¥+ 7D — 2] -
- (12xz — 4% + z(12xz — 4% = 0.
The edge of regression is found by adjoining another equation to the
two indicated above, viz., 6ux + 2y = 0, or 3ux + y = 0.

Hence, u = —y/3x, and the equation of the edge of regression is the
following

276032 + yP + 28 — 43 + 18xyz = 0, 32 — 3xz = 0.

The edge of regression can also be obtained in parametric form:

. u —6u® 6u’
9t + 9 + 17 9wt + 9+ 1 9wt 9+ 1)

5.50 x2/3 + y2/3 + z2/3 = [2/3.

5.51. x2/3 + y2/3 + z2/3 — a2/3.

5.52. xyz = 2/9 @’

5.53. The envelope is y* = 4xz, and the edge of regression is degener-
ated into a point, viz., the origin.

5.54. The characteristic is x = a(cosa + asina) — zsing, y =
= a(sine — o cosa) + zZ cosa, and the edge of regression is a helix

X = acosa, Yy = asine, 2z = ao.
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5.55. Let ¢ = g(s) be the equation of the given curve. The equation
of the family of the osculating planes is

@t — @b = 0.

Differentiating with respect to s, we obtain (r — @) = 0. The charac-
teristic is the tangent

r—ob=0 (- gwv =0

The envelope is r = g + \7, ie, the surface formed by the tangents
to the given curve. Differentiating the relation (r — @)» = 0 once more,
we obtain (r — g)b = 0. Hence, taking into account the relations

r—@b=0 (r-¢w=0
we have
r = g,

ie., the edge of regression is the given curve.

5.56. The characteristics are the curvature axes of the given curve, and
the envelope is the surface formed by the curvature axes. The edge of
regression is the curve described by the centres of the osculating spheres
of the given curve.

§57.m’ + D' =0, r = an + Bn’ + Alnn’],

m’ D’
a=rn——D, B—nlz———n,—z.

The equation of the envelope is

D'n’

r = —-Dn —
nlz

+ A[mn’]

(with the parameters ¥ and )\). The characteristics are straight lines
u = const. The edge of regression is found by solving the equations
m+D=0 m +D =0, m” + D" =0

for r, viz.,

(rm) [m’n”] + (rm’) [m”n] + (rn”) [nn’]
nn’ n”

Din’n”] + D'[n"n] + D”[nn’]

[
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5.58. The envelope of the family of planes tangent to both parabolas.
The equation of the family is

2 43 3
Xa—ZaY—(a—+ TNz 4+ ML
2 ba o

where « is the parameter of the family.

5.59. The vector of normal is m = (« + v)(isinv — jcosv + K) is
parallel to the vector i sinv — j cosv + k, which is unaltered if the par-
ameter v remains constant. Hence, the lines v = const are rectilinear
generators of the surface, and ¥ + v = 0 is the edge of regression, since
the modulus of the vector n vanishes at each of the points of the surface.

5.61. The equation of the curve is ¥ = const and the edge of regression
is

x = 2(a — bucos®y, y = 2(a — b)usin’y,
z = 2u¥[(@ — 2b)cos’v + (b ~ 2a)sin’v].
562 x =3,y = -3t%b z = —1t/ab

5.63. The required developable surface envelops the family of planes

N 4
Xx + YWd - 2 + 2 }%2——,\'2=az,

where x is the parameter of the family.
5.64. (1) r’(cos’v du® + dv®);

Q) (@* sinu + b? cos’u)cos®v du* +
+ 2(@*> — bP)sinu cosu sinv cosv du dv

+ {(@® cos®u + b?sinw)sin®v + ¢? cos?vidv?;
1 l 2 2 a2 2 2 2
(3)7 v + — ) (@°sin“u + b° cos“u)du® +
v

1 2 2yl 1
+ ?(b — a’)sinucosu|v — — dudv
v

1 1 22 2 2 2 ¢ 1\* 2
+ J—{1 - —} (@ cosu + b°sin“u) + —(1 + — av*;
4 v 4 v?

@) ——— {2 — 1) + 4657 + 0% + D)dd® +
(u + v) :

+ 2{a¥t® — DO — D — 4bPuv + AW + DO + Dldudv +
+ [d*@® - 1P + 4b*? + AP+ 1)) dvY;
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1 1\*
5) 7(v - —> (@® sin’u + b* cos’u)du® +
v

1 2 2y i 1
+ 7(b — a’)sinu cosu{v — — dudv +
v

1 122 2 22, € 1y’ 2
+—1+——2(acosu+bsmu)+—l——2 dv;
4 1% 4 v

) (@ sin’u + g cos’u)vidu® + 2q — p)sinu cosu dudv
+ (pcostu + gsinfu + vHdvi;
D@+ g + 43)du® + 2(p — q + 4uv)dudv + (p + g + 4uH)dv>;
8) v¥(@? sinu + b? costu)du® + 2(b* — a*)sinu cosu dudv
+ (@? cos*u + B?sin*u + cA)dv
9) (@? sinu + b? cosPu)du® + dv?;

a* 1\> & 1\?
W l—(1 - =) + —{1 + =) {a? + avi

5.65. (1) ds’> + 2redsd\ + d\%;
(2) vids® + 2vrodsdv + @*dv%;

2
3) (‘r + x—g—e—) ds® + 2erdsdn + d\%;
Ay

@ {0 — kcose) + x*)ds® + 2xdsde + de;

©) dau? + (o"* + Y 7jdvE

6) (@ + bcosv)du® + brdv

(7 0 + kDdu* + dvi

@) {1 — M) + KANYdst + dN

O (A + NPds' + d\.

5.66. (1) The curves u = =1/2 av?, v = 1 intersect at the points

Au=0,v=0); Bu=12av=1; Cu= -1/2av=1);
the differentials of curvilinear coordinates on these curves being related

by the formulae:

1
du = avdv for the curve AB with the equation # = ey av?;
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du = —avdv for the curve AC with the equation ¥ = ey av?;

n

dv 0 for the curve BC with the equation v = 1.

Substituting these values in the first fundamental form, we obtain

ds* = a*(1/4v* + v + )av?, ds = (1/2v* + 1)dv for the curve
AB;

ds* = a*(1I/4 v* + v* + Dav?, ds = (1/2 v* + 1)dv for the curve
AC;

ds* = du?, ds = du for the curve BC,

It remains to evaluate the integral between the limits determined by the
coordinates of the points A, B, C viz.,
v=1 u=1/2a

AB:AC=a5(1/2v2+1)dv=7a/6, CB = S du = a.

v=0 u=—1/2a
. . 10
Thus, the perimeter of the triangle equals —3— a

(2) cosA = 1, cosB = 2/3, cosC = 2/3, ie,
A=08B=C = cos™'2/3.

2 N2
@S = az[? -t In(l + x/i)].
_ 2
5.67. cosf = l—iz-.
1 +a
1 Vut + 1 -1
5.68. = =+ \/2+1+——ln——q + const.
’ [u 2 \/u2+1+1]

569.v = tanfln [u + Vu* — @] + const.

5.70. (1) 1/4 (v} + sinh®vp);

(2) vo, sinhvo, v2sinhvy;

(3) 7/2, n/4, ©/4.

5.71. (1) ds? = {[] — ak(u)cose)® + [ax()P)du® +

+ 2&%x(u)dude + a*de;

@ o) = - [xGdu;
() 2rajuz — ul;

4) 4x*ab;

() 20%aNr + b2
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5.72. Consider the family of the surfaces
v
R, v, £) = {g(u, f)cos T, o(u, Dsinv/t, Z(u, 1)},

where

8w 1) = tow), 2w, B = (V1 - Po'(w)ldu, 1 >t >0.
573. Ry, ¢) = (V1 + u’cose, V1 + u’sing, In(u + V1 + u?)},

or
R(z, ¢) = {coshz cose, coshz sing, z}.

This is a catenoid, a surface of revolution of the catenary curve

x = coshz.
5.75. Hint: The first equation determining the correspondence between

points is as follows:

= gz + &

5.78. For the sphere ds? = du® + R? cos®(u/R)dv?,

2
for torus ds* = du? + (a + b cos —%) v,

for catenoid ds* = du® + (@* + ub)dv?,
for pseudosphere ds® = du® + e~ *dv*.

Hint: u is the natural parameter of the meridian.
5.79. ds* = di® + e *dy.

Putting ¥ = % v = &%, we obtain
2

ds* = a—z(a’u2 + dv?).
v

5.80. (a) If ¢ and b are the sides containing the right angle of a right-
angled spherical triangle, c its hypotenuse, and R the radius of the sphere,
then the following relation is held

cosc/R = cosa/R cosb/R.
(b) Let A, B be the angles opposite to the sides @ and b. Then
S =R¥A + B — n/2).

581. S = 2aR?, where R is the radius of the sphere.

5.83. Hint: Take the equation of a conic surface in the form r = ve(u),
where je(#)] = 1, and compare its first fundamental form with the quad-
ratic form of the plane in polar coordinates.
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5.86. (1) R(du® + cosudv?);
ac .

)\/ — ——— (du® + cos’udv’);
a* sinu + c? cos’u

@

—ac
(du® — cosh?udv?);

3

va? sinb*u + ¢ cosh?u
ac
) -
va* cosh’u + c* sinh?u

(du?® + sinh?udv?);
) ——2——————(du2 + uldv?);
V1 + 42 ’
(6) Rdv?;
ku
(1) —= V%
V1 o+ k2
8) bdu® + cosu(a + b cosu)dv?;
1
Q) — — (du® — a*dv¥);
a

(10) —a cotu(du® — sin’u dv?).

5.87. —2adudv/Nu?® + @

588, — ———— di® + adv’.
u + a

3
589. e i ‘:( — [% de + dxdy + % dyz].
(e'x” — @"x)du? + ox'dy* .

«) + @) ’
X' (@'x" — o"x’)
elx') + (@1
K > 0 if the convexity of the meridian is directed from the axis of
rotation; K < 0 if the convexity of the meridian is directed towards the

axis of rotation; K = 0 if the meridian has a point of inflexion or if
it is orthogonal to the axis of rotation (when g # 0).

5.90. (D

QK =

(3) K = -1, when x # 0; K is undetermined, when x = 0;
Q(lell _ Ql/xl) + xl[(xl)l + (Q/)Z] )

49 H = s
() 2@[(X/)2 + (Q/)2]3/2
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(5) ex) = Lcosha(x— Xo),
a

where xo and @ > 0 are arbitrary constants (catenoid).
591. (a) K = 0;

X
By H = — —.
®) 2kv
592. K = — Oue \/E.
JG
593. K = —1.
5.94.
3uF OyF 0cF F
~ 1 OuF OpE O F 8F
OFP + BF)Y + 0:FV | 0uF 3yF 0.F 8. F
&F 8F 8F 0
_ 2
595, K = — T~

a+p+ a7
A+ pHr + (1 + gHr — 2pgs

H =
2(1 + pz + q2)3/2

where
p =82 q=0&z r=238z 5=703pz I =0y
2+ Y+

5.96. +
a
1 1
597. — = 0, — = ———1——.
Ry R, (u + VW2
2
508. K= — — 1 H- _ A+ u)
@u® + 1)? u? + 1)
599. K = - 4 H = 0.

9w + v + 1)’
5.102. r = g(s) + uB(s),

) k + kx*u® - u—q—
X ds

—_— H
a + wy a + w2
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){2

5103. K = — ,
A - ku? + u**?

W(kn — kr) + ux
A0 - kup + ub?

5104. r* = r + am, v =1, + amy, r¥ = r, + am,,
E* = r*} = 12 + 2ar,m, + am’ = E — 22l + o*QHL — EK).
Similarly,
F* = (1 — @®K)F + 2a(@H - DM,
G* = (1 ~ @*K)G + 2a(@aH — DN,
L* = aEK + (1 — 2aH)L,
M* = M - a2MH — FK),
N* = N - a(2NH -~ GK).
K

5.105. K* ~
| - 2aH + a’K

H — aK

5.106. H* = .
1 — 2aH + a’kK

5107. r* =r + im.
K

5.108. K* = 4H? = const.
1
5109. H* = — —2—\/?.

du? dv?
5.111. — =0
a + b+ u? a + b+ V?

+ Infu + Vu® + a*] = const.

const, v = const.

5112. v
5.114. u

5115 () K = — —K°0%¢
a(l — ak cosyp)
(@ H = —(1—ak cose)’;

(3) u = const, ¢ = const.

5.116. u = const, ¢ = o — Sx(u)du.

159



5.117. The lines of curvature are ¥ £ v = corist,

4
K= - — . ~ H=0.
Gu? + I + 1/3)

5.122. (1) The rectilinear generators are y/x = const;
1 1
2) — - — = const.
y

x*

5.123. (1) The rectilinear generators are y = const;
(2) X’y = const.

5.124. The equation of the asymptotic lines is

(1) u = const;

@ v’ = v{(C - Vu)l.

5.125. v = const,

cos’y cosv

el 22 = const.
(1 + cosu)?

d 2
5.126. 8 = =n on the asymptotic line. Therefore, x* = <d—n) . We
s

select a coordinate system (4, v) in a special way so that the following
conditions may be fulfilled at the point 4 = ue, v = vo under consider-
ation: (1) the lines ¥ = const and v = const have principal directions;
2) E(uo, vo) = G(uo, vo) = 1. Then F(up, vo) = 0 due to the
orthogonality of the principal directions and n, = — kR, n, = — k2R,
by the Rodrigues theorem. Therefore,

da\' _ (du  dv\' K + Kdv
ds “ds " ds ds* '

Let ¢ be the angle between the line v = vy and asymptotic direction.
Then with respect to this direction du/ds = cose, dv/ds = sine because
E = G = 1, F = 0. On the other hand, we find from the Euler formula
that

ki cos’p + kysin*e = 0.

Finally, we have

2
¥ = (%) = (-kikz sin’p — kika cos’p) = —K.
A}

5.127. x/(0 + u?xd).
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X

5.128. .
0 ~ ku)? + u?x?

u+ vVt + a* + b
v+ Vv + @ + b

U+ Vi +a® + b [v + Vv + @* + bl = const.

5.143. Assume that the rectilinear generators are parallel to the axis
Oz. Then the equation of the surface can be written in the form

r = flu)er + pu)es + ves,

5.129. = const;

where u is the natural parameter of the directing line. We will seek the
equation of the geodesic in the form

v = v(u). *)
Then
N =1[rn] = ¢'e — fley

dr = (f'e; + ¢’es + v'es)du,
&Pr = (fe1 + ¢”es + ve)du?,
and the equation for determining the geodesic lines is
e =f 0
S v =0,
Joe” v
or
@ + SV = ('e” + S = 0.

Since ¢’ + f'2 = 1, we have

1
¢/¢i/ + f/fll = __2___(¢/Z + le)/ = 0.

Thus, v = 0 and v = ci# + c¢;. The vector equation of the family
of geodesics is

r = flu)er + o(ues + (ciu + c2)es,

whence
cosf = cos(r/FZ) - g
“ N1+ &

11—2018
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Therefore, the geodesics found are generalized helices. Besides, the
rectilinear generators are also geodesics which were not included in the
general solution, since their equation cannot be represented in the form
(*). :

5.144. Let the equation of a developable surface be in the form

r = o(s) + ur(s),

and let 6 be the angle at which a geodesic intersects a rectilinear generator
s = const. If k is the curvature of the curve R = g(s), then the differential
equation of the geodesic is

du

— — ukcotd + 1 = 0.
ds

It is a linear differential equation of the first order integrable by
quadratures.
5.145. The equations of the geodesics are

C cosv C sinv C
3
C, + V’ . CL v, Cr v

sin sin sin
NG 2 NG

5.146. v = C, = S . G
Va2 + hyw? + h2 - C?)

5.147. Consider the equation of a cone in the form r = up(v) and

assume that Ipl = 1, 1p°| = 1. Then the equations of the geodesics are
of the form
C
= —L ().
sin(C — v)

5.150. Great circumferences of the sphere.

5.154. By the Meusnier theorem, the curvature radius R of the curve y
at a certain point equals the projection of the geodesic curvature radius Rg
(= l/kg) onto the osculating plane of the curve y,i.e., R = le cos 01 ;
the vector e = [t, m] is the unit vector lying in the tangent plane to the
surface, and orthogonal to y; n is the unit vector of the principal normal
to the curve v;

i

lcos 61 = lenl, k,=klcosfl = klenl = leil = litml = ImiFl.

5.155. k, = u/(u® + a%).
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5.158. Considering v as a function of u along a geodesic, we obtain the
following differential equation for the geodesics:

d? de (dv\3 2
YR () L d) _dedv  dv
du du \d du \du du du du
or ‘
(¢ + ¥)duld(dv?) = (du? + dv?) (dydu? — dedv?),

whence

Ydu? — edv?
d\- 5~ 7)=0
du® + dv
Integrating this relation, we obtain the required equations.
5.159. = + o/R3.

5.160. r — a20.
5.161. ¢* = x/2.
V2 Uy

5.162.0% = [ dv | 1B,,(u,v) du.
Y1 L

5.164. s(p) = 2« sinh p; kg(p) =cothp—-1 as p— +oo;
I(p) = 2x cosh p; I(p) ~ + o as p = +o. On the Euclidean plane,
s(p) = 27rp;kg(p) = 1/p—0asp — +o0;1(p) = 27.

5.165. First, we establish that the metrics defined on P, and P, have the
same curvature K = — 1. Then we introduce semi-geodesic coordinates
(¢, n) on the plane P, so that:

(1) the geodesics are the lines 5 = const and £ = const;

(2) £ is the natural parameter of the line n = 0;

(3) n is the natural parameter of the line £ = 0.

Then ds? = d&? + B2, n)dn?  with B¢, ) = B¢, ),
B, 7)=1, BE 0, 7) = 0. It follows from these equalities that
B{,n) = cosh £.

5.166. dn’ = 2H(@, d°R) — Kds>.

5.167. Apply the Frenet formulan = —kt + xb. For the geodesic line
(m = n), we have

(52)2 _ (d,m>2 I}
ds ds

On the other hand,

2
(‘1"1) =2H 11~ K-1,
ds
I
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where I and 11 are the first and second fundamental forms of the surface.
d 2
When H = 0, we have (dm) = — K, and therefore, K2+ %% = —K.
s

5.168. If the equations of a surface of revolution are written in the form
x =eo)cosv, y=oU)sinv, z=u,
then the vanishing of the mean curvature implies that
1+ <p'2— e = 0.
Putting p = d¢/du and considering ¢ as a new variable, we obtain
dp do

L+p*—ep - =0,
©

= ;d(ln a + p?,
whence
cel=1+ pz.
With respect to the original variables,
dw/\/cTsoi—~_I = du,
A+ udf W) =a, f@=a/+u?)
Integrating this equation, we get
fuw)y+b=z+>b= atan” ! u.
Therefore,
u=tan(z + b)/a, y/x + tan(z + b)/a,
which is an implicit equation of the right helicoid
x=£fcosy, y=¢&sinyg, z=an—b.
5.170. Let the coordinate lines coincide on the surface S with the lines
of curvature. Then
r, = (- akpr,, r;=(1-akyr,.
Therefore, the coefficients of the first fundamental forms of the surfaces
Sand S* are related by the formulae
E* = (1 - ak)’E, G*=(1-aky))’G, F*=F=0.
Hence,
do* = (1 — ak)(1 — aky)do,
and

— do* ki, + k 1 ki + k
im 2797 i (0T T, ) = T o
a—~0 Zadg a—0 2 2 2
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5.171. Let S be a minimal surface, and §* a surface parallel to it, the
distance between them along the normal being equal to a. As it follows
from the previous problem, the corresponding elements of the areas of
the surfaces S* and § are related by the formula

do* = (1 + a’K)do,

where K is the Gaussian curvature of the surface S. Therefore,
H de* = ”dc + a2 ”Kda.
D D D

Since K < 0 on the minimal surface,
[{do* < {{do.
D D
5.174. Take the axis of the cylinder to be the axis Oz and place the axis

Ox in the sectional plane. Then the equations of the cylinder assume the
form

X=acost, y=asint, z=u,
and the equation of the sectional plane is
z = Ay.

Cut the cylinder along a generator intersecting the axis Ox, and place it on
the plane xOz. Since after the superposition, the part of the abscissa is
played by the length of an arc of the perpendicular section of the cylinder
s = at, the equation of the required line is

.S
Z = aA sin-
a

i.e., a sine curve.
5.175. The general equation of the motion of a point across the surface
is of the form
d?r

;12=F+Rm-—u|R-|t,
t

where F is an external force, R the normal reaction of the surface, u the
coefficient of friction, t the unit tangent vector to the trajectory, and m
the unit vector of the normal to the surface. Since

dr  ds ds \2dt
s =t |- R
dr di dt ] ds
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when F = 0, the equation assumes the form

dZs ds \%dt
m —~2t+ _ . :Rm—ﬂlR“.
dt dt /) ds

Multiplying it scalarly by [t, m], we obtain
di dr d’r

m- =. m- 5 =0,
ds ds  ds*

i.e., the point moves along a geodesic.
5.177. Take a semi-geodesic coordinate system on the surface. Then

ds? = du® + Gu, v)dv2.

On the line u = 0, we have VG|, _, = 1. Besides, we obtain from the
equation of geodesic lines that

VG

du ly=o0

= 0.

In the semi-geodesic coordinate system,

1 %G
PR
VG du
If K = 0, then
aWE
G,
du

and the solution of this equation satisfying the initial conditions indicated
above is VG = 1. Therefore, for all surfaces of zero Gaussian curvature
the first fundamental form can be reduced to the form

ds? = du® + dv?;

hence, all of them are locally isometric to each other.
1
IfK = "y (a = const), then
a
u
VG = cos -, ds? = du®+ cos? “avt,
a a
1
IfKk = - = (@ = const), then
a
ds? = du? + cosh®” av2.
a

166



5.180. The surface S can be obtained by bending the hemisphere so that
the two halves of its boundary circumference may overlap each other, and
then glue the surface along these semi-circumferences, from which it
follows that the geodesics on the surface S not passing through its singular
points (ends of meridians) become closed after traversing around the sur-
face twice (i.e., after increasing ¢ by 4x).

5.182. It follows from the formula

([ Kdo + [ kpds = 2n
D L

when kg = 0 that

H Kdo = 2x.
D

And this equality cannot be valid if K < 0 at all points of the surface.

6
Manifolds

6.1. As the atlas of charts, the sets U;* determined by the inequality
Uk+ = {x; > 0}, Uy = {x; < 0] should be taken. As the coordinate
functions, all Cartesian coordinates except x; should be taken in the chart
Ugz.

k6.2. Notice that 72 is homeomorphic to the Cartesian product
S! x S, and reduce the problem to the previous when n = 1.

6.3. Any neighbourhood U of the origin 0 can be split into at least 4
connected components, while discarding the point 0, which is impossible
on a manifold.

6.4. The sphere S” is a compact space.

6.5. (a) Yes. (b) No.

6.6. The space RP" is the set of collections (xy:x;:. . .:x,), where
x; €R, Exiz # 0, with the equivalence relation (xo:x:...:X,)
~(M\xgi Nxpi. . .t Ax,). Introduce a real analytic structure on RP". To
this end, cover RP” by a set of n + 1 charts. Consider the collections
(xg:ixy:. . .:x,) such that x; # 0. The set of such collections can be
naturally considered identical with R”, viz.,

x Xi_1 Xii1 x
(giXpie . 1X,) — <-Q,..., LSt Lk Rt A B
X

i i i i



It is easy to see that the definition of this correspondence is correct. It re-
mains to consider the functions of transition from the /-th chart to the
Jj-th. Let x,(([’ be the k-th coordinate of the collection (Ag: Aq:. . .t A,)in
the i-th chart, and x,‘-’) the /-th coordinate in the j-th, respectively (let, for
simplicity, / < j). Then

x = XE) T X’U+) ! x® =

_Xi(,),.. ; XIU),...,I Xiu),...

Thus, the transition functions are not only smooth, but also real and
analytic.

6.7. See Problem 6.6.

6.8. The atlas consists of one chart with coordinate functions
16 TYRNI 7 B

6.9. Represent the elements of the group SO (2) as rotations of the plane
through a certain angle about the origin. The group O(2) is homeomor-
phic to the union of two replicas of st

6.10. Represent the elements of the group SO(3) as rotations of the
space about a certain axis through a certain angle.

6.11. The groups GL (n, R), GL (n, C) are open sets of the space of all
matrices.

6.12. A cylinder.

6.17. Use the rule for differentiating a function of a function.

6.19. 1.

6.20. Apply the implicit function theorem.

6.22,

U, = RV 1+ Ex2.

6.23. Use Problem 6.22.

6.24.y = x°.

6.25. Use the functiony = e~ 1/x2

6.26. Use the function from the previous problem.

6.27. Let {U,] be an atlas of charts sufficiently fine for the following
conditions to be fulfilled: if 4 N U, # &, then U, C U. Let e, bea
partition of unity, subordinate to the covering {U}.

6.28. Use the average operation

g0 = | feodx

Ix—yl<e

Put f = Z ¢, Where the summation is over all indices o for which
ANU, # J.
6.30. The composite of smooth mappings is a smooth mapping.
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6.31. Write formulae explicitly expressing the coordinates of the nor-
mal in terms of local coordinates on the torus.

6.32. Homogeneous coordinates on the straight line depend smoothly
on local coordinates on the sphere and local coordinates on RP? are ex-
pressed in terms of homogeneous coordinates.

6.33. Coordinate functions are a special case of a smooth function in a
manifold.

6.34, 6.35, 6.36. Use the implicit function theorem.

6.37. Use Problem 6.36 and partition of unity. -

6.38. Using local coordinates, calculate the rank of the Jacobian matrix
of the mapping.

6.39. Use the properties of the rank of the product of two matrices.

6.40, 6.41, 6.42. Consider the group GL (n, R) of all square matrices of
order n with non-zero determinants. Each matrix from GL (n, R) can be
associated with a vector from the space R”?, while the mapping
det: R”> — R is a continuous function. Therefore, the group GL (1, R)is
an open subset in R", Any open subset is a smooth manifold.

Definition. A linear group is said to be algebraic if it can be singled out
of the group GL (n, R) by some set of algebraic, i.e., polynomial, rela-
tions among matrix elements.

Theorem. Any algebraic linear group G is a Lie group.

Proof. Consider the space M (n, R) of all square matrices of order n
with elements in R. Let J be the ideal, formed by all polynomials
vanishing on G, of the ring S of polynomials on M(n, R). By the Hilbert
theorem [5], there exist polynomials f,, . . . , f, € J (forming the ideal J)
such that any polynomial fe€J can be represented in the form f =
= Lf.g,  whereg, €S (@ = 1,...,0). Let o be the rank of the Jaco-
bian matrix (3f,, 73x) (having o rows and n? columns) when ;) = E.

Lemma. The rank of the matrix (3f, /ax,-j) equals p at all points of the
group.

Let A € G. For any polynomial f € S, we put (4/) (X) = f(4~1X),
X € M(n, R). The transformation f — Af is an automorphism of the ring
S, transforming the ideal J into itself. Therefore, the polynomials
Afy, ... ,Af, are generators of the ideal J as well as of £}, . . . , f,. We
have

Afy =Y fogusr Sou= Y (Afpdhg,
B

Fis

where g 5, 4,5 € S. At the points of the group G, we have

aASf) _ oS ofy _ a(Afz)
R STl D
Xij
B

ij ij ij
8
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from which it follows that the ranks of the matrices (9(Af,)/3x;;) and
of, /6x,-j) are equal at all the points of the group G. On the other hand,
the rank of the matrix (@(A4f, )/ax,-j) at the point A equals the rank of the
matrix (3f, /9x;;) at the point E, i.e., equals o. Therefore, the rank of the
matrix (8, /ax,-j) at the point A equals o, and thus the lemma has been
proved.

Now, let A be a minor of order g, not vanishing at £, of the functional
matrix f, /axij). Assume, for definiteness, that it is contained in the first
p rows. It has been proved that all the minors bordering it are identically
equal to zero on the group G, i.e., belong to the ideal J. Similarly to the
proof of the classical matrix rank theorem, we obtain

I
) 3
a e s E 8 g,5(modJ), (1)
ax,-j ax,-j
B=1
where g, s €S, = 1, ..., 0. Consider the set G of matrices satisfying
the equations f; = .. . = J, = 0.1t is obvious that G C G. By the im-

plicit function theorem, there exists a neighbourhood U of the unit matrix
in M (n, R) such that the intersection G N U can be given parametrically,
the number of parameters being equal to d = n? — 5. We can see 1o it
that A does not vanish on U, and the range of parameters is connected.
Let (x;(2)) be a curve in G N U, with (x;(0)) = E. Whena = 1, . . .,
o, df,/dt = 0 along this curve. We obtain from (1)

df,
2% Z hofs

8

where « is any index. The unique solution of this system, with the initial
conditions f (0) = 0, is the zero solution. Therefore, f, = 0 for all a,
i.e.,, G N U = G N U, which shows that G is a Lie group.

The group SO (n) in question is a Lie group (consequently, a smooth
manifold), since it is an algebraic group. Its relations are

Z a;ay; = 8y, det (@;) = 1.

J
The dimension of the group SO(n) equals a(n — 1)/2. Consider the case
of the groups U(n) and SO (n). Every linear transformation over C with
the matrix 4 can be treated as a linear transformation over R. This
transformation will have the following matrix with respect to the basis
€1y €, e, ..., le, (wheree,, ..., e, are(basis vectors in C"):

( Re 4 ImA)
—ImA ReAd/’
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The group GL (n, C) is a subgroup of the group GL (2n, R). Therefore,
the theorem proved can be applied to the groups of linear transformations
of C”". Note that U(n) is the group of linear transformations of C", pre-
serving the hermitian metric. The group SU(#) C U(n), det 4 = 1 if
A € SU(n). The condition for unitarity is written with respect to the or-
thonormal basis thus:

E alkajk = 6’]'
14

In the passage to real coordinates, we obtain symmetric relations for the
matrix elements. It follows from what has been considered previously that
the group U(n) is an algebraic group. The group SU(n) is also algebraic
and singled out of the group U(n) by the additional equation det 4 = 1.

6.43. Calculate the rank of the Jacobian matrix of the mapping.

6.45. All the roots are of multiplicity one.

6.47. Since M" is compact, it can be covered with a finite number of
charts each of which is homeomorphic to the open ball D", Let there be a
covering of charts ¥, = D" (where x!, . . . , x” are local coordinates).
Thereby, each point x € M" is put into correspondence with the collection
of its coordinates in D”. This is a smooth mapping f. Extend f to the
whole manifold M” by constructing a new covering with the charts W,
v, C W,, and also constructing the functions f_ (x) = O whenx ¢ W,
fo&x)=1onV,,0< f, < L. Suppose there were k charts in the cover-
ing. Then, to each point of the manifold, we assign the nk-dimensional
vector

x =P 00, 0w, D) = f,e0x.

Under such a mapping, one-to-one correspondence is not achieved at
those points x, y which belong to W\ V,, since here we smoothen the
functions in an arbitrary manner. To eliminate this defect, construct
another covering U, C W,. Perform the same constructions for the
coverings W, and U, as for V, and W to obtain the collection of func-
tions gé’). Then the correspondence

x— g, ..., gPx) e R
is one-to-one.

6.49. Verify that the neighbourhood of $” C R” * ! is diffeomorphic to
S” x R!, and apply the method of induction.

6.50. Apply the Sard lemma.

6.51. Use the two-dimensional surface classification.

6.52. Prove, at first, that the manifold M” can be immersed into R>". It
is known that any compact, smooth manifold M” can be embedded in
RN, where N is a sufficiently large number. We assume then that
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M” G R”. We shall decrease the dimension of N by projecting M™ along
a certain vector £ onto its orthogonal complement. Under these projec-
tions Dg» there may appear points at which the smoothness of D: is
disturbed, i.e., such points at which the tangent space 7, (M") contains a
vector n parallel to the vector £.

Thus, for the projection p; to be a smooth mapping at every point, the
vector £ should be selected so as not to belong to the tangent space (at any
point x € M™). The tangent space T,(M") is diffeomorphic to R”, but
since we are interested in the directions of the vectors only, the manifold
of directions is RP” ~ !. The dimension of all the tangent directions is not
more thann + (n — 1) = 2n — 1. If N — 1 > 2n — 1, then a direc-
tion independent of all the directions of the tangent spaces to the
manifold M (i.e., not contained in them) can be chosen in the space
RPN !, Select one of such directions and project along it. This pro-
cedure is repeated while the inequality 27 — 1 < N — 1 is fulfilled.
Finally, when 2n — 1 = N — 1, this reasoning will not hold for the first
time, since the existence of a convenient direction no longer follows from
the dimension inequalities. Thereby, it has been proved that N can be
lowered to 2n (at any rate), i.e., the manifold M” is immersed into the
space R, Let us now prove the existence of the embedding
M G R¥'* ! For the immersion, it is sufficient to ban all the directions
(as projected) in the tangent spaces to the manifold. Now, we have to ban
possible self-intersections which can arise under a projection, i.e., ban all
the chords of the form (x, y) parallel to the projecting direction P£. The
space of chords is the space of pairs (x, y), wherex e M", y e M". Con-
sider the mapping f: (x, y) — RPV 1, The mapping f is not smooth,
since singular points appear on the diagonal A in M" x M". Restrict
the mapping f to M”" x M"\ A, where A = {(x, x):xeM"},
dim(M" x M"\ A) = 2n. Now f is a smooth mapping. Consider the
image f(M" x M"\A) € RPY =1, Close this image in RPN 1,
dim Im f is unaltered under this operation (note that under the closure
operation, the directions from the tangent spaces are necessarily taken in-
to account). Furthermore, if N — 1 > 2n, then we project, similarly to
the investigation of immersion, along any direction ¢ not belonging to
Im f. Thereby, we decrease the dimension of the space by unity and con-
tinue the process while N — 1 > 2n. When N — 1 = 2n, a “free” direc-
tion may not exist.

6.53. The zero-dimensional compact manifold consists of a finite
number of points.

6.54. Since the point y is a zero-dimensional manifold, its tangent space
vanishes. :

6.55. In this case, the condition for transversality is equivalent to the
subspaces TM, and TM, generating the whole tangent space of the am-
bient manifold.
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6.56. Use the implicit function theorem.

6.57. Transversally in all the cases.

6.58.a + 1.

6.59. Construct linearly independent vector fields which are normal to
the fibres under a certain metric, and then construct the required
homeomorphisms by means of motions along the integral curves.

6.60-6.62. Calculate the rank of the Jacobian matrices of the mappings
in local coordinates.

6.69. (a), (b), (d), (e): orientable;

(c) orientable when n is odd; non-orientable when even.

6.70. Represent the Klein bottle as a square whose opposite sides are
identified, and transfer the basis consisting of the tangent vectors along
the midline.

6.71. A manifold is said to be orientable if there exists a collection of
charts such that the Jacobians of all the transition functions are positive
(i.e., there exists at least one such collection of charts for the manifold).
Let ®; be a transition function of variables z!, ..., z", and
6¢ij /8z% = 0. Let A be the Jacobian of the transition function Pij» and
A= (aij). The mapping 4 can be considered as a linear operator
C" — C". The realification of the mapping f : GL (n, C) - GL(2n, R)

B -—-D
will assume the form f(4) = R, = (D B)’ where A = B + iD.
We take the basise,, . . . , e,, ie;, . . . , ie, in R¥". Let us prove the for-

mula det R, = Idet A12 by induction on n. When n = 1, for
A = a + bi, we obtain

a -b
ldetAl2=a2+b2,RA= (b >,detRA=a2+b2.
a

Let the statement be proved for k < n. We now proveit fork = n + 1.
Reduce the operator 4 to the Jordan normal form (the determinant re-
mains unaltered):

a, + ib € 0
A= ( ! L t., ), where ¢; = {0, 1],

0 .an+l+ibn+1 2

a; g, 0 -b, 0
- O..'an+1 e, 0..._bn+1 2
R,y = b, 0 a, e 0 Idet A1
0 bn+1 0 "an+1 gy

— 2 2
- (an+1 + bn+ l)Dn’
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where

2 .
a“+ ib g, 0
D, = 'det e ) L,
0 ‘a,+ib, ‘e

n—1

2

Let us calculate det® A4 by expanding it along the last row:

R 3+ 3 a,€ —b,
= (-1 det ., ..
det® A = (- 1) b, de (bl “a8, )

ae, —b ’
+ an+1det l,l.' 1... — (__ 1)3n+3bn+l(_bn+l)(_ 1)3Il+3Dn
by, e,

+an+lD = (b +1+an+l)D

Thus, we have introduced a collection of charts such that in changing the
coordinates (the change being smooth)

- - 1
(z15--'yzn9zla-"azn)_’(x,"'yxn’yl""!yn)

(realification) the Jacobians of all the transition functions are positive.
6.74. We obtain from the existing classification of two-dimensional,
closed, differentiable manifolds (which are orientable), that all of them
are spheres with g handles, i.e., surfaces of genus g. Each of such
manifolds is the Riemann surface of a certain polynomial VP, (z) without

1 -
multiple roots, where g = [n 5 | The function w = VP,(z) is

complex and analytic; therefore, by taking z and w as coordinate patches,
we obtain an atlas with a complex and analytic transition function.
6.75. Obviously, a complex structure can be introduced only on even-
dimensional manifolds. Let ' be a group operating on C”\ (0) and
generated by the transformation z — 2z. Consider the factor space
relative to z — 2z. It carries a complex structure induced by the structure
of the space C" \ (0) and is homeomorphic to S~ 1 % §! Therefore,
S2—1 % S! also has a complex structure. There exists a fibration
SZ"-' x §#-1-cp'~!x cpr-! with the fibre
= S§! x §! = T2 The fibre and base space have a complex structure
(proved) A complex structure on CP" can be defined by means of a form
which is the restriction of the hermitian form on C” to the sphere S%* ~

ds? = Tdzkd* — (Tz¥dz¥) @z dzb).
This form is obtamed from the form on CP” ~ !, since the former is in-

variant with respect to the action of Sl, where §x- 1§ CP” -1 we
define the action of S! thus:

@, ..., 2" e — (°2° . . ),
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7K — ok = 7K dw = e (dzF + iaz¥da), dof = e (d7* — iazkdu),

Ldo duf = Tde¥d7* + ia@®(*d7* — 7%d¥)da + oPda,

Tofdo® = £Kd7* — iada, ToFde® = T7%dZ* + iada.
Therefore,

Ldo*do* — Cwkdu®) Co¥de®) = Tdz¥di* — Ez%dz*) €7 dzk).
Let z* be the coordinates of the first factor $%' ~ !, and z ¥ of the second
factor S¥' . Let

Vij=1@,2)e8 1 x s 1: zkz £ o).

The sets ij form an open covering of the space §¥ -1 s¥-1 qn.
troduce complex coordinates
r s
F4 , z
kw’=~, -ws=—’.,
b4 z7
1

(InzF + yInz9)
i

tkj
on each set Vijs where v is a vector from C”, and 1, are determined
modulo 1. Therefore, by is a point of the torus T(1, ) obtained by gluing
together the opposite sides of the parallelogram constructed on the vec-
tors 1 and v. Thus, we have 2n + 1 coordinates in ij which determine
the mapping f : ij —~ C¥ x T, v). The mapping f is a homeomor-
phism. The quantities ;" I St ; uniquely determine the coordinates zk
and zY. In fact,

Z " = ;}léik Z 22" = 'z"klz—k‘ Z I - 1= Tzl]c'z - L
r+k k#+r r

The quantities |z 7| are determined similarly (uniquely). Besides,
Inz¥ = Inlz%| + i arg 2%,

whence

2ty = —i(lnlz¥l + yInlz91) + argz* + y argz 7.

If 1z€1 and 1z 7| are known, then arg z* and arg z ¥ can be found (y has
been chosen so that Im v # 0). Consequently, z% and z ¥ are also deter-
mined uniquely. The transition function in Vj; N V,, is complex and
analytic because it is determined by the formulae:
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1
Ly = by + 5 (n 4o + v 1In ™).
Thereby, a complex structure has been introduced on §”~ U g2 1,
This construction introduces a complex structure on any product
§%~1 x §24—1 wherep, g > 0and can be different.

6.76. 1f two piecewise smooth paths ¢y, ¢y : [o, 8] — M?" are freely
homotopic, then, in traversing them, the orientations are either both
altered or both unaltered. There is the shortest periodic geodesic in each
free homotopy class of paths on M". We can now prove the required
statement. It is clear that it suffices to give the proof for a connected
manifold M”. Let p € M". It suffices to prove that in traversing any
smooth loop with the origin and end at the point p, the orientation in the
space 7,M" is unaltered.

Assume the contrary, i.e., that there is a smooth, closed path with the
origin and end at the point p, and, in traversing it, the orientation in
TpM” is altered. Then there exists a non-trivial periodic geodesic
¢': [0, 11 = M"™ which is freely homotopic to this path and shortest in its
free homotopy class. Let ¢(0) = ¢(1) = g e M". Then the parallel
displacement along the geodesic ¢ induces an automorphism 7 reversing
the orjentation on the subspace MqJ‘ cCTM orthogonal to the vector
¢(0). Since c is a geodesic, 7 is an orthogonal automorphism, and since
dim Mql = n — 1 = 2k, there exist two-dimensional Euclidean spaces
E, ..., E invariant with respect to 7 such that
MqJ' =E, ®...® E,. Itis clear that

det7 = [] det7lE;= -1,
i

and then the relation det 7/E; = — 1 is fulfilled for a certain i so that 7
reverses the orientation on E;. But then 7 has a non-zero fixed vector u,
i.e., 7u = u # 0. Now let Y be a parallel vector field along ¢, for which
Y(0) = Y(1) = u. Then there exists an open interval ¥ € R containing
zero such that £ Y () lies in the domain of the exponential mapping exp on
M?" foralle € I,1 € [0, 1]. We define V : [0, 1] x ] — M" by the equality
V(t, &) = exp (€Y (¢)). Let L (€) be the length of the curve V(¢, &). Then,
since ¢ is a geodesic, L "(0) = 0. It follows from Y being parallel that
Y =0 and <Y, ¢> = 0. Since ¢ — V(¢, €) is a geodesic for any
1
tel0,1,L70) = — S < R(Y, ¢)é, Y>dt, where R is the Riemann ten-
0
sor of the manifold M”. If follows from the curvature along the geodesic
¢ being positive that L " (0) < 0, and, therefore, L has a relative max-
imum on ¢, i.e., ¢ is not shortest, which is a contradiction.
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6.78. If A is a complex Jacobian matrix, then the real Jacobian matrix

is
ReA ImA
( ~ImA ReA )
6.79. Use Problem 6.78.

6.80. Changing the coordinates z, = 1/z,, we obtain that the atlas
consists of two charts.

7
Transformation Groups

7.1. Use the theorem on the existence and uniqreness of a solution to a
system of ordinary differential equations of the .irst order.

7.2. Construct a vector field such that one of the trajectories may join
the points x, and x, and that it may be trivial outside a certain
neighbourhood of this trajectory.

7.4. The ratio of the coordinates of the field £ should be a rational
number.

7.6. Select an atlas of charts so fine that each orbit may intersect an ar-
bitrary chart at no more than one point.

7.7. The action of the group Z, on the sphere $” should be given by the
formula x — —x.

7.8. The action of S! on $%'*+! C C is given by the formula

(\,x)—~ N, AeS'ccl

7.9. Use the differential of the mapping determining the action of an
element of the group G.

7.18. Fix an orthonormal coordinate 3-frame fe;, e;, e;} in R®. An ar-
bitrary state of the described system is uniquely determined by a point
xeS? and the velocity vector v(x)e T,(S?), where
lv(x)l = C = const = 0. It is obvious that the mapping x — x,
v(x) — v(x)/c is a homeomorphism, x is the unit vector in R3 emanating
from the point 0, and v (x) is a unit vector in R3, Shift the origin of v(x) to
the point 0. This transformation is the identity on the vectors x and v (x),
and x and v are orthogonal. Let y be a vector in R® such that |y! = 1, it
is orthogonal 1o x and v, and the system (e}, e,, €3} is oriented in the same
sense as [x, v, y]. Obviously, the mappingx, v — [x, v, y} is a homeomor-
phism. All systems [x, v, y} are in one-to-one and continuous cor-
respondence with the matrices associated with the linear transformations
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in R3, which map the orthonormal coordinate 3-frame {el , e2, e3] into the
orthonormal coordinate 3-frame {x, v, y}. These matrices form the group
SO3): AeSO3) = AA' = E, and det A = +1. Thus, the space of
the states of the system under consideration is homeomorphic to the
manifold SO(3). Any orthogonal transformation of R’ preserving the
orientation is a rotation about a certain axis in a plane perpendicular to it
through an angle ¢, where —7 < ¢ < .

Therefore, all elements of the group SO (3) are in one-to-one and con-
tinuous correspondence with the points of a ball of radius = in R? whose
diametrically opposite boundary points are considered to be identical. It
remains to show that the ball glued in this manner is homeomorphic to
RP3. In fact, RP3 = §3 /Z, where S3 s standardly embedded in R%.
Therefore, RP can be consndered as a hemisphere of $3 placed in the
region with x' > 0 and with the diametrically opposite boundary points
considered to be identical:

$3N x!'= 0] = (0, x%, x3 xHeRY: (3P + () + (¢*)? = 1)
which is homeomorphic to the sphere S2 of radius 7.
7.21. Let us prove that if A € SU(2), then

A = ( o ?):lalu 1817 = 1,0, B € C.
-8 «

a B
Let (ﬁ ) € SU(2). Then

6

lal?2 4+ 1812=1 e}
ay+B5=0 )
fy12+ 1612 =1 3
det A = @b — By = 1. 4
Substituting « = —88/y from (2) in (4), we obtain — E(|<S|2 +

_ Y

+ ly1%) = 1,0ry = —B, whence @ = &. On the other hand,

Sp(1) = {q: (@149, 9,9) = (41, 92), 41, 92€ O},

where (q;, q,) = Re q1q2 It 1s easy to see that lql 1, since, for
g, =4q,=1, we have |1- gl =1, ie., lgl = 1. Conversely, if
gl = 1, then (q,q, g,q) = (q,, q5). Thus, Sp (1) consists of quater-
nions of length 1, i.e., $° C Q = R4 Further, -

g=a+ib+jc+ kd=(a+ib)+ jc—id)=z + jz,,
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where z, and z, e C C Q and |z,|2 + Izzl2 = Ig!2 If Igl = 1, then

Iz, 12 + 1z,1% = 1. Let us arrange for a homomorphism ¢ of Sp (1) into

SU@)viz..p(@) = o@ + i) = (72
2

It is obvious that the element ¢(g) belongs tolSU(Z). It is easy to verify

that ¢ is an isomorphism.

7.23. It suffices to show for the group G = SL(2, R)/{+E] that any
element of the group G can be joined to =FE. Let A, A\, be the eigen-
values of the matrix A. Then either (a) A\, N\, eR, N\, = )\1_1, since
det A = x1, or () A, = A, Ay = €%, N\, = e, Consider case (a).
With respect to the basis consisting of eigenvectors, the matrix A has the
AN O

form A" = CAC™! = (0 N1

|z1|2 + |z2|2 =1.

). We can assume that A > 0. Con-

struct a pathy : I — G

) = (X(l—t)+t 0 )
= 0 0N =0+ t)

Consider case (b). There exists a basis on the plane with respect to which
A is of the form
cos ¢ —sin <p)

A" =CAC™'= (
sin ¢ cos ¢

Construct a pathy: I - G

cos(l — t)p —sin(l — )y
v(t) = ( )
sin(l — ¢)g cos(l — t)p

7.25. Consider a model of the Lobachevski plane L 2 in the upper half-
plane (Im z > 0 in the complex notation). The metric is of the form
ds? = (dx? + dy?)/y?, or, in complex terms, ds® = dzdz /(z — z)*.
Consider the linear fractional transformations of C! into C', keeping the
upper half-plane fixed (i.e., transform it into itself). These are transfor-
mations of the form

a + b

G = {w= - ~-a,b,c,deR,ad — bc = 1].
cz+d

This transformation class preserves the metric, but there are other
transformations preserving it. E.g., the transformationw = — z which is,
evidently, a motion, but does not belong to the group G, at least because
it is not an analytic function. Similarly, it is easy to verify that the whole
class of transformations of the form

H={w=(az+ b)(cz+d)a,b,c,deR,ad — bc = —1}
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preserves the metric. The group of motions of the Lobachevski plane con-
sists of transformations of forms G and H only. In fact, G U H is a
group, G U H = @ acts on the Lobachevski plane L 2 transitively. Con-
sider a subgroup S of the group & (i.e., subgroup of transformations
keeping a point i fixed) and a certain motion 4 : L2~ L% h(i) = i. We
prove that # € S. We shall show that the motion keeping i fixed is fully
determined by its action in the tangent plane at the point /. Let &, g be two
motions, and h, = g:T;L? — T,L*. Then the transformations 4 and g
act on the geodesics passing through / in the same way; therefore, coincide
on them, and since any point of L2 can be joined to i with a geodesic,
h = g on L2, It remains to establish that, for any a € O(2), there exists
an element g € @ such that g, = o. Let g(z) = (a2 + b)/(cz + d) e
€e®, g, :R2 — R2. The differential g, is realified multiplication by
£ (i), where g '(z) denotes the derivative with respect to complex variable
z, viz., g '(t) = 1/(ci + d)% Let

a = cos(—p/2), b = —sin(—ga/Z),A ¢ = sin(—¢/2), d = cos(—¢/2).

Then g (i) = cos ¢ + isin ¢, i.e., it is a rotation of C! through the
angle ¢. In the case of symmetry, consider the transformation w = —z
whose differential is a symmetry, and then apply a linear fractional
transformation which carries out a rotation. Now, let # be an arbitrary
motion and & (i) = z,. Due to the transitivity of the group ®, there exists
an element g€ @ such that g(z;) = i. The motion g-h €S, i.e.,
g-h(i) = i. The subgroup G is a connected subgroup containing the
identity element. The transformation w = —z does not belong to G.
Therefore, the group G is a subgroup of index 2 of the group ¢ .

7.27. Consider the cases n = 2k + 1 and n = 2k. The group O (n) is
disconnected and is the disjoint union of two path-connected com-
ponents, viz., O ¥ (n), i.e., the collection of matrices with det = + 1, and
O~ (n), i.e., the collection of matrices with det = —1. When
n = 2k + 1, the unit matrix E € O " (n), and the matrix —E € O~ (n).
Consider a discrete normal subgroup H of O (n). The element ghg "' e H
foranyh € H,and any g € O(n). If g € O (n), then g can be joined to E
with a continuous path () so that ¢(0) = g, ¢(1) = E. Ifg = O™ (n),
then the elements g and — E can be joined with a continuous path ¢(¢) so
that (0) = g, ¥(1) = — E. It is possible to construct two mappings M ()
and N(¢) such that M(t) = o(t)he ™ L(£), and N(7) = W)Yy~ @) for
g€ 0% (n)and g € O~ (n), respectively. Then

{M(O) = ghg~! = A, {N(O) =ghg™' =1,
M) =h, N(1) = h.
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The elements /4 and 4 are joined with a continuous path which lies in H
wholly. Since H is discrete, we obtain that h = 4, i.e., ghg~! = h for
anyhe H,ge O(n).

(The Schur Lemma.) Let p! : G — GL(V)), 02:G — GL(V,) be two
irreducible representations of a group G, and let f be a linear mapping of
the space V, mto the space V, such that p2(S)f = frl(S)foreachS € G.
Then (a) if p! and p? are not isomorphic, then f = 0, (b} if V| = V,,
ol = thenfls a homothety (i.e., multiplication by a certain number).

The mapping p: O(n) ~ O(n) C GL®R") is an irreducible representa-
tion, since reflections with respect to each of the axes can be considered.
These are matrices of the form

1, 0
()
0 1

where — 1 is placed at (/, /). All such transformations are contained in the
group O(n). Collectively, they keep fixed only the point (0, 0, . . ., 0).
Besides R” and 0, there are no other invariant subspaces in R”. Applying
the Schur lemma and using ghg ~! = & for any h € H we obtain that 4 is
a scalar matrix. But there are only two scalar matrices in O (n), viz., E and
—E. It is they that make up the discrete normal subgroup of O (n).

Consider the case n = 2k. The matrices £ and —Ee€ O™ (n) are a
subgroup of a discrete normal subgroup H of O(r). We show that H con-
tains no other elements. O * (1) contains no other elements from H, since
H N 0% (n)is a discrete normal subgroup of O * (1), but only the group
+ E can be that in O (n). The reasoning is similar to the previous. We
prove that O~ (n) contains no elements from H. Assume that
heO (n) N H.Thenghg ™! = hforanyg € O (n). The matrix & can
be reduced to block triangular form with an odd number of eigenvalues
— 1 by a certain orthogonal transformation of the basis with determinant
+ 1. If dim R” > 2, then, by an even number of transpositions of the
basis vectors, the diagonal elements can be interchanged. Generally
speaking, we will obtain a new matrix then, i.e.,ghg~! # h.E. g., wein-
terchange — 1 and the block; if there is no block, then we interchange — 1
and the block formed by + 1, + 1, In the case where n = 2, we have only
two kinds of matrices to which any matrix from O ~ (#) can be reduced by
an orthogonal transformation of the variable, viz.,

G -2) = (o)

Then
cos ¢ sinw)(l O) ) <l O)( cos ¢ singa)
—sin ¢ CcoS ¢ 0 -1 0 -1 —sing cos¢ )
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Therefore, there are no elements from the discrete normal subgroup of
O~ (n).

7.28. Theorem. Any group of motions of finite order N in R3 is isomor-
phic (assuming that the action has no kernel) to one of the following
groups: Cy, a cyclic group; Dy, a dihedral group; 7, the tetrahedral
group; W, the hexahedral (octahedral) group; and P, the dodecahedral
(icosahedral) group.

Proof. Let I" be a finite rotation group of order N. Consider the fixed
points (poles) of all transformations from I different from the identity
transformation. Let the multiplicity of a pole p (number of transforma-
tions from ", leaving p fixed) be equal to ». The number of operations dif-
ferent from the identity transformation / and leaving the pole p fixed
equals » — 1. Let g} be the set of points into which the pole p is
transformed under the action of elements from the group I'. Then {g} is
an orbit consisting of points equivalent to each other. The number of
points g equivalent to p equals N/v. In fact, the multiplicity of g also

equals ». The transformation L; € I' reduces p intog; (i = 1, .. ., n).
Let S, ..., S, be transformations leaving the point p fixed, and
U= (S Ly, s8, L3Sy Ly s8, LysSi Lys-vs S, Lyl

All these transformations are different, each element g € I is contained in
this set, and IT| = N, i.e.,, N = nvforany orbit N = n, = v,, where c
is a certain orbit. Consider all pairs (S, p), where § € " are fixed on p,
and S # J. The number of such pairs equals, on the one hand, 2(N — 1),
and, on the other hand, E (¢, — Dn,, viz.,

c

AN~ 1) = Z n., — 1),2 ~ 2/N = E - 1/wv),Nz2
< ¢

(because if N = 1, we shall have a trivial group). Therefore, v, > 2, and,
from the evident relations, we get that 2 < ¢ < 3. The following cases
are possible:

l.c = 2. Then 2/N = /v, + 1/v,, 2=N/v;+ N/vy=n + ny,
ng=ny,=1

Each of the two classes of equivalent poles consists of one pole of
multiplicity N, i.e., we have obtained a cyclic group of order N of rota-
tions about one axis.

2.c=3.Then 1/v; + 1/v, + 1/vy=1+2/N,vy < < v3e At least
onev; = 2. Letv) = 2. Then I/v; + 1/r3 = 1/2 + 2/N. The numbers vy,
v, cannot be greater than or equal to 4, i.e., v, = 20r3. (@) vy = vy =
=2, N=2v, vy=mn,a dihedral group Dy; (b) vy = 2, v, = 3,
1/vy = 1/6 + 2/N. Then the following cases are possible: », = 3,
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N = 12, the tetrahedral group T; »; = 4, N = 24, the hexahedral group
Wi vy = 5, N = 60, the dodecahedral group P.

The dodecahedral group 7 contains two classes of poles with four poles
of multiplicity 3, |17) = 1 + 4-2 + 1-3 = 12. The generators and
relations of the group 7T are abc = adb = acd = bdc =
= 1(a, b, c, d being rotations about all four vertices through the angle
2n/3),a° = b3 =¥ = @ = 1. Let e, f, g be rotations about the axes
l;, and ef = fe = g. To T, reflections may be added. Let 4 be an im-
proper rotation, and he = ek, a'h = ha’ " (i = 0, 1, 2). With all the
improper motions added, we obtain | | = 24. The cube and octahedron
possess the same group of motions |WIl =1+ 3-3+ 1-6+
+ 4-2 = 24, We have one class of six poles of order 4 (the vertices of the
cube), eight poles of order 3 (the centres of the faces), and twelve poles of
order 2 (the midpoints of the edges) for W. T is a subgroup of W. This is
obvious from geometry (the tetrahedron can be inscribed in the cube).
The relations are a® = b3 = ¢2 = g2 = 1 (where d is a reflection);
a'd = da*~',bid = db3*~ ', cd = dc,ac = b, | P| = 60 are only pro-
per motions. With the reflections added, we obtain | P! = 120. The
subgroup of proper motions in P is isomorphic to 4. It has twelve poles
of order 5 (the vertices of the icosahedron), twenty poles of order 3 (the
centres of the faces) and thirty poles of order 2 (the midpoints of the
edges). This group is commutative only partly. The relations in the
dodecahedral group are

abcde = 1, bkef~'i"'=1, aidk " 'h='=1,
civlg7len =1, bh1f ldg =1, ag lk lef =1,
or
bece = l,bkei™' = li=k,ci7'lg7le=1,b=g g7k lc=1.

Eliminating g and k, we get

bee = 1, biei~'=1, ci”lbe =1, bic™' = 1.
It follows from the relations bce = 1 and bie;™' = 1 thati = cb, and
from biei~! = 1, ¢i 'be = 1 and i = cb that bebc 'b2c~! = 1 and
ch" e e~ 1p ! = 1. From all the relations obtained, we deduce the

statement of the complete non-commutativity of the group P, i.e.,
P = [p, p]. Another variant of the corepresentation is

be=cb ' lcb™, b = bch " 'cbb, a° = b3 = abab = 1,

where g is the rotation about the axis of order 5, = (12345), b the rota-
tion about the axis of order 3, b = (452) and P = As.
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7.45. Let G be a finite group operating effectively on R”, i.e., if
xg = x,xeR", geG, theng = e. The group Z, generated by the ele-
ment g also operates effectlvely on R". Consider the space x = G/Z,,
where x ~ y if y = g'x, geZk, T (X)=Z,, m(X)=T1T,R") =0
wheni > 1, since R” — X is a covering map. Therefore, X is homotopy
equivalent to K(Zk, 1), i.e., to a lens space. But the homology KZ,, )is
different from 0 in an mflmte number of dimensions, whereas X has no
cells of dimensions greater than n. Thus, substantiating the statements:
(@) if a discrete group G acts on R” without fixed points, and
X = R"/G is the set of orbits, then the natural mapping p : R” — Xgis
a covering map; (b) 7, (X;) = G (the proofs of statements (a) and (b) are
left to the reader), we complete the proof.

8
Vector Fields

8.2. (a) VI5/5; (b) 3V21/7; (c) V3/3- 13 (d) — 2/5.

8.3. W2/5.

8.4. 1/4. =

8.5. (2) 0; (b) 2 ‘23 V2 + 3); © 0; (d) —2; (e) ma®/Va + R2,

8.7. 1/r%,

8.8. 1.

8.9. (grad f, grad g).

8.21. (@) (0, x, ¥y — x);

®) ©, 0,y* — 2xz);

©) (0, e* — xe’, 0);

(d) (0, 3x%, 2y ~ 6xz);

© 0, ~x(x + y5), x> + »?);

(f) (0, xz? + yzeX’, — 2xyz);

(g) (sin xz/x, 0, —sin xz/y);

(h) (xz/(x% + y?), yz/(x* + z2), = 1).

8.22. Use the existence and uniqueness theorem for a solution of a
system of ordinary differential equations.

8.23. Investigate the action of the Poisson bracket on the product of
two smooth functions.
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8.26. Consider the case, where £ = 3/dx .
8.33. Let z) = x, + iy, be a singular point, and

. a

fR)=u@)=iv@), - =M -0
ax (xg: Yo) ay (g, 7o)
Since

du _ov _ Ou v — o
ax (g, yp) ay (x> o) ay (xgs ¥0) ax ey ¥o) ’
fz'(zo) = 0. Letfz'(zo) = 0, i.e.,
du av
- (zg) + i (zg) = 0,
ax B0 T 15 Go
ou dv u
.,z):--—z = — —(z = Q.
aX(O ax(o) ay(o)

Then grad Re f(zy) = 0.

8.31. Represent the sphere $3 as the group of quaternions of unit
length.

8.34. We shall seek the integral curves only in the half-plane lying over
the straight line AB. The level curves for the function f(x) are the arcs of
the circumferences for which the line-segment 4B is a chord. The vector
grad f(x) is orthogonal to the level curve. Therefore, the vector or-
thogonal to it is tangent to the level curve, i.e., a circumference, and all
the arcs of the circumferences described are the integral curves of the flow
v (x).

8.35. (a) The integral curves of the vector field grad (Re ") are the
level curves of the conjugate function Im z” = r” sin n¢. The unique
singular point of the field v = grad(Re z"”)isz = 0,sincef'(z) = Oonly
at this point. The point z = 0 is the case of a degenerate saddle

n
point. Let us give a small perturbation to the functionz” — H (z — ¢).
i=1
Then the singular point splits into # — 1 non-degenerate saddle points of
the second order. Consider the behaviour of the integral curves near to
one of the singular points. Expanding the function in Taylor’s series, viz.,

f@) = f@) + fa)@z —a)+ ...,wheref'(q;) =0,

we see that the expansion starts from a term of the second order, since
Sf7(a;) # 0 (non-degenerate critical point); f“(a;) # 0if and only if all g,
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are multiples of f"(4;), but this is not true, since all ¢; are different.
Therefore, we have, near to the point g;, that f(z) = k(z ~ zz,~)2 +
+ 0(z?), i.e., the saddle point is non-degenerate. If the equality
S(a;) = 0 were valid, then we would have the case of a degenerate
singular point (i.e., saddle point of the third or higher order).

MSf)=z+ l/z;

Re (f(z)) = p cos ¢ + cos e/p = (o + 1/p) cos ¢;
Im (f(z)) = psineg — sing/p = (p ~ 1/p) sin ¢;
z = pe').

A singular point is at the origin, since the function 1/z is discontinuous.
The derivative of the function f(z) equals 1 — 1/z2, i.e., the singular
points arez = 1,z = — 1. Both points are non-degenerate. Consider the
integral curves for Im f(z), emanating from and returning to the singular
points, i.e., the separatrices (0 — 1/0) sin ¢ = ¢ (¢ = 0 at the point
(1, 0)). Thus, (0 — 1/p) sin ¢ = 0, whence ¢ = K7, or p = 1. Hence,
we find the separatrices viz., the unit circumference consisting of two
separatrices, and the real axis consisting of four separatrices. In the case
of grad[Re(f(z))], the separatrices are given similarly, by the equation
(0 + 1/p) cos ¢ = 2, and have the shape of two loops tangent to each
other.

©fiz)=2z+ 1/z%. Consider grad[Re(f(2))]. The integral curves of
this flow are the level curves of the function Im(f(z))

2xy . sin 2
=rsing — - o

Im(f@Z) =y — 5 T

@ =y = 5" s rz
(in polar coordinates on R?). Similarly, we seek the level curves of the
function Re(f(z)):

Re(f(z)) = rcosy + cozzzp .

@) f(@z) = z + 1/(z — 2). The singular points are z = 1, z = 2,
z = 3. In a neighbourhood of the pointz = 1, f'(z) = —2(z — 1) (the
first term in Taylor’s expansion). This is a singular point, a saddle.
Similarly, the singular point z = 3 is also a saddle point. In a
neighbourhood of the pointz = 2, the expansion in Laurent’s series of f~
isf'z)y=-1/(z — 2)2 + . ... Therefore, the integral curves of this
flow in a neighbourhood of the point z = 2 have the form of the integral
curves of the flow grad[Re(1/(z — 2))].
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©f@) = 22@ - %9z — 2)°Y, The singular points, i.e., zeroes of
the derivative f'(z), are the following: z; = 0, a saddle point of the sec-
ond order; z, = 1, a saddle point of the 100-th order; z; = 3, a saddle
point of the 900-th order; z, s = (1109 = 1093)/2006, non-degenerate
singular points.

Locally, in a neighbourhood of each singular point, the integral curves
play the role of saddle points (degenerate or non-degenerate at the points
z4 = 0.008, z5 = 1.09) of the corresponding order.

M fz) =1+ 2*@* — %% — 449 In a neighbourhood of
z = 0, f(z) can be replaced by f(z) = 1 + 4% 4%424 The qualitative
behaviour of the curves in a neighbourhood of the point z = 0 is never-
theless unaltered. But adding a constant does not change the form of the
trajectories. Therefore, the function f(z) = 2%, ¢ = 4% 4" where
z =~ 0, can be considered. The equations of the trajectories are of the
form ¢p? cos 4p = k. The point z = 0 is a degenerate singular point,
which, after a slight disruption, splits into four non-degenerate points.
More precisely, g(z) = c(z — £,z — &)z — &3}z — &4) is a slight
disruption of the function f(z).

® f(z) = 17100 In[(z — 2i)/(z — 4. At the points z = 2 and
z = 4, we have logarithmic singularities. Apart from them, there are no
other singular points.

h)f) = 1/(z* + 2z — 1). To simplify the notation, we perform a
translation w = z + 1. Then f(w) = 1/(w2 — 2). The singular points
are w = V2, w = —V2. The singular points of grad[Re(f(z))] coincide
with the zeroes of f’(w), i.e., w = 0, a singular point (it is non-
degenerate, since f ' (w) # 0).

G)f(z) = 2/z + 21 In z2. The sirgular points are (0, 0), (1/21, 0). The
separatrices are the curves 21¢ = sin ¢/2 and the axis x from 0 to + .

()f(z) = z° + 21n z. The singular points arez = 0,z = —2/5, the
vertices of a pentagon. At these points, f(z) ~ kz%, k # 0.

(X) f(z) = 2In(z — 1)> — 4/3 In(z + 10i)*. The singular points are
z=1,z= —10i, f(z) # 0 for all z.

M f)= 1/23 — 1/(z - i)3. The singular points are z = 0, z = i
(the poles of the third order). Differentiating,

S@)= - 234+ b o=o

@ - i
We obtain four other points:
i/V3 = i)z =i/(V3 + 1),
V3i + V3)/(1 + V3),z = (V3i — ¥3)/1 + V3).

Il

4

Il

Z

The integral curves behave at infinity as the integral curves of the flow
grad[Re(l/z4)], i.e., as the integral curves of a pole of order four.
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8.36. Let the flow v = (P, Q) be irrotational, i.e.,

) ] P
rotv = - -—~QEO, or - =?Q.
ay ox dy ax

Let us find a function f such that P = 4f/dx, Q = 3f/dy. To this end,
we integrate the first relation with respect to x between 0 and x, viz.,
X

fx,y) = [de + g(»). To find g(»), we integrate the latter relation
0
with respect to y, \iz.,

3 Toap
Qx, ») o (x,y) = S dx + g'(v)
ay dy
0

Il

T a
S af dx +2°0) = 0, y) — 0O, ») + g’ W).
0

Thus, Q(x, ¥) = Q(x, y) — Q(0, y) + g’(v). Therefore, g’ (¥) =
= Q(,y),ie.,

y
g0) = [ QO »dy + C.
0
Consequently,

S0, = [ PO yYdy + | Q0,0 dy + C.
0 0

Let v, and v, be two paths from (0, 0) to the point (x, y) in the plane
(x, ¥). Consequently, if rot v = 0, then

[ Pdx + Qdy = | Pdx + Qdy.

1 Y2
Therefore,

S, y) = ide + Qdy + C,

¥

where v is an arbitrary path from (0, 0) to (x, y).
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Besides, let the flow be incompressible, i.e.,

fe,y)={Pdx+ Qdy + C.

¥

Consider the flow

v =(Q,P), rotv’ =0

Therefore, the field v is potential. Thus, there exist functions a(x, y)
and b(x, ¥) such that v = grada(x, y), v' = grad b(x, y). Since
divv = div v~ = 0, we obtain that a(x, y) and b(x, y) are harmonic
functions, i.e., Ag = Ab = 0. Consider the function f = a + ib. It is
complex and analytic, since the Cauchy-Riemann equations are valid,
viz., :

da ab da b
oL = . = P(x, s = - .. = X, .
ax >) oy o Qx, »)

Such a function f is called a complex potential of the flow.
8.39. Hint: de, is homotopic to d¢, .
8.47. Consider the differential equation in R*

0 -1 0 0

x = Ax, where A = ! 00 0 , xeRA
0 00 -1
0 0 1 0

The required set consists of the integral curves of this equation, which
belong to the sphere. It is clear that x(¢) = eA’x(O). If R is regarded as
C?, then the integral curve passing through a point (z,, z;) € S3is of the
form (e"z,, ez,), since e/ may be written in the complex notation as

0 ¢
belonging to CP!. The definition of this correspondence is correct
because any other pair (z:z,) lying on the same trajectory differs from
(z1:z,) only by the factor e", and therefore, determines the same point of
CP!. It remains to note that the mapping is one-to-one and continuous.

it
follows: <e 0‘, . Let us assign to this trajectory the point (z;:z,)
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9
Tensor Analysis

9.1. (@) (0, 1); (b) (0, 2); () (1, 1); (d) (0, 2).
9.5. If k = dim V, then dim V" = ®+m),

1
9.14. gradf= ST IITIETI ¢ 48 2).

x4+ y2 4+ 72

9.25. (a) Use Problem 9.22 while replacing the sphere by the cone.

(b) The meridians and the equator are geodesic lines.

(c) Apply (a) and (b).

9.28. Perform covariant differentiation with respect to the parameter o
which parametrizes the family of curves.

9.39. Hint: The integral curves of the left-invariant vector field X are
left translations of a one-parameter subgroup, i.e., geodesics. Therefore,
we may assume that X = v, where 7 is the vector field of the velocities of
the geodesic y(¢). Since, by the definition of a geodesic, Vj(‘y) = (, for
any left-invariant field X, we have V,(X) = 0. In particular,
Ve, yX + Y)=0, ie, VyY + V X = 0. On the other hand,
VyY - VyX = [X, Y] In fact,

< . ' (aYk faxt
X yk=vivxk=x'{".. + Y”I",,‘,- -v Ix + XPrk
3 ax! P

xl

Yk -axk . ! oYk . axk
POY i ~l. + X'yP @k, - riy=x"", Y

ox! ox ax! ax'

’

since in = F,’»; (the connection is symmetric). The required statement
follows from the system: VY + VX = 0 and VY — V X =
= [X, Y]

9.41. Hint: The invariant definition of a curvature tensor is of the form
R(X,Y)Z =VyVyZ ~ V[X.Y]Z- Since V, Y = 1/2[X, Y], we obtain

1
R(X,Y)Z = i([X, Y,z - Y, [X, Z]) - 5 tx, rl, ).

Taking into account the Jacobi identity.

(X, 1Y, Z)) + [Z,1Xx, Y]] + [V, [Z, X]] = O,

we get

R(X,Y)Z = ;[[X, Y], Z].
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10
Differential Forms, Integral Formulae,
De Rham Cohomology

10.6. (@) — 2(z + Ddx A dy ndz; (b) yzdx ANdz + xzdy A dz; () 6ydx A
AN dy Adz; (d) 0; (e) 0; () 0; (2) df A dg; (h) 0.

10.7. Reduce the problem to the case of constant coefficients.

10.12. (3) —47/15; (b) —7/3; (¢} 47R*/3; (d) 0.

Z
10.13. (a) (Z(p + cos @), — (2 sin ¢ + ¢ cOos <p>,e_z sin w)-
0

10.14. (a) (2r cos 8, —r sin 8, 0);
2 cos @ sin
(b) <_ - 3 s — 3 > O)'
r r

10.15. (a) 2 + z/p cos ¢ — e¥ sin z;

® tan"p+ ¥~ @+ 2)et
P 1 +»

2 1
10.17. 4r — “cos® g cot 0 + - 5. : -
r ¢ rr2 + 1sin 6

1
10.19. @p + ¢ + 2 + ¢ (b)2@2 + ¢r + 2% + ¢ () pez + ¢
defsine + 22 + ¢ () pp cosz + c.
1
10.20. (a) 6 + c; (b) P4 e+ 0+ 0 © ) (r«,a2 + 02) + ¢;

drcosesingd + ¢; e sinf + In(l + ) + c.

10.21. 47R2.

10.22. (a) 1; (b) 7%; (c) 27R; (d) 0; (€) —27R%; (f) .

10.23. (2) 73 (b) 1; (c): + ‘./22 — 15 (d) 7 (e) 0; (£) 0.

10.24. (a) 24r; (b) /2.

5

10.25. (a) 4x; (b) 23” R3; (c) 4nR%; (d) 27R3; (e) ; R4 — R3 .

10.30. @) H'(S") = R, (b)) H2(§?) = R (O HX(RP?) = 0,k > 1;
DHY T = REHYT?) = R (@) dim HY(T") = <Z> () dim H' =

= k, where & is the number of points excluded.
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11
General Topology

11.1. Note that the open ball B" and punctured sphere S” are
homeomorphic. We prove the statement by induction on the dimension
of the complex. If the dimensionn = 0, then the statement is evident. Let
the statement be held for all numbers less than n. Then, by the inductive
hypothesis, the (n — 1)-dimensional skeleton K"~ I of the complex in
question is embeddable in the Euclidean space RV. This means that con-
tinuous real functions fj(x), . . ., fy(x) are given on K"~ 1 such that
U0), o ) = (FL0), ..., f,(2)) whenx # y. Let ej’-'(/‘ =1,
..., k) be all n-dimensional cells of our complex. Then the functions
J;(x) are defined on the boundary of each cell ej’-' (we denote it by éj'-'). Let
ej’-’ be homeomorphic to the interior B” of the closed ball D". We may
assume then that the functions f;(x) are given on D"\ B". Their con-
tinuity is preserved, but they may not be one-to-one now. Let us extend
these functions from D7\ B” ta B" (i.c., from é7 to 7) as follows. Let
zeB",and z # 0. We put f;(z) = lzlfi(z/1zl). If z = 0, then we set
Ji(z) = 0. Thus, we have extended the functions f; to continuous func-
tions on the whole complex K. Now, we define

gix), . .8, ).
Weputglx) = 0 s=1,...,n+ 1) outside e}/ and
@), ), gy ()
= (I);ll sinwlxl, ..., l),(:! sin wlx!, cos wlxl + 1) one;.

We define F : K — RV ™40+ D by the equality

FOO)Y= (100, o [nigle), ..ol 0, gk, ..

gk .

The mapping F is thus one-to-one, and the statement proved.

11.4. A section of the Klein bottle by a plane should be considered so
that there may be two Mobius strips. Then this plane should be lifted
(while discarding one Mobius strip), thereby carrying out the boundary
circumference deformation represented. When this circumference
becomes frec of self-intersections and turns into the standardly embedded
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circumference, it should be glued to the two-dimensional disk. Consider-
ing the surface obtained in lifting the plane and which is the trace of the
circumference deformed, we get an embedding of RP2 in R3,

11.5. The set of the points of self-intersection is homeomorphic to the
wedge of three circumferences S' v S v §!. The vertex of this wedge is a
triple self-intersection point, and any of its points different from the
vertex is double.

11.6. The boundary M? of the normal tubular neighbourhood of radius
¢ constructed is, obviously, projected onto RP? (two endpoints of the
normal line-segment are sent to its centre lying on RP2). Thus, M?is a
smooth, two-dimensional, compact, and closed manifold and a two-
sheeted covering of the projective plane. If we prove that this manifold is
connected, then we shall prove thereby that it is a two-dimensional
sphere, since S 2 is the unique two-sheeted connected covering of RP2,

To establish the connectedness, it suffices to consider two points on M 2
which are the endpoints of the same normal line-segment, and find the
path on M? joining these two points. To construct such a path, it suffices
to consider a point 7 on RPZ which is the centre of the line-segment under
consideration, and take on RP? a closed path starting and ending at the
point T and such that the orientation of the two-frame slipping along the
path and always tangent to RP2, changes in moving along it. Then, by
adding to this frame a third vector orthogonal to RP? and considering the
trace of this vector which is cut out by the frame in moving continuously
along the closed path, we obtain the continuous path on M? joining the
two selected points.

Note. The embedding of the two-dimensional sphere in Euclidean
three-dimensional space helps to prove a remarkable topological fact,
viz., the possibility of “turning the two-dimensional sphere in R inside
out”. This task is outside the scope of our course, and we confine
ourselves to a short sketch only. The embedding of $?2 indicated is such
that admits interchanging the exterior and interior of the two-dimensional
sphere while remaining in the regular embedding class. In fact, it suffices
to consider a smooth deformation of the two-dimensional sphere along
the normal vector field determined by the normal line-segments described
above. In doing so, the interior and exterior surfaces of the sphere inter-
change.

11.7. Consider a vector space over R with a basis of the power of the
continuum. We introduce the following topology on it. Consider the
“cube” B = [x: —1 < x, < 1 for all o}, where x,, are the coordinates of
the vector x, and the cross-section B is of finite codimension, viz.,

le/’)’u.& =B N gxu = nyjg = 0, PO yxé - 0}

13—2018
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We call the sets B3 5 the neighbourhoods of the point 0. It is obvious
that the point 0 has no countable base for the neighbourhoods in such a
topology, i.e., the space constructed does not satisfy the first countability
axiom, nor does it satisfy the second, since the first axiom is a corollary to
the first.

11.8. Consider the mapping F : $% — R%, x — (f(x), g(x)), where
F(S?) c R? is the image of the sphere. The image F(5%) is a set sym-
metric about the point (0, 0), since if (a, b)e F(x), then
(—a, —b) = F(rx). Assume that (0, 0) F(S?) and project the plane
with the exclusion of the origin onto the unit circumference. In polar
coordinates, where this projection can be written in the form
h(re’*) = e'. Then h(F(S?)) is a certain centrally symmetric set on the
unit circumference S!, where # (F(S 2)) is the image of the connected set
S2 under a continuous mapping # - F. Therefore, it is also connected. It is
obvious that a connected, centrally symmetric set on S! must coincide
with S!. Further, h(F(SZ)) must be l-connected as the image of the
1-connected set S2, which is contrary to the equality h(F(Sz)) =S

11.9. As the space X, take a space /, whose elements are sequences of
real numbersx = (x;,x,,...,x,,...)satisfying the condition Ix2ll =
= E lx,,l2 < oo. As the space Y C X, take a sphere in X, i.c., the set

n=1
of x such that Ixl? = 1. Consider a sequence of points X; in Y, so that
unity is at place i, and the other coordinates are zeroes. This infinite

seguence has no limit point, since lx; — X; Il = V2 for alli,j. Therefore,
Y is not a compactum.
11.11. Lete,, . . . , e, be the vertices of the complex K. Take the points

e{,...,e, in gencral position in R¥*+1 je. anyj points are linearly in-
dependent whenj < 27 + 2. To each skeleton

T=1le ...l €K,
0 r
we assign the simplex
T =le/ ...e/l eR"* 1L
0 r
This simplex exists, since due to the points e;, . . ., e, being in general
position in R¥* ! and inequality r < n, the points €y ..., € are

linearly independent. The simplexes form a complex isomorphic to the
complex T, since to each vertex, there corresponds one and only one
vertex from K.

The complex K is a triangulation. To prove this; it suffices to show that
no two simplexes 77, Tj € K "intersect. Lete,-'o, ... ,e; bethevertices of
T/, and ej'o, e, ej'q those of Tj (some of the vertices may be common).
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Let e,;(), Cey e/;r be all the points which are the vertices of at least one of
the simplexes 7;" and TJ The number of these points r + 1 satisfies the
inequality '

FHIS P+ D+ @+ D<@+ D)+ 4+ 1)=2n+ 2.

Since the points ey, . . . , e, are in general position in R¥ 1 the points
€hgr v+ o e, are the vertices of a certain degenerate simplex T of dimen-
sion not higher than 2n + 1. The simplexes 7, and 7 are two faces of
T, and therefore, do not intersect each other if different.

11.19. The main fact to prove is to show that any two fibres Q(x,, x)
and Q(x,, y) arc homeomorphic for any points.x and y from the space X.
We assume here that X is a connected manifold, x and y two points from
X, and Q(x,, x) the space of continuous paths from the base point x, to x.
We should be able to assign to each path y fromx,tox, apathy " fromx,
to y so that this correspondence may define a fibre homeomorphism. On
joining x and y with a path S we consider a tubular neighbourhood U (s)
of the path S and define a diffeomorphism ¢, : U(s) — U(s) which is
identity outside U(s) and sends the point x to a point s(¢) € S, where
0< 1< 1,5(0) = x,s(1) = y. As to the rest, the diffeomorphism ¢, is
arbitrary. The family lo,} (0 < ¢ < 1) determines a homotopy in the
manifold X. In constructing the homotopy, we have used the fact that X
is a manifold. Now, we define the homotopy

S Qxg, x) = Qxg,¥), fO() = ¢y().

It is easy to verify that this mapping establishes a homeomorphism be-
tween the spaces Q(x,, x) and Q(xy, »).

11.22. The existence of a convergent sequence in any infinite sequence
of points on a finite-dimensional sphere follows, e.g., at least from this
fact being valid for infinite-dimensional sequences on the unit line-
segment. Each vector is specified by a set of » + 1 real numbers {(coor-
dinates of the vector). It is clear that we use here the finiteness of the
number of coordinates. An infinite sphere is non-compact: it is easy to
find a sequence from which a convergent one cannot be singled out. E. g.,
the endpoints of the unit vectors of an orthonormal frame can be taken as
such a sequence. Since the distance between any two of such (non-
coincident) points equals v2, a convergent sequence cannot be singled
out,

11.34. No. If a topological, metric and compact space is connected,
then it is not necessarily path-connected, the well-known example being
the set of points on the plane (x, y) specified as follows:

1
{)’=sin }Uﬁ(x=0;—1<y<1)2-
X
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12
'Homotopy Theory

12.2. Axiom (W). If K is a CW-complex, then the set F C K is closed if
and only if, for all cells €9, the full inverse image (f?)“(F) C B9 is
closed in BY, Assume that there are two topologies in the space X: {U, ]
and de} We will say that { V3] > {U,] (stronger) if for any point x € X
and any V2 x, there is U, wy X such that Ua C VB

Assume t(hat apart from the topology determmed by axiom (W), there
is another topology {U,] in the CW-complex. Take an arbitrary point
x €K, i.e., a point belonging to the CW-complex, and U, 3x. A
neighbourhood is the union of mutually disjoint open 1ntersect10ns
(e? N U, ,)- Consider the full inverse image (/7)™ W, ,)- Itisopenin B9
(this follows from the continuity of the mappmgsf") Therefore for the
complement (K '\ U, ), the full inverse image (f$~ WK\ U (,0) is closed
in BY for all €. 1t follows from axiom (W) that (K\ U, ) is closed in K.
Therefore, U“o is open in the topology determined by ax1om (W), i.e.,
Uo(0 belongs to the system of open sets determined by (W).

12.21. The Klein bottle.

12.26. Let oy, a5 € H(X ', Y), @) ~ «,. This means that there exists a
homotopy F: X~ X I — Ysuchthat F(x,0) = a(x), F(x, 1) = ay(x).
Put F"=F-¢. Then F' : X x I —Y, F'(x, 0) = F(h(x), 0) =
= a(h(x)), F'(x, 1 =Fx), 1)=oayhx). Therefore,
a~h ~ ay-h.

12.28. Let S® = lim S”, where $"* ! is the suspension of S". The
sphere S so defined is a CW-complex. Consider « € 7,(§¥)and f € « :
f: 8"~ 8%, f sending the base point in S' to the base point of S, Let
f:+K — L be a continuous mapping of a complex K into a complex L, the
map being cellular on the subcomplex K| C K. Then there exists a map
g:K — L such that (a) f is homotopic to g; (b) g is cellular on Kj;
(c)flkI g Ik ; (d) the homotopy connecting f and g is the identity on
K. Therefore, there exists a mapping homotopic tof which transforms s
into the i-dimensional skeleton of $*, i.e., into S, but $' ¢ §' ¥ ! ¢ §*.
Consequently, g: S — $/* 1. Since =, (S”) = 0 when / < n, any map-
ping f € o € m;(S%) is homotopic to the mapping sending the whole of S
to the base pomt of $” (i.e., constant mapping). This means that the map-
ping f: §' = 8% is homotopic to constant. The mapping f has been
chosen arbitrarily. Therefore, 7;(S*) = 0.

If X and Y are cell complexes and a mapping f: X — Y induces the
isomorphism of all the homotopy groups, then f is a homotopy
equivalence. We take the mapping §* — * asf. The isomorphism of the
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homotopy groups is induced, since all of them are zero. Therefore, the
sphere S is homotopy equivalent to a point, and S contractible to a
point.

12.30. Let p~ ' (xy) = Fp, p~'(x,) = F, and ¢y: Fy ~ X an embed-
ding. Then p - p,: Fy — xy€ Y. Join x, to x; with a path, i.e., arrange for
a homotopy between the mappings of. the fibre F, into x; and x,, viz.,
Y Fy— Y, 4, (Fg) = (1), where v is our path. Then it follows from the
covering homotopy axiom that there exists a covering homotopy (family
of mappings ¢,: Fy — X) such that (p - ¢,)(Fg) = v(¢), i.e., 0 1 )(F)p)

= y(1) = x,, from which it follows that ¢,(F,) C F;. Thus, we have
constructed the mapping- NIE Fy — F| by means of the path y. We now
prove that +P1 depends only on the homotopy class of the path v, i.e., if
vy is homotoprc to v, then 1P is homotopic to , 1 Note that the con-
structed mapping £, ~ F; does not depend on the choice of a covering
homotopy in the sense that any two such mappings are homotopic. In
fact, let ¢, and £, cover ¢,. Then the mapping ¢, : F, — F is homotopic to
vo: Fy = Fy, ¢y = ¥, whereas the latter is homotopic to v, : Fy — F.
Now, let the family of paths y, be given. We shall show that 7Pl is
homotopic to v,P1- We have the mapping

vo(szOXI—.X; @'70¢)(F0X1)=70~

In Y, there exists a homotopy of vy, into v; which can be covered by a
mapping ¢:(F, X I) x I — X such that <bl(p x ) x 0 = v, and
<I>I(fox nx1 = fywith (p-f)Fy x I) = v,. Therefore, the mappmgf,
can be taken as a covering map for ally, f| = 11 Then & | (Fox D x 1 is
a homotopy between %1 and 1,91 Note furthermore that the mapping
(=X1' :Fy — Fjycan be constructed similarly by means of the path (—v).
It remains to prove that the mapping (=X1° «pl) Fy — Fyis homotopic
to the identity. But this mapping can be consrdered as the one induced by
the path v + (—+) which is, evidently, homotopic to a mapping into a
point.

12.37. Let S¥ x $"~ % be a cell complex with only four cells, viz., eO,
ek, ¢" "k e" Consider the mapping f : SX x §"~% — S" where
f(% = = is a certain point in $”. We take the latter as the zero-
dimensional cell in S”.

By the cellular approximation theorem, there exists a map
g:Sk x §"~k . §” which is cellular and homotopic to f, the equality
f(€%) = g(e®) being held on e and the whole homotopy connecting f and
g coinciding on e C f. Since S” consists of only two cells, viz., the zero-
dimensional (*) and n-dimensional, then, under the mapping g, the cells
e* and e” ~ ¥ are transformed into a point on $”. We obtain that the map-
ping g may not be equal to a constant only on the n-dimensional cell.
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Therefore, all the mappings S¥ x $” =% — S differ only by a certain
mapping of the n-dimensional cell into S¥ x S$” %, and then into §",
which transforms the whole boundary into a point on S” (due to the path-
connectedness of S”, the choice of a point is immaterial). But they are
mappings of type $” — S” (more exactly, a one-to-one correspondence
can be established between =(S¥ x §"~ %, §") and #(S", S™)).

12.49. Let (x', ..., x") — (x!, ..., x", 0) be the standard embed-
ding R" — R** ! (in the form of a hyperplane). Consider two points
A=1(0,...,0 1)and B(0, . .., 0, —1)in R"* ! and construct cones

C4M and CpM with vertices at the points A and B, respectively, and a
common base H C R”. Then any deformation of the subset R" \\ H in R”
can be extended to a deformation of the subset LR\ H) in R"* 1,

12.50. Assume the contrary, viz., let cat(M") < I(M"; G), i.e., that
there exists a covering of M” by closed sets X, . . . , X, k < [ (M"; G)
each of which contracts on M" to a point. Due to Poincaré duality,
H,M" G) = H"~*(M"; G), to the cocycles X{, ..., X there corre-
spond cycles y;, .. ., y, and to the product # = x; A . .. A x; (of the
cocycles x|, . .., x;) there corresponds the cycle o = y; N ... Ny,
which is the intersection of all the cycles y;, . . ., y;. Since the Poincaré
duality operator D is an isomorphism, the intersectiony, N ... Ny, =
= « is different from zero (i.e., the cycle « is not homologous to zero).
Since each subset X; (1 < / < k) is contractible on M” to a point,
H*(M", X;) = H*(M") (where * > 0). Therefore, the cycle y; €
€ H,(M") can be assumed to be homologous to the cycle y; €
€ H,(M"; X;),i.e., the carrier of the cycle y; liesin M" N\ X; (1 < i< k).
Hence, it follows that the intersectiony; N . . . N y, (homologous to the
intersection y; N ... N y,) lies in the complement of (the union)
X V... UX,; the more so, }10... n yk n ... N
Ny, CM'\N(X,U...UX,)= O, since X;, ..., X, forms a
covering of M". Since the interscction of the carriers of the cycles y; N
N ...Ny = &, the corresponding product of the cocycles XiA LA
A x; = 0, which contradicts the condition that x; A . . . Ax; # 0, and
the theorem is thus proved.

12.51. Consider the fibration (E, p, x), where E is the space of all paths
of the space X starting at the point x;, and p the mapping associating each
path with its endpoint. The total space E is considered here in the
compact-open topology. The fibre of this fibration is the space R X = QXO
of all loops of the space X at the point x,. It is easy to see that the space E
is contractible on itself to a point (each path is contractible on itself to the
point x;). Therefore, 7, (E) = 0, and the homotopy sequence of this
fibration

= Ty (E) = Ty + 1(X) - 7",1(9)(0) - 7T,,(E) - ...
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generates the isomorphism 7,(Qy ) = 7, ;(X). In particular,
T (QXO) ~ w,(X). The group 7, (X) is Abelian whenn = 2.

12.52. Definition. A space X is said to be contractible if the identity
mapping X — X is homotopic to the mapping X — X sending all X to a
point.

Definition. A space X is said to be l-connected if 7 (X) = 0.

Since X is contractible, there exist ¢,: X — X, ¢, being the identity
mapping X — X, and ¢, the mapping X — x, € X. Since the definition
of a fundamental group does not depend on a base point (up to isomor-
phism), let v:7 — X be an arbitrary path on X, v(0) = y(1) = Xx,,
8(r) = x4, 6:1 — X. The same homotopy ¢, : X — X stipulates that the
loops v and & are homotopic. Thus, any two paths on X are homotopic,

“ie., T (X) = 0.

12.53. We prove that (a) any element from w[(BA) (where BA is the
wedge of circumferences) is representable as the finite product of
elements n;' and 9, where 7, € 7r,(B/‘4) is the class of the mapping i,
(which is the standard embedding); (b) such a representation is unique up
to cancelling the factors », and 77u ! placed in a row.

(a) This is equivalent to 7, (B ) being a free group with the generators
1., @ € A. Consider the mappmg [ N BA Represent each cir-
cumference S' and S! e B) as the sum of three one-dimensional
simplexes P, Q, R and P,, Q,, R,. By the simplicial approximation
theorem, the mapping f is homotopic to a simplicial mapping F of a cer-
tain subdivision of the complex S! into BA Multiply the mapping F on
the right by a homotopy ¢,, where ¢, is the identity mapping, ¢,
transforms P, R, into a base point and stretches Q,, to the whole of S]
We obtain a mapping F homotopic to the original. The mapping F erther
transforms each of the equal parts into which 8! is divided, into a point
or winds it round one of Sa, o € A. The class of such a mapping in
”1(3/1) is the product of elements of the form », 1qu , and e (identity
element of the fundamemal group) i.e., the constant mapping class.

(b) The product 77,,'. .. (8 = 1, k 2 1), which has no n, and
Mo Vin a row, is not equal to the unit element in =, (BA), i.e., there exist
no relations in w](BA) Under the covering map =: T — X, the inverse
image of each point w(x) = D is found to be in one-to-one cor-
respondence with the cosets of the group =, (X) relative to the subgroup
7, (w(T)). In particular, if x;,x, € T, x € X, 7(xy) = w(x;) = x, and §
any path from x, to x,, then the loop #(S) with vertex at the pomt x is not
homotoprc to zero: otherwise, x; = x,. Let n = "0‘1 "“k , where
770; is a loop traversed in the direction of a circumference of the wedge ac-
cordmg to the sign of ¢;. Take k + 1 replicas of the wedge, and place
them one over another. We take M, in the first and second wedges cut
out a line-segment in both replicas, and j join their ends “crosswise”, while
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extending the projection « to them. Similarly, we join the second wedge
to the third by using 7.2 , etc. If there are two identical letters in the word
n one after the other, ti\en two line-segments of the same circumference
should be cut out. In doing so, the second operation precedes the first if
g; = 1, and follows it otherwise. We obtain a (k + 1)-sheeted covering
of B! 4 » the path 9 being covered by a path starting at the lower point, and
ending at the upper. This loop is not homotopic to zero.

12.54. Letf: Y, — Y, andg: Y, — Y| be two homotopy equivalences,
ie,g f~ ldy,; f-g ~ Idy,. We define the mappings f, : 7(Y;) —
- wl(Yz)andg,, T (Yy) = 7 (Y)) ([fa: st~ Y, aeaew(Y)),
then f© is the class of the loop f- « : st -~ Y,). Since f, " g. = (f- &),
Sx &y i (Yy) ~ w(Y,) and g, - f, i 7 (Yy) — 7(Y,) are isomor-
phisms, whence 7,(Y,) = =,(Y;).

12.55. Let 7;(X) * = (Y) be the free product of =;(X) and 7,(Y).
Let XY be two universal coverings of X and Y, respectively. Let xgbea
base point of X, Y and the wedge X Vv Y. We construct the following
covering: taking X, we consider P’ (xo), wherep : X — Xis a covermg
map, and glue Y at each point x eEp 1(xo) We identify x0 with xj,
where x{ is a certain point from p 1(xo) andp, : Y—~vYa covermg map.
At each remammg point from p; " (x,), and to each replica of ¥ “glued”,
we glue X in this manner, etc. The projectionp ": (X VY) - XV Yis
defined in a natural manner, viz., each replica of f’ is mapped into Y via
p’, and each replica of X into X via p. It is obvious that the space obtain-
ed is a covering of X v Y. Consider the fundamental group X V Y, points
tyand t,in X V Ysuch that ), t, € (p )™ ! (x), and a path &. Under the
projection p~, this path will be transformed into a certain loop o
representing the class of & in 7 (X Vv Y). Note that it follows from the
construction of the covering map and X and ¥ being 1-connected that the
path from ¢, to ¢, is unique up to homotopy.

Let ¢ € T (X VY) be decomposed in terms of the generators ¢; €
€ 7;(X) and 5 em(Y), i.e, a = c,15°“ 2. b"’" Then this
representatlon IS unique up to the re[atzons inm (X ) and 7 (Y). In fact,
let = &l b7} ...¢i"bj" ~ 1, where 1 is the constant loop at the
point x; and not all &, and o, equal zero (we take a reduced word). Then B
can be realized as a path in X V Y which, as it is obvious from the form of
the covering map, is not closed; therefore, B8 = 1. Thus, we have obtain-
ed that 7 (X V Y) = 7,(X) * 7,(Y). The same result follows from the
van Kampen theorem on expressing the fundamental group of a complex
in terms of the fundamental groups of its subcomplexes and their intersec-
tions,

12.56. Definition. If K is a knot, then the fundamental group
7R3\ K) is called the knot group. )

Let us find the corepresentation of this group. Consider the upper (or
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lower) corepresentation of the trefoil knot. Let PK be its projection. The
points K; ({ = 1, ..., 6) divide the knot into two alternating classes of
closed, connected arcs, viz., the class of overpasses and the class of under-
passes. Let A, A4,,A;be the overpasses, B, B, Bjthe underpasses and
F, the free group with the generators x, y, z. Wc call a path v in R? simple
if it is the union of a finite number of closed straight line-segments, its
origin and endpoint do not belong to PK, and it meets PK in a finite
number of points which are not the vertices either of PK or v. We
associate each path v with v* € Fy:v* = xjl. .. xj!, where x;_are the
generators of the free group, ¢, = 1 or ¢, = — 1 depending on how v
passes under A4; i+ The upper corepresentation of the group =, R\ K)is
of the form

(X, y,2;r, 1, 13), 1)

where r; = v are the relations. The upper corepresentation determined
by formula ( 1) is known to be the corepresentation of 1r1(R3\K ). The
loops vy, v5, v; around the overpasses (x, v, z are the generators) satisfy
the equalities

1 # -1 -1

v =xTlyzyT v =yl v =z ox L

We have obtained the corepresentation (x, y,z; x = yzy "L,y = zxz 71,

z = xyx ). Substitute z = xyx~ !, then
T RNK) = (x,p;x = yxyx "1y Ly = xpx). (2

Thus, 7r1(R3 NK) = (x, y; xyx = yxy). It is impossible to untie the
trefoil knot, since its type is different from the trivial knot type. If two
knots K“ and K™ have the same type, then their complementary spaces
possess coincident fundamental groups. The group G = (x, y;
xyx = yxy) is not the infinite, cyclic group Z. In fact, a homomorphism
6:G — S;can be constructed, where S5 is generated by the cycles (12) and
(23).

Let K” and K~ be two connected subcomplexes of a connected
n-dimensional, and simplicial complex K, each simplex from K belonging
to at least one of these subcomplexes. Their intersection D = K" N K~
is neither empty nor connected. Let F, F’, F”, Fp, be the fundamental
groups of the complexes K, K°, K, D. We take 0 € D as the starting
point of the closed paths. Then each closed path of the complex D is, at
the same time, a path of the complexes K “ and K ~*. We refer here to the
well-known van Kampen theorem. The group F is obtained from the free
product F* X F " if each pair of elements of F~ and F” corresponding to

201



the same element of F, are identified, i.e., assuming these elements to be
equal, we thereby add relations to the generators of the groups F’ and
F~.
We now find the fundamental group of the “helical” knot defined as
follows. Draw generators on the lateral surface of a circular cylinder at
the distance of 2x/m from each other, and then rotate the upper base
through 27rn/m. Then, identifying the bases, add one point at infinity
() and thereby turn R? into §3. Remave from S? all the points belonging
to the tubular neighbourhood of the knot. We obtain a polyhedron X, the
complement of the knot. Divide S3 into two parts by the torus which con-
tains the “helical” knot. The complex K is then divided into two solid tori
each of which has been stripped of the knot tubular neighbourhood on
the surface. We take one solid torus as K °, and the other (with the point
at infinity) as K”. The fundamental group F° (resp. F”) of the
polyhedron K~ (resp. K ') is a free group with one generator A (resp. B).
The generator A can be represented as the midline of the solid torus of the
polyhedron X (the same be done with B). The intersection D of both the
solid tori is a twisted annulus. The fundamental group D is also free with
one generator which we take to be the midline of the annulus. The group
F’ (® F” is a free group with the generators 4 and B. For an appropriate
orientation of the paths 4 and B, the path C considered as an element of
the group F’ equals 4™, and as an element of the group F "', it equals B".
We obtain the relation A™ = B". Thus, the corepresentation of the
group 7r1(S3\ v)is {A, B; A 2 = B3}, where v is the trefoil knot.

The two corepresentations of the fundamental group of the trefoil knot
obtained are equivalent. We leave the verification of this proposition to
the reader.

12.58. We choose the point 0 belonging to W as the starting point of the
closed paths. Then each closed path of the complex W is, at the same
time, a path of the complexes Z, Y, i.e., to each element of the group
7 (W) there correspond an element of the group ,(X) and an element
of the group 7,(Y). We represent Z, Y, W as simplicial complexes. Join
each vertex of X to 0 with a path. If the vertex lies in W, then the path
may be drawn in W wholly (because of the connectedness). A simplex of
an arbitrary dimension of the complex X belongs either to Z (but not to
Y)or YN Z or Y N Z. The set of all simplexes is thus divided into three
disjoint subsets Z, Y, W. The generators a; of the group 7, (X) can be put
into one-to-one correspondence with the edges of the complex X. In ac-
cordance with that simplicial complex to which this edge belongs (Z, Y or
W), we redesignate a; into z;, ¥; or w;, respectively. Thus, 7, (X ) has as its
generators those of the fundamental groups =;(Y) and w(Z) (the
generators of m, (W) being included in those of =,(Z) and = ,(Y)). The
relations in the group w,(X) are in one-to-one correspondence with the
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edges and triangles of the complex X. Since the complex X has been sub-
divided into three subsets, these relations also get into three classes. Let us
write out the relations:

<pj(W,-,Zi) =1 (inZ), 1)
9/ (W;, ) = 1(in Y), )]
¥;(w;) = L(in W). &)

Relations (3) are defining relations for the group = (W), relations (2) and
(3) for the groups 7, (Y) and =, (W), relations (1) and (3) for the groups
7,(Z) and 7 (W), and relations (1), (2), (3) for the group 7,(X). These
relations can be rewritten in the following manner:

goj(w,-’,z,-) =1, \/’j(W,") =1, 1"
‘Pj'(W,'"9 y=1, \l’j(Wi”) =1, 2"
W= w. 3

Relations (1°) and (2") determine the free product of the groups =,(Z)
and 7,(Y), and (3) implies that these elements of the groups =;(Z) and
7, (Y) corresponding to the same element w; of the group 7 (W) must be
identified. In proof, we have used the fact that W is connected, since
otherwise the statement derived for the group (X) 1s incorrect. E. g s
Z=Y=1 (a line-segment), = §9, X = st (X)) =
T(Z) = 7rl(Y) = e.

12.78. It is known that for any subgroup G C (X)), there exists a
covering map p: XG — X such that Im 7 (7rl(XG)) = G. Introduce
multlphcanon onX,.Letéep™ (e), where e is the unit element in X,
and £, § EXG Join é to £ and § with paths £, and §,: %, = ¢, %, = £,
Jo=e,9, = 9. Letp(R) = x,andp(P) = y. Thenx and y are joined to
e with the paths p(£,) = x, and p(¥,) = y,, respectively. These two paths
can be multiplied together in X, i.e., we can consider the path
2, = x, X y, which joins e to the pointz;, = z = xy. Let z, be liftable to
Z,in Xz, and £ X y = £Z,. It remains to verify the correctness of the
definition. The following statement can be proved. Let X be a groupoid
with identity, and «, $e€m(X, e). Then a8 = a X 8, meaning
multiplication in 7, (X, ¢) on the left-hand side, and multiplication in X
on the right-hand.

We omit the proof leaving it to the reader. The correctness of the
definition follows from this statement immediately.
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12.79. Whenp > Oandq > 0, foranyn < p + g — 1, the isomor-
phism holds: 7,(S” v §9) = 7,(8F) + 7,(S9). Since the pair
(SP x 89, §P v §7) is a relative (p + g)-dimensional cell, it follows
from proposition 1 (see below) that =, (S” x §9, $¥ v §7) = 0 when
m < p + q. Therefore,

T (8P V §9) = 7,,(SP) + 7, (59).

If for the triple (X, A, Xy), the pair (X, A) is a relative n-dimensional cell,
then 7,,(X, A,x,) = Owhen0 < m < n.The proof is left to the reader.

12.81. It follows from the Freudenthal theorem that the excisign
homomorphism =, (U, $") — 1rm(S"+ 1" 1) is an isomorphism whén
m < 2n, and an epimorphism when m = 21, where U and V are the
north and south hemispheres of $” * . We find 7r3(D2, dD?):

.= 7,8D?) —~ 7,(D?) — 7, (D* DY)~ 7, _,@D?) ... —.

When n = 3, we have 7,(0D2) = 14(S') = 0, 74,(D?) = 0, 7,(dD?) =
= 0. Hence, TFE(DZ) =~ 7r3(D2, apz) = 0. From the exact sequence,
m3(8%) = 7,(8%, D?) = Z. :

12.82. The proof follows from the exact homotopy sequence of the
Serre fibration.

12.83. The proof follows from the cellular representation of the projec-
tive space, and from the investigation of the standard covering map.

12.85. Let us prove that 7, (CP") = 0, where CP” is a cell complex
having one cell in each even dimension, i.e., having no one-dimensional
cells. By the theorem on the fundamental group of a cell complex with
one zero-dimensional cell, we obtain that = (CP”") = 0. Further, the
sphere $2"* ! fibres over CP" with the fibre S!. In fact, let $#* ! C

C C"* ! (standard embedding). The point (z;, . . .,2,, )€ s+ 1y
and only if lez,-l2 = 1. Further, CP" = {(z;, ..., 2,4, 1) up to
multiplication by N, i.e., M2y, . . ., 2,4 ) = @1s .+ . 12,4 1)) Set the
mapping p:S¥*! - CP", p(z;, . . .) = (z;, - . .). It is continuous,
and its image is the whole space CP". Over the point from CP”", the
following set of points from S2 * ! “hangs”: let (z,, . . . ,z, , ;) € CP",
then
A CTP SN B o IS S | N ol SN

where f 1 js the full inverse image, and 0 < ¢ < 27. In fact,
ez, ... ,2,4)ande2(z,, .. .,z,, ) are the same point in CP”,
but if ¢, # v,, then these are distinct points in §¥'%.1, Therefore, the
mapping p : s+l cp"isa fibre map. It now remains to apply the
exact homotopy sequence of the fibre map.
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12.86. The statements follow from the cellular approximation theorem:.
12.87. Let Py, : X X Y = Y, Py :'X X Y — Y be two projections.
Set the homomorphism ¢ : 7,(X X Y) — 7,(X) @ 7,(Y), viz.,

(P((X) = (pX*a’ pyt a)'

(a) ¢ is a homomorphism: (e + 8) = Dyn (@ + 6),py* o+ B) =
= Dys @ Pys@) D Bys B, PyxB) = 0(@) @ o(B).

(b) ¢ is a monomorphism. Let ¢(x) = 0, i.e., P = 0,Py.a=0.
Therefore, ¢, = PXooz S$" — X is homotopic to a constant mapping,
i.e., there exists ¥/, : S" — X such that ¥ x0 = \[’X')“!’ 1 = *.Then we
set the homotopy @, thus: &,(a) = (1[/X,(a), Pys (oz)) when ¢ = 0,
$,(@) = « when t =1 ¢ (a) is ‘a mapping of S§” into
(*) XYCXXY,(*, py,.(ﬂt))e7r ((*) x Y) = m,(Y). Butp,., (@)
is a contractible spheroid, i.e., « is contractible.

(c) ¢ is an epimorphism. Let 8 € 7,(X), vy € 7, (Y). Thena = (8,7)is
transformed into 8 @ v under p.

p p

Let there be two universal coverings: E| = x, E, 2 ¥. Consider the
mappingp; X p,  E; X E) = X X Y, {p; X p2) (e, X ez) =
= (p,e; X pye,). We assert that this is a covering. The proof is left to
the reader.

Let7] € T](X’X())"YZ € W](Y9y0)ya1 € Wn(X’ Xo), az € Wn(Y, yo),
and a homotopy F; along the path v, of the spheroid o, be given so that
Fole)) = a, Fi(ay) = vylol, Fla)en, (X, (). Similarly,
D(£): Ppley) = @y, Pi(ay) = v,len], @,(@,y) € T,(Y, v,(1)). Define a
homotopy along the loopy = (y; ® v,) (t) into X X Y of the spheroid

= (] @ ay)asF, (o)) X &,(ay). Then Fila) X ®(a;) =
= vl 1 ® ’Yz[az]-ThUS, [vi @ v;lle; @ a] = ‘Y|[‘X|] ® v 2lesyl.
But since any loop vy and any spheroid from X x Y are of the forms
Y1 ® voand oy @ «,forcertainy € m(X), v, € (YY), o €7, (X),
o, € m,(Y), then the action of 7 (X X Y)on7,(X x Y)has been fully
determined.

12.89. Use the Hopf map S* — S2. It is arranged as follows:

S = ((z),25) t 12,12 + 12,12 = Je €% 5% = CP,

i.e.,

S = {(z),25) + A2y, AZp) ~ (21, 22))-

We obtain the fibre map S 3 . 82, The exact sequence may be written for
this fibre map, viz.,

c= w8 - (83 — 78T = m_ (SH— ...
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From the properties of the sequence, 7r,-(S3) = wi(Sz) when i > 3. By
the Freudenthal theorem, the homemorphism 7; _ ;(S"~ Ly~ m;(8") is
an epimorphism when /i < 2n — 2, and an isomorphism when
i < 2n — 2, i.e., the homomorphisms

T (81) = 7,(8%) — m4(S5?)

are isomorphisms. Therefore, m;(S%) = Z. Since 7r,-(S3) = 7,(5%)
(i > 3), 1,(8%) = Z.

15
Simplest Variational Problems

15.1. It suffices to consider the Euler equations for the action func-
tional and write these equations in local coordinates. In doing so, use ex-
plicit formulae for the Christoffel symbols.

15.2. The Euler equations for both functionals should be written out,
and then the behaviour of the functionals when changing the parameter
(i.e., time) on the extremal solutions considered. The required statement
follows from the length functional being invariant under parameter
changes and the action functional being not invariant.

15.3. The proof is reduced to the direct computation: the Euler egqua-
tion in Cartesian coordinates should be written out, and the explicit for-
mulae for the mean curvature used (the mean curvature is calculated for
the graph of a smooth function).

15.4. The proof is similar to that in Problem 15.3. This analogy is based
on the codimension of the graph of the function being equal to unity in
both problems. Therefore, the mean curvature tensor is given by one
function only (by the mean curvature itself).

15.5. Use the classical inequality

(ﬁ /g dt)2 < (Ef%ﬂ) (lﬁ gzdt>.

15.6. Square the integrands and compare them.

15.7. Use local Beltrami-Laplace equation theory and write the equa-
tion in a curvilinear coordinate system. It follows from the theory that
conformal coordinates can be always locally introduced on a two-
dimensional surface (given by analytic functions), while adding the condi-
tion that the mean curvature equals zero transforms these coordinates in-
to harmonic.
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15.8. For example, the function r{u, v) = (u, v, u? — v2).

15.9. (c) The calculations performed in point (b) are of local character,
which enables us to carry them out in a neighbourhood of cach point on
the Kahler manifold. On the contrary, Stokes’ formula is valid for any
smooth manifold (recall that the Kahler exterior 2-form is closed).

15.10. By the implicit function theorem, one of the coordinates, e.g.,
X", can be expressed (on the level surface F, = const) as a smooth func-
tion of the other coordinates. Substitute this function in the Euler equa-
tion for the extremal of the functional J.
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