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PREFACE TO
THE RUSSIAN EDITION

Mathematics, which originated in antiquity in the needs of daily life,
has developed into an immense system of widely varied disciplines. Like
the other sciences, it reflects the laws of the material world around us
and serves as a powerful instrument for our knowledge and mastery of
nature. But the high level of abstraction peculiar to mathematics means
that its newer branches are relatively inaccessible to nonspecialists. This
abstract character of mathematics gave birth even in antiquity to
idealistic notions about its independence of the material world.

In preparing the present volume, the authors have kept in mind the
goal of acquainting a sufficiently wide circle of the Soviet intelligentsia
with the various mathematical disciplines, their content and methods,
the foundations on which they are based, and the paths along which
they have developed.

As a minimum of necessary mathematical knowledge on the part of
the reader, we have assumed only secondary-school mathematics, but
the volumes differ from one another with respect to the accessibility of
the material contained in them. Readers wishing to acquaint themselves
for the first time with the elements of higher mathematics may profitably
read the first few chapters, but for a complete understanding of the
subsequent parts it will be necessary to have made some study of cor-
responding textbooks. The book as a whole will be understood in a
fundamental way only by readers who already have some acquaintance
with the applications of mathematical analysis; that is to say, with the
differential and integral calculus. For such readers, namely teachers of
mathematics and instructors in engineering and the natural sciences, it
will be particularly important to read those chapters which introduce
the newer branches of mathematics.

v



vi PREFACE TO THE RUSSIAN EDITION

Naturally it has not been possible, within the limits of one book, to ex-
haust all the riches of even the most fundamental results of mathematical
research; a certain freedom in the choice of material has been inevitable
here. But along general lines, the present book will give an idea of the
present state of mathematics, its origins, and its probable future develop-
ment. For this reason the book is also intended to some extent for persons
already acquainted with most of the factual material in it. It may perhaps
help to remove a certain narrowness of outlook occasionally to be
found in some of our younger mathematicians.

The separate chapters of the book are written by various authors,
whose names are given in the Contents. But as a whole the book is the
result of collaboration. Its general plan, the choice of material, the suc-
cessive versions of individual chapters, were all submitted to general
discussion, and improvements were made on the basis of a lively exchange
of opinions. Mathematicians from several cities in the Soviet Union
were given an opportunity, in the form of organized discussion, to make
many valuable remarks concerning the original version of the text. Their
opinions and suggestions were taken into account by the authors.

The authors of some of the chapters also took a direct share in pre-
paring the final version of other chapters: The introductory part of
Chapter II was written essentially by B. N. Delone, while D. K. Faddeev
played an active role in the preparation of Chapter IV and Chapter XX.

A share in the work was also taken by several persons other than the
authors of the individual chapters: §4 of Chapter XIV was written by
L. V. Kantorovi¢, §6 of Chapter VI by O. A. LadyZenskaja, §5 of
Chapter 10 by A. G. Postnikov; work was done on the text of Chapter V
by O. A. Oleinik and on Chapter XI by Ju. V. Prohorov.

Certain sections of Chapters I, II, VII, and XVII were written by
V. A. Zalgaller. The editing of the final text was done by V. A. Zalgaller
and V. S. Videnskil with the cooperation of T. V. Rogozkinaja and
A. P. Leonovaja.

The greater part of the illustrations were prepared by E. P. Sen’kin.

Moscow
1956 EDITORIAL BOARD



FOREWORD BY THE
EDITOR OF THE TRANSLATION

Mathematics, in view of its abstractness, offers greater difficulty to the
expositor than any other science. Yet its rapidly increasing role in modern
life creates both a need and a desire for good exposition.

In recent years many popular books about mathematics have appeared
in the English language, and some of them have enjoyed an immense
sale. But for the most part they have contained little serious mathematical
instruction, and many of them have neglected the twentieth century, the
undisputed “golden age” of mathematics. Although they are admirable
in many other ways, they have not yet undertaken the ultimate task of
mathematical exposition, namely the large-scale organization of modern
mathematics in such a way that the reader is constantly delighted by the
obvious economizing of his own time and effort. Anyone who reads
through some of the chapters in the present book will realize how well
this task has been carried out by the Soviet authors, in the systematic
collaboration they have described in their preface.

Such a book, written for “a wide circle of the intelligentsia,” must also
discuss the general cultural importance of mathematics and its continuous
development from the earliest beginnings of history down to the present
day. To form an opinion of the book from this point of view the reader
need only glance through the first chapter in Part 1 and the introduction
to certain other chapters; for example, Analysis, or Analytic Geometry.

In translating the passages on the history and cultural significance of
mathematical ideas, the translators have naturally been aware of even
greater difficulties than are usually associated with the translation of
scientific texts. As organizer of the group, I express my profound grati-
tude to the other two translators, Tamas Bartha and Kurt Hirsch, for
their skillful cooperation.
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viii FOREWORD

The present translation, which was originally published by the Ameri-
can Mathematical Society, will now enjoy a more general distribution in
its new format. In thus making the book more widely available the
Society has been influenced by various expressions of opinion from
American mathematicians. For example, “. . . the book will contribute
materially to a better understanding by the public of what mathematicians
are up to. . . . It will be useful to many mathematicians, physicists and
chemists, as well as to laymen. . . . Whether a physicist wishes to know
what a Lie algebra is and how it is related to a Lie group, or an under-
graduate would like to begin the study of homology, or a crystallographer
is interested in Fedorov groups, or an engineer in probability, or any
scientist in computing machines, he will find here a connected, lucid
account.”

In its first edition this translation has been widely read by mathemati-
cians and students of mathematics. We now look forward to its wider
usefulness in the general English-speaking world.

August, 1964
S. H. GourLp
Editor of Translations
American Mathematical Society
Providence, Rhode Island
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CHAPTER X ‘

THEORY OF FUNCTIONS
OF A REAL VARIABLE

§1. Introduction

At the end of the 18th and the beginning of the 19th century, the
differential and integral calculus was essentially worked out. Up to that
time (in fact, throughout the 19th century) mathematicians were engaged
in constructing its several branches, in discovering more and more new
facts, and in developing more and more new domains of application of
the differential and integral calculus to various problems of mechanics
astronomy, and technology. Now it became possible o survey the results
obtained, to study them systematically, and to delve into the meaning of
the basic concepts of analysis. And here it became apparent that all was
not well with the foundations of analysis.

Already in the 18th century there was no consensus among the greatest
mathematicians of that time as to what a function is. This came out in
prolonged controversies whether this or that solution of a problem, this
or that concrete mathematical result were correct or incorrect. Gradually
it became clear that also other basic concepts of analysis had to be made
more precise. An inadequate understanding of the meaning of continuity
and of the properties of continuous functions led to a number of erroneous
statements, for example that a continuous function is always differentiable.
Mathematics came to operate with such complicated functions that it
became impossible to rely on intuition and guesswork. So there arose a
real need to bring order into the fundamental concept of analysis.

The first serious attempt in this direction was made by Lagrange, and
then Cauchy followed on the same path. Cauchy sharpened the definitions
of limit, continuity, and integral and brought them into common use, as

3



4 XV. THEORY OF FUNCTIONS OF A REAL VARIABLE

they survive to our days. Approximately at the same time, the Czech
mathematician Bolzano made a rigorous study of the basic properties of
continuous functions.

Let us consider these properties of continuous functions in more detail.
Suppose that a continuous function f(x) is given on some interval [a, 5],
i.e., for all numbers satisfying the inequalities a < x < b. Previously it
was regarded as obvious that if the function assumes values of opposite
signs at the end points of the interval, then it must be zero at some inter-
mediate point. Now this fact received a rigorous foundation. In the same
way it was proved rigorously that a continuous foundation given on an
interval assumes at certain points its greatest and its least value.

The study of these properties of continuous functions made it necessary
to go deeper into the nature of the real numbers. As a result the theory
of real numbers appeared ; the basic properties of the numerical line were
clearly formulated.

Further developments of mathematical analysis necessitated the study
of more and more “bad,” in particular discontinuous, functions. Dis-
continuous functions appear, for example, as limits of continuous
functions, where it is not known a priori whether the limit function is
continuous or not, and also in schematizing processes with sudden sharp
variations. Here was a new task, namely to generalize the apparatus of
analysis to discontinuous functions.

Riemann investigated the problem to what classes of discontinuous
functions the concept of integral could be extended. As a result of this
work on the foundation of analysis, there arose a new mathematical
discipline: the theory of functions of a real variable.

If the classical mathematical analysis operates essentially with “good”
(for example, continuous or differentiable) functions, the theory of func-
tions of a real variable investigates considerably wider classes of functions.
If in mathematical analysis the definition of some operation (for example
integration) is given for continuous functions, then it is characteristic of
the theory of functions of a real variable to find out to what classes of
functions this definition is applicable, how the definition has to be modified
so as to become wider. In particular, only the theory of functions of a
real variable could give a satisfactory answer to the question what
the length of curve is and for what curves it makes sense to talk of
length.

The foundation on which this theory of functions of a real variable is
built is the theory of sets.

Accordingly, we begin our exposition with an account of the elements
of the theory of sets, next we turn to the study of point sets, and we
conclude the chapter with an explanation of one of the fundamental
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concepts of the theory of functions of a real variable, namely the Lebesgue
integral.

§2. Sets

People have constantly to deal with various collections of objects. As
was already explained in Chapter 1, this entailed the development of the
concept of number and later that of a set, which is one of the basic
primitive mathematical concepts and does not lend itself to an accurate
definition. The following remarks are meant to illustrate what a set is but
do not pretend to serve as a definition.

Set is the name for an aggregate, ensemble, or collection of things that
are combined under a certain criterion or according to a certain rule.
The concept of a set arises by an abstraction. By considering a certain
collection of objects as a set, we disregard all the connections and relations
between the various objects that make up the set, but we preserve the
individual features of the objects. Thus, the set consisting of five coins
and the set consisting of five apples are different sets. But the set of five
coins arranged in a circle and the set of the same coins arranged one
next to the other is one and the same set.

Let us give some examples of sets. We can talk of the grains forming
a heap of sand, of the set of all planets of our solar system, of the set of
all people that are in a certain house at a given moment, or of the set of
all pages of this book. In mathematics we constantly come across various
sets such as the set of all roots of a given equation, the set of all natural
numbers, the set of all points on a line, etc.

The mathematical discipline that studies general properties of sets, i.e.,
properties that do not depend on the nature of the constituent objects,
is called the theory of sets. This discipline began to be developed rigorously
at the end of the 19th and the beginning of the 20th century. The founder
of the scientific theory of sets is the German mathematician G. Cantor.

Cantor’s work on the theory of sets grew from studying questions of
convergence of trigonometric series. This is a very common phenomenon:
Very often the occupation with concrete mathematical problems leads to
the construction of very abstract and general theories. The value of such
abstract constructions lies in the fact that they turn out to be connected
not only with the concrete problem from which they have sprung but
have also applications to a number of other problems. In particular, this
is the case in the theory of sets. The ideas and concepts of the theory of
sets penetrated literally into all branches of mathematics and changed its
face entirely. Therefore it is impossible to form a proper picture of con-
temporary mathematics without being acquainted with the elements of
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the theory of sets. For the theory of functions of a real variable the theory
of sets is of particularly great significance.

A set is considered as given when one can tell of every object whether it
belongs to the set or not. In other words, a set is completely determined
by all the objects that belong to it. If a set M consists of the objects
a, b, ¢, -~ and of no others, then we write

M ={a,b,c, -}

The objects that form a certain set are usually called its elements. The
fact that an object m is an element of a set M is written in the form

meM

and is read: “m belongs to M’ or “m is an element of M”. If an object n
does not belong to a set M, then one writes: n € M. Every object can only
be one element of a given set; in other words, all the elements of one and
the same set are distinct from one another.

The elements of a set M can themselves be sets; however, to avoid
contradiction it is convenient to postulate that a set M cannot be one of
its own elements, M € M.

The set that contains no elements is called the empty ser. For example,
the set of all real roots of the equation

xxX4+1=0

is empty. Henceforth the empty set will be denoted by ¢.

If for two sets M and N every element x of M is also an element of N,
then we say that M enters into N, that M is part of N, that M is a subset
of N, or that M is contained in N; this is written in the form

M<c N or N2 M.

For example, the set M = {l, 2} is part of the set N = {1, 2, 3}.

Clearly we always have M< M. It is convenient to regard the empty
set as part of any set.

Two sets are equal if they consist of the same elements. For example,
the set of roots of the equation x> — 3x + 2 = 0 and the set M = {l, 2}
are equal.

Now we define rules of operations on sets.

Union or sum. Suppose that M, N, P, --- are sets. The union or sum
of these sets is the set X consisting of all elements that belong to at least
one of the ‘“‘summands”™ M, N, P, -

X=M+N+P+ -
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Here, even if an element x belongs to several summands, it occurs in the
sum X only once. Clearly

M+ M=M,

and if M = N, then
M4+ N=N.

Intersection. The intersection or common part of the sets M, N, P, -+
is the set Y consisting of all those elements that belong to all the sets
M, N, P, .

Clearly M - M = Mandif M = N,then M - N = M.

If the intersection of the sets M and N is empty, M - N = ¢, then we
say that these sets are disjoint.

As a notation for the operations of sum and intersection of sets, we also
use the symbols £ and IT. Thus,

E = EE,
is the sum of the sets E, , and
F — H EI‘

their intersection.
We recommend that the reader prove that sum and intersection of sets
are connected by the usual distributive law

M(N + P) = MN + MP,
and also by the law
M 4+ NP = (M + N)(M + P).
Difference. The difference of two sets M and N is the set Z of all those
elements of M that do not belong to N,
Z=M—N.
If N = M, then the difference Z = M — N s also called the complement

of Nin M.
Itis not hard to show that always

M(N — P)= MN — MP
and
(M — N)+ MN =M.

Thus, the rules for operations on sets differ considerably from the usual
rules of arithmetic.
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Finite and infinite sets. Sets consisting of a finite number of elements
are called finite sets. If the number of elements of a set is unbounded, then
the set is called infinite. For example, the set of all natural numbers is
infinite.

Let us consider two arbitrary sets M and N and ask whether the number
of elements in those sets is the same or not.

If the set M is finite, then the collection of its elements is characterized
by a certain natural number, namely, the number of its elements. In this
case, in order to compare the numbers of elements of M and N, it is
sufficient to count the number of elements in M and the number of elements
in N and to compare the numbers so obtained. Also it is natural to reckon
that if one of the sets M and N is finite and the other infinite, then the
infinite set contains more elements than the finite.

However, if both sets M and N are infinite, then a simple count of the
elements yields nothing. Therefore the following problem arises at once:
Do all infinite sets have the same number of elements or do there exist
infinite sets with larger or smaller numbers of elements? If the latter is
true, then how can the numbers of elements in infinite sets be compared ?
We shall now turn our attention to these problems.

One-to-one correspondences. Again let M and N be two finite sets.
How can we find out which of these sets contains more elements without
counting the number of elements in each set? To this end let us form pairs
by combining in a pair one element of M and one element of N. Then, if
for some element of M there is no longer an element of N to be paired
with it, M has more elements than N. Let us illustrate this argument by
an example.

Suppose that in a room there are a certain number of people and a
certain number of chairs. In order to find out of which there are more, it
is sufficient to ask the people to sit down. If somebody is left without a
place, it means that there are more people and if, say, all are placed and
all places are taken, then there are as many people as chairs. This method
of comparing the number of elements in sets has the advantage over a
direct count of the elements because it is applicable without essential
modifications not only to finite but also to infinite sets.

Let us consider the set of all natural numbers

M={1,2234}
and the set of all even numbers
N=1{2,4,68, 1}

Which set contains more elements? At first sight it seems to be the
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former. However, we can form pairs from elements of these sets, as set
out in Table I:

Table 1.

sl I S I
Nl

2l4| |8 |

No element of M nor of N remains without a partner. True, we could also
have formed pairs as in Table 2:

Table 2.
MlL|s]s|% | =]
N

Then many elements of M remain without a partner. On the other hand,
we could have formed pairs as in Table 3:

Table 3.
Ml=lr]=]x]—]2]=]
N2 ale6] 8 [10]12!1a]

Now many elements of N remain without a partner.

Thus, if the sets 4 and B are infinite, then distinct methods of forming
pairs lead to different results. If there is one method of forming pairs in
which every element of A and every element of B is paired off with some
element, then we say that a one-to-one correspondence can be set up
between 4 and B. For example, we can establish a one-to-one correspond-
ence between the sets M and N as is clear from Table 1.

If between the sets A and B a one-to-one correspondence can be set up,
then we say that they have the same number of elements. If for every
method of pairing there are always some elements of A without a partner,
then we say that the set A contains more elements than B or that A has
a greater cardinality than B.

Thus we have obtained an answer to one of the questions raised earlier:
how to compare the number of elements in infinite sets. However, this
has by no means brought us nearer to an answer to the other question:
Do there exist infinite sets at all having distinct cardinalities? In order to
get an answer to this question let us study some simple types of infinite
sets.
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Countable sets. If we can set up a one-to-one correspondence between
the elements of a set 4 and the elements of the set of all natural numbers

Z={1,2,3,}

then we say that the set A is countable. In others words, a set is countable
if all its elements can be enumerated by means of the natural numbers
i.e., written down in the form of a sequence

Table 1 shows that the set of all even numbers is countable (the upper
numbers can now be regarded as the suffix of the corresponding lower
number).

Countable sets are, so to speak, the very smallest infinite sets: Every
infinite set contains a countable subset.

If two nonempty finite sets do not intersect, then their sum contains
more elements than either summand. For infinite sets this cannot hold.
For example, let £ be the set of all even numbers, O the set of all odd
numbers, and Z the set of all natural numbers. As Table 4 shows, the sets
E and O are countable. However, the set Z = E + O is again countable.

Table 4.
E | 2|4][6]s8
) " NERE
z 1] 213] a4

The violation of the rule “the whole is larger than the parts™ in infinite
sets shows that the properties of infinite sets differ qualitatively from those
of finite sets. The transition fromu the finite to the infinite proceeds in
complete agreement with the well-known principle of dialectics, qualitative
variation of properties.

Let us show that the set of all rational numbers is countable. For this
purpose we arrange the rational numbers in Table 5.

Here all the natural numbers are placed in the first row in ascending
order, in the second row zero and all the negative numbers in decreasing
order, in the third row the positive reduced fractions with denominator 2
in ascending order, in the fourth row the negative reduced fractions with
denominator 2 in descending order, etc. It is clear that every rational
number occurs once and only once in this table. Let us now enumerate all



§2. SETS 1

Table 5.

(1 ) 3) (4) (5) (6)

27 T T 7 /6/
» Ve
/0 7 | B 8 | npd |
o 3 s 1 o
/2 2 2 2 2 2
T 3 s 1 _e | _n
/2 2 2 2 2 2
rd

1 2 4 5 7 8
/3 3 3 3 3 3
T 2| e s | 1| s
3 3 3 3 3 3

the numbers of the table in the order indicated by the arrows. Then all
the rational numbers are arranged in a single sequence:

“‘Number of the place occupied
by rational number 1 2 3 g4 5 6 7 8 9

Rational number 1, 2,0, 3, —1, 4 4, —2 3,

So we have established a one-to-one correspondence between all the
rational numbers and all the natural numbers. Therefore the set of all
rational numbers is countable.

Sets with the cardinal number of the continbum. If we can set up a
one-to-one correspondence between the elements of a set M and the points
of the interval 0 < x < |, then we say that the set M has the cardinal
number of the continuum. In particular, by this definition the set of points
of the segment 0 < x < | has itself the cardinal number of the continuum.

From figure 1 it is clear that the set of points of any interval AB has
the cardinal number of the continuum. Here the one-to-one correspond-
ence is established geometrically by means of a projection.

It is not hard to show that the sets of points of any open interval
a < x < b and of the whole numerical line have the cardinal number of
the continuum.



12 XV. THEORY OF FUNCTIONS OF A REAL VARIABLE

Of considerably greater interest is the following fact: The set of points

& ofthesquare 0 < x < 1,0 <y < |
has the cardinal number of the
continuum. Thus, roughly speaking,
there are “‘as many” points in the
square as on the segment.

.

§3. Real Numbers*

The development of the concept
of number has been described in
detail in Chapter I. Here we shall
give the reader a brief account of
the theories of the real numbers that
have arisen in the 19th century in
connection with the foundation of
S the basic concepts of analysis.

Q

e ——————— e

FiG. 1.

Rational numbers. We assume that the reader is familiar with the main
properties of rational numbers. Without going into details we recall these
properties. Rational numbers, i.e., numbers of the form m/n, where m and n
are integers and n = 0, form a set of numbers in which two operations
(addition and multiplication) are defined. These operations are subject
to a number of laws (axioms). In what follows a, b, ¢, ‘- denote rational
numbers

1. Axioms of addition.

1. a + b = b + a (commutativity)
2. a + (b + ¢) = (@ + b) + c (associativity)

3. the equation
a+x==5b

has a unique solution (existence of the inverse operation).

From these axioms it follows immediately that the expressiona + b + ¢
has a unique meaning, that there exists a rational number 0 (null) for
which @ + 0 = g and that addition has an inverse operation (subtraction)
so that the expression & — a has a meaning.

* During the \'writing of this section, we have had valuable consultations with A. N.
Kolmogorov.
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Thus, from the algebraic point of view, all the rational numbers form
a commutative group under the operation of addition.

1. Axioms of multiplication.

l. ab = ba (commutativity)
2. a(bc) = (ab)c (associativity)
3. the equation
ay = b,

where a 7= 0 has a unique solution (existence of the inverse operation).
From these axioms it follows that the expression abc has a meaning,
that there exists a rational number | for which a - | = a and that for
rational numbers other than O the inverse operation (division) exists. All
the rational numbers except 0 form a commutative group under the
operation of multiplication.

1. Axiom of distributivity.

1. (@ + b) c = ac + be.

The axioms I-111 together indicate that under the operations of addition
and multiplication the rational numbers form a so-called algebraic field.

IV. Axioms of order.

1. For any two rational numbers @ and b one and only one of the
following three relations holds: either @ < b, ora > b, or a = b.

2. Ifa<b,and b < ¢, thena < c.

3. Ifa < b, then a + ¢ < b + ¢ (monotonicity of addition).

4. If a < b and ¢ > 0, then ac < be (monotonicity of multiplication
by ¢ > 0).

All these axioms together allow us to call the set of rational numbers
an ordered field.

Apart from the rational numbers there exist also other systems of
objects that satisfy these axioms and are therefore ordered fields.

We mention two important properties of rational numbers.

Density: For arbitrary @ and b, a < b, there is a ¢ such thata < ¢ < b.
Countability: The set of all rational numbers is countable (see §2).
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On measuring quantities. The insufficiency of the rational numbers
alone in mathematics already becomes apparent in dealing with such an
important task as that of measuring quantities. As one of the simplest
examples, we shall here consider the problem of measuring the length of
intervals.

Let us take a line on which a definite direction, an origin (the point 0),
and a unit of scale are marked. Then it is clear that a segment OA with its
end point at 1/2, 1/3, 2/3, —1/3, etc. is. More generally, with every rational
number @ we can associate a point @ on the line, namely the point with
the coordinate x = a. In this case the number & determines the length of
the directed segment OA4. However, not every segment gets a certain
(rational) number as the measure of its length in this construction. For
example, it was already known to the ancient Greeks that the length of
the diagonal of a square with unit side cannot be measured by any rational
number. The natural outcome of this situation is the setting up of a one-
to-one correspondence between numbers and lengths, i.e, a further
extension of the concept of number.

Real numbers. We were led to the conclusion that the rational numbers
alone are insufficient to measure quantities and that the concept of number
must be extended so that there exists a one-to-one correspondence between
numbers and points on a line. With this in mind let us try to find out
whether it is not possible to determine the position of an arbirrary point
on a line by means of the rational points only. A similar construction
within the domain of rational numbers will then lead us to the concept
of a real number.

Let « be an arbitrary point on the line. Then all the rational points a
can be divided into two parts: We put into one part all the points a
that are to the left of «, and into the other all those to the right of «. As
regards the point « itself (if it happens to be rational), it can be put into
either part. Such a division of the rational points is usually called a cur.
Cuts are taken to be identical if the collection of rational points in the left
and the right parts of the cuts coincide (to within a single point). Now it is
not difficult to see that distinct points « and B determine different cuts.
For since the rational points are everywhere dense on the line, we can
find rational points r; and r, lying strictly between « and 8. Then in one
of the cuts they come into the right part and in the other into the left part.

Thus every point on the line determines a cut in the domain of rational
points, and different cuts correspond to different points. It is very important
that a cut can also be defined in another way and without specific reference
to the number «. For let us define a cut in the domain of rational points as a
division of all rational points into two nonempty disjoint sets 4 and B



§3. REAL NUMBERS 15

such that a < & for every a € A4, b € B. Under this definition we can assign
to a cut in a unique fashion that point (boundary) which produces it.
In other words, by means of cuts in the domain of rational points, we can
determine every point on the line. The construction we have just explained
was proposed by the German mathematician R. Dedekind and is known
under the name of Dedekind cut.

A cut is not the only possible method of determining the position of an
arbitrary point by means of the rational points. Nearer to the usual
practice of measuring is the following method of G. Cantor. Again let
a be an arbitrary point on the line. Then we can find two arbitrarily close
rational points @ and b such that « lies between @ and 4. The points a and b
determine the position of « approximately. Let us imagine this process of
approximate determination of « continued indefinitely and in such a way
that at each successive step the accuracy is increased more and more.
Then we obtain a system of intervals [a, , b,] with their ends at rational
points such that [@,,, b,.,]< [6.,86,] and b, —a,— 0 (n— ). A
system of intervals satisfying these conditions is called a nest of intervals.
It is clear that such a nest of intervals determines the position of a uniquely.

By means of similar constructions in the domain of rational numbers,
we can define the real numbers. Next we define the operations among real
numbers and ascertain that they satisfy the same axioms as the operations
on rational numbers. Now every point on the line corresponds to a real
number and vice versa. On account of this, the set of all real numbers is
often called the numerical line.

Principles of continuity. There are essential differences between the set
of all rational numbers and the set of all real numbers. In fact, the set of
all real numbers has a number of properties that characterise the continuity
of this set, whereas the set of all rational numbers does not have these
properties. They are usually called principles of continuity. We shall
enumerate the most important of them.

Dedekind’s principle. If the set of all real numbers is divided into two
nonempty sets X and Y without elements in common, so that for arbitrary
x € X, y € Y the inequality x < y holds, then there exists a unique number
£ (the boundary) for which x < ¢ < y for arbitrary xe X, y € Y.

The set of all real numbers x satisfying the inequalities a < x < bis
called an interval of the numerical line and is denoted by [a, b]. A system
of intervals [a,,b,] is called nested if [a,,,,b..1]< [a.,5,] and
b, —a,— 0 (n— o0).

Cantor’s principle. For every nested system of intervals [a, , 6,] there
exists one and only one real number ¢ that belongs to each of these
intervals.
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Weierstrass® principle. Every nondecreasing sequence of real numbers
that is bounded above converges.
Let us say that a sequence of real numbers {x,} is a fundamental sequence
if for every € > 0 we can find a natural number N such that for alla > N
and all natural p
Ixni-r_xnl < €,

Cauchy’s principle. Every fundamental sequence of real numbers
converges.

Since we have not given an accurate construction of the real numbers
we are not in a position to establish that these principles hold for the set
of real numbers. Our next object is to investigate how these principles
are interrelated. Let us then assume that one of the principles of continuity
holds for the real numbers and examine which of the remaining principles
of continuity follows from it.

The over-all result that we shall arrive at is that all the principles of
continuity are equivalent

We say that a number 4 is the (least) upper bound of a set E

b = sup E,

if (1) x < b for every x € E and (2) there exists no number ' < b with
the same property.

Let us show that the following proposition follows from Dedekind’s
principle: Every nonempty set E of numbers that is bounded above has
a least upper bound. We divide all the real numbers into two classes X and
Y according to the following criterion: We put x € X if there exists an
a € E such that @ > x, and we put y € Y if for every a € £ we have a < y.
It is easy to verify that this is a cut. By Dedekind’s principle it has a
boundary §; this boundary is the least upper bound of E.

We shall now show that Weierstrass’ principle follows from Dedekind’s.
Let {x,} be a nondecreasing sequence of real numbers, bounded above.
By what we have just proved it has a least upper bound £. By definition
of an upper bound x, < § (n = 1, 2, --); for every € > 0 we can find an
index n, such that x, > £ — e. Since the sequence {x,} is monotonic,
this implies that £§ — e < x, < £ for all n > n,, i.e., the sequence {x,}
converges to the limit .

To prove the converse relation between the principles of Dedekind and
Weierstrass we note that Weierstrass’ principle implies :

Archimedes’ principle. No matter what the real numbers ¢ > 0 and
b are, we can always find a natural number n such that na > b.

This principle means that for every real number b the sequence {b/n}
(n = 1, 2, ) converges to zero.
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Suppose that Weierstrass’ principle holds, but Archimedes’ does not
hold. The latter means that there exists an @ > 0 such that the sequence
x, = na is bounded. Moreover, it is increasing. By Weierstrass’ principle
it has a limit £ Hence it follows that the interval [£ — /2, £] contains
some point x, = na of our sequence. But then x,,, = (n + 1)a > ¢,
and this contradicts the fact that £ is the least upper bound of {x,}.

Weierstrass’ principle implies Dedekind’s principle. Let the set of all
real numbers be divided into two disjoint sets X and Y such that x < y
for all x € X, y € Y. We shall show that this cut has a unique boundary £.
Let m be an integer and n a natural number. We denote by x, the largest
element of the form m/2" € X such that x, + 1/2" € Y. Since the set of
elements of the form m/2" is contained in the set of elements of the form
m/2"+1, we have x, < x,,; . Moreover, the sequence {x,} is bounded (for
example, by the number x; + 1/2). Hence by Weierstrass’ principle it has
a limit £. We shall show that £ is the boundary of our cut. For if x < ¢
then x € X. And if y > £, then y € Y, because it follows from Archimedes’
principle that we can find a number n such that 1/2" <y — £ = a. But
x, < é,x,+ 1/2"€ Y,and theny = ¢ + a > x, + 1/27, therefore y € Y.

One can also show that Cantor’s and Cauchy’s principles are equivalent.
However, when Cauchy’s principle holds it does not follow that Dedekind’s
principle holds. This statement has to be understood in the following sense:
There exists an ordered field for which Cauchy’s principle holds, but
Dedekind’s does not hold. If it assumed beforehand that Archimedes’
principle holds, then all four principles are equivalent.

Uncountability of the continnum. Let us show that the set of all
points of the segment 0 < x < 1 is uncountable. We shall give an indirect
proof. Suppose that the set of all points of the segment 0 < x <1 is
countable. Then all the points x of this segment can be indexed by means
of the natural numbers

X19 Xz sy Xny e (l)
In [0, 1] we choose an interval o, so that its length is less than | and that
it does not contain the point x; . Such an interval can readily be found.
Next, within o; we choose an interval o, so that its length is less than 1/2
and that o, does not contain the points x, , x, . Generally, when an interval
0,_, has already been chosen we choose in it an interval o, so that its
length is less than 1/r and that it does not contain the points x, , X, , =", X, .
In this way we construct an infinite sequence of intervals

Ty 402, 0p,y ™

such that each is contained in the preceding one and their lengths tend
to zero with increasing n. Then by Cantor’s principle there exists a unique
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point x in the interval [0, 1] that belongs to all the intervals o, . Since by
our hypothesis all the points of [0, 1] are accounted for in (1), the point
x which is common to all ¢, coincides with some point x,, of that sequence.
But by our construction o,, does not contain x,, so that x 7 x,, . Thus
we have arrived at a contradiction. Therefore the initial hypothesis, that
the set of all points of [0, 1] is countable, is false and so this set is uncount-
able. This is what we set out to prove.

This theorem shows that there exist distinct infinite cardinalities and
therefore gives a positive answer to the first question raised.

§4. Point Sets

In the preceding section we have already come across sets whose
elements are points. In particular, we have considered the set of all points
of an arbitrary interval and the set of all points (x, y) of the square
0<x<1,0<y< 1. We shall now turn to a more detailed study of
properties of such sets.

A set whose elements are points is called a point ser. Thus, we can speak
of point sets on aline, in a plane, or in an arbitrary space. For simplicity’s
sake we shall here confine ourselves to the study of points sets on a line.

There is a close connection between the real numbers and the points on
a line: With every real number we can associate a point on the line and
vice versa. Therefore, in speaking of point sets we may include with
them sets consisting of real numbers, sets on the numerical line. Conversely,
in order to define a point set on a line we shall, as a rule, give the coordin-
ates of all the points of the set.

Point sets (and, in particular, point sets on a line) have a number of
special properties that distinguish them from arbitrary sets and make the
theory of point sets into a self-contained mathematical discipline. First of
all, it makes sense to speak of the disrance between two points. Further-
more, we can establish a relation of order (left, right) between the points
on a line; accordingly, one says that a point set on a line is an ordered set.
Finally, as we have already mentioned earlier, Cantor’s principle holds
for the line; this property of the line is usually characterized as complereness
of the line.

We introduce a notation for the simplest sets on a line.

An interval [a, b] is the set of points whose coordinates satisfy the
inequality @ < x < b.

An open interval (a, b) is the set of points whose coordinates satisfy
the conditions a < x < b.

The semi-intervals [a,b) and (a, b)] are defined by the conditionsa < x < b
and a < x < b, respectively.
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Open intervals and semi-intervals can be improper. Thus, (—c0, )
denotes the whole line and, for example, (—co, b] the set of all points for
which x < b.

We begin with an account of the various possibilities for the position
of a set as a whole on a line.

Bounded and unbounded sets. A set £ of points on a line can either
consist of points whose distances from the origin of coordinates do not
exceed a certain positive number or it has points arbitrarily far from the
origin of coordinates. In the first case E is called bounded, in the latter
unbounded. An example of a bounded set is the set of all points of the
interval [0, 1], and an example of an unbounded set is the set of all points
with integral coordinates

It is easy to see that, when a is a fixed point on the line, a set E'is bounded
if and only if the distances from a of arbitrary points x € £ do not exceed
a certain positive number.

Sets bounded above and below. Let E be a set of points on a line. If
there is a point 4 on the line such that every point x € E lies to the left
of A4, then we say that E is bounded above. Similarly, if there is a point
a on the line such that every x € E lies to the right of a4, then E is called
bounded below. Thus, the set of all points on the line with positive coordi-
nates is bounded below, and the set of all points with negative coordinates
bounded above.

It is clear that the definition of a bounded set is equivalent to the fol-
lowing: A set E of points on a line is called bounded if it is bounded above
and below. Notwithstanding that these two definitions are very similar,
there is an essential difference between them: The first is based on the fact
that a distance is defined between the points on a line, and the second that
these points form an ordered set.

We can also say that a set is bounded if it lies entirely in some interval
[a, b].

The least upper and greatest lower bound of a set. Suppose that a
set E is bounded above. Then there exist points 4 on the line such that
there are no points of E to their right. Using Cantor’s principle we can
show that among all the points A having these properties there is a leftmost.
This point is called the least upper bound of E. The greatest lower bound
of a point set is defined similarly.

If there is a rightmost point in E, then it is obviously the least upper
bound of E. However, it can happen that E has no rightmost point.
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For example, the set of points with the coordinates

is bounded above and has no rightmost point. In this case the least upper
bound a does not belong to E, but there are points of E arbitrarily near
to a. In the example above a = 1.

Distribution of a point set near an arbitrary point on the line. Let E
be a point set and x an arbitrary point on the line. We consider the various
possibilities for the distribution of the set £ near x. The following cases
are possible:

1. Neither the point x nor the points sufficiently near to it belong to E.

2. The point x does not belong to E, but there are points of E arbitrarily
near it.

3. The point x belongs to E, but all points sufficiently near to it do not
belong to E.

4. The point x belongs to E and there are other points of E arbitrarily
near it.

In the case 1, x is called exrerior to E, in the case 3, an isolated point
of E, and in the cases 2 and 4, a /imit point of E.

Thus, if x € E, then x can be either exterior to £ or a limit point, and if
x € E, it can be either an isolated point of £ or a limit point.

A limit point may or may not belong to £ and is characterized by the
condition that there are points of E arbitrarily near to it. In other words,
a point x is a limit point of E if every open interval & containing x contains
infinitely many points of E. The concept of a limit point is one of the most
important in the theory of points sets.

If x and all points sufficiently near to.it belong to E, then x is called an
interior point of E. Every point x that is neither an exterior nor an interior
point of E is called a boundary point of E.

Let us give some examples to illustrate all these concepts.

Example 1. Let £, consist of the points with the coordinates

1,

1
P R
n

W] —

1
2’

Then every point of this set is an isolated point of it, the point 0 is a limit
point of E; (and does not belong to it), and all the remaining points on
the line are exterior to E,.
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Example 2. Let E, consist of all the rational points of the interval
[0, 1]. This set has no isolated points, every point of the interval [0, 1]
is a limit point of E, , and all the remaining points on the line are exterior
to E,. Clearly among the limit points of E, there are some that belong
and others that do not belong to the set.

Example 3. Let E; consist of all points of the interval [0, 1]. As in
the preceding example, E; has no isolated points and every point of [0, 1]
is a limit point. However, in contrast to the preceding example, all the
limit points of E; belong to the set.

Example 4. Let E; consist of all the points on the line with integral
coordinates. Every point of E, is isolated; E, has no limit points.

We also point out that in Example 3 every point of the open interval
(0, 1) is an interior point of E, , and in Example 2 every point of the interval
[0, 1] is a boundary point of E,.

From the preceding examples it is clear that an infinite point set on a
line may have isolated points (E, , E,) or not (E,, E;), that it may have
interior points (E;) or not (E,, E,, E,). As regards limit points, only E,
in Example 4 does not have any. As the following important theorem
shows, this is connected with the fact that £, is unbounded.

The Theorem of Bolzano-Weierstrass: Every bounded infinite point set
on a line has at least one limit point.

Let us prove this theorem. Suppose that E is a bounded infinite point
set on a line. Since E is bounded, it lies entirely in some interval [a, b].
We divide this interval in half. Since E is infinite, at least one of the inter-
vals so obtained contains infinitely many points of E. We denote that
interval by o, (if both halves of [a, #] contain infinitely many points of E|
then o, shall denote, say, the left half). Next we divide o, into two equal
halves. Since the part of E that lies in o, is infinite, at least one of the
intervals so obtained contains infinitely many points of £. We denote it
by o,. We continue the process of dividing an interval in half indefinitely
and each time select that half which contains infinitely many points of
of E. So we obtain a sequence of intervals oy, 0y, ‘-, 0, , --. This sequence
of intervals has the following properties: Every interval o,,, is contained
in the preceding one o,; every interval o, contains infinitely many points
of E; and the lengths of the intervals tend to zero. The first two properties
of the sequence follow immediately from its construction, and to prove
the last property it is sufficient to note that if the length of [a, &] is /, then
the length of o, is /27 . By Cantor’s principle there exists a unique point
x that belongs to all o,. We shall show that this x is a limit point of E.
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For this it is sufficient to make sure that if & is some open interval
containing x, then it contains infinitely many points of E. Since every
interval o, contains x and the lengths of the o, tend to zero, for a sufficiently
large » the interval o, is entirely contained in 8. But by hypothesis o,
contains infinitely many points of E. Therefore § too contains infinitely
many points of E. Thus, x is in fact a limit point of £ and the theorem is
proved.

Exercise. Show that if a set E is bounded above and has ho rightmost
point, then its least upper bound is a limit point of E (and does not belong
to E).

Closed and open sets. One of the fundamental tasks of the theory of
point sets is the study of properties of various types of points sets. We
shall acquaint the reader with this theory for two examples. We shall
now study properties of the so-called closed and open sets.

A set is called closed if it contains all its limit points. If a set has no
limit points, then it is usually also taken to be closed. Apart from its
limit points a closed set can also contain isolated points. A set is called
open if every point of it is interior.

Let us give some examples of closed and open sets. Every interval
[a, ] is a closed set, and every open interval (a, b)) an open set. The
improper semi-intervals (— oo, b] and [a, <o) are closed, and the improper
intervals (— oo, b) and (a, o0) are open. The whole line is at the same time
closed and open. It is convenient to regard the empty set also as both
closed and open. Every finite point set on the line is closed, since it has
no limit points. The set consisting of the points

i§ closed; this set has the single limit point x = 0 which belongs to the
set.

Our task is to examine the structure of an arbitrary closed or open set.
For this purpose we require a number of auxiliary facts which we assume
without proof.

1. The intersection of any number of closed sets is closed.
2. The union of any number of open sets is open.

3. If a closed set is bounded above, then it contains its least upper
bound. Similarly, if a closed set is bounded below, then it contains its
greatest lower bound.
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Let E be an arbitrary point set on a line. The complement of E, denoted
by CE, is defined as the set of all points on the line that do not belong to
E. Clearly, if x is an exterior point of E, then it is an interior point of CE
and vice versa.

4. If a set F is closed, then its complement CF is open and vice versa.

Proposition 4 shows that there is a very close link between closed and
open sets: They are complements of each other. Because of this it is
sufficient to study either closed or open sets only. A knowledge of the
properties of sets of one type enables us at once to read off properties of
sets of the other type. For example, every open set is obtained by deleting
some closed set from the line.

Let us now proceed to study properties of closed sets. We make one
definition. Let F be a closed set. An open interval (a, &) having the property
that none of its points belong to F, while a and & belong to F, is called
an adjacent interval of F. Among the adjacent intervals we also count the
improper intervals (g, o) or (— o, b), provided a or b belong to F but
the intervals do not intersect F. We shall show that if a point x does
not belong to the closed set F, then it belongs to one of its adjacent
intervals.

We denote by F, that part of F that lies to the right of x. Since x itself
does not belong to F, we can represent F, as an intersection

F, = F - [x, o).

Both F and [x, oo) are closed. Therefore, by proposition 1, F, is closed.
If F, is empty, then the whole semi-interval [x, o0) does not belong to F.
Let us assume then that F, is not empty. Since this set lies entirely on the
semi-interval [x, co0), it is bounded below. We denote by b its greatest
lower bound. By proposition 3, b € F, so that b € F. Furthermore, since b
is the greastest lower bound of F,, the semi-interval [x, b) lying to the
left of b does not contain points of F, , consequently not of F either. Thus
we have constructed a semi-interval [x, b) containing no points of F, and
either &6 = oo or b belongs to F. Similarly, we can construct a semi-interval
(a, x] not containing points of F with either a = — o or a € F. Now it
is clear that the open interval (a, &) contains x and is an adjacent interval
of F. It is easy to see that if (a, , b,) and (a, , b,) are two adjacent intervals
of F, then they either coincide or are disjoint.

From the preceding it follows that every closed set on the line is obtained
by deleting from the line a certain number of open intervals, namely the
adjacent intervals of F. Since every open interval contains at least one
rational point and all the rational points on the line form a countable
set, we see that the number of adjacent intervals cannot be more than
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countable. Hence we reach a remarable conclusion. Every closed set on
the line is obtained by deleting from the line at the most a countable
set of disjoint open intervals.

By proposition 4 it follows at once that every open set on the line is
the sum of not more than a countable number of open intervals. By
propositions | and 2 it is also clear that every set of the structure we have
indicated is in fact closed (open).

It will be seen from the following example that closed sets can have a
very complicated structure.

Cantor’s perfect set. We shall construct a particular closed set that
has a number of remarkable properties. First of all we delete from the line
the improper intervals (— oo, 0) and (1, ). After this operation we are
left with the interval [0, 1]. Next we delete from this the open interval (1/3,
2/3) which forms its middle third. From each of the remaining intervals
[0, 1/3] and [2/3, 1], we delete its middle third. This process of deleting
the middle thirds of the remaining intervals can be continued indefinitely.
The point set on the line that remains after all these open intervals have
been deleted is called Cantor’s perfect set; we shall denote it by the
letter P.

Let us investigate some properties of this set: P is closed, because it is
formed by deleting from the line a certain set of disjoint open intervals;
P is not empty; in any case it contains the end points of all the removed
intervals.

A closed set Fis called perfect if it has no isolated points, i.e., if every
point of it is a limit point. We shall show that P is perfect. For if x were
an isolated point of P, then it would have to be a common end point of
two adjacent intervals of the set. But by our construction the adjacent
intervals of P do not have common end points.

The set P does not contain any open interval. For suppose that a certain
open interval & entirely belongs to P. Then it belongs entirely to one of the
intervals obtained at the nth step of the construction of P. But this is
impossible, because for n — oo the length of these intervals tends to zero.

One can show that P has the cardinality of the continuum. From this
it follows, in particular, that Cantor’s perfect set contains, apart from the
end points of the adjacent intervals, other points. For the end points of
the adjacent intervals form only a countable set.

Various types of point sets occur constantly in the most diverse branches
of mathematics, and a knowledge of their properties is absolutely indispen-
sable in studying many mathematical problems. Of particularly great
importance is the theory of point sets in mathematical analysis and
topology.
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We shall now give a few examples of point sets that appear in the classical
parts of analysis. Let f(x) be a continuous function given on the interval
[a, b). We fix a number « and consider the set of all points x for which
f(x) = a. It is easy to show that this can be an arbitrary closed set on the
interval [a, b]. Similarly, the set of those points x for which f{x) > « can
be any open set G C [a, b]. If fi(x), fo(x), -, fu(x), -+ is a sequence of con-
tinuous functions given on [a, ], then the set of all points x where this
sequence converges cannot be arbitrary and belongs to a certain well-
defined type.

The mathematical discipline whose object is to study the structure of
point sets is called the descriptive theory of sets.

In the development of the descriptive theory of sets Soviet mathema-
ticians have made great contributions, N. N. Luzin and his pupils, P. S.
Aleksandrov, M. Ja. Suslin, A. N. Kolmogorov, M. A. Lavrent’ev,
P. S. Novikov, L. V. Keldy$, A. A. Ljapunov, and others.

The investigations of N. N. Luzin and his pupils have shown that there
are strong ties between descriptive set theory and mathematical logic.
Difficulties arising in the study of a number of problems of descriptive
set theory (in particular, problems of determining the cardinality of
certain sets) are difficulties of a logical nature. On the other hand, the
methods of mathematical logic enable us to penetrate more deeply into
certain problems of descriptive set theory.

§5. Measure of Sets

The concept of the measure of a set is a far-reaching generalization of
the concept of the length of an interval. In the simplest case (the only
one we shall consider here) the task is to give a definition of length not
only for intervals but also for more complicated point sets on
a line.

Let us agree that the unit of measurement is the interval [0, 1]. Then the
length of an arbitrary interval [a, b] is obviously & — a. Similarly, if we
have two disjoint intervals [a, , b,] and [a;, b,)], it is natural to interpret
the length of the set E consisting of these two intervals as the number
(b, — a;) + (b; — a;). However, it is by no means clear what we have to
understand by the length of a set on the line of a more complicated nature;
for example, what is the length of the Cantor set of §4 of this chapter?
Hence the conclusion, the concept of length of a set on the line requires
a rigorous mathematical definition.

The problem of defining the lengths of sets or, as we now say, of
measuring sets is very important, because it is of vital significance in
generalizing the concept of an integral. The concept of measure of a set
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also has applications to other problems in the theory of functions, in
probability, topology, functional analysis, etc.

We shall give an account of the definition of measure of sets which is
due to the French mathematician H. Lebesgue and is the foundation of
the definition of integral given by him.

Measure of an open and a closed set. We begin with the definition
of measure of an arbitrary open or closed set. As we have mentioned
in §4, every open set on the line is a finite or countable sum of pairwise
disjoint open intervals.

The measure of an open set is defined as the sum of the lengths of its
constituent open intervals.

Thus, if

G = 2 (ai » bi)
and the intervals (a; , b;) are pairwise disjoint, then the measure of G is

equal to X (b; — a;). Generally, the measure of a set £ being denoted
by E, we can write

uG =3, (b, — a).
In particular, the measure of a single open interval is equal to its length
uwla, b) =56 —a.

Every closed set F contained in [a, b] and such that the end points of
[a, b] belong to F is obtained from [a, ] by deleting from it a certain
open set G. The measure of the closed set F< [a, b], where a€e F, b€ F is
defined as the difference between the length of [a, ] and the measure of
the open set G complementary to F (relative to [a, b]).

Thus

uF = (b — a) — pG. )

It is not difficult to verify that according to this definition the measure
of an arbitrary interval is equal to its length

pla, b] = b —a,

and the measure of a set consisting of a finite number of points is zero.

General definition of measure. In order to give a definition of measure
of sets of more general nature than open and closed sets, we have to make
use of an auxiliary concept. Let £ be a set lying on the interval [a, b).
We consider all possible coverings of E, i.e., all open sets V(E) containing
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E. The measure of each of these sets V(E) is already defined. The aggregate
of measures of all sets V(E) is a certain set of positive numbers. This set is
bounded below (for example by 0) and therefore has a greatest lower
bound which we denote by u.E. The number u.E is called the ourer
measure of E.

Let pu.E be the outer measure of a set £ and u,CE the outer measure of
its complement relative to [a, b].

If the relation

wE+ pCE=b—a 3)

holds, then the set E is called measurable and the number p E its measure:
pE = p E; if the relation (3) does not hold, then we say that E is not
measurable; a nonmeasurable set has no measure.

We note that always

F’eE + aueCE = b—a {4)
Let us give a few clarifications. The length of the simplest sets (for

example, open or closed intervals) has a number of remarkable properties.
We mention the most important of these.

1. If the sets £; and E are measurable and £, < E, then
pE) < pE;
i.e., the measure of a part of £ does not exceed the measure of the whole

set E.

2. If E, and E, are measurable, then the set E = E, 4 E, is measurable
and
WEy + Ep) < pE, + pEs;

i.e., the measure of a sum does not exceed the sum of the measures of
the summands.

3. Ifsets E; (i = 1, 2, ) are measurable and pairwise disjoint, E.E; = ¢
(i # j), then their sum E = X E; is measurable and

W, E) = 3, pE; ;

i.e., the measure of a finite or countable sum of pairwise disjoint sets is
equal to the sum of the measures of the summands.
This property of the measure is called its full additivity.

4. The measure of a set E does not change if it is displaced as a rigid
body.
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It is desirable that the fundamental properties of length are preserved
for the more general concept of measure of sets. But it can be proved quite
rigorously that this turns out to be impossible if a measure is to be ascribed
to an arbitrary point set on the line. Consequently, in the sense of this
definition there are sets that have a measure or are measurable and others
that have no measure or are nonmeasurable. Besides, the class of measur-
able sets is so wide that this circumstance does not lead to any essential
disadvantages. In fact, the construction of an example of a nonmeasurable
set is rather difficult.

We shall now present some examples of measurable sets.

Example 1. The measure of Cantor’s perfect set P (see §4). In con-
structing the set P from the interval [0, 1], we have first thrown out an
adjacent interval of length 1/3, then two adjacent intervals of length 1/9,
then four adjacent intervals of length 1/27, etc. Generally, at the nth step
we have thrown out 2"-! adjacent intervals of length 1/3*. Thus, the sum
of the lengths of the intervals removed is equal to

1 2 4 2n1
o =, ol
3 + 9 4 77 pinse o I +
The terms of this series form a geometric progression with the first term
1/3 and the common ratio 2/3. Therefore the sum S of the series is

‘wl-—

= |
™
3
Thus, the sum of the length of the intervals adjacent to the Cantor set
is 1. In other words, the measure of the open set G complementary to Pis 1.

Therefore, the set itself has the measure
uP=1—-puG=1—1=0.
This example shows that a set may have the cardinality of the continuum
and yet have measure zero.

Example 2. Measure of the set R of all rational points of the interval
[0, 1]. First of all we shall show that u,R = 0. In §2 we had found that
R is countable. We arrange the points of R in a sequence

FisPos gyt

Next, for given € > 0 we enclose the point r, by an open interval 8, of
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length €/2,,. The sum 8§ = X8, is an open set covering R. The open inter-
vals 8, may intersect so that

u(d) = #(Z Sn) <D = E; = e.

Since € can be chosen arbitrarily small, we have u.R = 0.
Further, by (3)
F'eR + I-%CR =1,

i.e, u,CR = 1. But since CR is contained in [0, 1], we have u,CR < 1.
Hence
R + p.CR = 1,
and*
uR =0, uCR = 1. ()

This example shows that a set may be everywhere dense on an interval
and yet have measure zero.

Sets of measure zero play no role in many problems of the theory of
functions and can be neglected. For example, a function f(x) is Riemann
integrable if and only if it is bounded and the set of its points of dis-
continuity has measure zero. We could add a considerable number of
such examples.

Measurable functions. We now proceed to one of the most brilliant
applications of the concept of measure of sets, namely, a description of
that class of functions with which mathematical analysis and the theory
of functions actually operate. The precise statement of the problem is as
follows. If a sequence {f,(x)} of functions given on a certain set £ converges
at every point of E possibly at the points of a set N of measure zero,
then we shall say that the sequence {f,(x)} converges almost everywhere.

What functions can be obtained from continuous functions by repeated
application of the operation of forming the limit of an almost everywhele
convergent sequence of functions and of algebraic operations?

To answer this question we require some new concepts.

Let f(x) be a function defined on a set E and « an arbitrary real number.

We denote by
E[f(x) > a]

the set of all points of E for which f(x) > «. For example, if f(x) is defined
on [0, 1] and f{x) = x on this interval, then set E[f(x) > a] is equal to
[0, 1] for « < 0, to (a, 1] for 0 < a < 1, and empty for a = 1.

* The same argument shows that every countable point set on the line has measure
zero.
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A function f{x) defined on a set E is called measurable if E itself is
measurable and the set E[f(x) > «] is measurable for every real number a.

One can show that every continuous function given on an interval is
measurable. However, among the measurable functions there are also
many discontinuous functions, for example the Dirichlet function which
is equal to | at the irrational points of [0, 1] and 0 elsewhere.

We mention without proof that measurable functions have the following
properties.

1. If fix) and ¢(x) are measurable functions defined on one and the
same set E, then the functions

S+S=bs4 and
are also measurable (the latter if ¢ = 0).

This property shows that algebraic operations on measurable functions
lead again to measurable functions.

2. If a sequence {f,(x)} of measurable functions defined on a set E
converges almost everywhere to a function f(x), then this function is also
measurable.

Thus, the operation of forming the limit of an almost everywhere
convergent sequence of measurable functions again leads to measurable
functions.

These properties of measurable functions were established by Lebesgue.
A deeper study of measurable functions was carried out by the Soviet
mathematicians D. F. Egorov and N. N. Luzin. In particular, N. N. Luzin
has proved that every measurable function on an interval can be made
continuous by changing its values on a certain set of arbitrarily small
measure.

This classical result of N. N. Luzin and the properties of measurable
functions listed enable us to prove that measurable functions form that
class of function of which we talked at the beginning of this subsection.
Measurable functions are also of great importance in the theory of
integration, namely, the concept of an integral can be generalized in such
a way that every bounded measurable function turns out to be integrable.
A detailed account of this will be given in the next section.

§6. The Lebesgue Integral

We shall now proceed to the central theme of this chapter, the definition
of the Lebesgue integral and an account of its properties.
To understand the underlying principle of this integral, let us consider
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the following example. Suppose that there is a large collection of coins of
various denominations and we have to add up the total sum of money
involved. This can be done in two ways. We can arrange the coins in a
row and add the value of each new coin to the total value of the preceding
ones. However, we can also proceed differently: We put the coins in heaps
such that the coins in each heap are of equal value; then we count the
number of coins in each heap, multiply this number by the value of the
corresponding coin, and finally add up the numbers so obtained. The
first method of counting money corresponds to the process of Riemann
integration, and the second to the process of Lebesgue integration.
Going over from coins to functions, we can say that for the computation
of the Riemann integral the domain of definition of the function (the axis
of abscissas; figure 2a) is divided into small parts, while for the computa-

s\

0l

tion of the Lebesgue integral it is the domain of values of the function
(the axis of ordinates; figure 2b) that is so divided. The latter principle
was applied in practice long before Lebesgue for the computation of
integrals of functions of oscillating character; however, Lebesgue was the
first to develop it in all generality and to give it a rigorous foundation by
means of the theory of measure.

Let us examine how the measure of sets and Lebesgue integral are
connected. Let £ be an arbitrary measurable set on an interval [a, b].
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We construct a function ¢(x) which is equal to | when x belongs to E
and zero when x does not belong to £. In other words, we set

Fig. 2b.

The function ¢(x) is usually called the characteristic function of E. We
consider the integral

! = qui(x) dx.

We are well accustomed to regarding the integral as equal to the area
of the figure D bounded by the axis of abscissas, the lines x = a, x = b,
and the curve y = ¢(x) (see Chapter II). Since in our case the ‘“‘height” of
D is different from zero and is equal to | for the points x € £ and these
points only, the area (by the formula that area is length times width) must
be equal numerically to the length (measure) of E. Thus, / must be equal
to the measure of E

I = pE. (6)

The Lebesgue integral of the function ¢(x) is defined just so.

The reader should realize clearly that the equation (6) is the definition
of the integral j':¢(x) dx as a Lebesgue integral. It can happen that the
integral J does not exist in the sense in which it was understood in Chapter
11, i.e., as a limit of integral sums. But if this is the case, then the integral /
exists as a Lebesgue integral and is equal to uE.
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As an example let us calculate the integral of the Dirichlet function
P(x) equal to 0 at the rational points and to 1 at the irrational points of
[0, 1]. Since the measure of the set of irrational points of [0, 1] is 1, by (5),
the Lebesgue integral

_[: D(x) dx

is equal to 1. It is easy to verify that the Riemann integral of this function
does not exist.

An auxiliary proposition. Suppose now that f(x) is an arbitrary bounded
measurable function defined on [a, b]. We shall show that every such
function can be represented with arbitrarily prescribed accuracy as a linear
combination of characteristic functions of sets. In order to see this we
divide up the interval of the ordinate axis between the greatest lower bound
A and the least upper bound B of the values of the function by points
Yo = A, 1, ", yo = B into intervals of length less than e, where € is an
arbitrary fixed positive number. Next, if at the point x € {a, b],

Yi<fx) <yiy ((1=0,1,--,n—1),

then we set at that point

Hx) = yi,
and if at x
S(x) = y. = B,
then we set
$(x) = yn.

The construction of the function ¢(x) is shown in figure 3.
By the construction of ¢(x) we have for every point of [a, b]

[f(x) —$(x)| <e.

Moreover, since the function ¢(x) assumes only a finite number of values
Yos Y13 s Vn » it can be written in the form

¢(x) =V’ 950(*') +n "#l(x) Sl 95n(x), )]

where ¢,(x) is the characteristic function of the set of points for which
P(x) = y,, i,y <f(X) < yia (at every point x € [a, b] only one sum-
mand on the right-hand side of (7) is different from zero)! Thus, our
proposition is proved.
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Fig. 3.

Definition of the Lebesgue integral. We now proceed to the definition
of the Lebesgue integral of an arbitrary measurable function. Since
¢(x) differs by little from f(x), we can take, as an approximation of the
value of the integral of f(x), that of ¢(x). But when we bear in mind that
the functions ¢,(x) are characteristic functions of sets and formally use
the ordinary rules of computation for integrals, we find

[ #rdx = [ (o) + 2@ + -+ 4y}

b b
= yoj ?so(x) dx + J’1J. B1(x) dx + - 4+ Vn r¢n(x) dx
= Yolt€g + Yipey + ** - Yppey,
where pe, is the measure of the set e, of those x for which

Vi -g_f(XJ <J'.-+1 ¥

Thus, an approximate value of the Lebesgue integral of f(x) is the
“Lebesgue integral sum”

S = youey + yipey + - + yaue.
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In accordance with this the Lebesgue integral is defined as the limit of
the Lebesgue integral sum S when

max | yeq — yi | —0,

which corresponds to uniform convergence of ¢(x) to f(x).

It can be shown that the Lebesgue integral sums have a limit for every
bounded measurable function, i.e., every bounded measurable function
is Lebesgue integrable. The Lebesgue integral can also be extended to
certain classes of unbounded measurable functions, but we shall not deal
with this here.

Properties of the Lebesgne integral. The Lebesgue integral has all the
desirable properties of the ordinary integral, namely, the integral of a
sum is equal to the sum of the integrals, a positive factor can be taken
before the integral sign, etc. However, the Lebesgue integral has one
remarkable property that the ordinary integral does not have: If the
functions f,(x) are measurable and uniformly bounded:

[ fax)] < K

for every n and every x in [a, b] and if the sequence { f,(x)} converges almost
everywhere to f(x), then

[ hiyax— [ iy .

In other words, the Lebesgue integral permits unrestricted passage to the
limit. In fact, this property of the Lebesgue integral makes it a very
convenient and often an indispensable tool in many investigations. In
particular, the Lebesgue integral is absolutely necessary in the theory of
trigonometric series, the theory of function spaces (see Chapter XIX),
and other branches of mathematics.

Let us give an example. Let f(x) be a periodic function with period 2=
and

a4y | < R
5 + E (a, cos nx + b, sin nx)

n=1

its Fourier series. If, for example, f(x) is continuous, then it is easy to
show that

27 o
%L fztx)dx=§+2‘,(ai+bi)- @)

n=]1



36 XV. THEORY OF FUNCTIONS OF A REAL VARIABLE

This identity is known as Parseval’s equality. Now we raise the question:
For what class of periodic functions is Parseval’s equality (8) valid ? This
is the answer : Parseval’s equality (8) is valid if and only if f(x) is measur-
able on [0, 2#] and f?(x) is Lebesgue integrable on the same interval.
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LINEAR ALGEBRA

§1. The Scope of Linear Algebra and Its Apparatus

Linear functions and matrices, Among the functions of a single
variable, by far the simplest is the so-called linear function I(x) = ax + b.
Its graph is, of course, the simplest of curves, namely the straight line.

All the same, the linear function is one of the most important. This is
due to the fact that every “smooth” curve on a small segment is like a
straight line, and the less curved the segment is, the nearer it comes to a
straight line. In the language of the theory of the functions, this means
that every “smooth™ (continuously differentiable) function is, for a
small change of the independent variable, close to a linear function. The
linear function can be characterized by the fact that its increment is
proportional to the increment of the independent variable. Indeed:
Al(x) = l(xy + Ax) — l(xy) = a(xy + Ax) + b — (ax, + b) = a dx. Con-
versely, if dl(x) = a Ax, then I(x) — Kx,) = a(x — x,) and /(x) =
ax + I(x)) —ax, = ax 4+ b, where b = /(x,) —ax,. But from the
differential calculus, we know that in the increment of an arbitrary
differentiable function we can single out in a natural way the principal
part, the so-called differential of the function, which is proportional to
the increment of the independent variable, and that the increment of the
function differs from its differential by an infinitesimal of higher order
than the increment of the independent variable. Thus, a differentiable
function is, for an infinitely small change of the independent variable,
really close to a linear function to within an infinitesimal of higher
order.

The situation is similar with functions of several variables.

A linear function of several variables is a function of the form
ayx, + apxy, + * + a,x, + b. If b = 0, the linear function is said to be

37
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homogeneous. A linear function of several variables is characterized by
the following two properties:

1. The increment of a linear function, computed under the assumption
that only one of the independent variables receives some increment while
the values of the remaining variables are unchanged, is proportional to
the increment of this independent variable.

2. The increment of a linear function, computed under the assumption
that all the independent variables obtain increments, is equal to the alge-
braic sum of the increments obtained by changing each variable separately.

The linear function of several variables plays the same role among all
the functions of these variables as the linear function of one variable
among all the functions of one variable. For every “smooth” function
(i.e., a function having continuous partial derivatives with respect to all
variables) is close to some linear function for small changes of the inde-
pendent variables. In fact, the increment of such a function w = f(x, ,
Xy, ', Xp) 18 equal, to within infinitesimals of higher order, to the total
differential (2f/éx,) dx, + --* + (&fféx,) dx,, which is a linear homo-
geneous function of the increments dx,, -, dx, of the independent
variables. Hence it follows that the function w itself, which is equal to the
sum of its initial value and its increment, can be expressed in terms of its
independent variables for small changes of these in the form of a linear
inhomogeneous function to within infinitesimals of higher orders.

Problems whose solution requires the investigation of functions of
several variables arise in connection with the study of the dependence of
one quantity on several factors. A problem is called /inear if the dependence
under consideration turns out to be linear. By the properties of linear
functions that we have indicated earlier, a linear problem can be charac-
terized by the following properties.

|. The property of proportionality. The result of the action of each
separate factor is proportional to its value.

2. The property of independence. The total result of an action is equal
to the sum of the results of the actions of the separate factors.

The fact that every “smooth” function can be replaced in a first approxi-
mation by a linear one, for small changes of the variables, is a reflection
of a general principle, namely that every problem on the change of some
quantity under the action of several factors can be regarded in a first
approximation, for small actions, as a linear problem, i.e., as having the
properties -of independence and proportionality. It often turns out that
this attitude gives an adequate result for practical purposes (the classical
theory of elasticity, the theory of small oscillations, etc.)

The physical quantities to be studied are often characterized by certain
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numbers (a force by the three projections on the coordinate axes, the
tension at a given point of an elastic body by the six components of the
so-called stress tensor, etc.). Hence there arises the necessity of considering
simultaneously several functions of several variables, and, in a first
approximation, of several linear functions.

A linear function of one variable is so simple in its properties that it
does not require any special study. Things are different with linear functions
of several variables, where the presence of many variables introduces
some special features. The situation is still more complicated when we go
from a single function of several variables x, , x; , -, x,, to a set of several
functions y, , y,, -, y,, Of the same variables. As a “first approximation”
there appears here a set of linear functions:

»=apX + 4 @eXe + by,
Y2 = aﬂxl + i aznxn + bz s

seeesna

demssasssarabsabtaanne

Ym = QmXy + "+ AmpXy + bm

A set of linear functions is already a rather complicated mathematical
object, and the study of its full of interesting and nontrivial results.

The study of linear functions and their systems also constitutes the
initial object of that branch of algebra that is called linear algebra.

Historically, the first task of linear algebra is that of solving a system
of linear equations:

anx, + -+ apx, = by,
anx, + -+ Apuxn = by,

sessaasagsssarraaraaaanana sressnana

AmX1 + * + AunXp = bm .

The simplest case of this problem is treated in a school course on
elementary algebra. The problem of finding methods for the simplest
possible and least laborious numerical solution of systems for large » still
attracts the close attention of many researchers, because the numerical
solution of such systems enters as an important constituent part into many
calculations and investigations.

Linear homogeneous functions are also known as /inear forms. A given
system of linear forms

Y1 = apXy + o+ @GpXy,

D

Ym = @GmXy + 7+ QupXp

is completely described by its system of coefficients, since the properties
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of such a system of forms depend only on the numerical values of the
coefficients and the names of the variables are inessential.
For example, the system of forms

I+ x; — X3, 3+t — 1y,
2):1 =+ X, + 3):3 N and 2f1 + fg —+ 3’3 N
X — Xg — X3 h—t— I

obviously have identical properties and need not be regarded as essentially
distinct.

The set of coefficients of a system of linear forms can be given in a
natural way in the form of a rectangular array

Such arrays bear the name of matrices. The numbers a;; are called the
elements of the matrix. The need of considering matrices arises necessarily
from the very scope of linear algebra.

Important special cases of matrices are the matrices that consist of a
single column, which are simply called columns, those that consist of a
single row, called rows, and finally the square matrices, i.e., those in which
the number of rows is equal to the number of columns. The number of
rows (or columns) or a square matrix is called its order. The ‘‘matrix”
(@) consisting of a single number is identified with that number.

In connection with the simplest operations on a set of linear forms, it is
natural to define operations on matrices.

Suppose that two systems of linear forms are given,

N = anXx + '+ GpXy,

VYm = QmiXy + 4+ GunXn
and
2y = byxy + 0+ by,

sssassaanaa T TP

Zoy = DXy + - + bnmxn .
Let us add these forms,

n+z=@y+by)xy + -+ (a1 + b)) Xa,

ssssasanaranan teaasaaa . 'y

Y+ 2 = (@m + bml) X 4+ 4 (@mn + bmn) Xn -
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It is natural to say that the matrix of the system of forms so obtained

[au + by o ay, +bm]

““““““““““““““““““““““

aml 4 bml T lpn + bmﬂ

is the sum of the matrices

““““““““

by the number ¢ is defined as the matrix of the coefficients in the system
of forms cy,, ¢y, , **, ¢ym, Where y, , vy, .y, are the forms whose
coefficients constitute the matrix

ay T die €ayy "t Gy
| eeeeeieens — | eeriraenrenoin
Qm1 " Amn Capy **° Cdpn

Finally, the operation of multiplication of a matrix by a matrix is defined
as follows. Suppose that

Zy =an) + '+ GmYm
................................. )
Zp = Q)+ + GemPm

and

n = buxy + -+ bipxa,

Ym = bmlxl + o+ bpnXy -

When we substitute in (1) the expressions of y,, y», **,pm in terms of



42 XVI. LINEAR ALGEBRA

Xy, Xy, X, We find that z, , z,, -z, can also be expressed in terms
of x;, x5, **, x, by linear forms

Zy = X1+ A+ CinXn s

.................................

Zy = CuXy + " + CgnXn .

The matrix of coefficients

and is denoted by

[ ........... ] ["" ‘: ]

It is easy to calculate how the elements of the product of two matrices
are expressed in terms of the elements of its factors. The element c,; is
the coefficient of x; in the expression for z; in terms of x; , x5, =, X, .

But z; = a,, + ** + a;,ym and

=4 byxy 4o,
Ym = T bmjxj +
Therefore,
z; =+ (anby; + - + ambmf) Xj =+t
hence

Cij = apby; + - + Gimbmj -

Thus, the element in the ith row and the jth column of the product of
two matrices is equal to the sum of the products of the elements of the
ith row of the first factor into the corresponding elements of the jth
column of the second factor. For example:

213) S\ 23+ 1432 1+1-2+3’4)_ 1316)
ERRIA IS0 il ERE R ST Y siti2i1-4=(29)
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Although a matrix is, so to speak, a ‘“‘composite” object and many
elements enter into its formation, it is useful and convenient to denote it by a
single letter and to preserve the usual notation for operations of addition
and multiplication. We shall use the capital letters of the Latin alphabet
to denote matrices. The application of such a concise notation brings
simplicity and lucidity into the theory of matrices by embracing in short
formulas, that remind us of the formulas of ordinary algebra, complicated
relations connecting a set of numbers, namely the elements of the matrix
that occur in these formulas. Thus, for example, the set of linear forms

allxl + e + alnxu )

Ay Xy + 4 AunXa

appears in matrix notation as AX, where A is the coefficient matrix and
X the “column” formed by the variables x,, x,, -, x,, . The system of
linear equations

ayX; + '+ apXn = by,

amlxl + i + AmnXp = bm

is written as
AX = B,

where A is the coefficient matrix, X the column of the unknowns, and B
the column of the absolute terms.

The fundamental operations on matrices, namely addition and multi-
plication, are, of course, not always defined. The operation of addition
makes sense for matrices of equal structure, i.c., having the same number
of rows and of columns. As the result of addition, we obtain a matrix
of the same structure. The operation of multiplication makes sense if the
number of columns of the first matrix is equal to the number of rows of
the second. As the result we obtain a matrix in which the number of rows
is equal to the number of rows of the first factor and the number of
columns is equal to the number of columns of the second factor.

The operations on square matrices are subject to most of the laws for
operations on number, but some of the laws turn out to be violated.

Let us enumerate the fundamental properties for operations on matrices:

l. A4+ B=B+ A (commutative law for addition).
22(A+B)+C= A+ (B+ C) (associative law for addition).
3. c(A+ B)=1cA + cB ) (distributive laws for multiplication

by a number. Here ¢, ¢, , ¢, are
(e + ) A=0c 4+ czAs numbers and not matrices).
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4. (c163) A = ¢y(c3A4) (associative law for multiplication
by a number).

5. There exists a *“null” matrix

0=C;D

such that 4 4+ O = A for every matrix A.

6. c-O=0-4 = 0; conversely, if c4 = O, thenc=00r4=0
(here ¢ is a number).

7. For every matrix A there exists an opposite matrix —A4, i.e., such
that 4 + (—A4) = 0.

8. (4 4+ B):C= AC+ BC| (distributive laws for addition and

8.C(4+B)=CA+CB | multiplication of matrices).

9. (4B) C = A(BC) (associative law for multiplication).

10. (c4) B = A(cB) = c(AB).

These properties hold not only for square matrices but also for arbitrary
rectangular matrices with the sole proviso that the operations that occur
in each of the numbered formulas must be defined. For square matrices
of equal order this proviso is automatically fulfilled.

All these properties of the operations are similar to the properties of
operations on numbers.

We shall now point out two peculiarities of the operations on matrices.
First, the commutative law for the multiplication of matrices, even square
ones, need not hold; i.e., AB is not always equal to BA. For example:

I -0 2y -3 2) .
-1 4/\3 2/ ( 116/’

12 K AL 6)

32/\-1 4/ (7 2]

Second, the product of two numbers is, of course, equal to zero if and
only if one of the factors is equal to zero. This theorem is well known to
be fundamental in the theory of algebraic equations. But under multiplica-
tion of matrices it turns out to be false. For the product of two matrices

may be equal to the null matrix, although neither factor is equal to the
null matrix. For example:

() - =60
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Let us mention yet another property of the multilplication of matrices.
The matrix 4 is called the transpose of A if in every row of 4 there stand
the elements of the corresponding column of 4 in the same order. For
example, for the matrix

12
A= |34
56
the transpose is the matrix
135
4= [2 46|

The operation of multiplication is connected with that of transposition
by the formula

AB = BA,
which is easily verified on the basis of the multiplication rule for matrices.

The theory of matrices forms an indispensable part of linear algebra
in that it plays the role of an apparatus for stating and solving its problems.

Geometric analogies in linear algebra. Apart from the earlier de-
scribed source for the emergence of the ideas and problems of linear
algebra, there are also the needs of mathematical analysis and geometry,
in particular analytic geometry, that lead to the development of linear
algebra and, in turn, enrich it by important ideas and analogies. It is well
known that the analytic geometry of the plane, and, in an even greater
measure, of the space, as far as the theory of straight lines and planes is
concerned, makes use of the apparatus of linear algebra in its simplest
form. For a straight line in the plane is given by a linear equation in two
variables that links the two coordinates of an arbitrary point of the line.
A plane in space is given by a linear equation in three variables (the
coordinates of an arbitrary point of this plane), a line in space by two
linear equations.

A special simplicity and clarity is, of course, brought into analytical
geometry and consequently into the theory of the simplest systems of
linear equations by the use of a concept of a vector. Now a similar
simplicity and clarity is brought into linear algebra, in particular into the
general theory of systems of linear equations, by the use of the concept of
a vector in a generalized sense. The way to this generalization is the
following. A vector (in space) is given by three numbers, namely its three
projections on the coordinate axes. Every triplet of real numbers in turn
can be represented geometrically in the form of a vector (in space).
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For vectors the operations of addition (‘“by the parallelogram rule™)
and multiplication by a number are defined. These operations are defined
in accordance with similar operations on forces, velocities, accelerations,
and other physical quantities that can be represented by means of vectors.

If vectors are given by their coordinates (i.e., their projections on the
coordinate axes), then the operations of addition and multiplication by a
number performed on vectors correspond to the analogous operations
on the rows (or columns) of their coordinates.

Thus, it is convenient to interpret a row or column of three elements
geometrically as a vector in three-dimensional space, and then the basic
operations on “‘rows” (or “columns”) are interpreted by the corresponding
operations on vectors in space, so that the algebra of rows (or columns)
of three elements formally does not differ at all from the algebra of the
vectors of three-dimensional space. This circumstance makes it natural
to introduce a geometric terminology into linear algebra.

A column (or row) of n numbers

Xy
Xg
X

is regarded as a ‘“‘vector”, i.e.,, as an element of some *“‘n-dimensional
vector space.” The sum of the vectors

X1 Y1
X Ye
. and -
Xy Yn
is taken to be the vector
Xy +n
Xy - ya |,
xll + ."N
the product of the vector
X1

Xn
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by the number c is taken to be the vector

The set of all vectors (columns) forms, by definition, the n-dimensional
arithmetical vector space.

Together with the n-dimensional arithmetical vector space we can
introduce the concept of an n-dimensional point space, by associating
with each column of » real numbers a geometrical image, namely a point.
Then the n-dimensional vector space is defined in the following way.

With every pair of points 4 and B we associate the vector 4B leading
from A to B by taking as its coordinates (its projections on the coordinate
axes), by definition, the difference of the corresponding coordinates of the
points B and 4. Two vectors are taken to be equal if their corresponding
coordinates are equal, just as in three-dimensional space we regard vectors
as equal if one of them is obtained from the other by a parallel shift.

Between the vectors of an n-dimensional vector space and the points
of an n-dimensional point space, there exists a natural one-to-one cor-
respondence.

The point

0
is taken as the “origin of coordinates,” and to every point there corresponds
the vector that joins the origin to that point. Then we associate with every
vector the point that is the end point of this vector, assuming that its
beginning coincides with the origin. The introduction of the point space
creates new analogies that enable us to “see” better in n-dimensional
space.

However, in the further generalizations (§2) a rigorous definition of a
point space becomes rather more complicated, and we shall, therefore,
not make use of this concept. The reader who wishes to use the analogies
arising from the investigation of a point space should visualize the elements
of a vector space as vectors emanating from the origin of coordinates.
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The introduction of a geometric terminology enables us to use in linear
algebra analogies based on the geometric intuition which originates in the
study of the geometry of three-dimensional space.

Of course, these analogies must be used with a certain care, bearing in
mind that every intuitive-geometric argument can be checked in a strictly
logical way applying only precise definitions of “geometric” concepts and
rigorous proofs of theorems.

A characteristic feature of the elements of an n-dimensional vector
space is the existence of the operations of addition and multiplication by
a number, with properties reminiscent of the operations on numbers.
Namely, as we have already mentioned in the account of the properties of
operations on matrices, for the operation of addition the commutative
and associative laws are satisfied, the distributive laws (for multiplication
by a number) hold, the operation of addition has a unique inverse, and
the product of a vector by a number gives the null vector if and only if
either the vector is the null vector or the number is zero.

However, not only these columns (and rows) possess the features referred
to. Such features also belong to the set of matrices of equal structure and
to physical vector quantities: forces, velocities, accelerations, etc. They
also belong to some mathematical objects of an altogether different nature,
for example: the set of all polynomials in one variable, the set of all
continuous functions on a given interval [a, 8], the set of all solutions of a
linear homogeneous differential equation, etc.

This circumstance motivates a further generalization of a vector space,
namely the introduction of general linear spaces. The elements of such
generalized spaces may be arbitrary mathematical or physical objects for
which the operations of addition and multiplication by a number are
defined in a natural fashion. Such a very general and abstract approach
to the concept of a linear space does not bring any complications into the
theory, as we have seen earlier: Every linear space (of course, n-dimen-
sional; the meaning of this will be clarified in the next section) does not
differ in its structure and its properties from the arithmetical linear space,
but the field of applicability is considerably extended by this generalization
and it becomes possible to apply the methods of linear algebra to a very
wide range of problems of theoretical science.

§2. Linear Spaces

Definition of a linear space. We now proceed to a rigorous definition

of a linear space.
A linear space is a collection of objects of an arbitrary nature for which
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the concepts of a sum and of a product by a number make sense and which
satisfy the following postulates:

LX+Y)+Z=X+(Y+ 2)

2. There exists a “null” element 0 such that X + 0 = X for every X.

3. For every element X there exists an opposite —X such that
X+(—Xx)=0

4 X+ Y=Y+ X

501- X=X

6. c(c.X) = 16X

T.(cp+ ) X = o X + X,

8. c( X+ Y)=cX+ V.
Here X, ¥, Z are elements of the linear space; 1, ¢, , ¢;, ¢ are numbers.

These postulates (which are also called the axioms of a linear space)
are very natural and constitute a formal account of those properties of
the operations of addition and multiplication by a number that are neces-
sarily linked with the concept of these operations in whatever generalized
sense they are to be understood. Operations having one physical meaning
or another are, in fact, treated as addition and multiplication by a number
in all cases when these operations satisfy the postulates 1-8.

We mention some consequences of these axioms:

a. The null element 0 of the space is unique, i.e., there exists only one
element satisfying axiom 2.

b. The opposite element of a given element X is unique.

c. “Subtraction” has a meaning; i.., when a sum and one of the
summands is given, the other summand is always defined, in fact, uniquely:
IfX+ Z= Y, then Z = ¥+ (—X).

d0-X=c-0=0.

e. If cX = 0, then eitherc = 0, or X = 0.

f.-X=(—-DX

The proof of these consequences are very simple and will be omitted.
In what follows the elements of a linear space will be called vectors.

Linear dependence and independence of vectors. We now proceed to
the important concept of linear dependence and independence of vectors.

The vector ¢, X, + ¢,X; + - + ¢ X,, with arbitrary numerical values
of the coefficients ¢, , ¢,, =", ¢,n is called a linear combination of the
vectors X, , X;, -, X,, . If among the vectors X, , X,, -, X,, there is at
least one that is a linear combination of the remaining ones, then the
vectors X , X, , -, X,, are called linearly dependent. But if none of the
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vectors X;, X;, ', X, is a linear combination of the remaining ones,
then the vectors X, , X, , -, X,, are called linearly independent.

It is easy to see that for linear independence of the vectors X, , X;, -+
X, it is necessary and sufficient that the relation ¢ X, + ¢, X; + -
+ ¢, Xm = 0 should hold for¢; = ¢, = -+ = ¢,, = 0 only.

For vectors of the ordinary three-dimensional space the concepts of
linear dependence and independence have a simple geometrical meaning.

Suppose two vectors X; and X are given. Their linear dependence means
that one of the vectors is a “linear combination™ of the other, i.e., that they
differ simply by a numerical factor. This means that both vectors belong
to a common straight line, i.e., that they have equal or opposite direction.

Conversely, if two vectors are contained in one straight line, then they
are linearly dependent. Consequently linear independence of two vectors
X, and X, means that these vectors cannot be placed on one straight
line; their directions are essentially distinct.

Let us now investigate what linear dependence and independence of
three vectors means. Suppose that the vectors X, , X, and X are linearly
dependent and, for the sake of definiteness, that the vector X; is a linear
combination of the vectors X; and X, . Then X; obviously lies in a plane
containing the vectors X; and X;; i.e., all three vectors X, , X; , X; belong
to one plane. It is easy to see that if the vectors X, , X, , X; lie in one plane,
then they are linearly dependent. For if the vectors X, and X, do not lie
on one line, then X, can be decomposed with respect to X, and X, , i.e.,
represented as a linear combination of X; and X, . But if X and X, lie
on one line, then already X, and X; are linearly dependent.

Thus, linear dependence of three vectors X, , X, , X, is equivalent to the
fact that they lie in one plane. Therefore X, , X, , X, are linearly indepen-
dent if and only if they do not belong to one plane.

Four vectors in three-dimensional space are always linearly dependent.
For if the vectors X, X, , X; are linearly dependent, then the vectors
X1, X:, X;, X, are also linearly dependent for any X, . But if X, , X, , X,
are linearly independent, then they do not lie in one plane and every vector
X, can be decomposed with respect to X, , X, , X;, i.e., represented as a
linear combination of them.

The preceding arguments can be generalized in the following way.

In three-dimensional space the vectors X;, X;, -, X, (k = 3) are
linearly dependent if and only if they belong to a space (straight line or
plane) of a dimension less than k.

In what follows we shall see after a rigorous definition of subspace and
dimension that also in the general case linear dependence of the vectors
X, Xz, -, X, is equivalent to the fact that they belong to a space whose
dimension is less than k; i.e., the “geometrical” meaning of linear depen-
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dence remains the same as for vectors in three-dimensional space.
The following theorem plays a fundamental role in the theory of linear
spaces. If the vectors X, X,, -, X,, are linear combinations of the
vectors Y,, Y, ¥, and m >k, then X;,X,, -, X, are linearly
dependent (theorem on the linear dependence of linear combinations).
For k = 1 the theorem is obvious. For k > | it is easily proved by the
method of mathematical induction with respect to k.

Basis and dimension of a space. Inthree-dimensional space any three
vectors X, , X, , X; that do not lie in one plane (i.e., that are linearly
independent) form a basis of the space, which means that every vector of
the space can be decomposed with respect to X, , X, , X;, i.e., represented
as a linear combination of them.

General linear vector spaces can be divided into two types.

It can happen that a space contains an arbitrarily large number of
linearly independent vectors. Such spaces are called infinite-dimensional
and their study leads to a branch of linear algebra that is the topic of a
special mathematical discipline, functional analysis (see Chapter X1X).

A linear space is called finite-dimensional if there exists a finite bound
for the number of linearly independent vectors, i.e., a number n such that
there exist in the space n linearly independent vectors, but that any vectors
more than n in number are linearly dependent. The number # is called the
dimension of the space.

Thus, the space of vectors of the ordinary geometrical three-dimensional
space is three-dimensional also in the sense of the general definition we
have given. For in the three-dimensional geometric space, there exist
many triplets of linearly independent vectors, but any four vectors are
linearly dependent.

The space of n-term columns is n-dimensional in the sense of our
definition. For there are n linearly independent vectors in the space, for
example

| 0 0
| 0
a=|:] e=|: ) a={: &)
0 0 1
but every vector
Xy

X,
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of the space is a linear combination of them, namely: x,e, + x,e, + -
+ x,en . Therefore by the theorem of linear dependence of linear combina-
tions any vectors more than » in number are linearly dependent.

Polynomials in one variable form a linear space. For there is a natural
definition of the operations of addition and of multiplication by a number
for polynomials, and they satisfy the axioms 1-8. However, this space
is infinite-dimensional, since the vectors 1, x, -+, x" are linearly indepen-
dent for any N. But the set of polynomials whose degree does not exceed a
given number N form a finite-dimensional space whose dimensionis N + 1.
For the vectors |, x, -, xV are linearly independent and their number is
N + 1. Now every polynomial whose degree does not exceed N is a linear
combination of 1, x, ---, x¥ so that by the theorem on linear independence
any polynomials of degree < N, if they are more than N 4 | in number,
are linearly dependent.

We now introduce the important concept of a basis for an n-dimensional
space. A basis is defined as a set of linearly independent vectors of the
space such that every vector of the space is a linear combination of vectors
of this set. Thus, in the space of columns a basis is, for example, the set
of vectors (2). In the space of polynomials of degree << N the “vectors”
1, x, -, x" can be taken as a basis. In the three-dimensional geometrical
space any triplet of linearly independent vectors plays the role of a basis.

In an n-dimensional linear space, every set of n linearly independent
vectors (and the existence of at least one such set is part of the definition
of an n-dimensional space) form a basis of the space. For lete, , e,, -, €,
be linearly independent vectors of an n-dimensional linear space and X
an arbitrary vector of the space. Then the vectors X, e, , -, e, are linearly
dependent (since their number is more than n), i.e., there are numbers
¢, €1, €y, Cn , NOt all equal to zero, such that cX + cie; + -+ + ce, = 0.
Here ¢ # 0, because if we had ¢ = 0, then the vectors ¢, ,e,, -, e,

would be linearly dependent. Therefore X = — (¢;/c) ¢, — - — (¢a/¢) €n;
i.e., every vector of the space is a linear combination of the vectors
elsez,"', ell #

Every basis of an n-dimensional linear space consists of exactly » vectors.
For the vectors of a basis are linearly independent and therefore their
number cannot be larger than n. On the other hand, let e, , e, , ', €, be
an arbitrary basis of an n-dimensional space. We have already established
that k < n. But every vector of the space, by definition of a basis, is a
linear combination of the vectors e, , e,, -, ¢, and by the theorem on
linear dependence of linear combinations any vectors, more than k in
number, are linearly dependent, from which it follows that the dimension
n of the space is not larger than the number k of vectors of a basis. Thus,
k = n, and this is what we had to prove.
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We now introduce coordinates of a vector with respect to a given basis
e, &, —, e, . As we have shown earlier, every vector X is a linear combina-
tion of the vectors of the basis. This representation is unique. For suppose
that the vector X is expressed in terms of the basis e, , e, , -, €, intwo ways:

X = X1€, + Koy + o + Xu€n ,

X = xie; + x5 + - + Xne, .

Then (x; — x1) e, + (X, —x3) €, + - + (X, — X)) €, = 0, and from
this it follows by the linear independence of e, , e, , -, e, that x = x; , -,
X5 =%

The coefficients x, , x;, ', x, in the decomposition of an arbitrary
vector X in terms of the vectors of a basis are called the coordinates of X
in this basis. In this way every vector, once a basis of the space is chosen,
can in a natural manner be associated with the row (or column) of its
coordinates and vice versa: every row (or column) of n numbers can be
regarded as the set of coordinates of a certain vector.

The operations of addition of vectors and multiplication of a vector by
a number correspond to the similar operations on the rows (or columns)
of their coordinates.

Therefore every n-dimensional linear space, irrespective of the nature of
its elements (they may be functions, matrices, any physical quantities
whatsoever, etc.), does not differ at all from the space of rows (or columns)
with respect to these operations. Thus, as we have already mentioned, the
generalized axiomatic approach to the concept of a linear space does not
lead to any complications in comparison with the treatment of the space
as a space of rows, but it extends the domain of applicability of this concept
considerably.

An identity of properties of two sets of objects in relation to a given
system of operations (or arbitrary other relations between their elements)
is called in mathematics an isomorphism. An exact definition of isomor-
phism of algebraic systems will be given in Chapter XX. Using this term
we can say that all n-dimensional linear spaces, irrespective of the nature
of their elements, are isomorphic to one another and isomorphic to a
single model, namely the space of rows.

Subspaces. A set of vectors of an n-dimensional linear space R,,
satisfying the condition that every linear combination of arbitrary vectors
of the set under consideration also belongs to it, is called a subspace of
the space. Obviously a subspace of the space R, is itself a linear space and
has, therefore, bases and a dimension. It is also obvious that the dimension
of the subspace does not exceed the dimension of the whole space and can
be equal to it if and only if the subspace coincides with the whole space.
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Examples of subspaces of the three-dimensional vector space are the
planes and lines we have studied, to within a translation, more accurately,
the sets of all vectors that lie in a plane or on a line.

Very frequently we have to investigate the subspaces ‘“‘spanned” by a
system of vectors. These subspaces are defined as follows. Suppose that a
system of linearly independent or dependent vectors X, , X, , -, X, of the
space R, is given. Then the set of all linear combinations of these vectors
{e1X; + X3 + - + ¢, X} forms a subspace of R, which is called the
subspace spanned by the vectors X, X;, -, X, .

The dimension of this subspace is called the rank of the system of
vectors X;, X, , -, X,,. It is easy to see that the rank of a system of
vectors is equal to the maximal number of linearly independent vectors
contained in the system.

The “‘set” consisting only of the null vector formally satisfies the con-
ditions imposed on a subspace. The dimension of this subspace is taken to
be zero.

If two subspaces of a space R, are given, then we can form from them
in a natural manner two other subspaces, their vector sum (or union)
and their intersection.

The vector sum of two subspaces P and Q is defined as the set of all
sums of vectors belonging to the subspaces P and Q. The vector sum can
also be regarded as the subspace spanned by the union of the bases of the
subspaces P and Q.

The intersection of two subspaces is defined as the set of all vectors
that belong to both subspaces. For example, the vector sum of two planes
(i.e., two-dimensional vector subspaces) in the ordinary three-dimensional
space is the whole space (provided only that the planes do not coincide)
and their intersection is a straight line (under the same proviso).

The dimensions p and g of the two given subspaces, the dimension ¢ of
their vector sum, and the dimension s of their intersection satisfy the
following interesting relation:

P+qg=1+4s.

We omit the proof of this statement.

From this relation we can make certain deductions concerning the
intersection of subspaces in special cases. For example, two noncoincident
planes (i.e., two-dimensional subspaces) in a space of four dimensions
intersect in general only in a point (the dimension of their intersection is
zero) and two planes intersect in a straight line only if their vector sum is
three-dimensional, i.e., if both planes belong to some three-dimensional
subspace. For in this case t + 5§ = 2 + 2 = 4, from which it follows that
s = | only when ¢ = 3.
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Complex linear spaces. 1n the description of the space of rows and of
the general linear space, we have not specified what sort of numbers we
are dealing with in the definition of the operation of multiplication of a
vector by a number. Since we have started out from a generalization of
the ordinary vectors, i.e., the directed segments in the geometrical three-
dimensional space, we have had in mind arbitrary real numbers. The
so-constructed linear spaces, which are called real linear spaces, generalize
in the most natural way the three-dimensional space of ordinary vectors.
However, in many problems of contemporary mathematics it turns out to
be useful to consider a complex linear space. By this we mean a collection
of objects for which the operations of addition and of multiplication by
an arbitrary complex number are defined so that these operations satisfy
all the axioms 1-8. As an example of a complex space, we can take the
space of rows whose elements are arbitrary complex numbers.

Formally the theory of complex spaces does not differ essentially from
the theory of real spaces.

However, even a two-dimensional complex space does not have an
intuitive geometric interpretation. The fact is that an n-dimensional
complex space can also be regarded as a real one, in view of the fact that
since the operation of multiplication by an arbitrary complex number is
defined for it, the operation of multiplication by a real number is defined
just as well. But the dimension of a complex n-dimensional space regarded
as a real one is equal to 2n, i.e., twice as much. For if ¢, , e;, =, e, is 2
basis of the complex space, then we can take as a basis of the same space,
. regarded as a real one, for example the vectors -

ey, e, e,,ie,, " e,,ie,, where i= v —1.

Therefore a two-dimensional complex space can be interpreted as a
real one, but four-dimensional.

Furthermore, the theory of linear spaces does not undergo any changes
formally if as the collection of numbers by which the “vectors™ of the
space may be multiplied we take an arbitrary set of numbers, other than
that of all real or all complex numbers, provided only that the results of
the basic arithmetical operations (addition, subtraction, multiplication,
and division) performed on numbers of the set again belong to the set.
A set of numbers satisfying these postulates is called a number field.
(This concept will be studied in more detail in Chapter XX.) As an
example of a number field, we can take the field of rational numbers.

In some parts of algebra that are close to the theory of numbers,
the theory of linear spaces over an arbitrary field is successfully
applied.
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The n-dimensional Euclidean space. Some important concepts of the
ordinary vector space have not yet been generalized in the preceding
account, in particular, the concept of the length of a vector and the angle
between vectors. It is well known that in analytic geometry problems
relating to the intersection of lines and planes, parallelism, and many
others make no use of these concepts. The properties of a space whose
description does not require the concepts of the length of a vector and of
angle can be characterized as the properties that remain unchanged
under arbitrary affine transformations [see Chapter 1ll, §l11]. For this
reason linear spaces in which the concept of the length of a vector is not
defined are called affine spaces.

However, many problems of mathematics require generalizations of the
concepts of the length of a vector and of an angle to #-dimensional spaces.
These generalizations proceed by means of an analogy with the theory of
vectors in a plane or in space.

Let us consider, first of all, the real space of rows. The length of the
vector X = (x, , Xz, ", X,,) is defined to be the number

| X| = Va2 +x2+ - 22,

This is quite natural, since for n = 2 and n = 3 the length of a vector is
computed precisely by this formula in terms of its coordinates with respect
to Cartesian coordinate axes.

The concept of the angle between vectors is introduced in a natural way
by the following considerations. In a plane and in space the angle between
the vectors X and Y is the angle at the vertex A in the triangle with the
sides AB=|X|,AC=|Y|and BC=|X—-Y|.

In an n-dimensional space it is natural to take this as the definition of
the angle between vectors, i.e., to proceed as if we could ““draw’ a pair of
vectors in an n-dimensional space and “place™ them in a plane preserving
their lengths and the angle between them. However, such a definition
would lack rigor; the existence of a triangle ABC with the lengths of the
vectors | X |, | ¥|, and | X — ¥| is needed in the proof.

Disregarding this inaccuracy, we introduce a formula for the computa-
tion of an angle. By a well-known formula of trigonometry we have

hence, BC? = AB* + AC? — 2A4B - ACcos ¢,
I XP+|YP—|X—-Y]
cos¢ =
2|X|-1Y]|
_ X X Ay = =) = = (s — p)
21X Y]

_ X4 Xaba
[ X[-1Y]
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If we retain the term *‘scalar product,” as in three-dimensional space,
for the product of the lengths of vectors by the cosine of the angle between
them, we find that the scalar product of the vectors is computed by the
formula

X-Y=xy4+ " + Xun»

which for » = 2 and n = 3 coincides with the well-known formulas for
the scalar product of ordinary vectors.

Strictly speaking, the expression x,;y;, + *** 4 x,», should be taken as
the definition of the scalar product (because there is a lack of rigor in the
definition of the scalar product by means of the angle) and then the angle
between vectors can be defined by the formula

XY

g 3
[X|-1Y] @

cos¢ =

This is what we shall do.

To justify this definition of an angle we have to show that the absolute
value of the right-hand side of formula (3) does not exceed 1, i.e., that
X-YP<|X]-|Y]2

In expanded form this inequality becomes

Gy + o F X < 4+ X O + o+ YR

It is known as the Cauchy-Bunjakovskil inequality and can be proved
directly, by a fairly tedious computation. We shall prove it by the following
indirect argument.

First of all we mention that the scalar multiplication of vectors has the
following properties:
“X-X=|X?2>0for X#0.
2. XY= ¥k
3. (X)-Y=¢cX Y)
4, (X1+X2}' Y=Xl' Y+X2‘Y.

That these properties hold follows immediately from the expression of
the scalar product in terms of the coordinates.

We now introduce the vector Y + tX, where ¢ is an arbitrary real
number. We have | ¥ + tX |? > 0, because the square of the length of a
vector cannot be negative. But by the properties of the scalar product
| Y+ tX2=|Y|*? 4+ 2X-Y + t?| X|% Moreover, it is known that a
quadratic trinomial is nonnegative for all values of the real variable ¢ if
and only if its roots are imaginary or equal, i.e., if its discriminant is
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negative or zero. But the discriminant of the trinomial | Y |? + 2tX - ¥
+ 2| X% is equal to X Y —4|X 2| Y|® so that (X Y)?
— | X1|*| ¥|2 <0, and this is equivalent to the Cuachy-Bunjakovskil

inequality.
From this inequality it follows that
| X Y| <
| XI11Y]

and therefore the definition of an angle by the formula (3) is justified.
Furthermore, it is easy to deduce the inequalities

X =1 YI<IX+YI<I|X|+]|Y]

which imply, in particular, the existence of a triangle with the sides | X|,
| Y| and | X — Y|, so that the nonrigorous definition of an angle given
previously, which was based on geometric intuition, now also becomes
valid.

Axiomatic definition of an n-dimensional Euclidean space. In the
preceding section we have introduced the concepts of the length of a
vector, of angle, and of the scalar product in the space of rows. In the
general axiomatic definition of an n-dimensional real linear space, these
concepts are also defined axiomatically, and the concept of a scalar product
comes first.

Scalar multiplication of vectors of a linear real space is the name for an
operation which associates with every pair of vectors X and Y a real
number, their so-called scalar product X - ¥, where this operation must
satisfy the following postulates (axioms):

I’ X-X>0for X#0,0-0 = 0.
2. X-Y=Y X

3. (cX) Y =cX-Y)

4. X, +X) Y=X, Y+ X, Y

Furthermore, by the length of a vector we mean the number VXX,
by the cosine of the angle between the vectors X and Y the number
X-Y¥Y/IX|-1Y|. To justify this latter inequality, it is necessary to
establish the Cauchy-Bunjakovskil inequality (X - ¥)? < | X |?| ¥ |2 But
this can be done exactly as we have done it in the preceding section. In our
proof we have made use only of the properties 1, 2, 3’ and 4’ of the scalar
product, the specific nature of the space of rows playing no role in the
proof. A real linear space in which a scalar multiplication satisfying the
axioms 1~ 4’ has been introduced is called a Euclidean space.
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In various concrete linear spaces that are studied in mathematics,
scalar products are introduced by various methods whose choice is dictated
by the nature of the problem. For example, in the spaces whose elements
are the functions of one variable X() defined on a given intervala < t < b,
the scalar product of two elements X(¢) and ¥(¢) is often taken to be the
number [ X(t) ¥(t) dt or I2 X(t) Y(t) p(t) dt, where p(t) is some positive
function. {t is easy to see that all the axioms 1'- 4’ are satisfied for either of
these definitions.

Orthogonality; orthonormal bases. Two vectors of a Euclidean space
are called orthogonal (or perpendicular) if their scalar product is zero.
It is easy to see that pairwise orthogonal nonzero vectors are always
linearly independent. For suppose that X,,X,,', X, are pairwise
orthogonal nonzero vectors and that ¢, X, + ¢,X; + - + ¢ X, = 0.

By the property of the scalar product Xy(c,X; + ¢;X; + -+ + €. X)
=¢; | X; |2 =0; hence ¢; = 0. In the same way we can show that
¢ = '+ = ¢ = 0. Therefore X, , -+, X,, are linearly independent.

From what we have proved, it follows that in an n-dimensional space
there cannot be more than n pairwise orthogonal nonzero vectors and that
every set of n pairwise orthogonal vectors forms a basis of the space. If,
moreover, the lengths of all the n pairwise orthogonal vectors are 1, then
the basis they form is called orthonormal.

It is not difficult to show, but we shall omit the proof, that a Euclidean
space has orthonormal bases, in fact infinitely many. Moreover, if in a
space R some subspace P is chosen, then an orthonormal basis of the
subspace can be extended to an orthonormal basis of the whole space by
adjoining certain vectors.

It is often convenient to define vectors in a Euclidean space by their
coordinates in an arbitrary orthonormal basis, because in this case we
obtain a particularly simple expression for the scalar product. For if a
vector X has the coordinates (x,, x,, ', x,) in the orthonormal basis
€ .6, e, and the vector Y the coordinates (y, , ys, ', J,), 1.€.,

X =xie; +xpe, +  + xe, and Y = yre; + ya€; + * + Yulas
then by the property of the scalar product

X Y = xynee + xiyeie; + 0 + Xiyneie,
+ Xoh€18y + XgYg€z€; + T+ XaVnesen

+ Xphene; + XpYe€ny + 1+ X Vn€,€y
=X + XgVe + 0+ Xl



60 XVI. LINEAR ALGEBRA

since e;e, = 0 for i % k and e;e; = |e; |2 = | foreveryi = 1,2, -, n. In
particular, X - X = x% + x2% + - + x?%,.

Thus, the length of a vector and the scalar product are expressed in
terms of the coordinates of an orthonormal basis by the same formulas
as in the space of rows.

The transition from one of the models of a Euclidean space, namely
the space of rows, to the general axiomatically defined Euclidean space
does not introduce any complications, but extends the domain of
applicability of the theory.

Now let us deal with the problem of orthogonal projection of vectors
on a subspace. Let R, be an n-dimensional Euclidean space and P, an
m-dimensional subspace of it. Further, let e,, e, ", e, , i, fu—m be
an orthonormal basis of R, including an orthonormal basis of the subspace
P,. . The subspace Q,_,, spanned by the vectors f, £, -, fr_m is called
the orthogonal complement of the subspace P,, . Its dimension is n — m.
The orthogonal complement @, _,, can be characterized as the subspace
consisting of all vectors that are orthogonal on every vector of the subspace
o

Every vector Z belonging to R, can be expressed uniquely as a sum of
vectors X and Y of which one belongs to P,, , the other to Q,_,, . This is
clear, because the vector Z can be expressed uniquely in the form

Z = lel + 2 —|—Xm¢m + yl.fl + + ynhmf;n-m ’

S0 that X = X8, o s XmC€m » Y = ylf;l S Rk & yn—mf;l—m e
The vector X is called the orthogonal projection of Z onto P, .

Unitary spaces. The concepts of the length of a vector and the scalar
product of vectors can also be defined in a complex space. As before, the
concept of the scalar multiplication is put first, and this is defined as
follows. With every pair X and Y of vectors of a complex space we associate
a complex (not necessarily real) number, their so-called scalar product
X - Y. The operation of scalar multiplication must satisfy the following
axioms:

1”. X - X is real and positive for X %0, 0-0 = 0.

2". Y+ X = (X - Y)'. Here the prime denotes transition to the conjugate
complex number,

3". (cX) - Y'= ¢(X-Y) for an arbitrary complex c.
4. (X, 4+ X,):Y=X,'Y 4+ X, Y (distributive law).

In the space of rows with complex elements the scalar product of the
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vectors (x,, -, x,) and (y;,-,»y,) can be taken to be the number
X + 0+ x,.p. - Itis easy to verify that all the axioms 1-4"" are satisfied
for this definition. o

The length of a vector is defined as the number VX - X. The concept
of angle between vectors is not defined.

A complex linear space with a scalar product satisfying the axioms
1”-4" is called a unitary space.

§3. Systems of Linear Equations

Systems of two equations with two unknowns and of three equations
with three unknowns. A system of two linear equations with two
unknowns appears in the following general form

ax + by = ¢,
ax + b,y = c,.

To solve this system we multiply the first equation by b, , the second
by —b, and add. We obtain

(@b, — azby)) x = c1by, — b, .

Similarly, by multiplying the first equation by —a,, the second by a,,
and adding, we obtain

(aby — ash) y = ayc; — ay¢y .

From these equations it is easy to determine x and y, if only the expres-
sion a,b, — a,b, formed from the coefficients of the unknown x and y is
different from zero. This expression is called the determinant of the matrix

a b,]
ay b,
formed from the coefficients of the system. The determinant is denoted:

a by
ay b,

From the definition it follows that the determinant is computed by the

scheme " >< -
¥

which requires no further explanation.
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Let us return to the solution of the system. The expressions ¢;6, — c,b,
and a,¢, — a,c, also appear as determinants in accordance with our defini-
tion, namely,

c ac
1o and 14|
c2 by a; €y
Thus, if the determinant
a by
ay b,

is different from zero, then we obtain the following formulas for the so-
lution of the system:

by lay ¢
Cs by a, ¢y
N = : = —=- 2 4
* a by A a by @
a, b, ay b,

Strictly speaking, these arguments are not complete. The operations on
the equations that we have carried out to deduce the formulas for the
solution of the system make sense only under the assumption that x and y
are in fact numbers that form a solution of the system. The logical sub-
stance of our argument is the following: If the determinant of the coef-
ficients of the system is not zero and the solution of the system exists, then
it can be computed by the formulas (4). Therefore it is still necessary to
verify that the values of the unknown that we have found do in fact
satisfy both equations of the system. This can be done without any
difficulty.

Thus, if the determinant of the matrix of the coefficients of the system
is different from zero, then the system has a unique solution given by the
formulas (4).

For a system of three equations with three unknowns

ax + by + ¢z = d,,

ayx + byy + ¢z = dy,

asx + bgy + ¢z = dj,
it is easy to carry out similar arguments and computations; for this purpose
it is sufficient to add up the equations after multiplying them by factors
such that after addition two of the unknowns disappear. To make the

unknown y and z disappear, we have to take for these factors b,c; — by,
by, — byey and bic, — bycy , as is easy to verify by computation,
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We obtain the result that if the expression
4 = aybyes — aybsc; + aybye; — azbicy + azbic, — azbyey

is different from zero, then the system has a unique solution obtained by
the formulas
X = _A_l_ Y = _A_Z_ zZ = _A...s_
- A L A £ - A ]
where 4, , 4, , 4, are the expressions obtained from 4 by replacing the

coefficients of the corresponding unknown by the absolute terms.
The expression 4 is called the determinant of the matrix

a b, ¢
ay by ¢,
a3 by ¢y

and is denoted by

a by
as by cy
a3 by cy

For the computation of a determinant the following scheme is useful:

+§ g \Z. % |

In the first of these schemes, the lines (a diagonal and two triangles)
connect the positions of the elements whose product occurs in the composi-
tion of the determinant with a plus sign; and in the second scheme, they
connect the terms occuring in the determinant with a minus sign.

For systems of two equations with two unknowns and of three equations
with three unknowns, we have obtained entirely similar results. In both
cases the system has a unique solution, provided the determinant of the
matrix of the coefficients is different from zero. The formulas for the
solution are also similar: In the denominator of each of the unknowns
stands the determinant of the matrix of coefficients, and in the numerators
the determinants of the matrices that arise from the matrix of coefficients
by replacing the coefficients of the unknown to be computed by the
absolute terms.

An immediate generalization of these results to systems of » equations

in n unknowns for arbitrary n is somewhat difficult. It becomes compar-
atively easy by an indirect method: First we generalize the concept of a
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determinant to square matrices of arbitrary order, and having studied the
properties of determinants we apply their theory to the investigation of
systems of equations.

Determinants of the nth order. When we consider the explicit expres-
sion for the determinants

| ::: il = ayb, — a;b,
and
a by o
ay by ¢y | = a1byey — aibyCy + agbgcy — @b ¢ + a3bic; — aghyey
a3 by ¢y

we notice that in every term there occurs as a factor exactly one element
from each row and one from each column of the determinant, and that all
possible products of this form occur in the determinant with a plus or a
minus sign. This property is at the bottom of the generalization of the
concept of the determinant to square matrices of arbitrary order. In fact,
the determinant of a square matrix of order n or, briefly, a determinant of
the nth order is defined as the algebraic sum of all possible products of the
elements of the matrix, precisely one from each row and one from each
column; these products are given plus or minus signs by a certain
well-defined rule. This rule is somewhat complicated to explain, and we
shall not dwell on its formulation. It is sufficient to mention that it is
arranged in such a way that the following important basic properties of a
determinant are secured:

1. When two rows are interchanged, the determinant changes its sign.

For determinants of order 2 and 3, this property is easy to verify by
an immediate computation. In the general case it is proved on the basis
of the rule for the signs that we have not formulated here.

Determinants have quite a number of other remarkable properties that
enable us to apply determinants successfully in diverse theoretical and
numerical calculations, notwithstanding the fact that determinants are
extraordinarily cumbersome: A determinant of order n contains, as is
easy to see, n! terms, each term consists of » factors, and the factors are
provided with their signs according to a complicated rule.

We now proceed to enumerate the basic properties of determinants but
omit their detailed proofs. The first of these properties has been for-
mulated.

2. A determinant does not change when its matrix is transposed, i.e.,
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when the rows are replaced by the columns, preserving their order. The
proof is based on a detailed study of the rule of the distribution of signs
in the terms of the determinant. This property enables us to transfer every
statement concerning the rows of the determinant to a statement on
columns.

3. A determinant is a linear function of the elements of each row (or
column). In detail,

ayy "t Ay
ay vt Gy | = andp + @A + 0 @A, (&)
dny " dpg

where A, , A, -+, A;, are expressions that do not depend on the elements
of the ith row.

This property follows evidently from the fact that every term contains
one and only one factor from each row, in particular the ith row.

The equation (5) is called the expansion of the determinant with respect
to the elements of the ith row, and the coefficients 4, , 4, , -, 4,, are
called the algebraic complements of the elements a;, , a5, -, a;, of the
determinant.

4. The algebraic complement A4;; of the element a,; is equal, apart from
the sign, to the so-called minor 4;; of the determinant, i.e., the determinant
of order (n — 1) that arises from the given one by crossing out the ith
row and jth column. To obtain the algebraic complement the minor must
be taken with the sign (—1)**7. The properties 3 and 4 reduce the computa-
tion of a determinant of order n to the computation of n determinants of
order n — 1.

The fundamental properties that we have enumerated have a number of
interesting consequences. We now mention some of these.

5. A determinant with two equal rows is zero.

For if a determinant has two equal rows, then the determinant does not
change when they are interchanged, because the rows are identical; but
on the other hand, by our first property it should change its sign. Therefore
it is equal to zero.

6. The sum of the products of the elements of any row into the algebraic
complements of another row is zero.

For such a sum is the result of expanding a determinant with two equal
rows with respect to one of them.
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7. A common factor of the elements of any row can be taken before the
determinant sign.

This follows from property 3.

8. A determinant with two ‘proportional rows is zero.

1t is sufficient to take out the factor of proportionality and then we have
a determinant with two equal rows.

9. A determinant does not change if we add to the elements of any one
row numbers that are proportional to the elements of another row.

For by property 3 the modified determinant is equal to the sum of
the original determinant and a determinant with two proportional rows,
which is zero.

The last property gives us a good method for computing determinants.
Without changing the value of a determinant, we can transform its matrix
by applying this rule so that in one row (or column) all the elements
except one become zero. Then by expanding the determinant with respect
to the elements of this row (column) we reduce the computation of a
determinant of order n to that of a single determinant of order n — 1,
namely, the algebraic complement of the only nonzero element of the
row in question.

For example, suppose we have to compute the determinant

1 1 —1 2
2 -1 11
s —1 2 01
1 1 =21

We add to the second column the first, multiplied by —1, to the third,
the first, and to the fourth, the first, multiplied by —2 and obtain
1 0 0 o0
2 -3 3 -3
—1 3 -1 3l
1 0 —1 —1I

Expanding 4 by the elements of the first row, we obtain

A:

-3 3 =3
d=1-(=11( 3 -1 3.
0 -1 —1

Finally, we add to the first row the second and expand with respect to the
elements of the first column; we obtain

0 2 0
3 -1 3
0 -1 -1

2 0

4= =] =]

= 3 (=12

|=—3'(—2)=6.
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The determinant of a matrix A4 is denoted by | 4 |.

In conclusion, we mention a further very important property of deter-
minants.

The determinant of the product of two square matrices is equal to the
product of the determinants of the factors, i.e., in short notation,
|AB| =|A]|| B

This property enables us in particular to multiply determinants of equal
order by the rule for multiplication of matrices.

Systems of n linear equations in » unknowns. With the apparatus of
determinants, it is now easy to generalize the results obtained earlier for
systems of two equations with two unknowns and of three equations with
three unknowns to systems of n equations with n unknowns, under the
assumption that the determinant of the coefficient matrix is different from
zero.

Let

Xy + 77 4 QX + 7+ Xy = by,

be such a system. We denote by 4 the determinant of the coefficient matrix
of the system. By assumption it is different from zero. Furthermore, we
denote by A,; the algebraic complement of the element a;; . We multiply
the first equation by A,;, the second by A, , -+, the nth by 4,; and add.
We obtain

Ax; = byAy + - + byAy; .

For the coefficients of all the unknowns except x; vanish, because they
appear as sums of the products of the algebraic complements of the
elements of the jth column with the elements of other columns (property 6,
applied to columns); but the coefficients of the unknown x; is equal to the
sum of the products of the elements of the jth column with their algebraic
complements, i.e., is equal to 4.

Thus,

5 biAy; + A + baAy forall j==1,2, - n. (6)

As we have said, these arguments are valid only if we understand by
X1, Xy, ", X, a solution of the system, the existence of which must be’
assumed in the first instance.

Hence the result of the argument is the following.

If a solution of the system exists, then it is given by the formulas (6)
and is therefore unique.
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To complete the exposition, it is necessary to prove the existence of a
solution, and this can be done by substituting the values we have found
for the unknowns into all the equations of the original system. It is easy
to verify by using the same property of the determinant (but this time
applied to the rows) that these values in fact satisfy all the equations.

Thus the following theorem is true: If the determinant of the coefficient
matrix of a system of n equations with n unknowns is different from zero,
then the system has a unique solution given by the formulas (6).

These formulas can be transformed by remarking that the sum
byAy; + 7 + b,A,; can be written in the form of a determinant, namely:

d; = by + o + bpdy; =

(the absolute terms occur in the jth column).

Hence the results we have stated for systems of equations with two and
three unknowns have been completely generalized to a system of » equa-
tions, and even the formulas for the solution are formally exactly the same.

We mention one corollary of this theorem: If it is known of a system of
equations that it has no solution at all or that the solution is not unique,
then the determinant of the coefficient matrix is equal to zero.

This corollary is particularly often applied to homogeneous systems,
i.e., those in which the absolute terms b, , b, , -, b, are all zero. Homo-
geneous systems always have the obvious ‘“‘trivial” solution x; = x,
= =x, =0

If a homogeneous system has, apart from the trivial one, also a non-
trivial solution, then its determinant is zero.

This statement opens up the possibility of using the theory of deter-
minants in other branches of mathematics and its applications.

Let us consider, for example, a problem in analytical geometry: to find
the equation of the plane passing through three given points (x; , ¥, , z;),
(x3,¥:,25) and (x3, ¥, z;) that do not lie on one line.

From elementary geometry it is known that such a plane exists. Suppose
that its equation is of the form Ax + By + Cz + D = 0. Then

Axl + Byl + CZI + D == 0.
Ax2 + Byz + C22 + D == 0,
Ax; + By, + Cz; + D = 0.

Let x, y, z be the coordinates of an arbitrary point in that plane. Then we
also have
Ax + By +Cz 4+ D =0.
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We regard these four equations as a system of linear homogeneous
equations for the coefficients A, B, C, D of the required plane. This system
has a nontrivial solution, because the required plane exists. Therefore the
determinant of the system is zero; i.e.,

X1 ozl
Xg Vg Zp 1
X3 Vs Zy 1
x yzl

= 0. (N

Now this is the equation of the required plane. For it is an equation
of the first degree in x, y, z, a fact which follows from the linearity of the
determinant with respect to the elements of the last row.

By making use of the fact that the given points do not lie on one line,
it is easy to verify that not all the coefficients of this equation are zero.
Consequently the equation (7) is indeed the equation of a plane. This plane
passes through the given points, because their coordinates obviously
satisfy the equation.

Matrix notation for a system of n equations in » unknowns. A system
of n linear equations in n unknowns

Xy + 0+ Xy = by
can be written in matrix notation in the form of a single equation
AX = B.

Here A4 denotes the coefficient matrix, X the column formed by the
unknowns, and B the column of the absolute terms.

The solution of the system (if the determinant of the matrix A4 is different
from zero) can be written explicitly as follows [see formula (6)]:

A A,
xl_ A“bl_‘_ A bz i +' Albn:
A A g
Xy = A“bl + Azzbe-i- Bicks Azb
Aln Azn Arm
Xn A bl + _j"' bz +' +‘ _A bn
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or in matrix form

The matrix standing as first factor on the right-hand side of the equation
is called the inverse to the matrix 4 and is denoted by 4~'. Using this
notation we obtain the solution of the system 4X = B in the following
simple and natural form, which recalls the formula for the solution of a
single equation in one unknown:

X = A71B.

We can easily give another proof of the result obtained, in terms of the
algebra of matrices,

For this purpose we must first of all mention the special role of the
matrix

10 00
e=(°.1000).
00 01

the so-called unit matrix.

The unit matrix plays among square matrices the same role as the
number 1 among numbers. In fact, for every matrix 4 the following
equations hold: AE = A4 and EA = A. This is easy to verify by the rule
for the multiplication of matrices.

The matrix A~! defined previously, the inverse to A, plays in relation
to it a similar role to that played by the inverse of a given number:

AA-' = A'4 = E.

The validity of these equations can be verified by the rule for the
multiplication of matrices and by the properties 3 and 6 of a determinant.

Knowing these properties of the unit and the inverse matrix we can
obtain the solution of the system AX = B in the following way.

Suppose that AX = B. Then A~Y(4X) = A'B.But A" (AX) =(AT'A) X
= EX = X and therefore X = A-'B.

Suppose now that X = 4-!B, then AX = A4A™'B = EB = B.
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Thus the “equation” AX = B has the unique solution X = A-!B,
provided only that A~! exists.

We have established the existence of the inverse matrix A~! for A
under the assumption that the determinant of A4 is different from zero.
This condition is not only sufficient but also necessary for the existence
of the inverse matrix. For suppose that the matrix 4 has an inverse 4!
such that 447! = E. Then by the property of the determinant of the
product of two matrices

| Al A7 | =]E| =1,

and from this it follows that the determinant of A4 is not zero.

A matrix whose determinant is different from zero is called nondegenerate
or nonsingular. We have therefore established that an inverse matrix
always exists for nondegenerate matrices and only for them.

The introduction of the concept of an inverse matrix turns out to be
useful not only in the theory of systems of linear equations but also in
many other problems of linear algebra.

In conclusion, we mention that the formulas we have derived for the
solution of linear systems are an irreplaceable tool in theoretical
considerations but are not convenient for the numerical solution of
systems. As we have already mentioned, various methods and computa-
tional schemes have been worked out for the numerical solution of systems,
and in view of the great importance of this problem for practical investiga-
tions, the work of simplifying the numerical solution of systems (especially
with large numbers of unknowns) is intensively pursued even at present.

The general case of systems of linear equations. We now turn to
the investigation of systems of linear equations in the most general case
when it is not assumed that the number of equations is equal to the
number of unknowns. In such a general setting it cannot be expected,
naturally, that a solution of the system always exists or that, in case it
exists, it turns out to be unique. It is natural to assume that if the number
of equations is less than the number of unknowns the system has infinitely
many solutions. For example, two equations of the first degree in three
unknowns are satisfied by the coordinates of every point on the straight
line that is the intersection of the planes defined by the equations. However
it can happen in this case that the system has no solution at all, namely
when the planes are parallel. And if the number of equations is greater
than the number of unknowns, then as a rule the system has no solution.
However, in this case it is possible that the system has solutions, even
infinitely many.
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In order to investigate the existence and the character of the set of
solutions of a system in this general setting, we turn to a ‘‘geometrical”
interpretation of the system.

We interpret the system of equations

anx; + @pX; + 0 A+ apXa = by,
AnXy + Xy + 0 4 AyX, = by, (8)
A1 Xy + AaXe g AmpXn = bm
in the m-dimensional space of columns in the form
x4, + x24; + - + x,4, = B.

Here A4, , 4,, -, A, denote the columns of the coefficients of the corre-
sponding unknowns and B the column of the absolute terms.

In this interpretation the problem of the existence of a solution of the
system turns into the problem of whether the given vector B is a linear
combination of the vectors 4, , 4,, -, 4,,.

The answer to this problem is almost obvious. For the vector Bto be a
linear combination of the vectors A4,,A4,,, A, it is necessary and
sufficient that B should be contained in the subspace spanned by 4,,
Ay, , A, or, in other words, that the subspaces spanned by the systems
of vectors A, , A,, ", A, and 4, , 4,, -, 4, , B should coincide.

Since the first of these subspaces is contained in the second, they coincide
if and only if their dimensions are equal. We recall that the dimension
of the subspace spanned by a given system of vectors is called the rank of
this system. Thus, a necessary and sufficient condition for the existence of
a solution of the system x;4, + x,4, + - + x,4, = B is the equality of
the ranks of the vector systems A4;, 4,, -, 4, and 4, , 4,,, 4, , B.

It can be proved, but we shall not do it here, that the rank of a system
of vectors is equal to the rank of the matrix formed from the coordi-
nates of these vectors. Here we understand by the rank of a matrix
the largest order of a nonzero determinant that can be formed from the
given matrix by omitting part of its rows and columns.

Since the coordinates of the vectors 4, , 4,, -, 4, (in the natural
basis for the space of columns) are the coefficients of the system and the
coordinates of the vector B its absolute terms, we obtain the following
final formulation of the condition for the existence of a solution of a system.

For the existence of at least one solution of the system of linear equations

QX1 + " + AQupXp = bm
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it is necessary and sufficient that the rank of the matrix formed from the
coefficients of the system should be equal to the rank of the matrix formed
from the coefficients and the absolute terms.

Now let us investigate the character of the set of solutions if they exist.
Let x?, x7, -, x? be any solution of the system (8). We set x; = x? + y;,
Xo = X34 Yo. . X, = x% 4+ y,. Then in view of the fact that x},
x93, -, x2 form a solution of the system (8), the new unknowns y, , ¥, -, ¥
must satisfy the homogeneous system

anh + 7+ Gy =0,

.................................. 9)
Ambr + "+ Aue¥n = 0

with the same coefficient matrix. Conversely, if we add to the original
solution x¥, x?, -, x? of the system (8) an arbitrary solution of the ho-
mogeneous system (9), then we obtain another solution of the system (8).

Thus, in order to obtain the general solution of the system (8), it is
only necessary to take an arbitrary particular solution of it and to add it
to the general solution of the homogeneous system (9).

In this way the problem of the character of the set of solutions of the
system (8) is reduced to the same problem for the homogeneous system (9).
We shall consider this problem in the next section.

Homogeneous systems. We shall interpret the homogeneous system of
linear equations

apy, + apye + 0+ aypy, =0,
auy + apy; + 4 Gyn =0,

Y1 + ez + 0+ Aupn = 0

in the n-dimensional Euclidean space. (Here we assume that the coefficients
of the system are real. For systems with complex coefficients, we can give
a similar interpretation in unitary space and obtain similar results.)

Let A4, A;,,, A4, ,Y be the vectors of a Euclidean space whose
coordinates in an orthonormal basis are, respectively,

(@i, @iz, s @)y (@o1 s G2 s 7 Q30), s (Gmy s Gz s =5 rn)s
(P15 Y2 Pu)

Then the system assumes the form

ALY =0, A,Y =0, -, A,Y = 0;
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i.e., every solution of the system determines a vector orthogonal to all the
vectors formed by the coefficients of the various equations.

Therefore, the set of solutions forms the subspace that is the orthogonal
complement to the subspace spanned by the vectors A4;, 4;, -, 4.
The dimension of the latter subspace is equal to the rank r of the matrix
formed from the coefficients of the system. The dimension of the orthog-
onal complement, i.e., of the “solution space,” is then equal to n — r.

Now every subspace has a basis, i.e., a system of linearly independent
vectors equal in number to the dimension of the subspace and such that
their linear combinations fill the whole subspace. Therefore, among the
solutions of a homogeneous system there exist n — r linearly independent
solutions such that all the solutions of the system are linear combinations
of them. Here n denotes the number of unknowns and r the rank of the
coefficient matrix.

Thus, the structure of the solutions of a homogeneous system and,
consequently, also of an inhomogeneous system is completely clarified.
In particular, a homogeneous system has the unique trivial solution
X; = X, = =+ = X, = 0 if and only if the rank of the coefficient matrix
is equal to the number of unknowns. By what we have said at the end of
the preceding paragraph, the same condition is also the c¢ondition for
uniqueness of the solution for systems of inhomogeneous equations
(providing the consistency condition is satisfied).

Our investigation of these systems shows clearly how the introduction
of generalized geometrical concepts leads to simplicity and lucidity in a
complicated algebraic problem.

§4. Linear Transformations

Definition and examples. In many mathematical investigations it
becomes necessary to change the variables, i.e., to go over from one
system of variables x, , x,, -*-, x, to another y, , 5, **, ¥ , connected with
the first by means of a functional dependence:

N = dixy, Xz, =, Xn),
Y2 = Xy, Xg, 0, Xp),

Yn = PalXy , Xz, 75 Xp).

For example, if the variables are the coordinates of a point in a plane
or in space, then the transition from one system of coordinates to another
system gives rise to a transformation of coordinates that is defined by the
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expressions for the original coordinates in terms of the new ones or vice
versa.

Moreover, a transformation of variables arises in studying the changes
due to a transition from one position or configuration to another for
objects whose position or configuration is described by the values of the
variables. As a typical example of this kind of tranformation, we can take
the change of coordinates of the points of some body under deformations.

An abstractly given transformation of a system of n variables is usually
interpreted as a transformation (deformation) of an n-dimensional space,
i.e., as an association between each vector of the space (or part of it)
with coordinates x, , x,, **, x, and a corresponding vector with coordi-
nates y;, ¥z, Vn -

As we have said previously, every “smooth” function (having continuous
partial derivatives) of several variables is close to a linear function for
small changes of these variables. Therefore every “smooth’ transformation
(i.e., one for which the functions ¢, , ¢, , **-, ¢, in its analytical expression
have continuous partial derivatives) is close to a linear transformation in
a small part of the space:

N = anx; + GpXy + o+ X, + by,
V2 = @nXy + @pX; + 0 + @paXn + by, (10)

B L L T T T T T T e

Yn = GuiXy + GueXy + 7+ upXn + bn .

This circumstance alone makes the study of the properties of linear
transformations one of the most important problems of mathematics.
For example, from the theory of n linear equations in #n unknowns, we
. know that a necessary and sufficient condition for the system of equations
(10) with respect to x, , x;, ', X, to have a unique solution, i.e., for the
corresponding linear transformation to be invertible, is the nonvanishing
of the determinant of the coefficients. This circumstance is the foundation
of an important theorem of analysis: For a transformation

o= dilxy, Xz, Xa),
y2 = ¢2(xl ) Xz 2 T xﬂ)s

B T T

Yn = ¢n(xl s Xg ottty xn}‘

which is smooth in the neighborhood of a given point, to have a smooth
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inverse transformation it is necessary and sufficient that at the given point
the determinant

U .. 4
ax,  Oxy
o .. 095
ax;,  8x,
B, e
ox, Ox,

should be different from zero.
The study of the general linear transformation (10) essentially reduces
to the study of the homogeneous transformation with the same coefficients

W = anx + 0+ @pXn,
Yo = aynXy + "+ dapXy (1)

..................................

Yn = AupXy + 0+ GppXy

and in what follows, when speaking of linear tranformations, we shall
always have homogeneous transformations in mind.

Linear transformation of an n-dimensional space can also be defined
by their intrinsic properties, apart from the formulas (11) that connect
the coordinates of corresponding points. Such a coordinate-free definition
of the concept of a linear transformation is useful in that it does not
depend on the choice of a basis. This definition is as follows.

A linear transformation of an n-dimensional linear space is a function
Y = A(X) whose argument X and Y are vectors. This function satisfies the
postulate of linearity

A(Xy + 6Xy) =  A(Xy) + cA(X,). (12)

In what follows, when speaking of a linear transformation of a space,
we shall understand it in the sense of this definition.

This definition is equivalent to the preceding one in terms of coordinates.
For the function ¥ = A(X) which to the vector X with the coordinates
X1, Xz, ***, X, associates the vector Y with the coordinates y,, y,, -, ¥,
in such a way that the coordinates y, , y, , -, y, are expressed in terms of
the coordinates x, , x;, ', x, in the form of linear homogeneous functions
obviously satisfies the postulate (12). Conversely, if the function ¥ = A(X)
satisfies’ the postulate (12) and if e,,e,, -, e, is an arbitrary basis of
the space, then

A(xr8y + X385 + ** + X,€,) = x,4(€;) + xpA(e;) + - + x,A(e,).
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We denote the coordinates (in the same basis) of the vector A(e;) by
ay; . @y J = 1.+, n, Then the coordinates of the vector ¥ = A(X) are

Y1 = apXxy + @pXe 0 4 QX
Yz = AnXy + GeXy + *** + GgpXy

.......................... srssssaasraassnansas

Yn = amX, + QuoXo + 0+ QppXy .

Thus, to every linear transformation of a linear space there corresponds
a certain square matrix with respect to a given basis. This transformation
can be written in matrix language in the form ¥ = AX.Here X is the column
of the coordinates of the original vector, Y the column of the coordinates
of the transformed vector, and A the coefficient matrix of the transforma-
tion. The columns of the matrix 4 are formed by the coordinates of those
vectors into which the vectors of the basis are transformed. In accordance
with the matrix notation, we shall subsequently often write a linear
transformation itself in the form ¥ = A4X, omitting the parentheses.

From the formula

A(x1e, + X005 + +* + x4€,) = x,4(€;) + xA(€3) + - + x,A(e,)

it follows that the whole space is mapped under a linear transformation
into the subspace spanned by the vectors A(e,), -+, A(e,). The dimension
of this subspace is equal to the rank of the system of vectors A(e,),
A(ey), -, A(e,), or, what is the same, to the rank of the matrix
formed by their coordinates, i.e., the rank of the matrix 4 associated with
the transformation. This subspace coincides with the whole space if and
only if the rank of the matrix A is equal to n, i.e., if the determinant of A4
is different from zero. In this case the linear transformation is called
nonsingular or nondegenerate.

From the theory of systems of linear equations, we know that non-
degenerate transformations are uniquely invertible and that the coordinates
of the original vector are expressed in terms of the coordinates of the
transformed vector by the formula X = A-1Y.

A transformation whose matrix has the determinant zero is called
singular or degenerate. A degenerate transformation is not invertible.
This follows from the theory of linear transformations or more intuitively
from the fact that it transforms the whole space into part of it.

As a first example of a nondegenerate transformation, we take the
identity transformation that maps every vector into itself. The matrix of
the identity transformation in any basis is the unit matrix E. A nonsingular
transformation is also given by a similarity that consists in multiplying
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all the vectors of the space by one and the same number. The matrix of a
similarity transformation does not depend on the choice of a basis and
has the form agE, where a is the similarity factor.

An important special case of nondegenerate transformation are the
orthogonal transformations. The concept of an orthogonal transforma-
tion has a meaning when applied to a Euclidean space and is defined as a
linear transformation preserving the lengths of vectors. An orthogonal
transformation is a generalization to n-dimensional space of a rotation of
the space around the fixed origin of coordinates or a rotation combined
with a reflection in an arbitrary plane passing through the origin.

It is easy to see that under an orthogonal transformation not only the
lengths of vectors are preserved but also scalar products and that, con-
sequently, orthogonal transformations carry an orthogonal basis of the
space into a system of pairwise orthogonal unit vectors which in turn is
then necessarily also a basis.

The matrix connected with an orthogonal transformation with respect
to an orthonormal basis has the following specific properties.

First, the sum of the squares of the elements of each column is I,
since these sums are the squares of the lengths of the vectors into which
the vectors of the given basis are transformed. Second, the sums of the
products of corresponding elements taken from distinct columns are zero,
since these sums are the scalar products of the vectors into which the
vectors of the basis are transformed.

In matrix notation both these properties can be written by the single
formula

PP =E.

Here P is the matrix of the orthogonal transformation (with respect to an
orthonormal basis), and P is its transposed matrix, i.e., the matrix whose
rows are the columns of P in the same order.

For the diagonal elements of the matrix PP are by the rule for the
multiplication of matrices equal to the sum of the squares of the elements
of the corresponding column of P, and the nondiagonal elements are equal
to the sum of the products of the corresponding elements taken from
distinct columns of P.

As an example for a degenerate transformation. we can take the orthog-
onal projection of all vectors of a Euclidean space onto some subspace
(see §2). For in this transformation the whole space is mapped onto part
of it.

Transformation of coordinates. We now consider the problem of the
transformation of coordinates in n-dimensional space, i.e., the problem
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how the coordinates of vectors are changed on transition from one basis
to another.

Let the original basis be e, , e, , -, ¢, and let f; , f; , ", f, be an arbitrary
other basis of the space. Suppose further that

is the matrix whose columns are the coordinates of the vectors of the new
basis f,,f,, ", f, With respect to the original one. The matrix C is
obviously nondegenerate, because the vectors f;,f, =, f, are linearly
independent. It is called the matrix of the coordinate transformation.

We denote by x, , x;, ', x,, the coordinates of a certain vector X with
respect to the basis ¢, ,e,, -, e, and by x'; , x5, ..., X, the coordinates
of the same vector with respect to the basis f;,f;, . f, - Then X = x/ £
+ x3fs + =+ + xn.f, and therefore the coordinates of the vector X with
respect to the original basis form the column

¢ ’ e 4

53] €X'y + €12y + 7+ Gy €11 " Cin b3t
’ ¥ r A *

Xy | _ | caXi 4 Copxy + 0+ ConXy _ | € Con X3

2 .f

Xn cnlx’l + Cnax;: - el 2 c)"lx;! Cn1 """ Cpn Xn

Thus, the original coordinates are expressed linearly and homogeneously
in terms of the transformation with the matrix C.

The formulas that express the connection between the coordinates with
respect to the original and the transformed basis coincide formally with
the formulas that link the coordinates of corresponding vectors in a
nondegenerate linear transformation of the space. This circumstance
enables us to interpret an abstractly given linear homogeneous transforma-
tion of variables with a nondegenerate matrix either as a transformation
of coordinates or as a transformation of the space. In each concrete case
the choice of one of these two interpretations is determined by the context
of the problem under consideration.

Let us now deal with the question how the matrix of a linear transforma-
tion of the space is changed under a coordinate transformation.

Suppose that the given linear transformation has the matrix 4 in the
basis ¢, , e, , -, e, so that the column Y of the coordinates of the trans-
formed vector is linked with the column X of the original one by the
formula

Y = AX.
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Suppose now that a transformation of coordinates with the matrix C
is made; X’, Y’ denote, respectively, the columns of the coordinates of the
original and the transformed vectors with respect to the new basis. Then
X = CX', Y =CY' and hence

Y = CY = C'4X = C1ACX".

Thus, the matrix of our transformation with respect to the new basis is
C-14C.

Two matrices 4 and B connected by the relation B = C-'AC, where Cis
a nonsingular matrix, are called similar. One and the same linear transfor-
mation corresponds with respect to various bases to a class of pairwise
similar matrices.

Eigenvectors and eigenvalues of a linear tramsformation. A very
important class of linear transformations consists of the transformations
that come about in the following way.

Lete, ,¢e,, -, e, be arbitrary linearly independent vectors of the space.
Suppose that under the transformation they are multiplied by certain
numbers A, , A,, -, A, . If the vectors e, , ¢, , -, €, are taken as a basis
of the space, then the transformation can be described by

AIO ".0
0 /‘2 "'0
00 A,

The transformations of this class have a simple and intuitive geometrical
meaning (of course, only for real spaces and for n = 2 or n = 3). Namely,
if all the numbers A, are positive, then the transformation that we describe
consists in a stretching (or compressing) of the space in the directions
of the vectors ¢, ,e,, -, e, with coefficients A, A;, =+, A, . If some of
the A; are negative, then the deformation of the space is accompanied by a
change of direction of some of the vectors ¢, , ¢, , -, e, into the opposite.
Finally, if for example A, = 0, then a projection of the space parallel to
e, takes place onto the subspace spanned by e, , -, ¢, with a subsequent
deformation in these directions.

The class of transformations we have considered is important, because
in spite of its simplicity it is very general. In fact, it can be established that
every linear transformation satisfying certain not very severe restrictions
belongs to our class; i.e., we can find for it a basis in which it is described
by a diagonal matrix.

The restrictions to be imposed on the transformation become particularly
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clear if we consider linear transformation of a complex space. In what
follows this will be assumed.

We introduce the following definition.

A nonzero vector X which under a linear transformation A of the
space goes into a collinear vector AX is called an eigenvector of the
transformation. In other words, a nonzero vector X is an eigenvector of
the transformation A if and only if AX = AX. The number A is called an
eigenvalue of the transformation A.

It is obvious that if in some basis a transformation has a diagonal
matrix, then this basis consists of eigenvectors and the diagonal elements
are eigenvalues. Conversely, if there exists in the space a basis consisting
of eigenvectors of the transformation A4, then in this basis the matrix of
the transformation A4 is diagonal and consists of the eigenvalues corre-
sponding to the vectors of the basis.

We now proceed to study the properties of eigenvectors and eigenvalues.
With this aim we write the definition of an eigenvector in coordinate
notation. Let A4 be the matrix corresponding to the transformation A4 with
respect to a certain basis and X the column of coordinates of the vector X
in the same basis. The equation 4X = AX in coordinate notation is
written as AX = AX or

(4 —AE)X = 0.

In expanded form this equation turns into the system

(an — A) x; + @yaXy + + Ayn Xy =0,
anx; (@ —A) Xy + 0 + AanXn =0,
Ay Xy + ApaXy + *** + (@pn — A) Xn = 0.

We can regard this system of equations as a system of linear and homo-
geneous equations for x; , x , ***, x, . We are interested in the case when
this system has a nontrivial solution, because the coordinates of an eigen-
vector must not all be equal to zero. Now we know that a necessary and
sufficient condition for the existence of a nontrivial solution of a system
of linear homogeneous equations is that the rank of the coefficient matrix
should be less than the number of unknowns, and this is equivalent to
the vanishing of the determinant of the system

a; —A R S T
Ay Gy —A " Gy,

D T R TR R

Any Gps ' Gpp — A
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Thus, all eigenvalues of the transformation A are roots of the polynomial
| A — AE | and, conversely, every root of this polynomial is an eigenvalue
of the transformation since to every root there corresponds at least one
eigenvector. The polynomial | 4 — AE | is called the characteristic poly-
nomial of the matrix A. The equation | 4 — AE | = 0 is called the charac-
teristic or secular equation and its roots characteristic numbers of the
matrix.*

By the fundamental theorem of higher algebra (Chapter 1V), every
polynomial has at least one root; therefore every linear transformation
has at least one eigenvalue and hence at least one eigenvector. But, of
course, it is quite possible that even in the case when the transformation
can be expressed by a real matrix it turns out that all or some of its eigen-
values are complex. Consequently, the theorem on the existence of
(real) eigenvalues and eigenvectors for an arbitrary linear transformation
is not true in a real space. For example, the transformation of the plane
that consists in a rotation around the origin of coordinates by any angle
other than 180° changes the directions of all the vectors of the plane so
that there are no eigenvectors for this transformation.

The roots of the characteristic polynomial of a matrix A4 are the eigen-
values of the transformation A; therefore matrices that correspond to
one and the same transformation in distinct bases have identical sets of
roots of the characteristic polynomial. This leads to the plausible asssertion
that the characteristic polynomial of a linear transformation also depends
on the transformation only and not on the choice of a basis. This can be
verified by the following elegant calculation, which is based on the
properties of operations on matrices and determinants.

We know that if a matrix 4 corresponds to a transformation A in some
basis, then in any other basis the transformation A4 has a similar matrix
C-14C, where C is some nonsingular matrix. But

|C1AC — AE| = | C'AC — CAEC| = | C-Y(4 — AE) C |
=|C1||C||A—AE|=|CC||A —AXE|=|A—AE|.

Thus, matrices corresponding to one and the same transformation A4
in distinct bases have in fact one and the same characteristic polynomial,
which can therefore be called the polynomial of the transformation.

We shall now make the assumption that all the eigenvalues of the
transformation A are distinct. Let us prove that the eigenvectors, one for
each eigenvector, are linearly independent. For if we suppose that some

* The name *‘secular equation™ has arisen in celestial mechanics in connection with
the problem of the so-called secular disturbances in the motions of the planets.
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of them, say e, , -, e, , are linearly independent and the remaining ones,
among them e,., , are linear combinations of these, then

€y = C1€) + Co€3 + '+ iy . (13)

When we apply the linear transformation to both sides of this equation,
we obtain
Aey,y = ey + c;Ae; + 0 + ¢ de;

from which it follows by the definition of an eigenvector that
Akii€is = CiAe; + Cohse, + - + CAies

When we multiply equation (13) by A, and subtract from it the equa-
tion just obtained, we have

A —A) e + Ay — ) & + -+ Ay — A e =0,
hence it follows by the linear independence of e, , e, , -, e; that
(Ars1 — A) = (A — A) = = = Ay — A) = 0.

But we had assumed that all the eigenvalues are distinct and the vectors
are chosen one for each eigenvalue. Therefore A.,; — A £ 0,
At — A F#0, -, A,y — A £ 0 and the equation (13) is impossible,
since the coefficients ¢, , ¢, , -+, ¢, cannot all be zero.

Now it is clear that if all the eigenvalues of a linear transformation are
distinct, then there exists a basis in which the matrix of the transformation
has diagonal form. For we can choose as such a basis a system of eigen-
vectors, one for each eigenvalue. As we have shown, they are linearly
independent and their number is equal to the dimension of the space; i.e.,
they do in fact form a basis.

The theorem we have proved can be stated in terms of the theory of
matrices as follows. If all the eigenvalues of a matrix are distinct, then the
matrix is similar to diagonal matrix whose diagonal elements are these
eigenvalues.

The problem of transforming the matrix of a linear transformation to
its simplest form is considerably more complicated if there are equal ones
among the roots of the characteristic polynomial. We shall confine our-
selves to a short account of the final result.

A *“‘canonical box” of order m is defined as a matrix of the form

AI- I
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All the unnamed elements are equal to zero.

A canonical Jordan matrix is defined as a matrix in which there are
“canonical boxes” along the main diagonal and all the remaining elements
are zero:

Im..l.

1

S"’!S

|fm,.1t

The numbers A; 1n the distinct ““boxes’ are not necessarily pairwise
distinct. Every matrix can be reduced to a canonical Jordan matrix similar
to it, The proof of this theorem is rather complicated. We ought to mention
that this theorem plays an important role in many applications of algebra
to other problems of mathematics,in particular in the theory of systems of
linear differential equations.

A matrix can be reduced to diagonal form if and only if the orders m,
of all boxes are equal to |.

§5. Quadratic Forms

Definition and simplest properties. A quadratic form is a homogeneous
polynomial of degree 2 in several variables.

A quadratic form in n variables x, , x; , ***, x,, consists of terms of two
types: squares of the variables and products of two variables, both with
certain coefficients. A quadratic form can be written in the following
quadratic scheme:

2
J(x1, Xe, 0 %) = auXy + GpeXy Xy + 0+ A1 X0 X,

+ anX,X; + GgX; + v+ GpaXaXy,

Ty PR .

2
+ @ XXy F upXpXp + 0+ QX -

Pairs of similar terms a,,x,x, and a,,x,x, , etc., are written with equal
coefficients so that each of them gets half the coefficient of the corre-
sponding product of the variables. Thus, every quadratic form is uniquely
connected with its coefficient matrix, which is symmetric.

A gquadratic form can conveniently be represented in the following
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matrix notation. We denote by X the column of the variables x, , x, , -, x,,
by X the row (x,, x,, ", X,), i.e., the transposed matrix of X. Then

fx, x5, X)) = xy(anXy + @ipXe + ° + G1aXn)
+ xolanXy + Xy + 0+ Gpaxy) +
+ xn(anlxl + @upXe + 0 1+ anuxn)

[auX1 + GieXs + 0+ GyaXn
g1 X) + AeeXy + **° + opX,

R E T sesrssesannada

= (xl ¥ x2 L] ."’ xn)

| @py1 X1 + GnoXa + 0 Gpa X,

[anays ' ayy X1

Andyy " Ay X2
=X, X, X)) | o : = XAX.

| n1lne *"° Qnp Xn

Quadratic forms occur in many branches of mathematics and its applica-
tions.

In the theory of numbers and in crystallography, we consider quadratic
forms under the proviso that the variables x,, x,, -, x, assume only
integral values. In analytical geometry a quadratic form arises in setting
up the equation of a curve (or surface) of the second order. In mechanics
and physics a quadratic form appears in the expression for the kinetic
energy of a system in terms of the components of the generalized velocities,
etc. Furthermore, a study of quadratic forms is necessary even in analysis
for the investigation of functions of several variables in connection with
problems where it is important to clarify how a given function in the
neighborhood of a given point deviates from its approximating linear
function. An example of problems of this type is the investigation of
maxima and minima of a function.

Let us consider, for example, the problem of finding the maxima and
minima of a function of two variables w = f(x, y) having continuous
partial derivatives of the third order. A necessary condition for the
point (x,, ¥,) to give a maximum or minimum of the function w is that
the partial derivatives of the first order should vanish at the point (x,, ;).
Let us assume that this condition is satisfied. We give to the variables x
and y small increments h and k and consider the corresponding increment
of the function Adw' = f(x, + h, yo + k) — f(x,, ¥o)- By Taylor’s formula
this increment is equal, to within terms of higher order of smallness, to
the quadratic form §(rk? + 2shk + tk?), where r, s and ¢ are the values of
the second derivatives &*w/éx2, 8%w/éxay, 8*w/éy?, computed at the point
(xg » Vo). If this quadratic form is positive for all values of 4 and k (except
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= k = 0), then the function w has a minimum at the point (x,, y,);
if it is negative, then a maximum. Finally, if the form assumes positive
as well as negative values, then there is neither a maximum nor a minimum.
Functions with a larger number of variables can be investigated in a similar
way.

The study of quadratic forms essentially consists in the investigation of
the problem of the equivalence of forms under one set or another of
linear transformations of the variables. Two quadratic forms are called
equivalent if one of them can be carried into the other by one of the
transformations of the given set. Closely connected with the problem of
equivalence is the problem of reduction of a form, i.e., its transformation
into a certain form, as simple as possible.

In various problems connected with quadratic forms, we consider
various sets of admissible transformations of the variables.

In problems of analysis arbitrary nonsingular transformations of the
variables are admitted ; for the purposes of analytical geometry, the greatest
interest lies in orthogonal transformations, i.e., those that correspond to
the transition from one system of variable Cartesian coordinates to
another. Finally, in the theory of numbers and in crystallography, we
consider linear transformations with integer coefficients and with a
determinant equal to |.

Here we shall consider two of these problems: the problem of the
reduction of a quadratic form to the simplest possible form by means of
arbitrary nonsingular transformations and the same problem for orthog-
onal transformations. Above all, we shall find out how the matrix of the
quadratic form is changed under a linear transformation of the variables.

Suppose that f(x,, x,, ", x,) = XA4X, where A4 is the symmetric
matrix of the coefficients of the form and X is the column of the variables.

We take a linear transformation of the variables, writing it briefly
X = CX'. Here C denotes the coefficient matrix of this transformation
and X' the column of the new variables. Then X = X'C and consequently
XAX = R(CAC) X' so that the matrix of the transformed quadratic
form is CAC.

The matrix CAC is automatically symmetric, as is easy to verify. Thus,
the problem of reducing a quadratic form to the simplest possible form is
equivalent to the task of reducing a symmetric matrix to the simplest form
by multiplying it on the left and on the right by transposed matrices.

Transformation of a quadratic form to the canonical form by successive
completion of squares. We shall show that every (real) quadratic form
can be reduced to a sum of squares of new variables with certain coefficients
by a real nonsingular linear transformation.
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To prove this we shall show first of all that if the form is not identically
zero, then we can make the coefficient of the square of the first variable
different from zero by the application of a nonsingular transformation of
the variables.

For suppose that

2
,f(xl » Xz 47 Xp) = apXxy + @pXiXs + 0+ GpXyX,

+ AuXaXy + GyeX; + 7 GgnXaXn

+ @ XnXy 5 QueXpXy + 0 + “nnxvzn .

If a;; # 0, then no transformation is required. If a;; = 0, but some one
of the diagonal coefficients a, 7= 0, then we set x; = x;, X, = x;
equating the remaining original variables to the corresponding new ones.
This nonsingular transformation achieves our object. Finally, if all the
diagonal coefficients are equal to zero, then at least one of the nondiagonal
coefficients is different from zero, for example a,, .

By taking the nonsingular transformation

X3 = X{»
Xp = X1 + X2
and equating the remaining original variables to the new ones, we achieve
our aim.
Thus, without loss of generality we can assume that a;, == 0.
Let us now separate out the square of a linear function such that all

the terms containing x; occur in this square.
This can easily be done, For

fxy, X3, x) = auX + apxixs + - + @yayXa

+ g XX + aﬁx§ F 0t GapXaXp

+ @ XnX1 + GpaXaXy + 0 annxi

1z a 3
=ay [xl '!"a—xz-l-"' +?‘"'xn —ay
u 1

2
dy» A1n
Xp+ 0+ — X,
ap an

Tl XXy + 0+ ann-ri'
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By removing the parentheses in the second summand and collecting
similar terms, we obtain
a
Fxy s x5, 0, Xa) = ayy [xl + —xz S ixn] + filxz, *y Xn),

where f, is a form in n — | variables.
The transformation

dyp dyn §

x1+—xz+ ez - xn=x1,
Xy = xév
Xp = Xn,

is obviously nonsingular, By making this transformation we reduce our
form to

2 i ,
anxy + filxe, o xp).

Continuing the process in a similar manner we reduce the form to the
required ‘“‘canonical” form

2 2 2
Zy + a2z + 7 A+ onZn .

Here z, , 2, , ", z, are the new variables introduced at the last step.

The law of inertia of quadratic forms. In the reduction of a qua-
dratic form to canonical form there always is a considerable arbitrariness
in the choice of the transformation of variables that brings about this
reduction. This arbitrariness comes in, among other things, from the fact
that we can precede the previous method of successive separation of
squares by an arbitrary nonsingular transformation of the variables.

However, notwithstanding this arbitrariness, as a result of the reduction
of the given form we obtain an almost unique canonical quadratic form
independent of the choice of the reducing transformation. Namely the
number of squares of the new variables that occur with positive, negative,
and zero coefficients is always one and the same, irrespective of the method
of reduction. This theorem is known as the law of inertia of quadratic
forms. We shall not prove it here.

The law of interia of a quadratic form solves the problem of equivalence
of a real quadratic form under all nonsingular transformations. For two
forms are equivalent if and only if their reduction to canonical form leads
to forms with the same number of squares with positive, negative, and
zero coefficients,
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Of special interest for the applications are the quadratic forms that
under reduction to canonical form turn into a sum of squares of the new
variables with all the coefficients positive. Such forms are called positive
definite.

Positive-definite quadratic forms are characterized by the property
that their values for real values of the variables not all equal to zero are
always positive.

Orthogonal transformation of quadratic forms to canonical form. Of
special interest among all possible methods of reducing a quadratic form
to canonical form are the orthogonal transformations, i.e., those that can
be obtained by a linear transformation of the variables with an orthogonal
matrix. Such transformations are of interest, for example, in analytical
geometry, in the problem of reducing the general equation of a curve
or surface of the second order to canonical form.

In order to convince ourselves of the possibility of such a transformation,
it is convenient to regard the quadratic form as a function of vectors in a
Euclidean space by considering the variables x, , x, , -, x, as the coordi-
nates of a variable vector in an orthonormal basis. Then an orthogonal
transformation of the variables can be interpreted as a transition from
one orthonormal basis to another.

With the quadratic form

S(xr, %2, 0, %) = ﬂ'uxi + o @i Xy

........... esrsesssas b

+ anXpxy + 0 + annxlze

we connect the linear transformation A that has with respect to the chosen

basis the matrix
dy " i
A= | seereereen |,
Apy " Apn

Then our quadratic form can be regarded as the scalar product 4X - X
(where X is the vector with the coordinates x; , x,, ***, x,,), and its coef-
ficients a,; are the scalar product Ae; ‘ ¢, , where e, , e, , ***, e, is the chosen
orthonormal basis,

It is easy to see that in consequence of the symmetry of the matrix A
the following equation holds for arbitrary vectors X and ¥

AX-Y = X-AY.

We shall show first of all that the transformation 4 has at least one real
eigenvalue and eigenvector corresponding to it.
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For this purpose we consider the values of the form 4X - X under the
assumption that the vector X ranges over the unit sphere, i.e., the set of
all unit vectors. Under these conditions the form AX - X will have a maxi-
mum. Let us show that this maximum AX - X is an eigenvalue of the
tranformation A and the vector X, for which this maximum is assumed is
a corresponding eigenvector; i.e., AX,; = A X, .

The proof of this statement is by an indirect method, namely, by
establishing that the vector AX, is orthogonal to all vectors orthogonal
to X, .

We note that for an arbitrary vector Z we have the inequality 4AZ - Z
< A, | Z|2 This is obvious from the fact that X = ZJ| Z| is a unit vector
and A, the maximum of the values of the form AX - X on the unit sphere.
We consider Z = X, + ¥, where ¢ is a real number and ¥ an arbitrary
vector orthogonal to the vector X,. Then

AZ-Z = (AXy + €AY) - (X, + €¥) = AX, - X, + 2¢AX, - ¥ + @AY ¥
=X + 24X, ¥ + €AY - Y.

Moreover,
|ZP =X, +eY)(-(Xo+€¥) =X, P+ | YP=1+&|YP

because
X0°Y=0, |X0|2=l'

Therefore,
A + 24X, Y + AY - Y < A + €27 | Y2,

and from this we obtain on dividing by €?

%AXD-Y<,\1|Y|’—AY-Y. (14)

This last inequality must be satisfied for arbitrary real e of sufficiently
small absolute value.

But it can only be satisfied under the condition AX, ‘- ¥ = 0, because
if AX, Y > 0, then the inequality (14) is impossible for sufficiently small
positive €, and if AX, - ¥ <0, then it is impossible for negative € of
sufficiently small absolute value. Thus, AX; - ¥ = 0, i.e., AX, is in fact
orthogonal to every vector orthogonal to X, . Therefore 4X, and X, are
collinear; i.e., AX, = A'X,, where A’ is a real number. The fact that
X' = A is easy to verify, for

A =AX, Xo=XNX, X, = X.
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Now it is easy to show that every quadratic form can in fact be reduced
to canonical form by an orthogonal transformation.

Let e, ,e;, -, e, be the original orthonormal basis of the space and
Si58 5 f, a new orthonormal basis in which the first vector f; is an
eigenvector X, of the transformation A4. Let x, , x,, -, x,, be the coordin-
ates of the vector X in the original basis and x; , x; , -, X, its coordinates
in the new basis. Then

X1 X
Xa Xy
. =P :

r

xﬂ xﬂ

where P is an orthogonal matrix.

Let us carry out the transition to the new variables in the quadratic
form AX - X. In the new variables the quadratic form has the coefficients
a; = Af, - f;. Therefore

an=Af =ML = A,
aij=a}1=Af1'j}=)t,f1'j}=0 for j?’;l;
i.e., the form is now
AXE 4 X s XD,

Thus, by means of an orthogonal transformation we have succeeded in
separating out one square of a new variable.

By repeating the same arguments with the new form ¢(x; , -, x,), etc.,
we eventually arrive at the conclusion that the form turns out to be reduced
to canonical form by a chain of orthogonal transformations. But it is
obvious that a chain of orthogonal transformations is equivalent to a single
orthogonal transformation. This concludes the proof of the theorem.

§6. Functions of Matrices and Some of Their Applications

Functions of matrices. The applications of linear algebra to other
branches of mathematics are very numerous and diverse. It is not an
exaggeration to say that the ideas and results of linear algebra are used in
a large part of contemporary mathematics and theoretical physics in one
form or another, particularly in the form of matrix calculus.

We shall deal briefly with one of the methods of applying the matrix
calculus to the theory of ordinary differential equations. Here functions of
matrices play an important role.
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First of all we define the powers of a square matrix 4. We set A° = E,
Al = A, A* = AA, A* = A%A, A* = A*A, etc. By the associative law it
is easy to show that AmA4" = A™+» for arbitrary natural numbers m and n.
The operations of addition and of multiplication by a number have been
defined for matrices. This enables us to define in a natural way the meaning
of a polynomial (in one variable) of a matrix. For if ¢(x) = apx"
+ ayx"' 4 -+ 4 a, , then we set (by definition) §(A) = ggA™ + a, A" +
- 4 a,E. Thus, the concept of the simplest function of a matrix argument,
namely the polynomial, is defined.

By means of a limit process it is easy to generalize the concept of a
function of a matrix argument to a considerably wider class of functions
than polynomials in one variable. Without treating this problem in all
its generality we shall restrict ourselves here to the examination of analytic
functions.

First of all we introduce the concept of the limit of a sequence of
matrices. A sequence of matrices

(1) ... gil} (2) ... qi2)
all aln all aln
Al = | cvveericceris 5 Az = | ceemrseiesses n
all) (1} am atﬁ
nl nn nl nn

(or to have the matrix 4 asits limit) if lim,_,, !}’ = a,;forall /, . Further,
the sum of a series 4, + A, + - + A, + -~ is defined as the limit of
the sums of its segments lim,_, (4, + 4; + - + A;) if this limit exists.

Let f(z) be an analytic function regular in a neighborhood of z = 0.
Then f(z) can be expanded in a power series

Az) = ay + ayz + a2 + -+ + apz* + -,
For every square matrix A it is natural to set
f(A) = aE + a4 + a,A% + - 4 ap A% + .

Now it turns out that this series converges for all matrices 4 whose
eigenvalues lie within the circle of convergence of the power series
ag + ayz + = + a2t + -
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Of interest for the applications are the elementary functions of matrices.

For example, the geometric series £ + A4 + A% + -+ 4+ A% + - is
convergent for matrices whose eigenvalues are of absolute value less than 1,
and the sum of the series is the matrix (E — 4)~!, in complete accordance
with the formula

| s o ol o o ]

1l —x'

The representation of (E — A)~! in the form of an infinite series gives an
effective method for the approximate solution of systems of linear equa-
tions whose coefficient matrix is close to the unit matrix.

For when we write such a system in the form

(E— A) X = B,
we obtain
X=(E—A)"'B=B+ AB + A’B + -~ (15)

and this gives a convenient formula for the solution of the system, if only
the series (15) converges sufficiently fast.

It is useful to consider the binomial series

m m(im — 1)

which can be applied (provided the eigenvalues of A4 are less than | in
modulus) not only for natural exponents m but also for fractional and
negative exponents.

Particularly important for the applications is the exponential matrix
function

A2 + e

3

A A

The series defining the exponential function converges for every matrix 4.
The exponential matrix function has properties reminding us of prop-
erties of the ordinary exponential function. For example, if 4 and B
commute under multiplication, i.e., 4B = BA, then e*+? = e :¢®
However, for noncommuting 4 and B the formula ceases to be true.

Application to the theory of systems of ordinary linear differential
equations. In the theory of systems of ordinary linear differential equa-
tions it is appropriate to consider matrices whose elements are functions
of an independent variable:

ay(t - ay(e)

U(r) = [ ................. ] .
aml(’) i amn(‘)
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For such matrices the concept of the derivative with respect to the
argument ¢ is defined in a natural way, namely:

dU(t) _ [ail (!) '"a;n(!)}

At a0 - )

It is not difficult to verify that some elementary formulas of differentia-
tion are valid for matrices, For example,

dt dar " dr’
dev) _ , du
dt dr’
dUv) du av
AP0 O a2
gt

(The multiplication must be carried out strictly in the order as given in
the formula!)
A system of ordinary linear homogeneous differential equations

d

tj:l = ay(t) Y1 + @) y2 + ° + @yal) Ya o
d

% = an(t) 1 + () 2 4+ + @ul?) Ya

aya

% = apt) Y1 + Gnelt) 2+ + Gual®) Y

can be written in this notation in the form

a _ .oy,

dt
Ell [au(t) ann(f)]
Y= 4 s A('l) = | s ;
n a)u(t) ann(t)

i.e, in a form similar to a single linear homogeneous differential equation.

If the coefficients of the system are constants, i.e., if the matrix A4 is
constant, then the solution of the system also looks outwardly like the
solution of the equation 3’ = ay. For in this case ¥ = ¢*!C, where Cisa
column of arbitrary constants,

where
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The solution in this form is very convenient for computations. The fact
is that for an arbitrary analytic function f(z) we have the equation

f(B-'LB) = B-'f(L) B.

Since every matrix can be reduced to the canonical Jordan form (see §4),
the computation of a function of an arbitrary matrix reduces to the
computation of a function of a canonical matrix, which is easy to carry
out. Therefore, if A = B-'LB, where L is a canonical matrix, then

Y =eMC = 8"+"BC = B-le"C)

where C' = BC is a column of arbitrary constants.

From this formula it is easy to derive an explicit expression for all the
components of the required column Y.

The Soviet mathematician I. A, Lappo-Danilevskil has successfully
developed the apparatus of the theory of matrix functions and was the
first to apply it to the investigation of systems of differential equations,
including those with variable coefficients. His results count among the
most brilliant achievements of mathematics in the last fifty years.
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NON-EUCLIDEAN
GEOMETRY

Ever since N. I. Lobacevskil first demonstrated the possibility of a
non-Euclidean geometry and put forward a new notion concerning the
relationship of geometry to the material reality, the scope of geometry,
its methods and applications, have been enlarged exceedingly. Nowadays
mathematicians study several “spaces™: apart from the Euclidean space
they deal with Loba&evskil space, projective space, various n-dimensional
and even infinite-dimensional spaces, Riemannian, topological, and other
spaces; the number of such spaces is boundless and each of them has its
own properties, its own “geometry.” In physics we use the concept of
the so-called phase and configuration “spaces™; the theory of relativity
utilizes the notion of a curved space and other results of abstract geo-
metrical theories,

How and whence have these mathematical abstractions arisen? What
real basis, what real value and application do they have? What is their
relation to reality? How are they defined and how are they studied in
mathematics ? What is the significance of the general ideas of contemporary
geometry in mathematics ?

These questions will be answered in the present chapter. We shall not
give an account of the theory of abstract mathematical spaces as such;
that would require a far longer explanation and far more attention to the
specific mathematical apparatus. Our task is to throw light on the essence
of the new ideas in geometry, i.e., to answer the questions raised here,
and this can be done without complicated proofs and formulas.

The history of our problem goes right back to Euclid’s “Elements” and
the axiom or, as one also says, the postulate on parallel lines.

97
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§1. History of Euclid’s Postulate

In his “Elements” Euclid formulates the fundamental premises of
geometry in the form of so-called postulates and axioms. Among these
there is Postulate V (in other copies of the “Elements” Axiom XI) which
is now usually stated as follows: “Through a point not lying on a given
line not more than one line parallel to the given line can be drawn.”
We recall that a line is called parallel to a given line if both lie in one
plane and do not intersect; we think here of the infinite lines, so to speak,
not of their finite segments.

It is easy to prove that we can always draw at least one parallel to a
given line a through a point A4 not lying on it.

For let us drop a perpendicular 4 from A4 to a and draw through A
a line ¢ perpendicular to & (figure 1). The figure so obtained is completely

B
FiG. 1.

symmetric with respect to b, since the angles formed by b with a and ¢
at both its ends are equal. Therefore, when we turn the plane about b,
we bring the half lines of @ and ¢ into coincidence. Hence it is clear that
if @ and ¢ were to intersect on one side of 48, then they would have to
intersect also on the other side. It would then come out that the lines a
and ¢ have two points in common; but this is impossible, because by a
fundamental property of the line only one line can be drawn through two
points (so that lines having two common points must necessarily coincide).

Thus, from the basic properties of the line and of the motion of a
figure (inasmuch as a turn about the line 4B is a rotation of a semiplane
with this line as axis) it follows that at least one parallel to a given line
can always be drawn through a given point. Now Euclid’s postulate
supplements this result by the statement that this parallel must be the
only one and no other can exist.

Among the other postulates (axioms) of geometry this one occupies
a somewhat special place. Euclid’s own formulation of it is rather com-
plicated, but even in its usual form cited here it contains a certain dif-
ficulty. This difficulty is already inherent in the very concept of parallel
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lines, here we deal with the whole line. But how are we to convince
ourselves that two given lines are parallel? For this purpose we ought
to produce them on both sides “to infinity” and convince ourselves that
they do not intersect anywhere on their whole infinite extent. This notion
clearly has its difficulties. And all this was apparently the reason why
the parallel postulate occupied a somewhat special position even for
Euclid: In his “Elements” this postulate is used beginning with the 29th
proposition only, whereas in the first 28 propositions he dispenses with it.
In view of the complicated nature of the postulate the wish to do without
it is quite natural, and already in antiquity attempts were made to change
the definition of parallel lines, to change the formulation of the postulate
itself or, better still, to deduce it as a theorem from other axioms and
basic concepts of geometry.

Thus, the theory of parallel lines, founded on the Fifth Postulate,
became an object of comment and criticism in the works of many
geometers, from the days of antiquity. In the course of these investigations
it was the principal aim to get rid of the Fifth Postulate altogether, by
deducing it as a theorem from other basic propositions of geometry.

This task attracted many geometers: the Greek Proclus (5th century
A. D.) who wrote a commentary to Euclid, the Persian Nasir ed Din et
Tusi* (13th century), the Englishman Wallis (1616-1703), the Italian
Saccheri (1667-1733), the German philosopher and mathematician
Lambert (1728-1777), the Frenchman Legendre (1752-1833), and many
others; in the span of more than two thousand years since Euclid’s
“Elements” appeared they all outdid themselves in subtlety and geo-
metrical ingenuity trying to prove the Fifth Postulate.

However, the result of these attempts invariably remained negative.
Every time it became clear that the author of one proof or another had
in fact relied on some proposition, no matter how obvious, that did not
at all follow with logical necessity from the other premises of geometry.
In other words, each time what they had done amounted to replacing
the Fifth Postulate by some other statement from which in fact this
postulate followed, but which itself required a proof.t

* Translator's note: Nasiraddin

1 Of such statements, equivalent to the Fifth Postulate, quite a large number were
set up. Here are some examples: (1) a line parallel to a given line has a constant distance
from it (Proclus); (2) there exist similar (but not equal) triangles, i.e., triangles whose
angles are equal but whose sides are unequal (Wallis); (3) there exists at least one
rectangle, i.e., a quadrangle whose angles are all right angles (Saccheri); (4) a line
perpendicular to one arm of an acute angle also intersects the other arm (Legendre);
(5) the sum of the angles of a triangle is equal to two right angles (Legendre); (6) there
exist triangles of arbitrarily large area (Gauss). This list could now be continued
indefinitely.
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Saccheri and Lambert penetrated deeper into the problem than the
others. Saccheri was the first to attempt a proof of the Fifth Postulate
by a reductio ad absurdum; i.e., he took as a starting point the opposite
assertion and by developing its consequences hoped to come to a con-
tradiction. When he arrived, in these inferences, at results that appeared
entirely unimaginable, he thought that he had solved the problem. But
he was mistaken, because a contradiction to intuitive ideas does not yet
indicate a logical contradiction. After all, the problem was to prove the
Euclidean postulate on the basis of other propositions of geometry and
not to convince oneself once more of its intuitive truth. Intuitively, the
postulate itself is convincing enough. But, let us repeat, intuitive con-
clusiveness and logical necessity are two different things.

Lambert proved to be a deeper thinker than Saccheri and his predeces-
sors. Starting out on the same path he did not find a logical contradiction
and did not make the mistakes of the others; he did not claim to have
proved the Fifth Postulate. But after him, at the beginning of the 19th
century, Legendre once more “proves” the Fifth Postulate by falling into
the old mistake: Again he replaces the postulate by other assertions
which require proof themselves.

Thus, at the beginning of the 19th century the problem of proving
the Fifth Postulate remained as unsolved as it was in Euclid’s time. The
efforts remained in vain and the problem, it seemed, would not yield.
Here, indeed, was a deep enigma of geometry; a problem whose solubility
was not doubted by the best geometers did not yield a solution in two
thousand years.

The theory of parallel lines became one of the central problems of
geometry in the 19th century. It attracted many geometers: Gauss,
Lagrange, d’Alembert, Legendre, Wachter, Schweikart, Taurinus, Farkas
Bélyai, and others.

However, a proof of the postulate did not come forth. What, then,
was the matter: Was it due to lack of ability or was the problem perhaps
inaccurately stated? This question began to cross the minds of some
geometers that surpassed the others in depth of thought. Gauss, the most
famous German mathematician, occupied himself with the problem from
1792 onward and the correct statement of the question gradually dawned
upon him. Finally he decided to abandon the Fifth Postulate and from
1813 on he developed a sequence of theorems that are consequences of
the opposite assertion. A little later the German mathematician Schweikart,
who was then a professor of Law at Kharkov, and Taurinus followed
on the same path. But none of these arrived at a final answer to the
problem. Gauss carefully concealed his investigations, Schweikart con-
fined himself to private correspondence with Gauss, and only Taurinus
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went into print with the elements of a new geometry based on the
negation of the Fifth Postulate. However, he himself ruled out the pos-
sibility of such a geometry. Thus. none of these solved the problem and
the question whether the statement was altogether correctly put remained
without an answer. The answer was first given by N, I. Loba&evskil, a
young professor at the University of Kazan: On February 23, 1826 he
read a paper on the theory of parallels at a meeting of the physical-
mathematical faculty and in 1829 he published its contents in the Journal
of the University of Kazan,

§2. The Solution of Lobadevskii

1. The ideas of Lobadevskii. The essence of Lobacevskii's solution
of the problem of the Fifth Postulate was expressed by him in his work
“New Elements of Geometry” (1835) in the following words:

“It is well known that in geometry the theory of parallels has so far
remained incomplete. The futile efforts from Euclid’s time on throughout
two thousand years have compelled me to suspect that the concepts
themselves do not contain the truth which we have wished to prove,
but that it can only be verified like other physical laws by experiments,
such as astronomical observations. Convinced, at last, of the truth of
my conjecture and regarding the difficult problem as completely solved,
I put down my arguments in 1826.”

Let us examine what Lobacevskil had in mind in this statement in
which his new idea is so to speak focused, which not only gave the solution
of the problem of the Fifth Postulate, but revolutionized our whole
conception of geometry and of other branches of mathematics as well.

Already in 1815 I. N. Loba&evskil had begun to work on the theory
of parallels, trying at first, like the other geometers, to prove the Fifth
Postulate. In 1823 he realized clearly that all the proofs, “no matter of
what kind, can only be regarded as clarifications, but do not deserve to be
called mathematical proofs in the full sense.””* He was aware, then, that
“the concepts themselves do not contain the truth which we have wished
to prove”’; i.e., in other words, the Fifth Postulate cannot be deduced
from the fundamental propositions and concepts of geometry. How did
he convince himself that this deduction is impossible?

He did this by going farther along the path on which Saccheri and
Lambert had taken the first steps. As a hypothesis he took the statement
contradicting the Euclidean postulate, namely: “through a point not

* So wrote Lobatevskil in 1823 in his course of geometry, which was not published
during his lifetime. This course “Geometry” was first edited in 1910,
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lying on a given line not one, but at least two lines parallel to the given
one can be drawn.” Let us take this statement conditionally as an axiom
and, adjoining it to the other propositions of geometry, let us develop
further consequences of it. Then, if this assertion is incompatible with
the other propositions of geometry, we shall arrive at a contradiction
and so the Fifth Postulate will be proved indirectly: The opposite proposi-
tion leads to a contradiction. However, in view of the fact that no such
contradiction is detected, we come to two conclusions which Lobadevskil
also reached.

The first conclusion is that the Fifth Postulate is not provable. The
second conclusion is that on the basis of the opposite axiom just formu-
lated we can develop a chain of consequences, i.e., theorems that do not
contain a contradiction. These consequences form in their own right a
certain logically possible noncontradictory theory that can be regarded
as a new non-Euclidean geometry. Lobadevskil cautiously called it
“imaginary,” because he could not yet find a real explanation for it
But its logical possibility was clear to him. By expressing and defending
this strong conviction Lobadevskil displayed the true grandeur of a
genius who defends his convictions without wavering and does not hide
them from public opinion for fear of misunderstanding and criticism.

Thus, the first two conclusions reached by Lobag&evskil consisted in the
statements that the Fifth Postulate is not provable and that it is possible
to develop on the basis of a contrary axiom a new geometry that is
logically just as rich and perfect as the Euclidean, notwithstanding the
fact that its results are at variance with the intuitive picture of space.
Lobacevskii in fact developed this new geometry, which now bears his
name. A general result of enormous importance was involved here:
Not only one geometry is logically conceivable. The significance of this
result in its full extent will be discussed later; in it is really contained
not a small part of the solution of the problems concerning abstract
mathematical spaces that were raised at the beginning of this chapter.

But let us return to Lobadevskil’s statement quoted previously, He says
that geometrical truth like other physical laws can only be verified by
experiments. This means, first, that we must interpret truth as a cor-
respondence between abstract concepts and reality. This correspondence
can only be established by experiment so that the verification of one
result or another requires experimental investigations and that mere
logical inference is insufficient for the purpose. Although Euclidean
geometry reflects the real properties of space very accurately, it cannot be
certain that further investigations might not reveal that Euclidean geome-
try is only approximately true as a theory of the properties of real space.
Geometry as a science of real space (and not as a logical system) would
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then have te be changed and made more precise in accordance with the
new experimental data.

This brilliant idea of Lobacevskil has been completely vindicated in a
new branch of physics, the theory of relativity.

Lobaéevskil himself undertook computations on the basis of astro-
nomical observations with the object of verifying the accuracy of Euclidean
geometry. These computations corroborated at the time its truth within
the limits of the available accuracy. The situation has now changed,
although it must be emphasized at once that Lobadevskil geometry,
too, did not prove to be more accurate in its application to space, whose
properties turned out to be different and more complicated. But even
before this the Loba&evskil geometry had become well based and ap-
plicable in another connection, of which we shall speak in more detail
later,

It must be emphasized that Lobadevskii did not at all regard his
geometry as a mere logical scheme constructed on arbitrarily chosen
premises. The important task he saw not in the logical analysis of the
foundations of geometry but in the investigation of its relationship to
reality. Since an experiment cannot give an absolutely accurate solution
of the problem of truth of Euclid’s postulate, it makes sense to investigate
those logical possibilities that are represented by the most fundamental
premises of geometry. This mathematical investigation helps to mark a
path on which the physical study of the properties of real space must
proceed. Furthermore, Euclid’s geometry is a limiting case of Lobacevskil’s
geometry, so that the latter includes wider possibilities. From this point
of view the restriction to Euclid’s postulate would have been a hindrance
to the development of the theory. The theory must go beyond the known
frontiers so as to search for ways of disclosing new facts and laws. A
deeper understanding of the links between mathematics and reality
enables us to select from the diverse logical possibilities precisely those
that have the best chance of being useful in the study of nature. If geometry
after Lobadevskil had not developed the mathematical doctrine of the
possible properties of space, contemporary physics would not possess the
mathematical tools that made it possible to formulate and develop the
theory of relativity.

Thus, we can summarize Lobacevskil’s solution of the problem of the
Fifth Postulate.

1. The postulate is not provable,

2. By adding the opposite axiom to the basic propositions of geometry
a logically perfect and comprehensive geometry, different from the
Euclidean, can be developed.
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3. The truth of the results of one logically conceivable geometry or
another in its application to real space can only be verified experimentally.
A logically conceivable geometry must be elaborated not only as an
arbitrary logical scheme, but also as a theory indicating possible ways
and methods of developing physical theories.

The solution is altogether different from what the geometers wished
to obtain when they tried to prove the Euclidean postulate. It went so
much against the established ideas that it did not meet with much under-
standing among mathematicians. For them it was too new and radical.
Lobacevskil, as it were, cut the Gordian knot of the theory of parallels
instead of trying to disentangle it, as others had expected to do.

2. Other geometers and philosophers. Almost simultaneously with
Lobadevskil the Hungarian geometer Janos Bolyai (1802-1860) also
discovered the impossibility of proving the Fifth Postulate and the pos-
sibility of a non-Euclidean geometry; he published his results as an
appendix to the geometric treatise of his father Farkas Bolyai of 1832,
Previously the father had sent his son’s paper for an opinion to Gauss
and had received an encouraging reply, in which Gauss mentioned that
he too had reached the same results long ago. However, Gauss refrained
from publishing anything. In one of his letters he explains that he was
afraid of being misunderstood.

In science it always happens that the time is ripe for some results and
that they are obtained almost simultaneously and independently by
several scholars. The integral and differential calculus was developed
simultaneously by Newton and Leibnitz; Darwin’s ideas were independent-
ly reached at the same time by Wallace; the elements of the theory of
relativity were found simultaneously by Einstein and also by Poincaré,
and of such examples there are many more. They show once more that
science grows inevitably by the solution of problems for which it is ripe,
and not by accidental discoveries and guesses. So it was also with the
discovery of the possibility of non-Euclidean geometry, which was made
simultaneously by several geometers: Lobacevskil, Bolyai, Gauss,
Schweikart, and Taurinus.

However, as it also happens constantly in science, not all the scholars
who arrive at a new result play an equal role in its establishment and
not all of them have an equal share in the service performed. Priority
is of importance here, but also clarity and depth of results, and coherence
and sound arguments in their derivation. Neither Schweikart nor Taurinus
were convinced of the equal status of the new geometry, and this was a
decisive feature of the case, all the more since partial results had already
been obtained by Saccheri and Lambert. Gauss, although he apparently



§3. LOBACEVSKII GEOMETRY 105

had this conviction, was not resolute enough to risk coming out with
it into the open.

Bolyai did not display any indecision, but he did not develop the new
ideas as far and as deeply as Lobadevskil. For Lobadevskil was the first
to express the new ideas openly, orally in 1826 and in print in 1829,
and continued to develop and propagate them in a number of papers
culminating in the “Pangeometry™ of 1855, which he dictated as a blind
old man in his declining years, retaining his strength of mind and his
confidence in his work. And so the new geometry bears his name.

§3. Lobagevskii Geometry

1. Some striking results. Thus, Lobacevskii took as his starting point
the statement contradictory to the Fifth Postulate: in a given plane at
least two straight lines can be drawn through a point that do not intersect
a given line. From this he derived a number of far-reaching consequences
that formed the new geometry. This geometry was, therefore, constructed
as a conceivable theory, as a collection of theorems that can be proved
logically proceeding from the postulate, in conjuction with other* basic
assumptions of Euclidean or, as Lobadevskil used to say, “customary”
geometry.

Among his deductions Lobadevskil obtained all the results analogous
to those of the “‘customary” elementary geometry, i.e., right up to non-
Euclidean trigonometry and the solution of triangles, to the calculation
of areas and volumes. We cannot here follow this chain of Lobacevskil’s
deductions not because they are too complicated but merely for lack of
space. After all, even a school course in “customary” geometry is rather
long, and Lobacevskil's deductions are neither simpler nor shorter than
these “customary” deductions. Therefore we shall mention here only some
striking results of Lobadevskil, and refer the reader who is interested in
a deeper study of non-Euclidean geometry to the special literature. Later
on we shall explain a simple interpretation of non-Euclidean geometry
in the actual world.

Let us begin with the theory of parallel lines. Suppose that a line a
and a point 4 not on it are given. We drop the perpendicular A8 from A
to a. By the fundamental assumption there exist at least two lines passing
through A and not intersecting our line a. Then every line in the angle
between these two lines also does not intersect a. It is true that in figure 2
the lines b and &', if produced far enough, would actually intersect a,

* These so-called “‘remaining” propositions of geometry will also be formulated
accurately in §5.
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against Lobacevskil's assumption. But there is nothing surprising in this.
For of course Loba&evskil did not argue from figures as we can draw
them in the ordinary plane; he developed logical consequences from his
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assumption, which contradicts what we are accustomed to see in diagrams.
Figures play only an auxiliary role here; in them the facts of non-Euclidean
geometry cannot be expressed accurately, because in a figure we draw
ordinary lines in an ordinary plane, entirely Euclidean within the limits
of accuracy of the figure.

This contradiction between logical possibility and visual representation
was an important obstacle to the understanding of Lobadgevskil geometry.
But if we are concerned with geometry as a logical theory, then we must
look for logical rigor of the reasoning and not for agreement with
customary figures.

2. The angle of parallelism. Let us turn again to our line ¢ and
point A. Through A4 we draw a half line x that does not intersect a (for
example perpendicular to 4B) and rotate it around 4 so that the angle ¢
between 4B and x decreases, but without bringing it to an intersection
with a. Then the half line x reaches a limiting position corresponding
to the least value of ¢. This limiting half line ¢ also does not intersect a.

For if it did intersect a in some point X (figure 3), then we could take
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a point X' to the right and obtain a half line AX' intersecting a, but
forming a larger angle with 4AB. But this is impossible, since by the
construction of ¢ every half line x that forms a larger angle with 4B
does not intersect a.

Therefore ¢ does not intersect ¢ and is, moreover, the extreme one of
all the half lines passing through 4 and not intersecting a.

By symmetry, it is obvious that on the other side we can also draw
a half line ¢’ not intersecting a and also extreme among all such half
lines. If ¢ and ¢’ were continuations of one another, then together they
would form a single line ¢ + ¢’. This line would then be the unique
parallel to a through the given point A4, so that under the slightest rotation
either ¢ or ¢’ would intersect a. So once it has been assumed that the
parallel is not unique, but that there are at least two, the half lines ¢
and ¢’ cannot be continuations of one another.

Thus, we have proved the first theorem of Lobadevskil geometry:

Through a point A4 not lying on a given line a two half lines ¢ and ¢
can be drawn such that they do not intersect a, but that every half line
in the angle between them intersects a.

If the half lines ¢ and ¢’ are produced, then we obtain (figure 4) two
lines not intersecting a with the additional property that every line passing
through A in the angle « between these lines does not intersect a, but
every line in the angle B intersects a. Lobadevskil called these lines ¢,
¢' parallels to a: ¢ parallel on the right, ¢’ parallel on the left. Half of
the angle B is called the angle of parallelism by Lobadevskil; it is less
than a right angle, because B is less than two right angles.

A
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3. Convergence of parallel lines; the equidistant curve. Let us now
investigate how the distance from a4 of a point X on ¢ changes when X
is shifted along ¢ (figure 5). In Euclidean geometry the distance between
parallel lines is constant. But here we can convince ourselves that when X
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moves to the right, its distance from a (i.e., the length of the perpendicular
XY) decreases.

We drop the perpendicular 4,B, from a point 4, to a. From B, we
drop the perpendicular B,A4, to c (4, lies to the right of A4, , since y is
an acute angle). Finally we drop the perpendicular 4,8, from A, to a.
Let us show that 4,B, is less than 4,8, .

The theorem that the perpendicular is shorter than a slant line is valid
in Lobadevskil geometry, because its proof (which can be found in every
school book on geometry) does not depend on the concept of parallel
lines nor on deductions connected with them. Now since the perpendicular
is shorter than a slant line, B, 4, as a perpendicular to c is shorter than
A,B, , and similarly 4,B, as a perpendicular to a is shorter than B4, .
Therefore A4,B, is shorter than 4,8, .

When we now drop the perpendicular B,4; to ¢ from B, and repeat
these arguments, we see that 438, is shorter than 4,8, . Continuing this
construction we obtain a sequence of shorter and shorter perpendiculars;
i.e., the distances of 4, , 4,, - from a decrease. Furthermore, by sup-
plementing our simple argument we could prove that, generally, if a
point X” on c lies to the right of X", then the perpendicular X" Y” is shorter
than X'Y’. We shall not dwell on this point. The preceding arguments,
we trust, make the substance of the matter sufficiently clear and a rigorous
proof is not one of our tasks.

But it is remarkable that, as can be proved, the distance XY not only
decreases when X moves on ¢ to the right, but actually tends to zero
as X tends to infinity. That is, the parallel lines a and ¢ converge asymptotic-
ally! Moreover, it can be proved that in the opposite direction the distance
between them not only increases but tends to infinity.

In Euclidean geometry a line parallel to a given line has a constant
distance from it. In Lobacevskil geometry, in general, such pairs of lines
do not exist, since a line always diverges to infinity from a given line
either on one side or on both sides. So the line that has a constant
distance from a given line can never be straight but is a curve called an
equidistant.

These conclusions of Lobadevskil geometry are indeed remarkable and
are not at all compatible with the customary visual representation. But
as we have already said, such a discrepancy cannot be an argument
against Lobadevskil geometry as an abstract theory, logically developed
from the premises assumed.

4. The magnitude of the angle of parallelism. We shall now study
the angle of parallelism, i.e., the angle y that the line ¢ parallel to a given
line a forms with the perpendicular CA (figure 6). Let us show that this
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angle is smaller, the further C is from a. For this purpose we begin by
proving the following. If two lines b and 4’ form equal angles a, o’ with
a secant BB’, then they have a common perpendicular (figure 7).
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For the proof we draw through the midpoint O of BB’ the line CC’
perpendicular to B. We obtain two triangles OBC and OB’ C'. Their
sides OB and OB’ are equal by construction. The angles at the common
vertex O are equal as vertically opposite. The angle «" is equal to o
since they are also vertically opposite. But «’ is equal to « by assump-
tion. Therefore « is equal to «”. Thus, in our triangles OBC and OB’ C’
the sides OB and OB’ and their adjacent angles are equal. But then, by
a well-known theorem, the triangles are equal, in particular their angles
at C and C'. But the angle at C is a right angle, since the line CC’ is
by construction perpendicular to 6. Therefore the angle at C’ is also a
right angle; i.e., CC’ is also perpendicular to &'. Thus, the segment CC’ isa
common perpendicular to both & and b'. This proves the existence of a
common perpendicular.

Now let us prove that the angle of parallelism decreases with increasing
distance from the line. That is, if the point C’ lies further from a than C,
then, as in figure 6, the parallel ¢’ passing through C’ forms with the
perpendicular C’A4 a smaller angle than the parallel ¢ passing through C.
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For the proof we draw through C' a line ¢” under the same angle to
C’A as the parallel ¢. Then the lines ¢ and ¢” form equal angles with CC".
Therefore, as we have just shown, they have a common perpendicular
BB’. Then we can draw through B’ a line ¢’ parallel to ¢ and forming
with the perpendicular an angle less than a right angle, since we know
already that a parallel forms with the perpendicular an angle less than
a right angle. Now we choose an arbitrary point M in the angle between
¢” and ¢’ and draw the line C’M. It lies in the angle between ¢” and ¢’
and cannot intersect ¢’. A fortiori, it cannot intersect ¢. But it forms
with AC’ a smaller angle than ¢” does, i.e., smaller than y. Then, a
Jortiori, the parallel ¢’ forms an even smaller angle, because it is the
extreme one of all the lines passing through C' and not intersecting a.
Therefore ¢’ forms with C’4 an angle less than ¢ does and this means
that the angle of parallelism decreases on transition to a farther point C’;
this is what we set out to prove.

We have shown, then, that the angle of parallelism decreases for
increasing distance of C from a. Even more can be shown: If the point C
recedes to infinity, then this angle tends to zero. That is, for a sufficiently
large distance from the line a a parallel to it forms with the perpendicular
to it an arbitrarily small angle.* In other words, at a point very far from
a the line perpendicular to a is tilted by a very small angle, the “tilted”
line will no longer intersect a. This fact of Lobacevskil geometry, too,
makes an amazing impression. But further on we shall obtain other no
less amazing results.
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For example, let us take the acute angle « formed by two half lines a
and a’. We erect the perpendicular b to a at a point sufficiently far from

*If h is the length of the perpendicular and y is the angle of parallelism, then as
Lobatevskii proved tan y/2 = e~*/*, where k is a constant depending on the unit of
length and e is the basis of natural logarithms. Obviously e */*, and with it y, tends
to zero for h — .
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the vertex O of « so that the angle of parallelism corresponding to the
chosen distance OB (figure 8) is less than a. Once the angle « is larger
than the angle of parallelism, the line &' through O parallel to b forms
a smaller angle with a. But it does not intersect b. Therefore a’, a fortiori,
does not intersect . Thus we have shown that the perpendicular to one
arm of an acute angle erected sufficiently far from the vertex does not
intersect the other arm.

5. More striking theorems. We have drawn all the preceding con-
clusions with a twofold aim. First of all, and this is the main point, we
wanted to show by some simple examples how theorems of Lobacevskil
geometry can in fact be obtained from the premises assumed. This is a
very simple instance of the way in which mathematicians reach con-
clusions in abstract geometry, of how conclusions can be reached at all
that are not connected with the usual visual representation. Second, we
wanted to show what peculiar results are obtained in Lobadevskil geome-
try. Let us give a few more examples.

Two lines in a Lobadevskil plane either intersect or they are parallel
in the sense of Lobacdevskil, and then they converge asymptotically on
the one side and on the other they diverge infinitely, or else they have
a common perpendicular and diverge infinitely on both sides of it.

If the lines a, b have a common perpendicular (figure 9), then two
perpendiculars ¢, d can be drawn to a that are parallel (in the sense of
Lobacevskil) to b and the whole line b lies in the strip between ¢ and 4.

The limit of a circle of infinitely increasing radius is not a line but a
certain curve, a so-called limiting circle. 1t is not always possible to draw
a circle through three points not on one line, but either a circle or a
limiting circle or an equidistant (i.e., a line formed by the points that are
equidistant from a certain line) can be drawn through the three points.

The sum of the angles of a triangle is always less than two right angles.
If a triangle is increased so that all three heights grow without bound,
then its three angles tend to zero.

There are no triangles of arbitrarily large area.

Two triangles are equal when their angles are equal.

The length / of the circumference of a circle is not proportional to the
radius r but grows more rapidly (essentially by an exponential law). In
fact, the following formula holds

= wk (et — e7T/¥), (1)

where k is a constant depending on the unit of length. Since

etk = | +—;-+%(%)2 4oy e =1 —-;{l+-;(—’3)2—
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we obtain from (I):
!=2m(1 +é%+---). (2)

Only for small ratios r/k is it true with sufficient accuracy that / = 2zr.

All these conclusions are logical sequences of the premises assumed:
“the axioms of Lobagevskil” in conjunction with the basic propositions
of the “customary” geometry.

6. Lobadevskii’s geometry compared with Euclid’s. An extremely im-
portant property of Lobalevskil geometry consists in the fact that for
sufficiently small domains it differs but little from Euclid’s geometry;
the smaller the domain, the less the difference. Thus, for sufficiently
small triangles the connection between sides and angles is expressed with
sufficient accuracy by the formulas of ordinary trigonometry, and the
more accurately, the smaller the triangle.

The formula (2) shows that for small radii the length of a circle is
proportional to the radius, with a good accuracy. Similarly the sum of
the angles of a triangle differs by little from two right angles, etc.

In the formula for the length of the circumference of a circle, there
occurs a constant k depending on the unit of length. If the radius is small
in comparison with k, i.e., if r/k is small, then, as is clear from formula (2),
the length / is nearly 2zr. Generally, the smaller the ratio of the dimensions
of a figure to this constant, the more accurately the properties of the
figure approach the properties of the corresponding figure in Euclidean
geometry.*

A measure for the deviation of the properties of a figure in Lobadevskil
geometry from the properties of a figure of Euclidean geometry is the

* For example, if a, b, ¢ are the sides and the hypotenuse of a right-angled triangle
then instead of Pythagoras' theorem the following relation holds

2et* 4- gmc1%) = (g% 4- gmalk) ek 4- e~bIK),

Expanding in series we obtain

a' 4 6a*b* 4 b*
l2kt+". =d= +b‘8+ lzkz + .

ct 4

so that for large / we have the theorem of Pythagoras ¢? = a* 4 b*, Furthermore, from
LobaZevski's formula for the angle of parallelism y (see the previous footnote),
tan(y/2) = e~**& If hfk is small, i.e., if the parallels are close together, then tan y/2
= e~M* ~ | and y =~ 90°. Thus, for small distances parallels in a Lobaevskii plane
differ little from Euclidean parallels.
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ratio rfk if r measures the dimensions of the figure (radius of a circle,
sides of a triangle, etc.).

This has an important consequence.

Suppose we have to do with the actual space of the external world
and measure distances in kilometers. Let us assume that the constant &
is very large, say 102

Then, for example, by the formula (2), for a circle with a radius of
even 100 km the ratio of its length to the radius differs from 27 by less
than 10-?%. Of the same order are the deviations from other ratios of
Euclidean geometry. Within the limits of | kilometer they would even be
of the order l/k, i.e., 1072, and within the limits of a meter of the order
10-%; i.e., they would be altogether negligible. Such deviations from
Euclidean geometry could not be observed, because the dimensions of
an atom are a hundred times larger (they are of the order of 10-13 km).
On the other hand, on the astronomical scale the ratio r/k could turn
out to be not too small.

Therefore Lobacevskil also assumed that, although on the ordinary
scale Euclid’s geometry is true with great accuracy, the deviation from it
could be noted by astronomical observations. As we have already
mentioned, this assumption has been justified, but the insignificant
deviations from Euclidean that have now been observed on the astronomi-
cal scale turn out to be even more complicated.

Finally, the arguments given have another important consequence. It is
this: Since the deviation from Euclidean geometry becomes smaller for
increasing values of the constant k, in the limit when k& grows without
bound, Lobacevskii geometry goes over into Euclid’s geometry. That is,
Euclid’s geometry is just a limiting case of Lobacevskii geometry. Therefore,
if’ this limiting case is added to Lobalevskil geometry, then it comprises
also Euclid’s geometry and so it turns out, in this sense, to be a more
general theory, In view of this situation Loba&evskil called his theory
“pangeometry,” i.e., universal geometry. Such a relationship of theories
constantly appears in the development of mathematics and the natural
sciences: A new theory includes the old one as a limiting case, in accordance
with the advance of our knowledge from more special to more general
deductions.

However, all the reasonings and deductions we have made would
remain, as it were, a hardly intelligible game of the mind if we could
not establish a comparatively simple real meaning of Lobadevskii geometry
within the system of the usual concepts of Euclidean geometry. The
solution of this problem was not finally reached by Lobacevskil himself;
it fell to the lot of his successors and was found almost forty years after
his first paper had appeared. This solution is described in the next section.
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§4. The Real Meaning of Lobadevskii Geometry

1. Beltrami’s interpretation on the pseudosphere. An intuitive inter-
pretation of Lobacevskil geometry was first given in 1868, when the
Italian geometer Beltrami noted that the intrinsic geometry of a certain
surface, namely the pseudosphere, coincided with the geometry on part
of the Lobacevskil plane. We recall that by the intrinsic geometry of a
surface one understands the collection of properties of figures on it that
can be determined by measuring lengths only on the surface itself. In
figure 10 on the left we have drawn the so-called tractrix. This is the curve

Y.
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with the property that the length of the segment of its tangent from the
point of contact to the intersection with the Oy-axis is constant for all
points of the curve. The Oy-axis is its asymptote. By rotating the tractrix
around its asymptote, we obtain a surface, which is called a pseudosphere
and is illustrated in figure 10 on the right.

The interpretation of Lobadevskil geometry by Beltrami comes to this,
that all geometrical relations on part of the Lobacevskil plane coincide
with the geometrical relations on a suitable part of the pseudosphere
provided the following convention is adopted. The role of straight line
segments is taken over by shortest lines on the surface, the so-called
geodesics. The distance between points is defined as the length of the
shortest line joining them on the surface. Figures are called equal if their
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points can be put in correspondence with each other in such a way that
intrinsic distances between corresponding points are equal. A motion of
figures on the pseudosphere that preserves their dimensions from the point
of view of the intrinsic geometry, although accompanied by bending,
represents a motion in the Lobadevskil plane. Lengths, angles, and areas
are measured on the surface as usual and correspond to lengths, angles,
and areas in Lobacdevskil geometry.

Beltrami’s interpretation shows that, given these conditions, to every
statement of Lobadevskil geometry referring to part of the plane there
corresponds an immediate fact of the intrinsic geometry of the pseudo-
sphere. Lobagevskii geometry consequently has a perfectly real meaning:
It is nothing but an abstract account of the geometry on the pseudosphere.

We ought to mention that, thirty years before Beltrami's discovery,
the intrinsic geometry of the pseudosphere had already been investigated
by F. Minding, who had in fact established the properties that show that
it coincides with Lobacevskil geometry. However, neither he nor anyone
else noted this, until Loba&evskil’s ideas had been sufficiently propagated.
Beltrami had only to compare the results of Lobadevskil and Minding
to become aware of the connection between them.

Beltrami’s discovery at once changed the attitude of mathematicians
to Lobacevskil geometry; from being “fictitious’ it became real.*

2. Klein’s interpretation in the circle and the sphere. However, as
we have emphasized, not the whole Lobadevskil plane is realized on the
pseudosphere, but only part of it.t

*The history of the gradual establishment of the real meaning of Lobatevskii
geometry was in fact even more complicated. First of all, LobaZevskil himself had the
means of proving its noncontradictory character by a so-called analytical model,
but he did not succeed in carrying the proof right through. This was done much later.
Second, the German mathematician Riemann came forward in 1854 with a theory
(see §10) in which Beltrami's results are already contained, although Riemann did not
express them clearly; his paper was not understood and was not published until after his
death in 1868 in the same year as the appearance of Beltrami's paper. The whole
history of Lobafevskii geometry from the attempts at proving Euclid's postulate to
the complete clarification of the significance of non-Euclidean geometry is highly instruc-
tive in that it shows what struggles and roundabout ways are often needed to discover
a truth which afterwards turns out to be simple and intelligible.

+ The pseudosphere has everywhere the same negative Gaussian curvature. All
surfaces of constant negative curvature have (at least in small parts) the same intrinsic
geometry and can therefore serve as models of Lobalevskil geometry. However, as
Hilbert proved in 1901, none of these surfaces can be extendedinfinitely in alldirections
without singularities, so that they cannot serve as a model of the whole LobaZevskii
plane. On the other hand, the young Dutch mathematician Kuiper showed in 1955
that there exist smooth surfaces that represent in the sense of their intrinsic geometry
the whole Lobagevskii plane, but such surfaces although smooth cannot be bent
continuously, they do not have a definite curvature.

Let us also note the following. When LobaZevskii geometry is represented on a
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Therefore the task of giving an actual interpretation of Lobadevskil
geometry on the whole plane, and all the more for his geometry in space,
still remained unsolved. This was done later in 1870 by the German
mathematician Klein. Let us explain what his solution was.

In an ordinary Euclidean plane we take a circle and consider only the
interior of the circle; i.e., we exclude from our investigation its circum-
ference and the domain outside. We agree to call this interior of the
circle a “plane,” since it will turn out to play the role of a Loba&evskil
plane. The chords of our circle will be called “lines™ and in accordance
with the agreement we have just made the end points of chords, as lying
on the circumference, are excluded. Finally, a ‘“‘motion” shall be any
transformation of the circle that carries it into itself and carries lines into
lines, i.e., does not distort its chords. The simplest example of such a
transformation is a rotation of the circle around its center, but it turns
out that there are far more of them. What these transformations are will
be stated in the following paragraphs.

Now if we introduce these conventions of nomenclature, then the facts
of the ordinary geometry within our circle are transformed into theorems
of Lobadevskil geometry. And conversely, every theorem of Loba&evskii
geometry is interpreted as a fact of the ordinary geometry within the
circle.

For example, by Lobadevskil's axiom at least two lines can be drawn
through a point not lying on a given line that do not intersect the line.
Let us translate this axiom into the language of ordinary geometry by
our conventions, i.e., replace lines by chords. Then we obtain the state-
ment: At least two chords can be drawn through a point inside the circle
not lying on a given chord that do not intersect the chord. The truth of
this statement is obvious from figure 11. Therefore Lobadevskil's axiom
is satisfied here.

We recall further that in Lobadevskil geometry among the lines passing
through the given point and not intersecting the given line there are two
extreme ones, namely the ones that are called by Lobadevskil parallels to
the given line. This means that among the chords passing through the
given point 4 and not intersecting the given chord BC there are two
extreme chords. And indeed, these extreme chords are the ones that pass
through B or C, respectively. They do not have common points with
BC, because we exclude points on the circumference. Thus, this theorem
of Lobadevskil is satisfied here.

For a further translation of Loba&evskil’'s theorems into the language

surface of negative constant curvature K, the constant k that figures in the formulas
of the preceding section assumes a simple meaning: k* = — /K.
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of ordinary geometry within the circle, it is necessary to explain how
segments and angles are to be measured in the circle in such a way that
these measurements correspond to Lobadevskil geometry. Of course, the
measuring cannot be the same as the usual one, because in the ordinary
sense a chord has finite length and the line that the chord represents is
infinite. This could perhaps be regarded even as a contradiction, but we
shall see that no contradiction exists.

Let us recall first of all that in ordinary geometry lengths of segments
are measured as follows. Some segment AB is chosen whose length is
taken to be the unit and the length of any other segment XY is determined
by comparing it with AB. For this purpose the segment AB is laid off
along XY. If there remains a part of XY less than AB, then 48 is divided
into, say, 10 equal parts (equal in the sense that each is obtained from
the other by a translation); these parts are laid off on the remaining
portion of XY, if necessary, 4B is then divided into 100 parts, etc. As a
result the length of XY is expressed as a decimal fraction, which may be
infinite. Consequently, lengths are measured by means of a motion of the
whole or part of the segment chosen as unit; i.e., measurement is based
on motion. And once motions are defined (in our case we have defined
them as transformations of the circle that carry lines into lines), then it is
known what segments are to be regarded as equal and how length has
to be measured. The term that defines motion already contains, though
in an implicit form, the rule for measuring lengths. Angles are measured
in just the same way, by laying off the angle taken to be the unit. Thus,
the rule for measuring angles is also contained in the definition of motion.

FiG. 11. FiG. 12,

The corresponding rules for measuring lengths and angles in Lobagevskil
geometry are fairly simple, although essentially different from the ordinary
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rules. We shall not derive them here, because this is not a point of principal
significance in our arguments.*

By the rule for measuring lengths it comes out that a chord has infinite
length. And this is so because if by a transformation that we have taken
to be a motion the segment AB is carried into BB, , then into B,B,, etc.,
these segments BB, become shorter and shorter in the usual sense
(although equal in the sense of our model of Loba&evskil geometry;
figure 12). The points B, , B,, -, By, - accumulate at the end point of
the chord. But for us the chord has no end point; the end point is excluded
by agreement, and in this sense it is “at infinity.” In the sense of
Lobacevskil geometry the points B, , B, , ** do not accumulate anywhere,
they extend to infinity. By means of transformations that we have taken
to be motions, laying off equal segments one after another, we cannot
reach the circumference of the circle from within.

In order to understand clearly how segments are laid off in the model,
let us consider the transformation that plays the role of a translation along
a line.

Suppose that rectangular coordinates are introduced in the plane with
the center of the circle as origin. To fix our ideas let us assume that our
circle has unit radius so that its circumference is represented by the
equation x2 + y2 = | and the points of the interior satisfy the inequality
x: 4y < 1.

We consider the transformation given by the formulas

,_ X+a ,=y\/l—ag

x' = . ¥
1 4+ax -~ 1 + ax

(€))

where x', y' are the coordinates of the point into which the point with
the original coordinates x, y is carried by the transformation, and where
a is an arbitrarily given number of absolute value less than |.

When we find x and y from (3) we obtain, as is easy to verify, for the
inverse expressions of x and y in terms of x', )’

x —a v V1 — g
i e G R

@

The transformation (3) satisfies the two conditions for a “motion™ in
our model: (1) it carries the circle into itself’; (2) it carries lines into lines.

* The rule for measuring length turns out to be the following. Let the segment AB
lie on the chord CD (figure 12). Measuring segments in the usual way we form the
so-called cross ratio CB/CA : DB/DA, Its logarithm is taken to be the length of AB,
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To prove the first property we have to convince ourselves, strictly
speaking, that the inequality or equality x2 + »*> < | implies the cor-
responding relation x'2 4 p'2 < | and vice versa. Let us show, for
example, that when x? + y2 = |, then necessarily x'2 4 y'? = |, ie.,
that the points on the circumference of the given circle remain on it.

We compute x2 - p2, using (3) and taking into account that
xt 4yt =l,ie, )y  =1—x%

(x+aP+y(l —a®) (x+aF +( —x3) —d)
(1 + ax)? a (1 + ax)?

xrz + y:g =

X 42ax+ a4+ —xX—d 4 a1 4 2ax + &%
- (1 + ax)? 1 4 2ax + a%x?

Therefore, when x% + y? = |, then also x? + y? = |. The remaining
cases are verified similarly.

The second property of (3) is established very simply. For we know
that every line is represented by a linear equation and, conversely, every
linear equation represents a line. Suppose that the given line is

Ax+ By + C =0. (5)

After the transformation (4) we obtain

y X —a +By\/l—ag

’ f +C=0’
| —ax | —ax

or, by reducing to the common denominator,

(4 —aC)x' + BV —ay + (C —ad) = 0.

This equation is linear and consequently represents a line. This is the
line into which (5) is carried by the transformation. Let us also note
that the transformation (3) carries the Ox-axis into itself, causing only
a displacement of the points along it. This is clear, because on this axis
y = 0 and by (3) we then also have y* = 0. On the Ox-axis the trans-
formation is given by the single formula

e x+a
1 +ax

(lal <. (39
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On this line the segment x,x, goes over into x;x, by the formula (3')
and by our convention these arguments are to be regarded as equal.
This is the manner in which the “laying off a segment™ proceeds.

For the center O of the circle x = 0 so that x' = a; i.e., under (3')
the center goes over into the point A with the coordinate x = a.

Since a can be arbitrary subject only to |a| < |, the center can be
carried into any point on the diameter along the Ox-axis.

Under the same transformation, the point that was at 4 before is
carried into the point 4, with coordinate

X, = at+a 2

T 1+ 1+a

Thus, the segment OA goes over under (3) into 44, and so it is “laid off”
on the “line” representing the biameter of the circle.

By repeating the same transformation, we can again lay off the same
segment arbitrarily often. The point A4, with the coordinate x, goes over
into the point A,,, with the coordinate

oo o KB +a
n+l 1 + ax, :
So we obtain points 4, 4, , 4, , - with the coordinates

2a x=x1+a=3a+a’ .
1+a” 2 14ax, 1438

Xog=4a, X3 =

Since all the segments A4, 4, ,, are obtained from OA by transformations
expressing a motion, they are all “equal” to one another, equal in the
sense of Lobadevskil geometry as it is represented in the model. It is
easy to show that the points 4, converge to the end point of the diameter.
In the sense of the model they recede to infinity.

Since the Ox-axis can be given any direction, the same shift trans-
formations are possible along any diameter. By combining them with
rotations around the center of the circle and reflections in a diameter,
we obtain all “motions” as they are to be understood in the model;
they consist of shifts, rotations, and reflections. These transformations
will be studied in more detail in the next section, where it will be proved
rigorously that LobaZevskil geometry is really satisfied in our model and
that, in particular, the transformations we have defined as motions satisfy
all the conditions (axioms) to which motions are subject in geometry.

Let us repeat once more what sort of a model of Lobagevskil geometry
Klein proposed. In a plane we have taken the interior of a circle; a point
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is regarded as a point, a line as a chord (with the end points excluded),
a motion is taken to be a trans-
formation carrying the circle into
itself and chords into chords; the
situation of points (a point lies on
a line; a point lies between two
others) is to be understood in the
usual sense. The rule for measuring
lengths and angles (and also areas)
already follows from the way in which
motion is defined, equality of seg-
ments and angles (and of arbitrary
figures) is also defined and the same
definition is applicable to the oper-
ation of laying off one segment along FiGg. 13.

another.

Under all these conditions to every theorem of Lobacevskii geometry in
the plane there corresponds a fact of Euclidean geometry within the circle,
and vice versa: every such fact can be reinterpreted in the form of a theorem
of Lobacevskii geometry.

A model of Lobagevskil geometry in space can be constructed similarly.
For the space we take the interior of some sphere (figure 13), a line is
interpreted as a chord, and a plane as a circle with its circumference
on the sphere, but the surface of the sphere itself, and hence the end
points of chords and the circumferences of these circles, are excluded;
finally, a motion is defined as a transformation of the sphere into itself
that carries chords into chords.

When this model of Lobadevskil geometry was given, it was established
incidentally that his geometry has a simple real meaning. Loba&evskil
geometry is valid, because it can be understood as a specific account
of geometry in a circle or a sphere. At the same time its noncontradictory
character was proved: Its results cannot lead to a contradiction, since
every one can be translated into the language of ordinary Euclidean
geometry within a circle (or a sphere, if we are concerned with Lobadevskil
geometry in space).*

3. Other interpretations. After Klein another model of Lobagevskil
geometry was given by the French mathematician Poincaré, who used it
to derive important results in the theory of functions of a complex

* Mathematicians usually say that Lobagevskil geometry can be represented within
Euclid’s geometry, and so it is just as noncontradictory as Fuclid’s geomeltry.
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variable.* Thus, in his hands Lobacéevskil geometry led to the solution
of difficult problems from an entirely different branch of mathematics,
Lobadevskii geometry has found a number of other applications in
mathematics and theoretical physics; for example, in 1913 the physicist
Vari¢ak applied it in the theory of relativity.

Lobacevskil geometry is growing successfully; the theory of geometrical
constructions, the general theory of curves and surfaces, the theory of
convex bodies, and other subjects are being developed in it.

§5. The Axioms of Geometry; Their Verification in the Present Case

1. Precise formnlation of the axioms. In order to give a strict
mathematical proof that Klein’s model really provides an interpretation
of Lobacevskil geometry, we have first of all to state accurately what it is
that has to be proved. To verify Lobacevskil’s theorems one after the
other would be absurd; there are too many of them, in fact infinitely
many, because one can prove more and more new theorems. However,
it will be sufficient to show that in Klein’s model the fundamental proposi-
tions of Lobadevskil geometry are satisfied, since from these the remaining
ones can be deduced. But in that case these fundamental propositions
must be formulated precisely.

Thus, the problem of proving that Lobacevskii geometry is noncon-
tradictory reduces to the problem of stating its fundamental propositions,
i.e., its axioms, accurately and completely. And since the assumptions of
Lobacevskif geometry differ from those of Euclid’s geometry by the axiom
of parallelism only, our task comes to a precise and complete formulation
of the axioms of Euclidean geometry. In Euclid such a formulation does
not yet exist; in particular, a definition of the properties of motion or
superposition of figures is altogether absent, although of course, he makes
use of them. The task of making Euclid’s axioms accurate and complete
came to the fore precisely in connection with the development of
Lobacevskil geometry; and also with the earlier mentioned general trend
at the end of the last century toward making the foundations of mathe-
matics more rigorous.

As a result of the investigations of a number of geometers, the problem
of formulating the axioms of geometry was finally solved.

Generally speaking, the axioms can be chosen in various ways, taking

* Poincaré’s model amounts to this: The Lobagevskii plane is again taken to be
the interior of a circle, but lines are interpreted as arcs of a circle perpendicular to
the circumference of the given circle; a motion is defined as an arbitrary conformal
transformation of the circle into itself. (The connection with conformal transformation
also yields the connection with the theory of functions of a complex variable.)
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various concepts as starting points. Here we shall give an account of the
axioms of geometry in a plane which is based on the concepts of point,
straight line, motion, and such concepts as: The point X lies on the line a;
the point B lies between the points A and C; a motion carries the point X
into the point Y. (In our case other concepts can be defined in terms of
these; for example, a segment is defined as the set of all points that lie
between two given ones.)
The axioms fall into five groups.

I. Axioms of incidence.

l. One and only one straight line passes through any two points.
2. On every straight line there are at least two points.
3. There exist at least three points not lying on one straight line.

II. Axioms of order.

1. Of any three points on a straight line, just one lies between the other
two.

2. If 4, B are two points of a straight line, then there is at least one
point C on the line such that B lies between A and C.

3. A straight line divides the plane into two half planes (i.e., it splits
all the points of the plane not lying on the line into two classes such that
points of one class can be joined by segments without intersecting the
line, and points of distinct classes cannot).

III. Axioms of motion.

(A motion is to be understood as a transformation not of an individual
figure, but of the whole plane,)

1. A motion carries straight lines into straight lines.

2. Two motions carried out one after the other are equivalent to a
certain single motion,

3. Let 4, A' and a, a' be two points and half lines going out from
them, and «, o' half planes bounded by the lines @ and a' produced; then
there exists a unique motion that carries A4 into 4’, a into a’ and « into «’.
(Speaking intuitively, 4 is carried in 4’ by a translation, then the half line @
is carried by a rotation into &', and finally the half plane « either coincides
with o' or else it has to be subjected to a “revolution” around a as axis.)
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IV. Axiom of continuity.

. Let X;, X;, X;, - be points situated on a straight line such that
each succeeding one lies to the right of the preceding one, but that there
is a point A lying to the right of them all.* Then there exists a point B
that also lies to the right of all the points X,, X,, -, but such that a
point X, is arbitrarily near to it (i.e., no matter what point C is taken
to the left of B, there is a point X, on the segment CB).

V. Axiom of parallelism (Euclid).

1. Only one straight line can pass through a given point that does not
intersect a given straight line.

These axioms, then, are sufficient to construct Euclidean geometry in
the plane. All the axioms of a school course of plane geometry can in
fact be derived from them, though their derivation is very tedious.

The axioms of Lobacevskil geometry differ only in the axiom of
parallelism,

V'. Axiom of parallelism (Lobalevskii).

l. At least two straight lines pass through a point not lying on a given
straight line that do not intersect the line.

It may appear somewhat strange that in the list of axioms there is,
for example, this one: ““On every straight line there are at least two points.”
Surely in our idea of a line there are even infinitely many points on it.
No wonder that neither to Euclid nor to any one of the mathematicians
up to the end of the last century did it occur that such an axiom had to be
stated: it was assumed tacitly. But now the situation has changed. When
we give a new interpretation of geometry, we may understand by a straight
line not the usual line, but something else: a geodesic on a surface, a
chord of a circle, or what have you. Therefore the need clearly arises for
stating accurately and exhaustively everything we have to postulate of
those objects that will be described as straight lines. The same applies
to all the other concepts and axioms.

So the appearance of various interpretations of geometry, as we have
already said, was one of the important stimuli towards an accurate account
of its fundamental statements. This is also the historical order: The
precise formulation of the axioms came after the models of Beltrami,
Klein, and Poincaré.

* “Right” can be replaced by “left.”
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2. Verification of the axioms for Klein’s model. We shall now show
that in Klein’s model all the enumerated axioms are satisfied except the
Euclidean axiom of parallelism. As we have mentioned in the preceding
section (figure 11), it is clear that here not this axiom but Lobaéevskil’s
axiom holds. It remains to verify the axioms I-IV.

The plane in the model is the interior of a circle (whose radius will be
taken to be 1). Points play the role of points, chords the role of straight
lines; the concepts “‘a point lies on a straight line’” and *“‘a point lies
between two others’’ are understood in the usual sense. Hence it is obvious
that the axioms of incidence, order, and continuity are satisfied. For
example, the third axiom of order simply means that a chord divides
the circle into two parts.

It remains to verify the axioms of motion. A motion is defined as a
transformation that carries the circle into itself and straight lines into
straight lines. From this definition it is obvious that these transformations
fulfill the first two axioms of motion: The first, because straight lines
are just chords and consequently preservation of chords means preserva-
tion of straight lines; the second, because if two transformations carrying
the circle into itself and the chords into chords are carried out, then the
resulting transformation also carries the circle into itself and chords into
chords; i.e., it is one of those regarded as “motions.”

Thus, only the third axiom of motion remains and the verification of
it is the only point of difficulty here.

First of all we note that this axiom contains two statements.

Let 4, A" be two points, a, @' two half lines going out from them,
a, o' two half planes bounded by the lines a, a'.

The first claim is that there exists a motion carrying A4 into 4', a into
a', and « into o'

The second claim is that there is only one such motion.

We could perhaps refer to the fact that both these statements have
already been proved in Chapter III, §14, but we prefer to prove them
here without getting involved, as was the case in Chapter 111, with other
more general problems.

Let us show that the first statement is true in our model (i.e., in the ap-
propriate interpretation of the terms ““half line,” “half plane,” “motion”).

To begin with let us assume that the point A" is at the center of the
circle. We take coordinate axes so that the origin is at the center of the
circle and the Ox-axis passes through the point A (figure 14). In the
preceding section we have investigated the transformation

., x+a . _yVi—a

s 6
1 4+ ax Y 1 4+ ax ()

X
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We have proved there that it is a ““motion” (i.e., that it carries the given
circle into itself and straight lines into straight lines).

Let x, be the abscissa of A4, its ordinate being y, = 0. Therefore, when
we choose a = — x,, then, by (6), 4 goes over into the point with the
coordinates (0, 0), i.e., into 4",

Fig. 14. FiG. 15.

Now since straight lines go over into straight lines, the “half line”
(i.e., segment of a chord) a assumes some position a” (figure 14). By a
rotation around the center we can now carry a” into a@’. The *“*half plane”
a is one of the segments bounded by the “straight line” (chord) a. If
after our motion it coincides with &, then the transformation is complete;
if not, then by a revolution (reflection in the diameter a') we carry it
into the semicircle o',

Thus, by combining the “shifting” process (6) with a rotation and,
if necessary, a revolution, we have carried 4, a, « into 4', @', «'. But
the result of all these “motions” is again a “motion”; this ““motion”
carries A4, a, « into A', @', «'; i.e., the existence of the required motion
is now proved.

So far we have restricted ourselves to the special case when the point
A’ is at the center. Let us now assume that it has some other position.
Then by what we have already proved we can carry it into the center
by a certain “motion” which we denote by D, . Then the ‘‘half line” o'
goes over into some “half line” a” passing through the center, and the
“half plane” o' into a certain “half plane” (semicircle) «” (figure 15).
As we have already proved, by means of a certain “motion” D, we can
also carry A into the center, the “half line” g into 4", the “half plane” «
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into «”. Finally by the inverse “‘motion’’ of D; we carry A’ into its former
place and at the same time a”, «” return to their original positions a’, o *

Thus, as a result of combining the “motion”” D, and the “motion”
inverse to D, we carry A4, a, « into 4’, a’, «'. But a combination of
“motions” is again a “‘motion”; and so we have ascertained that there

Fig. 16.

exists a motion carrying 4, a, « into A', @', o' whatever the position of
A and A’ in the circle. So the first statement included in the third axiom
of motion is proved in its full extent.

Let us now show that the second statement is also satisfied in our
model. In the sense of this statement, we have to prove the following.

Let A, A" be two points inside the circle, a, a' segments of chords
emanating from them, and «, o' parts of the circle bounded by these
chords. For the sake of clarity we illustrate these points, chords, and
parts of the circle in two different drawings (figure 16) although, of course,
they lie in the one circle in question. It is claimed that the “motion”
carrying 4 into A’, a into &', « into o, respectively, is unique, i.e., is
completely determined by these data.

For the proof we shall consider a transformation not only of the given
circle, but of the whole plane.t A “motion,” by definition, carries straight
lines into straight lines. A transformation having these properties is

* The “‘motion™ inverse to D, is expressed by the formulas (4) (§4) if D, is expressed
by (3).

t It can be proved that a transformation of a circle into itself carrying straight lines
into straight lines can be extended uniquely with preservation of this property to the
whole projective plane, i.e., the plane to which points at infinity have been adjoined.
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called projective. Consequently, we can say that for us a “motion’ means
a projective transformation carrying the given circle into itself. (In figure 16
we have illustrated this so that the circle K goes over into the circle K'.
We only have to imagine that by a parallel shift the circle K’ is super-
imposed on K.)

Projective transformations have been studied in Chapter IIl, §12, and
we shall make use here of the following important theorem that was
proved there: A projective transformation is completely determined by
the images of four points no three of which are collinear.

Let us return to the “motion” in question. It carries the chord segment a
into @’ and therefore carries B into B'. Since it carries chords into chords,
it also carries C into C'.

Furthermore, since a “motion” generally carries straight lines into
straight lines and the given circle into itself but in our illustration the
circle K into K', it carries the tangents at B and C into the tangents at
B' and C'. Therefore the point D of intersection of the first tangents
goes over into the point D' of intersection of the second tangents*
(figure 16).

Now since A goes over into A’ and straight lines into straight lines,
the line 4D goes over into 4'D’. But AD intersects our circle in two
points E, F, and A'D' intersects it in £’, F'. (In the drawing these points
lie on the circumferences of K and K’.) Since the circle goes over into
itself, the points E, F go over into E’, F'. Let E lie on the arc bounding
the part « and £’ on that bounding «'. Then, since « by assumption
goes over into o, E goes over precisely into £’ and F into F’.

Thus we have found that under the “motion™ in question the points
B, C, E, F on the circumference go over into B, C’, E’, F’. But it is obvious
that of the points B, C, E, Fand B, C’, E’, F' no three can be collinear.
Therefore, by the theorem quoted earlier, the projective transformation
carrying B, C, E, Finto B’, C', E', F' is unique. But a “motion” is a
projective transformation. Consequently our “motion” carrying 4, a, «
into A, @', ' is unique, and this is what we had to prove.

Thus we have shown that in the model in question all the axioms of
Euclidean geometry are in fact satisfied, except the axiom of parallelism ;
or in other words, that all the axioms of Lobalevskil geometry are
satisfied in the model. The model therefore is a realization of Lobad&evskil
geometry. This geometry is, as it were, reduced to Euclid’s geometry
inside the circle, presented in a special manner with the agreed inter-
pretation of the terms “straight line” and “motion” in the model.

* If, for example, the tangents at B and C are parallel, then the point D is “at
infinity.”
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Incidentally, this enables us to develop the Lobacevskil geometry on the
given concrete model, a method that turns out to be more convenient
in many problems.

From the point of view of a logical analysis of the foundations of
geometry, the proof we have given shows, first, that the Lobadevskil
geometry is noncontradictory and, second, that the parallel postulate
cannot possibly be deduced from the remaining axioms enumerated
previously.

§6. Separation of Independent Geometric Theories from
Enclidean Geometry

1. Projective geometry. A fundamental development of geometry
parallel with the creation of Lobadevskil geometry came about in yet
another way. Within the wealth of all the geometric properties of space,
separate groups of properties, distinguished by a peculiar interrelatedness
and stability, were singled out and subjected to an independent study.
These investigations, with their separate methods, gave rise to new
chapters of geometry, ie., to the science of spatial forms, just as for
example anatomy or physiology form distinct chapters in the science of
the human organism.

Initially, geometry was not divided up at all. It studied mainly the
metrical properties of space connected with the measurement of the
dimensions of figures. Circumstances not connected with the measurement
but the qualitative character of the natural location of figures were
considered in passing only, although it was noted long ago that part of
these properties is distinguished by a peculiar stability, in that they are

Fig. 17.
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preserved under rather substantial distortion of the form and displacement
of the location of figures.

Let us consider, for example, the projection of a figure from one plane
into another (figure 17). The lengths of segments are changed in the
process and so are the angles, the outlines of objects are visibly distorted.
However, for example, the property of a number of points of lying on
one straight line is preserved and so is the property of a straight line of
being a tangent to a given curve, etc.

Projections and projective transformations have already been treated
in Chapter IlI, where we mentioned their obvious connection with
perspective, i.e., the drawing of spatial figures on a plane. The study of
properties of perspective goes back in antiquity right to Euclid, to the
work of the ancient architects; artists concerned themselves with perspec-
tive: Diirer, Leonardo da Vinci, and the engineer and mathematician
Desargues (17th century). Finally, at the beginning of the 19th century
Poncelet was the first to separate out and study systematically the
geometrical properties that are preserved under arbitrary projective
transformations of the plane (or of space) and so to create an independent
science, namely projective geometry.*

It might seem that there are only a few, very primitive properties that
are preserved under arbitrary projective transformations, but this is by
no means so. For example, we do not notice immediately that the theorem
stating that the points of intersection of opposite sides (produced) of a
hexagon inscribed in a circle lie on a straight line also holds for an ellipse,
parabola, and hyperbola. The theorem only speaks of projective properties,
and these curves can be obtained from the circle by projection. It is even
less obvious that the theorem to the effect that the diagonals of a circum-
scribed hexagon meet in a point is a peculiar analogue of the theorem
just mentioned; the deep connection between them is revealed only in
projective geometry. Also it is not obvious that under a projection,
irrespective of the distortion of distances, for any four points 4, B, C, D
(figure 18) lying on a straight line the cross ratio AC/CB: AD/DB remains
unaltered

AC AD _ AC' AD
CB'DB C'B DB’

This implies that many relations are maintained in a perspective. For
example, by using this fact it is easy to determine the distance of the

* Poncelet, a French military engineer, carried out his geometrical investigations
during his captivity in Russia after 1812. His “Traité des propriétés projectives des
figures” appeared in 1822.
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telegraph poles A4, B, C from the point D (figure 18) on a photograph
uf the road leading into the distance, when their spacing is known.

With projective geometry and its application to aerial photography,
we have dealt in Chapter I11. It stands to reason that its laws are used
in architecture, in the construction of panoramas, in decorating, etc.

The separation of projective geometry played an important role in the
development of geometry itself.

2. Affine geometry. As another example of an independent geometry
we can take affine geometry. Here one studies the properties of figures
that are not changed by arbitrary transformations in which the Cartesian
coordinates of the original (x, y, z) and the new (x’, y’, z') position of
each point are connected by linear equations:

X'=01X+bly+(‘12 +d1,
Y =X + by + ¢z + dy,
2 = agx + byy + 052 + dy

(where it is assumed that the determinant

a b o

a; by ¢,

as by ¢
is different from zero).
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It turns out that every affine transformation reduces to a motion,
possibly a reflection, in a plane and then to a contraction or extension
of space in three mutually perpendicular directions.

Quite a number of properties of figures are preserved under each of
these transformations. Straight lines remain straight lines (in fact all
“projective’” properties are preserved); moreover, parallel lines remain
parallel; the ratio of volumes is preserved, also the ratio of areas of
figures that lie in parallel planes or in one and the same plane, the ratio
of lengths of segments that lie on one straight line or on parallel lines,
etc. Many well-known theorems belong essentially to affine geometry.
Examples are the statements that the medians of a triangle are concurrent,
that the diagonals of a parallelogram bisect each other, that the midpoints
of parallel chords of an ellipse lie on a straight line, etc.

The whole theory of curves (and surfaces) of the second order is closely
connected with affine geometry. The very division of these curves into
ellipses, parabolas, hyperbolas is, in fact, based on affine properties of
the figures: Under affine transformations an ellipse is transformed precisely
into an ellipse and never into a parabola or a hyperbola; similarly a
parabola can be transformed into any other parabola, but not into an
ellipse, etc.

The importance of the separation and detailed investigation of general
affine properties of figures is emphasized by the fact that incomparably
more complicated transformations turn out to be essentially linear, i.e.,
affine in the infinitely small, and the application of the methods of the
differential calculus is linked exactly with the consideration of infinitely
small regions of space.

3. Klein’s Erlanger Programm. In 1872 Klein, in a lecture at the
University of Erlangen which is now known as the “Erlanger Programm,”
in summing up the results of the developments of projective, affine, and
other “geometries” gave a clear formulation of the general principle of
their formation: We can consider an arbitrary group of single-valued
transformations of space and investigate the properties of figures that are
preserved under the transformations of this group.*

From this point of view the properties of space are stratified, as it
were, with respect to their depth and stability. The ordinary Euclidean

* The word “group™ is used here not merely in the sense of a collection. When we
speak of a group of transformations (see Chapter XX) we have in mind a set of trans-
formations which must contain the identity transformation (leaving all points in place),
which contains together with every nonidentical transformation the one inverse to it
(restoring all points to their previous place), and which contains together with any
two transformations of the set also the transformation that is equivalent to the two
carried out in succession.
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geometry was created by disregarding all properties of real bodies other
than the geometrical; here, in the special branches of geometry, we
perform yet another abstraction within geometry, by disregarding all
geometrical properties except the ones that interest us in the given branch
of geometry.

In accordance with this principle of Klein, we can construct many
geometries. For example, we can consider the transformations that
preserve the angle between arbitrary lines (conformal transformations of
space), and when studying properties of figures preserved under such
transformations we talk of the corresponding conformal geometry. We
can consider transformations of not necessarily the whole space. Thus,
by considering the points and chords of a circle under all its transforma-
tions into itself that carry chords into chords and by singling out the
properties that are preserved under such transformations, we obtain a
geometry which as we have shown in §§4 and 5 coincides with Lobacevskil
geometry.

4. Abstract spaces. The further development of the theories thus
separated, even from the theoretical point of view (to say nothing of
their factual content), did not stop at what we have said here.

If we are interested, for example, only in affine properties of figures
we can, by abstracting from all other properties, imagine a space and
geometrical figures in it that have only properties of interest to us and,
as it were, no other properties at all. In this “space,” figures do not have
any properties except affine ones. It is natural to try and give also an
axiomatic account of the geometry of such an abstract space, i.e., to
assume that we are dealing with some abstract objects: “points,” “straight
lines,” and “‘planes’’ whose properties are expressed in certain axioms
(there are, of course, fewer of these properties than in the case of Euclidean
geometry) so that consequences derived from these axioms correspond
to affine properties of figures of the ordinary space.

This can indeed be done; and such a collection of abstract “‘points,”
“straight lines” and “planes” with the system of their properties is called
an affine space.

In exactly the same way we can imagine an abstract system of objects
having only that range of properties that correspond to projective proper-
ties of figures of Euclidean space. (This time the difference of the axiom
system from the axioms of ordinary geometry turns out to be even more
substantial.)

5. Abstract topological space. When we go deeper into the nature of
geometric forms, we may note that in quite a number of problems we
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are concerned with properties, even deeper than projective ones, which
are so firmly connected with the given figure that they are preserved under
arbitrary distortions, provided only that these distortions do not cause
the figure to break up or parts of it to become “pasted together.” To
make the notion of such a continuous distortion more precise than the
intuitive description does, we refer to the definition of a continuous func-
tion known to us from analysis and say that we are dealing with an
arbitrary transformation of all the points of the figure into a new position
under which the Cartesian coordinates of the points in the new position
are expressed as continuous functions of the old coordinates, while the
old coordinates in turn can be expressed as continuous functions of the
new ones.

Properties of figures that are preserved under arbitrary transformations
of this kind are called topological and the science which investigates them
is topology (see Chapter XVIII).

Topological properties connected with figures are in the simplest cases
distinguished by their exceptionally intuitive character. For example, it
is almost obvious that
every line in a plane that
can be obtained by a
continuous deformation
of the circumference of a
circle divides the plane
into two parts, the in-
terior and exterior, no
matter how much the
contour winds; therefore
the property of a circumference of dividing the plane is topological. Also
it is visibly obvious, no doubt, that the torus surface (figure 19) cannot
possibly be turned into a sphere by a continuous transformation, so that
the property of an arbitrary surface of admitting a continuous transfor-
mation into, say, a torus surface is a topological property that distin-
guishes it from many other surfaces.

Arguments in connection with continuity are of an intuitive character
and often clarify the essence of the matter so well that it is very tempting
to try to turn them into rigorous proofs and, even more, to extend such
methods to other, incomparably more complicated problems.

For example, take the argument that establishes the truth of the fun-
damental theorem of algebra to the effect that every equation

™ 4@zt @zt s a2 +a, =0 )
has at least one real or complex root.

FiG. 19.
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Let z be a point of one complex plane and w = f(z) the corresponding
point of another complex plane w, where f(z) denotes the left-hand side
of (7). For very large absolute values of z, the function f(z) differs relatively
little from z*; but the function z” is very simple. In particular, it is easy
to verify that if z by a continuous motion describes in the complex plane
a circumference with center at the origin, then the point w, = z" goes
precisely n times around a similar circumference of radius | z |* in the
w-plane.* So the point w = f{(z) describes n loops forming some contour
I" comparatively near to the line described by the point w, = z” (figure 20).

Fic. 20.

Now when the circumference described by z is continuously contracted
to one point, then the n times looped-contour I' described by w = f(z)
is continuously deformed and also contracts to a point. But it is rather
obvious that it cannot contract to a point without passing through the
origin O which this contour surrounds initially. Hence it goes through O
at least once, and for such a z we have w = f(z) = 0. This z is, then,
a root of the equation (7). Strictly speaking it is also clear that in a certain
sense there must be exactly n roots, since each of the n loops of the
contour I" on contraction passes through O.

Our argument requires, of course, a rigorous establishment of just
those topological properties of the contour and its deformations that we
have used here.

* For if z = p(cos ¢ + ising) then [see Chapter 1V, §3] we know that

z" = p*(cos¢n + isingn);
therefore, when the argument ¢ of z changes from 0 to 2w, then the argument of z"

changes from 0 to 2#n, i.e., the radius vector leading to z* makes n complete revolutions
under this motion,
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We could give many examples of the use of topological properties in
various branches of mathematics often very far removed from geometry.

With the study of topological properties before us, we can again
imagine an abstract set of objects having only properties of this kind
(see §7, Chapter XX). Such a set is called an abstract topological space.

This point of view is already incomparably wider than the study of
topological properties of geometric figures only. Topological spaces can
be extremely varied; for example, all the points of a torus surface with
their specific properties of adjacency to one another form one topological
space, all the points of the plane another, the whole Euclidean space a
third; all the points of the various many-sheeted Riemann surfaces of
which we have talked in Chapter IX, §5, in connection with the theory
of functions of a complex variable, form other distinct topological spaces.
But it is most remarkable that often the concept of neighborhood and
adjacency can clearly be established between objects that do not fall at
all under our notion of geometric points. For example, for all possible
positions of a hinged mechanism we can clearly indicate what a “neigh-
boring” position means, or that one position is “adjacent” to an infinite
range of others among which there are positions arbitrarily near to the
given one.

We see that the concept of a topological space is extremely general.
We shall return to this point in §8.

The object of this section was not only to give the reader an idea of
the various geometries, but also to show that certain concrete problems
lead to the isolation and investigation of separate groups of geometric
properties; that these investigations entail the creation of the idea of
abstract geometric objects having only these properties, i.e., that the
isolation of these properties in their pure form leads us to the idea of
the corresponding abstract space.

Other developments, leading to the construction of a different kind of
abstract spaces, will be discussed in the following section.

§7. Many-Dimensional Spaces

1. The geometry of n-dimensional space. An important step in the
development of new geometric ideas was the creation of the geometry
of many-dimensional spaces to which we have already referred in the
preceding chapter. One of the moving forces was the tendency to use
geometric arguments for the solution of problems in algebra and analysis.
The geometric approach to the solution of analytical problems is based
on the method of coordinates. Let us give a simple example.

We want to know how many integral solutions the inequality x* + y2 < N
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has. By regarding x and y as Cartesian coordinates in a plane, we see that
the problem reduces to the following: How many points with integer coor-
dinates are contained in a circle of
radius v/N. The points with in-
teger coordinates are the vertices
of squares with sides of unit length
covering the plane (figure 21). The
number of such points inside the
circle is approximately equal to
the number of squares lying in the
circle, i.e., to the area of a circle
of radius +/N. Thus, the number
of solutions of the inequality we
are interested in is approximately
equal to #N. Furthermore, it is
not difficult to prove that the
relative error occurring here tends
to zero for N— cv. A more FiG, 21.

accurate study of this error is a

very difficult problem in the theory of numbers and has become the
object of deep investigations in comparatively recent years.

In our example it was sufficient to translate the problem into geometric
language in order to obtain at once a result which is by no means obvious
from the point of view of “pure algebra.” The corresponding problem
for an inequality with three unknowns can be solved in exactly the same
way. However, when there are more than three unknowns, this method
is not applicable because our space is three-dimensional, i.e., the position
of a point in it is determined by a triple of coordinates. To preserve the
convenient geometrical analogy in similar cases we introduce the idea
of an abstract *“n-dimensional space” whose points are determined by n
coordinates x,,xz,-, X, . The fundamental concepts of geometry are
then generalized in such a way that the geometric arguments turn out
to be applicable to the solution of problems with n variables; this makes
it much easier to obtain results. The possibility of such a generalization
is based on the uniformity of the algebraic laws thanks to which many
problems can be solved simultaneously for an arbitrary number of
variables. This enables us to apply geometric arguments that are valid
for three dimensions to an arbitrary number of dimensions.

2. Coordinates in n-dimensional geometry, Rudiments of the con-
cepts of a four-dimensional space can already be found in Lagrange
who, in his papers on mechanics, formally regarded the time as a “fourth
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coordinate” beside the three spatial coordinates. But the first systematic
account of the elements of many-dimensional geometry was given in 1844
by the German mathematician Grassmann and independently by the
Englishman Cayley. They proceeded by way of a formal analogy with
the ordinary analytical geometry. A general outline of this analogy in
an up-to-date exposition is as follows.

A point in an n-dimensional space is determined by n coordinates
Xy Xz, , X, . A figure in n-
dimensional space is a geometric
locus or set of points satisfying
! certain conditions. For example,

an n-dimensional ‘“cube” is de-
fined as the geometric locus of
points whose coordinates are sub-
ject to the inequalitiesa < x; < b
x;  (i=1,2,+,n). The analogy with
(o] ! the ordinary cube is here com-
pletely evident: When n = 3, i.e,,
when the space is three-dimension-

1 al, our inequalities in fact define
X the cube whose edges are parallel

Fig. 22. to the coordinate axes and of
length b — a (figure 22 illustrates

 *3

thecasea =0, 6 = ).
The distance between two points can be defined as the square root of
the sum of the squares of the differences of the coordinates

d=Vx{ —xF+ (g — 5P+ +(x, — x

This is a direct generalization of the well-known formulas for the distance
in a plane or in three-dimensional space, i.e., for n = 2 or 3.

It is now possible to define equality of figures in n-dimensional space.
Two figures are regarded as equal if a correspondence can be established
between their points under which the distance between pairs of correspond-
ing points are equal. A transformation preserving distances can be called
a generalized motion.* Then we can say by analogy with the usual
Euclidean geometry that the objects of study in #-dimensional geometry
are the properties of figures that are preserved under generalized motions.

* The generalization consists not only in the transition to n variables but also in
the fact that a reflection in a plane is incorporated among motions, because jt also
does not alter distances between points,
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This definition of the content of n-dimensional geometry was set up in
the 1870’s and provided a precise foundation for its development. Since
then n-dimensional geometry has been the object of numerous investiga-
tions in all directions similar to those of Euclidean geometry (elementary
geometry, general theory of curves, etc.).

The concept of distance between points also enables us to transfer to
n-dimensional space other concepts of geometry such as segment, sphere,
length, angle, volume, etc. For example, an n-dimensional sphere is
defined as the set of points whose distance from a given point is not more
than a given R. Therefore a sphere is given analytically by an inequality

(G — @)+ -+ (xn —a,)® < R,

where a,, =, a, are the coordinates of its center. The surface of the
sphere is given by the equation

(x — @) + - 4+ (x, —ay)? = R

The segment AB can be defined as the set of points X such that the
sum of the distances from X to 4 and B is equal to the distance from
A to B. (The length of a segment is the distance between its end points.)

3. Hyperplanes., Let us dwell in some detail on planes of various
dimensions.

In three-dimensional space there are the one-dimensional “planes”
(namely, the straight lines), and the ordinary (two-dimensional) planes.
In n-dimensional space for n > 3 we also have to take many-dimensional
planes into account, of dimensions 3 to n — I.

In three-dimensional space a plane is, of course, given by one linear
equation, and a straight line by two such equations.

By a direct generalization we come to the following definition: A
k-dimensional plane (usually called a hyperplane) in an n-dimensional
space is the geometric locus of points whose coordinates satisfy a system
of n — k linear equations

Gy X+ GpXs + o+ aypx, + b =0,
aglx1+anx2+°"+aznxn+b2=09 (8)

R R P R P R R T e PP T

Ay, X + App2 X + **° e An_k,n Xn + bﬂ =0,

provided the equations are compatible and independent (i.e., none of them
is a consequence of the others). Each of these equations represents an
(n — 1)-dimensional hyperplane and together they determine the common
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points of n — k such hyperplanes. The fact that the equations (8) are
compatible means that there are some points that satisfy them, i.e., that
the n — k given (n — l)-dimensional hyperplanes intersect. The fact that
none of the equations is a consequence of the others means that none
of them can be omitted. Otherwise the system would reduce to a smaller
number of equations and would define a hyperplane of a larger number
of dimensions. Thus, to speak geometrically, a k-dimensional hyperplane
is determined as the intersection of n — k (n — 1)-dimensional hyperplanes
represented by independent equations. In particular, when k = 1, we
have n — | equations which determine a *“‘one-dimensional hyperplane,”
i.e., a straight line. Thus, this definition of a k-dimensional hyperplane
is a natural formal generalization of well-known results of analytical
geometry. The advantage of this generalization becomes apparent in the
fact that conclusions concerning systems of linear equations receive a
geometric interpretation which makes them more lucid. This geometric
approach to problems of linear algebra was also discussed in Chapter XVI.

An important property of a k-dimensional hyperplane is the fact that
it can be regarded as a k-dimensional space. For example, a three-
dimensional hyperplane is itself an ordinary three-dimensional space.
This enables us to transfer to a space of higher dimension many con-
clusions obtained for spaces of lower dimension, by means of the usual
argument from n to n + 1.

If the equations (8) are compatible and independent, then it is proved
in algebra that we can choose k of the n variables x; at will and then the
remaining n — k variables can be expressed in terms of them.* For
example:

Xewp = Cun Xy + CreXp + * + e Xp + 4y,
Xipz = Cq1 X + Coa Xg + ** + Cox X + s

B R T R

X = Cpxa1 X1+ Cncke Xz + 0+ Coopie X + di

Here arbitrary values can be given to x;, X, -, X3, and the remaining
x; are determined by them. This means that the position of a point in
a k-dimensional hyperplane is determined by k coordinates that can
assume arbitrary values. It is in this sense that the hyperplane has k
dimensions,

* These k variables cannot, in general, be chosen arbitrarily from the x, . For example,
in the system x, + x, + x; = 0, ¥, — x, — x5 = 0 the value of x, is uniquely deter-
mined: x, = 0, and obviously neither x, nor x; can be expressed in terms of it. All
that is stated, however, is that the necessary k of the x, can always be found.
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From the definition of the hyperplanes of various dimensions, we can
derive in a purely algebraic way the following fundamental theorems.

1. One and only one k-dimensional hyperplane passes through & + 1
points that do not lie in a (k — 1)-dimensional hyperplane.

The complete analogy with known facts of elementary geometry is
obvious here. The proof of this theorem is based on the theory of systems
of linear equations and is somewhat complicated, so that we shall not
write it out.

2. If an [ldimensional and a k-dimensional hyperplane in an n-
dimensional space have at least one point in common and / + k = n,
then they intersect in a hyperplane of dimension not less than / + k — n.

Hence it follows as a special case that two two-dimensional planes in a
three-dimensional space, if they do not coincide and are not parallel,
intersect on a straight line (n = 3,/ = 2,/ 4+ k — n = 1). But in a four-
dimensional space two two-dimensional planes may well have a single
point in common. For example, the planes given by the system of equa-
tions:

x1=0 xa='-0
x2=0 ’ x4=0’

obviously intersect only in the point with the coordinates x; = 0, x, = 0,
x3=0,x,=0.

The proof of the theorem is extremely simple: An /-dimensional hyper-
plane is given by n — [/ equations, a k-dimensional one by m — k; the
coordinates of the points of intersection must satisfy simultaneously all
these (n —1) +(n — k) = n— (I + k — n) equations. If none of the
equations is a consequence of the others, then by the very definition of
a hyperplane we have as intersection an (/ + k — n)-dimensional hyper-
plane; otherwise we have a hyperplane with a larger number of dimensions.

To these two theorems we can add another two.

3. In each k-dimensional hyperplane there are at least k + |1 points
that do not lie in a hyperplane of smaller dimension. In an n-dimensional
space there are at least n + | points that do not lie in any hyperplane.

4. If a straight line has two points in common with a hyperplane (of
an arbitrary number of dimensions), then it lies entirely in that hyperplane.
Generally, if an /dimensional hyperplane has / 4 | points in common
with a k-dimensional hyperplane that do not lie in an (/ — 1)-dimensional
hyperplane, then it lies entirely in this k-dimensional hyperplane.

Note that n-dimensional geometry can be built up starting from axioms
that generalize the axioms listed in §5. In this approach the four theorems



142 XVII. NON-EUCLIDEAN GEOMETRY

mentioned here assume the role of axioms of incidence. This shows, by
the way, that the concept of axiom is relative: One and the same statement
can emerge as a theorem in one buildup of a theory, and as an axiom
in another.

4. Various examples of an n-dimensional space. We have now ob-
tained a general idea of the mathematical concept of a many-dimensional
space. In order to clarify the actual physical meaning of this concept,
let us turn again to the problem of graphical illustration. Suppose, for
example, we wish to illustrate the dependence of the pressure of a gas
on its volume. We take coordinate axes in a plane and plot on one axis
the volume ¢, on the other the pressure p. The dependence of the pressure
on the volume under the given conditions is then illustrated by a certain
curve (by the well-known Boyle-Mariotte law this would be a hyperbola
for an ideal gas with a fixed temperature). But when we have a more
complicated physical system, whose state is given not by two data (like
volume and pressure in the case of the gas) but by say five, then the
graphical illustration of its behavior leads to the notion of a five-dimen-
sional space.

Suppose, for example, that we are concerned with an alloy of three
metals or a mixture of three gases. The state of the mixture is determined
by four data: the temperature 7, the pressure p, and the percentage
contents ¢, , ¢, of two gases (the percentage content of the third gas is
then determined by the fact that the sum total of the percentage contents
is 100% so that ¢; = 100 — ¢; — ¢;). The state of such a mixture is,
therefore, determined by four data. A graphical illustration of it either
requires a combination of several diagrams, or else we have to represent
the state in the form of a point of a four-dimensional space with four
coordinates T, p, ¢, , ¢, . Such a representation is, in fact, used in chemistry;
the application of the methods of many-dimensional geometry to chemistry
was developed by the American scientist Gibbs and the school of Soviet
physicochemists of Academician Kurnakov. Here the introduction of a
many-dimensional space is dictated by the endeavor to preserve the useful
geometrical analogies and arguments arising from the simple device of
graphical illustration.

Let us give an example from the realm of geometry. A sphere is given
by four data: the three coordinates of its center and its radius.* The
special geometry of spheres which was built up about a century ago by
several mathematicians can, therefore, be regarded as a four-dimensional
geometry.

) *?m_m;s.latoars note: Therefore a sphere can be represented as a point in four-
dimensional space.
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From all we have said the real basis for the introduction of the concept
of a many-dimensional space will be clear. If some figure or the state
of some system, etc., is given by n data, then this figure, this state, etc.,
can be conceived as a point of some n-dimensional space. The advantage
of this representation is approximately the same as that of ordinary
graphs: It consists in the possibility of applying well-known geometric
analogies and methods to the study of the phenomena in question.

There is, therefore, no mysticism in the mathematical concept of a
many-dimensional space. It is not more than a certain abstract concept
developed by the mathematicians for the purpose of describing in geomet-
ric language those things that do not admit a simple geometric illustration
in the usual sense. This abstract concept has an entirely real basis, it
reflects actuality and was created by the demands of science, not by idle
play of the imagination. It reflects the fact that there exist such things
as a sphere or a mixture of three gases that are characterized by several
data so that the collection of all these things is many-dimensional. The
number of variables in a given case is just the number of these data;
just as a point moving in space changes its three coordinates, so a sphere
moving, expanding, and contracting changes its four “coordinates,” i.e.,
the four quantities that determine it.

In the subsequent sections, we shall dwell upon many-dimensional
geometry. It is important here to understand that this is a method of
mathematical description of real things and phenomena. The idea that
there exists some sort of four-dimensional space in which our real space
is embedded, an idea that has been used by certain litterateurs and spir-
itualists, has no relation to the mathematical concept of a four-dimensional
space. If one can speak here of a relationship to science at all, it is perhaps
possible only in the sense of an imaginative distortion of scientific
concepts.

5. Polyhedra in n-dimensional space. As we have already said, the
geometry of a many-dimensional space was built up at first by way of
a formal generalization of the usual analytic geometry to an arbitrary
number of variables. However, such an approach to the matter could not
satisfy the mathematicians completely. As a matter of fact, the purpose
was not so much a generalization of the geometric concepts as of the
geometric method of investigation itself. It was, therefore, important to
give a purely geometric exposition of n-dimensional geometry, inde-
pendently of the analytical apparatus. This was first done by the Swiss
mathematician Schlaefli in 1852, one of whose articles deals with the
problem of regular polyhedra of a many-dimensional space. True,
Schlaefli’s article was not appreciated by his contemporaries, because to
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understand it one has to rise, to a certain extent, to an abstract view
of geometry. Only subsequent developments of mathematics have brought
complete clarity into this problem, by an exhaustive elucidation of the
mutual relationship of the analytic and geometric approach. Since we
cannot go deeper into this problem, we confine ourselves to examples of
a geometric exposition of n-dimensional geometry.

Let us consider the geometric definition of an n-dimensional cube,
When we move a segment in a plane perpendicular to itself by a distance
equal to its length, we sweep out a square, i.e., a two-dimensional cube
(figure 23a). Similarly, when we move a square in the direction perpen-

(a) (b)
FiG. 23.

dicular to its plane by a distance equal to its side, we sweep out a three-
dimensional cube (figure 23b). In order to obtain a four-dimensional cube,
we use the same construction: We take a three-dimensional hyperplane
in a four-dimensional space and in it a three-dimensional cube and we
move it in the direction perpendicular to this three-dimensional hyperplane
by a distance equal to its edge (by definition a straight line is perpendicular
to a k-dimensional hyperplane if it is perpendicular to every straight line
lying in that hyperplane). This construction is symbolically represented in
figure 23c. Two three-dimensional cubes Q and Q' are drawn here,
namely the given cube in its initial and its final position. The lines joining
the vertices of these cubes illustrate the segments traced out by the vertices
in the movement of the cube. We see that a four-dimensional cube has
16 vertices in all: 8 for the cube Q and 8 for Q’. Further, it has 32 edges:
12 edges of the moving three-dimensional cube in its initial position @,
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12 edges in the final position Q’, and 8 “lateral” edges. It has 8 three-
dimensional faces which are themselves cubes. In the motion of the
three-dimensional cube each of its faces sweeps out a three-dimensional
cube so that we obtain 6 cubes as the lateral faces of the four-dimensional
cube, and in addition there are two faces: “front” and “back™ or the
initial and final position of the moving cube. Finally, a four-dimensional
cube also has two-dimensional square faces, 24 in number: 6 each in the
cubes @ and @', and another 12 squares that are swept out by the edges
of @ in its motion.,

So a four-dimensional cube has 8 three-dimensional faces, 24 two-
dimensional faces, 32 one-dimensional faces (edges), and finally 16
vertices; every face is a “cube” of the appropriate number of dimensions:
a three-dimensional cube, a square, a segment, and a vertex (which we
can regard as a zero-dimensional cube).

Similarly, by shifting a four-dimensional cube “into the fifth dimension”
we obtain a five-dimensional cube and so, by repeating the construction,
we can build up a cube of an arbitrary number of dimensions. All the
faces of an n-dimensional cube are themselves cubes of 'a smaller number
of dimensions: (n — 1)-dimensional, (n — 2)-dimensional, etc., finally
one-dimensional, i.e., edges. For the inquisitive reader it is not a difficult
task to find out how many faces of each number of dimensions an n-
dimensional cube has. It is easy to see that the number of (7 — 1)-dimen-
sional faces is 2n and that there are 2" vertices. But how many edges are
there, for example?

Let us look at another polyhedron in an n-dimensional space. In the
plane the simplest polygon is a triangle; it has the least possible number
of vertices. In order to obtain a polyhedron with the least number of
vertices it is sufficient to take a point not in the plane of a triangle and
join it by segments to each point of the triangle. The segments so obtained
fill a three-sided pyramid, i.e., a tetrahedron (figure 24). In order to obtain
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the simplest polyhedron in a four-dimensional space we argue as follows,
We take an arbitrary three-dimensional hyperplane and in it a certain
tetrahedron T. Next we take a point not in the given three-dimensional
hyperplane and join it by segments to all the points of the tetrahedron T.
On the right of figure 24 we have illustrated this construction symbolically.
Each of the segments joining the point O to a point of the tetrahedron T
has no other points in common with the tetrahedron, because otherwise
it would lie entirely in the three-dimensional space containing 7. All these
segments, as it were, “go into the fourth dimension.” They form the
simplest four-dimensional polyhedron, the so-called four-dimensional
simplex. Its three-dimensional faces are tetrahedra: one at the base and
4 lateral faces resting on the two-dimensional faces of the basis; altogether
5 faces. Its two-dimensional faces are triangles; there are 10 of them:
4 in the basis and 6 lateral. Finally, it has 10 edges and 5 vertices.

By repeating the same construction for an arbitrary number n of
dimensions we obtain the simplest n-dimensional polyhedron, the so-
called n-dimensional simplex. As is clear from the construction, it has
n+ 1 vertices. One can see that all its faces are also simplexes of a
smaller number of dimensions: (7 — 1)-dimensional, (7 — 2)-dimensional,
etc.*

It is also easy to generalize the concepts of a prism and a pyramid.
If we give a parallel shift to a
plane polygon into the third
dimension, then it sweeps out
a prism. Similarly, by shifting a
three-dimensional polyhedron
into the fourth dimension, we
obtain a four-dimensional
prism (illustrated symbolically
in figure 25). A four-dimen-
sional cube is, of course, a
special case of a prism.

Fic. 25. A pyramid is constructed as
follows. We take a polygon Q
and a point O not in the plane of the polygon. Each point of Q is joined

* Any m vertices of a simplex determine the (m — [)-dimensional simplex *‘spanned”
by them: an (m — 1)-dimensional face of the given n-dimensional simplex. The number
of (m — 1)-dimensional faces of an n-dimensional simplex is therefore equal to the
number of combinations of m of its vertices from n + 1, i.e.,

(n+ 1)

i, 17 ORISR i el SRS
- m!{n —m+ 1)!
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by a segment to O and these segments fill a pyramid with the base Q
(figure 26). Similarly, if a three-
dimensional polyhedron @ is
given in a four-dimensional
space and a point O not in the
same three-dimensional plane,
then the segments joining the
points of @ to O form a four-
dimensional pyramid with the
base Q. A four-dimensional
simplex is nothing but a pyra-
mid with a tetrahedron as base.

In exactly the same way, by
starting from an (n — 1)-di- FiG. 26.
mensional polyhedron @, we
can define an n-dimensional prism and an n-dimensional pyramid.

Generally, an n-dimensional polyhedron is a part of an n-dimensional
space bounded by a finite number of portions of (n — 1)-dimensional
hyperplanes; a k-dimensional polyhedron is a part of a k-dimensional
hyperplane bounded by a finite number of portions of (k¢ — 1)-dimensional
hyperplanes. The faces of a polyhedron are themselves polyhedra of a
smaller number of dimensions.

The theory of n-dimensional polyhedra is a generalization of the theory
of ordinary three-dimensional polyhedra and is full of concrete results.
In a number of cases theorems on three-dimensional polyhedra generalize
to an arbitrary number of dimensions without special difficulties, but
there are also problems whose solution for n-dimensional polyhedra runs
into enormous difficulties. We might mention here the deep investigations
of G. F. Voronol (1868-1908) which arose, by the way, in connection
with problems of the theory of numbers; they were continued by Soviet
geometers. One of the problems, the so-called “Voronol problem,” is
still not completely solved.*

As an example for the essential difference that can hold between spaces
of different dimensions, we can take the regular polyhedra. In the plane
a regular polyhedron can have an arbitrary number of sides. In other
words, there are infinitely many distinct forms of regular “two-dimensional

* It concerns the search for those convex polyhedra by which the space can be filled
by joining them one to another parallel and along whole faces. In the case of three-
dimensional space this problem was raised and solved by Fedorov in connection with
the needs of crystallography; Voronoi and his successors made some progress with
the same problem for the n-dimensional space, but the final solution is known only
for the spaces of two, three, and four dimensions.
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polyhedra.” There are altogether five forms of three-dimensional regular
polyhedra: the tetrahedron, the cube, the octahedron, the dodecahedron,
and the icosahedron. In four-dimensional
space there are six forms of regular poly-
hedra, but in any space of a larger number
of dimensions there are only three. They
are: (1) the analogue to the tetrahedron,
the regular n-dimensional simplex, i.e., the
simplex whose edges are all equal; (2) the
n-dimensional cube; (3) the analogue to
the octahedron which is constructed as
follows: The centers of the faces of the
FiG. 27. cube become the vertices of this poly-
hedron so that it is spanned by them, as
it were. In the case of a three-dimensional space this construction is
carried out in figure 27. So we see that as far as regular polyhedra are
concerned, spaces of two, three and four dimensions occupy a special
position.

6. Calculation of volumes. Now let us discuss the problem of the
volume of a body in n-dimensional space. The volume of an r-dimensional
body is defined similarly to the way it is done in ordinary geometry.
Volume is a numerical characteristic attached to a figure, and of the
volume it is postulated that equal bodies have equal volumes, i.e., that
the volume does not change when the figure moves as a rigid body, and
that in case one body is composed of two others, its volume is equal
to the sum of their volumes. As unit of volume one takes the cube with
edges of unit length. It is then shown that the volume of a cube with
edge a is . This is done exactly as in the plane and in three-dimensional
space, by filling up the cube with layers of cubes (figures 28). Since the
cubes are packed in n directions, this gives us a™.

In order to define the volume of an arbitrary rn-dimensional body, we
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FiG. 28. Fig. 29.
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replace it by an approximate body composed of very many n-dimensional
cubes similarly to the way in which in figure 29 a plane figure is replaced
by a figure of squares. The volume of the body is defined as the limit
of such step-shaped bodies when the cubes that make it up decrease in
size ad infinitum,

The k-dimensional volume of a k-dimensional figure lying in some
k-dimensional hyperplane is defined in exactly the same way. From the
definition of the volume it is easy to deduce an important property of it:
Under a similarity magnification of a body, i.e., when all its linear dimen-
sions are increased A fold, the k-dimensional volume is increased A* fold.

If a body is divided into parallel layers, then its volume is the sum of
the volumes of these layers

v=2XV,.

The volume of each layer can be represented approximately as the
product of its height 4h, with the (n — l)-dimensional volume (*“‘area”)
of the corresponding section S; . As a result, the total volume of the body
is represented approximately by the sum

V ~ ES( Ah‘.

Passing to the limit for all 4k, — 0 we obtain a representation of the
volume in the form of an integral

H
v = j S(h) dh, ©9)
0

where H is the length of the body in the direction perpendicular to the
section.

All this is completely analogous to the calculation of volumes in three-
dimensional space. For example, for a prism all the sections are equal
and, therefore, their *‘area” does not depend on 4. Hence for the prism
¥V = SH; i.e., the volume of a prism is equal to the product of the *‘area”
of the base and the height. Let us determine the volume of an n-dimensional
pyramid. Suppose that a pyramid is given with height H and area of the
base S. We cut it by a plane parallel to the base at a distance h from the
vertex. Then a pyramid of height & is cut off. We denote the area of its
base by s(#). This smaller pyramid is, obviously, similar to the original
one: All its dimensions are smaller in the ratio of /4 to H, i.e., they are
multiplied by h/H. Therefore the (n — 1)-dimensional volume (i.e., the
“area”) of its base is

= (s.
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because when the linear dimensions of an (n — |)-dimensional figure are
changed by a factor A, then the volume is multiplied by A*-',
By formula (9) the volume of the whole pyramid is equal to

H
V= j s(h) dh,
1]
hence
h

[ = e o b

i.e., the volume of an n-dimensional pyramid is equal to l/nth of the
product of the “area” [(n — |)-dimensional volume] of the base and the
height. For n equal to 2 or 3 we obtain as special cases the well-known
results: The area (two-dimensional volume) of a triangle is equal to half
the product of the base and the height, and the volume of a three-dimen-
sional pyramid is one third of the product of the area of the base and
the height.

A sphere can be represented approximately as composed of very
narrow pyramids with a common vertex at the center of the sphere.
The heights of these pyramids are equal to the radius R and the areas
of their bases o; cover the whole surface S of the sphere approximately.
Since the volume of each pyramid is equal to 1/n Ro;, we obtain by
adding up these volumes that the volume of the sphere is

| |
Va-RY o~ RS.
n 20%’1

In the limit this gives us the exact formula: ¥ = |/n RS; i.e., the volume
of a sphere is equal to 1/nth of the product of its radius and its surface.
For n equal to 2 or 3 this relation is widely known.*

We mention one important property of a sphere which can be proved,
generally speaking, for an n-dimensional space in exactly the same way
as for a three-dimensional space: Among all bodies of a given volume
the sphere alone has the least surface area.

7. “Higher” n-dimensional geometry, So far we have confined our-
selves to the elementary geometry of the n-dimensional space; but we
can also develop the ““higher’” geometry, for example the general theory

* The calculation of the volume of a sphere can also be effected by applying
formula (9); a section of an n-dimensional sphere is an (n — 1)-dimensional sphere,
and therefore the volume of an n-dimensional sphere can be calculated by going from
n—1 ton
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of curves and surfaces. In n-dimensional space surfaces may have various
numbers of dimensions: one-dimensional “‘surfaces,” i.e., curves, two-
dimensional surfaces, three-dimensional, :-+, and finally (n — 1)-dimen-
sional surfaces. A curve can be defined as the geometric locus of points
whose coordinates depend continuously on a variable or parameter ¢

X x(1), Xp = x(l), v, X = X(0).

A curve is so to speak the trajectory of the motion of a point in n-dimen-
sional space with varying f. If our space serves as an illustration of the
state of some physical system such as we have discussed in subsection 4,
then a curve illustrates a continuous sequence of states or the course of
the change of state in dependence on the parameter ¢ (for example the
time). This generalizes the usual graphical illustration of the process of
change of state by means of curves.

With every point of a curve in n-dimensional space, we connect not
only a tangent (*“‘one-dimensional tangential plane) but also tangent
hyperplanes of all dimensions from 2 to n — |. The rate of rotation of
each of these hyperplanes with respect to the rate of increase of the arc
length of the curve gives the corresponding curvature. Thus, a curve has
n — | tangent hyperplanes, from the one-dimensional to the (n — 1)-di-
mensional, and accordingly » — | curvatures. The differential geometry
in an n-dimensional space turns out to be far more complicated than in
three-dimensional space.

So far we have only talked of the n-dimensional geometry which is an
immediate generalization of the ordinary Euclidean geometry. But we
know already that, apart from Euclidean geometry, there exist also
Lobacevskil geometry, projective geometry and others. These geometries
are just as easily generalized to an arbitrary number of dimensions.

§8. Generalization of the Scope of Geometry

1. The space of colors. When we spoke in the preceding section of
the real meaning of n-dimensional space, we came up against the problem
of generalizing the scope of geometry, the problem of the general concept
of space in mathematics. But before giving the corresponding general
definition, let us consider a number of examples.

Experience shows, and this was already mentioned by M. V. Lomonosov,
that the normal human vision is three-colored, i.e., every chromatic
perception, of a color C, is a combination of three fundamental percep-
tions: red R, green G and blue B, with specific intensities.* When we

Wé ;ré éé;noerned here with the perception of color, not of light. Perception of
color is also an objective phenomenon—a reaction to light. One and the same per-
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denote these intensities in certain units by x, y, z, we can write down that
C = xR + yG + zB. Just as a point can be shifted in space up and
down, right and left, back and forth, so a perception of color, of a color C,
can be changed continuously in three directions by changing its constituent
parts red, green, and blue. By analogy we can say, therefore, that the
set of all possible colors is the “‘three-dimensional color space.” The
intensities x, y, z play the role of coordinates of a point, of a color C.
(An important difference from the ordinary coordinates consists in the
fact that the intensities cannot be negative. When x = y=z= 0, we
obtain a perfectly black color corresponding to complete absence of
light.)

A continuous change of color can be represented as a line in the “color
space”; the colors of the rainbow, for example, from such a line; a color
line is also formed by a number of perceptions produced on an object
of homogeneous coloration by a continuous change of the brightness of
illumination. In this case only the intensity of the perception changes,
its ““coloredness” remains unchanged.

Further, when two colors are given, say red R and white W, then by
mixing them in varying proportions* we obtain a continuous sequence
of colors from R to W which we can call the segment RW. The conception
that a rose color lies between red and white has a clear meaning.

In this way there arises the concept of the simplest geometric figures
and relations in the “color space.” A "point” is a color, the *“‘segment”
AB is the set obtained by mixing the colors 4 and B; the statement
that ““the point D lies on the segment AB” means that D is a mixture
of 4 and B, The mixture of three colors gives a piece of a plane—a “color
triangle.” All this can also be described analytically by using the color
coordinates x, y, z, and the formulas giving color lines and planes are
entirely analogous to the formulas of ordinary analytic geometry.t

In the color space the relations of Euclidean geometry concerning the
disposition of points and segments are satisfied. The system of these
relations forms an affine geometry, and we can say that the set of all

ception may be produced by different light waves. For example, a green color may be
obtained not only from spectrally pure green light, but also from a mixture of red and
blue. On the other hand, people suffering from *‘color blindness” (Daltonism) have
only two fundamental perceptions; cases of “‘complete color blindness,” when there
is only one fundamental perception of color, are extremely rare.

* Such a mixture can be obtained by mixing in varying proportions very fine colored
powders provided the illumination remains unchanged.

+ For example, if the colors C, and C, are determined by the intensities, namely the
coordinates x,, ¥y, 2o and x;, »,, z;, then a color C between C, and C, has the
coordinates x = (1 — Nxg +1x,, ¥ = (1 — Oye + 1y, z = (1 — Dz, + 12y, where ¢
is the portion of C, and 1 — 1 the portion of C, in the mixture that makes up C.
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possible color perceptions realizes an affine geometry. (This is not quite
accurate, because, as we have already said, the color coordinates x, y, z
cannot be negative. Therefore the color space corresponds only to that
part of the space where in the given coordinate system all the coordinates
of points are positive or zero.)

Further, we have a natural idea of the degree of distinctness of colors.
For example, it is clear that pale pink is nearer to white than deep pink,
and crimson nearer to red than to blue, etc. Thus, we have a qualitative
concept of distance between colors as the degree of their distinctness,
This qualitative concept can be made into a quantitative measure. How-
ever, to define the distance between colors as in Euclidean geometry by
the formula r = V(x, — x,)? + (3o — J1)? + (2o — z,)? turns out to be
unnatural. A distance so defined does not correspond to real perception;
with this definition it would happen in a number of cases that two colors
that differ from a given one in varying degree would have one and the
same distance from it. The definition of distance must reflect the real
relations between color perceptions.

Guided by this principle we introduce a peculiar measure of distance
in the space of colors. This is done as follows. When a color is altered
continuously, a human being does not perceive this change at once, but
only when it reaches a certain extent exceeding the so-called threshold of
distinction. In this connection it is assumed that all colors that are exactly
on the threshold of distinction from a given one are equidistant from it.
We are then led automatically to the idea that the distance between any
two colors must be measured by the smallest number of thresholds of
distinction that can be laid between them. The length of a color line is
measured by the number of such thresholds covering it. The distance
between two colors is defined as the length of the shortest line joining
them. This is similar to the fact that distances between two points in a
plane are measured by the length of the shortest line joining them.

Thus, measurement of length and distance in the color space proceeds
in very small, as it were infinitely small, steps.

As a result, a certain peculiar non-Euclidean geometry is defined in
the color space. This geometry has a perfectly real meaning: It describes
in geometrical language properties of the set of all possible colors, i.e.,
properties of the reaction of the eye to a light stimulus.

The concept of color space arose about a century ago. Many physicists
have studied the geometry of this space; for example, we may mention
Helmholtz and Maxwell. These investigations continue; they have not
only theoretical but also practical value. They give an accurate mathe-
matical foundation for the solution of problems on the difference of
color signals, on dyes in the textile industry, and others.
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2. Phase spaces in physics and chemistry. Now let us turn to another
example already mentioned in the preceding section.

Suppose that we study some physicochemical system such as a mixture
of gases, an alloy, etc. Suppose that the state of this system is .determined
by n values (as the state of a gaseous mixture is determined by pressure,
temperature, and the concentrations of its constituent components).
Then one says that the system has n degrees of freedom, meaning that
its state can be changed in n independent directions under a change of
each of the values that determine this state. These values that determine
the state of the system play as it were the role of its coordinates. Therefore
the set of all its'states can be regarded as an n-dimensional space, the
so-called phase space of the system.

Continuous changes of state, i.e., processes occurring in the system,
are presented by lines in this space. Separate domains of states, distin-
guished by one feature or another, are domains of the phase space. The
states bordering two such domains form a surface in this space.

In physical chemistry it is particularly important to study the form
and the mutual contiguity of those domains of the phase space of a system

that correspond to qualitatively distinct
AP states. The surfaces dividing these
domains correspond to such qualitative
transitions as melting, evaporation,
precipitation of a sediment, etc. A state
of a system with two degrees of freedom
is illustrated by a point in a plane. As
an example we can take a homogeneous
substance whose state is determined by
the pressure p and temperature T they
are the coordinate points describing the
Fig. 30. state. Then the question reduces to
studying the lines of division between
domains corresponding to qualitatively distinct states. In the case of
water, for example, these domains are ice, liquid water, and steam
(figure 30). Their division lines correspond to melting (freezing), evapora-
tion (condensation), sublimation of ice (precipitation of ice crystals from
steam).

For an investigation of systems with many degrees of freedom, the
methods of many-dimensional geometry are required.

The concept of phase space applies not only to physicochemical but
also to mechanical systems, and generally it can be applied to any system
if its possible states form a certain continuous collection. In the kinetic
theory of gases one considers, for example, the phase spaces of systems
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of material particles, the molecules of the gas. The state of motion of
one particle at each moment is determined by its position and velocity,
which gives altogether six values: three coordinates and three velocity
components (with respect to the three coordinate axes). The state of N
particles is given by 6N values and since there are very many molecules,
6N is an enormous number. This does not disturb the physicists in the
least, who speak of a 6 N-dimensional phase space of a system of molecules.

A point in this space describes the state of the whole mass of molecules
with coordinates and velocities. A motion of a point describes a change
of state. This abstract presentation turns out to be very useful in many
deep theoretical developments. In a word, the concept of phase space
has a secure place in the arsenal of the exact natural sciences and is
applicable in diverse problems.

3. The generalization of geometry. The examples we have given
enable us to reach a conclusion on how the scope of geometry is to be
generalized.

Suppose that we wish to study some continuous collection of objects,
events, or states of one kind or another, for example the set of all possible
colors or of the states of a group of molecules. The relations holding
in such a collection may happen to be similar to the ordinary spatial
relations; for example “distance” between colors or the “mutual position™
of domains of a phase space. In that case, by abstracting from the
qualitative peculiarities of the objects in question and by taking into
account only the aforementioned relations between them, we can regard
the given collection as a space of its own kind. The “points” of this
“space’ are the objects, events or states themselves. A “‘figure” in this
space is an arbitrary aggregate of its points, as for example the “line”
of rainbow colors or the “domain’ of steam in the “space” of states of
water. The “geometry” of such a space is determined by those spacelike
relations that hold between the given objects, phenomena or states. Thus,
the “geometry” of the color space is determined by the laws of color
mixing and the distances between colors.

The real significance of this point of view is that it makes it possible
to use the concepts and methods of abstract geometry for the investigation
of diverse phenomena. The realm of applicability of geometric concepts
and methods is extended immensely in this way. As a result of the general-
ization of the concept of space the term “space’™ assumes two meanings
in science: On the one hand it is the ordinary real space (the universal
form of existence of matter), on the other hand it is the “‘abstract space,”
a collection of homogeneous objects (events, states, etc.) in which spacelike
relationships hold.
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It is worth noting that the ordinary space as we visualize it in a some-
what simplified manner can also be regarded as a collection of homoge-
neous states. Namely, as the collection of all possible positions of an
infinitely small body, a “material point.”” This remark does not pretend
to give a definition of space but aims at making the connection between
the two concepts of space clearer. The concept of an abstract space will
be further expounded in the next subsection, and the relation of abstract
geometry to the ordinary real space will be treated in the last section of
this chapter.

4. Generalized spaces in mathematics. The widest application of the
concept of an abstract space accurs in mathematics itself. In geometry
one considers the “space” of certain figures as, for example, the “‘space
of spheres” of which we have spoken, *‘the space of straight lines,” and
so forth.

This method turns out to be particularly fruitful .in the theory of
polyhedra. For example, in §5 of Chapter VII a theorem was mentioned
on the existence of a convex polyhedron with a given development.
The proof of this theorem is based on the discussion of two “‘spaces™:
the “‘space of polyhedra” and the “‘space of developments.” The set of
convex polyhedra having a given number of vertices is regarded as a
space of its own whose points represent polyhedra; similarly, the set of
admissible developments is also treated as a certain space whose points
represent developments. The process of fitting together polyhedra from
developments establishes a correspondence between polyhedra and
developments, i.e., a correspondence between the points of the “space
of polyhedra™ and the “space of developments.” The problem consists
in showing that to every development there corresponds a polyhedron;
i.e., to every point of one space there corresponds a point of the other.
And precisely this can be proved by means of an application of topology.

A whole series of other theorems on polyhedra can be proved similarly,
and this “method of abstract spaces™ turns out in a number of cases
(like the theorem on the existence of a polyhedron with a given develop-
ment) to be the simplest of the known methods of proving such theorems.
Unfortunately, however, the method itself is still rather complicated, and
we cannot give a more accurate account of it here.

Extensive applications of the generalized concept of space also occur
in analysis, algebra, and number theory. This stems from the usual
representation of functions by means of curves. The values of one variable
x are usually plotted as points on a line. Similarly, the values of two
variables are plotted as points in a plane, the values of n variables as
points in an n-dimensional space; we represent the set of values of the



§8. GENERALIZATION OF THE SCOPE OF GEOMETRY 157

variables x, , x;, ***, x,, by the point with the coordinates x, , x5, **~, X, .
We speak of the **domain of variation of the variables” or of the “‘domain
of values™ of a function f{x, , x;, ***, x,,) of these variables; we speak of
points, lines, or surfaces of discontinuity of the function, etc. This
geometric language is in constant use and is not only a mode of expression;
the geometric representation makes many facts of analysis ‘“‘intuitive”
by analogy with the ordinary space and permits the use of geometric
methods of proof, generalized to n-dimensional space.

The same takes place in algebra, when equations with # unknown or
algebraic functions of n variables are under discussion. In the preceding
section it was mentioned that a linear equation with n unknowns deter-
mines a hyperplane in n-dimensional space, that m such equations deter-
mine m hyperplanes and every solution of them represents a point that
is common to all these hyperplanes. The hyperplanes need not intersect
at all, or intersect in a single point or in a whole straight line in a two-
dimensional or, generally, a k-dimensional hyperplane. All in all, the
problem of solubility of systems of linear equations is expressed as a
problem on the intersection of hyperplanes. This geometric approach
has a number of advantages. Quite generally, “linear algebra,” which
comprises the study of linear equations and linear transformations is
usually set forth to a large extent in geometrical form, as it was done
in Chapter XVI.

5. Infinite-dimensional space; definition of a “space.,” In all our
examples we were concerned with a continuous collection of objects of
one sort or another being treated as a space of its own particular kind.
These objects were colors, states of one system or another, figures, or
aggregates of values of variables. In all cases one object was given by a
finite number of data so that the corresponding space had a finite number
of dimensions, namely the number of these data.

However, at the beginning of the present century mathematicians
began to discuss also *“‘infinite-dimensional spaces,” namely collections of
objects each of which cannot be given by a finite number of data. This
is so, above all, in a “functional space.”

The idea of treating the collection of functions of one type or another
as a space of its own is one of the basic ideas of a new branch of analysis,
namely functional analysis, and turns out to be extremely fruitful in the
solution of many problems. The reader will find an account of it in Chapter
XIX, which is devoted specially to functional analysis.

One can discuss the spaces of continuous functions of one or several
variables. One also regards as “spaces” various classes of discontinuous
functions, for which one defines a distance between functions by one
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method or another, depending on the character of the problems
awaiting solution. In a word, the number of possible “‘function
spaces” is unlimited, and in fact many such spaces are used in
mathematics.

In just the same way one can discuss the “space of curves,” the “space
of convex bodies,” the “space of possible motions of a mechanical
system,” etc. For example, in §5 of Chapter VII the theorem was mentioned
that on every closed convex surface there exist at least three closed geo-
desics and that any two points can be joined by an infinite number of
geodesics. For the proofs of these theorems one uses the space of curves
on the surface: in the first the space of closed curves, in the second the
space of curves joining two given points. We introduce in the set of all
possible curves joining two given points a kind of distance and so turn
this set into a space. The proof of the theorem is based on an application
of certain deep results of topology to this space.

Let us now formulate a general conclusion.

By a “space” we understand in mathematics quite generally an arbitrary
collection of homogeneous objects (events, states, functions, figures,
values of variables, etc.) between which there are relationships similar
to the usual spatial relations (continuity, distance, etc.). Moreover, in
regarding a given collection of objects as a space we abstract from all
properties of these objects except those that are determined by these
spacelike relationships in question. These relations determine what we
can call the structure or the “geometry” of the space. The objects them-
selves play the role of “points’ of such a space; “figures” are sets of
its “points.”

The scope of the geometry of a given abstract space consists in those
properties of the space and the figures in it that are determined by the
spacelike relationships taken into account. For example, in discussing the
space of continuous functions the properties of an individual function
on its own are completely ignored. The function here plays the role of
a point and consequently **has no parts,” has no structure at all in this
sense, no properties unconnected with other points; more accurately, all
this is neglected. In a function space, properties of functions are deter-
mined only by their relations to one another, by their distance and by
other relations that can be derived from distance.

To the variety of possible sets of objects and diverse relations between
them, there corresponds the unlimited variety of spaces studied in mathe-
matics. Spaces can be classified with respect to the types of those spacelike
relations that underlie their definition. Without aiming at a full account
of all the various types of abstract spaces, let us mention, above all, two
very important types: topological and metric spaces.
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6. Topological spaces. A topological space (see Chapter XVIII) is any
collection of points (an arbitrary set of elements), in which a relation of
neighborhood of one point to a set of points is defined and, consequently,
a relation of neighborhood or adherence of two sets (figures) to one
another. This is a generalization of the intuitive intelligible relation of
neighborhood or adherence of figures in the ordinary space.

Already Lobacevskil with remarkable foresight pointed out that of all
the relations of figures, the most fundamental is the relation of neighbor-
hood. “Neighborhood forms a distinctive appurtenance of bodies and
gives them the same geometric when we retain in them this property and
do not take into consideration all others whether they be essential or
accidental.”* For example, every point on the circumference is adherent
to the set of all interior points of a circle; two parts of a connected body
are adherent to one another. As the subsequent development of topology
has shown, it is precisely the property of neighborhood that underlies
all other topological properties.

The concept of neighborhood expresses the notion of a point being
infinitely near to a set. Therefore every collection of objects in which
there is a natural concept of continuity, of being infinitely near, turns
out to be a topological space.

The concept of a topological space is extremely general and the study
of such spaces, abstract topology, represents the most general mathe-
matical study of continuity.

A rigorous mathematical definition of a general topological space can
be given in the following way.

A set R of arbitrary elements “points” is called a general topological
space if for every set M contained in it neighborhood points are defined
such that the following conditions, namely the axioms of the space, are
satisfied:

1. Every point of M is counted among its neighborhood points. (It is
perfectly natural to assume that a set is adherent to each of its points.)

2. If a set M, contains a set M, , then the neighborhood points of M,
must contain all the neighborhood points of M, . (To put it briefly, but
less accurately, the larger set does not have fewer neighborhood points.)

Usually other axioms are added to these, so that various types of
topological spaces are thereby defined.

With the help of the concept of neighborhood, it is easy to define a
number of very important topological concepts. These are at the same
time the most fundamental and general concepts of geometry and their
definitions are intuitively altogether clear. Let us give some examples.

% N. L. LobaZevskil, “Collected works,” Vol. Il, Gostehizdat, 1949, page 168.
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1. Adherent, We shall say that sets M, and M, are adherent to one
another if one of them contains at least one neighborhood point of the
other. (In this sense, for example, the circumference of a circle is adherent
to the interior.)

2. Continuity or, as the mathematicians say, connectedness of a figure,
A figure, i.e., a set of points M, is connected if it cannot be split into
parts that are not adherent to one another. (For example, a segment is
connected, but a segment without its midpoint is disconnected.)

3. Boundary. The boundary of a set M in a space R is the set of all
points that are adherent both to M and to its complement R — M, i.e.,
to the remaining part of the space R. (This is, obviously, a perfectly
natural concept of boundary.)

4. Interior point. A point of a set M is called interior if it does not
lie on its boundary, i.e., if it is not adherent to the complement R — M.

5. Continuous mapping or transformation. A transformation of a set
M is called continuous if it does not disrupt neighborhoods. (One could
hardly give a more natural definition of a continuous transformation.)

Other important definitions could be added to this list, such as for
example a definition of the concept of convergence of a sequence of
figures to a given figure or the concept of the number of dimensions of
a space.

We see that the most fundamental geometric concepts can be defined
in terms of neighborhoods. The significance of topology, in particular,
lies in the fact that it gives rigorous general definitions for these concepts,
thereby providing a basis for the strict application of arguments connected
with the intuitive conception of continuity.

Topology is the study of those properties of spaces, of figures in them,
and of their transformations that are defined by the relation of neighbor-
hood.

The generality and fundamental nature of this relation makes topology
into a very general geometrical theory that penetrates the diverse branches
of mathematics, wherever continuity only is under discussion. But
precisely because of its generality topology in its most abstract parts
goes beyond the framework of geometry proper. All the same, at its
basis lies a generalization of the properties of real space and the most
fruitful and powerful of its results are connected with the application
of methods that spring from intuitive geometric ideas. An example is
the method of approximating general figures by polyhedra which was
developed by P. S. Aleksandrov and was extended by him, though in an
abstract form, to extremely general types of topological spaces.

Nowadays every specialist, no matter what his subject of study,



§8. GENERALIZATION OF THE SCOPE OF GEOMETRY 161

investigates when he discovers that there is a natural way of introducing
into it the concept of nearness or adherence, and immediately has at his
disposal the ready-made, widely ramified apparatus of topology, which
enables him to draw conclusions that are far from trivial even in their
application to his special field.

7. Metric spaces. A metric space is a set of arbitrary elements, to be
called points, between which a distance is defined; i.e., with each pair of
points X, Y a number r(X, Y) is associated so that the following conditions,
namely the axioms of a metric space, are satisfied:

1. r(X, ¥) = 0 if and only if the points X, ¥ coincide.

2. For any three points X, Y, Z

KX, Y) + r(Y, Z) > KZ, X).

This condition is called the “triangle inequality,” since it is quite
analogous to the well-known property of the ordinary distance between
points A, , A, , A; of Euclidean space (figure 31):

r(Ay, As) +1r(Az, Ay) = (A3, Ay).

As examples of metric spaces we may take

1. the Euclidean space of an arbitrary number n of dimensions,

2. the Lobacevskil space,

3. any surface in its intrinsic metric (Chapter VII, §4),

4. the space C of continuous functions with distance defined by the

formula r(f,,f2) = max [ fi(x) — fo(x)],

5. the Hilbert space to be described in Chapter XIX, which is an
“infinite-dimensional Euclidean” space.

The Hilbert space is the most important of the spaces used in functional
analysis; it is closely connected with
the theory of Fourier series and more
generally with the expansion of func- A
tions in series by orthogonal functions
(the coordinates x, , X, , x5 , - are then
the coefficients of such series). This
space also plays an important role in
mathematical physics and has acquired
much significance in quantum me- Fic. 31.
chanics. It turns out that the set of all
possible states (not only stationary) of an atomic system, for example a
hydrogen atom, can be regarded from an abstract point of view as
a Hilbert space.

A, Az
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The number of examples of metric spaces that are actually discussed
in mathematics could be increased considerably; in the next section we
shall become acquainted with one important class of metric spaces, the
so-called Riemannian spaces, but the examples we have given so far will
be sufficient to show how widely the general concept of a metric space
extends.

In a metric space it is always possible to define all topological concepts
and, moreover, to introduce other “metric” concepts; for example, the
concept of the length of a curve. Length is defined in any metric space
precisely in the same way as usual, and the basic properties of length
are then preserved. Indeed, by the length of a curve we understand the
limit of the sum of the distances between points X;, X;, ', X, that are
arranged in a sequence on the curve, subject to the condition that the
points come to lie closer and closer on the curve.

8. Advantages of the geometric method. Many types of spaces be-
sides the general topological or the metric spaces are discussed in mathe-
matics. In fact, we have already become acquainted in §6 with a whole
class of such spaces. These are the spaces in which some group of trans-
formations is given (for example, the projective or affine spaces). In such
spaces we can define “equality” of figures. Figures are ‘“‘equal” if they
can be carried into one another by a transformation of the given group.

We shall not go deeper into the definitions of possible types of spaces;
they are rather diverse and the reader can turn to the special literature
on the various branches of present-day geometry.

But what is the sense of extending the range of geometric concepts
so much? For what purpose, for example, does one have to introduce
the concept of the space of continuous functions? Is it not sufficient to
solve problems of analysis by the usual means without resorting to such
abstract spaces ?

The general answer to these questions consists briefly in this: that by
introducing one space or another into the discussion we open the way
to applications of geometric concepts and methods, which are extremely
NUMErous.

A characteristic feature of geometric concepts and methods is that they
are based, all things considered, on intuitive ideas and preserve their
advantages even though in an abstract form. What the analyst achieves
by long calculations, the geometer can occasionally grasp at once. An
elementary example of this can be seen in a graph that gives a completely
clear picture of one dependence or another between quantities. The
geometrical method can be characterized as an all-embracing synthetic
method, in contrast to the analytical method. Of course, in abstract
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geometrical theories the immediate intuitiveness fades away, but the
intuitive arguments by analogy remain and so does the synthetic character
of the geometrical method.

The reader is already familiar with the application of geometric pictures
in analysis, with a geometric representation of complex numbers and
functions of a complex variable, with geometric arguments in a proof
of the fundamental theorem of algebra, and with other applications of
geometric concepts and methods. Everywhere he may observe what we
have described here in general terms. We recall the examples, in the
beginning of §7, and also here §8, under subsection 5, of theorems that
can be proved by applying many-dimensional geometry. Let us give one
further example of a problem in analysis that can be solved by an applica-
tion of the concept of a function space.

It is proved in topology that if we take in the ordinary plane any domain
that has the form of a distorted circle and then deform it in a continuous
manner as we please, but so that in the end it becomes embedded inside
its original contour, then at least one point of the domain comes to lie
after the transformation where it was before. This is a purely topological
fact.

Now let us consider a problem altogether remote from geometry:
A function p(x) is to be found that satisfies the differential equation,*

Y =fxy) (10)

and assumes for x = 0 the value y = 0.
Obviously, instead of this equation we can look for a solution of the
equation

y = [ fityo1d. (1)

Naturally the problem arises: Does there exist, in general, a function
y(x) satisfying this condition?

Let us look at the problem in another way. We represent every con-
tinuous function y(x) by a point of some abstract space. The result of
computing the integral

J:f[r, WD) dt = 2(x)

is again a continuous function of x, i.e., a “point” of our abstract space.
By taking various “points” y, i.e., various functions y(x), we obtain,
generally speaking, various points z. In this way, the set of points of

* Here, f(x, ) is assumed to be a continuous function of the variables x and y.
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our space is again mapped into points of the same space. The problem
of finding a solution of the equation (11) has been reduced to the question:
Can a "point” of our space be found such that after this transform ation
it coincides with its previous *place”?

A natural problem in the theory of differential equations has become
a problem concerning a property of an abstract function space. The
analogy with the aforementioned theorem tells us that we are evidently
dealing here with a topological property of the corresponding space.

In this way we obtain, by means of the requisite topological investiga-
tions, what are probably the shortest proofs of many theorems on the
existence of solutions of differential equations; in particular we can make
it clear that the equation (10) does in fact have a solution for every
continuous function f(x, y).

§9. Riemannian Geometry

1. History of Riemannian geometry. The ideas explained previously
that every continuous collection of homogeneous phenomena can be
treated as a space of its own was first expressed by Riemann in his lecture
“On the hypotheses that underlie geometry,” given at the University of
Gaottingen in 1854. This was a sort of test lecture, somewhat like a report
or a dissertation that a lecturer or professor had to make to the faculty
before taking up his post. In his lecture Riemann set out in general lines,
without calculations or mathematical proofs, the original idea of a vast
geometric theory that is now called Riemannian geometry. It is said that
nobody in the audience understood it except the aged Gauss. Riemann
provided the formal apparatus of his theory in another paper, with an
application to the problem of heat conduction, so that the abstract
Riemannian geometry was born in close connection with mathematical
physics. In the development of geometry, Riemann's ideas came next
after Lobacevskil's decisive step. However, Riemann’s papers were not at
once duly appreciated. His lectures and papers on heat conduction were
published only posthumously in 1868. It is worth while mentioning that
in 1868 the first interpretation of Lobadevskil’s geometry also appeared,
by Beltrami, and in 1870 the second one, by Klein. In 1872 Klein ex-
pounded his general view of the various geometries: Euclidean
Lobacevskil, projective, affine, etc., as of the study of properties of
figures that remain unchanged under the transformations of one group
or another. In the same year many-dimensional geometry was finally
consolidated in mathematics. Thus, the seventies of the 19th century were
that critical period in the history of geometry when the new geometrical
ideas, accumulated in the course of the preceding fifty years, were finally
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understood by a wide circle of mathematicians and assumed a secure
place in the science.

Riemann’s work was then continued and at the end of the 19th century
Riemannian geometry had reached a considerable development and had
found applications in mechanics and physics. When, in 1915, Einstein in
his general theory of relativity applied Riemannian geometry to the
theory of universal gravitation, this event drew particular attention to
Riemannian geometry and resulted in its brisk development and in
various generalizations.

2, The basic ideas of Riemannian geometry. Riemann’s ideas, which
had such a brilliant success, are really rather simple if one sets aside the
mathematical details and concentrates on the basic essentials. Such an
intrinsic simplicity is a feature of all great ideas. Was not Lobadevskil’s
idea simple: to regard the consequences of the negation of the Fifth
Postulate as a possible geometry? Was not the idea of evolution of
organisms simple, or the idea of the atomic structure of matter? All of
these are simple and at the same time very complicated, because new
ideas must, first of all, work their way over a wide field and must not be
pressed into a rigid framework, and second their foundation, development,
and application is a many-sided task, requiring an immense amount of
labor and ingenuity, and impossible without the specialized apparatus of
science. For Riemannian geometry this apparatus consists in its formulas;
they are complicated and therefore accessible to a specialist only. But
we shall not deal with complicated formulas and turn now to the essence
of Riemann’s ideas. As we have already said, Riemann began by con-
sidering an arbitrary continuous collection of phenomena as a space of
its own. In this space the coordinates of points are quantities that determine
the corresponding phenomenon among others, as for example the in-
tensities x, y, z that determine the color C = xR + yG + zB. If there are
n such values, say x,, x;, ", x,, then we speak of an n-dimensional
space. In this space we may consider lines and introduce a measurement
of their length in small (infinitely small) steps, similar to the measurement
of the length of a curve in ordinary space.

In order to measure lengths in infinitely small steps, it is sufficient to
give a rule that determines the distance of any given point from another
infinitely near to it. This rule of determining (measuring) distance is
called a metric. The simplest case is when this rule happens to be the
same as in Euclidean space. Such a space is Euclidean in the infinitely
small. In other words, the geometrical relations of Euclidean geometry are
satisfied in it, but only in infinitely small domains; it is more accurate
to say that they are satisfied in any sufficiently small domain, though not
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exactly, but with an accuracy that is the greater, the smaller the domain.
A space in which distance is measured by such a rule is called Riemannian;
and the geometry of such spaces is also called Riemannian. A Riemannian
space is, therefore, a space that is Euclidean “in the infinitely small.”

The simplest example of a Riemannian space is an arbitrary smooth
surface in its intrinsic geometry. The intrinsic geometry of a surface is a
Riemannian geometry of two dimensions. For in the neighborhood of
each of its points a smooth surface differs only a little from its tangent
plane, and this difference is the smaller, the smaller the domain of the
surface that we consider. Therefore the geometry in a small domain of
the surface also differs little from the geometry in a plane; the smaller
the domain, the smaller this difference. However, in large domains the
geometry of a curved surface turns out to be different from the Euclidean,
as was explained in §4 of Chapter VII and is easy to see in the examples
of the sphere or pseudosphere. Riemannian geometry is nothing but a
natural generalization of the intrinsic geometry of a surface with two
dimensions to an arbitrary number n. Like a surface, considered only
from the point of view of its intrinsic geometry, a three-dimensional
Riemannian space, although Euclidean in small domains, may differ from
the Euclidean in large domains. For example, the length of a circle may
not be proportional to the radius; it will be proportional to the radius
with a good approximation for small circumferences only. The sum of
the angles of a triangle may not be two right angles; here the role of
rectilinear segments in the construction of a triangle is played by the
lines of shortest distance, i.e., the lines having the smallest length among
all the lines joining the given points.

One can speculate that the real space is Euclidean only in domains
that are small in comparison with the astronomical scale. The smaller
a domain is, the more accurately Euclidean geometry holds, but we can
imagine (and, in fact, it turns out to be so) that on a very large scale
the geometry differs somewhat from the Euclidean. This idea, as we know,
was already put forward by Lobacevskil. Riemann generalized it so that
it applied to an arbitrary geometry and not only to Lobadevskil geometry,
which now appears as a special case of Riemannian geometry.

From what we have said it is clear that Riemannian geometry has
grown by a synthesis and generalization of three ideas that contributed
to the successful development of geometry. First came the idea of the
possibility of a geometry other than the Euclidean, second was the concept
of the intrinsic geometry of a surface, and third the concept of a space
of an arbitrary number of dimensions.

3. Measurement of distance. In order to make it clear how a
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Riemannian space is defined mathematically, we recall first of all the rule
for measuring distances in a Euclidean space.

If rectangular coordinates .x, y are introduced in a plane, then by
Pythagoras’ theorem the distance between two points whose coordinates
differ by 4x and 4y is expressed by the formula

s = VAx: + 48,

Similarly in a three-dimensional space

s = VdAxt 4 4y + 422

In a n-dimensional Euclidean space the distance is defined by the general
formula

s=Vd4xt 4+ - + 4xE.

Hence it is easy to conclude how the rule for measuring distance in a
Riemannian space ought to be given. The rule must coincide with the
Euclidean, but only for an infinitely small domain in the neighborhood
of each point. This leads to the following statement of the rule.

A Riemannian n-dimensional space is characterized by the fact that in
the neighborhood of each of its points 4 coordinates x, , x; , -, x,, can be
introduced such that the distance from 4 of an infinitely near point X is
expressed by the formula

ds = Vdx: + - + dx?, (12)

where dx, , -+, dx, are the infinitely small differences of the coordinates
of 4 and X, This can also be expressed more accurately in another way:
The distance from A to an arbitrarily near point X is expressed by the
same formula as in Euclidean geometry, but only with a certain accuracy
which is the greater the nearer the point X is to 4, i.e.,

S(AX) = VA 4 - 4+ 4x2 + ¢,

where e is a small quantity in comparison with the first term and is smaller,
the smaller the coordinate differences 4x, , -, 4x, are.*

* Usually the precise meaning of the formula (12) is expressed as follows. Suppose
that a curve starts out from A so that the coordinates of the point X on it
are given as functions x,(?), x(?), -+, x,(f) of some variable ¢. Then the differential ds
of the arc length of this curve at A is expressed by (12).
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Now this is the exact mathematical definition of a Riemannian metric
and a Riemannian space. The difference of Riemannian metric, i.e., the
rule for measuring distances, from Euclidean consists in that this rule
holds only in the neighborhood of each given point. Moreover, the
coordinates in which it is expressed so simply have to be taken differently
for different points.* The difference between the general Riemannian
metric and the Euclidean will be further specified later on.

The fact that a Riemannian space coincides with a Euclidean in the
infinitely small enables us to define in it the fundamental geometric
quantities similarly to the way this was done for the intrinsic geometry
of a surface by approximating an infinitely small portion of the surface
by a plane (Chapter VII, §4). For example, an infinitely small volume is
expressed just as in Euclidean space. The volume of a finite domain is
obtained by summing infinitely small volumes, i.e., by integrating the
differential of the volume. The length of a curve is determined by summing
infinitely small distances between infinitely near points on it, i.e., by
integrating the differential of the length ds along the curve. And this is a
rigorous analytic expression for the fact that the length is determined by
laying off a small (infinitely small) measuring rod along the curve. The
angle between curves at a common point is defined exactly as in a
space. Further, in an n-dimensional Riemannian space we can define
surfaces of various numbers of dimensions from 2 to n — 1. Moreover,
it is easy to prove that each such surface in its turn represents a Riemannian
space of the corresponding number of dimensions, just as a surface in the
ordinary Euclidean space turns out to be a two-dimensional Riemannian
space.

It has also been proved that a Riemannian space can always be
represented as a surface in a Euclidean space of a sufficiently large number
of dimensions, namely: for every n-dimensional Riemannian space one
can find in an n(n 4+ 1)/2-dimensional Euclidean space an n-dimensional
surface which from the point of view of its intrinsic geometry does not
differ from this Riemannian space (at least in a given limited part of it).

4. The fundamental quadratic form. In order to obtain the actual
analytical expression for various geometric quantities in a Riemannian
geometry, we have to define, first of all, a general expression for the rule
of measuring lengths in a Riemannian space independent of the specific
coordinates at each point. True, the formula (12) holds at every point A4
for a special choice of coordinates at that point, so that on transition

*If in the whole space coordinates could be introduced so that for any pair of neigh-
boring points this rule for measuring distance would hold, then the space would be
Euclidean.
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from one point to another the coordinates themselves must be changed,
and this is of course inconvenient. But this can easily be avoided, for
we can prove the following.

Suppose that in some domain of a Riemannian space coordinates
Y1+ Y2+ s Vn ar€ introduced arbitrarily. Then the ‘‘infinitely small
distance’ or, as one says, the “element of length” from the point 4 with
the coordinates y,,y,,**,y, to the point X with the coordinates
n+ay .y, +dy,, -,y + dy, is expressed by the formula

d3=‘\/z g dysdy,, or #=zg{kdyidyk9 (13)

i, k=1

where the coefficients g;; are functions of the coordinates y; , yy, ", ¥y
of A.

The expression on the right of the last formula is called a quadratic
form* in the differentials of the coordinates dy, , -+, dy,. In expanded
form it can be written as follows:

>, g dyidye = gu dyl + 1o dyy dys + 8 dya dyy + g dyy +

Since dy, dy, = dy, dy,, it is convenient to take the second and third
term as equal: g, = g,; and generally g; = g., ; this is possible, because
only their sum (g;; + g.;)dy; dy, is important.

The quadratic form is positive definite, since obviously ds? > 0,
except when all the differentials dy; are equal to zero.

The converse also holds. Namely, if in an n-dimensional space, where
coordinates y,, ¥, , ', y, have been introduced, the element of length
is given by the formula (13) with the condition that the quadratic form
is positive definite (i.e., always greater than zero except when all the
dy; = 0), then the space is Riemannian. In other words, in the neighbor-
hood of each point 4 one can introduce new special coordinates
Xy, Xz, , X, so that in the new coordinates the element of length at
this point is expressed in the simple form (12)

ds® = dx? 4 dx} 4 - + dx?.

Thus, Riemannian metric (i.e., a definition of length that is Euclidean
in the infinitely small) can be given by any positive definite quadratic
form (13) with coefficients g;; that are functions of the coordinates y, .
This is the general method of giving a Riemannian metric.

s A quadratic form of several quantities is an algebraic expression that is a homo-
geneous polynomial of degree 2 in these quantities,
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A curve in a Riemannian space is given by the fact that all #» coordinates
of a point vary in dependence of a single parameter ¢ which ranges over
a certain interval

=)y =polt), sy =palt) (@<t < b) (14)

The length of the curve is expressed by the integral

8= jds = I\/zgmd}'id)’k-

In the case of the curve given by the equations (14) we have

dyl = }'i df, B d}'n = y;! df!
therefore

s = f\/z gir Yy d. (15)

Since the g,, are known functions of the coordinates y, , -, y, and the
latter depend in a known manner on ¢t in accordance with the formulas
(14), the function of f under the integral sign in (15) is completely deter-
mined for the given curve. Consequently its integral has a definite value
and so the curve has a definite length.

The length of the shortest curve joining two given points 4, B is taken
to be the distance between these points. This curve itself, called a geodesic,
plays the role of an analogue to the rectilinear segment 4B. One can
show that in a small domain any two points are joined by a unique
shortest line. The problem of finding the geodesic (shortest) lines is that
of minimizing the integral (15). This is a problem in the calculus of
variations which was discussed in Chapter VIII. A standard application
of the methods of the calculus of variations permits us to derive a dif-
ferential equation that determines the geodesic lines and to establish their
general properties for every Riemannian space.

Let us prove the principal statement made previously, namely, that a
Riemannian metric is given in arbitrary coordinates by the general
formula (13).

Suppose that in some domain of a Riemannian space certain coordinates
Y1 V2., Va are introduced. We take an arbitrary point A in this domain
and assume, that x, , x,, ", x, are the special coordinates in which the
element of length at 4 is expressed by the formula (12) or, what is the
same,

ds® = dx? + dxj + -+ +dx2. (16)
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The coordinates x, are expressed in terms of the y; (i,j = 1, -, n) by
certain formulas,

xy =iV, Va5 s Yk
X3 =f2(y1 s Voo™ 7yn)7

Xn =fn(y1 s Ve, syn)‘

Then
af, of, of,
dx, = 21 g 2 dy, + LN
X1 2y, 1+ %, iz I o Vn

and similarly for dx,, -, dx, . We substitute these expressions in (16).
When we then square the right-hand side and combine the terms with
dyi, dy, dy,, dy;, etc., we obtain an expression of the form

d32 = 311 dy21 + 23124"1 dyz =a g?zd}% e + gmtdy?a’

where the coefficients g1, 812, ", 8., are expressed in terms of the
partial derivatives 8f;/8y, (the form of these expressions is of no interest
to us). But this is simply formula (13) written in expanded form, and
sO our statement is proved.

Let us now show that, conversely, the formula (13) defines a Riemannian
metric, i.e., that at each point by a special choice of the coordinates x;
it can be transformed into the simple form (16). Suppose that

dst = L gy dy. dy,

where the g, are functions of the coordinates y, , **, y, and the quadratic
form on the right-hand side is positive definite. Then the coefficients g,;
are given numbers and the variables on which the form depends are
dy,,*+,dy,. From algebra it is known that every positive-definite
quadratic form (with arbitrary numerical coefficients) can be reduced to
a sum of squares by a linear transformation of the variables (see Chapter
XVI),* i.e., that there exists a transformation

dyl — andxl + - + alndx,, 3
dyn = anldxl e anndxn ’

* It does no_t matter that in our case the variables of the form are differentials;
we can regard them simply as certain independent variables.
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such that when these expressions are substituted in (13), we obtain
dst = dxt + - 4 dxE.

If we make the change of the coordinates y,, -, p, to x,,, x, by

V1= apx; + 0+ vy,

Vn = QmXy + *** + GppXy

then the differentials dy; are expressed in terms of the differentials dx;
precisely by the formulas (17). Consequently this change of coordinates
solves our problem: in the coordinates x, , -+, x,, at the point we have
chosen the square of the differential ds® is expressed in the simple
“Euclidean” form (16). So we have proved that the general formula (13)
does in fact give a Riemannian metric.

5. The curvature tensor. A Euclidean space is the simplest special
case of a Riemannian space.* It is an important task of Riemannian
geometry to give an analytical expression for the difference of a general
Riemannian space from a Euclidean by defining a measure, so to speak,
for the non-Euclideanness of a Riemannian space. This measure is the
so-called curvature of the space.

We must emphasize right away that the concept of curvature of a
space is not at all connected with the idea that the space is situated in
some higher enveloping space in which it is somehow curved. Curvature
is defined within the given space and expresses its difference from a
Euclidean space in the sense of its intrinsic geometric properties. This
must be clearly understood in order to avoid linking the concept of a
curved space with something extraneous. When it is said that our real
space has curvature, this only means that its geometric properties differ
from the properties of a Euclidean space. But it does not mean at all
that our space lies within some higher space in which it is somehow
curved. Such an idea has no relation whatsoever with an application
of Riemannian geometry to the real space and belongs in the realm of
speculative phantasy.

* In a Euclidean space the element of length in rectangular coordinates is expressed
by the formula (16): ds* = Z dx?. If we go over to other coordinates, then by what
we have deduced under subsection 4 earlier ds? is expressed by some quadratic form (13).
Consequently the same general formula (13) for the element of length holds in arbitrary
coordinates in a Euclidean space. The Euclidean space, however, differs from any
other by the fact that in it coordinates can be introduced (and these will be rectangular
coordinates) such that the formula (16) holds everywhere with one and the same
coordinate system and not only near one peint or another, as is the case in a general
Riemannian space.
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The concept of curvature of a Riemannian space generalizes to n
dimensions that of the Gaussian curvature of a surface. As was explained
in §4 of Chapter VII, the Gaussian curvature is a measure of the deviation
of the intrinsic geometry of the surface from the geometry in a plane
and can be treated purely from an internal-geometric point of view. It is
nothing other than the curvature of that two-dimensional Riemannian
space that represents the given surface.

Let us recall, for example, two formulas of the intrinsic geometry in
which the Gaussian curvature occurs. Suppose that there is a small
triangle on the surface near a certain point O whose sides are geodesic
lines; let its angles be a, B, ¥ and its area o. The quantity a + B + y — =
expresses the difference of the sum of its angles from the sum of the
angles of a triangle in the plane.

When the triangle is contracted towards the point O, then the ratio of
a+ B + ¢ —m to its area o tends to the Gaussian curvature K at O.
In other words, for a small triangle

a+B+y—7m
TTEXY T — K+t

where € — 0 as the triangle is contracted to O. This shows exactly that
the Gaussian curvature K is a measure for the difference of the sum of
the angles of a triangle in a plane and the sum of the angles of a triangle
on the surface.

Now let us consider a small circle on the surface with its center at O
(i.e., the geometric locus of points equidistant from O in the sense of
the distance on the surface). If r is the radius of the circle and / its length,
then
1

3Kr3+e,

[ = 27r —

where K is again the Gaussian curvature at O and e denotes a quantity
that is small compared with r3

Here the Gaussian curvature emerges as a measure of the deviation
of the length of a small circle from the value 2=»r to which it is equal in
Euclidean geometry.

Now the curvature of a Riemannian space plays a similar role. It can
be defined, for example, in the following manner. In the given Riemannian
space we construct a smooth surface F formed from geodesic lines passing
through a given point O. The Gaussian curvature of this surface is taken
to be the curvature of the space at O in the direction of the surface F.
Generally speaking, this curvature will differ not only at different points
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0, but also for various geodesic surfaces G passing through one and the
same point 0. The curvature of a space at a given point is, therefore,
not characterized by a single number. Already Riemann introduced a
general rule connecting the curvatures of the various surfaces F at one
and the same point. Owing to these connections, the curvature at a
point is completely characterized by a certain system of numbers, the
so-called curvature tensor.

However, we cannot dwell here on an explanation of this situation,
since it would require extensive mathematical apparatus. The only
important thing is to grasp that the curvature is a measure of the non-
Euclideanness of a Riemannian space; it is defined intrinsically as a
measure of the deviation of its metric from the metric of Euclidean
space. It determines, for example, the difference of the sum of the angles
of a triangle from = or the difference of the length of a circle from 2#r.
At different points it has, in general, distinct values and at one and the
same point it is given not by one number but by a certain system of
numbers.

A Riemannian space need not be homogeneous in its properties, and
in that case free mobility of figures without altering the distances between
their points is impossible. So there arises the question in what Riemannian
spaces free motion for figures is possible with the same number of degrees
of freedom as in a Euclidean space. These are the most homogeneous
Riemannian spaces.

It turns out that a Euclidean space is homogeneous without curvature
(a space of zero curvature). Another type of homogeneous space is the
Lobacdevskil space, so that Lobadevskii geometry, just like Euclid’s
geometry, is a special case of the general Riemannian geometry.

Generally, a Riemannian space in which free motion of figures is
possible is a space of constant curvature: In it the curvature has one and
the same value at all points and for all geodesic surfaces. (Instead of the
“curvature tensor”” which changes from point to point it is given this
time by a single number common to all points.) A space to zero curvature
is Euclidean; a space of negative curvature is a Lobacevskil space; a
space of positive curvature has the same geometry as an n-dimensional
sphere in an (n + 1)-dimensional Euclidean space.

6. Applications of Riemannian geometry. Riemannian geometry did
not have long to wait for applications. Riemann himself, as we have
already said, applied its formal apparatus to the solution of a problem
of heat conduction, but this was merely an application of its formulas,
not of the idea of an abstract space with a Euclidean measure of distance
in infinitely small domains. Such an application was made to the color
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space, where the distance between neighboring colors can be expressed
by using a Riemannian metric; the color space has been treated as a
special three-dimensional Riemannian space.

Another important application of Riemannian geometry emerged in
mechanics. In order to understand its essence let us consider, to begin
with, the motion of a point on a surface. We imagine a material point,
for example a particle that can move freely on a certain smooth surface
without leaving the surface. The point moves, as it were, in the surface
itself. We can introduce arbitrary coordinates x, , x, on the surface; then
the motion of the point is completely determined by the dependence of
these coordinates on the time, and its velocity on the velocities of the
change of coordinates, i.e., on their derivatives with respect to the time
A, , %, . So we see that the point moves, as it were, in two-dimensional
space; but this space is not Euclidean and has its own geometry, the
intrinsic geometry of the surface. The laws of motion can be transformed
s0 as to contain only the coordinates x, , x, of a point on the surface
and their first and second derivatives.

If a force acts on the point, then its component perpendicular to the
surface is annihilated by the resistance (by the reaction of the surface)
and there remain only the components tangential to the surface; so the
force acts only along the surface. In this manner the forces acting on
a point can also be regarded as acting in the surface itself. The intrinsic
geometry of the surface is a special case of a Riemannian geometry.
Therefore the motion of the point on the surface is a motion in a two-
dimensional Riemannian space. The laws of this motion have the same
character as the usual laws of motion, with the difference only that the
intrinsic geometry of the surface is taken into account. This becomes
perfectly clear from the following fact, mentioned before, in §4 of Chapter
VII: A point moving on the surface under inertia and without friction
moves on a geodesic line with constant velocity. Since the geodesic lines
play the role of straight lines on the surface, this fact is analogous to
the law of inertia: it is the same law of inertia, but for the motion on a
surface or, abstractly, in a two-dimensional Riemannian space.

Of course, so far there is no advantage visible in this abstract presenta-
tion, because we are concerned only with the motion on an ordinary
surface.

The benefit of the abstract point of view makes itself felt at once when
we go over to mechanical systems whose state is given by more than two
quantities. Then a representation of the motion as the motion of a point
on a surface becomes impossible. We have encountered this circumstance
in §7 when we talked of how graphical methods fail in an abstract presenta-
tion of a many-dimensional space.



176 XVII. NON-EUCLIDEAN GEOMETRY

Suppose, then, that there is a mechanical system whose configuration,
i.e., the distribution of whose parts, is

z| given by n quantities x;, x,, ***, X, -
¢ If we are concerned with a system of

several material points, then their

distribution is determined by giving

all their coordinates, three for each

7, point. As another example we can

take a gyroscope (a wheel spinning

a APB e on an axis that itself can turn around
o Y a stationary point). The rotation of

the gyroscope around the axis is
given by the angle of deflection and
the inclination of its axis by the two
FiG. 32. angles it forms with two given direc-
tions. Altogether there are three
quantities that determine the position of such a gyroscope (figure 32).

Every configuration (every position of the parts of the system) can be
thought of as a “point” in the space of all possible configurations. This
is the so-called configuration space of the system.* The number of its
dimensions is equal to the number of quantities x;, x,, -, x, that
determine the configuration. These quantities serve as coordinates of a
“point” in the configuration space. For a system of say three material
points, we obtain three coordinates each for three points, or nine coor-
dinates altogether. For the case of a gyroscope, we have three coordinates,
namely the three angles, so that the configuration space of a gyroscope
is three-dimensional.

The motion of the system is represented as the motion of a point in a
configuration space. The velocity of the motion is determined by the
velocities of change of the coordinates x; , x5, **, X, .

Such spaces will be discussed again in Chapter XVIII in connection
with their topological structure. Here we wish only to emphasize that we
can introduce in a configuration space a special rule of measuring distances
which is closely connected with the mechanical properties of the system.
Indeed, if the kinetic energy of the system is expressed by the formula

T=% 'E A%y

i,k=1

* This must not be confused with the “phase space” mentioned in §8 under sub-
section 2. In the phase space a point determines not only the position but also the
velocity of motion of the points of the system at every moment.
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where the %; are the velocities of change of the corresponding coordinates,
then the square of an infinitely small distance is given by the formula

dé’z = z a‘kdx;dxk.

1, k=1

Thus, the configuration space becomes a Riemannian space. Moreover,
not only is the motion of the system represented as the motion of a point
in the configuration space but the very equations that describe the motion
of the system coincide with the equations of motion of this point; in a
word, the mechanics of the system are represented as the mechanics of a
point in the configuration space. In particular, the motion of the system
under inertia, i.e., without the action of forces (like the free rotation of a
gyroscope) becomes a uniform motion of a point on a geodesic line in
that space. :

This representation is expedient in a number of cases and is used,
along with certain generalizations and modifications, in theoretical
mechanics.

Thus, Riemannian geometry has its applications as a method of
abstract-geometrical description of physical phenomena. This description
is not at all arbitrary and is not an idle play of the mathematical mind;
it reflects the real mechanism of the phenomena in question but reflects
it in an abstract form. But this is the nature of every mathematical
description of physical phenomena. This is also the nature of every
application of abstract geometry; the difference consists only in that more
powerful, more delicate abstractions are applied, but the essence remains
the same.

The most brilliant application of Riemannian geometry came in the
theory of relativity. Of this we shall speak in the following section, where
we will be concerned with the important and difficult problem of the
relationship between abstract geometry and properties of the real space.

7. Generalizations. In the last thirty years the geometry of various
non-Euclidean spaces has been the subject of remarkable developments
and generalizations in several directions. New theories have arisen in
which Riemannian geometry is included as a special case. The first of
these was the so-called Finsler geometry, the idea of which goes back
right to Riemann;* then came a general theory of spaces of the eminent
French geometer E. Cartan, which combines Riemannian geometry with
Klein’s Erlanger Programm, and other theories. We cannot possibly give

* Finsler was_lhe German mathematician who in 1916 initiated a detailed treatment
of the geometry mentioned here.
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an account of these new directions of geometry and shall mention only
that they are worked out essentially by means of a special adaptation of
their analytical apparatus. A group of Soviet geometers has been taking
part in the development of these new directions; we could perhaps name
here the new “polymetric”’ geometry created by P. K. Rasevskil and the
investigations of V. V. Vagner which extend from the most general
problems of the theory of curved spaces to the applications of non-
Euclidean geometry in mechanics.

§10. Abstract Geometry and the Real Space

1. Difficulties of visualizing our actual space as non-Euclidean. In the
course of the preceding account of the development of geometrical
ideas beginning with Lobacevskil, we have gone deep into abstract
spaces and quite far away from the original object of geometry, that
real space in which all phenomena take place. We shall now return to
this space in the usual sense and shall set ourselves the task of explaining
what the development of abstract geometry has contributed to our
knowledge of its properties.

We know that geometry has grown from experiment, from an ex-
perimental investigation of spatial forms and relations of bodies: from
the measurement of lots of land, of volumes of containers, etc. So in
origin it is a physical theory such as, say, mechanics. The axioms of
Euclidean geometry were conclusions clearly formulated on the basis of
protracted experiments; they express laws of nature, and they can be
called laws of geometry, just as the fundamental laws of mechanics are
now often called axioms of mechanics.* But it is wrong to assert that
these laws are absolutely exact and never require modification or general-
ization in connection with new experimental data; the real properties
of space may differ more or less from what Euclidean geometry states.

We have already brought forward these arguments and now they must
appear, we would think, quite obvious. But this was not so a hundred
years ago, when Lobacevskil’s ideas failed to achieve general recognition.
Before Lobacevskil and Gauss, it had not entered into anybody’s head
that the Euclidean geometry could turn out to be not entirely accurate,

* An abstract conception of axioms that dissociates the axioms from their original
content has arisen during the last fifty years; this changes nothing in the fact that the
axioms of Euclidean geometry express laws of nature. In speaking of axioms and not
of laws of geometry or mechanics we wish to place the logical deductive construction
of these sciences in the forefront, but they do not lose their experimental foundation
on that account. Any statement of a theory is called an axiom when it is taken as the
basis for the deductive construction of the theory, and other statements of the theory
(theorems) are deduced from the basic ones (the axioms) by logical reasoning.
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that the real properties of space could be somewhat different. Loba&evskil
developed his geometry as a theory of possible properties of the real
space. Later Riemann and some other scientists also raised the problem
of possible properties of space, of possible laws of measuring lengths
that could be discovered by more accurate measurements. Quite generally,
even abstract geometry in some of its parts can be regarded as a theory
of possible properties of space. All this remained, however, in the realm
of hypothesis until in 1915 Einstein in his general theory of relativity
corroborated the ideas of Lobacevskil and Riemann. This theory claims
that the geometry of the real space in fact differs somewhat from Euclidean
geometry, and this was discovered on just that astronomical scale that
Lobacevskil had anticipated.

In what we have just said about space at least three difficulties are
involved. The problem of the relation of abstract geometry to physical
geometry, i.e., to the properties of real space, reduces in the ultimate
analysis to a clarification of these difficulties.

The first difficulty consists in visualizing at all how and in what sense
the properties of real space can possibly differ from the statements of
Euclidean geometry. We are so accustomed to it that we cannot easily
imagine anything else, and explanations are obviously necessary here.

The second difficulty lies in the very expression “properties of the real
space.” Space by itself is conceived of as empty and homogeneous. It
would seem that in the concept of space itself the idea of its homogeneity
is already included. How then can the empty space, i.e., the “emptiness,”
have any properties? We speak of “properties of space” without thinking
of these problems, but they are worth thinking about, as is apparent
from the difficulty just mentioned.

The third difficulty lies in the concept of the truth of one geometry or
another. The question may appear very simple: That geometry is true
which corresponds to reality. This is so, of course. But on the other hand
we have seen, for example, that the geometry inside a circle can be regarded
as a Lobacevskil geometry, because every geometrical fact inside the
circle can be presented as a theorem of Lobacevskil geometry. Con-
sequently it turns out that the same geometrical facts can be presented
both as theorems of Euclid’s geometry and as theorems of Lobadevskil’s
geometry. Hence both geometries correspond to reality. So which of them
is true and in what sense, and why do we assume all the same that, in
fact, Euclidean geometry is satisfied in the circle and that Lobadevskii
geometry is only illustrated or interpreted in it?

Clearly, in these problems lies a considerable difficulty which has
baffled at times even some eminent mathematicians.

Our explanation must begin with the second of the difficulties mentioned,
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because an understanding of what these “‘properties of space” are will
lead us to a solution of the other difficulties.

2. Space and matter. The subject matter of geometry, namely the
“properties of space,” is made up of the properties of real bodies, their
material relationship and forms. In real space a *‘place,” a “point,”
a “direction,” etc., is determined by material bodies. ““Here” and *‘there,”’
“hither” and “thither” have a meaning only in connection with one
material object or another. ““Here”” can mean “on the earth,” “in this
room” or something else of the sort; in a word, “here” always denotes
a place determined by material criteria of one kind or another. Similarly,
for example, a straight line does not exist by itself, but only as a taut
thread or the edge of a ruler or a ray of light. A straight line, *a line
like this,” is altogether an abstraction which reflects the common proper-
ties of these material lines, just as, say, the “house in itself” is an abstrac-
tion reflecting the common properties of houses; the “house in itself”
does not exist outside of or independently of the various real
houses.

This objective character of the properties of space is expressed by the
well-known statement of dialectic materialism: Space is the form of
existence of matter. The form of an object is determined by the connections
and relations of its parts. The structure of space is the common regularity
of a number of relations of material bodies and events. There are the
spatial relationships, the spatial order of objects, their mutual positions,
distances, etc. But as every form is inseparable from its content, except
in abstractions and in certain contexts, so is space inseparable from
matter. The idea of a space “in itself,”” of a space without matter is an
abstraction that must not be abused. Real spatial relationships and
forms: “*here,” “between,” “inside,”” *‘straight,” “sphere,” etc., these are
always relations and forms of material bodies. Geometry, however,
considers them abstractly. This abstraction is necessary, because otherwise
it would not be possible to perceive generality in the diverse concrete
relations of objects. But this abstraction must not be made absolute by
substituting abstract concepts for the objective reality itself.

In an absolutely empty space, void of all traces of matter, nothing
would distinguish a place, a direction, consequently there are no places,
no directions, so that the absolutely empty space reduces to nothing.
Even in the abstract idea of an empty space we imply tacitly that various
places and directions are distinguishable in it. In other words, in the
abstract idea of space we retain the properties of distinctness of places,
directions, distances which exist in real space precisely because this space
is inseparably connected with material bodies.

Thus, space is the form of existence of matter; “properties of space”
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are, therefore, properties of matter, properties of certain relations of
material bodies, their mutual positions, dimensions, etc.

Furthermore, if the theorems of geometry are to have a physical
meaning, we must know what we shall understand by “straight line,”
*““distance,” and other geometrical concepts in them. In §4 we have seen
that one and the same geometrical theory admits different interpretations.

Consequently, for comparing geometry with experiment it is necessary
to define as accurately as possible the physical meaning of geometrical
concepts, because geometry describes the properties of real space only
on condition that the corresponding physical meaning is attributed to
its concepts. Without this physical meaning the theorems of geometry
are of an abstract mathematical, formal character. Herein lies the solution
to the second difficulty specified earlier. This difficulty arises because,
instead of the real space, which is inseparably connected with matter,
one wants to think of a “pure” space, a space “‘as such,” which is, how-
ever, nothing more than an abstraction.

3. Intuition and understanding. Now it is easy to understand how the
other two difficulties are resolved.

First of all, how can one imagine that the real space in its properties
is other than Euclidean? Suppose we wish to verify some statement of
Euclidean geometry, for example, that the sum of the angles of a triangle
is 180° or that the length of a circle is equal to 2#R. To verify the first
we have to determine what physically defined triangles are to be considered
and how their angles are to be defined. Suppose a side of a triangle is a
light ray in empty space. In that case there is nothing inconceivable in
the fact that very accurate experiments may show that sums of the angles
of a triangle are different from 180°, In the same way one can imagine
that measurement of a radius and circumference on one and the same
scale leads to results that do not satisfy the relation / = 2R accurately.
In fact, this is so on the surface of the earth, where the length of a circle
is not proportional to the radius but grows slowly and reaches a maximum
when the radius is made equal to half a meridian. But it may be objected
that on the surface of the earth the role of straight lines is played by arcs
of great circles so that the radius is understood here in another sense and
our result, therefore, does not contradict Euclidean geometry. However,
according to the theory of relativity, near a body of large mass the ratio
of the length of a circle to the “genuine” radius is all the sane somewhat
different from 27 and, in fact, the following approximate formula holds
for the ratio of the length of the equator of a homogeneous sphere-shaped
body and its radius:
kM

“2”('_?&‘5)’

length of circumference
radius
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where M is the mass of the body (in metric tons), R the radius of the
body (in kilometers), ¢ = 300,000 km/sec the velocity of light and k the
constant of gravitation which for this choice of units of measurement is
equal to 66.6 - 1018,

So we see that the ratio of the length of a circle to its radius is not
equal to 27, but a little less. Computations show that on the surface
of the sum this ratio differs from 2z by approximately .000004, and on
the surface of the companion of Sirius, whose average density is 50,000
times that of water, the deviation reaches .00014.

It may be objected, of course, that all this is nevertheless impossible
to imagine, that in an intuitive picture space is always Euclidean. This
objection need not disturb us, first of all, because the task of science
does not consist in giving intuitive pictures of the phenomena but in
arriving at an understanding of them. An intuitive picture is restricted
and conditioned by the customary forms transmitted by our sense organs.
Therefore we are not in a position to have an intuitive picture of ultraviolet
rays, of the propagation of radio waves, of the motion of an electron in
an atom, or of many other phenomena, except by substituting models
in place of them. But this does not mean at all that these phenomena
are incomprehensible for us. On the contrary, the successes of radio
technology, for example, show clearly that we have mastered radio waves
completely and therefore understand them quite well. Second, the solution
of the problem of what we can and what we cannot imagine depends
on habit and training of the imagination. Can we imagine the antipodes,
where from our point of view people walk with their heads hanging
downwards? Nowadays we are able to imagine this, but there was a time
when the “unimaginability” of the antipodes served as an argument
against the spherical shape of the earth.

4. Geometry and truth. Now let us turn to the last difficulty, i.e., to
the problem as to which geometry can be regarded as true. When we
posed this problem, we indicated that the geometrical facts inside a
circle can be interpreted as theorems of Euclid’s geometry and of
Lobacevskii's geometry. Therefore, both these geometries correspond to
reality; i.e., both are true. And after all, there is nothing astonishing
here. One and the same phenomenon can always be described by various
methods; one and the same quantity can be measured in various units;
one and the same curve can be given by various equations depending
on the choice of the coordinate system. Similarly a given isolated collection
of geometrical relations (in the example in question, the relations inside
a circle) can be described by various methods. But we raise the problem
not of some isolated collection of geometrical facts but of the spatial
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relationships in their entire generality. Space is the universal form of the
existence of matter and, consequently, when the problem of the properties
of space is raised, no domain of facts can be separated artificially.

When the problem is posed in this way, then geometrical quantities
or geometrical facts cannot be considered isolated from other phenomena
with which they are necessarily connected. For example, the length of a
segment is determined by laying off a rigid rule so that the measure of
length is necessarily connected with the motion of rigid bodies, i.e., with
mechanics. Geometry is inseparable from mechanics. However, the
measurement of length inside a circle in the interpretation of Lobad&evskii
geometry proceeds quite differently, as we have explained in §4; a chord
here becomes infinitely long. It is clear that the so-defined measure does
not correspond to the original idea of measurement which has grown
on the basis of mechanical transportation of the real bodies to be com-
pared. In general, figures that are equal in the sense of Euclidean geometry
are, by the very origin of Euclidean geometry, figures that can be super-
imposed on one another by means of a mechanical motion. In the inter-
pretation of Lobadevskil geometry equality is defined differently, the role
of motions is taken here by other transformations. Therefore, when the
geometrical facts inside a circle are taken in conjunction with their
necessary link with mechanics, then we must admit that it is in fact the
Euclidean geometry which holds inside a circle (with great accuracy).

Euclidean geometry is the one in which the role of motion is played
by the ordinary mechanical motion of rigid bodies. It was precisely for
this reason that Euclidean geometry, and not any other geometry, was
the first to be discovered. But the development of physics has now led
to the conclusion that the laws of Newtonian mechanics and with them
the laws of Euclidean geometry are only approximations to more accurate
and general laws. In this change of the laws of geometry, in the transition
from Euclidean to Riemannian geometry which was accomplished in the
theory of relativity, mechanics was not the only branch of physics to play
arole: Of equal, if not greater, importance were the theories of electromag-
netic phenomena and optics. Geometry as the science of the properties
of space is connected with physics, depends on it, and can be separated
from it only in abstraction and only in certain contexts.

The dependence of geometry on physics, or in other words the depen-
dence of the properties of space on matter, was clearly indicated by
Lobacevskil, who foresaw the possibility of a change of the laws of
geometry on transition to a new domain of physical phenomena. In
contrast to this materialistic point of view, the famous mathematician
Poincaré stated rather recently that the choice of one geometry or another
is dictated solely by considerations of simplicity or “economy of thought”
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in the phrase of the well-known idealist Mach. On this basis Poincaré
predicted further that science would more readily give up the law of
rectilinear propagation of light than the Euclidean geometry, because it
is the “simplest.”” However, Poincaré died three years before the general
theory of relativity was finally set up, in which just the opposite is done:
Euclidean geometry is abandoned, but the law of propagation of light
is preserved, though in a generalized form; light is propagated on a
geodesic line.

So we have reached the following conclusions. One, and the same
isolated collection of facts can, generally speaking, be described in a
variety of ways and all these descriptions are true provided they reflect
reality. However, it is wrong to consider the geometrical facts in their
entire generality severed from other phenomena. Only so can the properties
of space be established, because it is the universal form of existence of
matter. But by taking geometry in conjunction with physics we must
necessarily adapt them to one another, and then we see the essential
difference between the various *“‘geometries” which, when dissociated
from physics, can only be distinguished by their greater or lesser sim-
plicity. Euclidean geometry appeared not because it was simpler than the
others, but because it corresponded to mechanics. In fact, in connection
with the development of physics in the theory of relativity we now go
over to a more complicated geometry, namely Riemannian.

To sum up, in reference to the properties of real space that geometry
is true which reflects the properties of spatial relationships in their entire
generality with sufficient accuracy and which consequently corresponds
not only to the purely geometrical facts but also to mechanics and to
the whole of physics.

5. The space-time of relativity. What little we have said above on the
theory of relativity does not touch on its main contents, In the under-
standing of the problem of space, it went substantially further than
Lobacevskii and Riemann had thought of.

The most essential and basic proposition of the theory of relativity is:
Space is completely inseparable from time and that together they form
a single form of existence of matter, the four-dimensional manifold of
space-time. An event in the world is characterized by its place and time
and consequently by four coordinates: three spatial and the fourth
temporal, the time of the event. The events form in this sense a four-
dimensional collection. The theory of relativity is concerned above all
with this four-dimensional collection from the point of view of its struc-
ture, disregarding the properties of the individual phenomena. It is not
fundamentally a theory of fast motions, nor of cosmology, nor a new
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theory of space or time, but just a theory of space-time as a single form
of existence of matter.

Of course, in Newtonian mechanics also we can combine space and
time in a single four-dimensional manifold. As we have had occasion to
recall, the idea itself of a many-dimensional space was born in Lagrange’s
work, when in considering the motion of a material point he added to
the spatial coordinates x, y, z the time coordinate 7. The motion of a
point is then represented as a line in the four-dimensional space with
the coordinates x, y, z, ¢; under a motion of the point all four coordinates
change: the position (x, y, z) and the time t. However, this unification of
space and time has a purely formal character. No internal necessary
connection between space and time is set up here. Of course, in the law
of motion of each given body there is its dependence on spatial position
and on time. But this concerns only each given motion, no universal
internal connection between space and time was established before the
theory of relativity, neither in mechanics nor in physics generally. The
spatial relationships, the spatial order of objects and phenomena were
always carefully distinguished from their relationships and order in time.
The temporal sequence of events, the duration of time intervals were
regarded as absolute, as definite irrespective of what happened. In short,
the concept of absolute time ruled supreme.

Einstein’s greatest discovery, which not only laid the corner stone of
the theory of relativity but revolutionized the whole physical and philo-
sophical understanding of the problem of space and time, was the discovery
that absolute time does not really exist. Shortly after Einstein developed
his theory in 1905,* Minkowski showed that its essence consists not as
much in the rejection of absolute time as in the institution of a mutual
link of space and time, in virtue of which there exists a single absolute
form of existence of matter: space-time. The separation of space (the
spatial coordinates) from time (from the time coordinate ¢) is to a certain
degree relative, depending on the material system (the “system of
reference”) in relation to which the spatial and temporal order of the
phenomena is determined. Events that are simultaneous with reference
to one system need not be so with reference to another system.

The definition of the order of phenomena cannot be, of course, com-
pletely dependent on the system of reference. The order of events that
are connected by direct interaction, it stands to reason, remains one and
the same with reference to all systems, so that an action always precedes
its result. But for events that are not connected by interaction the order

* The theory that Einstein developed in 1905 is called the special theory of relativity
in contradiction to Einstein’s “general” theory of 1915.
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of time turns out to be relative. Since the spatial order (in its pure form)
refers to simultaneous events and simultaneity is relative, the separation
of purely spatial relationships from the general aggregate of space-time
relationships turns out to be relative, depending on the system of reference.
Space in the abstract sense is, as it were, a “section” of the four-dimen-
sional manifold of space-time that is laid through simultaneous events
(in reference to a given system).

It cannot be our task to explain the foundations of the theory of
relativity and so we shall try only to characterize in a few words its
basic features in the form in which it is most natural to consider them
in connection with the ideas of abstract geometry. This interpretation,
incidentally, is quite different from that which comes from Einstein
himself.

The world, the universe, can be regarded as a set of diverse events.
By an event we understand here not an arbitrary phenomenon extending
in space and lasting in time but as it were an instantaneous, pointlike
phenomenon such as a momentary flash of a point source of light. To
use geometrical language, events are points in the four-dimensional
manifold of the universe.

Space-time is the form of existence of matter, the form of this world
manifold. The structure of space-time, its “‘geometry,” is nothing but a
certain general world structure, i.e., in accordance with our analysis, the
“geometry”” of the set of events. This structure is determined by certain
universal material connections and relations of events.

First, as we have explained previously for the spatial relationships,
we must, in fact, be dealing here with material relationships and connec-
tions. This is also true for the relationships of phenomena in time. Spatial
and temporal relationships “‘as such,” in a pure form, are only abstractions.

Second, the relationships of events that determine the structure of
space-time must have universal character in accordance with the universal
character of space-time.

Such a universal material relation of events is their cause-effect connec-
tion. Every event acts in one way or another, directly on certain other
events and, in turn, experiences the action of other events. This relation
of the action of some events on others determines the structure of space-
time.

Thus, the theory of relativity allows us to make the following definition.
Space-time is the set of all events, irrespective of their concrete properties
and relations except for the general relation of action of some events
on others. This relation too must be understood here in the general sense,
irrespective of its various concrete forms.

In the special theory of relativity, space-time is regarded as maximally
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homogeneous. This means that the manifold of events admits transforma-
tions that do not disturb the relations of action between events, and the
group of these transformations is in a certain sense as large as possible.
Suppose, for example, that there are two pairs of events 4, Band 4', B’
and that neither 4 acts on B nor B on A4 and similarly for 4’ and B'.
Then there exists a transformation between the events under which 4
corresponds to 4’ and B to B’ and such that for any pairs of events the
relation of action (or inaction) is not infringed; i.e., if X acts on Y, then
the corresponding event X’ also acts on Y’ and if X does not act on Y,
then X’'does not act on Y’.

In accordance with these explanations, it turns out that from the point
of view of the special theory of relativity, space-time is a four-dimensional
space of its own kind whose geometry is determined by a certain group
of transformations. These transformations are nothing other than the
famous Lorentz transformations. The laws of geometry and physics do
not change under these transformations. This outlook corresponds to the
view of geometry put forward by Klein in his Erlanger Programm of
which we have spoken in §6.

6. Gravitation and curvature. The general theory of relativity goes
further and abandons the idea of homogeneity of space-time. It assumes
that space-time is homogeneous only to a certain approximation in
sufficiently small domains but is on the whole inhomogeneous. The
inhomogeneity of space-time is determined according to Einstein’s
theory by the distribution and motion of matter. In its turn the structure
of space-time determines the laws of motion of bodies, and this appears
in the phenomenon of universal gravitation. The general theory of
relativity is, properly speaking, a theory of gravitation that explains the
gravitational link of the structure of space-time with the motion of matter.

The idea of space-time as homogeneous only to a certain approximation
in small domains is similar to the idea of Riemannian space which is
Euclidean only “in the infinitely small.”” The mathematical space-time of
the general theory of relativity is treated as a kind of Riemann space,
though in a substantially altered sense.

In fact, in a four-dimensional Riemannian space we can introduce
coordinates in the neighborhood of every point such that the square of
the line elements is expressed by the formula ds? = dx? + dx3 + dxi + dx.

In space-time we can introduce coordinates x, y, z, ¢ in the neighborhood
of every event such that the line element is represented by the formula
ds? = dx* + dy? + dz® — c%t?, where ¢ is the velocity of light, which
for a suitable choice of the units of measurement can be taken to be |.
Here x, y, z are the spatial coordinates and ¢ is the time. The minus
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sign for dt® gives a formal expression to the essential radical difference
of the time coordinate from the spatial ones, of time from space.

In the theory of gravitation the concept of curvature of space-time
plays a very important role. The fundamental equations of the theory
given by Einstein at once connect the quantities that characterize the
curvature of space-time with the quantities that characterize the distribu-
tion and motion of matter. These equations are at the same time the
equations of the gravitational field and thus, as Einstein has proved in
collaboration with V. A. Fok, the laws of motion of bodies in a gravita-
tional field can be derived from them.

The structure of space-time according to the general theory of relativity
is complicated, and space cannot be separated from time even to the
extent permitted by the special theory of relativity. However, with a
certain approximation and under certain assumptions this can be done.
Space turns out to be Euclidean with a sufficient accuracy in domains
that are small in comparison with the cosmic scale, but in large domains
the deviation from Euclidean geometry becomes apparent. This deviation
depends on the distribution and motion of masses of matter and reaches
appreciable, though still very small, values near a star of large mass,
or in general when the magnitudes involved are on a cosmic scale. In a
number of hypotheses on the structure of the universe as a whole it is
assumed that on the average the distribution of mass is approximately
uniform. In one of these hypothetical theories proposed by the Soviet
physicist and mathematician Fridman the geometry of space on the
whole coincides with Lobadevskii geometry.

In the theory of relativity abstract geometry finds an application not
only as a mathematical apparatus; the very ideas of an abstract space
provide the means for a deeper formulation of the foundations of this
theory. Possibilities contemplated in abstract geometry are discovered in
reality, and theoretical thinking celebrates here its most brilliant triumph.
Abstract geometry, which itself has grown from an experimental study
of the spatial relationships and forms of bodies, now faces, as a well-
developed mathematical method, the study of real space. Such is the
general path of science: From what is immediately given by experiment
it rises to theoretical generalizations and abstractions, and then turns
again to the experiment as the instrument for deeper understanding of
the essence of the phenomena; by thus giving explanations of known
phenomena and predictions of new ones, it guides the practical activities
of its investigators and in return finds herein its own justification and the
source of its future development.
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TOPOLOGY

§1. The Object of Topology

““Adjacency is the distinguishing appurtenance of bodies and permits
us to call them geometric, when we retain in them this property and
abstract from all others, whether they be essential or accidental.” With
these words 1. N. Lobadevskil begins the first chapter of his work “New
Elements of Geometry”.*

Explaining by a diagram (figure 1), the words just quoted Lobadevskil
continues: “Two bodies 4, B that touch
each other form a single geometric
body C --. Conversely, every body C
can be split by an arbitrary section S
into two parts 4, B.”

These concepts of adjacency, neigh-
borhood, infinite proximity, and also K------=3*"""77777N
the concept of a dissection of a body, e \
which in a certain sense is dual to them, N
these are the concepts that Loba&eyskii c
places at the foundation of the whole
structure of geometry and they are also Fic. 1.
in essence the fundamental, primordial
concepts of topology in the full extent in which we now understand this
discipline. Therefore contemporary commentators of the great geometer
are right in sayingt that “Lobacevskii makes the first attempt in the
history of the mathematical sciences to start, in the construction of

+
y S

* 1. N. Lobagevskii, “*Collected works,” Vol. II, Gostehizdat, 1949, page 168.
+ Comments to “New Elements of Geometry,” loc, cit., page 465.
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geometry, from topological properties of bodies ... . The concepts of
surface, line, point are defined by Lobadevskil in terms of dissections and
adjacencies of bodies.” Some idea of the diversity of concrete geometric
content reflected in the concepts of adjacency and dissection of bodies,
as Lobatevskil imagined them, can be obtained from the following
diagrams (figure 2) taken from his work.

Fia. 2.

Every transformation of a geometric figure in which the relations of
adjacency of various parts of the figure are not destroyed is called
continuous; if the adjacencies are not only not destroyed, but also no
new ones arise, then the transformation is called ropological. Therefore,
under a topological transformation of an arbitrary figure the parts of
this figure that are in contact remain in contact, and the parts that are
not in contact cannot come into contact; to put it briefly, in a topological
transformation neither breaks nor fusions can arise. In particular, two
distinct points cannot be united into a single point (in that case a new
contact would arise: figure 3). Therefore a topological transformation of

FiG. 3.

any geometrical figure, considered as the set of points forming it, is not
only a continuous, but also a one-to-one transformation: Any two distinct
points of the figure are transformed into two distinct points. Thus,
topological transformations are single-valued and continuous both ways.
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Intuitively a topological transformation of an arbitrary geometric figure
(a curve, a surface, etc.) can be represented in the following way.

Let us imagine that our figure is made of some flexible and stretchable
material, for example of rubber. Then it can be subjected to all possible
continuous deformations under which it will be extended in some of its

FiG. 4.

parts and contracted in others, and altogether will change its size and
shape in every way. For example, when a closed rubber ring is given
in the form of a circle, then we can stretch it into the shape of an extremely
elongated ellipse, we can give it the form of a regular or an irregular
polygon and even of very complicated closed curves, some of which are
illustrated in figure 4. But we cannot, by a topological transformation,
turn a circle into a figure of eight (for this would require the fusion of
two distinct points of the circle; figure 5) or into an interval (for this

o0 I

FiG. 5.

would require the fusion of one semicircle with another or else a break
of the circle at an arbitrary point). The circle is the simplest closed curve,
since it forms only one loop in contrast to the figure of eight, which
forms two loops, or the trefoil curve (figure 5), which forms three loops.
The property of a circle of being a simple closed curve is a property
preserved under an arbitrary topological transformation or, as one says,
it is a topological property.
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If we take a spherical surface, which we can imagine in the form of a
thin rubber sheet, then we can again make exceedingly great changes in
its shape by means of a topological transformation (figure 6). But we

cannot, by a topological transformation, turn our spherical surface into
a square or a ring-shaped surface (the surface of a steering wheel or a
life belt), which is called a torus (figure 7). For the surface of a sphere

FiGc. 7.

has the following two properties which are both preserved under an
arbitrary topological transformation. First, our surface is closed: There
are no edges on it (but the square has edges); second, every closed curve
on a spherical surface is in Lobadevskil’s expression a dissection of it;
if we make a cut along a given closed curve traced out on our rubber
sheet, then the surface splits into two disconnected parts. The torus does
not have this property: If a torus is cut along a meridian (figure 7), then
it is not split into parts but is turned into a surface having the form of
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a bent tube (figure 8) which we can then easily turn (straighten) into a
cylinder by a topological transformation. Thus, in contrast to the sphere,
not every closed curve on the torus is a dissection. Therefore the spherical
surface cannot be turned into a torus by a topological transformation.
We say that the sphere and the torus are topologically distinct surfaces
or surfaces that belong to distinct topological types or, finally, that these
surfaces are not homeomorphic to each other. Conversely, a sphere and
an ellipsoid and quite generally any bounded convex surface belong to
one and the same topological type; i.e., they are homeomorphic. This
means that they can be carried into one another by a topological trans-
formation.

§2. Surfaces

As mentioned earlier, every property of a geometrical figure that is
preserved under an arbitrary topological transformation of it is called
a topological property. Topology studies topological properties of
figures; furthermore, it studies topological transformations and also
arbitrary continuous transformations of geometrical figures.

We have just given some examples of topological properties. Such
properties are: the property of a curve or a surface of being closed, the
property of a closed curve of being simple (i.e., of forming only one loop),
the property of a surface that every closed curve lying on it is a dissection
of the surface (the spherical surface has this property, but the ring-shaped
one has not), etc.

The largest number of closed curves that can be drawn on a given
surface in such a way that these curves do not form dissections, i.e.,
that the surface does not split into parts when cuts are made along all
these curves, is called the order of connectivity of the surface. This number
gives us some important information on the topological layout of the
surface. We have seen that for a spherical surface it is equal to zero
(every closed curve on this surface is a dissection). On the torus we can
find two closed curves that taken together do not form sections: One
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of them can be taken as an arbitrary meridian and the other as a parallel
of the torus (figure 7). However, it is impossible to draw on the torus
three closed curves that taken together do not form a dissection of it;
the order of connectivity of the torus is 2. The order of connectivity of
the pretzel surface (figure 9) is 4, etc. Quite generally, let us take a spherical
surface and cut 2p spherical holes in it (in figure 10, the case p = 3 is

Fic. 10.

illustrated). We divide these holes into p pairs and attach to each pair
of holes (at the edges) a cylindrical tube (a “handle’’). We obtain a sphere
with p “handles” or as it is called, a normal surface of genus p. The
order of connectivity of this surface is 2p.

All these surfaces, in Lobadevskil’s expression, are “dissections™ of
space: Each of them divides the space into two domains, an interior and
an exterior, and they are the common boundary of these two domains.
This fact is connected with another, namely that every one of our surfaces
has two sides: an interior and an exterior (one side can be painted in
one color, and the other in another).

However, apart from these there also exist the so-called one-sided
surfaces on which there are not two distinct sides. The simplest of these
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is the well-known “Md&bius band,” which is obtained when we take a
rectangular strip of paper ABCD and paste together the two opposite
short sides 4B and CD so that the vertex 4 coincides with C, and B
with D. The surface so obtained is illustrated in figure 11; it is called
the M&bius band or strip. It is easy to verify that there are not two sides
on it that could be painted in different colors: When we go along the
middle line of the surface beginning our path at the point E, say, then
we arrive again at the point E by proceeding on the surface, but on the
other side of it, although we have not crossed an edge on our path.
Incidentally, the edge of the M&bius surface consists of a single closed
line.

The problem now arises: Do there exist closed one-sided surfaces, i.e.,
one-sided surfaces that do not have edges? It turns out that they exist,
but that such surfaces, no matter how we arrange them in three-dimension-
al space, always have self-intersections. A typical example of a closed
one-sided surface is illustrated in figure 12; this is the so-called *‘one-sided

Fig. 12.

torus” or the Klein bottle. If without worrying about self-intersections
we imagine two copies of a Mobius strip pasted together along their
edges, (the edge of a Mobius strip, as was mentioned earlier, consists
of a single contour), then we obtain a Klein bottle.

Now we can formulate the fundamental theorem of the topology of
surfaces as applied to two-sided surfaces: Every closed two-sided surface
is homeomorphic to some normal surface of genus p, i.e., to a “sphere
with p handles”; two closed two-sided surfaces are homeomorphic if and
only if they are of one and the same genus p (the same order of connectivity
2p), i.e., when they are homeomorphic to a sphere with one and the same
number of handles p.

For one-sided surfaces there also exist “normal forms,” similar to the
normal forms of two-dimensional surfaces of genus p, but they are
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complicated to describe. For this purpose we have to take a sphere,
cut p circular holes in it, and attach to each of them a M&bius surface
by pasting the edge of this surface to the edge of the corresponding hole.
The complication that arises in an attempt to imagine such a pasting
comes from the fact that there is no physical realization of it: Self-
intersections of the surface arise at once in such a pasting, and they are
unavoidable in every realization of a one-sided closed surface in the form
of a spatial model.

One must not think that closed one-sided surfaces belong to the domain
of mathematical curiosities, unconnected with serious problems of
science. To see how wrong such an opinion is we need only recall that
one of the fundamental achievements of geometric thinking was the
creation of the so-called projective geometry, the elements of which
occur nowadays in geometry courses of universities and teacher training
colleges. Practical sources of projective geometry lie in the theory of
perspective which dates back to the Renaissance (Leonardo da Vinci)
in connection with the needs of architecture, pictorial art, and technical
projection. The 16th and 17th centuries saw the discovery of the first
theorems of projective geometry. Thus, arising in connection with quite
a definite practical requirement, projective geometry became in its full
development one of the most significant generalizations of geometry,
as far as theoretical ideas are concerned. In particular, it was in the
framework of projective geometry that Lobad&evskii’s non-Euclidean
geometry was for the first time completely understood.*

The transition from the ordinary plane, as it is studied in elementary
geometry, to the projective plane consists in a completion of the plane
by new abstract elements, the so-called improper or “infinitely distant”
points. Only after such a completion does the operation of projecting
one plane onto another (for example, the projection onto a screen by
means of a projection lantern) become a one-to-one transformation of the
one plane onto the other. The completion of the plane by improper
points, which in coordinate geometry corresponds to a transition from
the ordinary Cartesian coordinates to homogeneous coordinates, proceeds
in the following way. Every straight line is completed by a single improper
point (*“at infinity™), and two straight lines have the same improper point
if and only if they are parallel. A straight line completed by a single
point at infinity becomes a closed line and the set of all points at infinity
of all possible straight lines forms by definition an improper line or a line
at infinity.

“*-Q, for example, Chapter XVII, §6, or the book by P. S. Aleksandrov “What is
non-Euclidean geometry,” Moscow, 1951.
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Since parallel lines have a common point at infinity, in the representation

of the whole process of completion of the plane by improper points it is
sufficient to consider the lines passing
through an arbitrary point of the plane,
for example through the origin of coor-
dinates O (figure 13). The improper points
of these lines already exhaust all the
improper points of the whole projective
plane (since every line has the same
improper point as the line through O
parallel to it). Therefore we obtain a
“model” of the projective plane by
regarding it as a circle of “infinitely
large” radius with center at O and as-
suming that every pair of diametrically
opposite points 4, A’ of the circumference
of this circle are united into the single Fic. 13.
“infinitely distant™ point of the line 44",
The circumference of our circle then becomes the line at infinity, but we
must strictly keep in mind that any two diametrically opposite points of
this circumference must be thought of as identified with one another.
Hence it is at once clear that the projective plane is a closed surface,
that there are no edges on it.

If we take a curve of the second order in a projective plane, which
we can illustrate in the form of a hyperbola (see figure 13), then it is
obvious that this hyperbola in the projective plane is a closed curve (only
cut into two branches by the line at infinity). Bearing in mind that
diametrically opposite points of the circumference of our fundamental
circle are identified with one another, we can see without difficulty that
the interior of our hyperbola which is shaded in figure 13 is homeomorphic
to the interior of an ordinary circle, and the complement, the unshaded
part of the projective plane, is homeomorphic to a Mobius band. Thus,
from the point of view of topology the projective plane is the result of
pasting together a circle (in our case the interior of a hyperbola) with a
Mobius band along their edge. Hence it follows that the projective plane,
i.e., the basic object of study of plane projective geometry, is a closed
one-sided surface.

The example of the projective plane, apart from its great intrinsic
geometrical value, is also interesting because it throws into relief one
peculiarity of contemporary geometric thinking as it is moulded on the
basis of Lobadevskil’s discovery. Geometric thinking has always been
abstract, by the very character of the concept of a geometrical figure.
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Now it rises to a new degree of abstraction, which in our case becomes
apparent in the completion of the ordinary plane by new abstract ele-
ments, namely the improper points. Of course, even these abstract elements
form a real entity (every “improper point” is nothing but an abstraction
of a pencil of parallel lines), but they are introduced into our discussion
as distinct geometric elements which we can only indirectly imagine as
the result of the “fusion™ (which does not exist physically) of diametrically
opposite points of the circumference of some circle. Similar abstract
constructions are of very great value in the whole of contemporary
topology, especially on transition from planes to manifolds of three or
more dimensions.

§3. Manifolds

Let us consider the following simple apparatus, sometimes called a
compound plane pendulum (figure 14). It consists of two rods OA and
AB, hinged together at A; the point O remains
immovable, the rod OA turns freely in a fixed
plane around O, and the rod 4B turns freely
in the same plane around 4. Every possible
position of our system is completely deter-
mined by the magnitude of the angles ¢ and

Fic. 14. Fig. 15.

i that the rods O4 and AB form with an arbitrary fixed direction
in the plane, for example with the positive direction of the abscissa
axis. We can regard these two angles, which change from O to 2=,
as “geographical coordinates” of a point on a torus, counting from
the “equator™ of the torus and one of its *“meridians,” respectively,
(figure 15).
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Thus, we can say that the manifold of all possible states of our
mechanical system is a
manifold of two di-
mensions, namely a
torus. When we re-
place each of the two
angles ¢, ¢ by a cor-
responding point on
the circumference of a
circle on which an FiG. 16.
initial point and a di-
rection are given (figure 16), then we can also say that every possible
state of our mechanical system is completely characterized by giving one
point on each of two circles (one of these is taken as the latitude ¢ and
the other as the longitude ¢). In other words, just as in analytic geometry
we identify a point of the plane with a pair of numbers, namely its coor-
dinates, so in our case we can identify a point of the torus (and hence
an arbitrary position of our pendulum) with the pair of its geographic
coordinates, i.e., with a pair of points one of which lies on one circle
and the other on another. The essence of the situation is expressed by
saying that the manifold of all possible states of our compound plane
pendulum, i.e., the torus, is the topological product of two circles.
Now we modify our apparatus in the following way. Suppose that, as
before, it consists of two rods 04 and 4B and that OA can turn freely
in a definite plane around the point O but that 48 is now hinged to
OA by a spherical hinge at O, so that for a given position of this point
it can freely turn around it in space, keeping parallel to an arbitrary
original ray through 4. Now the position of our system is given by three
parameters of which the first is the previous angle ¢ formed by the rod
OA with the positive direction of the abscissa axis, and the other two
determine the direction of the rod 4B in space. The latter direction can
be determined, for example, by giving the point B’ on the unit sphere
with the centre at the origin of coordinates O at which the radius OB’
parallel to AB intersects the sphere, or by giving on the sphere the two
geographical coordinates of B'. Thus, the manifold of all positions of
our new hinged system is a certain three-dimensional manifold, and the
reader will easily realize that it can be treated as the topological product
of a circle and a sphere. This manifold is closed, i.e., it has no edges,
therefore it cannot be realized in the form of a figure lying in three-
dimensional space. If nevertheless we wish to get a somewhat intuitive
idea of it, we can consider the part of space lying between two concentric
spheres. Each ray emanating from the common center of these spheres
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pierces them in two points. If we regard each pair of such points as
identified (fused into a single point), then we obtain a three-dimensional
manifold which is the topological product of a sphere with a circle.

We can make our hinged apparatus even more complicated if we not
only connect the rods O4 and 4B by a spherical hinge at 4, but also
assume that the rod OA can turn freely in space around the point O.
The set of possible positions of the system so obtained is then a four-
dimensional closed manifold, namely the product of two spheres.

Thus we have seen that even the simplest mechanical (kinematical)
considerations lead us to topological manifolds of three and more
dimensions. Of even greater value in the practical, more detailed discussion
of mechanical problems are certain manifolds (in general, many-dimen-
sional), the so-called phase spaces of dynamical systems. Here we take
into account not only the configurations that the given mechanical
system can have, but also the velocities with which its various constituent
points move. Let us confine ourselves to one of the simplest examples.
Suppose we have a point that can move freely on a circle with an arbitrary
velocity. Every state of this system is determined by two data: the position
of the point on thecircle and the velocity at the given instant. The manifold
of states (the phase space) of this mechanical system is, of course, an
infinite cylinder (a product of a circle with a straight line).

The number of dimensions of the phase space increases as we increase
the number of degrees of freedom of the given system. Many of the
dynamical characteristics of a mechanical system can be expressed in
terms of the topological properties of its phase space. For example, to
every periodic motion of the given system there corresponds a closed
curve in its phase space.

The study of the phase spaces of dynamical systems occurring in
various problems of mechanics, physics, and astronomy (celestial me-
chanics, cosmogony) drew the attention of mathematicians to the topology
of many-dimensional manifolds. It was precisely in connection with these
problems that the famous French mathematician Poincaré in the 1890’s
inaugurated the systematic construction of the topology of manifolds, by
applying the so-called combinatorial method, which up to the present day
is one of the fundamental methods of topology.

§4. The Combinatorial Method

Historically the first theorem in topology is the theorem or formula
of Euler (which was apparently known even to Descartes). It consists
in the following. Let us take the surface of an arbitrary convex polyhedron,
We denote by o, the number of its vertices, by «, the number of its edges,
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and by o, the number of its faces; then the following relation is known
as Euler’s formula

a — o + oy = 2. (H

This geometrical theorem belongs to topology, because our formula
obviously remains true when we subject the convex polyhedron in question
to an arbitrary topological transformation. Under such a transformation
the edges will, in general, cease to be rectilinear, the faces cease to be
plane, the surface of the polyhedron goes over into a curved surface,
but the relation (1) between the number of vertices and the numbers of
edges and faces, now curved, remains valid. The most important case is
when all the faces are triangles and then we have a so-called rriangulation
(a division of our surface into triangles, rectilinear or curvilinear). It is
easy to reduce the general case of arbitrary polygonal faces to this case:
It is sufficient to divide these faces into triangles (for example by drawing
diagonals from an arbitrary vertex of the given face). Thus, we can restrict
our attention to the case of a triangulation. The combinatorial method
in the topology of surfaces consists in replacing the study of such a surface
by the study of one of its triangulations, and of course we are only
interested in properties of the triangulation that are independent of the
accidental choice of one triangulation or another and so, being common
to all triangulations of the given surface, express some property of the
surface itself.

Euler’s formula leads us to one of such properties, and we shall now
consider it in more detail. The left-hand side of Euler’s formula, i.e., the
expression oy — oy + oy, where ag is the number of vertices, «; the
number of edges, and o, the number of triangles of the given triangulation,
is called the Euler characteristic of this triangulation. Euler’s theorem
states that for all triangulations of a surface homeomorphic to a sphere
the Euler characteristic is equal to two. Now it turns out that for every
surface (and not only for a surface homeomorphic to a sphere) all
triangulations of the surface have one and the same Euler characteristic.

It is easy to figure out the value of the Euler characteristic for various
surfaces. First of all, for the cylindrical surface it is equal to zero. For
when we remove from an arbitrary triangulation of the sphere two
nonadjacent triangles but preserve the boundaries of these triangles, then
we obviously obtain a triangulation of a surface homeomorphic to the
curved surface of a cylinder. Here the number of vertices and of edges
remains as before, but the number of triangles is decreased by two,
therefore the Euler characteristic of the triangulation so obtained is zero.
Now let us take the surface obtained from a triangulation of a sphere
after removal of 2p triangles of this triangulation that are pairwise not
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adjacent (i.e., do not have any common vertices nor common sides).*
Here the Euler characteristic is decreased by 2p units. It is easy to see
that the Euler characteristic does not change when cylindrical tubes are
attached to each pair of holes made in the surface of the sphere. This
comes from the fact that the characteristic of the tube to be pasted in
is, as we have seen, zero and on the rim of the tube the number of vertices
is equal to the number of edges. Thus, a closed two-sided surface of
genus p has the Euler characteristic 2 — 2p (a fact that was first proved
by the French admiral de Jonquiéres).

We now give an important property of triangulations which satisfies
the so-called condition of topological invariance (i.e., every triangulation
of the given surface has the property if at least one of them does). This
is the property of orientability. Before we formulate it, let us observe
that every triangle can be oriented, i.e., that a definite direction of tra-
versing its boundary can be furnished. Each of the two possible orientations
of a triangle is given by a definite order of the sequence of its vertices.t
Now let us suppose that on an arbitrary surface we are given two triangles
which have a common side and no other common points (figure 17).
Two orientations of these triangles are called compatible if they generate
opposite directions on the common side of the triangle. (In the plane or
on any other two-sided surface this means that the two triangles, when
they are regarded as lying on one side of the surface, are traversed in the
same direction, i.e., either both counterclockwise or both clockwise.) A
triangulation of a given closed surface is called orientable if the orientations
of all the triangles occurring in it can be so chosen that any two triangles,
adjoining in a common side, turn out to be compatibly oriented. Then
the following fact holds: Every triangulation of a two-sided surface is
orientable, every triangulation of a one-sided surface is nonorientable.
Therefore two-sided surfaces are also called orientable, and one-sided
nonorientable. Choosing an arbitrary triangulation of a M&bius band the
reader can easily convince himself of its nonorientability. In order to
obtain the simplest triangulation of the projective plane, we have only
to draw in it any three straight lines that do not pass through one and
the same point (figure 18). They divide the projective plane into four
triangles one of which lies in the finite part of the plane, while each of the

* In order to do this we have only to make the triangulation in question sufficiently
*fine.” This can always be achieved by a suitable subdivision of an arbitrary triangula-
tion.

t Moreover, it is easy to see that two orders of the vertices determine one and the
same orientation (one and the same direction of circuit) if and only if they go over
into one another by an “‘even” permutation. Thus (4BC), (BCA), (CAB) determine
one orientation of the triangle, and (BAC), (ACB), (CBA) the other. (About even and
odd permutations see, e.g., Chapter XX, §3.)
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other three is cut by the line at infinity into two parts. In figure 18 one
of these triangles, extending to infinity, is shaded. From the same figure
it is clear that when we attempt to give all four triangles compatible
orientations we are inevitably doomed to failure. In particular, in the

Fic. 17. Fic. 18.

choice of orientations of our four triangles as it is made in figure 18,
we obtain for the algebraic sum of its boundaries not zero, as it should
be for compatible orientations, but the line 4B taken twice.

Euler’s characteristic and the property of orientability or nonorientabili-
ty of closed surfaces gives us, so to speak, a complete system of topological
invariants of closed surfaces. The meaning of this statement is that two
surfaces are homeomorphic if and only if, first, their triangulations have
one and the same Euler characteristic and second, both are orientable or
not orientable.

The combinatorial method is applicable not only to the study of
surfaces (two-dimensional manifolds) but also to manifolds of an arbitrary
number of dimensions. But in the case of three-dimensional manifolds,
for example, the role of the ordinary triangulations is now taken by
decompositions into tetrahedra. They are called three-dimensional
triangulations or simplicial divisions of the manifold. The Euler charac-
teristic of a three-dimensional triangulation is defined as the number
o — oy + @y — g, where o, i =0, 1, 2, 3, is the number of i-dimen-
sional elements of this triangulation (i.e., o, the number of vertices,
o, the number of edges, a, the number of two-dimensional boundaries,
ay the number of tetrahedra). For a number of dimensions n > 3 the
manifolds are divided into »-dimensional simplexes, i.e., the simplest
convex n-dimensional polyhedra analogous to triangles (n = 2) and
tetrahedra (n = 3). The simplexes into which an n-dimensional manifold
is divided and their boundaries form an n-dimensional triangulation of
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this manifold. As before we can speak of an Euler characteristic, inter-
preting it as the sum Z,_, (— 1)’ «; , where a, is the number of i-dimensional
elements occurring in this triangulation (/ = 0, 1, 2, -+, n), and as before
the Euler characteristic has one and the same value for all triangulations
of a given n-dimensional manifold (and for all manifolds homeomorphic
to it); i.e., it is a topological invariant. But in the present state of our
knowledge, we cannot dream of a complete system of invariants even
for three-dimensional manifolds (in the sense in which it is given for
surfaces by the Euler characteristic and orientability).

The value of the combinatorial method in contemporary topology is
very great. It opens the door to an application of certain algebraic devices
in the solution of topological problems. The attentive reader will have
noticed the possibility of such an algebraic approach when we talked
above of the algebraic sum of the boundaries of the orientated triangle
in a triangulation of the projective plane. For if a triangle is oriented,
i.e., if a direction of traversing it is defined, then it is natural to take on
its boundary the collection of its sides each with a definite direction,
namely the one that continues the existing circuit of the triangles.

Now let us consider all the triangles 72, i = 1,2, -, ap, that occur
in a given triangulation of a surface. To each of them we can give two
orientations; let us denote the triangle 77 with one of the two possible
orientations by r*, and the same triangle with the other (opposite)
orientation by — ¢ . In exactly the same way we can orient each of the
one-dimensional elements (edges) T} (k = 1,2, -, a;) that occur in the
given triangulation, i.e., provide it with one of the two possible directions.
We denote the segment T, with one of these orientations by 77 , and with
the other by — ri. Now if the sides of the triangle T? are T}, T3, Ty,
then the boundary of the oriented triangle r; is the set of the same sides,
but taken with a definite direction, i.e., the boundary consists of the
directed segments e1], €13 , €513 ; here ¢; = | if this direction for the
edge T} coincides with its appropriate direction ¢, and ¢, = —1 in the
opposite case. The boundary of r? is denoted by 4¢%. As we have seen,
41} = Z et and this sum can be imagined as extending over all edges
of our triangulation when we consider the coefficients ¢, for segments
not in the boundary of ¢ as being equal to zero.

It now becomes natural to consider more general sums of the form
x! = Za,t; extended over all edges of the given triangulation.* The
geometric meaning of such sums is very simple: Every summand of the
sum is a certain segment that occurs in our triangulation, taken with a

* The coefficients a, are assumed to be integers.
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definite direction and a definite coefficient (a definite “multiplicity”).
The whole algebraic sum
so described expresses a
path composed of seg-
ments in which every seg-
ment is assumed to occur
as often as its coefficient
indicates. For example,
if we begin by run-
ning around the polygon
ABCDEF" (figure 19) in
the direction of the arrow, Fig. 19.
then go along A4’ to the
polygon A'B'C’'D'E’'F’ and traverse it in the indicated direction, and then
return along 4’4 and go around ABCDEF again in the same direction
as before, we obtain a sum in which the segments 4B, BC, CD, DE, EF, FA,
occur with the coefficient 2, the segments 4'B’, B'C',C'D', D'E’, E'F',F'A’
with the coefficient 1, and the segment 44’ does not occur at all (it has
the coefficient zero because it is traversed twice in opposite directions).
Sums of the form x! = Z a,r} are called one-dimensional chains of the
given triangulation. From the algebraic point of view they represent linear
forms (homogencous polynomials of the first degree); they can be added
and subtracted and also multiplied by an arbitrary integer according to the
usual rules of algebra. Of particular importance among the one-dimensional
chains are the so-called one-dimensional cycles. Geometrically they corre-
spond to closed paths (and in figure 19 we have just dealt with such a path).
For a purely algebraic definition of a cycle, let us make the convention
that of the two vertices of a segment 4B the end point B occurs in the

boundary of A_E‘ with the plus sign (with the coefficient +1) and the
initial point 4 with the mmus sign (with the coefficient —l) Then the

boundary of the segment ABcan be written in the form A(AB) B— A.
When we accept this convention, we observe |mmednately that the sum

of the boundaries of the segments AB BC (‘D FA which form a
closed path (in the usual sense of the word), is zero. ThlS leads us naturally
to the general definition of a one-dimensional cycle as a one-dimensional
chain 2! = X, a,t} for which the sum of the boundaries of the terms;
i.e., the sum X, a,dr} is zero. It is easy to verify that the sum of two
cycles is a cycle. When we multiply a cycle as an algebraic expression
by an arbitrary integer, we obtain again a cycle. This enables us to speak
of linear combinations of cycles z} , z3, -+, 2!, i.e., of cycles of the form
z = X! ¢z, where ¢, are integers.
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In analogy to the concept of a one-dimensional chain of a given
triangulation, we can also speak of two-dimensional chains of this
triangulation, i.e., of expressions of the form x* = X, a,t%, where the r?
are oriented triangles of the given triangulation. Since the boundary of
each oriented triangle is a one-dimensional cycle, the chain Z,a,4? is
also a cycle. This cycle is taken to be the boundary 4x® of the chain
xt = 2, ald.

The concept of a boundary of a chain now enables us to formulate the
concept of homology: A one-dimensional cycle 2! of a given triangulation
is called homologous to zero in this triangulation if it is the boundary
of some two-dimensional chain of this triangulation. In every triangulation
of a closed convex surface and more generally of any surface homeo-
morphic to a sphere, every one-dimensional cycle is homologous to zero;
geometrically this is perfectly clear: Every closed polygon on a convex
surface is the boundary of some piece of the surface. But this is not so
on the torus: A meridian of the torus as well as its equator are not bound-
aries of any piece of the surface. If we take an arbitrary triangulation of
the torus, then we can find in it cycles similar to the meridian or the
equator of the torus and these cycles are not homologous to zero.

We observe an entirely new phenomenon in the triangulation of the
projective plane we have constructed. If we regard a straight line, for
example AB (see figure 18), as a cycle of this triangulation, then this
cycle is not homologous to zero in it. However, the same line taken with
the coefficient 2 does turn out to be homologous to zero. Thus, the
introduction of coefficients other than +1 in the definition of chains,
which appears in the first instance formal and unnecessary, enables us to
discern important geometric properties of surfaces and more generally
of manifolds. In the given case this is the so-called property of torsion
which consists in the existence of cycles that in the given manifold are
not homologous to zero (do not bound any piece of the surface) but
become homologous to zero when they are provided with certain integer
coefficients.

In connection with what we have said, let us finally introduce the
extremely important concept of homological independence of cycles. The
cycles 2, ,z, are called homologically independent in the given
triangulation if no linear combination X c,z; of them in which at least
one coefficient ¢; is different from zero is homologous to zero in this
triangulation. As examples of homologically independent cycles on the
torus, we can take an arbitrary meridian and equator considered as cycles
of some’ triangulation of the torus.

The fundamental concepts of the whole of combinatorial topology (the
concepts of boundary, cycle, homology) were defined by us for one-
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dimensional formations, but they can be extended verbatim to an arbitrary
number of dimensions. For example, a two-dimensional chain z2 = T a,¢}
is called a cycle if its boundary 4z = X a,4¢% is equal to zero. A three-
dimensional chain is an expression of the form x®* = X a,f, where the
13 are oriented three-dimensional simplexes (tetrahedra).

As in the case of the triangle, the orientation of the three-dimensional
simplex (tetrahedron) is given by a definite order of its vertices, where
two orders of the vertices that can be carried into one another by an
even permutation determine one and the same orientation. The boundary
of a three-dimensional oriented simplex 13 = (ABCD) is the two-dimen-
sional chain (cycle) 4¢* = (BCD) — (ACD) + (ABD) — (ABC) (figure 20).
The boundary of a three-dimensional chain
is defined as the sum of the boundaries of
its simplexes taken with the same coeffi-
cient with which these simplexes occur in
the given chain. The reader can easily
verify that the boundary of an arbitrary
three-dimensional chain is a two-dimen-
sional cycle (it is sufficient to prove this
for the boundary of a single three-dimen-
sional simplex). We say that a two-dimen-
sional cycle is homologous to zero in a
given manifold if it is the boundary of
some three-dimensional chain of this Fic. 20.
manifold. And so on. Observe that from
the definition of orientable and nonorientable triangulations* given
previously it follows easily that in every orientable triangulation there
occur cycles (two-dimensional in the case of surfaces) different from zero,
and in nonorientable triangulations there are no such cycles; this result
can also be generalized immediately to an arbitrary number of dimensions.

The concepts introduced enable us to define the order of the one-
dimensional, two-dimensional, etc., connectivity of given manifolds of an
arbitrary number of dimensions. The maximal number of homologically
independent one-dimensional, two-dimensional, etc., cycles occurring in
an arbitrary triangulation of a given manifold does not depend on the
choice of the triangulation of this manifold and is called its order of
connectivity, or its Betti number (of the corresponding dimension).

The one-dimensional Betti number of a closed orientable surface of
genus p is equal to 2p (i.e., to the order of connectivity of the surface,

* This definition, given earlier for triangulations of surfaces, can be extended to the
case of triangulations of manifolds of an arbitrary number of dimensions.
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as defined in §2). The one-dimensional Betti number of the projective
plane is equal to zero. (Here every cycle not extending to infinity bounds
part of the plane, i.e., is homologous to zero, but a cycle extending to
infinity, for example a projective line, turns out to be homologous to zero
if it is taken twice.) The two-dimensional Betti number of every non-
orientable surface is equal to zero (there is not a single two-dimensional
cycle different from zero on such a surface).

The two-dimensional Betti number of every orientable surface is equal
to one. For if we orient all the triangles of an arbitrary triangulation of
an orientable surface in a suitable manner, then we obtain a cycle (the
so-called fundamental cycle of the surface). It is not difficult to observe
that every two-dimensional cycle is obtained from a fundamental cycle
by multiplying it by an arbitrary integer. These results can be generalized
immediately to n-dimensional manifolds. We remark that the zero-
dimensional Betti number of a connected manifold (i.e., one that does not
split into parts) is taken to be one.

The Betti numbers of the various dimensions are connected with the
Euler characteristic of the manifold by a remarkable formula that was
proved by Poincaré and generalizes Euler’s theorem. This formula, which
is known as the Euler-Poincaré formula, has the following simple form:

S re=31rp.

r=0 r=0

Here we have on the left-hand side the Euler characteristic of an arbitrary
triangulation of the given manifold, and the numbers p, on the right
are the Betti numbers of the various dimensions r of this manifold.
In particular, for orientable surfaces we have, as we have just seen,
Po = ps = |, py == 2p, where p is the genus of the surface. This gives us
Euler’s theorem for orientable surfaces

g — oy + g = 2 — 2p.

§5. Vector Fields

Let us consider the simplest differential equation

TR Hx’ y)’ (2)

in a given plane domain G. Its geometrical meaning is that at every
point (x, ¥) of G a direction is defined whose slope is equal to F(x, y),
where F(x, y) is a certain continuous function of the point (x, y). We say
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that in G a continuous field of directions is given; we can easily turn
it into a continuous vector field by taking, for example, a vector of unit
length in each of the given directions. The task of integrating the dif-
ferential equation (2) consists in splitting, if this is possible, the given
plane domain into pairwise nonintersecting curves (the “integral curves”
of the equatipn) such that at each point of the domain the direction given
in it is the direction of the tangent to the unique integral curve passing
through this point.
Let us consider, for example, the equation

& _y

dx x’

At every point M(x, y) of the plane the direction corresponding to it is
—

obviously that of the ray OM (where O is the origin of coordinates).
The integral curves are the straight lines passing through O. Through
every point of the plane other than O there passes a unique integral curve.
As regards the origin of coordinates, this is a singular point of the given
differential equation (a so-called “rode”) through which all the integral
curves pass.

If we take the differential equation

then we see that it associates with every point M(x, y) other than O the

direction that is perpendicular to OM. In this case the integral curves
are circles with their center at O which is again a singular point of our
differential equation, but a singular point of an altogether different type.
It is not a “node”, but a so-called “center.”” There are also other types
of singular points (see Chapter V, §6), some of which are illustrated in
figures 21 and 22. The differential equation dy/dx = y/x has no closed
integral curves. In contrast, the differential equation dy/dx = — x/y has
only closed integral curves. There are also possible integral curves that
wind in the form of a spiral around a singular point, which in this case
is called a focus.

Of extreme importance in various applications is the case of a so-called
limit cycle, namely a closed integral curve, around which other integral
curves wind spirally. Many other cases of the mutual arrangement of
the integral curves are possible, and also their position with respect to
the singular points. All problems concerning the forms and positions of
the integral curves of a differential equation, and also the number,
character, and mutual arrangement of its singular points, belong to the
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qualitative theory of differential equations. As the name implies, the
qualitative theory of differential equations leaves aside the direct integra-
tion of the differential equation “in finite form,” as well as methods of
approximation or of numerical integration. The basic object of the
qualitative theory is in essence the topology of the field of directions and
the system of integral curves of the given differential equation.

————

Fig. 21. Fig. 22.

The qualitative approach to differential equations, including such
problems as the existence of closed integral curves, in particular all
problems connected with the existence, number, and occurrence of
limit cycles, was dictated in the first instance by problems of mechanics,
physics, and technology. These problems arose first in connection with
the investigations of Poincaré in celestial mechanics and cosmogony
which, as we have mentioned above, were also the cause for the topological
researches of the French geometer. The circle of topological problems
in the theory of differential equations has occupied one of the central
places in the outstanding investigations by Soviet scholars in the theory
of oscillations and radiotechnology; we think here of the school of
L. I. Mandel’stam, or of the school of A. A. Andronov that has developed
from it, which constitutes one of the most important centers of research
in the qualitative and essentially topological theory of differential equa-
tions. Another center of research in the qualitative theory of differential
equations by essentially topological methods is the school of V. V.
Stepanov and V. V. Nemyckil at the University of Moscow. In papers
of mathematicians in Leningrad, Sverdlovsk and Kazan on problems of
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the qualitative theory of differential equations topological method also
play a prominent role.

The theory of differential equations leads to the study of vector fields
not only in the plane but also in many-dimensional manifolds; even the
simplest systems of several differential equations are interpreted geo-
metrically as fields of directions in many-dimensional Euclidean spaces.
The introduction of so-called first integrals of an equation means a
selection among the set of all integral curves of those that lie in a certain
manifold defined by the given first integral. Every dynamical system
(in the classical meaning of this word) gives rise, generally speaking, to
the many-dimensional manifold of its possible states (see §3) and to a
system of differential equations whose integral curves, filling the given
phase space, represent possible motions of the given system. Each
individual one of these motions is determined by some set of initial
conditions. Therefore, a fundamental object of study in this case is the
field of directions and the system of trajectories on the given manifold.
Numerous applications, especially in recent years, have made it under-
standable that the qualitative theory of differential equations should be
developed in its widest aspects, with a consequent development of
topology also as the basis of this theory. Precisely these mechanical,
physical, and even astronomical topics have caused the rapid growth of
contemporary topology which forms such a significant part of the general
development of mathematics in the present half century. The reader who
wishes to acquaint himself with the topological problems in the theory
of differential equations and its concrete physical and technological
aspects can consult the well-known book by A. A. Andronov and S. E.
Haikin “Theory of oscillations,” an English-language edition of which
was published by the Princeton University Press, Princeton, N.J., 1949.

As an example of a concrete problem in the theory of vector fields on
many-dimensional manifolds let us consider the problem of the algebraic
number of singular points of such a vector field.

Suppose that a smooth manifold is given. For simplicity we shall imagine
a smooth closed surface. Let us assume that at every point of this manifold
a tangent vector to it is given that depends continuously on the point
both in length and in direction. The singular points of such a vector
field are those points of the manifold at which the vector associated with
them is the null vector, i.e., where there is no definite direction. We shall
assume that each of these points is isolated. In the case of a closed mani-
fold, this means that there is only a finite number of singular points.
(Otherwise part of these points would be condensed near a certain limit
point, which by the continuity of the field would also be a singular point
but not isolated.)
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We can define the index of an isolated singular point, a concept that in
a certain sense is similar to the concept of multiplicity of a root of an
algebraic equation. In order to define the index we surround the given
singular point by an arbitrary closed curve C that “isolates it” (in the plane
simply a circle), i.e., a curve that does not pass through any singular point
and contains in its interior only the one singular point in question. At all
points of C the direction of the field is uniquely determined. For simplicity
we shall assume that a neighborhood of our singular point including C is
flat (in the general case we can transform the neighborhood that interests
us together with the field given on it into a plane). When we go around the
curve in the positive direction, the angle that the direction of the field
forms with an arbitrary fixed direction returns to its initial value increased
as a result of our going around the closed curve by a certain summand
of the form 2k=, where k is a certain well-defined integer. This number is
called the index of the singular point or the winding number of the field
along C. Note that it does not depend on the special choice of the closed
curve that isolates the given singular point. In figures 21 and 22, we have
illustrated singular points with the indices —2 and -} 3, respectively. In a
similar but more complicated manner, we can also define the index for a
singular point of a field of vectors (directions) defined on an n-dimensional
manifold for n > 2. Now the following remarkable theorem was proved
in 1926 by the German mathematician Hopf: If on a given manifold a
continuous vector field is defined having only a finite number of singular
points, then the sum of the indices or, as one says, the algebraic number of
these singular points, does not depend on the field and is always equal to
the Euler characteristic of the manifold.

From Hopf’s theorem it follows that vector fields without singularities
are possible only on manifolds whose Euler characteristic is equal to zero;
it turns out that on such manifolds a vector field without singularities can
always be constructed. Thus, among all the closed surfaces only on the
torus and the so-called one-sided torus (the Klein bottle) can vector fields
without singularities be constructed.

Closely connected with the theory of vector fields is the theory of
continuous mappings of manifolds into themselves and particularly the
results concerning the existence of fixed points for such mappings. A point
x is called a fixed point of a given mapping f'if its image under this mapping
coincides with the point itself, i.e., if

f(x) = x.

In order to explain the character of this connection, let us consider the
simplest case, namely the case of a continuous mapping f of a circle K
into itself. By joining each point x of K to its image f(x), we obtain a
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—_———
vector u, = x, f(x). This vector is the null vector if and only if f{(x) = x,

i.e, if x is a fixed point of the given mapping. Let us show that such a point
actually exists. For this purpose we assume the contrary and determine
the winding number of our vector field along the circumference C of the
circle K.

Under a continuous transformation of our field, its winding number
along C can obviously change only continuously. But since it is an integer,
it must remain constant. Hence it follows that the winding number of the
field along C is equal to 1. Indeed, since every point of K is mapped into
the same circle, the vector u, of a point x on the circumference C (which
according to our assumption is not the null vector) points into the interior
of the circle and therefore forms an acute angle with the radius Ox, which
we regard as a vector pointing to the center O.

Now let us subject the directions of all the vectors u, for the points x
lying on C to a continuous transformation. This transformation consists
of turning each of these vectors through such an acute-angle that it comes
to point in the direction of the center 0. As we have just said, the winding
number of the field along C does not change in this process. But as a
result of this transformation, our original field goes over on C into the
field of radial vectors, which obviously has the winding number one,
Thus, our initial field also had the winding number one along the cir-
cumference C.

In virtue of the continuity of the original vector field its winding
numbers along two circumferences with one and the same centre O and
radii of slightly different length have one and the same value.* Therefore
the winding number of the field along all circles with center O lying within
K has one and the sme value, namely one. But since by assumption the
vector u, is defined and different from zero for all points of the circle and
among them for its center O, the winding number of the field along a
circumference of sufficiently small radius with center at O is certainly
equal to zero. So we have arrived at a contradiction and have proved that
under a continuous mapping of a circle into itself there is always at least
one fixed point. This theorem is a special case of a very important theorem
of Brouwer which states that under every continuous mapping of an
n-dimensional sphere into itself there is always at least one fixed point.

In recent years the problem of the existence of fixed points under
mappings of one type or another has been studied in detail and forms an
essential part of the topology of manifolds.

* In virtue of the assumption that the field in question, which is everywhere defined
and different from zero, has no fixed points under f, we can also talk of its winding
number along an arbitrary curve within K.
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§6. The Development of Topology

The topology of closed surfaces is the only domain of topology that
was more or less worked out at the end of the last century. The construction
of this theory was connected with the development of the theory of
functions of a complex variable in the course of the 19th century. The
latter, which forms one of the most significant phenomena in the history
of mathematics during the past century, has been built up by several
distinct methods. One of the most fruitful in the sense of understanding
the essence of the phenomena to be studied was the geometric method of
Riemann. Riemann’s method, which showed very convincingly that it is
impossible in the general theory of functions of a complex variable to
restrict ourselves to single-valued functions only, led to the construction
of the so-called Riemann surfaces. In the simplest case of algebraic
functions of a complex variable, these surfaces always turn out to be
closed orientable surfaces. The investigation of their topological properties
is in a certain sense equivalent to the investigation of the given algebraic
function. Further development of Riemann’s idea is due to Poincaré,
Klein, and their followers and led to the discovery of unexpected and
deep connections between the theory of functions, the topology of closed
surfaces, and non-Euclidean geometry, namely the theory of the group of
motions in a Lobaéevskii plane.* Thus, topology from the first showed
itself to be organically related to a whole group of problems of fundamental
importance connected with very diverse domains of mathematics.

In the further development of this circle of problems, it turned out that
the topology of surfaces alone was insufficient, that the solution of
problems in n-dimensional topology was necessary. The first of these
was the problem of the topological invariance of the number of dimensions
of a space. This problem consists in proving the impossibility of a
topological mapping of an n-dimensional Euclidean space into an m-
dimensional for n # m. This difficult problem was solved in 1911 by
Brouwer.t In connection with its solution, new topological methods were
discovered that led to a rapid construction of the beginnings of the theory
of continuous mappings of many-dimensional manifolds and the theory
of vector fields on them. All these investigations were found to involve
the first fundamental concepts of the so-called set-theoretical topology

* In connection with this see the book by A. I. Markusevi¢ “Theory of analytic
functions,” Gostehizdat, 1950.

t Actually, for the development of the theory of functions of a complex variable it
was necessary to solve an even more difficult problem, namely to prove that the topo-
logical image of an n-dimensional domain lying in an n-dimensional space is always
again a domain. This problem was also sclved by Brouwer.
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that arise on the basis of the general theory of sets constructed by Cantor
in the last quarter of the 19th century.

In set-theoretical topology the very object of investigation, i.e., the class
of geometric figures under consideration, is extremely wide and comprises
if not altogether all sets in Euclidean spaces, then at least all the closed
sets. Scholars of many countries collaborated in the rapid development of
the new set-theoretical direction of topology, but above all we must
mention the Polish topological school.

An essentially new direction of development of set-theoretical topology
was taken in papers of Soviet topologists; in particular the outstanding
Soviet mathematician P. S. Uryson (1898-1924), who met an untimely
death, developed the general theory of dimension which laid the foundation
of a classification of very general point sets by a fundamental criterion,
namely the number of dimensions. This classification turned out to be
extremely fruitful and involved entirely new points of view in the study
of the most general geometric forms.* Uryson’s ideas, as developed in
his theory of dimension, were a stepping stone for the remarkable work
of L. A. Ljusternik (jointly with L. G. Snirel’man) on the variational
calculus.

These papers contain, apart from other results, an exhaustive positive
solution of a famous problem of Poincaré on the existence of three closed
geodesic lines without multiple points on every surface homeomorphic to
a sphere.

On the other hand, P. S. Aleksandrov, on the basis of the theory of
dimension, transferred the algebraic methods of combinatorial topology
to the realm of set theory and this led in turn to new directions of topo-
logical investigations in which mathematicians of the Soviet Union,
including the younger generation, hold a leading place.t

As regards the proper combinatorial topology, after the papers of
Poincaré and Brouwer, approximately in 1915, there begins a group of

* The inductive definition of dimension of sets proposed by Uryson can be regarded
as the fullest development of Lobagevskil’s idea of dissection as the fundamental
geometric operation. In a rough approximation it amounts to this. A set is zero-
dimensional if it can be represented in the form of a sum of arbitrarily small parts no
two of which are in contact with one another. A set is n-dimensional if it can be “dis-
sected” by (n — 1)-dimensional subsets into arbitrarily small parts no two of which
are in contact and if this cannot be achieved with sets of dimensions smaller than
n — |. (A precise definition of contact as it is understood in contemporary topology
will be given in §7.)

t Here we must refer to the so-called homological theory of dimension of P. S.
Aleksandrov, to the related remarkable constructions of L. N. Pontrjagin and to
further developments of the homological theory of dimension in papers by M. S.
Bokitein, V. G. Boltjanskii and particularly K. A. Sitnikov. The duality law of L. S.
Pontrjagin will be discussed later.
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investigations by American topologists, Veblen, Birkhoff, Alexander, and
Lefschetz. They achieved very remarkable results. For example, Alexander
proved the topological invariance of the Betti numbers and also a very
important duality theorem that served as a starting point for the subsequent
investigations of L. S. Pontrjagin; Lefschetz gave a certain formula for
the algebraic number of fixed points under arbitrary continuous mappings
of manifolds and so laid the foundation of the general algebraic theory of
continuous mappings that was further developed by Hopf; to Birkhoff
our science owes an essential advance in the theory of dynamical systems
in its purely topological aspect, its metrical aspect, etc.. Further very deep
developments of the topology of manifolds and their continuous mappings
were obtained in papers by Hopf, who proved along with many other
results the existence of an infinite number of continuous mappings of a
three-dimensional sphere onto a two-dimensional one, which are essentially
different from one another in the sense that no two of these mappings can
be carried into one another by a continuous change. So Hopf became the
founder of a new direction, the so-called homotopic topology. Recently
a powerful new impetus has come to homotopic topology, as to the whole
of combinatorial topology, from the work of the new French topological
school (Leray, Serre, and others).

As we have mentioned earlier, the fundamental investigations of Uryson
were the beginning of the activities of Soviet mathematicians in the domain
of topology. These investigations were concerned with set-theoretical
topology, but already at the end of the 1920’s Soviet topology comprised
also combinatorial topology in the range of its interests. This came about
in a rather original manner, namely by the application of combinatorial
methods to the study of closed sets, i.e., to objects of a very general nature.
On this foundation there arose one of the most remarkable geometric
discoveries of the present century, the statement and proof by L. S.
Pontrjagin of his general law of duality, which establishes deep and in a
certain sense exhaustive connections between the topological structure of
a given closed set in an n-dimensional Euclidean space and the parts of
the space complementary to it. In connection with his duality law,
Pontrjagin constructed a general theory of characters of commutative
groups and this led him to further investigations in the domain of the
general topological and the classical continuous Lie groups, a domain
that has been completely transformed by the work of Pontrjagin. Subse-
quently Pontrjagin and his pupils made a number of notable investigations
on the topology of manifolds and their continuous mappings (Z. G.
Boltjanskif, M. M. Postnikov, and others). In these investigations a new
method was applied, the so-called V-homology (cohomology) introduced
into combinatorial topology by A. N. Kolmogorov and, independently,
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by Alexander. This method, which now occupies the first place in the whole
of homotopic topology, has made it possible to continue Pontrjagin’s
duality theory in the most diverse directions, and this has led to the duality
theorems of A. N. Kolmogorov (and Alexander), P. S. Aleksandrov, and
K. A. Sitnikov, which belong to the most significant results of contempo-
rary topology. The same method has also found important applications
in very recent papers by L. A. Ljusternik on the calculus of variations.

§7. Metric and Topological Spaces

At the beginning of our account, we have talked of adjacency (of
different parts of a given figure) as of a fundamental topological concept,
and we have defined continuous transformations as those that preserve
this relation. However, we have not given a rigorous definition of this
fundamental concept; to do this in sufficient generality we have to use
concepts of set theory. This will be our task in the present section; we shall
finally solve it by introducing the concept of a topological space.

The theory of sets made it possible to give the concept of a geometrical
figure a breadth and generality that were inaccessible in the so-called
“classical” mathematics. The object of a geometrical, in particular a
topological, investigation now becomes an arbitrary point set, i.e., an
arbitrary set whose elements are points of an n-dimensional Euclidean
space. Between points of an n-dimensional space a distance is defined:
namely, the distance between the points 4 = (x; , X, ,*, X,) and B =
(»1, Y2, ", yn) is by definition equal to the nonnegative number

p(A, B) = V{(x; — p1)* + (X3 — ¥l + = + (x5 — V)2

The concept of distance permits us to define adjacency first between a
set and a point, and then between two sets. We say that a point A is an
adherent point of the set M if M contains points whose distance from A
is less than any preassigned positive number. Obviously every point of the
given set is an adherent point of it, but there may be points that do not
belong to the given set and are adherent to it. Let us take, for example,
the open interval (0, 1) on the numerical line, i.e., the set of all points
lying between 0 and 1; the points 0 and | themselves do not belong to
this interval, but are adherent to it, since in the interval (0, 1) there are
points arbitrarily near to zero and points arbitrarily near to one. A set is
called closed if it contains all its adherent points. For example the closed
interval [0, 1] of the numerical line, i.e., the set of all points x satisfying
the inequality 0 < x < I, is closed. Closed sets in a plane and all the
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more in a space of three or more dimensions can have an extremely
complicated structure; indeed, they form the main study object of the set
theoretical topology of an n-dimensional space.

Next we say that two sets P and Q adjoin one another if at least one of
them contains adherent points of the other. From the preceding it follows
that two closed sets can adjoin only when they have at least one point in
common; but, for example, the intervals [0, 1] and (I, 2), which do not
have common points, adjoin because the point | which belongs to [0, 1]
is at the same time an adherent point of (1, 2). Now we can say that a set
R is divided (“dissected”’) by a set S lying in it, or that S is a “section’’ of
R — § consisting of all the points of R that do not belong to .S can be
represented as the sum of two nonadjoining sets.

Thus, Lobadevskil’s ideas on adjacency and dissection of sets receive
in contemporary topology a rigorous and highly general expression. We
have already seen how Uryson’s definition of dimension of an arbitrary set
(see the remark in §6) is founded on these ideas; the statement of this
definition now becomes completely rigorous. The same applies to the
definition of a continuous mapping or transformation; a mapping f of a
set X onto a set Y is called continuous if adjacency is preserved under this
mapping, i.e., if the fact that a certain point 4 of X is an adherent point
of an arbitrary subset P of Y implies that that image f(4) of A is an
adherent point of the image f(P) of P. Finally a one-to-one mapping of a
set X onto a set Y is called ropological if it is continuous and if its inverse
mapping of Y onto X is also continuous. These definitions give an accurate
basis to all that has been said in the first sections of the present account.

However, set theoretical topology is not restricted to the degree of
generality that is achieved by considering as geometrical figures all the
point sets. It is natural to introduce the concept of distance not only
between points of an arbitrary Euclidean space but also between other
objects that do not appear to refer at all to geometry.

Let us consider, for example, the set of all continuous functions defined,
say, on the interval [0, 1]. We can define the distance p(/, g) between the
two functions f and g as the maximum of the expression | f{x) — g(x)|,
when x ranges over the whole segment [0, 1]. This “distance” has all the
basic properties of distance between two points in space: p(f, g) between
the two functions f and g is equal to zero if and only if the functions
coincide, i.e., if f{x) = g(x) for every point x; further, the distance is
obviously symmetrical, i.e., p(f, g) = p(g. f ); finally, it satisfies the so-called
triangle axiom: For any three functions f,,f;,f; we have p(f,,f)
+ p(fz »f3) = p(f1 . fa)- It is customary to say that the so-defined distance
turns our set of functions into a metric space (usually denoted by C).
By a metric space we understand more generally, a set of arbitrary objects
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that are to be called points of the metric space if between any two points
there is defined a distance, a nonnegative number satisfying the ‘‘axioms
of distance” just stated.

Now when an arbitrary metric space is given, we can talk of adherent
points of its subsets and consequently of adjacency of its subsets to one
another and of topological concepts in general (closed sets, continuous
mappings, and further concepts to be introduced on the basis of these
simplest ones). This course opens up an extensive and extremely fruitful
field of application for topological and general geometrical ideas to ranges
of mathematical objects where it would appear completely impossible
to talk of any kind of geometry. Let us give an illustrative example.

We take again the differential equation (2)

dy

p = F(x,¥).

If y = ¢(x) for 0 < x < | is a solution of this equation that assumes at
x = 0 the value y = 0, say, then the function ¢(x) obviously satisfies the
integral equation

Hx) = f Flx, 4(x)] dx. 3)

Now we consider the integral G(f) = _|" Flx, f(x)] dx, where0 < x < |
and f(x) is an arbitrary continuous function defined on the interval [0 l]
This integral is a certain continuous function g(x) also defined on [0, 1].
So the expression G(f) = [ F[x, f(x)] dx associates with every function f
a function g = G(f); in other words, we have a mapping G, easily seen
to be continuous, of the metric space C into itself. How can we characterize
here a function ¢(x) (there may be several of them) that is a solution of
the equation (2) or the equation (3) equivalent to it ? Obviously under our
mapping it goes over into itself’; i.e., it is a fixed point of our mapping G.
Now it turns out that such a fixed point of the mapping G actually exists,
as follows from a very general theorem on fixed points of continuous
mappings of metric spaces that was proved in 1926 by P. S. Aleksandrov
and V. V. Nemyckii. Nowadays the study of various metric spaces whose
points are functions of one kind or another (such spaces are called
functional spaces) is a constantly used tool of analysis, and the study of
functional spaces by methods which are partly topological, but mainly
algebraic, in a wide sense of the word, forms the content of functional
analysis (see Chapter XIX).

Functional analysis, as was mentioned in the introductory chapter,
occupies an extremely prominent place in the contemporary mathematical
scene in view of the variety of its connections with all sorts of other parts
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of mathematics and its value in natural science, above all in theoretical
physics. The investigation of topological properties of functional spaces is
closely connected with the calculus of variations and the theory of partial
differential equations (investigations by Ljusternik, Morse, Leray,
Schauder, Krasnosel’skil, and others). Problems on the existence of fixed
points under continuous mappings of functional spaces play an important
role in these investigations.

The topology of functional and general metric spaces is not the last
word in generality in contemporary topological theories. The fact of the
matter is that in metric spaces the fundamental topological concept of
adjacency is introduced on the basis of distance between points, which in
turn is not a topological concept. The problem therefore arises
of a direct, axiomatic definition of adjacency. Thus we are led to the
concept of a topological space, the most general concept of present-day
topology.

A topological space is a set of objects of an arbitrary nature (which are
called points of the space) in which for every subset its adherent points
are given in one way or another. Furthermore, a few natural conditions
are supposed to be satisfied, the so-called axioms of a topological space
(for example, every point of the given set is an adherent point of it, an
adherent point of the sum of two sets is an adherent point of at least one
of the summands, etc.). Profound work is going on at present in the theory
of topological spaces; in its development the Soviet mathematicians
P. S. Uryson, P. S. Aleksandrov, A. N. Tihonov, and others have taken a
leading part. Of the latest results in the theory of topological spaces we
must mention one of fundamental value: The young mathematician
Ju. M. Smirnov has found necessary and sufficient conditions for the
metrizability of a topological space, i.e., conditions under which a distance
between the points of the space can be defined such that the “topology™
which the space carries can be regarded as generating this concept of
distance; in other words, such that the adherent points of all possible sets
in the metric space obtained are the same as those defined initially in the
given topological space.
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FUNCTIONAL ANALYSIS

The rise and spread of functional analysis in the 20th century had two
main causes. On the one hand it became desirable to interpret from a
uniform point of view the copious factual material accumulated in the
course of the 19th century in various, often hardly connected, branches of
mathematics. The fundamental concepts of functional analysis were
formed and crystalized under various aspects and for various reasons.
Many of the fundamental concepts of functional analysis emerged in a
natural fashion in the process of development of the calculus of variations,
in problems on oscillations (in the transition from the oscillations of
systems with a finite number of degrees of freedom to oscillations of
continuous media), in the theory of integral equations, in the theory of
differential equations both ordinary and partial (in boundary problems,
problems on eigenvalues, etc.) in the development of the theory of
functions of a real variable, in operator calculus, in the discussion of
problems in the theory of approximation of functions, and others.
Functional analysis permitted an understanding of many results in these
domains from a single point of view and often promoted the derivation
of new ones. In recent decades the preparatory concepts and apparatus
were then used in a new branch of theoretical physics—in quantum
mechanics.

On the other hand, the investigation of mathematical problems
connected with quantum mechanics became a crucial feature in the further
development of functional analysis itself: It created, and still creates at
the present time, fundamental branches of this development.

Functional analysis has not yet reached its completion by far. On the
contrary, undoubtedly in its further development the questions and
requirements of contemporary physics will have the same significance for

227
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it as classical mechanics had for the rise and development of the differential
and integral calculus in the 18th century.

It is impossible here to include in this chapter all, or even only all the
fundamental, problems of functional analysis. Many important branches
exceed the limitations of this book. Nevertheless, by confining ourselves
to certain selected problems, we wish to acquaint the reader with some
fundamental concepts of functional analysis and to illustrate as far as
possible the connections of which we have spoken here. These problems
were analyzed mainly at the beginning of the 20th century on the basis
of the classical papers of Hilbert, who was one of the founders of functional
analysis. Since then functional analysis has developed very vigorously
and has been widely applied in almost all branches of mathematics; in
partial differential equations, in the theory of probability, in quantum
mechanics, in the quantum theory of fields, etc. Unfortunately these further
developments of functional analysis cannot be included in our account.
In order to describe them we would have to write a separate large book,
and therefore, we restrict ourselves to one of the oldest problems, namely
the theory of eigenfunctions.

§1. n-Dimensional Space

In what follows we shall make use of the fundamental concepts on
n-dimensional space. Although these concepts have been introduced in
the chapters on linear algebra and on abstract spaces, we do not think it
superfluous to repeat them in the form in which they will occur here.
For scanning through this section it is sufficient that the reader should
have a knowledge of the foundations of analytic geometry.

We know that in analytic geometry of three-dimensional space a point is
given by a triplet of numbers (/;, /5, f3), which are its coordinates. The
distance of this point from the origin of coordinates is equal to
\/ff +f2+ 1% If we regard the point as the end of a vector leading to it
from the origin of coordinates, then the length of the vector is also equal
to \/ff_+f22—+f_§. The cosine of the angle between nonzero vectors leading
from the origin of coordinates to two distinct points A(f,,fz,f;) and
B(g,, g, ,8s) is defined by the formula

181 + o8 + fa8s .
Viith+ivaE+e+a

From trigonometry we know that | cos ¢ | < 1. Therefore we have the

inequality
1f181 + /28> + f38s | <
VA+A+iVE +&+a

cos¢d =
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and hence always
(f18, + /8, + 1.8 < (fT + /3 +/9 (8] + g + g2 )

This last inequality has an algebraic character and is true for arbitrary
six numbers ( /7, /2, f3) and (g, , & , £3), since any six numbers can be the
the coordinates of two points of space. All the same, the inequality (1)
was obtained from purely geometric considerations and is closely con-
nected with geometry, and this enables us to give it an easily visualized
meaning.

In the analytic formulation of a number of geometric relations, it often
turns out that the corresponding facts remain true when the triplet of
numbers is replaced by 7 numbers. For example, our inequality (1) can be
generalized to 2n numbers (f; , f, . f,) and (g,, g . ", g,)- This means
that for arbitrary 2rn numbers (f,f;, /) and (g,.8:, ", &) an
inequality analogous to (1) is true, namely:

(g1 + a8+ +L&F ST+ 4+ +fD (81 +82+ - +83)
(1)

This inequality, of which (1) is a special case, can be proved purely
analytically.* In a similar way many other relations between triplets of
numbers derived in analytic geometry can be generalized to n numbers.
This connection of geometry with relations between numbers (numerical
relations) for which the cited inequality is an example becomes
particularly lucid when the concept of an n-dimensional space is intro-
duced. This concept was introduced in Chapter XVI. We repeat it here
briefly.

A collection of n numbers (f7, f3 ., f,) 1s called a point or vector of
n-dimensional space (we shall more often use the latter name). The vector
(f1 /25 fu) will from now on be abbreviated by the single letter .

Just as in three-dimensional space on addition of vectors their compo-
nents are added, so we define the sum of the vectors

f= {.ﬁaﬁs '"9]‘:‘} and g = {gl 1 82,7 gn}

as the vector {f; + 8, ,/; + & . f» + g} and we denote it by f+ g.
The product of the vector f = {f;, /2, ", fx} by the number A is the
vector A = {Af1, Az, =y Afa)-
The length of the vector f = { fi, fa ,»* ,f.}. like the length of a
vector in three-dimensional space, is defined as Vf? + f2 4 - 4 f2.

* See Chapter XVI.
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The angle ¢ between the two vectors /' = {1, /;, ", fo} and g = {g,,
£,y &,} In n-dimensional space is given by its cosine in exactly the same
way as the angle between vectors in three-dimensional space. For it is
defined by the formula*

__ Si& okt t fuBa
VR A Ve g+

cos¢ =

@)

The scalar product of two vectors is the name for the product of their
lengths by the cosine of the angle between them. Thus, if /= {f;. /2, =, fa}
and g ={g,, 8., g}, then since the lengths of the vectors are
VI 4P+ +f2and Vg + g + - + g2, respectively, their scalar
product, which is denoted by ( f; g), is given by the formula

(f,8) =/fig&1 + /o& + ~ + [n8n- 3)

In particular, the condition of orthogonality (perpendicularity) of two
vectors is the equation cos ¢ = 0; i.e, (f,8) = 0.

By means of the formula (3) the reader can verify that the scalar product
in n-dimensional space has the following properties:

L. (f,8) = (&)

2. (A, 8) = A1, 8).

3. (fi81+8) =(f8) + ([ 8)

4. (f£,f) =0, and the equality sign holds for f = O only, i.e., when
h=f="=f=0

The scalar product of a vector f with itself (f, /) is equal to the square
of the length of f.

The scalar product is a very convenient tool in studying n-dimensional
spaces. We shall not study here the geometry of an n-dimensional space
but shall restrict ourselves to a single example.

As our example we choose the theorem of Pythagoras in n-dimensional
space: The square of the hypotenuse is equal to the sum of the squares of
the sides. For this purpose we give a proof of this theorem in the plane
which is easily transferred to the case of an n-dimensional space.

Let f and g be two perpendicular vectors in a plane. We consider the
right-angled triangle constructed on f and g (figure 1). The hypotenuse
of this triangle is equal in length to the vector f + g. Let us write down in
vector form the theorem of Pythagoras in our notation. Since the square
of the length of a vector is equal to the scalar product of the vector with

* The fact that |cos ¢ | < 1 follows from the inequality (1°).
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itself, Pythagoras’ theorem can be written in the language of scalar products
as follows:

(f+e&/f+28)=(/])+ (8.

The proof immediately follows from the properties of the scalar product.
In fact,

(f+ef+8=(Lf)+(f8) +(gf)+ (g8,

and the two middle summands are equal to zero owing to the orthogonality
of fand g.

In this proof we have only used the definition of the length of a vector,
the perpendicularity of vectors, and the properties of the scalar product.
Therefore nothing changes in the proof when we assume that fand g are
two orthogonal vectors of an n-dimensional space. And so Pythagoras’
theorem is proved for a right-angled triangle in n-dimensional space.
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If three pairwise orthogonal vectors f, g and h are given in n-dimensional
space, then their sum f + g + h is the diagonal of the right-angled paral-
lelepiped constructed from these vectors (figure 2) and we have the
equation

(f+eg+hf+eg+h=(ff)+ (8 + Hh,

which signifies that the square of the length of the diagonal of a paral-
lelepiped is equal to the sum of the squares of the lengths of its edges.
The proof of this statement, which is entirely analogous to the one given
earlier for Pythagoras’ theorem, is left to the reader. Similarly, if in an
n-dimensional space there are k pairwise orthogonal vectors f1, f2, -, f*
then the equation

(P R o)
=(f1’f1)+(f2’f2)+"'+(fk’fk)9 @
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which is just as easy to prove, signifies that the square of the length
of the diagonal of a “k-dimensional parallelelipiped™ in n-dimensional
space is also equal to the sum of the squares of the lengths of its
edges.

§2. Hilbert Space (Infinite-Dimensional Space)

Connection with n-dimensional space. The introduction of the concept
of n-dimensional space turned out to be useful in the study of a number of
problems of mathematics and physics. In its turn this concept gave the
impetus to a further development of the concept of space and to its applica-
tion in various domains of mathematics. An important role in the develop-
ment of linear algebra and of the geometry of n-dimensional spaces was
played by problems of small oscillations of elastic systems.

Let us consider the following classical

A - example of such a problem (figure 3). Let 48

5 ly TR be a flexible string spanned between the points
Al ~~.5 A and B Let us assume that a weight is
¢ attached at a certain point C to thestring. If

FiG. 3. it is moved from its position of equilibrium, it

begins to oscillate with a certain frequency w,
which can be computed when we know the tension of the string, the mass
m and the position of the weight. The state of the system at every instant
is then given by a single number, namely the displacement y, of the mass
m from the position of equilibrium of the string.

Now let us place n weights on the string A B at the points C; , C,, -, C,, .
The string itself is taken to be weightless. This means that its mass is so
small that compared with the masses of the weights it can be neglected.
The state of such a system is given by » numbers y, , y,, -, ¥, equal to
the displacements of the weights from the position of equilibrium. The
collection of numbers y,, y;, -, y, can be regarded (and this turns out
to be useful in many respects) as a vector (y,, ¥y, ¥, of an n-
dimensional space.

The investigation of the small oscillations that take place under these
circumstances turns out to be closely connected with fundamental facts
of the geometry of n-dimensional spaces. We can show, for example,
that the determination of the frequency of the oscillations of such a system
can be reduced to the task of finding the axes of a certain ellipsoid in
n-dimensional space.

Now let us consider the problem of the small oscillations of a string
spanned between the points 4 and B. Here we have in mind an idealized
string, i.e., an elastic thread having a finite mass distributed continuously
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along the thread. In particular, by a homogeneous string we understand
one whose density is constant.

Since the mass is distributed continuously along the string, the position
of the string can no longer be given by a finite set of numbers y, , y;, =+, Y.,
and instead the displacement y(x) of every point x of the string has to be
given. Thus, the state of the string at each instant is given by a certain
function y(x).

The state of a thread with » weights attached at the points with the
abscissas x;, Xy, **, X, , IS
represented graphically by a e

(N s
broken line with » members 4 .= ! 5 i W[~ B
(figure 4), so that when the \Lyz’
number of weights is in-
creased, then the number of FiG. 4.

segments of the broken line

increases correspondingly. When the number of weights grows without
bound and the distance between adjacent weights tends to zero, we obtain
in the limit a continuous distribution of mass along the thread, i.e., an
idealized string. The broken line that describes the position of the thread
with weights then goes over into a curve describing the position of the
string (figure 5).

N

FiG. 5.

So we see that there exists a close connection between the oscillations of
a thread with weights and the oscillations of a string. In the first problem
the position of the system was given by a point or vector of an n-
dimensional space. Therefore it is natural to regard the function f(x) that
describes the position of the oscillating string in the second case as a
vector or a point of a certain infinite-dimensional space. A whole series of
similar problems leads to the same idea of considering a space whose
points (vectors) are functions f(x) given on a certain interval.*

E As another such problem let us consider the electrical oscillations set up in a
series of connected electrical circuits (figure 6).

QJ).Q.QJ _Q&.Gﬂ./l “\_QR,Q.QJ—

L,mlmpl WJ
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This example of oscillation of a string, to which we shall return again
in §4, suggests to us how we shall have to introduce the fundamental
concepts in an infinite-dimensional space.

Hilbert space. Here we shall discuss one of the most widespread
concepts of an infinite-dimensional space of the greatest importance for
the applications, namely the concept of the Hilbert space.

A vector of an n-dimensional space is defined as a collection of n
numbers f; , where i ranges from | to n. Similarly a vector of an infinite-
dimensional space is defined as a function f(x), where x ranges from a to b.

Addition of vectors and multiplication of a vector by a number is
defined as addition of the functions and multiplication of the function by
a number. ™

The length of a vector f in an n-dimensional space is defined by the

formula
Vi
=]

Since for functions the role of the sum is taken by the integral, the length
of the vector f(x) of a Hilbert space is given by the formula

\/ f_:ﬁ(x) dx. (5)

The distance between the points f and g in an n-dimensional space is
defined as the length of the vector f— g, i.e., as

,\/ i(ﬁ — .

Similarly the “‘distance™ between the elements f{¢) and g(¢) in a functional
space is equal to

VI o - sora.

The state of such a series can be expressed by the set of n numbers u, , 4y, -+, s,
where u, is the voltage on the condensor of the ith circuit of the chain. The collection
of the » numbers (4, , - -, u,) is a vector of an n-dimensional space.

Now let us imagine a two-wire line, i.e., a line consisting of two conductors having
finite capacity and inductance, distributed along the line. The electric state of the line
is expressed by a certain function u(x), which gives the distribution of the voltage along
the line. This function is a vector of the infinite-dimensional space of functions given
on the interval (a, b).
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The expression _l: [A(t)— g(r))? dr is called the mean-square deviation
of the functions f{r) and g(r). Thus, the mean-square deviation of two
elements of Hilbert space is taken to be a measure of their distance.

Let us now proceed to the definition of the angle between vectors. In an
n-dimensional space the angle ¢ between the vectors f = { f;} and g = {g;}
is defined by the formula

X f;g i
Vi FVE s

cos¢ =

In an infinite-dimensional space the sums are replaced by the corre-
sponding integrals and the angle ¢ between the two vectors f and g of
Hilbert space is defined by the analogous formula

_ Jaf(1) g(2) at
cosh VR dV [P gdeydr

This expression can be regarded as the cosine of a certain angle ¢, provided
the fraction on the right-hand side is an absolute value less than one, i.e., if

| _Eﬂr) g(r) dr | < \/ f: S dt \/ j: gX(t) dr. (7

This inequality in fact holds for two arbitrary functions f(r) and g(r).
It plays an important role in analysis and is known as the Cauchy-
Bunjakovskif inequality. Let us prove it.

Let f{x) and g(x) be two functions, not identically equal to zero, given
on the interval (a, ). We choose arbitrary numbers A and p and form
the expresson

(6)

[ ) — petp a

Since the function [Af(x) — ug(x)P under the integral sign is nonnegative,
we have the following inequality

[ 0 — petorrax >0
ie.,

22 f S(x) g(x)dx < X J SFHx) dx + p? f g%(x) dx.
For brevity we introduce the notation

If (%) 2(x) dx| =6, [ :f’(x) dx = A, f 2¥(x) dx = B. (8)
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In this notation the inequality can be rewritten as follows:*
2AuC < XA + u®B. 9)

This inequality is valid for arbitrary values of A and p; in particular we

may set
el c
A—\/(‘T,}L—/\/F' (10)

Substituting these values of A and u in (9), we obtain

C
—
VAB
When we replace 4, B and C by their expressions in (8), we finally obtain
the Cauchy-Bunjakovskil inequality.
In geometry the scalar product of vectors is defined as the product of

their lengths by the cosine of the angle between them. The lengths of the
vectors f'and g in our case are equal to

\/J:j’(x) dx and \/th’(x) dx,

and the cosine of the angle between them is defined by the formula

Jof(x) g(x) dx '
\/j':fz(x) dx \/J: 2%(x) dx

When we multiply out these expressions, we arrive at the following formula
for the scalar product of two vectors of Hilbert space:

1.

cos¢ =

(£9) = [ 70 &) d. (1)

From this formula it is clear that the scalar product of the vector f with
itself its the square of its length.

If the scalar product of the nonzero vectors fand g is equal to zero, it
means that cos ¢ = 0, i.e., that the angle ¢ ascribed to them by our
definition is 90°. Therefore functions f and g for which

b
(9 = [ fexdx =0,
are called orthogonal. :
Pythagoras’ theorem (see §1) holds in Hilbert space as in an n-dimen-

* For C we have to take the modulus of the integral because of the arbitrary sign
of A or p.
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sional space. Let fi(x), fz(x), -, fy(x) be N pairwise orthogonal functions

Jx) = filx) + folx) + - + fy(x)

and their sum. Then the square of the length of f is equal to the sum
of the squares of the lengths of £}, f5, **, fw .

Since the lengths of vectors in Hilbert space are given by means of
integrals, Pythagoras’ theorem in this case is expressed by the formula

rf’(x) dx = I:ff(x) dx + ffi(x)dx + o+ rf:,(x)dx. (12)

The proof of this theorem does not differ in any respect from the one
given previously (§1) for the same theorem in n-dimensional space.

So far we have not made precise what functions are to be regarded as
vectors in Hilbert space. For such functions we have to take all those for
which [*fx)dx has a meaning. It might appear natural to confine
ourselves to continuous functions for which | f*x)dx always exists.
However, the theory of Hilbert space becomes more complete and natural
if _[b S4x) dx is interpreted in a generalized sense, namely as a Lebesgue
inteagral (see Chapter XV).

This extension of the concept of integrals (and correspondingly of the
class of functions to be discussed) is necessary for functional analysis in
the same way as a strict theory of the real numbers is necessary for the
foundation of the differential and integral calculus. Thus, the generaliza-
tion of the ordinary concept of an integral that was created at the begin-
ning of the 20th century in connection with the development of the theory
of functions of a real variable turned out to be quite essential for functional
analysis and the branches of mathematics connected with it.

§3. Expansion by Orthogonal Systems of Functions

Definition and examples of orthogonal systems of functions. If in a
plane two arbitrary mutually perpendicular e
vectors e; and e, of unit length are chosen
(figure 7), then every vector of the same
plane can be decomposed in the directions
of these two vectors, i.e., can be repre- %
sented in the form

f=ae, + ae,,

where @, and a, are the numbers equal
to the projections of the vector f in the
direction of the axis of e, and e, . Since

3
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the projection of f on an axis is equal to the product of the length of f
by the cosine of the angle between fand the axis, we can write, remem-
bering the definition of the scalar product,

al = (.f; el);
a, = (f, e).

Similarly if in a three-dimensional space any three mutually perpendicular
vectors e, , €,, €; of unit length are chosen, then every vector fin this
space can be written in the form

f= ae; + ase;, + ase;,
where
a.=(fiex) (k= 1,2,3).

In Hilbert space we can also consider systems of pairwise orthogonal
vectors of the space, i.e., functions ¢(x), ¢z(x), =, ¢a(x), - .

Such systems of functions are called orthogonal and play an important
role in analysis. They occur in very diverse problems of mathematical
physics, integral equations, approximate computations, the theory of
functions of a real variable, etc. The ordering and unification of the
concepts relating to such systems formed one of the motivations that led
at the beginning of the 20th century to the creation of the general concept
of a Hilbert space.

Let us give a precise definition. A system of functions

¢1(X), ¢2(X), "y an(x),
is called orthogonal if any two functions of the system are orthogonal, i.e.,
if
f di(x)du(x)dx =0 for i#k. (13)

In three-dimensional space we required that the vectors of the system
should be of unit length. Recalling the definition of length of a vector we
see that in the case of Hilbert space this requirement can be written as
follows:

j'°¢i(x)dx= L. (14)

A system of functions satisfying the conditions (I13) and (14) is called
orthonormal.
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Let us give examples of such systems of functions.
l. On the interval (—m, 7r) we consider the sequence of functions
1, cos x, sin x, cos 2x, sin 2x, -, cos nx, sin nx, - .

Any two functions of this sequence are orthogonal to each other. This can
be verified by the simple computation of the corresponding integrals.
The square of the length of a vector in Hilbert space is the integral of the
square of the function. Thus, the squares of the lengths of the vectors of
the sequence

1, cos x, sin x, cos 2x, sin 2x, ---, cos nx, sin nx, =

are the integrals

n T T
I dx = 2m, I cos’nxdx = m, I sin?nxdx = =,
- -

-1

i.e., the vectors of our sequence are orthogonal, but not normalized. The
length of the first vector of the sequence is equal to 4/27, and all the others
are of length /7. When we divide every vector by its length, we obtain the
orthonormal system of trigonometric functions

1 cosx sinx cos2x  sin2x cos nx  sinnx

Ve E v we e e

This system is historically one of the first and most important examples of
orthogonal systems. It appeared in the works of Euler, D. Bernoulli, and
d’Alembert in connection with problems on the oscillations of strings.
The study of it plays an essential role in the development of the whole of
analysis. *

The appearance of the orthogonal system of trigonometrical functions
in connection with problems on oscillations of strings is not accidental.
Every problem on small oscillations of a medium leads to a certain system
of orthogonal functions that describe the so-called characteristic oscil-
lations of the given system (see §4). For example, in connection with
problems on the oscillations of a sphere there appear the so-called spherical
functions, in connection with problems on the oscillations of a circular
membrane or a cylinder there appear the so-called cylinder functions, etc.

2. We can give an example of an orthogonal system of functions in

* See Chapter XII, §1.
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which every function is a polynomial. Such an example is the sequence of
Legendre polynomials
Bt g it 1p
" 27! dx»
i.e., P,(x)is (apart from a constant factor) the nth derivative of (x* — 1)*.
Let us write down the first few polynomials of this sequence:

Po(x) = 1;
Py(x) = x;

Py(x) = 3(3x2—1);
Py(x) = 3(5x3 — 3x).

Obviously P,(x) is a polynomial of degree n. We leave it to the reader to
convince himself that these polynomials are an orthogonal sequence on
the interval (—1, 1).

The general theory of orthogonal polynomials (the so-called orthogonal
polynomials with weights) was developed in the second half of the 19th
century by the famous Russian mathematician P. L. Cebysev.

Expansion by orthogonal systems of functions. Just as in three-
dimensional space every vector can be represented in the form of a
linear combination of three pairwise orthogonal vectors e, , e, , e; of unit
length

[ =ae + ae, + ase;,

so in a functional space there arises the problem of the decomposition of
an arbitrary function fin a series with respect to an orthonormal system
of functions, i.e., of the representation of fin the form

f(x) = axi(x) + @po(x) + - + aupu(x) + . (15)

Here the convergence of the series (15) to the function f has to be under-
stood in the sense of the distance between elements in Hilbert space. This
means that the mean-square deviation of the partial sum of the series

540 =3 ahult)

k=1

from the fungction f(#) tends to zero for n — co; i.e.,
tim | " LAD) — SO dt = 0. (16)

This convergence is usually called “convergence in mean.”
y
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Expansions in various systems of orthogonal functions often occur in
analysis and are an important method for the solution of problems of
mathematical physics. For example, if the orthogonal system is the
system of trigonometric functions on the interval (—m, #)

1, cos x, sin x, cos 2x, sin 2x, -, COS nx, Sin nx, -,

then this expansion is the classical expansion of a function in a trigonomet-
ric series*

f(x) = ay + a, cos x + by sin x + a, cos 2x + b, sin 2x + .

Let us assume that an expansion (15) is possible for every function f of
a Hilbert space and let us find its coefficients a, . For this purpose we
multiply both sides of the equation scalarly by one and the same function
¢,, of our system. We obtain the equation

(ﬁ ¢n¢) = (¢I »¢m) + az(‘#z 1 §6m) + -+ am(¢m ’ ¢m)
+ am+1(¢m+] vém) + -,

in virtue of the fact that (¢.. , ¢,) = 0 for m % n and (., , ,,) = I, this
determines the value of the coefficient a,,

a, — (f; ¢m) (m = 1,2, vei),

We see that, as in ordinary three-dimensional space (see the beginning of
this section), the coefficients a,, are equal to the projections of the vector
fin the direction of the vectors ¢, .

Recalling the definition of the scalar product we see that the coefficients
of the expansion of f(x) by the normal orthogonal system of functions

Ai(x), poAx), , Pu(%),

S(X) = ayy(x) + @do(x) + - + @uPn(x) + - (17
are determined by the formulas
b
an = [ AO$u(0) dt. (18)

As an example let us consider the normal orthogonal trigonometric
system of functions mentioned previously:

I  cosx sinx cos2x sin2x
A R Y R

* Such a decomposition often occurs in various problems of physics in the decom-
position of an oscillation into its harmonic constituents, See Chapter VI, §5.
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Then

f(x) = % c Z a, cos nx + b, sin nx,

nml

where

a, = wi Iiwﬂx) dx, a, = % Ii“ﬂx) cos nx dx,

1 .
b, = = K"ﬂx) sin nx dx.

So we have obtained the formula for the computation of the coefficients
of the expansion of a function in trigonometric series, assuming of course
that this expansion is possible.*

We have established the form of the coefficients of the expansion (18)
of the function f{x) by an orthogonal system of functions under the as-
sumptions that this expansion holds, However, an infinite orthogonal
system of functions ¢, , ¢, , -, ¢, , - may turn out to be insufficient for
every function of a Hilbert space to have such an expansion..For such an
expansion to be possible, the system of orthogonal functions must satisfy
an additional condition, namely the so-called condition of completeness.

An orthogonal system of functions is called complete if it is impossible
to add to it even one function, not identically equal to zero, that is
orthogonal to all the functions of the system.

It is easy to give an example of an incomplete orthogonal system. For
this purpose we choose an arbitrary orthogonal system, for example that
of the trigonometric functions, and remove one of the functions of the
system, for example cos x. The remaining infinite system of functions

1, sin x, cos 2x, sin 2x, ***, COS nx, sin nx, =+

is orthogonal as before, but of course it is not complete, since the function
cos x which we have excluded is orthogonal to all the functions of the
system,

If a system of functions is incomplete, then not every function of a
Hilbert space can be expanded by it. For if we attempt to expand by such
a system a nonzero function fy(x) that is orthogonal to all the functions of
the system, then by (18) all the coefficients turn out to be zero, whereas the
function f(x) is not equal to zero.

The following theorem holds: If a complete orthonormal system of

* On trigonometric series see also Chapter XII, §7.
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functions in a Hilbert space ¢,(x), x(x), **, dn(x), =, is given, then every
function f{(x) can be expanded in a series by functions of this system*

Jx) = ai(x) + aghe(x) + ** + aup(x) + .

Here the coefficients a,, of the expansion are equal to the projections of the
vectors f on the elements of the normal orthogonal system

@ = (1) = [ S0 gutx) .

Pythagoras’ theorem in Hilbert space, which was established in §2,
enables us to find an interesting relation between the coefficients a, and
the function f{x). We denote by r,(x) the difference between f(x) and the
sum of the first n terms of its series; i.e.,

ra(x) =f(x)_ [al'#l(x) + -+ ﬂ,,%(x)]-

The function r,(x) is orthogonal to ¢,(x), ¢s(x), -, a(x). Let us verify
for example that it is orthogonal to ¢y(x), i.e., that [3 r,(x) ¢y(x) dx = 0.
We have

[ o i e = [ 1) = aha(x) — aghu() — -+ — a0 i) dx

= [ A dx — a, [ $axs

Since a, = j':f(x) ¢(x) dx, and j: #7(x) dx = 1, it follows from this that
j: Fa(X)h(x) dx = 0. ’
Thus, in the equation
S(x) = aydy(x) + agha(x) + *** + Guy(x) + ra(x) (19)

the individual terms on the right-hand side are orthogonal to each other.
Hence, by Pythagoras’ theorem as formulated in §l, the square of the
length of f{(x) is equal to the sum of the squares of the lengths of the
summands of the right-hand side in (19); i.e.,

[ = [ lagrds+ -+ [ laol dx + [ Ao d.

* This series is related to its sum in the sense defined in formula (16).
1 The remaining integrals are equal to zero, because the functions ¢,(x) are orthogonal
to each other.



244 XIX, FUNCTIONAL ANALYSIS

Since the system of functions ¢, , ¢, , -, ¢, is normalized [equation (14)],
we have

b b
j X dx =@ +ai+ -+ + [ ri) . (20)
The series E:l, aw$i(x) converges in mean. This means that

b
L [f(x) — ays(x) — - — a,d(x)]? dx — 0,
i.e., that

b
j r2(x) dx — 0.

But then we obtain from the formula (20) the equation

iai = rfz(x) dx,* @n

k=]

which states that the integral of the square of a function is equal to the
sum of the squares of the coefficients of its expansion by a closed
orthogonal system of functions. If the condition (21) holds for an arbitrary
function of the Hilbert space, it is called the condition of completeness.

We wish to draw attention to the following important question. Which
numbers g, can be the coefficients of the expansion of a function in Hilbert
space ? The equation (21) asserts that for this purpose the series Eﬁlaﬁ
must converge. Now it turns out that this condition is also sufficient; i.e.,
a sequence of numbers a, is the sequence of coefficients of the expansion
by an orthogonal system of functions in Hilbert space if and only if the
series %,., a® converges.

We remark that this fundamental theorem holds if Hilbert space is
interpreted as the collection of all functions with integrable square in the
sense of Lebesgue (see §2). If we were to confine ourselves in Hilbert
space, for example, to the continuous functions, then the solution of the
problem as to which numbers a, can be the coefficients of an expan-
sion would become unnecessarily complicated.

The arguments given here are only one of the reasons that have led to
the use of an integral in a generalized (Lebesgue) sense in the definition of
Hilbert space.

*Geom;trically, this means that the square of the length of a vector in Hilbert
space is equal to the sum of the squares of its projections onto a complete system of
mutually orthogonal directions.
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§4. Integral Equations

In this section the reader will become acquainted with one of the most
important and, historically, one of the first branches of functional analysis,
namely the theory of integral equations, which has also played an essential
role in the subsequent development of functional analysis, Quite apart from
internal requirements of mathematics [for example, boundary problems
for partial differential equations (Chapter VI)], various problems of
physics were of great importance in the development of the theory of
integral equations. Side by side with differential equations, the integral
equations are, in the 20th century, one of the most important means of
the mathematical investigation of various problems of physics. In this
section we shall give a certain amount of information concerning the
theory of integral equations. The facts we shall explain here are closely
connected and have essentially sprung up (directly or indirectly) in
connection with the study of small oscillations of elastic systems.

The problem of small oscillations of elastic systems. We return to
the problem of small oscillations discussed in §2. Let us find equations that
describe such oscillations. For the sake of simplicity we assume that we
are dealing with the oscillation of a
linear elastic system. As examples of  ,
such systems we can take, say, a g
string of length / (figure 8) or an
elastic rod (figure 9). We shall assume
that in the position of equilibrium ¢
our elastic system is situated along the
segment O/ of the x-axis. We apply a
unit force at the point x. Under the FiG. 8.
action of this force all the points of
the system receive a certain displacement. The displacement arising at
the point y (figure 8) is denoted by k(x, y).

B
{

e
—_————

Or Db

Fig. 9.

The function k(x, y) is a function of two points: the point x at which
the force is applied, and the point y at which we measure the displacement.
It is called the influence function (Green’s function).
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From the law of conservation of energy, we can deduce an important
property of the Green’s function k(x, »), namely the so-called reciprocity
law: The displacement arising at the point y under the action of a force
applied at the point x is equal to the displacement arising at the point x
under the action of the same force applied at the point y. In other words,
this means that

k(x,y) = k(y, x). (22)

Let us find, for example, the Green's function for the longitudinal
oscillations of an elastic rod (in figure 8 we have illustrated other transverse
displacements). We consider a rod AB of length fixed at the ends (figure 9).
At the point C we apply a force facting in the direction of B. Under the
action of this force the rod is deformed and the point C is shifted into the
position C’. We denote the magnitude of the shift of C by h. Let us find
the value of A. By means of & we can then find the shift at an arbitrary
point y. For this purpose we shall make use of Hooke’s law, which states
that the force is proportional to the relative extension (i.e., to the ratio of
the amount of displacement to the length). A similar relation holds for
compressions.

Under the action of the force f the part AC of the rod is stretched.
We denote the reaction arising here by T, . At the same time the part CB
of the rod is compressed, giving rise to a reaction T, . By Hooke's law

T

Il
x
]
ol
Il
x

where « is the coefficient of proportionality that characterizes the elastic
properties of the rod. The position of equilibrium of the forces acting at
the point C gives us

h h : Kih
=Kk- e, f=———.
S xx+xf—x’ ie, f x(I — x)

Hence

h=L x1 - .

In order to find the displacement arising at a certain point y on the segment
AC, i.e., for y < x, we note that it follows from Hooke’s law that under
an extension of the rod the relative extension (i.e., the ratio of the
displacement of the point to its distance from the fixed end) does not
depend on the position of the point. We denote the displacement of the
point y by k.
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Then by comparing the relative displacements at the points x and y we

obtain
k _h

y x
hence

k=hl;=fyu—x) for y < x.

Kl

Similarly, if the point lies on the segment CB (y > x), we obtain

k=n1=2 _ L iy

I —x Ki

Bearing in mind that the Green’s function k(x, y) is the displacement at
the point y under the action of a unit force applied at the point x, we
obtain that on the longitudinal oscillations of an elastic rod the Green’s
function has the form

L{y(l—x) for y <x,
k(xsy) = 1
zx(!—y} for y > x.

In a more or less similar way we could have found the Green’s function
for a string. If the tension of the string is T and the length /, then under
the action of a unit force applied at the point x the string assumes the form
illustrated in figure 8, and the displacement k(x, y) at the point y is given
by the formula

1
T:
k(x, y) = (|

ﬁ}’

x(I—y), for x<y,

(I—x), for x>y,

which coincides with the Green’s function for the rod which we have
derived.

In terms of the Green’s function we can express the displacement of
the system from its position of equilibrium provided that it is acted upon
by a continuously distributed force of density f{y). Since on an interval
of length Ay there acts a force f{y) dy, which we can regard approximately
as concentrated at the point y, under the action of this force at the point
x there arises a displacement k(x, y) f(y) 4y. The displacement unde1 the
action of the whole load is approximately equal to the sum

>, k(x, ) /() dy.
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Passing to the limit for 4y — 0 we obtain that the displacement u(x)
at the point x under the action of the force f{y) distributed along the
system is given by the formula

b
ux) = [ kx, )10) dy. 3

Let us assume that our elastic system is not subject to the action of
external forces. If it is displaced from its position of equilibrium, it then
begins to move. These motions are called the free oscillations of the
system.

Now let us write down in terms of the Green’s function k(x, y) the
equation that the free oscillations of the elastic system in question have to
obey. For this purpose we denote by u(x, t) the displacement from the
position of equilibrium at the point x and the instant of time ¢. Then the
acceleration of x at the time ¢ is equal to &u(x, ¢)/ot%

If p is the linear density of the field, i.e., p dy the mass of the element
of length dy, then we obtain by a fundamental law of mechanics the
equation of motion by replacing in (23) the force f{y) dy by the product
of the mass and the acceleration [8%u(y, £)/9¢?] p dy taken with the opposite
sign.

Thus, the equation of the free oscillations has the form

wx,0) = — [ ko nZ920 4 gy,

An important role in the theory of oscillations is played by the so-called
harmonic oscillations of the elastic system, i.e., the motions for which

u(x, t) = u(x) sin wt.

They are characterized by the fact that every fixed point performs harmonic
oscillations (moves according to a sinusoidal law) with a certain frequency
w, and that this frequency is one and the same for all the points x.
Later on we shall see that every free oscillation is composed of harmonic
oscillations.
We set
u(x, t) = u(x) sin wt

in the equation of the free oscillations and cancel sin wz. Then we obtain
the following equation to determine the function u(x)

b
ux) = po [ kx, y) uy) dy. (24)
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Such an equation is called a homogeneous integral equation for the
function u(x).

Obviously the equation (24) has for every w the uninteresting solution
u(x) = 0, which corresponds to the state of rest. Those values of w
for which there exist other solutions of the equation (24), different from
zero, are called the eigenfrequencies of the system.

Since nonzero solutions do not exist for every value of w, the system
can perform free oscillations only with definite frequencies. The smallest
of these is called the fundamental tone of the system, and the remaining
ones are overtones.

Now it turns out that for every system there exists an infinite sequence
of eigenfrequencies, the so-called frequency spectrum

wl ? ‘”2 b e wﬂ L] 2

The nonzero solution u,(x) of the equation (24) corresponding to the
the eigenfrequency w, gives us the form of the corresponding characteristic
oscillation. ;

For example, if the elastic system is a string stretched between the
points O and / and fastened at these points, then the possible frequencies
of the characteristic oscillations of the system are equal to

ks

™ ™ ™
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where a is a coefficient depending on the density and the tension of the
u
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string, namely, @ = +/7Jp. The fundamental tone is here w, = a(n/l),
and the overtones are w, = 2w, , wy = 3w, , ***, w, = nw, . The form of
the corresponding harmonic oscillations is given by the equation

u,(x) = sin"T“x

and are illustrated for n = 1, 2, 3, 4 in figure 10.

So far we have discussed free oscillations of elastic systems. Now if an
exterior harmonic force acts on the elastic system during the motion,
then, in determining the harmonic oscillations under the action of this
force, we arrive at the function u(x) at the so-called inhomogeneous
integral equation

b
u(x) = put [ kx, y)u(y) dy + hx). (25)

Properties of integral equations. Previously we have become ac-
quainted with examples of integral equations

b
fx) = A [ ke ) f)dy (26)
and

ﬂn=R£Mnnﬂm@+Mﬂ, @

the first of which was obtained in the solution of the problem on the free
oscillations of an elastic system, and the second in the discussion of forced
oscillations, i.e., oscillations under the action of external forces.

The unknown function in these equations is f(x). The given function
k(x, y) is called the kernel of the integral equation. The equation (27) is
called an inhomogeneous linear integral equation, and the equation (26) is
homogeneous. It is obtained from the inhomogeneous one by setting
h(x) = 0.

It is clear that the homogeneous equation always has the zero solution,
i.e., the solution f(x) = 0. A close connection exists between the solutions,
of the inhomogeneous and the homogeneous integral equations. By way
of example we mention the following theorem: If the homogeneous integral
equation has only the zero solution, then the corresponding inhomo-
geneous equation is soluble for every function A(x).

If for a certain value A a homogeneous equation has the solution f{(x),
not identically equal to zero, then this value A is called an eigenvalue and
the corresponding solution f(x) an eigenfunction. We have seen earlier
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that when an integral equation describes the free oscillations of an elastic
system, then the eigenvalues are closely connected with the frequencies
of the oscillations of the system (namely A = pw?. The eigenfunctions
then give the form of the corresponding harmonic oscillations.

In the problems on oscillations it followed from the law of conservation
of energy that

k(x,y) = k(y, x). (28)

A kernel satisfying the condition (28) is called symmetric.

The eigenfunctions and eigenvalues of an equation with a symmetric
kernel have a number of important properties. One can prove that such an
equation always has a sequence of real eigenvalues

AI,AQQH" ’\”’ s

To every eigenvalue there correspond one or several eigenfunctions.
Here eigenfunctions corresponding to distinct eigenvalues are always
orthogonal to each other.*

Thus, for every integral equation with a symmetric kernel the system
of eigenfunctions is an orthogonal system of functions. There arises the
question of when this system is complete, i.e., when can every function
of the Hilbert space be expanded in a series by a system of eigenfunctions
of the integral equation. In particular, if the equation

b
[ ke finydy =0 (29)

is satisfied for f{y) = O only, then the system of eigenfunctions of the
integral equation

b
A f k() f) dy = fx)

is a complete orthogonal system.t

Thus, every function f(x) with integrable square can in this case be
expanded in a series by eigenfunctions. By discussing various types of
integral equations, we obtain a general and powerful method of proving

* The latter statement will be proved in the next section.

t In the case when k(x, y) is the Green’s function of an elastic system, the equation (29)
assumes a simple physical meaning. In fact [see formula (23)] we have seen that under
the action of a force f(y) distributed along the system the displacement of the system
from the position of equilibrium is expressed by the formula u(x) = [} k(x, ») /() dy.
Thus, the condition (29) signifies that every nonzero force takes the system out of its
position of equilibrium.
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that various important orthogonal systems are closed, i.e., that the
functions are expandable in series by orthogonal functions. By this method
we can prove the completeness of the system of trigonometric functions,
of cylinder functions, spherical functions, and many other important
systems of functions.

The fact that an arbitrary function can be expanded in a series by
eigenfunctions means in the case of oscillations that every oscillation can
be decomposed into a sum of harmonic oscillations. Such a decomposition
yields a method that is widely applicable in solving problems on oscillations
in various domains of mechanics and physics (oscillations of elastic bodies,
acoustic oscillations, electromagnetic waves, etc.).

The development of the theory of linear integral equations gave the
impetus to the creation of the general theory of linear operators of which
the theory of linear integral equations forms an organic part. In the last
few decades the general methods of the theory of linear operators have
vigorously contributed to the further development of the theory of integral
equations.

§5. Linear Operators and Further Developments of Functional Analysis

In the preceding section we have seen that problems on the oscillations
of an elastic system lead to the search for the eigenvalues and eigen-
functions of integral equations. Let us note that these problems can also
be reduced to the investigation of the eigenvalues and eigenfunctions of
linear differential equations.* Many other physical problems also lead to
the task of computing the eigenvalues and eigenfunctions of linear
differential or integral equations.

Let us give one more example. In modern radio technology the so-called
wave guides are widely used for the transmission of electromagnetic
oscillations of high frequencies, i.e., hollow metallic tubes in which
electromagnetic waves are propagated. It is known that in a wave guide
only electromagnetic oscillations of not too large a wave length can be
propagated. The search for the critical wave length amounts to a problem
on the eigenvalues of a certain differential equation.

Problems on eigenvalues occur, moreover, in linear algebra, in the
theory of ordinary differential equations, in questions of stability, etc.

So it became necessary to discuss all these related problems from one
single point of view. This common point of view is the general theory of
linear operators. Many problems on eigenfunctions and eigenvalues in
various concrete cases came to be fully understood only in the light of

* See Chapter VI, §5.
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the general theory of operators. Thus, in this and a number of other
directions the general theory of operators turned out to be a very fruitful
research tool in those domains of mathematics in which it is applicable.

In the subsequent development of the theory of operators, quantum
mechanics played a very important role, since it makes extensive use of
the methods of the theory of operators. The fundamental mathematical
apparatus of quantum mechanics is the theory of the so-called self-adjoint
operators. The formulation of mathematical problems arising in quantum
mechanics was and still is a powerful stimulus for the further development
of functional analysis.

The operator point of view on differential and integral equations turned
out to be extremely useful also for the development of practical methods
for approximate solutions of such equations.

Fundamental concepts of the theory of operators. Let us now proceed
to an explanation of the fundamental definitions and facts in the theory
of operators.

In analysis we have come across the concept of a function. In its simplest
form this was a relation that associates with every number x (the value of
the independent variable) a number y (the value of the function). In the
further development of analysis it became necessary to consider relations
of a more general type.

Such more general relations are discussed, for example, in the calculus
of variations (Chapter VIIl), where we associated with every function a
number. If with every function a certain number is associated, then we
say that we are given a functional. As an example of a functional we can
take the association between an arbitrary function y = f{x) (@ < x < b)
and the arc length of the curve represented by it. We obtain another
example of a functional if we associate with every function y = f(x)
(a < x < b) its definite integral [ f(x) dx.

If we regard f(x) as a point of an infinite-dimensional space, then a
functional is simply a function of the points of the infinite-dimensional
space. From this point of view the problems of the calculus of variations
concern the search for maxima and minima of functions of the points of
an infinite-dimensional space.

In order to define what we mean by a continuous functional it is
necessary to define first what we mean by proximity of two points of an
infinite-dimensional space. In §2 we gave the distance between two
functions f(x) and g(x) (points of an infinite-dimensional space) as

VI 1w —stopax.
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This method of assigning a distance in infinite-dimensional space is often
used, but of course it is not the only possible one. In other problems other
methods of giving the distance between functions may turn out to be
better. We may point, for example, to the problem of the theory of
approximation of functions (see Chapter XII, §3), where the distance
between functions, which characterizes the measure of proximity of the
two functions f(x) and g(x), is given, for example, by the formula

max | f(x) —g(x) |.

Other methods of giving a distance between functions are used in the
investigation of functionals in the calculus of variations. Distinct methods
of giving the distance between functions lead us to distinct infinite-
dimensional spaces.

Thus, various infinite-dimensional (functional) spaces differ from each
other by their set of functions and by the definition of distance between
them. For example, if we take the set of all functions with integrable
square and define distance as

\/ [t — g as,

then we arrive at the Hilbert space that was introduced in §2; but if we
take the set of all continuous functions and define distance as
max | f{x) — g(x) |, then we obtain the so-called space (C).

In the discussion of integral equations we come across expressions of
the form

b
8 = [ k(e ) /) dy.

For a given kernel k(x, y) this equation indicates a rule by which every
function f{x) is set in correspondence with another function g(x).

This kind of a correspondence that relates with one function f another
function g is called an operator.

We shall say that we are given a linear operator A in a Hilbert space
if we have a rule by which we associate with every function f another
function g. The correspondence need not be given for all the functions of
the Hilbert space. In that case the set of those functions f for which there
exists the.function g = Afis called the domain of definition of the operator
A (similar to the domain of definition of a function in ordinary analysis).
The correspondence itself is usually denoted as follows:

g =Af (30)
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The linearity of the operator means that the sum of the functions f;
and f; is associated with the sum of A4f] and Af,, and the product of fand
a number A with the function A4f; i.e.,

A(Sfy + 12) = Afy + Af, 30
and
AN) = Af. (32)

Occasionally continuity is also postulated for linear operators; i.e., it
is required that the convergence of a sequence of functions f, to a function
f should imply that the sequence Af, should converge to Af.

Let us give examples of linear operators.

1. Let us associate with every function f{x) the function g(x) = j: f(r)dt,
i.e., the indefinite integral of /. The linearity of this operator follows from
the ordinary properties of the integral, i.e., from the fact that the integral
of the sum is equal to the sum of the integrals and that a constant factor

can be taken out of the integral sign.

2. Let us associate with every differentiable function f{x) its derivative
JS'(x). This operator is usually denoted by the letter D; i.e.,

S(x) = D f(x).

Observe that this operator is not defined for all the functions of the
Hilbert space but only for those that have a derivative belonging to the
Hilbert space. These functions form, as we have said previously, the
domain of definition of this operator.

3. The examples | and 2 were examples of linear operators in an infinite-
dimensional space. But examples of linear operators in finite-dimensional
spaces have occurred in other chapters of this book. Thus, in Chapter 111
affine transformations were investigated. If an affine transformation of a
plane of space leaves the origin of coordinates fixed, then it is an example
of a linear operator in a two-dimensional, or three-dimensional, space.
The linear transformations of an n-dimensional space introduced in
Chapter XVI now appear as linear operators in n-dimensional space.

4. In the integral equations, we have already met a very important
and widely applicable class of linear operators in a functional space,
namely the so-called integral operators. Let us choose a certain definite
function k(x, y). Then the formula

g(x) = ﬂk(x, »Ay)dy
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associates with every function f'a certain function g. Symbolically we can
write this transformation as follows:

g =4

The operator A in this case is called an integral operator. We could mention
many other important examples of integral operators.
In §4 we spoke of the inhomogeneous integral equation

b
S5y = X [ ktx, SG) dy + ).

In thé notation of the theory of operators this equation can be rewritten
as follows
f=AA4Af+ h, (33)

where A is a given number, h a given function (a vector of an infinite-
dimensional space), and f the required function. In the same notation the
homogeneous equation can be written as follows:

S =Af (34)

The classical theorems on integral equations, such as, for example, the
theorem formulated in §4 on the connection between the solvability of the
inhomogeneous and the corresponding homogeneous integral equation,
are not true for every operator equation. However, one can indicate certain
general conditions to be imposed on the operator 4 under which these
theorems are true.

These conditions are stated in topological terms and express that the
operator A should carry the unit sphere (i.e., the set of vectors whose
length does not exceed 1) into a compact set.

Eigenvalues and eigenvectors of operators. The problem of eigen-
values and eigenfunctions of an integral equation to which we were led
by problems on oscillations can be formulated as follows: to find the values
A for which there exist a nonzero function f satisfying the equation

10 =2 [ ks 32100 .

As before, this equation can be written as follows:

f=Mf

or

Af =+ /. (35
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Now we shall understand by 4 an arbitrary linear operator. Then a
vector f'satisfying the equation (35) is called an eigenvector of the operator
A, and the number 1/A the corresponding eigenvalue.

Since the vector (1/A)f coincides in direction with the vector f (differs
from f only by a numerical factor), the problem of finding eigenvectors
can also be stated as the problem of finding nonzero vectors f that do not
change direction under the transformation A.

This way of looking at the eigenvalues enables us to unify the problem
of eigenvalues of integral equations (if A is an integral operator), differ-
ential equations (if 4 is a differential operator), and the problem of eigen-
values in linear algebra (if A4 is a linear transformation in finite-dimensional
space; see Chapter VI and Chapter XVI). In the case of three-dimensional
space this problem arises in the search for the so-called principal axes of
an ellipsoid.

In the case of integral equations a number of important properties of
the eigenfunctions and eigenvalues (for example the reality of the eigen-
values, the orthogonality of the eigenfunctions, etc.) are consequences of
the symmetry of the kernel, i.e., of the equation k(x, y) = k(y, x).

For an arbitrary linear operator 4 in a Hilbert space the analogue of
of this property is the so-called self-adjointness of the operator.

The condition for an operator A4 to be self-adjoint in the general case is
that for any two elements f; and f, the equation

(41, 1) = (1, 4f2)

holds, where (Af; , f;) denotes the scalar product of the vector Af; and the
vector f; .

In problems of mechanics the condition of self-adjointness of an
operator is usually a consequence of the law of conservation of energy.
Therefore it is satisfied for operators connected with, say, oscillations
for which there is no loss (dissipation) of energy.

The majority of operators that occur in quantum mechanics are also
self-adjoint.

Let us verify that an integral operator with a symmetric kernel k(x, y)
is self-adjoint. In fact, in this case Af, is the function _[:k(x, ) A(») dy.
Therefore the scalar product (A4f] , f;), which is equal to the integral of
the product of this function with £, , is given by the formula

b b
Ao = [ [ ke 10 1x) dy v
Similarly

Goap =] j’ k(x, ) fip) fi(%) dy dx.
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The equation (Af; . fz) = (f;. Afy) is an immediate consequence of the
symmetry of the kernel k(x, y).

Arbitrary self-adjoint operators have a number of important properties
that are useful in the applications of these operators to the solution of a
variety of problems. Indeed, the eigenvalues of a self-adjoint linear
operator are always real and the eigenfunctions corresponding to distinct
eigenvalues are orthogonal to each other.

Let us prove, for example, the last statement. Let A, and A; be two
distinct eigenvalues of the operator A4, and f; and f; eigenvectors corre-
sponding to them. This means that

Afi = M,
Afy; = oS

We form the scalar product of the first equation (36) by f;, and of the
second by f; . Then we have

(A.fl !f;) = ’\l(fi 9.&)9
(A ) = X2, /)

Since the operator A is self-adjoint, we have (Af] , f;) = (Af;, f1). When
we subtract the second equation (37) from the first, we obtain

0=(\— /\2)(f1 ,f:g)‘

Since A, 7% A,, we have (f}, fy) = 0, i.e., the eigenvectors f; and f; are
orthogonal,

The investigation of self-adjoint operators has brought clarity into
many concrete problems and questions connected with the theory of
eigenvalues. Let us dwell in more detail on one of them, namely on the
problem of the expansion by eigenefunctions in the case of a continuous
spectrum.

In order to explain what a continuous spectrum means, let us turn
again to the classical example of the oscillation of a string. Earlier we have
shown that for a string of length / the characteristic frequencies of
oscillations can assume the sequence of values.

(36)

€Y
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Let us plot the points of this sequence on the numerical axis OX. When we
increase the length of the string /, the distance between any two adjacent
points of the sequence will decrease, and they will fill the numerical axis
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more densely. In the limit, when / — oo, i.e., for an infinite string, the
the eigenfrequencies fill the whole numerical semiaxis A > 0. In this case
we say that the system has a continuous spectrum.

We have already said that for a string of length / the expansion in a
series by eigenfunctions is an expansion in a series by sines and cosines
of n(w/l)x; i.e., in a trigonometric series

flx) = %+2a,,cosn%x+b,‘sinn%x.

For the case of an infinite string we can again show that a more or less
arbitrary function can be expanded by sines and cosines. However, since
the eigenfrequencies are now distributed continuously along the numerical
line, this is not an expansion in a series, but in a so-called Fourier integral

= | i“ [A(Y) cos Ax + B(}) sin Ax] dA.

The expansion in a Fourier integral was already well known and widely
used in the 19th century in the solutions of various problems of mathe-
matical physics.

However, in more general cases with a continuous spectrum* many
problems referring to an expansion of functions by eigenfunctions were
not properly clarified. Only the creation of the general theory of self-
adjoint operators brought the necessary clarity to these problems.

Let us mention still another set of classical problems that have been
solved on the basis of the general theory of operators. The discussion of
oscillations involving dissipation (scattering) of energy belongs to such
problems.

In this case we can again look for free oscillations of the system in the
form u(x) ¢(t). However, in contrast to the case of oscillations without
dissipation of energy, the function ¢(r) is not simply cos wt, but has the
form e*t cos wt, where k > 0. Thus, the corresponding solution has the
form u(x)e—** cos wt, In this case every point x again performs oscillations
(with frequency w), however the oscillations are damped because for
t— co the amplitude of these oscillations containing the factor e*
tends to zero.

It is convenient to write the characteristic oscillations of the system in
the complex form u(x)e—**, where in the absence of friction the number A
is real and in the presence of friction A is complex.

. * As examples we can take the oscillations of an inhomogeneous elastic medium
and also many problems of quantum mechanics.
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The problem on the oscillations of a system with dissipation of energy
again leads to a problem on eigenvalues, but this time not for self-adjoint
operators. A characteristic feature here is the presence of complex eigen-
values indicative of the damping of the free oscillations.

Using a method of the theory of operators in conjuntion with methods
of the theory of analytic functions M. V. Keldy§ investigated this class
of problems in 1950-1951 and proved for it the completeness of the
system of eigenfunctions.

Connection of functional analysis with other branches of mathematics
and quantum mechanics. We have already mentioned that the creation
of quantum mechanics gave a decisive impetus to the development of
functional analysis. Just as the rise of the differential and integral calculus
in the 18th century was dictated by the requirements of mechanics and
classical physics, so the development of functional analysis was, and still is,
the result of the vigorous influence of contemporary physics, principally of
quantum mechanics, The fundamental mathematical apparatus of
quantum mechanics consists of the branches of mathematics relating
essentially to functional analysis. We can only briefly indicate the con-
nections existing here, because an explanation of the foundations of
quantum mechanics exceeds the framework of this book.

In quantum mechanics the state of the system is given in its mathematical
description by a vector of Hilbert space. Such quantities as energy, impulse,
and moment of momentum are investigated by means of self-adjoint
operators. For example, the possible energy levels of an electron in an
atom are computed as eigenvalues of the energy operator. The differences
of these eigenvalues give the frequencies of the emitted quantum of light
and thus define the structure of the radiation spectrum of the given
substance. The corresponding states of the electron are here described as
eigenfunctions of the energy operator.

The solution of problems of quantum mechanics often requires the
computation of eigenvalues of various (usually differential) operators.
In some complicated cases the precise solution of these problems turns
out to be practically impossible. For an approximate solution of these
problems the so-called perturbation theory is widely used, which enables
us to find from the known eigenvalues and functions of a certain self-
adjoint operator 4 the eigenvalues of an operator A, slightly different
from it. We mention that the perturbation theory has not yet received a
full mathematical foundation, which is an interesting and important
mathematical problem.

Independently of the approximate determination of eigenvalues, we can
often say a good deal about a given problem by means of qualitative



SUGGESTED READING 261

investigation, This investigation proceeds in problems of quantum
mechanics on the basis of the symmetries existing in the given case. As
examples of such symmetries we can take the properties of symmetry of
crystals, spherical symmetry in an atom, symmetry with respect to rotation,
and others. Since the symmetries form a group (see Chapter XX), the group
methods (the so-called representation theory of groups) enables us to
answer a2 number of problems without computation, As examples we
may mention the classification of atomic spectra, nuclear transformations,
and other problems. Thus, quantum mechanics makes extensive use of
the mathematical apparatus of the theory of self-adjoint operators. At
the same time the continued contemporary development of quantum
mechanics leads to a further development of the theory of operators by
placing new problems before this theory.

The influence of quantum mechanics and also the internal mathematical
developments of functional analysis have had the effect that in recent
years algebraic problems and methods have played a significant role in
functional analysis. This intensification of algebraic tendencies in contem-
porary analysis can well be compared with the growth of the value of
algebraic methods in contemporary theoretical physics in comparison
with the methods of physics of the 19th century.

In conclusion, we wish to emphasize once more that functional analysis
is one of the rapidly developing branches of contemporary mathematics.
Its connections and applications in contemporary physics, differential
equations, approximate computations, and its use of general methods
developed in algebra, topology, the theory of functions of a real variable,
etc., make functional analysis one of the focal points of contemporary
mathematics.
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CHAPTER X X

GROUPS AND OTHER
ALGEBRAIC SYSTEMS

§1. Introduction

In Chapter 1V, which deals with the algebra of polynomials, we have
already talked of the main lines of development of algebra, its place
among other mathematical disciplines, and of the changes in the views
on the very subject-matter of algebra. The aim of the present chapter is
to give the reader an idea of those new algebraic theories that have sprung
up in the last century, but have only been fully developed in the present
one and have made a deep impact on the contemporary mathematical
research.

Contemporary, as well as classical, algebra is the study of operations,
of rules of computation. But it is not restricted to the study of properties
of operations on numbers, since it strives to study the properties of
operations on elements of a far more general nature. This tendency is
dictated by practical requirements. For example, in mechanics we add
up forces, velocities, or rotations. In linear algebra (see Chapter XVI),
whose ideas and methods have wide application in practical calculations,
the domains of operations are matrices, linear transformations, or vectors
of an n-dimensional space.

The theory of groups plays a particularly prominent role in con-
temporary algebra, and a large part of this chapter is devoted to it. Among
other algebraic theories, we shall dwell on the theory of hypercomplex
systems, which is a necessary and important stage in the historical process
of the development of the concept of number. Of course, these two theories
do not exhaust by any means the content of contemporary algebra, but
they illustrate rather well its ideas and methods.

263
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The theory of groups has arisen from the necessity of finding an
apparatus for investigating such important regularities of the real world
as, for example, symmetry.

A knowledge of the symmetry properties of geometric bodies or other
mathematical or physical objects sometimes gives us a key to the clarifica-
tion of their structure. However, although the concept of symmetry is
altogether intuitive, an accurate and general description of what symmetry
is, and in particular a quantitative account of the properties of symmetry,
requires use of the apparatus of the theory of groups.

The theory of groups arose rather long ago, at the end of the 18th and
the beginning of the 19th century. Originally it was developed only as an
auxiliary apparatus in problems on the solution by radicals of equations
of higher degree. This was due to the fact that precisely in this problem
it was first observed that properties of equivalence, of symmetry of the
roots of the equation, are fundamental for the solution of the whole
problem. In the course of the 19th and 20th centuries the important role
of the laws of symmetry appeared in many other branches of science;
geometry, crystallography, physics, and chemistry. This led to a wide
propagation of the methods and results of the theory of groups.
Since every domain of application presented its own peculiar problems
to the theory of groups, the growing number of these domains also exerted
the opposite effect, in giving rise to new branches of the theory of groups,
and the result of all this is that the contemporary theory of groups, which
is a single entity in its essential concepts, actually splits into a number of
more or less independent disciplines: the general theory of groups, the
theory of finite groups, the theory of continuous groups, of discrete groups
of transformations, the theory of representations and characters of groups,
and so forth. In their gradual evolution, the methods and concepts of the
theory of groups turned out to be important not only for the investigation
of the laws of symmetry but also for the solution of many other problems.

In our time the concept of a group has become one of the most important
general concepts of modern mathematics, and the theory of groups has
assumed a conspicuous place among the mathematical disciplines.
Outstanding contributors to the development of the theory of groups and
its applications were E. S. Fedorov, O. Ju. Smidt, and L. S. Pontrjagin. The
researches of Soviet mathematicians in the realm of group theory occupy
a leading place in the present-day development of this theory.

§2. Symmetry and Transformations

The simplest forms of symmetry. We begin with an account of the
simplest forms of symmetry with which the reader is familiar from everyday
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life. One of these is the mirror symmetry of geometric bodies or the
symmetry with respect to a plane.

A point A in space is called symmetrical to a point B with respect to a
plane « (figure 1) if the plane intersects the segment 48 perpendicularly
at its midpoint. We also say that B is the mirror image of A4 in the plane
a. A geometric body is called symmetric with respect to a plane if the
plane divides the body into two parts each of which is the mirror image of
the other in the plane. The plane itself is then called a plane of symmetry
of the body. Mirror symmetry is often encountered in nature. For example,
the form of the human body, or of the body of birds or animals, usually
has a plane of symmetry.

Symmetry with respect to a line is defined in a similar way. We say that
the points 4, B lie symmetrically with respect to a line if the line intersects
the segment A8 at its midpoint and is perpendicular to 4B (figure 2).

FiG. 1. Fic. 2.

A geometric body is said to be symmetrical with respect to a line or to
have this line as an axis of symmetry of order 2 if for every point of the
body the symmetrical point also belongs to the body.

A body having an axis of symmetry of order 2 comes into coincidence
with itself when the body is rotated around this axis by a half rotation,
i.e., by an angle of 180°.

The concept of an axis of symmetry can be generalized in a natural
way. A line is called an axis of symmetry of order n for a given body if
the body comes into coincidence with itself on rotation around the axis
by an angle 1/n 360°. For example, a regular pyramid whose base is a
regular n-gon has the line joining the vertex of the pyramid to the center
of the base (figure 3) as an axis of symmetry of order n.
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A line is called an axis of rotation of a body if the body comes
into coincidence with itself on rotation around the axis by an arbitrary
angle. For example, the axis of a cylinder
or a cone, or any diameter of a sphere,
is an axis of rotation. An axis of rotation
is also an axis of symmetry of every order.
Finally, an important type of symmetry is
symmetry with respect to a point or central
symmetry. Points 4 and B are called sym-
metrical with respect to a center O if the
segment joining A and B is bisected
at 0. A body is called symmetrical with
respect to a center O if all its points fall into
pairs of points symmetrical with respect to O.
Examples of centrally symmetric bodies are
the sphere and the cube, whose centers are

their center of symmetry (figure 4).
FiG. 3. A knowledge of all the planes, axes, and
centers of symmetry of a body gives a fairly

complete idea of its symmetry properties.

But the concept of symmetry has a meaning not only when applied
to geometric figures. For example, the statement that in the polynomial
x} + x3 + x3 + x} the variables x,, x,, x5, x, occur symmetrically has
a perfectly clear meaning; also that in the polynomial x} + x; + x} + x§
the variables x; and x,, x,
and x, occur symmetrically,

whereas for example, the
variables x; and x, play
different roles. The number
of such examples could easily
be increased. This prompts
us to raise the important
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question: What is symmetry
in general and how can we
take account mathematically FiG. 4.

of the relation of symmetry ?

Now it turns out that a precise answer to this question is connected with the
concept of transformation, which has already occurred many times in
this book, right from the very first chapters. In order to be in a position to
give a general definition of symmetry comprising such heterogeneous cases
as the symmetry of spatial bodies and the symmetry of polynomials, it is
necessary to formulate the concept of transformation in a very general way.



§2. SYMMETRY AND TRANSFORMATIONS 267

Transformations. Let M denote a finite or infinite collection of
completely arbitrary objects, For example, M may be the set of numbers
1,2, ---, n, the set of independent variables x, , x; , x5, x;, or the set of
all points of a plane. If with every element of M a well-defined element of
the same set is associated, then we say that a transformation of M is given.
Every transformation of a finite set M can be given by means of a table
consisting of two rows: In the upper row we write the names of the elements
of M in an arbitrary order and below each of them we write the name of
the element corresponding to it. For example, the table

1234

2321
denotes the transformation of the set of numbers 1, 2, 3, 4 in which the
numbers 1, 2, 3, 4 go over, respectively, into the numbers 2, 3, 2, |. When

we set out in the upper row the numbers 1, 2, 3, 4 in the order 3, 4, 1, 2,
then we can write the same transformation also in form of the table

34]2)
2123/

If the set M is infinite, but its elements can be counted (enumerated),
then the transformation can be given in a similar way be setting out the
elements in a single row (for example, if M is the set of all natural numbers
1,2,3, ..).

In studying transformations it is necessary to introduce a comprehensive
notation for them. We shall denote transformations simply by letters
A, B, etc., and if some transformation of the set M is denoted by the letter
A, then we denote by mA, where m is an arbitrary element of M, the image
of the element m, i.e., that element into which M goes over, under the
transformation 4. Suppose, for example, that

A=G§g‘]');:henu=2, 24=3, 34 =2, 44 = 1.

Let us indicate some transformations that play an important role in
geometry.

We draw an arbitrary line a in space and associate with every point P of
space the point Q obtained by rotating the point P around the axis a by
a fixed angle ¢ (figure 5). In this way we have defined a transformation of
the set of all points of space, the so-called rotation of space by the angle ¢
around the axis a.

Observe that the word “‘rotation” in mechanics denotes a certain process
as a result of which the points of the body assume a new position. Here we



268 XX. GROUPS AND OTHER ALGEBRAIC SYSTEMS

have used the term “rotation™ in the sense of a transformation of space.
We abstract from the actual process of motion and consider only its final
result, namely the correspondence between the initial and the final position
of the points.

Another important transformation of space is the parallel shift of all
the points in a given direction by a given distance. From figure 6, in which
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we have indicated for arbitrary points P,, P, P; the corresponding
points @, , Qs , Qs , it is clear that when we know the corresponding point
of only one point of space in a parallel shift, then we can find the cor-
responding points for all other points of space.

Earlier we have defined the concepts of a plane of symmetry and of an
axis and center of symmetry of a figure in space. To each of these concepts
there corresponds a definite transformation of space: a reflection in the
plane, a rotation around the line, and a reflection with respect to the center.
For example, a reflection in a plane is the transformation in which every
point of space is associated with its symmetrical point with respect to the
plane. A rotation around the line and a reflection with respect to the center
are similarly defined.

So far we have talked of transformations of space. The corresponding
transformations of a plane: rotation of the plane around a point by a given
angle, a parallel shift of the plane in itself in a given direction, and a
reflection with respect to a line lying in the plane, all these are similarly
defined and are even more intuitive than the corresponding transforma-
tions of space.

One-to-one transformations. In discussing all possible transformations
of one and the same set, we must first of all observe the fundamental
difference between one-to-one transformations of the set onto itself and
transformations that are not one-to-one. A transformation 4 of a set M
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is called a one-to-one transformation of the set onto itself if not only to
every element of M there corresponds a definite unique element of M (this
is part of the definition of transformation) but if also for every element y
of M there exists one and only one element x that goes over into y. In
other words, a transformation A is one-to-one if the “‘equation” x4 = y
has one and only one “solution™ x in M for every y in M.

All the transformations of space considered here, reflections, rotations
and translations, are one-to-one, since in these cases not only is there
for every point X a point into which X goes over but there is also a
unique point that goes over into X.

It is easy to give examples to the contrary; thus, the transformation of
the set of numbers 1, 2, 3, 4, given by the table

1234
2123

is not one-to-one, since in it no number goes over into 4. The trans-
formation of the set of all natural numbers 1, 2, 3, -+, given by the table

123456'--)
112233 -

is also not one-to-one. Although here for every number » there is the number
2n that goes over into it, the number 2z is not the only one having this
property, since 2n — | also goes over into n. For transformations given by
tables it is very easy to establish a criterion under with the transformation is
one-to-one. For this it is obviously necessary and sufficient that the lower
line of the table should contain every element of the set once and once
only. Occasionally in mathematics one discusses transformations that are
not one-to-one. For example, the great importance of the operation of
projecting a space onto a plane is well known. This transformation is not
one-to-one, because in it every point is the projection not of one but of a
whole series of points of space. But in the majority of cases it is convenient
to deal only with one-to-one transformations; these transformations, in
particular, play a fundamental role when physical processes are considered
under which the elements of the system in question are not merged with
one another, not annihilated and not created.

Henceforth in talking of transformations we shall tacitly assume that
they are one-to-one; they are also often called permutations, especially
when we are dealing with transformations of a finite set.

For every (one-to-one) transformation 4 of a set M onto itself, we can
easily define an inverse transformation A-'. If A carries an arbitrary
element x of M into y, then the transformation carrying y into x is called
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the inverse transformation to A4 and is denoted by 4-'. For example, if

then

if 4 is a rotation of space around an axis by an angle ¢, then 4~ is the
rotation around the same axis by the angle ¢ in the opposite direction,
etc.

Occasionally it happens that the inverse transformation coincides with
the given one. In particular, reflections with respect to a plane or a point
in space have this property. So has the permutation

2143 L (1234
“'—(1234)’ $ince _(2143)_(

Note that we cannot speak of an inverse transformation for those that
are not one-to-one, because an individual element may be such that no
elements or several elements go over into it.

The general definition of symmetry. In mathematics and its applica-
tions it is very rarely necessary to consider all transformations of a given
set. The fact is that the sets themselves are rarely thought of as merely the
collections of their elements completely disconnected from one another.
This is natural, because the sets that are discussed in mathematics are
abstract images of real collections, whose elements always stand in an
infinite variety of interrelations with each other, and of connections with
what is going on beyond the limits of the set in question. But in mathe-
matics it is convenient to abstract from the major part of these connections
and to preserve and take into account the most essential one. This compels
us in the first instance to consider only such transformations of sets as
do not destroy the relevant connections of one kind or another between
their elements. These are often called admissible transformations or
automorphisms with respect to the relevant connections between the
elements of the set. For example, for points of space the concept of
distance between two points is important. The presence of this concept
forges a link between points which consists in the fact that any two points
stand at a definite distance from one another. Transformations that do
not destroy these connections are the same as those under which the
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distance between points remains unchanged. These transformations are
called “motions™ of space.

With the help of the concept of automorphism it is not difficult to give
a general definition of symmetry. Suppose that a certain set M is given,
in which definite connections between the elements are to be taken into
account, and that P is a certain part of M. We say that P is symmetrical
or invariant with respect to the admissible transformation 4 of M if A
carries every element of P again into an element of P. Therefore, a sym-
metry of P is characterized by the collection of admissible transformations
of the containing set M that transform P into itself. The concept of sym-
metry of a body in space falls entirely under this definition. The role of
the set M is played by the whole space, the role of admissible transfor-
mations by the “motions,” the role of P by the given body. The symmetry
of P is therefore characterized by the collection of motions under which
P coincides with itself,

The reflections, parallel shifts, and rotations of space around a given
line that we have discussed are special cases of motions, because distances
between points obviously remain unchanged under these transformations.
A more detailed investigation shows that every motion of a plane is
either a parallel shift or a rotation around a center or a reflection in a
line or a combination of a reflection in a line with a parallel shift along
that line. Similarly, every motion of space is either a parallel shift or a
rotation around an axis or a spiral motion, i.e., a rotation around an axis
combined with the shift along this axis, or a reflection in a plane combined
with, possibly, a shift along the plane of reflection or a rotation around an
axis perpendicular to this plane.

Parallel shifts, rotations, and spiral motions of space are called proper
motions or motions of the first kind. The remaining “motions™ (including
reflections) are known as improper motions or motions of the second kind.
In a plane, motions of the first kind are parallel shifts and rotations,
whereas reflections in a line and reflections combined with a rotation or
a translation are motions of the second kind.

It is easy to imagine how transformations that are motions of the first
kind can be obtained as a result of a continuous motion of space or of a
plane in itself. Motions of the second kind cannot be obtained in this
way, because this is prevented by the mirror reflection that occurs in their
formation.

One often says that the plane is symmetrical in all its parts or
that all points of the plane are equivalent. In the strict language
of transformations this statement means that every point of the plane
can be superimposed on any other point by means of a suitable
“motion.”
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The cases of symmetry of bodies or figures discussed previously are
also comprised under the general definition of symmetry. For example,
a body that is symmetrical with respect to a plane « comes into coincidence
with itself on reflection in the plane «; a body that is symmetrical with
respect to a center O comes into coincidence with itself under reflection
in O. Therefore, the degree of symmetry of a body or of a spatial figure
can be completely characterized by the collection of all motions of space
of the first and second kind that bring the body or the figure into coin-
cidence with itself. The greater and more diverse this collection of motion,
the higher is the degree of symmetry of the body or figure. If, in particular,
this collection contains no motions except the identity transformation,
then the body can be called unsymmetrical.

The degree of symmetry of a square in a plane is characterized by the
collection of motions of the plane that bring the square into coincidence
with itself. But if the square coincides with itself, then the point of

intersection of its diagonals must also coincide

B K C  with itself. Therefore the required motions
leave the center of the square invariant, and
so they are either rotations around the center
or reflections in lines passing through the
center. From figure 7 we can easily read
that the square ABCD is symmetrical with
respect to the rotations around its center O
by angles that are multiples of 90° and also

A L with respect to reflections in the diagonals

AC, BD and the lines KL, MN. These eight

Fic. 7. motions characterize the symmetry of the
square.

The collection of symmetries of a rectangle reduces to a rotation around
the center by 180° and a reflection in the lines that join the midpoints of
opposite sides; and the set of
symmetries of a parallelogram B, c
(figure 8) consists only of the
rotations around the center by 0
angles that are multiples of 180°,

i.e., of reflections in the center
and the identity transformation. A D

Previously we have given an FiG. 8.
algebraic example of symmetry;
we mentioned that the concept of symmetry of a polynomial in several
variables also has a meaning.

Let us discuss how the symmetry of a polynomial can be characterized.
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We shall say that the permutation of the variables

X1, Xz, """ X
A =( 1 2 n )
Xiy o Xigs "5 Xi,

a= (b))

iy gy in
has been made in the polynomial F(x, , x,, -, x,,) if everywhere in the
polynomial the letter x; has been replaced by x; , x; by x; , etc. The

polynomial so obtained will be denoted by FA. Thus, if F = x} — 2x,
+ Xg— X4,

A=(l 234), then FA = x5 —2x,+ X4 — X, .

or briefly

3142

The symmetry of the given polynomial is characterized by the collection
of those permutations of the variables that, when carried out on the
polynomial, leave it unchanged. For example, the symmetry of the poly-
nomial x} + 2x, + x§ + 2x, is characterized by the four permutations:

1234 (1234 1234) 1234
1234/°\3214/°\1432/°\3412/"

and the symmetry of the polynomial x} + 2x, + x3 4 x, is characterized
by the two permutations:

1234 i 1234
1234 3214}
§3. Groups of Transformations

Multiplication of transformations. In studying properties of trans-
formations it is easy to observe that certain transformations can be
constructed from others. For example, a spiral motion is composed of a
rotation around the axis and a shift along the axis. This process of forming
new transformations from given ones is called multiplication of transfor-
mations. When we apply to an arbitrary element x of a set M some trans-
formation 4 and then apply the transformation B to the new element
xA, we obtain the element (xA4)B. The transformation that carries x
immediately into (xA)B is called the product of 4 and B and is denoted
by AB. Therefore, by definition, we have

x(AB) = (xA4)B.
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1234/1234 (1234
2341/\3412] 4123
Since the first permutation carries | into 2 and the second, 2 into 4,

therefore the resulting permutation must carry | into 4, and so forth.
Here are a few more examples:

1234/1234 234 /1234 1234
3142/\1324 142/\1324 2143)"
l 234 34 234 34\/(1234 1234
2143 24 342 24/\2143 4213/
The last two examples show that the multiplication of transformations
is, as we say, a noncommutative operation: Its result depends on the order
of the factors. This is also easily verified for the multiplication of motions

of a plane. Suppose, for example, that A is a rotation of the plane by 90°
around the origin @, and B a parallel

Example:

ty shift by a unit length along the x-axis.
MA=N $o__ Let us find the image of O under
TS the transformations 4B and BA. By
04:P - —0 \\\ definition we have (figure 9)
1L \ O(AB) = (0OA) B = OB = M,
- ‘o*‘ 1 M X O(BA) = (OB)A = MA = N,
- i 1
2 2 ie., AB  BA.
Fig. 9. For a closer understanding of the

geometric nature of the transfor-
mation BA, let us consider the point P. We have

P(BA) = (PB)A = QA = P,

i.e., the point P remains unchanged under the transformation BA. Starting
out from this it is easy to show that B4 is simply a rotation of the plane
by 90° around P. Similarly

Q(4B) = (Q4) B = PB = Q,

and A B is the rotation of the plane by 90° around Q.

The multiplication of motions of the plane or of space generally follows
rather complicated rules. However, in two important cases the rules of
multiplication are very simple. First, when we multiply rotations of a plane
around one and the same point or rotations of space around one and the
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same line by the angles ¢ and ¢, then the resulting transformation is the
corresponding rotation by the angle ¢ + . Second, when we multiply

— —
parallel shifts characterized by the vectors MN and NP, then the product

—
is also a parallel shift characterized by the vector MP, i.e., the sum of
the original vectors.

The very term “multiplication” of transformations points to a certain
analogy between the multiplication of numbers and the multiplication of
transformations. However, this analogy is incomplete. For example, for
the multiplication of numbers we have the commutative law. But we have
already seen that in the multiplication of transformations this law may be
violated. The second fundamental law of arithmetic, namely the associative
law, is completely preserved for transformations. In fact, for arbitrary
transformations 4, B, C of a set M we have the equation A(BC) = (4A8) C.

For if m is an arbitrary element of M, then

m[A(BC)] = (mA)(BC) = [(mA) B] C = [m(AB)] C = m[(4AB) C].

The associative law enables us, instead of speaking of the two products
A(BC) and (A4 B) of the transformations A4, B, C, to speak only of the single
product A(BC) = (AB) C = ABC. The same law shows that the product
of four or more transformations does not depend on the distribution of
parentheses.

Furthermore, among transformations there is the one that plays the role
of the number 1, this is the identity or unit transformation E, which leaves
every element of M unchanged. Clearly, AE = EA = A, whatever the
transformation A.

We mention the following important fact: The product of one-to-one
transformations is also one-to-one. For in order to find the element x of
M that is carried by 4B into a given element g, it is sufficient to find the
element x, that is carried by B into @ and then to find the element x, that
is carried by A4 into x, . Since x,(AB) = (x,A) B = x;A = a, then x, is
the required element x.

The product of a transformation A and the inverse transformation A~!
is the unit transformation; i.e.,

AAY = A4 = E.

This follows immediately from the definition of the inverse transformation.

The example discussed previously of the multiplication of a parallel
shift of a plane and a rotation shows that properties of a product of
transformations are not always easily discerned starting from properties
of the factors. However, the product of the transformations of the form
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C = B-'A4B is an important exception: The properties of C are here very
simply connected with the properties of 4 and B. For if an element m of
M is carried by A into n, then the element mB, which is ““shifted” by means
of B, is carried by C into the *“shifted™ element nB.

Proof: (mB)B~YAB = mAB = nB.

The transformation B-*A4 B s said to be obtained from A by transforming
it by B or to be conjugate to 4 by means of B.

Let us transform, for example, a rotation P, of a plane around the point
O by means of a translation V. By the preceding rule, in order to find the
pairs of initial and final positions of points for the transformed motions
C = V=PV, we have to shift by means of V the corresponding pairs of
points for the transformation P, .
Since the point O in the rotation

¥ P, remains unchanged (figure 10),
N NV the point OV will remain un-

mmmm——— changed under the transformation

C. Furthermore, if a point M is

?  ovKP x carried by P into N, then the

0 shifted point MV will be carried

by C into the point NV. From
figure 10 it is then clear that the
transformation C is a rotation
around the point OV by the same
angle ¢ as the rotation P.

Similarly, it can be shown that if a translation of the plane characterized

—

by the vector M N is transformed by means of a rotation P, by the angle ¢,
then we obtain again a translation of the plane, characterized by a different
vector.

The previous rule for finding the transformation B-14B can be
formulated in a very elegant way, when the transformations are given by
tables. Suppose that

12 -n 12 ~n
4= (alaz an) n B= (blbs bn) ?
then

bbb\ 12 -n\[12 n b, by - b,
-1 i 12 n _ 1 Y2 nij.
L v W el | il B b)

i.e., in order to transform a permutation 4 by means of permutation B,
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we have to subject all the elements of the upper and of the lower row of 4
to the transformation specified by B. For example, if

{12345 8—12345
“\35412)° 25134/’
then
B14B — lB2B3B4BSB=25134=12345
3B 5B 4B 1B 2B 14325 31254)°

Note that although in general the product of two transformations
depends on the order of the factors, in individual cases the products 4B
and BA may be one and the same. Then the transformations 4 and B are
called permutable or commuting. If AB = BA, then

B'AB = B'BA = A.

Thus, the transformation of a permutation by means of another one
commuting with it does not change the given permutation.

Groups of transformations. The set of transformations that charac-
terizes the symmetry of a certain figure cannot be arbitrary, it must neces-
sarily have the following properties:

|. The product of two transformations belonging to the set also belongs
to the set.

2. The identity transformation belongs to the set.

3. If a transformation belongs to the set, then the inverse transformation
also belongs to the set.

These properties turn out to be very important for the study of trans-
formations; in view of this, every set of one-to-one transformations of a
set that has these three properties is called a group of transformations of
M, independently of the fact whether this set characterizes the symmetry
of a certain figure or not.

From the point of view of algebra, the properties 1-3 are very important,
since they enable us, starting from certain transformations 4, B, C, -,
belonging to a given set, to form various new transformations of the
form ABAC, A-1BCB-! and so forth, and the properties 1-3 guarantee
that all the transformations so obtained do not carry us beyond the
limits of the given set of transformations.
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The number of transformations that form a group is called the order of
the group; it may be finite or infinite. Accordingly, groups are divided
into finite and infinite. Earlier we discussed the group of symmetry of a

square in a plane. This

Ay A As group turned out to con-
. sist altogether of eight
transformations. On the

L [ ] -

] 1] 1 ] ] ]
I I
N U I
; : i 0 AL : . other hand, the infinite
! ! ; i ! ] set of points A4, of the
| | ; : E % plane, illustrated in figure
I s 1 e 1 e 1 8 1 a x H
« i ° | REEEN : 11, is transformed into

itself by the following

Fic. 11. motions of the plane:

translations along the axis

OA in either of the two directions by distances that are multiples of 04,

reflections in the dotted lines; reflection in the axis OA. Hence it is clear
that the group of symmetries of this figure is infinite.

The collection of transformations that preserve a certain object, i.e.,
characterize its symmetry, is always a group. This method of giving
groups in the form of symmetry is one of most significance. Very important
groups can be obtained by this principle. Of first importance among these
are the groups of motions of a plane and of space. The symmetry groups
of the regular polyhedra are also of great interest. It is known that in space
there exist altogether five types of regular polyhedra (with 4, 6, 8, 12 and
20 faces). When we take an arbitrary regular polyhedron and consider all
the motions of space that bring the given polyhedron into coincidence with
itself, we obtain a group, namely the symmetry group of the polyhedron.
If instead of all the motions we consider only the motions of the first
kind that carry the polyhedron into coincidence with itself, then we obtain
again a group that is part of the full group of symmetries of the polyhedron.
This group is called the group of rotations of the polyhedron. Since in a
superposition of the polyhedron with itself, its center is also superimposed
on itself, all motions that occur in the group of symmetries of the poly-
hedron leave the center of the polyhedron unchanged and can therefore
only be either rotations around axes passing through the center or
reflections in planes passing through the center or, finally, reflections in
such planes combined with rotations around axes passing through the
center and perpendicular to these planes.

With the help of these remarks it is easy to find all the groups of
symmetry and the groups of rotations of the regular polyhedra. In Table |
we have given the order of the symmetry groups and the rotation groups
of the regular polyhedron. All these groups are finite.
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Table 1.
Number of faces 4 6 8 12 20
Order of the symmetry group 24 48 48 | 120 | 120
Order of the rotation group 12 24 24 60 60

Permutation groups. Of all the transformation groups, historically, the
first to be studied in mathematics were the permutation groups of poly-
nomials in the variables x, , x5, -*-, x,, . The investigation of these groups
is closely connected with the problem of solving equations of higher degrees
by radicals. Obviously, the collection of all permutations of the variables
that do not change the values of one or several polynomials in these
variables is a group. Polynomials that are unchanged under all permuta-
tions of the variables are called symmetric polynomials. For example,
Xy + Xz + ... + X, is a symmetric polynomial. Accordingly the set of all
permutations of a given set of variables is called the symmetric group of
the permutations of this set.

The number of the variables to be permuted is called the degree of the
symmetric group. Instead of the permutations of the variables x, , ..., x,, ,
we can simply consider the permutations of the numbers 1, 2, ..., n. Since
every permutation of these numbers can be written in the form

12 ..n
(a'lﬂr2 a,,) ’
where a,, a,, -, a, arethe numbers 1, 2, ---, n written in some order, the
number of all permutations of n elements; i.e., the order of the symmetric
group, is equal to n! = 1-2-3 - n. This order increases very rapidly
with n and the group of permutations of 10 variables is already of the

order 3,628,800.
Let us consider the polynomial

Flxy, - Xn)
= (X3 — X)(x3 — X1) - (¥ — X )3 — Xg) = (X — Xa) 7+ (X — Xp—1)- (1)

It is clear that every permutation of the variables either leaves the value of
the polynomial F unchanged or changes its sign only. Permutations of the
first kind are called even. Permutations that change the sign of F are called
odd. The set of even permutations forms the symmetry group of the poly-
nomial (1). It is called the alternating group.
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The product of two even permutations is even, because even permuta-
tions form a group. The product of two odd permutations is an even
permutation.

For if A and B are odd permutations, then

FAB = (FA)B = (—F)B = — (—F) = F.

In the same way it can be shown that the product of an even and an
odd permutation is an odd permutation and that the permutation inverse
to an even or an odd permutation is a permutation of the same parity.

An example of an odd permutation is

which interchanges the elements | and 2.

Decomposition of permutations into cycles. In studying permutation
groups it is very helpful to represent permutations in the form of products
of so-called cycles. By definition, the symbol (m, , m, , ---, m;) denotes the
permutation that carries m, into m; , m; into my, -+, m_, into m, , and
m, again into m, and leaves all the remaining elements of the set in question
unchanged. For example, if we consider permutations of the numbers
1,2, 3, 4,5, then

12345 1234
(1,2,3,4,5) = (2 345 1)' (3’5)=(1 2543

A permutation of the form (m, , m, , -, my) is called cyclic or a cycle
of length k, and my, m,, ---, m, are called the elements of the cycle. The
unit permutation can be written in the form of cycles (1) = (2) = - of
length 1. Cycles of length 2 are called rranspositions. When we permute
the elements of a cycle in cyclic order, we obtain the same permutation,
for example (1,2,3) = (2,3,1) = (3,1, 2), (5, 6) = (6, 5).

It is easy to verify that cycles without common elements, for example
(2, 3) and (1, 4, 5), are permutable, so that in multiplying such cycles we
need not take the order of the factors in the product into account.

The significance of cycles in the general theory is based on the following
theorem: Every permutation can be represented in the form of a product
of cycles without common elements, and this representation is unique to
within the order of the factors.
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The proof of the theorem is immediately clear from the method of such
a representation. Suppose that we wish to decompose the permutation.

We see that A carries | into 4, 4 into 3, 3 into 6, and 6 into 1. As a result
we have a first factor (1, 4, 3, 6). Of the remaining numbers we consider
the 2 and note that A carries 2 into 5, 5 into 2. Therefore the second
factor is (2, 5). Since all numbers are now accounted for, we have

6

4
321

> 1) = 143,65, @
It is also possible to decompose permutations into cycles with
common elements, but this is not unique. For example,

(@,as, 7, a,) = (a1, a)a,a) (4, a,)
= (ay, @3)(@x , a)) (a2, @,)(as , @). 3)

Let us show that every cycle of length 2 is an odd permutation. We have
already seen this for the cycle (I, 2). But every cycle (7, /) is S7(1,2) S,
where S is an arbitrary permutation

]’ 2’
(i9j s )
carrying | into i and 2 into j. The permutation S§-(1,2)S is an odd
permutation, because (1, 2) is odd, and S and S-! are simultaneously even
or odd.

According to (3) a cycle of length m + 1 can be represented as a product
of m odd permutations. Therefore a cycle of length m + 1 is an odd
permutation, when m + | is even, and even, when m + 1 is odd. This
enables us to compute rapidly the parity of permutations whose decompo-
sition into cycles is known. Specifically, the permutation

123456
456321
is even since by (2) it is the product of two odd permutations.

Subgroups. A part of a group that is itself a group is called a subgroup
of the given group. Thus, the alternating group of permutations of the
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variables x, , x,, '+, x,, is a subgroup of the symmetric group. The set of
proper motions of a plane is a group, which is a subgroup of the group of
all proper and improper motions of the plane.

From the formal point of view the unit (identity) transformation forms
a subgroup by itself. Equally, every group can be regarded as a subgroup
of itself. But almost always groups contain many other subgroups apart
from these trivial ones. A knowledge of all the subgroups of a given
group gives a fairly complete idea of the internal structure of the group.

One of the most extensively used methods of forming subgroups is that
of giving so-called generators of the subgroup.

Let 4,, A4;, -, A, be arbitrary transformations belonging to a group
G. The set H of all transformations that can be obtained by multiplying
the given permutations and their inverses among each other arbitrarily
often is a group. For the unit transformation belongs to this set, since it
can be represented in the form A,4;". Next, if the transformations B and
C can be represented as such products, then by multiplying these products
we obtain the required representation for BC. Finally, if B is expressed
as such a product, e.g., B = A7'4,4,4,4;", then B-! can also be
represented in the required product form since B! = A,A7'A7'A43'4, .

The group H obviously is a subgroup of G and is called the subgroup
generated by the transformations 4, , ---, 4,,, and these transformations
Ay, -+, A,, are called the generators of H. It can happen that H coincides
with G, and in this case 4, , -, 4, are called the generators of the whole
group G. It is easy to verify in examples that one and the same subgroup
may be generated by several distinct systems of generators.

A subgroup by a single transformation 4 is called cyclic. Its elements
are transformations

E, A, AA, AAA, -, A, AVA7Y, AVASIAY,
which are naturally called the powers of 4. In fact:

E=A% A=A A4 = A% -, 47147 = 42,
A-14-1471 = 478, ..,

It is easy to show, as in the ordinary arithmetic, that
AmAr = 4min and (Am}n = 4mn (4)
A transformation is called periodic if some positive power of it is the

identity transformation. The smallest positive exponent of the power to
which a periodic transformation must be raised in order to obtain the
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identity is called the order of the transformation. We also say that a
transformation that is not periodic is of infinite order.

Let us consider some examples. Let 4 be a rotation of the plane around
the point O by 360°/n, where n is a given positive integer greater than |.
Then A2 is the rotation by the angle 2(360°/n), A3 the rotation by 3(360°/n),
A"! the rotation by (n — 1) (360°/n), and A" the rotation by 360°, i.e., the
identity transformation. This shows that the rotation by 360°/n is a periodic
transformation of order n.

Let A4 be a shift of the plane along a certain line. Then 4% A3, - are
also shifts along this line by twice the distance, three times, and so forth.
Therefore, no positive power of A is the identity transformation, and the
order of A is infinite.

The elements of the cyclic group generated by A are

AT AL B A, AR el )

If A is a transformation of infinite order, then all the transformations
in the sequence (5) are distinct, and the group is infinite. For otherwise we
would have an equation of the form A4* = A4* (k <), hence A'-* = E
(/— k > 0), and this contradicts the fact that 4 is not periodic.

Now let us assume that 4 is a periodic transformation of order m. Then

Am = E, A™+1 = 4, A™+ = A2 - Am1 = 471, Am2 = A—s‘ s

i.e., the sequence (5) consists precisely of the transformations E, 4, 42, ---,
Am™-1 repeated periodically. They are distinct from one another, since
if we had 4* = 4' (0 < k <! < m), then we would have A'~* = F
(0 < !— k < m), in contradiction to the choice of m. Consequently, the
cyclic group generated by a transformation of order m contains precisely
m distinct transformations.

A group in which all elements commute with one another is called
commutative or Abelian, in honor of the Norwegian mathematician Abel
who discovered the great importance of these groups for the theory of
equations

The formulas (4) show that the powers of one and the same trans-
formation always commute with one another: A™A" = A"A™ = A™+n,
Therefore, cyclic groups are always Abelian.

In the arithmetic of numbers, apart from the multiplication, great
importance_also attaches to the operation of division. In the theory of
groups, as a consequence of the fact that multiplication need not be
commutative, we have to speak of two divisions: on the right and on the
left. The solution of the equation Ax = B, where 4, B are given trans-
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formations, is naturally called the right quotient, and the solution of the
equation y4 = B is the left quotient on division of B by A. When we
multiply both sides of the first equation by 4-! on the left and both
sides of the second by 4! on the right, we obtain: x = 4~1B, y = B4,
Thus, we can regard 4=18 or BA~! as the ““quotient” of the transformations
B and A.

In numerous examples we have seen that in groups, in general, AB = BA.
The ““quotient” (4 B)(BA) ! or (BA)~Y(AB) can be taken to be a “measure”
of the noncommutativity of the permutations 4 and B. The second of
these expressions, namely (BA)Y(AB) = A~'B-'4B, is called the
commutator of A and B and denoted by (4, B). From the formula

(4, B) = A'B-'4B

it follows that the commutator can be represented as the quotient on
“division” of the conjugate transformation B~14B by A.

For example, if 4 is a translation of the plane, then a conjugate trans-
formation is also a translation, and the quotient of two translations
obviously is a translation. Therefore the commutator of a translation and
an arbitrary motion of the plane is a translation. Now let 4 be a rotation
around a certain point O by an angle
¢, and B a rotation or translation.
Then the conjugate transformation is

P again a rotation by the angle ¢, but
/\ around another point O’. Therefore
o Q the commutator (A4, B) in this case is

\ the product of a rotation around O

P I Q

, by the negative angle ¢ and the
0 i r N rotation around O’ by the positive
>0 angle ¢. From figure 12 it is clear

= that the resulting transformation is a

¥ translation by the distance 2 - 00’

>\ sin¢/2 in the direction at an angle

o \V R 7/2 — $/2 with the segment OO’

R Thus, we have arrived at the

FiG. 12. interesting fact that for a plane the

commutator of any two motions of

the first kind is a parallel shift or the identity transformation. Since

(A, B) =-E signifies that 4B = BA, every noncommutative group of
motions of the first kind in the plane contains parallel shifts.

The subgroup generated by the commutators of all elements of a group

G is called the commutator subgroup or derived group of G. Recalling the

relevant definitions, we can say that the derived group of G consists
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precisely of those elements that can be represented in the form of products
of commutators. Since in a plane the commutator of any two motions of
the first kind is a parallel shift, and products of parallel shifts are again
parallel shifts, we can say that the derived group of the group of motions
of the first kind a plane consists only of parallel shifts.

The derived group of an Abelian group consists only of the identity
transformation, because from AB = BA it follows that (4, B) = E.

Let G be the symmetric group of all permutations of the numbers
1,2, -+, n. Let us show that the commutator of any two permutations
A, B is always an even permutation. Indeed, the permutation 4B, BA
and consequently also (BA)-!, always have the same parity; but then
the commutator (A4, B) = (BA)"Y(AB), as the product of permutations
of equal parity, is an even permutation.

We have seen that the derived group of the symmetric group consists
of even permutations only. It is easy to show that in fact it coincides with
the whole alternating group.

The derived group of a group G is often denoted by G'; the derived
group of the derived group of G is called the second derived group of G
and is denoted by G"'. Repeating this process we can define the derived
group of arbitrary order of a group G.

If among the derived groups of a group G at least one (hence all
subsequent ones) consists of the identity transformation only, then the
group G is called solvable. This name has arisen in the theory of equations,
where solvability of a group corresponds to solvability of an equation by
radicals. The group of motions of the first kind in a plane is solvable,
because its second derived group is the identity. The symmetric groups
of degree 2, 3, and 4 are solvable, because their first, second, and third
derived groups, respectively, are the identity. In contrast, the symmetric
groups of degree 5 and higher are not solvable, since it can be shown that
their second derived group coincides with the first and is different from
the identity.

§4. Fedorov Groups (Crystallographic Groups)

The symmetry groups of finite plane figures. As we have already
seen, the symmetry of a figure or a body is characterized by the group of
motions of the plane or space that bring the figure into coincidence with
itself.

The symmetry groups of finite plane figures are the easiest of these
groups to find.* For suppose that a finite plane figure is given and that

o Finilcness _IS to be understood in the sense that the whole figure lies in a bounded
part of the plane, for example, within a certain circle.
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this figure is brought into coincidence with itself by a certain motion A.
Then the center of gravity O of the figure must also be brought into
coincidence with itself by A4; i.e., 4 is either a rotation around O or a
reflection in a line passing through O. Thus, the symmetry group of an
arbitrary finite plane figure can consist only of rotations around its center
of gravity and of reflections in lines passing through this center.

Let us discuss a number of different cases that can arise in studying
symmetry groups of a finite plane figure.

1. The symmetry group K, consists only of the unit (identity) trans-
formation. This is the symmetry group of an arbitrary unsymmetric
figure (figure 13). '

FiGg. 13. FiG. 14, FiG. 15.

2. The symmetry group K, consists of the unit transformation and a
reflection in a single line (figure 14).

Observe that if a group K contains reflections in two lines a, b passing
through O and forming an angle ¢ between them, then the product of
these reflection is a rotation around O by the angle 2¢ (figure 15). Hence
it is clear that the group K, is the only symmetry group not containing
rotations.

3. The symmetry group K consists of rotations only, and among them
there are no rotations by arbitrarily small angles. In that case there is
among the rotations of K; a rotation by a smallest positive angle. Let
this angle be o°. We shall show that every other rotation contained in the
group is a multiple of «°. We denote the number of degrees in such a
rotation by B and find the integer h, for which ha® < B° < (h + 1)a°, so
that 0 < B° — ha® << «°. The group K;, which contains rotations by «°
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and B°, also contains a rotation by B°— ha°. But 0 < B° — ho” < o°,
and the group does not contain positive rotations by less than «°. Therefore
B’ — ha® = 0; i.e., B° = ha®. In particular, since the group K, contains
the rotation by 360°, we have noa® = 360°, for a certain integer n, so that
«® = 360°/n.

Thus, the group K, consists of the rotations by 0°, 360°/n, 2(360°/n),
-, (m—1)(360°/n). By giving to n the values 2, 3, 4, ---, we obtain all
types of groups K.

In figure 16 we have

illustrated  figures
whose  symmetry
groups consist only
of rotations around
O by angles that are @ o]
multiples of 360°/n,
for n =19, n = 3.
4. The symmetry

group K, consists

only of rotations, FiG. 16.

but contains arbi-

trarily small rotations. Then a rotation of arbitrary angle « can be made up

with any degree of accuracy from rotations belonging to the group K,. Of

course, we are interested here only in closed figures, i.e., such that include

their boundary points (see Chapter XVII, §9). It is easy to establish that for

closed figures the group K, contains rotations by any angle ¢. This is the

case of directed circular symmetry (illustrated by a circumference, a circular
annulus, and so forth) provided

with a definite sense of direction
(figure 17). Here not only the
figure must come into coinci-
dence under all admissible
transformations but also its
directional sense, and this

excludes reflections in a line.

Fig. 17. It now remains to discuss the

mixed cases when the symmetry

group K contains both rotations and reflections. Without going into the
proof, which would be quite simple, we only state the result: Apart from
the groups K, through K, there only exist groups of the following two

types.
5. The symmetry group K; consists of n reflections in lines passing
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through O and dividing the plane into 2n equal angles, and of rotations

Fic. 18.

by angles that are
multiples of 360°/n.
For example, regular
n-gons (figure 18) have
suchasymmetry group.

6. The symmetry
group K consists of all
rotations around O
and of reflections in all
lines passing through
the center O. This is
the case of complete

circular symmetry, which can be illustrated by the symmetry of an
unorientated circumference or unorientated annulus.

Symmetry groups of infinite plane figures. The task of finding all
possible symmetry groups of infinite plane figures is more complicated.

Of course, in practice we are never
given a whole infinite plane. How-
ever, often a piece of a plane happens
to be covered with figures so fine
that compared with them the piece
appears to be infinitely large. For
example, the smoothly polished plane
surface of a piece of steel is covered
with figures of microscopic dimen-
sions. The regularity of these figures
is an indication of the internal
homogeneity of the structure of the
metal.

Other examples are patterns on
wallpaper or tapestries with repeating
figures. The art of making such
patterns, the art of ornamentation,
has been widespread among most
nations from antiquity to the present
day. In figure 19 we have a specimen
of an Egyptian ceiling pattern which
dates from the middle of the second
millenium B.C.

Fig. 19.
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In discussing the symmetry groups of finite figures we were compelled to
distinguish between the cases 1, 2, 3, and 5, when the symmetry group
does not contain rotations by arbitrarily small angles, and the cases
4 and 6 when the group contains such rotations. In studying the
symmetry groups of infinite figures, especially in the three-dimensional
case, this division into discrete groups and groups with arbitrarily small
transformations becomes even more important. Therefore we shall begin
with a more careful discrimination between these cases.

A group of motions of a plane is called discrete if every point of the
plane can be enclosed in a circle such that every motion of the group
either leaves the point unchanged or carries it outside the chosen circle.

In the same way we can find all discrete groups of motions of a plane.
All these groups are symmetry groups of plane figures. It is natural here to
distinguish three types of discrete symmetry groups:

I. There exists a point in the plane that remains fixed under all symmetry
transformations. This type contains the groups K, , K, , K; and K; of our
previous list.

II. There are no fixed points in the plane, but there exists a line that is
carried into itself under all transformations of the group. This line is
called an axis of the group. Symmetry groups of this type occur in orna-
ments that are set out in the form of an infinite strip (border). Of such
groups there exist altogether seven:

1. The symmetry group L, consisting only of translations by distances
that are multiples of a certain segment a.

2. The group L, , which is obtained from L, by adjoining the rotation by
180° around one of the points on the axis of the group.

3. The group L, , which is obtained from L, by adjoining the reflection
in a line perpendicular to the axis of the group.

4. The group L, , which is obtained from L, by adjoining the reflection
in the axis.

5. The group L;, which is obtained from L, by adjoining a translation
by a/2 combined with a reflection in the axis.

6. The group L, , which is obtained from L, by adjoining the reflection
in a certain line perpendicular to the axis of the group.

7. The group L, , which is obtained from L; by adjoining the reflection
in some line perpendicular to the axis of the group.

Table 2 gives examples of “borders’” corresponding to each of the
groups L, through L, .
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Table 2.

. p-pop- PAPARAPAP

Hebi b g E b b

Ap R P, PARARAPAP
PBPBTEPB odb b dbidb

L7

I1I. There exists neither a point nor a line in the plane that is carried
into itself under all the transformations of the group. Groups of this
type are called plane Fedorov groups. They are the symmetry groups of
infinite plane ornaments. There are altogether 17 of them: five consist
of motions of the first kind only, and twelve of motions of the first and
second kind.

In Table 3 we have given examples of ornaments corresponding to each
of the seventeen plane Fedorov groups; every group consists of precisely
those motions that carry an arbitrary flag drawn in the diagram into any
other flag of the same diagram.

It is interesting to note that the masters of the art of ornamentation
have in practice discovered ornaments with all possible symmetry groups;
it fell to the theory of groups to prove that other forms do not exist.

Crystallographic groups. In 1890 the eminent Russian crystallographer
and geometer E. S. Fedorov solved by group-theoretical methods one of
the fundamental problems of crystallography: to classify the regular
systems of points in space. This was the first example of a direct application
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of the theory of groups to the solution of an important problem in natural
science and made a substantial impact on the development of the theory

of groups.

Table 3.
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A crystal has the peculiarity that the atoms of which it is composed form
in a certain sense a regular system in space. Let us consider the motions
of space that carry the points of the system again into points of the
system. These motions form a group whose properties enable us to
formulate more accurately the concept of a regular point system.

A system of points in space is called a regular spatial point system if

l. Every point of the system can be carried into every other point by a
motion which brings the system into coincidence with itself;

2. No sphere of finite radius contains infinitely many points of the
system;

3. There exists a positive number r such that every sphere of radius r
contains at least one of the points of the system.

The problem of studying the structure of crystals turns out to be closely
connected with the classification of regular spatial point systems, which
in turn is connected with the classification of discrete groups of motion
in space. Just as in the case of a plane, a group of motions H of space is
called discrete if we can describe around every point A4 of space a sphere
of positive radius r with center at 4 such that every motion occurring in
H either leaves the point A4 fixed or else carries it outside the sphere.

It can be shown that the set of motions of space that bring a given
regular spatial system of points into coincidence with itself is necessarily
a discrete group and that all the points of the system can be obtained
from any given point of the system by subjecting it to all the trans-
formations of the group. Conversely, if a certain discrete group H is known,
then by taking arbitrary point 4 in space and shifting it by means of all
possible motions occuring in H we obtain a system of points that has the
properties | and 2, By means of simple additional conditions we can single
out from the discrete groups those that for suitably chosen points 4 give
us, in fact, regular spatial point systems, i.e., systems of points with all
three properties (1), (2), (3). Such discrete groups are called Fedorov or
crystallographic groups. From what has been shown it is clear that the
task of finding the Fedorov groups is the first and most important step in
the study of regular spatial point systems. Now for the purposes of natural
science it has proved necessary to consider not merely groups consisting
of proper motions only, but also those that contain proper and improper
motions, i.e., including reflections. The number of Fedorov groups formed
from proper motions only is significantly smaller than that of Fedorov
groups composed of proper and improper motions, and only in the latter
more general case does the variety of regular spatial point systems obtained
exhaust the whole diversity of structure of crystals occurring in nature,
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It is interesting to note that, in contrast to the plane case we have
treated previously, only the theory of groups enable us to analyze this
exceptionally large number of possibilities.

The complexity of the space problem compared with the plane one is
clear from Table 4.

Table 4. Number of Spatial Fedorov Groups

Groups containing only motions of the first kind ., . . . 65
Groups containing also motions of the second kind . . . 165
Total 230

Even today a detailed derivation and enumeration of all Fedorov
groups in space requires several dozen pages of text. We shall therefore
restrict ourselves to reporting these quantitative results and refer the
interested reader to the special literature.*

The modern developments of crystallography have made it necessary
to introduce a further extension of the concept of symmetry. Such new
possibilities in methods are outlined in the book on crystallography by
Academician A. V. Subnikov “Symmetry and anti-symmetry of finite
figures,” Akad. Nauk SSSR, Moscow, 1951,

§5. Galois Groups

The results explained on the preceding pages give a certain idea of the
role played by the theory of groups in the solution of the problem of
classification of crystals. However, this problem was not the motivation
for the creation of the theory of groups. Approximately a hundred years
earlier Lagrange noticed a connection between the symmetry properties
of the roots of an algebraic equation and the possibility of solving the
equation by radicals. This connection was the object of deep investigations
by the famous mathematicians Abel and Galois in the first thirty years of
the 19th century; and so they arrived at a solution of the celebrated
problem of conditions for the solvability of algebraic equations by
radicals. This solution was based entirely on a subtle investigation of
properties of permutation groups and was, in fact, the beginning of the
theory of groups.

The study of connections between properties of algebraic equations and

* A detailed account of the plane discrete groups of motion of the first kind is
contained in the book by D, Hilbert and S, E. Cohn-Vossen, Geometry and the imagina-
tion, Chelsea, New York, 1952, A derivation of the crystallographic groups in space
can be found in the fundamental article by E. S. Fedorov, Symmetry of regular systems
of figures (Collected works, Akad, Nauk SSSR, Moscow, 1949),
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properties of groups nowadays forms the object of an extensive theory,
which is known as Galois theory.

An idea of the history of the problem and of the significance of Galois
theory was given in Chapter 1V. However, since Galois theory has played
such a decisive role in the development of group theory, we shall repeat
here the basic facts of the theory, but in a form more convenient for the
purpose of throwing light on the theory of groups itself. The proofs of
these facts require many auxiliary concepts and will be omitted.

The group of an algebraic equation. Consider an equation of degree n
X" +ax"t 4 4 a, =0, (6)

whose coefficients are assumed to have given values; for example, certain
complex numbers. The set of all quantities that can be obtained from the
coefficients of the equation by means of a finite number of the operations
of addition, subtraction, multiplication, and division is called the ground
field or domain of rationality of the equation.

For example, if the equation has rational coefficients, then the domain of
rationality consists of all rational numbers; if the equation has the form
x24+4/2x + 1 =0, then the domain of rationality consists of all
numbers of the form a + b 4/2, where a, b are rational numbers.

We shall now denote the roots of this equation by &,, -+, &, . The set
of quantities that can be obtained by means of a finite number of the
operations of addition, subtraction, multiplication, and division starting
out from the roots ¢, , +--, &,, is called the splitting field of the equation.
For example, the splitting field of the equation x2 4+ 1 = 0 is the set of
complex numbers a + bi with rational a, &; and the splitting field of the
above equation x% + 4/2 x + | = 0 is the set of numbers of the form
a + bi + ¢ /2 + di+/2, where a, b, c, d are rational numbers,

By Viéte's formulas the coefficients of the equation are obtained from
its roots by means of the operation of addition and multiplication, there-
fore the splitting field of an equation always contains its ground field.
Sometimes these fields coincide.

A one-to-one mapping 4 of the splitting field onto itself is called an
automorphism of the splitting field with respect to the ground field, if
for every pair of elements of the splitting field their sum goes over into
the sum of their images, and their product into the product, and every
element of the ground field goes over into itself. These properties can be
described by the formulas

(a +b6)A = ad + bA, (ab)Ad = aA - bA, ad = «
(a,be K, ae€P), )
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where aA is the image o a; that is, 4a is the element into which a goes
over under the mapping A; P is the ground field; and K is the splitting
field.

By the general principle, explained in §2, the set of all automorphisms
of the splitting field relative to the ground field is a group. This group
is called the Galois group of the given equation,

To form a more concrete idea of the Galois group, let us note first of
all that the automorphisms of the Galois group carry a root of the given
equation into another root. For if x is a root of the equation (6), then
operating on both sides of the equation with the automorphism A and
using the properties (7) we obtain

(xA), + qA(xA)*t + - +a,A =0" A4;
since0: 4 = 0, a,4 = a,, we thus have
(xA* + ay(xA)* ' 4 +a, =0,

as required. Consequently, every automorphism A4 effects a definite
permutation of the set of roots of the equation. On the other hand, when
we know this permutation, we also know the automorphism, because all
the elements of the splitting field are obtained from the roots by means of
arithmetical operations only. This shows that instead of the automorphism
group we can also consider the group of permutations of the roots of the
equation corresponding to it. Hence it follows, in particular, that all Galois
groups are finite,

To find the Galois group of a given equation is usually a complicated
problem, and only in special cases is the task comparatively easy. Let us
consider, for example, the equation (6) with literal coefficients a4, , **, a, .
The ground field of this equation is formed by the rational fractions of the
coefficients, i.e., the fractions whose numerators and denominators are
polynomials in a,, ***, a,. The splitting field is formed by the rational
fractions of the roots of the equation ¢, , -, §,, which are connected
with the coefficients by the formulas

—th = £1 + 62 +”'+ fn,
a, = &E&E 4+ L&+ 0 + €nains (®)
(_])nan — flfz ot fn-
Since the equation (6) is “general,” we can regard its roots as independent
variables. Then every permutation of these roots gives rise to an auto-

morphism of the splitting field. The formulas (8) show that under every
such automorphism the coefficients go over into themselves and, together
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with them, all rational fractions formed from them also go over into
themselves. Thus, the Galois group of the general equation of degree n is
essentially the symmetric group of all permutations of n letters.

We can also indicate equations with numerical coefficients that have the
symmetric group for their Galois group. For example, it has been shown
that the Galois group of the equation

n

1 +n(n——l}‘ 1 xﬁ_ﬂ(ﬂ—l)(ﬂ—z)‘

1
1= 7 1.2 2.3 273

X

b (P X =0 (9)

for arbitrary n is the symmetric group of permutations of degree ».

General methods are known for constructing equations with any
preassigned group as Galois group, but under the condition that the
coefficients can be taken to be arbitrary. However, if a construction is
required for equations that are required to have rational coefficients, then
this is known at present only for individual types of groups. Remarkable
progress in this direction has been made by the Soviet mathematician
1. R. Safarevi&, who has found methods of constructing equations with
rational coefficients having an arbitrary preassigned solvable group as
Galois group. In general, however, this problem is still unsolved.

Solvability of equations by radicals. The Galois group of an equation
characterizes, as is clear from the definition, the intrinsic symmetry of
the roots of the equation. All the most fundamental problems concerning
the possibility of reducing the solution of a given equation to that of
equations of lower degree and also many other problems can be formulated
as problems on the structure of the Galois group; and the Galois group of
every equation of degree n is a certain group of permutations of degree n,
i.e., an entirely finite object, in which all relationships, at least theoretically,
can be found by means of trial and error.

The study of the Galois group is a valuable method of solving problems
related to algebraic equations of higher degrees. For example, it can be
shown that an equation is solvable by radicals if and only if its Galois
group is solvable (for the definition of a solvable group see §3). We have
already mentioned that the symmetric groups of degree 2, 3, and 4 are
solvable. This is in complete accord with the well-known fact that
equations of degree 2, 3, and 4 are solvable by radicals. The Galois groups
of the “general” equations of degree 5, 6, and so forth, are the symmetric
groups of the same degrees. But these groups are not solvable. Hence it
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follows that the general equations of degree higher than 4 cannot be
solved by radicals.

Among the equations that are not solvable by radicals there are also
the equations (9) for n > 4, because their Galois group is the symmetric

group.

§6. Fundamental Concepts of the General Theory of Groups

In the 19th century the theory of groups arose primarily as the theory of
transformation groups. However, in the course of time it became more and
more clear that the most significant of the results obtained depend only
on the fact that transformations can be multiplied and that this operation
has a number of characteristic properties. On the other hand, objects
were found having nothing to do with transformations, on which a certain
operation can be carried out (for the time being we shall call it multiplica-
tion) having the same properties as in transformation groups and to which
the main theorems of the theory of transformation groups were applicable.
As a result, the concept of a group was applied at the end of the last
century not only to systems of transformations, but also to systems of
arbitrary elements.

General definition of a group. The following definition of a group is
generally accepted nowadays: Suppose that with every pair of elements
a, b, taken in a definite order, of an arbitrary set G another well-defined
element ¢ of the same set is associated. Then we say that an operation is
given on the set G. It is customary to introduce special names for opera-
tions: addition, multiplication, composition. The element of G that
corresponds to the pair a, b is then called the sum, product, and composi-
tum of the elements a, b, and is denoted by a + b, ab, a = b, respectively.
The names “addition” or “multiplication” are used even in cases when
the operation in question has nothing to do with the ordinary
operations of addition and multiplication of numbers.

A set G together with an operation * defined on it is called a group
with respect to this operation if the following group axioms are satisfied:

1. For any three elements x, y, z of G
X *(y * 2) = (x = y) = z (associative law).

2. Among the elements of G there exists an element ¢ such that for
every x of G

X*k€ —€xXx =X,
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3. For every element a of G there exists an element g~ of G such that
axal'=alxa=e

The element e, described in axiom 2, is called the neutral element of
the group, and the element a~! whose existence is postulated by axiom 3
is called the inverse of a. If the group operation is called addition or
multiplication, then the neutral element is called the zero or the unit
element, respectively, and the group axioms assume the form

Mx+O+2)=x+y+z (1) x(yz) = (xp)z,
2x+0=04+x=x, (2) xe = ex = x,
B)x+(—x)=(—x)4+x=0, @) xxl=x1lx=e

In the preceding sections we have discussed many examples of groups.
The elements of these groups were transformations, and the group
operation was multiplication of transformations. The set of numbers
0,+ 1,42, also forms a group under the operation of addition,
because the sum of integers is again an integer and addition of integers is
associative; the neutral element is the integer 0 and for every number a
of our set there is the opposite number —a. Another example of a group
is the set of all real numbers (except 0) under multiplication. For the
product of any two real numbers different from zero is a real number
different from zero; the operation of multiplication of real numbers is
associative; the neutral element is the number 1; and every nonzero real
number a has the inverse ¢! = l/a. The number of similar examples
could be increased indefinitely.

Although the group operation may be called by different names, let us
agree henceforth to call it almost always multiplication, The concepts of
a subgroup, of powers of an element of a group, of a cyclic group, of the
order of an element of a group are defined exactly as for transformation
groups and we shall not repeat this here (see §3). We only mention that
an element a of a group is called conjugate to an element b if there is an
element x in G such that & = x~lax. Since @ = a~'aa, every element of
a group is conjugate to itself. Furthermore, from & = x~'ax it obviously
follows that xbx! = g or a = (x~!)'bx-\. i.e., if a is conjugate to b,
then b is conjugate to a. Finally, if 6 = x~'ax and ¢ = y~1by, then

¢ = yIxTlaxy = (xp)~'a(xy).

Therefore two elements conjugate to a third are conjugate to each other.
These properties show that all elements of a group split into disjoint
classes of conjugate elements. Also, if the group is commutative, i.e.,
xy = yx for every x and y, then conjugate elements coincide and every
class of conjugate elements consists of one element only.
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Isomorphisms. Two aspects can be distinguished in the concept of a
group. In order to give a group we have to: (1) indicate what objects are
its elements and (2) indicate the law of multiplication of the elements.
Accordingly, the study of group properties can be carried out from distinct
points of view. We can study connections between individual properties
of elements of the group and of sets of them and their properties in relation
to the group operation. This point of view is often adopted in studying
individual concrete groups; for example, the group of motions of space
or a plane. However, we can also study those group properties that are
entirely expressed in terms of properties of the group operation. This point
of view is characteristic for the abstract or general theory of groups. It
can be expressed more clearly by means of the concept of isomorphism.

Two groups are called isomorphic if the elements of one of them can be
associated with the elements of the other in such a way that the product of
arbitrary elements of the first group is associated with the product of the
corresponding elements of the second group. A one-to-one correspondence
between elements of two groups that has this property is called an
isomorphism.

It is easy to see that elements of two groups that correspond to each
other under an isomorphism have identical properties with respect to the
group operation. Thus, under an isomorphism the neutral element, inverse
elements, elements of a given order n, subgroups of one group go over,
respectively, into the neutral element, inverse elements, elements of the
same order, subgroups of the second group. We can therefore say that
the abstract theory of groups studies only those properties of a group
that are preserved under isomorphic mappings. For example, from the
point of view of the abstract theory of groups the group of all permutations
of four elements and the group of proper and improper motions of space
that carry a fixed regular tetrahedron into itself have identical properties,
because they are isomorphic. In fact, the motions in question carry the
vertices of the tetrahedron again into its vertices. The number of these
motions is 24. By associating with every motion the permutation of the
vertices that it produces, we obtain a one-to-one correspondence between
the elements of the two groups which is the required isomorphism.

A remarkable example of an isomorphic mapping is given by the theory
of logarithms. By associating with every positive real number its logarithm,
we obtain a one-to-one mapping of the set of positive real numbers onto
the set of all real numbers. The relation log (xy) = log x 4 log y shows
that this correspondence is an isomorphic mapping of the group of positive
real numbers under multiplication with the group of all real numbers
under addition. The practical importance of this isomorphism is well
known.
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Examples of nonisomorphic groups are finite groups of distinct orders,
As we have already mentioned, an abstract group is determined by the
law of multiplication of its elements, independent of their nature, so that
distinct but isomorphic concretely given groups can be regarded as models
of one and the same abstract group.

An abstract group can be given by various methods of which the most
natural, at least for finite groups, is by means of the *‘multiplication table.”

For a group of order n whose elements are written down in an arbitrary
order, such a multiplication table consists of a square divided into n rows
and n columns. In the cell at the intersection of the ith row and the jth
column we write down the element that is the product of the element with
the number i and that with the number j. This multiplication table for
finite groups is sometimes called its Cayley square.

However, in practice it is almost never convenient to give a group by
means of the multiplication table, because it is very clumsy.

There are other methods of giving an abstract group. One of them,
namely by means of generating elements and defining relations, we have
already come across. However, most frequently an abstract group is
defined by giving a concrete group isomorphic to it, in particular, a
transformation group.

Naturally the problem arises whether every abstract group can be
regarded as a transformation group. The following theorem gives us
the answer: Every group G is isomorphic to some transformation group of
the set of its elements.

For let g be a fixed element of G. We denote by A, the transformation of
the set of elements of G under which to every element x of G there corre-
sponds the element xg. The transformation A, is one-to-one, because the
equation

xA, = xg =a

has for every given a the unique solution x = ag='. On the other hand, the
product of group elements gh is associated with the product of the corre-
sponding transformations 4,4, , because

xAgn = x(gh) = (xg)h = (x4,)4y = x(A,A43).

To the neutral element e of G there corresponds the identity, and to the
inverse element g-! the inverse transformation. Therefore the set I'" of all
transformations corresponding to the elements of G is a transformation
group isomorphic to G. It is easy to verify that if the number of elements
of G is greater than 2, then the set I" does not exhaust all the transforma-
tions of G and is only a subgroup of the *“symmetric” groups of all
transformations of that set.
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Normal subgroups and factor-groups. Let P and @ be arbitrary
collections of elements of some group G. The product of P by @, symboli-
cally PQ, is the name for the set of those elements of G that can be
represented in the form of a product of some element of P by some element
of Q. In'particular, the product gP, where g is an element of G, is the set
of products of g by every element of the set P.

A subgroup H of G is called a normal or invariant subgroup of G if
gH = Hg for every g of G. The sets of the form gH and Hg, where H is
an arbitrary subgroup, are called respectively the right and left cosets of
G with respect to H, containing the element g. Thus we can say that
normal subgroups are entirely characterized by the property that for them
the left and right cosets corresponding to one and the same element
coincide.

If H is a normal subgroup, then the product of two cosets is again a
coset, as it is easy to see, in fact: aH - bH = ab - H. The subgroup H by
itself is a coset corresponding to the unit element or to any of its elements
h, since hH = H. Multiplication of cosets is associative

(aH - bH)cH = (ab - ¢)H = (a - bc)H = aH(bH - cH).

The subgroup H plays the role of the neutral element in this multiplication:
H-aH = eH -aH = (ea)H = aH, similarly aH - H = aH. The coset
a'H is the inverse of aH, since gH - a'H = ga—*H = H. Therefore, by
regarding every coset with respect to a normal subgroup as an element of
a new set, we see that this set is a group under the operation of multiplica-
tion of cosets. This group is called the factor group of G with respect to the
normal subgroup H and is denoted by G/H.

It is easy to show that for finite groups every coset with respect to an
arbitrary subgroup contains as many distinct elements as the subgroup
H contains and that distinct cosets have no elements in common. Hence it
follows that the number of cosets of a finite group G with respect to its
subgroup H is equal to the order of G divided by the order of H; and this
implies the important theorem of Lagrange which states that the order of
every subgroup of a finite group is a divisor of the order of a group.

From the definition of a normal subgroup it is clear that in Abelian
groups every subgroup is normal. The other extreme case consists of the
so-called simple groups in which no subgroup other than the unit subgroup
and the group itself is normal. Apart from Abelian and simple groups,
the solvable groups defined in §3 are also very important. It can be shown
that solvable groups have a finite chain of normal subgroups G, G, , G,, -,
G, , the first of which coincides with the given group G, while every
subsequent one is contained in its predecessor, the last group being the unit
element, and all the factor groups G/G, , G,/G, , -, G\_,/G being Abelian.
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Homomorphisms. The concept of a factor group is very closely con-
nected with the concept of a homomorphic mapping, which is funda-
mental for the whole theory of groups.

A single-valued mapping of the set of elements of a group G onto the
set of elements of a group H is called a homomorphism or homomorphic
mapping if the product of any two elements of the first group is mapped
onto the product of the corresponding elements of the second.

If for every element x of G we denote the corresponding element of H
by x’, then a homomorphic mapping can be characterized by the property

(x1%5) = x7x5 .

From the definitions of a homomorphism and an isomorphism it is
clear that an isomorphic mapping is necessarily one-to-one, whereas a
homomorphic mapping is single-valued only in one direction: To every
element of G there corresponds a unique element of H, but distinct
elements of G may have one and the same image in H. In a certain sense
we can say that under an isomorphic mapping the group H is an accurate
copy of G, but under a homomorphic mapping on transition from G to H
distinct elements of G may coalesce; several elements, as it were, can be
“merged” into a single element of H. However, this *‘coarse” nature of a
homomorphic mapping is not a deficiency; on the contrary, it is a great
advantage, because it enables us to use homomorphic mappings as a
powerful tool in the investigation of group properties.

Homomorphic mappings make their appearance in many situations
connected with transformations. For example, let us consider the symmetry
group of the regular tetrahedron (figure
20). This group is isomorphic to the
symmetric group of permutations of four
elements, because there exists one and only
one motion (of the first or second kind)
that carries the vertices A4,, Ad,, A5, 4,

A into any other given arrangement.
K Now let us consider the lines /;,/,,/;
A A, that join the midpoints of opposite edges.
Every motion that brings the tetrahedron
into coincidence with itself generates a
certain permutation of /,, /,, /5 and every
FiG. 20. permutation of /;,/,,/; is generated by
some symmetry of the tetrahedron. Clearly,
the product of transformations of the tetrahedron corresponds to the
product of the permutations of the lines /;,/,,/;. From figure 20 it is

Aq

Ay
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easy to read off how the homomorphic mapping of the symmetric group
of permutations of the four elements 4, , 4,, 4;, 4, onto the symmetric
group of the permutations of the three elements /, , /;, , /; can be realized
in a natural way. It is not difficult to find the elements of the “larger”
group that are “merged” in this homomorphism.

Let us discuss a few more examples. The set of all permutations of n ele-
ments is a noncommutative group for n > 2. On the other hand, the
numbers +1 and —I| also form a group under multiplication. Now let
us associate with every even permutation of arbitrary n elements the
number 41 and with every odd permutation the number —1. This gives
us a homomorphic mapping of the symmetric group of permutations of n
elements onto the group {1, —1}, because according to §3 the product
of permutations of equal parity is an even permutation and the product
of permutations of distinct parity is an odd permutation.

Another example: If we associate with every real number x == 0 its
absolute value | x |, then the resulting mapping of the group of positive
and negative real numbers under multiplication (zero excluded) onto the
group of the positive real numbers only is a homomorphism under
multiplication because | xy| = | x| |yl

We have already mentioned that in a plane every motion of the first
kind A can be represented in the form of a product of a suitable rotation
V, around a fixed point O and a certain parallel shift D,. Rotations
around the point O form a group. Therefore the correspondence 4 — V
uniquely maps the group of plane motions of the first kind onto the group
of rotations of the plane around the point O. Let us show that this
mapping is a homomorphism. From the decompositions 4 = V,D,,
B = VyDy it follows that

AB = V, D, VyDy = (V V) (V3'D,VyDy).

The first parenthesis is a rotation around O and the second is the product
of the transformed translation ¥3' D, V, and the translation Dy and is
consequently also a translation. This shows that the product of the motions
AB is associated with the product of the corresponding rotation V ¥V,
i.e., that the mapping in question is a homomorphism.

Finally let us show that the factor group G/N of an arbitrary group G
with respect to the normal subgroup N is 2 homomorphic image of G.

For by associating with every element g of G the coset gN containing g,
we obtain the required homomorphic mapping of G onto G/N, since the
product gh corresponds to the coset ghN, which is equal to the product
of the cosets gN and AN corresponding to the elements g and A.

Turning now to general properties of homomorphic mappings, let us
show that the neutral element goes over under any homomorphism into
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the neutral element and that inverse elements go over into inverse
elements.

For if e is the neutral element of G, and ¢’ its image in H, then it follows
from ee = e that e’e” = ¢’ so that, if we denote by € the neutral element
of H, we obtain: ¢’ = e’e’~! = e. This proves the first statement, Now let
x and y be inverse elements in G and x’ and ' their images in H. From
xy = eit follows that x'y" = ¢’ = ¢, i.e., that x and y are inverse elements
in H and hence

(x7Y ==l

The facts we have proved make it easy to find the image of an arbitrary
product of elements in G. For example,

(ab-ic-dh Y = a6 (Y (hY) = @bl

The following theorem is fundamental for the whole theory of homo-
morphic mappings.

Under homomorphic mapping of an arbitrary group G onto a group H,
the set N of elements of G that are mapped into the neutral element ¢’
of His a normal subgroup of G; the set of elements of G that are mapped
into an arbitrary fixed element of H is a coset of G with respect to N,
and the one-to-one correspondence so established between the cosets of
G with respect to N and the elements of H is an isomorphism between H
and the factor group G/N.

Let us now prove the theorem. Let a, b be arbitrary elements of N.
This means that @’ = b’ = ¢’ where, as before, the prime denotes the
images of elements of G in H. But then

(ab) = a'b’ = e'e¢’ = ¢,
(a_l)l — a!_l P e!_l T e!;

i.e., ab and the inverse elements a~, b~ belong to N so that N is a group.
Furthermore, for an arbitrary element g of G we have

(g'ag) =g'~'ag’' =g'leg’ =g =¢;

i.e., g~lag lies in N for every g of G and every a of N, and from this it
follows obviously that N is a normal subgroup. This proves the first
statement of the theorem.

To prove the second statement we choose in G an arbitrary element g
and consider the set U of all those elements u of G whose image u’ coincides
with the image g’ of g. Suppose that u€gN, i.e., u = gn where ne N,
so that ' = g'n’ = g'e’ = g’. Therefore gNC U. Conversely, if ¥’ = g’,
then (g-'u) = g~ = g'-'¢g’ = €, i.e., g~'u = n, where n is an element
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of N. Hence u = gn and so U C gN. From gN C U and U C gN it follows
that U = gN.

Finally, the third statement of the theorem is obvious: To arbitrary
cosets gN, hN of the factor group G/N there correspond in H the elements
gk, and to the product of the cosets, by the formula

gN - hN = ghN,

there corresponds (gh)’ = g'h’, as required.

The theorem on homomorphisms shows that every homomorphic image
H of a group G is isomorphic to the corresponding factor group G/H.
Thus, to within an isomorphism all homomorphic images of a given group
G are exhausted by its distinct factor groups.

§7. Continuous Groups

Lie groups; continuous groups of transformations. The progress that
was made by means of the theory of groups in the solution of algebraic
equations of higher degree induced mathematicians of the middle of the
last century to attempt to use the theory of groups in the solution of
equations of other forms, in the first instance the solution of differential
equations, which play such an important role in the applications of
mathematics. This attempt was crowned with success. Although the place
occupied by groups in differential equations is entirely different from
their place in theory of algebraic equations, the investigations on
the application of the theory of groups to the solution of differential
equations led to a substantial extension of the very concept of a group
and to the creation of a new theory of the so-called continuous groups
and Lie groups which have proved to be extremely important for the
development of the most diverse branches of mathematics.

Whereas the groups of algebraic equations consist only of a finite
number of transformations, the groups of differential equations constructed
in a similar way turn out to be infinite. However, the transformations
belonging to a group of a differential equation can be given by means of a
finite system of parameters, and by changing the numerical values of these
all the transformations of a group can be obtained. Suppose, for example,
that all the transformations of the group are determined by the values of
the parameters a,, a,, -, a,. When we give these parameters the values
Xy, X35 Xr, We obtain a certain transformation X; by giving to the
parameters new values y, , y, , ***, y, we obtain another transformation Y,
By hypothesis the product of these transformations Z = XY also occurs
in the group and hence is obtained by certain new values of the parameters
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Zy 523, 2. The values z; depend on x;, X5, s X, , Y1, Vo s My L€,
they are certain functions of them

21 — ¢1(x1 »x2’ "y xr; }'1 ‘JP2, ""yr)s

Z; = ¢2(x1 3 Xg sty Xr, Y1+)2, ”'syr),
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Groups whose elements depend continuously on the values of a finite
system of parameters and whose multiplication law can be expressed by
means of twice-differentiable functions ¢, , -, ¢, are called Lie groups
in honor of the Norwegian mathematician Sophus Lie who first investi-
gated these groups.

In the first half of the 19th century, N. I. Lobadevskil developed a new
geometric system which now bears his name. At approximately the same
time projective geometry emerged as an independent geometric system;
somewhat later the geometry of Riemann was created. As a result one
could enumerate in the second half of the 19th century a number of
independent geometric systems that investigated from different points of
view the “‘spatial forms of the actual world” (Engels). To comprise all
these geometric systems in a single point of view, but preserving their
most important qualitative differences, proved possible by means of the
theory of groups.

Let us consider a one-to-one transformation of the set of points of an
arbitrary geometric space that does not change those basic relations
between figures that are studied in this geometry. The collection of these
transformations forms a group which is usually called the group of motions
or of automorphisms of the given geometry. The group of motions
completely characterizes the given geometry, in view of the fact that when
the group of motions is known, the corresponding geometry can be
regarded as the study of those properties of the collection of points that
remain unchanged under the transformations of the group. The method
of classifying the various geometric systems by their groups of motions
was introduced in the second half of the last century by F. Klein. This
method and the various geometric systems have been treated in Chapter
XVII. Here let us only mention that the groups of motions of all
geometric systems that were actually investigated in the last century
turned out to be Lie groups. In view of this the task of studying Lie groups
assumed particular importance.

Owing to its many connections with the most diverse domains of mathe-
matics and mechanics the theory of Lie groups has been developed
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energetically from its foundation right to the present time. It so happens
that certain problems that have not yet been solved for finite groups were
solved comparatively rapidly for Lie groups. For example, little progress
has been made so far in the problem of classifying the finite simple groups
(i.e., the finite groups that have no nontrivial normal subgroups), but
the corresponding classification of simple Lie groups was obtained by
Killing and Cartan already at the end of the last century. By developing
the theory of Lie groups the Soviet mathematicians V. V. Morozov, A. .
Mal’cev, and E. B. Dynkin have found a complete solution of the
important and long outstanding problem of classifying the simple
subgroups of Lie groups. In another direction the theory of Lie groups
was developed by the Soviet mathematicians I. M. Gel'fand and M. A.
Nalmark who have found the so-called continuous representations of the
simple Lie groups by unitary transformations of a Hilbert space; the latter
task is of particular interest for analysis and physics.

The study of Lie groups proceeds by means of the peculiar apparatus of
the so-called “infinitesimal groups” or Lie algebras. These will be discussed
in more detail in §13.

Topological groups. Side by side with a wide extension of the classical
theory of Lie groups, in the USSR exceptional advances were achieved
in the more general theory of topological or continuous groups. In contrast
to the concept of a Lie group, where it is required that the elements of a
group be defined by a finite system of parameters and that the multiplica-
tion rule be expressible by means of differentiable functions, the concept
of a topological group is simpler and wider. A group is called topological
if apart from the ordinary group operation a concept of proximity is
defined for its elements and if the proximity of group elements implies the
proximity of their products and of their inverse elements.

Originally the concept of a topological group proved to be necessary
to bring order into many of the fundamental concepts of the theory of
Lie groups. But later the extreme importance of this concept for other
branches of mathematics were recognized. The first papers on the theory
of general topological groups fall into the early twenties of our century,
but the fundamental results that make it possible to speak of the creation
of a new discipline were not found until the end of the twenties and the
beginning of the thirties. A considerable part of them was obtained by the
Soviet mathematician L. S. Pontrjagin who deservedly is regarded as one
of the founders of the modern theory of continuous groups. His book
“Topological groups,” which was the first in the world literature to contain
a comprehensive account of the theory of continuous groups, still remains
the basic textbook in this domain even after twenty years.
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§8. Fundamental Groups

In all the concrete examples discussed in the preceding sections, groups
have usually appeared as transformation groups of one set or another.
The only exceptions were the groups of numbers with respect to addition
and multiplication. We now wish to analyze an important example in
which the group originally arises not as a group of transformations but as
a certain algebraic system with one operation.

The fundamental group. Let us consider a certain surface S and on
it a moving point M. By making M run on the surface along a continuous
curve joining a point 4 to a point B, we obtain a definite path from A4 to B.
This path may intersect itself any number of times and may even retrace
part of itself in individual sections. In order to indicate the path it is not
enough to give only the curve on which the point M runs. We also have to
indicate the sections that the point traverses more than once and also the di-
rection of its passage. For example, a point may range over one and the same
circle a different number of times and in different directions, and all these
circular paths are regarded as distinct. Two paths with the same beginning
and the same end are called equivalent if one of them can be carried into
the other by continuous change. In the plane or on a sphere any two paths
joining a point A to a point B are equivalent (figure 21). However, on the
surface of the torus, for example, the
closed paths U and V (figure 22) that
begin and end at the point 4 are not
equivalent to each other.

If instead of a torus we consider an
infinite circular cylinder extending in
both directions and take on it the
path X (figure 23), then it is easy to
figure out that every closed path on
the cylinder beginning at A4 is
equivalent to a path of the form
Ar(n=0, 4+ I, + 2,-), where we
have to understand by X" (n > 0) the

FiG. 21, path X repeated n times; by X°the

zero path consisting only of the single

point A; and by X" the path X traversed in the opposite direction; for
example, Z ~ X-1, ¥ ~ X2, U ~ X°(figure 23). This example shows the
significance of the concept of equivalence of paths: Whereas there exists
an immense set of distinct closed paths on the cylinder, all these paths
reduce, to within equivalence, to the circle X traversed in one or the other
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direction a sufficient number of times. For m 5 n the paths X™ and X
are not equivalent.

Turning now to the discussion of an arbitrary surface, let us assume that
two paths are given on it, namely a path U leading from a point 4 to a
point B, and a path V leading from B to C. Then, by making a point run
first through the path AB and then through BC we obtain a path 4C
which we naturally call the product of the paths U = AB and V = BC

'_}'\'ZN\ ;/ ’:\
A

Fig. 22. FiG. 23.

and denote by UV. If the paths U, V are equivalent to the paths U, , V, ,
respectively, then their products UV and U,V, are also equivalent. The
multiplication of paths is associative in the sense that if one of the products
U(VW) or (UV)W is defined, then the other is also defined and the two
products represent equivalent paths, If the moving point M is made to
run through a path U = 4B but in the opposite direction, then we obtain
the inverse path U~! = BA leading from B to A. The product of the path
A B with its inverse path BA is a closed path equivalent to the zero path
consisting only of the point A4.

According to the definition we cannot multiply any two paths but only
those in which the end point of the first coincides with the initial point of
the second. This inadequacy disappears when we consider only closed
paths starting from one and the same initial point 4. Any two such paths
can be multiplied and as a result we obtain again a closed path with the
initial point 4. Furthermore, for every closed path with initial point A its
inverse path has the same properties.

Now let us agree to regard equivalent paths as distinct representations
of one and the same “path,” only drawn in distinct ways on the surface,
and nonequivalent paths as representations of essentially distinct *“‘paths.”
The remarks made previously show that then the set of all closed paths
(we now omit the quotation marks) starting out from an arbitrary point A
of the surface is a group under the operation of multiplication of paths.
The unit (neutral) element of this group is the zero path, and the inverse
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element of a given path is the same path but traversed in the opposite
direction.

The group of paths, in general, depends not only on the form of the
surface but also on the choice of the initial point 4. However, if the
surface does not fall into separate pieces, i.e., if any two of its points can
be joined by a continuous path lying on the surface, then the group of
paths corresponding to distinct points are isomorphic and in that case we
can talk simply of the group of paths of the surface S without indicating
A. This group of paths of the surface is also called its fundamental group.

If the surface S is a plane or a sphere, then the group of paths consists
of the unit element alone, because in the plane and on the sphere every
path can be contracted to a point. However, on the surface of an infinite
circular cylinder, as we have seen, there are closed paths that do not
contract to a single point. Since on the cylinder every closed path starting
from A is equivalent to a certain power of the path X (figure 23), and distinct
powers of X are not equivalent, the group of paths of the cylinder surface
is an infinite cyclic group. It can be shown that the group of paths on the
torus (figure 22) consists of the paths of the form UmV"(m,n =0, + 1,
+ 2, ) with UV = VU and UV = Umiymonlyform = m, , n = n,
where we recall that in discussing the group of paths equality has to be
understood in the sense of equivalence.

The importance of the group of paths is due to the following property.
Let us assume that apart from the surface § another surface S, is given such
that between the points of S and §; we can establish a one-to-one con-
tinuous correspondence. For example, such a correspondence is possible
if the surface S, is obtained from § by means of a certain continuous
deformation without tearing apart or fusing distinct points of the surface,
To every path on the original surface S, there corresponds a path on ; .
Moreover, equivalent paths correspond to equivalent ones, the product
of two paths to their product, so that the group of paths on the surface §; is
isomorphic to the group of paths on S. In other words, the group of paths
regarded from the abstract point of view, i.e., to within isomorphism, is
an invariant under all possible one-to-one continuous transformations of
the surface. If the group of paths of two surfaces are distinct, then the
surfaces cannot be carried continuously into each another. For example,
the plane cannot be deformed without fusions or tearings into the cylinder
surface, because the group of paths of the plane consists of the unit element
only and the group of paths of the cylinder is infinite.

Properties of figures that remain unchanged under one-to-one and
bicontinuous transformations are studied in the fundamental mathematical
discipline of topology, whose basic ideas have been explained in Chapter
XVIII. Invariants of bicontinuous transformations are called topological
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invariants. The group of paths is one of the most remarkable examples of
topological invariants. It is clear that the group of paths can be defined
not only for surfaces but also for arbitrary sets of points, provided only
that we can speak of paths in these sets and of their deformations.

Defining relations. In topology methods of computing the group of
paths are studied in detail. As a rule it proves convenient to define these
groups by a special method that is often applied in the theory of groups
for the purpose of defining abstract groups in general and not only for
fundamental groups in topology. It consists in the following.

Let G be a group. The elements g, , g, , ***, g, are called generators of
G if every element g can be represented in the form

g =ghgs g%,

where i , iy , -, i, are some of the numbers |, 2, -+, n; indices 7 that do not
stand side by side may be identical; the number of factors k is arbitrary;
the exponents «, , oy , **-, a are positive or negative integers.

To know the group G it is sufficient to know, apart from the generators,
also which products represent one and the same element of the group and
which represent distinct elements. Thus, in order to define the group we
have to list all equations of the form

gl e = & 8

that hold in G. Since the set of such equations is always infinite, we usually
give, instead of describing them all, only such equations as imply all the
remaining ones followed by the group axioms. These equations are called
defining relations.

It is clear that there are various ways of giving one and the same group
by defining relations.

Let us consider, for example, the group H with the generators a, b and
the relations

a® = b3, ab = ba. (10)
Setting ¢ = ab~!, we have
a=bc, a® = b2, b® = b3?, b = ¢ a = c3

We see that all the elements of the group H can be expressed by the single
element ¢, where
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Since the relations (10) follow immediately from these equations, there
are no nontrivial relations for ¢. Therefore H is an infinite cyclic group
with the generating element c.

If we can choose in a group generators that are not connected by any
nontrivial relations, then the group is called free, and these generators
are free generators. For example, if a group has the free generators a, b,
then every element of it can be uniquely written in the form

a%bPrg*pPege - PPrg,

where £k =0,1,2, -, n and the exponents ay,B;,a;, =, Br, oy are
positive or negative integers except that the “extremes™ o, and «, can also
assume the value zero. A similar statement holds for free groups with a
larger number of generators.

When we write out the generators and defining relations for two groups
assuming that the groups have no elements in common, then by combining
these relations we obtain a new group, the so-called free product of the
given ones.

The theory of free groups, and also the more general theory of free
products, has an important place in the theory of groups. From the
geometrical point of view the free product of the groups H, and H, is a
group of paths of that figure which can be represented in the form of a
sum of two closed figures that are fused at only one point and have H,
and H, as their groups of paths. We know already that the group of
' paths of a cylinder surface
is a free group with one
generator. From the remark
just made it follows, for
example, that the group of
paths of the surface illus-
trated in figure 24 is a free
group with two generators.

Similarly to the way in
which the fundamental
group of a surface was
FiG. 24. defined we can also introduce

the fundamental group of

spatial bodies, finite or infinite.

Knots and groups of knots. As we have already said, from the point
of view of topology, two surfaces are regarded as identical if one of them
can be carried into the other by a one-to-one and bicontinuous transforma-
tion. The problem of a topological classification of all closed surfaces was
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solved long ago. Every closed surface lying in our ordinary space is topo-
logically equivalent either to a sphere, or to a sphere with a certain number
of handles (figure 25). For example, the torus surface, illustrated in figure

Fig. 25.

22, can be deformed continuously into a sphere with a single handle, the
surface of a cube into the surface of a sphere, and so on. In view of this,
the study of the fundamental groups of closed surfaces is not very inter-
esting, since closed surfaces are completely classified even without these
groups. However, there are very simple problems where so far almost
nothing has been achieved without the fundamental groups. Among them
is the famous problem of knots.

A knot is a closed curve lying in the ordinary three-dimensional space.
As figure 26 shows, its position can be very varied. Two knots are called

FiG. 26.

equivalent if one of them can be deformed into the other by a continuous
process without breaking the curve and without self-penetration. Two
problems arise at once: (1) how can we tell whether two knots given by
their plane projections are equivalent or not; (2) how can we classify all
nonequivalent knots?
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Both problems remain as yet unsolved, but the substantial progress that
has been made in a partial solution is connected with the theory of groups.
Let us remove from space the points that belong to the given knot and
consider the fundamental group of the remaining set of points. This
group is called the group of the knot. It is immediately obvious that if
knots are equivalent, then their groups are isomorphic. Therefore, if the
groups of knots are nonisomorphic, we can conclude that the knots
themselves are inequivalent. For example, the group of the knot that can
be reduced to a circle is a cyclic group,
but the group of the knot that has the
form of a trefoil (figure 27) is a more
complicated group. The latter group is
noncommutative and hence not iso-
morphic to the group of a circle. We
can therefore state that it is impossible
to deform the trefoil knot into a circle
without breaking it, a fact that is
completely obvious but requires a proof

by precise mathematical arguments.
Unfortunately, in the discussion of
FiG. 27. the groups of knots there also arise
difficult problems that have not so far
been solved. The fact is that in topology very simple methods are known
of finding generators and defining relations for the group of a knot
represented in a given way. But in order to use groups for the comparison
of distinct knots we have to be able to tell whether groups given by
generators and defining relations are isomorphic or not, and a solution
of this problem is not known so far. Indeed, the Soviet mathematician
P. S. Novikov has recently proved the remarkable theorem that it is
impossible to indicate any single regular process (more accurately, any
so-called normal algorithm) by means of which it would always be possible
to tell whether two given systems of defining relations for one and the
same sei of generators define one and the same group or not. This theorem
compels us to doubt the existence of any uniform general method to

decide the equivalence of knots given by their plane projections.

§9. Representations and Characters of Groups

The general theory of groups has a certain resemblance in its methods to
elementary geometry: Both are founded on a definite system of axioms
which is the starting point for the construction of the whole content of the
theory. But the example of analytic geometry shows to what extent the
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application of analytic, numerical methods can prove useful in the
investigation of geometrical problems.

An application of the tools of analysis and classical algebra to the theory
of groups is the so-called theory of group representations. Just as analytic
geometry not only gives us methods of solving geometric problems by
means of analysis but, conversely, throws a geometric light on many
complicated problems of analysis, so to an even higher degree the
representation theory not only serves as an auxiliary apparatus for
investigating properties of groups, but by forging a link between deep
concepts and problems of analysis and the theory of groups enables us to
find expressions for group-theoretical facts in terms of numerical relations,
and to find a group interpretation for analytic relationships. A large part
of the present-day important applications of the theory of groups in
physics is connected precisely with the theory of representations.

Representations of groups by matrices. In linear algebra (see Chapter
XVI) we have discussed the operation of multiplication for matrices. This
operation is associative, but in general noncommutative. The nonsingular
square matrices of a given order form a group under multiplication,
since the product of two nonsingular matrices is again nonsingular, the
role of the neutral element is played by the unit matrix, and for every
nonsingular matrix there exists its inverse which is also nonsingular.

Let us assume that a certain group G is given and that with every
element g of it there is associated a definite nonsingular matrix of complex
numbers A, of order n such that when elements of the group are multiplied
the matrices corresponding to them are also multiplied: A, = 4, - 4, .
Then we say that we have a representation of the group G by matrices of
degree n. Usually the words “by matrices™ are omitted and we simply
speak of a representation of degree n of G. A representation of degree n
of a given group G is simply a homomorphic mapping of G into the
group of nonsingular matrices of degree n. From the general properties of
homomorphic mappings it follows that in every representation the neutral
element of G goes over into the unit matrix and inverse elements in G go
over into inverse matrices.

Matrices of order | are simply individual complex numbers. Therefore a
representation of degree | of G is a relation under which every element of G
corresponds to a complex number and the product of the elements of the
group corresponds to the product of these complex numbers. For example,
the mapping under which we associate with an even permutation the
number | and with an odd one the number —1 is a representation of
degree 1.

By associating with every element of a group G the unit matrix E of
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degree n we obtain a representation of G which is called the unit representa-
tion of degree n. If G is a finite group containing more than one element,
then G must necessarily also have infinitely many representations apart
from the unit representation of the varying degrees. Methods of finding
them will be indicated in the following.

When we know one representation of the group G, we can obtain an
infinite set of others. For let g — A, be the given representation of G by
matrices of degree n. We choose an arbitrary nonsingular matrix P of
the same degree »n and set B, = P-'A,P. The correspondence g — B, is
again a representation of G, since

B,y = P'A,\P = P-14,A,P = P-'A,PP-'A,P = B,B, .

The representations so obtained form a given representation by the choice
of various matrices P are called equivalent to the given one. In the theory
of representations equivalent representations are not regarded as essentially
distinct, all representations being usually considered only to within
equivalence.

Another method of finding new representations is the direct addition of
representations, which consists in the following: Let g —> 4,, g — B, be
arbitrary representations of a group G by matrices of degree m and n,
respectively. We consider the mapping

_[4,0
£~0 B,|

By the rule for multiplication of matrices (see Chapter XVI) we have

A A, A,0 1[40
N A R
Beh 0 B,B, 0 B,]|0 B,

i.e., our mapping is again a representation of G. It is called the sum of the
two given representations and is denoted by A, + B, . If the summands
are rearranged, then we obtain another representation

L[B0]
£§=10 4,

which is, however, equivalent to the given one. Therefore, if we do not
distinguish between equivalent representations, the addition of representa-
tions is a commutative operation. It is easy to see that under the same
condition addition is also an associative operation. Having a certain
stock of representations 4, , B,, C,, - of a group G we can obtain by
means of addition representations of higher and higher degrees: 4, + B,
+ C,, A, + A, + A, + A, , and so forth.
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For example, the numbers 1, —I, /, — form a group under multiplica-
tion. By associating every number of this group with itself, we obtain a
representation of degree 1. As a second representation we can take the
mapping | — 1, —1 - —I, j - —i, —i —i. The sum of these repre-
sentations is the mapping

ol 1= el S =[5

Transforming this by means of the matrix

p=[i ]

we obtain the equivalent representation

"“’[(IJ? "““’[ 0—1] f"’[—l 0] f"’[? _(l)]

It is interesting to note that all the matrices of this representation are real.
Suppose now that all the matrices of a certain representation of degree n of
a group G have the form

L% = Bs Co
g Aﬂ - [0 .D,]’

where B,, D, are square matrices and the left lower rectangle of A, is
entirely filled with zeros. By multiplying matrices 4, and 4, we obtain

Ag = A[rAh = I:B:]Bh B’CTD-:DS‘,D&] ,

ie, B,y = B,B,, D,, =D,D, . This shows that the mappings g — B,
and g — D, are also representations of G, but of smaller degrees. Here
A, is called a graduated representation of G and every representation
equivalent to it is called reducible. A representation that is not equivalent
to any graduated representation is called irreducible.

If in all the matrices of 4, not only the left lower but also the right upper
rectangle C, is filled with zeros, then A, is said to split into the sum of the
representations B, , D,. A representation that is equivalent to a sum of
irreducible representations is called completely reducible.

In the theory of groups it is proved that every representation of a finite
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group is completely reducible.* Hence it follows that in order to find all
the representations of a finite group it is sufficient to know its irreducible
representations, because all the others are equivalent to various sums of
irreducible ones.

The practical computation of irreducible representations of an arbitrary
finite group is, as a rule, a fairly complicated task which is solved in an
explicit form only for individual classes of finite groups; for example, for
commutative groups, for the symmetric groups, and for some others,
though from a theoretical point of view the properties of representations
of finite groups have been studied in much detail.

Every finite group has a particular “regular” representation that is
constructed as follows. Suppose that g, , g5, ‘-, g, are the elements of the
given group G numbered in an arbitrary order and that

gifr = gi’k (f‘ k = ]$2’ " ﬂ).

By choosing an arbitrary fixed value for k, we form the matrix of degree
n which has a | at the j,th place and zeros in the remaining places (i = 1,
2, -+, n), and we denote it by R, . The correspondence g, — R, (k =1,
2, -+, m) is called the regular representation of G. The fact that it is a
representation can be shown by simple computations.

It can also be shown that by changing the numbering of the elements
of the group we arrive at an equivalent representation and that con-
sequently, to within equivalence, every finite group has only one regular
representation.

Let us briefly formulate the fundamental theorems of the theory of
representations of finite groups. The number of distinct (inequivalent)
irreducible representations of a finite group is finite and is equal to the
number of classes of conjugate elements (see §6) of the group. The
degree of an irreducible representation is necessarily a divisor of the
order of the group, and the regular representation is equivalent to a sum
of all inequivalent irreducible representations in which every irreducible
summand is repeated as often as its degree indicates.

This implies the following interesting relation between the order of a
finite group and the degrees of its irreducible representations.

We denote the number of elements of the group G by n, the number of
classes of conjugate elements by k, and the degrees of the irreducible
representations of G by n, , n, , -, n,. , respectively. From the construction
of the regular representation it is clear that its degree is #n. Furthermore,
since the regular representation is equivalent to a sum of n, representations

* We recall that we are considering representations of groups by matrices whose
elements may be arbitrary complex numbers.
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equivalent to the first irreducible representation, plus n, representations
equivalent to the second, and so forth, and since under addition of
representations their degrees are added, we must have the following
equation

n=ni+n;+ - +n. (1)

By associating with every element of the group the number |, we obtain
the trivial irreducible representation of degree | which every group
possesses. If in the formula (11) we take n, to be the degree of precisely
this unit representation, then we can rewrite (11) in the equivalent form

n=1+n+ - +n,

where n,, -, n, now denote the degrees of the nontrivial irreducible
representations,

By using the fact that n, , -, m, must be divisors of n, we can occa-
sionally, when k is known, find n,, -, n, from the equation (11) only.
For example, the symmetric group S; of permutations of three elements
has three classes of conjugate permutations: (1); (12), (13), (23); (123),
(132). For n = 6, k = 3 the equation (11) admits only one system of
solutions: 6 = 12 + 12 4 22 Therefore S; has two distinct representations
of degree | and one irreducible representation of degree 2.

Another example is finite Abelian groups. Here every element forms
an individual class. Therefore k¥ = n and it follows from formula (11)

that n, = n, = - = n, = 1, i.e.; all irreducible representations of these
groups are of degree | and their number is equal to the order of the
group.

The irreducible representations of Abelian groups are also called their
characters, whereas for every representation of a non-Abelian group the
name “character” is given to the set of the so-called traces (i.e., the sum
of the diagonal elements) of the matrices forming the representation.
The characters of finite groups have remarkable properties and rela-
tionships. The investigation of representations and characters of groups
has enriched the theory of groups by interesting general results that have
found extensive application in contemporary theoretical physics.

§10. The General Theory of Groups

We have already mentioned that almost throughout the last century
the theory of groups was developed primarily as the theory of transforma-
tion groups. However, it gradually became clear that the study of groups
as such was fundamental and the study of transformation groups can be
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reduced to that of abstract groups and their subgroups. The transition
from the theory of transformation groups to the theory of abstract groups
occurred first in the theory of finite groups, but the rapid development of
the theory of Lie groups and the penetration of group theory into topology
made it necessary to create the general theory of groups in which finite
groups are regarded only as a certain special case.

The first textbook on the theory of groups in which this point of view
was adopted in its full clarity was the book by O. Ju. Smidt, which
appeared in Kiev in 1916. Smidt also obtained in the 1920’s an important
theorem on infinite groups which became the starting point of investigations
of a number of other Soviet algebraists. Thanks to the activities of O. Ju,
Smidt and P. S. Aleksandrov, who did a great deal to popularize the ideas
of contemporary algebra, a large school of group theory was formed in
Moscow which later came under the leadership of their pupil, A. G. Kuro§.
He became widely known, in particular, for his proof of the theorem that
every subgroup of a free product is itself a free product of subgroups
isomorphic to suitable subgroups of the factors and, possibly, a separate
free subgroup. Later he published a monograph on the theory of groups
which gave the first systematic account of the rich factual material obtained
in the general theory of groups. This monograph is still the most complete
textbook in the world literature on the general theory of groups and has
become internationally famous.

Following the lead of the Moscow school, algebraists in Leningrad and
other cities became interested in the general theory of groups and made
their own contribution to its development. The researches on the theory of
groups that are conducted at present in the Soviet Union comprise all
its essential branches, and the results obtained by Soviet mathematicians
have repeatedly exerted a decisive influence on the development of the
subject.

§11. Hypercomplex Numbers

In solving practical problems by algebraic methods we usually arrive in
the simplest cases at one or several equations from which the values of
the unknown quantities have to be found. The unknown entities in this
context are quantitative characteristics of the objects under investigation;
the equations are formed by means of an analysis of the real relationships
that hold between the objects.

This is the state of affairs in cases when we are dealing with the simplest
quantities, such as mass, volume, or distance, that can be characterized
quantitatively by a single number. However, in concrete problems we
encounter not only objects to be characterized by a single number. Far
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from it, in the development of technology all the more important objects
are of a much complicated nature and require for their characterization
several numbers, even infinitely many, Even such important physical
quantities as force, velocity, or acceleration are characterized by directed
segments and require three numbers, Also it is well known that the position
of a point in space is characterized by three numbers, the position of a
plane also by three, the position of a line by four, and the position of a
rigid body by six numbers. Therefore, when we wish to solve by algebraic
means problems referring to more complicated objects, we obtain
equations with a larger number of unknowns and often it turns out to
be more tedious to analyze them than to solve the problem directly by
making use of its geometric or physical peculiarities. Hence the idea
naturally arose of trying to characterize more complicated objects not by
systems of ordinary numbers, but by certain more complicated general
numbers on which one might perform operations similar to the ordinary
arithmetical operations. This statement of the problem was the more
natural, since the history of science exhibited not the invariability of the
concept of number but its flexibility, the gradual cnrichment of the realm
of numbers from the natural numbers to the fractional numbers, then to
algebraic numbers, to real (rational and irrational) numbers, and finally
to complex numbers,

Complex numbers. From Chapter |V the reader is already acquainted
with the fundamental properties of complex numbers and their simplest
applications. Here we shall only be interested in the foundation of the
concept of a complex number. When we begin with a discussion of the
ordinary real numbers, we notice that the square root of negative numbers
has no meaning, because the square of every real number is positive or
zero. One then shows that urgent needs of science compelled the mathe-
maticians to regard expressions of the form a + b 4/—1 also as a special
kind of number which became known as imaginary, as opposed to the
ordinary real numbers. If it assumed that these imaginary numbers are
subject to the same laws of arithmetical operations as the ordinary
numbers, then all square roots of negative numbers can be expressed in
terms of the quantity i = 4/—1, and the result of arithmetical operations
performed any finite number of times on real or imaginary numbers can
always be represented in the form a + b/, where a and b are real numbers.

Clearly, this definition of imaginary numbers runs counter, in the highest
degree, to common sense: First it was stated that the expressions 4/ —1,
+/—2, and so forth, have no meaning, and then it was proposed that these
expressions without a meaning should be called imaginary numbers.
This circumstance caused many mathematicians of the 17th and 18th
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century to doubt the validity of the use of complex numbers, However,
these doubts were dispelled at the beginning of the 19th century, when a
geometrical interpretation was found for the complex numbers by points
in a plane. Another purely arithmetical foundation of the theory of
complex numbers was given somewhat later by the Hungarian
mathematician Bolyai and the Irish mathematician Hamilton. This
proceeds as follows.

Instead of the numbers a + b/ we shall simply speak of pairs of real
numbers (a, ). Two pairs shall be regarded as equal if their first and
second terms are equal, i.e., (a, b)) = (¢, d) ifand only if @ = cand b = d.
Addition and multiplication of pairs are defined by the formulas

(a,b) +(c,d) = (a + c,b +d); (a,b)  (¢,d) = (ac — bd, ad + bc).
For example, we have

2,3)+0,—=2) =3, 1D, (@3(1,—2=@,—I),
(3,0) +(2,0) = (50, (3,02, 0) = (6,0).

These examples show, in particular, that the arithmetical operations on
pairs with a zero in the second place reduce to the same operations on
their first terms, so that such pairs can be simply denoted by their first
numbers. If we introduce the notation 7 for the pair (0, 1) then we have

(a, b) = a(1,0) + b0, 1) = a + bi,
i2=(0,1)(0, 1) = (—1,0) = —1I;

i.e., we have the usual notation for complex numbers.

Thus, from this point of view complex numbers are pairs of ordinary
real numbers and operations on complex numbers are only a special kind
of operations on pairs of real numbers.

Hypercomplex numbers. Various successful applications of the complex
numbers induced mathematicians as early as the first decades of the 19th
century to turn their attention to the problem whether one could not
construct higher complex numbers to be represented by triplets, quadru-
plets, and so forth, of real numbers, similar to the way in which the
complex numbers are constructed in the form of pairs of real numbers.
From the middle of the last century onward many distinct special systems
of such higher complex numbers or hypercomplex numbers were investi-
gated, and at the end of the last and in the first half of the present century
a general theory of hypercomplex numbers was developed that has found
a number of important applications in neighboring domains of mathe-
matics and physics.
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Hypercomplex number of rank n is the name for a number that can be
represented by a collection of n real numbers (g, , a, , -+, a,) which for
the time being we shall call its coordinates. The hypercomplex numbers
(a,,as,,a,) and (b, , b, .-, b,) shall be called equal if their corre-
sponding coordinates are equal, ie., if @ = b, ,a, = b,, ", a, = b,
We define the operation of addition by the natural formula

(al sy, au) + (bl L] bz Pt b—n) = (01 + bl » a2 + bz » Ty An + bﬂ)s

analogous to the formula of addition for complex numbers.
It is equally natural to introduce the operation of multiplication of a
hypercomplex number by a real one: By definition we set

a(al v as s an) = (aal yadag, aan)'

We now have to define the operation of multiplication of two hyper-
complex numbers so that the result of this operation is again a hyper-
complex number.

To extend the definition of multiplication of ordinary complex numbers
to the general case is tedious. It can be done in various ways, and then we
obtain various systems of hypercomplex numbers. Therefore, first of all
we have to clarify what such a definition is to achieve. Undoubtedly it is
desirable that the operations on hypercomplex numbers we are about to
define should resemble in their properties the ordinary operations on real
numbers. Now what are these properties of the ordinary operations ?

In a careful discussion of the properties of numbers and the operations
on them that are used most frequently in algebra, it is easy to observe
that they reduce to the following:

1. For any two numbers, their sum is uniquely determined.
2. For any two numbers, their product is uniquely determined.
3. There exists a number zero with the property a + 0 = a for every a.

4. For every number a, there exists the opposite number x satisfying the
equationa + x = 0.

5. Addition is commutative
a+b==6+4a
6. Addition has the associative property
(@a+b)+c=a+ (@ +c)
7. Multiplication is commutative
ab = ba.
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8. Multiplication is associative
(ab) ¢ = a - (be).
9. Multiplication is distributive
alb + ¢) = ab + ac, (b +¢c)a = ba + ca.

10. For every a and every b # 0, there exists a unique number x
satisfying the equation bx = a.

The properties | through 10 were selected as a result of a careful
analysis; the development of mathematics in the last century proved their
great importance. Nowadays every system of quantities satisfying the
conditions 1 through 10 is called a fie/ld. Examples of fields are: the set of
all rational numbers, the set of all real numbers, or the set of all complex
numbers, because in each of these cases the numbers of the set can be
added and multiplied and the result is a number of the same set, and the
operations have the properties | through 10. Apart from these three
very important fields we can determine infinitely many other fields formed
from numbers. But beside the fields formed from numbers there is much
interest in fields formed from quantities of another nature. For example,
already at school we learn to operate with the so-called algebraic fractions,
i.e., fractions in which the numerator and denominator are polynomials
in certain letters. Algebraic fractions can be added, subtracted, multiplied,
and divided, and these operations have the properties | through 10.
Therefore, algebraic fractions form a system of objects that is a field.
We could give many other examples of fields formed from quantities of a
more complicated nature. In view of the importance of the properties
| through 10 that define a field, the original formulation of the problem
was to find such an operation of multiplication of hypercomplex numbers
that they should form a field. In case of success one would then try to
obtain new even more general complex numbers. However, already at the
beginning of the last century it was discovered that this is only possible
for hypercomplex numbers of rank 2 and that only the ordinary complex
numbers could be obtained in this way. This result proved that the complex
numbers have a very special position and that it is impossible to obtain
an extension of the number system beyond the limits of the complex
numbers, provided we insist that all the properties | through 10 are
fulfilled.

Therefore, in further attempts to construct higher number systems it was
necessary to omit one or several of the properties | through 10.

Quaternions. Historically, the first hypercomplex system that was
discussed in mathematics is the system of quaternions, i.e., “fourfold
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numbers,” which was introduced by the Irish mathematician Hamilton
at the middle of the last century. This system satisfies all the requirements
| through 10, except 7 (commutativity of multiplication).

Quaternions can be described as follows. For the quadruplets (1, 0, 0, 0),
0,1,0,0),(0,0,1,0),(0,0,0, 1) we introduce the abbreviations 1, i, j, k.
Then by the equation

(a,b,¢,d) = a(l,0,0,0) + 50, 1,0,0) + 0,0, 1. 0) + 4(0, 0,0, I)
every quaternion can be uniquely represented in the form
(a,b,c,d)=a-1 +b-i+c-j+d-k.

The quaternion | will play the role of the unit of the system of quantities
to be constructed; i.e., we shall assume that | -a = a1 = a for every

quaternion a. Further we set by definition: /2 = j2 = k2 = —I|;
U = _j'. - kv
ik = —ki = —j,
jk = —kj = i.

It is easy to memorize this “multiplication i
table” by means of figure 28 in which the
points i, j,k on the circle represent the
corresponding quaternions i, j, k. The product
of two adjacent quaternions is equal to the
third if the movement from the first sector
to the second proceeds clockwise in the figure,

and equal to the third with the minus sign if  &* *j
the motion is counterclockwise. Knowing the \_/
multiplication table for the quaternions i, j, k,

we carry out the multiplication of arbitrary
quaternions by using the distributive law 9. Fic. 28.
In fact:
@l +bitcj+d-k)a-l+b-i+c-j+d k)
=aa,- | +ab,-i+ac, j+ad,  k
+ bay i+ bby i + bey - ij + bd, - ik
+cay - j + cby - ji + cey c jj + cdy v jk
+da, -k + db, - ki + dey - kj + dd, - kk
= (da, — bby — cc, — dd,) - | + (ab, + ba, + cd, — dcy) * i
=+ (ac, + cay — bd, + db,) * j + (ad, + da, + be, — cb,) - k.

The factor | in the first term of a quaternion is usually omitted and instead
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of a - 1 we write a. The equations ij = —ji, ik = —ki, jk = —kj show
that the multiplication of quaternions is not commutative. The multipli-
cand and the multiplier are not of equal status here. Therefore, in computa-
tions with quaternions we have to adhere carefully to the order of the
factors. Otherwise the operations with quaternions do not present any
difficulties. In particular, the associative law 8 holds for the multiplication
of quaternions. It is easily verified for the quaternions of the basis 1, i, j, k
by means of the multiplication table; the transition to the general case is
obvious.

The number a of the quaternion a + &i + ¢j + dk is called its real or
scalar part, and the sum bi 4 ¢j + dk its vector part. The quaternions
a + bi + ¢j + dk and a — bi — ¢j — dk that differ only in the sign of
the vector part are called conjugate. Obviously, the sum of two conjugate
quaternions is a real number. Furthermore, on multiplying conjugate
quaternions by the previous formula we obtain

(@ + bi + ¢j + dk)a— bi — cj —dk) = @ +.6* + ¢ +d2 (12

i.e., the product of conjugate quaternions is also a real number.

The sum of the squares of the coefficients a® + b2 4 ¢2 + d? of a
quaternion @ + bi + ¢j + dk is called its norm. Since the square of every
real number is, nonnegative, the norm of every quaternion is also non-
negative, and is equal to zero only for a null quaternion.

The formula (12) shows that the product of any quaternion with its
conjugate is equal to its norm.

We shall denote by an asterisk the quaternion that is conjugate to a
given one. Then a direct multiplication verifies the following formula:

(B)* = Bra.

This has an interesting consequence: The norm of the product of
quaternions is equal to the product of the norms of the factors. For by
the preceding we have

norm (af) = (af)(ef)* = aff*a* = (aa*)(8B*) = norm a * norm B.

The properties of the norm enable us to give a very simple solution to
the problem of division of quaternions. Let « = a + bi + ¢j + dk be an
arbitrary nonzero quaternion. Then

1
a® + b + ¢* + d*
_ 1

a + b + ¢ + d?

(a + bi + ¢j + dk)

(@ — bi — ¢j — dk)

(@ + b + ¢ + d) = I;
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i.e., the quaternion

|
@&+ b+t 4-d*

(a—bi — ¢f —dk) = 7!

is the inverse of the given quaternion o

Having found the inverse quaternion it is now easy to find the quotient
of two quaternions. For suppose that two quaternions «, 8 are given, the
first of them being different from zero. Then the quotients obtained by
dividing B by a must be the solutions of the equations

ax = B, yo = p.

Multiplying both sides of the first equation by the inverse quaternion a~!
on the left we obtain

x = a8
Multiplying both sides of the second equation by a~! on the right we have
y = Bat.

Since the products o8 and Ba~' are in general distinct, we have to
distinguish between two divisions for quaternions, on the right and on the
left; both are always possible, except of course division by zero.

The algebra of vectors. Although the operations on quaternions are
in many respects similar to those on complex numbers, the absence of
the commutative law of multiplication makes the properties of quaternions
very different from those of numbers. For example, from the algebra of
complex numbers it is well known that a quadratic equation has two roots.
But if we consider the quadratic equation

xX4+1=0

in the domain of quaternions, then we can easily find 6 roots: 4 i, + j, + k,
and a more precise analysis shows that there is even an infinite number of
other solutions. This circumstance strongly impedes the use of quaternions
in mathematics, and notwithstanding the numerous attempts of Hamilton
and other mathematicians to introduce quaternions into various branches
of mathematics and physics, the role of the quaternions remains to the
present day somewhat modest and can in no way be compared with the
role of complex numbers.

However, quaternions have given a spur to the development of vector
algebra which is an indispensable tool in modern technology and physics.
The fact is that in mechanics and physics the concepts of velocity, accelera-
tion, force, and so forth, which require three numbers for their characteriza-
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tion, play an essential role. Earlier we ‘-have seen that every quaternion
can be regarded as an aggregate of a real number a4 and the vector part
bi + ¢j + dk. Since the vector part of a quaternion is determined by three
numbers, the most important physical quantities can be characterized by
vector parts of quaternions.

Geometrically the vector part bi 4+ ¢j 4+ dk of the quaternion a + bi
+ ¢j + dk can be taken to represent the vector leading from the origin
of a rectangular Cartesian system of coordinates to the points whose
projections on the coordinate axes are equal to the numbers b, c, d,
respectively. Therefore, every quaternion can be represented geometrically
as an aggregate of a number and of a vector in space. Let us see how the
operations on quaternions have to be interpreted.

We take two vector quaternions xi + yj + zk and x,i + y,j + z;k
whose scalar parts are equal to zero. Geometrically, they are illustrated
by vectors from the coordinate origin. The sum of these quaternions is
again a vector quaternion (x + x;)i + (¥ + y1)j + (z + z)) k. It is easy
to see that the vector representing this sum is the diagonal of the paral-
lelogram constructed on the first two vectors. Thus; the addition of vector
quaternions corresponds to the well-known operation of addition of
vectors by the parallelogram rule. Similarly, if we multiply a vector
quaternion by an arbitrary real number, the representing quaternion
vector is also multiplied by that number,

We come to a different situation when we multiply quaternions. Indeed,

(xi + yj + zk)(x1i + yij + 2:k)
= —xx; —y0 —2z; + (¥ — »12) i + (25 — ;%) j + (x, — X)) k;

i.e, on multiplying two vector quaternions we obtain a complete
quaternion having a scalar part and a vector part.

The scalar part of the product of vector quaternions taken with the
opposite sign is called the scalar product of the vectors representing the
given quaternions, and the vector representing the vector part of the
product is the vector product of the given quaternions. The scalar product
of the vectors o and B is usually denoted by (o) or simply by of, and the
vector product of the same vectors by [«f8]. Let i, j, k be the vectors corre-
sponding to the quaternions i, j, k, i.e., vectors of unit length lying along
the coordinate axes. By definition, if « = xi 4+ yj + zk, and B = x;i
+ »1j + z,k, then

(aB) = xxy + yy1 + 22, [of]
= (yzy —n2) i + (2x; — %) j + (X, — X)) k.

By means of the latter formulas it is easy to give also a geometrical
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interpretation of the scalar and the vector product of vectors. As it turns
out, the scalar product of two vectors is equal to the product of their
lengths and of the cosine of the angle between them, and the vector product
of two vectors is the vector whose length is equal to the area of the paral-
lelogram constructed on the given vectors and whose direction is per-
pendicular to the plane of this parallelogram on that side from which the
rotation of the first given vector toward the second looks like the rotation
of the x-axis toward the y-axis as seen from the z-axis.

Nowadays in mechanics and physics we do not, as a rule, use operations
on quaternions, but instead we consider only the operations on vectors,
and these operations are defined in a purely geometrical manner according
to the results just stated.

In conclusion, we want to point out one problem in mechanics that can
be solved by means of quaternions in a particularly elegant way. Its
solution was actually one of the motives for the discovery of quaternions.

Suppose that a rigid body is first rotated by a certain angle ¢ in a given
direction around the definite axis OA passing through a given point O,
and that it is then rotated by an angle ¢, around another axis OB passing
through the same point. The question is: Around what axis and by what
angle must the body be rotated in order to bring it from its first position
at once to the third? This is the well-known problem of mechanics on
the addition of finite rotations. True, it can be solved by means of the
ordinary analytic geometry, as was done already by Euler in the 18th
century. However, its solution assumes a far more lucid form by means
of quaternions.

Let £ = xi + yj+ zk and « = a + bi + ¢j + dk be two quaternions,
the first of which will be regarded as variable and the second as fixed.
The expression a~1£« is a vector quaternion, as can easily be verified by a
computation. Now if the quaternions £, a'£a and the vector part of « are

represented by the vectors £, £, , a, then it turns out that the vector £, is

obtained geometrically from ¢ by a rotation around the axis passing
through the vector a by an angle ¢ defined by the formula

] a

Cos z = e ———
T VeiErerd

Therefore we can say that the quaternion « = a + bi + ¢j + dk represents
the rotation of space by the angle ¢ around the axis a = bi + ¢j, + dk.

Conversely, knowing an axis of rotation and an angle ¢ we can look for
the quaternion that represents this rotation. There is an infinite set of
quaternions but they all differ from one another only by a numerical
factor.
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Now let us consider another rotation by an angle ¢, around a certain
axis 8 = b,i + ¢,j + d k. Let this rotation be represented by the quaternion
B = a; + bii + ¢,j + dik. Under the action of the first rotation an

arbitrary vector £ = xi + yj 4 zk goes over into the vector a~1féa and
under the action of the second rotation the latter vector goes over into

ﬁ-l(a-lga) B. By the associative law the latter result can be represented
in the form

BY(aE a) B = («B) € af.

Since the multiplication of a vector, namely the vector quaternion 5 by
the quaternion (o8)~ on the left and the quaternion «f on the right, is
equivalent to a rotation of this vector by the corresponding angle around
the corresponding axis, we come to the conclusion that the result of two
successive rotations characterized by the quaternions o« and B is the
rotation characterized by the product af. In other words, to the addition
of the rotation corresponds the multiplication of their representing
quaternions.

Apart from geometric and physical applications quaternions have found
remarkable applications in the theory of numbers. Of a succession of
works in this domain we must mention, in particular, the papers of Ju. V,
Linnik.

§12. Associative Algebras

General definition of algebras (hypercomplex systems). We have
defined hypercomplex numbers as quantities for the description of which
several real numbers are required, in fact for the sake of definiteness we
have regarded hypercomplex numbers simply as systems of real numbers.
However, this point of view is too narrow, and for theoretical investiga-
tions the following more general definition gradually became accepted.

A certain system of quantities S is called an algebra (or a hypercomplex
system) over the field P if

a. For every element a of P and every quantity o of the system §, a
certain element of the system is defined, which is called the product of a
and « is denoted by aua;

b. For any two quantities «, 8 of the system, a certain quantity of the
same system is uniquely defined which is called the sum of the first two
quantities and is denoted by « + 8;

¢. For any two quantities of the system o, 8, another quantity of the
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same system is uniquely defined which is called the product of the first
two and is denoted by af};

and if these three operations have the following properties: *
"a+B =840
2.(e+B+y=a+B+9y)
3'. The system S has a zero quantity 8 with the property
a+8=a
4. a(a + B) = aa + ap,
5. (@ + b) o = ao + ba,
6. (ab) o« = a(ba),
7. 0ax =80,] -« = a, where | is the unit element of the field P,

8. Among the quantities of § there exist o, , o , "', &, , such that in
terms of these every quantity of the system can be uniquely represented in
the form ayo, + @y, + - + a2, ,

9. (as) B = a(af) = a(ap),

10. «(B+y) =af +ay, (B+y)a=pa+yx

In this definition the elements of the arbitrary field P play the role that
so far was played by the real numbers. From the condition 8’ it is clear
that every hypercomplex quantity is determined by a system of n elements
a, ,a, ', a, of Pand that it can therefore, depending on the choice of P,
be determined by 7 complex numbers, 7 rational numbers, # real numbers,
and so forth.

The first eight postulates signify that S forms a linear finite-dimensional
space (see Chapter XVI, §2) over the field P, which we shall call the ground
field of the algebra.

The requirement 9’ and 10’ can be combined in the form of the equations

(@B + by) a = a(Ba) + b(ya),
o(aB + by) = a(aB) + blay),

from which it follows that the operation of multiplication is linear with
respect to each factor.

Of the two terms “hypercomplex systems’” and “algebra™ the second has
been preferred in recent years, since the elements of very general ‘“hyper-
complex systems™ may differ in their properties considerably from the
ordinary numbers, so that it is inappropriate to call them ‘‘hypercomplex

o By letters of the Greek alphabet we denote arbitrary quantities of the system §,
and by letters of the Latin alphabet elements of the field P.
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numbers.” The terms ‘hypercomplex systems,” and ‘“hypercomplex
numbers’’ are now applied only to the simplest algebras, for example to the
system of the ordinary quaternions.

From the requirements 1’ through 10’ it is clear that in algebras the
commutativity and associativity of multiplication is not assumed, nor the
existence of a unit element nor the possibility of “division.”

Every algebra S has a basis, i.e., a system of elements a, , ay, ", &, in
terms of which all the elements of the algebra can be uniquely represented
in the form of linear combinations aa; + a@sy + -+ + a,a, with coef-
ficients from the ground field P. Every algebra can have infinitely many
bases, but the number of elements of each basis is one and the same and
is called the rank of the algebra.

The system of complex numbers regarded as an algebra over the field
of real numbers has a basis of the numbers | and i. But the pairs of numbers
2 and 3/, 1 and a 4 bi(a, b are real, b 7= 0) can also serve as bases.

Let ¢, , €, -, €, be the basis of an arbitrary algebra over a certain field
P. By definition every element of the algebra can be written uniquely in
the form

o = @€ + A€ + - + A€, .

If B = by, + *** + b€, is any other element of it, then by the properties
1" through 6’ we have

<3 +ﬁ =(al +b1)€l +(a2 +b2)62 + o +(an + bn)eno
Similarly, for every a of P we have
ao = aa,€; + aase; + -+ -+ aae, .

Therefore the operation of addition of quantities of the algebras and of
their multiplication by elements of the field P are uniquely determined
by the given formulas. The operation of multiplication of quantities of the
algebra must be specially defined for each algebra; but we need not know
how to multiply arbitrary quantities of the algebra, it is sufficient to know
the law of multiplication of the basis quantities ¢;. Indeed, by the
properties 9" and 10

(@€, + age; + - + au€,)(b1€; + boey + -+ + bue,) = Xab; - €.

Each of the products e, is a certain quantity of the algebra and can
therefore be expressed in terms of the basis elements

€€; = Cin€ + Cyg€z + 7 + Cpin€n .

Here ¢,;;. denote elements of the ground field P over which the algebra is
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constructed. The first index denotes the number of the first factor, the
second, the number of the second factor, and the third indicates the number
of that element whose coefficient is ¢,;, . The coefficients c,;, are called
the structure constants of the algebra, since a knowledge of these constants
completely determines all the operations on the quantities of the algebra.

It is easy to count the number of structure constants of an algebra of
rank n. Every constant has three indices /, j, k. Therefore the number of
structure constants of an algebra of rank » is equal to the number of triplets
formed from the natural numbers 1, 2, -, n, i.e., to #*. For example, the
system of complex numbers over the field of real numbers has a basis
consisting of the numbers 1, i. In virtue of the equations

l-1=1-140-J i1=0-141"-i
l-i=0-141-14, ivi=—l:140-i

the structure constants are equal, respectively, to

‘i = 4, ¢z =0, ¢ =0, Cap = 1,

1z = 0, Crez = 1, Cpqp = —1, Cy0 = 0.

Suppose, conversely, that #* elements c,; of an arbitrary field P are
given, indexed by triplets of the natural numbers (i, j, & = 1,2, -, n).
Then they can be taken as the structure constants of an algebra over the
field P using the equation e ; = X,_, ¢;x€, as the definition of multi-
plication in the algebra.

Previously we have seen that every algebra has, in general, infinitely
many distinct bases. The structure constants depend on the choice of the
basis and therefore one and the same algebra can be given by distinct
systems of structure constants.

Which algebras should be regarded as distinct and which as equal?
In the theory of algebras it is convenient to regard two algebras over
one and the same field P as equal if they are isomorphic, i.e., if the
quantities of one algebra can be put into one-to-one correspondence with
the quantities of the other in such a way that the sum and the product
of any two quantities of the first algebra are associated with the sum and
the product of the corresponding quantities of the second algebra and
that the product of any element of the field P by an element of the first
algebra is associated with the product of the same element of P and the
corresponding element of the second algebra.

This definition of identity of algebras shows that in the theory of algebras
we only study those properties of the quantities and systems of quantities
of the algebra that find their expression in the form of certain properties
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of the three basic operations. To put it briefly, the theory of algebra
studies properties of the operations performed on the quantities of the
algebra and has nothing to do with the nature of the quantities that form
the algebra.

It is easy to show that if two algebras are isomorphic, then quantities
that form a basis of one algebra correspond to quantities that form a basis
of the other, and that the structure constants computed with respect to
corresponding bases are equal. Conversely, if two algebras over one and
the same field have equal structure constants in suitable bases, then such
algebras are isomorphic.

Among all the algebras, the associative algebras have always played and
are still playing a very important part, i.e., the algebras in which the
operation of multiplication satisfies the associative law a(By) = (af)y.
The present section will give an account of the properties of such algebras.
Among the nonassociative algebras the most interesting are the Lie
algebras, for which the following properties of multiplication are assumed
to be satisfied:

af = —Ba,  a(By) + Blyx) + ¥(2f) = 0.

They are of interest in view of the close connection that exists between
Lie algebras and Lie groups, which were discussed in §7.

The algebra of matrices. We have pointed out earlier that in the first
period of the development of the theory of hypercomplex systems the main
attention was centered on the investigation of various systems which for
one reason or another were of particular interest to the investigators.
We have already examined some of these systems. The investigation of
the algebra of matrices which plays a fundamental role in the general
theory of algebras began approximately at the middle of the last century.
Let us briefly recall here the definitions of the operations on matrices (see
Chapter XVI, §l).

A matrix over a field P is a collection of elements of the field arranged in
the form of a rectangular table. Two matrices are called equal if their
elements in corresponding places are equal. Here we shall only consider
square matrices for which the number of rows is equal to the number of
columns. The number of rows or columns of a square matrix is called its
order.

To add two matrices of equal order we add their corresponding elements.
Multiplication of a matrix by a number is, by definition, multiplication of
all the elements of the matrix by that number. The operation of multiplica-
tion of a matrix by a matrix is defined in a more complicated fashion:
The product of two matrices of order » is the matrix of the same order in
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which the element in the ith row and the jth column is equal to the sum
of the products of the elements of the ith row of the first matrix into the
corresponding elements of the jth column of the second. For example:

[a b][x y] _[ax+bx1 ay+by1]

ay byf[xy ] [ax + by @y + by’

The motives for the choice of this definition of multiplication of matrices
were explained in Chapter XVI.

In virtue of the definitions given, matrices of order n with elements
from an arbitrary field P form a system of quantities which can be added,
multiplied by elements of P, and multiplied among each other. Straight-
forward computations show that the properties 1’ through 10" which define
an algebra are satisfied. Furthermore, it is easy to show that the multiplica-
tion of matrices satisfies the associative law. Therefore the system of all
matrices of a given order n with elements from a given field P form an

associative algebra over this field.
The obvious equation

ab 10 01 00 00

[(‘ d _"[0 0]“’[0 0]“[1 0 +d[o 1]
shows that the four matrices on the right-hand side form a basis of the
algebra of matrices of order 2. More generally, when we denote by «,;

the matrix in which there is a | in the ith row and jth column and the
remaining places are zeros, then we have the equation

an T din

= 2 Qii€i5 5
1,§
Qyy """ Qpp
which shows that the matrices €, form a basis of the algebra of matrices
of order n. Since the number of matrices ¢, is equal to n2, the rank of the

algebra of matrices is also equal to n%. The multiplication table for the
basis elements ¢, has the form

€f_f €5y = iﬂ ’ 6,-) A ekl — 0, j —f_& k, fl.,j., k. l’ — l, 2, Ny n,
The algebra of matrices contains a unit element, namely the unit matrix.
Representations of associative algebras. Suppose that with every

quantity of a certain algebra 4 over a field P a definite quantity of some
other algebra B over the same field P is associated. If the sum and product
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of any two elements of A are associated with the sum and product of the
corresponding elements of B and the product of every element of P by an
arbitrary element of 4 with the product of the same element of P and the
corresponding element of B, then we say that the algebra 4 is homo-
morphically mapped into the algebra B. A homomorphic mapping of an
associative algebra into the algebra of matrices of order r is called a
representation of 4 of degree n. If distinct elements of A4 correspond to
distinct matrices the representation is called faithful or isomorphic. When
an algebra A is isomorphically represented by matrices, we may assume
that the operations on the quantities of the algebra reduce to the operations
on the corresponding matrices. Therefore the task of finding representa-
tions of algebras is of considerable interest. Here we shall only consider
some of the simplest methods of finding representations; however, these
methods play an important role in the general theory.

Let us choose an arbitrary basis ¢, , €, ‘-, €, in the given associative
algebra A, and let « be an arbitrary quantity of 4. The products €a,
€, ', €,a are again quantities of 4 and therefore must be expressible
linearly in terms of ¢, , €, -, ,. Suppose that

§a = a6 + d1g€ + **° + A€y,

€0 = g€ + A€ + **° + Ggp€y,

€0 = dn1€) + Gnz€y + *°° + dun€sn .

As we can see, for a fixed basis we can associate with every element « a
definite matrix | a; |. A very simple calculation shows that this corre-
spondence is a representation of 4. This representation is often called the
regular representation of A. Its degree is obviously equal to the rank of
the algebra.

The complex numbers can be regarded as an algebra of rank 2 over the
field of real numbers with the basis 1, i. The equations

l-@+b)=a-1+b-i
i-(@+bi)=—b-1+a-i

show that in the corresponding regular representation the complex number
a + bi corresponds to the matrix

[ &2]:
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The analogous representation of quaternions has the form

a b ¢ d

, 4 —b a—-d ¢

a+ bi+ ¢j + dk— —e d a—b
—d—c b a

These representations of the complex numbers and the quaternions are
faithful (i.e., isomorphic to the algebra). Examples show? however, that
the regular representation is not always faithful. But if the algebra contains
a unit element, then its regular representation is necessarily faithful.

It is easy to show that every associative algebra can be embedded in an
algebra with a unit element. The regular representation of the containing
algebra is faithful; therefore this representation of the given algebra is
also faithful. Thus, every associative algebra has a faithful representation
by matrices.

This method of finding representations is insufficient for constructing
all the representations of an algebra. A more refined method is connected
with the concept of an ideal of an algebra which plays an important role
in modern mathematics.

A system [ of elements of an algebra is called a right ideal if it is a linear
subspace of the algebra and if the product of every element of I with an
arbitrary element of the algebra again belongs to /. A left ideal is defined
similarly (with an interchange of the order of the factors). An ideal that is
simultaneously left and right is called two-sided. It is clear that the zero
element of an algebra by itself forms a two-sided ideal, the so-called zero
ideal of the algebra. Also the whole algebra can be regarded as a two-sided
ideal. However, apart from these two trivial ideals, the algebra may contain
other ideals, the existence of which is usually connected with interesting
properties of the algebra.

Suppose that an associative algebra 4 contains a right ideal /. Let us
choose a basis ¢, , €, , ', €,, in this ideal. Since in the general case I forms
only part of A, the basis of I will, as a rule, have fewer elements than a
basis of 4. Let a be an arbitrary element of 4. Since / is a right ideal and
€, €, €, are contained in J, the products e€q, ..., €,a are also
contained in / and hence can be expressed linearly in terms of the basis
€, €n 5 LE,

o = ap€; + '+ Q€ ,

oooooooooooooooooooooooooooooooooooooo

€n® = 1€+ + € -

By associating with the element « the matrix | a,; || we obtain, as before,
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a representation of the algebra 4. The degree of this representation is
equal to the number of elements of the basis of the ideal J and is, therefore,
in general smaller than the degree of the regular representation. Obviously,
the degree of the representation obtained by means of an ideal will be
smallest if the ideal is minimal. Hence one can understand the fundamental
role of minimal ideals in the theory of algebras.

The structure of algebras. By what has been said, every associative
algebra 4 can be isomorphically represented by matrices of a certain
order. The aggregate of matrices that correspond in this representation
to the quantities of A is itself an algebra, but only part of the algebra of all
matrices of the given order, If a certain part of the quantities of an algebra
is itself an algebra, then it is called a subalgebra of the given algebra. We
can therefore say that every associative algebra is isomorphic to a certain
subalgebra of matrices.

Although this result is of interest in principle, since it reduces the
problem of finding all algebras to that of finding all possible subalgebras
of matrix algebras, it does not give a direct answer to the question of the
structure of algebras. The first general answer to this question was given
at the end of the last century in the works of F. E. Molin (1861-1941),
Professor at the University of Dorpat (Tartu), who taught at the Poly-
technic Institute at Tomsk around 1900.

An algebra is called simple if it does not contain any two-sided ideals
other than the zero ideal and the whole algebra. Molin proved that every
simple associative algebra of rank 2 or more over the field of complex
numbers is isomorphic to the algebra of all the matrices of a suitable
order over this field.

Continuing Molin’s fundamental investigations, Wedderburn obtained
at the beginning of the 20th century a number of results which give a
very complete description of the structure of algebras over an arbitrary
field.

An arbitrary system of elements of an algebra A4 (in particular the
algebra A itself or an ideal or a subalgebra of it) is called nilpotent if
there exists a natural number s such that the product of any s elements
of the system is equal to zero. Every associative algebra has the unique
maximal two-sided nilpotent ideal which is called the radical of the algebra.
An algebra whose radical is equal to zero is called semisimple. It can be
shown that every semisimple algebra splits into a sum of a special kind of
simple algebras; in virtue of this, the study of semisimple algebras reduces
entirely to that of simple ones. Finally, an algebra A is called a divison
algebra if every equation of the form ax = b (a 7 0) has a solution in 4.

The structure of simple algebras over the field of complex numbers is
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completely described by the theorem of Molin mentioned earlier. But if
the ground field P is arbitrary, then the following more general theorem
of Wedderburn holds: Every simple algebra of rank 2 or more over a field
P is isomorphic to the algebra of all matrices of suitable order with
elements from a certain division algebra over the same field P. Thus,
Wedderburn’s theorem reduces the problem of finding simple algebras
over a given field P to that of finding division algebras over P. Over the
field of complex numbers there exists only one division algebra, the field of
complex numbers itself. Hence it follows by Wedderburn’s theorem that
all simple algebras over the field of complex numbers are isomorphic to
an algebra of matrices over the same field, i.e., Molin’s theorem.

Over the field of real numbers there exist only three associative division
algebras: the field of real numbers itself, the field of complex numbers,
and the algebra of quaternions. The proof of this statement is not very
easy, and we shall not dwell on it here. By Wedderburn’s theorem this
implies that every simple algebra over the field of real numbers is
isomorphic to the algebra of matrices of a suitable order either over the
field of real numbers or over the field of complex numbers or over the
quaternion algebra.

From these examples it is clear how the structure of semisimple algebras
is described by the theorems of Molin and Wedderburn. In regard to
algebras with a radical, for them the so-called fundamental theorem of
Wedderburn is of great importance; according to this theorem, under
certain restrictions to be imposed on the ground field, every algebra 4 with
a radical R has a semisimple subalgebra L such that every element of the
given algebra 4 can be uniquely represented in the form of a sum A + p
(Ae L, p€ R), where the subalgebra L is in a certain sense uniquely
determined within A.

The fundamental theorems just formulated give an orderly idea of the
possible types of associative algebras and reduce the question of their
structure essentially to the analogous problem of the structure of nilpotent
algebras. The theory of the latter is at present still in the process of
development.

§13. Lie Algebras

In §12 we said that in addition to the theory of associative algebras at
the present time the theory of Lie algebras has been worked out in great
detail; for these, multiplication is subject to the rules

af = —fa,  olBy) + Blye) + ¥(eB) = 0.

The importance of these algebras can be explained by the fact that they



340 XX. GROUPS AND OTHER ALGEBRAIC SYSTEMS

are closely connected with Lie groups (see §7), i.e., with the most important
class of continuous groups. As we have seen above, Lie groups play a
remarkable role in contemporary geometry. Because of the origin of the
theory of Lie groups and Lie algebras, the greatest interest lies in Lie
algebras over the field of all real and of all complex numbers.

One of the simplest examples of a Lie algebra is the following. Let us
consider the set of all square matrices of a given order n. We introduce an
operation of commutation on them; by this we understand the formation
of the so-called commutator 4B — BA of given matrices 4 and B, denoted
by [4, B].

It is easy to verify that

(4, B] = —[B, 4],

[4, [B, C]] + [B, [C, A]] + [C, [4, B]] = 0.

Consequently, the set of all square matrices of a given order forms a
Lie algebra with respect to the operation of commutation. It is clear that
every subalgebra of the Lie algebra formed by matrices, i.e., every set of
matrices that is closed with respect to the operations of addition, multipli-
cation by a number of the ground field, and commutation, is in its turn
a Lie algebra.

The question whether for every abstractly given Lie algebra there exists
a matrix algebra isomorphic to it remained open for a long time. It was
solved in the affirmative only in 1935 by /. D. Ado, a pupil of the famous
algebraist H. G. Cebotarev.

Now let us sketch in general terms, without going into details and
without giving rigorous statements, the connections between Lie groups
and Lie algebras, restricting ourselves to the case when the Lie group and
the Lie algebra are represented by matrices.

Let L be a certain Lie algebra of matrices. With every matrix 4 belonging
to L we associate the matrix U = e* = E + A/l! + A%2! + . Then
the collection of all matrices obtained in this way forms a Lie group under
the ordinary matrix multiplication. Conversely, for every Lie group we
can find a unique Lie algebra (to within isomorphism) such that the
group corresponding to it is isomorphic to the given one. For simplicity
we have given not an accurate but a simplified formulation of the theorem
on the connection between Lie groups and Lie algebras. Actually the
relation U = e exists only for U sufficiently close to the unit matrix and
for A sufficiently close to the null matrix. A rigorous formulation would
require the introduction of the rather complicated concepts of a local
group and a local isomorphism.

Thus, the transition from the Lie algebra to the corresponding group
proceeds by an operation similar to exponentiation and the inverse
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transition, from the group to the algebra, by an operation similar to
taking logarithms.

If L coincides with the algebra of all matrices of order n, then the
corresponding Lie group is the group of all nonsingular matrices, because
every matrix U close to the unit matrix can be represented in the form
U=e'

A matrix A = || a, || is called skew-symmetric if its elements satisfy the
relation a;; = —a,; . Skew-symmetric matrices form a Lie algebra, because
if A and B are skew-symmetric, then the matrices 4B — BA = [A, B]
and a4 + BB are also skew-symmetric.

It is easy to verify that for every skew-symmetric matrix A the expression
e* is an orthogonal matrix and that every orthogonal matrix which is
close to the unit matrix can be represented in this exponential form.
Therefore the Lie algebra of the group of orthogonal matrices is the
algebra of skew-symmetric matrices.

From analytical geometry it is known that every rotation of space
around the coordinate origin is given by an orthogonal matrix and that
the product of rotations corresponds to the product of the corresponding
matrices. In other words, the group of rotations of space around a certain
fixed point is isomorphic to the group of orthogonal matrices of order 3.
Hence we deduce that the Lie algebra for the group of rotations of space
is the algebra of all skew-symmetric matrices of order 3, i.e., the Lie algebra

of matrices of the form
0 —a —b
A=|a 0 —c].
b ¢ 0

Since each of these matrices is completely characterized by the three
numbers a, b, c, it can be represented by the vector a having the projections
a, b, ¢ on the coordinate axes. Here a linear combination ad, + B4, of
matrices 4, and A4, of the given form obviously is associated with the linear
combination of the corresponding vectors o, -+ Ba, , and the commutator
of the matrices

["11, z] — Alf‘!s S AzA1

—01 _b _ag _bg 0 _ag _bg 0 _'al _—bl
= al 0 _Cl 0 _('2 o az 0 _('2 al 0 —(‘1
bg Cg bg Cy 0 bl (8] 0

bye, — blc, a,63 — a0y
_— b]ﬁ'z — f?z('] 0 agbl p— albz
@0, — ez @by — ash,y 0

is associated with the vector whose components are byc; — by,
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a,¢; — a,¢4 , ayby — asb, , i.e., with the vector products of a; and a, . So we
have arrived at the remarkable result that the set of ordinary vectors
under the operations of addition, multiplication by a scalar, and vector
multiplication forms a Lie algebra which corresponds to the group of
rotations of space around a fixed point. This shows at once how closely
geometric concepts are connected with the group of rotations of space, in
other words with the laws of motion of rigid bodies.

At the end of the last and the beginning of the present century, a number
of results were obtained for Lie algebras that are similar to the fundamental
results on associative algebras, although the proofs and statements are
here more complicated. Thus, as a result of the efforts of Lie, Killing, and
Cartan the concepts of a radical and of semisimplicity of a Lie algebra
were successfully established at the beginning of the 20th century and all
simple Lie algebras over the fields of real and complex numbers were
found. In the early 1930’s the theory of representations of Lie algebras by
matrices was constructed, in principle, by Cartan and Weyl and proved
to be a remarkable instrument for the solution of many problems. In the
last 15 years the development of the theory of Lie algebras has occupied
a number of Soviet mathematicians, who have obtained in this domain
some significant results. In particular, they made important progress in
the theory of representations of Lie algebras and gave definitive solutions
to the problems of semisimple subalgebras of Lie algebras, of the structure
of algebras with a given radical, and so forth.

§14. Rings

In §11 we have given the general definition of a field as an arbitrary
set of elements on which the operations of addition and multiplication
satisfying the postulates | through 10 are defined. By omitting in this
definition the postulate 10, on the existence of a quotient, and the postu-
lates 7 and 8, on commutativity and associativity of multiplication, we
obtain a definition of the concept of a ring, one of the most important
concepts of contemporary algebra.

Every field and also every algebra considered only with respect to the
operations of addition and multiplication is a ring. An even simpler
example of a ring is the set of all rational integers with the usual operations
of addition and multiplication. Under the same operations the sets of
numbers of the form a + bi,a + by/2, a + b¥/2 + ¢4 and so forth
also form rings, where a, b, ¢ are rational integers. The elements of these
rings are numbers and the rings are therefore called number rings. Some
important properties and applications of these rings were discussed in
Chapters IV and X.



§14. RINGS 343

However, there exist important classes of rings whose elements are not
numbers. For example, under the usual operations of addition and
multiplication the sets of polynomials in given variables x;, x5, **, x,
with coefficients from any fixed ring or field form rings, also the set of all
continuous functions defined on a certain domain, or the set of linear
transformations of a linear space or a Hilbert space.

The arithmetic properties of number rings form the subject matter of
the profound theory of algebraic numbers, which lies halfway between
algebra proper and number theory proper. The investigation of properties
of rings of polynomials is the object of the so-called theory of polynomial
ideals, which is closely connected with the higher branches of analytical
geometry. Finally, rings of functions and transformations play a funda-
mental role in functional analysis (see Chapter XIX).

On the basis of these and some other concrete theories, the general
theory of rings and the theory of topological rings were rapidly developed
in the present century.

For reasons of space we shall now give only some individual results
relating to the rudiments of the theory of rings.

Ideals. A subset J of elements of a ring K (not necessarily associative)
is called an ideal if the difference of any two elements of / is again contained
in I and if the products ax, xa of an arbitrary element @ of / and an
arbitrary element x of K are contained in /.

Every ideal of a ring is such a part of it that it is itself a ring under the
operations of addition and multiplication defined in the ring. Such parts
are called subrings of the given ring, so that every ideal is at the same time
a subring. The converse is not true, as a rule.

The intersection of an arbitrary system of ideals of a ring is again an
ideal, in particular the intersection of all the ideals containing an arbitrary
fixed element a of the ring is an ideal. This is called the principal ideal
generated by the element a and is denoted by (a).

The concept of the ideal generated by two or several elements is defined
in the same way. It is easy to show that if an associative commutative ring
has a unit element, then the ideal generated by the elements a, , -, a, is
simply the collection of all elements of the ring that admit a representation
in the form of a sum x,a, + - + x,a,, where x,, -, x,, are arbitrary
elements of the ring. In particular, the principal ideal (a) in a commutative
associative ring with a unit element is simply the collection of all elements
that are multiples of 4, i.e., have the form xa.

In the ring of all rational integers every ideal is principal. The ring of
polynomials in a single variable with coefficients from an arbitrary field
has the same property, and so has the ring of complex numbers of the
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form a -+ bi, where a and b are rational integers, and also a number of
other rings. However, the set of all polynomials in two variables x, y
without a free term is an ideal, but not a principal ideal, in the ring of all
polynomials in x and y with rational coefficients.

Just as we have done above for a normal subgroup in the theory of
groups, so we can construct for every ideal I of a ring K a residue class
ring (or factor ring) K/I. This is done as follows. Two elements a, b, of K
are called congruent modulg the ideal 7, in symbols a = b(J), if their
difference a — b is contained in I It is easy to verify that the congruence
relation is symmetric, reflexive, and transitive (see Chapter XV), so that
all the elements of K are split into classes of congruent ones (modulo /).
If we now consider these classes as elements of a new set, we can introduce
for them the concept of a sum and of a product: The *“sum” of two classes
shall be that class which contains the sum of any two elements that occur
in the given classes respectively, and the product is that class which
contains the product of these representatives. From the definition of ideals
it follows that the sum and product defined in this do not in fact
depend on the choice of the representatives and that as a result the set
of classes becomes a ring.

The role of the residue class ring in the theory of rings is entirely
analogous to the role of the factor group in the theory of groups. In
particular, the construction of residue class rings of known rings is a
convenient method of forming new rings with various properties. Further-
more, it is easy to show, for example, that an arbitrary commutative ring
K is isomorphic to the factor ring of a ring of polynomials with integer
rational coefficients in a sufficiently large number of variables.

Arithmetic properties of rings. In number rings and in fields the
product of several elements can only be equal to zero if at least one of the
factors is equal to zero. In arbitrary rings this need not be true, for example
the product of two nonnull matrices can be the null matrix. If in a certain
ringab = 0 and @ # 0, b £ 0, then a and b are called divisors of zero. If
there are no such elements in a ring, then the ring is called a ring without
divisors of zero.

For the investigation of the laws of divisibility in rings, we usually
assume that the ring is commutative and has no divisors of zero. Such
rings are often called integral domains. The number rings and polynomial
rings mentioned previously are integral domains.

Let K be an integral domain. We say that an element 4 is divisible in K
by the element & if @ = bq, g € K. From this it follows immediately that
a sum of elements divisible by b is divisible by 4 and that the product
of several elements of K is necessarily divisible by 4 if one of the factors



§l4. RINGS 345

is divisible by 5. When we try to introduce in the theory of rings the concept
of a prime element similar to that of a prime number, we come across a
complication that was already mentioned in Chapter X. Namely, to begin
with we have to introduce the concept of associate elements of a ring,
calling elements a, b associate if a is divisible by b and & divisible by a.
Setting a = bq, ,b = aq,, we have ab = ab - q,q,; i.e., .9, = e, where
e is the unit element of K. The quotients of associate elements are therefore
called divisors of one or units. Every element of the domain is divisible
by every unit. In the ring of rational integers the units are + 1,in the
ring of numbers of the form a + bi, where a, b are integers, the units are
the numbers -1, 4.

Every element of an integral domain K has decompositions of the form
a = ae - €', where e is an arbitrary unit. These decompositions are called
trivial. If @ has no other decompositions, then a is called a prime
or indecomposable element of K. In connection with the very important
theorem on the unique decomposition of integers into prime factors, it is
of interest to find such classes of rings, and among them noncommutative
ones, in which a similar theorem holds. For example this theorem holds
in principal ideal rings, i.e., in integral domains in which all ideals are
principal.

The very concept of ideal arose in connection with the problem of
uniqueness of decomposition into prime factors. Approximately at the
middle of the last century the German mathematician Kummer, trying
to prove the famous proposition of Fermat that the equation x* + y» = z#
has nonzero integer solutions for 7 2> 3, had the idea of considering numbers
of the form ay + a;{ + - + @, {1, where { = cos 2m/n 4 isin 2n/nis a
solution of the equation x» = 1 and 4, -, a, are ordinary integers. The
numbers of this type form an integral domain and Kummer at first took it
for granted as an obvious proposition that the theorem of unique
decomposition into prime factors holds in this domain. On this basis he
constructed a proof of Fermat's theorem. However, in checking his
arguments he observed that this assumption of the uniqueness of
decomposition is not true. Wishing to preserve the uniqueness of
decomposition into prime factors, Kummer was compelled to consider
decompositions of numbers of the domain into factors that do not occur
in the domain itself. These numbers he called ideal. Subsequently, in the
construction of the general theory, mathematicians introduced instead of
the ideal numbers the sets of elements of the domain that are divisible by
one ideal number or another, and they were called ideals. The discovery
of the nonuniqueness of the decomposition into prime factors in number
rings is one of the most interesting facts found in the last century
and has led to the creation of the extensive theory of algebraic numbers.
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One of the most striking applications of this theorem to the problem of
the decomposition of ordinary integers into a sum of squares was
mentioned at the end of Chapter X. The work of mathematicians of an
older generation, E. . Zolotarev, G. F. Voronoli, . M. Vinogradov, and
N. G. Cebotarev, has played a significant role in the development of the
theory of number rings.

Algebraic varieties. Another source of the theory of ideals lies in
algebraic geometry. When one first becomes acquainted with the theory of
curves of the second order, one usually learns with astonishment that the
single name hyperbola is given to the collection of two disconnected curves,
namely the branches of the hyperbola, and also that a pair of straight
lines is called a degenerate curve of the second order. This point of
terminology is clarified in algebra: If equations of curves are considered
in the form f(x, y) = 0, where f(x, y) is a polynomial in x, y, then in the
first case the left-hand side of this equation is an irreducible polynomial
of the second degree, and in the second case a product of two factors of
the first degree. A curve whose equation can be represented by means of
an irreducible polynomial f{(x, y) is called irreducible, and otherwise
reducible,

On transition to curves in space the matter becomes more complicated.
A space curve can be represented by a system of two equations f{x, y,z) =0,
g(x, y, z) = 0, where the polynomials f and g are by no means uniquely
determined by the curve. What shall we call here an irreducible curve?

The natural answer is given by the theory of ideals. Let 1, , /5, -~ be an
arbitrary set of polynomials in the variables x, y, z with complex coef-
ficients. The set of points in the (complex) space whose coordinates make
all these polynomials vanish is called the algebraic variety defined by the
given polynomials. We denote this variety by M and consider all the
polynomials in the variables x, y, z that vanish at every point of M. Itis
easy to see that the set [ of all such polynomials is an ideal in the ring of
polynomials in x, y, z. Moreover, this ideal has the property that if a power
of some polynomial is contained in /, then the polynomial itself is
contained in 1. Now it turns out that, whereas distinct sets of polynomials
may define one and the same algebraic variety, the correspondence between
varieties and ideals with the aforementioned additional property is one-
to-one.

Thus, in studying properties of varieties, it is natural to discuss not their
more or less accidental ‘“‘equations,” but the corresponding ideals. If an
ideal 7 can be represented in the form of the intersection of any two ideals
I,, I, then the variety M is the union of the varieties M, , M, , corre-
sponding to the ideals /,, ;. Hence it is clear that a variety M must
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naturally be called irreducible when the corresponding ideal / cannot be
represented in the form of an intersection of any two containing ideals.
To the splitting of a curve into curves of lower orders, to the decomposition
of a variety into irreducible ones, there now corresponds the representation
of a corresponding ideal in the form of an intersection of indecomposable
ones. The problem of uniqueness and possibility of such decompositions
is one of the first in the theory of algebraic varieties and the general theory
of ideals.

The structure of noncommutative rings. Every algebra is at the same
time a ring with respect to the operations of addition and multiplication.
Therefore, a considerable number of fundamental concepts and results
in the theory of algebras remains valid for arbitrary rings. However, the
transfer of more subtle results in the theory of algebras similar, in
particular, to the theorems of Molin and Wedderburn (see §11) comes up
against great difficulties which have only been partially overcome in the
last 10 or 15 years. First of all there is the matter of finding such a definition
of the radical of a ring that rings with a zero radical have some resemblance
to semisimple algebras and that for all algebras results of the structure
theory of algebras should be obtained as special cases from theorems in
the theory of rings. There is at present in the theory of rings a number of
definitions of a radical that enable us under some restriction or another to
construct a satisfactory theory of the structure of semisimple rings. As we
have mentioned earlier, the interest in the theory of noncommutative rings
is stimulated to a certain extent by the very appreciable value of the
theory of rings of operators in functional analysis.

§15. Lattices

As the reader is aware, a set of objects is called partially ordered if for
certain pairs of its elements it can be determined which of these objects
precedes the other or is subordinate to the other; here it is assumed that:
(1) every object is subordinate to itself; (2) if a is subordinate to b and &
subordinate to a, then it follows that @ and 4 are identical; (3) if a is
subordinate to 4 and b to ¢, then it follows that a is subordinate to c.
The relation of subordination is usually denoted by the symbol <.

An important example of a partially ordered set is a system of all subsets
of an arbitrary set where the relation of subordination means that one
subset is part of another.

If the relation of subordination is defined for every pair of elements of a
partially ordered set, then the set is called totally (or linearly) ordered.
Ordered sets are, for example, the real numbers, where the relation a < b
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means that a is not greater than b. By way of contrast, the partially ordered
set of all parts of an arbitrary collection containing more than one element
is not totally ordered, since subsets without common elements are not
comparable with one another.

Suppose that the elements of a partially ordered set M have the property
that every pair a, b have a unique nearest common larger element c, i.e.,
such that @ < ¢, b < c and that for every d of M satisfying the conditions
a <d b <dwe have ¢ <d Then M is called an upper semilattice and
the element c¢ is the “sum™ of @ and &. It is easy to verify that this “ad-
dition” has the following properties:

a+b=>b+a, a@a+b)+c=a+ (b +c), ata=a (13)

It is very remarkable that the converse can also be stated. If in a certain
set an operation of addition is defined having the properties (13), then, by
calling an element a subordinate to an element b if a + b = b, we obtain
a partially ordered set in which @ + b is the unique nearest common larger
element for @ and b.

Similarly we can define lower semilattices by considering in place of
the nearest larger elements the nearest smaller ones, which are here called
“products”of the given elements. This operation has the same property
as *‘addition,” namely

ab = ba, (ab)e = a(bc), aa = a. (14)

A partially ordered set which is at the same time an upper and a lower
semilattice is called a /attice. By what has been explained, in every lattice
we can define two operations subject to the conditions (13) and (14).
However, these operations are connected with one another, since the
relation @ < b in a lattice can be written in either of the forms @ + b = b,
ab = a. In other words, in lattices the equationa + b = b and ab = b
must be equivalent. It turns out that the latter conditions can be written
algebraically in the form of equations

a+ab = a, a(a + b) = a, (15)

and, by virtue of this, the study of lattices becomes a purely algebraic
task of studying systems with two operations subject to the conditions (13),
(14), and (15). The significance of the algebraic approach to the study of
lattices consists, roughly speaking, in the fact that the peculiarities of one
concrete lattice or another in individual cases can be conveniently ex-
pressed in the form of algebraic relationships of one kind or another
between the elements; also we can take advantage of the rich apparatus
of the classical theory of groups and rings.
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As we have already mentioned, the set of all subsets of a set is a partially
ordered set. It is not difficult to see that-it is a lattice and that the lattice
sum is here the union and the lattice product, the intersection of the
corresponding subsets. If we consider not all but only some of the subsets,
then we can obtain a variety of lattices. For example, lattices are the set
of all subgroups and also the set of all normal subgroups of an arbitrary
group, the set of all subrings and the set of all ideals of an arbitrary ring
and so forth. In particular, in the lattices of all normal subgroups of a
group and of all ideals of a ring apart from the fundamental identities
(13), (14), and (15), the following so-called modular law holds also:

a(ab + ¢) = ab + ac.

The theory of lattices with the modular law (modular or Dedekin lattices)
is an important chapter in the general theory of lattices.

A considerable number of theorems in the theory of groups and in the
theory of rings are statements on the arrangement of subgroups, normal
subgroups and ideals; consequently, these theorems can be reformulated
as theorems on the lattices of subgroups or ideals. With some restrictions
similar theorems hold for general lattices. In this way certain important
theorems were transferred from the theory of groups, the theory of rings,
and other disciplines to the theory of lattices. On the other hand, the
application of the apparatus of the theory of lattices proved useful in
finding properties of concrete lattices, for example in the theory of groups
and the theory of rings.

The theory of lattices has grown up rather recently, in the twenties and
thirties of our century, and has not yet found such important applications
as, say, the theory of groups. However, at the present time the theory
of lattices is a well-formed mathematical discipline with a rich content
and a substantial range of problems.

§16. Other Algebraic Systems

In the preceding sections we have made an attempt to give an idea how
the application of algebraic methods to an ever-expanding range of
problems has led to an extension of the system of objects that are studied
in algebra and to a generalization of the concept of algebraic operations,
In this context an important part was played by the development of the
axiomatic method which arose in the work of I. N. Loba&evskil on the
foundations of geometry and also the development of the general theory
of sets.

One of the fundamental results was the gradual clarification of the
general concepts of an algebraic operation, of an algebraic system, and
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the accumulation of the most important facts referring to the definition
of algebraic systems. Instead of the concretely defined operations of school
algebra, which concern mostly numbers, modern algebra starts from the
general concept of an operation. Namely, suppose that a certain system
of elements § is given and also a rule that associates with every system
a, ,a,, ", a, of m elements of S, taken in a definite order, a well-defined
element a of the same system. Then we say that on § an m-ary operation is
given and that the element a is the result of this operation performed on
the elements q, , a, , -, a@,, . A set of elements, together with one or several
operations defined on it is called an algebraic system. One of the basic
tasks of algebra is the study and classification of algebraic systems.
However, in this form the problem has too general a character. In fact,
only certain special algebraic systems have proved at present to be really
important and capable of interesting theories. For example, of the systems
with a single operation only the theory of groups, to which §! through
10 of this chapter were devoted, has grown to a deep mathematical science,
and among the systems with two or more operations those of the greatest
significance are fields, algebras, rings, and lattices. However, the number
of algebraic systems that are actually considered for one reason or another
increases continually. At the same time certain classical branches of
algebra such as, for example, the study of homomorphisms, of free systems
and free unions, of direct unions, and recently the study of radicals
has been successfully extended to the general theory of algebraic
systems. This enables us to speak of this theory as a new branch of
algebra.

In discussing the character of algebra as a whole, it is often emphasized
that the complete absence or the subordinate role of the concept of
continuity is a distinguishing feature of it, so that algebra is regarded as a
science with a preference for the discrete. This view undoubtedly reflects
one of the important objective peculiarities of algebra. In the real world
the discontinuous and the continuous are found in dialectic unity. But in
order to know reality, it is sometimes necessary to dissect it into parts
and to study these parts separately. Therefore the one-sided attention of
algebra to discrete relationships must not be regarded as a deficiency.

From the example of the theory of groups it is clear that individual
algebraic disciplines provide not only the tools for technical computation
but also the language for the expression of deep laws of nature. However,
apart from the direct practical value of a number of branches of algebra
for physics, chemistry, crystallography, and other sciences, algebra oc-
cupies one of the most important places in mathematics itself. In the words
of the well-known Soviet algebraist N, G. Cebotarev, algebra has been
the cradle of many new ideas and concepts that arise in mathematics and
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has fertilized to a remarkable extent the development of branches of
mathematics that serve as a direct basis for the physical and technological
sciences.
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