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PREFACE

The purpose of this book is to introduce the student to the
analytic side of projective geometry. It leads him from the
concepts and methods of elementary analytic geometry to the
ideas of cross-ratio, triangle of reference, general projective trans-
formation, etc. Very little mention is made of solid analytic
geometry. Being introductory in nature, this book does not
aim to give complete discussions of transformation groups and
subgroups, of invariants, or of other advanced topics.

This book is supposed to follow. a-first course in plane analytic
geometry, but it contains material for a more advanced course also.
A semester course in general plane analytic projective geometry
could be taught from this textbook by taking a few sections here
and there in the first eight chapters and then going into the second
half of the book. On the other hand, a more elementary course in
advanced analytic geometry could be given by using the first half
of the book almost exclusively.

There are references in the second half of the book to the fol-
lowing scctions in the first half: §§3, 4, 9, 11, 12, 13, 14, 16, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 42, 43,
44, 45, 46, 49, 50, 51, 56, 58, 60, 62, 63. Most of thesc references,
however, are brief and can be looked up by the student when he
comes to them in the text. In order to give a more advanced
semester course using the second half of the book the teacher
would probably have to assign for a hasty reading all or parts of
the following sections from the first half: §86, 7, 8, 9, 11, 12, 13,
14, 18, 21, 23, 24, 29, 30, 31, 35, 40, 50. The first five of these
sections could be read before undertaking §64, and the rest could
be taken parallel with the text beyond §64.

The author wishes to express his gratitude to Professor R. D.
Carmichael for reading the manuscript and offering many valuable
suggestions. The author wishes also to express his thanks to Mr.
Joseph J. Eachus and to Mr. John E. Hart for their assistance
with the manuscript and with the proof.

A.D.C.

Syracuse UNIVERSITY
May, 1938
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ADVANCED ANALYTIC GEOMETRY

PART 1

INTRODUCTION TO AFFINE PLANE ANALYTIC
PROJECTIVE GEOMETRY

CHAPTER I
VARIOUS COORDINATE SYSTEMS

1, 2. Frames of reference. DEFINITION. Any collection of
points and lines (or other curves) that is made use of to set up a
system of coordinates for the points of a plane is called a frame of
reference for this plane.

A pair of rectangular or oblique axes, their point of intersection
(0,0), and the two so-called unit points on the axes, namely (0,1)
and (1,0), constitute such a frame of reference. The pole, the
unit angle, the initial line, and the point (1,0) on this line form a
frame of reference for polar coordinates in the plane.

For the sake of brevity we shall designate as the ordinary frame
of reference in a plane the frame consisting of a pair of rectangular
axes with the same-sized unit on each axis,

The formulas for the distance between two points, for the angle
between two lines, for the arca of a triangle, also the equation of
a circle, and many other formulas and equations in analytic
geometry presuppose the use of an ordinary frame of reference.

We shall call the unit on the z-axis the z-unit, and the unit on
the y-axis the y-unit. In an ordinary frame of reference we take
the z- and y-units of the same size. In fact, even when using
oblique axes, more often than not we take (0,1) and (1,0) each
at the same distance from the origin.

However, let us note that we sometimes use units of different
sizes. For example, to draw the curve y = 100 22 we should

probably take the y-unit one-tenth the size of the z-unit.
1



2 VARIOUS COORDINATE SYSTEMS

In analytic projective geometry, on the other hand, we use
either oblique or rectangular axes; and we take any two arbitrary
points on these axes (neither point at the origin) as (1,0) and (0,1).
We sometimes take an arbitrary point not on the axes as (1,1),
and from this point determine (1,0) and (0,1) by lines parallel
to the axes.

Also we free ourselves from the conventions of always labeling
the horizontal axis as the z-axis and the vertical as the y-axis,
and always taking the positive direction on the horizontal axis
to the right and on the vertical axis upward. We note that in
the calculus we sometimes vary these directions. Thus in the
study of a falling body and of hydraulic pressure, the z-axis is
often taken vertical with positive direction downward.

Later on (see §70), we shall introduce a still more general
frame of reference for the plane called a triangle of reference.
It will be seen that any triangle ABC can be used as a triangle of
reference; and that if we join any point P in the plane to the
vertices A and B of this triangle, the lines AP and BP will cut the
sides CB and CA respectively in points whose coordinates are
assigned to P. (Compare this with the fact that for rectangular
or oblique axes we can determine the abscissa of a point P by
drawing through P a line m parallel to the y-axis and finding
where m cuts the z-axis; similarly we can determine the ordinate
of P by drawing through P a line [ parallel to the z-axis.)

Rectangular and oblique axes will turn out to be only special
cases of a triangle of reference.

Just as in a plane, so on a line and in space, when we assign
coordinates to points we use a frame of reference. For example,
when we attach to the points P;, Py, P3, - - - of a line [ the co-
ordinates x;, s, x3, - - - respectively, we utilize a frame of refer-
ence composed of any two distinct points on l to which we give the
coordinates 0 and 1.

EXERCISES

1. Plot the points (—7, 6) and (3, —5) referred to oblique axes with dif-
ferent-sized units and with the positive directions on the z-axis to the left
and on the y-axis downward.

2. Draw a figure and show that the formula for the coordinates of a point
dividing a line-segment in a given ratio does not require rectangular axes or
even the same length of unit for each axis. Hint: Note the derivation of this
formula that is given in Fine and Thompson’s *“ Coordinate Geometry.”
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3. Look through a book on elementary analytic geometry and find what
formulas and equations do not require an ordinary frame of reference.
4. Draw the following curves referred to rectangular axes with the y-unit

one-half the size of the z-unit:
2

22+ 92 =1, :cz+-y-4-=1, y==2

3. Oblique axes. In order to free ourselves from the habit of
looking upon the coordinates z and y as referred always to an
ordinary frame of reference, we shall consider more in detail the
use of oblique axes. We shall term as ordinary oblique axes those
with z- and y-units of equal length.

We note first of all a simple way to draw curves referred to
oblique axes by drawing them Y ¥

first referred to rectangular P

axes (as in the adjoining fig- i R R’

ure) having the same origin s’

and z-axis, and then using a S

compass to lay off the oblique O/I ] =7 X=X

ordinate corresponding to each

abscissa. (In this figure the dotted circular arcs are to represent
the path of the compass while constructing the primed points
from the unprimed.)

In oblique coordinates, Vv (z; — 22)> + (y1 — ¥2)? no longer
my — my
1+ mymeg
mula for the tangent of the angle between two lines, y = m;z + b,
and y = mex + by, m; and my are not the slopes* of these two
lines, dy/dx is not the slope* of a tangent to a curve,

gives the distance between two points, is not the for-

' cosa+y sina—p

is not the distance from a line to a point, 22 + y? = % is not
the equation of a circle. (We might prolong this list indefinitely.)
However, z/a + y/b = 1 1is still the intercept form for the

k k
equation of a line in oblique coordinates, z = Iy + katy and
ky + ko
k k . .
Yy = —12—2% are (just as in rectangular coordinates) the
1 2

coordinates of the point dividing the segment of the line from

* By the slope of a line we mean here the tangent of the angle the line
makes with the positive direction of the z-axis.
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(z1,41) to (xg,y2) in the ratio ki/ks, a first-degree equation still
gives a straight line and a second-degree equation a conic — and
all these facts are still true even for the case when the units on
the two axes are not of the same length. (We leave the proofs
of these facts for the reader to discuss, in the exercises.)

EXERCISES

1. Verify the statements made in the last paragraph of the text. Hint:
Look up the derivations of these formulas and equations in an elementary
textbook.

2. Prove that the slope of a line y = mx + b referred to ordinary oblique

., m sin w . .
axes ism’ = i—+———— , where o is the angle between the two axes. Hint:
m cos w

Draw a figure showing this line as joining two points Pj(zy, mz1 + b) and
Pa(x2, mxs + b), then draw a right triangle with P1Pg as its hypotenuse and
with its base parallel to the r-axis; from this right triangle find m’.

3. Find the tangent of the angle between two lines referred to ordinary
oblique axes.

4. Derive the distance formula

d=V@ — 1)+ (y1 — y2)? +2cosw (£1 — T2) (Y1 — y2)

for ordinary oblique axes, where  is the angle between the two axes. Hint:
Use the figure of Ex. 2, or use the trigonometric formula for the length of a
side of an oblique triangle.

5. Prove that a circle referred to ordinary oblique axes has an equation
of the form

22+ 92+ 2zycosw +2ar +2by +c=0

Hint: Use Ex. 4.
6. Derive the formula

1y 1
A=3%sinw|z2 y2 1
z3 ys 1

for the area of a triangle (z1,41), (z2,¥2), (z3,y3) referred to ordinary oblique
axes with w as the angle between the two axes.
7. Draw roughly the curves

y2=4z, zy =1, zz—y2=1; y2=7’3

referred to ordinary oblique axes, using the hint in the text.

8. Show that the formulas and equations of Exs. 2, 3, 4, 5, 6 reduce to
the corresponding formulas and equations for an ordinary frame of reference
if we put w = /2. (This illustrates how rectangular axes may be looked
upon as a special case of oblique axes. Note how much simpler all such
formulas and equations for an ordinary frame of reference are. This, of
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course, is one reason why we habitually use rectangular axes. Can you think
of other reasons for preferring an ordinary frame of reference?)

9. In the triangle (1,3), (—2,—4), (1,—2), where w = 60° find the equa-
tions of the sides and the lengths of these sides.

10. If w = #/4, find the equation of the line with y-intercept 2 and with
slope 3, also the equation of the line through (1,1) and perpendicular to
y=2z

11. Find the equation of the parabola with focus (p,0) and directrix
2 = —p, where the coordinates arc referred to ordinary oblique axes with
angle w.

12. Using the foci Fi(ae,0) and Fa(—ae,0) where ae = Va? — b2, also
using the definition of an ellipse as the locus of a point P such that F,P 4 FoP
= 2 g, derive the equation of this ellipse referred to ordinary oblique axes
with angle w.

13. Taking ae = Va® + b2 and FiP — FyP = 24, do the same for a
hyperbola as in Ex. 12 for an ellipse.

14. Show that for w = 7/2 the equations of Exs. 11, 12, and 13 reduce to
the typical equations of these conics that were derived in elementary analytic
geometry.

4. Transformations from rectangular to oblique axes. In
Exs. 2, 3, 4, 5, and 6 of §3 we see that the equations of some well-
known geometric loci and the formulas that give some familiar
geometric properties are quite different when the coordinates refer
to oblique axes from what they are when an ordinary frame of
reference is used. We also note that some formulas and equations
are the same both for an ordinary frame of reference and for
ordinary oblique axes.

We can discuss the question of such differences that arise when
using various kinds of axes most readily by considering how we
must modify formulas and equations when going from rectangular
to oblique coordinates. Therefore we want to derive the equations
that effect such a change of coordinates.

We suppose first of
all that the rectangu-
lar and oblique axes
have the same origin.
(See the adjoining fig-
ure.) For the case
where the origins are
distinct, see Ex. 13 in
§6. We let OX, OY
be the rectangular axes and 0X’, OY’ the oblique axes, we call ¢
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the angle X0X’ and w the angle X’OY’; then the angle Y'0Y is
m/2 — w — ¢, whether or not w + ¢ < v/2. We take any point
P with coordinates z,y and z’,y’, we label the foot of each of the
ordinates y and y’ respectively M and M’. Projecting the broken
line OM’P onto OX and then onto MP, we get

(1) z=2"cosp+y cos (w+¢), y=2"sing+y sin(w+¢)

Solving (1) for 2’ and %’ in terms of = and y, we obtain

(1’) xl = xSin (w + ¢) _ Cos8 (0) + ¢)
sin w sin w
J = _wsTn ¢ cc')s ¢
Sin w Sl w

We note that if OX’ is the same line as OX with the same
positive direction, then ¢ = 0, and the above transformation to
oblique coordinates reduces to

(2) z =2 +y cosw, y =y sinw
2" =z —y cotw, ¥ =y cscw
(See also Ex. 7 in the exercises.)

DerFINmTiON.  We call (17) and (2”) the ¢nverses of (1) and (2),
res:pectively. We also call (1) and (2) the inverses of (1’) and
(2).

These inverse transformations change back from oblique to
rectangular coordinates (or vice versa). Thus if we perform
(1) on the circle 22 4+ y? = r2, we obtain the equation z'2 + y'2 +
2 2’y cos w = r?; and if we perform (1”) on the second equation,
we come back to the first.

Equations (1) and (2) are useful for transforming a formula or
equation from rectangular to oblique coordinates, but (1’) and
(2’) are better adapted than (1) and (2), respectively, to finding
the oblique coordinates of a point given in rectangular coordinates.
For example, if @ = ¢ = 30°, then (1’) becomes 2’ = V3 z — y,
y' = —z + V3 y, and the point (V3,V3) referred to an ordinary
frame of reference has now the oblique coordinates (3 — V'3,

—V3 4+ 3).
The transformations (1), (1°), (2), (2") are all of the first degree



FROM RECTANGULAR TO OBLIQUE AXES 7

in the variables z, y, z’, ¥’ and so cannot raise the degree* of the
equation of a locus. Also no one of these transformations can
lower the degree* of any such equation, for then its inverse would
have to raise the degree of the transformed equation in order to
return us to the original equation of the locus. This argument
proves the following

TrEOREM. In oblique coordinates, as well as in rectangular, every
line has a first-degree equation and conversely every first-degree
equation is the equation of a line; every conmic has a second-degree
equation and conversely every second-degree equation is the equation
of a conic. (See also Ex. 6 in §0.)

IrLusTrATIVE ExampLe. If we apply (2) to the formula

oy 1
rg y2 1
r3 Y3 1

for the area of a triangle referred to an ordinary frame of reference we get

I4 4 ! . ’
£+ yyeosw y} sin w 1 . a:i Y 1
A=1% .l'?-*—y?(:osw Ypsinw 1| =jsinw |z v 1
T3 + yzcos w Y3 8in w 1 T3 y3 1

which is the formula for the area of a triangle referred to ordinary oblique
axes. (To simplify this determinant we remove the factor sin w from the
second column, then multiply the second column by cos w and subtract it
from the first.)

EXERCISES

1. Show that the derivation of (1) is valid even forw 4+ ¢ > =/2.

2. Obtain (1’) from (1) and (2’) from (2), carrying through the details
omitted in the text.

3. Show that, for = 7/2, equations (1) and (1’) reduce to the ordinary
rotation of axes and its inverse. Compare (7) and (7’) in §6.

4. Find the forms that (1) and (1’) take if ¢ = =, i.e., if OX’ is the same
line as OX only with a different positive direction.

5. The points (1,0), (0,1), (1,1), (3,5), (—6,0) are referred to rectangular
axes. Find the coordinates of these points referred to oblique axes that are
obtained from the rectangular axes by (1) withw = ¢ = 30°.

6. If the points of Ex. 5 are given as referred to the oblique axes of this
example, find their coordinates referred to the rectangular axes.

7. Derive the transformation (2) directly from a figure.

* We remind the student that the degree of the equation of a locus az®yf1
+ bz%yPs + - -+ = 0 means the largest value of the numbers di = a; + 8,
d2 = ag + By, ete. Thus ry = 1is a second-degree equation; y*r = 22 — 2,
a third-degree equation.
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8. Obtain the results in Exs. 2, 3, 4, 5, 6, 11, 12, and 13 of §3 by using the
transformation (2) on the corresponding equations and formulas for an
ordinary frame of reference.

9. Subject the equations y2 = 4z, zy = 1,22 — 42 = 1 to the transfor-
mation (1) withw = ¢ = n/4.

10. In ordinary oblique* coordinates with w = 60° find the tangent of
the angle between the two lines y = ¢ + 2 and y = —z + 2; find the
distance from (1,1) to (2,2); find the area of the triangle with vertices
(0,0), 1,1), (3,4): find the equation of the circle through the three points
(0,0) (1,0), (0,1). Note that we here use unprimed variables for oblique co-
ordinates.

11. Find the center and radius of the circle in Ex. 10, also of the general
circle in Ex. 5 of §3.

12. If w = 45° find the equation of the circle with center (1,1) and radius
V2.

13. If w = 120°, draw y = x® and y = z%  See note in Ex. 10.

14. Derive the formula in ordinary oblique coordinates for the perpen-
dicular distance from a line az + by + ¢ = 0 to a point P’(z’,y’). Hint:
Use (2’) on this line, apply the corresponding formula for rectangular axes to
this transformed equation of the line, then apply (2) to the result to return to
oblique coordinates. Note that x,y now are oblique coordinates (compare
Ex. 10), so in (2’) and (2) we should replace z’y’ by z,y and x,y by some such
variables as 2’’,y’’ before we use these transformations in this problem.
Check your answer by putting o = #/2 in the formula you obtain and seeing
if it then reduces to

ar’ +by’ +¢
+Va® + b?
Why does this check the answer?

15. If ¢ = 30°, w = 60°, change 3 2 — 52 = 1 to oblique coordinates by
means of (1). Interpret your result geometrically. Also change 2’y’ = 1 to
rectangular axes by (1’) with ¢ = 30° w = 60°.

16. Consider the hyperbola 22/16 — y2/9 = 1 with asymptotes z /4 4 y/3
= 0, Using these asymptotes as z’- and y’-axes, find sin¢, cos¢, sin
(w + ¢), cos (w + ¢), and by means of (1) change the above equation into
oblique coordinates. Note that the coefficients of (1) must satisfy the equa-
tions sin ¢ + cos?¢ = sin? (w + ¢) + cos? (w + ¢) = 1.

17. In rectangular coordinates the equation

ax? +by? +c+2fy +2g9r +2hxy =0
a h g
where | b b f | # 0 is that of an ellipse, parabola, or hyperbola according
g f ¢
as h2 —ab <0, k2 — ab = 0, h® — ab > 0, respectively. Find the corre-
sponding conditions for oblique coordinates. Hint: Use (2’) on this equation
as in Ex. 14. Check your answer by putting = = /2.

* By ordinary oblique coordinales we mean, of course, coordinates referred
to ordinary oblique axes; and similarly for ordinary rectangular coordinates.
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5. Tangents to curves in oblique coordinates. In order to
find the geometrical meaning of dy/dr in ordinary oblique co-
ordinates, we note from the figure below that
Ay sin

tanf = ——
Az 4 Ay cos w

where 8 is the angle between the secant PP, to the curve C and
the z-axis. (We use unprimed variables for oblique coordinates,
as in Ex. 10 of §4.)

P, (z+Axz, YrtAy)

Dividing numerator and denominator of this fraction by Ar
and letting Az — 0 (which makes Ay — 0), we get the slope* of
the tangent to a curve in ordinary oblique coordinates, namely

i sin w
m dx’
= ”
1 + —cos

+ iz CcoS w
(Compare Ex. 2 in §3.)

However, we show now that the equation of the tangent to

a curve ¥ = f(x) in oblique coordinates at a point P, (x1,y;) is the
same as in rectangular coordinates, namely

% _
3) y—y = dex (x — 21)

=z

Proor: From the above figure we see that the equation of the
secant PP, is
Y—U _ r— I
Y1 — (1 + 4y)  x — (71 + Ax)

* Here the slope is understood as the limit of tan 8 as Az — 0.
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since this equation is of the first degree in x and y and so must
be the equation of a line (compare the theorem in §4). Also this
equation is satistied by the coordinates of P; and P, and so must
be the equation of the secant P1P;. (Note this type of argument;
it is used frequently.) Rearranging the equation of P,P,, we
obtainy — y; = (z — z;) Ay/Az. Letting Az — 0 (and so Ay — 0),
we obtain the equation of the tangent to the curve y = f(z) at P,
namely (3).

EXERCISES

1. Find the equation of the tangent to the curve y? = 4 z (referred to ordi-
nary oblique axes with = 60°) at the point (1,2), and find the slope of this
tangent.

2. Show that the equation of the tangent to the so-called general conic

4) ax® + by’ +c+2fy +2gx +2hzy =0
at the point (z’,y’) can be arranged in the form
(5) arz’ +byy’ +c+fy+y') +g@x+2') +h@y+ay) =0

Compare the derivation of (5) that is given in Fine and Thompson’s ¢ Coordi-
nate Geometry.”



CHAPTER II

PRELIMINARY DISCUSSION OF LINEAR
TRANSFORMATIONS

6. Translations and rotations. In elementary analytic geom-
etry we studied what were called translations and rotations of
axes, using an ordinary frame of refcrence.

DEFINITION. A translation is a linear transformation of ordi-
nary rectangular coordinates given by equations of the form

(6) z=2+a y =y +8
(6") =z —a y=y ~8

Note that we omit the word axes from the above definition, and
compare §11. The derivation of equations (6) and (6’) is valid
also for oblique axes. We leave this fact for the student to prove
in the exercises.

DErINITION. A rotation is a linear transformation of ordinary
rectangular coordinates given by equations of the form

() z =2'cos¢—y' sing, y =2 sing+y cos ¢
(7)) 2 =2z cosp+y sing, y = —xsin¢ + ycos ¢

I

In the derivation of (6), « and B are the coordinates of the
new origin referred to the old z- and y-axes. In the case of (7),
¢ is the angle between the 2- and the z’-axes, but the origin is not
changed. In Ex. 3 of §4 we see that (7) and (7’) are the special
cases of (1) and (1”), respectively, where w = /2.

We call attention here to the fact that such equations as (1),
1, @), ", ), (6"), (7), and (7') arc type forms such that the
variables* z,y or z’,y" or all the variables z, y, z’, ¥’ may be re-
placed by other sets of variables and yct the transformations be
considered as unaltered; but different values of o, 8, w, ¢ give
different transformations. Thus z =z’ + 2, y = ¥y’ — 3 is the
same translation asz’’ = &’’’ + 2,94'" = y’"’ — 3 but is a different
translation fromz = 2z’ + 3,y =y’ — 2.

* When no ambiguity will result we use the word variables as well as the

word coordinates as the name for z and y, 2’ and 3, etc.
11
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In fact when we follow one transformation by another we must
perforce replace z,y in the type form of the second transformation
by z’,y’ (with which variables the first transformation leaves us)
and replace z’,y’ in the type form of the second transformation by
some other pair of variables, such as z’’,y"’.

ILLusTRATIVE EXAMPLE. As an illustration of the last paragraph, sup-
pose we wish to follow z = 2’ 4 o,y =y’ + Bibyz =2’ + ag,y =y’ + B2.
We write the second translation as r’ = 2’/ + a3, y’ = y’’ + Bs, then sub-
stitute these values for 2’,y’ in the first translation, and we have

r=z" +artay y=y'+B1+8:

This last translation can be written in the type form (6) as

8 z=z"+ (a1 +ea2), y=y" + (B1+ B2)
8" ' =r— (a1+a2), ¥ =y — (B1+ B2)
EXERCISES

1. Derive (6), (6"), (7), (7).

2. Show that the derivation of (6) and (6’) is valid also for oblique axes.
Compare the derivation in Fine and Thompson’s *“ Coordinate Geometry."”

3. Rotate the axes so as to rid zy = 1 of the ry-term.

4. Translate the axes so as to rid 22 + y2 + 2ar +2by + ¢ = 0 of the
z- and y-terms.

5. What are the coordinates of (1,1) after subjecting the axes to (7)
with ¢ = x/4? A point has the coordinates (1,1) after applying (7) with
¢ = w/4. What were its original coordinates?

6. Prove that (6) and (7) cannot lower or raise the degree of the equa-
tion of a locus. Compare the theorem in §4.

7. Derive the equations for the rotation of oblique axes, namely,

z = (z'sin (w—¢) —y’sing)cscw, y = (z'sing + y'sin (w + ¢)) cscw

Hint: Apply (2) to both sides of (7), simplify the results, and put them into
type form. Check this answer by putting o = 7/2.

8. Show that the relative sizes of the z- and y-units do not affect the
validity of (6) hut do affect the validity of (7).

9. Put (1), (2%), (6”), and (7’) into type forms resembling (1), (2),
(6), and (7), respectively. Hint: Write (6’) asz’ =z’ + (—a), ¥’ = y"" +
(—B). Then (6’) has the form of (6), only with « replaced by —a and g
by —B8. We can even write (6) as

z=2"4+ (—a), y=y"+ (—B)

if no confusion with (6) results therefrom. Similarly (7’) can be put in the
form (7), only with ¢ replaced by —¢.
10. Derive (1) by first rotating the axes by (7) and then applying (2).
11. Derive the equations of Ex. 8 directly from a figure.
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12. Look up in such a book as Fine and Thompson’s ‘“ Coordinate Geome-
try ” the reduction of the general conic (4) to a typical form by (6) and (7).

13. Obtain a general transformation from rectangular to oblique coordi-
nates by following (6) by (7) and then by (2). Compare §4. Check your
answer by putting w = 7/2, thena =8 = 0.

7. Products of transformations. DEFINITION. A transforma-
tion obtained by following one transformation by a second trans-
formation is called the product of the two transformations.

Thus (8) is the product of two translations (6) with constants
a3,81 and az,Bs, respectively.  To get (8) we can take these trans-
lations in either order. Hence (8) is said to be a commutative (or
permutable, or abelian) product of transformations.

It is easy to show (we leave this for the exercises) that the
rotations (7) are commutative with one another, that is, if we
perform two such rotations with angles ¢; and ¢2 in either order,
we get the same resultant of the form (7) with ¢ = ¢1 + ¢o.

However, we see that a combination of a translation of the
origin to a new point (a,8) followed by a rotation about this new
origin through an angle ¢ has the equations

9) z=21a"cos¢—y sing+ q, y=2"sing+y coso+ 8

9" z = cos ¢+ ysin ¢ — a cos ¢ + B sin ¢,
y = —zxsin¢ + y cos ¢ + asin ¢ — B cos ¢

On the other hand, if we perform (7) first and then (6), we
arrive at the transformation

(10) z =z cos¢ —y sin ¢ + acos ¢ — Bsin ¢,
Y =2z'sing + y cos ¢ + asin ¢ + B cos ¢

(10") 2’ =z cosp+ysing—a, ¥y = —xsing+ ycos¢ — B

Since (10), (10") are not the same as (9), (9’), we see that it
makes a difference whether we translate our axes first and then
rotate them, or rotatc our axes first and then translate them.
Since (9) is the product of (6) by (7) and (10) is the product of
(7) by (6) in the scnse of the preceding paragraph, we find that
the products of translations and rotations arc non-commutative
(non-permutable or non-abelian). It is evident from the following
figure why (9), (9’) are not the same as (10), 10").
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EXERCISES

1. Prove analytically that translations are commutative.

2. Prove analytically that rotations around a point are commutative.

3. Derive (9), (9), (10), (10%).

4. Show geometrically why translations are commutative, why rotations
around a point are commutative.

5. Show that the products of (1) and (6) arc non-commutative, also the
products of (2) and (6).

6. Do with (1) and (7), also with (2) and (7), as in Ex. 5 you did for (1)
and (6).

7. Show that we can never have a translation commutative with a rotation.
Hint: Equate the constant terms 1n (9) with the corresponding ones in (10),
and show that we must then have either ¢ = 0Qora =8 = 0.

8. Inverses of transformations and the identical transformation.
We saw in Ex. 9 of §6 that (6"), the inverse of (6), can be written
as a distinet transformation of a type like (6), namely

6" z=1"+ (=a),y =y + (-8)

We can look upon (6"') as a translation by its own right and not
merely as the inverse of (6).
Similarly, we can write (7) as

" z =1 cos (—¢) — ' sin (—¢),
y =2 sin (—¢) + ¥ cos (—¢)

and we can look upon (7'') as a rotation that has nothing in
particular to do with (7). In fact we can consider (6) as the
inverse of (6'') and (7) as the inverse of (7''). Similar remarks
apply to (1), (2), (8'), (9'), and (10").

If we follow any transformation by its inverse, we shall obtain
z=21",y =y", which may be written

(11) z=d,y=y



ALGEBRAIC NOTATION FOR TRANSFORMATIONS 15

We call (11) the identical transformation or the identity, since it
does not alter the coordinates of any point or change any equation
or formula except to replace unprimed variables by primed
variables (but we consider such a replacement as really not a
change at all). We leave for the exercises the proof of this state-
ment that (11) arises from the product in either order of a trans-
formation by its inverse, in so far as the transformations (1), (2),
(6), (7), (9), and (10) are concerned.

EXERCISE

Prove the statement made in the last sentence of the text.

9. An algebraic notation for transformations. We often rep-
resent a transformation of axes (coordinates, variables) by the
letter T, its inverse by 7', the product of T into itself by T2,
the identity by I. 1If T, and T. are two transformations whose
product in the order given is T3, we write this fact as a sort of
algebraic equation

T1T2 = T3

(where the sign = means “ {s the same transformation as’’). Ordi-
narily we have
T2T1 = T4 #= T3

Compare §7. We have also
TT =TT '=T""1=T7"=]

The algebraic expressions Ty + T, and T,/T, have no meaning
for transformations. The algebra in the last paragraph is purely
formal and we must not treat it like ordinary algebra. However,
the products of transformations are associative, just as are the
products in ordinary algebra, i.c.,

T\(T:Ts) = (T1T2)Ts

This fact will be proved more generally in §13.
For translations and rotations this associative property is
evident analytically from the identical equations

(a1 + az) + a3 = a1 + (az + a3),
(81 + B2) + B3 =B + (B2 + Bs3),
(61 + ¢2) + ¢3 = ¢1 + (d2 + ¢3)

Therefore by the product T,7T:T; we mean either (T,T3)Ts or
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T1(T4T3), i.e., we obtain the same resultant transformation if we
first take the product of T'; by T and follow this by T'; as we do
if we first take T, and follow
this by the product of T, by
Ts. Geometrically, if we rep-
resent the path of the origin
in a translation by an arrow,
the adjoining figure will show
why translations are associative, since we obtain the translation
T\ T,T3 either by using T, T'; and then T3 or T; and then T'5T.
If T3 = T5! in the product T',TsT3Ts, we have

T1T2T2_1T4 = TIIT4 = T1T4
since Tyl = IT, = T,. Therefore the inverse of T;T.T; is
(T\T2Ts)™" = T 'Ty T,

since
(T1ToT3) (T1ToTs) ™' = T\ToTsTs T ' T, ! =
TszITz—lTl—l = T1T2T2—1T1_1 = TlIT]__1 = TlTl_l = I

EXERCISES

1. Show geometrically that rotations around a point are associative.

2. Show geometrically by arrows (like the figure in the text) that transla-
tions are commutative.

3. State fully how the equations a1 + (a2 + a3) = (@1 + a2) + a3, ete.,
show that rotations and translations are associative.

4. Prove analytically that (1), (2), (6), (7), etc., are associative.

5. Prove that the inverse of T2T'5 173 is T5 3TsT12, where by 7573 and
T2 we mean the inverses respectively of 73 and T%.

6. Prove that 7°T® = TAT< no matter what positive or negative integers
are represented by « and B.

10. A slightly more general transformation of coordinates. In
the previous sections we have studied translations, rotations, and
changes from rectangular to oblique axes. In all these trans-
formations no alteration was made in the relative sizes of the z-
and y-units. In this section we shall consider some transforma-
tions that actually change the sizes of these two units. The
simplest case is

(12) z =~vx', y = 8y, where v6 # 0
1 1

(12) g ==z, ¢y =2y
¥ 8
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Thus z = 32', y = 2’ gives a new z-unit thrice the size of the
old z-unit and a new y-unit twice the size of the old one, because
z = lgivesz' = 1/3,y = 1givesy’ = 1/2. The equation of the
ellipse z2/a® 4 y%/b% = 1 can be reduced to the form z'% + 3’2 = 1
by means of (12) withy = eaand é = b.

Conversely, if we want, for example, to get a new z-unit one-
half as long as the old one and a new y-unit twice as long as the
old one, then ' = 1 on the z-axis must be the same point as
z = 1/2and ¥’ = 1 on the y-axis must be the same point asy = 2.
Hence we must have in (12) ¥y = 1/2 and § = 2.

We note that (12) docs not alter the position of the axes, but
merely changes the sizes of the units. We call (12) a stretching
(or contracting) of the axes. If we use (12) we cannot study
lengths of line-segments or angles between lines, or many of the
properties of conic sections, because the new z- and y-units are
not the same as the old.

If we combine (12) with the preceding transformations of
coordinates, we obtain still more general changes of axes. Thus
(12) followed by (6) gives us

z=nvx'+ vy, y=28'+ 3
Since (6) followed by (12) gives
=2 +a y=08'+8

therefore the product of (6) and (12) is non-commutative.

On the other hand, we can analyze certain more general trans-
formations of axes into products of those we have already studied.
Thus

r=22+3, y=3y +9
can be written
z=20"+%), y=30 +3)

and in the latter form we see that the equations are those of a
stretchingz = 2z’,y = 3y’ followed by a translation z = 2’ + 3,
y =y + 3. Again we can analyze this transformation as a
translation z =2’ + 3, y =y + 9 followed by a stretching
z=2z,y=3%y.

EXERCISES

1. Show analytically that the products of (12) with any of the preceding
transformations are non-commutative.
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2. Analyze in two ways each of the transformations:
(a) r=6z +4, y=7y —3
®) r=2zx"—-2y"+5 y=3z"4+3y"+6
Hint: Write (b) as

x =2\/§(%—j§)+5, y=3\/;—2<\—j:§+f“'/—:2)+6
Note that sin 45° = cos 45° = 1/V2.
(© z=2x —2V3y' +6, y=V3r +y —2
3. Show that by rotations, translations, and stretchings the equation of

a h g
h b f
g f ¢

every non-degenerate conic, i.e., (4) with # 0, can be reduced to

the form
224yt =21, or 2—y*=1, or y=4r

Hint: What are the normal (or type) forms to which these equations were
reduced in elementary analytic geometry by means of rotations and trans-
lations?

4. Analyze the transformation

r=2z"cosp —3y’sing +4, y=2x"sin¢p +3y cos¢p — 3
5. Determine v and 4 in (12) so as to reduce x2/4 — 3%/9 = 1 to the form
z'%/9 — y'2/16 = 1.
6. Choose v and 6 in (12) so that the new y-unit'sha.ll be § of the new z-unit.
7. If y =7,6 = —6 in (12), find the new coordinates of the point (1,3).
8. Show that the equation of every line not through the origin can be put
in the form x’ + y’ = 1 by (12).

11. Two interpretations of transformations of coordinates.
We call attention to the fact that we have been gradually changing
our attitude toward the transformations we have been considering.
We frankly derived (1) and (2) from a figure, looking upon them
as changes from rectangular to oblique axes. But when we came
to the discussion of translations and rotations in §6, we defined
them analytically as transformations of coordinates (or of vari-
ables).

In elementary analytic geometry we studied translations and
rotations from the viewpoint of changes of the axes of reference.
Thus, if we found that a certain conic was an ellipse, we trans-
lated the origin to the center of the ellipse, then we rotated the
axes around this new origin until they coincided with the major
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and minor axes of the conic, and its equation took on the simpler
form z%/a% + y2/b% = 1.

In analytic projective geometry we may adopt the same view-
point as above toward transformations of coordinates; but more
often we look upon such transformations as keeping the axes
and their unit points where they were at first and changing the
positions of the curves or other sets of points that are under con-
sideration, i.e., z and ¥, ' and y’ refer to exactly the same frame
of reference.

DerintTioN. The name alias has been wittily and fittingly
suggested for a transformation considered as a change of axes,
and the name alibv for a transformation looked upon as altering
the positions of points in the plane while keeping the frame of
reference the same. To repeat, an alias changes the equation of
a given locus to another form, but an alibi replaces the given locus
by a new locus with another equation.

The above-mentioned reduction of the equation of an ellipse
to a so-called normal (canonical or typical) form can be described
as an alibi in the following manner: If the center of an ellipse
is at the origin and its major and minor axes lic on the coordinate
axes, then it is shown in elementary analytic geometry that the
equation of this ellipse has the form z%/a® + 4%/b> = 1. Now
if we take any ellipse in the plane, we can translate and rotate
this curve in such a way as to make it coincide with one of the
above specially placed ellipses for some pair of values of @ and b.

We remark that under the aspect of an alibr a transformation
of coordinates does not change the axes looked upon as a frame
of reference but does change the axes looked upon as mere lines
in the plane. Thus (6) sendsz = Otoz’ = —a. An illustration
of this two-fold role of the axes is the way we might measure
distances on the ground from two sticks sunk in the earth, then
we might remove these sticks and measure the distances from the
grooves that are left in the earth. Similarly, a transformation
under the guisc of an alias does change the axes looked upon as
a frame of reference but does not change these axes looked upon
as mere lines in the plane.

EXERCISES

1. Why are the names alias and alibi so fitting when applied to the two
different ways of looking at a transformation of coordinates?
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2. Show geometrically, looking upon the transformations as alibis:

(a) Translations are commutative.

(b) Rotations around a point are commutative.

(c) Rotations and translations are non-commutative.
(d) Rotations and stretchings are non-commutative.
(¢) Translations and stretchings are non-commutative.

Hint: First draw a figure and describe rotations, translations, and stretch-
ings geometrically as alibis.

3. Describe as an alibi the transforming of any parabola into y? = 4 px, and
of any circle into z? + y% = r2. Describe these two reductions as aliases.

4. Describe as an alibi, then as an alias, the reduction of
2 2
G-l to a4yl
by means of (12).

5. Go through the complete reduction of the general conic to a normal
form by rotations and translations.

6. Test and reduce to a normal form the conic

2 +4zy —2y2+2x -2y +10=0

7. Derive the standard (or type) forms for the equations of the circle,
ellipse, parabola, hyperbola. Do the ellipse and hyperbola in two ways: first,
use the sum or difference respectively of the distances of a general point on the
conic from the two foci; second, use a focus, its corresponding directrix, and
the eccentricity of the conic.

8. Describe a translation and a rotation as alibis.



CHAPTER III

INTRODUCTION TO AFFINE LINEAR
TRANSFORMATIONS

12. Affine linear transformations. The rotations and trans-
lations and all the other transformations of coordinates that we
have considered up till now in this book are special cases of the
following:

DerINITION. An affine linear transformation is one whose
equations have the general form

(13) z =ax +ay +as, y=0bz' + by + bs,

— | @1 @2
where A = b, b # 0
1
(13') g = Iy (box — agy — asbs + ashs),
1
y = Iy (=bix + ary — a1bs + asby)

For example, (6) belongs under (13) with a; = 1, az = 0,
ag = a, by =0, by = 1, b3 = 8. Note that we do not let A = 0
in (13), otherwise we have the relation between = and y that is
given by

box — agy = agby — aghs

for every pair of values of 2 and y’, which means geometrically
that to every point (z’,y’) in the plane there would correspond
a point (z,y) on this line.

We call (13) linear because its equations are of the first degree
in both the primed and the unprimed coordinates. Such a

transformation as
’ ’

z Y
S VT
would not belong under (13). We call (13) affine because it

sends finite points (i.e., points with finite coordinates) into finite
21

x
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points. Such a transformation as
’
Y

1
:—li—” y=.’13’

xr =

is not affine because it sends into the point (0,1) a point with co-
ordinates £ = «,y = «. (We shall see later that such a point
will be assumed to lie at an infinite distance in the plane.)

EXERCISES

a) az

1. fAa= by by

= 0in (13), show that we have

hiz — a1y = azbr — aibs

and that this is the same line as the one found in the text.

2. Obtain (13’) from (13).

3. Show that (1), (2), (7), (10), (11), (12) all fit under (13), and find A
for each transformation.

4, Showthatz = 1/z’,y = y’/x'sendsz® — y2 = lintoz’2 +y"2 = 1.

5. Show that (13) cannot raise or lower the degree of the equation of a
locus. Compare §4; also Ex. 6 in §6.

13. The matrix of an affine linear transformation. DEFINITION.
The matriz of the affine linear transformation (13) is the square
array

ay as das
(14) D=|b by b3
0 0 1

In reality D is the same sort of array of rows and columns as
though it were an unexpanded determinant, but we use the word
matrix since we do not look upon D as having an expansion. The
determinant of D is A in §12, or A written as

ay az ag
A= b1 b2 b3
0 0 1

The matrix D is uniguely determined by a transformation, i.e.,
there is one and only one matrix D for each transformation.
Thus (6) has

1 0 «
D=0 1 8
0 0 1
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On the other hand, D wuniquely determines a transformation.
For example

3 21
D=| -7 7 3
0 01

clearly represents the transformation
z=32"+2y +1, y=-72"4+74y +3

We define the product of two such matrices D and D’ in the
same way as we define the product of two determinants.

DErFiNiTION. For two matrices D and D’ we mean by the product
DD’ a matrix with the same number of rows and columns as D
(and D’) and with the element in its ¢th row and jth column
obtained by multiplying in order each element of the 7th row of
D by the corresponding element of the jth column of D’ and
adding together the resulting products.

If we take another transformation like (13), namely

(15) r=ax +ay +aj, y=>bx +bly +0b]
we have for (15) the matrix

a, ay d
D= b B b
0 0 1

The product DD’ is therefore

@10 + agbl  ayal + agby aia] + azbi + a3

blai + bzbi bla; + bgbé blaé + bzbé + b3
0 0 1

(16) DD’ =

But the product D’D is
alay + ajby ajas + ajbs ajaz + ashs + af
blay + bb; blas + bsby blaz + bybs + by
0 0 1

We leave for the reader to prove in the exercises that (13)
followed by (15) gives an affine linear transformation with matrix
D'"" = DD’, whereas the product of (15) by (13) is a transforma-
tion with matrix D"’ = D’D. Since (16) and (17) are ordinarily
distinet (i.e., DD’ % D'D usually), we see that in general the
affine linear transformations (13) are non-commutative. Also
we shall find matrices very useful in finding products of such
transformations.

(17) D'D =
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ILrLusTRATIVE ExampLE. The two transformations

3-2 4
Ti:z2=38z"—-2y"+4, y=2"4+2y —3 withDy = H 1 2-3 “
0 0 1
and
2 -3 -1
Te: z2=22"-3y"—1, y=3x"+y" —2withDy=||3 1 -2 ‘
0 0 1
can be combined to form the products 7172 with
0-11 5
DDy =18 —1-8 and ToT
0 0 1
with
3 -8 0
DeDy =|| 10 —4 —15
0 0 1

We can show this either by actually forming these two products 7172 and
TsT: or by taking their matrices D1De and DsD,.

In §9 we saw that rotations and translations are associative, i.e., (T1T2)T3 =
Ty(TT;) if T, Te, T3 are three rotations around the same point or are three
translations. It is easily shown (we leave this for the exercises) that three
matrices Dy, Dy, D3 of the above form are associative when multiplied together,
i.e., (D1D2)D3 = Dy1(D2D3); hence any three affine linear transformations
(13) are associative as to multiplication.

EXERCISES

1. Prove that (13) followed by (15) gives a transformation of the form
(13) with matrix DD’, whereas (15) followed by (13) gives one with matrix
D’'D.

2. Carry out the details of the illustrative example in the text.

3. Carry out the details of the last paragraph in the text.

4. If D’ is the matrix of (13’), show that

1
0
001
Note that (13) (13’) = (13’) (13) = I. We can therefore put D’ = D1,

5. Use matrices to find the product (a) of two translations, (b) of two rota-
tions, (c) of a rotation and a translation (both orders of multiplication).

6. Find the conditions on the coefficients of (13) in order that T1Ts = T'3T:
where 7'y and T'; are of the form (13).

7. Find the conditions on the coefficients of (13) in order (a) that (10)2 =1,
(b) that (10)3 = I.

8. Make up numerical examples to illustrate Exs. 6 and 7.

0
DD' =D'D = 0

0
1
0

14. The number of points that determine an affine linear
transformation. DErFINITION. A pair of points (lines, or other
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geometric loci) that are transformed into one another by an affine
linear transformation (considered as an alibi) are said to be a
pair of corresponding (or homologous) points (lines, etc.).

DeriNiTION. Two sets of homologous points (lines, etc.)
are said to determine uniquely an affine linear transformation if
there is one and only onc such transformation sending one set
into the other.

We shall now consider how many pairs of homologous points it
takes to determine uniquely the transformations so far studied.
We see at once that there is one and only one translation that
sends any given point P; (z1,y1) into any other given point P (z1,y1)
because, if we substitute these values of 2,5 and 2’3/, respectively,
in (6), we obtain unique values for & and 8 (namely a = z; — 2
and 8 = y1 — ¥1).

If now we take any three distinet points Pj(ay,81), P2(a2,82),
P3(a3,83) and wish to determine a transformation (13) that will
send Py, Py, P; into any other three distinct points Pj(ef,81),
Pj(a3,83), P3(a3,83), respectively, we get

oy = aa] + asf] + as, Br = bia] + baB]{ + b,
ay = Giag + asfy + a3, Bz = biay + bofy + bs,
a3 = areg + asB; + a3, B3 = biag + baB; + b

These are three linear (i.e., first-degree) equations in the three
unknowns a;, a3, az and three linear equations in the three un-
knowns by, bz, by. We learned in algebra that for these three

equations in a;, ag, ag (or in by, by, b3) to have a wunique finite
solution, we must have

ap By 1
ay By 1|#0
a B3 1

Geometrically this means that the three points P}, P}, P; must
not be collinear (i.e., must not lie on the same line).

If we use the transformation in the form (13’) and consider
the equations we obtain as containing the unknowns by/A, —as/A,
and (—agbgy + agbs)/A, we find that for a unique finite solution
we must have also

ar B 1
a9 52 1 ?5 0
az B3 1
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i.e., the three points P;, Py, P3 must not be collinear. Therefore
we have proved the following

THEOREM. The general transformation (13) is uniquely deter-
mined by three pairs of homologous points Py and P}, Py and P},
P3 and Py provided that both Py, Py, P3 and P}, P}, P; are non-
collinear.

(Of course special types of affine linear transformations require
fewer pairs of homologous points to determine them, as we saw
above for the translation.) In particular, we can send by (13)
any three non-collinear points Py, Py, P3 into (1,0), (0,0), (0,1),
respectively; i.e., looking upon (13) as an alias, we can change
our rectangular or oblique frame of reference to any rectangular
or oblique frame of reference we please by means of an affine
linear transformation.

In elementary analytic geometry we proved that we could send
any ordinary frame of reference into any other ordinary frame
of reference (if the units on the corresponding axes have the
same sizes) by means of rotations and translations alone. The
above result is much more general and of great use in what follows.

TLLusTRATIVE ExAMPLE. As an illustration of the preceding theorem we
note that, to send (0,0), (0,1), (1,0) into (1,1), (—1,—1), (0,1) by (13), we
must have

0=a14+az+a3 0=0>b +bz+bs 0= —ay—az+as
1=—by—bs+b3 1 =a2+as, O0=0bs+0bs
Solving these equations we obtain
a3 =0, b3=3% ay=1, by=—-% a=-1 b =
Hence
T=—2'+y, y=—3'+3
is the unique transformation of the form (13) that we desire.

EXERCISES
1. Fill in the details of the proof in the text that we must have
a1 B 1 a; B; 1
az B2 1| #0 and ay By 1 | =0
ag B3 1 agy B3 1

2. Prove the fact mentioned in the text concerning the equivalence of
certain ordinary frames of reference under rotations and translations. (By
equivalent we mean able to be transformed into one another.)

3. Make up an example like the illustration in the last paragraph of the
text.
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4. Show geometrically that a pair of homologous points determines a trans-
lation. Hint: As an alibi, a translation can be looked upon as moving the
whole plane a given distance in a given direction. Prove this.

5. Determine the coefficients of (13) so as to send (1,1), (2,3), (—1,—1)
into (1,0), (0,0), (0,1), respectively.

6. Prove analytically and geometrically that a rotation is uniquely deter-
mined by a single pair of homologous points P and P’, provided P and P’ lie
on a circle with the origin as center. Compare Ex. 4.

7. In order to study a conic C we often take on C a point P as (0,1), the
tangent to C at P as = = 0, another point R on C as (1,0), and the tangent
at R as y = 0. Show, from the next to the last paragraph n the text, why
it is permissible to take C in this position.

8. Prove the theorem in the text by sending P1(a1,81), P2(az,82), P3(as,83)
into (0,1), (0,0), (1,0), respectively. How does this prove the theorem gen-
erally?

15. The equivalence of conics under affine linear transforma-
tions. DgeriNITION. Two conics C and C’ are said to be equiva-
lent under a transformation 7' if we can send C into C’ (or C’ into
C) by means of T.

We saw in §10 that the ellipse 22/a% + y2/b% = 1 can be trans-
formed into the circle by z = az’, y = by’. We shall now show
analytically that (13) will not send a cirele or ellipse into a hyper-
bola or into a parabola. (Geometrically, this is almost self-
evident, because affine transformations send finite points into
finite points, and a circle or cllipse is a closed curve whereas a
hyperbola or parabola is not a closed curve.) We leave to the
cxercises for the student the task of showing that (13) cannot
send a hyperbola into a parabola.

Consider the circle 22 + y% = 1, to which every circle or ellipse
can be reduced by (13). Subjecting this circle to the transforma-
tion (13), i.c., substituting in the equation of this circle the values
of z and y in terms of 2’ and y that are given by the equations of
(13), we obtain the conic

(a3 + b))z"? + (a2 + B2)y'? + 2(a1az + bibs)z"y’
+ 2(a1a3 + bibs)z’ + 2(azas + bobs)y’ + a3 + b3 = 1

For this latter conic to be a hyperbola or a parabola we must have
(azag + bibs)? — (a2 + b%) (a2 + b2) > Oor =0

respectively. But this expression in the coefficients of (13) is

1 a2

the same as — Z b < 0. Hence the theorem follows.
1 ba
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EXERCISES

1. By using the equation xy = 1, prove that (13) cannot send a hyperbola
into a parabola. Why is there no loss of generality in taking the hyperbola
as zy = 1? Compare the text.

2. Since (13) cannot send a hyperbola into a parabola, how does it follow
that (13) cannot send a parabola into a hyperbola? Hint: The inverse of
(13) is a linear affine transformation and can be put in the same form as (13).

3. Check the algebra in the text.

4. Derive the test that discriminates between ellipses, parabolas, and hyper-
bolas referred to an ordinary frame of reference, namely A% — ab < 0 or = 0
or > 0, respectively, for the general conic (4). If necessary, refer to some
book on elementary analytic gcometry.

5. We note that (3r +2y — 1)2 — (r — »)? = 1 is a hyperbola because
3z+2y —1 =2, r —y =y reduces its equation to the form z'2 — 32 = 1.
Now show that

- EBzt+y =1
is a hyperbola,
Bz —2y)?+Gr—38y+1)2=1
is an ellipse,
Br—1)2=2x—-3y+4)
is a parabola.

What theorems in the text and in a previous example justify this proof?

6. Solve cach of the transformations of Ex. 5 for x and y in terms of z’
and y'.

7. The discussion in the text looked upon (13) as an alibis. Reword this
discussion from the viewpoint of (13) as an alias.

16, 17. Degenerate conics. DEFINITION. A conic is said to be
degenerate if its cquation is factorable into a pair of real or im-
aginary linear factors. Geometrically, the locus of a degencrate
conic is a pair of real or imaginary lines, or a double line (i.e., a
line taken twice, this case occurring when the equation of the
conic has two real and equal factors).

We shall now derive the test for the degeneracy of the general
conic (4), namely the vanishing of the so-called discriminant of
this conic whose formula is

ahg
(18) I'=|hbdf
gfc

(We shall treat only the case where b # 0 in (4), leaving the other
cases for the exercises.)
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Solving (4) for y in terms of x, we obtain

y_—(h:l:+f):t\/(hx+f)2—b(ax2+2gm+c)
B b

If the equation (4) is to be factorable, the expression under the
radical must be a perfect square, or a constant, or vanish iden-
tically. But this quadratic expression in z can be arranged as

(h* — ab)x? + 2(hf — bg)x + f% — be
If this quadratic is a perfect square we must have
(hf — bg)* — (h* — ab)(f* — bc) = 0
This last equation is in reality —bI' = 0. Since b # 0, we see
that T' = 0 is the condition desired.

If the expression under the radical is to be a constant or vanish
identically, we must have

h2—ab=hf —bg=0 and f2—bc#0 or f2—bc=0

(19)

We leave it for the student to show that here again we have
I' = 0. Therefore we have proved that for all cases where b = 0,
(4) is a degencrate conic if and only if T'= 0. Note that
I' = abc + 2 fgh — af* — by? — ch? may have terms missing be-
cause some of the coefficients of (4) are zero.

We note here two ways to factor (4) if the conic is degenerate.
Suppose the terms

ar? + 2 hxy + by?

are factored into

(anr + B1Yy) (azx + Ba2y)

where «j, B1, a3, Bz are real or imaginary. If we equate (4)
identically to
(1 + B1y + 1) (a2z + Boy + m)

we can determine [ and m so that (4) is factored. Another way to
factor (4) is, of course, to use (19).
InLusTRATIVE ExampLE. The conic
322 —2y — 292+ 10y —12=0

is degenerate, because we have




30 AFFINE LINEAR TRANSFORMATIONS

Now we can solve the equation of this conic for y in terms of z and so factor
it. Or we can put
322 —2y —292 4+ 10y —12=@Bx+2y+1) (x —y +m)
and determine [ and m from the equations
~14+2m=10, 1 4+3m =0
which givesus! = —6,m = 2.

EXERCISES

1. Check all the algebra in the text.
2. Prove that, if I' = 0, then (4) is a pair of real lines, a double line, or a
>0
pair of imaginary lines according as k2 — ab = 0
<0
respectively.
3. Derive the condition T' = 0 for (4) to be a degenerate conic when b = 0
a #0; whena =b =0,k #0; whena =b =h =0.
4. Show that in general a degenerate conic can be reduced by (13) to

z'y’' =0, or 2+ y2=0, or 2'2=0

5. Show that we cannot reduce by (13) a non-degenerate conic to a degener-
ate conic or one of the types of degenerate conics to another. Hint: Lines
go into lines hy means of (13).

6. Make up examples of degenerate conics, and find I' for each such conic;
also factor each such conic.

7. Show that 22 4+ 22y 4+ 4y — 4 = 0 is a degenerate conic. Factor this
equation in two different ways.

8. By equating (4) identically to (aix + By + 1) (a2z + B2y + m) as
in the text, derive the copdition T' = 0 for (4) to be a degenerate conic.

18. Preliminary distussior of invariants of affine linear trans-
formations. DEerINITION. An algebraic invariant of a linear
transformation T is an algebraic expression E, such that after
operating with T on the variables in & the new expression E’ has
exactly the same form as E (only with new variables replacing the
old), or E’ = aF where o is a power of the determinant of the
matrix of T. (See §13.) In the first case E is called an absolute
invariant, and in the second case a relative invariant.

DErFINITION. A numerical invariant of a linear transformation
T is a number N associated intimately with a geometrical locus
or an algebraic expression such that N is unchanged by T

DEeFINITION. A geometric invariant of a linear transformation
T is a geometric property G of a locus (or loci) L such that @ is
still true for the locus (or loci) L’ into which 7T sends L.
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ILLusTrATIONS. The degree of the algebraic equation of a
curve is a numerical invariant under (13). (See the theorem in
§4, also Ex. 6 in §6, also Ex. 5 in §12.) The geometric property
of a locus being an ellipse is invariant (or sometimes called fized)
under (13). (Sce §15.) The algebraic expression z% + y? is an
absolute invariant under rotations, because we have

22+ 9% = (2’ cos¢p — y' sing)? + (2'sing + y cos ¢)?
— x’2 + y’2

(Note that for many geometric invariants we must presuppose an
ordinary frame of reference, because otherwise such ideas as
length of line segments, areas of triangles, cte., have no meaning.)
If we rotate or translate the points of a plane, it is easy to see
geometrically that lengths of line segments, angles between lines,
and areas of triangles are preserved (i.e., kept invariant).

Let us consider the analytic proofs of these facts. Under (6)
we have

Vi(xy — 22)% + (Y1 — ¥2)?
=V@it+ta—2—a)’+ @ +8— 1, — B)?
= V(] — 25)% + (] — y3)?

Hence we see that if we translate two points P; (z,y:) and P (23,y2)
to Pi(x1,y7) and Pj(xh,y5), respectively, then if we measure the
distance d = P,P; and subject the variables in d to the translation
(6), we get the same numerical result as though we had applied
the formula for distance to the segment, P} P5.

Another way to look at this analytically is to measure the dis-
tance d’ by the formula and then use (6”) to show that d’ = d,
thus

d =vV@] — )+ @ —v)?
=V@i—a—z2+a)i+ (y1 — B — y2+ B)*
=

Analytic proofs of the invariance of geometric properties under
other transformations are like the above discussion.

In the preceding paragraph the transformations were looked
upon as alibis, the axes were not changed, therefore the formula for
distance remained unaltered. If transformations are looked upon
as aliases, then of course distances, angles, etc., are not changed,
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since all the points in the plane remain unmoved. In this case
we prove the invariance of the formulas for distances, angles, etec.

Next we shall consider the transformation (12). Applying (12)
to any two points we find that

d=Vi(z1 — )2 + (y1 — 92)?
= V(yx} — v25)® + (o) — oyp)? = d’
unless ¥ = &1, § = 1. Hence (12) does not in general leave
distances invariant.

Let us examine what (12) does to the angle between any two
lines

y=mzx+b and y = myx + b,

Performing (12) on the variables x and ¥, we obtain the two new
lines
8y’ = ymx’ + by and 8y = ymex' + b,

If we measure the angle between these last two lines we obtain
my —my _ (v/8)my — (v/8)mg
14+ mimy 14 (v/8)mi(y/8)my

except for v = 4.
For certain pairs of points we do have under (12) the equality

(21 — 22)* + (4 — 42)° = ¥?*(2] — 5)* + 6°(y) — vh)?
and so d = d’, namely whenever
(y —ap)? 1 — 82
W —h)? -1
But from the above equation in the form
@ -2 (P =D+ @ -9 -1)=0

we see that d = d’ if (z},5]) and (},55) are any two points at
all unless v2 — 1 =62 —1=0,ie.,y = +1and § = +1 as we
saw above.

Similarly for certain pairs of lines we do have tan 8 = tan 6’

8% — b . . .
if mymy = 5—75; but we see from this equation- that only if
Yo — Y

my — myp
1+ mimsg

tan 6’ = # tan 0

2 — v =7 —+y*=0o0r v =5 (as we saw above) do we have
tan @ = tan 8’ for any and every pair of lines, since in this case
my and mg are not connected by any relation because the equation
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mymg = (82 — 48)/(vé — ¥%) then becomes mymy = 0/0 (which
is indeterminate).

Geometrically we can show by the figure below that (12)
does not in general keep lengths or angles invariant. We suppose
the ellipse C(22/a? + y2/b% = 1) where a®> > 1, b> > 1 has been
sent by (12) into the circle C’(z'2 + y’# = 1). The line segment
PV, goes into P'V{, which is smaller than PV, and PV, goes into
P’ ;, ; also, the obtuse angle V,PV, goes into the right angle

2P V1.

Vz(:alo) Vz’ (-110) a"o)

Next we show analytically that (6) leaves the area of any tri-
angle invariant. Subjecting

zy Yy 1
A=% T2 Y2 1
z3 ys 1
to a translation we get
Bt yi+B8 1 @ oy 1
A=3|dta 48 1|=b|a o) 1]=a
GBta yp+8 1 T Yy 1

(the area of the new triangle), and this proves the invariance of A.
On the contrary (12) gives us

yry oy 1 ,
A=1 'yxé 5yé 1| =~4"%A
vrgz oy 1

unless y = 1/s.
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EXERCISES
1. Show that for (12) to give d = d’ we must also have

@ —z)? A/ =1+ (1 —y2)* 1/ = 1) =0

Hint: Use (12’) on d'.
2. Derive the condition given in the text for tan 6 = tan 8’ under (12),
namely
82 — 8
miymg = v — 72
3. Prove that, if two transformations 7'y and 7’2 have the same variant J,
then their products 717’2 and T'3T' and their inverses 717! and T3~ ! also have
J as an invariant.
4. Show that (13) sends a tangent to a curve into a tangent to another
curve. Hint: Consider each tangent as the limiting position of a secant.
5. Prove that rotations have the invariants d, tan 9, A.

19. The discriminant and other invariants of a conic. If we
translate the general conic (4) we obtain

@) az’? + by'? + (c + aa® + 8% + 218 + 2 ga + 2 haB)
+ 2(f + b8 + ha)y’ + 2(g + aa + hB)x" + 2hz’y’ = 0

The discriminant of (4”) is

a h
r= h b
gtax+h3 [+ b8+ ha
g + aa + hB a h g
S+ b8 + ha =|h b f|=T
c+aa®+ b8+ 28+ 2 ga+ 2 hop g [ ¢

(We can show that IV = T' by subtracting from the last row the
first row multiplied by « and the second row multiplied by 8, then
subtracting from the last column the first column multiplied by
a and the second column multiplied by B.) From this result
we see that (6) keeps invariant the discriminant of any conic.

If we perform (12) on the variables of (4) we get a new conic

(4//) a/xlz + bly’2 + C’ + 2f’y’ + zglx/ + 2hlx,y, — 0
where o’ =ay?, b =0b8% ¢ =c¢, =15, g =gy, B =hs

We find that I' = 422D’ % T' unless y = +1/.
To discuss invariants under (13) we pursue a policy of divide
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and conquer, that is, we write (13) as the product of the following
transformations
by — ash
(20) Ti:z=2"4as, y=y +bs Toz= al—%——&x' +
2
az . o _ ’ ’
by Y=Y Ts:z=1x, y="bax + by
2
in the order T;T>Ts. We have shown that 7'y does not alter I'
of (4).
If we subject the variables of (4) to a transformation of the form

21) c=or +8y, y=19
we obtain a conic (4’') with

o =ae? b =b+ag?+2h8, ¢ =c [ =f+g8
g =ga, B = aaB+ ha

and with discriminant

ac’? aof + ha go
I"=|aef+ha b+ ap>+218 [+ g8
Jo S+ 8 ¢
a h g
=a2|h b f|=aT
g f ¢

o+

It is now evident that z = z’, y = bjz’ + byy’ sends (4) into
a new conic with I'' = b2I. Therefore we see from (20) that
(13) sends (4) into a new conic with discriminant
2

ay das ag
(22) F, = (a1b2 - a2b1)21‘ = bl b2 b3 r
o 0 1

From (22) we have the

TuroreM. The discriminant of a conic is a relative tnvariant
under linear affine transformations.

As a numerical example of the last paragraph we note that
z=32 —2y +1,y=2 +y — 2sends 22 — 2zy + 6y* +
4z 4+ 8y — 7 = 0 into a conic ¢’ with diseriminant

3 -2 1 1 -1 2
=1 1-=2 -1 6 4= (25)(—91)= —2275
0 0 1 2 4 —7
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EXERCISES

1. Prove that rotations and translations have the absolute invariants
h? — ab and a + b for the conic (4).

2. Prove the theorem in the text by using (13) in its unfactored form on
the conic (4).

3. Fill in the algebraic details of the discussion that led up to (22).

4, Till in the algebraic details of the numerical illustration in the text.

5. Resolve (13) into the product (20), i.e, factor (13). Hint: Write
(13) as

r=z2'+a y=y +bs
followed by
II = ¢x]a:II + ﬂly'ly yl — yll
then followed by
! = zur’ y// = bz’ + bzy"'

and determine @ and B; so as to have this product the same as (13).

6. Fill in the algebraic details in the discussion of the effect of (21) on T.

7. Prove (what is stated as evident in the text) that 7's of (20) sends
T into bir. How could we conclude from symmetry that this fact was
evident, after discussing (21)?

8. Resolve (13) into a product T3T'3T4, where T, T3, T's are of the same
type as T, T, T', respectively, in (20).

9. Resolvez =3r’' — 2y + 4,y =2’ 4+ — 3 into a product like (20).

10. Show thatz = 2&' + 3’ — 1,y = 2’ + y’ + 3 keeps the discriminant
of (4) and the area of any triangle absolutely invariant.

11. Make up two numerical examples like the one in the text.

12. Make up numerical cases of (13), not (6) or (7), that (a) keep T abso-
lutely invariant; (b) keep A absolutely invariant; (c) keep h? — ab absolutely
invariant.

13. Prove that (13) sends the area A of a triangle into

ai g ag
by be b3
001

14. Show that (13) transforms h? — ab of (4) into

’l'2 —a't! = (a1b2 - a2b1)2 (h2 - ab)

Al = A

so that h2 — ab is a relative invariant under (13).

15. Show how the fact that h® — ab goes into (aibs — asb1)? (h% — ab)
under (13) proves that (13) cannot send a hyperbola into an ellipse or a parab-
ola, or an ellipse into a parabola. Hint: Note that (aibs — agb;)? > 0.

16. From the relative invariance of I' under (13) show that (13) cannot
send a non-degenerate conic into a degenerate conic, or conversely.

17. Show that under (13) we have I’ % O accordingas T % 0.

18. From Ex. 17 show that if T > 0 for (4), then the conic is reducible to
22 4+ y? 4+ 1 = 0and so has no real points on it.
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20. Transformations that have given invariants. Conversely
to the discussions in §§18, 19 of invariants of given transformations,
we shall now consider briefly the problem of how to determine the
coeffictents of the transformation (13) so that it shall keep nvariant
lengths of line-segments, or areas of triangles, or the like.

If we perform (13) on the distance formula we obtain

= VI@ +8) @ — 25’ + (a3 + 1Y) 0 — vp)* +
2(a1a3 + bids) (2] — z5) (4] — ¥2)}

This algebraic expression is not the same as
=V — )+ W — %)?
i.e., distance is not invariant under (13) unless
+b=a2+b =1 aas+bby=0

(but a3 and bz are arbitrary).

From these equations of condition we see that we can consider a,
and b; as the cosine and sine of some angle ¢, also az and b, as
the sine and cosine of some angle 6. But then

@102 + byby = cos ¢ sinf + sin¢ cosf = sin (6 + ¢) = 0
$0 8 4+ ¢ = nr (where n is any positive or negative integer) or
6 = nr — ¢. Replacing a;, as, by, bs by their values,
cos ¢, sin (nr — ¢) = =sin ¢, sin ¢, cos (nr — ¢) = Fcos ¢

respectively, we conclude that, for a transformation 7' of the
type (13) to have d as an invariant, 7' must be of the form 9"
or (9), or (10") or (10), that is T must be the product of a rotation
and a translation. (Note that T may also be either a rotation

alone or a translation alone.)
Next we observe that (13) sends (4) into a conic 4"") with

a’ = ad® + bb? + 2 haiby, b = aa? + bb3 + 2 hasb,
B = aaias + bbibs + h(abs + agb1)
Therefore
o' + b =a(a?+ ad) + b3 + b3) + 2 h(arby + agbe) =a +b
if, and only if,
Z+ai=0+0b=1 ab +ad;=0

By an argument exactly similar to that used in the last paragraph
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we can prove that a’ + b’ = a + b if, and only if, the transfor-
mation is the product of a rotation and a translation. We leave
the details of this argument to the student in the exercises.

Let us find out what is the condition on the coefficients of a
transformation 7' of the form (13) for T to leave the area of any
triangle invariant. Using (13), we find that

1 Y1 1 x’l y,1 1 ay bl 0
A= '% T Y2 1| = % x; yé 1 15 bg 0= A’
z3 Yz 1 zy oy 1 a3 by 1

the area of the new triangle if, and only if, a;by — asb, = 1.
Compare Ex. 13 in §19.

We see that T may keep the area of every triangle invariant
and yet not keep distances invariant. However, we see from §19
that a;bs — agb; = 1 is also the condition for T to keep T' and
h? — ab of the conic (4) absolutely invariant.

TLLUSTRATIVE ExampLE. The transformation
z=3z" -5y’ +1, y=2z" -3y’ +7
which is evidently not the product of a rotation and a translation, has
aibs — aghy = —9 + 10 = 1, and so keeps areas of triangles, T' and A2 — ab,

absolutely invariant.
If we submit the variables of the two lines

y =mx + ki, y = mex -+ ke

to the transformations (13), we have two new lines with slopes

B miay — by , mea; — b1
1=, my =
by — mjaq by — meas
’ ’
m; — m; my — m
Hence for tan 8’ = %to be the same as +tan 6 = + | — — ,
1 + mymy 1 + myme
we find we must have

af + a3 = b} + b = +(a1bz — ash1) # 0, aiby +aghs =0

We leave the details of this discussion for the exercises.

EXERCISES

1. Why can we use the words “ if, and only if,” in the text? In other words,
show that the conditions on the coefficients that are derived in the text are
both necessary and sufficient.

2. Give the complete discussions for the invariance of a + b, also for the
invariance (except possibly for sign) of tan 6.
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3. Give numerical illustrations of transformation (13) that leave invariant
T, k2 — ab, and A.

4. Show that the conditions for (13) to preserve distance are necessary
and sufficient.

21. The effect of affine linear transformations on the equations
of lines. It is worth while finding out what the effect is of (13),
or of any one of its special cases, on the equations of lines. Thus
(6) does not alter m in

y=mz+b
but replaces bby b’ = b + ma — 8. On the contrary (7) changes
this line into
y' (cos ¢ + m sin ¢) = z’(m cos ¢ — sin ¢) + b

Since z, z’, y, ¥’ all refer to the same frame of reference, we can
ignore the primes on the variables. Hence we can describe the
change in the equation of the line by saying that (7) replaces
the coefficient m by m cos ¢ — sin ¢, does not change the constant
term, but replaces 1 (the coefficient of y) by b cos ¢ + m sin ¢.

In general we note that (13) sends the line
(23) ur+vy+w=20
into
23") (au + bw)r’ + (azu + bow)y’ + (asu + bgy +w) = 0

If we write (23’) in the form
@3") W+ +w =0
we see that (13) sends the general line (23) with coefficients
(this name 1s to include the constant term) w, v, w into another

line with z’,5’ (which are the same variables 88 x,y) and w, v, w,
where the following relations exist between ', o, w and u, v, w:

24" pu’ = ayu + by, oo’ = asu + by, ow’ = asu + by + w

@4) ou=bu' — by, o= —an +an, ow= |}’ ki
2 3
az ’ a; Qs ’
w
+ b3 bl v + b1 bz

a; Q2

b b and p is an arbitrary non-vanishing
1 2

where ¢ = 1/p
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constant that is introduced because pu’, pv’, pw’ give us the same
line (23"") as u/, v’, w'.

We may look upon (24) as a transformation of the coefficients
of the line (23) caused (or induced) by the transformations of
the coordinates of points given by (13). We must keep in mind
that cvery transformation of the coordinates of points causes a
transformation of the coefficients of lines. In the transformed
equation of a line we can replace z’ and 3’ by z and y because
the axes of reference are left unchanged, and we plot any line by
finding two points (ordinarily the intercepts on the axes).

We note that the matrix of (24’) is

ay bl 0
ag b2 0
ag b3 1

This fact gives us an easy way to find the transformation of the
coordinates of lines that is induced by any affine linear transfor-
mation of the coordinates of points. Compare (14) in §13. For
example, (7) has the matrix

cos¢ —sin¢g O
sin ¢ cos¢p O
0 0 1

hence it causes a transformation

ou = ucosp+vsing, p' = —using+vcosp, pw =w

EXERCISES

1. Give the details omitted in the text, such as the derivation of (23’) and
(24).

2. Find the effect of each of the transformations (1), (2), (6), (7), (9),
(10), (12) on the line (23), first by actual substitution for the coordinates in
the equation of the line and, second, by the method of the last paragraph in
the text.

3. Obtain (24) by performing (13’) on the variables of (23’').

4. What does the transformation

z=2z"+y -1, y=2"+y +3
do to the line (23)?

22. A first hint of plane duality. We saw in §14 that three
pairs of homologous points P, and Pj, P, and P}, P; and P}
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uniquely determine a transformation (13) so long as P, Py, P;
and also P, P}, P} are non-collinear. We shall now prove the

THEOREM. Three pairs of homologous lines l; and 1}, ly and I},
I3 and Uy uniquely determine a transformation (24), and hence (13),
so long as 1y, 1y, I3 and also 1}, U, Ui are non-concurrent (i.e., do not
all pass through the same point).

DeriniTiON. Two such theorems as the above and the one in
§14 that can be obtained from one another by the interchange of
the words point and line, collinear and concurrent, are called the
plane duals of each other.

To prove the preceding theorem we suppose l; to have the
coefficients u;, vy, wy; I} to have uj, v}, w), etc. Since I, Iy, I3
go into I}, I, I}, respectively, we must have from (24)

’ ’ A

U = 01Uy + blvly P1V; = QoUy + bgvl, P1W; = AgUy + b31)1 + wy,
’ 4 /

potly = AyUg + bivg, pavy = agug + bovs, powy = agus + bsve + wy,

’ ! /
p3uz = ayug + byvs, pavy = agug + bovs, pswz = agug + bgvz + w3

We use the three distinct constants py, ps2, p3 because no two of the
lines 1}, 15, I} necessarily have the same arbitrary multiplier for
their equations.

Let us take the three of the above equations that have w in
them. We see they are of the following type:

4
azuy + bavy + dwy = prwf, agus + bave + dwe = pow},
agus + bgvg + dws = pawfy
where § = 1. If we look upon these last three equations as having
the unknowns a3, b3, 8, we see we must have
Uy vy W
Uz V2 W2
Uz vz w3 l

# 0

if these equations are to have a unique solution in a3, bs, § = 1.
But this shows that the three lines [,, I, I3 must be non-concurrent.
If now we use (24) instead of (24’) and call

az ag
by b3

the unknowns in the three equations that contain w, we see (by
an argument like the above, which we leave to the student in the

az a)
b3 by

a; Qg

A= by by

y = , y =
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exercises) that we must have

/ /

uy v wi
upy vy wh| =0

/ / /

Uz vz W3

i.e., the three lines 1, I}, I, must be non-concurrent.

IrrusTRATIVE ExampLE. If we want tosendz =0 intoz +y =0,y =0
intox—y=0,z4+2y —1=0intoz — 2y — 1 =0, we see we have

ur=1 vi=w =0; ui=v1=1 wi=0; up=wg =0, v =1;
up=—-vp=1 wp=0; 2uz=v3=—-2w3 =2; 2uz = —v3=—2wz =2

Using (24') we get

p1=a1, p1=as 0=a3 p2=0>0, —pz=nbs 0 =b;
ps=a1+2b, —2p3=as+2b;, —p3=az+2b3—1=—1

Therefore (24’) must have the form

pu’ = pww + pav, pv’ = p1u — pov, pw’ =w

where p1 +2p2 = 1,01 — 2p2 = —2, 80 p1 = —3, p2 = 3. Hence (24’) can
be written
’ 1 3
' = —jutiy, o' =—Fu—3%o o =w
Since a1=a2=—%, bl—-bz'—‘%, as =bs =0

we see that (13) takes the form
’ 3,7

— 1, p =3 3
T=—32% —23Y, Y=31T —3¥Y

(We note here that the above theorem can be obtained geo-
metrically from the theorem in §14 in the following manner. The
vertices of the triangle whose sides are l;, Iy, I3 must go into the
corresponding vertices of the triangle whose sides are I, I, I5.
From this fact follows the above theorem. Also we can use this
note to solve the above illustrative example more readily.)

Another solution of this problem comes from the hint that the
vertices (0,0), (0,3), (1,0) of the triangle with sides x = 0, y = 0,
24+ 2y — 1 =0 must go into the corresponding vertices (0,0),

1,—3) (=1,—1) of the triangle with sidesz + y = 0,z — y = 0,
z—2y —1=0. Using (13) directly we get the equations

0=0+0+a3, O=0+0+b3, 1=—a1—a2+a3,

1 1 1_1 1
= —by—by+b;, 0=3a1—3a2+a;, 3=3b1—3b2+0bs
SO agz = b3 = 0, b1 = —bg, a; = Qg = —%, b2 = ”'% and the
. . . 14
required transformation is z = —32' — 34y, y=32" - 34
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We can solve the illustrative example in still a third way.
Sincez = Oistogointoz’ + 3’ = 0, wemust havez = a(z’ + ¢').
Sincey = Oistogointoz’ — ¥’ = 0, we must havey = 8(z" — y').
Since z + 2y — 1 = 0 is to go into ' — 2y" — 1 = 0, we must
have

z4+2y—1=a@ +9¢) 4280 —y)—1=2" -2y -1

From this last equation we have « + 28 = 1, a — 28 = — 2, whence
a= —% and B = %, and again we obtain the transformation
z=—%2" -3y, y=32" -2y (The logic of this solution

is more easily seen if we look upon the transformation as an alias;
because then, for example, such an equation as £ = 0 must give
the same locus as #” 4 4’ = 0, hence wemusthavez = a(z’ + 3'),
as above.)

EXERCISES

1. What coefficients must the equations in (13) have so as to send z = 0
into y=0, t+3y—4=0into 2xr—y+5=0, and z+y—1=0
into3x — 2y + 7 =0? Do this problem in three ways, as was done in the
last paragraphs in the text.

2. Carry through the analytical proof sketched in the text that I3, 3, I3
must be non-concurrent. i

3. Fill in the details of the geometric derivation of the theorem in the text
from the theorem in §14.

4. If the point of contact of a tangent to a conic is the plane dual of the
tangent, what is the plane dual of the figure formed by a hexagon circum-
scribed to a conic and with its diagonals drawn?

5. Explain the logic in the last paragraph of the text, looking upon the trans-
formation as an alibi.



CHAPTER 1V
INTRODUCTION TO THE STUDY OF CROSS-RATIO

23. Cross-ratio, an important invariant of affine linear trans-
formations. We have seen in §§18 and 20 that the general affine
linear transformation (13) does not leave invariant lengths of line-
segments, angles between lines, or areas of triangles. There is a
very important invariant of (13) that we shall now consider,
called a cross-ratio (anharmonic ratio or double ratio) of four
collinear points. This invariant does not presuppose an ordinary
frame of reference.

We suppose there are given four distinet collinear points
Py(x1,y1), Pa(x2,92),
P3(x3,y3), Pa(%4,y4)
onaliney=mr+b
(see the adjoining
figure). Through P,
take the line P;L,
parallel to OX and
the line Py M, parallel
to OY; construct the
points 1, Tz, T3, Ta,
Y1, Y2, Y3, Ya, Lz, L3, Lg, My, M3, M, as in this figure. From
plane geomctry we have

P1P2_P2P3_P3P4_P1P4_c
P.L, L,L; LsL, L;Ly

where c¢ is a non-vanishing constant. But we have

P\Ly =23 — ), LyLy=2x3— 29, L3Ly=x4—2x3, LiLy=24 —2;
Similarly we have

PP, _ P,P3 _ P3P, _ PP, %0

PiMy; MyM3; MMy MM,

Therefore we have

PPy P3Py %y — 21 %4 — T3 Y2 — Y1 Ys — V3

(25) =
P3Py PyPy 13— 2324 — %1 Yo — Y3 Ys — V1

44
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DEeriniTION. This product ?f ratios%llzi ?——i‘%is called a cross-
ratio of the four collinear points Py, Py, Ps, Py.

DeriniTioN. The product of the ratios in the abscissas (or-
dinates) in (25) will now be defined as a cross-ratio. This is
more general than the previous definition, because it contains no
reference to lengths of line-segments. See §§77, 106.

There are five other cross-ratios of these four points, namely,
P1P3/P2P3 . P2P4/P1P4, P1P3/P4P3 . P4P2/P1P2, etc. We shall
now prove the

TueorEM. Cross-ratto is an absolute tnvariant under affine
linear transformations.

Proor: We can write (13’) in the form
(18") 2 =awt ey toas, ¥y =iz + By + Bs

Since rotations and translations leave invariant the lengths of
line-segments and therefore surely leave (25) invariant, we can
rotate and translate the line P°{PsP3P4 into the position of y = 0
before we consider the effect of (13) upon (25), and yet lose no
generality in our argument. Hence these four points (now on
y = 0) go by (13’) into four points with the coordinates

4 ' . ’ ’
] = a1 + a3, Yy = 1%L + B3; Ty = a1z + a3, Yy = P17 + B3
/ 7 . ! !/
Ty = a1x3 + a3, Y3 = B1x3 + B3; Ty = a1®4 + a3, Yy = B124 + B3

respectively. If we take the corresponding cross-ratio of these
four new points P}, P}, Py, P}, we get

/) ! 1854 / ’ ! 7
PPy P3Py x5 — 2, %4 — %3 il + a3 — oy — a3

/ D/ /'t ) ’ / ’r

3P2P1P4 Tg — Lz Ty — Xy a1x2+a3—a1x3—a3
Ty + a3 — T3 —az Ty — Ty T4 — 23 _ P1Pp P3Py
ity + ag — ayty —oaz T3 — r3 T4 — 1 P3Py PPy

Hence we see that the corresponding cross-ratios of the two sets
of points are exactly equal.

Note that the invariance of cross-ratios means that if a cross-
ratio of four given collinear points is 2, say, then the corresponding
cross-ratio of the four points into which (13) sends the original
four has the same value 2.

Another way to interpret the proof given in the text is the fol-
lowing, without supposing the line ! to have been rotated and
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translated into the position of ¥y = 0. Suppose we want to send
the line 1 into a line I’ by (13) and to show that cross-ratios are
kept invariant. The discussion in the text shows that any trans-
formation 7 sending y = 0to ! (or I’) keeps cross-ratios invariant,
hence the inverse 7! keeps them invariant. Therefore we can
break up the transformation sending I to I’ into the product of a
transformation T; sending ! to y = 0 and a transformation T,
sending ¥y = 0 to I’. Since Ty and T’ keep cross-ratios invariant
(by the proof in the text), the product 77 = T;T, does the same
thing.

There are twenty-four ways of arranging the four points when
taking different cross-ratios; however, there are only siz (or
less than six) distinet values for these cross-ratios (as we leave
for the student to prove in the exercises), namely (if one such
cross-ratio has the value r)

1 L] 1 _1
(26) o 1=Tr T

"1—7r r—1 7
For example, the following cross-ratios are evidently equal to
one another

P1P2P3P4, P2P1P4P3, P3P4P1P2’ P4P;3 PP,

P3Py PPy P4P, P;P3 PPy P3Py P3P3 PyP,

yet these cross-ratios correspond to four distinct ways of arranging
the four points.

ILLusTRATIVE ExampLE. The four points on the z-axis with abscissas
1, 2, 3, 4 have the six cross-ratios

2-14-3_ 8-14-2 , 3-12-4_,
2-34-1 ® 3-24-1 % 3_-32_-1" 7%
2-13-4 , 4-12-3 4-13-2 ,
2-43-1 ¢ 4-32-1" 2 i_23-1"1%

The four points (0,6), (1,9), (—1,3), (—2,0) on the line y = 3 z + 6 have
1-0-24+1 9-60-3
141 -2-0 9-30-6
ratios 4,3, 4, -3, -1

one cross-ratio

=1, and the five other cross-

EXERCISES

1. Show why the cross-ratios in the next to the last paragraph in the text
are equal to one another and also how these four cases arise when considering
all the possible cross-ratios of four given collinear points.
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2. Prove the fact that there are only at the most six distinct cross-ratios of
four points, and that these six are related to one another as in (26).

3. Prove by plane geometry that P1Ps/P1Ls = P9P3/Lsls = . . ., ete.

4. The so-called inversion z’ = z/(z® + »?), ¥’ = y/(x? 4+ y?) sends
points on a line ! through the origin into other points on the same line I.
Show that cross-ratio is preserved. Hint: Take lasy =y’ =0. Why is
there no lack of generality in this choice of I?

5. Find all six cross-ratios of —1, 1, —2, 2; of -2, 1, 2, 4; of (0,0), (1,2),
(—2,—4), (3,6) on the hne y = 2z. For the points on y = 2 z find one of
the cross-ratios in three ways: (a) using the abscissas of the points; (b) using
the ordinates; (¢) using the distance formula on P1Ps, P3Pq, P3P4, P1Ps. Find
all the cross-ratios of the points on y = 2z, first by direct computation,
second by using (26) on one of the cross-ratios.

6. By using the distance formula prove analytically the equality in (25).

7. Make up a numerical example of the six cross-ratios of four points on a
line I not passing through the origin.

8. If the transformation 7" sending y = 0 to [ preserves cross-ratios (i.e.,
keeps them invariant), why then does 7! do the same?

24. Harmonic sets of points. If we try all possible ways for
the cross-ratios in (26) to be equal to one another for special values
of r, we find there are just two distinct ways, namely, when
r=1/r and so r = —1 (we cannot have r = 1 for four distinct
points, since then 1 — r = 0) and also when r = 1/(1 — r) and

sor = (1+ V3 i)/2 where i = V/—1. The second case is im-
possible for four real points. The first case gives us:

DEFINITION. A harmonic set of four collincar points consists
of four such points that have —1 as one cross-ratio. (The other
cross-ratios of these four points are then 2 and %.)

By all odds the most important sets of four collinear points
are these harmonic sets. If the four points of a harmonic set
are arranged from left to right in the order Py, Py, P3, P4, we see
that the cross-ratio P,Py/P3P, - P3P,/P;P, must be negative
and so must have the value —1. We note that P;P3 can be
looked upon as a line-segment divided internally by P, and ex-
ternally by P, in the same ratio.

The Greeks called this set of four points the golden section. The
two pairs of points P;P3 and PP, are said to separate one another
harmonically. The point P;(P3) is called the harmonic conjugate
of P3(P;) with respect to the pair of points Ps, P4 and similarly
for Py and P, with respect to Py, P3. If we are careful to arrange
our points and choose our cross-ratio as above, we shall always
get —1 as the value of our cross-ratio if our set of four distinct
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collinear points is a harmonic set. However, the values 3 or 2
for a cross-ratio at once stamp four collinear points as a harmonic
set as surely as does the value —1.

Harmonic sets of points appear very frequently in analytic
geometry. Thus for the ellipse z?/a® + y%/b% = 1, where a > b

and ae = Va? — b% we have on the z-axis the harmonic set
(_a:O), (ae,O), (a,O), (a/e;O)

ae +aafe—a
ae — a afe + a

(—a/e,O), (—-G,O), (_M:O)) (a,O)

—a -+ a/e a -+ ae I
—a+ae a+aje ’

Geometrically, we can say that on the major axis of an ellipse the
two vertices, either focus, and the point where the corresponding
directrix cuts the major axis form a harmonic sct. Evidently the
same theorem holds true for a hyperbola.

Again, the line z + y = 1 cuts the lines z = 0, y = mx,
y = 0, y = —mz in the points (0,1), (1/(1 4+ m), m/(1 + m)),
(1,0), (1/(1 —m), —m/(1 —m)) that have one cross-ratio
1/1+m)—01/01 —m) =1
1/ +m)—11/1—-m) =0
harmonic set for every value of m.

with a cross-ratio = —1, and also the harmonic set

with a cross-ratio

—1 and so evidently form a

EXERCISES

1. Show why the cross-ratior = £ (—1 & V31i)is impossible for four real
points and also why r = 1 is impossible for four distinct points.

2. Make up a numerical example of a harmonic set of four points on a line
not, through the origin.

3. Show thatr = —landr = }(—~1 % V3 1) are actually the only values
of r that give cross-ratios that are equal in pairs.

4. Show that there are only three cross-ratios for a harmonic set of points,
namely, —1, 3, and 2.

5. Show that for a harmonic set P1Pg/P3P2 " P3P4/P1P4 must have the
value —1.

6. In the last paragraph of the text we took the ellipse in the form
z2/a? + y2/b? = 1. Why was no loss of generality incurred thereby? Why
was the proof valid also for hyperbolas?

7. Prove thaty = 0,y = mz, z =0,y = —mz cut any line y = az + 8
in a harmonic set of points.
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25. A first hint of infinite points on lines. Let us consider
the equations (4) and (5) again. We make the following

DerINITION. If the point P’(z’,y’) does not lic on the conic
(4), then (5) is called the polar of P’ with respect to (4) and P’ is
called the pole of (5) with respect to (4).

We shall now prove the

THEOREM. Any line I through a point P’ cuts a conic (4) and the
polar (5) of P’ with respect to this conic in three points that form
with P’ a harmonic set of points.

We take P’ as (0,0) and [ as y = 0. The polar of (0,0) with
respect to (4) is gr + fy + ¢ = 0. The line y = 0 cuts (4) in
the points

g+ VEZ —r — VP
( g+ Vg ac,o) and ( g g ac,O)

(¢4 a

and also y = 0 cuts the polar of (0,0) in the point (—c/g,0). The
point (0,0) and the three above-mentioned points form a harmonic
set, since one cross-ratio of these four points is

=g+ Vi —a —¢c —g— V¢ —ac

0

a g a - 1
f VP -w —c —+ Vi -

a g a

In the above paragraph, if ¢ # 0 but g — 0, then (—c/g,0)
approaches the form (& «,0) according as ¢ z 0 and ¢ —0
through positive or negative numbers. We interpret this peculiar
situation by saying that y = 0 cuts the polar of (0,0) in a so-
called infinite point. Our reason for this interpretation lics in
the fact that, if g is made smaller and smaller without becoming
zero, the two lines g + fy + ¢ = 0 and ¥ = 0 cut one another in
a point that goes farther and farther out in the plane. Note
that as g — 0 these two lines become parallel lines.

Again let us consider the four points P, = —a, Py = 0, P3 = aq,
P, = z’ on the z-axis, with one cross-ratio

0+4az'—a  1-—a/r
"T0—a7d +a 14 a/z

As z' — o, r— —1. To interpret this result we say that the
two ends of a line-segment on a line I, the midpoint of this segment,
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and an infinite point on I form a harmonic set. To make this
interpretation more plausible we note that the farther out the
point P, = z’ goes on I, the more nearly do the two segments
PP, and P3P, approach equality in length, whereas PiPy and
PyP3 are already numerically cqual in length but opposite in
sign. With this interpretation, we say that the two vertices
and the center of any ellipse or hyperbola form with an infinite
point on the major axis a harmonic set of points.

Finally we see that for the parabola y? = 4 px we have the focus
(p,0), the directrix x = —p, and the vertex (0,0). But the four
points —p, 0, p, ' — o form a harmonic set. Therefore, to keep
this result in agreement with the similar theorem about ellipses
and hyperbolas, we assume that parabola has an infinite vertex
on its axis as well as the vertex (0,0).

Mathematicians are continually making assumptions and inter-
pretations like the above in order to take care of apparently ex-
ceptional cases. We must be on the lookout for such cases in
this course.

EXERCISES

1. Find the cross-ratiosof 1,0, 2, zas r — o.

2. Show why there is no loss of generality in proving the theorem hecause
of choosing P’ as (0,0) andlasy = 0. Hint: Rotate and translate P’ and [
to these positions.

3. Prove that (13) sends a point P, a conic C, and the polar of P with
regard to C into P’, C’ and the polar I’ of P’ with regard to C. Hint: Use
cross-ratios.

4. Prove that a focus and the corresponding directrix of a conic are pole
and polar with respect to this conic. Hint: Take the conics in the so-called
normal (type or canonical) forms z2/a? + y%2/b%> = 1 and %% = 4 pz.

5. Try to find the polar of the center of a conic. Hint: Take the center
at (0,0) and the conic as x2/a% &= %%/b%? = 1 or 2 + y% = rZ

6. To interpret the result of Ex. 5 we note that the polar of P’(x’,y’) with

2702 4 42/b2 = i L LY
respect to x2/a? & y%/b*® = 1can be put in the form Y =+ 2y
2’ — 0 and y’ — 0, what happens to this polar? Hence how do we interpret
Ex. 5?7

7. Why is it we do not lose generality in our proofs in Exs. 4, 5, 6 by taking
the conics in the normal forms instead of in the more general form (4)?

8. Find the pole of 3z -+ 2 y — 4 = 0 with respect to the conic z2/9 +
»?/16 = 1. Check up on the theorem in the text for this pole, polar, and conic.

=1. Ifnow

26. A geometric construction for a harmonic set of points.
We shall now derive a geometric construction for a harmonic set of
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points on a line. First we must prove a theorem due to an ancient
Greek geometer, namely,

MEeNELAUS’ THEOREM. If DEF is a line cutting a triangle ABC
in the points D on AB, E on AC, and F on BC, then we have

AD-BF -CE = AE -CF - BD

Let us take the figure below. We drop the perpendicular p
(from B), ¢ (from A), and r (from C) onto the line DEF. Then

BD/AD = p/q (from similar right triangles), CE/AE = r/q,
BF/CF = p/r. Therefore

ADBFCE gpr

pidipniid . § .BF - = AE-CF - B

BDCFAE ~ prg 1 or AD-BF-CE C D
as was to be proved.

Let us now consider the following quadrilateral A’, B’, ¢/, D’,
with its pairs of opposite sides produced until they meet, and

with its diagonals drawn. We shall see later on that this completed
figure is called a complete quadrangle, and is of great importance.

We shall prove that the four points, A, B, C, D form a harmonic
set (i.e., that AC/BC - BD/AD = —1). We do this by using
Menelaus’ theorem four times for the triangle AE’B and the four
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transversals B’A’D, D'A’C, C'B’C, C'D’D, respectively. From
this theorem we obtain

(@) E'B'"-AD -A’'B=FE'A’"-BD-AB’
(b) E'D'-A’B-CA = E'A’-BC -AD’
() E'B' -AC -BC' = E'C’ -BC -AB’
(d) E'D'-BC' -AD = E'C'-BD-AD'

Dividing (a) by (c) we get

ADA'B BDE'A’
© ACBC'  BCEC
Dividing (b) by (d) we get

A’'BAC E'A’BC

o BC'AD _ E'C'BD
Dividing (e) by (f) we get
AD)2 ~ (31))2
@) (AC ~\BC
Hence we have
N ACBD _ .,
BCAD

looking upon AC, BC, BD, AD as directed line-segments, since BC
has its direction opposite to that of the other three segments.

Note that dividing (e¢) by (b) and (¢) by (d), or dividing (a)
by (d) and (b) b}'}*‘ (c), gives us harmonic sets on the other two
sides of the triangle AE’'B, Also note that the two pairs of points
AB and CD separate each other harmonically. (Compare §24.)

From the above result there readily follows a method of con-
structing a harmonic set of points given three of them arranged in
a certain order. Suppose in the preceding figure we are given
D, B, C in this order and wish to construct A as the harmonic
conjugate of B with respect to C and D. (Compare §24.) Through
D we can draw two arbitrary lines DA” and DD’. Through C
we can draw one arbitrary line cutting DA’ in a point A” and DD’
in a point D’. Then the line BA’ cuts DD’ in a point ¢/, and CC’
cuts DA’ in a point B’. The line D’B’ cuts the line DBC in the
desired point A.

Analytically we can see as follows that A is a unique point
(if D, B, C are given in this order and A4 is to be the harmonic
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conjugate of B with regard to C and D). Suppose D is (0,0),
Bis (1,0), C is (a,0). We wish to determine A (z,0) so that

This equation gives us the unique value x = a/(2 — a), so there
is only one such point A (a/(2 — a),0).

We remark that if a — 2 in the last paragraph, A approaches
the form (e«,0). In this case B is the midpoint between D and
C, hence (since BD/BC = —1) we must have AC/AD = 1.
But no finite point A can satisfy this condition (since C # D).
Therefore we must either debar this case or assume the existence
of an infinite point on the line DBC. (Compare §25.) If we
draw the figure for this case

oL
we find that D’B’ is parallel ‘k
to DBC. D’ B’ %

From the last sentence
above we have a method of
bisecting a line-segment DC
(sce the adjoining figure).
Draw any line I’ parallel to
the line DC. Through D draw two arbitrary lines cutting I’ in
the points D’ and B’. Then D'C cuts DB’ at A" and CB’ cuts
DD’ at C'. The line C’A’ bisects the segment DC at B.

D B C

EXERCISES

1. Explain fully why, in the last paragraph, C’A’ bisects DC at B.

2. In the analytic proof in the test of the uniqueness of the point A why
is there no loss of generality incurred by taking the line DBC as y = 0, also
Das (0,0) and B as (1,0)?

3. Give a construction for drawing through a point (say D’) a line I’ parallel
to a given line I (say DBC') not passing through D’.

4. Show that on the other two sides of the triangle AE’B in the first figure
of the text there are formed harmonic sets of points.

5. Given three collinear points DBC, find A as

(a) the harmonic conjugate of C with regard to D and B,

(b) the harmonic conjugate of D with regard to B and C,

(c) the harmonic conjugate of B with regard to D and C.

6. Prove Menelaus’ theorem for a line DEF cutting the triangle ABC of
the text (a) beyond B and C; (b) beyond B but between A and C.

7. Taking E’ as (0,0), E'Basz =0, E’'Aasy =0, A as (2,0), B as (0,2),
C as (1,1), find the coordinates of the other points in the second figure in the
text and the equations of the other lines.
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8. Use Ex. 7 to prove the results in the text analytically. Why is there
no loss of generality in the choice of the coordinates of the points and the
equations of the lines in Ex. 77

27. Harmonic sets of concurrent lines. In Ex. 7 of §24 we dis-
covered that the four concurrent lines z =0, y = 0, y = mz,
y = —mz (for m arbitrary) cut any line y = ax + B in a harmonic
set of points.

DEFINITION. A set of four concurrent lines that cuts any
arbitrary line in a harmonic set of points is called a harmonic set
of lines.

We prove next a more general theorem, namely, that ¢f we have
any two lines Iy = a1z + by — ¢; = 0* and I, = asx + bay — ¢
= 0 and take four lines of the pencilt of lines

i + N = (az + by —¢1) + Nagx + by —cz) =0
with parametersi N1, N2, N3, g such that

Ae— M A=Ay

= —1
A2 — A3 Mg — Mg

then these four lines form a harmonic set of lines. Also, conversely,
if four lines of this pencil form a harmonic set, then one of the cross-
ratios§ of their parameters has the value — 1.

Without loss of generality we can consider the points in which
these four lines cut y = 0, namely ((c; + N\ec2)/ (a1 + \a3),0),
where 7 = 1, 2, 3, 4. Calling these four points P,(z,,0) where
1 = 1,2, 3, 4 and taking a cross-ratio we find that '

Tg — X1 Ty — X3 >\2—)\1)\4—)\3
Tp — T34 —T1 N — MM — N

(We leave the details to the exercises.)

* The expression I = ar 4 by — ¢ = 0 is brief for  the line I whose equation
isar + by —c =0."

1 We carry over from elementary analytic geometry the notion of a pencil
of lines (i.e., all the lines through the point of intersection of two given lines)
whose equation l; + My = 0 has an arbitrary constant X called the parameter.

1 Different values of X in I; + Mg = O give different lines of the pencil.

§ Note how we speak of the cross-ratios of four parameters \i, Ag, A3, A4,
meaning thereby such expressions as (A2 — A1)/(A2 — A3) - (Ag — A3)/
(A\g — A1) which in the sense of §23 would be cross-ratios of four points
("1,0); ()\270); (A3,0), ()‘4;0)~
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This result shows that (a) if the four points on y = 0 form a
harmonic set with the above cross-ratio (say) equal to —1, then
the corresponding cross-ratio of the parameters of the four lines
also has the value —1; and (b) if the above cross-ratio of the
parameters equals —1, , or 2, then the four points of intersection
of these lines with ¥ = 0 form a harmonic set. (Note that the
four lines x = 0, y = 0, y = mx, y = —mx are lines of the pencil
9y + Az = 0 with parameters \; = o* Ay = 0,\3 = —m, \y = m,
respectively.)

Another way to prove the above theorem would be to reduce the
pencil of lines to the form y’ 4 A2’ = 0 by the transformation
mz+by —cy =y, ax+ by —cs = 2'. By doing this we
lose no generality because (13) preserves the cross-ratios of points;
also the above transformation has no effect at all on the param-
eter A (i.e., an old line I; + Ny = O goes into y' + Nz’ = 0).
If we cut any line 4’ = mx” + b by four of these lines with param-
eters \i, Az, A3, Ag, we get the points (—b/(\; + m), b/(\; + m))
where 7 = 1, 2, 3, 4. Taking the same cross-ratio of these four
points that we took in the preceding paragraph, we find its value
is Az — M)/ (e — A3) - (Mg — A3)/(Ag — Np).

Note that we have proved furthermore that every line is cut by
a harmonic set of lines in a harmonic set of points, and conversely
that a harmonic set of poinis on any line 1 is joined to any point P
not on 1 by a harmonic set of lines. These two converset statements
are also the plane duals of one another. (See §22.) Also, we
have shown above that (whether or not we are dealing with a
harmonic set) the cross-ratios of the above-mentioned points
equal the corresponding cross-ratios of the parameters of the four
lines of the pencil.

ITLLUSTRATIVE EXAMPLE. As a numerical illustration of the preceding dis-
cussion we note that the four lines Bz +4y — 1) + Az -y —2) =0
where A = 1, 2, 3, 4, cut y = 0 in the respective points (3,0), (1,0), (7/6,0),
(9/7,0). We have one cross-ratio

* By the line with A\; = «© we mean the line 1/A;y + £ = 0 where A\; — =,
or putting A\; = N’/A’’ and clearing y + A'/N’z = 0 of fractions we mean
A’y 4+ X'z = 0, where M’ — 0 but A’ < 0.

t The statement and proof of converse theorems constitute an important
and often difficult task.
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EXERCISES

1. If ; = 0 and l; = 0 are two lines, prove that the pencil consisting of all
the lines through the point of intersection of these two lines is given by the
equation I; + Mg = 0.

2. Prove Ex. 7 of §24 by using the idea of a pencil of lines and the cross-
ratio of the four parameters.

3. Why is there no loss of generality incurred in the first proof of the text
by taking y = 0 as the line containing the harmonic set of points?

4. Fill in the details of the two proofs in the text. Why do these discus-
sions prove so many more facts than the ones we started to prove?

5. Dualize the figure formed of four lines of a pencil cut by two distinct
lines in two sets of four points.

6. Make up a harmonic set of lines, find the points in which they cut y = 0,
and take cross-ratios.

7. Make up an example dual to Ex. 6, and solve it.

8. Make up and solve examples like Exs. 5 and 6 for four concurrent lines
that do not form a harmonic set.

28. A geometric construction for a harmonic set of lines. In
this section we shall dualize (i.e., give the plane dual) of the
geometric construction given in §26 for a harmonic set of points.
(See the adjoining figure.) Instead of the five points A’, B/, C’,
D’, E' in §26, we have now five
lines o, v’, ¢/, d’, ¢/. Instead
of the four points C, D, B,
A in §26, determined as fol-
lows — C by the intersection
of the pair of opposite sides
‘ C'B’, D'A" of the quadri-
s 4 7 lateral {1’B’C’D’; B by the

intersection of the diagonal
C'A’ of the quadrilateral with the line ADBC; ete. — we have
four lines ¢, d, b, a, determined as follows — ¢ as the line joining
the pairs of opposite vertices ¢'b’; d'a’* of the quadrilateral
a't’c’d’; b as the line from the point of intersection of two opposite
sides a’,c/ of the quadrilateral to the point adbc; ete. To show
that the four lines ¢, d, b, a are really a harmonic set of lines we
have merely to notice that these lines intersect the line ¢’ in a
harmonic set of points C, D, B, A determined thereon by the same
quadrilateral a’d’c’d’.

* Note how we specify the point of intersection of ¢’ and b’ as ¢’b’ and the
point of intersection of the four lines a, d, b, ¢ as adbc. This is the plane dual
of the way we specify in §26 the line joining the points C’ and B’ as C’B’, etc.
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Just as for a harmonic set of points, so here we call the line a
the harmonic conjugate of b with respect to ¢ and d. If a’ and ¢
(say) are parallel lines, we must draw b parallel to them. We
may assume here an infinite point B of intersection of a’,¢’, and b.
This special case need not arise in §26. (Why?)

Note how the figure composed of the four sides a’, b’, ¢, d’ (and
the four vertices) of a quadrilateral, together with the two points
of interscction A and B of the two pairs of opposite sides a’,c’
and b’,d’, is exactly the plane dual of the figure in §26. The
figure in this section is called a complete quadrilateral.

EXERCISES

1. Describe completely the figure in this section as the dual of the figure
in §26.

2. Give the complete description of the four lines ¢, d, b, a.

3. Dualize Ex. 5 in §26 and solve this dual example. Hint: First dualize
the construction given in the text of §26.

4. Show that at A and B in the figure in the text we have two more har-
monic sets of lines. This is the plane dual of Ex. 4 in §26. Hint: The four
points on ¢ form a harmonic set. (Why?)

5. Show that the lines joming C to ab, C to de’, C to ¢’d’, C to a’b’ form a
harmonic set. Hint: The four points on d form a harmonic set. (Why?)

6. Construct as in Ex. 5 a harmonic set of hines concurrent at D. Prove
these are a harmonic set of lines.

7. Answer the query (Why?) in the next to the last paragraph of the text.

8. Taking the point abed as (0,0), the line d as £ = 0, the lme c as y = 0,
the line e as x + y = 2, the line @ as y = z, find the equations of the other
lines in the figure in the text and the coordinates of the other points. (This
is the dual of Ex. 7 in §26.)

9. Use Ex. 8 to prove the results in the text analytically. Why is there
no loss of generality in the choice of the equations of the lines in Ex. 8?

29. A first hint of projection and section. In §27 we discussed
four concurrent lines of a peneil of lines I; + Ny = 0 with param-
eters A1, A2, A3, A\q and four collinear points Py, P, P, P; that
were so situated that P;(z = 1, 2, 3, 4) lay on the line with param-
eter \,. This leads us to a definition.

DeriNiTION. If a set of collinear points P,(z = 1,2,. . .) are
such that each lieson aline [,(i = 1,2,. . .) of a pencil of lines con-
current in a point P (called the center of the pencil of lines), then
the points P; are said to be projected from the point P by the lines
l,. Conversely (and dually) the lines I; are said to be cut in a
section by the collinear points P;.

These ideas of projection and section are fundamental in the
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purely geometric (synthetic, as opposed to analytic) side of pro-
jective geometry.* We shall deal with these ideas more fully later
on. We merely call attention to them here where they arise for
the first time. Since our approach is from the analytic side of
projective geometry, therefore these ideas of projection and
section do not appear at the beginning of our discussion.

The above sct of collincar points and set of concurrent lines
are said also to be perspective with one another. Also (because of
plane duality) the set of points P,(: = 1,2,. . .) on the line [ are
said to form a pencil (or range) of points with the line [ as axis.

DEeriNiTION. A pencil 7 of points (lines) with axis (center)
I(P)t is said to be projective with a pencil =’ of points (lines) with
axis (center) I’(P’) if =’ is obtained from = as the result of a
series of projections (sections) and sections (projections). Thus,
if 7 is a pencil of points and we have = projected from a point Py,
then the pencil of lines with center at P; is cut in a section by 1,
then the pencil of points on I; is projected from a point Ps, and
the pencil of lines with center at Py is cut by I’ in the pencil of
points 7’ — we say that = and =’ are projective with each other.

EXERCISES

1. By using parentheses as in the text, give in one definition the definitions
of a complete quadrangle and of a complete quadrilateral. See §§26, 28.

2. By using parentheses as in the text, give in one description the geometric
constructions of a harmonic set of points and of a harmonic set of lines. See
§§26, 28.

3. Prove that if a pencil = of points (lines) is projective with a pencil =’,
then any harmonic set of points (lines) in = must correspond to a harmonic
set of points (lines) in «’. Hint: See §27.

30. Parametric coordinates for collinear points; their cross-
ratios. Suppose we have a line through two given distinet points
P'(z';y’) and P"' (2" ;y""),} namely

T Yy 1
(27) Z 9y 1|=0
xll yll 1

* See §§31, 95 for definitions of affine projective geomeiry and general analytic
projective geometry.

t In this definition we use the parentheses in order to give two dual defini-
tions at once. The terms inside the sets of parentheses are to go together and
those outside are to go together.

1 Here z',y’ and z’’,y'’ designate two distinct definite points and do not
mean a change of variables.
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In (27) we cannot have

1 y 1

2 1 \ = ‘ J' 1 l = 0 because then

' =z",y =y, and P’ = P" (contrary to the hypothesis that
7

P’ and P’ are distinct points). Suppose then that i,, i \ # 0.

We can now solve the two equations
M4 =2, Ntu=1
for A and x. If we multiply the second row of (27) by the value

of \ that we obtain and multiply the third row by the value of g,
then subtract these two rows from the first, we obtain

0 y—n —w' 0 '
! / ! 7] £r 1
x Y Ll==-@—-N —w)| » | =0
a';Il yll 1
’
Since i,, 1 # 0, we must have y — N —wy” = 0.

This result shows us that the coordinates of any point P(z,y)
on the line (27) can be written in the so-called parametric form

(28) =2+, y=N+uw'
Since A = 1 — u, we can also write (28) as
@28) z=2z +u@" —2) y=v +r0¢ —y"

where u is called a parameter. (Note that u = 0 gives us P’ and
u =1 gives us P")

If we take the cross-ratio (xo — 21)/(xe — 3) + (¥4 — 23)/
(x4 — x1) of four points Py(z1,y1), P2(2,y2), P3(x3,y3), P4 (x4,y4)
on (27) with parameters w1, ua, us, s, respectively, we find that
it has the value (up — p1)/(uz — ma) * (s — wa)/(ma — pa).
Hence we sce that the cross-ratios of four collinear points that have
their coordinates expressed in the parametric form of (28’) are the
same as the cross-ratios of their four parameters. Compare the
dual result in §27.

TLLUSTRATIVE ExampLE. Any point on the line joining (1,1) and (3,3)
can be given by the parametric coordinates z = 14+2u,y=1+2p Ifwe
take the above-mentioned cross-ratio of the four points (—1,—1), (0,0), (2,2),
(4,4) with parameters —1, —3, 3, §, respectively, we obtain

0+14-2 -—3+1§-3%
0—-24+1 —-s—-334+1 °
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Another way to obtain the parametric coordinates (28’) for the points on a
line joining P’ (x',y’) to P''(z"",y’’) is to write this line as

”n ’

y—y _y'—y
We know from algebra that, if two fractions are equal, both their numerators
and thewr denominators are proportional. Hence we havey — ' = p (g’ — ')
and x — 2’ = pu(z’’ — 2’), from which we get (28).

To bring out the dual relation between sets of points on a line and scts of
lines through a point, we might obtain results similar to those in §27 in the
following manner. We start with the fact (proved in elementary analytic
geometry) that for three lines

l=uztowytw=0U=ve+vy+w =0,1"=u"+v"y+w’ =0

to be concurrent we must have

w v ow
(29) w v o w | =0
lt’, vl’ w’f

By an argument exactly similar to that in the preceding paragraphs of this
section we find for the coefficients of any line in the pencil of lines through the
point of intersection of !’ and /'’ the parametric equations

(30) T =pu' +ou'’, T =p +a’, Tw=pw + ow’
30") A= uw F+wu’, W =0 +w’, w = w4+’

where =, X are arbutrary constants which appear because a line ur 4+ vy + w = 0
is also given by kuz + kvy 4+ kw = 0 where £ is an arbitrary constant (not
zero), also N = 7/p, v = a/p.

We can obtain results for lines like those n this section for pomnts if we con-
sider a pencil of lines through the point of intersection of two lines u’x + vy +
1 =0andu’’z 4+ v’y +1 =0. Then (29) has the form

u v 1
w v 1]=0
lt” vll 1

and (30’) has a form

u=u"4+ao’ —u), =y +a@’ —v')
where uz 4+ vy + 1 = 0 is the equation of any line in this pencil. Note that
this discussion debars lines through the origin because such lines cannot be put
in the form uz + vy + 1 = 0. (We leave the details of the discussions in the
last two paragraphs for the student in the exercises.)

EXERCISES

1. Fill in the details of the discussions in the last two paragraphs of the
text.
2. Obtain (28’) from the equation of the line in the form

y—y -z

y/_yu—mr_xu=/‘
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3. Derive the parametric coordinates
x=x"4+rcosd, y=y +rsing

for the points on a line through P’(z’,y’) and making an angle 6 with the
z-axis. Show that

T2 —T1 X4 — T3 T2 —T1T4— T3

Ty — X3 T4 — Ty Tg —Trzgtg—Ty

What is the geometrical meaning of r?  Why are these parametric coordinates
valid only for an ordinary frame of reference?

4. Why are the parametric coordinates (28’) valid for any frame of
reference?

5. Derive the equation (29).

6. In (28’) where do the points lie relative to P’ and P’ if p <0, if
0<p<lifp >1? Hint:

— ! —_ ! \/ _,I2 )2
p=2= Yoy M@ B) F W) (proyg this,)
=2 Y=y V@ -2+ @ —y)?

7. If P'is (2,3) and P is (3,5), find four definite points on the line P’P’’
(in parametric coordinates) and find one of their cross-ratios.

8. Do the same as in Ex. 7 for the line joining (—1,—1) and (4,7).

9. Derive (28) by means of the formula for the coordinates of a point
P(z,y) that divides the segment of the line joining P’(z’,y’) and P’’(z’’y"")
in the ratiop/N. Hint: In this formula you can take u and A so that u 4 =1.
(Why?)



CHAPTER V

PRELIMINARY DISCUSSION OF GROUPS OF LINEAR
TRANSFORMATIONS AND THEIR ASSOCIATED
GEOMETRIES

31. Introduction to groups of transformations. In §§7,8, 9, 12
we have already defined what is meant by the products of two linear
transformations 7'; and 7T, namely 7773 and 7T,T;, and have
shown that ordinarily TTs % ToT; so that multiplication is in
general non-commutative (non-permutable, non-abelian) for
transformations. Also we have defined the inverse T~ of a
transformation and have proved that 77T = TT! =1 (the
identical transformation). We saw that (T1T9)T3 = T1(T:T3),
i.e., the multiplication of transformations is assoczative.

In the case of the translations (6) we saw that if T, and T are
two translations, then T,T; = T,T, = T; and, also, T is a third
translation, i.c., a transformation that can be put in the type form
(6). Besides, ™! (the inverse of a translation T') can also be
classified under (6) with —a for @ and —g for 8. Moreover,
I(x =2, y = y’) can be looked upon as being of the form (6)
with a = 8 = 0.

Again we saw in §20 that certain lincar affine transformations
keep invariant the arcas of triangles. If Ty and T, are two such
transformations evidently 71T, and T,T; are two other trans-
formations that keep invariant the areas of triangles. Like-
wise Ty}, Ty}, and I preserve these arcas. This is an example
of a geometric way of describing certain sets (or collections)
of transformations (by means of invariants). In this case the
geometric condition gives rise to the corresponding analytic
ay ag
by by | =1

DErFiNiTION. A group of linear transformations (defined*
analytically) is a set of transformations whose equations have a

condition on (13), namely that l

* By “ defining ”’ we mean distinguishing or specifying what transformations
belong to the group, i.e., giving criteria by which to decide whether or not a
transformation is in the group.

62
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given type form, such that the products of any two transformations
of the set are found in the set and, also, the inverse of any trans-
formation of the set and the identical transformation are found
in the set. If, moreover, T1Ty = ToT; for any two transforma-
tions T'; and T of this set, the group is called a commutative (or
abelian) group.

DEriNITION. A group of linear transformations (defined
geomelrically) is a set of transformations T;(z = 1,2, . . .), each
of which has a given geometric invariant associated with it, such
that T;T; and T;T; belong to the set for all values of 7 and j that
give transformations in the set; also T:~! and I are found in the set.

We note that ordinarily we seek to find analytic conditions on
the coefficients of the transformations of a group defined geo-
metrically, so that we may also define this group analytically.
Thus the group that preserves areas of triangles can be defined
analytically by‘ G 2 . = 1.

by by

The translations (6) form an abelian group, so also do the
rotations (7). The transformations (9) form a non-commutative
group. The transformations (12) form an abelian group (as the
student will prove in the exercises). The transformations (13)
form a non-abelian group called the general affine linear group.

The groups mentioned in the last paragraph are called infinite
groups (or groups of infinite order) because each of them contains
an infinite number of transformations. The group

(31) z=1i, y=7g'

where 4,7 = +1 is a fintte group of only four transformations
(called terms or members of the group), and hence is said to be of
order four.

Sometimes it is very difficult to write down the equations of a
group of transformations defined geometrically, as for example
the group of those sending a certain curve into itself. Again
two different geometric invariants may define the same group, e.g.,
the group leaving areas of triangles invariant and the group leaving
I' and 2% — ab for the conic (4) invariant we saw (where?) were
both the same, namely, the group with A = 1.

We note that there are groups of transformations not considered
in this book (since we shall confine our attention entirely to linear
transformations). An important group omitted from our study
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is that consisting of all the inversions with respect to circles with
centers at the origin, with equations

4
r2 2y’

T=——rs, Y = —a———ps
xiz_l_y/z; ) x/2+y12

Finally, we call attention to the fact that certain sets of trans-
formations do not form groups. For example, the equations

x=asy, y="ba'+ by
do not define a group.

IrLusTrATIVE ExamrrLe. Suppose we want the group of linear affine trans-
formations that leave the curve 2 = 4x invariant (i.e., that send points on
this curve into other points on the same curve). Performing (13) on y2 = 4z
we have

b?.t'z + bgy’z + 2 b1b2x’y’ + 2(b1b3 -2 al)x’
+ 2(bobs — 2a2)y’ + (b — 4a3) =0

This equation must be of the form c¢(y’? — 4z’) = 0 where ¢ # 0, so we must
have
by =0, b2=0, ai =b§, babg — 2ag = 0, b§—4a3 =0

Hence the required group has equations of the form
z = bz’ + Fbobay’ + 5 b3, y =bay' +bs

EXERCISES

1. Prove that all the transformations of (13) that leave the origin fixed
form a group, defined by a3 = b3 = 0.

2. Show that z = y’, ¥y = 2’ and x = z’, y = y’ form a group of order 2
(the order being the number of transformations in the group); similarly,
z=—2',y = —y' and z = z’, y = y’ form a group of order 2.

3. If we take ¢ = n/n (where n is a given integer) in (7), prove that we
have a group of order 2 n.

4. Prove that (12) gives an abelian group.

5. Look up all the facts quoted in the text.

6. Prove that (13) gives a non-abelian group.

7. Prove that z = agy’, y = b1z’ + bey’ do not define a group.

8. Prove that the inversions quoted in the text form an abelian group.

9. Prove analytically that the equations in the last line of the text actually
form a group according to the first definition in the text.

10. Find the linear equations that give the group leaving invariant (a) the
curve 22 — y2 = 1; (b) the curvezy = 1. Hint: Compare the last paragraph
in the text.

11. Prove analytically that the equations obtained in Ex. 10 actually form
a group according to the first definition in the text.

12. Find the group of linear transformations (a) leaving the point (~1,—1)
fixed; (b) leaving the z-axis fixed.
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13. Show analytically that the equations obtained in Ex. 12 actually give
us a group.
14. Make up cases of sets of linear transformations that do not form groups.

32. Subgroups of groups of linear transformations. DEgrINI-
TiIoN. A group of linear transformations, all of whose terms
belong to a larger group, is said to be a subgroup of this larger
group.

For example, the translations and rotations are subgroups of
the group (9), whereas the latter group is a subgroup of the group
defined by| Z: ‘;;
general linear affine group (13).

DEFINITION. A group that is made up entirely of the powers*®
of a transformation 7 is called a cyclic group. Here T is said to
generale the group.

Thus the group given in Ex. 3 of §31 is a cyclic group of finite
order, whereas the group obtained by putting ¢ = 2 r/V2 in
(7) is a cyclic group of infinite order.

‘ = 1, and this last group is a subgroup of the

EXERCISES

1. Prove the statements in the text. Show that the set of powers of one
transformation 7' actually forms a group (which is abelian).

2. Prove that all the translations of (6) that have both « and B integers
form a subgroup of (6). If we take the translations with « and 8 both posi-
tive integers, show that these do not form a subgroup.

3. Make up some finite and infinite subgroups of (13).

4. Make up some infinite subgroups of (13) defined geometrically and find
their equations. Then show that these groups satisfy the first (analytic)
definition of a group.

5. Make up some sets of transformations of (13) that are not subgroups.

6. Prove that (1), (2), (12) are subgroups of (13).

7. Find all the transformations in the group formed of the powers of
z=2z,y=2"—y'.

8. Prove that all the transformations of (13) that are commutative with a
given transformation T of (13) form a subgroup. Hint: If 7T, = 7T,
then T = T,TT1~!; hence T'y'T = TTy !, and so the inverse of T'; is also
commutative with 7.

33. Invariant points and lines of linear transformations.
Every transformation (13) has tnvariant (fized) points and lines.
We prove this fact by actually finding these invariant points and

* The powers of transformations were defined in §9.
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lines. Any fixed point of (13) must have coordinates that satisfy
the equations (since for these points 2’ = x, ¥’ = y)

z=a1x+ agy + az, y = byx + by + b3
or
z(ay—1)+ay+a =0 bix+ybs—1)+bz=0

Hence the single fixed (finite)* point of (13) is

‘ —as as ay — 1 —dag
—b bg — 1 -
(32) = 3 2 , Y= bl b3 |
ay — 1 as a; — 1 as
b by — 1 by by — 1
ay — 1 Qg _
unless by By — 1 ’ = 0.

From (24') we see that the fixed lines of (13) must have co-
efficients that satisfy the equations (since for these lines u’ = cu,
v’ = e, w' = cw, where ¢ is an arbitrary constant not zero)

tou = a;u + by, v = agu + b, pw = azu + bzy + w
or
u(ar — p) +bw =0, agu+v(bz—p) =0
azu + bzv + w(l — p) =0

These are three homogeneous linear equations in the three un-
knowns u, v, w. For these equations to have a solution not all
zeros we must have

a —p b1 0
(33) ag bp—p O = (p® — (a1 + bo)p + a1bs — asby)
az b3 1—0p -(1—=-p)=0

The equation (33) is a cubic in p, so there are three fixed lines
of (13) given by the three roots. The value p = 1 gives an
anomalous result because the three equations

u(ay — 1) +bw=0, au+ovbd;,—1)=0, azu+bzv+0w=0

can have no other solution than u = 0, » = 0, w arbitrary (5£0).
We interpret the line Ou + Ov + w = 0 as consisting entirely of
infinite points. (Compare Ex. 6 in §25.)

* Later on (see §85), we shall see that we are led to assume the existence also

of two fixed infinite points for (13).
1 Here p is really cp in terms of the p of (24’) because u’ = cu, etec.
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The intercepts of a line ux 4+ vy +w =0 are a = —w/u,
b= —w/v. If u—0andv— 0 whilew 5 0, we see that the line
moves farther and farther out in the plane. This fact justifies
our interpretation of the fixed line of (13) given by p = 1.

Note that a transformation (13) may not only leave a line !
fized (as to position) but may even leave it pointwise invariant
(i.e., leave every point on [ fizred). Thusz = 4 asy’, y = by’
leaves y = y' = 0 pointwise invariant.

ILLusTRATIVE Exampre. As an illustration we note that
Z=3$,+2y’—1 y=2'—y'+2

has the fixed point
‘ 1 2 \ ’2 1 }
-2 —-1-1 1 1 -2 5
=Ty 2 - % YTz z | e
1 —-1-1 1 -2

From (33) we get
*—2p—5)Q1—-p)=0

We leave to the student the finding of these invariant lines in the exercises.

EXERCISES

1. Find the fixed lines of the illustration in the last paragraph of the text.

2. Find the subgroup of (13) that leaves the y-axis pointwise invariant.

3. Find the subgroup of (13) that leaves the point (1,1) linewise invariant.
Hint: Every liney — 1 = m(x — 1) must go into itself.

4. Find the subgroup of (13) that leaves the origin linewise invariant.
Hint: Every line y = mz must go into itself.

5. Find the fixed point and lines of the transformation

r=z'—y +3 y=5"-3y" +1

6. Find the fixed point and lines of the translation (6) and of the rotation
).

7. Explain the results of Ex. 6 for the translation 6).

8. If T is any transformation of a subgroup of (13) and S is any transforma-
tion of (13), if S~!T'S = T’ (another transformation of the subgroup) where
S is allowed to run over all the transformations of (13), then the subgroup con-
taining 7T is called a self-conjugate subgroup under (13). Prove that (6) is a
self-conjugate subgroup under (13). Hint: See §§12, 13. Use matrices.

34. The parabolic metric group. At the end of §20 we derived
the conditions for (13) to keep the angles between lines invariant,
namely

a? + a% = bf + bg = :t(a1b2 - agbl) # 0, a1b1 + a2b2 =0
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From these conditions we get (since ab3 = a3b?)
a2a} + a3 — bla?2 — a2 =0
or
(a} + a3) (a —b}) =0

Thus we infer that ay; = by, a; = Fby (since a;b; + azby = 0
and a? + a2 % 0). Hence the linear affine transformations
that leave angles invariant can be written

(34) z=oar — By +v1, ¥y=eB2 +ay)+ 72

where e = 1. These are called similarity transformations.

The group (34) is called the parabolic metric group. This group
is closely connected with the ordinary plane (Euclidean) geometry.
For instance, the rotations, translations, and also (31) together
form a subgroup of (34) given by

(35) =o' — By + 71, y=eB' +a) + 7

where e = +1, o2 + 82 = 1.

The group (35) is called the group of displacements and sym-
metries. This is the group of rigid motions of figures that are used
in elementary plane geometry to prove figures are congruent or
symmetric, ctc.

The larger group (34) gives figures that are similar to one
another, because (34) preserves angles and gives d' = (o? + 82)d
where d is the distance between two points.

EXERCISES

1. Fill in all the details in the text, such as the complete proof that az = b,
and a; = Fby; that (35) includes (6), (7), and (31) and no other transforma-
tions; that (34) gives d’ = (a® + 62)d.

2. Show that a% +- ag = lz% + b% = F(aiby — agby) # 0 follows from
a} + a3 = b} + b3, aiby + azbs = 0.

3. Prove that (35) is a self-conjugate subgroup of (34). See Ex. 8 in §33.

4. Prove analytically that (34) gives a group; that (35) gives a group.

5. Show that, if A > 0, then (34) preserves also the sense of angles; but, if
A < 0, then (34) changes 6 into ' = —6.

6. Show that (34) for A > 0 is a self-conjugate subgroup under (34).
Hint: First show that (34) for A > 0 forms a group.

7. Show that (35) for A = 1 is a self-conjugate subgroup both under (35)
and under (34) with A > 0. Hint: TFirst show that (35) with A = 1 forms
a group.
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35. Geometries associated with groups of transformations.
Associated with each group of transformations we find certain
invariant algebraic expressions or equations, or other invariants,
some of them absolute invariants, others relative invariants.
(Compare §§18, 19, 20.) Thus the group (9) keeps invariant
distances between points, angles between lines, areas of triangles.
The group with A = 1 keeps invariant the areas of triangles.

DEFINITION. An invariant is said to belong to a group G if
there is no larger group ' containing G and also having this
invariant.

According to this definition the invariant distance belongs to
(35), the invariant angle belongs to (34) with A > 0, the invariant
area of a triangle belongs to the group with A = 1. We now can
define a geometry as follows.

DEFINITION. A geometry is said to be associated with two groups
@ and @ if it consists of the study of all the invariants that belong
to this group G (as well as all other invariants under @) and if G’
is the smallest group containing G and in which ( is a self-conjugate
subgroup.*

The most important geometry is the Euclidean geometry, which
is associated with the groups (35) and (34).

Similarly we can define an affine projective geometry associated
with the general affine group (13), which consists of the study
of the invariants (both absolute and relative) under (13).

We have also a rotation geometry and a translation geometry,
but these are of less importance for us. We might call Euclidean
geometry a sub-geometry of affine projective geometry and rotation
(translation) geometry a sub-geometry of Euclidean geometry.

We have seen that (13) has fewer invariants than any of its
subgroups; however, it has cross-ratio as an invariant. We wish
to emphasize here the fact that any subgroup G’ of (13) will have
all the invariants of (13), plus some more invariants that are
peculiar to any subgroups of (13) of which @ is a further sub-
group, plus still more invariants that are peculiar to G’ alone.
Thus the group (9) will have the invariants of (13), also those of
the subgroup of (13) that leaves areas of triangles invariant,
also those of (34), those of (35), and finally invariants all its own.

We saw (see §12, Ex. 5) that (13) sends a line into a line, a
conic into a conic, ete. It sends, therefore, points of intersection

* For a definition of ‘ self-conjugate subgroup "’ see Ex. 8 in §33.
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of curves (lines) into points of intersection of the same or of other
curves (lines). Also (13) sends hyperbolas into hyperbolas,
parabolas into parabolas, and ellipses into ellipses or circles.

We can see, as follows, that (13) sends tangents to a curve into
tangents to the same or another curve. 'We can define a tangent to
a curve as a line whose equations, when solved with the equation
of the curve, gives the coordinates of points (x1,y1), (z2,92), ete.,
such that z; = 2, and y; = y;. But (13) sends z; = 2, into
zy = a5 and y; = v, into ¥} = ¥ and, therefore, sends a tangent
into a tangent. (Compare Ex. 4 in §18.)

We want to emphasize again the importance of relative invariants
(as well as absolute invariants). For instance, I' and h% — ab,
connected with the conic (4), are relative invariants under (13),
the first giving by its vanishing a degenerate conic and the second
serving to distinguish the types of non-degenerate conics.

In most of our discussion of invariants we had to presuppose
an ordinary frame of reference; otherwise the algebraic invariants
lacked geometrical meaning. (Moreover, we looked upon the
transformations of coordinates as alibis.) However, cross-ratio
remains invariant under (13), a hyperbola remains a hyperbola,
a parabola remains a parabola, an ellipse remains an ellipse (calling
a circle a special case of an ellipse), even though the axes of refer-
ence should happen to be oblique with different-sized units on the
two axes.

EXERCISES

1. Find some invariants that belong to (9).

2. Give some invariants belonging to the subgroup of (13) that has
abe — agh; = 1.

3. Show that (13) cannot send two curves that are tangent to each other
into two curves that are not tangent to each other.

4. Show that (13) sends a line ) cutting a curve C in = coincident points
at P into a line ! cutting a curve C’ in n coincident points at P’.

5. Show that (13) sends points of inflection* into points of inflection. Hint:
Use Ex. 4.

6. Find the subgroup of (13) that sendsy = mz + biand y = —z/m + by
into two perpendicular lines.

7. Find the subgroup of (13) that sends circles into circles.

* For a definition of points of inflection see any textbook on the calculus or
§§43, 47.



CHAPTER VI

PRELIMINARY DISCUSSION OF IMAGINARY ELEMENTS
IN GEOMETRY

36. Imaginary points. If we solve x = —1 simultaneously
with 92 = 4 z, we find the two imaginary points of intersection
(—1,2¢) and (—1,—2¢) where 7 = V—1. If we factor the
equation 22 + 22y + y2 4+ 1 = 0, we obtain the two imaginary
lines t+y+7=0 and z4+y—17=0. If we factor the
equation z* + 2 2%% + y* + 1 = 0, we obtain the two imaginary
conics z2 + y®> + i = 0 and 22 + y?> — ¢ = 0. Finally, we note
the imaginary conic 2 + y% + 1 = 0, whose equation is real but
whose locus has no real points on it.

In the previous paragraph we have given examples of so-called
imaginary points, lines, and curves. Now we shall deal more
systematically with these imaginary elements of geometry. In
this section we shall take up imaginary points.

DEFINITION. An imaginary point is a point one or both of
whose coordinates are imaginary numbers, e.g., (,0) where
i=VvV—1,and (1 +7 2 — 3i).

Each imaginary point lies on one and only one real line (it
cannot lie on two real lines, because the intersection of two real
lines must be a real point). We shall prove the above fact by
actually finding the equation of the real line on which the imaginary
point lies. (Note this method of proof.) Thus (z,0) lies on the
z-axis and (1 + ¢, 2 — 37) lies on the line 3z + y = 5.

To determine the real line on which any such imaginary point
(a + b, ¢ + id) lies (where a, b, ¢, d are real numbers) we take
the general equation of a straight line (23) and substitute in
this equation the coordinates of the imaginary point, thus getting

(ua +ve + w) +2(ub +vd) = 0
It is shown in algebra that (since a, b, ¢, d, u, v, w are all real)
from this equation follows

ua+ve+w=0 ub+ovd=0
71
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Solving for  and » in terms of w, we have

—w ¢ a —w
_ 0 d b 0 \
e b7 " la b ‘
c d c d
ifad —bc# 0. Ifad — bc =0, i.e.,if a/b = ¢/d, we find w = 0
and u/v = —d/b. In either case the real line through this im-

aginary point (a + b, ¢ + id) has an equation of the form
(36) —dr 4+ by +ad —bc=0

On any real line there lie an infinitely large number of imaginary
points. For example, on y = 0 are all the points (a + b, 0) where
a and b are any real numbers. The real points on y = 0 have the
coordinates (a,0). Therefore we can say that there are in a sense
more imaginary points on y = 0 than there are real, meaning thereby
that we can take a fixed value b’ for b and make correspond to
each real point (a4,0), (az,0), etc., an imaginary point (a; + b, 0),
(az + ', 0), etc., and still we have not exhausted the imaginary
points on y = 0 because b can be given any real value. (Since
any real line [ can be transformed into y = 0, the above discussion
applies equally well to every real line.)

If Pla+ 1, ¢+ id) lies on a real line (23), then
P’(a — ib, ¢ — id) lies on the same line, as is easy to prove.

DEerFINITION. Any two points P and P’ are called conjugate
wmaginary points if their abscissas (or ordinates) are conjugate
imaginary numbers and their ordinates (or abscissas) are con-
jugate imaginary numbers (or real and equal).

The points P and P’ in the last paragraph are conjugate im-
aginary points. So also are (2 + 4, 1) and (2 — ¢, 1), also (¢,0)
and (—4,0), 3+ 2¢, 1 —7) and (3 — 2¢, 1 + 2), but not (1 + 7,
2+ 3i) and (1 4 7, 2 — 37). There are innumerably more pairs
of 7maginary points on a real line than there are pairs of conjugate
imaginary points; for instance, ¥y = 0 has all such imaginary
pairs as (z,0) and (2 — 7, 0), 3 + 7, 0) and (2 — 7z, 0), or, in
general, (a; + 7b;, 0) and (ag + by, 0), where a; # az and
by % by or a; = az and b; # by or a; # as and b; = b,.

We cannot locate the exact position of an imaginary point on a
real line because we use recal points and lines in our frames of
reference. Note also that there are pairs of imaginary poinis
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that do not lie on real lines, e.g., the pair (7,0) and (0,z). If we
allow the coefficients of our line (23) to be imaginary, we can see
that ¢ + y — ¢ = 0is the equation of what we might call an imagi-
nary line determined by (¢,0) and (0,2). (See the next section.)

EXERCISES

1. Check all the algebra in the text.

2. Prove that if a, b, ¢, d, u, v, w are real, then from (ua 4+ vc + w) +
1(ub + vd) = 0 follow the equations ua + vc + w =0 and ub + vd = 0.

3. Fill in the details in the derivation of (36).

4. Prove that if P(a + b, ¢ + ud) lies on (23), so also does P’(a — b,
c —id).

5. Find two pairs of conjugate imaginary points on theline3z — 5y +
2 = 0; also two pairs of ordinary imaginary points.

6. Make up two pairs of imaginary points that do not lie on real lines, and
find the two imaginary lines determined by these pairs. Hint: Use the
deternmunant form of the equation of a line.

7. Find the points of intersection of &> + 32 =1 and 2y = 2® — 3.
Hint: To find 2’ = Va + bi we put @ + B = Va + bi where « and 8 are
real; hence o® + 2afi — B2 =a + bi,soa? — B2 =aand2af = b. Why?

8. Review in an algebra textbook how to manipulate complex numbers.
Note that V=2 V=3 = V2 V3 1* = —V6. Prove by induction that
(x + iy)™ = [r(cos 0 + % sin 0)]® = r"(cos n 0 + ¢ sinn @).

9. Find the real line through (3 + 2%, 1 — 51); through 3 + 7,1 + 27%).

10. Find some imaginary points (and the tangents at these points) on the
curves z2/16 = y%/9 = 1, y =4, oy =L, 22 + 4> =1, > = 13,y = z4.
Hint: For finding the tangents, use (3). Show from the proof of (3) why
you can use (3) for an imaginary point of contact.

11. Find the six lines of the complete quadrilateral with vertices (3 + <,
2—1),B—452+1), A +241), 1 —2§ —i). See §20.

12. Prove analytically that the intersection of any two real lines is a real
point, taking care of all possible cases.

13. In the next to the last paragraph of the text, show that all possible types
of pairs of ordinary imaginary points are covered by the cases given there.

14. Find the conditions on a pair of imaginary points (a1 + by, ¢1 + ;)
and (ag + b, c2 + ids2) that these two points lie on 4 real line. Hint: Ex-
pand

T Y 1
ar+ b e1+id; 1]=0
as +1bg co +ide 1

and put in the conditions that the resulting equation have only real coefficients.
15. Show why w = 0, in the first paragraph of the text, whenad — bc = 0.

37. Imaginary lines. We have introduced into our analytic
geometry new entities called imaginary points. We shall now



74 PRELIMINARY DISCUSSION OF IMAGINARY ELEMENTS

define other new entities (dual to these points) that we shall call
imaginary lines.

DEriNiTION. By an émaginary line we mean a line whose equa-
tion has as one or more of its constants an imaginary number,
eg,ix+ B+1)y+2=0.

The line (aa + abi)z + (Ba + Bbi)y + (va + ybi) = 0 we call
real because we can divide its equation through by a + b and
obtain the real equation ax + By + v = 0.

We can make any one of the constants real in the equation of
an imaginary line by multiplying this equation by the number that
is conjugate imaginary to this constant; for cxample, we can
make the coefficient of yin (2 — )z + 1+ 2)y+ B+ 4i) =0
real by multiplying this equation by 1 — 21,

Now we shall prove (what is exactly dual to the theorem about
imaginary points) that there is one and only one real point on
each imaginary line. (There is not more than one real point,
because two real points determine a real line.) We can prove this
fact for the general imaginary line

(37) (a+1B)z+ (v +8)y+ (e+14) =0

where o, B, v, 6, ¢, { are real, by solving simultaneously the equa-
tions
ar+vy+e=0 and Br+dy+¢=0

and actually finding the real point with coordinates

"‘"G‘Y @ €
O e S R B

a v a Y
I

if a6 —By#0. If a6 — By =0, either —e§ + v¢ = —af +
Be = 0 or one or both of the coordinates z’,y’ are infinitely large.
In the former instance we have a/8 = v/8 = ¢/¢ and, if we divide
the equation (37) by a + 78, the line I proves to be real, contrary
to hypothesis. In the latter instance the two lines ax + vy +
e = 0 and Bz + 8y + ¢ = O are parallel; hence we can debar this
case or else (which is preferable) assume the existence of an infinite
point of intersection of these two lines, which point will be the
one real point on (37).
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ILLusTRATIVE Exampre. The line (3 4+ )z 4+ (1 — )y + ¢ = O has the
real point ' = —%, ¥’ = 2onit. Theline (3 + i)z + (3 + )y — ¢ =Ohas
an infinite real point.

Through any real point there passes an infinity of imaginary
lines. (Compare the dual theorem for real lines.) Thus through
(0,0) we have all the lines y = (u + iv)x, where u and v are any
real numbers (v # 0).

If the line (37) passes through a real point P so also does the
line

37) (@a—iB)x+ (v—@)y+ (e—13) =0

as is readily shown. The lines (37) and (37) are called conjugate
imaginary lines. If we multiply their equations together, we
obtain the real quadratic equation

(acx+vy+ &2+ Br+oy+)2=0

whose locus is a degenerate conic consisting of the pair of conjugate
imaginary lines. Conversely, if (4) is a degenerate conic it must
be either a pair of real lines, a double line (i.c., a pair of real lines
LI/, where I = 1'), or a pair of conjugate imaginary lines.

Just as with imaginary points, a pair of imaginary lines may
not be a pair of conjugate vmaginary lines and still intersect in a
real point, as for example y = iz and y = 27z. We can say that
there are in a sensc more imaginary lines through a real point than
there are real lines; compare the set of real lines y = ax and set of
imaginary lines y = (a 4+ #8)z through (0,0). We cannot draw
an imaginary line because our frames of reference are real. Finally
there are pairs of imaginary lincs like ¥ = 7z and ¢ = 7 + 1 that
do not intersect in a real point.

InLusTrATIVE ExampLi. To show how imaginary points and lines arnse
when we are studying real points, lines, and curves we shall consider the two
curves z2 — y? = —3 and £* + y® = 1, which intersect in the four points
P1(¢,2), P2(—1,2), P3(t,—2), P4s(—1,—2). The line PP, is real (with equa-
tion y = 2), P3P4isreal (y = —2), P\P3is imaginary (z = ), PyP4 is imagi-
nary (zx = —i), PiPsisy = — 2z, PeP3isy = 21x.

Note that the pairs of points P;,P, and Pj3,P4 are pairs of
conjugate imaginary points. There are also two pairs of con-
jugate imaginary lines in this configuration,* namely y = 2 iz and

* By a configuration we mean any collection of points, lines, etc., that are
considered as taken together in any discussion.
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y = —2iwxandalsox = 7and £ = —i, the former pair intersecting
in the real finite point (0,0) and the latter pair being interpreted
as intersecting in an infinite real point.

We call attention to the way in which the discussion of imag-
inary lines parallels that of imaginary points. We can bring out
this plane duality in the above paragraphs more clearly if we
repeat some of the statements, enclosing in parentheses the words
that refer to lines. An imaginary point (lzne) is a point (line) one
or more of whose coordinates (constants) are imaginary numbers.
An imaginary point (line) lies on (passes through) one real line
(pownt) but cannot lie on (pass through) two real lines (points),
because two real lines (points) intersect in (determine) a real point
(line). If an imaginary point P (linel) lies on (passes through)
a real line p (point L), then the conjugate imaginary point P’ (line
l') lies on p (passes through L).

EXERCISES

1. Fill in all the algebraic details omitted in the text, especially in the
illustrative examples.

2. Prove analytically that two real lines intersect in a real point.

3. Guave the complete details in the proof that an imagmary hine (37) has
one real point on it.

4. Prove that f (37) passes through a real point P so also does (37')

5. In the text, just before (37), why is » #= 0?

6. Give an exact and complete definition of conjugate imaginary lines.

7. Prove that if (4) is a degenerate conie, 1t must be a pair of real lines, a
double line, or a pair of conjugate imaginary lines.

8. Just as we did for pomnts on y = (), give a general formula (with all
special cases) for all the pairs of imaginary lines through (0,0), distinguishing
the pairs of conjugate imaginary lines.

9. Give several examples of pairs of imaginary lines that do not intersect
in real points.

10. Find the conditions on the two unaginary lines

(@1 +1681) + (v1 + 1)y + (1 +351) =0
and
(a2 + 182)x + (v2 + 982)y + (e2 +452) =0

in order that they intersect in a real point. Hint: Solve these equations
simultancously and put the conditions on the point of intersection that it
have real coordinates.

11. Prove analytically that, if the product of the equations of the two
general imaginary lines I, I’ in Ex. 10 is a real quadratic equation in z and ,
then I and I’ are conjugate imaginary lines. Hint: Multiply these two equa-
tions together and put the conditions on the resulting quadratic equation in
z and y that it have only real constants.
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12. Prove that the equation of every imaginary line (37) that has an
infinite real point on it can be put in the form o’z 4+ vy + (¢’ 4+ %¢’) =0,
where a’, v’, ¢, ¢’, are all real. Hint: The two lines az + vy + ¢ = 0 and
Bz + 8y + ¢ = O must be parallel. (Why?) Now divide the resulting equa-
tion of the imaginary line by the imaginary factor that is common to the
coefficients of z and y.

13. Find the real point on (2+14)z+ 3 —2%)y + (7 —31%) =0; on
3z+iwy+ (2—12)=0.

14. Take the equation of Ex. 13 and multiply it () by (2 — 2); (b) by
(B +21), (c) by (7 + 373).

38. Imaginary curves. By an tmaginary curve (not a line)
we mean either one whose equation has one or more imaginary
constants (i.c., coefficients or constant term) in it, or one whose
equation, although real, is not satisfied by the coordinates of any
real points. Thus iz + y2 — 1 = 0 is an example of the former
type and 22 + y% + 1 = 0 of the latter.

As was the case with the line, a curve may have imaginary
coefficients that may be made real by removing a common imagi-
nary factor. For example, 122 + 3y®> — 7 = 0 is the real circle
22 4+ y?> — 1 = 0. Imaginary conics of the second type are called
imaginary ellipses because for their equations % — ab < 0.

No imaginary algebraic curve* of odd degree can be of the
second type because, if we solve y = 0 simultaneously with the
equation of this curve, we get an odd degree equation in z (with
real constants), but we have scen in algebra that every such
equation has at least one real root (since imaginary roots occur in
pairs). The imaginary quartic z* 4+ y*+ 2>+ 4>+ 1 =10 is
of the second type.

Note that the first type of imaginary conics did not appear in
our previous classification of conics because in (4) and (13) all
the constants were supposed to be real. In fact, unless otherwise
stated, in this book all variables and constants are supposed to
have real values assigned them.

Again, we wish to point out that z = z', y = ¢y’ transforms
z2/a? + y?/b® = 1 into z'%/a® — y'2/b% = 1, a thing that (13)
could not do; but this transformation sends the real points of the
ellipse into imaginary points on the hyperbola and, furthermore,
into the real points on the hyperbola sends certain of the imaginary
points on the ellipse.

There can be real points on the first type of imaginary curves.

* For the definition of an algebraic curve see §40.
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Thus iz2 + > — 1 = 0 has (0,1) and (0,—1) on it. If we have
an imaginary curve Q; + iQ2 = 0, where @, and Q. are real
algebraic expressions in z and y of the mth and nth degrees,*
respectively, then the real points on this curve are obtained by
solving simultaneously @; = 0 and @, = 0, i.e., these points are
the points of intersection of the two real curves @, = 0 and @2 = 0.

We prove further on (where?) that these last two curves inter-
sect in general in mn points (real or imaginary or both real and
imaginary, distinct or equal); hence the imaginary curve
Q1 + 1Q2 = 0 can have as many as mn rcal points on it. Thus

the conic
22 42 ) N )
<—9'+T6—1 +z(—1-é+9—1 =0
has four real points on it. (Find them.)

EXERCISES

1. Prove that h? — ab < 0 for all so-called imaginary ellipses. Hint:
Consider all the possible cases A2 — ab > 0, = 0, < 0. Note that I' > 0.

2. Make up examples of imaginary non-degenerate conics and quartics of
both varieties. Find any real points on them.

3. Find in two ways the equation of the conic through (0,1), (0,—1),
(1,0), (—'1)0)1 and (@2 7).

4. Find in two ways the equation of the conic through the five points
(0)1'), (0) —'7')’ (1/)0)’ ('—1"0)’ (112)

5. Find the real pointson (3 +4)z2 + (7 —4)y> 4+ 8 — i)x + (2 — 32)y +
(5—19)=0; onz® +iy® +wx+y =0.

6. Why is it impossible for @1 + i(z* + y> + 1) = 0 to have any real
points on it, no matter what @ is?

7. Make up examples of imaginary conics with four real points on them,
three real points on them, two, one, no real points on them. Hint: Take
@1 = 0 and Q2 = O intersecting in the required number of real points. See
further along in this book (where?) for numerical examples of @; = 0 and
Q2 = 0 that intersect as required.

8. Find the equation of the conic tangent to the z-axis at (z,0), tangent to
the y-axis at (2 7,0) and passing through the point (1,1).

9. Prove the facts from algebra that are quoted in the text, namely, that
imaginary roots of algebraic equations occur in pairs and also that an odd
degree equation in x has at least one real root.

10. In the next to the last paragraph of the text show which imaginary
points on the ellipse go into real points on the hyperbola. Hint: Perform
2’ ==z, y =1/iy = —yon the hyperbola.

* For the degree of an algebraic expression in z and y see §40.
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39. Inside points with respect to a conic. Any real non-degen-
erate conic divides all the points of the plane into three categories:
those on the conic, those inside the conic (according to the following
definition), and those outside the conic.

DErINITION. A point P is said to be inside with respect to a
given real, non-degenerate conic C if the two tangents to C from
P are imaginary lines (they will be shown to be conjugate im-
aginary lines).

Let us consider (0,0) and y® =2z + 1. Solving y = mz
simultaneously with y2 = z + 1, we obtain the equation m2x? —
z — 1 = 0, with roots £ = (1£V1 + 4m?)/2m?. For y = mz
to be tangent to the parabola, we must have 1 4+ 4m? = 0 or
m = +1/2¢. Hence (0,0) is a point inside this conic.

To treat the general case we can suppose P is (0,0). Solving
y = mx simultaneously with the equation (4), we get

22(a + bm? + 2hm) + 2z(g + fm) +¢c =0

with roots

= (g + m)EV(J% — be)ym® + 2(fg — he)m + (g — ac)
n (@ + bm® + 2 hm)

X

For y = mx to be tangent to (4) we must have m a solution of the
equation obtained by equating the radical to zero. If the roots
of this last equation are imaginary, they must evidently be con-
jugate imaginary.

EXERCISES

1. Why is there no loss of generality in the last paragraph of the text caused
by taking P at (0,0)?

2. Find the actual values of m in the last paragraph of the text.

3. Find the tangents from (0,0) to x> + 3> —2x —2y — 4 = 0; to % =
4r+4,toxr? +y% =1, tox2/16 - y2/9 = 1. Find the points of contact of
these tangents. How do you interpret the results for the last two curves in
the light of our assumptions concerning infinite points?

4. Find the equations and the points of contact for the tangents from (0,0)
toy? =z+4+1; to (4).



CHAPTER VII
ELEMENTARY DISCUSSION OF nTH DEGREE CURVES

40. Introduction to nth degree curves (n-ics). In the pre-
ceding chapters we have dealt mostly with some of the tools of
affine analytic projective geometry, such as frames of reference
and affine linear transformations of coordinates. In this chapter
we shall consider some of the geometric material on which we use
these tools, namely, curves with algebraic equations of various
degrees in the variables.

In elementary analytic geomelry we studied principally straight
lines and conics. We also drew the graphs of a few curves with
equations of higher degrees, such as y? = 23, y = 23, y = z*, etc.
In analytic projective geometry* we shall spend much time on lines
and conics, but we shall consider also so-called higher degree
curves.

DEeriniTiION. We define an nth degree curve (or an n-ic) as a
curve whose equation is algebraic and when cleared of fractions
and of negative and fractional exponents and of radicals has at
least one term of the form z*y® with o + 8 = n (where n is a
positive integer) and no term z"y® with v + 6 > n.

For example, z%y =1 is a third-degree curve (or cubic),
2% + 3z = 1 is a fourth-degree curve (or quartic), y = 1/z* is
a fifth-degree curve (or quintic), y®> = 2% is a sixth-degree curve
(or sextic), etc. A straight line is classed as a curve of the first
degree and a conic as a curve of the second degree. The curve
y2 = Vz+ 3 must be put into the form 3% +3) =1 in
order to determine its degree. The equation y = Vz 4+ 1 when
squared gives the parabola y? = z 4+ 1. Note that the above
equation with a radical gives us only one part of the curve, the
other part being given by y = —Vz + 1.

If the equation of an n-ic is factorable, the curve is called
degenerate (or composite) and consists of the loci obtained by
equating to zero the factors of its equation. Thus the quartic

* See §§35, 95.
80
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y? = z* is degenerate and consists of the two parabolas y = z?

and y = —22 In this book we shall not consider such curves

asy = logz,y = €%,y = sin z, etc. (which are called transcendental
curves to distinguish them from n-ics, called algebraic curves).
The following equation gives us the general cubic

(38)  az® + by® + ¢ + dzPy + exy® + f2® + gz + hy?
+jy + kxy =0
The general equation of an n-ic can be written
(39)  a+ (bozr + byy) + (cox? + 2 c1zy + c2y?)
+ (do2® + 3 diz®y + 3 dpzy® + d3y?)
+ (eoz* + 4 €123y + 6 ex2%y® + 4 eszy® + esy®)

+ -+ (lor™ + nhiz™ Ty +
+. . '+lnyn)=0

nn—1), . 5
21 Lz %y

EXERCISES

1. Fit under (38) the cubics y = 1/22, y ==z% ¢ =125 4% =
z(z — 1)(x —2). Hmt: y* =1 —z%or 2> + y* — 1 = 0 belongs under (38)
witha=b=1c=—-1l,d=e=f=g=h=j=k=0.

2. Fit under (39) the curves y = z% »? = 2% ¥® = 1/z, z* + y* = 4ay.

3. Draw rough graphs of the curves y = 2%, y? =25 y2 =2z + 1),
=22 -1,y =x@x-1) @+, ye=Lys=z+1,y’r=2" -1
4. Drawroughlyy =z%, * =24, 2 = 1,y = (> — 1)%, y = (22 + 1)?
el Y2 = 1 2 _ 1
“e+he+2 ! @— DE

Yy Yy =

41. Some types and typical forms of n-ics. An important
problem in connection with these n-ics is the study of the types of
nth degree curves and of the so-called typical (or standard) forms
to which the equations of m-ics can be reduced by linear trans-
formations of the variables (looking upon these transformations
as aliases).

There are five distinct types of non-degenerate conics in Euclidean
geometry, namely, the circle, ellipse, hyperbola, parabola, and
imaginary ellipse (such as 22 + y® + 1 = 0*); there are three

* The student should distinguish between giving mere illustrative examples
of simplified equations of curves and listing completely the typical equations
to which the equations of all the curves of a given degree can be reduced.
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types of degenerate conics, namely, a pair of real lines (such as
zy = 0), a pair of conjugate imaginary lines (such as z2 + y% =
(z + iy) (z — iy) = 0), and a double line (such as 2> = 0).

In the general affine geometry circles and ellipses belong to the
same type of conics, because their equations are reducible to one
another under (13). Moreover, in the Euclidean geometry the
typical forms of the equations of the conics contain arbitrary
constants, such as ab,p,r in z%/a% &+ y2/b% = 1, y? = 4 pz,
e

If a hyperbola (for example) has an equation reducible to
z2/a® — y?/b® = 1, with a® = a’?, b% = b’?, then this hyperbola
is not reducible to the typical form with any other pair of values
for a® and b? (except that z = y’, y = z’ gives the typical form
with a? = b'2, b? = a'?).

On the other hand, in affine geometry the typical equations of
the conics contain no arbitrary constants. Thus y? = 4 pz is
reducible to y'2 =4z’ by z =2'/p, y = ¥'; 2%/a® = y* /b2 =1
isreducible toz’? 4+ 4’2 = 1byz = az’,y = by’; and 2% + 4% = r?
toz’2+y2=1byz=rz",y =ry.

There are a great many more types of cubics than of conics,
still more of quartics, etc. We have learned in elementary
analytic geometry how to reduce the general conic (4):to one of the
typical (or normal, or canonical) forms. The reduction of a cubic
to one of the type forms is just touched upon in this book and is
exhaustively treated only in more advanced books on plane
algebraic curves. The reduction of all such curves as those of the
seventh degree (for instance) to type forms has never been ac-
complished.

Of course the reduction of curves to typical forms is only one
of many problems we consider; among other problems con-
sidered is the study of properties of curves (as with the conics we
studied foci, directrices, eccentricity, asymptotes, diameters, etc.).

To show how to obtain typical forms for the equations of
curves, let us consider in the general affine geometry the degenerate
cubics that consist of three distinct real lines Iy, Iy, l3. First we
suppose the three lines are concurrent in a point P. If we take
P as (0,0), l; as x = 0, and [l; as ¥y = 0, then the equation of the
cubic has the form zy(y — mz) =0, m # 0. (Why?) If we put
z =1'/m, y =y, then drop the primes from the variables, we
obtain the typical equation zy(y — z) = 0.
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If Uy, lo, I3 are all parallel, we can takel; asxz = 0,l,asz — 1 = 0,
and our cubic becomes z(x — 1) (x — @) = 0 (where a is an
arbitrary constant). Note that if we take the three points in
which these lines cut the z-axis, and for a fourth point take a
point at infinity P’ on the z-axis, we have four points (0,0),
(1,0), (,0), (z’,0) where 2’ — 4 .* Taking a cross-ratio of
these four points we have

a—01-2'" 1/2' -1
1-0a—2 “aj/d —1

From this result we see that there are only six possible values
of a that can give cubics equivalent to (i.e., reducible to) one of
the above cubics with a = o/, namely, o = o/, 1/, 1 — &/,
1/(1 — '), &'/(@@ — 1), (@’ —1)/a’, because the cross-ratios
of the above four points are preserved by (13). For instance,
z = ar’, y = 3y’ changes the above cubic z(x — 1) (z — a) = 0
toz'(z' —1/a) (@' — 1) =0orz(x — 1) (x — 1/a) = 0. Com-
pare §23.

Next we suppose the three lines are not concurrent and (a)
l; and I, are parallel; (b) no two of the lines are parallel. In
case (a) we can take [ asx =0, b asx —1=0,l3asy =0
and our typical cubic is zy(x — 1) = 0. In case (b) we can take
haszxz=0,lbasy=0,l3asz+y —1=0, and our cubic is
zy(x+y—1) =0.

The above special choices of the lines Iy, I, I3 amount to trans-
formations of coordinates considered as aliases. For example, in
case (b) if I; and [y intersect in P3, [; and I3 in Py, Iy and I3 in P,
we can send P3 to (0,0), Py to (0,1), and P, to (1,0) by (13).and
so obtain the equation zy(x + y — 1) = 0. See §14.

—a as 2> +x

EXERCISES

1. Show how case (b) in the text can be treated under (24’).

2. Prove that all imaginary non-degenerate conics of the first type (see §38)
can be reduced to z?/a? 4+ y%/b%? + 1 = 0 in Euclidean geometry and to
z? + y% + 1 = 0 in affine geometry. Hint: Rotate and translate the axes
so as torid (4) of the zy, z, and y terms.

3. Explain more fully the relation between cross-ratio and the constant
ainz(z —1) (z —a) =0.

* By 2’ — =+« we mean z’ becoming greater than any positive number no
maltler how great (x’ — + «), or =’ becoming less than any negative number
no matter how low (x’ — —x).
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4. Interpret as transformations of coordinates all the special choices for
11, l2, I3 that are given in the text.

5. Find transformations to reduce z(x — 1) (x — a’) = 0 to all the possible
typical forms, i.e.,, with 1 — o/, 1/(1 — a’), a’/(a' — 1), ('’ — 1)/a’, 1/a’
replacing o'

6. Prove the statement in the text that in Euclidean geometry r2/a’? +
y2/b'? = 1 cannot be reduced to z%/a® + y%/b* = 1 unless a® = a’?, b2 = b'?,
or a? = b’2 b% = a'’.

7. Reduce to typical forms under (13) the equations of all degenerate cubics
that consist each of a double line and another line. Hint: These cubics must
have the form

(@1z + B1y + v1)? (aox + B2y + v2) =0 or ‘(aix + By + 71)?
c (a1x + By +v2) =0

(Why?) Nowputaiz + iy + 71 = 2', asr + Bay + v2 = ¥/, ete.

8. Reduce to typical equations under (13) all the degenerate quartics that
consist each of a double line and a pair of real hnes.

9. Reduce to typical equations under (13) all the degenerate cubics that
consist each of a real line and a pair of conjugate imagmnary lines. Hint:
Reduce the latter to 22 + y2 = 0 or x> + 1 = 0.

42. Conditions determining an nth degree curve. In elemen-
tary analytic geometry we saw that five distinct points determine a
conic, because each point gives a linear equation connecting the
six coefficients of the general conic (4); but we can divide (4)
through by any coefficient that does not vanish, hence the five
equations given by the five points uniquely determine five of
these coefficients in terms of the sixth.

Thus, if we want (4) to pass through (1,0), (—1,0), (0,1),
(0,—1), (2,1), we have

a+c+29g=0, a+c—2¢9g=0, b+c+2f=0,
b+c—2f=0, 4a+b+c+2f+4g+4h=0

whence g = f = 0,a = b= —h = —c¢; and the required conic is
224+ 9> —1 =22y = 0. This conic is a pair of lines because
(1,0), (—1,0), and (2,1) are collinear.

A nicer way to work the problem in the last paragraph is to
take the linesz =0,y =0, z+y—1=0,2+ y+ 1 = 0 that
pass through four of the given points and write the equation

My+@+y—1)(@+y+1)=0

which is a conic passing through the four given points, for every
value of . (Why?) Putting z =2,y =1 we get A = —4, and
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expanding the parentheses we obtain again 2%+ y2 — 1 —
22y = 0.

In this last method the lines I, lo, I3, {4 must be paired in
Lly 4+ Nigly = 0 in such a way that I; cuts I3 and I in two given
points, also I cuts I3 and Iy in two other given points. For ex-
ample, the equation \z(x +y — 1) +y(z +y + 1) = 0 would
not help us to solve the above problem. (Why?)

In general we note that wv 4+ Aws = 0,* where v =0, » = 0,
w = 0, s = 0 are straight lines, is the equation of a conic through
the four points of intersection of = 0 and w = 0, u = 0 and
s=0,v=0and w=0,v =0 and s = 0, for every value of A,
If w = s, u» + Mw? = 0is the equation of a conic tangent tou = 0
and v = 0 at their points of intersection with w = 0, because
u = 0 (when solved simultaneously with this equation) gives
w?=0 and v =0 gives w? =0. As an illustration, zy +
Mz +y — 1)2 = 0 is the equation of a conic tangent toz = 0
at (0,1) and tangent to y = 0 at (1,0).

Again uvw + s’ = 0* (where ¢ = 0 is also a straight line) is
the equation of a cubic tangent to w = 0, » = 0, w = 0 at their
points of intersection with s = 0, and also passing through the
points of intersection of the first three lines with ¢ = 0. The
quartic uvws + M?r? = 0 (r = 0 also a line) has in evidence four
tangents u =0, v =0, w =0, s = 0, each of them with two
points of contact (on ¢ =0 and r = 0). Such tangents are
called bi-fangents. To interpret such an equation as

Br+y—1)@+y—-1)=@—-y)@+y Gz+2y—1)

we put it in the form u? = wst.

Finally, if u =0, » =0, w =0, s = 0 are the equations of
conics, then wv + Mws = 0 is the equation of a quartic through
the sixteen points of intersection of the pairs of conics v = 0 and
w=0,u=0and s=0,v=0and w=0, v=0 and s=0
(as we shall see later on, two conics intersect in general in four
points). The equation uv 4+ Mw? = 0 is a quartic tangent to the
conics ¥ = 0 and v = 0 at their points of intersection with the
conicw = 0. (Why?)

We now illustrate still another way of obtaining the equations
of curves that satisfy given conditions. Suppose we want the

*Such an equation is sometimes said to be written in abridged notation.
See §115.
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conic tangent to the z-axis at (1,0), tangent to the y-axis at
(0,1), and also passing through the point (3,3). If we solve
y = 0 simultaneously with (4), we should obtain an equation of
the form a(zx — 1)2 = 0; hence we must have 2g/a = —2 and
c¢/a = 1. If wesolvex = 0 with (4), weshould getb(y — 1)2 = 0,
so we must have 2f/b = —2, ¢/b = 1. Therefore, ¢ = a = b,
g =f= —a, and (4) becomes (after dividing through by a)

22+ 9y +2hxy/a—2x—2y+1=0

This conic must pass through (3,3); hence 9 + 9 + 18 h/a — 6 —
6+ 1=0o0rh = —7a/18, and the conic we desire is

2?24+ —Jay—2z—2y+1=0

Lastly we wish to find how many points determine an n-ic (we
saw that five points determine a conic). There are ten coefficients
in (38); hence, in general, nine points determine a cubic because
we can divide its equation by any non-vanishing coefficient. This
statement has exceptions because (as we shall see later) two
cubics K; = 0 and K, = 0 intersect each other generally in nine
points; therefore the equation K; + AKs = 0 represents an
infinite number of cubics through nine points (each value of
\ giving a distinct cubic).

Let us consider the general equation of an n-ic (39). The
number of coefficients in (39) is the same as the sum of the arith-
metic progression 1 +2 + 3 4 -+ - 4+ (n + 1), namely

i +1) (n+2)

Therefore the number of points necessary to determine such a curve
isin+1) n+2)—-1= 3 n(n+ 3). For a conic we have
2 2(2 + 3) = 5 points, for a cubic 1 3(3 + 3) = 9 points, for a
quartic 3 4(4 + 3) = 14 points, for a quintic  5(5 + 3) = 20
points, for a sextic 2 6(6 + 3) = 27 points. Note again that there
are exceptions to this rule; for instance, all the infinite number of
quartics given above by uv + Mws = 0 have sixteen common points
of intersection.

EXERCISES

1. Check all the algebra in the text.

2. Answer all the queries (Why?) in the text.

3. In the second paragraph of the text find a different set of lines 1y, lg, I3,
14 such that by using /)l + M3ls = 0 we can solve the problem.
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4. Show why a tangent ¢ and its point of contact P count for two points
in determining an n-ic. Hint: Take ¢ as the limiting position of a secant
PP’ when P’ — P.

5. Give exact definitions of the statements ‘“ how many points determine
an n-ic ”’ and * hence, in general, nine points determine a cubic ”’ in the next
to last paragraph of the text. Compare §14.

6. Find in two ways the equation of the conic through the five points
(1)0)1 ("'1,0), (011)! (Ol—l)y (111)

7. Find in two ways the equation of the conic tangent to the y-axis at
(0,3), tangent to the r-axis at (3,0), and passing through the point (1,1).

8. Interpret the equations y*(x + 1) = z(x — 1) (z + 2), zy(x + y) =
E+y—-13%4 @E+y-1)=@+y—-1)Qr—y+1), @+y*-1) =
CHy-14 @-1)2@—-22=yy—-1) @w+3) y+4).

9. Find the equation of the conic tangent to x +y — 1 = 0 at (1,0),
tangent toz + y + 1 = 0 at (0,—1), and (a) passing through (0,0); (b) pass-
ing through (3,3).

10. What types of conics are all those in the above example?

11. Make up an example of quintics that are exceptions to the rule that
twenty points determine a quintic.

12. Make up an equation of a cubic tangent to three concurrent lines at
three collinear points and cutting these lines again at three other collinear
points.

43. Points of intersection of a line with an n-ic. We have been
accustomed to saying that any line ! intersects a given conic C in
lwo points, or is tangent to C, or does not cut C at all. From now
on we shall say that [ cuts C in fwo points that are real and dis-
tinct, or real and equal, or tmaginary and distinct. (Of course, if I
is imaginary, it may cut C in two distinct imaginary points or two
equal imaginary points.)

ILLusTRATIVE ExampLe. Thelinesz =0,z =1,z =2cut 22 + 32 =1

in the above three ways. The imaginary linesz =7and y = V2iz + i cut
this circle, respectively, in two distinct imaginary and in two coincident (or
equal) imaginary points.

We should note here that a tangent to a cubic or a higher
degree curve ordinarily cuts the curve again in one or more points.
Thus the line ¥y = 3 z — 2 is tangent to the cubic y = 2% at (1,1)
and cuts this curve again at (—2,—8). The line y = 0 touches
y = z?(x — 1)2 at the two points (0,0) and (1,0) and so is a bi-
tangent to this quartic. (See §42.)

We show as follows that in general a line | cuts an n-ic in n
points. We can take I as y = mx + b where m # 0, and the
n-ic in the form (39). Eliminating y (or z) between ! and the
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n-ic, we get ordinarily an nth degree equation in z (or y), which we
learned in algebra has n roots z;,2s, . . ., To(¥,Y2, - - - Yn);
hence I cuts the n-ic in the n points (z1,41), (Z2,y2), - . ., (ZTn,¥a),
which may be real or imaginary, distinet or equal.

In algebra we learned that the smaginary roots of any equation
in one variable (with real coefficients) occur in pairs of the form
a + 1b, a — ib (i.e., pairs of conjugate imaginary roots). There-
fore a real line I cuts an n-ic in one or more pairs of conjugate
imaginary points, if not entirely in real points. Also we see that
if a real line I is tangent to the n-ic in one imaginary point P,
it must be tangent to the n-ic also in the conjugate imagi-
nary point P’. (Why?) Thus y = 0 touches y(z +y + 1) =
(% + y? 4+ 1)% in two such points P, P’.

A line may cut an n-c in two, three, four, . . ., n coincident
points at a given point P. For example y = 0 cuts y = 2% in
three coincident points at (0,0), cuts y = z* and y = 2*(z — y)
each in four coincident points there, and finally cuts y = z” in
n coincident points at the origin. The origin is called a point of
inflection (or more briefly an inflection) for y = 2, also a hyper-
inflection for the curves y = z* and y = z*, in each case with
y = 0as tangent. A cubic cannot have a point of hyperinflection,
because no line can cut a cubic in more than three points. For
the same reason no cubic can have a bi-tangent.

Now the question arises how to interpret geometrically the
fact that sometimes, as in the following example, the equation
in z (or y) that we get by eliminating y (or z) between [ and the
n-ic (39) is of lower degree than the nth.

The line ¥y = 1 cuts the curve zy = 1 apparently in the one
point (1,1) given by z = 1. However, every line y = mz + 1
(where m £ 0) through (0,1) cuts zy = 1 in the points

- Vitim 1y ViTam
Pl( ,1) and Pz( ,1)
2m 2m
As m — 0 the coordinates of P; approach the form («,1) and the

coordinates of Py the indeterminate form (0/0,1). To evaluate

this indeterminate form 0/0 we multiply numerator and denomina-
-1+ Vi+4m

tor of P by —1—+V1+4m and so obtain

—2/(—1 — V1 4 4 m), which approaches the value 1 as m — 0;
therefore, Py approaches the point (1,1) as m — 0.
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To interpret the fate of P; in the preceding paragraph we note
in the adjoining figure that if we draw such a line as y = mz + 1
cutting zy = 1 above (1,1) and rotate this line around the point
(0,1) down to the position of y = 1, the point P; (now called
P1") moves indefinitely far out to the left along the lower branch
of this curve. On
the other hand, if
we draw this line
s0 as to cut zy =
1 in two points be-
low (1,1) and to
the right, then ro-
tate the line up
to the position of
y = 1, the point
P, (now P7) moves indefinitely far out to the right along the
upper branch of the hyperbola.

Hence we say that the line y = 1 cuts the curve 2y = 1 in one
finite and one infinite point.* We do not say that y = 1 cuts this
curve in one finite and two infinite points (one such point on the
upper branch of the curve and one on the lower) because that
would make a line cut a conie in three points instead of two.

From the last sentence we see that we have to assume that the
two branches of the hyperbola intersect each other in an infinite
point on the z-axis and an infinite point on the y-axis (inasmuch
as these two axes are the asymptotes of this curve).

EXERCISES

1. Check all the statements in the text, filling in any necessary algebraic
details.

2. Answer the query (Why?) in the text.

3. Discuss the way the lines y = =1 cut the parabola ¥> = 4 z. Show
how this affects our idea of how the parabola behaves at infinity (i.e., what
we must assume concerning infinite points on the parabola).

4. Show that any line { must cut an n-ic in n — 2 r real points, where r is
an integer, positive or zero.

5. How doesy = 0 cut the curves y = z%(z +y — 1)%, (z — 1)2 (z — 2)2
=93 (®+ 1) = y°? How does r = 1 cut the second curve? How do
y = 0and z = 1 cut the curve (r — 1)3 (x — 2)% = y*?

* Here and in §§25, 49 we are merely making clear the reasonableness of the
assumption that infinite points exist. Their existence cannot be proved.
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6. Show that a quintic cannot have a tangent with three distinct points of
contact. .

7. Give an example of a sextic with a tangent such as is described in Ex. 6.
Hint: Takey = 0 as this tangent.

44. Asymptotes to n-ics. In a manner similar to that employed
in the last section we can interpret all the cases where a line
apparently cuts an n-ic in fewer than n points (i.e., where I does
cut the n-ic in less than n finite points). For example, x = 0
seemingly cuts ¥ = z® only at the origin; hence we assume that
z = 0 cuts this curve again in two infinite points P’,, and P"’, and
also that P', = P"’, (because later on we make the hypothesis
that all the infinite points in a plane lie on a line [, called the line
at infinity). Sec §49.

Again y = 0, when solved simultaneously with zy = 1, gives
us 0 = 1; therefore to explain this anomaly we assume that
y = 0 cuts this curve in two infinite coincident points. The
above assumption agrees with the fact that y = k cuts 2y = 1
in one infinite point and one finite point P(1/k,k), but as £ — 0
the point P also becomes an infinite point (i.e., P moves indefi-
nitely far out on the curve). We know from elementary analytic
geometry that y = 0 is one of the asymptotes of zy = 1.

Note that every line z = h cuts y = 23 in one finite point (h,h%)
and therefore in two infinite coincident points. (Why coincident?)
If we use an assumption (made later on) that any two parallel
lines in the plane interseet in an infinite point, we interpret this
curve as having a so-called double point at infinity on the y-axis.
Sec §48. (Compare the double point at the origin on y? = z3,
where every line ¥y = mz cuts the curve in two coincident points
given by 2% = 0.)

Next we study the curve 22 — y2 = 1. Any line y = mz + a
cuts this hyperbola in two points whose abscissas satisfy the
equation

z?2(1 — m?) — 2amz— a® — 1 =0,

. _2am £ VidPm® +4(01 —m®) (a*+ 1)
le.,r = 2(1 — m?)

For this line to be a tangent we must have
4a’m® +4@®+1) (1 —m2) =0

If we let m — £1, we must let a — 0 for y = mz 4 a to remain
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tangent to the curve; but then the points of contact of these two
tangents have abscissas (see above) of the form 1/0 = = (we
see this also by solving y = +x with 22 — y? = 1).

From this we sce that y = Zx can be looked upon as the
limiting positions of any two tangents to the curve 22 — 3% = 1
as the points of contact of these tangents move out to infinity.
Sueh lines we call asymptotes to the curve. (We do not call
z = 0 an asymptote to the cubic y = 2%, because we picture the
infinite point on this line as a double point of the cubic.)

Asymptotes as well as other tangents may cut the n-ics again in
one or more finite points, may be bi-tangents, or tangents at
inflections, double points, cte. (finite or infinite). As illustra-
tions, the asymptote £ + y 4+ 1 = 0 touches the curve 23 + 3 =
3 zy at an infinite inflection, ¥ = 0 touches the quartic yz® = 1
at an infinite hyperinflection, y = 0 is an asymptote of the quartic
y%? = (xr — 1) + »® and at the same time a bi-tangent with one
finite point of contact (1,0), the linc z + y — 1 = 0 is tangent to
(r +y — 1)2x = 1 at an infinitely distant double point.

The above geometric interpretations of infinite points of inter-
section of lines and m-ics can be rendered more plausible by the
following algebraic discussion; at the same time we develop
a method of finding the asymptotes of an n-ic. Let us consider
the general equation of the nth degree in x

(40) ape™ + a@z™ 4 ar" 4 age" 3+ - - - ax" T +
st ang?® + an92® + an T+ an =0

Ifa,=ap =0 p=+- = Ui =0, ap_y # 0, this equa-

tion has 7 + 1 roots all equal to zero and so equal to each other.
Now we put z = 1/z in (40), multiply the equation by the

highest power of z that occurs in any denominator, and get

(41) a+az+ a2 +az® +- - - +a+ - -
+ an32"2 + n92" % + ap1z" ! + an2" = 0

fay=a,=a=a=--:=a;=0, a,4;1 # 0, then (41) has
7 + 1 zero roots in z; and (40) has therefore by interpretation
7 + 1 infinite roots 2’ = o, since asz— 0,z = 1/z — .
Suppose now we want to study the curve 22 — 3xy + 2y =1
for asymptotes. We first see if there are any vertical asymptotes
(i.e., we find out if there are any values of & that when substituted
in this equation cause the resulting equation in y to have two
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equal infinite roots); then we solve y = mz + b simultaneously
with this equation, obtaining

221 —3m+2m?) +b(=3+4m)x+ 262 —-1) =0

Solving 1 — 3m + 2m? =0 and b(—3 4+ 4 m) = 0 simultane-
ously for m and b, we get m = 1, 1 and b = 0; therefore the two
asymptotes are y = zxand y = 3 2.

We observe that every line y = x + a parallel to the asymptote
y = z cuts the above curve in just one finite point P((1 — 2 a?)/a,
(1 — 2a?)/a), and similarly for every line parallel to the other
asymptote; also that as @ — 0 the point P becomes an infinite

point,
EXERCISES

1. Why do we suppose that £ = h cuts y = z? in two coincident infinite
points?

2. Give an exact definition of an asymptote to an r-ic.

3. Prove the facts mentioned in the text about the asymptotes to the
curves given as illustrations.

4. Test for asymptotes (and find any such asymptotes) the curves

B4y =3y, wy=-1, yY=4pr, P+ +29x+2fy+c=0,

2 2
4 o s X Y
24yt =r Sx5=1

Interpret geometrically the results you get. Observe that the imaginary
asymptotes of any circle are parallel to those of any other circle, for all values
of g,f, and c.

5. Test for asymptotes the general conic (4). When are your results real;
when imaginary? How about the cases when h? — ab = 0?

6. By a focus of an n-i¢c we mean a point of intersection of two tangents ¢,
and {2 to the curve where {; passes through the infinite imaginary point 7,
and t2 through 75 (where 71 and /2 are the two points of intersection of the
asymptotes of different circles, sce Ex 3). TFor a line ! to be parallel to the
asymptote of a circle (i.e., pass through I, or 73) we must have the equation
of I of the formy = xix 4+ ¢. If we solve y = ir 4 ¢ simultaneously with
y? = 4 px, ¥2/a® £ y?/b% = 1, then put the condition on ¢ that these lines
be tangent to the conics, then find the points of intersection of the pairs of these
lines, we shall find the foci of these curves. Do so.

7. Find the foci of y = £3, y = x4, % + y® = 3zy; of (4);of 22 + y2 +
2gx+2fy +¢c=0.

8. Show that, as @ — b in z2/a? + y?/b% = 1, the foci approach the center
of the conic.

45. Points of intersection of m-ics and n-ics. We shall now
prove that an m-ic and an n-ic intersect ¢n general in mn points
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(finite or infinite, real or imaginary, distinct or coincident). We
shall consider only the case of a conic and a cubic, but our method
will be seen to be general. Consider the general conic (4) with
its coefficients primed and the general cubic (38). We can suppose
without loss of generality that the origin is not a point of inter-
section of the two curves and that no point of intersection lies on
z = 0. If wesolve y = mzx simultaneously with (4) and (38), we
obtain two equations in z, namely
fl@)= (@@ +bm2+2km)a®+ 2¢ +2fmx+c =0
o@) = (a + bm® + dm + Im®)z® + (f + hm? + km)a?
+(@+mz+c=0

We can write these two equations

f@)=awr’?+az+ap=0
¢(x) = B32° + Baa® + B1z + Bo = 0

where a2 = @’ + b'm2 + 2 h'm, etec.

Multiplying f(z) = 0 by z and calling the result a new equation,
then multiplying f(z) = 0 by 2, next multiplying ¢(z) = 0 by =z,
finally replacing z* by r, z3 by s, 22 by {, z by u, 1 by v in the constant
terms of the equations, every time z*, 23, 2%, z occur in f(z) = 0,
¢(x) =0, zf(x) = 0, % (x) = 0, and z¢(x) = 0, we obtain the
following five linear homogeneous equations in the five unknowns
r, St u,v

ool + a8 + aot = 0, s + alt + oagu = 0, azt + oau + o) = O,
B3s + Bat + Bru + Bov = 0, Bar + B2s + Bit + Bou = 0

where «,(i = 0,1,2) and B,(j = 0,1,2,3) are respectively of the
ith and jth degrees in m.

The necessary and sufficient condition for these five equations
to have a solution in r, s, ¢, u, v not consisting entirely of zeros is
(from algebra)

2 Q1 Qg 0 0
Qs Qa1 Qo 0

0 az ay oy = 0

Bz B2 B1 Bo
Bz Bz B1 Bo O

If f(x) = 0 and ¢(x) = 0 have a common root z = z’ for some
value of m = m/, i.e., if the linc y = m'x passes through a point of
intersection P’(z’,5’) of the conic and the cubie, then the five

T
]
cocog
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equations in 7, s, ¢, u, v certainly have a common solution r = =%,

s=2a% t =122, u=21a', v =1, not consisting entirely of zeros
(since no point lies on & = 0); therefore D = 0. This shows
that D = 0 is a necessary condition for f(x) = 0 and ¢(z) = 0 to
have a common root.

To show that D = 0 is also a sufficient condition for f(z) = 0
and ¢(z) = 0 to have a common root, we multiply the first
column of D by z* and add the result to the fifth column of D; we
multiply the second column by x3 and add to the fifth; the third
by 2% and add to the fifth; the fourth by x and add to the fifth;
and we obtain

a a a 0 2% (x)

0 a a1 g af(w)
0 as o f(.’l?) =0
0 B3 B2 B ¢(2)
Bs B2 Br Bo z¢(x)

Now expanding D = 0 and transposing to the right-hand side
of this equation all the terms having ¢(z) as a factor, we get an
equation of the form (since for the variable z, D = 0)

f(@) (Aex® + A1z + A) = ¢(z) (Boz + By)

where Aoy, A1, Az, By, By are algebraic expressions containing
powers of m. Any value z = z’ causing ¢ () to vanish must cause
Aox® + Az + Ay to vanish or f(z) to vanish. But ¢(x) =0
is of the third degree and so has three roots; therefore at least
one root of ¢(x) = 0 must be a root of f(x) = 0, since Agz® +
Az + As = 01is only of the second degree.

From these arguments our conclusion follows that every value
of m = m’ that causes D to vanish (and so makes f(x) = 0 and
#(z) = 0 have a common root) gives us a line y = m’z joining
the origin to a point of intersection P’ (x’,y") of the conic and the
cubic. But D = 0 is of the sixth degreec in m; hence in genecral
there are six such lines and therefore six such pointsof intersection.

The above discussion, when generalized to the case of an
m-ic and an m-ic, proves that two such curves generally inter-
sect in mn points that may be real or imaginary, finite or infinite,
distinet or coincident. For example, the two curves zy = 1
and z(x +y — 1) = 3 have the common asymptote z = 0.
If we solve the equations of these curves simultaneously, we find

o
Ii
=]
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that the two hyperbolas have the common finite points (2,3) and
(—1,—1). We therefore conclude that the two curves have two
coincident infinite points of intersection on z = 0 (i.e., they are
tangent to each other at infinity, with £ = 0 as the common
tangent).

It is often very difficult to count up the mn points of inter-
section of an m-ic and an n-i¢, especially if they are tangent to
each other at certain points, or have a double point in common,
etc. A complete discussion of all these types of intersection must
be left for a book on higher plane curves.

InLusTRATIVE Exampre. The curves zy = 1 and 22 + % = 4 cut each
other in four real and distinet finite points; 22 4+ y® = 1and y2 = 4z cuteach
other in two real and two 1maginary finite ponits; y®> = 4 r and 2y = 1 inter-
sect in one real and two imaginary finite points and therefore are assumed to
cut each other in one real infinite point.

Strange to say, the infinitec point of intersection of the last
two curves in the illustrative example must be supposed to lie
on the z-axis, since the y-axis touches the parabola y? = 4z
at the origin and the two axes are the asymptotes of the hyperbola
2y = 1. This remark shows how our geometric intuitions may be
violated by the assumption of the existence of infinite points, be-
cause the parabola certainly appears to draw continually away
from the z-axis and yet must be assumed to cross this axis at
infinity.

Next we note that if we say two parallel lines intersect in an
infinite point, then, since the asymptotes of any two circles are
parallel (sec §44), we must suppose that all the circles in the plane
interseet each other in two common imaginary infinite points I,
and I (called the circular points at infinity). This agrees with
the facts that any two circles interseet in only two finite points,
also that three points determine a circle, whereas it ordinarily
takes five points to determine a coniec.

The hyperbolas zy = 1 and zy = 2 do not intersect in finite
points, but since they both have the axes for asymptotes we
assume they are tangent to each other at two infinite points on
these axes, and in this way we account for their four points of
intersection by saying they are coincident in pairs and infinite.

The two parabolas y> = 42 and y?> = 8 + 1 do not inter-
sect in finite points; but we must assume that these curves cut
each other in four coincident infinite points on the z-axis, because
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every line x = h and also every line y = mx (where m  0) cut
each parabola in two finite points.

We say we assume the existence of all the above-mentioned
infinite points because we cannot (so to speak) go out to infinity
and see them; but if we postulate their existence we can clear up
many difficulties. Also, later on, we shall sce how to do what
amounts to bringing these infinite points into the finite part of
the plane for study and observation. (Compare the transforma-
tionz = 1/2’, y = y'/2" in §12.)

EXERCISES

1. Why is there no loss of generality caused by assuming in the text that
the m-ic and the n-ic do not intersect on r = 0?

2. Describe the proof of the general case that an m-ic and an n-ic intersect
in mn points.

3. Why is D = 0 with respect to x in the text?

4. Go through the algehraic details omitted in the text, especially finding
the points of intersection in the illustrative examples.

5. Prove (what is quoted from algebra) that D = 0 (in the text) is the
necessary and sufficient condition for the existence of a solution 1n r, s, ¢, u, v
not all zeros.

6. How do concentric circles cut each other?

7. Prove that if an m-ic and an r-ic have any imaginary points of inter-
section, these form pairs of conjugate imaginary points. Hint: What values
of the slope m give such imaginary points?

8. TFind the pomts of intersection of £ + y* =1 and y* = 4 1, of y = &?
and y2 =4ur, of y2 =2 and > +y? =2, of ¥*+2xy +2x =0 and
Y2 —2xy +2r =0, of ¥’ +2r+1>=0 and y>+2r—21>=0, of
y=xtandy = 15 of y> = 2 and y = z*

9. Reproduce the proof in the text as applied to two conics, namely, (4)
and another conic like (4) except for primed coefficients.

46. Tangents to n-ics. We shall give two definitions of a
tangent to a curve, one algebraic and the other geometric. The
first definition will be useful later on. The second definition has
been used to derive (3).

DEriniTiON.  Algebraically, a tangent to a curve is a line such
that when its equation is solved simultaneously with that of the
curve we obtain at least two solutions (z’,5’) and (z’’,y"’) such
that 2’ = 2’" and y' = 3"

Thus y = 0 is tangent to y = 2% at (0,0) because y = O gives
z' =2’ =y =y" = 0 when solved simultancously with y = 2.
Similarly, solving ¥y = 0 with y = 2® we get 2’ = 2’ = 2/ =
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y =y =y =0. Every line y = mz cuts y% = z* at (0,0)
in two coincident points and so comes under our definition of a
tangent; but in this case we call y = 0 the tangent at (0,0) because
this linc is the only one that cuts the cubic in threc coincident
points instead of two.

DerFINITION. Geometrically, by a tangent to a curve at a point
we mean the limiting position of a secant through two points
P'(@’'y') and P (2’ + Az, ¥’ + Ay) on the curve as P’/ — P’
along the curve (i.e., as Az — 0 and Ay —0), if this limiting
position exists.

Note that both these definitions apply to oblique as well as to
rectangular axes, also to axes with different-sized units, because
no idea of the slope of a line is used. Using the two-point form
for the equation of a line (which form is valid for all these above-
mentioned frames of reference), we have already derived the
equation of a tangent (3).

If the curve is given by f(x,y) = 0, the tangent at P’ is
“2) -+ Ly —yr=0

T dy
where 9f/0x’ and 3f/9y’ mean 8f/dx and 9f/dy with z and y
replaced by 2’ and y'. If 9f/dx’ = 9f/dy’ = 0, the point P’ is a
so-called multiple point on the curve. Thus for 42 = 23, 9f/9z’ =
af/ay’ = 0forz’ =y’ = 0. (We study such points in §48.)

If the curve is given in parametric coordinates by z = ¢(t),
y = ¥(t), the equation of the tangent at P’ (¢(t'), ¢ (t')) is

(43) ¢' () (@—2)+¢' ) y—y) =0
where dz/dt = ¢’ (t), dy/dt = ¢’ (t).

An easy way to find the tangents y = mx + b to a given conic
that have a given value for m (m being the slope* only for an
ordinary frame of reference) is to solve y = ma 4 b simultaneously
with the equation of the conic and determine b so that the resulting
equation in z (or y) alone shall have a double root (i.e., two equal
roots). For example, solving y =3z + b with 22 + 9% =1,
we obtain 10 22 4 6 bz + b2 — 1 = 0; hence, for this line to be a
tangent, we must have 36 b2 — 40(b2 — 1) = 0 or b = +=V10,
so the two tangents are y = 3z + V10. Similarly for the tan-

* See §3 for a definition of slope.
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gents from a point P’(z,y’) we solve y — y' = m(z — 2’) with
the conic and determine m (as we did b).

This method can be used for higher degree curves, but it is
more difficult because of the complexity of the conditions for
higher degree equations in x (or y) to have double roots.

For the sake of reference we quote here (from the theory of
cquations) the conditions that the following cubic and quartic
equations in z shall have double roots.

The cubic

(44) apr® +3 a2 +3asx +a3 =0
has a double root if

(45)  a2a2 — 6 apaias03 + 4 agad + 4 alas — 3a%a2 =0
073 2 1 103

The quartic
(46) apxt +4a2® + 602> +4asr+as=0
has a double root if
ap ay ag |
(47) ((10(14 -4 aaz + 3 a§)3 = 27 a; as ag
az az Q4

We can readily prove (45) from the fact that (44) and its
derivative 3 aopz? + 6 a1z + 3 a2 = 0 must have a common root
in order that (44) have a double root. Multiplying these two
equations, (44) and its derivative, by =, 2%, . . ., etc., and pro-
ceeding as in §45, we obtain the condition

Qg 3 (¢4} 3 ag ag 0
0 ap 3 ay 3 as ag
0 0 3ag 6a; 3ax =0
0 3 ap 6 ay 3as O
3 ag 6 ay 3 asg 0 0

which (when expanded) gives us (45). A similar derivation would
give us (47). We leave the details of all this to the exercises.

ILLusTrATIVE ExAMPLES. Suppose we want to determine bso thaty=2z + b
shall be tangent to the cubicy = 2 23 4+ z2. Solving simultaneously, we obtain
22% —2bz — b? = 0. Here

=2 a =0 ay=—=2b/3, az = —b?
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Substituting these values for the constants in (45), we get b3 = Oand b®= —4$.
Therefore the four tangents are y = z, y = =z — 2 \3/2/3, andy =z + «
where a is either one of the imaginary roots of 52 — 2 \3/5/3 b+ 4 \3/;/9 =0
(the second factor of b® + 14 equated to zero). Note that b* = 0 means
three coincident tangents are accounted for by y = 2.  (The origin is a double

point for the cubic withy = x,y = —x as tangents.)
Next suppose we want y = z + b to be tangent to4y = z*. The resulting
equation in ris ! — 42 — 4b = 0, where a=1,a =a =0, a3 = —1,

ay = —4b. From (47) we get b = +2 \/3/9, so the two tangents are
y=xz+2 \/3/9.

If we want y = x + b to be tangent to 5y = z° we have 5 — 5z — 5b =0,
with the derivative r* — 1 = 0; hence r = £1,4 (which are the ahscissas
of the points of contact of the desired tangents) and b = }(a® — 5 ) where
a = %xl,+1.

EXERCISES

1. Complete the derivations of (45) and of (47).

2. Prove that f(xr) = 0 has a double root if f(x) = 0 and f’(z) = 0 have
a4 common root.

3. Show why (45), (47), and Ex. 2 give necessary and sufficient con-
ditions.

4. Show that (0,0) is a double point on y? = 23 by solving with y = mz
(m arbitrary).

5. Determine b so that ¥y = 2 = + b shall be tangent to the sextic 3y = 28.

6. Derive (42) and (43).

7. Show that if ag = 0 in (45) and a9 = a; = 0 in (47) these conditions
for double roots become the ordinary condition that the resulting quadratic
equations (44) and (46) shall have double roots.

8. Show that there are ordinarily sixr tangents to a cubic from a point
P’(z’,y’). Hint: Take P’ as (0,0); solve y = mux simultaneously with (38),
use (45) on the resulting equation in x. What is the degree in m of the new
equation obtained by using (45)? How does this prove the theorem? Why
is there no loss of generality in taking P’ as (0,0)?

9. Show that there are ordinarily twelve tangents to a quartic from a point.

10. Show that (0,0) is & double point on (38) if and only if ¢ =g = h = 0.
Hint: Solve y = me with (38). The resulting equation mn x must start
with the term in x2 for every value of m. (Why?)

11. Show that if ¢ = j = h = 0 in (38), (0,0) is a pont of inflection with
z = 0 as tangent.

12. Show how many tangents to (38) there are from P’(0,0) if P’ is an
ordinary point on (38); if P’is an inflection (use Ex. 11).

13. Why can there be no tangents to the cubic (38) from P’ if P’ is a double
point on (38)?

14. Find the tangents to y = z° parallel to y = r; the tangents to y = z*
parallel toy = 2 2.

15. Find the tangents to zy = 1 that are parallel to y = —3 r; parallel to
y =3z
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16. Find the tangent to 2® + y® = 3zy at (3, §); the tangent to y =
z(x — 1) (x — 2) at the point where z = 3; at the point where z = $.

17. How are parallel tangents to a curve included under the term tangents
through a point?

18. Describe how the coordinate axes and lines parallel to them cut the
curves y = x4 2%y = 1, 2%y = 2% — y%

19. Show analytically that (3,0) is an inside point with respect to
22 — y? = 1 and an outside point with respect to 22 + 2> = 1. Compare §39.

47. Points of inflection on n-ics. DEerFINITION. A point of in-
flection (or briefly an inflection) on an n-ic is a point where the
tangent intersects the curve in three coincident points, but every
other line through P cuts the curve there in only one point. A
point of hyperinflection is such a point as P, only with the tangent
intersecting the curve there in four or more coincident points.

Thus (0,0) is an inflection for y = 2z* and y = 23(x +y — 1)
with y = 0 as tangent, but a hyperinflection for y = z*, y = 25,
y=x*Qzx+1),...,y=2" (for n a positive integer > 3).

An interesting way to test cubics for inflections is as follows.
Consider the cubic y2 = z3. Solving this cubic with y = mz + b,
we get

23 — m%? — 2bmx — b% =0

If y=mz+ b is to be the tangent at an inflection, then this
equation in z alone must have three equal roots, i.e., it must be
of the form

(48) 224+3cx2+3c+=0

From this we get 3¢ = —m?, 3¢2 = —2bm, ¢ = —b% Hence
wehave 9ct = 4b2m2 = 4- ¢ -3¢, givingusc* = 0,s0m = b = 0,
and there is no other possible tangent apparently than y = 0.
But (0,0) is a double point on y? = z® with ¥y = 0 as tangent.
(We shall see later on that we must suppose this cubic to have an
infinite point of inflection on the y-axis with a tangent that con-
sists entirely of infinite points. One way to see this is to note that
the transformation z =z'/y’, y = 1/y' sends y = 2® into
y'? = 2,

The method is to eliminate m and b between the three equations,
solve the resulting equation in ¢, then substitute the roots back
into the equations that determine m and b. We saw above that we
may also stumble onto double points. (Why?)

We now show that the ordinary method of the calculus for the
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finding of finite inflections on curves will apply also to oblique
coordinates. This method consists in solving simultaneously
the curve f(z,y) = 0 and the equation d%y/dz® = 0 where
dy df /ox

dz of/oy’
ordinates with the same z-axis and origin) we have

dy

—= eSC w

dy’ d

de' = dx — dy cot w, dy’ = dy csc w, 3%'= a

From (2) and (2’) we see that (for oblique co-

d
1-— —ycot w
dz

Hence we have

dj_’_i(slz'>_i<d_!/)dﬁ__i dy) 1
dz?  di’'\d2') ~ dx\dd') di’ ~ dx\dz') dz’
d:c

d%y
—cse w
dx?

1
a - %Cot w)?

Therefore if d?%/dz? = 0, then d%’/dz’? = 0; and, conversely,
if d%’/dxz'? = 0, then d%/dx? = 0. This shows that in order to
find points of inflection on a curve f(z,y) = 0 referred to oblique
axes, we do the same as for rectangular axes (i.e., we solve
f(z,y) = 0 simultancously with d2y/dz? = 0). For example,
y = 23 — 3z gives d%y/dz? = 6 x — 6, so the only finite point of
inflection is (1,—2).

EXERCISES

1. Check over all the algebra and calculus in the text.

2. Why is there no loss of generality in the last paragraph of the text in-
curred by using (2) instead of (1), or of (1) and a translation? Hint: One
way is to show what (6) and (7) do to d?y/dr®.

3. Test for inflections (by the algebraic method in the text) the cubics
By =3ry,y=at+aty=2—2%y =0

4. Use the calculus test on the cubics of Ex. 3.

5. Make up a method of testing quartics for hyperinflections similar to the
algebraic method of testing cubics for inflections. Use this method on
Yy =zhy=a"—-2%y=2'—2%

6. Look up in a calculus textbook the discussion of points of inflections on
curves.
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48. Multiple points on n-ics. We noted in §46 that the equation
(42) or (3) of a tangent to a curve f(z,y) = 0 at a point P’ (z,y’)
becomes indeterminate if 3f/dx = 3f/dy = Oforz = 2’ andy = y'.
In this case P’ is called a multiple point on the curve.

To discuss multiple points on n-ics we must consider Taylor’s
formula for the expansion of a function of two variables. We shall
first derive this formula. If weputz = 2’ + XAz, y = 4’ + A Ay
in f(z,y), we obtain f(z’ 4+ X\ Az, 4’ 4+ N\ Ay). This last is a
function of \ alone if z’, 4/, Az, Ay are constants and we put
J@ 4+ NAz, ¥ + N Ay) = ¢(A). Expanding this function ¢(A)
in powers of N by Taylor’s theorem for a function of one variable,
we obtain

S + 3 82,4’ + X 8g) = 6(0) = 6(0) + ¢/ Or + 212 Dy
+ o™ (O
But we have
o o of

6(0) = f'y"), ¢(x)— Wl Ay ¢'(0)=5;A:v

a
fAy (sincex =z’ +NAz, y=4' +ray),. ..,

ay’
(n)
¢ (0) = (af Az -5 o Ay)

where (n) is symbolic and this last expression is short for

+

‘nf anf —n—1
P "+ "o gy Az Ay
nin—1) 9 2 a"f

+ YVl NN B vy

2! ax'" 2oy '™

(wherein 9"f/dz’™ means 9"f/dx™ with x and y replaced by z’ and
y', similarly for the other derivatives).

From this we obtain Taylor’s expansion for a function of two
variables

(49) f@@' + N Az, ¢’ + 2\ Ay) —f(z’,y’)+x( fA +af’A)

a2f

2f
oz’ 3y Ar Ay + )

2
T —2
+2|< —58% + 27—
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)‘3 a3f . a3f 63
+3—' ——,—;;Ax3+3a ,ZGy,Ax Ay -l-3'3 éf,zAxAy
33 (n)
f——a) ( of af )
.« . -—A —
P Ay )+ - + ol \oz + A?/

The last term in (49) may also be written )\"f (Az,Ay).

The equation of the secant through P’(z’,y’) and a point
P"(z’ + Az, y’ + Ay) has the form (y — y')/(x — 2') = Ay/Ax.
From this equation we find

(50) y—y =NAy, z—a' =X Ax or y=y + a4y,
z =2 +\NAzx

Instead of solving (y — ¥')/(x — z’) = Ay/Azr simultaneously
with the equation of the n-ic f(z,y) = 0 so as to get the points of
intersection of this secant and the curve, we can substitute z
and y from (50) in f(z,y) = 0, giving us

f@& +xax, 9y +NAy) =0

This last equation, which is really (49) equated to zero, is an
equation in A alone, since z’, ¥, Az, Ay are all constants temporarily.
The roots A\, Ag, . . ., A\, of this equation give us the coordinates

@ +MAzy +MAy), @+ Ndry +hdy),. .,
(' + N\, Az, ¥y’ + N\, Ay)
of the points of intersection of the secant and the curve.

Ordinarily, since f(z,y) = 0 is an n-ic, (49) is of the nth degree
in \. Thus we have proved again (incidentally) that a straight
line cuts an nth degree curve in n points.

Now if P’'(z’,y’) is a multiple point on f(r,y) = 0, then
f@&'y') = of/ox’ = 8f/dy’ = 0 and the equation in X has at
least one double root, namely A2 = 0, which means that every
secant through P’ cuts the n-ic at P’ in at least two coincident
points.

If one (or more) of the second partial derivatives of f(z,y)
does not vanish at P’, this point is called a double point on the
curve (or a multiple point of order two).

If 8%f/9z'2 = 8% /ox’dy’ = 8%/0y’? = 0, but one (or more)
of the third partial derivatives does not vanish at P’, every secant
through P’ cuts the curve at P’ in three coincident points, and
is called a triple point (or a multiple point of order three). Similarly,
a curve may have multiple points of still higher orders.
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If P’ is a double point on the curve, we replace A Az by =z — 2’
and X Ay by y — 9’ in the equation

62f —9 62f 62f —2

—s\2 2 N Ar A ——o 2P =0

az’? Az + az’ oy’ %Ay + y'? Ay
and get the equation

62 4 2 ’ 7
(51) 6x’2(x_x)2+2ax'ay'(x_x)(y_y)
a2 o
+ P y—y) =0

This equation gives two straight lines that are said to be the
tangents to the curve at the point P’, since the values

that respectively satisfy (51), or in other notation

y—y =A\by,z—a =A\Azr and y—y =\By
z—z =2 _A_x”
when solved simultaneously with the curve cause (49) when
equated to zero to have at least a triple root \* = 0, ie., these
two lines cut the n-ic at P’ in three or more coincident points.

62f 2 a2f aZf > ]
W) 3.2 PWE = 0, the two lines (51) are

According as (

real and distinct, real and coincident, or conjugate imaginary,
respectively; and P’ is called a crunode, cusp, or acnode (or isolated
point) in these three cases. For example, y? = z°® + 22 has a
crunode at (0,0) with tangents y = +z; 32 = 2® has a cusp at
(0,0) with ¥y = 0 as tangent; y? = 23 — 2? has an acnode at
(0,0) with tangents y = .

Note that if (0,0) is on the n-ic (39), the terms of lowest degree
in z and ¥y when equated to zero give the tangent (or tangents)
to the n-ic at the origin. (Why?) Thus (if ¢ = 0) in (39)

boz + by = 0, or coz® + 2 czy + coy® = 0 (if bp = by = 0)
or dox® 4+ 3 dyz?y 4+ 3doy®? + dsy® = 0

(ifbo=b1=CQ=Cl=Cg=0)
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ete., give us the tangents to (39) at (0,0); and (0,0) is, respectively,
an ordinary point, a double point, a triple point, etc.

ILLustrATIVE ExampLe. To test the curve
28— 8y — 6%y + 122y — 22 422y — 942 =0
we solve this equation simultaneously with
J) i)
7£ =322 - 121y + 12> - 22+ 2y =0, ,—'ra—-24yz—6:¢:2
dr dy
+24zy +2r -2y =0

? Y *f
- =0 H = =
and get z’ y’ erea AT g nda o

cusp with tangent (51) reducing to y = r taken twice.

= 2,50 (0,0)is a

If P’ is a triple point on the n-ic, the curve has at P’ three
so-called tangents given by the equation

if Bf
(52) a/;(x_ )3+% /(x_x) (y — )
X ax'?
&f f
+35 6,2(—:0)0 V3P4 m@ -y =0
each of which tangents cuts the curve in at least four coincident
points at P’.
Similarly there are four tangents at a quadruple point, five
tangents at a quintuple point, . . ., n tangents at an n-ple point.

Also these tangents may be real or imaginary, distinct, or some
or all of them coincident. Also some of the tangents at a multiple
point of order r may cut the curve there in more than r 4+ 1
coincident points. Thus for the curve xy = z* + y* — 3 the
origin is a node with ¥y = 0 as a tangent intersecting the curve
there in four coincident points instead of three.

We call attention to the fact that our definition of the tangent
as the limiting position of secant P'P"" actually gives us tangents
at a double point P’ that cut the curve there in at least three
coincident points (the limiting position of the double point P’
and at least one other point of intersection of the secant with the
curve as P"" — P’); a similar remark applies to a multiple point of
higher order.

We can discuss a multiple point P’ very readily by translating
this point to the origin.
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Finally we note that our discussion of multiple points is valid for
oblique axes as well as for rectangular, and even for different-sized
units on the axes.

As illustrations of our discussion we see that y? = 25 has a
cusp at (0,0) with tangent y = O that cuts the curve there in
five coincident points (and so is said to have quintuple contact
there with the curve). The curve y(y — z) = 2%y + 2% has a
crunode at the origin whose tangents y = 2z and y = 0 have
respectively quadruple and quintuple contact there with the
curve. Note that every other line y = max through the origin
cuts this curve in points given by m(m — 1)z* = ma* + x5,
i.e., in two points at (0,0) and in three other points given by
22 + mz? = m(m — 1); also as m — 1 two more of these points
approach the origin (because this last equation approaches the
form z3 + 22 = 0), but as m — 0 three more of these points
approach the origin. The tangents at the origin to the curve
P = x3(x¢ 1) are given by y® — 2 = 0 and so they are y = z,
y = (—1=+ V3i)z/2. Thetangentsto (x2+ 3?) (2% —y?)y =28
at the origin are y = +2z,y = iz, y = 0.

Suppose a quartic curve has a triple point P’ with three real
tangents, two of them coincident. If we take P’ as (0,0) and
the tangents as 22 = 0 and y = 0, then in the n-ic (39) we have
n=4,a=b0=b1=60=01=Cz=(lo=d2=d3=0,d1¢0,
€0€4 # 0.

EXERCISES

1. Give an exact definition of a multiple point of order r on an n-ic.

2. Prove that the last term in (49) may be wrnitten A"f(Az,Ay). Hint:
Put A = 1/u, expand (1/p)f (uz’ + Az, py’ + Ay), thenreplace uby 1/,

3. How do we get from (y — y')/(z — z’) = Ay/Ax the equations y — y’
= MNAy, z — =’ = A Ax?

4. Prove that each of the tangents given by (52) cuts the curve in at least
four coincident points.

5. Check all the algebra in the text. Answer the queries (Why?).

6. Why cannot a cubic have two double points?

7. Show that the necessary and sufficient conditions for the origin to be.a
point of inflection on the n-ic (39) are @ = 0 and box + by a factor of cez? +
2 c1zy + coy’.

8. Suppose (39) is a quartic with a triple point at the origin whose tangents
arex =0,y =0, y = z. What about the coefficients of (39)?

9. If the equation in X in the text for an n-ic f(z,y) = O is of degree lower
than the nth, how must we interpret this peculiarity?
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10. What sort of multiple point is the origin for the curves z3y%(z? 4 y2)
(2 — 492 = (x+ )", 3 = 24, z* + y* = 257 Find the tangents at the
origin.

11. Test the following curves for multiple points, determine the nature of
these points, the equations of their tangents, and the order of contact of these
tangents:

4x—-12+ (y—3z+22 =0, (*+y%—1)°%+272%=0,
@ —-1D2% =@ —2)2%, 2*—2ay* +3a%® —-2a%2+a*=0

12. Prove that a quartic curve cannot have a triple point P’ and a double
point P’’, or more than two collinear double points. Hint: In how many
points would the line P’P’’ cut the quartic?

13. Make up examples of curves with multiple points at the origin whose
tangents have differing orders of contact.

14. Prove that a quartic cannot have four double points. Hint: In how
many points would a conic through the four double points and a fifth point
on the quartic cut this curve?

49. Parallel lines and the line at infinity in a plane. Let us
consider the following figure to scec what is meant by two lines
l and m in a plane being parallel. Suppose a line to rotate in
counter-clockwise dircction around a point P and in its various
positions m’, m'’, m'"’, . . ., mg, mg, mq, . . . to cut a fixed line 1
in the points R, R”’,R""’,. . ., Rs, Ry, Ry, . . ., respectively. As
this line rotates, its point of intersection R with [ passes through
the positions R’, R"’, R""/, ete., to the right, then comes back
from the left through Rs, Ry, Ry, ete.

R, R

In plane geometry and in elementary analytic geometry it is
assumed that when the rotating line reaches the position m (where
it is said to be parallel to [), then its point of intersection R with !
ceases to exist. Note that this is a mere assumption because we
cannot follow this point of intersection R out there and investigate
its behavior.

In projective geometry we assume that R does then exist in a
unique position B, (of course R, is not a finite point), and we call
R, the point at infinity on L.

For many reasons we do not assume the existence of {wo such
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points at infinity on I (one in cach direction). If we did so, then
two distinct parallel lines would intersect in two (infinite) points;
but two finite points determine a line, and we should want infinite
points (which are the limiting positions of finite points) to behave
like finite points.

Also from the above figure (where n is taken parallel to mg)
we see another reason for assuming the existence of one and only
one infinite point on a line. By means of the lines through P
there is established a one-to-one correspondence between the points
of 1 and those of n (compare §29) such that to each point R’, R",
R", ... Ry Ry, ... onl therc corresponds a unique point
™, 7', 17", ... Ts Ti, . ..onn (and conversely), with the
exceptions of T and R;3. We can remove these exceptions by assuming
the existence on [ of one and only one infinite point K, to cor-
respond to 7', and the existence on n of one and only one infinite
point T, to correspond to K.

Note that the above argument is all based on the assumption
that through a given point P there is one and only one line m parallel
to a given line [. If we assume there are two such parallel lines
through P (one obtained by rotating m counter-clockwise around
P, the other by rotating m clockwise), then we should postulate
the existence of two infinite points on each line.

Two lines [ and I’ that are not parallel must be supposed to have
distinct points R, and R’ at infinity. We assume the locus of
all these points R, in a plane to be a straight line 1,, that lies en-
tirely at infinity (i.c., consists entirely of infinite points) because
any line cuts this locus in only one point. We call I, the line at
infinity in the plane.

We can look upon 1, as the limiting position of any line ax + By
—1=0as a— 0 and 8 — 0, i.e., as the intercepts of this line
become infinitely great (that is, grow beyond all bounds). (Com-
pare §25.) In preceding sections we have spoken about a line
consisting entirely of infinite points (compare §47); now we shall
call such a locus the line I, that consists entirely of infinite points
or the infinite line [.

This assumption of the existence of B, on a line ! and of [, in
a plane 7 is amply justified by its usefulness, and also it does not
conflict with any other part of mathematics. From now on we
shall say that any two lines in a plane intersect in a point R finite or
infinite.
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EXERCISES

1. Look over the preceding sections of this book for any mention of infinite
points and of infinite lines, and note how all such previous discussions natu-
rally point toward the assumption of the existence of [,.

2. Generalize to a space of three dimensions the above discussion of infinite
points. Show why we assume the existence of a plane at infinity .

3. Explain how the assumption that there is an infinite point on each line
does not contradict the theorem from plane geometry that parallel segments
included between parallel lines are equal.

4. Using the assumption of the existence of 1, and referring to §44, prove
that an n-ic can have at the most n asymptotes.

5. Explain why an n-ic may have less than » asymptotes. How about the
parabola, the cubics y = z3and z® + y3 = 3ay?



CHAPTER VIII
CONICS AND LINEAR FAMILIES OF CONICS

50. Poles and polars with respect to conics. We have already
seen that the tangent to the conic (4) at the point P’ (z)y’) is
(5) or (after rearranging the terms)

(53) (az’ + hy' + @z + (ha’ + by’ + Ny + (2" + ' +¢) =0

There is no such simple formula for the tangents to the general
n-ics (39).

If P'(z',y") does not lie on the conic (4), we call the line (53)
the polar of P’ with respect to the conic and P’ the pole of (53).
Compare §25.

The condition that the polar (53) of P’ shall pass through a
point P"' (z",y"") is

68 a7+ by e+ + o) + 9@ +2)
+h@"y" + 2"y =0

Interchanging z’ and z’’/, 4’ and 3'" in (54) does not change the
equation but does give us the condition that the polar of P’/
passes through P’. Therefore we have the theorem:

TuroreM. If the polar of a point P’ with respect to a conic
passes through P'’, then the polar of P'' passes through P’.

If P’ lies on the conic (4), the polar (53) is then the tangent
at P’, but the equation (54) and its results are still valid.

Let us take the point of intersection P of two tangents ¢; and ¢,
(real or imaginary) with points of contact P; and Ps, respectively.
Since P lics on ¢; (the polar of P;), therefore the polar p of P
must pass through P, similarly p must pass through P;. Hence
the polar of P us the line joining the points of contact of the tangents
to the conic from P. If P is outside the conic, this gives us a
method of constructing the polar of P (since then ¢, and i, are
real).

If P is inside the conic, any chord through P cuts the conic in
two points P; and P, whose tangents ¢; and ¢, intersect on the
polar of P (since the polar of their point of intersection is the given

110



POLES AND POLARS WITH RESPECT TO CONICS 111

chord through P). Taking two such chords we can determine the
polar of P as the line joining the two poles of these chords.

Note that the polars of all the points on a line p are lines through
a point P, and conversely. (Why?)

Let us consider the close connection between the relation of pole
and polar and the relation called plane duality. We can dualize
the construction of the polar of an outside point and we get
exactly the construction of the pole of a line that cuts the conic
in two real points, and similarly for the construction of the polar
of an inside point. (We leave the details for the exercises.)

In fact, to take the polar of a figure or thcorem with respect
to a conic (if we use infinite points and lines as well as finite) is
exactly similar to taking the plane dual of a figure or theorem;
because in either case we replace the words point by line, line by
point, collincar points by concurrent lines, concurrent lines by
collinear points. However, in taking the plane dual we do not
presuppose any conic and the pole and polar relation as a machin-
ery. In all probability the pole and polar relation originally sug-
gested the idea of plane duality.

ILLusTrRATIVE ExamMpLE. The polar of the focus (p,0) with respect to
y? =4pxis y-0 = 2p(x + p), which is the directrix. The pole of 3z +
2y = 1 with respect r2/16 + y*/9 = 1 is obtained by taking the polar form
zx’/16 + yy'/9 = 1 and from this getting x’;/16 = 3, y’/9 = 2, so the
destired pole is (48,1R).

Let us take up another use of tangents to conics and of poles and polars.
Suppose we want (0,0) to have the polar xr + y — 1 = 0 with respect to (4)
and (1,0) the polar z = 0. The polar of (0,0) is

gr+fy+c=0
so we haveg = f = —c. The polar of (1,0) is
@+grt+th+Ny+@+ec)=0

sowehaveh +f =g +c¢c =0anda + g # 0. Therefore (4) has the simpler
form
a4+ byl +g(=1+2y+2x—22y) =0

Next let us reduce the equation of a hyperbola to a simple form by referring
its equation to its asymptotes as rectangular or oblique axes. (This is equiva-
lent to making an affine linear transformation of coordinates considered as an
alias.) Inthis case r = 0 when solved with (4) must give an equation of the
form 0:-y2+0-y +¢c =0 (from the definition of an asymptote), hence
we must have b =f =0. Also y =0 must give 0-224+0-z+¢ =0,
hence @ =g = 0. Our hyperbola has now the equation 2hry +c =0,
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where ch # 0. If we put x = 1/2z’, y = —c/hy’, and divide the equation
through by ¢, we get the well-known form z'y’ = 1.

DeriniTioN.  If a point P’/ lies on the polar of P’ with respect
to a conic C' (and therefore P’ lies on the polar of P’/ with respect
to C), then P’ and P’’ are called conjugate points with respect to C.
Also, dually, if a line I’’ passes through the pole of a line I’ with
respect to C' (and therefore I’ passes through the pole of I’’), then
! and I’ are said to be conjugate lines with respect to the conic C.

We shall take up again, later on, the discussion of pole and
polar and of conjugate points with respect to a conic. We shall
then show (see also in the exercises below), among other things,
that the pole of any diameter lics on its conjugate diameter; hence
the name conjugate diameters (since these two diameters are
conjugate lines with respect to the conic).

InLusTrATIVE Examrre. Let us find the point on y = z conjugate to
(1,1) with respect to x> + y> = 4. The polar of (1,1) is £ + y = 4, which
cuts y = z in the desired point (2,2). Dually, let us find the line through (1,1)
conjugate to r + y = 2 with respect to this circle. The poleof x +y = 2 is
(2,2), hence the desired line is y = z.

EXERCISES

1. Prove that the necessary and sufficient condition for the polar of
P’(z’,y’) with respect to (4) to pass through P’ is that P’ lie on (4).

2. What form does the equation (4) take if the polar of (1,1) isy = —¢
and the polar of (1,—1)isy = z?

3. Taking the asymptotes of a hyperbola (4) as y = z and y = —z, reduce
its equation to the form z? — y? = 1.

4. A triangle is said to be self-polar with respect to a conic C if its sides
are the polars of the opposite vertices with respect to C. Prove that if two
vertices of a triangle and the sides opposite them are pole and polar with respect
to C, then the triangle is self-polar.

5. Find the poleof 2z + 3 y — 4 = 0 with respect to %/25 + y%/16 = 1;
with respect to zy = 1.

6. Find the point on y = 0 conjugate to (3,0), to (7 — 7,0), with respect
to 22/25 4+ y?/16 = 1. Find the line through (0,0) conjugate to y = 0 with
respect to the conic 22 — 2zy +4y? —7x +2y = 3.

7. Make up a pair of conjugate points and a pair of conjugate lines with
respect to the conic 7 2> — 9y = 1.

8. We have a pair of conjugate points P,P’ with respect to a conic ¢ and
lying on a line [ that cuts C in the two points Pi, P2. Where does it show
(incidentally) in a previous section of the text that P, Iy, P’, P5 form a har-
monic set? How does it follow that if P1 = P (i.e., if L is tangent to C'), then
P’ = Py = Psand P is any point on [?
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9. Prove that a pair of conjugate points P,P’ with respect to a conic C

must either lie both outside C, or one inside C and one outside C.

10. Prove that the polars of all the points on a line p with respect to a conic
C are lines through a point of p, and conversely.

11. In the reduction (in the text) of the hyperbola to the form z'y’ = 1,
state fully why z = O must give 0-y2 +0-y +¢ = 0.

12. Find two distinct self-polar triangles with respect to the conic zy = —1.

13. Dualize the construction derived in the text for the polar of an outside
(inside) point with respect to a conic.

51. Some applications of poles and polars with respect to a
conic. In §25 we saw that the polar of a focus of a conic with
respect to this conic is a directrix; hence from §50 we observe
that the tangents at the two extremities of any focal chord (i.e.,
chord through the focus) intersect on the directrix corresponding
to this focus. Also the polar of the center (0,0) of a conic 22/a? 4+
y?/b% =1 (or 2% 4 y? = r2) is a line with equation of the form
0-2/a®>+0-y/b2 =1 (or 0.2+ 0-y = r?). We interpret this
equation as giving a line consisting entirely of infinite points
(i.e., l,). Therefore the tangents at the ends of a diameter must
be parallel.

Again we note that to find the pole of z = ¢ with respect to
z?/a? 4 y?/b®> = 1 we take the polar of P'(z’y’) in the form
z + yy'/b%’ = a®/2’. This equation is to be z = ¢, hence
a?/z’ = ¢, ¥ = 0 and the required pole is (a?/c, 0). As ¢—0
this pole approaches the point («,0), which we interpret as the
point at infinity on y = 0. A similar result holds for the pole of
x = 0. Therefore the two axes and the line form a sort of self-
polar triangle with respect to these conics. (See Ex. 4 in §50.)

To obtain the result concerning conjugate diameters that is
quoted in §50, we take y = mx + c¢.  We put the polar of P’ (z’,y’)
with respect to 22/a® 4 y2/b% = 1in the form +b%*rz’/a®y’ + y =
+b2/y’. This must be the line —mz 4 y = ¢, hence £b%/y’ = ¢
and +b%2'/a®y’ = —m. This last equation shows that the pole
of y = mx + c lies on the line through the origin whose equation
is y = +b?/a’?mx. As ¢— 0 and y = mr + ¢ approaches the
diameter, then y'(= =+b%/c) —  but the pole P’(z’,y') still
lies on y = Fb%/a’*mz. Therefore we see that the diameters with
slopes m and m’ connected by mm’ = =b%/a? are conjugate lines
with respect to the conic x%/a% + y%/b% = 1.

Finally, we shall use the result in the first paragraph of this
section to find the center of the conic (4). If P’(z’,y’) is the center
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of (4), its polar (563) must be of the form
0:24+0-y+ (9" +fy+¢)=0
(Why?) Hence we must have
ar’ +hy' +9=0, b’ +b) +f=0
giving us the center ‘

’r _ —bg + fh 1I/=h.q—af
ab — p% ab — h?

if ab — h? # 0. (Compare this brief derivation of the center with
the one given in elementary analytic geometry.)

If ab — h% = 0, either 2’ = ® or ¥y’ = « or both are infinite
(i.e., the center is an infinite point); or we have

. 0 0
—bg+fh=hg —af =ab— h® =0, .v'=6, y'=(—)
To interpret geometrically the last possibility we remark that the
discriminant I of the conic (4) can then be written

I = c(ab — h?) + g(—bg + fh) + f(hg — &f) = 0

Therefore the conic is degenerate. In fact, it can be shown that
the conic is then a double line.

For a parabola (I' % 0, ab — h? = 0) we find above that the
center is an infinite point. We assume, therefore, that the center
P’ lies on the conic and the polar (I,,) of the center P’ touches
the conic at P’. This agrees with the fact that the parabola has
no asymptotes. (Why?) Thus we assume that the parabola
y? = 4 px has an infinite center on the r-axis, since for this curve
hg —af =0 so 3 =0/0, but —bg+fh=2p so 2z’ = ».
Compare Ex. 5 under §49.

EXERCISES

1. Look up the derivation of the center of a conic as given in elementary
analytic geometry. Find two different derivations.

2. Answer all queries (Why?) in the text.

3. As was done in the text for x = 0, so, similarly, find the pole of y = 0
with respect to r2/a? 3 y2/b% = 1.

4. Show that if the r- and y-axes are taken as conjugate lines with respect
to the conic (4) and the polar of the origin is [, then the equation of this conic
can be reduced to the form z2/a? + y2/b% = 1. (This is the converse of the
discussion in the text.) Hint: What is the pole of z = 0 (of ¥y = 0) with
respect to (4) and the polar of (0,0)?
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5. Find the centers of the conics
? —ay +2y*+32 -2y =4, 2+ +29x4+2fy+c=0

Do this in two ways, first by the formula and then by the condition that [,
must be the polar of the center.

52. A use of poles and polars to derive the discriminant of a
conic. Now we shall give another derivation of the diseriminant
of a conic (4). Compare §19. First we prove that the polar of
every point I (z},y}) where ¢ = 1,2,3, etc., does not pass through
a point P’/ (z""y"") if the conic (4) is non-degenerate but does pass
through such a point P’/ if the conic (4) is degenerate.

We prove this fact for the normal forms of these conics. Thus,
if the three polars of three non-collinear points P, P35, P; with
respect to 22/a? 4+ y%/b® = 1 pass through P"' (2" 3"'), we must
have

i i 7 17 7,17 r 1 .1
Iz +i‘/1?/ -1 Ty +?l2?/ -1 T3 +y3y =1
a? b2 ) a? b2 ! az b?

For these three equations to be satisfied by P (z’,y"’) we must
have

a:é /a? y:l /bj‘Z -1 1 le y:I 1
23/a? yz/bf -1 |=- 22| 2 Y2 11 =0
xy/a? yh/b? —1 AT

But then the points Pj, P}, Pj are collinear (contrary to hypothe-
sis). We leave to the exercises the similar discussions for
y? = 4px, 22/a® — y* /b2 =1, o’ + B%® + % = 0 (the im-
aginary non-degenerate conic).

Next we consider the polars of P’(x",y’) with respect to the de-
generate conics

22y =0, 224+ 142=0, 22=0
namely
zy +2'y=0, 2’ +yy) =0, 22’ =0

For every point P’(x’,y") these polars with regard to any one of
these degenerate conics all pass through the same point (0,0).
The above discussion shows that a necessary and sufficient
condition for a conic C to be degenerate 1s that the polar of every
point PL(z},yl) where i = 1,2,3, elc., with respect to C shall pass
through a common point P''(z''y’"). Consider the general conic
(4), the polar (53), and the condition (54) that (53) shall pass
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through P’’. Rearranging (54), we obtain
(54’) (axll + hyll + g)xl + (hx” + byll +f)yl
+ (=" + 1y +e) =0

This equation (54’) must be satisfied by every pair of values
of z’ and y’. Therefore we must have

axl/+hyl/+g=0, hx’/+by’,+f=0, gil?’/+fy,,+6=0

The necessary and sufficient condition for these three linear
equations in two unknowns to have a common solution z’/, 3’/ is

a h ¢
'=s|h b f|=0
g J ¢

Thus we arrive again at the discriminant of (4).

EXERCISES

1. In the text we took the normal (standard) forms for the equations of the
non-degenerate (and degenerate) conics to prove the polars of all points P’
non-concurrent (concurrent). Why was there no loss of generality?

2. Why was the condition in the test for (4) to be degenerate (namely,
that all polars are concurrent) both necessary and sufficient?

3. Discuss y2 = 4 pr, 22/a® — y%/b% = 1, o222 + B%Y% + 42 = 0 for the
polars of P; as 22/a? + 42/b% = 1 was discussed in the text.

4. Prove the algebraic condition quoted in the text for (54’) to be satisfied
by every pair of values of ' and 3.

53. Intersections of conics. Ordinarily two conies C; and Cs
intersect in four points Py, Py, Ps, P;. 1f we enumerate all the
possible ways for C; and C, to intersect when the points P;, P,,
Pg, P, are all real, we have (a) all the points distinct, (b) Py = Py
and P3 # P4, (c) the points coincident in pairs, (d) three of the
points coincident, (e) all four points coincident.

We can show that the five possible types of intersection of two
conics exist by giving a numerical example of each case, as follows:

(a) 22/9 +9y%/16 =1 and z%2/16 +%%/9 = 1
(®) ¥ =2x+4 and y?=4z+4

() 22+ 9> =16 and 2%/16 +y?/9 =1
(d) y¥ =42 and y?=42+2y

(e) y?’=4r and 224+ y* =42z
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Some of the points of intersection in the numerical illustrations
are finite and some infinite. If we allow P;, P,, P3, P4 to be
imaginary as well as real, we have many more cases to distinguish.
Thus 2% + y? = 1 and 2%/9 + %2/16 = 1 intersect in four dis-
tinct and finite imaginary points, whereas z%+ 32> = 1 and
2% + y% = 2 touch each other in two infinite imaginary points.

The five types of intersection are illustrated schematically
by these figures.

© @600

EXERCISES

1. Find the points of intersection for all the pairs of conics given in the text.

2. Tabulate all the possible cases for the intersection of conics, distinguish-
ing the cases where all the points are real and finite, all are real but some are
infinite, some or all are imaginary and finite, some or all are imaginary and
some are infinite.

3. Give as many numerical examples as you can for the cases in Ex. 2.

54. Pencils of circles. We have already studied in elemen-
tary analytic geometry so-called pencils of lines and pencils of
circles, namely all the lines given by

(65) (@12 4+ by + ¢1) + Nagx + by +¢2) = 0

where \ is an arbitrary constant called a parameter, and all the
circles given by

56) @+ +29z+2fivta)+ N+ P+ 202
+2fsy +c¢c3) =0

These are also called linear one-parameter families of lines and
of circles respectively. These families consist, respectively, of
all the lines through the point of intersection of two given lines and
of all the circles through the points of intersection of two given
circles.

To include the second given line or circle in the above families
we must be allowed to divide their respective equations through
by N and then let A — « (so that 1/A — 0). The two given lines
(circles) are called the fundamental lines (circles) of the pencil.

Note that any pair of circles in the pencil (56) have the same
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radical axis (given by X = —1), namely,
(57) 2091 —g2)x+2(fi —fa)y + (c1 —c2) =0

which may be considered as forming with the hypothetical line
at infinity 1, a degenerate circle of the pencil. We can say that
the two lines of this degenerate circle pass through the points of
intersection of the circles of the pencil. Compare §45.

This is a useful convention that we now adopt, namely, of
agreeing to consider a linear equation in x and y, when found
among (i.e., in a set of) quadratic equations, as the limiting case
of a pair of lines where one line has (as we may say) been allowed to
move out to infinity. Thus analytically z +y — 1 = 0 may be
looked upon as the limiting case of

(ax+By—1)(x+y—1)=0

as «a— 0 and 8 — 0. This convention resembles that used in
the study of asymptotes in §44. How?

When we speak of the points of intersection of the circles of a
pencil of circles we must stretch our terms slightly so as to cover
a case like

@+ -1+ A2+ —62+8)=0
where the circles intersect only in imaginary points, or like
@+ —1)+ A2+ —42+3)=0
where the circles are tangent to one another, or like
@+y¥-D+AE+y*—4) =0

where the circles do not intersect in finite points and the radical
axis must be supposed to be l,. Compare Ex. 6 in §45.

Note that all the concentric circles 22 + y? = r? belong to the
last pencil above, because this pencil can be written z® + y?
= (1 +4\)/(1 +2) and we can take (1 +4X\)/(1+\) =%
Any value of the radius r = 7’ has a corresponding unique value
of the parameter N = (+'2 — 1)/(4 — r’?); and conversely to
any value of the parameter X = \’ there corresponds a unique
value of the radius given by ' = V(1 +4)\)/(1 +\') if we
allow r to have imaginary values (when (1 +4\)/(1 + )
<0, ie, N <0).




DEGENERATE CIRCLES IN A PENCIL OF CIRCLES 119

Again all the circles given by
224+ 9y +2gx=0

(namely, with centers on the z-axis and passing through the origin)
form a pencil of circles

@+ +22)+ N2+ 9y —22) =0
where ¢ = (1 — N)/(1 +N) or A = (1 —g)/(1 + g).

EXERCISES

1. Go through all the algebraic details in the text; find the points of inter-
section of the circles in the pencils quoted in the text.

2. Prove the statement made in the text that the pencil of lines (circles)
consists of all the lines (circles) through the point (points) of intersection of
the fundamental lines (circles).

3. Show that two circles of a pencil may intersect hike cases (a), (b), (c)
but not (d) and (e¢) in §53 (if we allow for imaginary points of intersection).
Make up numerical examples to illustrate these facts.

4. Write the circles (r — z9)% + (y — yo0)? = r% where z¢ and yg are con-
stants, as a pencil of circles with a parameter A. Do the same for z% + y% +
2¢9x +2¢gy = 0.

55. Degenerate circles in a pencil of circles. In the pencil of
circles (56) we take the discriminant I' of what we may call a
general circle in the pencil (i.e., a cirele in whose equation we have
not substituted a definite value of \) and, equating this discrim-
inant to zero, we have

142N 0 g1 + Age
(68) 0 1+X fi+ N |=(0+N)
g1+ Nz i+ Nz 1+ A

{(ca—f2 = N+ (c1 + €2 — 2/1f2 — 2 1g2)M
ta-f-g}=0

We can call the determinant in (58), when not equated to zero,
the discriminant of the pencil (56).

The equation (58) when solved for N gives the values of the
parameter for which the corresponding circle in (56) is degenerate.
Since (58) is a cubic in A, there are ordinarily three such degenerate
circles. (Note that such an equation as z? + y? = 0, which is
really a pair of conjugate imaginary lines, can be looked upon as
a degenerate circle.)
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Without actually solving (58) for its roots, we can decide from
geometrical considerations what the degenerate circles of (56)
must be. Each degenerate circle must pass through all the points
of intersection of the circles in (66). (Why?) The root X = —1
gives us the common radical axis, which with [, makes up one
degenerate circle. If the circles of (56) intersect in two distinct
points P; and P, the two other degenerate circles must be the
two pairs of lines P;I;,Pols and PiI5,Pyl; (where I; and I,
are the circular points at infinity). (Why?) If Py = Py, = P,
then there must be just one other degenerate circle, namely, the
pair of lines PI,,PIy.*

If the circles have no finite points of intersection, there is just
the one degenerate circle 1, taken twice. In this case the circles
must be concentric and touch one another at I; and I. (Why?)

ILLusTRATIVE Exampre. The pencil of circles 22 + 32 +1+2 Az =0
illustrates the first case mentioned in the last paragraph. One degenerate
circle is the line-pair* ¢ = 0 and l,; also A = =1 gives the two other degener-
ate circles (x &= 1)2 4+ ¢* = 0.

The pencil of circles 22 + 32 + 2 Az = 0 illustrates the second case. One
degenerate circle is the line-pair £ = 0 and l; also A% = 0 gives the other
degenerate circle z2 + 32 = 0.

Finally the pencil of circles 2% + y% + 2\ = Oillustrates the third case, with
1 as the only degenerate circle.

EXERCISES

1. Check the algebraic details in the text, especially the illustrative exampoles
(finding the points of intersection of the circles, ete.).

2. Answer all the queries (Why?) in the text.

3. Prove there is always a real circle in (56). Hint: = —ci1/ce gives
such a real circle, unless f1/f2 = g1/g2 = c1/c2. But then the pencil can be
put in the form (2% + %) + N (292 +2fy +¢) =0. (How?) Then we
have a real circle if we take —Ac + A%2(g? + f2) > O, that is A > ¢/(¢% + f?),
except for the case g = f = 0. In this last case takeA < 0ifc > 0 (ifc <0,
A = 1 gives a real circle).

4. Find the degenerate circles and the points of intersection of the circles for
the following pencils:

@ +y2+4z—21) + @2+ -8y —9) =0,
@ +9y2—9) +A=z+ 92 +62 -8y +24) =0

56. Transformations on pencils of circles, linear in the variables
and bilinear in the parameter. We are able to reduce the equation

* A pair of lines looked upon as a degenerate conic is often called a line-pair.
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(56) for a pencil of circles to a simpler form by using (13) on the
variables and by choosing new fundamental circles out of the
pencil.

We shall show that this choice of new fundamental circles
amounts to a so-called bilinear transformation of the parameter
with equation of the form

_00\'+3

(59) A= 'y_}\_':_&

Suppose we have a pencil of circles C; + ACz = 0 and we choose
a new pair of fundamental circles C} = a’Cy + b'C,, C = a’'Cy +
b"’Cy so that our pencil has the form C] + N'Cj = 0. If we write
C! 4+ \'C}, = 0in terms of C; and Cy, we get

Cl + N0, = (a'Cy +b'Cy) + N (a'Cy +bCy)
= (a' +Na'")Ci + ' +Nb")C, =0

If we divide the last form of this equation (containing C; and Cs)
by the coefficient of Cy, the resulting pencil must be exactly the
same as C; + ACy = 0. Hence we have the following relation
between N and N, namely, A = @'\ +b')/(a’’N + a’), which
is an equation of the form (59).

ILLusTRATIVE ExampLE. The transformation A = A’ — 1 puts (56) in
the form

2(g1 — g2)x +2(f1 — fo)y + (c1 —c2) + N (2 + 42 + 292z + 2foy +¢2) =0

If we wish to put (56) in a new form Cg + X (5 = 0 where (3 lacks the z?
and y2 terms and ('j lacks the constant term, we can use (59) and get

(C1 + BC2) + N (7C1 + aC2) = C] + N3 =0

If we take v =1, @ = —1, then (3 will have no 2? and y* terms; also,
if we take 8 = ¢, 8 = —c1, then (.'{ will lack a constant term. Put in
the bilinear form, our transformation of parameter has the equation A =
=\ + 1)/ + c2).

Since (13) has I' as a relative invariant, we see that an affine linear transfor-
mation of variables has no effect whatever on the cubic equation (58).

We can now reduce (56) to a simpler form by a combination of (13) and
(59). If we put

c4+g =72, y+fi=y
then (56) has the form
E2+y2+e) +AE2+ Y2+ 207 +2f) +) =0
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where a=a—gG—fh m=w—gufr=lr—1

¢ =cz+ g +11 — 20192 — 2f1f2
If now we put A = A’ /(1 — \’) we reduce the pencil still further to the form
(56") @2 +y?+e) +N Qe +2fy 4+ —c)) =0

EXERCISES

1. Givein full detail the reasons why (13) has no effect on the equation (58).

2. Inthe last sentence of the text, derive the transformation A = A" /(1 —=2").

3. Using the simplified form (56’) for a pencil of circles, show that the pencil
has an imaginary non-degenerate circle (i.e., with imaginary radius) if we can
determine \' so that N'2(gs2 + f22) + Nep — (3 +¢1) <0. Ifcg+¢;>0
then A'2(gs2 + f32) + Nei — (g + ¢1) = O certainly has real roots, and A’
can surely be chosen so as to satisfy the above inequality. (Why?) If
e +¢; < 0 and ¢ + 2(g3% + f2%) (c3 + ¢1) < 0, then no value of A\’ can be
found to satisfy this inequality (and so the pencil then has no such imaginary
non-degenerate circle). (Why?)

4. Using (56'), find the condition that the pencil of circles has a degenerate
circle of the form (z' — z5)? + (" — %)% = 0. Hint: Find the radius of
the general circle of (56') and equate this to zero and solve for \’; then the
roots ' must be real.

5. Reduce (56) to the form

(56"") @24+ y24c) + 2207 +¢5) =0

Hint: Translate the center of C to the origin, rotate the line joining the
centers to the position of the x-axis, and then use (59).

6. Check all the algebraic manipulations in the text, especially such as
finding ¢; = ¢1 — g7 — f3, ete.

57. Pencils of conics. Just as we have pencils of circles (56),
so we have more generally pencils of conics defined by an equation
of the form.

(60) (@12® + b1y® + c1 + 2 /1y + 2 1z + 2 hazy)
+ Magx® + boy® + c2 + 2 foy + 2 gox + 2 hozy) = 0

We write (60) as C; + \C; = 0 and we call C; = 0 and C; = 0
the fundamental conics of the pencil and N the parameter. Also
we speak of (60) as a one-parameter linear family of conics.

We show now that (60) consists of all the conics through the four
points of intersection of C1 and Co. (By the points of intersection
we may mean finite or infinite points, real or imaginary, distinct
or coincident, according to the way the two fundamental conics
cut each other.) In the first place, any point P’(z’,y’) on the
two conics C; = 0and C; = 0 satisfies the equation C; + ACz = 0
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for every value of \, since the values = z, y = 4’ make C; = 0
and Cp = 0 separately. In the second place, five points uniquely
determine a conic. Hence if we want a particular conic through
the four points of intersection of C; = 0 and Cs = 0 and through a
fifth point P’ (z"’,y’") or subject to some other similar condition,
we can determine A = A"’ (say) so that C; + \/Cy = 0 shall
pass through P”’ or be subject to the other similar condition; then
this conic (which belongs to the pencil) must be the conic we de-
sire (since there is only one such conic satisfying the given con-
ditions).

The parabolas 42> = 4 px form a pencil of conics with equation
(¥2 —4z) +Ny? —82) =0, where p = (1 +2\)/(1 + ) or
A= (1 —p)/(p — 2). The confocal conics given by z%/(a® + \)
+ 32/(% + \) = 1 do not form a pencil of conics since, clearing
this equation of fractions, we find that the parameter A\ appears
to both the first and second degrees.

EXERCISES

1. Check the statements made in the text about y? = 4 pz.

2. Prove that the polars of any point P’ with respect to all the conics of a
given pencil of conics are concurrent lines. Hint: Use (55).

3. Using (53) show that there are in general five types of pencils of conics (not
distinguishing between real and imaginary points, or between finite and in-
finite points). Make up two numerical examples of each such type of pencil.

4. Show that r?/a + y?> = 1 and zy = k can be given as pencils of conics,
and find the relation between A and « or A and k. Describe geometrically
these two pencils.

5. Show that the parabolas 2 = 4 pz must be looked upon as having two
pairs of coincident points of intersection on the z-axis (one pair finite and the
other pair infinite).

6. Prove that in any pencil of conics (60) there are ordinarily two parab-
olas. Hint: A parabola would have (h; + Mig)% — (@1 + Aaz) (b1 + Abg) = 0.

7. Note that there are no parabolasin (zy — 1) +X(zy — 2) =0. (Why?)
Explain this fact geometrically.

8. What must be the condition (or conditions) on ay, ag, by, be, ete., in (60)
in order that the pencil have no parabola? In order that the pencil consist
entirely of parabolas?

9. Under what conditions may (60) have a circle?

10. Make up numerical examples of pencils of conics to illustrate Exs. 8
and 9.

58. Degenerate conics in a pencil of conics. Our discussion of
pencils of conics is nothing more or less than a generalization of
our discussion of pencils of circles. Thus to find the degenerate
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conics of a pencil of conics (60) we equate to zero the discriminant
of the pencil (compare §565) and get

a; + Nag  hy + N g1+ Nge

(61) hy +Ng by + N2 fi+ Nz | =T1 +
g1+ N2 fi+ N2 ¢+ A
a; hi g ay hy gy a; hy go
AN{lhe by fi |+ [Pkt b2 fi |+l b1 fo +
g2 1 a n f2oa g S oc
ay hy ¢ az hy go a; hy g
Milhy by fi|+|h bt fol|l+ |l b folp +
g2 f2 g2 J1 ¢ g1 f2 ¢
Fg)\s =0

where T'; and T’y are the discriminants of the two fundamental
conics C; and Cs, respectively.

Since (61) is a cubic equation in \, there are in general three
degenerate conics in the pencil; but if (61) has a double root there
are only two such degenerate conics; and if (61) is a perfect cube,
only one degenerate conic. Thus for the pencil 22 + A (y% + 2 2)
= 0 we have from (61) the perfect cube —\3 = 0, so there is
only one degenerate conic z2 = 0 in this pencil.

Some of the degenerate conics in (60) may be imaginary. The
cubic (61) may have one or more infinite roots, or two imaginary
roots. Notc that (2y% + 22) + N24*+ 2?24+ 22) =0 has a
degenerate conic 2z = 0, which we interpret as a line-pair Il
where I’ is [,,. (Compare the pencils of circles.)

If the discriminant of the pencil of conics (60) vanishes iden-
tically, all the conics of the pencil are degenerate, and we have
what is called a degenerate pencil of conics. Such a pencil is
22+ 2 = 0.

Geometrically we can often decide what the degenerate conics
of a pencil are, or given the degenerate conics how the conics
of the pencil intersect each other, because a degenerate conic
must pass through all these points of intersection and not cut the
conics elsewhere. For example, if the conics all intersect in four
coincident points, since the pencil must have at least one de-
generate conic (finite or infinite), this must be the common
tangent (taken as a double line).

Such a pencil with only one degenerate conic (a double line)
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is 22 4+ A(y%2 — 4 z) = 0, whose conics intersect in four coincident
points at the origin with the y-axis as tangent and as the sole
degenerate conic (z2 = 0) of the pencil. To interpret the pencil
W?—4x+ 1) + A% — 4z) = 0 we must suppose that A = —1
gives us the line [, as a double line, also that all the conics (which
are all parabolas) in this pencil cut each other in four coincident
infinite points on the z-axis.

The following figures (compare §53) give schematically five
types of pencils of conics (represented only by their fundamental
and degenerate conics) where the points of intersection of the
conics are supposed to be real and finite, and where the degenerate
conics are Il', mm/, nn'.

n n'

m l L
ll
5 l,
l A
m=m=n=n' m=n m'=n'

’ r
I=l=m=m=n=n

I=m/=o

The pencil 22 + A(y? — 4 z) = 0 illustrates the fifth figure. In
the fourth figure the conics intersect in three coincident points
and a fourth point. An cxample of this case is (¥2 + 2z + 2 zy)
4+ N#»? + 22) = 0. lllustrations of the other three cases
in order are (z2/9 + ¥2/16 — 1) + A (2?/16 + y%/9 — 1) = 0,
422 +9y2—4)+\@y?—42—4)=0,and (®*+y%>—22) +
Ay?—2z2)=0.

‘We emphasize the fact that the five figures given above erhaust
all the possibilities where the points of intersection of the conics
in cach pencil are real and finite; but the equations of the pencils
that arc given are merely illustrations and are not typical forms
to which the equations of all such pencils can be reduced by
affine linear transformations on the variables combined with
bilinear transformations on the parameters.
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EXERCISES

1. Go through all the details in the text.

2. Find the points of intersection, the discriminants, and the degenerate
conics of all the illustrative pencils of conics given in the text.

3. Make up more examples of pencils of conics to illustrate the five cases
given geometrically in the text.

4. Describe the following pencils of conics:

(@) ®+2y% +r222+y?) =0

®) 22y +A@z2—y?) =0

() > —42)+ Nz —4y) =0

@) @®42zy) +r@*+2y) =0

59. Transformations on pencils of conics, linear in the variables,
bilinear in the parameter. Just as with pencils of circles, so with
pencils of conies we can change the fundamental conics in any pen-
cil. For instance, the pencil (222 + % — 1) + A (222 + 3% — 2 1)
= 0 can be written (2224 y%> —1) + N (=2z4+1) =0. We
also can find an equation relating N to A/, namely, \ =
N/ +1).

To each new choice of fundamental conics for a pencil there
corresponds (as above) a bilinear transformation (59) of the
parameter (classifying such an equation as A = M’ — 1 as bi-
linear with a =6 =1, 8= —1, vy = 0). Conversely, a bilinear
change of the parameter of a pencil gives us a new set of funda-
mental conics for this pencil. For example, A = A’ — 1 changes
(2 —4z) +N(—22+y> —42) =0 into the really simpler
form 22 4+ N (—x% + 4> — 4z) = 0, both equations giving us
exactly the same pencil of conics, only with different sets of
fundamental conics.

On the other hand, if we perform (13) looked at as an alibi on
the variables of a pencil of conics, we do not get the same pencil
but a new pencil equivalent to the old one under (13). Looked
at as an alias, (13) changes the variables and coefficients of the
pencil of conics (60) but does not change the equation (61) except
to multiply this whole equation by a constant. (Why?)

Finally we shall consider a case of the reduction of a certain set
of degenerate pencils to some standard forms.

Suppose each of the degenerate pencils in question (with equa-
tions C; + ACy = 0) has a double line I. By means of (59)
we can take I as the fundamental conic C; = 0. By (13) we
can reduce the equation of I to the form 2% = 0; then we use (59)
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to rid Cy of the term in 2. Our pencil now is of the form
(60") 24+ NbyP+c+2fy+2gx+2hay) =0

If b # 0in (60"), we can put
S
b

/ h /
T=z, yt tr=y

then drop the primes from the variables, again change X by (59)
so as to rid C of the term in z2, and we obtain

(60’ 224+ Nby2P 4+ +29'z) =0

where ¢’ and ¢’ have values that are probably different from ¢ and
g respectively.
The discriminant of (60”") is

1 0 ¢\
I'=[0 b 0 |=bc\2—0bg'23
gn 0 ¢\

But the pencil is supposed to be degenerate; hence we must have
I'=0, so ¢/ =g =0 (since b 0, by hypothesis). Putting
N = \/b we obtain the typical pencil
22+ Ny2 =0
If b = 0in (60"), we see from its discriminant
I' = N (2fgh — bg? — ch®) + N2(bc — f2) =0

that (since b = 0) we must have f = 0 and also ch?2 = 0. If
¢ =0, h# 0, we put

and (after dropping the primes from the variables* and putting
X = \/g) we get a second typical pencil
224+ 2Nzy =0
Ifb=0,¢=h=0,g0, we put A\ =\/g and get a third
typical pencil
22 +2Nz =0
* In the rest of this discussion we suppose the dropping of the primes from
the variables to be done, without explicitly stating the fact.



128 CONICS AND LINEAR FAMILIES OF CONICS

Ifb=0,c0,h =g = 0, weput A\ = \'/c and get
22+N =0

If =0, h=0, cg %0, we put \ = \'/¢c; then z = 2’/
y =1vy', then N = 7A""/g% and then we multiply the resultir
equation by g% and get the final typical pencil

2+N'Q2z+1)=0

This exhausts all the possible cases of such degenerate penci
(with a double line), and also gives us the typical forms to whic
all such pencils can be reduced by (13) and by (59). Now we wa
to see if the five pencils of conics in the preceding paragraph a
really non-equivalent to each other under (13), i.e., to see wheth
or not there is some transformation (13) that will send one «
these typical pencils into another.

The first pencil has two finite double lines and so cannot |
transformed into one of the others (since each of them has on
one finite double line). The second pencil has no pair of lines
where !’ is l,, and so this pencil must be non-equivalent to ti
next three pencils. The fourth pencil has a double line (give
by M = =) that coincides with l,; hence this pencil cannot 1
transformed into the third or the fifth. If we try to send tl
fifth pencil into the third by (13), we must send z® = 0 in
22 =0 (ie., 2’2 = 0), so we must have in (13) a; = a3 =
a; # 0. But then we see that (13) cannot possibly send 2 z +
= 0 of the fifth pencil into a conic lacking the constant tern
hence these two pencils are non-equivalent.

EXERCISES

1. Check all the details in the text.

2. Reduce to typical forms the degenerate pencils of conics that ha
no double lines, but have at least one real line-pair per pencil. Hint: Tal
C: (in C1 + \C2 = 0) as 2 zy, then put the pencil in the form

22y +Max? + by +c+2fy +29z) =0

Here we must have T = 0. Now consider the cases a 0 (or b =0
a=b=0but f>0 (or g 0), etc. Note that the case of a = 0, b
is reducible to that of a = 0 by the transformation z =y’, y = z’; al
the case of a =b =0, f =0, g 0 is reducible to a =b =0, f =0 L
z =y, y = z2'. Finally test the typical pencils for non-equivalence.
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3. Find the change of parameter corresponding to the choice of z2 + y2 = 0
and 2 z = 0 as new fundamental conics in the pencil

@z +y* —22) + 222 +y* —42) =0
4. Determine the coefficients in (59) so as (a) to rid C of 2% and C; of y2
at the same time in the pencil (z2/9 + y2/16 — 1) + A (22/16 + »2/9 — 1) =0;
(b) to rid C; of y? and C3 of x2; (c) to rid Cy of —1 and C3 of z2.

5. Show that (59) has only three essential constants. In all our uses of
(59) we obtain equations like

oli +ymi =ny, ol +ymy =nj, 8y + fma = ng, 8y + fmy = ny

(Why?) Show that we can make four such changes (using four such equa-
tions) if 71 # 0 (or n; 5 0); also if ng % O (or ng # 0). Otherwise we can
make only three such changes, or only two (if ny = n; = ny = ng = 0).

60. Nets of conics. By a two-parameter linear family of conics
(or net of conics) we mean all the conics given by the equation

(62) NCi+ uCs+ Cz3 = Na@® + by  +c1 + 2fiy + 212
+ 2 hizy) + wlagz® 4 bay® + c2 + 2 foy + 2 gay
+ 2 hoxy) + (ase® + bgy® + s + 2 f3y + 2 g2
+ 2 hzzy) =0

where N and u are arbitrary parameters and the three fundamental
conics C; = 0, C3 = 0, C3 = 0 of the net must not all belong to
the same pencil of conics.

(If three conics do not belong to the same pencil they are said
to be linearly independent, i.e., there is no linear relation connecting
their coefficients, such as az = Aa; + pas, b3 = \b; + ub,, etc.).

To count C; = 0 as belonging to the net (62) we must allow
N to take the value «; similarly to have Cy = 0 in the net we
must take p = o,

All the conics +22/a? + y?/b% = 1 form a net of conics Az2 +
uy? + 1 = 0 with A\ = F1/a? p = F1/b%. This net consists of
all the hyperbolas and ellipses (also circles), real and imaginary,
with centers at the origin and axes on the coordinate axes. Note
that the net has threc double lines 22 = 0, y®> = 0,1 = 0 (a double
line that coincides with [, and is given by A = u = 0). We can
describe this net geometrically as consisting of all the conics that
have a sort of self-polar triangle whose sides are the coordinate
axes and l,. Compare §51.

Again, all the circles that pass through the origin (i.e., with
general equation of the form z2 + 42 + 2 gz + 2fy = 0) form a
net of conics A\(z2 + y?) + 2ux + 2y = 0. This net has (among
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other degenerate conics) a conjugate imaginary line-pair 2 + 32
= 0 and a degenerate pencil of line-pairs like 2z = 0 (given by
A = 0) that have one line coinciding with [.

We remark here that the family of all circles having a given
radius 7’ has an equation of the form (x — \)? + (y — p)? = o2
and so cannot be a net of conics because A and u appear to the
second degree as well as to the first.

We recall that it takes five points to determine a conic. If we
suppose three non-collinear points as given, then the coefficients
of (4) can be expressed linearly in terms of two arbitrary param-
eters, i.e., all the conics through three non-collinear points form
a net of conics. For example, if we want (4) to pass through the
points (0,0), (1,0), (0,1), we must have

=0, a+2g=0, b+2f=0
If we assume a % 0 and divide (4) by a, we get a net of conics
@ —z)+Ny*—y) +2uy =0

where A = b/a, u = h/a. To include in this net the conics with
a = 0 we must permit \ or p to have the value «.

EXERCISES

1. If the three fundamental conics of (62) belong to the same pencil, show
that we must have all the three-rowed determinants of the matrix

ay by a1 1 ;1 b
az by c2 f2 g2 he
a3 by c3 f3 g3 hs

vanish identically, and conversely. The conics are then said to be linearly
dependent. Hint: Every conic (4) of a pencil C; + A\Cs =0 hasa = a; +
Nag, b = by + Nbg, ete. (Why?)

2. Show how the equation y?> = ax + 8 (i.e., all the parabolas having the
z-axis as their axis) can be written as a net of conics with 32 =z, % =
—z + 4, and y* = 41 — 4 as fundamental conics. Find the relations be-
tween \,u and a,8.

3. Find the net of conics through the three points (0,0), (1,1), (1,—1).

61. Cubics associated with a net of conics, the discriminant
and the Jacobian. The values of N\ and u that give degenerate
conics in the net (62) must satisfy the following equation

(63) | Nay + wag 4+ a3 My + pho + kg Ng1 + pge + g3
K= | Ny +phy+hg Noy+pby+bs Mi+wufe+f3 [=0
M1+ uge+93 Mi+wufat+fs N+ ue +c3
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We call K the discriminant of the net. If K = 0 we call (62)
a degenerale net, since every conic it contains is degenerate.
Such a net is 22 + A\y? + 2uzy = 0. We call attention to the
fact that (13) does not affect the equation (63) except to multiply
every coefficient by a constant. (Why?) However (59) does
transform (63) into an equivalent cubic.

If we take another plane = and plot X and u as the coordinates
of points in this plane, we get in this #(A\,x) plane a cubic curve
(63), to each point of which there corresponds a degenerate conic
in the net (62) in the z,y-plane. Conversely, to every degen-
erate conic in (62) there corresponds a point on the cubie curve
(63).

Any line in the = plane has an equation of the form \ = au
+ b(or p = ¢). Substituting such a value for A(or ) in (62), we
see that to this line there corresponds a pencil of conics in the
z,y-plane, namely

(0Cy + C3) + u(Cs + aCy) = 0 for (Cs + cC3) 4+ N\Cy = 0]

Conversely, any pencil of conics in the net (62), except the pen-
cil AC; + uCy = 0, is obtained by putting A = au + b (or u = ¢)
in (62); hence to a pencil in this net there corresponds a line in
the A\,u-plane.

To obtain a pencil of the form A'Cy 4 1'Cs = 0 in the net (62)
we must put X = A, p = p/\’, divide the equation of the
net by A/, then let A’/ — . But then we have A = u = .
Therefore we interpret this pencil as corresponding to the line at
infinity [, in the = plane.

If the cubic (63) is degenerate (composite), to any straight line
forming part of the cubic there corresponds a degenerate pencil of
conics in the net (62), and conversely. If the cubic (63) turns
out to be a quadratic or linear expression or a mere constant, we
interpret this as a degenerate cubic with one component (or two,
or three components, respectively) coinciding with the line I, in
the = plane. Such a cubic is associated with the net 22 4+ \y? + u
= 0, namely, \u = 0.

If the net (62) has a double line we can reduce it by (13) and
(59)toCs =22 =0. Thenbs = c3 = hg = f3 = g3 = 0in (62),
so the cubic curve (63) has no constant term or first-degree terms
in z and y; therefore if this cubic is non-degenerate it must have a
node or cusp at (0,0). See §48. The converse of this theorem
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is not true, as is shown by the net
@ =) +2M+p@?+2y) =0

whose cubic A2 — % + x® = 0has a crunode at (0,0) with tangents
A= *p The net (%% + 2%) + 2 \r + p(@® + 2y) = 0 has the
cubic A\ + u2 4 u® = 0, which has an acnode at (0,0) with
tangents N = =iu. The net 2> + 2\y + u(1 + 2zy) = 0 has
the cubic A2 + u = 0, which has a cusp at (0,0) with tangent
A=0.

Note that if A = 0 is a tangent to the cubic (63) at a point of
inflection (0,0), then solving A = 0 with (63) should give us
u® = 0; i.e., the pencil C3 + uCs = 0 in the net (62) must have
just the one degenerate conic C3 = 0 (given by x* = 0)

The polar of any point P’(z’,y’) with respect to a conic of the
net (62) has the equation

@z’ + by’ + g1) + plagr’ + hoy’ + go)
+ (agz’ + hgy’ + ga)lz + Nz’ + by’ + 1)
+ u(hor’ + boy’ + f2) + (hat’ + b3y’ + f3)ly
+ g1z’ + iy’ + &) + wlgr’ + foy' + )
+ (g5’ + fsy' +¢3)] =0
1 17

For this polar to pass through a given point P''(z"')y""), for every
value of N and u we must have (why?):

(a1’ + hy' + gz’ + (' + by’ + f1)y"”
+ @2 + 1y +a) =0,

(agz’ + hoy' + go)x"’ + (hoz’ + by’ + f2)y"’
+ (922" + foy' + ¢2) = 0,

(agz’ + hgy' + ga)x’" + (haz’ + b3y’ + f3)y"’
+ (g7’ + f3y' +¢3) =0

For these three equations to have a common solution in z'" and
y"’, we must have (dropping the primes from z’ and y)

64) [z +hy+g1 hz+biy+fi g1z + Ny +a
J=\|ax+hy+gs hax+by+fo gox+fay+ec2|=0
ast + hay + g3 hsx + bsy + f3  gax + f3y + ¢3

This equation (64) gives us another cubic curve (this time in
the z,y-plane) associated with the net (62), and such that every
point P’ (z’,3’) on (64) has all its polars with respect to the conics
of the net concurrent. This cubic is called the Jacobian of the
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net (62). Since the three equations from which we obtain (64)
have no A\ or u in them, the transformation (59) must have no
effect at all on (64). On the other hand (13) sends J into an
equivalent cubic. As an illustration of (64), we see that the net
22 4+ 2N + u(22y + 1) = 0 has the Jacobian

z 0 0
01 yi=z(1—-2y)=0
y z 1
EXERCISES
1. Find the Jacobians of all the nets of conics that have been given in

§§60, 61.

2. Interpret as cubic curves u = 0, u2 =0, N2 + 42 —1 = 0.

3. State and prove the converse of the statement made in the text that if
the cubic (63) is degenerate, to any straight line forming part of this cubic
there corresponds a degenerate pencil in the net (62).

4. Prove that if the cubic (63) has a finite cusp P, then the net (62) must
have a double line to correspond to P. Hint: Take P as (0,0) withA =0
as tangent, i.e., in (63) there will be no constant term and no terms in \, g,
M, p2. Now suppose it possible for C3 to have the form zy or z2 4+ y2 or z
and show that there arises a contradiction, but that C3 can be z2 or a constant.
Why can we do all this apparent specializing of (62) and (63) without any
loss of generality in our proof? The case of an infinite cusp on (62) will be
taken care of later.

5. Find and describe the curves in the \,u-plane corresponding to the nets

ME42uy 4+ W24+ 22y£1) =0, M24+2u+ Qazy+1) =0,
22+ 22 4+ @2y +22+2y+1) =0,
2zy + 2@ +22) +u(z®+2y) =0,
2zy +2A2ay +2z) + @+ 2 -1) =0

6. Are there any parabolas or circles in the nets of conics in Ex. 5?

7. Check the cubics given in the text.

8. Find any degenerate pencils of conics in the nets in Ex. 5 and in the
nets in the text.

9. Find the Jacobians of the nets in Ex. 5.

10. Insolid analytic geometry we have what are called quadric surfaces, with

equations of the form

Q=ar® +by® +cz2+d+2fyz+2gex +2hxy +2kz + 2l

+2mz =0
The condition that the quadric be a cone or degenerate is
a h g k
D= kb f 1| _ 0
g f ¢ m
k'l m d
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We have pencils of quadrics and other linear families of quadrics. Associated
with a pencil of quadrics @1 + MQ2 = 0 we have (from D) a fourth-degree
equation in M to give us the degenerate quadrics or cones in the pencil. (Com-
pare pencils of conics.)

Associated with nets of quadrics we have quartic curves in the A\ u-plane.
(Compare nets of conics.) Find the degenerate quadrics or cones in the
pencils

@+yP+22+1)+ra@2—y2—22+1) =0,
2(zy + 22 +y2) + N +y* +22 = 1) =0,
(@ +y2) +2@2 +222) =0
Find the curves in the A\, u-plane associated with the nets of quadrics
@ -+ +2r @yt az+y2) +u@@® —22+2y+2241) =0,
2 + A — 220) + (@ —212y) =0,
2xzy + 22z + u@® +y2—2%) =0

What sort of point on the associated quartic curve corresponds to a double
plane (like 2 = 0) in a net of quadrics; to a pair of planes (like 2zy = 0 or
22 + 42 =0)?

Derive the equation of the Jacobian of a net of quadrics. Find the Jacobi-
ans of the above nets of quadrics.

Show that all the quadrics in space belong to the same nine-parameter linear
family of quadrics. Describe geometrically a pencil of quadrics.

62. Transformations of nets of conics, linear in the variables,
bilinear in the parameters. A change of the fundamental conics
of (62) causes a change of parameters (just as for pencils of conics).
Any new set of fundamental conics C; = 0, C5 = 0, C;= 0 must
belong to the net, so we must have

C] = a1C1 + asCa + a3C3, Cy = B1Cy + B2C2 + BsCs,

Cs = 71C1 + v2C2 + v3Cs

Hence the new form of the net is

NCL+ W C+ G =N(aCi+ - )+ W Bl )

+ (11C1 4+« ) = (N + B’ + 71)C1 + (a2

+ Ban’ + 72)C2 + (s + Bau’ + v3)Cs = 0
This last form must be the original form of the net, therefore we
must have (after dividing the above equation by as\ + Bar’ + v3)

N 48w v aN B+

T ag\ 4 Ban’ + v’ k= as\ + Ban’ + s

The transformation of parameters (65) is called a bilinear* (or
linear fractional) transformation.

* Compare (59) in §56.

(65) A
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To interpret in the Au-plane any new choice of fundamental
conics for the net (62) we must see what (65) means geometrically.
It is easy to see that (65) sends lines into lines, conics into conics,
cubics into cubics. To the line ' = ag\’ + Bsu’ + v3 = 0 there
corresponds the line l,. (Why?) Note that to the point with
N = o, 4/ = 0 there corresponds the point

ety _atn/® o _aptv/® a

#_ —
az® +v3 a3+ ys/® a3’ as +v3/© oz

To the point with A’ = 0, u’ = o« there corresponds the point

Bt/ B _ Bzt 2/ B

“Bitw/e B YT Bt ws/e B

Therefore we say that to the line I, corresponds the line
A I 1 1

l=| ai/ag ag/az 1| =—+

B1/Bs Ba2/Bs 1 a3fs
+ (B — asB1)] = 0

The two lines I and I’ are called the vanishing lines of the trans-
formation (65). We shall see later on that (65) is merely an-
other way of writing what is called the general projective trans-
formation in the plane. Also note that the general affine projective
transformations in the \u-plane are the subgroup of (65) that
have a3 = 83 = 0, v3 # 0. We shall see in the exercises that
(65) preserves cross-ratio.

The transformation (13) does not alter (63), but (65) trans-
forms (63) into what are called projectively equivalent cubics.
From this discussion we see that with every net (62) there are
associated not one but an infinite number of projectively equivalent
cubics in the \u-plane (corresponding to the different possible
choices of the fundamental conies in the net). (Note that the
cubics A2 = p® and N\ = w3 are projectively equivalent cubics,
because the first is reducible to the second by N = 1 N w=u/N)

We see that two nets cannot be reduced to one another by (13)
and (65) unless their cubics (63) are projectively equivalent.
But the converse is not true because two such nets as

2zey +2pr+2y =0 and M2+ w?+1=0
both have the cubic Au = 0; but the second net has double lines

[(a2B3 — a3B2)N + (Biaz — a1Bs)u
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in it (whereas the first net has not) and so cannot be reduced
to the first. The two nets

M2+ P+ 1=0 and M2+ 2px+2y=0

have, respectively, the cubics Au = 0 and A? = 0; hence we see
these nets are not reducible to one another because of their asso-
ciated cubic curves in the Au-plane. The net (x +y — 1)2 +
A2z 4+ 3y)?+ u =0 is reducible to 2’24+ N2+ u =0 by
the transformation x +y — 1 =2/, 22z 4+ 3y = ¢/.

EXERCISES

1. The net % + Ay? + u(z? + 1) = 0 has K = A(u + 1). Explain why
K is apparently not a cubic. Find all the degenerate conics in this net.

2. Prove that (65) preserves cross-ratio. Hint: Take X\ = au + b.
Suppose this ine goes to u” = 0. Put u’ = 0 in (65). Take the cross-ratio
(A4 — A1)/ (A2 — A1) - (A2 — A3)/(Ay — A3) of four points on A = au + b.
Why is there no loss of generality in this proof?

3. Explain exactly what is meant i the text by the statement about an
infinite number of cubies.

4. Are any of the nets in Ex. 5 of §61 reducible to one another?

5. In the nets Ax* + py? + (3 = 0 and Az? + 2ury + ('3 = 0 deter-
mine the coefficients of ("3 so that we have the discrimmant K = 0; then re-
duce these nets to their simplest forms by (13) and (65).

6. Show that the discriminant T' of any double line (4) has all its first
minors zero. State the converse and prove it.

7. Show that if in the discriminant I' of (4) we haveab — h%? = ac — g% =
be — f2 = 0, then I' = 0 and ail 1ts first minors vanish.

8. What is the converse of the statement that if a net has a double line,
its cubic in the A\ u-plane has a node or a cusp corresponding to this double line?
Is this converse true? Why or why not?

9. We can write the net Az> + wy®> +1 =0 as N(z2 492 +1) +
B2z —y) +1=0o0r as N(—2+1) +u'(—y*+ 1)+ @+ =0.
Use (65) to put the net into these two forms. Find in two ways the new
cubies in the A\ u-plane that we get for the net by choosing these new sets of
fundamental conics.

10. What do the transformations N =N — p’ +2, u =N + 24’ and
AN=2), p=3u" —1 do to the fundamental conics of the net 2 Ary 4+
2 px + 2y = 0 and to its cubic in the A\ u-plane?

63. Three-and-four-parameter linear families of conics. Be-
sides pencils and nets of conics we have three-and-four-parameter
linear families of conics. If we look upon the coefficients of (4)
as arbitrary parameters we sec that all the conics in the plane
belong to the same five-parameter linear family of conics with an
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equation that can be written
24+ N2+ u+2w+2pr+ 20y =0

The family of all the circles in the plane has three arbitrary
constants g, f, and ¢, and so forms a three-parameter linear family
of conices

P+ +20m+2mw+r=0

Geometrically, the family of all the circles can be described as
consisting of all the conics passing through two given points
(the two circular points at infinity I; and I5).

All the conics through one point form a four-parameter linear
family of conics; all the conies through two points form a three-
parameter family. Instead of having the conies pass through
given points we might put any other sort of linear conditions upon
the coefficients of (4) and obtain linear families of conics. For
instance, all the conics that have the origin as center belong to
the three-parameter linear family

224+ N2+ 2uy +v=0

It is in general difficult to describe geometrically nets and three-
and four-parameter families of conics. Later on we shall discuss
a property called apolarity and use it for this purpose.

Let us finally consider the family of conies that are all tangent
to the r-axis at the origin. In (4) we have a 20, c =g = 0,
because y = 0 when solved simultaneously with (4) must give
22 = 0. Dividing (4) by a and replacing arbitrary coefficients by
parameters we get

22+ N2+ 2uy + 20y =0

which is a three-parameter linear family of conics with disecriminant
42 There is a pencil of circles in this family given by X = 1,» = 0;
all the parabolas in the family are given by »> — A = 0 and so do
not form a linear family. There are two degenerate nets in the
family (and these nets contain all the degenerate conics of the

family), namely
22+ M2+ 2y =0 and y2+2u'y+2V2y=0

To obtain the latter net from the family we must put u = ',
v = '\, divide the equation of the family by X, then let A — «.
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EXERCISES

1. If 224+ 2Ny +2ury +» =0 is written C; + NCg + uC3 + vCy = 0,
what sort of conic is C4 = 0?

2. Show that all the parabolas in & plane do not form a linear family of
conics. Hint: I' 0, h? —ab =0 in (4) give the parabolas.

3. Prove that 2 + Ay? + 2 ury + » = 0 does actually give all the conics
in the plane with center at the origin. Hint: Use the formula for the center
of a conic, or else put on the condition that (0,0) is the pole of I,

4. Find the discriminants and degenerate conics in the families in the text.

5. Find the family of all degenerate conics that have the y-axis as one
component.

6. Iind the family of conics (a) tangent to the y-axis at the origin; (b)
tangent to z = 0 at (0,1).

7. Find the circles, parabolas, hyperbolas, and ellipses in the families of
conics in the text.

8. Find the family of conics tangent to x = 0 at (0,1) and tangent to y = 0
at (1,0).

9. Find the discriminants, degenerate conics, circles, and parabolas for the
families

22+ N+ 2ury +0v(1 =22 —2y) =0,
2zy +2 2 +2py + @2+ Y2 —-1) =0



PART 11

INTRODUCTION TO GENERAL PLANE ANALYTIC
PROJECTIVE GEOMETRY

CHAPTER IX
INTRODUCTION TO THE TRIANGLE OF REFERENCE

64. Rectangular and oblique axes from a new viewpoint. In
this section we shall set up a system of coordinates for points in a
plane referred to rectangular (or oblique) axes. We shall do
this in such a way as to avoid all ideas of measure of distance or of
angle, and yet arrive at the same coordinates for the points as we
should get by the ordinary methods of elementary analytic gecome-
try. Our purpose is to have at hand a construction for the coordi-
nates of points that will generalize to the so-called triangle of
reference. (See §70.)

Consider the following pair of rectangular (or oblique) axes
XxX'ox,Y'oy.

A

>

l/ 4/

[
[N
s

Take two arbitrary points on X’0X and Y’OY and call them
(1,0) and (0,1), respectively. Through (1,0) draw a line [ parallel
to Y’OY and through (0,1) draw a line m parallel to X’0X, label
the point of intersection of I and m (1,1). Join (1,0) and (0,1)
by a line n. Through (1,1) draw a line »n’ parallel to n, meeting
X’0X in a point we call (2,0) and meeting Y’OY in a point we call

139
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(0,2). Through (2,0) draw I’ parallel to I, through (0,2) draw
m' parallel to m, call the point I'm"* (2,2), call the point I'm (2,1).
Through (2,1) draw n'’ parallel to n, meeting X’0X in a point
we call (3,0) and meeting Y'OY in a point we call (0,3). In this
way we can continue our constructions and determine all the
points on X’0X and Y’OY and in the first quadrant whose coordi-
nates are positive integers.

We extend our construction into the other quadrants in the fol-
lowing manner. Through O take a line n, parallel to n and meet-
ing lin a point (1,—1) and meeting m in a point (—1,1). Through
(1,—1) draw my parallel to X’0X and meeting OY’ in (0,—1).
Through (—1,1) draw [; parallel to Y’OY and meeting OX’ in
(—1,0). Then l; and m; intersect in (—1,—1). Now we can
proceed to get all the points on the axes and in the whole plane
whose coordinates are, both of them, integers (positive or negative,
counting zero as an integer).

Note that, instead of taking (0,1) and (1,0) both arbitrarily,
we might have taken an arbitrary point that is not on X’0X or
Y'0Y for (1,1) and then constructed (0,1) and (1,0) by lines through
(1,1) parallel to the axes. Note that the point (—1,0) can be
determined either as the point of intersection of I; and OX’ or as
the point of intersection of 0X’ and a line ny through (0,—1) and
parallel to n; but in cither case we get the same point for (—1,0),
because of certain well-known properties of parallels included
between parallels. (Explain fully the last statement.)

To construct points with fractional coordinates we proceed as in
the following figure:

Y ¥
5) m

4) (1,5)'\-(%,4) m

3) Lm
2) ls| # A

o 1)

0L @) G0 @o o0 aw %y @y X

* Note that since we call the line joining two points P and P’ the line PP’,
so we shall (dually) call the point of intersection of two lines ! and m the
point lm. Compare §22.
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Suppose we desire to construct the point (£,0). We assume the
points (1,0), (2,0), 0,1), (0,2), (0,3), (0,4), (0,5) to be con-
structed. Through (1,0) and (2,0) we draw I and I’ parallel to
Y'0Y; through (0,4) and (0,5) we draw m and m’ parallel to
X'0X; m' then meets lin (1,5). Join (1,5) and (2,0) by the line
r cutting m at (§,4). Finally the line s through (&,4) parallel to
Y’0Y cuts OX at (£,0).

More generally the point (u/v,0) can be obtained as follows.
Suppose u is prime to v and p is the next integer smaller than
u/v, so that u/v = p +t/v. Through the points (p,0) and
(p + 1,0) draw I and !’ parallel to Y'OY and, also, through
(0,0 — t) and (0,v) draw m and m/ parallel to X’0X; then m’ cuts [
in (pp). Join (pw) to (p + 1,0) by r cutting m in (u/v,v — t).
Through (u/vyy — ) draw s parallel to Y'OY cutting OX in
(w/v,0).

The points with irrational coordinates can be obtained as the
limiting points of sequences of points with rational coordinates.
Thus (V2,0) is the limiting point of the sequence (1,0), (2,0),
(1.4,0), (1.5,0), (1.41,0), (1.42,0), (1.414,0), (1.415,0), etc.
Roughly speaking, this means that by the above method we can
obtain a rational point as close as we please to the irrational point

(V2,0) whose existence we postulate.

EXERCISES
(Use both rectangular and oblique axes)

1. Prove that the points (2,0), (3,0), (§,0), (x/5,0), (p,0), (—1,0), (0,2),
etc., are the same as those obtained by the methods of elementary analytic
geometry; i.e., prove that the segments from (1,0) to (2,0), from (2,0) to (3,0),
etc., in the above construction are equal in length, also that the point (£,0) is
actually one-fifth the distance from (1,0) to (2,0), etc. Hmt: Use plane
geometry and equal triangles, or parallels between parallels.

2. Generalize the construction in the text and show how to find the
points (p,0) and (0,p) where p is any positive integer. Hint: Use (p—1,0),
(0,]) - l)y (lyp - l)y (p - 1,1).

3. Construct the points (—4%,0), (£,%), (—6,—3) starting from (1,0) and
0,1).

4. Construct the point (—2,—2) given: (a) (1,0) to the left of 0 and (0,1)
below 0; (b) (1,1) in the second quadrant; (c) (1,1) in the fourth quadrant.

65. The line at infinity and the axes of reference. We shall
now reword our discussion of axes of reference in §64 so as to fit
in with our concept of the line at infinity l,. (Compare §49.)
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We draw a schematic figure (for rectangular axes only) of these
axes and l,, where parallel lines are represented as being solid
and parallel for a distance, then broken off and dotted for a
distance to indicate the omission of the rest of these lines, then
drawn converging to a point on l,. We choose arbitrary points

on X'0X and Y’0Y for the so-called unit points* (1,0) and (0,1),
respectively. Then we join (1,0) to Y, (the point of intersection
of Y’OY and l,) by a line I and join (0,1) to X, (X'0X, l,) by a
line m, the lines [ and m intersecting in (1,1). (Note how we use
the phrase join (1,0) to Y, by a line | as meaning draw a line
through (1,0) parallel to Y'OY; also how we abbreviate to
X (X'0X, 1,) the phrase “ X, which is the point of intersection
of X’0X and 1,.”) The line n joining (0,1) and (1,0) cuts [,
at P,. We join (1,1) to P, by a line n’ that cuts Y’OY in (0,2)
and cuts X’0X in (2,0). Thus we see that the axes of reference
and the line I, form a sort of triangle. (Compare §70.)

In fact, if we take these axes and any linel = z/a + y/b — 1 =0
where ab # 0, then let this line move out beyond all finite bounds
in such a way that the intercepts a and b become immeasurably
great (this is written algebraically a — « and b — ), our assump-
tion of the existence of l, compels us to conclude that I must
approach the position I, (since the two intercepts of I approach
X, and Y,).

We take such a line [ and the axes of reference in the following
figure and draw points that we label (1,0), (2,0), (2,2), etc.
We note that as I — I, the points (1,0), (2,0) (2,2), etc., in this

* From now on we shall often refer to these points and (1,1) as the unit
points.



THE LINE AT INFINITY AND THE AXES OF REFERENCE 143

figure approach the positions of (1,0), (2,0), 2,2), etc., as con-
structedin §64.

We have no reason to suppose offhand that such a line in the
above figure as »n’’ will pass through the three previously con-
structed points Pj, (2,1), (1,2) if it passes through two of them,
or that ny, which joins P; to (0,—1), will cut X’0X in the same
point (—1,0) as the line I;, which joins ¥; to (—1,1), cuts X'0X.
Our next three sections not only contain material valuable in itself
but also lead up to the proofs of the collinearity of such points as
(1,2), (2,1), Py or (0,—1), (—1,0), P;.. (Note that there are no
dotted lines in the second figure in the text because this figure
represents a genuine triangle and is not schematic like the first
figure.)

In §64 we saw that the correspondingly designated points were
collinear because of certain properties of parallel lines, but there
are no parallel lines in the above second figure. This figure is
essentially what we shall study in §70 under the name of a tri-
angle of reference.

EXERCISES

1. Draw the first figure in the text, only with (0,1) below O but (1,0) and
e, where they are in the text.

2. Draw oblique axes and [, as we drew rectangular axes and in the text.

3. Reword the constructions in the text of §64 for the points (—1,0),
0,-1), (—=1,-1), (£,0), (p,0), (u/2,0), using the concept of [, as was done in
the above text for the points (0,2) and (2,0).

4. Draw an oblique triangle 0X;Y; and locate the points (0,1), (0,2),
(0,3), etc., as in the last paragraph of the text; then move I(X;Y;) much
further out (keeping OX and OY fixed) and, using the same (0,1) and (1,0),
relocate the points (0,2), (0,3), etc.
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5. Draw a figure like the last one in the text, only with (1,0) to the left of
0, but with (0,1) and ! the same as before.

6. Show that the points (0,p) and (p,0) never reach Y,; and X, respec-
tively, in the last figure of the text, no matter how large a (fimte) value
we give to p.

66. Desargues’ theorem on perspective triangles. Before tak-
ing up the so-called triangle of reference we must establish several
lemmas and introduce some new concepts. The necessity for
these lemmas was discussed in the last paragraph of §65.

DeriniTioN. Two triangles ABC and A’B’C’ are said to be
perspective from a point P (called the center of perspectivity) if the
pairs of corresponding vertices A and A’, B and B’, C and C’ are
collinear with P.

DeriNITION. Two triangles abc and a’b’c’ are said to be per-
spective from a line p (called the axis of perspectivity) if the pairs
of corresponding sides a and a’, b and b’, ¢ and ¢’ are concurrent
in points on p.

Note that if the two pairs of triangles are in the same plane these
two definitions are the plane duals of each other. (See §22.)

We shall now prove the following theorem (due to Desargues).

TuEOREM. If two triangles are perspective from a center they are
also perspective from an azxis.

We shall suppose the two triangles to lie in the same plane,
leaving the other cases (also the converse of this theorem) for the
exercises. Let us consider the following figure.
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In the figure on page 144 we take two triangles ABC and A’B’C’ (in
the same plane) perspective from the center P; we are to prove they
are perspective from an axis p. Through P we draw any line not
in the plane of the triangles and on this line we take two arbi-
trary points O and O’ (neither point at P). We join OA, OB,
OC and 0'A’, O'B’, 0'C’. Since OA and 0’A’ lie in the same
plane (determined by OP and AP), they meet in a point A"/
(finite or infinite). Similarly, OB and O’B’ meet in B”’, and OC
and O’C" meet in C"'.

Consider the triangle A”’B"’C’’ with sides a’’, b"", ¢’".  Since a’’
and a are in the same plane (determined by OB and OC), they are
concurrent. Similarly, b’/ and b are concurrent, also ¢’’ and ec.
But these pairs of lines must meet in points on the line p that is
common to the plane of ABC (and A’B’C’) and the plane of
A”B"'C"”. Alsoa’ and a’ are concurrent on p, likewise b’’ and
b, ¢ and ¢’. Buta’’ meets p in the point L,, so a’’ must meet
both a and @ at L, (hence @ and a’ meet at L,). In the same way
b’ meets both b and b” at Ly, ¢/’ meets both ¢ and ¢’ at L,. There-
fore we see that a and a’, b and b’, ¢ and ¢’ are concurrent in pairs
at points on p (i.e., the two given triangles are perspective from
the axis p).

EXERCISES

1. Draw several cases of Desargues’ theorem: (a) where P is at infinity;
(b) where p is at infinity; (c) where a (but not b or ¢) is at infinity.

2. Draw the complete figure in the text, only with O on one side of P and O’
on the other.

3. State and prove the plane dual of Desargues’ theorem. (See §22.)

4. Prove Desargues’ theorem when the two triangles are not in the same
plane, first where their two planes are parallel, second where their two planes
intersect in finite points. Hint: These cases are incidentally disposed of in
the text.

5. State and prove the converse of Desargues’ theorem when the two tri-
angles are not in the same plane, first when their two planes are parallel and
second when their two planes intersect in finite points.

6. State and prove Desargues’ theorem for any two complete quadri-
laterals. (For definition see §28.) Hint: Split the quadrilaterals up into
triangles.

67. Complete quadrangles and complete quadrilaterals. In
projective geometry we make much use of two plane figures that
are generalizations of the quadrilateral of plane geometry. First,
suppose this quadrilateral to be looked upon as having only four
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vertices Py, Py, P3, P4 (see the adjoining figure), but six sides
(the four sides we studied in plane geometry plus the two diag-
onals); then we call the
figure a complete quadrangle.
(Compare §26.)

The points of intersection
of the pairs of opposite sides
of this complete quadrangle
we call diagonal points, and
the triangle of which these
points are vertices we call
the diagonal triangle of the
complete quadrangle.

Next we look upon the quadrilateral of plane geometry as hav-
ing only four sides pi, p2, P3, psa (see the figure below) but six
vertices (the four vertices we considered in plane geometry plus
the two points of intersection of the pairs of opposite sides), and
we call this figure a complete quadrilateral.

The lines joining pairs of opposite vertices of the complete
quadrilateral we call diagonal lines, and the triangle of which
these lines are the sides we call the diagonal triangle of the complete
quadrilateral.
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The complete quadrilateral may have two of its opposite sides
cross each other between the other pair of opposite sides, or may have
a re-entrant angle, whereas these types of quadrilaterals were not
considered in plane geometry. (See the preceding figure.)

Note that the complete quadrangle and complete quadrilateral
(if they are in the same plane) are each the plane dual of the other.
Note also that no three of the vertices (sides) of the complete quad-
rangle (quadrilateral) can be collinear (concurrent).

Since we are using the concept of [, the complete quadrangle or
quadrilateral may have two sides parallel, or one or two vertices
on l,, or a vertex (or side) of its diagonal triangle on l,. An
important example of a complete quadrangle is the one whose
vertices are (1,0), (0,1), (—=1,0), (0,—1). (See §64.) Similarly,
we have the complete quadrilateral whose sides are the lines join-
ing (110) to (0;]>; (0;1) to (_1)0): (_110) to (0:'—1)> and (Ox—l)
to (1,0) with equations

z+y—1=0 —-r+y—-1=0, z+y+1=0,
z—y+1=0

EXERCISES

1. Find the sides (vertices), diagonal points (lines), of the complete quad-
rangle (quadrilateral) mentioned 1n the last sentence of the text. Find the
equation of any finite* line and the coordinates of any finite point.

2. Do asin Ex. 1 for the complete quadrangle (quadrilateral) made up from
the quadrilateral whose vertices are (1,1), (-1,1), (—1,-1), (1,~1).

3. Given four points (a1,b1), (as,b2), (asbs), (as,bs) as the vertices of a
complete quadrangle. Find the equations of its sides and of the sides of its
diagonal triangle; find the vertices of its diagonal triangle. Hint: Use
determinants to find the equations of any flines.

4. Given four lines a,r + b,y — 1 = 0, where { = 1,2,3,4. Work the dual
of Ex. 3.

5. Draw figures to illustrate the special cases of complete quadrangles
(quadrilaterals) mentioned in the last paragraph of the text.

6. How is l, peculiarly situated with respect to the complete quadrangle
with vertices (1,0), (0,1), (—1,0), (0,—1)? Compare §26.

7. How is l, peeuliarly situated with respect to the complete quadrilateral
with sides +z =y — 1 = 0?

8. Do asin Ex. 1 for the complete quadrangle (quadrilateral) made up from
the quadrilateral (0,2), (z,0), 0,—%), (—%,0), wherei = vV —1.

* By finite line we do not mean a finite segment but an ordinary line as dis-
tinguished from [,
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68. Quadrangular sets of points (lines); harmonic sets.
DeFINITION. Any line I (not a side of a given complete quad-
rangle) will cut the sides of this quadrangle in six or five or four
collinear points, which are said to form a quadrangular set of points
on l.

If I contains two diagonal points of the quadrangle (i.e., if I
is a side of the diagonal triangle), this set of points (now four in
number) is called a harmonic set. Comparc §§26, 67; also the
position of I, in Ex. 6 of §67.

DEerFiNiTION.  Similarly (and dually), any point P (not a vertex
of a given complete quadrilateral) will form with the vertices of
this quadrilateral a set of six or five or four concurrent lines which
are said to form a quadrangular set of lines at P.

If P is the point of intersection of two diagonal lines of the
quadrilaterial (i.e., if P is a vertex of the diagonal triangle), this
set of lines (now four in number) is called a harmonic set. Com-
pare §28.

Note that in these previous sections all the points and lines were
supposed to be finite, whereas now the infinite line I, (or a point
or points on l,) may figure in our quadrangular sets of points (or
lines). Thus in the above definitions of quadrangular sets of
points and lines either [ or P may be on [,,* or one of the points
on I may be on l,; also the given complete quadrangle (or quadri-
lateral) may have one or more of its elements (points and lines)
on l.

Note also the proof given in §28 that the projection from a point
P of a harmonic set of points on a line p is a harmonic set of lines
concurrent at P. This proof is valid also in the present connec-
tion, if we extend our notions of points and lines to include I, and
its points.

The figures drawn below show the different types of quadrangular
sets of points (lines) for I (or P), real and finite, and the points
(lines) of the complete quadrangles (quadrilaterals) as well as of
the quadrangular sets, all real and finite. (Note that our defini-
tions apply equally well to imaginary points and lines as to real.)
(See §36.)

Note that we can consider a quadrangular set of points as cut
on the line ! by three lines through any one vertex of the complete
quadrangle (say P3) and by the sides of the triangle formed by the

* This is sometimes described as being at infinity in the plane.
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three other vertices of the complete quadrangle (say P;, P, Py).
We shall call the first set of three points on [ a point triple and the
second set a triangle triple. The quadrangular set of points on [
can be looked at in four ways as made up of a point triple and a
triangle triple, because there are four vertices (P, Ps, P3, P4)
that can be chosen in turn to determine a point triple on I. Note
that if the quadrangular set B, Ry, R3, R4, Rs, Rg is a harmonic
set, such that R = Ry = R, and R’ = Ry = Rj, then the four
possible point triples reduce to two (RR3R’ and RR'Rg), whereas
the triangle triples are respectively RR'Rg and RRsR’.

EXERCISES

1. Dualize to the case of a quadrangular set of lines the ideas of point triple
and triangle triple.

2. In §28, where a harmonic set of points is shown to be projected from a
point by a harmonic set of lines, what is peculiar about the three lines that
project a point triple?

3. Find the quadrangular set of points cut upon the line z + y = 1 by the
complete quadrangle with vertices (0,2), (¢,0), (0,—1), (—¢,0).

4. Find the quadrangular set of points determined on y = 0 by the com-
plete quadrangle (0,2), (—2,+1), (0,—2), (—2,—1).

5. Find the quadrangular set of lines determined at (0,0) by the complete
quadrilateral

z+y—1=0 2—-y—-1=0, —z4+y—-1=0, z4+y+1=0
then the quadrangular set determined by the complete quadrilateral
y=iwxz+1, y=—iz+1, y=2z—1, =-2r—1

69. The fundamental theorem for quadrangular sets of points.
Now we shall prove the fundamental theorem for quadrangular
sets of points, namely:

THEOREM. (Mven any quadrangular set of points on a line 1
lettered Ry, Rs, R3, R4, R5, Re (where one or two pairs of these points
may be pairs of coincident points) such that Ry, Re, R3 form a point
triple and R4, R5, Rg a triangle triple (relative of course to some given
complete quadrangle that determines this quadrangular set on ).
If five of the sides of any other complete quadrangle cut | in any five
of these six points so that again we have R,, Ry, R3 a point triple, eic.,
relative to this new quadrangle, then the sixth side of this second com-
plete quadrangle will pass through the sixth point of the given quad-
rangular set.
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Proor: Consider the figure below:

We suppose that the quadrangular set is formed by Py, Py, P3, P,
(as in the figure) and that P}, P}, P}, P, has its sides passing
through the points Ry, Rz, B3, R4, Rs in such a way that P; P} goes
through R4, P{Pj through R, P,Pj through R;, P,P} through
R3, PP, through Rs. To prove that P,P} passes through Rg.
The two triangles P;PyP; and P} P,P} are perspective from the
axis I; hence they are perspective from a center O (not drawn in
the figure) by the converse (and plane dual) of Desargues’ theorem.
Also PP4P3 and P{P,P} arc perspective from the same axis ;
hence they are perspective from a center O’ (not drawn). But O
and O’ can both be determined as theintersection of PP} and P3Pj;
therefore O = O’. Therefore the triangles P, P,P, and P|P,P, are
perspective from a center O, so they are perspective from an axis;
but this axis must be I, since P; P4 and Py P} intersect in R5 whereas
PP, and P} P; intersect in R4 (and R4 and R5 determinel). From
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this we conclude that PyP4 and P3P} must intersect on I, so PP,

passes through Rg.
Q.E.D.

In the above proof the two complete quadrangles must be so
placed as to determine the same point triple R;, Rs, R3 and the
same triangle triple; otherwise the above proof breaks down.
A carefully drawn figure will convince the student that the theorem
is still true even if Ry, By, Ry is a point triple with respect to the
complete quadrangle Py, Pg, Ps, P4 but a triangle triple with respect
to P}, Py, P§, Py. However, the proof of this last fact must wait
until much later. See §121.

We call attention to the fact that in drawing a complete quad-
rangle P}, P}, P}, P} that will intersect [ in the given quadrangular
set of points Ry, Ry, R3, R4, R5, B¢ we can take Pj as an arbitrary
point not on 1, join P§ to Ry, Ry, and R3, then on the line R3P% pick
an arbitrary point distinct from Rz and Pj for the point P}; but
from here on the rest of the complete quadrangle is uniquely deter-
mined. Another way to determine P}, Py, P§, P} is to pick three
arbitrary lines for BR3Py, R Py, and RsP), and from these construct
the rest of the sides and vertices. A third way is to pick an
arbitrary line meeting [ in a point on a corresponding side of the
first quadrangle and a point not on this line as a vertex.

EXERCISES

1. Why is there no loss of generality in the proof in the text due to choos-
ing Ri, Ry, R3 as a point triple and Rs as the point in dispute?

2. Dualize the last paragraph of the text.

3. Describe two other arbitrary ways of selecting a complete quadrangle
Py, Py, Py, P},

4. Draw figures for the proof in the text for the cases where I passes
through one or two diagonal points of the complete quadrangle and for the
cases where R is or is not a diagonal point.

5. Find analytically another complete quadrangle that will give the same
quadrangular set of points as the set in Ex. 3 of §68; as the set in Ex. 4 of §68.

6. Find analytically another complete quadrilateral that will give the same
quadrangular set of lines as each of the sets in Ex. 5 of §68.

7. Draw the figure in the text showing the center 0.

8. If (—1,0), (0,0), (1,0), (2,0), (3,0) form five points of a quadrangular
set with the first three points a point triple, find the sixth point of this set.
Is this sixth point unique? Hint: Choose a complete quadrangle.

9. Draw a figure for the theorem in the text (a) where ! is l; (b) where
Rg is on l; (c) where R4 is on [,
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10. Suppose Rz, R3, R4, Rs, R in the figure of the text are given as points
of intersection with [ of the sides of the two complete quadrangles. Prove
that the quadrangles intersect also in E;.

11. Show why the proof in the text breaks down if a pont triple with
respect to the first complete quadrangle is a triangle triple for the second.

12. Given the five points of a quadrangular set (—3,0), (0,0), (¢,0), (—1,0),
(1,0), where the first three points form a triangle triple, find the sixth point of
this set.

13. State and prove the corresponding (dual) theorem about quadrangular
sets of lines, drawing figures to illustrate the three special cases similar (and
dual) to those given in the text of §68 for quadrangular sets of points. Hint:
If the point L is the dual of the line / in the text, then any two complete
quadrilaterals determining five of the six lines of the set at /. must be per-
spective from L. Why?

70. The triangle of reference. We are now in a position to
consider a coordinate system where the coordinates are referred to
what is called a triangle of reference. In §65 we showed that
by using l, we have for oblique or rectangular axes a sort of
triangle of reference. But in this section we shall consider as
a triangle of reference one all of whose sides (vertices) are lines
(points) that lie in the finite part of the plane, i.c., are finite lines
(points).

The constructions now given for finding the coordinates of
points (and for locating points) referred to this triangle will be
seen to be generalizations of those given in §65. By means of
§§66, 67, 68, 69 we can show that the necessary lines are con-
current so as to make every point have a unique set of coordinates
referred to this triangle of reference. (Compare the second
figure in the text of §65 and the discussion there.) Consider the
figures on page 154.

We have lettered these figures so that the discussion in §65 ap-
plies equally well here if we replace the name [, by the line XY .;
hence we shall not repeat here the deseription of how to obtain the
points (2,0), (0,2), (—1,—1), (£,0), cte. We note, however, that
the first triangle in §65 is purely schematic, whereas the present tri-
angles are not schematic at all (for instance, the lines through
Y, are not supposed to be parallel lines as in §65). These
triangles are like the last triangle in §65. The sides of a triangle
of reference are, of course, extended beyond the vertices.

In the second figure we obtain (—1,0) as the point of intersection
of the line joining Y, and (—1,1) with the line 0X,. But the
line through P, and (0,—1) should pass through (—1,0) if the
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determination of the point (—1,0) is to be unique. (Similarly
we must have the determination of other points unique, and so the
line joining (1,2) and (2,1) must pass through P, etc. This can
all be shown in the following manner.)

The complete quadrangle with vertices P,, Y., (—1,1), (0,1)
determines on OX, the harmonic set of points (—1,0), (0,0),
(1,0), X,. The complete quadrangle with vertices P, Y,
(1,—1), (0,—1) has its sides (by construction) passing through
all the points of this harmonic set except that we must prove that
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the line joining P, to (0,—1) passes through (—1,0). Note that
in the given harmonic set (0,0) and X, each counts as a pair of
coincident points; also for each of these two complete quadrangles
X, (1,0), (0,0) form a point triple, determined for one quad-
rangle by the vertex (0,1) and for the other quadrangle by (1,—1).
Therefore the fundamental theorem on quadrangular sets applies
here, and we see that the three points P,, (0,—1), and (—1,0)
are collinear.
Q.E.D.

EXERCISES

1. Prove that (0,0), (1,1), (2,2), ... (n,n), where n is any positive or nega-
tive real number, are collinear. Hint: Use the fundamental theorem for
quadrangular sets of points on the complete quadrangles with vertices (0,1),
(0,0), (1,0), (1,1) and (0,2), (0,0), (2,0), (2,2), cte. First it must be shown
that the line joining (n,0) and (0,n) passes through P, if n is a fraction or
an irrational number.

2. Prove that the line joining (1,2) and (2,1) passes through P ... ; the
line joining (1,p) and (p,1) passes through P, (where p is any positive or
negative number).

3. Prove that the points (0,0), (2,1), (4,2), (6,3), ... are collinear; also
that the points (0,0), (p,1), (2 p,2), (3 p,3), . .. are collinear (where p is any
positive or negative real number).

4. Show how the uniqueness of the determination of (—1,0) and similarly
of other points referred to axes of reference (as in §65) is disposed of.

5. Draw the following points referred to a triangle of reference (—3,0),
(13',0). (3) _1)

6. Draw a triangle of reference (a) with (1,0) to the left of O; (b) with (0,1)
below O and (1,0) to the left of O. Determine in each instance the points
(2,0) and (—1,0). In these instances and in the instance in the text label the
quadrants (or what are called the triangular regions of the plane with respect
to the triangle of reference), i.e., mark the regions of the plane I where for
each point both x and y are positive, IT where z is negative and y is positive,
IIT where both r and y are negative, IV where z is positive and y is negative.

7. Show that choosing the point (1,1) arbitrarily (but not on a side of the
triangle of reference) is equivalent to choosing both (0,1) and (1,0) arbitrarily.
Show cases where (1,1) is to the right of XY, to the left of OY 4, below
0X , and in other positions. (Compare §65.) Mark the quadrants for each
case.

8. Show that X, and Y, also any other point on the side XY », cannot
have both coordinates finite (by the construction given in the text).

9. In a given triangle of reference (a) take (0,1) midway between O and
Y ; (b) take (0,1) nearer to Y, than to O. In each case find the points
(0,2), (0,—1),and (0,—2). Treat in a similar manner the point (1,0) for two
triangles of reference as above with (0,1). How do harmonic sets and parallel
lines enter into this example? Compare §§25, 26.
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71. A note on bilinear (or linear fractional) transformations.
In §§56, 62 we had our first introduction to bilinear (or linear
fractional) transformations of the parameters X\ and u of a net of
conics (or A of a pencil of conics). The equations (65) gave us
the general bilinear transformation in the \,u-plane.

In this section we shall consider briefly bilinear transformations
of the coordinates 2 and y of points in the z,y-plane, given by the
equations

" ar’ + by’ + e asr’ + bay’ + ¢y
(bb) x = 7 7 y Y= 7 7 )

azx’ + bsy’ + c3 agx’ + by’ + c3

(03] b] C1 a bl €1

where A=|ay; by ¢y |#0,withM=|a, by cs

ag b3 C3 ag b3 C3

defined as the matrix* of (66).
If A = 0 for (66), any line az + by + ¢ = 0 gocs into a line

a(ma’ + by’ + ¢1) + blagx” + byy’ + ¢2)
+ c(aze’ + bgy’ + ¢3) =0

But this last line for every value of a, b, and ¢ passes through the
point of intersection of the three lines

arr’ +byy +¢ =0, agx’ +byy +c2 =0, aszt’ +bgy’ 4 c3=0

(These last three lines intersect in a point, because A = 0.) In
this case (66) is said to be a singular transformation. Hence we
suppose A # (.

We are introducing bilinear transformations at this juncture in
order to use them in changing from a triangle of reference to axes
of reference (or from axes to a triangle).

Solving (66) for z’ and 3’ in terms of z and y, we get

_ (bocs — baca)x — (bicz — bscr)y + (bicz — byer)

66' ’ —
(667 = (agbs — agba)z — (aibs — asby)y + (aibs — agby)

Y == (a3 — ages)x + (ar¢3 — age1)y — (arcz — azc1)
(agbg — agbs)x — (aibs — azby)y + (aibs — agby)

The coefficients in (66’) arc the first minors of A. If we use

* Compare §13.
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cofactors (i.e., a cofactor is the minor of the element in the 7th
row and jth column multiplied by (—1)"*?), we can write (66")
in the form

, A+ Asy+ A3, Bix+ By + B

66’ - -
( ) Clx + ng + C;; » Y Clx + ng + 03

where A,, B;, Ci (i, j, k = 1,2,3) are the cofactors of a,, bj, ck,
respectively, in A.

It is easy to see that (66) sends straight lines into straight
lines, conics into conics, cubics into cubies, ete. Also (66) pre-
serves cross-ratio. (See §23.) But (66) is not affine, because the
line ¢y + coy + c3 = 0 goes into I, and I, goes into agz’ + by’ +
¢3 = 0 by (66). Thesc two finite lines are called the wanishing
lines of (66). (Compare §51.)

Note that (66) has eight essential constants (we can divide the
numerator and the denominator of each fraction by a non-vanish-
ing constant). This shows that four pairs of corresponding points
determine (66) uniquely. (Compare §14.) Suppose we want the
pOintS (alyﬂl); (a2yﬁ2)1 (a3yB3)y (a4’64) to correspond to (a;iﬂll)’
(03,85), (5,8%), (4,83, respectively, under (66). Substituting in
(66) these unprimed and primed coordinates for the unprimed and
primed variables, then clearing of fractions, we obtain

ala'l + blﬁi —_ aaala'l —_ bgalﬁll + Ci — C3ay = 0
agay + baB] — azBraf — b3B1By + c2 — c3B1 = 0

and six other equations similar to these.

Suppose the above eight equations have their terms arranged in
the order of the unknowns ay, by, ¢y, as, bs, ¢, az, bz, c3. Consider
three of the equations in a4, by, ¢; arranged as follows:

arey + biB] + ¢ = azaray + bzaif] + cze

a1y + biBy + 1 = azagay + bzasfh + caaz

aral + biBs + ¢1 = agazal + bzazfs + csas
Suppose that a3, bs, c3 have been already determined and we wish
to solve these three equations for ay, by, ¢;. Then we see that in
order to have a solution not all zeros the determinant of the co-

efficients of a4, by, ¢; must not vanish. By taking all possible sets
of three equations out of the four equations in ay, by, ¢1,and arguing
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as in the last sentence, we see we must have

a:l g 1 a:l g 1 a:I o1
oy By 1|#0, |ap B, 1|0, | oy B 1|50,
a B 1 o B 1 o B 1
o
1
o ﬁ,2 1 0

From the non-vanishing of these determinants we see that no three
of the four points with primed coordinates can be collinear.

Using (66’) instead of (66) we can show similarly that no three
of the four points with unprimed coordinates can be collinear.
A brief way of stating these results is to say that (66) is uniquely
determined when we send the vertices Py, Py, P3, P4 of one complete
quadrangle into thevertices Py, Py, Py, P} of any other orof the same
complete quadrangle. (Compare §§26, 67.)

The student should notice how the matrices (and determinants)
of the coefficients of (66) and (66’’) resemble one another, for this
resemblance makes these transformations easy to remember.

We emphasize the fact that, since (66) is not affine, one or more
of the vertices of a complete quadrangle in the above discussion
may beonl,. Asyet we cannot readily handle such cases analyti-
cally,* so we shall confine our illustrations mostly to cases where
the vertices are finite.

We could, however, treat an infinite point P, as the intersection
with I, of a line y = mx, where m is called the direction of P,
Thus, if we want (1,1) to go into the point P, on 4’ = 32/, we
can divide the numerator and denominator of each fraction in (66)
by z’ and get

_a by /d o/ e+ by /2 e/
a3 + by’ /2’ + c3/z”’ v= az + bay' /2’ + c3/a’
Puttingz =1,y =1,9'/2’ = 3,2’ = =, we get
1__(11+3b1 ag + 3 be

a3 +3by’ a3+ 3bs

Again, if we want the point P, on y = 4 x to go into (3,2), we can

* This is the reason for introducing homogeneous coordinates later on.
See §75.
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either usc (66’) or we can divide the first equation in (66) by

the second and get

azz’ + by’ + ca

i’ + by’ +

then, putting y/z = 4,2’ =3, ¥y =2 and also a3-3 + b3-2 +

¢ = 0 (since we must have z = o,y = » forz’ =3,y = 2),

we get the two equations

_3a3+2b+ ¢

3a;+2b + ¢’

y_
x

303+2b3+63=0

IrLusTRATIVE ExampLe. Suppose we want to send (0,1), (1,0), (0,—1),
(—=1,0) to (1,1), (1,—1), (—=1,1), (—1,—1). Substituting the coordinates
of the first four points for the umprimed variables in (66) and the coordinates
of the second four points for the primed variables, we get

=a1+b1+61 1=a2+b2+02 =01—b1+01
as + bz +¢3’ a3 + by +c3’ a3 — bz +c3’
0=a2—b2+c‘2 _—mtbitea =—a2+b2+r'z
a3 — bz + ¢z’ —a3 +bs +cs’ —a3 + b3 + ¢35’
_1=—(l1—b1+cl 0=-02—bz+02
—a3 — bz +c3’ —a3 — b3 + c3

Solving these equations for the coefficients and substituting the solutions in
(66), we find the required transformation is
-y +1 y +1
= y Y=
2z’ 2z

We wish to emphasize the fact that (looked upon as an alibi) the transforma-
tion (66) may have to do with points referred to a triangle of reference.

We leave for the student to prove in the exercises that (66) forms a group*
and also, that, if M is the matrix of one transformation of this group and Mg
that of another, then the product of these two transformations has for its
matrix M{Ms or MoM,. Here we wish to point out that the general affine
group (13) can be looked upon as a subgroup of (66), defined geometrically
by the fact that (13) keeps Iy, invariant and defined analytically from (66)
byas = bs = 0,c3 # 0.

EXERCISES

1. Find (66’) from (66); fill in all the other algebraic details in the text,
such as proving that no three of the points P1, P2, P3, P4 can be collinear,
completing the solution of the illustrative example, etc.

* For a definition of the concept of group see §31.
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2. Prove that the transformations (66) form a group. Compare §31.
Also show that if M; and M4 are the matrices of two such transformations,
the matrix of the product of these two transformations is M1M3 or M2M 1.

3. Prove that (66) preserves cross-ratio. Compare §23.

4. Prove that (66) sends lines into lines, conics into conics, cubics into
cubics, n-ics into n-ics.

5. Determine (66) so as to send (0,1), (1,0), (0,—1), (—1,0) into (0,2),
(0, —1), (—1,0), (4,0), respectively.

6. Determine (66) so as to send (—1,—1) into the point Pg on the line
y =2z,

7. Determine (66) so as to send the point P, on y = —z into (2,2).

8. Interpret l,, P, being at infinity, etc., when the points of the plane
are referred to a triangle of reference.

72. The effect of bilinear transformations on the equations of
lines. Just as with affine transformations in §21, so here we wish
to consider the effect of (66) on the general straight line (23).
Substituting for £ and y in (23) their values in terms of 2’ and y’
from (66), we get (after clearing of fractions)

(a1u~+ agv+ azw)z’+ (byu+ bov + bsw)y’+ (cru—+ cov+ caw) =0

Writing this last equation in the form «'z” + v’y + v’ = 0, we
find the transformation (66) causes the following relations between
o', v, w and u, v, w

67)  pu’ = ayu + aw + azw, pv’ = byu + by + bzw,
ow' = cyu + cov + caw

where p is an arbitrary non-vanishing constant that is introduced
because the equation of a straight line can be multiplied through
by any such constant. Solving (67’) for u, », w we get

(67) ou= A + By + Cw’, ov= A + By’ + Cow’,
ow = Asu’ + By’ + Caw’

where the capital letters are the cofactors* of the small letters in the
determinant A of (66); also where ¢ = A/p.

By an argument similar to the one in §71 (concerning complete
quadrangles) or the ones in §§14, 21 we see that four pairs of
corresponding lines (no three of each set of four lines being con-
current) uniquely determine (67), and so uniquely determine (66).
That is, (67) ¢s uniquely determined when we send the sides Py, P,

* The cofactor of a term a,, in the ith row and jth column of a determinant
is the first minor of a;, with respect to this determinant multiplied by (—1)*/.
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P3, P4 of one complete quadrilateral into the sides Py, Py, Pj, P} of
any other or of the same complete quadrilateral. Notice how this is
the plane dual of the above results concerning complete quadrangles
and (66). (Compare §22.)

We remark how the result concerning complete quadrilaterals
follows from that concerning complete quadrangles, because if
we take two complete quadrilaterals we can choose four vertices
(no three of them collinear) from each quadrilateral and reduce
the question of the corresponding quadrilaterals to that of these
corresponding sets of four vertices. On the other hand, we can
reduce the question of corresponding quadrangles under (66) to
that of corresponding quadrilaterals by choosing from each quad-
rangle four sides (no three of them concurrent).

Since (66) and so (67) are not affine, we see that one or more
vertices of one of the corresponding complete quadrilaterals may
be on l,. To find the vanishing lines under (66) or to determine
(66) partly by assigning certain lines for vanishing lines, it is easier
not to use (67) but to note that from (66) azz’ + b3y’ + c3 = 0
is the line into which [, goes and from (66’’) C1z + Coy + C3 = 0
is the line that goes into [,.

EXERCISES

1. Check the algebra in the text, such as finding (67’), solving (67’) for
u, v, w S0 as to get (67).
2. Prove the dual of the theorem in §71 concerning the equivalence of com-
plete quadrangles under (66).
3. Prove that
A" =|As Bz (o
A3 Bz C;

A, By C,!

of (67) is a power of A of (66).
4. Determine (67’) and (66) so as to send the complete quadrilateral with
the sides
z+y=1 z—y=1 —-z4+y=1 —z—y=1

into the complete quadrilateral with the sides
2z +y' =1, 22—y’ ' =1, 242y =1 2 -2y =1

respectively. Do this problem in two ways. (See the hint in the next to the
last paragraph of the text.)

5. Determine (67) or (66) so as to send (a) l, into 2’ +y’ — 1 =0;
)2z —y+ 1 =0into l,. Do this problem in two ways. (See the hint
in the last paragraph of the text.)
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73. A note on transformations of points on a line and between
lines. In this section we wish to study very briefly the effect of
the transformations (13) and (66) on the points of a line I that
is sent into itself or between the points of two corresponding lines
land I’. We shall go into this subject more fully later on, but we
want some of the results and concepts now.

If (13) sends the z-axis into itsclf, then I = y = 0 must be the
same line as I’ = 3’ = 0; hence we must havein (13) b; = b3 = 0,
bea; # 0. In this case, if we are considering only the effect on
y,= 0, we can omit y = byy’ from (13) and write the rest (putting
y =0)

(68) = a4 a3

If (13) sends I =2z = 0 into I’ = 3’ = 0, then we must have
a; = a3z = 0, agb; # 0, and we can omit z = agy’ from (13) and
write the result (puttingy’ = 0)

(69) y = bix’ + by

If (66) sends I =y = 0 into I’ = 3’ = 0, we must have a, =
¢z =0, by # 0. We can omit y = byy’/(asz’ + bsy’ + ¢3) from
(66) and write the result (putting y’ = 0)

alx’ + c1

(70) a;;x' + C3

Similarly, if (66) sends I =z = 0 into I’ =4’ = 0, we must
have a; =¢; =0, by #0. We can omit z = byy'/(asz’ +
bsy’ + c3) from (66) and write the result (putting ¥’ = 0)

02.’13’ + Co

1 =
(71) Y a3$'+03

The transformations (68), (69,) (70), (71) give us the effect
of (13) or (66) on certain lines of the plane, but tell us nothing
about the rest of the plane. If we want to study any other line
in the plane, we can first send it by some transformation T into
=0 or y =0. These transformations between points of the
same line (or of two different corresponding lines) are said to be
induced by (13) and (66), respectively.

Note that these transformations might be studied for their own
sake, quite apart from the rest of the plane. We have already run
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across & bilinear transformation of the parameter of a pencil of
conics in §59 that has a form like (70).

We see that (68) has just fwo constants, so two pairs of corre-
sponding points determine this transformation. Thus, if (68)
istosend z=1toz’ =2and z =2 to 2’ =3, we must have
1=0a2+as 2=0a3+ a3 so a; =1 and ag = —1, and the
required transformation is z = 2’ — 1.

We note, on the other hand, that (70) has three essential con-
stants; therefore three pairs of corresponding points determine
such a transformation. (We classify as a pair of corresponding
points also a pair P,P’ where P = P’.) Suppose now that we want
(70) tosend 1 to —1, 0 to 2, 3 to —3. We have, on substitution
of the coordinates of these points,

1_—a1+cl 0 2a1+ ¢ —3a1+c

=—, =—, = —
—az + ¢3 2a3+ c3 —3a3+c3

or c; = -2 a, az = —%al, 3 = — %al

so the desired transformation is
-2 3246
-2 -1 27+ 11

xr =

Next suppose we want to send 1 to «, © to —1, 0 to 2, we have
= (a1 + ¢1/2’)/ (a3 + c3/2’), hence

_ata/e @ =0, 0=2a+a

a3+ c3/© a3

or a3 =c¢3=a;, ¢ = —2q

and our transformationis z = (2’ — 2)/(z’ + 1).

EXERCISES

1. Prove that every transformation of the form (68) has one double (or
invariant) point and every one of the form (70) has two such points. Com-
pare §33.

2. Prove that (68) form a group; also (70) form a group.

3. Check all the algebra in the text.

4. Prove that (68) and (70) keep cross-ratio invariant. See §23.

5. Determine (68) tosend 1 4+ ¢ to0and 2 to 3 — <.

6. Determine (70) to send O to «, « to 0, 1 to —1; to send 7 to 2, 0 to
1~ otol.

7. Interpret « when the points of the plane are referred to a triangle of
reference.
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74. Change from a triangle of reference to axes of reference.
In §§71, 72, 73 we were looking upon bilinear transformations of
coordinates as alibis. We may also look upon these transforma-
tions as aliases.

Suppose now we have the points of the plane referred to a tri-
angle of reference (with z and y coordinates) and we wish to change
the frame of reference to axes of reference (with z’ and y’ coordi-
nates). Suppose the line X Y of the triangle of reference in
§70 is the line

' +8y —1=0

referred to axes of reference, also that 0X,, lies on the z’-axis and
0Y ,, lies on the y’-axis.

If we want to send XY, by (66) to l,, to keep £ = 0 on
' = 0and to keep y = 0 on ¥’ = 0, then we must have

by=ci=as=c¢c3=0, agz' +bsy + c3=claz’ + 8y — 1)

where ¢ £ 0. (Compare the hint in the last paragraph of §72.)
Therefore we see that the transformation

alx' bay

Teler + 8 — 1) YT cled + 8y — 1)

sends the line X, Y, to I, in such a way that X, goes to the point
of intersection of the z’-axis and [, also Y, to the point of inter-
section of the y’-axis and [,.

One more pair of corresponding points not on the axes (or two
more pairs of corresponding points on the axes, see §73) will
determine this transformation (72) uniquely, since we have two
arbitrary constants remaining (namely, a;/c and bg/c).* Note
that # = a,2’/c(ax’ — 1) is the transformation induced on the
z'-axis (see §73) and y = byy’/c(By’ — 1) is the transformation
induced on the y’-axis by the above bilinear transformation (72)
in the plane.

If now we compare §§64, 65, and 70 we see that (72) has sent
the points and lines necessary to determine the  and y coordinates
of a point P referred to the triangle of reference into the points
and lines necessary to determine the 2’ and y’ coordinates of this

/

(72) z

* This result is in keeping with the fact that the arbitrary choice of the one
unit point (1,1) is equivalent to choosing arbitrarily the two unit points (0,1)
and (1,0).
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same point P referred to z’- and y'-axes plus I,. Therefore the
above equations in (72) give us the relations between the primed
and the unprimed coordinates of P.

ILLusTRATIVE Exampre. For example, the transformation

_ Y
' +y -1

sends the triangle of reference with sides z’ =0, ¥y’ =0, 2’ 4+ 9y’ -1 =0
referred to a set of z’- and y’-axes plus [, into this set of axes and [, in such
a way that the point P(1,1) has the same coordinates referred to both frames
of reference. Solving this transformation for 2’ and y’ in terms of z andfy
we get

’ ’

_ T
o +y -1

z y

z Y
2 = [
pura T

Tz +y—-1

which equations show that !, referred to the triangle of reference has the
equation z +y — 1 = 0. (Why?) The point (2,3) referred to the triangle
has the coordinates x’ = 2/(2 +3 — 1) = 3, 4’ =  referred to the axes.
Note that the complete quadrangle with vertices (0,0), (0,1), (1,0), (1,1)
goes by the above transformation into the complete quadrangle with vertices
(0,0), (0, =), (=,0), (1,1), respectively. Compare §71.

The above change from a triangle of reference to axes of reference
is so important that we shall consider it again from a more geomet-
ric point of view. In the adjoining figure suppose that XY is
thelineax’ + 8y —1=0 ,
referred to the axes 0X’, Y
0Y’ and also one vertex of r
the triangle of reference is
0 (0,0).

Let us take any point P
referred to the two frames of
reference. The line XY, 0
behaves for the triangle
of reference the way I,
does for the axes. Hence any line of the pencil of lines with
0Y, and Y X, as fundamental lines has an equation of the
formz — N1 = 0. (Compare §60.) Also any line of the pencil
with OX, and XY, as fundamental lines has an equation of the
form y — u-1 = 0. The same lines referred to the axes have,
respectively, equations of the form

' =N +8/ —1)=0, ¥ —p(ex' +8/-1)=0

(0,0)
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Solving these last two equations simultaneously for z’ and 3’
we get , ,
x’ = '/_A/—— ’ y, = —%—
o\ + 6 —1 o\ + Bu —1

The equations of the lines in primed coordinates can be obtained
from £ — A-1 =0and y — u-1 = 0, respectively, by replacing
r by cz’, y by c', and 1 by cz(ax’ + By’ — 1), where
cic2¢3 % 0. Therefore we have N = c3/ci\, 1’ = c3/con.  There-
fore, since A=x, p=y we have N = yz, u’ = 6y, where
v = c3/c1, 8 = ca/co. Substituting these values for X and ' in
the equations giving =’ and y’, we get

z = e y = oy
ayr + By — 1’ ayr + Bsy — 1
Solving these last equations for z and y in terms of 2’ and 3’, we get
' [y y'/8

T oy -1 VT 8 — 1

which is again a transformation of the form (72).

In the above discussions the sides of the triangle of reference
were chosen in special positions relative to the axes of reference.
To obtain the general case we have merely to perform (13) on the
triangle in order to get it into the above special position. How-
ever, the product of (13) by (72) gives a transformation of the
type (66). (Why?) Therefore we see that (66) can be looked
upon (in the guise of an alias) as a change from a triangle of refer-
ence to axes of reference (or from axes to triangle).

EXERCISES

1. Solve (72) for z’, ¥’ in terms of z and y.

2. Find the conditions that must be imposed on (72) in order (a) to keep
(1,1) fixed; (b) to keep (0,1) and (1,0) fixed.

3. Determine (66) to send the triangle of referencez = 2’ = 0,y =y’ = 0,
z’ +y' — 1 = Ointo theaxesz’ = 0,y’ = 0,1, and (1,1) into (1,1). Do this
in two ways.

‘4. Show that (13) followed by (72) gives (66).

5. Why would there be no loss of generality involved in choosing X Y,
of the triangle of reference (for the second discussion in the text) as the line
' +y -1=0?

6. A triangle of reference has 2z’ =0, ¥y’ =0, 2z’ — 3y’ —1 =0 as
its sides z =0, y = 0, X, Y; also 2’ =2, y’ = 3 as its unit point (1,1).
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Find the coordinates of the point z = 1,y = 2 referred to the axes; of the
point z’ = —2,y’ =1 referred to the triangle. Find the equation of
z + y — 1 = 0 referred to the axes, and of ' + y’ — 1 = 0 referred to the
triangle.

7. Prove that a curve whose equation is of the nth degree referred to axes
of reference still has an equation of the nth degree when referred to a triangle
of reference.

8. The equations

3z’ 2y’
T = y Y=
2z +y' -1 2z +y' —1

change from a triangle of reference to axes plus l,,. Locate the sides and the
unit points of this triangle with respect to the axes.
9. Solve Ex. 8, looking upon the transformation as changing from axes
(unprimed coordinates) to a triangle of reference (primed coordinates).
10. Interpret
_ x/+yl__1 _ xl_yl_l_l
YTer —ay+1 YT 2r -4y +1

as changing from axes to triangle, finding the sides of the triangle and its
unit points with respect to the axes, also the axes (and ) and their unit points
with respect to the triangle.

11. Construct a triangle of reference and draw the loci 2z —y — 1 =0
and2z+3y —6 =0.



CHAPTER X
INTRODUCTION TO HOMOGENEOUS COORDINATES

75. Homogeneous coordinates for points. In order to be able
to assign coordinates to the points on l,, (when we are using azes of
reference) or to the points on X, Y, (when we are using a triangle
of reference) we introduce what are known as homogeneous co-
ordinates. (Compare the footnote in §71.) From now on the
type of coordinates (z and ¥, or z’ and y’) of a point that we have
used thus far will be known as non-homogeneous coordinates.

To obtain the homogeneous coordinates z1,2s,23 of any point
P(z,y) we put = = x;/x3, y = za/x3 and write the point as
P(x1,20,x3). We note that the point (kxi,kza,krz) where & # 0
is the same as the point (z1,22,23) because kzi/kxs = x1/23 = z,
kxy/kzs = xo/23 = Y.

If 23 — 0 while z; or z; (or both z; and z3) does not vanish,
we see that £ — « or y — « (or both £ — « and y — »), i.e.,
the point P(x,y) = P(x1,zs,3) approaches the line [, (if we are
using axes of reference) or the line X, Y, (if we are using a triangle
of reference). Hence we say that z3 = 0 is the equation of [,
(using axes) or of XY, (using the triangle).

No definite point in the plane is given by (0,0,0) because the
non-homogeneous form (0/0,0/0) is wholly indeterminate. There-
fore we suppose that zy, xa, 23 are not all zero at the same time.

The z-axis (or side OX, of the triangle) has the equation z; = 0,
the y-axis (or side OY,) has the equation z; = 0. The points
(21,0,x3) lie on z, = 0, the points (x1,22,0) on 23 = 0, the points
(0,z2,273) on z; = 0. The origin (or vertex O of the triangle) is
(0,0,x3), the point at infinity on the z-axis (or the vertex X, on
the triangle) is (z1,0,0), the point at infinity on the y-axis (or the
vertex Y, on the triangle) is (0,22,0). The unit points have
coordinates of the form (z;,0,x,), (0,x2,x3), (%1,21,21). We call
(x1,21,0) the unit point on zz = 0. Note that this last point is
where the line ¥ = z (in non-homogeneous coordinates) through
the two points (0,0) and (1,1) cuts I, (or XY ,). (Why?) We
can write the last seven points mentioned above as (0,0,1), (1,0,0),
(0,1,0), (1,0,1), (0,1,1), (1,1,1), and (1,1,0), respectively. (Why?)

168
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If P(z1,22,23) is not on I, (or X,Y,) we can multiply its co-
ordinates by k = 1/x3 and write the point as P(x,y,1). There is
no occasion to employ the symbol « when we are using homo-
geneous coordinates, becausc all the points in the plane (even
those on I, or X,Y,) now can be designated by finite values of
Z1, T2, and z3. This fact is one of the gains in using homogeneous
coordinates.

If no ambiguity can arise from confusion with non-homogeneous
coordinates, we often use z,y,2 instead of x;,x2,23 for the homo-
geneous coordinates of a point, ordinarily reserving z = 0 for
the equation of I, (or X,Y,). In this case we can change from
non-homogeneous to homogeneous coordinates by the equations
z = x/z, y = y/z, remembering that the new x and y are not the
same as the old = and y.

Note that, if we are considering simultaneously a triangle of
reference (z = 0,y = 0, z = 0) and axes of reference plus [, (z" = 0,
y' = 0,2’ = 0), we do not ordinarily have z = 0 the same line as
2’ =0 or y = 0 the same as 4’ = 0, and z = 0 usually has an
equation of the form az’ + By’ — 1 = 0 referred to the axes.
Also, conversely, l, has an equation of the formz/a + y/b — 1 =0
referred to the triangle of reference, where a and b are the inter-
cepts (finite only in coordinates, but in reality infinste points) of
l, on the sides 0X, and OY, of the triangle.

We might use £; = 0 or 23 =0 (x = 0 or y = 0) instead of
23 =0 (z=0) for l, or X,Y,. As illustrations of points with
homogeneous coordinates we note that (2,3) is the same point as
(4,6,2) or (—%,—1,—1) or (200, 300, 100) or (2 V3,3 V3, V3);
also (7,6,5) is the same point as (£,2).

To illustrate how formulas appear in homogeneous coordinates,
we take that for cross-ratio, namely (25) and replace z, by z;/z,
and y; by yi/z; where ¢ = 1,2,3,4; then we multiply the numerator
and denominator by z;2,2324 and we have

T122 — X221 X324 — X423
T1%4 — X421 X3R2 — X223

(73)

EXERCISES

1. Put into homogeneous coordinates (z,y,2) the formulas for the distance
between two points, for the area of a triangle, for the point of division of a
line-segment.



170 INTRODUCTION TO HOMOGENEOUS COORDINATES

2. Using homogeneous coordinates show by a cross-ratio that —a, 0, +a, «
form a harmonic set. Hint: Write « as the point (1,0), etc.

3. Find a cross-ratio of (1,2,3), (2,3,1), (3,5,4), (—1,—1,2), first using
homogeneous coordinates and (73), then using non-homogeneous coordinates.

4, Express in three ways in homogeneous coordinates each of the points

(_1’_2)v (1y°°)l (%1_"&)

76. Equations in homogeneous coordinates. An equation in
non-homogeneous coordinates (variables) can be written as a
homogeneous equation when the coordinates (variables) are made
homogeneous, as the following example will show. (This is one
reason for the name homogeneous coordinates.) In the equation
zy = 1 we can put z = x;/%3, y = Z2/z3, clear the equation of
fractions and get 1z = 22; or, using z = z/z, y = y/z, we get
zy = z2. Note how clearly the form zy = 2® for the hyperbola
zy = 1 shows the way this curve cuts l,, because z = 0 (ory = 0)
when solved with zy = 2% gives us 22 = 0, so the two axes are the
asymptotes to the curve.

Again, if we want to have the transformation (66) in homogene-
ous coordinates, we put z = z/z, y = y/z, ¢ =2/, ¥y = y' /2
and multiply numerator and denominator of each fraction by .
Then we have (from certain properties of fractions)

(11)  px=air + by + a2, oy = axx’ + by’ + 2,
pz = azx’ + bsy’ + ¢’

where p is an arbitrary non-vanishing constant. Solving for
2’y 2’ in terms of z,y,2z we get

(74') oz’ = Az + Ay + Asz, oy’ = Biz + By + Bsz,
oz’ = C1z + Coy + Csz

where ¢ = A/p, A being the determinant of (66) and 4, Bj, Cy (4,5,k
= 1,2,3) are the cofactors of a;, bj, ¢ in A.

We show how to solve simultaneously homogeneous equations.
Thus 22 + y2 = 522, 22 — y2 = 22 give 222 = 622, 2¢% = 427,
so z=+V3 z, Y = £V22z Hence the four points of inter-
section of these two curves are (V3 z, +£V2z, z) where z 5 0,
or (dividing by z) the four points are (£V3, V2, 1). Simi-
larly, the two lines 3z — 2y +92=0, z + y — 22 = 0 inter-
sect in a point given by 5z 4+ 5z2=0 and 5y — 152 =0, so
the point of intersection is (—z,3 2,2) or (—1,3,1).

Finally, if we put z = z/z, y = y/z (or x = z1/%3, Yy = T2/%3)
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in the equation of the general conic (4), then multiply the equation
through by 22 (or z2), we get the equation of such a conic in
homogeneous coordinates

(75) a? + by’ +c2+2fyz+2gzx + 2hay = 0
or
(75')  ax? + bak + ca? + 2 froxz + 2 gxszy + 2 hayxy =

Note the symmeiry in the way (75) is written, namely, the order
of the terms is 22, y2, 22, yz, 2z, zy.

Again we note that if we put £ = », y = « in (4) we get an
indeterminate form

a0?2 4+ bwo?24c+2fo +2g0 +2ho?2=0

Putting z = z/2, y = y/z in (4), multiplying by 2% to get (75),
then putting z = 0 in (75), all amount to evaluating this indeter-
manate form.

EXERCISES

1. Explain fully how we get (74) from (66) and the properties of fractions
that we used.

2. How does the fact that y = 0 solved with zy = 2% gives 22 = 0 show
that the r-axis is an asymptote of the hyperbola ry = 1?

3. Get (74’) from (74).

4. Put all the transformations of variables lnto homogeneous form.
Hint: The translation becomes

pr =z’ +he', py =y’ + ko', pz =2

(Why?) Return to the non-homogeneous form to check your results.

5. Put into homogeneous coordinates (first using z,y,2 then using z1,22,23)
the normal forms for the equations of ellipses, hyperbolas, and parabolas; the
general equation of the circle; the general equation of a cubic; the general
equation of an n-ic; the different type forms for the equation of a straight line;
the equations

y2 = x3’ y = x3’ ys = :E4, y = 324, y2 = I2($ + 1)’
V=z@—1) (= —a)
6. Solve simultaneously:
1 +3xz2—2z3=0 and 2z — 22 +523=0
22+ 2 =2 and 2z — 22 =73

Next put these equations into non-homogeneous form and solve them simul-
taneously.
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7. Put into homogeneous coordinates the following pencils of conics, and
find and describe their degenerate conics. (Compare §58.)

@+ -1+ +y2—2) =0, (¥2—4z)+2r@F>—8z) =0,
@+y* -1 +r="+y*+22-1) =0

8. Look through the first part of this book for all the cases where we have
to interpret an equation like 0 2% + 0 y2 4+ 1 = 0 or infinite points and lines
come up in some other way. In each case change to homogeneous coordinates
and go through the argument again. Hint: Then such an equation as 0 22 4
0y% + 1 = 0 becomes 22 = 0; also an equation like 2 = 0 (where a degen-
erate conic is to be expected) becomes 2 xz = 0.

9. Using homogeneous coordinates find the equation of the circle through
the three points (2,3,1), (1,0,1), (0,1,1); also find the equation of the conic
through the five points (0,0,1), (0,1,0), 1,0,0), (1,1,1), (1,—~1,2).

10. Prove that the equation of a line through two points (z1,y1,21) and
(Z2,y2,22) is
Ty 2
1 Y1 21
T2 Yz 22
Hint: Transform to homogeneous coordinates the determinant form for
the equation of a line in non-homogeneous coordinates. Or else argue that the
equation of a line must be homogeneous and lincar, hence this is the desired
equation.

=0

77. Homogeneous coordinates and [,; non-homogeneous
coordinates for points on 1,. Lect us consider the equation
y = mx of a line I through the origin. In homogeneous coordi-
nates (21,22,23) this line has the equation zo = mz;. Solving
T2 = mx; simultaneously with z3 = 0, we determine the point of
intersection of I and I,. Hence I and [, intersect in the point
P (x1,mx1,0) where z, 5% 0.

Note that for an ordinary frame of reference m is the slope of
the line y = mz, so m is called the direction of the point P, on
le (compare §§49, 71). If we divide the coordinates of P, by z;,
we can write this point as P, (1,m,0). We may look upon m as a
non-homogeneous coordinate for the point P, just as (0,b,1) has b
as a non-homogeneous coordinate and (a,0,1) has a.

The line z; = 0 (i.e., x = 0) cuts I, in the point (0,z3,0) for
whose non-homogeneous coordinate we can write «; the linezs = 0
(i.e., y = 0) cuts I, in the point (z1,0,0) with 0 as its non-homo-
geneous coordinate. (If we divided the homogeneous coordinates
of all points on I, by z instead of z, then (z;,0,0) would be «
and (0,z,,0) would be zcro, but these non-homogeneous coordinates
would be the reciprocals of the directions of the corresponding
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points on I, and not the directions of these points.) The line
z1 = z2 (l.e.,, £ = y) cuts l, in the unit point (x;,r;,0) with 1 as
its non-homogeneous coordinate.

By the above discussion, we have assigned to every point P,
on l, (by using the line joining P, to the origin) a set of homo-
gencous coordinates and also a non-homogeneous coordinate.
Note how this resembles the determination of the coordinates of
points on the z- and y-axes in §§64, 65 and of points on the sides
0X, and OY, of the triangle of reference in §70.

We remark that the transformation z; = z3, 2, = 25, T3 = Y
sends a point (z1,mx;,0) on I, into a point (0,mz5,2%) on the y-axis.
We have defined (in §§23, 106) the cross-ratios of four collinear
points in terms of their abscissas or their ordinates (with no idea
of lengths of line-segmenits entering into the definition). If we send
(by some transformation like the one above) these four finite
points into four points on ,, our formula (25) for their cross-ratios
becomes what we shall call the formula for the cross-ratios of four
points on l.

Thus the four points (z;,—z1,0), (x1,0,0), (21,21,0), (0,22,0)
with non-homogeneous coordinates —1,0,1,c are said to have a
cross-ratio (1 — 0)/(—1 —0): (=1 — ©)/(1 — ©) = —1 and,
therefore, are defined as a harmonic set on l,. We would get
the same cross-ratio if we used (73) on the homogeneous coordi-
nates of these points. Note how this cross-ratio is related to that
of the four lines y = —z, y =0, y = z, x = 0 as given in §27.
Later on, we shall discuss cross-ratio again, more in detail.

Again let us see how homogeneous coordinates help us interpret
the intersections of curves with 1,. Thus y% = z® shows that
y? = z3 should be interpreted as having a point of inflection at the
intersection of the y-axis and [,, with [, as tangent (because
z2=0 gives 23 =0 when solved with this equation). Also
yz® = 1° shows that y = 23 should be looked upon as having a
cusp at infinity on the y-axis with I, as tangent. (Why?) Com-
pare §44.

Notethat z = z’,y = 2’, 2 = ¥/ sends y% = 2%into y'2'2 = 23;
therefore we must consider y = z® and y% = 2 as equivalent
cubics under (74), only that one has a cusp at infinity and an
inflection at the origin while the other has an inflection at infinity
and a cusp at the origin. These two cubics are not equivalent
to each other under (13).
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EXERCISES

1. Send 22+ %% =1 into z* — y? =1, using (74) and homogeneous
coordinates.

2. Find a cross-ratio of (3,2,0), (1,3,0), (—1,1,0), (0,1,0), first using homo-
geneous coordinates, then using non-homogenerous coordinates.

3. Find and describe the intersections of the following curves with I:

z2/a2 ﬂ:yz/bz =1, z? +1/2 = 7'29 :’/2 = 4 pz, y? = b, y3 = x5,
yt=2% 2y =1 y=2a4 wyE -y’ =1
Use homogeneous coordinates (z1,22,z3 for some of the curves and z,y,2 for
the rest). Also put the coordinates of the points of intersection of these
curves with ,, into non-homogeneous form.

4. Find the intersections of I, with the general conic (75), the general
circle, the general cubic, the general n-ic. For (75) and the general circle put
the coordinates of these points of intersection with [/, into the non-homo-
geneous form.

78. Homogeneous coordinates and a triangle of reference;
non-homogeneous coordinates for points on X,Y,. Since (66)
sends linear equations into lincar equations, therefore, even when
the points of the plane are referred to a triangle of reference,
y = mz is the equation of a linc through 0(0,0) and conversely
every line through O has such an equation.

We are now in a position to discuss completely the subject of
homogeneous coordinates and a triangle of reference, giving co-
ordinates (homogeneous and non-homogeneous) to the points on
XY, The discussion is exactly similar to that given in §77 for
axes of reference and l,. We shall merely note here that to a
point P on XY, where a line y = mz (2 = mz;1) cuts XY,
we give the homogeneous coordinates (z;,mz1,0) or (1,m,0),
and to P we give the non-homogeneous coordinate m.

We wish to emphasize the fact that two lines y = mz + b; and
y = mx + by referred to a triangle of reference intersect on
XoY, and so are mot parallel. Also the equation 2y = 22
shows that 2 2y = 1 is tangent to 0X,, and OY, at X, and Y,
but does not show that this curve is a hyperbola.

If z = 0 is the line az’ + By’ — 1 = 0 referred to axes of refer-
ence wherez = Oisz’ = Oandy = Oisy’ = 0, the curve 2 zy = 22
has the equation (putting z =2', y =9/, z2=az' + 8y — 1)

o2z’ + B2y + 2B — 1)’y —2ar’ — 28/ +1=0
referred to these axes with (1/(a +8 — 1), 1/(a+ 8 — 1)) as
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unit point (1,1) for the axes. Therefore this curve is a hyperbols,
parabola, or ellipse according as

(@B —1)? — a2 = —2af+ 120

As illustrations of this result we see that 2 2y = 22 is a hyperbola
for « = B = 1, a parabola for a = 1 and B = 1, an ellipse for
a =B = 1. Note that even the above is a special choice for the

triangle of reference, sincez = Oisz’ = Oandy = 0isy’ = 0.

EXERCISES

1. Show that in the last paragraph of the text the point (1/(a +8 — 1),
1/(a + B—1)) referred to the triangle of reference is the point (1,1) referred
to the axes.

9. Given a triangle of reference, as in the last paragraph of the text, find
when two lines y = myr + b1 and y = mex + by are parallel, also when
y? = 4 pr (and z*/a® + y*/b% = 1) gives an ellipse or a parabola or a hyper-
bola.

3. Give the full discussion of homogeneous (and non-homogeneous) coordi-
nates for points on X Y.

4. In the last paragraph of the text is the transformation z = z/, y = y’,
2z = ax’ + By’ — 1 looked upon as an alias or as an alibi?

5. Find the inverse of the transformation in Ex. 4.

79. Change of homogeneous coordinates from a triangle of
reference to axes plus l,. Suppose we have a triangle of reference
(x=0,y=0,z2=0) and we wish to refer the points of the
plane to a set of oblique or rectangular axes plus l,. The trans-
formation (74) will evidently do this for us.

However, let us sce how homogencous coordinates will simplify
the discussion in §74. Thus, for the first method of attack given
in the text therc, we see we can put

px = a1z’, py = bay’, pz = claz’ + gy —2')

and then proceed with the argument. For the second method of
attack the lines that determine the coordinates of P referred to
the triangle of reference have, respectively, the equations z — Az
=0, y — pz = 0. Substituting in these equations

oz =cx!, py=cy, pz=cs(ax’ + B8y —2)
we have the equations
x’ _ x’(axl + By, _ zl) — 0, yl — #I(axl + ﬁy’ _ zl) —_ O
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where N\ = cg\/e; = c3/c1-x/2, u’ = cs/ca-y/2. Now we can
proceed as in §74.

In general, we suppose that we have a triangle of reference
(x =0,y =0, z=0) whose three sides have, respectively, the
equations

air’ + by’ + ciz =0, aha’ + by’ + ch2’, afx’ + by’ + ¢4’ =0
referred to some axes plus [,. We can change from the triangle
to the axes by putting

pr = a(ar’ +bly’ +ci2), oy = Blagz’ + by + ¢32),
pz = v(agz’ + by’ + cz2’)

where a, 8, v are to be determined by another pair of corresponding
points. We prove this by noting that one and only one transfor-
mation (74) will send this triangle and the point (1,1,1) not on
the triangle to these axes and the new point (1,1,1). The above,
which is of the form (74), certainly accomplishes this because
z = 0 gives ajz’ + bly’ + ¢}z’ = 0, etc., so the above must be the
unique transformation we are seeking.

EXERCISES

1. Determine a,8,y in the last paragraph of the text so that P(1,1,1) has
the same coordinates both for the triangle and for the axes. Hint: Put
c=y=z=z'=y' =2z'=1.

2. Change to a set of axes from a triangle of reference (z = 0,y = 0,z = 0)
with sides ' +y’' —2' =0, 2’ —y' —2' =0, 2z’ +y' + 2" = 0 respec-
tively referred to these axes. and let P(1,1,1) have the same coordinates for
each frame of reference.

3. Use the idea of corresponding complete quadrangles (see §71) to explain
the presence of «,8,v in the equations in the last paragraph of the text.

4. Under the transformation from a triangle of reference (r =0, y = 0,
z = 0) to axes:

pr=z'"+2y —32', py=—-2"+y +2, pz=22"+3y" —2'
what forms do the following equations take?
2 43y +2 =0 2y =22 zy=272 224+y2=27? y2?=2°

What are the primed coordinates of the unprimed unit point (1,1,1)? What
are the unprimed coordinates of the primed unit point?

5. Under the transformation of Ex. 4 find the coordinates of (3,0,1),
(—-1,2,1), (—3,2,1) that are here referred to the axes, when these points are
referred to the triangle of reference. Where does l, cut the triangle of
reference?
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6. Under Ex. 4 find the coordinates of (—1,0,1), (—1,—1,1), (3,—5,1) that
are here referred to the triangle, when they are referred to the axes. Hint:
Use the transformation in the form where z’,y’,2’ are solved for in terms of
LY,2.

80. The equations of curves referred to a triangle of reference.
The transformations (74) between axes and a triangle of reference
are linear in the variables; so also are their inverses. Therefore
a line, conie, cubic, n-ic, when referred to a triangle of reference,
still have, respectively, equations of the first, second, third, nth
degrees in the variables. (Compare §§4, 18.) Conversely, any
equations of the first, second, third, nth degrees in the variables
(referred to a triangle of reference) are of the same degrees when
referred to axes and so must give, respectively, lines, conics, cubics,
n-ics. (Compare §40.)

This gives us an easy proof that

r Yy =z
(76) zy Y1 21| =0
T2 Y2 22

is the equation of the line through the two points P;(z1,y1,21)
and P (%s,y2,22) referred to a triangle of reference, because this
equation is certainly satisfied by the coordinates of P; and P,
and being of the first degree it is the equation of a straight
line.

We saw in §4 that the transformations from rectangular to
oblique axes are also linear in their variables. This all shows us
that 22 + 4% = r%? (or z% + 4% = r?), for instance, gives a
circle referred to an ordinary frame of reference, an ellipse referred
to oblique axes, and still some sort of conic when referred to a
triangle of reference. (Compare in §3 the text and also Ex. 5.)

It is very difficult to draw a real graph of a curve referred to a
triangle of reference. However, we can draw sketches of these
curves that will help us to visualize the situation when z = 0
gives I, instead of the side XY, of the triangle of refereuce.
Thus the equations

2

ry = 2%, y2

2 =28, Y% = 4prz, y =1

give us the following sketches when referred to a triangle of
reference:
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EXERCISES

1. Justify the sketches in the text.
2. Draw sketches for the following curves referred to a triangle of reference:

x5 =25 yz=22rx2), y2 =12 —2) (& — )

3. Show that px = z’, py = y’, pz = ar’ + By’ — 2’ multiplies the dis-
criminant I' of the general conic (75) by a non-vanishing constant.

4. By means of Ex. 3 and (13) show that for a triangle of reference I' = 0
is still the condition for (75) to be a degenerate conic.

5. Draw sketches for the following curves referred to a triangle of reference:

22
y=2% y¥l=——", P=2xb 2%=1
z—1

6. What is the equation in homogeneous coordinates of the polar of a point

P’(z’,y’,2") with respect to the general conic (4)?



CHAPTER XI
SOME THEOREMS ABOUT THE LINE AT INFINITY

81. Intersections of curves with /,,; asymptotes. Curves may
intersect I, in many different ways, such as in two or more real
and distinet points, in imaginary points, in pairs of coincident
points,* in three coincident points,t in four coincident points, ete.,
or in several of these ways at once.

For example, zy = 22 cutsl, at (0,1,0) and (1,0,0); 22 + »® = 2%
cuts I, at (1,50) and (1,—4,0), where i = V—1; 32 =4z
touches I, at (1,0,0); y% = z® has I, as an inflectional tangent at
(0,1,0); yz? = z® has [, as the tangent at a cusp (0,1,0); y3z = 2*
has I, as a tangent that cuts the curve in four coincident points
at (0,1,0). These facts are all obtained by solving z = 0 simul-
taneously with the equations of the curves. Of course the curves
are supposed to be referred to axes plus [, and not to a triangle of
reference.

The asymptotes of a curve (compare §44) we may now define as
the tangents to this curve whose points of contact lie on lo; if 1,
is such a tangent, we do not count I, as an asymptote. If a bi-
tangent [ (see §§42, 43) has one of its points of contact on I,
we take the definition of a tangent as given in §46.

Asymptotes may be real or imaginary, plain or inflectional, ete.
The hyperbola zy = 2% has the axes as asymptotes, 2° — y® = 2?
has y = 42z as asymptotes, the ellipse 22/a® + y2/b% = 22 has
y = =+ib/ar as asymptotes, the parabola y? = 4 pxz has no asymp-
totes because I, touches this curve at (1,0,0).

To find the asymptotes of any n-ic we first put its equation in
homogeneous form (say with x,y,2 as variables), and solve z = 0
simultaneously with it. By this means we get the slopes (or
directions) y/x = my, mgy, . . ., m, of the asymptotes. Now we
solve each of the equations y = m,xz + bz (¢ = 1,2, . . .) simul-

* The line [, is then a tangent or a line through a double point.

t The line I, is then an inflectional tangent, or a tangent at a double point,

or a line through a triple point.
179
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taneously with the equation of the curve, thus getting in each
case an equation in z and z (if we have eliminated y). Finally,
we equate to zero the coefficient of the highest power of x that
appears in this last equation, and so determine b; that we have
y = mx + b,z as the equation of an asymptote. (Compare §44.)
From the choice of m; we see that the equation in z and z will not
have a term of the nth degree in z, because y = m,x is parallel
to an asymptote.

TuLusTRATIVE ExampLE. We consider the conic 72 — 4% + 4z — 2y = 1,
which in homogeneous form is

22 —y? + 42z —2yz =22

Solving with z = 0, we get 22 — y2 = 0, so the directions of the asymptotes
are m1 = 1 and mg = —1. Solving y = = + biz simultaneously with the
equation of the curve we get

0224 (—2b1+2)zz — B3 +2b+1)22 =0

hence by = 1 gives us one asymptotey = z 4 2. Now solving y = —z + boz
with the curve we get

022+ 2be+6)2z— (b3 +2bs+1)22=0

therefore bg = —3 gives us the other asymptote y = —z — 3.

To study infinite points on curves we can put ¢ =2’, y = y’, z = z’ and
bring these points into the finite part of the plane. In non-homogeneous form
this transformation is z = 1/z’, y = y’/z’ (a bilinear transformation).
Compare §12. The line z = 0 goes to 2’ = 0 (i.e,, to l,),andsoz = Ois a
vanishing line of the transformation (compare §71); also l,, comes to z’ = 0.
This discussion is from the viewpoint of an alibi.

EXERCISES

1. Check the facts (and the algebra) about all the curves discussed in the
text, and draw these curves.
2. Find how these curves cut [,:
¥ =15 Pl -y?=2, =1
3. Find the asymptotes of
24yt -2z +4y=1 ay—9y*+22=0, 2 -y3 =31y

of the general conic (4); of the general circle.

4. Prove that an n-ic has at the most n asymptotes.

5. Make up a numerical example of a non-degenerate n-ic with n asymp-
totes, forn = 6andn = 7.

82. Use of 1, to discuss types of conics. We consider the
general equation (75) of a conic in homogeneous coordinates. The
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line I, cuts (75) in points given by the equation
ax? +by>  + 2 hzy =0

According as h* — ab % 0, the two points of intersection of (75)
with [, are real and distinct, real and equal, or imaginary and
distinct, respectively.

If b > 0, the two points on I, are (1, (—h + VA% — ab)/b, 0)
and (1, (—h — VA2 — ab)/b, 0).

If b = 0, h £ 0, the two points are (1, —a/2 h, 0) and (0,1,0).

If b = h = 0, the two points coincide at (0,1,0). (Note how we
discuss these points on I, thoroughly for all possible cases, such
asb # 0,thenb = 0and h # 0, then b = h = 0.)

According as h? — ab % 0, we have in (75) a hyperbola, parab-
ola, or ellipse if the conic is non-degenerate; but if (75) is de-
generate, we have, respectively, a pair of real and distinct lines
(called a real line-pair), a pair of real and coincident lines (called
a double line), or a pair of conjugate imaginary lines (called a
conjugate imaginary line-pair). Note how naturally the ex-
pression h? — ab arises in connection with l,, and compare its
discussion in elementary analytic geometry.

ILLusTrRATIVE Exampres. The conic
32242792 +22+6y:+82zx+ 18zy =0
cuts [, in the points given by
322+ 182y + 27y =3(x +3y)2 =0
2

Therefore this conic is a parabola, since its discriminant is # 0.

> o w
W
-

EXERCISES

1. Derive the expression h2 — ab by rotations and translations, as is done
in elementary analytic geometry.

2. Taking the polar of P’(z’,y’,2") with respect to (75) and putting on it the
condition that this polar reduce to z = 0 (i.e., that P’ be the center of the
conic), find the coordinates of the center of (75). Compare §51.

3. What sort of conic is 3 2 — 2y2 — 422 +8yz + 202z — 14 zy = 0O?
Find its center and asymptotes.

83. Circles and their circular points at infinity, minimal lines,
perpendicular lines. If the conic (75) is a circle, we now show
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that it passes through two imaginary points on I, namely (1,7,0)
and (1,—,0) called the circular points at infinity, no matter
what the center and radius of this circle may be. (Compare
§81.) We can put the circle in the form

)] 24+ 2 +2fyz+2gx+c22=0

referred to an ordinary frame of reference plus l,. Solving this
equation with z = 0 we get 22 + 4% = 0, ie., the two points
(1,7,0) and (1,—1,0).

These circular points at infinity are of great importance in
geometry. Any line (except l,) through one of these points is
called a minimal line. Through every point P’(z’,y’) in the
plane there pass two minimal lines y — ¢’ = +i(z — 2’). For
y = mx + b to be a minimal line we must have m = +i. (Why?)

Let us consider two points Pj(xy,y;) and Py(x2,y2) on the
minimal line ¥y = +ix +b. If we try to apply the distance
formula to these two points, we get V' (z; — 72)%2 + (y; — y9)? =
V(xy — x2)2 (1 +42) = 0. Trom this property these lines re-
ceive the name minimal lines. Conversely, to have the distance
between two points on a line vanish, we must have m2 + 1 = 0;
i.e., this line must be a minimal line.

Again, if we try to find the line perpendicular to y = 4-iz + b,

we see we must have its slope m = —1/47 = +14, so these
minimal lines are called self-perpendicular. Conversely, for a
liney = mx + b to be self-perpendicular, we must havem = —1/m

or m = =1, so the line must be a minimal line. Of course these
are purely formal applications of the formulas for distance and for
perpendicularity to entities for which they have in fact no meaning.

Now we show that a pair of perpendicular lines cut l, in a
pair of points that form a harmonic set with the circular points
at infinity. The lines y = mx + bz and y = —1/mz + b’z are
perpendicular and cut [, in the points (1,m,0) and (1,—1/m,0).
Taking a cross-ratio of these two points and the circular points,
we get (using non-homogeneous coordinates for points on Iy)

m—1 —1/m+i m-—7 —-1+m
—1/m—i m4+i —1—mi m+i
_ m+1 am—1
T @m+ ) im—1
so this is a harmonic set of points.

-1
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Conversely, we consider the two lines, y = mx + bz, y = m'z
+ b’z and we suppose they cut I, in points that form with the
circular points a harmonic set. We have then

m—1im +1i
m —im4+1

= -1

1
hence mm' +1=0, m' = ——
m

so the two lines are perpendicular to each other.

EXERCISES

1. Show that if the general conic (75) passes through one circular point, it
passes through the other circular point, and the conic is a circle.

2. Using the formula tan@ = (m; — msg)/(1 + mimsg), find the angle
between two minimal lines; also find the angle between any liney = mz + b
and a minimal line.

3. Find the distance between a point on a minimal line and a point not on
a minimal line; also between two points on two distinct minimal lines
y = =iz + b; also the distance of any point from such a lne.

4. In the equation ax + By + vz = 0 determine «,B3,y so that this line shall
pass through (1,7,0), through (1, —1,0).

5. Prove that if tan 6 = =1 for the angle between two lines, then one of
these lines is a minimal line.

84. Rotations and translations and l,. Putting the trans-
lation (6) into homogeneous form we get

px =z +hdd, py=y +ki, pz=2

Compare Ex. 4 in §76. This formula shows that the line [,
goes into itself by a translation (looked upon as an alib?) and also
every point (x,y,0) on 1, goes into (pz,py,0), i.e., into itself; so [,
is said to be pointwise invariant under a translation. (Compare
§33.)

Every line y = kxz/h + bz through the point (1,k/h,0) goes into
the line y' = kx'/h + b2’ (i.e., into itself) by a translation. We
call (1,k/h,0) the center of the translation. (Compare §97.)
Also every line y = mx + bz where m # k/h goes into a parallel
line 4’ = ma’ + (b 4+ mh — k)2’ by the translation. This last
result we can also obtain from the fact that [, is potntwise invariant
under a translation.

On the other hand, a rotation (being affine) keeps I, invariant
as to position, but not pointwise invariant. This we see from
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the fact that a point (z,y,0) on I, goes into (z cos 8 + y sin 6,
—z sin 0 + y cos 8, 0) by a rotation (7). The tnvariant (or fixed
or double) points on [, are given by

—sin 8 4 (y/x) cos 0
cos 8 + (y/z) sin 6’

i.e., these are the circular points (1,¢,0) and (1,~7,0). (Compare
§83.)

Conversely, suppose we want to determine the coefficients of
the general affine transformation (13) so as to keep the circular
points on I, fixed. We put the affine transformation into the
homogeneous form

(78) px = a1z’ + agy’ + az2’, py = b1z’ + by’ + b3/,
pz = cg2’

) ) .
A —= 41
T z g

We want (1,2,0) to go to (1,7,0), so we have

p=a1+a2i, p?:=b1+b2i, or p=a1+a2i=—b1i+b2

SO a = b2, Ao = —bl

Therefore we see that the rotations are only a subgroup of a sub-
group G of (13), where G is characterized by the fact that all its
transformations leave the circular points at infinity invariant.

Next we want to show that the only affine transformation leaving
l, pointwise invariant and also sending every line through a given
point (h,k,0) into itself is a translation with center at (h,k,0). Since
every point (z,y,0) goes into itself, we must havein (78) a; = b; = 0,
arby % 0, also a; = by. Since every line y = kz/h 4 bz goes into
itself, the transformed equation

k
bay’ + baz’ = 7 (a17” + ag2”) + bes?’

must be of the form y’ = k/hz’ + bz’; hence from this equation
we have
as h

b = = —_ —_— - _— = -

2 C3 a, ha3 b3 0 or b3 2
(i.e., a3 = ch, b3 = ck, where ¢ # 0). But the resulting transfor-
mation

or = 2’ + ch/ad’, oy =1y + ck/aZ’, oz=12'

where ¢ = p/a,, is a translation with center at (h,k,0).
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One more pair of corresponding points will uniquely determine
this translation (because of the presence of the single arbitrary
constant c¢/a;). Any linear transformation that keeps a line p
pointwise invariant and sends into itself any line [ through a
fixed point P on p is called an elation with center P and axis p.
(Compare §97.) A translation is evidently an elation with [, as
axis and (h,k,0) as center.

EXERCISES

1. Check all the algebra in the text; fill in all the missing details in the
discussions.

2. Determine the coefficients of (78) so that (1,7,0) goes into (1,—%,0) and
(1,—1,0) into (1,7,0).

3. Prove that a translation sends a minimal line into a minimal line,
and therefore sends circles into circles.

4. Why does the subgroup @ derived in the text send circles into circles?
Can we describe it geometrically as the only subgroup that sends circles into
circles? Compare Ex. 2.

5. What do the transformations £ = ar’, y = by’ do to [; to other points
in the plane? Hint: Consider what happens to a line y = mx.

6. Prove that a rotation sends circles into circles.

7. A homology is defined like an elation, except that the center P does
not lie on the axis p. (Compare §97.) Show that x =ax’, y = ay’ is a
homology with center at the origin and [, as axis; also one more pair of corre-
sponding points determines uniquely such a transformation. Compare §97.

8. What does a rotation do to points on the minimal lines y = =ix?
Show this analytically. How about points on the other minimal lines
y = xix +b?

9. Show geometrically that the translations (the rotations around a
point P) form a group by considering their effect on !, (onl, and P).

10. Show geometrically that the transformations z = ax’, y = by’ form
a group by considering their effect on I, and the origin. See Ex. 5.

11. Determine c¢/a1 so that the translation in the last paragraph of the
text (with h = 2, k = 3) sends (1,1,1) into (2,1,4).

12. Determineaandbinz = ax’,y = by’ so that (1,1) goes into (—1,—1);
so that (1,0) goes to (—2,0) and (0,3) to (0,4). Note that this last condition
is equivalent to sending (1,3) to (—2,4); show geometrically the reason for
this fact.

13. An orthogonal line reflection is defined as a harmonic* homology whose
center is on [, for example, z = z’,y = —y’,z = z. Prove geometrically that
a rotation is a product of two orthogonal line reflections.

85. The general affine linear transformations and .. Let us
consider briefly the effect on I, of the general affine linear trans-
formation (78) in §84. This transformation sends any point

* See §97.
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P(z,y,0) into

arby — agby aybs — aghby ’

P'( bt —agy ay — bix 0)

To find the fized (double or invariant) points on 7, of this trans-
formation, we solve the equation

y_ ay/z — by

z by — agy/x
getting

y — —(al - b2) =+ \/(al - b2)2 + 4a2b1
x 2 as

ifag # 0, or y/x = by/(a1 — be) and y/x = » if ag = 0.

According as (a; — b2)% + 4 asby % 0, (78) has two real and
distinct double points on I, two real and equal, or two distinct
and imaginary. From analogy with the way the conies cut I,
we might call the corresponding affine transformations hyperbolic,
parabolic, and elliptic respectively.

For a translation a; = b; = 1, as = by = 0, so the equation
for double points on I, becomes 0 y2/2® 4+ 0y/z — 0 = 0, which is
satisfied by every value of y/r and indicates that every point
on I, is invariant under the translation.

Note that we may look upon the transformation

(79) pr = aiz’ + agy’, py = bz’ + bay’

obtained by putting z =2’ = 0 in (78), as a transformation
among the points of I, induced by the transformation (78).
Compare §§102, 73. This transformation of the line I, may be
studied for its own sake, quite apart from its connection with
(78). In the three cases mentioned above, this transformation
on I, is called hyperbolic, parabolic, or clliptic.

ILLusTRATIVE ExamprLE. We note that
px =2z —y +32, py=2'+2y —2, pz=32

has (a1 — b2)? + 4 a1 = (2 —2)2 — 4 <0 and so is elliptic. Also this
transformation induces on [, the transformation
142w

2 —w
From the bilinear form of this transformation on I, we see that the double
pointsonlearew = =+i. Compare §§103, 73 (Ex. 1).

pz=22"—9y, py=12'+2y" or(withw =y/z) w=



REAL PLANE AS PART OF A COMPLEX PLANE 187

EXERCISES

Fill in all the algebraic details in the text.
By the method of the text find the double points on I, of a rotation.
Find theeffectonlpof z = —az’ + by’ +¢, y = bz’ + ay’ + d.
Make up two examples of affine transformations with the following
double pointson l,: (a) (1,1,0) and (1,—1,0); (b) (0,1,0) and (1,0,0).

5. Make up examples of hyperbolic, parabolic, and elliptic affine transforma-
tions.

900

86. The real plane as part of a complex plane; conjugate
imaginary points and lines. In previous sections we camec upon
imaginary points and lines, e.g., the circular points at infinity,
the minimal lines, the imaginary asymptotes of ellipses, etc.
Compare especially §37.

We shall now show that the real plane can be looked upon as
part of a so-called complex plane. First of all we note that the
real numbers can be considered as part of the complez numbers
of the form a 4+ ¢b, where a and b are any real numbers, in the
following way:

If b = 0, then a + b is a real number.
If a = 0, then @ 4 b is a pure imaginary number.
If ab # 0, then a + b is a complex imaginary number.

Now consider the point P(a + ib, ¢ + id), or P(a + 1b,
¢ + id, e + if) in homogeneous coordinates. If b =d =0 (or
b = d = f = 0), then Pis areal point; otherwise it is an imaginary
point, except when its homogeneous coordinates have a form
like (1 + ¢, 2+ 2, 3 + 3¢), which can be changed to (1,2,3)
through division by 1 + 7.

Consider next the line

(80) (@ + bz + (c+ di)y + (e + fi)z = 0

fb=d=f=0 or a+ b = a(c+ di) = B(e + fi), then we
have what we call a real line. Otherwise (80) is an imaginary
line. Such a line as (1 — )z + 2 —2)y+ (5 — 6)z =0 is
real, because upon dividing its equation by 1 — 7 we get  + 2y
+52=0.

Ordinarily we consider only part of a real line, namely, the real
points on this line. But every real line has imaginary points on
it. (Compare §36.) Thus z = 0 has on it all the imaginary
points (0, ¢ + id, e + if) as well as the real points (0,c,e). Simi-
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larly through (0,0,1) pass the real lines y = mz and the imaginary
linesy = (\ + 2u)z.

Again, if we allow the conic (75) to have imaginary coefficients
and the variables z,y,z to take on imaginary values, we have the
conics in this complex plane. Similarly, we can describe the
complex cubics and the other complex n-ies and other curves.

We deseribe the complex plane that contains the real plane as
consisting of all the points, lines, conics, cubics, n-ics, ete., that
are noted in the preceding paragraphs. Of special interest to us
arc the imaginary points on any real lines or curves that we are
studying, and the imaginary lines through any real points or
tangent to any real curves we are considering. Take, for example,
the circular points on I, and the imaginary asymptotes of an
ellipse.

(The discussions of points and of lines are plane dual to cach
other. Compare §22. Thercfore in the next few sentences we
enclose in parentheses the words that refer only to lines.)

Among these imaginary points (lines) on real lines (through
real points) we find pairs of points (lines) that are called conjugate
imaginary points (lines) because their coordinates (equations)
are conjugate imaginary numbers (have conjugate imaginary
coefficients); e.g.,

(@a+ib,c+1id, e+ i) and (a — b, c — id, e — if);
(a+db)x+ (c+idy+ (e+i)z=0
and (a—)x+ (c—idy+ (e—1i)z=0

If we multiply together the equations of these two conjugate
imaginary lines we get

(ax +cy+e)?+ (bx+dy+f2)2=0

which is a real quadratic cxpression; hence we can look upon a
pair of conjugate imaginary lines as being a degenerate case of the
real conic (75).

Note that, if b = 0in a + b, then a — 7b is the same as a + b,
namely, a. Thus we see that (2,34 + 7) and (2,3,4 — 7) are
conjugate imaginary points; also z — y + (3 + 2¢)z = 0 and
z—y+ (3 — 22)z = 0 are conjugate imaginary lines.

In projective geometry we say that a line cuts an n-ic in n points
that may be finite or infinite, real or imaginary, distinct or coin-
cident, or a combination of these cases. Thus I, cuts every circle
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in the same two imaginary (circular) points. Of course we cannot
plot these imaginary points and lines. Compare §36.

EXERCISES

1. Prove that if the product of the equations of two imaginary lines ,l’ (in
homogeneous coordinates) is a real quadratic equation, then ! and I’ are con-
jugate imaginary lines.

2. State and solve the problem concerning imaginary points that is the
plane dual of Ex. 1.

3. Prove that the imaginary line (80) always has one real point on it.

4. State and prove the plane dual of Ex. 3.

5. Find the equation of the line through the two points (2,2,1) and (3 + ¢,
2 —1t,1+424). Hint: Use (76).

6. Find in two different ways the equation of the conic through the five
points (3,0,1), (—¢,0,1), (1,51), (1,1,9), (1 + £,23,1).

7. Find the sides (also the vertices and sides of the diagonal triangle) of
the complete quadrangle (a) with vertices (¢,0,1), (—%,0,1), (3 + 2£,1,0),
B — 24,1,0); (b) with vertices (2,0,1), (2,1,0), (0,7,1), (1,2 + 1,1). See §67.

8. Solve the plane dual of Ex. 7 where the numbers in the parentheses are
now the coefficients in the equations of lines; thusonelineisiz +0y+12z=0.



CHAPTER XII

INTRODUCTION TO LINE COORDINATES AND
PLANE DUALITY

87. Homogeneous and non-homogeneous line coordinates. Let
us consider the equation of the straight line in homogeneous
coordinates

(81") Ty + Ugz + uzrz = 0
or
(81) ur + vy + wz =0

with every term put on the left-hand side of the equation.

The coefficients u,us,us (or u,v,w) taken in the proper order
determine uniquely the line (81’) or (81) just as the coordinates
Z1,29,23 (Or 2,y,2) taken in the proper order determine uniquely a
point. (Compare §§21, 22.) Thus the line3x+2y+42=10
is uniquely determined by its coefficients 3,2,4 given in this order.

Since we can multiply the equation of a line through by any
constant k # 0, we can use —3,—2,—4 or $,1,2, or 6,4,8, etc., to
give the same line. We shall call the coefficients of (81") or
(81) the homogeneous line coordinates of the line, and we write
them inside brackets as [u;,us,u3] or [u,p,w].

Note that the equation uz + vy + wz = 0 when u,p,w are
considered as constants gives us the condition that any point
P(z,y,2) shall lic on the given line [[u,n,w]. This same equation,
when z,y,z are considered as constants, gives us the condition that
any line I[u,»,w] shall pass through a given point P(z,y,2). Hence
the above equation (81) is either that of a line in point coordinates
(if u,v,w are constants) or the equation of a point in line coordinates
(if z,y,2 are constants).

For example, the equation 2 v + 3v + 4 w = 0 is satisfied by
every line J[u,v,w] that passes through the point P(2,3,4) as we
see by substituting 2,3,4 for z,y,2 in (81); therefore this is the
equation in line coordinates of the point P(2,3,4). The equation

190
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of the point of intersection of two lines l;[u;,v1,w1] and l[ug,vs,ws] is

u v w
(82) Uy vy w | = 0
U2 Vg W2

because this is a first-degree equation in u,»,w and is satisfied by
the line coordinates of I; and l;. The point of intersection of
2z —-3y+4z=0andz+y—22=0is

u v w
2 -3 4|=2u+8v+5w=0
1 1 -2

or in point coordinates (2,8,5). This makes an easy way to find
such a point of intersection of two lines.

Similarly, any higher degree equation in w;,us,uz (or wu,w,w)
gives us a so-called line locus, i.c., a family of lines whose line
coordinates satisfy this equation; just as any equation in z;,rs,23
(or x,y,2) gives us a point locus, i.c., a family of points whose point
coordinates satisfy this equation. Thus the line locus uv = w?
has on it such lines as [1,1,1]] or z +y +2 =0, [—1,—1,1] or
—r—y+2z=0,[231or2zx+%y+2=0. To find lines of
this locus we can give w and v arbitrary values and determine u
by the equation u = w?/v.

To find the common lines of two line loci we solve their equations
simultaneously. TFor example, if we solve simultaneously the
equations u? + v2 = w? and 2 uv = w? we find these two loci
have in common the lines

[£V2,+£V?22] or £V2z+V2y+22z=0

Notice how all this discussion is just the plane dual of the discussion
of point loci. (Compare §§22, 86.)
The most general equation for a second-degree line locus is

(83) A+ B2 4+ Cuw? 4+ 2Fw +2Guwu + 2 Hw =0

A H @G
IfA=|H B F |=0, we see at once, by a comparison with
G F C

the discriminant T of (4) or (75), that (83) is factorable (and
then is called degenerate). Also (83) has only five essential con-
stants, so in general five lines uniquely determine this locus. Com-
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pare §42. To find the locus (83) that contains the five lines
[0,0,1], [0,1,0}, [1,0,0], [1,1,1], [2,—1,1], we substitute these line
coordinates in (83) and get the equations

C=0,B=0,A=0,F+G+H=0, -F+2G—-2H=0

Hence the desired locus is —4 vw + wu + 3 uwv = 0. .

We shall also set up what are called non-homogeneous line
coordinates for any line mot through the origin. Compare the
exceptional character here of lines through the origin with the
fact that we must except the points on I, (or on the side XY,
of a triangle of reference) when we set up non-homogeneous point
coordinates. Such a line (not through the origin) can be written
—z/a —y/b+1=0, and we take v = —1/a, v = —1/b as
non-homogeneous coordinates for this line.

Such non-homogeneous line coordinates are useful in drawing
any line (just as non-homogeneous point coordinates are useful in
plotting a point). Thus the line [5,3,4] in non-homogeneous
coordinates is [,2], and its intercepts are a = —%, b= —4%.
More generally the line [u,»,w] is [u/w,»/w], and its intercepts are
a = —w/u, b = —w/v. Note the resemblance to changing from
homogeneous to non-homogencous coordinates for finite points
in the plane (or, if a triangle of reference is used, for points not on
XuYyp)-

EXERCISES

1. Check all the algebra in the text.

2. Use another way to find the locus —4 vw + wu + 3 uv = 0 from that
given in the text. Hint: Compare §42.

3. How does comparison with the discriminant of (4) show that (83) is
degenerate if A = 0? Hint: Replace a by 4, = by , b by B, y by v, etc., in
(75), then the derivation of the discriminant of (4) is valid here if we use the
method that consists of solving (4) for y in terms of z (given in §16). Why?

4. Find in two ways the line locus (83) having on it the lines [7,0,1}, [—1,0,1],
[0,7,1], [0,—3,1], [1,6,1]. Hint: Dualize the two methods used in finding the
equation of a conic through five given points.

5. Find the vertices (also the vertices and sides of the diagonal triangle)
of the complete quadrilateral: (e) with sides [1,0,1], [0,1,1], [1,1,0], [1,1,1];
(b) with sides [¢,1,0], [—%,1,0), [1,7,1], [1,—%,1].

6. Draw the line loci (in homogeneous coordinates) uy = w
(in non-homogeneous coordinates) u = 03, u = v, v? = u.
7. Solve simultaneously and interpret your solution geometrically:

2 u? — p? = w?;

Su+2v+4w=0, u—v+w=0; and w+ov:=w? u=3w
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8. Interpret geometrically H> — AB % 0 for (83). Compare A% — ab % 0
for (4).

9. Find the lines through (0,0,1) that belong to the loci wv = w?

u? —v? = w?

88. Triangle of reference for line coordinates; axes and line
coordinates. We might now, in a manner dual to the way we
proceeded with axes (or a triangle of reference) for point coordi-
nates, set up what we call centers (or a triangle of reference) for
line coordinates. Instead of the axes * = 0, y = 0 we should have
as two centers the points u = 0, » = 0 (for non-homogeneous line
coordinates).

To set up a triangle of reference for homogeneous line coor-
dinates we can take any three non-collincar points as vertices
and give them, respectively, the equations « = 0, » = 0, w = 0.
Then we can take any line through u = 0 (not a side of the tri-
angle of reference) and call it [0,1,1], also a second such line
through » = 0 and call it [1,0,1]; or we can take any line not
through a vertex of the triangle of reference and ecall it [1,1,1].
Note how this is dual to our discussion of unit points in
§70.

The line [1,1,1] cuts the side [1,0,0] of the triangle (see the
adjoining figure) in the point » = w, and the side [0,1,0] in the
point v = w. The line joining v = 0 to v = w is [0,1,1], and the
line joining » = 0 to u = w
is [1,0,1]. To find the lines
[0,2,1] and [2,0,1] we dual-
ize the construction given
in §§64, 65 for obtaining
the points (0,2) and (2,0);
namely, we join the point
of intersection P of the
lines [0,1,1] and [1,0,1] to
the point w =0 by the
line p. (Dually we found in §70 the point of intersection P,
of the line joining (0,1) to (1,0) and the line XY, or z = 0.)
Then the lines joining P’ (the point of intersection of p and [1,1,1])
to v = 0 and u = O are the lines [2,0,1] and [0,2,1], respectively.
(Dually we joined the point (1,1) to P, and labeled with (2,0)
and (0,2), respectively, the points of intersection of this line
with y = 0 and z = 0.) In a similar manner we could dualize
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all the constructions in §70 and get the lines [3,0,1], [—1,0,1],
[£,0,1], etec.

It is more useful to have the same triangle of reference for both
point and line coordinates. In this case we see that the point
(0,01) is w =0, (1,0,0) is v =0, (0,1,0) is ¥ = 0. The line
[1,1,1]is z + y + 2z = 0, which cuts [0,1,0] or y = 0 in the point
(—1,0,1) or v = w and cuts [1,0,0] or z = 0 in the point (0,—1,1)
or v = w. We see that in the non-homogeneous system of line
coordinates the point (0,0,1) or w = 0 plays a role similar to that
of the line [0,0,1] or z = 0 in non-homogeneous point coordinates.

Note that the last paragraph applies without the change of a
word — except the words * triangle of reference” to the words
“axes plus I, ” — to the case where the plane is referred to axes
plus l,. In this case w = 0 is the origin, v = 0 is the inter-
section of the z-axis with l,, v = 0 is the intersection of the y-axis
with .

EXERCISES

1. Complete the discussion of a triangle of reference for non-homogeneous
line coordinates (dualizing the discussion for point coordinates in §70) by
locating the lines [3,0], [0,3], [—1,0], [0, — 1], [£,0].

2. Do the same as in Ex. 1, only for axes plus l..

89. Cross-ratios of non-homogeneous line coordinates. The
logical thing to consider next is what we mean by the cross-ratios
of four concurrent lines. Compare §23. Suppose the four lines
(in non-homogeneous line coordinates) are [uy,w;], [us,v2], [us,03],
[u4,v4] and they intersect in the point v = mu + b. We define
one of the cross-ratios of these four lines by the fraction

ul——u2u3—u4_v1—vz1)3—v4

(84) =
Uz — Uz Uy — Us V3 — Vg V; — Vg

By the dual of the argument given in §23 we can show that (84)
is invariant under transformations of the form

(85) u=ou +ap + a3 v=pu +p8" +8s

a;  az
B1 B2
(and so are the duals of affine transformations, which leave z = 0
invariant as to position). If we submit (84) to the transformation

where # 0, which leaves w = 0 invariant as to position
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(85), we get
a1 (uy — ug) + aa(v] — v3) ar(ug — ug) + aa(vg — vy)
a1 (ug — uz) + az(vy — v3) a1 (ug — ug) + ez vy — vg)
But v, = m'u] + b’, where 7 = 1,2,3,4 and where v’ = m'u’ + b’
is the point into which (85) sends v = mu + b. Substituting
these values for the v’s into the above fraction, we get
(ert—asml) (u] — ug) (oer——eaem’) (uz — uy)
(eer—eam) (ug — ug) (or—t—enm’) (u] — ug)
which shows that (84) is invariant under (85).
Next we want to show that the four points P, Ps, P3, P, in
which the above four lines cut any other line [usvs] have the

same cross-ratios as the above-defined cross-ratios of the four
given lines. These four points are

u v 1
w, v 1= @ —v)u+ (us— w)v+ (uvs — us,) =0
Us Us 1

where 7 = 1,234 or P; ((v; — v5)/(uws — usv:), (us — u;)/
(u,ws — usv,)). Taking the corresponding cross-ratio (z; — z2)/
(3 — x2) - (w3 — 24)/(T1 — 74) We get

vy — Vs Vg — U5 U3 — U5 Vg — Vs

U5 — UsVy UV — UgV2 UIVs — UsV3 U4V — UpV4
1Y5 5 2 2, 5

V3 — Vs Vo — Vs V1 — Vs Vg — Vs

UgVs — UsV3  UVs — Usl2 Uls — UsVy  Uals — Usls

If we simplify this complicated fraction, then substitute v; = mu;
+ b where ¢ = 1,2,3,4 we find that the resulting expression is
(uy — ug)/(ug — ug) - (ug — ug)/(ur — ug). Compare §27.

EXERCISES
u v 1
1. Prove that | u; »; 1 | = O gives the equation of the point of inter-
us v 1

section of the two lines [u;, ;] and [us, vs]. Compare §87.

2. Check all the algebraic work in the text.

3. Use the method of the text to prove that (13) leaves the cross-ratios of
points invariant.

4. Show that if (13) leaves (0,0,1) invariant, this transformation causes on
the line uz + vy + wz = 0 a transformation (24) that can be put in the form
(85).
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5. Find a cross-ratio of the four lines y = m,z + b, where 7 = 1,2,3,4.
Find the four points in which these lines cut any line z/a + y/8 — 1 = 0,
and the corresponding cross-ratio of these four points.

6. Showthatz =0,y = 0,y = mz,y = —maz form a harmonic set of lines.
(Compare §27.) Find a cross-ratio of the four points in which these lines
cut ly.

7. Make up numerical examples to illustrate the text.

90. Points of contact of line loci; line coordinates for tangents
to curves. An ordinary tangent to a curve (i.e., point locus) at a
point P’ can be defined as the limiting position of a secant through
two points P’ and P’/ on the curve as P’/ — P’ along the curve.
Compare §46. Similarly (and dually) we define:

DErFINITION. The point of contact of a line I of a line locus is
the limiting position of the point of intersection of two lines ¥’
and I’ of this line locus as I’ — 1’ along this locus (i.e., through
the set of lines that make up the line locus).

The locus of these points of contact is in reality a point locus,
and the lines of the line locus are the tangents to the point locus
(since the line ! joining the points of contact P’ and P’/ of the
two lines I’ and I’ described above approaches the same limiting
position I’ as I’ — U/, and so P’ — P’; also 1 is a secant of the
point locus formed by the points of contact of the lines of the line
locus). We can therefore describe a point P’ of a curve as the
limiting position of the point of intersection of two tangents ¢’ and
'/ to this curve as t’/ — ¢'.

We shall now dualize from §46 the derivation of the equation
of a tangent to the curve f(z,y) = 0 and obtain the equation (in
non-homogeneous line coordinates) of a point of contact of the
line locus ¢(u,p) = 0. Consider any two lines [v/ '] and [u/ +
Au, v’ + Av] of this locus. The point of intersection of these two
lines is

v—1 _ u—u
o — (0 4+ M) W — (W + Au)

since this is a first-degree equation that is plainly satisfied by
the coordinates of the two lines. If we let Au— 0 (so that
Av — 0), we get the equation of the point of contact of [u’,v'],
namely,

(86) v—v =—J (w — o)

A
or v-v'=——1-)(u—u')
Au
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EXERCISES

1. Find the points of contact of [1,1] on the curves v2 = u3,vu = 1.

2. Find the two points of contact of [1,1] for each of the two curves u? + v?
=1and wv = —2. Hint: Dualize the method of finding the tangents to a
given conic from a given point not on this conic.

3. Dualize and interpret geometrically the discussion in §§47, 48 of points
of inflection and multiple points.

4. Do the same as in Ex. 3 for asymptotes to curves; also for poles and
polars with respect to conics.

91. The conics and other n-ics in line coordinates; the class
of an n-ic. Given the equation of an n-ic in point coordinates it
is possible (though often very difficult) to find the equation in
line coordinates of the line locus composed of the tangents to
this point locus. We call this latter equation the equation of the
given curve in line coordinates.

The degree n of the equation of the above-mentioned curve in
point coordinates is called the degree of the curve. The degree m
of the equation of this curve in line coordinates is called the class
of the curve.

We showed in §43 that the degree of an n-ic is the same as
the number of points in which any straight line I cuts the curve,
counting in imaginary points, counting two coincident points
twice, etc. The class m of a curve will now be shown to be the
same as the number of tangents to the curve from any general point
P not on the curve. This we see by taking P as w = 0, then
solving w = 0 simultaneously with the mth degree equation of the
curve in homogeneous line coordinates. We get thereby an mth
degree homogeneous equation in % and v to determine the tangents
passing through the point w = 0.

The above choice in the proof of w = 0 for the general point P
merely amounts to a change of the triangle (or axes) of reference
and so does not harm the generality of the proof, because linear
transformations of coordinates cannot alter the number of tangents
to a curve through a given point. As an illustration of this
theorem we see that from w = 0 there are three tangents to the
curve (u? — v?) (u + 2v) = 3uvw, namely, [1,1,0], [1,—1,0],
and [1,—3,0l. We shall prove later on (in §124) that the class
m of an n-ic usually is given by the equation m = n(n — 1) — 246
— 3 x where 6 is the number of nodes on the n-ic and x the number
of cusps.
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If we want to determine the equation of an n-ic in line coordinates,
we can proceed as follows. Solving uz + vy 4+ wz = 0 for 2, we
get z = —(ux + vy)/w. Substituting this value of z in the
equation of the n-ic, f(z,y,2) = 0, we get an equation in y/z,
namely, ¢(y/z) = 0 This equation ¢(y/z) = 0 gives us the
slopes of the lines from (0,0,1) to the points of intersection of the
n-ic with uz + vy + wz = 0. If this last line is tangent to the
curve, then at least two of the lines from (0,0,1) must coincide;
hence ¢(y/z) = 0 must have at least a double root in y/z.

If we have a general equation of condition for ¢(y/z) = 0 to
have a multiple root, we can use this condition to get an equation
in u,,w as variables, i.e., the equation of the n-ic in line coordi-
nates. Otherwise we can eliminate y/z between ¢(y/z) = 0 and
¢’ (y/z) = 0 (where ¢’ means the derivative of ¢ with regard to
y/x) and thus obtain the equation of the n-ic in line coordinates.
. As examples of the above method of getting the equation of
an n-e in line coordinates, let us consider the following curves.

In the circle 22 + y? = r%? we put z = — (uz + vy)/w and get

22(w? — r2u?) + y?(w? — r??) — 2r2uvzy = 0
The condition that this quadratic equation have a double root is
rfu?? — (w? — r2u?) (W? — r%?) = W (—w? +r2u2 + %) =0

which 1s the desired equation in line coordinates. Here w = 0
is the equation of (0,0,1) and gives us the two asymptotes of the
circle. We note that we are told by the rest of the last equation
that any line

ur+ovy£rvui+2z=0

where u and v are arbitrary, is a tangent to the circle 22 + y2 = %2,

In the cubic y%2 = 2® we put z = — (uz + vy)/w and get
3
wx T
wed +umy® +of =0 or T +“;+v =0

From the condition (45) for a cubic in one variable z/y to have

a double root, we obtain (since here ap = w, a; = 0, ay = u/3,
az = v) the equation

3

W + 4 wu

=0 or w27vw+4u®) =0
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as the equation of this cubic in line coordinates. Note that
such a line as 2 + y — o4 2 = 0, i.e., [1,1, — %] is a tangent to
this cubiec.

Another way to solve this problem of the cubic is to take the
derivative with respect to z/y of

wzd wx?

... 3
——2—+——ux+v=0, which is s~ +tu=0
Y Y Y

We have now

z (wz? ) u —u )

ol (eniadl = — + 2 —= = —
y(y2+u v or 3w(w 3w+u v
hence the equation of the cubic in line coordinates is 4 u®/27 w

= —v? (which is obtained by squaring the last equation).

Next we consider the quartic 43z = 2. We get

wzt

Iy
Using the condition (47) for a quartic equation in one variable
to have a double root, we get (since ap = w,a; = az = 0,a3 = u/4,
a4 = v) the equation

wrt + uxy® + oyt =0 or +%x+v=0

2

L3 — w00 53 _ 27w’
(w - v) 2710 O u/4 | or ww 256
0 u/4 v

as the so-called line equation of our quartic curve. By the other
method we have 4 wz3/y® + u = 0. Soz/y(wz/y® +u) +v =0
gives us vV —u/4 w(w- —u/4w + u) = —v; hence (cubing this
last equation) we have again the equation 27u*/256 = v3w.

Finally we shall derive the equation of the general conic (75)
in line coordinates. We do this by considering the condition that
a line shall be tangent to this conic. We can write the equation
(5), when put in homogeneous coordinates, of the tangent to this
conic at a point P'(z',y’,2') as uxr + vy + wz = 0. Hence,
since also P’ must lie on this tangent, we have

—putar’ +hy +92 =0, —pv+ b’ +by + 52 =0,
—pw+g:c’+fy’+cz' = (), 0-p+ux'+vy'+wz' =0
These equations may be looked upon as four linear homogeneous
equations in the four unknowns p, 2/, ¥/, 2’. In order that these
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equations may have a solution not all zero, we must have

—u a h ¢

—v h b f|_

(87) —w g f ¢ =0
0 v v w

If we expand this determinant we get the equation of (75) in line
coordinates, namely (83) where A,B,C, . . . are the cofactors of
a,b,c, . . . in the discriminant T of (75).

Note that such a conic as 22 = 0 has no equation in line co-
ordinates, whereas u? = 0 has no equation in point coordinates.
As an illustration the conic 22 + ¥ — r%% = 0 has the line
equation

_ (1) ‘1) 8 01 0 10 0
w0 0 —g2 | = 00 —2 (400 0 —r?
0 u v w u v w w v w
1 0 0
—-w|0 1 0 |=r??+r?—uw?=0
u v ow

EXERCISES

1. Check all the algebra in the text, filling in missing details.

2. Prove that the general cubic curve (38) ordinarly is of class six.
Hint: Substitute z = — (ux + vy)/w, ete.

3. Prove that the general quartic curve ordinarily is of class twelve.

4. Find the equation in point coordinates of the line conic (83) by dualizing
the discussion in the text. Hint: The coefficients a,b,c, . . . are proportional
to the cofactors of 4,B,C, . .. in the discriminant A of (83). Prove this fact,
or look up its proof in Bécher’s ¢ Higher Algebra.”

5. Find in three ways the equations in line coordinates of:

22y

y2=4pz, 22 +9y?+292+2fy+c=0, ‘?ib—g =1 ay=1
Hint: Change to homogeneous point coordinates.

6. Find in two ways the equations in line coordinates of:

y=2a% =22 x1), Y¥=2-1)(z—-a), y=242%y=1
7. Find the equations in point coordinates of:

=dpu w2+ +2gu+2fo +c=0, Z—z o1, w=
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8. Find the equations in point coordinates of:

2

u? =1, ud 403 =3w

_ u
Tt

9. Give the classes of all the curves in the text and in the above examples.
10. Prove that if ¢(y/z) = 0 is to have a double root in y/x, then ¢(y/z)
and ¢’(y/x) must have a common factor.

92. Plane duality. In §22 we defined duality in a plane (called
also plane duality). Since then we have kept pointing out duality
as it arose and using the principle of plane duality in our discussions.
Now we shall prove that plane duality is not only a characteristic
of geometrical definitions and theorems in plane geometry, but
(when [, is included in the plane) it gives us also a method
of proof of many theorems. That is, we shall show:

TuroreM. If we interchange the words point and line (collinear
and concurrent, elc.) in any projective theorem® in plane analytic
geometry, where the line at infinity is included in the plane, we shall
have a new theorem whose validity follows from that of its dual theorem
and therefore requires no further proof.

For all the results that are obtained by purely analytic means,
the above thecorem follows at once from the fact that, in any of
the equations or formulas we use in plane analytic geometry, the
homogeneous variables z,y7,2 may be replaced by w»,w; the
algebraic manipulations will still be valid; and the analytical
results will be theorems or expressions in line coordinates concern-
ing line loci, where the dual theorems and expressions were in
point coordinates and had to do with point loci.

The line at infinity must be taken as part of the plane in order
to use duality because, whereas any two distinet points determine
a line, any two distinct lines determine (i.c., intersect in) a point
if, and only if, we assume that two parallel lines intersect on [,.

If z,y,2 and u,w,w are referred to a triangle of reference, we
cannot use duality in our analytic work until we have shown that
the duals of the purely geometric discussions of §§66, 67, 68, 69
(that were at the very foundation of the discussion of a triangle of

* Roughly speaking, such a theorem is one that does not involve lengths of
line-segments or measures of angles. This is because in this discussion we
are not differentiating between finite and infinite points and also we are not
singling out for special treatment the so-called circular points at infinity.
See §83.
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reference) are valid. The dual of Desargues’ theorem on two
perspective triangles was proved in Ex. 3 of §66. The dual of
the fundamental theorem on quadrangular sets of points is con-
tained in Ex. 13 of §69. Therefore we can dualize our analytic
results, even when the point and line coordinates are referred to a
triangle of reference.

EXERCISES

1. Show how the dual of the theorem on quadrangular sets of points enters
into the discussion of a triangle of reference for line coordinates as given in
§88. Hint: Dualize parts of §§64, 65, 70.

2. Dualize the theorem that any two conics intersect in four points, using
the idea of tangents to point conics.

3. Dualize a bi-tangent. See §42.

4. Dualize the definition of a tangent at a point of inflection on a curve.
Hint: Such a tangent is the limiting position of a chord PP’P’’ as P’ — P
if at the same time P’’ — P.

5. State and dualize the theorem illustrated in the following figure. (This
theorem is called Pascal’s theorem about a hexagon inscribed in a conic.)

93. Plane duality from the purely geometric (synthetic) stand-
point. We shall not give the complete proof of the validity of
plane duality for results that are obtained by purely geometric
means (called synthetic as opposed to analytic). Note that the
validity of duality for analytic discussions follows from its validity
for purely geometric discussions because of the way coordinates
are assigned to points and lines in this book. However, it is not
true that conversely the validity of plane duality for purely geo-
metric discussions follows from its validity for analytic discussions.

We shall state here that all the geometry in this book could have
been built upon the foundation of the following assumptions (see
Veblen and Young, ¢ Projective Geometry,” Vol. II, pp. 2, 3):

() If A and B are distinct points, there is one and only one
line passing through A and B.

(8) If A,B,C are points not all on the same line, and D and E
(D £ E) are points such that B,C,D are on a line and C,A,E are
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on a line, there is a point F such that A,B,F are on a line and also
D,EF.

(v) There are at least three points on every line.

(6) There exists at least one line.

(e) All points are not on the same line.

() All points are not on the same plane. (For the definitions
of a plane. and of a three-dimensional space see further on in this
section.)

(n) If S3 is a three-dimensional space, every point is in Ss.
(Or we may assume that all points are not in the same Ss;
and if S, is a four-dimensional space, every point is in S,.
Or we may assume the existence of still higher dimensional
spaces.)

(@) In the setting up of the axes plus I, and of the triangle of
reference in §§64, 65, 70, the points on the axes and I, (or on the
sides of the triangle of reference) that we obtained are such that
their non-homogeneous coordinates are in one-to-one correspond-
ence with the real numbers, i.e., we exhaust all the points on
these lines that are determined as described when we exhaust the
real numbers as labels.

Note that () does not preclude the ecxistence of imaginary
points on these axes and I, (or on the sides of the triangle of
reference) but merely states that we cannot locate such points
geometrically by the means at our disposal.

Also we note that a point is an undefined element in the above
assumptions. A line is defined as a set of points by the assump-
tions (a)-(e). A plane (and similarly a thrce-dimensional space,
ete.) is to be defined in terms of points and lines in the following
manner:

DeriniTION. Given a line p determined by two points A and B
using assumptions (o) and (8), we take a point P (not on p)
whose existence is guaranteed by assumption (¢). The plane =
(that is said to be determined by P and p) is then defined as
consisting of all points collinear with P and some point of p.

We see that we must assume the existence of an infinitely distant
point on p in order to include in 7 the points on the line through
P that is parallel to p.

By means of assumptions («) through (n) and the above defi-
nitions we could now establish the necessary theorems about
points, lines, and planes that would be essential in the proof of
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such fundamental results as Desargues’ theorem on perspective
triangles. These theorems are such as the following:

(a) Every point on a line lin a plane = lies in .

(b) Any two lines in = intersect in a point of .

(¢) The plane = is uniquely determined by any three non-
collinear points of = (not alone by 4,B,P as in the above defini-
tion).

(d) The plane = cuts any other plane =’ in a line (which line
is I, if = and «’ are parallel).

(e) The plane 7 cuts any line I not on = in a single point (which
point is on 1, if = and [ are parallel).

(f) Three planes that do not interscct in a line must inter-
sect in a point (which may lie on I,). See Veblen and Young,
“ Projective Geometry,” Vol. I, pp. 15-25.

The only place in this book so far where we step out of the plane
in our discussion is in the derivation of Desargues’ theorem on
perspective triangles in §66. The above-mentioned assumptions
(a)-(n) and elementary theorems (a)-(f) arc sufficient to prove
this theorem.

The plane duals of the above assumptions a, 8, v, §, ¢, 8 are as
follows:

(o) If I and m are distinct lines, there is one and only one
point of intersection of I and m.

(8’) If lm,n are lines not all through the same point and p and
r (p # r) are lines such that m,n,p are concurrent and n,l,r are
concurrent, there is a line s such that l,m,s and also p,r,s are con-
current.

(v") There are at least three lines through every point.

(8') There exists at least one point.

(¢) All lines are not through the same point.

(0’) In setting up the centers plus the origin (or triangle of
reference) for line coordinates in §88 the lines through the centers
(or-through the vertices of the triangle of reference) are such that
their non-homogeneous coordinates are in one-to-one correspond-
ence with the real numbers.

We shall prove most of the above duals of the original assump-
tions but shall refer the student to Veblen and Young, loc. cit.,
for the derivation of the above-mentioned elementary theorems
on points, lines, and planes.

Using these assumptions and their above duals, the elementary
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theorems mentioned above, Desargues’ theorem and its dual,
and also the fundamental theorem on quadrangular sets of points
and its dual, we can then proceed to prove the theorem of plane
duality by the following statement:

Proor. Any proposition deducible from the above assumptions
and from the elementary theorems mentioned above (which
theorems are in turn deducible from these assumptions) is obtained
from these assumptions and theorems by a certain sequence of
formal logical inferences. The same scquence of formal logical
inferences may be applied to the duals of the above assumptions
and theorems and the result will be valid. DBut this last result
will be merely the original proposition with the words point and
line, concurrent and collinear, etc., interchanged. Hence we can
prove either one of two dual theorems, and the other theorem fol-
lows at once by plane duality. (Compare Veblen and Young,
loc. cit., Vol. 1, pp. 28, 29.)

We shall now prove most of the duals of the above assumptions.
We leave the statement and the proof of the duals of the above
elementary theorems (a)—(f) to the student in the exercises.

For (a’) we refer to the theorem (b) that any two lines in a
plane interscet in a point. See Veblen and Young, p. 18.

For (8’) we note the adjoining figure. The points P, R, S
exist, by (a’). The given lines p and
r intersect in T, by (a’). The points
S and T determine the desired line s,
by (o).

To prove (y') we take a point P.
There exists at least one line [ by ().
I: If I does not pass through P it has
at least three points, R, S, T' by (v).
The points Pand B, P and S, P and T
determine the three required lines, by (o). II: If [ passes through
P, it has another point R, by (y). Also there is a point S not on
l, by (¢). Moreover, R and S determine a line m, by (). On
m there is another point T, by (y). The points P and R, P
and S, P and T determine the three required lines, by ().

The proposition (5”) follows from (8) and (y).

To prove (¢) we take any given point P and a line ! through it.
The existence of [ is assured by (8), for if [ does not pass through P
then (') is proved by the existence of I. On ! we have a point R,
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by (v). There is, by (e¢), a point S not on ! The line RS,
given by (a), is the required line not passing through P, because
if RS passed through P then (a) would be violated.

Finally we prove (8’) as follows: The two-point form for the
equation of a line (especially the determinant form, in homogene-
ous or non-homogeneous coordinates) shows that the coefficients
(hence the line coordinates) of this line are real if the two points
are real. Hence (6") follows from (6).

EXERCISES

1. Draw figures for assumptions (8) and (8’).

2. Generalize the definition of a plane = that is given in the text and obtain
the definition of an S3, of an Sy.

3. State and prove the duals of the elementary theorems (a)-(f) mentioned
in the text as being at the foundation of a proof of Desargues’ theorem.

4. To prove (v’) in the text we take a point P. Prove the existence of P
by earlier assumptions.

5. Show how Desargues’ theorem follows from assumptions (a)-(7) and
the elementary theorems (a)-(f). This fact is merely stated in the text.

94. Points and lines and plane duality from a strictly analytic
viewpoint. Another way to approach the subject of plane duality
is to define a point P as an entity given analytically by a set of
coordinates z,y,2 and a line | as an entity given by an equation
of the form wux + vy + wz = 0, where [u,»,w] are called the
homogeneous line coordinates of I. Here (kz,kykz) for k > 0
is the same point as (z,y,2) and (0,0,0) is no point at all, similarly
for [ku,kv,kw] and [0,0,0].

Next we show that the assumptions (a)-(y) and Desargues’
theorem are valid for the above-defined entities, if we call (z,y,2,t)
a point in space and

ur+vy+wz+1rt=0

a plane in space. Then we replace () by the assumption that
x,9,2,t and u,w,w,r are real numbers (or complex numbers or some
other sort of numbers; compare §§86, 136, 138).

Assumption («) is satisfied by the above entities, because the

T Yy =z
equation | &; y1 2 | = 0 gives us such a line through any
T2 Y2 22

two points P;(r1,y1,21) and Py (x2,y2,23).
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We shall leave the validity of (8) for the student to prove in the
exercises.

To show (v) is valid we note that any point (z; + Az, y1 + ANy2,
21 + \23) satisfied the above equation of the line through P; and
P,.

Assumption (8) is satisfied because z = 0 is such a line.

To prove (¢) valid we note that (z1,y1,221) is not on the line
through P; and Ps.

For (¢) we note that (0,0,0,1) is not on the plane ux + vy + wz
+ 1t =0ifr # 0.

From this discussion of the assumptions, and a similar strictly
analytical treatment of the elementary theorems (a)-(f) which
we leave for the exercises, Desargues’ theorem follows as in the
book. Or, to keep our ideas more analytical, we could now
proceed to prove Desargues’ theorem analytically for the above
entities that we call points and lines.

EXERCISES

1. Prove Desargues’ theorem and the fundamental theorem for quad-
rangular sets of points analytically for the entities called points and lines in the
text.

2. State () for the points and lines in this section. How do we insure the
validity of (n) in this case?

3. Prove the elementary theorems (a)-(f) analytically for the points and
lines in this section.



CHAPTER XIII

INTRODUCTION TO GENERAL ANALYTIC
PROJECTIVE GEOMETRY

95. General linear (or projective) transformations in point and
line coordinates, general analytic projective geometry. In this
section we come to the most general linear (or projective) trans-
formation of the homogeneous variables z,y,2, namely (see §76):

(88) pz = air’ + ay + aze’, py = bz’ + bay’ + bs?,
0z = cix’ + oy’ + ¢’

where we introduce p (an arbitrary non-vanishing constant) be-
cause of the homogeneous character of the variables z,y,2 and

z'y' 2. Theinverse of (88) is

88) o' = Az + By + Ciz, oy’ = Asx + Byy + Caz,
G'Z, = Aax + Bgy + 032

where A,, By, ete., are the cofactors of ai, by, etc., respectively,
in the following determinant A of the coefficients of (88).

a; Qaz ag
A= bl b2 b3
€t C2 C3

ando = A/p.
We do not consider the cases where A = 0, because for these
cases

p(A1z + By + C12) = (14 + By + ¢1C1)2’ +
(@41 + b2B1 + ¢2C1)y’ + (azdy + b3B; + ¢3Cy)7’
=0-274+0-4+0-2=0

This last equation means geometrically that no matter what
point P’(z’,y',z') we take in the plane, the corresponding point
P(z,y,2) lies on the one line A1z 4+ Byy + C1z = 0. In this case
(88) is called singular, and has no inverse. We shall suppose
A (the so-called discriminant of the transformation) does not
vanish.

208
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If we follow (88) by a similar transformation with matrix

M =| b b, b;| and discriminant A" % 0, also with o’ in
4 ’ /
6 C ¢

place of p, we obtain the product (see §§13, 71) of (88) by this
new transformation:

(89) rz = (a1a{ + asby + aszc))x’ + (a1ay + asby + ascs)y’
+ (@105 + asbs + asey)?’

7y = (biay + bsb] + bsc)z’ + (biag + bobs + bgeh)y
+ (biag + bgbs + byes)z’

1z = (c101 + c2by + cze])x’ + (c1ay + coby + esch)y’
+ (c1a5 + cobs + cze3)?

with matrix M" = M - M', where M is the matrix of (88), with
discriminant A’ = A - A’ # 0, and with 7 = pp’ % 0. Here the
product of two matrices is defined to be like the product of two
unexpanded determinants.

If we perform first the transformation with matrix M’ and
then (88), we obtain a new product with matrix M|’ = M’ . M,
and discriminant A{’ = A’- A 2 0. Ordinarily M"" % M}’ even
though A’ = A{’, so the new transformation is usually not the
same as (89). Hence we sec that two general linear transfor-
mations of the form (88) are ordinarily not commutative (per-
mutable). If we represent (88) by T and the transformation
with M’ by T’, we express this fact by TT’ = T'T. (See §9.)

The identical transformation (identity) in homogeneous co-
ordinates

(90) x=2, py=y, pz=2

belongs to the set of transformations represented by (88), as we
see by putting a, =1, ag=0a3=0, by =b3=0, by =1,
Cl=62=0, cz = 1.

The inverse (88’) of (88) has (if we interchange z and z’, y and
y’, z and 2’) the same form as (88) only with a, replaced by Ay,
as by By, ag by Ci, ete. Also the product (89) has the form of
(88) with aja; + azb{ + asc; instead of ai, aja; + agby + ascy
instead of ag, etc. Moreover, the product in the other order of
(88) and the transformation with matrix M’ has the form of
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(88) with aiaf + biaj + cia; instead of ai, asa; + bsaj + cza}
instead of as, ete.

Hence the general projective (linear) transformations form a
group (see §31), with the affine linear transformations as a sub-
group. There is a general projective geometry corresponding to
this general projective group of transformations (compare §35)
in which we study the invariants under this group (compare
§§18, 20). The affine geometry and Euclidean geometry we may
call sub-geometries under this general projective geometry (com-
pare §32).

If we subject the variables z,y,2 of the general line ux + vy +
wz = 0 to the transformation (88), we obtain a new line u'z’
+ o'y’ + w'z’ = 0 with the following relations between v, w’
and wu,w,w (compare §21).

91) 1 =au+bw+cw, ™ = ayu + by + cow,
rw’ = azu + by + cgw, 7#0
or

91) ou = Ay’ + A’ + Asw’, ov = By + By’ + By,
ow = Ciu + Cp' + Csw', o= A/r
We may look upon (91) as a transformation of line coordinates
induced by (88), or simply as (88) in line coordinate form. Or we
may consider (91) on its own merits, quite apart from any asso-
ciated transformation in point coordinates.
NumericaL IvLusTraTIONs. We note the transformation

T:pr=z"4y" —2, py=2"—y' +2, p2=—2'+y +2

1 1 -1
which has A = 1 -1 1| = —4 and so is not singular. Also T—!
-1 1 1

(the inverse of T') has the following form (solving T for z’,y’,2’ in terms of
z,Y,2 then interchanging z and 2/, y and »’, z and 2’):

Tlioz = =22’ —2y’, oy = —22' — 22, oz = -2y —22’

where ¢ = —4/p. Also T in line coordinates is

’

w=utvr—w w=u—vt+w Tw=-—-ut+v+w
or
ou=—-2u —2v, 0= —-2u" —-2w, ow=—-2v -2w’
!
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Again we take a transformation

Ti:ip'z=2"—y' =2, ply=—2"—y' +2, plz=—2"+y -2
1 -1 -1
with A; =] -1 -1 1 | =4. From (89) we see that T'T is
-1 1 -1

T :rmg=z' -3y +2, y=x'+y' —32, 2=—-3z' +y +2
On the other hand the product 7,7 is
T ¢z =2'+y =32, t'y=—-32"+y' +2, 2=z -3y +2

1 -3 1
The matrix of 7' is 1 1 —3 || whereas the matrix of 7'’ is
-3 1 1
1 1 -3
-3 1 1 We see at once that 7,7 = TT.
1 -3 1
EXERCISES
1. Given the determinant
ay az a3 0 0 O
by by b3 0 0 O
Z c1 C2 c3 0 0 0
=l =1 0 0 a a a3

0 -1 0 b bé by
0 0 —1 ¢ ¢ ¢

show that A = A-A’. (Hint: Expand A in terms of the first column.)
Now multiply the first column by aj and add it to the fourth column, multiply
the second by b} and add to the fourth, multiply the third by ¢; and add to the
fourth; treat the fifth and sixth columns in fashion similar to the way the
fourth was treated. Expand the resulting determinant in terms of the first
column and we have A’” of (89). Note that this method can be generalized
50 as to give the formula for the product of two determinants of any order. See
Fine’s ¢ College Algebra.”

2. Check all the algebra in the last two paragraphs of the text. Find the
inverse and both line coordinate forms for each of the transformations T, T,
and 7',

3. Derive (88’) from (88), (91’) from (88), (91) from (91’), also (91)
from the effect of (88’) on u'z’ + vy’ + w'2’ = 0.

4. Derive (89). Also find the product 7"'T spoken of in the text.

5. Show that if A = 0in (88), the line A1z + By + Ciz = 0 is the same
as Aoz + Boy + (2z = 0 and as Asx + Bsy + C3z = 0. Hint: Multiply
the equations of (88) respectively by A, B2, Cz and add them together. Then
multiply these equations of (88) by As, B3, C3, respectively, and add them.
But there can be only one such line, because to each point P’(z’y’,z’) there
corresponds only one point P (z,y,2) by (88). Hence the above three equations
in z,y,2 must all give the same line,
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6. What does (88) do to l,? What line goes by (88) into l,? (This is
looking upon the transformation as an alibi and the coordinates as referred
to axes plus l,. But we might consider the transformation as an alias, also
we might have the coordinates referred to a triangle of reference. Compare
§11.)

7. Prove that if (88) has a matrix that is symmetric with respect to
the main diagonal (i.e., ag = b1, a3 = c1, bz = c2), then (88) represents
commutative (permutable) transformations, i.e., 7Ty = 71T where 7' and
T, are of this special form for (88). Note that this is only a sufficient
(not a necessary) condition for such transformations to be commutative.
See §17.

8. Find the necessary and sufficient conditions for (88) to give commuta-
tive transformations. Hint: The corresponding coefficients of 777" and T'T
must be proportional.

9. Show how the rotations and translations satisfy the conditions of
Ex. 8, but the general Euclidean transformations (35) do not satisfy these
conditions for commutativity (permutability). Hint: Put rotations and
translations, etc., into homogencous coordinates and add on a third equation
pz = 2’ to each transformation.

10. Make up two commutative transformations (not rotations or transla-
tions), find their equations in line coordinates, also find their inverses and their
products (in either order).

11. Do the same as in Ex. 10 for two non-commutative transformations.
Note that (7179)"! = T T L

12. If we want to send z% + y2 = 1 into 22 — y2 = 1 by (88), we write
these equations in homogeneous form as z% + y? = 22 (or 22 — 22 = y?)
and 22 — y? = 22. Then we see that the transformation z = z/, = = ¥/,
y = 2’ sends the circle into the hyperbola. Now send zy = 1 into 3% = =z,
22—y?2=1 into y> =2 (Hint: 22 —y2 = (r —y) (z + y).) Send
y? =2 intoy = 2%, y® = 2%intoy = z*. Note that (13) cannot give these
results. Why?

13. Determine (88) so as to send (0,0,1), (0,1,0), (1,0,0), (1,1,1) into
(0,1,0), (1,0,0), (1,1,1), (0,0,1), respectively. Hint: Use (88), also p = p1,
p2, p3, p4, respectively. Compare §100. Note the relation of (88) to bilinear
transformations (66).

14. Determine (88) so as to send 2=0, y =0, 2=0,z+y +2=0
intoy =0,z =0,z +4+y +2 =0,z =0, respectively. Do this in two ways,
first using (88), then using (91’).

15. Take a transformation T and show algebraically that 7' and its inverse
T! have the same fixed points and lines.

16. Prove that the discriminant T of (75) is invariant under (88). Com-
pare §19.

96. Invariant points and lines under general projectivities.
To find the tnvariant (or double, or fixed) points and lines under
any general projective transformation (or projectivity) we solve
the following equations, obtained from (88) and (89’), for z’,y’,2’
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and /v, w’, respectively (compare §33):

92) pz’ = sz’ + azy’ + az?’, oy’ = b1z’ + by’ + bs?,
p2 = c1x’ + coy’ + €32’

93) ou' =au + by + cw’, o' = au’ + bov’ + cow’,
aw'= a3u' -+ bgv/ + 03w'

The condition that (92) have a solution z’,5’ 2’ not all zero is

ay —p Qs as
(94) b, bp —p b3 =0
C1 C2 3 —p

which is a third-degree equation in p with constant term A = 0
(hence p = 0 is not a root of this equation). Thus we see that
there are in general three invariant points under (88).

The condition that (93) have a solution w’,»",w’ not all zero is

a — o bl C1
(95) ag bg — 0 Co =0
as b3 C3 — O

which is the same third-degree equation as (94). Hence there
are in general three invariant lines under (88). Also, if a pair of
invariant points are imaginary (due to imaginary roots in p),
then a pair of invariant lines are imaginary, because equations
(94) and (95) are in reality the same equation. Similarly, in
other ways, there is complete (plane) duality between the in-
variant points and lines of a projectivity (88).

Note that by invariance we here mean invariance as to position.
For example, the affine transformations (13) usually leave I,
invariant only as to position, but move points along l,. (Com-
pare §85.) Thus the rotations move all the points on [, except the
circular points. (Compare §§84, 83.)

On the other hand, some invariant lines may have every point
on them invariant (i.e., the lines be pointwise invariant) just as
(dually) some invariant points may have every line through them
invariant as to position (i.e., the points be linewise invariant).
For example, any translation keeps I, pointwise invariant (see
§84) and also keeps its center (on l,) linewise invariant. The
transformation z = az’, y = ay’ keeps the origin linewise in-
variant because every line y = mz goes into y’ = mz’; but
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z = ax’, y = by’ keeps the origin invariant only as to position
because a line y = mzx goes into y’ = mazx’/b.

Let us now find the invariant points and lines of the rotation
(in homogeneous coordinates)

(96) px =12"cos 0 —y'sinh, py=2x'sin@+ y cosb, pz=2
or in line coordinates

97) ow =ucos@+vsing, o' = —usinf+ vcosé,
ow’ = w

The equation (94) in p is here

cosf@ —p —sind 0
sinf cos@—p O =(1—p)(®—2pcosf+1)=0
0 0 1—p

The value p = 1 gives us

(1 —cos8) +y sin6 =0, z'sind+ 3y’ (1 — cosf) =0,
0-27=0

so (0,0,1) is the double point of (96) corresponding to p = 1,
and (dually) the line [0,0,1] or I, is the corresponding invariant
line. The values p = cos 8 = 7 sin 8 give us the points (1,717,0)
and the lines [1,7¢,0] or y = =iz, i.e., the circular points at
infinity and the minimal lines through the origin.

Next let us consider the translation

(98) px =2z +he!, py=y + ki, pz=2"
(99) o' =u, o' =v, ow =hu+kv+w
The equation in p is

1—p O h

0 1—»p k =1-p2%=0

0 0 1—p

The value p = 1 gives us
0-2' —he’ =0, 0-4/ -k’ =0, 0-2/ =0
which equations are satisfied by every point (z’,y,0), i.e., every

point on I, is invariant as to position. The equation in o is
(1 — ¢)® = 0. The value o = 1 gives the equations

0w =0, 0:v"=0, 0-w +hu' + k' =0
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which show us that every line with u'/»" = —k/h is invariant,
i.e., the center (1,h/k,0) is linewise invariant. (Compare §84.)

Suppose we want the invariant points and lines of the trans-
formation T in the next to the last paragraph of §97. The equa-
tion in p is here

1—p 1 -1
1 —1—-p 1 =—@—p?—4p+4)=0
-1 1 1—0»p

with roots p = 1,2,—2. The root p =1 gives us the point
1,1,1); p =2 gives (—1,0,1); p = —2 gives (1,—2,1). The
roots of the equation in 7 (for invariant lines) are r = 1,2,—2,
The value 7 = 1 gives the line [1,1,1Jorz4+y+2=0; 7=2
gives [—1,0,1] or —xz+2=0; 7= —2 gives [1,—2,1] or
z—2y+2=0.

EXERCISES

1. Check all the algebraic manipulations in the text.

2. Find the invariant (double) points and lines in all the transformations
in the text of §95.

3. Derive (93) from (92), (97) from (96), (99) from (98).

4. Put (13) into homogeneous form and find its invariant points and lines
by the method of this section.

5. All the discussion in the text of invariant points and lines is from the
standpoint of a transformation considered as an alibi. Interpret this dis-
cussion from the standpoint of an alias.

97. Collineations, homologies, and elations. Since (88) sends
lines into lines (i.e., collinear points into collinear points), the
general projectivities given by (88) are sometimes called collinea-
tions (or projective collineations). Two fundamental types of
collineations are the homology and the elation. (Compare the
last paragraph of the text in §84, also Ex. 7.)

DEFINITION. A homology is a collineation having a line ! that
is pointwise invariant and a point P (not on [) that is linewise
invariant. The line ! and the point P are called the azis and
center, respectively, of the homology.

A simple case of a homology is £ = az’, y = oy’ whose center
is the origin and whose axis is l,. In §96 we said that, since (94)
is a cubic in p, a collineation has in general only three invariant
points. The homology, which has a line of invariant (fixed)
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points, causes us to modify the above statement to read three
non-collinear invariant points.

DEFINITION. An elation is a projectivity (collineation) that
has a pointwise invariant line I (its axis) and a linewise invariant
point P (its center), where P lies on L.

A simple case of elation is the translation z = 2’ + h, y = ¢/
+ k, whose axis is [, and whose center is at the point on [, with
(or in) the direction k/h.

An important type of homology is the so-called harmonic
homology, which sends any point P into P’ and P’ into P, and so
is of period two (i.e., the square* of this projectivity is the identity,
since this square sends P to P’ and then back to P). Compare §9.
A simple case of harmonic homology is z = —2’,y = —y’ (with
the origin as center and [, as axis) which sends any point P(a,b)
into P'(—a,—b) and sends P’'(—a,—b) into P(a,b). Note that
the points P,P’, the origin, and the point at infinity on the line
PP’ form a harmonic set, since we have the cross-ratio (a — 0)/
(@— o) (—a— ©)/(—a —0) = —1. Compare §24.

We see by the following figure that a homology (or elation) is
uniquely determined in general by its center P and axis | and one
pair of corresponding points P’',P"" (where of course P,P’,P"
must be collinear).

We take any point R’ (in the figure R’ is not on the line P'P").
The corresponding point R’/ must lie on the line R'P; also the
line P’R'M must go by the homology (or elation) into the line
P""M; hence R’ is uniquely determined by the two lines P"’M
and PR’

*See §9. By the product of T’y by 79 we mean 71T in this order. If
Ty = T3, we obtain T1T; or T%
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On the other hand, if we are dealing with a harmonic homology,
we see from the adjoining figure that the center and axis determine
uniquely such a projectivity because of the presence of harmonic
sets of points in the construction, which sets we shall note. (Hence
comes the name harmonic
homology.)

Proor. If we take the
center P and axis | of a
harmonic homology and two
points P’ and R’ and wish
to find the points P’/ and
R’ corresponding to P’ and
R’, respectively, we note that P'R’ and P’’R’’ must intersect in
M onl. But P must go to P’ (by the very definition of this
harmonic homology) and R’ to R’’, hence P"’R’ and R''P’ must
intersect in a point S on I; so P/, P, P, N must form a har-
monic set, also R’/, P, R/, L must form a harmonic set. But the
three points P/, P, N determine the harmonic set P/, P, P"', N
(taken in this order), so a harmonic homology is uniquely given
by its center P and axis L.

Note that (for a harmonic homology) to a point T' between P
and ! there must correspond a point T’ on the side of P away
from I, such that P and I determine with 7’,T on the line T'PT
a harmonic set of points in which P lies between T and T’. The
facts that z = 2’ + h, y = ¥’ + k is determined by one pair of
corresponding points and also that z = az’, y = ay’ is determined
by one such pair of points are analytic examples of the results of
the above geometric discussion of homologies and elations.

EXERCISES

1. In the homology and elation illustrated by figures in the text (given
P,P',P"\l), suppose R’ is on PP'P’’. Show how to determine R’’. Hint:
Take a point 7"’ not on PP’P’’,

2. In the various homologies and elations given by figures in the text,
show that given P, P’, P, R’, R, l we can determine S’’ for an 8’ either
from P, P/, P, l or from P, R’, R", 1. Why do we get the same 8’’ each
time? Hint: Look out for quadrangular sets of points.

3. Check over all the work in the text.

4. Construct pairs of corresponding points for the following collineations:
a homology (a) with I at l,; (b) with P on l,; an elation (a) with I at l;
(b) with P on [,; a harmonic homology (a) with I at l,; (b) with P on l.
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98. Types of collineations. In the following manner we show
that there are just five possible types of general projectivities
(collineations), using the possible numbers and arrangements
of invariant points and lines (ignoring the sub-cases where some
or all of these points and lines are imaginary). In this classi-
fication we treat I, like any other line in the plane. Note the
following figures:

In the first place, note three non-collinear invariant points
R, 8, T. The three invariant lines must be the sides of the
triangle RST. (Why?) If none of the sides of RST are point-
wise invariant, we have a first type of collineation ~An example
of this type isz = az’,y = by’, @ # b, where R, S, T are the origin
and the two points at infinity on the axes.

If one of the sides of the triangle RST in the above discussion
is pointwise invariant, we have the case of a homology (which is
represented by the second of the above five figures). We cannot
have two of the sides of RST (say RT and T'S) pointwise invariant,
otherwise every point P in the plane (being the intersection of two
lines, %, v that must be invariant as to position) will be invariant
and the projectivity will be the identical transformation (or the
identity).

Next, we suppose there are just two invariant points P, R and
two nvariant lines I, m; then I must be the linc RP (say) and m
must pass through R (say). If I is pointwise invariant, then
(dually) R must be Linewise invariant, and we have an elation.
The third figure above represents an elation.

If I in the last paragraph is not pointwise invariant (and so R
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is not linewise invariant), we have a fourth type of collineation
(represented graphically by the fourth of the preceding figures).
A typical example of this case is z = gz’ + By’, y = By, where
lisy = 0and m is .

Finally, we suppose there is only one invariant point R and
only one invariant line m through R. An example of this case
isz =24 a,y = B2 +y + v, where m is [, and R is the point
at infinity on the y-axis. These types of projectivities are dis-
cussed in Veblen and Young, ¢ Projective Geometry,” Vol. I,
pp. 106-108, 271-276.

EXERCISES

1. Check all the algebra in the text, also all the statements made there.
2. Discuss the cases of collineations where some or all of the invariant
elements are imaginary. Can we have all these elements imaginary?
3. Look up in Veblen and Young, loc. cit., the complete discussion, analysis,
and reduction to typical analytical forms for all five cases of collineations.
4. Make up numcrical examples of the five types of collineations.
5. What sorts of collineations are the following?
(@) pr' =z, py' =y, p2' =ay+z
b) o' =2, py' =ax +y, p2' =bxr+cy+=2
(¢) p2’ = ar, py' =Br+ vy, p2' =bz+e+ {2
@) px’ = ax, py' =By, pz' =y + Bz
6. Construct pairs of corresponding points for a collineation of the first
type (a) with ST at l,; (b) with R on !, but S and 7 finite.

99. The resolution of a collineation into a product of homologies
and elations; reduction of a collineation to a typical form. It is
shown in Veblen and Young, loc. cit., that every projectivity (col-
lineation) can be resolved into a series of homologies and elations
(i.e., the collineation can be analyzed as a product of homologies
and elations); also that by a suitable choice of the invariant
elements the five types of collineations can be reduced to simple
analytical forms.

Use is made (in the discussion referred to above) of a theorem
(proved in the next section; compare also §71) that four pairs of
corresponding points PP’, RR’, 8S’, TT' (where no three of the
four primed points, or of the four unprimed points, are collinear)
determine uniquely a collineation. Thus, for the first type of
collineation with three invariant non-collinear points, it takes
one pair of corresponding (homologous) points not on a side of the
triangle RST to determine uniquely such a collineation. (Why?)

'
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Compare the fact that, if in the case of z = ax’, y = by’ we say
that P(a,8) shall go to P’(a/,8'), then we have o = aa’, 8 = bg’
and a,b are uniquely determined.

In the figure for the first type of collineation we suppose P’ and
P” to correspond in the collineation. We join P’ to R and P"’
to S by lines that intersect in the point P;. Now we see that a
homology with center R and axis ST sending P’ to P/, followed by
a homology with center S and axis RT sending P, to P/, will
give us the transformation desired (since P’ goes to P"’ and R, S, T
are kept invariant).

Note that the construction in the last paragraph shows the
uniqueness of the determination of the collineation by R, S, T
and P’, P"/, even without the theorem in the next section; because
each homology is uniquely determined by a pair of corresponding
points (plus the center and axis), therefore the desired collineation
is uniquely determined by P’ and P (plus R, S, T). This
statement means that any other point U’ has a unique correspond-
ing point U with respect to the first homology, whereas Uy has a
unique corresponding point U’’ by the second homology; there-
fore U’ has a unique homologous point U’’ by the product of
these two homologies (in the given order). The analysis of the
other types of collineations we leave for the student to look up in
Veblen and Young, loc. cit.

We shall give one reduction of a projectivity to a typical (or
canonical) analytic form. Let us take the first case with B, S, T
as the vertices of a triangle of reference. Then in the general
projectivity (88) the point (0,0,1) must go into itself, so az = b3
=0, cg # 0; also (0,1,0) is invariant, so az = ¢z = 0, by ¥ 0;
likewise (1,0,0) is invariant, so a@; % 0, by = ¢; = 0. The cubic
(94) in p is now

p— ay 0 0
0 p—>by O =0
0 0 p —C3

The roots of this cubic must be distinct, hence we must have
a1, bg, ¢ distinct; and our transformation is

/ ’ !
pr = a1z, py =bay’, pz = czz

If 2/ = 0is l,, we can put this transformation in the well-known
form z = az’, y = by’. The reductions of the other cases to
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simpler forms we leave for the student to study in Veblen and
Young.
As a numerical illustration let us discuss the transformation

/7 ’ 4 ’ ’ /
px=1, py=a' —y, pp=2"+y —z
The equation in p is

1—0»p 0 0
1 —1-p 0 =1=-p)(1+p?%=0
1 1 —-1—=0p

where p = 1 gives the fixed point (4,2,3); p = —1 gives us
0z’ =0,2' —0y =0, 2’ + 4y — 02’ = 0 s0 the point (0,0,1)
is invariant. The equations of this transformation in line co-
ordinates are

o =utv+w o =—-v+w oo =w

The value ¢ = 1 gives the line [1,0,0] or z = 0, the value ¢ = —1
gives the line [1,—2,0)or £ — 2y = 0. Taking the inverse of the
transformation or

=z, f=z—y w=2zx—-—y—-2

we see that a point (0,y,2) goes into (0,—y,—y — z) soz = 0is not
pointwise invariant. Also a point (2y,y,2) goes into (2y,y,3y — z)
80 ¢ — 2y = 0 is not pointwise invariant. Therefore the above
transformation belongs to the fourth type pictured and discussed
above in §98.

EXERCISES

1. In the reduction of a collineation to a canonical form that is given in
the text, determine @, bs, c3 so that the result will be a typical form for a
homology. Hint: One side of the triangle RS7 must be pointwise invariant.

2. Check all the algebra in the text, also all the statements made there.

100. Complete quadrangle (quadrilateral) as determining a
projectivity. We shall now show that if we say a complete quad-
rangle Py, Py, P3, P4 is to go into another (or the same) complete
quadrangle Pj, Pj, Pj;, P, by a general projectivity (88), then
this transformation is completely determined as to the coefficients
of its equations. (Compare §71.)

Proor. Suppose the points P;(a;B:y:;) where 7 = 1,2,3,4
are to go into (0,0,1), (0,1,0), (1,0,0), (1,1,1), respectively.
Substituting the coordinates of the former points for z,y,2 and
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the coordinates of the latter points for z’,y’,2’ in the equations
of (88) and using a different p for each pair of corresponding
points (compare §22), we get

piay = az, piB1 = b3, p1v1 = ¢C3

peaz = Qg, pafz = by, p2v2 = C2

psas = ay, p3fsz = by, p3vz = ¢

paos = a1 + ag + az, paBy = by + by + bs,
pavs =¢€ + ¢z + ¢3

Substituting the values of ay,b;,c1, as,be,co, a3,b3,c3 from the first
nine equations into the last three equations, we have

psas = pgaz + paag + pray, paBs = p3B3 + p2B2 + p1Bi,
paYs = p3v3 + p2v2 + o171

Dividing each of these last equations through by ps we have three
non-homogeneous linear equations in the three unknowns p;/p4,
p2/p4, pa/ps. These equations have a unique solution not con-
taining zero, since none of the determinants

a; oy o
B: B; B |=0
Yi Yi Yk

where 4,5,k = 1,2,3,4; but 25 j, j = k, k # ¢ (due to the fact
that no three of the four points P;, Ps, P3, P4 are collinear).
Using the solution of these last three equations in the first nine
equations, we obtain a;, by, . . ., ¢z uniquely except for the common
factor 1/ps (since we have py/psa; = as/pas, ete.).

In this proof an invariant point P counts for a pair of correspond-
ing points. If we look upon the triangle of reference (or the
axes plus l,) as having a fixed position in the plane, the above
discussion shows that the vertices of any complete quadrangle
can be sent into the vertices of the triangle of reference plus the
unit point (1,1,1) by one and only one collineation; and, conversely,
the vertices of the triangle and (1,1,1) can be sent into the vertices
of any complete quadrilateral by one and only one collineation.
Now to show that any complete quadrangle Py, P2, P3, P4 can
be sent into any other complete quadrangle P, Pj, P;, P, by
one and only one collineation, we note from the above proof that
we can send the first quadrangle into the vertices of the triangle
of reference plus (1,1,1), then we can send the vertices of this
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triangle and (1,1,1) into P}, P;, P;, P;; and the product of these
two transformations gives us the unique collineation sending
P, Py, P;, P, directly into Py, P3, P}, P;.

ILLusTRATIVE ExamPLE. Let us send (1,1,1), (1,-1,1), (-1,1,1),
(—1,—-1,1) into (0,0,1), (0,1,0), (1,0,0), (1,1,1), respectively. From (88)
we get

p1 =a3 p1 =bsy p1=c3; p2=as —pz=0>by p2=cy
—p3 =ay, p3 =by pz=ci; —ps = a1 + az + as,
—ps =b1+ by + b3, ps=c1+cz+c3
Substituting ai, by, c1, ete., from the first nine equations into the last three, we
get (dividing through by p4)
p3 _ P2 PI

+2= -1, 2428y

—P3 P2 Pl
—t+—+—= _1)
P4 P4 P4 P4 P4 P4 P4 P4 P4

Solving these three last equations, we get

pL P2 p3 . az p b3 3
—=-1, —==1 —=1 /. —=-=-1, —=-1 —=-1,
P4 P4 P4 pL P4 P4 c4

ag be c2 —a1 by ¢ 1

e =], — =—=—=

In P4 P4 P4 ps P4

Substituting these values in (88) and dividing the resulting equations by
ps, we get the required transformation

p’.v=—x’+y’—z’, p'y=x’-—y’——z', plz=zl+yl_zl

where p’ = p/py.

Dually to the above discussion, we see that a complete quadrilateral Iy, ls,
I3, I4 can be sent into any other (or the same) complete quadrilateral Iy, Iy, I3, Iy
by one and only one collineation. We leave this dual discussion to the student
in the exercises.

EXERCISES

1. Dualize the analytic discussion in the text.

2. In the first paragraph of the text why does the converse of the theorem
follow at once from the proof given there?

3. Send (1)1:2)1 (2y—1;] )y (1’"211)’ (1y2y3) to (0,0,1), (1,0,0), (011,0)’
(1,1,1), respectively, by a collineation of the form (88). Now send the
last four points into (1,1,1) (1,2,1), (—1,—1,1), (0,0,1), respectively, by
another collineation. Finally show that the product of the two transfor-
mations in the above order sends the first set of four points to the third set
of four points.

4. Check the algebra and fill in the details in the text.

5. Find the projectivity sending (0,0,1), (0,1,0), (1,0,0), (1,1,1) into
(1,1,-1), (0,0,1), (1,0,0), (0,1,0), respectively; into (0,51), (3,1,0), (3,0,1),
(1,1,1), respectively.
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6. Discuss fully for invariant points, types of transformations, and equa-
tions in line coordinates, the collineation worked out in the text and those in
Exs. 3 and 5.

7. Show both geometrically and analytically why four invariant points
(no three of them collinear) determine the identity.

101. Geometrical construction of collineations. Now let us
consider a geometrical construction of a collineation that will
actually send a given real complete quadrangle into another given
real complete quadrangle. We shall consider only the case where
the two quadrangles have no common vertices and have the most
general possible positions in the plane relative to each other.
We leave the student to look up the other cases in Veblen and
Young, loc. cit., Vol. 1, p. 74.

Consider the above figure. With the line P,P; as axis of a
homology and the point P of intersection of PiP; and PP,
as center, we send P; into P{. Then P, goes into P,’, the point
of intersection of the lines PP,P, and P{M (where M is the point
of intersection of PPz and P,Ps). Why? Now, by means of a
homology with P{P3 as axis and P as center, we send P’ into
P;. Then P, goes into P;’, the point of intersection of the lines
PP, and P,N (where N is the point of intersection of P;P,’ and
P{P;). Why? Next, by means of a homology with P{P; as
axis and a suitable center (not shown in the figure), we send P,’
into Py; but P3 goes by this homology into some point P’

We saw in §99 that a collineation with three given invariant
non-collinear points is uniquely determined by one pair of corre-
sponding points. Also we analyzed such a collineation into the
product of two homologies. Hence we can find such a transfor-
mation (of the first type) that will keep Py, Pj, P, fixed and will
send P;’ into Pj. The product of all these homologies is a col-
lineation sending Py, Py, P3, P4 into P, P;, Pj, P;.

We shall now dualize the definition and construction of a
homology (given in §97) and so get a method of constructing a
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line I’ corresponding to a line I’ under a homology. A homology
was defined as having a pointwise invariant line (its axis) and a
linewise invariant point (its center); hence the dual of a homology
is a homology.

—

l

From the above figure we see that from P,l, and the pair of
corresponding points R’,R’’ we can determine a pair of correspond-
ing lines p’,p”’. Now, given a line !, to find its corresponding
line I’/ under the homology, we join S’ (the point of intersection
of p’ and I') to P by a line cutting p’’ at S’’; then the line
joining S’/ to N (the point of intersection of I’ and I) is the
required line I’’. Why?

EXERCISES

1. By a series of homologies, send a complete quadrangle Py, Py, P3, P4
into another one Pj, Pj, P;, P,. Take a point 7 and find its corresponding
point 7"/ under the series of homologies.

2. Do the same as in Ex. 1 only by a series of elations.

3. Do as in Ex. 1: (a) for the two quadmngles Py, Py, P3, P4 and 1’1, P,
Pa, P4, (b) for Pl, 12, P3, P4 and Pl = Pz, 2 = P3, P3 = P4, P4 = P],
(C) for Pl, Pz, P3, Pjand Pl, Pg, P3 = P4, P4 = P;.

4. Dualize the definition and construction of an elation and find the con-
struction of a line {’’ corresponding to a given line I’ under an elation.

5. Finish the first figure in the text.

6. Answer the queries (Why?) in the text.

7. Dualize the geometric discussion of a collineation given in the first
paragraph of the text.

8. Do Ex. 5 in §100 by a series of homologies.

9. Show how a series of collineations of the first type can be combined so as
to send P;, Pg, P3, P4into Pi, P;, P;’;, P;.

102. Transformations of points on a line and between lines, in
homogeneous coordinates. In this section we shall study what
a general projectivity (88) does to the poinis of a line ! that it
keeps invariant as to position, also how it sends the points of a
line I’ that is not kept invariant into those of the line I’ that
corresponds to I’ under the collineation. (Compare §73.)
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First we take the invariant line as z = 2/ = 0. Since (88)
must send z =0 into 2/ = 0, we have ¢; = ¢; = 0. Putting
z =2 = 0in (88), we have

(100) oz = a1z’ + agy’, py = bir’ + boy’
where Zl Zz # 0; or in non-homogeneous form (replacing
1 b2
y/z by y and y'/z" by y')
4

ay + b
101 =
( 0 ) y cyl + d

where @ = by, b = by, ¢ = ay, d = ay.

Note that (101) is the same as (70), which came out of a dis-
cussion of bilinear transformations in a plane. We can ignore
the rest of the plane and consider only this one line.

Note that (100) has just three cssential coefficients, since we
can divide both equations by any non-vanishing coefficient.
Each pair of corresponding points (z;¥:,0), (x/,y.,0) is in non-
homogeneous form v,,y; and gives us from (101) one linear equa-
tion between these coefficients; hence three pairs of corresponding
(homologous) points determine such a projectivity between
points on a line.

If the invariant lineisnot z = 2/ = O but is l = ax + By + vz
= 0, we can put

T: =1, Y=y =ax+By+nz

which sends [ into 2’ = 0. Suppose a collineation TI keeps | = ar
+ By + vz = 0 invariant, then

B RV 11" = T7'IT has a similar effect

I on z =2z’ = 0 to that which II

has on [, because T™! sends
z2 =0 to [, IT keeps ! invariant
as to position, T sends I back
to z = 0. Hence we can study
the effect of I” on z = 0, then
7=0 —5 by means of 7! we can send

the pairs of corresponding points

on z = 0 under II to the pairs of corresponding points on ! under
1I, as the adjoining schematic figure shows. (In this figure R,R’
correspond under II and P,P’ correspond under II. Since 7!
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sends P to R and T sends R’ to P’, therefore T~ sends the pair
P,P’ to the pair R,R’.)

DeriniTion.  If I = T7MIT, then I’ is called the transform
of T by T.

When studying how (100) changes points of I’ into those of
another line I’ > ', we first suppose I’ to be z = 0 and I’/ to be
2/ = 0. Since z = 0 must go into z’ = 0 under (88), we have
¢z = ¢3 = 0; and, when we put 2’ = z = 0 in (88), we get:

(102) pz = azy’ + az?’, py = bay + bye’
or in non-homogeneous form (replacing z/y by z and y’/2’ by y’)
’
ay + b
103 =
where @ = ay, b = a3, ¢ = by, d = b, @ Z ‘;é 0. Note that

(103) is the same as (71).

Just as with the case of an invariant line I so in (103) three
pairs of homologous points determine this projectivity between
the points of the two lines I’ and I’’.  We see that for ¢ = 0, (103)
may be written

_a bc — ad
e cley +d)
Hence we cannot have bc — ad = — | © Z ‘ = 0; otherwise a

single point = a/c on I’ corresponds to every point on I’ (since
z = a/c+ 0/c(cy’ + d) is satisfied by any value of y'). If
¢ =0 in (103), again bc — ad 5~ 0; otherwise a = 0 or d = 0
and (103)isz = borz = .

If I/ isnot z=2"=0 but is ax +By+v2 =10, and 1" is
oz + B'y ++9z2=0and not z = 2’ = 0, we can put

T: 2’ =d'z + 'y + +', y';y, 2 =ar+ By + vz

which transformation sends I, 1" into 2’ = 0, 2’ = 0, respectively.
Now we can argue as we did for the invariant line [.

The transformations (100) and (102) were supposed to have
been caused (induced) by a collineation in the plane. But we can
study these projectivities on a line or between lines by and for
themselves, without reference to any collineation in the plane.
Thus we might look upon (88) as induced by a projectivity in
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space of three dimensions, but we ordinarily study (88) for its
own sake and apart from any such reference to space.

ILLusTRATIVE ExampLE. Let us now find the transformation (100) of
points on a line I(z = 0) that sends (1,1,0) to (0,1,0), (0,1,0) to (1,0,0), (1,0,0)
to (1,1,0).

Ignoring the rest of the plane, we can write these points each with only two
coordinates z and y; thus we can write (1,1,0) as (1,1). Since (1,1) goes to
(0,1), we have p’ = ag, p’ = bp; (0,1) goes to (1,0),500 = ay, p’’ = b1; (1,0)
goes to (1,1), so p’’’ = a1 + ag, 0 = by + bs. Hence

b)_ = —bz = —p', ay =0, az ‘—"p’
and the desired transformation is (after dividing by p’)
px=y', py=—a' +y

If we wish to use (101) on the above problem we see that 1 goesto =, « to 0,
0 to 1. (Why?) Hence a/c =1, d =0, a+b =0 in (101). (Why?)
And the desired transformation is

y —1
y= 7
Yy

Of course, we can get this bilinear form from the homogenous form by dividing
the second equation by the first, then replacing y/z by y and y’/z’ by y’.

EXERCISES

1. Dualize the discussion in the text.

2. Find the inverses of all the transformations in the text.

3. Determine (101) to send: (a) 1 to —1, 2 to 3, 4 to —2; (b) 0 to «,
© t02,1to 0.

4, Solve Ex. 3 using homogeneous coordinates and (100).

103. Invariant (double) points of projectivities on a line;
hyperbolic, parabolic, elliptic transformations. To find the in-
variant (double) points of a projectivity (101) on a line [ we put
y’ = y and then we have the equation cy® + (d — a)y — b = 0 to
solve. (Compare §33.) Hence according as

=
(d—a)?+4bc=0

we have, respectively, two real and distinct double points, two
real and coincident double points, two conjugate imaginary double
points. See §85, also Ex. 5.
Examples of these three cases are
1 , 1
Y = = +1 = - —
y’ y=y y Y v
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with the respective double points +1, «, ==7. These three
types of projectivities on a line are called, respectively, hyper-
bolic, parabolic, and elliptic, after analogy with the manner in
which the three principal types of non-degenerate conics cut l.
As an illustration, let us find the double points on [, in the pro-
jectivity induced thereon by the rotation (7). Here we have in
(101) a =cos 8, b =sin 6, ¢ = —sin 6, d = cos 6. The double
ooints are given therefore by y2 + 1 = 0.

The double points of (100) are given by solving simultaneously

(p—apzr—ay=0, —bix+ (p—by)y=20

For these two equations to have a solution not all zero we must
1ave

p—__zll p:Zz = p? — (a1 + b2)p + a1bz — @by = 0

‘Compare §96.) Hence

p = (a1 + b5) = V(a1 + by)® — 4 (a1by — azby)
2
0 the nature of these double points depends on whether (a; — bs)?
+4ab; Z0.

EXERCISES

—-5y'+11
1. Find the double points of y = —_—52%; of pz =3z" +2y, py
= —4z" —y'.

2. Make up cases of (100) and of (101) where the transformations are

yperbolie, parabolic, and elliptic, respectively.

104. Involutions of points on aline. DEFINITION. A projectiv-
ty on a line that sends each point P into a point P’ and also
ends P’ into P is called an snvolution, and P, P’ are called a pair
f conjugate points in this involution.

The involutions are by all odds the most important projec-
ivities on a line. Let us find what forms (100) and (101) must
ave to be involutions. Suppose P is a and P’ is o’ (where a # o)
nd (101) is an involution. We have from (101)

ad’ +b , ax+b

] =
ca +d aso a ca +d

a =
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giving us
cad +da—aad' —b=0 and caed’ +do’ —aa—b=0

Subtracting these two equations, we get (a — ') (d + a) = 0.

Since a # o/, we have d = —a. Therefore the general equation
of an involution on a line in non-homogeneous coordinates is
’
ay + b
104 =
(104) P

or in homogeneous form
(105) pz = arz’ + ay’, py = bix’ — ary’

Note that we have proved above incidentally that just one pair
of points P, P’ in a transformation (100) or (101) such that P cor-
responds to P’ and P’ to P makes this projectivity on 1 an involution.

The double points of (104) are given by cy>? — 2ay — b = 0.
The discriminant of this quadratic is

a b

2 = —
4(@* + bc) = —4 —a

#0

(otherwise the projectivity is singular). Therefore we can have
hyperbolic or elliptic involutions, but not parabolic. Thusy = 1/y’
is hyperbolic and y = —1/y/ is elliptic.

We can reduce every hyperbolic involution to the form y = 1/y’
by choosing the coordinates on the line in the following manner.
We take the double points for (104) as 1 and —1. Therefore
we have

1=a+b or ¢c—2a—b=0,
c—a

1=ttt et 2a—b=0
—C — a

80 a =0, ¢ = b; and the involution becomes y = 1/y’. This
also shows that a hyperbolic involution is uniquely determined by its
double points. (The same thing is true of an elliptic involution.)

Note that, if a pair of conjugate points in this hyperbolic
involution y = 1/’ is a,1/a, we have the cross-ratio

a—11/a+1 _
a+11/a—1
which proves that any pair of conjugate points of a hyperbolic
involution form with the double points a harmonic set of points

-1
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such that the double points separate the conjugate pair. (Compare
§24.) Here we see a geometric reason why the double points
uniquely determine such an involution. (We leave for the student
in the exercises the reduction of any elliptic involution to the form
y= —1/y" and the proof of the exactly similar theorems for
elliptic involutions.)

The inverse of an involution (104) is (104) again. Hence an
involution is said to be of period two. (See §31, Ex. 2.)

From (104) we see that two pairs of conjugate points determine
an involution. (Why?) Suppose we want 1,2 and 3,4 to be pairs
of conjugate points under (104). This gives us

2=a+b or 2c—2a=a+Db

c—a

also 3 ;
4='—ﬁj——- or 12¢—4a=3a+0b

3c—a

hence 2 ¢/b —-3a/b=1, 12¢/b — 7a/b =1, giving us a/b =
—3%,¢/b= —&; so the desired involution isy = (—5y" + 11)/
(=2y' +5).

EXERCISES

1. Fill in the details of the algebra in the text.

2. Solve in homogeneous coordinates the problem in the last paragraph
of the text.

3. Prove that if (101) is its own inverse, it must be an involution.

4. Prove that if the square of (101) is the identity, then (101) must be an
involution.

5. Work Exs. 3 and 4 for the homogeneous form (100).

6. Derive (105) from (100).

7. Derive y = 1/y’ in homogeneous form from (105).

8. Show how to construct the conjugate of P’ with respect to a hyperbolic
involution whose double points are P and Ps, using a complete quadrangle.
(Compare §26.) Take first the case where P1, Pg, p’ are all finite; then the
case where P’ is an infinite point; then the case where P is an infinite point.

9. Prove for the general form (104) of the involution that the double points
and any pair of conjugate points form a harmonic set.

10. Find the involution with 1,3 and 2,4 as pairs of conjugate points.

11. By taking 47 and —7 as the double points in an elliptic involution,
reduce this involution to the type form y = —1/y’. Prove that the double
points determine uniquely such an involution. Also prove that any pair of
conjugate points form with the double points a harmonic set.

12. Find the involution (a) having 0 and « as double points; (b) having
1 4+ 7and 1 — ¢ as double points.
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13. Prove that if every pair of homologous points under (101) forms with
the double points of (101) a harmonic set, then (101) is an involution.

14. Find the conditions on (101) that it shall be (a) of period three; (b) of
period four. Hint: Multiply (101) by itself three and four times, respec-
tively.

15. Find the product of (101) by y = (a’y’ + b')/(c'y’ 4+ d’) in either
order. When are these projectivities commutative?

16. Show that the projectivities (101) form a group. Compare §31.

17. Find and describe the involution sending 1 to —1 and O to«; the
involution sending 1 to —1, and 2 to —2; the involution sending a to —a
and 0 to 2 @; the involution sending « to —a and 8 to —g.

18. Show that the concentric circles 22 4+ y% = r2 cut any line through
the origin in pairs of conjugate points of an involution with the origin as one
double point and the point at infinity as the other double point.

19. Show that the vertices of each of the confocal conics 2/ (a? + A) + y2/
(b2 4+ A) =1 are pairs of conjugate points of an involution whose double
points consist of one of the common foci and the point of intersection of the
corresponding directrix with the axis. Compare §50.

20. Show that the circular points at infinity are the double points of an
elliptic involution wherein the pairs of points where pairs of perpendicular
lines cross I, form pairs of conjugate points.

21. Takingy =a=1—¢€ (or —1 —¢) in y = 1/y’, show that as y — 1
(or —1), i.e., ¢ >0, so does y’ — 1 (or —1). What property of harmonic
sets does this prove?

22. Take a =¢ — e (or —i — €) in y = —1/y’ and proceed as in Ex. 21.

23. Show that if & < B, then the involution y = 1/y’ gives us o’ > g/,
and the involution y = —1/y’ gives @’ > B’ with both a’ and B’ negative
(ff > 0and B8 > 0). Fory = 1/y’show that g and g’ lie between « and a’,
but for y = —1/y’ show that a’ lies between g and 3’. For the elliptic
involution the pairs a,a’ and 8,8’ are said to separate each other.

105. Geometric description of projectivities between lines.
DEeriniTION. The points on a line lare said to be perspective with
the points on another line I’ by a center O (not on I or I') if pairs of
corresponding points P,P’
are collinear with 0. (See
the adjoining figure. Com-
pare §101.)

DEeriniTION. If we make
the points P,(z= 1,23 ...)
on [ perspective by a center
O with the points P;(7 =
1,23 ...) on !, then the
points P} on I’ perspective by a center 0’ % O with the points
P!’ on I"” (we may have I’ =1), . . ., the points P" " on a
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line "™V perspective by a center O™ 3 0™~2 with the points
P, ™ on a line I{”, we say the points on [ are projective with those
on ™, .

Thus in the figure on page 232 the points on I are perspective with
those on I/, but projective with those on 1"/,

We shall now show geometrically how the above-defined pro-
jective correspondence between two lines I and I’ can be determined
by three pairs of corresponding (homologous) points. That is,
if we say P;, P,, P3 on I are to correspond to Py, Ps, P5 on U,
we set up a mechanism of centers and auxiliary lines that will
effect this projectivity and also will send any fourth point P4 on
linto a unique point P, on I’ (and conversely). If I’ # I, we can
set ,up this projective relation between I and I’ by two centers
0,0".

In the following figure we have given I, I’ % I, P;, Py, P3, P},
P}, P;. Through P] we take an arbitrary line I; > ', on the line
P,P; we take an arbitrary center O that makes P;, Py, P3 on [
perspective with P{, P;’, Py’ onl;. We now take O’ (the point of
intersection of the two lines P} P; and P;’P3) as oursecond center
of perspectivity that sends P;’, P;’, P{ to P, P;, P{. By 0, 0,
and the auxiliary line I; we have set up a projective relation be-
tween [ and I’ such that for any point P on [ there is a corresponding
point P’ on I’ (and conversely).

There is so much arbitrariness in the above construction involved
in the choice of O and of I; that the question naturally arises as
to whether other choices of O or of I; (or of both O and ;) would
give different points P’ to correspond to P. We cannot prove
this one way or another; but careful drawings of this figure using
different choices for O and !; would lead us to believe that we
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always get the same point P’ to correspond to P. Therefore
we make the following

ASSUMPTION. A projective correspondence between the points of
two lines 1 and I (where we may have I = 1) is uniquely determined
by three pairs of homologous points.

Now we shall show that the projective correspondence between
the points of two lines I and ! described above geometrically
is the same as the projectivity given analytically in §102 by (100)
or (101), and converscly.

Suppose in the above figure lis x = z=00isy = y =0,P
is (0,1 0), Py is (0,1,1), P3 is (0,a,1), Py is (1,0,0), Py is (1,0,1),
P} is (a’,0,1), Py is any fourth point (O,yl,l) on ! and its corre-
sponding point P4 is (z1,0,1). We wish to find the analytic rela-
tion between z| and y;. The line PoPj is £ +y — 2 = 0, the
line PyP; is z = 0. We take the line y — 2z = 0 as l;, and O as
(1,—1,0). The point Py’ is

U v W
01 —-1|=0-u—v—w=0, or (0,1,1)
1 1 -1
The line P30 is
z Yy z
1 -1 0|=—-z—y+a=0
0 a 1

The point P;" is (¢, —1,1,1). The line P)P}is PaPyjorz +y
—2=0. The line P;'Pg is

T Yy 2
a—11 1|=2+@—-a+1y—dz=0
a 01
The point 0’ is
u v w
1 1 —1 |=u(—a'+d —a +1)+v@—-1)+
1 o —a+1 —d w@ —a+1—-1)=0

or (— a+1 a —1,d’ —a). ThelineP0is—2 —y + y1z = 0,
so P4’ is (y3 — 1,1,1). The line P;'0" is

z y z
—a+1 d -1 4d —a
-1 1 1

=0
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which cuts y = 0 in the point
P! (y1(1 —d)+ (@ - @) 0)

1—a

But P4' has the coordinates (x;,0,1), hence we have the analytic
relation between points on ! and their corresponding points on I’
given by
, _y( —d) + (@ —a)
xr =
1—a

or 2l = (1 —a) p'=0—-d)y+ (@ —a)

This analytic relation is exactly of the form induced by collinea-
tions. See §102.

Conversely, we wish to show that an analytic transformation of
coordinates between two lines I, I’ induced by a collineation in
the plane is geometrically a projective relation between the
points of I and I’ established by two centers O and O’ or a per-
spective relation from one center.

We suppose the linesare =z =2’ =0and ' =y = ¢y’ =0,
that Py (0,1,0), P2(0,1,1), P5(0,a,1) are sent to P{(1,0,0), P5(1,0,1),
Pj(a’,0,1), respectively, by the transformation (103) in the form

.l
Yy + o

Therefore we use non-homogeneous coordinates so Py is ©, Pyis 1,
P3isa, P]is », Pjis 1, Pjisa’. Hence we have

© =%§s0‘y=0; 1=ji§805=a+l98ince'y=0;
/_aa+B ’r _ g__l—(l,’
o =% (¢4 B)a =aa+ B or £
) o 1—oa
o /§=l§+1=a’—a

Therefore our desired transformation is 2’ = {y(1 — a’) +
(o« — a)}/ (1 — a), which we have already shown to be the
analytic form of a projective relation established by two centers
O and O’. If a’ = a, this transformation is ' = y and is geo-
metrically a perspectivity with center O.

If L and I, Py, P,, P, P, are not in the special positions of the
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above paragraphs, we can perform a collineation T and get
them into these special positions. (Note that the choices of I;
and O are perfectly arbitrary, anyhow, as the assumption shows.)
Now if we perform T~ we get I, I/, P, Ps, P, P} back to their old
positions. But T~ sends collinear points and concurrent lines
into other collinear points and concurrent lines; hence in their
original positions the points of I and I’ were projectively related
by two centers because they are so related in their new positions.

Note that if I = I’ we can suppose lis z = 0. We can make [
perspective with [; = 2 = 0 by

=y, =2

as we saw above. Then we have the case l; #1’. But the

product of this transformation by the one above gives us another
bilinear transformation.

EXERCISES

1. Given two lines [, I’ and a projectivity determined by 0, 07, I; where
Py, Py, P3 correspond to Py, Py, P;. Make several other choices of O and 14
and show that each such choice gives us the same point Py on I’ to correspond
to a given point P4 on L.

2. Find the coordinates of two centers O and O’ that will send (0,1,0), (0,1,1),
(0,a,1) into (1,0,1), (1,0,0), (a’,0,1), respectively. If (0,y1,1) goes to (z3,0,1)
find the analytic expression for this projectivity between z = z’ = 0 and
y=y =0.

3. Prove that if [ = I’, three centers will set up a projectivity on the points
of L.

4. Find the coordinates of three centers to send (0,0,1), (0,1,0), (0,1,1)
into (0,1,0), (0,1,1), (0,0,1), respectively; also find the analytic expression for
this projectivity in the form (100).

5. In 2’ = 1/y find the coordinates of two centers to give this transforma-
tion geometrically.

6. In y’ =y + 1 find the coordinates of three centers to give this trans-
formation geometrically.

7. Do the same as in Ex. 1 for a projectivity between points of the same line,
using now three centers, O, O’, 0"'.

8. Dualize the discussion and the results in the text.

9. Work the duals of Exs. 1, 7.

106. Cross-ratio. We have seen that affine projectivities (13)
have an important invariant called cross-ratio (sometimes called
anharmonic ratio or double ratio). Compare §§23, 77. We
shall now show that the general projectivities (88) have this same
invariant.
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We must define cross-ratio in such a way as not to bring in the
idea of lengths of line-segments and yet so as to reduce to the
definition given for affine transformations, and to the definition
in terms of lengths of line-segments that is useful for the ordinary
frame of reference. Our definition of cross-ratio must be valid for
infinite points as well as for finite points, for a triangle of reference
as well as for azxes of reference. See §§23, 77.

Suppose we are given four collinear points P;(z;y;2,) where
1=1234 on a line y = mx + bz. (We leave the cases of a
line z = oz and a line z = 0 for the exercises.) We define a cross-
ratio of these four points as the expression

Ty — T2 T3 — X4

X3 — T2 Ty — X4

where x; stands for z,/z,. If we replace y,/2; by y;, we see that
we have also
Y1 —Yo2Ys — Y4 _mx1+b—mxy —bmarz+b—mx,—b
Ys —Y2Y1 —Ys mrz+b—mr; —bmzy+b—mzg—b
Ty — X2 Tz — X4

T3 — 2221 — X4
Also, taking 2, for z,/z; or for z,/y,, we have

81 —R223 —2 Ty — XT3 — X4

%3 — 2221 — 2 T3 — Tzl — Ty
. . ’
Again, taking y; for y,/z;, we have

14 ’ ’ ’
Yi =YY —Yg Ty — Tp T3 — Ty

I ’ ’ 4
Ys =Yz Uy — Ys Xz — T221 — T4

In homogeneous form the above cross-ratios are respectively

T122 — Tg21 T324 — T423 Y122 — Y221 Y3%4 — Y43
T32g — ToR3 X124 — X421 Y322 — Y223 Y124 — Y421
_ Y1%2 — YsT1 YaTs — Y4¥3
YsTe — Y223 Y124 — Y4l

Thus we see that a cross-ratio of four collinear points P;, P,, P3,
P, on a line y = mz + bz has the same value as that of the four
points R;(i = 1,2,3,4) in which the lines OP; cut z = 0 (in the
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adjoining figure), or of the four points S; in which the lines Y P;
cut y = 0, or of the four points 7'; in which the lines X, P; cut

= 0. (This figure may be regarded either as a triangle of
reference or as a schematic picture of axes plus l.)

Note that for the cross-
ratios in non-homogeneous
form (compare §§23, 77)
we use &/z as a non-homo-
geneous coordinate for a
point on y = 0, y/z on
=0, y/r or z/y on
z=10. But we might
equally well use z/z on
y=0or z/y on x=0.

There are in all six cross-ratios for any four collinear points.
(Compare §23.) Note how the above definition of cross-ratio
reduces for affinc geometry to that given first in §23, also to the
definition in terms of lengths of line-segments for the ordinary
frame of reference.

Now we prove that a general projectivity (88) leaves cross-ratio
invariant. We first suppose that Py, Py, P3, P4 lie on y = 0.
The collineation (88) sends y = 0 into bz’ + by’ + bgz’ = 0.
We suppose bg % 0 (if by = 0, then b; £ 0 or bz 0 and we can
take the cross-ratio of the points S/ or T} instead of the points
R/ for that of the points Py, P, P}, P, that correspond to Py, Ps,
P3, P, under the collineation). Hence, if we put 3y’ = (—byz’
+ b32’) /by in (88), we sce that we have the following relations
between the coordinates of points on y = 0 and the coordinates
of the corresponding points on byz’ + by’ + bgz’ = 0:

pr = (al - azlﬁ) (E’ + (a3 - a;é) Z,,
b, b,
b b

pz = (cl - Qé)x' + (ca - 6253)2,

z_ (a1by — azb1)z’ /2’ + (azbs — ashs)

2 (c1be — €2b1)’ /2" + (c3ba — cobs)
_ ar’ +b
T’ +d

hence

or more briefly z



CROSS-RATIO 239
where z is for z/z and ' for z'/2/, also a = a;bs — asby,
b= a3b2 - a2b3, Cc = 61b2 - Cgbl, d= C3b2 - Czba. Hence

z; = (ax} 4 b)/(cx] +d) for 7=1234
Putting these values for z; in the above cross-ratio, we get
az{ +b axy+bazs+b azg+b
Ty — T3 — x4 cxy +d cygtdexg+d cxy+d
T3 — T2 T — x4 awg+b axy+bar{+b azg+b
cxy +d cxs+der +d cxi+d

’ ! !/ !
Ty —Tp Ty — Xy

’ ’ ’ ’

This result proves that (88) leaves cross-ratio invariant when
sending ¥ = 0 into any line y = ma 4 bz (which line in the above
argument was byz’ + by’ + bsz’ = 0). Conversely, when send-
ing any line I to y = 0, (88) therefore leaves cross-ratio invariant.
Why? To prove the general case where (88) sends [ to I’ we can
send [ to y = 0 and then send y = 0to . 'Therefore we see that
in all cascs (88) preserves cross-ratio. (Note this whole argu-
ment is from the standpoint of a collineation as an alibt so z,y,z
and z’,y’ 2’ refer to exactly the same triangle of reference or axes
of reference plus 1,.)

ITLLusTRATIVE ExamprLE. As an illustration of the above theory we see
that

' =zx+y—2 yY=2—-—y+z 22=—-z4+y+z
sends the points
(1L,0,1), (201), (3,01), (40l)ony =0

into the points (0,2,0), (1,3,—1), (2,4,—2), (3,5, —3), respectively, on z’ = 2’.

Using y1/z; of the points R; for the cross-ratio of these four points on z’ = 2’
we get,

© —3/1 4/2—=5/3 _

4/2 —3/1 © —5/3

1
3

Using z;/z; of the points S; for the corresponding cross-ratio of the homologous
points on y = 0, we get again
1-23-4 1

3—21-—4 3
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EXERCISES

1. Make up a definite collineation T and take a definite line ! and send it
to a line I’ by 7. On [ take four definite points. Find a cross-ratio of the
four points on ! and the corresponding cross-ratio of the four homologous
points on I’. Show that these two cross-ratios have the same numerical value.

2. Put all the cross-ratios of the text into homogeneous form.

3. Work the illustrative example of the text using homogeneous forms for
the cross-ratios.

4. Treat the cases in the theory of the text where P, P2, P3, P4 lie on a
line = az and where they lie on z = 0. Treat the case where bz = 0 in the
proof of the theorem in the text.

5. By using (101) and (103) show that cross-ratio is an invariant under
(88).

6. If y = 0 goes into itself by (88), i.e., if b1 = bz = 0, show that cross-
ratio is preserved.

7. Fill in the algebraic details in the text.

8. Dualize the discussion and results in the text.

9. Prove geometrically and analytically that (88) sends tangents into
tangents, points of inflection into points of inflection, double points into
double points. Hint: Consider a tangent as the limiting position of a
secant. Analytically, an ordinary tangent cuts its curve in two coincident
points P’(z’y’,2’) and P’'(z’’,y’',2"') where P’ = P’ and so z’ = kz'/,
y' =ky'’ 2’ = kz’’ where k % 0. Now what does (88) do to z’, 2", y', "', 2/,
2'"?

10. Analyze a rotation into two (imaginary) homologies. Hint: A rotation
keeps fixed (0,0,1), (1,2,0), (1,—%,0) and therefore is of the first type of
collineations. Compare §84.

107. Harmonic sets of points and of lines. In §26 we defined
a harmonic set of points on a line I by means of a complete quad-
rangle as consisting of two diagonal points belonging to the
quadrangle and of the two other points of intersection of I with
the remaining sides of the quadrangle.

Dually we defined a harmonic set of lines intersecting in a
point P as consisting of two diagonal lines of a complete quadri-
lateral plus the two other lines joining P to the remaining vertices
of the quadrilateral.

In §24 we defined analytically for affine geometry a harmonic
set of points as having the cross-ratios —1, 3, 2. In §26 we gave
a geometric construction by means of the complete quadrangle for
such a harmonic set. In general projective geometry, on the other
hand, we define a harmonic set of points geometrically as in §26.
Nowlwe show analytically that any such set has the cross-ratios
-1, 3, 2.
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We take a complete quadrangle as in the following figure. The
three lines in the figure that consist of two sides of the quadrangle
and a side of the diagonal triangle we take respectively as z = 0,
z2=0,y =0. Wecall P4 (0,1,1) and one diagonal pointony = 0
we call (1,0,1).

B (.-

(0,0," (1,0,1) (1,0,0)

We wish to prove that the other diagonal point P on y = 0 is
(—1,0,1), i.e., that the quadrangular set on ¥ = 0 has one cross-
ratio equal to —1 and so is a harmonic set according to the analytic
definition as well as to the geometric.

Proor. The line P3Psisx + v — 2 = 0, PyP3is z = 0, PyP,
isz = 0. Hence Pj is the point (1,—1,0). Suppose P, is (1,,0).
The line PP is then
T Yy 2
1 01
1 « O

Hence Ps is the point (0,—«,1). The line PPs3 is

x Y 2
1 -1 0
0 —a 1

=y+az—ar=20

=r—az—y=0

The line P]_%).; is

=y—2z2—ax=0

- o8
R M«

z
1
0

These last two lines must meet on y = 0 (according to the figure),
but ¥ = 0 cuts P;P;3 in the point (—e,0,1) whereas y = 0 cuts

»



242 GENERAL ANALYTIC PROJECTIVE GEOMETRY

PP, in the point (—1/,0,1). We must have, therefore, —1/a
= —a, 80 @ = 1. This shows that the other diagonal point P is
(—1,0,1), which forms with (1,0,1), (0,0,1), (1,0,0) a harmonic
set in the analytic meaning (i.c., with a cross-ratio equal to —1).

Note that —1/a = —a gives us also @ = —1; this value of «
(however) is debarred, because then (—1/e,0,1) would be the
point (1,0,1). Since cross-ratio is invariant under (88), the above
special choice of the triangle of reference does not affect the
generality of the discussion.

We could in the above figure take y = 0 as the same line, take
PiPyasz = 0, P,P3 as x = 0, so the two diagonal pointsony = 0
are now (0,0,1) and (1,0,0). We could take P4 as (1,1,1), then
the point on ¥y = 0 between the two diagonal points must be
(1,0,1). In this case 3 must be (0,1,1) and P; must be (1,1,0).
Hence the line P;P3 (which is now z — y + z = 0) must cut
y = 0 in the point (—1,0,1), which is the fourth point in the
quadrangular set on y = 0.

Here again we sce that the four points on ¥y = 0 form a harmonic
set in the analytic sense. Again our special choice of the three
vertices of the triangle of reference and of P, as vertices for our
complete quadrangle does not cause a loss of generality in the
discussion, because some transformation of (88) sends the four
vertices of any given complete quadrangle into the four vertices
of any other given complete quadrangle and also (88) preserves
cross-ratio. We notice that in the figure and in the first dis-
cussion (—1,0,1) and (1,0,1) are the coordinates of the diagonal
points on y = 0, whereas in the second discussion (0,0,1) and
(1,0,0) are the coordinates of these same diagonal points.

Again let us note that, if in the above figure we join (0,0,1) to
P;(1,2,0) and (1,0,0) to P4(0,1,1), these two lines intersect in the
point S(1,1,1) since @ = 1. Also the point of intersection of
P,P3; and PyP4 is R(0,1,0); hence the line RS is x — 2z = 0,
which line must cut ¥ = 0 in the point (1,0,1). But the complete
quadrangle R, Py, S, P4 has the same quadrangular set on y = 0
as Py, P,, P3, P4 except that now (0,0,1) and (1,0,0) are diagonal
points, whereas for Py, Pa, P3, P4 the diagonal points are (—1,0,1)
and (1,0,1). This shows up an important fact, namely, thas if
T,, Ts, T3, T4 are a harmonic set of points on a line ! where T;,T3
separate To,T4, then this set of points can be determined by a
complete quadrangle where either T,,T5 or T3,T4 form the di-

%
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agonal points. Another way to state this result is to say that if
T3 is the harmonic conjugate of T’y with respect to T'; and T4, then
T4 is also the harmonic conjugate of T's with respect to T and T's.
Conversely to the above discussion, we should now prove that
every harmonic set of points defined analytically is also a harmonic
set according to the geometric definition. To do this we can take
the set on y = 0, choosing three of the set (in this order) as
(—1,0,1), (0,0,1), (1,0,1), then the fourth point on the right must
be (1,0,0) because one cross-ratio (in non-homogeneous form) is

-1—-01—-=z

1-0 —1—2z
if the fourth point is = or in homogeneous coordinates (1,0,0).
Now we see that the lines t =0,2=0,z+y—2=0,y+ 2
—z=0,z2+y+2=0,—9y+2z=0 form the six sides of a
complete quadrangle that defines this harmonic set geometrically.

EXERCISES

1. Check all the algebra in the text.

2. Dualize the discussion in the text.

3. Carry through the details in the last paragraph of the text. Why is
there no loss of generality in the discussion there? Hint: How many pairs
of corresponding points determine a transformation between two lines?

4. Find two other complete quadrangles to give the harmonic set (—1,0,1),
(0,0,1), (1,0,1), (1,0,0): (a) with (—1,0,1) and (1,0,1) as diagonal points;
(b) with (0,0,1) and (1,0,0) as diagonal points.

108. The absolute involution. A pair of perpendicular lines
y=me+ bz and y = —z/m + bz cut [, in the two points
(1,m,0) and (1,—1/m,0). If we put the points (z,y,0) on [, in
the form (1,y,0) where y replaces y/x we sec that the equation

y = —1/y’ connects the pairs of points on [, in which pairs of
perpendicular lines cut l,. Compare §83.
But the equation y = —1/y’ gives on [, an elliptic involution

with the circular points as double points. This involution is
called the absolute involution.

The Euclidean transformations (35) keep the circular points on
l, fixed or interchange them and so send any pair of conjugate
points of the absolute involution into another pair of conjugate
points of the same involution. Compare §§34, 35. Hence these
transformations are said to leave the absolute involution invariant.
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We note, however, that if in (13) a; = b; and by = —ay, these
affine transformations keep the circular points fixed and therefore
keep the absolute involution invariant. Compare §34. Hence
the Euclidean transformations are only a subgroup of the larger
subgroup G of the affine group (13), where G is defined as con-
sisting of all the affine transformations keeping the absolute
involution invariant. For the Euclidean transformations we
must have also a? + b2 = a2 + b2 = 1.

EXERCISES

1. Why is it that a transformation keeping the circular points fixed must for
this reason keep the absolute involution invariant?

2. Show analytically that the affine transformations with a1 = bp, b1 = —a2
form a group. Compare §31.

3. Show analytically that the affine transformations with a1 = bg, b1 = —as,
a? 4+ b = ol + b2 = 1 form a group.

4. Show that the Euclidean group is uniquely defined as consisting of all
the transformations that leave the absolute involution invariant and also leave
the area of any triangle invariant. Compare §34.



CHAPTER XIV
INTRODUCTION TO CORRELATIONS AND POLARITIES

109. Tangents to curves. In §§46, 50 we discussed tangents
to curves, also poles and polars with respect to a conic, for affine
geometry. Before taking up these topics for general projective
geometry and homogeneous coordinates (referred either to a
triangle of reference or to axes plus [,), we must first discuss
briefly the tangents to curves in general.

Given any curve in homogeneous coordinates z,y,2, the equation
of a secant to this curve through the two points P’ (z’y’,z’) and
P (' + Az, y' + Ay, 2/ + Az) on the curve is evidently

z y P r Yy z
x/ y/ z/ = xl y’ Z’ — 0
4+ ar Yy + Aoy 2+ Az Ar Ay Az

since this is a first-degree equation and is satisfied by the co-
ordinates of P’ and P"’.

If z,y,2 are assumed to be functions of a parameter ¢, we divide
this equation by At, let At — 0, and we have the equation of the
tangent at P’ (z',y’ 2’

z Y 2
(106) g o 2 |=0

de’ dy de

dt’ df’ dt

where ¢ is the parameter and dz’/dt’, dy'/dt’, dz'/dt’ are the
derivatives dx/dt, dy/dt, dz/dt at the point P’ (z’,y’2"), for which
point ¢ has the value ¢'.

Let us digress a moment to prove FKuler's theorem that, if
f(z,y,2) = 0 is an n-ic in the homogeneous coordinates z,y,z, we
have

' Of

(107) z o +y

of of
,a_yi zl_é_z_’ = nf(x',y',z'

245
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where df/dz’, 9f/dy’, 8f /92’ mean df/dz, 3f/dy, of/dz, respectively,
forz=2',y=9,2=72.

Proor. If we put z = z't, y = y't, 2 = 2’t in f(z,y,2), then
take d/dt [f(x,y,2)], we get

d d
= Tay) = 2006y &) = 7y 7

af z of , _a._f ’
6::: + ayy + azz
If now we take ¢ = 1, we have of/dx’, of/dy’, df/9Z’ for of/oz,
df/dy, df/dz and therefore (107) follows.
Again we note that from » = f(z,y,2) = 0 we have

do _of dz_ Of dy  of ds

=0
dt oz dt dy dt 9z dt

(108)
where t is any variable (z or y or z or a parameter).
If P'(z'y'2") lies on the n-ic f(z,y,2) = 0, we have the two
equations
af de’  of dy of dz

(109) or’ dt’ +ay a +az a
,ch_'+ f,+ ' f -0

From these last two equations we find that the coefficients of
z,y,z in (106), which are proportional respectively to
ylfifi _ z/i@{_{ d_‘f_ — 7% dz’ dy — = dz’
dt’ a’ Car at’ T ar dt’
are also proportional to af/dz’, f/dy’, of/ 92'. Hence the tangent
f(zy,2) = 0 at P'(z'y' 2) may also be written
i} i) i)
(110) ot Ly a0
ay’

Subtracting from (110) the second equation of (109) we get
still another form for the equation of the tangent, namely the
homogeneous equation

i
oz’

of of

(111) (x-—:c’)+5?(y—y')+5z—,(z—z')=0
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EXERCISES

1. Fill in the details for the derivation of (110) from (106) and (109).
2. Find the tangent to y% = z® at (1,1,1) from (106); then from (110);
then from (111).

110. Poles and polars with respect to a conic. If we apply
(110) to the general equation of the conic in homogeneous form
(75), we get the equation (5) again in homogeneous coordinates.

Whether or not P’(z’,y’,z") is on the conic (75), (5) is called
the polar of P’ with respect to this conic. The properties of
pole and polar that are given in §50 for affine geometry are valid
also in general projective geometry, since the proofs given in §50
carry over and apply to (75) in the general projective geometry.

Dually the pole of any line I'[+/»’,w'] with respect to the general
line conic (83) is

(112) (Av' + Hv' 4+ Guw')u + (HW' + BY' 4+ Fu')

+ (G + F + Cww =0
or

(112) Auwv' + Bw' 4 Cww’ + F@'w + ww’)
+ Gwu' + w'u) + Hw'v +w') =0

DeriniTiION. We call a triangle self-polar with respect to a
conic if its vertices are the poles of the opposite sides with respect
to this conic. (Compare §50, Ex. 4.)

From §50 and (112) we see that if two vertices of a triangle and
their opposite sides are poles and polars with respect to a conic,
then the triangle is self-polar with respect to this conic.

Let us take for the triangle of reference a triangle self-polar
with respect to the general conic (75). Then z = 0 must be the
polar of (0,0,1); hence we must have f = g = 0in (75) and (5).
Also (0,1,0) and y = 0 are pole and polar so h = f = 0. There-
fore our conic takes the simple form

(113) ax? +by® + 22 =0, abc#=0

Now we prove that any line | through a point P’ ('’ 2’) cuts
a conic and the polar I’ of P' with respect to this conic in three points
that form with P’ a harmonic set. In §25 we proved this for the
affine geometry. We can take P’ as (0,0,1) and the conic in the
form (113) without loss of gencrality, because (88) preserves
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cross-ratio and also every point P’ is a vertex for countless self-
polar triangles. (Why?) If we take any line y = mx through
P’ and solve its equation simultaneously with that of the conic
(113), we get the points of intersection (1, m, =V (—a — bm?)/c),
whereas y = mz cuts the polar z = 0 of P’ in the point (1,m,0)
and finally P’ is (0,0,1). We put z for z/x and take the cross-ratic

21 — 2223 — 2

23 — R2 21 — 24
_ \/(—-(L —btm%)/c—0 —V(—a—bm?)/c— »
—V(=a—btm?)/c—0 V(—a—bn?)jc—

= -1
which shows that these four points do form a harmonic set.

EXERCISES

1. Why must we have abc # 0 for (113)? Answer the question (Why?
in the text.

2. Dualizing the derivation of (113) in the text, derive the simple forn
Au? + Bv? 4 Cw? = 0 for a Iine conic.

3. Dualize the last theorem in the text, and its proof.

4. Show how, while deriving (113), we incidentally proved it for genera
projective gcometry.

5. Prove again for general projective geometry the propertics of poles anc
polars given in §51, especially the method of finding the center of a conic.

6. How are the coordinate axes and [, situated with respect to the conics
x%/a? + y%/b? = 17

7. Show that any two conjugate diameters of a conic are conjugate witlk
respect to this conic, i.e., one diameter passes through the pole of the other
From this fact derive the properties of conjugate diameters. Hint: Take
the conics in the type forms, then use homogeneous coordinates. Compare
§51.

111. Polarities; their relation to duality. We take a general
pole and polar with respect to the conic (75) and write them
respectively in point and line coordinates. Now, if we dror
the primes from the variables, we get the equations (using the
condition that the line ux 4 vy 4+ wz = 0 shall be the polar of
P(z,y,2)):

(114) pu =azxr + hy + g2, pv = hx + by + fz,
a h g

gr+fy+cz, A=|h f1#0
g ¢

pw

b
S
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We can look upon (114), quite apart from its connection with
the general conic (75), as a transformation sending points into
lines and lines into poinis. We call (114) a polarity. We can
find the inverse of (114) very readily from (88’), namely,

(114")  ox = Au+ Hv+ Gw, oy = Hu + Bv + Fuw,
oz = Gu+ Fv 4+ Cw

where ¢ = A/p and A is the discriminant of the general conic.

If we try to find the points P’(z’,y’,z’) that lie on their own
polars under the transformation (114), we see we must have
uz’ + vy’ = wz’ = 0. Expanding this equation (since wu,,w
have primed point coordinates), we get merely the condition that
P’ shall lie on the general conic (75). Hence we call (75) the
fundamental conic of the polarity (114).

If we take the conic 22 4 y2 + 22 = 0, we find that this is the
fundamental conic of the polarity

(115) pU=12x, =y, pw=2z

If we use this polarity on the algebraic equations, formulas, etc.,
that lead up to a theorem (or other result), we see that we get the
duals of this theorem and of the algebraic parts of its proof. For
example, solving simultaneously the equations of the two conics

22+ 942 =162% 2xy =922

we find that these two curves intersect in the four common
points ((+£5 &= V7)/2, (£5F V7)/2, 1) and ((£5 F V7)/2,
(5 £ V'7)/2, 1) where the upper signs in each parentheses go
together and so also the lower signs. Applying (115) we find
that the two conics

w2+ 02 =16w? 2w = 9uw?

have the four common tangents [(£5 + V7)/2, (£5 F V7)/2, 1]
and [(£5F V7)/2, (£5 + V7)/2, 1l.

EXERCISES

1. If A =0 in (114), what geometrical effect does this vanishing of A
have on the points and lines that correspond under (114)? Compare A =0
for (88).

2. Prove that (114) keeps cross-ratio invariant. What does this mean
geometrically?

3. Show that (114) sends a point P’ into a line I’ and !’ into P’.
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4. Solve (114) for z,y,z and get (114').

5. Find the equation in line coordinates (also find the point coordinates)
of the point into which (114’) sends the line ax + By + vz = 0.

6. Prove that (114) sends all the points on a line into all the lines through
a point, and conversely.

7. Make up examples of polarities.

8. Find the fundamental conic of

ru=z+y, pw=z+ty+z pw=y+z

9. Find the polarities that have, respectively, the fundamental conics

2ty
2zy + 22z +2yz =0, ‘?:I:—=z2, y? = 4 pxz

b2
112. Correlations in general. The polarity (114) is only a
special case of more general linear point-to-line (and line-to-point)
transformations, called correlations, that are given by the equations

(116)  pu = a1z + agy + agz, pv = bz + bay + bsz,
pw = 1« + coy + c32

where
a Qaz 4as
A= b1 b2 b3 #0
€1 C2 C3

with the inverse

(116’) ox = Ayu + By + Cyw, oy = Asu + By + Cauw,
0z = Asu + Bav + Caw

A polarity is distinguished among the correlations (116) by
the fact that <ts determinant (matriz) is symmetric with respect
to the main diagonal, i.e., ag = by, az = ¢1, bg = ca.

It is easy to prove (see the exercises) that a polarity has only one
Sfundamental conic, but a general correlation has two such conics —
one of them is in point coordinates and one in line coordinates —
and these two are not the point and line equations of the same conic
unless the correlation is a polarity.

Since (116’) is linear in both the point and the line coordinates,
the correlations (and so of course the polarities) send the points
on a line into lines through a point (for they send the equation of a
line in point coordinates into the equation of a point in line co-
ordinates), and conversely.

Also (116) can be obtained by following (88) by (115). Since
(88) and also (115), as is evident, keep cross-ratio invariant, there-
fore (116) keeps cross-ratio invariant.
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EXERCISES

1. Does Ex. 1 of §111 hold true here?

2. Show that (116) sends a point P’ into a line I’ but does not send I’ into P’.

3. Show that if (116) sends one point P’ into I’ and I’ into P’, then this
correlation is a polarity.

4. Derive (116’) from (116).

5. Prove that the two fundamental conics of a general correlation are
distinct. Hint: Take the correlation first as (116), then as (116’). Find
the relation between the two fundamental conics of a general correlation.

6. Find the fundamental conics of

pu=z+y+z pp=x—y—2 pw=y+z

7. Make up examples of correlations and find their fundamental conics.

8. Using Ex. 5, make up the equations of a point conic and of a line conic
that can serve as the fundamental conics of a correlation. Find the corre-
sponding correlation.

9. Prove geometrically that a correlation sends points to lines and lines to
points. See Veblen and Young, Vol. 1.



CHAPTER XV
SOME THEOREMS ON CONICS

113. Pencils of points and pencils of lines; parametric coor-
dinates for points and for lines. DgeriNiTION. Often we wish to
consider the points on a line instead of the line itself as a whole.
In this case we call the points of a line a pencil of points. Simi-
larly, and dually, all the lines through a point we call a pencil of
lines. The line on which a pencil of points lies is called the axis of
the pencil. The point through which all the lines of a pencil pass
is called the center of the pencil.

If we take any two lines through a point with equations

wmz + vy +wiz =0 and usx + voy + wez = 0

respectively, we note that any line through this point is given by
the equation (with a parameter \)

(ug + M)z + (01 + Mug)y + (wy + Mwg)z = 0
or (with homogeneous parameters A; and ;) by the equation
(Mug 4+ Nug)z + (Mv1 + Navg)y + (Mwy + Nowz)z = 0

Therefore any line through the point of intersection of I;{uy,v;,u1]
and ly[ug,v2,w,] has parametric coordinates given by

(117)  pu = uy + Nug, pv = v; + N2, pw = wy + Awg
or
(117")  pu = Nuy + Nata, pv = Moy + Navz, pw = Mwy + Agwy

where A, \;, A\ are called the parameters and I;[u;,v;,w;] and
lo[ua,ve,ws] are called the fundamental lines of the pencil of lines.

Dually, if we take any two points (in line coordinates) on a
line, with equations

zu+yw+zw=0 and xou+ Y+ 2w =20

respectively, we note that any point on this line has an equation
252
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of the form
(@1 + px2)u + (Y1 + py2)v + (21 + pz2)w = 0
or (w1 + pere)u + (uiy1 + woy2)v + (w121 + peze)w = 0

Therefore any point on the given line through P;(x;,y1,2;) and
Py(x2,y2,22) has parametric coordinates given by

(118)  ox = m; + pks, oy = Y1 + uys, 02 = 21 + 2o
or

(118") or = w1 + peTz, oY = mY1 + w2y,
0z = w12y + ug22

where P;(x1,y1,21) and Py(x3,y2,22) are called the fundamenial
points of the pencil of points.

We take the following cross-ratio of four collinear points (ex-
pressed in parametric coordinates) with parameters p’, u’’, u'"’, u?v
and we get

xl _ (E” xl/l - xIV

" 144 4
' — 2 — v

’ 123 n’
Tt pm T Tt T — 1 — pT

- 7 12 ’
T+ u g — 3 — pre T T — 2 — pVa
’ oo v
Y el A A
= n n” 14
W=t o — W

We have a similar dual result for four concurrent lines. Hence
the cross-ratios of four collinear points (or of four concurrent lines)
are the same as the cross-ratios of their parameters.
For example, on the line ¥y = 0 with (1,0) and (2,0) as funda-
mental points, the points
(3,0), 5,0);  (7,0), (9,0)
can be written, respectively
(14+1-2,0, (1+2-2,0), 1+3-20), (1+4-20)
Take the following cross-ratio, we have
3—-57—-9 1-23-4 1

7-53-9 3-21-4 3

Using parametric coordinates we shall now show that the
cross-ratios of four points of a pencil of points are the same as the
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corresponding cross-ratios of the four lines of a pencil of lines that
pass through the four given points, respectively.

Proor. Suppose the four pointsare P;(z;,y,,2,) wheres = 1,2,3,4
and the four lines are l;{u;,v;,w,]. Suppose we have

wXy + o1y + w1z = 0 and  ugxs + vaY2 + wezp = 0

i.e., the lines [; and [l pass through the points P; and P., respec-
tively. Taking this pair of lines and this pair of points as the
fundamental lines and the fundamental points of the pencil of lines
and the pencil of points, respectively, we have (117) and (116).
If the line with parameter A; is to pass through the point with
parameter u,, we must have

(w1 + Nug) (1 + wae) + (01 + Mve) (Y1 + piy2)
+ (w1 + Nwz) (21 + mzz) = 0

From this equation we get

U1 T2 + v1Y2 + wizp
- i
Uxy + VoY1 + w2y

N o=

which is of the form A\; = au;. But now we see that we have
N — NN v “I _ ,u." p.”, — v

NN N N\ #/u — ,u” ,u, — v

i.e., the cross-ratios of the four lines have the same values as the
corresponding cross-ratios of the four points.

An important result of this theorem is the fact that a harmonic
set of points on a line I subtends from any point P not on I a har-
monic set of lines. Geometrically, a harmonic set of points is
determined by a complete quadrangle, but a harmonic set of lines
is determined by a complete quadrilateral; therefore the above
result is quite astonishing. (Compare, however, §28.)

The above theorem could have been proved (without the use of
parametric coordinates) by taking the pencil of lines with Y, for
its center and the pencil of points with y = 0 as its axis, using a
triangle of reference. Then the equation of any line through a
point (z;,0) is £ = z;; or in homogeneous line coordinates such a
line is [1,0,—x,]. Taking w for w/u in the coordinates of these
lines we have

w1 '"1;02’!03—11)4_231 — Lo T3z — T4

W3 — W W1 — Wy T3 — Ty X1 — T4
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This shows again that these lines have the same cross-ratios as
their points of intersection with a line 1.

Any change of the fundamental lines (or points) in the pencil
of lines (or points) amounts to multiplying I; (or P;) by one
constant and I (or P;) by another constant and adding the results
for a new first fundamental line (or point) and similarly for a
second fundamental line (or point). Hence such changes of funda-
mental lines (stmilarly for points) are given by the equations

(119) TA = ahy + by, TA; = oA + d)g

or in non-homogeneous form

¢ + d\

’ I _
(119%) A Y

c
where
a

d
1

For points we have equations in u instead of A\. Conversely,
(119) changes the fundamental lines. Note that (119) s of the
form (102) and so keeps cross-ratio invariant. As an illustration,
suppose in the pencil of points

(17 + 23, 12 — pod, p1l + p23)

we choose (10,—2,4) and (4,6,—2) as new fundamental points.
Then we can write the pencil as

(1110 + g4, —u12 + ugb, pi4d — p32)
and (119) has the form (with p for \)

’ ’
THy = p1 T+ M2, THe = M1 — M2

EXERCISES

c 4 ‘ = 0 for (119')?

2. Why is no loss of generality incurred in the first proof of the theorem in
the text by taking the fundamental points and lines as they are taken?

3. Why is there no loss of generality in the second proof of the theorem in
the text when Y is taken as the center of the pencil of lines and y = 0 is
taken as the axis of the pencil of points?

4. Fill in any details omitted in the text.

1. Why must we have
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5. The pencil of points
2 =3+2p py=5—p pz2=6+3u or B+245—4,6+4+3u)
can be written as
pr=8+54, py=9+44, pz=15+9/
or B+54,94+44,15+94)

Find the coefficients for (119’) to accomplish this change of fundamental
points. Hint: Put in homogeneous parametric form.

6. How does A" = (3 —\)/(2 + \) change the pencil of lines [3 — A,
243\ =142

7. Make up examples like Exs. 5 and 6.

8. Find the cross-ratios of the lines z = 0, ¥ = 0, 22 4 ay? = 0.

9. Show how to get parametric point coordinates for a pencil of points with
Pi(z1,y1,21) and P2(z2,y2,22) as fundamental points, from the equation of the
line P1P2, namely,

T y =z
1 Y1 21
T2 Y2 22

Hint: Prove that a necessary and sufficient condition for this determinant
to vanish is that we can multiply the second row by x; and the third row by
o, add the results, and, subtracting this sum from the first row, obtain a row
of zeros at the top of the determinant.

=0

114. A point (line) conic as determined by two projective pencils
of lines (points). First of all, we must find out about the effect
of the general projectivity (88) on the parametric point and line
coordinates. Consider any line

[u1 + }\u2, V1 + )\1)2, wy + )\11)2]
of a pencil of lines. In point coordinates this line has the equation
(wm1z + vy + wi2) + Nugx + vay + woz) = 0
The general collineation (88) sends this line into
(uiz’ + iy’ + wiz’) + an(ugz’ + v3y’ + wie’) = 0
where ou; = au; + by + ciw;, similarly for ov] and ow!; also
a'ué = a1ug + biwe + c;ws, similarly for a'vé and a'wé; also
a=d/o.
That is, if we put this result in line coordinates, (88) sends
[ur + Mg, 01 + Mg, wy + Mwg] into  [u] + adug, o] + advs,
w{ + odwg]. Thus we see that, if we have two projective pencils

of lines and we take for the fundamental lines in one of the pencils
Iy [w1,01,w1] and lo[ug,vs,w,], while we take for the fundamental lines



DETERMINING CONICS BY PROJECTIVE PENCILS 257

of the second pencil the lines I{[u{,v1,w]] and lj[ug,vj,w}] that cor-
respond under (88) to I; and l,, respectively, then to establish the
projectivity between the two given pencils [u; + Mug, v; + Moy,
wy + Mwg] and [u] + N'ug, v{ + Nvy, w] + Nwj] we have merely to
put

(120) NN o= ar

Note that, if we have any other fundamental lines for the second
pencil, we must first operate on this pencil with (119’) so as to
have fundamental lines correspond to fundamental lines under
the projectivity (88), then put N = a\, and we have the pro-
jectivity established. But the product of (119’) by (120) has
the same form as (119”); hence we can interpret this transformation
of the parameter as effecting a projective transformation between
the lines of the same or of different pencils of lines.

(Remember that we are here looking upon the projectivity as
an alibi; hence x =2’ =0,y =y’ = 0,2z = 2’ = 0 are the sides
of one and the same triangle of reference or arc the same axes
plus I, according to which frame of reference we are using.)

Now we have

_ W+ 0y + w2z

U + voy + wo2
from the first pencil of lines in the above discussion and since we
have (after replacing 2’ by z, y’ by y, 2’ by 2 in the second pencil
of lines)

A =

u{x + v{y + w{z

ugr + vgy + w2

The equation (120), or (119’) if the fundamental lines do not
correspond under the projectivity, gives us a quadratic equation
in z,y,2 (i.e., a point conic).

Therefore we can describe a point conic as the locus of the points
of intersection of the corresponding lines of two projective pencils of
lines. Dually, a line conic can be described as the locus of the lines
Joining the corresponding points of two projective pencils of points.

For example, if the pencil of lines

+y—2)+A2zx+y—2)=0
is made projective with the pencil
+2y—2+Nz—-2y—2)=0

N = —
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by the equation A = 3 \, we have the point conic given by

z+2y—z r+y—=z
x—2y—z— 2z 4+y — 2
or 22 -8y’ +2224+6yz—32x—8zy =0

Conversely, we want to prove that, if we take any two points P
and P’ on a conic and consider as pairs of corresponding lines
in the two pencils of lines with centers at P and P’, respectively,
all the pairs of lines 1,I’ that intersect on the conic, then we have
a projectivity between these two pencils of lines.

Proor. If we take P as (1,0,0) and P’ as (0,1,0) and also
take (0,0,1) on the conic, then our conic has for its equation

(121) 2hxy + 2¢gxz+ 2fyz = 0

The two pencils of lines with centers at P and P’ can be written,
respectively,

y+X=0 and z4+Nz=0, .'.>\=—?z—’ and x'=—f:-

Putting these values of y/z and z/z in (121), since the corre-
sponding lines must intersect on the conic, we get

N

2R — 29\ —2fA =0, or >\'=h)‘_y

which gives us a projectivity between the two pencils of lines.
We do not get (120), hence the pairs of fundamental lines do not
correspond under the projectivity.

Since three pairs of corresponding lines determine uniquely a
projectivity between two pencils of lines (by the dual of the
assumption in §105), therefore the line PP’ cannot correspond to
itself; otherwise, if [ is the line joining the points of intersection of
two pairs of corresponding lines I;,l; and Iy,l5, then the two pencils
of lines with centers at P and P’ are perspective (with I as axis).
If the transformation is actually a perspectivity, then the conic
we obtain degenerates into a pair of lines, I and PP’.

To obtain a non-degenerate conic we must have the transfor-
mation between the two pencils of lines a projectivity; therefore
the line PP’ considered as a line in the pencil with center at P
must correspond to the tangent to the conic at P’, and this same
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line PP’ considered as a line in the pencil with center at P’ must
correspond to the tangent to the conic at P. (If PP’ corresponded
to a line I; through P that cut the conic again at P’/, then I; would
correspond to two lines PP’ and P’P’/, contrary to the fact that a
projectivity is a one-to-one correspondence.)

As an illustration of a degenerate conic, we see that A’ = 2\
makes z = 0 in 2 + Az = O correspond toz = 0 in z + Ny = 0,
and the resulting conic is zz — 2xy = 0. Here =z = 0 is the
common line of the two pencils of lines, whereas z = 2y is the
a;(is of the perspectivity set up between the two pencils by
No=2\

EXERCISES

1. Recast the argument in the first part of the text in terms of line co-
ordinates.

2. Dualize the discussion in the text and get a line conic. What is the
degenerate case of such a line conic?

3. If a non-degenerate conic is to be a hyperbola, the two projective pencils
of lines that generate this conic must have two pairs of corresponding lines that
are pairs of parallel lines. Why? How about these two pencils of lines if the
conic is to be a parabola, or an ellipse? Why cannot there be three pairs of
parallel corresponding lines?

4. Given the two pencils of lines

B4+2X\44+5N6—27] and [1 —2)N,2 42N, \]
find five points on the conic determined by the projectivity
3 —2A

T 24

’

between these two pencils, without getting the equation of the conic in point
coordinates.

5. Find the equation in point coordinates of the conic in Ex. 4. Check
the five points found in Ex. 4 by substituting their coordinates in this
equation.

6. Find the equation of the conic given by z + Az =0, y + A’z = 0, and
N =2NA+2).

7. Find the projectivity (in parameters) between the pencils of lines with
centers at (0,1,0) and (1,0,0) on the conic zy = 22; on the conic ry — zz + 22
=0.

8. Do as in Ex. 7 for the pencils of lines with centers at (1,1,1) and
(—1,—1,1) on the conic zy = 22

9. Why is there no loss of generality in the text due to taking the pencils
of lines with centers at (1,0,0) and (0,1,0), and also taking the conic in the
form (121)?



260 SOME THEOREMS ON CONICS

115. The Pascal line (Brianchon point) of a hexagon inscribed
in (circumscribed about) a conic. Before discussing hexagons
inscribed in and circumscribed about a conic, we want to abridge
our notation somewhat. Compare §42.

If we represent a line l; = a;z+ By + v = 0 by the equation
1, = 0, we see that the equation

Wiz + ANl =0

is the equation of a conic (see the adjoining figure) through the
four points Pyg, Py3, P34, Py for every value of . We can
determine N\ = N\’ so that this
conic will also pass through
st the point P45. .
Suppose Psg is also on this
conic. Now the equation

P34 1416 + [.Llsl = O

F Ps is the equation (fox" every value

of u) of a conic through the four

points Pig, Psg, Pss, Pss. We can determine u = u so that this

second conic passes through the point P;,. Hence these two conics

lils + Nl = 0 and lydg + u'lsl = 0 must be the same conic
(having five points in common).

We suppose the above two equations of the same conic are such
that when expanded they are identical as to coefficients and not
simply with their coefficients proportional (this we can secure by
dividing the second equation through by a suitable constant).
Next we subtract the two equations and get

lllg - l4ls - l(,u./l5 - )\’lz) =0 or lllg - l4lg = l([.t’l5 - R/lz)

since the two equations are identical.

The left side of the second of the above identities must be
factorable, with I as one factor and u’ls; — Nl as the other factor.
But [; cuts Ig on ! and I3 cuts I; on I; hence l; must cut I, in a
point P’ and I3 cut lg in a point P’/ such that these two points P’
and P”’ lie on the line p'ly — Nl = 0 (which line also passes
through the point of intersection of I, and I5). This line is called
the Pascal line of the inscribed hexagon. By duality we get the
Brianchon point of a hexagon circumscribed about a conie.

In the above discussion the conic might be a pair of lines, and




THE PASCAL LINE OF AN INSCRIBED HEXAGON 261

the proof would still be valid. Suppose the hexagon is inscribed in
a pair of lines LI’ (as in the following figure), then the three
points D;, D,, D3 are collinear (by Pascal’s theorem).

In the hexagon P;, P,, P3, P4, Ps, Pg inscribed in a conic we
shall call the pairs of sides P;Ps and P4Pj5, PoP3 and PsPg, P4P;5
and PgP,, pairs of opposite sides (since a single vertex separates
the vertices of the sides of each pair; thus P; separates P, and
P,, Pg separates Ps and Py, so P1P; and P4Pj5 are opposite sides).
We can now state Pascal’s and Brianchon’s theorems as follows:

TureoreM. If a hexagon s inscribed in a conic, the three pairs
of opposite sides intersect in three collinear points (on the Pascal
line).

TuroREM. If a hexagon is circumscribed about a conic, the
three pairs of opposile vertices lie on three concurrent lines (that
intersect in the Brianchon point).

Note that if we change the order in which we join the vertices
Py, P,, P3, Py, Ps, Pg we get a new hexagon with a new Pascal
line. Thus the hexagon with sides I, (P1P3), lo(P3Ps), l3(PsP3),
14(PoPy), l5(P4Pg), ls(PePy) has a different Pascal line from that
in the above figure.

EXERCISES

1. In the conic z2/9 + y2/16 = 1 show analytically that Pascal’s theorem
is satisfied by the hexagon with vertices (taken in this order):

0,4), (3,0), (0,—4), (—3,0), (3/V2,4/V2), (—=3/V2,—4/V?)

Find the Pascal line.

2. Change the order of joining up the vertices in Ex. 1 and find the new
Pascal line.

3. We can reduce the general conic to zy = 22. (Compare §122.) Take a
general hexagon (z;, 1/z;, 1) inscribed in this conic (where ¢ = 1,2,3,4,5,6) and
prove Pascal’s theorem analytically for this hexagon, using the actual equa-
tions of the opposite sides. Does this constitute a general proof of Pascal’s
theorem? Why, or why not?
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4. Draw illustrations of Pascal’s theorem and its dual, using hyperbolas,
ellipses, and parabolas.

5. Draw an illustration of Pascal’s theorem (and one of its dual theorems),
then join up the six vertices (take the intersections of the six sides) in different
orders, show how to get other hexagons and different Pascal lines (Brianchon
points).

6. Dualize the discussion in the text and obtain the Brianchon point of a
circumscribed hexagon.

7. Describe the case where P1g = P19, i.e., where l, is a tangent. Dualize
this case.

8. Show how to use the Pascal line to get a sixth point Pg on a conic deter-
mined by five points Py, Py, P3, P4, Ps where Pg is on a given line [ through P;.
Dualize this discussion.

9. Show how to get the tangent at Pz on the conic of Ex. 7. Dualize
this result.

10. Discuss the Pascal line for the other cases of coincidence of pairs of the
six vertices of the hexagon, such as P; = P3and P4 = P;, ete.

11. Work Ex. 8 for the other cases of Ex. 10.

12, Dualize Ex. 10.

116. Projectivities on a conic; center and axis of homology.
The conic xy = 22 is sent into itself by every projectivity of the
form pxr = az’, py = 1/ay’, pz = 2z’ as well as by numerous other
types of projectivities. Compare §20. Each of these projec-
tivities T sets up a correspondence between the points of the conic
such that A and A’, Band B/, C and
C’, ete. (see the adjoining figure)
are pairs of homologous points.

We see that the pencil of lines
A’A, A’B, A’C, etc., is projective
under this collineation 7' with it-
self in such a way that A’A cor-
responds to the tangent at A’,
A'B to A’B’, A'C to A'C’, etc.
But we saw in §114 that since all these points lie on a conic,
therefore the pencil of lines with center at A is projective with
the pencil of lines with center at A’ in such a way that
AA’ corresponds to the tangent at A’, AB’ to A’B’, AC' to
A'C, ete.

Combining these two projectivities, we find that the two pencils
of lines with centers at A and A’ are projective with each other
in such a way that AA’ corresponds to A’A, AB’ to A’'B, AC’
to A’C,. . .. Butin thislast projectivity AA’ is self-correspond-
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ing, so the correspondence must in reality be a perspectivity with
axis I(PP’) where P is the intersection of A’B and AB’ and P’ the
intersection of A’C and AC’. Compare §105.

We see that [ is the Pascal line of the hexagon A, B’,C, A’, B, C’;
therefore BC’ intersects B'C on I in a point P”/. A similar dis-
cussion shows that any other pair of corresponding points D and D’
on the conic must be such that AD" and A’D intersect on I, also
BD' and B'D, CD’ and C'D.

DeriniTION. The line [ whose existence is proved in the last
paragraph is called the azis of homology for the projective relation
between the points on the conic. Dual to I we have a point P
related similarly to the tangents at corresponding points on the
conic, and called the center of homology for this projectivity on the
conic.

EXERCISES

1. If Tis pr = y’, py = ', pz = 2’ and the conic is zy = 22, find the axis
of homology.

2. Find the center of homology for Ex. 1. Hint: Put into line coor-
dinates.

3. Give the details of the discussion in the text showing that AD’ and
A’'D, BD' and B’D, CD’ and ("D intersect on I. Hint: Consider the
hexagons A, B’, D, A’, B, D" and A, (", D, A’, C, D',

4. Dualize the discussion in the text and get the center of homology P.

5. Prove that P and [ are pole and polar with respect to the conic. Com-
pare §50.

6. Prove that a projectivity on a conic is uniquely determined by three
pairs of corresponding points. Hint: If P and P’, R and R’, S and S’ are
these pairs of homologous points, the tangent p at P goes to the tangent p’
at I/, the tangent r at R goes to »’ at R’, the point T'(p,r) goes to T’ (p’,r'),
S goes to S’. Show that this uniquely determines the conic, using Pascal’s
theorem on a line through S.

7. Dualize Ex. 6.

8. Prove that a projectivity on a conic is uniquely determined by its axis
of homology and one pair of corresponding points.

9. Dualize Ex. 8.

10. Prove that every double point of a projectivity on a conic must be a
point of intersection of the axis of homology with the conic.

11. When is a projectivity on a conic parabolic?

12. Dualize Ex. 10.

117. Involutions on a conic. If a projectivity on a conic is an
involution, then (see the following figure) A must correspond to
A’,also A" to A, B to B’, and B’ to B. Thercfore the lines AB’
and A’'B, AB and A’B’ must intersect on the axis of homology .
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Why? Also AA’ and BB’ intersect in the center of homology P.
Why?

Again, suppose a projectivity II on a conic C sends A to A’
and A’ to A’". If I, is the involution on C with A’ as a double
point, and AA’’ as a conjugate pair, then I;II sends A to A’ and

A

AI
A’ to A. Hence I,1I is an involution I,. Why? But LI = I,
givesus I = I;1,. (How?) Therefore we have the theorem:

THEOREM. Any projectivity IL on a conic is the product of two
involutions Iy, I, either of which has an arbitrary point A" (not a
double point of 1) as a double point.

EXERCISES

1. Answer the (How’s?) and (Why’s?) in the text. Hint: Since /51 sends
A to A’ and A’ to A, if B and B’ are any other pair of corresponding points,
AB’ cuts A’B on the axis of homology [, also AB cuts A’B’ on l. (Why?)
This shows that B corresponds to B’ as well as B’ to B. (Why?) Hint:
If 111 = Iy, then I 7411 = 1.  (Why?)

2. If Iy has AA’ as a conjugate pair and A’ as a double point, show that
My sends A’ to A’ and A’ to A’,so Il = I7and TT = I4/,.

3. Tor II of the form pr = 3’, py = x’, pz = 2z’ and the conic zy = 22,
find 7 and 79 analytically so that IT = /;/,.

118. One-to-one correspondences between the points on a
conic and the points on a line. It is often found useful to set up a

one-to-one correspondence between the points P of a line 1 and the
points P’ of a conic C. Then we can prove readily some theorems
about the points P’ on C and by this one-to-one correspondence
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interpret these theorems in terms of theorems about the points P
on the line I. In the above figure we see one way of setting
up this one-to-one correspondence for the conic zy = z* and the
line ¥ = 0, by means of lines through the point 7°(0,1,0). We
see that (1,0,0) corresponds to itself and (0,0,1) corresponds to
0,1,0).

It is readily seen that the relation between the coordinates of
the points P(z,y,2) on (y = 0) and P’ (z’,y’,2") on C(zy = 2?) is
given by

2'?
T: pr = 2, py=y—,—x', pz =2’
which is not linear in the variables and so is not a projectivity.

However, even though 7T is not a projectivity, we note that T
makes a projectivity on the line correspond to a projectivity on
the conic, and so of course an involution to an involution (be-
cause three pairs of homologous points determine a projectivity
either for the line or for the conic).

EXERCISES

1. Using the one-to-one correspondence given in this section show that any
projectivity on a line is the product of two involutions.
2. Dualize the discussion in the text.



CHAPTER XVI
SOME THEOREMS ABOUT COMPLETE QUADRANGLES

119. Two theorems on the complete quadrangle. First we
wish to prove:

TurOREM. The pairs of opposite sides of any complete quad-
rangle Py, Ps, P3, P4 cut any given line L in pairs of conjugate points
of an tnvolution.

0,0,1) I=y=0

Proor. We take the quadrangle and line [ as in the above
figure. The line

4

ll=y—az—z=0

0
cuts y = 0 (i.e., ) in the point R3(—a,0,1). The line

z

0

=br+2z—y=0

cuts y = 0 in R{(1,0,—b). The point R3 is (—1,0,1). The

line

z Yy 2
1 b 0|=bxt+az—y=0
0 a1

266
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cuts ¥ = 0 in R4(—a,0,b). Writing the six points on I in non-
homogeneous coordinates, we have the quadrangular set

(O:O): (°°;0); ('— %)0)1 (—a,O); (—1)0); (— %;0)

We wish to show that these points are pairs of conjugate points
in the same involution on I. Since 0 and « are to be a conjugate
pair, such an involution must have an equation of the form
z = a/z’. Since (—a,0) must correspond to (—1/5,0) in this
involution, we have —1/b = —a/a; so a = a/b, and the in-
volution must have the equation x = a/(bz’). This involution
sends (—a/b,0) to (—1,0) since —1 = a/b(—a/b).

Q.E.D.

Next we wish to prove:

THEOREM. If a complete quadrangle is inscribed in a conic,
this conic cuts any line l in a pair of conjugate points of the involution
determined on | by this complete quadrangle. (See the above
theorem.)

Proor. Referring to the complete quadrangle of the preceding
theorem, we see that such a conic has the equation

2Z—Ny—az—z) bz —y+2)=0

because this equation is of the second degree and evidently gives
a curve passing through the four vertices of the above complete
quadrangle, namely,

(0,1,1), (1,1,0), (0,a,1), (1,b,0)
But this conic (for every value of \) cuts ¥y = 0 in points given by
AbzZ 4+ (Aab + N 4+ 1Dzz + Naz? = 0
i.e., in the two points

—Nab—X—1xV(Qab+ A+ 1)%2 — 42\%b
22\

T_
- =
Now the above involution z = a/(bz’) (determined by the com-

plete quadrangle) sends

_ —Mb— X =14 V(Aab+ N+ 1)* — 42%ab
- 2%

x
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into
s = 2 a\
(=Nab— A —=1)+ V(Nab+ N+ 1)2 — 422

_—Mab—N—=1—=V(ab+r+ 1) —42\ab
- 2 \b

Q.E.D.

Any two points P, P’ are said to be conjugate with respect to a
conic C if the polar of P with respect to C passes through P’.
We now prove that on any line l the pairs of conjugate points with
respect to C ferm pairs of an involution of which the double points
are the points of intersection of I with C.

Taking the triangle of reference self-polar with respect to C, we
have C in the form

ar? + b2 +cz2=0

We suppose that I is z = 0. The polar of any point P(z’y’,0)
with respect to C is azz’ + byy’ = 0. This polar cuts z = 0 in
the point P’(1, —az’/by’,0). The polar of (1,0,0) is z = 0,
which cutsz = 0in (0,1,0). In non-homogeneous coordinates the
above pairs of conjugate points are
a
0 3 _—
0; Y, byl
where y; = y'/2’.
Evidently the involution ¥ = —a/by’ sends 0 to « and y; to
—a/by;. Also the double points of this involution are given by
y? = —a/b. But z = 0 cuts the conic C in these same points.

EXERCISES

1. Dualize all the discussion in the text.

2. Prove the converse of the first theorem; namely, that if six points on a
line ! are pairs of conjugate points of an involution, then these six points form
a quadrangular set. Hint: Take ! as y = 0; the points as (0,0), (,0),
(-1/b0), (—a,0), (—1,0), (—a/b,0); and the involution as = = a/bz’.
Take any point P not on ! as (0,1,0). Now show how a complete quadrangle
can be constructed that will determine this set of points on L.

3. Treat the two special cases of the first theorem in the text, namely,
where R1 = Rs but R3 R4, and where B, = R also Rz = Ra.

4. Show why the two proofs in the text do not lose generality because of
the special choice of the triangle of reference that is involved in them.
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5. Prove that a quadrangular set of points is sent by a collineation into a
quadrangular set of points and by a correlation into a quadrangular set of
lines. Hint: What happens to the complete quadrangle?

6. We have seen (where?) that three pairs of homologous points determine
a projectivity of points on a line. If in the first theorem of the text we deter-
mine such a projectivity on [ so as to send Ry, (1,0,0),R3, into R1,(0,0,1),Ry,
how does this show that the given quadrangular set of points can be
determined by a complete quadrangle for which the role of point triple and
triangle triple is interchanged from that in the figure? Hint: Consider
what that collineation that induces the projectivity on [ does to the quadrangle
1,5,0), (0,a,1), (1,1,0), (0,1,1).

7. Prove that all the conics of any pencil of conics through four given
points cut a line [ in pairs of conjugate points of an involution. Hint: Use
the second theorem in the text.

8. Prove that a collineation (or correlation) sends an involution into an
involution. Hint: Use the first theorem in the text.

9. Fill out all the details omitted in the text.

10. How does the generation of a conic by means of two projective pencils
of lines show that five points determine a conic? Hint: Take the two
centers P, P’ of these pencils of lines. How many pairs of lines determine a
projectivity between these two pencils? How about P and P'?

11. If in Ex. 10 we use the line PP’ and the tangent at P’ as one pair of
homologous lines in the projectivity between the two pencils of lines with
centers at P and P’, show that two more points determine the conic. Thus,
to say that a conic is tangent to a given line [ at a given point P is equivalent
to giving two points on the conic. Note that the centers of the two pencils
that generate a conic may be any two points on the conic. (Why?)

12. If in Ex. 10 we use PP’ and the tangent at P’ as one pair of homologous
lines, also P’P and the tangent at P as another pair, then one more point
determines the conic. (Why?) Hence show that to have given the asymptotes
of a hyperbola leaves one more point to determine uniquely the hyperbola.

120. A theorem about a complete quadrangle inscribed in a
conic. We shall prove now

TuroreM. If a complete quadrangle Py, Py, P3, P4 ts inscribed
in a conic, then this complete quadrangle and the complete quadri-
lateral formed by the tangents to the conic at the vertices of this quad-
rangle both have the same diagonal triangle.

We take this quadrangle with its four vertices on the sides
z = 0 and z = 0 of the triangle of reference (as in the figure on
page 270) and y = 0, passing through the two remaining diagonal
points.

Hence P,, P3, (0,1,0), (1,0,0) form a harmonic set (note the
complete quadrangle D,, Dy, P,, P,); also Py, Py, (0,1,0), (0,0,1)
form a harmonic set (note the quadrangle Dy, Do, Py, P3). There-
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fore if we take P; as (1,1,0), then Py is (—1,1,0); if we take P4
as (0,1,1), then P, is (0,—1,1). Then PiPsisx —2—y =10
and cutsy = 0in D; = (1,0,1).

But D,, D,, (0,0,1), (1,0,0) form a harmonic set, so D, is
(—1,0,1). Accordingly the vertices of the diagonal triangle of
this given complete quadrangle are (0,1,0), (—1,0,1), (1,0,1) and
the sides are

y=0 z4+2=0, z—2=0

The line P3Pyisz — 2+ y =0, PiPyisz + 2 —y = 0, PyP3 is
y+2z2+2=0.
Any conic through Py, P, P3, P4 has an equation of the form

t+z—y(@+y+z)+2rz=0
or C=22— 1y +22+20+N2z=0

’ AN AN
W2 Is

zx' —yy +22 + Q1 +N) @z+22)=0

The tangents at (1,1,0), (—1,1,0), (0,1,1), and (0,—1,1), respec-
tively, are

z—y+ A1+Nz=0, z+y+ (1+Nz=0,
—y+z+Q+N2x=0, y+2+ A+Nz=0

We draw a picture of these lines. (Sce page 271.)

The pairs of opposite vertices Ry and Rq, R3 and R4, R5 and Rg
of this complete quadrilateral could now be found. But it is
easier to note that y = 0 is the line B1R; (obtained by combining
suitably each of the pairs of opposite sides of the quadrilateral);

The tangent to C at any point P’ (x
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x = —z is the line RgR5; x = z is the line R3Rs. Hence the
complete quadrilateral has the same diagonal triangle as the
complete quadrangle.

EXERCISES

1. Dualize the discussion in the text.

2. Show why the proof in the text does not lose generality from the special
choice of the triangle of reference.

3. Find the vertices of the complete quadrilateral in the text, and so find
its diagonal triangle.

4. Prove that the converse of the theorem in the text is true.

5. Prove the theorem in the text by first reducing the equation to the form

2zxy +4yz+22x =0

then taking the complete quadrangle as (0,0,1), (0,1,0), (1,0,0), (—1,1,1).
Hint: To reduce " to this form take the triangle of reference on the conic,
then use a suitable transformation of the form

T =az', y =ﬂ.’/lr z =z

Why is there no loss of generality in this proof?
6. Check all the algebra in the text.

121. Four theorems on quadrangular sets and on cross-ratio.
We prove now:

TurorEM. A transformation T between points of the same line
(or of different lines) that preserves cross-ratio is a projectivity.

Proor. Suppose that T sends zs, x3, 4 into ya, Y3, ¥s, Tre-
spectively, and preserves cross-ratio. Then any point x must
go into a point y such that we have

Y — Y2 y3—y4=x—x2x3—x4
Ys — Y2 Y — Y4 X3 — T2 T — T4
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If we solve the above equation for y in terms of x, we get an equa-
tion of the form (103), i.e., a projectivity.

Note, however, that this projectivity (103) may be induced by
a transformation that is not a collineation. For example,

pz = a1z’ + agy’ + az2’?, Py = bz’ + bay’ + 32’3,
p? = C32

induces on the line z = 2’ = 0 a projectivity, but this transfor-
mation in the plane is not a collineation because of the presence in
its equations of the terms in 2’2, 2’3, and 2’* so the transformation
does not send all straight lines into straight lines.

Next we consider a quadrangular set of points P;, Pg, P3, Py
on a line ! (as in the following figure) with P;, P, P3 as a point

triple and P4, Ps, Pg as a triangle triple. Compare §69. We
shall now prove:

THEOREM. There exists a complete quadrangle determining the
same quadrangular set Py, Py, P3, P4, Ps, Pg, but for which the
former point triple Py, Py, P3 is now a triangle triple and the former
triangle triple P4, P5, Pg ts now a point triple.

Proor. Through Py, Py, P35 draw three arbitrary lines [y, I, I3,
respectively, intersecting in the three points R(I;l), R’(lls),
R" (l,l3). Since Py and Pj, P, and Pg, Ps and P, are the pairs
of the involution cut on I by the first quadrangle, we want to have
the new quadrangle determine the same involution by its pairs of
opposite sides. Hence we join R’ to Pg by a line lg and R to Py
by a line l4, then lg and I, intersect in the fourth vertex R’’’ of the
required complete quadrangle. Now the line R’’R’"/ must pass
through P5s because the two complete quadrangles determine the
same involution on I,
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We next prove:

THEOREM. A mnecessary and sufficient condition for the points
M, N, A, B on alinel to be projective with the points M, N, A’, B' on
I (where M = N) is that the points M, A, B, N, B', A’ form a
quadrangular set where M and N, A and B', B and A’ are the pairs
of points determined on | by the pairs of opposite sides of a complete
quadrangle; also M,A,B is a point (or triangle) triple and N,B",A’
18 a triangle (or point) triple.

Proor. In the first place, if these are points in a quadrangular
set as in the following figure, then the two centers O; and O,
with the auxiliary line » generate the above projectivity.

In the second place, if the points on I are projective as stated
above, we take any line n through N and an arbitrary line 0,0,
through M. With any point O; on 0,0, as center, we send B
to P, A to R, N to N, M to S (the points P, R, S lying on n), by a
perspectivity. With O, (determined as the intersection of A’R
and 0,0;) as a new center, we send R to A’, S to M, N to N, by
a perspectivity. But three pairs of corresponding points determine
a projectivity, thereforc O;P must pass through B’, and we have
the complete quadrangle Oy, O,, P, R that determines the given set
of points as a quadrangular set as described in the theorem.

QE.D.

Finally, we note that a necessary and sufficient condition for
M, M, A, B on a line l to be projective with M, M, A’, B on 1 is
that these points form a quadrangular set as in the figure on page 274.
The proof is so like the one given above that we leave it for the
student in the exercises.
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Note that these last two theorems give us a way to determine
geometrically corresponding points in a hyperbolic or a parabolic
projectivity on a line. Compare the use of harmonic sets to
determine corresponding points of a hyperbolic involution. (See

§104.)

EXERCISES

1. Carry out the proof in the last paragraph.

2. Dualize the discussions in the text.

3. Set up geometrically several pairs of corresponding points in a given
hyperbolic projectivity on a line I, in a given parabolic projectivity, in a
given hyperbolic involution, where in each case the double points (or point)
are given.

4. In the first paragraph of the text solve the equation for y in terms of z.

5. In the proof of the second theorem in the text explain in full why the
line R’R’’’ must pass through Ps.

6. Interpret the result in the second theorem for the case of a harmonic set.
Hint: Note the positions of the diagonal points of the two complete quad-
rangles that enter into the theorem.



CHAPTER XVII
FURTHER DISCUSSION OF n-ICS

122. Reduction of a conic and of a cubic to simpler forms.
To illustrate a use of the properties of general projectivities, we
shall send the general conic C (75) into a conic with a simpler
equation. We take a point P, outside C and the points of contact
Py and Pj3 of the two tangents to C from P; (see the adjoining
figure), and we send these three points into the points (0,0,1),
(1,0,0), (0,1,0), respectively,
by a collineation. This sends §3
C into some conic C’ tangent
to y =0 at (1,0,0) and tan- B P,
gent to z = 0 at (0,1,0).

Let us now determine what
is the form of the equation of
C’. In regard to the cquation
(75), if this is to be the equa-
tion of C’, x = 0 must give 22 = 0 when solved simultaneously
with (75), hence b = f = 0; y = 0 must give 22 = 0, hence
a = g = 0. Therefore the equation of C’ must have the form

22+ 2hxy =0

where ch =~ 0.

We can suppose (1,1,1) is on C’ (this amounts to the choice of a
fourth pair of corresponding points in the projectivity, and two
homologous complete quadrangles determine uniquely such a
projectivity); hence ¢ + 2h = 0. The conic C’ that is desired
has therefore the equation zy = 22. Another way to make this
final reduction is to put
in ¢z + 2 hxy = 0, and we get 2y’ = 2’2

Next let us take a cubic K with a cusp and an inflection on it.
(See the figure on page 276.) Suppose P, is the inflection with a
tangent P,P3; P, is the cusp with P,Pj3 as its tangent. We send

275
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the cubic K by (88) into a cubic K’ with (0,0,1) as a cusp and
y = 0 as its tangent, with (0,1,0) as an inflection and z = 0 as its
tangent. Then Py, P;, P3 must go into (0,1,0), (0,0,1), (1,0,0),
respectively, since a projectivity sends a cusp into a cusp, an
inflection into an inflection, a tangent into a tangent.

We want to find the form of the equation of K’ by considering
the general cubic (38). In (38) z = O must give 2> = 0, hence b =
d=e=0; y=0must givez® = 0,hencec =f =g =0. Every
line y = ma when solved with (38) must give an equation of the
form

22(ax + B2) = 0

since (0,0,1) is a double point, hence j = 0. Now our cubic K’
has the form

azr® 4 yz(hy + kz) = 0

But (0,0,1) is a cusp with ¥y = 0 as a tangent, hence £ = 0 (other-
wise hy + kx = 0 would be another tangent at this double point).
We put (since ah # 0)

z=a, y=vy, 2= —1z
and our desired cubic K’ isy'%’ = z'3.

EXERCISES

1. Why do we have ah # 0 in the cubic in the text?

2. Show that y = z° has a cusp at infinity; that y2 = 23 has an inflection
at infinity.

3. Reduce the cubic with a crunode and an inflection to the form

2+ y2e+ayz =0

Hint: Make use of the last three or more sentences in the text. A crunode
is a double point with real tangents.
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4. Reduce the cubic with an acnode (i.e., a double point with imaginary
tangents) and an inflection to the form

Bta+y%=0
Hint: Here (0,0,1) is the acnode with y = =iz as tangents, and (0,1,0) is
the inflection with z = 0 as tangent. If (38) is to have 22 4 y% = 0 as the
tangents at (0,0,1), we must have f = h. Why?

5. Reduce the general conic to

224+ y?422=0
Hint: Take a self-polar triangle as the triangle of reference; then put
z = az',y = By’, 2 = vz’ and determine «, B, v so as to get the above equation.

6. Interpret the discussion in the text as an alias.

7. Explain in full why 7 = 0 in the text when reducing the cubic with a
cusp.

8. In the three simple forms of cubics given in the examples above and in
the text, show that every line £ = mz cuts the cubic and the line ! (defined
below) in a harmonic set of points. For the cubic with a cusp, [ is the tangent;
otherwise we determine ! so as to form with z = 0 and the two tangents at
the double point a harmonic set of lines.

9. Find { (of Ex. 8) for the following cubics and apply Ex. 7 to these
cubics:

y% =22 (x £ 2), y% =z(x —2) (z — az)

10. If the general quartic (39) has three double points, take these at the
vertices of the triangle of reference. Now what form does the equation of the
quartic have? 1If these three double points are cusps withy = 2,z = 2,y = 2
as tangents (each tangent with quadruple contact), what form does the equa-
tion of the quartic have?

123. Polars of points with respect to n-ics. Suppose an n-ic
has the equation f(z,y,2) = 0. Let us put
z =a:'+x"t, y =yl+yllt, z=2 +2'"t
in f(z,y,2) and we get
f(x’ + x”t, yl + y”t, zl + z,,t)
which is a function of ¢ alone if z/, ¥, 2/, 2/, '/, 2’ are looked

upon as constants temporarily. (Compare §48.) Expanding
this function of ¢ in powers of ¢t by Taylor’s formula, we get

o) =f@@ + "ty + 't +2't) = ¢(0) + ¢’ (O)¢
¢’ (0) , ™ (0) .,
SEr T SUCE s sl
But we have

_ PN, ! __ai_u _?_.f_// _a_f_//)
80 = 1@ &) 60 = (3" + " + e
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where 3f/dz’ means 8f/dx with z, y, z replaced by z’, 3, 2’ and
similarly for df/dy’, 9f/0z’. Also we have

¢,,(0) af //2+ af //2+ af //2_|_2a g y//z//
f o N .
+ 2 + 28 "oy
v ooy 2 )
(ax +ay'y +6z'z

where the exponent (2) is symbolic and is defined by the equation.
Finally, we have in the same symbolic notation

()
¢ (0) = (:{” + 2y +a—fz")

ay’ oz’
fori =1,23,...n.
If we replace z’,y' 2’ by z,y,2 and 2’4" 2" by 2’y 2, we
have from the preceding paragraph Taylor’s formula for three
variables, namely,

(122) f@+ 2t y+y'tz+7t) = flzye)

+t<3f /+§£y,+gz;>+_ .
ox ady 9z

tfof , o , of \¥
+'i—!(6xx +ayy +6zz> e
+ t"f (' y' 2")
We note that the last term in the expansion is really t*f(z,y’,2’)
since f(z,y,2) is homogeneous; see (107). Compare §109.
The ith polar curve of P’(z’,y’,2’) with respect to the n-ic
f(x,y,2) = 0 is defined from (122) as the curve whose equation is

(123) (Zo+ Ly + 2

(3)
or z+ dy V¥ az ) =0
Note that for » = 2 and 7 = 1 (123) becomes the ordinary

polar of P’ with respect to the conic (75). As an example of the
above discussion, the first polar of (1,1,1) with respect to the cubic
y% — 23 = 0is

—322+2yz+ 942 =0
the second polar is

—6z+224+2y=0
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Note that the ith polar of (1,0,0) is 8%/dz* = 0, that of (0,1,0)
is 0%f/dy* = 0, that of (0,0,1) is 9%/0z° = 0. Thus the third
polar of (1,0,0) with respect to y*z + 2% — 2%% = 0 is 6022
—6y%=0.

EXERCISES
1. Write out in full
0 6 @
(f , + f of )
62

for ¢ = 3,4,5.
2. Check over all the work in the text; fill in the details.
3. Prove that

(0f oL f +;’f,) =am—1)(n —2)- - (n =i+ 1)@y

Hint: Put z = z't in f(z,y,2), then take df/dt and we get

A R S T ,
(ax.z: +ayy +Ozz)_ nt" f(a: W2

since f(z,y,2) = t"f(z',y’,2’). Put t =1 and we get the above result for
2 = 1. Now repeat the argument for

(Of ,+<3fy+f )
oz

in place of f(z,y,2).

124. The class m of an n-ic. DEriNiTION. By the class m
of an n-ic we mean the number m of tangents to an n-ic from any
general point P in the plane not lying on the n-ic and not on the
tangent at an inflection or on the tangent at a double point, or in
other such special position.

Note that in §43 we saw that the degree n of an n-ic is the same
as the number of points of intersection of a general line with this
n-ic, besides being the degree of the equation of the curvein
point coordinates. Dually, we sec that the class m of an n-ic is
also the degree of the equation of this n-ic in line coordinates.
See §91.

In this section we show that the class m of an n-ic is associated
with the number n(n — 1) of points of intersection of the n-ic
and the first polar of a general point P with respect to this n-ic.
First we discuss further the polars of the n-ic.
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We can write the general equation (39) of an n-ic in homogeneous
coordinates in the form

(124)  f(zy,2) = az" + (box + bay)z™ !
+ (co2® + 2 c1zy + coy®)e™ 2
+ (dox® + 3 diz®y + 3 dozy® + d3y®)e™ 3
+ (eo2* + 42’y + - - -+ egyt)e ™
Ho e g e Ly™) = 0
The first polar of (0,0,1) with respect to (124) is

(125) L= nae™ 4 (0= 1) Goz + b)" 2+ - - =0

The (n — 2)th polar (or polar conic) of (0,0,1) with respect to
(124) is

n-2f n!
9z n—2
+ (n — 2)! (cox® + 2 c1zy + cy®) = 0
The first polar of (1,0,0) with respect to (124) is

(127) g‘g = bozn_l + (2 Cox + 2 cly)z"_2 + « e e = O

(126) 5 % 2+ (n — 1)! (box + bry)z

Note that, if we put ¢ = 1/7in f(z’ + 2''t, v' + v''t, 2’ + 2''t),
we get 1/7" f(@'" + z'r, "' + 4’7, /7 + /7). Expanding this
last function, omlttlng 1/7™, by Taylor’s formula in powers of 7,
then replacing z’,y',2" by x4,z and z'’y"" 2" by z’'y,7, also
replacing 7 by 1/¢, we get

(128) fx+ a2t y+y't,z+2t) = f&' ¥ 2")
of f af o%f 2f
+ t( + Sy +— % z) + 2'< z? + y?

oz’
2 2 2 2
f 2 3f 9% 6f )
32° T 207 a7 Pt 2570 @t 250y ™
4+ f(zy,2)

Comparing (128) with (122) we see that the polar conic of
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P' 'y ') with rcspect to f (:c,y,z) = 0is

62]’ 22
az'? +

f o%f
vz + 26z’ az’

(129)

2
+ 2 6 / ———zy =0
Y
If P’ (z',y’ 2') lies on the n-ic f(x,y,2) = 0, we havef(z'y’2’) =

and the tangent to the n-ic at P’ is

a i) a
(130) oty + gz =0

0z

Why? Compare §§109, 123. If P’ is a double point, i.e., if
af/ax’ = af/9y’ = af/az’ = 0, the tangents at P’ are

(2)
(131) (%x+ 9 +3f- ) =0

which is also the polar conic of P’ with respect to the n-ic f(z,y,2)
= 0.

If P’ is a point of inflection on the n-ic, then of/dz’z + af/dy’y
+ 0f/d2'z is a factor of (df/dx’ + af/dy’y + 8f/02'2)® (why?),
and therefore the polar conic of P’ is degenerate. If P’is a double
point, its polar conic is again degenerate. If P’ is a triple point, or
other multiple point of higher order than the second, its polar
conic vanishes identically. (Why?)

If y = 0 is a tangent from (1,0,0) to (124) with (0,0,1) as point
of contact, then we must have in (124) a = b = 0. Why?
But then (127) passes through (0,0,1). Hence we see that the
first polar of any point P’ with respect to an n-ic passes through
the points of contact of tangents to the n-ic from P’. Therefore,
in general, the class of an n-ic is m = n(n — 1), or less, since the
first polar is an (n — 1)-ic. Compare §123.

If (0,0,1) is a node on (124), we have @ = by = b; = 0. Then
(124) starts with a term in 2"~2 for its highest power in z. It
can be shown (compare Hilton’s “ Plane Algebraic Curves,” pp.
11, 96) that in this case (124) and (127) intersect at (0,0,1) in
two coincident points. If (0,0,1) is a cusp on (124) with z = 0
as tangent, we must have a = by = by = ¢; = c2 = 0, ¢p # 0.
(Why?) In this case z is a factor of the highest terms in 2z that
occur both in (124) and in (127). It can be shown that now (124)
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and (127) intersect in three coincident points at (0,0,1). But
(1,0,0) was any point in the plane. Therefore we have the fol-
lowing formula for the class of an n-ic

(132) m=nn—1) —26 — 3«

where m is the class of the n-ic (the number of tangents to the
n-ic from a general point), n is the degree of the curve, § is the
number of nodes on the curve, x is the number of cusps on the
curve.

ILLusTRATIVE ExampLE. As an illustration of the above theory suppose
we want the points of contact of the tangents to the curve

@ +ye =24°
from the point (1,1,1). The first polar of (1,1,1) is
y:—5z2+2z@x+y) =0
This polar meets the curve in the points given by
W —2zy+2%) @ +2zy —2?) =0

The factor y2 — 2 zy + z? = 0 gives us the point (1,1,1) twice over, and this
means that the tangent at (1,1,1) counts for two tangents from (1,1,1).
The points of contact of the desired tangents from (1,1,1) are therefore
(1, -1=x2} 1227}

EXERCISES

1. Find how many of the points (1, —1 =2}, 1 & 2-1) actually lie on the
given cubic in the last paragraph of the text.

2. Check over all the work in the text, filling in algebraic details.

3. Prove that a double point P’ on an n-ic is a double point for every
polar of P’ with respect to this n-ic and has the same tangents for every polar.
Hint: Take P’ as (0,0,1), find 0%/d2* from (124). If (0,0,1) is a double
point on (124), then @ = by = by = 0 and the tangents at (0,0,1) are given
by coz® + 2 cizy + coy? = 0. Why? Compare §48.

4. Prove the generalization of Ex. 3 for an r-ple point on the n-ic.

5. Prove that a point of inflection P’ on an #n-ic is a point of inflection with
the same tangent for every polar of P’. Hint: Take P’ as (0,0,1) with
y = 0 as the tangent. Thena = by = co = 0in (124). Why?

6. Generalize Ex. 5 for a point with a tangent of ¢-ple contact.

7. Use Ex. 5 to prove that the first polar of a point of inflection P’ on a
cubic degenerates into the tangent at P’ and another line. Hint: A non-
degenerate conic cannot have a point of inflection.

8. Find the points of contact of the tangents from (1,1,1) toz3 + 3 = 22°,
from (0,1,—1) to z3 + y® + 2% = 5 zyz, from (11, 16, 9) to 2% + ¥ = 3 zy.

9. Assuming that the dual of a node is a bi-tangent (i.e., a tangent with
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two points of contact such as y = 0 for the curve y = z?(z — 1)?) and also
that the dual of a cusp is an inflectional tangent, show from (132) that we
have

(133) n=mm-—1)—27r—3.

where 7 is number of bi-tangents to the n-ic and « the number of inflections on
the n-ic.
10. Determine the class of each of the curves:

v =2° y% =22 (r +2), y2z =z(@ —2) (& — ),

y: =23z — 1), y%?=22(2? — 2%

11. Answer all the queries (Why?) in the text.

125. The Hessian of an n-ic; inflections on an n-ic. If (0,0,1)
is a point of inflection (or briefly an inflection) on (124) withy = 0
as tangent, we must have a = by = ¢cp = 0. Why? But then
the polar conic (126) of (0,0,1) is degenerate and consists of a pair
of lines

y{(n — Dbz +2(n—2)! ez + (n — 2)!02y} =0

one of them (y = 0) being the tangent to the curve at theinflection.

If (0,0,1) is a node or cusp on the n-ic (124),thena = by =b; =0
and the polar conic (126) of (0,0,1) is again degenerate.

The discriminant of (126) is (if we take (0,0,1) on the n-ic
and suppose a change of variables has made by = 0):

(n—2)cy (n—2)1¢y 0
(n—2)!e; (n—2)!c (n—1)!b,/2
0 (n—1)!'by/2 0

= —(n—2)! ((”;ZI)JY b2co

This discriminant vanishes if by = 0 or ¢o = 0 (or by = ¢o = 0),
i.e., if the point (0,0,1) is a node, cusp, or inflection.

The condition that (129) be a degenerate conic is (after re-
placing 2,3’ 2’ by z,,2) :

(134) oy % oY
9x? 9xdy 9roz
2 62 02
H= of —f J =0

axdy Oy® adyaz
% ¥ 8
9z 9z dyadz 922
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The equation (134) gives us a curve called the Hessian of the
n-ic f(z,y,2) = 0. Every point on (134) has a degenerate polar
conic with respect to the n-ic. We see that (134) cuts the n-ic
in the points of inflection and the nodes or cusps on the n-ic.
Since (134) is of the degree 3(n — 2), we see that there are in
general 3 n(n — 2) or less inflections on the n-ic.

The number of coincident points of intersection of an m-ic and
its Hessian that occur at a node or a cusp can be determined as
follows. This number is evidently independent of 7, so there are
two constants A and B such that

t=3n(n —2) — Ad — Bk

where ¢ is the number of inflections, n the degree of the curve,
& the number of nodes on the n-ic, x the number of cusps on the
n-ic.  (See Hilton, loc. cit., p. 101.) By duality we have

k=3m(m —2) — Ar — B

(See Ex. 9 in §124.) But we have also the two equations (132)
and (133) from the text in §124 and Ex. 9 in §124.

Eliminating m, 7, « from the above-mentioned four equations
in n, m, 9, «, 7, 1, we have

(A—6){(n?—2n—26—3k) n® —25—3«)+45+ 6«}
+ BA—-2B—-2){-3n’+6n+ A5+ (B— 1)k} =0

Since this last equation must hold for all values of n, we have
(equating to zero the coefficients of the powers of n):

A—-—6=3A—-2B—-—2=0, or A=6,B=8

Therefore we have the following equation giving the number of
inflections on an n-ic,

(135) L=3n(n—2)—68— 8«

From (135) we see that every cubic has at least one inflection,
because at the very worst a cubic can have a cusp, so for this case
t=3-3(8—2) —8=1. If the cubic has a node we see that
t=3:-3(3—2)—6=23. Again we note that a cubic has at
least one real inflection because a third-degree curve (the cubic)
and another third-degree curve (its Hessian) have at least one
real point in common. (See §45.)
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As an illustration we note that the Hessian of
P+ P+ 22+ 6mryz = 0 is m2@®+ o2 + 28) = @md+ Day:

which meets the cubic where zyz = 0. Hence the inflections of

this cubic are the points of intersection of the cubic with z = 0,
y =0,and z = 0.

EXERCISES

1. Show how, if we take (0,0,1) on the n-ic (124), we can get bp = 0 by a
suitable transformation of the variables.

2. Give in detail the reason why a cubic has at least one real inflection.

3. Find all the inflections on the cubic in the last paragraph of the text,
and show that they lie by threes on (real or imaginary) straight lines.

4. Eliminate m, 7, « from the four equations referred to in the text and give
all the details in the derivation of (135).

5. Show that the dual of (135) is

(136) k=3m(m—2) —67+ —8¢

6. From (132), (133), (135), (136) obtain the following five equations
(which with the above four complete the list of so-called Pliicker equations):
nn+3) —8s—2k=%3mm+3) —r—2.
ttn—-1D)(n—2)—b—k=2(m—-1)(m—-2) —7r—.
t—K=3(m—n)
2r—8)=(m—n) (m+n—29)
n?—28 —3k=m?—27—3.

7. Find the Hessians of the following curves:

Y2l =2, (x+y+2)2 +6kryz =0
BHP 4+ =h@+y+23 yz=21% y% =2z +2)
y% =z(x —2) (x — az), Y23 =z, yet =P

8. Show that if (0,0,1) lies on the n-ic (124), the polar conic (126) cannot
be a double line unless (0,0,1) is a cusp. Hint: We have a = 0, hence (126)
must (to be a double line) have the form (ez + 8y)? = 0. Why?

126. Inflections on cubics and their harmonic polars. If (124)
is a cubic with a point of inflection at (0,0,1) and yz = 0 as the
polar conic (126) of this inflection, we have a = by = ¢y = ¢; = ¢3
= 0. Why? Any line y = mz when solved with this cubic gives
then

bymaz? + (do + 3 dym + 3 dgm? + dgm®)2® = z(x? — a2?) = 0
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Therefore on y = mx we have the four points
0,0,1), 1,m,0), (VaymVa,l), (—Va,—mVa,l)

where (1,m,0) is the point of intersection of z = 0 and y = mx,
(0,0,1) is the inflection, the other two points are on the cubic..

These four points form a harmonic set, as we see by taking the
cross-ratios of the associated points on y = 0, namely (in non-
homogeneous form z/z), 0, ©, Va, —Va. See §24. Note that
(0,0,1) and (1,m,0) separate the other two points on y = ma.
We call z = 0 the harmonic polar of the point of inflection (0,0,1)
on the cubic.

Let us take a harmonic homology T (sce §97) with a point of
inflection P on a cubic curve as center and the harmonic polar [
of P as axis. This transformation 7 will send the cubic into itself
(as ¢ = —2', y = —y’ sends y = 2% into itself) because every
line through P cuts the cubic in two other points P, Py and
cuts the harmonic polar I of P in a point P’ such that P, Py, P/, P,
form a harmonic set where P, P’ separate Py, Ps.

Also, since a collineation sends a point of inflection into a point
of inflection, we see that if this cubic has another point of inflection
R other than P, the cubic must have a third point of inflection
R’ on the line RP. Why?

The above theorem can be proved also as follows. Suppose the
cubic has two points of inflection. We take these inflections on
2z = 0 with 2 = 0 and ¥ = 0 as tangents. Then our cubic must
have an equation of the form

zy(ax + by + cz) = d2

(Why?) This equation shows that the line ax + by + cz = 0
must be the tangent at a third point of inflection that liesonz = 0
(i.e., is collinear with the other two points of inflection).

From the figure on page 287 we shall show that a cubic (even
though it may have nine points of inflection) can have only three
real points of inflection (and these three must be collinear, from
the preceding discussion). See Hilton, ‘“ Plane Algebraic Curves,”
page 216.

Suppose the cubic has a fourth real inflection Py, the line PP,
then has another real inflection P on it (from the above para-
graphs). The line P3P, has another real inflection Pg on it.
The line P3P4 has another real inflection P7 on it; also the line
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PyPg has a third real inflection Pg on it. If P; = Pg, the line
P3P5 has another real point of inflection Pg onit. If P§ = Py,
the line P1Pg has another real inflection P4’ on it, which inflection
cannot coincide with a previously determined inflection. (Why?)
Also PP, has a real inflection Py, which must be distinct from the

B

other inflections. (Why?) But then P§’Py must have a tenth
(real) inflection on it, which is utterly impossible. This discussion

does not preclude the possible existence of six imaginary inflec-
tions. Why?

EXERCISES

1. Explain fully why a collineation sends a point of inflection into a point of
inflection.

2. Draw a figure to prove that a cubic cannot have more than three real
inflections, supposing P7 # Pg in the figure of the text; next draw a figure
assuming P; = Pg but Py = Ps.

3. Answer all the queries (Why?) in the text; also fill in all algebraic details.

4. Tind all the points of inflection on the cubic y% = z2(x £ 2). Show
that a cubic with an acnode has three real inflections, but a cubic with a
crunode has one real inflection and two imaginary inflections. See Ex. 3 in
§127.

5. Solve the Hessian of y% = x(r % 2) (r — v2) simultaneously with the
curve. Do the same for y%z = z(z% 4+ 2 yxrz + 22).

6. Prove that if a quartic curve has three collinear points of hyperinflection
(where the tangent intersects the curve in four coincident points), it has a
fourth point of hyperinflection collinear with the other three. Hint: Use
the second method of proof in the text that the points of inflection on a cubic
lic by threes on straight lines.

7. Prove that a cubic with three asymptotes (no two of them inflectional
tangents) meets these asymptotes in three collinear points. (Compare Ex. 6.)

127. The reduction of a cubic curve to a normal form. From
the theory in §126 we have at hand a method of reducing a cubic
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with no node or cusp to an equivalent cubic with a simpler equa-
tion.

This cubic has at least one real point of inflection (see §125)
which we take as (0,1,0) with z = 0 as tangent and y = 0 as
harmonic polar. (See the following figure.)

If the cubic cuts y = 0 at (0,0,1), this must be the point of
contact of a tangent from (0,1,0). (Why?) If (38) is the cubic
pictured above, z = 0 must give 2> =0, so b=d =e¢ = 0;
z = 0 must give y%, so ¢ = j = 0. Every line z = mx must give
an equation of the form =z(z%+ ay?) =0. (Why?) But
2 = mx gives us

23(a + fm + gm?) + z%y(km) + xy*(hm) = 0
hence k¥ = 0. Now we have the cubic in the form
—hy?%z = x(gz% + frz + ax?)

If y = 0 cuts the cubic in three real points, we take (1,0,1)
as one of these points, so our cubic must have the form

ay’z =z(x — 2) (x + B2)
(Why?) If «/8 > 0, we put

1 \/E

14 ’ 4

r=2z, 2==2, Y =4
3 y

[+

If «/8 < 0, we put

1 ’_
T = —-x', 2==2, y= —By'
B8 a

In either case we get an equation of the form
vz =z(x £2) (x — v2)
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A cross-ratio of the points (v,0,1), (£1,0,1), (0,0,1), (1,0,0)
on the harmonie polar y = 0 of (0,1,0) is

From this we seec that the above cubic cannot be sent by a col-
lineation into another cubic with the same form of equation only
with v replaced by ~' unless we have
’ 1 1 Y vy—1
Y =7 1-=9, ’ J
v 1=~ v—- v
since cross-ratios are preserved by such a transformation.

EXERCISES

1. Answer the queries (Why?) in the text. Fill in the algebraic details.

2. Why can we take (1,0,1) on the cubic in the text?

3. Using the method of the text reduce a cubic with a cusp to y%z = z3;
a cubic with a crunode to y% = z%(z + 2);a cubic with an acnode to y%
= 2%(z — 2); a cubic with no double point but with an inflection whose har-
monic polar cuts the curve in only one real point to the form y% = z(z? +
2 yxz + 22) where v2 — 1 < 0.

4. Show by cross-ratios that y% = z(z — z) (z — ~v2) is not reducible to
y% = z(z + 2) (x + 7'z) where v’ = 1.

5. Find a cross-ratio of the four points where y = 0 cuts the cubic v%z
= z(x? 4 2 yrz + 22) of Ex. 3 and cuts z = O (the tangent at the inflection).

6. Explain in detail the last paragraph of the text. Why are the given
points on y = 0 intimately connected with the cubic?

7. If a cubic has three real inflections with concurrent tangents, show
that the cubic can be put in the form

Y@y +2) (y —2) = ma?
If the tangents are non-concurrent, show that the cubic can be put in the form
(z +y +2)% = mayz
8. Solve the Hessian of each cubic in Ex. 7 simultaneously with the cubic.
9. Can m be determined in either or both of the cubics in Ex. 7 so that the
cubic shall have an acnode? Why not a crunode? See §122.
10. If a cubic has a crunode, show that it can be put in the form y (3% + 22%)

= mz®, and determine m so as to give the cubic a crunode.
11. In the net of conics (compare §§60, 135)

vz? + 2 uyz + Nby? + c2? + 292z + 2 hxy) =0
determine b, ¢, g, h so that the associated cubic in A, g, » shall have the form
2 3
uéy = N°
12. Determine b, ¢, g, h in Ex. 11 so that the cubic in \, gz, v shall have
the form u% = N2(A £ »).



CHAPTER XVIII
FURTHER DISCUSSION OF LINEAR FAMILIES OF CONICS

128. Apolarity. Let us take a pencil of conics
(137)  (ax® + by® + cz®> + 2 fyz + 2 gzxr + 2 hay) + NC = 0

where C = 0 is like the first conic except that its coefficients are
primed. Let us set the discriminant I' of this pencil equal to
zero, and we have (see §58)

a+xr’ R+AN g4+
T=|h+4+MN b4+ f+N |=0
g4+N FH+N e+

If we expand T' and equate to zero the coefficient of A% in this
expansion, we have

(138) ad’ +bB 4+ cC' +2fF 4+ 290" +2hH' =0

where A’, B,/ C’, F', G, H' are the coefficients of the equation
of the conic C in line coordinates. (See §91.)

DEriNiTiON. If a point conic and a line conic (i.e., a conic
with its equation put into point coordinates and a conic with its
equation put into line coordinates) have the coefficients of their
equations connected by the relation (138), they are said to be
apolar to one another.

We shall use apolarity to describe gcometrically nets and other
linear families of conics. (See §60.) TFirst we note that I' = 0
is merely multiplied by a constant when the two fundamental
conics of the pencil are subjected to a collineation. (See §19.)
Therefore apolarity is an invariant of the general projective group
(88)

Now let us consider the geometric meaning of (138). First, if
C =u4?=0, we have a = 0 in (138). Therefore we see that,
if C = 0 is a point P, any apolar point conic (i.e., with a = 0)
passes through P.

Next, if C =2uv = 0, we have h = 0 in (138). But it is
easy to see that the two points, v = 0 and v = 0, i.e. (1,0,0) and

290
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(0,1,0), are conjugate with respect to any point conic apolar to
C (i.e.,, with A = 0). (See §50.)

Third, if C = u® 4+ v = 0, we havea + b = 0 in (138). We
leave for the exercises the proof that in this case the two points
ww—+v=0and 7u —v =0,ie (1,—70) and (1,,0), are conju-
gate with respect to any point conic apolar to C (i.e.,, with
a+b=0).

Fourth,ifC = 2w + 2w + 2wu = O,wehaveh + g+ f =0
in (138). Let us take the complete quadrilateral circumscribed
to C, with sides

2=0 y=0, 2=0, hgr +fhy+gfz=0
and pairs of opposite vertices

(0)071) and (1;_g/f;0)7 (1)0;0) and (0,—g/h,1),
(0’1)0) and (—'f/hyo;l)

We leave for the student to show that the pairs of opposite vertices
of this complete quadrilateral are pairs of conjugate points with
respect to any point conic that is apolar to C (i.e., with
h4+g+f=0).

Fifth, if C =u?® +1v* 4+ w? =0, we have a+b+¢c =0 in
(138). If we put

u=u 40, v=0v+w, w=w +a
we transform C = 0 into 24v' 4 2v'w’ + 2w'u’ = 0. Now we
can see that, by the preceding case, there exists a complete quadri-
lateral tangent to C' and such that its pairs of opposite vertices
are pairs of conjugate points with respect to any point conic that
is apolar to C.

DerINITION. A complete quadrilateral whose pairs of opposite
vertices are pairs of conjugate points with respect to a point conic
is said to be self-polar with respect to this conic.

Any line conic can be reduced to one of the five forms

wr=0, 2uv =0, W2 +0v2=0, 2w+ 20w+ 2wu = 0,
w42+ uwi=0
(See §122.) Therefore the above geometric descriptions take
care of all possible cases of apolar conics.

Note that under the fourth and fifth cases there are an infinite
number of quadrilaterals circumseribed to the line conic and
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self-polar with respect to a given apolar point conic. We may
choose as the three sides of any such quadrilateral any three
tangents to the line conic.

EXERCISES

1. Complete the proofs for the five cases of apolar conics discussed in the
text.

2. Find another self-polar quadrilateral for the fourth case in the text.

3. Find a self-polar quadrilateral for u? + »> + w? = 0 in the fifth case
in the text.

4. Explain fully how the fifth case in the text was reduced to the fourth case.

5. Dualize the whole discussion in the text.

6. Reduce the general line conic to the five forms given in the text.

129. Apolar linear families of conics. Let us consider the
following equation:

(139)  (Mar + Mz + -+ - + M) (mA] + pedy + - - -+ wd))
+ (b1 + -+ N uBp -+ B + (e + e M)
mCy + -+ wCH) + 20f1 + - - - + Nifs) (wiF1 + - - - + piF))
+ 2001 + -+ + Ng) (WG] + -+ G + 20k
+ oo NR) (B + -+ wH) = 0

where 7, j are to be given various values. We can draw some
important conclusions from this equation.

First, if j = 1, we see that if each of the fundamental conics
of a linear family of point conics is apolar to a line conic C, then
every conic of this family is apolar to C.

Second, if j > 1, we see that if the conics of a linear family of
point conics are apolar to each of the fundamental conics of a
linear family of line conics, then every conic of the first family is
apolar to every conic of the second family.

Again we note that (138) is a single linear relation connecting
the coefficients of a point conic if the apolar line conic C is given.
Hence we see that apolar to one line conic we have a four-param-
eter linear family of point conics. Apolar to a pencil of line conics
we have a three-parameter linear family of point conics. Apolar
to a net of line conics we have a net of point conics.

Also, if we project a family F; of line conics (calling one conic
a zero-parameter family) into an equivalent family Fj, then the
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apolar family F; of point conics (apolar to F;) goes into the
family F, of point conics apolar to F]. (Why?)

By means of the above theory we can find normal forms to
which all three- and four-parameter families of point conics can be
reduced, by taking the families apolar to the normal forms of
pencils of line conics and the normal forms of line conics respec-
tively. (Why?) Also we can describe geometrically two-, three-,
and four-parameter linear families of point conics by means of
apolarity. (See §63.)

Thus apolar to uZ = 0 we have the family

N2+ 2 + 20z + 2 p2c + 202y = 0

where we replace b by A, ¢ by g, f by »,g by p, h by 6. Apolar to
2 uv = 0 we have the family

)\:c2+py2+vz2+2pyz+20zx= 0
Apolar to 4% + v2 = 0 we have the family
Ma? = y®) + w2 + 2wz + 2 p2x + 2 0my = 0
Apolar to 2uv + 2 vw + 2 wu = 0 we have the family
M2+ wy? 42 +2p(yz —22) +20(zx —xy) =0
Apolar to u? + v + w? = 0 we have the family
Mz —y?) 4 u@® —22) + 2wz +2p2x 4+ 202y =0
To obtain the last family we have the general conic apolar to
uZ + v2 + w? = 0 in the form (since @ + b + ¢ = 0)
ax? +by? + (—a — b)22 +2fyz + 2922 + 2 hzy = 0
Taking a =\, b=y, f=v, g =p, h = 0, we get the above
family.
Note that the above are five typical forms to which all four-
parameter linear families can be reduced. From §128 we can obtain

the geometrical descriptions of these families. We leave this to
the student in the exercises.

EXERCISES

1. Find the family of conics apolar to 4% + 2vw = 0.

2. Give the geometric descriptions of the typical four-parameter linear
families of conics derived in the text.

3. Fill in the details in the text.



294 DISCUSSION OF LINEAR FAMILIES OF CONICS

130. Apolarity for three-parameter linear families of conics.
To be able to derive by apolarity typical forms for three-parameter
linear families of conics we should have at our disposal typical
forms for pencils of line conics. These are well known* but we
shall not quote them all here. Rather than this we shall quote
just a few typical pencils of line conics and find and describe
geometrically their apolar families of point conies.

Apolar to the pencil Au? + w? = 0 we have the three-param-
eter family of point conics

N2+ 2uyz+2vzx + 2p2y = 0

This family consists of all the conics through two given points,
here 4? = 0 and % = 0, i.e. (1,0,0) and (0,1,0).
Apolar to the pencil Au? + 2 yuv = 0 we have the family

NP2+ p? 2z + 2022 = 0

Here the point 42 = 0 must lie on every conic of the family, also
uv = 0 must be a pair of conjugate points with respect to every
conic of the family (in fact, every conic u(Au + 2 uwv) = 0 must
be a pair of conjugate points with respect to every point conic of
the apolar family). This means that the line containing u = 0
and v = 0 (namely, z = 0) must be tangent to every conic of this
family at the point 42 = 0 or (1,0,0).
The pencil 2 Auv 4+ 2 yuw = 0 gives us the apolar family

M2+ oy v+ 20y2 =0

The points (1,0,0) and (0,1,0), (1,0,0) and (0,0,1) must be pairs
of conjugate points with respect to the conics of this three-param-
eter family. But a line joining two points conjugate to a
given point P must be the polar of P. (Why?) Therefore we
can describe the above family of point conics geometrically as
consisting of all the conics that have a given point P and line p
as pole and polar.
Apolar to M(u2 — v2) + u(u? — w?) = 0 we have the family

N2+ 2+ 22) +2uyz + 2ver + 201y = 0

We can describe this family geometrically as consisting of all the
conics that have a common self-polar quadrilateral whose pairs of

* See Veblen and Young, Vol. I, pp. 287-293.
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opposite vertices are given by uZ — »?2 = 0, u2 — w? = 0, and
v2 — w? = 0; ie., these are the points (1,1,0) and (1,—1,0),
(1,0,1) and (—1,0,1), (0,1,1) and (0,—1,1).

EXERCISES

1. Show how to obtain the last family of point conics given in the text.
Find the sides of the common self-polar quadrilateral.

2. Check all the geometric descriptions in the text by another means.
Thus it is evident that z = 0 gives y2 = 0 for every conic in the family and so
this is the common tangent at (1,0,0).

3. Find and describe the family apolar to 2Auv + u(u® — 22) = 0.
Hint: This pencil has two imaginary double points. What are they?

4. Find and describe the family apolar to Au? 4+ u(v? 4+ 2uw) = 0.
Hint: The point »? = 0 is a point of contact on »> + 2 uw = 0. Why?

5. Find and describe the family apolar to 2Auv + p(@® 4 2 uw) = 0.
Hint: The point u = 0 is a point of contact on »®> + 2 uw = 0, and the point
v = 0 lies on the tangent at © = 0. Why?

6. Find and describe the family apolar to A2 + 2 ppw = 0.

7. Find and describe the family apolar to 2 Auwv + 2 u(vw + wu) = 0.
Hint: The point » 4+ » = 01s on the line joining » = 0 and v = 0. Why?

8. Find and describe the family apolar to A(u? + %) + u(@? + w?) = 0.

9. Find and describe the family apolar to Au? + p(»* + w?) = 0.

10. Find and describe the family apolar to 2 Aur + u(@® £+ w?) = 0.
Hint: The point » = 0 is on the line joining the two points given by »? + w?
= 0.

11. Check all the geometric descriptions in the above problems by some
other method.

12. Dualize the text.

131. Apolarity and nets of conics. We cannot derive typical
forms for nets of conics by means of apolarity, as we did for
three- and four-parameter linear families of conics. For that
matter, we could not derive the type forms for conies or for pencils
of conics by apolarity. We can, however, describe nets of conics
geometrically by means of apolarity.

Thus, apolar to the net of line conics Au? + w? 4+ »w? = 0
we have the net of point conies

2Nyz + 2pex + 2vzy = 0

This net consists of all the point conies circumseribed to a given
triangle.
Apolar to 2 Muv + 2 wwow + 2 vwu = 0 we have the net

A? + py? + v =0
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This net consists of all the point conics with a given self-polar
triangle.
Apolar to zMw? + 2 puv + »(u? — v2) = 0 we have the net

N2+ 92 +2pxz+ 2wz =0

This net consists of all the point conics through three non-
collinear points (one real point and two conjugate imaginary
points). If we interpret z = 0 as the line at infinity, we see that
this net consists of all the circles that pass through the origin.

EXERCISES

1. Fill in all the details in the text.

2. Find and describe the net apolar to Au? + w? + 2 yuw = 0.

3. Find and describe the net apolar to Au? + 2 puv + 2 ww = 0.

4. Find and describe the net apolar to A(u? + v?) + 2 puw + 2»w = 0.
5. Check the descriptions in the text and in these problems by some other

means.
6. Dualize the text and these problems.

132. The derivation of some typical pencils of conics. We
have shown (where?) that there are only five types of pencils of
conics, ignoring the differences between real and imaginary (finite
and infinite) points. We shall derive a few typical pencils of
conics.

First, suppose the conics of the pencil intersect in four real
points P;, Pj, P3, P4, no three of them collinear. We can take
the triangle of reference as the diagonal triangle of the complete
quadrilateral with four of its vertices Py, Py, P3, P4y. We can
take as P; the point (1,0,1) and as Ps the point (0,1,1). Why?
Then P; is (—1,0,1) and P4 is (0,—1,1). Why? Two conics
through these four points are 22 — y2 =0 and 2% — 22 = 0.
Therefore our pencil can be written

@ -2+ A2 -y =0

Next, we suppose the conics of the pencil touch each other at
two real points P, and P;. We can take P, as (1,0,0) and P, as
(0,1,0), also the tangent at P; as y = 0 and the tangent at P,
asz=0. Why? Butthen each conic hasthe form azy + 22 = 0.
Why? Therefore our pencil can be written

2Z2+2Ny =0
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If the conics of the pencil touch each other at a real point P,
and intersect at two other real points P, and Pz, we take P; as
(0,0,1) with y = = as the common tangent, also P; as (0,1,0)
and P3 as (1,0,0). Every conic of the pencil must have an
equation of the form 2 axy + 282z + 2vyz = 0. Why? But
y = z must give 22 = 0. Why? Since y = z gives us 2 ax?®
+ 282z + 2yxz = 0, we must have 8 = —y. Hence, taking
B/a as \, we have the pencil

2zy + 2Nz —yz) =0

Suppose now that the conics of the pencil have three coincident
points in common at a real point P; and intersect at a second
real point P,. The only degenerate conic in the pencil is a pair
of lines l;l, where [; is the tangent at P; and I, is the line P, P,.
(See §58.) Taking the pair of lines 1l as zy = 0, also P; as
(0,0,1) and P as (0,1,0), we have the pencil

22y + MNax? + 2fyz + 2 hxy) = 0

since (0,0,1) and (0,1,0) are on every conic and y = 0 is tangent
to every conic at (0,0,1). By the bilinear transformation

= (1/a)N’/(1 — A\") we can rid the second fundamental conic in
this pencil of the zy-term. Then the transformation

a
/4 4 ’
z=2a, y=9y, 2=z

reduces the pencil to the form:
22y +A@2%2+2y2) =0

Finally, we suppose the pencil consists of conics having four
coincident points in common at a real point P. The pencil then
has just one degenerate conic, a double line ! which is the common
tangent at P. Why? Taking ! as z2 = 0 and P as (0,0,1), also
transforming A (as we did above) to rid the second fundamental
conic of the z2-term, we have the pencil

x® + Nby® + 2fyz + 2 gex + 2 hay) = 0
with discriminant
1 A gn
AN BN A

G» N0

= = N3(2 fgh — bg?) — f2\2
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We must have I' = aA3. Why? Hencef = 0, bg # 0. We now
put
=2, y=y, g2+ hy = b

and writing N instead of b\, we have the pencil
224+ ANy?2+222) =0

EXERCISES

1. Show why in each of the discussions in the text there is no loss of
generality. Hint: 'T'wo homologous complete quadrangles determine a pro-
jectivity. See §100.

2. Answer the queries (Why?) in the text.

3. Fill in the details in the text. In the last paragraph give the bilinear
transformation in A necessary to rid the second fundamental conic of the
z%term.

4. 1f in the first case in the text P, Pg, P3, P4 are two paiwrs of conjugate
imaginary points, show how to reduce the pencil to the form

(@ +25) + 2@ +yH) =0

5. Treat the case where Pj, P3 are real points and P2, P4 are conjugate
imaginary points. Hint: Take Pg, P4 as (1,5,0) and (1,—2,0). Then the
pencil consists of circles (if z = 0isly,). Take Py, P3as (0,1,1) and (0,—1,1).
One degenerate conic is zz = 0. Why? Take for the second fundamental
conic the unit circle 2 + 42 — 22 = 0. Why is there no loss of generality?

6. Treat the case where the conics are tangent to each other at two
conjugate imaginary points. Prove that the pencil is then reducible to

22+ A=z +y%) =0
7. Show that if the conics touch one another at a real point and intersect
again in a pair of conjugate imaginary points P, P3, we can reduce the pencil

to
22z + A=z 4+ 9% =0

Hint: Take r = 0 as the common tangent at (0,0,1) and P2, P3 as (1,2,0)
and (1,—%,0). Then z = 0 in the general conic (75) must give z% + y% = 0,
soh=0anda =b#0. Alsozx = O must givey? =0,s0¢c =f=0,g # 0.
Divide the conic by g, take A = a/g.

8. Describe the peneil of conics (22 + y%) + N (z2 + 2 zy) = 0.

9. Dualize the text and the above examples.

10. Find and describe the families of point conics that are apolar to the
typical pencils of line conics dual to the pencils of point conics in the text and
in the above examples, i.e., apolar to (u? — w?) + A(w? — v?) = 0, ete.

133. The derivation of some typical degenerate pencils of
conics. By a degenerate pencil of conics we mean a pencil all
of whose conics are degenerate (hence the discriminant I' of the
pencil vanishes identically). Compare §19.
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Let us derive some of these typical degenerate pencils. First,
suppose the pencil has a double line  in it. We take l as 22 = 0
and put the pencil in the form

22+ Nby2 4+ c®+2fyz+ 292 4+ 2hay) = 0

(If the second fundamental conic has a term in z2, the bilinear
transformation A = \'/(1 — a\’) will rid this conic of the z%-
term.) The discriminant of this pencil is

1 AN gA

AN BN A
gN N A

r= = N (2 fgh — bg® — ch?) + N(bc — f?)

Since we must have I' = 0, we have bc — f2 = 0 and 2 fgh — bg?
— ch? = 0. Since bc — f2 = 0, we have either

b=c=f=0 or by’ + c®+ 2fyz = (ay + B2)?
Why? The first case gives us

(4) 22+ N2gzx + 2 hzy) =0
If h # 0in (A) we put
x=x,; gz+hy=y,; =2

and get a typical degenerate pencil (dropping the primes from the
variables)
242Ny =0
Ifh=0,9g # 0in (A), we put
c=d, y=2, 2=y

and get the case of h # 0 all over again. We cannot have
h=g¢g=0.

In the second case, where bef = 0 but bc — f2 = 0, we put
(f @ # 0 in ay + B2)

r=12, ay+Be=19y, z2=12

and get the pencil (dropping primes from the variables)

(B) 2+ NP+ 292+ 2hzy) =0
1 BN g\

withT'= | N 0 |= —g¢23 henceg’ = 0.
gn 0 0




300 DISCUSSION OF LINEAR FAMILIES OF CONICS

If B’ = 0in (B), we have the typical pencil
24+ N2 =0
If b’ £ 0in (B), we put
1
x=?x',y=y'; )‘=7z}'-5)"
then drop all the primes, multiply the equation by %'%, and get
2 +Ny* +22y) = 0

Ifa=0,8#0inay+ Bz, weputz=2',y=2,2=1y" and
get the above cases again.

EXERCISES

1. Find « and 8 in by® + c2? + 2 fyz = (ay + B2)2. Find ¢’ and A’ in
(B) in terms of b, ¢, f, g, and h.

2. Show how to derive the transformation A = A’/(1 — a)\’) to rid the
second fundamental conic of the z?-term.

3. Reduce to typical forms the degenerate pencils containing no double
lines. Hint: Put the pencil in the form

2zy + MNaz? +by? + 2> + 2 fyz +2g2x) =0

whose discriminant T must vanish identically.
4. Consider the degenerate pencil

@+ y?) +A®y® +c? +2 fyz +2g2x +2hay) =0
which cuts 2 = 0 in points given by
224+ 2Ny + (1 + )2 =0

We can find some value of A so that A%k2 —Ab — 1> 0, unlessh = b = 0.
Why? If b = b = 0 the pencil has the discriminant

1 0 N
T=|0 1 fAA|=A+N(—-¢g2-72)
DY/ B ) SN

But we must have ' =0, so c =g =f =0. (Why?) Hence we cannot
have h =b =0. Why? Hence there are conics that cut z = 0 in real
points. Why? Hence there are always pairs of real lines in a degenerate
pencil. Why? This shows why we can put the pencil of Ex. 3 into the form
we took. (How so?)

134. The derivation of some typical degenerate nets of conics.
DEerFiniTION. If every conic in a net of conics is a degenerate
conic, we call the net a degenerate net.
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The method of derivation of typical degenerate nets of conics
is somewhat different from that used for non-degenerate nets, so
we first treat some cases of degenerate nets.

First, we suppose the degenerate net has two double lines I;
and I, We take I; as 22 = 0 and I as y?> = 0, and put the net
in the form

M2+ py? + v(ce? + 2 fyz + 2 g2z + 2 hxy) = 0

with discriminant

N hv g
I'=|h yi fV = CXFJJ + y3 (2 fgh —_— Chz) — 92#1‘2 — f2xy2
gv fr o

Since the net is degenerate, we must have I' = 0, hence c = ¢
= f = 0 and our net becomes

M2 4 py? + 20y = 0

Next we suppose the degenerate net has not two double lines
but has a pencil reducible to Az + 2 ury = 0. We can put the
net into the form

N2 + 2 uxy + v(by? + 2 + 2fyz + 2g22) = 0

with discriminant

N u gy
P=|p b fr|=N(bc— )+ 2 @2fg)
g fr o — cuy + (- bg?)

We must have I' = 0; hence ¢ = 0, so bc — f2 = 0 gives f = 0,
also bg?2 = 0. If ¢ =f =g = 0, we have a second double line
(contrary to hypothesis). Therefore we have ¢ =f = b = 0,
g # 0, and our net becomes

N2 4+ 2puxy 4 2v22 = 0

EXERCISES

1. Suppose the degenerate net has no double line, and show this case is
impossible. Hint: Then the net reduces to
2Azy +2uzz +vC =0 or Ax? 4+ y?) +2uzy +C =0
Why?
2. Show that no degenerate net can have a conic reducible to 2% + y% = 0.
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135. The derivation of some typical non-degenerate nets of
conics. We saw in §61 that associated with every net of conics
there are cubic curves in the A\ uw-plane. Two nets with non-
equivalent cubic curves in the A\pup-plane cannot be equivalent.
We saw that to every double line in a net of conics, there corre-
sponds a double point on the associated cubic K.

Let us consider some derivations of typical non-degenerate nets
of conics where we make use of the associated cubic K. First,
suppose the net has a double line [ to which there corresponds on
K a cusp. First we reduce K to the form

le' = )\3

by transformations on \, p, ». Then to the cusp (0,0,1) on K
there corresponds the double line I. We can reduce I to 2% = 0
by transformations on x, y, 2 (which transformations, we saw, do
not affect K at all). If the point of inflection (0,1,0) on K cor-
responds to a real line-pair, we can put the net in the form

(A) Nax® 4+ by? + c2® + 2 fyz + 2 gzx + 2 hay) + 2 uyz
+w?2=0

because the pencil A = 0 (with discriminant %) must be of the
form reducible to the second case in §132.
The discriminant of (4) is
a\ + v R\ g
K=| & b A+ u| = N(abc+ 2fgh — af? — bg® — ch?)
gn  fA+p N
4+ N(be — %) + Nu(2gh — 2af) — u¥ — 2w — al® = 0
We must have K of the form A — u% = 0. Hence we have
a=f=0, bc=0, gh=0, abc+ 2fgh—af?—bg? —ch?2 %0
First, suppose b = 0 and ¢ # 0, hence g = 0 and & % 0. Why?
Our net is now

Nz + 2 hxy) + 2uyz + w22 =0
We put
c 1 h?
x=—x',y=y',z=z'; )‘=z)‘,;/‘=/‘,;v='c_'2v,

h
and, dropping all the primes, we get the typical net

MNE+2zy) +2uyz+ 2?2 =0
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Ifb=#0andc =0,theng > 0and h = 0. Why? But now we
putz = z’,y = 2/, 2z = y’ and reduce this case to that where b = 0,
c#0.

If the point of inflection (0,1,0) on K corresponds to a pair of
conjugate imaginary lines, we can put the net in the form

(B) Aax? + by® + c2® + 2 fyz + 2 gez + 2 hay) + p(y® + 22)
+uw?2=0

using Ex. 6 of §132. The discriminant of (B) is

a\+v h\ gA
K=| M b+u | =\(abc+2fgh— af? — bg? — ch?)
g\ N oAt

+ A2u(ab + ac — g% — h2) + M2(a) + N2 (bec — f2)
+ M +c)+uty =0

But K must be of the form p? — A3 = 0. Hence we have

a=0 ¢>+h =0 b+c=0 bc—f=0,
_abe+ 2 fgh — af¥ — bg® — ch? # 0

Thereforc g = h = 0. But this makes 2fgh — bg> — ch® = 0.
Thus we see that (B) cannot give us a net whose cubic K has a
cusp.

EXERCISES

1. Find K for the typical net derived in the text. Show how to reduce K
to A3 — uZ = 0.

2. Derive a typical net with a double line in it where (¢) K = 0 is a cubic
with a crunode; (b) K = 0 is a cubic with an acnode. Hint: Put K =0
into the forms u% = A2(A £ »). Use (4) and (B) in the text.

3. Derive a typical net with no double line in it, but where K = 0 has (a)
a crunode and (b) anacnode. Hint: Put K = Ointo the formsu® = A2(A £ »).
Put the net into the forms:

(4)  Naz? 4 by® + c2® + 2 fyz + 2 gzx + 2 hry) + 2 (22 — y2)
+ 2vzy =0

(B) Max? + by? + c2® + 2 fyz + 2 gex + 2 hay) + 2 pxz
+rv@®+y?) =0
See the third typical pencil in the text of §132, also Ex. 7 in §132.

4. In the text and in Ex. 3 why must the pencils given by A = 0 be reducible
to the forms 2 pyz + v2? = 0, u(y? + 2%) + vz = 0,2 p(zz — y2) +2vzy =0,
and 2 p2z + »(x2 + y2) = 0, respectively. Hint: A = 0 must give a pencil
with discriminant p2». Why? Take the discriminant of every typical pencil
in §132 and the examples there. These are all the types of such pencils that
exist. Why?
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