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(HAPTER 1

PLANE ANALYTIC GEOMETRY

1.1. Coordinates of a Point on a Straight Line
and in a Plane. The Distance Between Two Points

1°. The distance d between two points A (x,) and B (x,)
on an axis:

d:lxz—‘xl I=L (%3 —x,)%. (1

'2°- The value AB (algebraic) of a directed segment of
an axis:

AB=x,—x,. (2)

3°. The distance d between two points 4 (x,, y,) and
B (x,, y,) in a plane:

d =V (x,—%,)* + (Y. —4,)* (3)

4°. The projections of a directed segment having A (x,, y,)
as its initial -point and B (x,, y,) as its terminal point on

the coordinate axes, or those of a vector AB in a plane
ProxAB=X=x,—x,, proyAB=Y =y,—y,. (4)

1. Plot the points A (—5), B(-+4), and C(—2) on the
number axis, and find the values AB, BC, and AC of the
segments on the axis. Check that AB+ BC = AC.

2. Do the same exercise for the points A (4 1), B(—4),
and C (+5).

3. Construct a triangle with the vertices A (—4, 2),
B, —1), and C(3, 3) and determine its perimeter and
angles.

4. Prove that the triangle with the vertices 4 (—3, 2),
B0, —1), and C(—2, 5) is a right triangle.
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8. Plot the points A(—4, 0), B(—1, 4) and A,, B,
which are symmetric to the given ones with respect to
the axis OY. Calculate the perimeter of the trapezoid
ABB,A,.

* 6. Point B is symmetric to A (4, —1) with respect to
the bisector of the first quadrant. Find the length of AB.

7. Find the point 5 units distant both from the point
A(2, 1) and the axis OY.

8. On the axis of ordinates find the point 5 units di-
stant from the point A (4, —1). Explain by construction
why two solutions are possible.

9. On the axis of abscissas find the point ¢ units distant
from the point A (a, b). Analyse the solution for ¢>|b]|,
c=|b|, and ¢ < |b]|.

10. On the axis OX find the point equidistant from the
origin of coordinates and from the point A (8, 4).

11. Find the centre and the radius of the circle circum-
scribed about a triangle with the vertices 4 (4, 3), B(—3, 2),
and C (1, —6). .

12. Given the points A (2, 6) and B (0, 2); construct the

vector A_é, its components on the axes and compute

prOXA_B‘, proyﬂ; and the length AB.
13. Applied at the point A (2, 5) is a force whose pro-
jections on the coordinate axes are X=3 and Y =3.

Determine the end-point of the vector AB representing
the force, and the magnitude of the force.

14. Applied at the point A(—3, —2) is a force whose
projection Y =—1, and the projection X is positive.
Determine the end-point of the vector AB representing the
force if its magnitude is equal to 5)/2.

15%. Plot the points A (1), B(—3), and C(—2) on the
number axis and find the values AB, BC and CA of the
segments on the axis. Check that AB+ BC+CA=0.

* Each_section of the present book is supplied by a stock of pro-
blems which are recommended for home tasks or recapitulation pur-
poses. They are given below a separating line.
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16. Plot in a plane the points A(—7, 0), B(0, 1) and
points A,, B, which are symmetric to A4 and B with
respect to the bisectors of the first and third quadrants.
Compute the perimeter of the trapezoid ABB,A,.

17. On the axis of ordinates find the point equidistarit
from the origin and from the point A(—2, 5).

18. On the axis of abscissas find the point 3}/5 units
distant from the point A (—2, 3).

19. Determine the centre and the radius of the circle
circumscribed about a triangle with the vertices 4 (—3, —1),
B(5, 3), and C(6, —4).

20. Given the points A(x,, y,) and B(x,, y,). Applied
at the origin are two forces represented by the vectors

OA and OB. Construct the resultant force OC and prove
that its projection on the coordinate axis is equal to the
sum of the projections of the components on the same
axis.

"21. Given the points A(1, 2), B(3, 5), C (5, 2) and
D (2, —2). Applied at the point A are forces AB AC

and AD. Find the projections of the resultant force on
the coordinate axes and its value.

1.2. Dividing a Line Segment in a Given
Ratio. The Area of a Triangle and a Polygon

1°. Dividing a line segment in a given ratio. Given
two points A(x,, y,) and B(x,, y,). The coordinates of
the point M (x, y) that divides the segment AB in the
ratio AM:MB =X\ are determined by the formulas
%+ Ax _nth
Y= Y= M

In a particular case when M is the midpoint of the
segment AB (i.e. when A=1:1=1)

x=xl';x2' y=yl+y§. (2)

2°. The area S of a polygon with the vertices A4 (x,, y,),
B(xs, Y,), C(xs, Ys)y <., F(x4 y,) is given by the for-
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mula

S=il[

The expression

Xy

Xy Y

Xa
X3 Ys

Xn Yn
X1 Y

4.+

]. 3)

equals x,y,—x,y, and is called

Pyl

2 2
a determinant of the second order *.

22. Plot the points A(—2, 1), and B(3, 6) and find
the point M which divides AB in the ratio AM: MB=3:2.

23. Given the points 4(—2, 1) and B (3, 6) “Divide”
the segment AB in the ratio AM:MB=—3:2

24. Masses m, and i, are placed at the pomts A (x,)
and B(x,) on the axis OX. Find the centre of mass of
this system.

25. Masses m,, m,, and m, are placed on the axis 0X
at the points A (x,), B(x,), and C (x,) respectively. Show
that the centre of mass of this system is found at the
MmyX1+ MaXe—+ MgXs

my+ my+mg

26. The ends of a 40 cm 500 g uniform bar are fitted
with balls weighing 100 g and 400 g. Determine the centre
of gravity of this system.

27. Masses of 60 g, 40 g, and 100 g are placed at the
points A(—2, 4), B(3, —1), and C (2, 3) respectively.
Determine the centre of mass of this system.

28. Determine the midpoints of the sides of a triangle
with the vertices A (2, —1), B(4, 3), and C(—2, 1).

29. In a triangle with the vertices O (0, 0), A (8, 0),
and B(0, 6) determine the lengths of the median OC and
of the bisector OD.

30. Find the centre of gravity of a triangle with the
vertices A (1, —1), B(6, 4), and C (2, 6). -

- Hint. The centre of gravity of a triangle is found at
the point of intersection of its medians.

31. Compute the surface area of a triangle whose ver-
tices are A (2, 0), B(5, 3), and C(2, 6).

point x=

* For more detail see Chapter 4.
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32. Show that the points A (1, 1), B(—1, 7), and C (0, 4)
belong to one straight line.

33. Calculate the area of a quadrangle with the ver-
tices A(3, 1), B(4, 6), C(6, 3), and D (5, —2).

34. Two parallel forces equal to 300 N and 400 N are app-
lied at the points A (—3, —1) and B (4, 6) respectively.
Find the point of application of the resultant force.

35. Masses of 500 g, 200 g, and 100 g are placed at the
points O (0, 0), A(2, —5), and B (4, 2) respectively. De-
termine the centre of mass of this system.

36. In a triangle with the vertices A (—2, 0), B(6, 6),
and C(l, —4) determine the length of the bisector AE.

37. Find the centre of gravity of a triangle with the
vertices A (x,, y,), B(x, Y,), and C(x,, Y,).

38. Find the centre of gravity of a uniform quadran-
gular board with the vertices A (—2, 1), B(3, 6), C (5, 2),
and D (0, —6). .

Hint. Using the formulas obtained in Problem 37 find
the centres of gravity of the triangles ABC and ADC and
divide the distance between the centres in the ratio rever-
sely equal to the ratio of the areas of the triangles.

39. Given the points A (1, 2) and B (4, 4). On the axis
0X determine a point C so that the area of the triangle
ABC is equal to 5 square units. Construct the triangle ABC.

40. In a triangle with the vertices A (—2, 2), B(1, —4),
and C (4, 5) each side is extended by one third of its
length in the direction corresponding to the counter-
clockwise traverse of the perimeter of the triangle. Deter-
mine the end-points M, N, and P of the extensions and
find the ratio & of the areas of triangles MNP and ABC.

1.3. The Equation of a Line as a Locus of Points

The equation of a line is defined as the equation which
relates the variables x and y if and only if the coordinates
of any point of this line satisfy the equation.

The variables x and y entering the equation of a line
are called running (moving, or current) coordinates, and
the literal constants—parameters. For instance, in the
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equation of a circle (Problem 41) x*+ y*=R* the variab-
les x and y are the running coordmates and the con-
stant R is a parameter.

To set up an equation of a line as a locus of points
possessing one and the same property we have to:

(1) take an arbitrary (running) point M (x, y) on the line,

(2) express the general property of all the points M of
the line through an equation,

(3) express the line segments (and angles) entering this
equation in terms of the running coordinates of the point
M (x, y) and through the coordinates given in the spe-
cific problem.

41. Show that x*+y?*=R? is the equation of a circle
of radius R and with the origin as centre.

42, Write the equation of a circle with the centre at
C(3, 4) and radius R=5. Do the points A(—I1, 1),
B2, 3), 0(0, 0), and D(4, 1) lie on this circle?

43. Write the equation of a line generated by a mo-
ving point M (x, y) which is equidistant from the points
A (0, 2) and B (4, —2). Do the points C (—1, 1), D (1, —1),
E (0, —2), and F (2, 2) lie on this line?

44. Write the equation of the trajectory of a moving
Fomt M (x, y) which always remains three times farther
rom the point A (0, 9) than from the point B(O0, 1).

45. Write the equation of the trajectory of a moving
point M (x, y) which always remains twice nearer to the
point A(—1, 1) than to the point B(—4, 4).

46. Write the equations of the bisectors of all the
quadrants.

47. Write the equation of the locus of points the sum
of the distances between each of them and the points
'F(2, 0) and F,(—2, 0) being equal to 2/5. Construct
the line by its equation.

48. Write the equation of the locus of points equidi-
stant from the point F (2, 2) and the axis OX. Construct
the line by its equation.

49. Write the equation of the line along which a point
M (x, y) moves remaining twice farther from the axis 0X
than from the axis OY.
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50. Construct the following lines: (1) y=2x-+5;
(2) y=T7—2x; 3) y=2x; (4) y=4; (5) y=4—x".

51. Determine the points of intersection of the line
y=x*—4x+3 and the axes of coordinates and plot them.

52. Determine the points of intersection of the axes of
coordinates and the following lines: (1) 3x—2y=12;
(2) y=x2-+4x; (3) y>=2x+4. Construct these lines.

53. Write the equation of the locus of points equidis-
tant from the axis OY and the point F (4, 0). Construct the
line on the basis of its equation.

54. Write the equation of the line along which a point
M (x, y) moves remaining equidistant from the origin and
the point A(—4, 2). Do the points B(—2, 1), C(2, 3),
D (1, 7) belong to this line?

55. Write the equation of the trajectory of a moving
point M (x, y) which all the time remains twice nearer
to the point A (0, —1) than to the point B (0, 4). Con-
struct the trajectory of its motion.

56. Determine the points of intersection of the axes of
coordinates with the following lines: (1) 2x+5y+10=0;
(2) y=3—2x—x2; (3) y*=4—x. Construct these lines.

57. Write the equation of the locus of points equidi-
stant from the axis OX and the point F (0, 2). Construct
the line by its equation.

58. Write the equation of the locus of points the diffe-
rence between the distances of each of which from the po-
ints F,(—2, —2) and F (2, 2) is equal to 4. Construct the
line on the basis of its equation.

1.4, The Equation of a Straight Line: .
(1) Slope-Intercept Form, (2) General Form,
(3) Intercept Form

1°. The slope-intercept equation of the straight line:
y=kx+b. (1)

The parameter k is equal to the tangent of the inclination
angle o of a straight line with respect to the axis 0X
(k=tana) and is called the slope of the line. The para-



18 Ch. 1. Plane Analytic Geometry

meter b is the length of the intercept on the axis OY or
the initial ordinate.
2°. The general equation of the straight line

Ax+By+C=0. 2)
Particular cases:
(a) if C=0, then yz—%x—the straight line passes
through the origin;
(b) if B=0, then x=— — = a—the straight line is pa-
rallel to the axis OY;
=b—the straight line is pa-
rallel \to the axis 0X;
(d) if B=C=0, then Ax=0, x=0—the axis 0Y;
(e) if A=C =0, then By=0, y=0—the axis 0X.
3°. The intercept equation of the straight line:
SHi=1 ®)

where a and b are the intercepts cut off by the line on
the 0X- and OY-axis respectively.

T ISIN

(c) if A=0, then y=—

59. Construct a straight line cutting off an intercept
b=3 on the axis OY and forming with the axis OX an
angle of: (1) 45° (2) 135°. Write the equations of the lines.

60. Comstruct a straight line cutting off an intercept
b=—3 on the axis OY and forming with the axis O0X an
angle of: (1) 60°; (2) 120°. Write the equations of the lines.

61. Write the equation of a straight line passing through
the origin and inclined to the OX-axis at an angie of: (1) 45°;
(2) 60°; (3) 90°; (4) 120° (5) 135°.

62. Construct the straight line passing through the ori-
gin and the point (—2, 3) and write its equation.

63. Determine the parameters & and b for each of the
following straight lines: (1) 2x—3y==6; (2) 2x+3y=0;

@) y=—3 W 1+5=1
64. Construct the following straight lines: (1) 3x + 4y = 12;
(2) 3x—4y=0; (3) 2x—5=0; (4) 2y+5=0.
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65. Determine the parameters k£ and & of the straight
line passing through the point A (2, 3) and forming an
angle of 45° with the axis 0X. Write the equation of this line.

66. Reduce the following equations of the straight lines
to the intercept form: (1) 2x—3y=6; (2) 3x—2y+4=0.

67. Given the points 0 (0, 0) and A (—3, 0). Constructed
on the segment OA is a parallelogram whose diagonals
intersect at the point B (0, 2). Write the equations of the
sides and diagonals * of the parallelogram.

68. Write the equation of the straight line passing through
the point A (4, 3) and cutting off from the corresponding
quadrant a triangle whose area equals 3 square units.

69. The straight lines y=—2 and y=4 intersect the
straight line 3x—4y—5=0 at the points A and B respec-

tively. Construct.the vector AB; determine its length and
its projections on the axes of coordinates.

70. Are the points A (3, 5), B(2, 7), C(—!1, —3), and
D(—2, —6) on the straight line y=2x—1 or are they
above or below this line?

71. What is the geometrical meaning of the inequalities:
() y>3x+1 (2). y<3x+1; (3) 2x+y—4=0;
4) 2x+y—4<0?

72. Construct the domains ** containing the points whose
coordinates satisfy the inequalities:

) y<2—x, x>-—2, y>—2

2 y>2—x, x<4, y<o0;

B T+E<1, y=x+2, x>—4 .

73. A point M (x, y) moves so that the difference of the
squares of its distances from the points A (—a, a) and
B(a, —a) remains equal to 4a?. Write the equation of its
trajectory.

74. Write the equation of the trajectory of the point
M (x, y) whose projection on the axis OX moves at the

* The expression “the equations of the sides and diagonals”, as
used in this book, means “the equations of the straight lines on which
the sides and diagonals lie”.

** The term “domain” here means a portion of the plane XQY
containing points such that the coordinates of each of them satisfy
certain conditions (say, inequalities). If a domain contains the boundary
points, then it is called a closed domain. Otherwise it is called an open
domain.
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velocity of m units per second, and the projection on the
axis OY at n units per second. The starting position of
the point is M, (a, b).

75. Construct the straight lines given by the parameters:
(1) b=—2, ¢=60° and (2) b=—2, ¢=120° and write
their equatlons

76. Determine the parameters k£ and b of the straight
line passing through the point (—2, 3) and forming an
angle of 45° with the axis OX. Construct this line and
write its equation.

77. An isosceles trapezoid with bases of 8 cm and 2 cm
has an acute angle of 45°. Write the equations of the sides
of the trapezoid taking its greater base for the axis OX
and the axis of symmetry of the trapezoid for the axis OY.

78. Write the equations of the sides of a rhombus with
the diagonals 10 cm and 6 cm long, taking the greater
diagonal for the axis OX and the smaller for QY.

79. Write the equation of the straight line passing through
the point (—4, 6) and cutting from the coordinate axes
a triangle whose area is equal to 6 square units.

80. Write the equation of the line along which a point
M (x, y) moves remaining twice farther from the axis OX
than from the straight line x=—3.

81. The straight lines x=—1 and x=3 intersect the
straight line y =2x+1 at the points A and B respectively.

Determine the length of the vector AB and its projections
on the coordinate axes.

1.5. The Angle Between Two Straight Lines.
The Equation of a Pencil of Straight Lines
Passing Through a Given Point. The Equation
of a Straight Line Passing Through ‘Two
Given Points. The Point of Intersection
of Two Straight Lines

1°. The angle ¢ between the two straight lines y =%,x 4 b,
and y==~k,x+0b,, as measured counterclockwise is determi-
ned by the formula

tang=——=%, 4))
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For two straight lines given by the equations
Ax+By+C,=0 and A,x+B,y+C,=0Q

the above formula takes the form

Ay By—A,B,

tan e =44, 75,3,

The condition for the parallelism of two straight lines
is the equality of their slopes
A B
k,=k, or A_:= B—;'
The condition for the perpendicularity of two straight
lines is given by the relation
1
k,=—E or A,A,+ B,B,=0.
2°. The equation of a pencil of straight lines passing
through a given point A (x,, y,)

y—yl.:k(x_xl)' (2)

3°. The equation of a straight line passing through two
given points A (x,, y,) and B (x,, ¥,)

Y= _ x—%x 3
Yoy Xg—Xxy® @)

4°, The point of intersection of two non-parallel straight
lines A, x+ B,y+C,=0 and A,x+ Byy+ C,=0 is found by
solving the system of their equations. We get

—C, Bl| A —C
—_ —‘Cz Bz — A2 "'Cz
x= A By’ y= Ay By|

A, B, A, B,

82. Determine the angle between two straight lines:

y=2x—3, 5x—y-+7=0, 2 =0,
“){ L (2){2x g+ 1 =0; (3){ x—zy :
y—f ’ x—3Y + 1 =0, y=3x—4;
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( * !/
3x+2y=0, 3x—4y =6, { z =1
6
(4){6x+4y+9=0; (5){8x+6y=11; O v
\ b a

83. Which of the straight lines 3x—2y4-7 =0, 6x—4y —
—9=0, 6x+4y—5=0, 2x+3y—6=0 are parallel or
perpendicular to each other?

84. Write the equation of a pencil of straight lines
passing through the point A (2, 3). Choose out of this pencil
the straight lines inclined to the axis OX at angles: (1) 45°,
(2) 60°, (3) 135° (4) 0°, and construct them.

85. Plot the point A(—2, 5) and the straight line
2x—y=0. Write the equation of a pencil of straight lines
passing through the point A, and choose from the pencil:
(1) the straight line parallel to the given one, (2) the
straight line perpendicular to the given one.

86. At the points of intersection of the straight line
2x—5y—10=0 with the coordinate axes perpendiculars
are erected to this line. Write their equations.

87. Write the equation of the straight line passing
through the points A(—1, 3) and B (4, —2).

88. In a triangle with the vertices A (—2, 0), B(2, 6),
and C (4, 2) the altitude BD and the median BE are drawn.
Write the equations of the side AC, the median BE, and
the altitude BD.

89. Find the interior angles of a triangle whose sides
are given by the equations: x+2y=0, x+4y—6=0,
x—4y—6=0.

Hint. To find the interior angles of a triangle it is ne-
cessary to arrange the angular coefficients of the sides in
the decreasing order: k, >k, > k;, and then to compute

tangents of the angles using the formulas: lk‘, k2 lk_’i_—;’?
273

and H_—kk— Check the solution by making a drawmg and

placing one of the vertices at the origin.

90. Write the equations of the straight lines passing
through the origin at an angle of 45° to the straight line
y=4—2x.
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91. Write the equations of the straight lines passing
through the point A(—1, 1) at an angle of 45° to the
straight line 2x+ 3y =6.

92. A light beam emanates from the point A (5, 4) at
an angle ¢=arctan 2 to the OX-axis and is reflected by
the latter. Write the equations of the incident and reflected
heams.

93. Determine the vertices and the angles of a triangle
whose sides are given by the equations: x+3y =0, x=3,
x—2y+3=0.

94, A segment of the straight line 3x+2y=6 cut off
by the coordinate axes serves as the hypotenuse of a right
triangle. Find the vertex of the right angle if it is known
that it is situated above the given line.

95. Given a triangle with the vertices A (—2, 0), B(2, 4),
and C (4, 0). Write the equations of the sides of the triangle,
the median AE, the altitude AD and find the length of the
median AE.

96. Write the equations of the sides and find the angles
of a triangle with the vertices 4 (0, 7), B(6, —1), and
c(2, 1.

97. The straight line 2x—y-+8=0 intersects the axes
0X and OY at points A and B respectively. A point
M divides AB in the ratio AM:MB=3:1. Write the
equation of the perpendicular erected to AB at the
point M. -

98. Construct a triangle whose sides are given by the
cquations: x+y=4, 3x—y=0, x—3y—8=0; find the
angles and the area of the triangle.

99. Find the point of intersection of the medians and
the point of intersection of the altitudes of a triangle
whose vertices are the points A(—4, 2), B(2, —5), and
C (5, 0).

100. A light beam emanates from the point A4 (—5, 6)
at an angle ¢ = arctan (—2) to the axis 0X and is reflected
by this axis and then by the axis OY. Write the equations
of all three beams.
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1.6. The Normal Equation of a Straight Line.
The Distance of a Point from a Straight Line.
Equations of Bisectors. The Equations of a
DPencil of Straight Lines Passing Through
the Point of Intersection of
Two Given Straight Lines

1°. The normal equation of a straight line:
xcosPp+ysinfp—p=0, (1)

where p is the length of the perpendicular (the normal)
dropped from the origin to the straight line and P is the
angle of inclination of this perpendicular to the axis 0X.
In order to reduce the general equation of the straight
line Ax+By-+C =0 to the normal form we have to mul-
. . .. 1
tiply all its terms by the normalizing factor M = 4= VETE
taken with the sign opposite to that of the constant term C.

2°. The distance d of a point (x,, y,) from a straight
line is found by substituting the coordinates (x,, y,) for the
current coordinates in the left-hand member of the normal
equation of the straight line. The resulting number is taken
by the absolute value:

d=|%,c08 B+ y,sin B—p|, @)

or
_ Azt By +Cl :
i=rre @)

3°. The equations of the bisectors of the angles between

the straight lines Ax+By+C=0 and A,x+}+B,y-+C,=0:
Ax+By+C Ayx+By+C,

—_— = e 3

Vate - Vais )

4°, The equation of a pencil of straight lines passing
through the point of intersection of two given straight
lines:

a(Ax+RBy+C)+B (Ax+ By +Cy) =0. (4)

Putting a =1 we thus exclude the second straight line from
the two given out of the pencil (4).
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101. Reduce the following equations of straight lines
to the normal form:

(1) 3x—4y—20=0, (2) x+y+3=0, @) y=~kx+0.

102. Construct the straight line if the length of the nor-
mal p=2, and the angle P of its inclination to the axis 0X
is equal to: (1) 45°, (2) 135°, (3) 225° (4) 315°. Write the
equations of these straight lines.

103. Find the distances of the points 4 (4, 3), B(2, 1),
and C(1, 0) from the straight line 3x+44y—10=0. Plot
the points and the straight line.

104. Find the distance between the origin and the
straight line 12x—5y+4-39=0.

105. Show that the straight lines 2x—3y=6 and 4x— 6y=
=25 are parallel, and find the distance between them.

Hint. Take an arbitrary point on one of the lines and
find its distance from the other line.

106. Find %k from the condition that the distance bet-

ween the straight line y=~kx+5 and the origin isd =)5.

107. Write the equation of the locus of points 4 units
distant from the straight line 4x—3y=0.

108. Set up the equation of the straight line 4 units
distant from the point A (4, —2) and parallel to the
straight line 8x—15y=0.

109. Write the equations of the bisectors of the angles
between the straight lines 2x4-3y =10 and 3x+ 2y =10.

110. Write the equations of the bisectors of the angles
between the straight lines 3x+4y=12 and y=0.

111. Write the equation of the trajectory of a moving
point M (x, y) which, during its motion, remains three
times farther from the straight line y=2x—4 than from
the straight line y=4—2x.

112. Write the equation of the straight line passing
through the point M of intersection of the straight lines
2x+y+6=0 and 3x+ 5y—15=0 and the point N (1, —2)
(without finding the point M).

113. Write the equation of the straight line passing
through the point M of intersection of the straight lines
5x—y+10=0 and 8x+4y+9=0 parallel to the straight
line x4 3y =0 (without finding the point M).
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114, Find the altitude BD in a triangle with the verti-
ces A(—3, 0), B(2, 5), and C(3, 2).

115. Write the equation of the straight line passing
through the point A (2, 4) at a distance of d =2 from the
origin.

116. Check to make sure that the points A(—4, —3),
B(—5, 0), C(5, 6), and D(l, 0) serve as the vertices of
a trapezoid, and find its altitude.

117. A straight line is drawn through the origin at equal
distances from the points A (2, 2) and B (4, 0). Find this
distance.

118. Write the equations of a locus of points }/'5 distant
from the straight line x4+ 2y—5=0.

119. Write the equation of the trajectory of a moving
point M (x, y) which, while in motion, remains twice as
far from the straight line y=x as from the straight line
Yy=—*x.

120. Write the equation of a straight line passing through
the point M of intersection of the straight lines 2x —3y+
+5=0 and 3x+y—7=0 perpendicular to the straight
line y=2x (without finding the point M).

1.7. Miscellaneous Problems

121, Through the origin draw a straight line forming with
the straight lines x+y=a and x =0 a triangle whose area
is a®.

122. Given the points A(—4, 0) and B (0, 6). Through
the midpoint of the line segment AB draw a straight line
“cutting off an x-intercept twice as long as the y-intercept.

123. Given the points A(—2, 0) and B (2, —2). Const-
ructed on the line segment OA is a parallelogram OACD
whose diagonals intersect at the point B. Write the equa-
tions of the sides and diagonals of the parallelogram and
find the angle CAD.

124. Find the angles and the area of the triangle formed
by the straight lines y=2x, y=—2x, and y=x+».

125. Drawn from the origin are two mutually perpendi-
cular straight lines forming an isosceles triangle together
with the straight line 2x+4y=a. Find the area of this
triangle.
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126. Find the interior angles of a triangle given the
cquations of its sides: (AB) x—3y+3=0 and (AC) x+ 3y +
{-3=0, and the foot D(—1, 3) of the altitude AD.

127. Given the equations of the lateral sides of an isosce-
les triangle: 3x+y=0 and x—3y=0, and a point (5; 0)
on its base. Find the perimeter and the area of the triangle.

128. Given in a triangle ABC: (1) the equation of the
side (AB)3x+2y=12, (2) the equation of the altitude
(BM)x+2y=4, (3) theequationof the altitude (AM)4x+y=6,
where M is the point of intersection of the altitudes. Write
the equations of the sides AC, BC and the altitude CM.

129. Two sides of a parallelogram are given by the equa-
tions y=x—2 and 5y=x-+46. Its diagonals intersect at
the origin. Write the equations of two other sides of the
parallelogram and its diagonals.

130. Given a triangle with the vertices A (0, —4), B (3, 0),
and C (0, 6). Find the distance between the vertex C and
the bisector of the angle A.

131. Write the equation of the trajectory of a point
M (x, y) moving so that the sum of its distances from the

straight lines y=2x and y=—-= remains constant and is

2
equal to V5. _

132. Construct the domains the coordinates of the points
of which satisfy the inequalities:

(1) x—2<y<0, and x> 0;

(2 —2<y<x< 2

3) 2<2x+y<8, x>0, and y > 0.

133. The sides AB and BC of a parallelogram are given
by the equations 2x—y+4+5=0 and x—2y+4=0; its
diagonals intersect at the point M (1, 4). Find its altitudes.

134. Find the vertices of a right isosceles triangle given
the vertex of the right angle C (3, —1) and the equation
of the hypotenuse 3x—y+2=0.

135. Given two vertices of a triangle A(—4, 3) and
B (4, —1) and the point of intersection of the altitudes
M (3, 3). Find the third vertex C.

136. Compute the coordinates of the vertex of a rhom-
bus given the equations of two of its sides: x4 2y =4 and
x+2y=10, and the equation of one of its diagonals:

y=x-+2.
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137. Set up the equations of the sides of a triangle
knowing one of its vertices A (0, 2) and the equations
of the altitudes (BM)x+y=4 and (CM)y=2x, where M
is the point of intersection of the altitudes.

138. Given the straight line x 42y —4 =0 and the point
A (5, 7). Find: (1) the projection B of the point A on the
given line, (2) the reflection C of the point A in the
given straight line.

Hint. Writing the equation of the perpendicular AB and
solving® it together with the equation of the given line,
find the point B which is the”midpoint of AC.

139. Given the straight line 2x+y—6 =0 and two points
on it A and B with the ordinates y, =6 and yg=—2
respectively. Write the equation of the altitude AD of the
triangle AOB, find its length and the angle DAB.

1.8. The Circle

A circle of radius R with centre at the point C(a, b)
iIs given by the equation

(x*—a)*+ (y—b)*=R*. (1
It may be rewritten as
x4yt 4-mx+ny+p=0. 3]

To pass over from Eq. (2) again to the equation of the
form (1) we have to single out perfect squares in the left-
hand member of equation (2):

RN R et e

140. Write the equation of a circle of radius R =5 with
centre C(—4, 3) and construct the circle. Do the points
A(—1, —1), B(3, 2), 0(0, 0) lie on this circle?

141. Given the point A(—4, 6). Write the equation
of a circle for which the line segment OA serves as the
diameter.

142. Construct the circles: (1) x*+y*—4x+6y—3=0;
(2) x*+y*—8x=0; (3) x*+y*+4y=0.

143. Construct the circle x24y2-+5x=0, the straight
line x4y =0 and find the points of intersection.



Sec. 1.8. The Circle 29

144. Write the equation of a circle tangent to the coordi-
nate axes and passing through the point A (1, 2).

145. Find the angle between the radii of the circle
X2 4-y? +4x—6y=0 drawn to the points of intersection
of the circle and the axis OY.

146. Write the equation of a circle passing through the
points A(—1, 3), B(0, 2), and C (1, —1).

Hint. Write the equation of the required circle in the
form x*4+y24-mx—+ny+ p=0, substitute the coordinates
of each point into it, and then find m, n, and p.

147. Write the equation of* a circle passing through the
points of intersection of the circle x2 + y? +4x—4y =0 and
the straight line y=—x, and through the point A (4, 4).

148. Determine the location of the curve y=—) —x*—4x.
Construct the curve.

149. Write the equations of the straight lines drawn
from the origin and tangent to the circle x2+4y2—8x —
—4y+16=0.

150. Given the point A (a, 0). A point M moves so that
the angle OMA in the triangle OMA remains right. Deter-
mine the trajectory of the point M.

151. Given the points A (—6, 0) and B (2, 0). Find the
locus of points wherefrom the line segments OA and OB
are seen at equal angles.

152. Determine the trajectory of a point M (x, y) which
moves so that the sum oil its squared distances from the
points A (—a, 0), B (0, a), and C (a, 0) remains equal to 3a2.

153. Determine the trajectory of a point M (x, y) which
moves so that the sum of its squared distances from the
bisectors of the quadrants remains equal to a2. d

154. Given the circle x? + y? =a?. From the point 4 (a, 0)
belonging to this circle all possible chords are drawn.
Determine the locus of the midpoints of the chords.

155. Given the points A(—3, 0) and B (3, 6). Write
the equation of the circle for which the line segment AB
is the diameter.

156. Find the centres and the radii of .the circles:

(1) x*+y*—6x+4y—23=0; (2) ¥*+y*+5x—Ty+2.5=0;
(3) x2+y2+ 7y=0. Construct the circles.
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157. A circle is tangent to the axis OX at the origin
and passes through the point A (0, —4). Write the equa-
tion of the circle and find the points at which it inter-
sects the bisectors of the quadrants.

158. Write the equation of a circle passing through the
origin and the points of intersection of the straight line
x+y—+a=0 with the circle x24 y*=aq2.

159. Write the equations of the tangent lines drawn
from the origin to the circle passing through the points
A(l, —2), B(0, —1), and C(—3, 0).

160. Find the angle between the radii of the circle
x*+y*—4x+6y—5=0 drawn to the points at which it
intersects the axis 0X.

161. Show that the point A (3, 0) is located inside the
circle x2+4+y?*—4x42y-+1=0 and write the equation of
the chord bisected at the point A.

Hint. The required chord is perpendicular to CA where C
is the centre of the circle.

162. A point M (x, y) moves so that the sum of its
squared distances from the origin and the point A (—a, 0)
remains equal to a2 Determine the trajectory of the
point M.

163. Given the circle x*+y?*=4. From the point
A (—2, 0) belonging to it a chord AB is drawn and exten-
ded by a distance BM =AB. Determine the locus of
points M.

164. A line segment AM =a moves in the plane XOY
remaining parallel to OX so that its left end-point A
slides along the circle x4 y?=a?. Determine the trajec-
tory of the point M.

1.9. The Ellipse

An ellipse is the locus of points, the sum of the distan-
ces of which from two given points F and F, (called the
foci) is a constant, 2a. This constant is required to be
greater than the distance between the foci (F,F) (the
focal length). _

The canonical (standard) form of the equation of the
ellipse:

2 2
StE=1 ()
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The ellipse given by equation (1) is symmetrical with
respect to both the axis OX and the axis OY (Fig. 1).
The paramzters a and b are called the semi-axes of the
ellipse. Let a > b, then the foci F and F, are found on

the axis OX at a distance c=)a*—b® from the centre.
The ratio %=e < 1 is called the eccentricity of the ellipse.
The distances of a point M (x, y) of the ellipse from its

Fig. 1

foci (the so-called focal radius vec'tors) are determined by
the formulas
r=a—ex, r,=a-ex. 2)

If a<b, then the foci are located on the axis OY,
c=Vb—az, e=%, r=>b-4ey.

165. Construct the ellipse x?+44y?=16; find its foci and -
the eccentricity.

166. Write the canonical equation of the ellipse knowing
that (1) the focal length is equal to 8 and the minor
semi-axis b=3; (2) the major semi-axis a=6 and the
eccentricity e=0.5.

167. Find the minor semi-axis b and the eccentricity e
of the ellipse whose major semi-axis a=>5 and the para-
meter ¢ is equal to: (1) 4.8; (2) 4; (3) 3; (4) 1.4; (5) 0.
Construct each of the ellipses.

168. The earth orbits the sun forming an ellipse, the
sun being situated at one of its foci. The minimum dis-
tance of the earth from the sun is approximately equal
to 147.5 million kilometres and the maximum .distance
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to 152.5 million kilometres. Find the major semi-axis and
the eccentricity of the earth’s orbit.
169. An ellipse symmetrical with respect to the coor-

dinate axes passes through the points M (2, }/'3) and
B(0, 2). Write its equation and find the focal radius
vectors of the point M.

170. An ellipse, symmetrical with respect to the coor-
dinate axes and whose foci are found on the x-axis, passes

through the point M(—4, }/21) and has the eccentricity
s=%. Write the equation of the ellipse and find the focal

radius vectors of the point M.

171. Find the length of the chord which bisects the
angle between the axes of the ellipse x242y%*=18.

172. Find the eccentricity of an ellipse whose focal
length is equal to the distance between the end-points of
the major and minor semi-axes.

173. Inscribed in the ellipse x*+44y*=4 is a regular
triangle one of whose vertices coincides with the end-point
of the major semi-axis. Determine the coordinates of two
other vertices of the triangle.

Hint. Write the equation of one of the sides having the
slope k= tan30°, and find the points at which it intersects
the ellipse.

174. On the ellipse 9x3 +25y% =225 find the point whose
distance from the right-hand focus is four times the dis-
tance from the left-hand focus.

175. The ordinates of all the points of the circle x®4y3=36

are reduced by T;' Write the equation of the new curve.

176. Determine the trajectory of a moving point M
which all the time remains twice nearer to the point
F(—1, 0) than to the straight line x=—4.

177. A line segment AB of a constant length a-+b moves
so that its end-point A slides along the axis 0X, and the
end-point B slides along the axis OY. Determine the tra-
jectory of a moving point M of the segment which divides
the latter into the following portions: BM =a and MA=b
(Leonardo da Vinci’s elliptic compass).

178. Given the circles x*4-y?=b% and x*+y?=a? (b < a).
An arbitrary ray OBA intersects them at points B and A
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respectively, wherefrom straight lines are drawn parallel
to the coordinate axes to intersect at point M. Determine
the locus of points M.

179. Write the simplest equation of the ellipse in which
the distances of one of the foci from the ends of the major
axis are equal to 5 and 1.

180. An ellipse symmetrical with respect to the coor-
dinate axes passes through the points M((2V3, V_6) and
A (6, 0). Write its equation, find its eccentricity and the
distances of the point M from the foci.

181. Find the length of the chord of the ellipse ;—:-—l—%:}:l

directed along the diagonal of the rectangle constructed
on the axes of the ellipse.

182. Find the points common for the ellipse x244y2=4
and a circle passing through the foci of the ellipse and
having its centre at the upper vertex of the ellipse.

183. On the straight line x=—25 find the point equi-
distant from the left-hand focus and upper vertex of the
ellipse x2--5y2?=20.

184. On the ellipse x245y2=20 find the point whose
radius vectors are mutually perpendicular.

Hint. The required points are the points at which the
ellipse is intersected by the circle passing through the
foci of the ellipse and having its centre at the origin.

185. The abscissas of the points of the circle x24-y2>=4
are doubled. Determine the curve thus obtained.

186. Determine the trajectory of a moving point M which
all the time remains three times nearer to the point
A(1, 0) than to the straight line x=9.

1.10. The Hyperbola

The hyperbola is the locus of points whose distances
from two fixed points F and F, (called the foci) have a
constant difference 2a(0 < 2a < F,F).

The canonical (standard) equation of the hyperbola:

»_¥_. (1)

at b
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The hyperbola given by equation (1) is symmetric about
the coordinate axes (Fig. 2). It intersects the axis OX at
two points A (a, 0) and A, (—a, 0). These points are the
vertices of the hyperbola. The axis OY is not intersected
by the hyperbola. The parameter a is called the transverse
semi-axis; b, is the conjugate semi-axis. The parameter

c=Va*+b* is the distance of the focus from the centre.
The ratio %=e > 1 is called the eccentricity of the hyper-

bola. The straight lines y=—__|—%x are called the asymp-
totes of the hyperbola. The distances of a point M(x, y)

Fig. 2

of the hyperbola from its foci (called the focal radius
vectors) are determined by the formulas

r=|ex—al, r,=|ex+al (2)

The hyperbola in which a=b is termed equilateral,
equiangular, or rectangular; its equation is x*—y?*=a?,
and the equatiorzls of the 2asymzp’cotes are y=-=x. The

2
hyperbolas %2——%=1 and Z—z—%=l are called conjugate.

187. Construct the hyperbola x*—4y2=18 and its
asymptotes. Find the foci, the eccentricity, and the angle
between the asymptotes.

188. A point M with the ordinatd equal to unity is
taken on the hyperbola x2—4y?=16. Find the distances
of the point M from the foci.
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I8). Write the canonical equation of the hyperbola given
(1) the focal length 2c=10 and the distance between the
vertices 2a=8; (2) the_transverse semi-axis a=2)5 and
the cecentricity e=1/1.2.

190. A hyperbola is symmetric about the coordinate
nxes, passes through the point M(6, —2V'2), and has
he conjugate axis b=2. Write its equation and find the
distances of the point M from the foci.

191. Write the equation of a hyperbola whose vertices
me situated at the foci, and the latter at the vertices of

the ellipse —;%—l—igz-:l.
192. Write the equation of the hyperbola which has the

eccentricity e=)/2, passes through the point (2a, al/—)
md is symmetric about the coordinate axes.

193. Construct the hyperbola y®=a?+x?, find the coor-
dinates of its foci and the angle between fhe asymptotes,

194. Write the equations of the straight lines drawn
from  the point A (0, —2) tangent to the hyperbola
Voo 4yt=16.

195. Find the distance of the focus of the hyperbola
,\:* ;7_1 from its asymptotes, and the angles between
the asymptotes.

196. Find the side of the square inscribed in the hyper-

2
’%—b——l and analyse in which hyperbolas a square
cnn be inscribed.

197. Find the eccentricity of the hyperbola whose asymp-
lote forms with the transverse (real) axis an angle of:
(1) 60°, (2) a.

198. Determine the location of the curve y= —} 9+ 2.
Construct this curve.

199. Determine the trajectory of a moving point M(x, y)
which all the time remains twice nearer to the straight
line x=1 than to the point F (4, 0).

200. Given the points A (—1, 0) and B (2, 0). A point M
moves so that in the triangle AMB the angle B all the
time remains twice the magnitude of the angle A. Deter-
mine the trajectory of the point M.

hola
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201. Given the point A(a, 0). A point B moves along
the axis OY. On a straight line BE, which is parallel to
the axis OX, line segments BM and BM, are laid off,
each of them being equal to AB. Determine the locus of
the points M and M,.

202. Given the straight lines x= 4+ b and x=+a (b<a).
An arbitrary ray OA (Fig. 3) intersects the line x=0b (or
x=—2>) at point B, and the line x=a (or x=—a) at

1%
A

g ﬁ X

A

Fig. 3

point A. With OA as radius an arc is drawn to intersect
0X at point C. Through the points B and C straight lines
are drawn parallel to OX and QY respectively, to intersect
at point M. Determine the locus of points M.

203. Write the canonical equation of a hyperbola knowing
that the distances of one of its vertices from the foci are
equal to 9 and 1.

204. Find the points of intersection of the asymptotes
of the hyperbola x*—3y*=12 and a circle having its
centre at the right-hand focus of the hyperbola and passing
through the origin.

205. A hyperbola passes through the point M (6, 3l/-5) ,
is symmetric about the coordinate axes, and has a trans-
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verse semi-axis a=4. Write the equations of the perpen-
iculars dropped from the left-hand focus of the hyperbola
lo its asymptotes.

206. On the hyperbola 9x*—16y2=144 find the point
Iwice as far from the right focus as from the left one.

207. On the hyperbola x*—y?=4 find the point whose
lo-al radius vectors are mutually perpendicular (see the
hint {o Problem 184).

208. A point M divides the focal length of the hyperbola
‘h* 16y2=144 in the ratio FM: MF=2:3, where F, is
the left-hand focus of the hyperbola. Through the point
M a straight line is drawn at an angle of 135° to the
nxis 0X. Find the points at which this line intersects the
aymiptotes of the hyperbola.

209. Determine the trajectory of a point M which moves
wr {hat it remains twice as far from the point F(—8, 0)
ns from the straight line x=—2.

210. Given the points A (—a, 0) and B(2a, 0). A point
Al moves so that the angle MAB remains one third the
exterior angle AMC of the triangle AMB. Determine the
trajectory of point M.

1.11. The Parabola

The parabola is the locus of points (M) equidistant
[rom a given point (the focus) and a given straight line
(the directrix).

The canonical equation of the parabola has two forms:
(1) y*=2px if the parabola is symmetric about the axis
00X (as in Fig. 4);

(2) x2=2py if the parabola is symmetric about the axis
0Y (as in Fig. 5). -

In both cases the vertex of the parabola, i.e. the point
lying on the axis of symmetry, is found at the coordinate
origin.

The parabola y?=2px has the focus F (%, 0) and. the

directrix x=—%; the focal radius vector of a point

M (x, v) on it is r=x+%.
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The parabola x?=2py has the focus F(O, %) and the
directrix y=—2£.; the focal radius vector of a point

M (x, y) on it is r=y+%.

Y
Mx,y) |4
2_
'E x‘=2py
-~
E Mx,y)
Q
ArF
G X
U Directrix
Fig. 4 Fig. 5

211. Set up the equation of the locus of points equi-
distant from the point F (0, 2) and the straight line y=4.
Find the points at which this curve intersects the coor-
dinate axes and construct it.

212. Set up the equation of the locus of points equi-
distant from the coordinate origin and the straight line
x=—4. Find the points at which this curve intersects
the coordinate axes and construct it.

213. Construct- the parabolas given by the equations:
(1) y*=4x; (2) y2=—4x; (3) x*=4y; (4) x*=—14y, and
also their foci and directrices; write the equations of the
directrices.

214. Write the equation of a parabola: (1) which passes
through the points (0, 0) and (1, —3) and is symmetric
about the axis OX; (2) which passes through the points
(0, 0) and (2, —4) and is symmetric about the axis OY.

215. The cable of a suspension bridge has the form of
the parabola (Fig. 6). Write its equation with respect to
the axes shown in the drawing if the cable deflection
OA=a and the span BC=2b.

216. Write the equation of a circle tangent to the
directrix of the parabola y*=2px, the gentre of the circle
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Iying in the locus of the parabola. Find the points of
Intersection of the parabola and the circle.

217. Write the equation of the parabola and its direct-
tiv il the parabola passes through the points of intersec-
tion of a straight line x+y=0 and a circle x4 y*4- 4y =0,

Fig. 6

mil Is symmetric about the axis OY. Construct the circle,
the straight line, and the parabola.

218, On the parabola y*=6x find the point whose focal
tadius vector is equal to 4.5.

YW 8 B, 6 B8 8

Ay e

Ag i

Ay

A, i

g X
Fig. 7

219. The mirror surface of a searchlight is generated
by revolving a parabola about its axis of symmetry. The
diameter of the mirror is equal to 80 cm; its depth, to
10 cm. At what distance from the vertex of the parabola
should a light source be placed?
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Hint. In order to reflect the light as a parallel beam
the source should be placed in the focus of the parabola.

220. Determine the location of the curve y=—) —x.
Construct this curve.

221, All possible chords are drawn from the vertex of
the parabola y*=2px. Write the equation of the locus of
midpoints of these chords.

222, Determine the locus of the centres of circles tan-
gent to the circle x®4 y2=2ax and the axis OY.

223. Given the points A (0, a) and B(a, a). The line
segments OA and AB are divided into n equal parts by
points A,, A,, A,, ... and B,, B,, B;, ... (Fig. 7). Let
M, be the point of intersection of the ray OB, and the
straight line A,M, which is parallel to OX. Show that
such points M, lie on the parabola y?=ax. Construct the
parabolas y?=4x, y*=>5x, and y*=3x using this method.

224. Derive the equation of the locus of points equi-
distant from the origin and the straight line x=4. Find
the points at which this curve intersects the coordinate
axes and construct it.

225. Derive the equation of the locus of points equi-
distant from the point F (2, 0) and the straight line y=2.
Find the vertex of the parabola and the points of its
intersection with the axis OX. Construct the parabola.

226. Write the equation of the parabola: (1) passing
through the points (0, 0), (—1, 2) and symmetric about
the axis OX; (2) passing through the points (0, 0), (2, 4)
and symmetric about the axis OY.

227. Write the equation of a parabola and its directrix
if the parabola passes through the points of intersection
of the straight line y=x and the circle x*4 42+ 6x=0
and is symmetric about the axis 0X. Construct the straight
line, circle, and parabola.

228. A regular triangle is inscribed in the parabola
y*=2x. Determine its vertices (see the hint to Problem 173).

229. Write the equations of the tangent lines to the

parabola y?=8x drawn from the point A (0, —2).
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230. A straight line is drawn through the focus of the
mrnbola y*=—4x at an angle of 120° to the OX-axis.

rite the equation of the straight line and find the length
ol the chord thus obtained.

1.12. Directrices, Diameters, and Tangents
to Curves of the Second Order

1", The directrices of the ellipse Z—:+i—:=nl (for a>b)

%;: 1 are defined as the straight lines

parallel to the axis OY and drawn at a distance % from

this nxis, where € is the eccentricity.
The equation of the directrices:

x2
mid hyperbola — —

x=;{:-z-. (1)

I'or any point of the ellipse or hyperbola the ratio of
(ts distance from the focus to the distance from the cor-
responding directrix is equal to the eccentricity:

%:a. (2)

2", The locus of the midpoints of parallel chords is cal-
led the diameter of a curve of the second order. The dia-
melers of the ellipse and hyperbola turn out to be all the
sepments and rays of the straight lines passing through
the centre, and the diameters of the “parabola are the rays
parallel to its axis.

This is the equation of the diameter bisecting the chords
with the slope tan a=k:

for the curves Z—:i—by,:=l (ellipse and hyperbola)
y==F % x; (3
for the parabola y?=2px
y="%. (4)

Two diameters of the ellipse or hyperbela such that
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250. Prove that a normal to an ellipse is the bisector
of the angle between the radius vectors of the correspon-
ding point of the ellipse.

251. Prove that a tangent to a hyperbola is the bisector
of the angle between the radius vectors of the point of
tangency.

252. Prove that the rays emanating from the focus of
a parabola are reflected from the parabola along straight
lines parallel to its axis.

Hint. Write the equation of the normal MN, find the
point N at which it intersects the axis of the parabola,
and prove that FM=FN, where F is the focus of the
parabola.

253. Find the points of intersection of the asymptotes

of the hyperbola %—%:1 and its directrices.

254. Construct the ellipse x4 4y2=16, its diameter
y=x and the conjugate diameter, and find the angle
between these diameters.

255. Determine the locus of midpoints of the chords
drawn in the hyperbola x*—4y4?=16 which form an angle
of 45° with the axis OX.

256. Given the hyperbola 4x?—y®=4. Through the point
(2, 2) draw a chord bisected at this point.

257. Taken on the ellipse x2+2y*>=6 is a point M with
the ordinate equal to unity and a negative abscissa. Find
the angle between the straight line tangent to the ellipse
at the point M and the line OM.

258. Show that if the straight line Ax+ By+C=0 is
tangent to the parabola y*=2px then B2p=2AC (see the
hint to Problem 244).

259. Write the equation of the straight line tangent to
the parabola y*=8x and parallel to the straight line

x+y=0.

1.13. Transformation of Cartesian Coordinates.
The Parabolas y=ax?+4-bx-+c¢
and z=ay?+by+c. The Hyperbola zy=k.

1°. The coordinates (x, y) in a given “old” system are
transformed to the coordinates (X, Y) in a “new” system
by the following formulas: -
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(1) for translating the coordinate axes and displacing
the origin to the point O, (a, B)

x=X+a, y=Y+p; 0]
(2) for rotating the axes by an angle ¢
x=Xcosp—Ysing, y=Xsinp+Ycose. 2)

2°. By carrying the origin to the point O, («, B), the
cquation y=a(x—a)24p is transformed to the form

v fr B y
& A
r
X
2 X _
V4 . xy=
i X
Fig. 8 Fig. 9

Y =aX*® and, consequently, defines a parabola with the
vertex O, (o, B) and an axis of symmetry parallel to
the Oy-axis (Fig. 8). By singling out a perfect square
in the right-hand member, the equation y=ax?4bx-+c
Is transformed to the previous one and, therefore, also
defines a parabola. For a >0 the parabola is directed
“upwards” from the vertex, for a <0, “downwards”.

3°. By rotating the coordinate axes through an angle
¢ =45° the equation xy=~k is transformed to the form
X*—Y2=2k and consequently defines an equilateral hyper-
bola whose asymptotes coincide with the coordinate axes
(Fig. 9). By translating the origin to the point O, («, B)
the equation (x—a)(y—p)=~k is brought to the form
XY =k and therefore also defines an equilateral hyperbola.

260. (1) As a result of a translation of the coordinate
axes the point A (3, 1) attains new coordinates (2, —1).
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each one bisects the chords parallel to the other one are
called conjugate. Their slopes £ and k, are connected by

the relation kk,=— 2 (for the ellipse) and kk, =25 (for

the hyperbola).
3°. The equations of lines tangent to:

2 2
the ellipse (%_}_i‘)/_z: 1) oy -I—yy"—-l
the hyperbola( : g_:._l) 2’;« yyo —=1;

the parabola (4*=2px) yyo—P(x+xo),
where (x,, y,) is the point of tangency.

231. Construct the ellipse 12‘—;-+%2= 1, its directrices
and find the distances of the point with the abscissa
x=—3 from the right-hand focus and right-hand directrix.

232, Construct the hyperbola -’%—%: 1, its directrices

and find the distances of the point with the abscissa x=5
from the left-hand focus and left-hand directrix.
233. Write the canonical equation of the ellipse whose

directrices are the straight lines x——i—— and whose

7
major semi-axis is equal to 2.
234. Write the equation of the hyperbola whose asymp-
totes are y=+ x, and the directrices are x=-+ V6.
235. Construct the ellipse x2-+4y2=16, the diameter

—_—.% and its conjugate diameter, and find the lengths

a, and b, of the constructed semi-diameters.

236. Construct the hyperbola x2—4y2=4, the diameter
y=—x and its conjugate diameter. Find the angle bet-
ween the diameters.

237. Find the length of the diameter of the ellipse

—2;-1—%—::1 which is equal to its conjugate diameter.
238. The asymptote of the hyperbola %:——i—::l forms

an angle of 60° with the axis 0X. Write the equation of
the diameter conjugate to the diameter y=2x. Choose an
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mbitrary line segmant a and construct the curve, the
inmeters, and the chords parallel to the given diameter.

239. Determine the locus of the midpoints of chords
ol the parabola y?=4x which form an angle of 45° with
the axis 0X.

240. Given the ellipse %2—]—%2: 1. Through the point

(2, 1) draw a chord bisected at this point.

241. Given the parabola y?=—4x. Through the point
( 2, —1) draw a chord bisected at this point.

242, Making use of Problem 235 check the Apollonius
theorem: a?+b*=a?+ b2 and a,b, sin p=ab, here a, and b,
are the lengths of the conjugate semi-diameters, a and b,
he semi-axes of the ellipse, and ¢, the angle between
the conjugate diameters.

243. Write the equations of the straight lines tangent
lo the curves: (1) x244y2=16; (2) 3x2—y2=3; (3) y2=2x
al the point with the abscissa x,=2.

244. Show that if the straight line Ax+By+C=0 is

langent to the ellipse 2+ %=1, then A%a?- Bib*=C

lint. From the proportionality of the coefficients of
the equations %‘H—y—:zﬁzl and Ax+ By+C=0 determine
v, and g, and substitute them in the equation % 4% = 1.

245. Write the equations of the tangent lines to the
ellipse x2+4y? =20 which are parallel to the bisector of
the first quadrant.

246. Write the equations of the tangent lines to the
ellipse x2 2y =8 drawn from the point (0, 6).

247. Write the equation of a tangent line to the ellipse

"‘: -{—%—2:1 cutting off equal positive intercepts on the

coordinate axes.
248. Show that if the straight line Ax+By+4C=0 is

tangent to the hyperbola Z—:—-g;= 1, then A?a®— B2*=C?
(see the hint to Problem 244).
249, Write the equations of the straight lines tangent

o the hyperbola 4x*—9y*=36 and perpendicular to the
straight line x4 2y=0.
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Construct both the given and the new coordinate axes
and plot the point A.

(2) Find the acute angle through which the coordinate
axes should be rotated for the point A(2, 4) to attain
the new abscissa 4. Construct both systems of coordinates
and plot the point A.

261. Translating the coordinate origin, simplify the
following equations:

—9)2 2 —1)2

() =2 1y =1, (@ &=y,

B) (¥y+2)*=4(x—23); (4) 2y=—(x+2)%

(5) x*+4y*—6x+ 8y =3; (6) y*—8y=4x;

(7) x*—4y*+8x—24y=24; (8) x®4-6x+5=2y.

Construct both the old and the new coordinate axes
and plot the curves.

262. Rotating the coordinate axes through 45°, simplify
the equations: (1) b5x*—6xy--5y*=32; (2) 3x2—10xy +
-+ 3y*+32=0. Construct bath the old and the new coor-
dinate axes and plot the curves.

263. Plot the curve xy=—4 and transform the equa-
tion by rotating the axes through an angle ¢=—45°.

264. Translating the coordinate origin, bring to the
form xy==%k the equations of the following curves:

(1) xy—2x=6; (2) xy—2x—y+8=0; (3) xy—x-2y=6;
4) xy—+2x=23y.

Hint. Write the equation xy+ Ax+ By+C=0 in the
form (x4 B)(y+ A)=AB—C.
265. Construct the parabolas:

(1) y=(x—2)% (2) y=(x—2)*+3;
B) y=(x+2)% 4) y=(x+2)*—3.

266. Construct the parabolas:

(1) y=x2—4x4+5, (2) y=x+2x+3; (3) y=—x+
+2x—2 by singling out perfect squares in the right-hand
members of the above equations.

267. Construct the parabolas: (1) y=4x—x?* and
(2) 2y =3+2x—x? finding the points at which they inter-
sect the axis 0X.
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268. A water jet from a fountain reaches its maximum
height of 4 m at a distance of 0.5 m from the vertical
passing through the point O of water outlet. Find the
licight of the jet above the horizontal OX at a distance
of 0.75 m from the point O.

269. Derive the equation of the parabola which is
symmetric about the axis OY and cuts off on it an inter-
cept b, and on the axis OX, intercepts a and —a.

Hint. Substitute the given coordinates of the points
on the parabola (—a, 0), (a, 0), and (0, b) in the equa-
tion of the form y=Ax*+Bx-+C and then find A, B,
and C.

270. The parabola y=ax?®+bx-+c passes through the
points 0 (0, 0), A(—1, —3), and B(—2, —4). Write the
cquation of the circle whose diameter is the x-intercept
cut off by the parabola.

271. Through what angle is it necessary to rotate the
coordinate axes in order to eliminate the term containing
xy in the equations: (1) x* —xy+y*—3=0; (2) 5x*—4xy+
|-2y2—24 =0? Construct both the old and the new coor-
dinate axes and plot the curves.

272. Determine the trajectory of a bullet shot at an
angle of @ to the horizon with the initial velocity wv,.
Determine also the bullet range and the highest point of
the trajectory (air resistance should be neglected).

273. Write the equation of the locus of points M (x, y),
the ratio of the distances of which from the point F (4, 0)
to the distances from the straight line x=—2 is equal
to 2.

274. Show that, by translating the coordinate origin
in the left-hand vertex of the ellipse x—:—l—!—/;=] or in the
a b

right-hand vertex of the hyperbola Z‘—:—Z—Z=l both equa-
tions are brought to the same form y?=2px -+ gx?, where
p=.-%3 and g=ege*—1.

275. Using the results of Problem 274, determine the

eccentricity and the type of the curve (1) y2=x—%x’;
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@) yg=x+%x’; (3) y2=x. Construct the curves finding

for the first two of them the points of their intersection
with the axis OX and the parameters a and b.

276. Singling out perfect squares and translating the
coordinate origin, simplify the following equations of lines:

(1) 2x*45y2—12x+ 10y + 13=0;

(2) *—y2+bx+4y—4=0;

(3) y*+4y=2x;

4) x2—10x=4y—13.

Construct both the old and the new axes and plot the
curves.

277. By rotating the coordinate axes through 45° simp-
lify the equation 3x*—2xy-+-3y2—8=0. Determine the
coordinates of the foci in the old system.

278. Write the equation of ‘the circle whose diameter
is the x-intercept cut off by the parabola y=3—2x—x2.
Construct both curves.

279. Write the equation of the circle whose diameter
is the segment of the straight line x+y=6 cut off by
the hyperbola xy=8. Construct each of the three lines.

280. A is the vertex of the parabola y=x2-+46x-5,
B is the point of intersection of the parabola and the
OY-axis. Write the equation of the perpendicular erected
at the midpoint of the line segment AB.

281. Derive the equation of the parabola which is
symmetric about the axis OX and cuts off on it an inter-
cept —4, and on the axis OY, intercepts 4 and —4.

Hint. The equation of the parabola. must be of the
form x =ay®-+c (why?).

282. Using the points of intersection with the coordi-
nate axes, construct the parabolas:

(1) 3y=9—=x2;, (2) y2=9—3x; 3) y*=4+x;, (4) x*=
=44 2y.

283. Write the equation of the locus of points M (x, y),
the ratio of the distances of each from the point F (4, 0)
to the distances from the straight line x=10 being equal

to 21
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1.14. Miscellaneous Problems
on Second-Order Curves

284. Write the equation of the circle whose diameter
Is a segment of the straight line %—l—%:l intercepted

by the coordinate axes.

285. Find the distance of the centre of the circle
xt 4+ y*+ay=0 from the straight line y =2 (a—x).

286. A straight line is drawn through the centre of
the circle x2 4- y* = 2ax parallel to the straight line x +2y =0
and intersecting the circle at the points A and B. Find
the area of the triangle AOB.

287. Show that the locus of points M, which are m
times farther from a given point A than from another
given point B, is a straight line at m=1 and a circle
if ms£1,

288. A line segment AB is divided into two parts:
AO=a and OB=b. Show that the locus of points, from
which the segments A0 and OB are seen at equal angles,
is a straight line at a=b, and a circle when as%b (the
circle of Apollonius).

289. Determine the trajectory of a point M (x, y) mo-
ving in such a manner that the sum of the squares of
its distances from the straight lines y=4%kx and y=—Fkx
remains constant and equal to a2.

290. An ellipse symmetric about the axis OX and the
straight line x=—5 passes through the points (—1, 1.8)
and (—5, 3). Write the equation of the ellipse and const-
ruct it.

291. Find the area of an equilateral triangle inscribed
in the hyperbola x*—y?=a2.

292. Find the angle between the diagonals of a rec-
tangle whose vertices are found at the points of intersec-
tion of the ellipse x24-3y2=12/2 and the hyperbola

—3y? =602

293. A circle with the centre at the coordinate origin
passes through the foci of the hyperbola x2—y?=a?. Find
the points of intersection of the circle and the asympto-
tes of the hyperbola.

294. Construct the hyperbolas xy=—4 and x*—y*=6
and find the area of the triangle ABC, where A and B
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.are the vertices of two intersecting branches of the hy-
perbolas and C is the point of intersection of the two
other branches of the hyperbolas.

295. Prove that the product of the distances of any
point of the hyperbola from its asymptotes is a constant

252
equal to ‘icf—.
296. Find the length and the equation of a perpendi-
2
cular dropped from the focus of the parabola y:—%
onto a straight line cutting off the intercepts a=b=2
on the coordinate axes.

297. Construct the ellipse x*+4y*=4 and the parabola
x2=06y and find the area of the trapezoid whose bases are
the major axis of the ellipse and a common chord of the
ellipse and parabola.

298. From the focus of the parabola y?=2px as centre
a circle is described so that a common chord of the cur-
ves is equidistant from .the vertex and the focus of the
parabola. Write the equation of the circle.

299. Find the length and the equation of the perpen-
dicular dropped from the vertex of the parabola by =x24-
+2ax+ a4 b* onto the straight line cutting off intercepts
a and b on the coordinate axes.

300. Plotting the points of intersection with the coor-
dinate axes, construct the parabolas 4y=12—x? and
4x==12—y? and find the length of their common chord.

301. Find the area of a quadrilateral whose vertices
lie in the points of intersection of the parabola y =4 —x?
.and the axis OX and the straight line y=3x.

302. Write the equation of a circle passing through
the coordinate origin and the points of intersection of the

parabola y=x—:_—2x+a with the coordinate axes.

303. Given the ellipse x24-4y>=16. From its vertex
A (4, 0) all possible chords are drawn. Determine the lo-
.cus of midpoints of these chords and construct the curves.

304. Determine the trajectory of a point M (x, y) mo-
ving so that the difference of the squares of its distances
from the bisectors of the quadrants remains equal to 8.

305. Derive the equation of the locus of centres of the
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circles passing through the point A (3, 4) tangent to the
axis 0X.

306. Singling out perfect squares and translating the
origin, simplify the equation of the curve x*—gy2—4x—

6y —9=0. Construct both the old and the new coordi-
nate axes and plot the curve.

307. Find the locus of midpoints of the focal radius
vectors drawn from the right-hand focus to all points of

‘ »_ ¥
the hyperbola 5 —F=1.

308. Write the equation of the ellipse passing through
the point A (a, —a) if its foci are found at the points.
I'(a, @) and F,(—a; —a).

Simplify the equation by rotating the coordinate axes
through an angle of 45°.

309. By rotating the coordinate axes through an angle

ql»farctan% simplify the equation of the curve 3x*+

| 8xy—3y?=20. Construct both the old and the new
coordinate axes and plot the curve.

310. Write the equation of the locus of points, the
difference of the squares of whose distances from the
straight line 3x+4y=0 and from the axis OX remains
constant and equals 2.4.

311. Write the equation of the locus of points M (x, y),
the ratio of whose distances from the point F(s_i—l' O)

to the distances from the straight line x= is e.

D
Te(eF1)

312. Construct the domains, the coordinates of whose
points satisfy the following inequalities:

(1) R* < x*+y* < 4R® and x2>$;
(2) x2—y* > a? and »* < 4a?;

(3) xy >a? and |x+y| < 4a;
(4) 2x < y*+4y and x*+y2+4x+4y <O0.

1.15. General Equation of a Second-Order Curve

1°. A curve which is represented by an equation of the
second degree in a Cartesian coordinate system is called
a curve of the second order. The general equation of the
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second degree is usually written as

Ax?+2Bxy+Cy*+2Dx+2Ey+ F = 0. 1

Let us form two determinants using the coefficients of
equation (1):

A B D

B C E

D E F

6=|g g and A=

The determinant A is called the discriminant of equa-
tion (1), and 8, the discriminant of its senior terms. De-
pending on the magnitudes of 6 and A, equation (1) de-
fines the following geometric image:

As=0 A=0

>0 Ellipse (real or imaginary) |Point

§<0 Hyperbola A pair of intersecting straight
lines
65=0 Parabola A pair of parallel straight

lines (real or imaginary)

2°. Transforming equation (1) to the centre. If

6= g B =0, then the curve has a centre whose coor-
dinates are found from the equations

DO (x, y) =0, Dy(x, y)=0, (2)

where @ (x, y) is the left-hand member of equation (1).
By translating the origin to the centre O, (x,, y,) (see
Fig. 10), we reduce equation (1) to the form

Axt+2Bx,y, +Cyi+ F, =0, 3)
where
Fy=Dx,+Ey,+ F=5. )
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3>, Transforming equation (3) to the axes of symmetry.
By rotating the axes O,x, and O,y, through some angle ¢
(IFig. 10), equation (3) is transformed to the canonical
form

A X*4C,\Y*+F,=0. (5)
The coefficients A, and C, are the roots of the equation
M—(A4+C)A+6=0. (6)

I'he angle of rotation ¢ is found by the formula
B
tancp—A—l_—C. (7)

4°. Transforming the equation of a second-order curve
having no centre. If 6=0, the curve has no centre or

[

7+ X

Fig. 10

has no defined centre. Its equation then may be written
in the form

(ax+Py)*+2Dx+2Ey+ F =0. (8)

Case I. D and E are proportional to a and f: D=ma«,
[=mp. Equation (8) takes on the form (ouc—}—ﬁy)2
|- 2m (ax+By) + F =0, whence ax+py=—m +V m—
i.e. a-pair of straight lines.

Case II. D and E are not proportional to « and B.
Equation (8) may be rewritten as

(ax+By +n)2+2m Bx—ay+q)=0. )
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The parameters m, n, and g are found by comparing
the coefficients of equations (8) and (9). Taking then the
straight line ax+py+n=0 for the axis 0,X and the
straight line px—ay -+ ¢=0 for the axis 0,Y (Fig. 11), we
find:

_wxtPytn oy Br—aytg
VR V@ g
Now equation (9) takes on the form Y2=2pX, where

p=#/_"i_gz—. The axis 0,X is directed towards the hali-

A\
o

Fig. 11

plane in which px—ay+ g has the sign opposite to that
of m, as is obvious from equation (9).

313. Determine the geometric objects represented by the
following equations:

(1) 4x*—12=0; (2) 4x*+y*=0; ) x*+y*+2x+2=0;

(4) ¥+ 1P —6x—8y-+25=0; (5) x*4-xy=0;

(6) y*—16=0; (7) x2—3xy+2y*>=0.

314. Find the centres and transform to them the equations
of the curves:

(1) 2x2+ 3y —4x+6y—7=0;

(2) x*—y2—4x+2y—4=0;

(3) 2x2+ bxy + 2y2 —6x—3y—8=0.
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315. By rotating the coordinate axes, bring the equations
to the canonical form and construct the curves:

(1) 5x2—dxy+ 2y =24; (2) 2x2+4xy—y? =12,

316. Reduce the equations to the canonical form and
construct the curves:

(1) 3x2—2xy+3y*—4x—4y—12=0;
(2) x®*—6bxy+y*—4x—4y+12=0.

317. Transform the equations to the canonical form:

(1) x2+ 4xy+ 4y*—20x + 10y — 50 =0;
(2) x2—4xy+4y*—6x+ 12y +8=0;

and construct the curves represented by them.
318. Making use of the discriminants 6 and A, determine
the geometric objects represented by the following equations:

(1) x2—4xy—+ 3y*—8x + 14y + 15=0;
(2) x*+2xy+4y*—2x+4y+4=0;
(3) x244xy+4y*+3x+6y+2=0.

On solving the first and third equations with respect to g,
construct the curves determined by these equations.
319. Bring to the canonical form the equation of the

2 .
3xf—12¢+44 and construct it.
4x—8

320. Write the equation of the second-order curve whose
centre is the point O, (1, 2) and which passes through
the coordinate origin and the points (0, 4) and (1, —1).

321. Show that the equation Vx4V y=V a defines an
arc of the parabola, construct this parabola and find its
vertex.

Hint. Rotate the coordinate axes through an angle
¢ =—45°

322. Write the equation of the locus of points M (x, y),
the ratio of the distances of each of which from the point
F (m, n) to its distance from the straight line xcosa 4
+ ysina—g=0 is e. Denoting the coefficients of the
obtained equation by A, B, C, ..., determine the inva-

riants A+4+C and 6=’g g’

curve y=
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323. Determine the geometric objects represented by
the following equations:

(1) x*—4y*=0;
(2) x*+2y*+4x—8y+12=0;
(3) x2+5xy—6y*=0.

324. Transform to the canonical form the equations and
construct the curves:

(1) x2—xy+y?—2x—2y—2=0;
(2) 3x2410xy+3y2—12x— 12y +4=0.

325. Transform to the canonical form the equations:
(1) x2—2xy+y*—10x—6y 4+ 25 =0;
@) x*+2xy+y*—4x—4y+3=0

and construct the curves represented by them.
326. Making use of the discriminants 6 and A determine
the geometric objects represented by the equations:

(1) »*—2xy+y*—4x+4y+3=0;
(2) x2—2xy—3y?+6x+ 10y —7=0.

After solving each equation with respect to y construct
the curve determined by it.

327. Write the equation of the locus of points M (x, y),
the ratio of whose distances from the point F (3, 3) to
the distances from the straight line x+y =0 is equal to:

8] s=i; (2) e=2.

328. Write the equation of the locus of points M(x, y)

equidistant from the point F 2 , ; and the straight
line x4y =0 and reduce it to the canonical form.

329. Write the equation of the locus of points the diffe-
rence of the squared distances of each from the straight
line x—2y =2 and from the axis OX remaining constant
and equal to 3.2. Transform it to the canonical form and

construct the curve.
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1.16. Polar Coordinates

In a plane (Fig. 12) take an arbitrary point O (pole)
and draw a ray OP (polar axis). Then the position of any
point M in the plane may be specified by

(1) the polar angle 9 =/ MOP;

(2) the radius vector r=0M.

The numbers ¢ and r are termed the polar coordinates
of the point M.

When studying the equations associated with r and ¢
it is useful to consider the polar coordinates ¢ and r as

f)’

Fig. 12

attaining any positive and negative values. Negative angles
¢ are usually measured clockwise, and negative r are
laid off not on the ray but on its extension beyond the
ole.

P If we take the pole for the origin of the Cartesian rectan-
gular coordinates and the polar axis OP for the axis 0X,
then the cartesian coordinates (x, y) of the point M and
its polar coordinates (¢, r) will be related as follows:

X=rcos @, y=rsing; (1)
r=Vx*¥4*, tan cp=%. (2)

If we now take the focus of the ellipse, hyperbola, or
parabola for the pole, and the focal axis of symmetry
for the polar axis drawn in the direction opposite to the
nearest vertex, then the equation in polar coordinates for
all the three curves will be the same:

r=—>" _ ®)

T l—ecos @’
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where e is the eccentricity, and p, the parameter. For
the ellipse and hyperbola p=%.

330. Construct the following points using polar coor-
dinates (¢, r): A(0, 3), B(;, 2), c(g, 3), D(x, 2),

5(37“,3).
331. Construct the following points: A(g, —2),
B(—g, 3), c(—%, —4), D(%", —3).

332. Construct the line r =2 -2cos .
Hint. Tabulate the values of r for ¢p=0; j:%; i%;

2n
&+ 3 T
333. Construct the following curves (Figs. 84, 85, and 90):
(1) r=ap (the spiral of Archimedes)
(2) r=a(l—cos @) (the cardioid)
(3) r2=a?cos2¢ (the lemniscate)
@) r== (the hyperbolic spiral)

(5) r=a(l+2cos¢) (the limagon of Pascal)

334. Construct the lines: (1) r=a; (2) cp:%;
b
B)r=g5-

335. Write in polar coordinates the equation of the (1)
straight line cutting off an intercept a on the polar axis
and perpendicular to it; (2) straight line passing through
the point A(a; a) and parallel to the polar axis.

336. Write in polar coordinates the equation of the
straight line passing through the point A(a, a) at an
angle B to the polar axis.

337. Write in polar coordinates the equation of the
circle whose centre lies at the point C (0, a) and the radius
equals a.

338. Construct the curves:

(1) r=3—2sin29; (2) r=24-cos3g; (3) r=1—sin3g.
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Hint. First determine the angles at which we have r,,
and rpin-

339. Construct the curves (see Figs. 86 and 87 on
page 386):

(1) r=asin 3¢ (three-leafed rose);
(2) r=asin2¢ (four-leafed rose).

340. Transform the following equations of the lines to
polar coordinates:

(Hxt—y2=a? (2)x2+y*=a? (3)xcosa+ysina—p=0;
(4) y=x; (5) ¥*+y*=ax; (6) (x*+y°)*=a*(x*—y*).

341. Transform the following equations to the Carte-
sian-coordinate form and construct the corresponding
lines:

(1) rcosp=a; (2) r=2asing; (3) rsin22¢=2a?
4) rsin(cp{—%):al/?; (5) r=a(l-+cos®).

342. Write the canonical equations of the second-order
curves:
9

9
M r=5—4coscp’

(2) r=4—5cos¢p;

(3) r=

—cos @’

343. Conchoid. Draw a straight line through the point
A(%, a) and parallel to the polar axis. An arbitrary

ray OB intersects this straight line at point B. On OB
lay off, on either side of B, the line segments BM = BM, =b.
Determine the locus of points M and M, in polar coor-
dinates and construct the curve.

344. Strophoid. A straight line x=a intersects the axis
0X at point A and an arbitrary ray OB at point B. On
OB lay off, on either side of B, the line segments BM, .
and BM, equal to AB. Write the equation of the locus
of points M, and M, both in polar and Cartesian coordina-
tes (see Fig. 88).

345. Cassinian curve (oval of Cassini). A point M (g, r)
moves so that the product of its distances from the points
F (0, a) and F,(m, a) remains equal to b2. Write in polar
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coordinates the equation of the path covered by the
point M.

346. Cardioid. An arbitrary ray OA intersects the circle
r=acos ¢ at point A. On OA lay off, on either side of A4,
the line segments AM =AM, =a. Derive the equation of
the locus of points M and M, both in polar and Cartesian
coordinates.

347. Epicycloid. A circle of diameter a rolls withoutl
sliding along a circle of the same diameter outside this
circle. Write the equation of the curve described by a
point M on the rolling circle if the point of tangency of
circles is taken for the pole and the starting position
of the point M, and the polar axis is drawn through the
centres of the circles (in the starting position).

348. Construct the curves: (1) r =3+ 2cos2¢; (2) r =3 —
—sin3g; (3) r=acos2¢ (see the hint to Problem 338).
349. Construct: (1) r=4(1+4cos@); (2) r=2—sing.
350. Write in polar coordinates the equation of a straight
line passing through the given points 4 (a; a) and B (B; b).

Hint: Consider the relationship among the areas of the
triangles AOM, BOM, and AOB, where M (g, r) is an
arbitrary point of the straight line.

351. Write the canonical equations of the curves of the
second order:

(Iyr= ‘

2—2cos ¢

N S
2—V 3cosq ’ 2—V Bcos @

3 (3) r=

352. Lemniscate of Bernoulli. A point M (¢, r) moves
so that the product of its distances from the points F (0, ¢)
and F,(n, ¢) remains equal to c2. Write the equation of
the path traversed by M both in polar and Cartesian coor-
dinates.

Hint. According to the law of cosines FM2=r2 | ¢z —
—2rccos ¢ and F\M2=r?+c*+2rccos¢, and, by hypo-
thesis, FM2. F . M? =4,

353. Limagon of Pascal. Draw an arbitrary ray OA. From
the point A where OA intersects the circle r=acos ¢ lay
off, on both sides of A, the line segments AM =AM, =b.
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Derive the equation of the locus of points M in polar
coordinates.

354. Four-leafed rose. The ends of a line segment AB=2a
slide along the axes of the Cartesian coordinates. A per-
pendicular OM is dropped from the origin onto AB. Write
the equation of the locus of points M (x, y) for all possible
positions of AB.

1.17. Algebraic Curves of the Third
and Higher Orders

355. Construct the following curves (see Figs. 70 to 73
on pages 383, 384):

x3

(1) y=5 (cubical parabola);
(@) yr=x° .
(3) gt =t (semicubical parabola);

4) y2=x(x—4)* (loop parabola).

356. Construct the curves:
2 2 2
(1) x3 +y3 =a? (equilateral astroid);

2 2
(2) (%) 3 +(%)3 =1, bs=a (non-equilateral astroid).

Hint. Find the points of intersection of the curves and
the axes OX and OY and also the points at which the
first curve intersects the straight lines y= 4 x, and the

second curve the straight lines y=4 %x (see Fig. 82 on

page 386).

357. On the line segment [—1, 1] construct the follo-
wing curves: (1) y=x2"*1, (2) y=x"; (3) x?"+y2"» =1 if
n=1, 2, 4. What polygonal lines do these curves approach
as n—s oo?

Hint. Find the points at which the first curve intersects

the straight line y=§f—l; the second, the straight line

y= 2in, and the third, the straight line y =x. Ten squares
of squared paper should be taken for a scale unit.
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358. Astroid. The end-points of a line segment AB=a
slide along the axes of the Cartesian coordinates. Two
straight lines AC and BC parallel to the coordinate axes
intersect at point C. A perpendicular CM is dropped
from C onto AB. Write the equation of the locus of po-
ints M (x, y) for all possible positions of the line seg-
‘ment AB.

359. Construct the curves:

) y”:%c (cissoid, Fig. 89 on page 387);
2) __ (versiera, Fig. 80 on page 385).
y x2+4a2

360. Each point P (x,, y,) of the parabola y?=2px is
displaced parallel to the axis OX by a distance PM =
= 4+ OP. Find the locus of points M.

361. A bar OA =a rotates about the origin 0. Hinged
to it at point A is another bar AB=2a, whose end-point
slides along the axis OX. Write the equation of the line
described by the midpoint M of the line segment AB.

362. Cissoid. An arbitrary ray OA (Fig. 89 on page 387)
intersects the circle x24- y2=ax at point A and the straight
line x=a at point B. A line segment OM = AB is laid
off on the ray. Derive the equation of the locus of points M.

363. An arbitrary ray OB (Fig. 89 on page 387) in-
tersects the straight line x=a at point B. Point C is the
projection of B on the axis OY, and M is the projection
of C on OB. Show that the locus of points M is a cissoid.

364. Prove that, if from the vertex of the parabola
y? =—4ax perpendiculars are drawn to the tangent lines
to this curve, then the locus of the feet of the perpendi-
culars is a cissoid.

365. Versiera. An arbitrary ray OA intersects the circle
x2+y?*=2ay and the straight line y =2a at points A and
B respectively. From these points two straight lines are
drawn: one parallel to the axis OX, the other to the axis OY
to intersect each other at a point M. Determine the locus
of points M.

366. Folium of Descartes: x3+ y3>—3axy=0. Show that,
by rotating the coordinate axes through an angle of 45°,
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- o _ X3(36—X) i
this equation is reduced to the form Y2 =S36Tx) whe

re b=—52—. Construct the curve, determining the location

of the curve and its symmetry, the points of intersection
with the straight line y=x and the asymptote. Show that
the equation of the asymptote in the new system of coor-
dinates will be X =—b, while in the old one x+y+a=0
(sce Fig. 83 on page 386).

1.18. Transcendental Curves

367. Cycloid. A circle of radius a rolls along a straight
line 0X without sliding. Derive parametric equations of
the curve described by point M of the circle, taking the
angle of rotation of the rolling circle for the parameter ¢
and putting that at =0 the point M is found at the
origin.

368. Involute of a Circle. This is a curve described by
the extremity of a taut string unwinding from (or win-
ding onto) a circular spool, the equation of the circle
being x24 y?=a?. Set up parametric equations of the curve
if the starting point of the extremity is (a, 0). Take the
length of the unwound arc (in radians) for the parameter ¢.

369. Quadratrix. An arbitrary ray OM, forming an ang-
le ¢ (in radians) with the axis OY, intersects the straight
line x=at at point M. Write the equation of the locus
of points M.

370. Epicycloid. A circle of radius r rolls without sli-
ding along a circle of radius R outside it. Set up para-
.metric equations of the curve described by point M of
the rolling circle. (At r=R an epicycloid turns into a
cardioid. See Problem 347.)

371. Hypocycloid. A circle of radius r rolls without
sliding along a circle of radius R > r inside it. Set up
parametric equations of the curve described by point M

of the rolling circle. (At r=% a hypocycloid turns into
2 2 2
an astroid x3 4y3 =a3 .



CHAPTER 2

VECTOR ALGEBRA

2.1. Addition of Vectors. Multiplication of a
Vector by a Scalar

1°. Definitions. A wvector quantity, or a vector (in the
broad sense of the word), is any quantity possessing di-
rection. A scalar quantity (or scalar) is a quantity that
does not possess direction.

In geometry, a vector (in the narrow sense) is any di-
rected line segment.

A vector with initial point A and terminal point B is

denoted as AB (Fig. 13).

Fig. 13

A vector can also be denoted by a single letter as in
Fig. 13. In printing this letter is given in boldface type
(@), in writing it is given with a bar (a).

The length of a vector is also called the absolute value
(or modulus) of the vector. The absolute value of a vector
is a scalar quantity.

The absolute value of a vector is denoted by two ver-

tical lines: |AB| or |a| or |al.
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In the two-letter notation of a vector, its absolute va-
lue is sometimes denoted by the same letters without an

arrow (AB is the absolute value of the vector AB), in the
single-letter notation, the absolute value is denoted by a
normal weight letter (b is the absolute value of the vector ).

Vectors parallel to one straight line are termed col-
linear. Vectors parallel to one plane are called coplanar.
Two vectors @.and & (Fig. 13) are equal if they (1) have
the same modulus, (2) are collinear, (3) are in the same
direction.

2°. Multiplication of a vector by a scalar. To multiply
a vector @ (multiplicand) by a number (scalar) m means
to construct a new vector (product) the absolute value of
which is obtained by multiplying the absolute value of
the vector @ by the absolute value of the number m, the
direction coinciding with the direction of the vector @ or
being in the opposite sense, depending on whether the
number m is positive or negative. If m=0, the product
is the null vector.

3°, Addition of vectors. The sum of the vectors a-+b ¢

is a fourth vector R=0C (Fig. 14) joining the initial
point O of the vector @ to the terminal point of the vec-
tor ¢, i.e. connecting the end-points of the polygonal line
OABC constructed from the given vectors. In particular,
in a parallelogram, constructed from the given vectors

OA=a and _0_f3=b, one vector-diagonal OC is the sum

a -+ b, the other BA being the difference @ —b& of the given

vectors.
4°. The projection of a vector on an axis. Let a vec-
tor @ form an angle ¢ with the axis OX. Then the pro-

3-1895
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jection of the vector on this axis is determined by the
formula

prox@=|a|cos ¢ =acos (a/,\OX).

The projection of a sum of vectors on some axis is equal
to the sum of the projections of those vectors on the same
axis: .
Prox (@ -+ b) =proxa -+ proxb.

372. Laid off on the sides OA and OB of a rectangle
OACB are the unit vectors { and j (Fig. 15). Express the

M

b t 4
+ N
j._
Vi l': 4 2
Fig. 15

vectors 6’4, Xé, C—‘_BF, 3-6, 073, and BA in terms of { and J
if the length OA=3 and OB=4.

373. Let M be the midpoint of BC and N, the midpoint
of AC (Fig. 15). Determine the vectors O_fl/l, CTN, and

MN if 0A=3 and OB=4.
374. Given in a plane are the points A (0, —2), B (4, 2),

and C (4, —2). Forces (ﬁ, E)B, and OC are applied at

the coordinate origin. Construct the resultant force 57(1,
and find its projections on the coordinate axes and its

magnitude. Express the forces 574, 55, O—é, and OM in
terms of the unit vectors i and j of the coordinate axes.
375. Given three coplanar unit vectors m, n, and p,
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(m, n)=30° and (n, p)=60°. Construct the vector u=
m—+2n—3p and compute its modulus.

[lint. In the polygonal line constructed from the vec-
tors m, 2n and —3p extend the first line segment to in-
lersect the third one.

376. Check analytically and geometrically the vector
identities:

(1) a+b;a=a—1—b; ) a_asza;b‘

2

377. A parallelepiped is constructed on three non-co-

planar vectors 0OA=a, OB=25, and OC =c. Indicate tho-
s¢ of its vector-diagonals which are equal to a4-b—c,
a4 -b+c, a—b—c, and b—a—c respectively.

378. With the aid of the drawing of Problem 377 check
the commutative property of the vector sum:

at+b—c=a—c+b=b+a—c=b—c-+ta.

379. Given vectors 0OA=a and OB=¥5. Vector OC =¢
is a median of the- triangle OAB. Resolve analytically
and geometrically (1) the vector ¢ into @ and &; (2) the
vector @ into & and c.

380. In a rectangle OACB (Fig. 15) M and N are the
midpoints of the sides BC=3 and AC=4. Resolve geo-
metrically and analytically the vector OC=¢ into the
vectors OM=a and ON =b5.

Hint. Substitute the expressions of @, &, and ¢ in terms
of { and j into the condition ¢= ma—l—nb and compare
the coefficients of # and j in the left-hand and right-hand
members.

381. Given a regular hexagon OABCDE with side 0A=3.
l)enoting the unit vectors of the directions OA, AB, BC
in terms of m, n, and p, find the relationship among
them (for mstance by con51dermg the trapezond OABC)
Express then the vectors 0B, BC, EO, OD and DA in
terms of m and n.
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382. In an isosceles trapezoid OACB (Fig. 16) the angle
BOA=60°, OB =BC=CA=2, M and N are the
midpoints of the sides BC and AC. Express the vectors

71_(3, 07’&4, m, and MN in terms of m and n which are
the unit vectors of the directions of 0A and 0B.

Fig. 16

383. Given vectors @ and b the angle between which
equals 120°. Construct the vector ¢=2a—1.56 and de-
termine its modulus if a=3 and b=4.

384. Given in a plane are the points 4 (3, 3), B(—3, 3),
and C(—3, 0). Applied at the coordinate origin are for-

ces 574 53, and OC. Construct the resultant force OM and
find its projections on the coordinate axes and its

magnitude. Express the forces Ezl, 53, (TC:’, and OM in
terms of the unit vectors ¢ and J of the coordinate axes.

385. (1) In a trapezoid OACB: BC———OA and BCH OA.
Resolve geometrncally and analytlcally the vector 0Ad=a

into the vectors OC =¢ and OB =b.
Hint. In the triangle OBC express ¢ in terms of & and
a and then solve the obtained equation with respect to a.
(2) Point B divides a circular arc AC=90° in the ra-
tio 1:2. O is the centre of the circle. Resolve the vector

(-)Z‘=c into vectors 5Z=a and (ﬁ=b.

2.2 Rectangular Coordinates of a Point and a
Vector in Space

1°. Definition. Let there be given three mutually per--
pendicular coordinate axes with a common origin O and
a point M (Fig. 17). The projections of its radius vector
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OM=r on the coordinate axes oM, =x, OM,=y, and
OM,=zare called the rectangular coordinates of the point M

or the vector r=b7f4.

2\ k

Fig. 17

2°. The radius vector of a point in space. The modulus
or the length of the radius vector OM=r is expressed in
lerms of its coordinates by the formula

r=Vx+y+2. (1)

The unit vectors of the coordinate axes 4, J, and & are
called the basis vectors. The radius vectors are expressed
in terms of the basis vectors

r=xi-+tyj-+zk. 2)

3°. A vector given by the coordinates of the initial
and terminal points. Let there be given points A (x,, y,, 2;)

and B(x,, Y, 2,). The projections of the vector u=AB
on the coordinate axes will be

pl'oxA—é= X =X,— Xy,
proyAB=Y =y,—y,, ®)
proz,zl—é =Z=2z,—2,.
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We may write formulas analogous to formulas (1) and (2):

u=VX Y+ 2=V (t,— )+ (1, —9)* + (@—2)% (4)

u=AB=Xi+Yj+Zk. (5)

If o, B, and y are the angles formed by the vector
u= AB with the coordinate axes, then

X Y VA
cosa =—-, cosﬁ:T, cosy=-—-, (6)
and
cos?a -+ costf+costy=1, 7)
i.e. the sum of the squared direction cosines of a vector is
equal to 1.

It follows from formulas (4), (5), and (6) that the vec-
tor # is completely determined by the three numbers: X, Y,
and Z, i.e. by its projections, or its coordinates. There-
fore, we sometimes write or say: Given a vector # {X,Y, Z}.

386. Construct the point M (5, —3, 4) and determine
the length and the direction of its radius vector.

387. Construct the vector r=0M =2{ + 3 6k and de-
termine its length and direction (check using formula (7)).

388. A vector is inclined to the axis OX at an angle of
40° and to OZ at 80°. Find the angle between the vector
and the axis OY.

389. The radius vector of a point M forms an angle
of 45° with the axis OX and of 60° with QY. Its length
r==6. Determine the coordinates of the point M, if its

coordinate z is negative, and express the vector OM=r
in terms of the basis vectors I, J, k.

390. Given the points A(l, 2, 3) and B(3, —4, 6).
Construct the vector AB=u, its projections on the coor-
dinate axes and determine the length and the direction
of the vector. Construct the angles formed by the vector &
with the coordinate axes.

391. Construct a parallelogram on the vectors ﬁzi—l—j

and ﬁ?=k—3j, and determine its diagonals.
392. A force R=7Tisapplied at the point 4 (2, 1, —1).
Given two coordinates of the force X=2 and
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} = —3, determine the direction and the terminal point
ol the vector representing the force.

393. Given in a plane XOY are the points A4 (4, 2),
132, 3), and C (0, 5) and constructed on it are the vec-

lors ﬁ=a, 5§=b, and (—)Z=c. Resolve geometrically
nnd analytically the vector a into the vectors & and c.

394. Given the points A (2, 2, 0) and B (0, —2, 5). Con-

Jruct the vector AB=u and determine its length and
direction.

395. A vector OM =r forms equal acute angles with
the coordinate axes. Determine these angles and construct
the vector r if its length is 21/3.

396. A vector forms angles of 60° and 120° with the
nxes OY and OZ respectively. What is the angle between
the vector and the axis 0X?

397. Given three consecutive vertices of a parallelogram
A(l, =2, 3), B(3, 2, 1), and C (6, 4, 4), find its fourth
vertex D

Hint. 1t follows from the equality AD= BC that the
coordinates of these vectors are also equal: x—1=6—3,
cle. — —_—
398. Construct the vectors OA=a =2, OB=b=3{ + 3/,
and OC=c¢=2i+6j in the plane XOY. Resolve geometri-
cally and analytically the vector ¢ into the vectors a
and b.

2.3. Scalar Product of Two Vectors

1°. Definition. The scalar product of two vectors is the
product of their absolute values by the cosine of the angle

between them.
The scalar product of a vector a by a vector b is deuo-
ted: a-b or ab. By definition,

a-b=abcosq. (hH

As is obvious from Fig. 18, bcosg=pr.b. Therefore
a-b=abcosg=aprab=>0bprya. (2)
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2°. Properties of a scalar product.
I. a-b=">b-a (commutative property).
II. a-(b+c)=a-b+a-c (distributive property).

8

[

[

&/

|

|

@ a
. beosyp _C
Fig. 18

a A

II1. If a||b, then a-b= + ab. In particular, a*=a-a =
= aa cos 0° =a?; hence

a=Var. (3)
IV. If a | b, then a-b=abcos90°=0.
V. The scalar products of basis vectors:
i-j=0, J-k=0, i-k=0, i-i=1, j.j=1, k-k=1
VI. Ii vectors are given by coordinates a{a,, a, a,}
and b {,, b, b,}, then
a-b=ab,+ap,+a,b, 4)
3°. The angle between vectors:
ab axby+ayby+azb,
COS @ =—r= . 5
VA T Vvt aral voien ©

The condition of parallelism of vectors: b=ma or
by b, b,
—_—— = =m.
a;, a, a,

The condition of perpendicularity of vectors: @-b=0 or

ab.+ab,+ab,=0.

399. Determine the angle between the vectors a=—1 +j
and b=0—2j+2k.

400. Determine the angles of a triangle ABC with the.
vertices A4 (2, —1, 3), B(l, 1, 1) and C (0, 0, 5).

401. Given the points A(a, 0,0), B(0, 0, 2a), and
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(. (a, 0, a). Construct the vectors OC and AB and find the
angle between them.

402. Given in a plane is a triangle with the vertices
0, 0), A(2a, 0), and B(a, —a). Find the angle for-
med by the side OB and median OM of this triangle.

403. Find the angle between the bisectors of the angles
X0Y and YOZ.

404. Drawn from a vertex of a square are two straight
lines bisecting the opposite sides. Find the angle between
these lines.

405. Find the angle between the diagonals of a paral-
lelogram constructed on the vectors a=2{+j and b =
=—2j+ k.

406. Given the vectors @ =i j+ 2k and b =i—j-} 4k.
Determine prpa and prab.

407. Remove the parentheses in the expression

@i—J)-J+ (J—2k) -k + (i—2k)*.

408. Compute: (1) (m~+n)? if m and n are unit vectors
and the angle between them is equal to 30° (2) (@a—b)?

if a=2V9, b=4 and (@, b) = 135°.
409. Remove the parentheses in the expressions

(1) (@a+0)%; 2) (a4 b)*4 (a—0b)?

and find out the geometrical meaning of the formulas
obtained.

410. Given coplanar vectors a, b, and ¢; a=3, b=2,
¢ =5, (@, b)=60°, and (b, ¢)=60°. Construct the vector
u=a-+b—c and compute its absolute value, using the
formula

u=V(@a+b—c)’.

411. Find the resultant of four coplanar forces applied
at point O if each of them is equal to 100 N and the
angle between two consecutive forces equals 45°.

412. Determine the lengths of the diagonals of a paral-
lelogram constructed on the vectors a=2m+n and
b=m—2n, where m and n are unit vectors forming an
angle of 60°.
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413. Given the vector @ =2m—n, where m and n are
unit vectors and the angle between them is 120°. Find

cos (a/,7n) and cos (af?z).

414. Determine the angle between the bisectors of two
plane angles of a regular tetrahedron drawn from one of
its vertices.

Hint. If m, n and p are the unit vectors of the edges,
then m-+n and m-4p are vectors directed along the
bisectors.

415. Lay off equal line segments a =4 on the axes 0X,
0Y, and OZ and construct a cube on them. Let M be the
centre of the upper face, and N the centre of the right-
hand lateral face of the cube. Determine the vectors

OM and ON and the angle between them.
416. Given the vectors 04 —a and a)?=b; a=2, b=4,
and (a/,\b)=60°. Determine the angle between the medi-

an OM of the triangle AOB and the side OA.

417. Drawn from a vertex of a rectangle with the sides
6 cm and 4 cm long are two straight lines bisecting the
opposite sides. Find the angle ¢ between them.

418. Given the three consecutive vertices of a paral-
lelogram: A(—3, —2, 0), B(3, —3, 1), and C(5, 0, 2).
Find its fourth vertex D and the angle between the vec-

‘tors AC and BD.
419. Given the points A (3, 3, —2), B(0, —3, 4),
Cc(©, —3, 0), and D (0, 2, —4). Construct the vectors

AB=a and CD =05 and find pr.b.

420. In an isosceles trapezoid OACB (Fig. 16) M and N
are the midpoints of the sides BC=2 and AC=2. The
acute angle of the trapezoid is equal to 60°. Determine

the angle between the vectors OM and ON.

421. Find the angle between the vectors a=2m-4n
and b=m—n, where m and n are unit vectors forming
an angle of 120°,
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422. Show that the angle between the diagonals of a
reclangle constructed on vectors a and b(a | b) is de-
b

termined by the formula cosg= ;!;

423. The projections of the dlsplacement of a moving
point on the coordinate axes are s,=2m, s,=1m, s, =

—2m. The projections of an acting force F on the
coordinate axes are F,=50N, F,=40N, and F,=30 N.
Compute the work A of the force F(A=F-s) and the
angle between the force F and the displacement s.

424. Applied to a vertex of a regular tetrahedron with
the cdge a are three forces represented by its vector
edges. Determine the absolute value of the resultant force.

Hint. The required value is equal to al/ (m—+ n-p)?,
where m, n, and p are the unit vectors of the given
forces.

425. A square is divided into three strips of equal
widths and then made up into a regular triangular prism.
I'ind the angle between two adjacent segments of the
polygonal line formed by the diagonal of the square.

2.4. Vector Product of Two Vectors

1°. Definition. The wvector product of a vector a by a
vector b is a third vector ¢ (Fig. 19), which is constructed
as follows:

Fig. 19

(1) its absolute value is numerically equal to the area
of a parallelogram constructed on the vectors a@ and b;

{(2) its direction is perpendicular to the plane of the
parallelogram;
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(3) the direction of the vector ¢ is chosen (from two
possible directions) so that the vectors a, b, ¢ form a
so-called right-handed system, in which the shortest rota-
tion from @ to & is considered as being carried out counter-
clockwise.

Notation: c=axb

(1) c=|axb|=absing,
if (2) ¢laand c| b,
(3) a, b, ¢ form a right-handed system.

2°. Properties of a vector product:
I.axb=—0bxa.
II. ax(b+c)=axb-+axc (distributive property).
III. If a]lb, then axb=0; in particular, axa=:0.
3°. The vector products of basis vectors:
ixj=Fk, Jxk=i, kxi=].
In general, a product of any two adjacent vectors in the
sequence
—_ +
ijkij
— <__.

yields the next vector with the plus sign, in case of the
reversed sequence with the minus sign.

4°, Expressing a vector product in terms of the coor-
dinates of the factors a{a,, a,, a,} and b {b,, b,, b,}:

i Jj k
axb=\|a, a, a,|. 2)
b, b, b,

5°. The area of a parallelogram constructed on the
vectors @ and b-

Sgo=|axb|, (3)

and the area of a triangle constructed on the vectors
a and b:

Sa=|axbl. “)
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426. Determine and construct the vector c=axb if
() a=3i, b=2k; 2) a=i+J, b=i—J, (3) a=2i+3j,
b--3j+2k. For each case find the area of a parallelog-
ram constructed on the vectors @ and b.

427. Compute the area of a triangle with the vertices
A7, 3, 4), B(1, 0, 6), and C (4, 5, —2).

428. Construct a parallelogram on the vectors a=27-+%
and b=i-+2k and compute its area and altitude.

429. Remove the parentheses and simplify the expres-
S1011S:

IX(J+RB)—JX(A+k)+EX({A+T+R);
(@a+b+c)Xc+(@+-b+c)xb+(b—c) X a;
(2a+b) X (c—a)+(b+c) X (a+b);
20-(fxk)--3]- (Ixk)+4k-(ix]).

]
2

(
(
3
(4

430. Prove that (@a—b)x(@4b)=2axb, and find out
the geometrical meaning of this identity.

431. Vectors @ and b form an angle of 45°. Find the
arca of a triangle constructed on the vectors @a—28& and
Ja +2b if |a|=|b|=5.

432. Find the area of a parallelogram whose diagonals
are the vectors 2m—n and 4m—>5n, where m and n are
{he unit vectors forming an angle of 45°.

Hint. a+-b=2m—n and a—b=4m—5n, where a
and b are the vector sides of the parallelogram. Multi-
plying we find the vector 2bxa whose modulus is equal
fo twice the required area.

433. Construct the vectors @ =3k—2j, b=31—2J, and
c=axb. Compute the absolute value of the vector ¢ and
the area of a triangle constructed on the vectors @ and .

434. Construct a triangle with the vertices 4 (1, —2, 8),
B (0, 0, 4), and C (6, 2, 0). Compute its area and the
altitude BD.

435. Compute the diagonals and the area of a paralle-
logram constructed on the vectors @ =k—jand b =i+ j+k.

436. Prove that (2a -+ b) X (a+2b)=3axb.
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437. Find the area of a parallelogram constructed on
the vectors a=m-+2n and b=2m-+n, where m and n
are the unit vectors forming an angle of 30°.

2.5. Scalar Triple Product

1°. Definition. The scalar triple product of three vec-
tors "a@, b, and ¢ is the expression (@xb)-c, i.e. the
scalar product of the vector product @ xX b by the vector c.

If the vectors a, b, and ¢ are given by their coordi-
nates, then
ax
bx
c

N

Y

S Q
S Q

(@xb)-c=|b, b, b,|. (1)

o
N(S

x Y

2°. The properties of a scalar triple product.
I. An interchange of any two factors reverses its sign:

(axb)-c=—(@xc)-b=—(cxb)-a. (2)

I1. A triple product having at least two equal or parallel
vectors is zero.

I11. The signs of operations may be interchanged:
(@xb)-c=a-(bxc), therefore the scalar triple product is
usually written as abc, i.e. without the signs of opera-
tions and without parentheses.

3°. The volume of a parallelepiped constructed on the
vectors a, b, and c:

v | 4for a right-handed system
par:i_abc\—for a left-handed system.

The volume of a pyramid constructed on the vectors

a, b, c
1

|4 ye === g abe.

P

4°, Criterion of coplanarity. If the system a, b, ¢ is
right-handed, then abc > 0; if it is left-handed, then
abc < 0. But if the vectors a, b, ¢ are coplanar, then
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abc=0. In other words, the vanishing of the triple pro-
duct abe is a criterion of the coplanarity of the vectors
a, b, c. There exists a linear dependence of a, b, and ¢
of the form ¢=ma 4 nb.

438. Construct a parallelepiped on the vectors @ =3i 44/,
b -—3j+k, ¢=2f+5k and calculate its volume. Will
the system (@, b, ¢) be right-handed or left-handed?

439. Construct a pyramid with the vertices 0 (0, 0, 0),
A5, 2, 0), B@, 5, 0), and C(1, 2, 4) and compute its
volume, the area of the face ABC and the altitude of
the pyramid dropped onto this face.

440. Show that the points 4 (2, —1, —2), B(l, 2, 1),
€2, 3, 0), and D(5, 0, —6) lie in one and the same
plane.

441. Show that the vectors a=—i43j+2k, b=2I—

3Jj—4k, ¢=—3i+12j+4 6k are coplanar and resolve
the vector ¢ into the vectors @ and &.

442. Show that: (1) (@ +b)-[(@+-¢c)xb]=—abc;

(2) (@+2b—c)-[(@a—b)x(@a—b—c)]=3abc.

443. Find the volume of a tetrahedron constructed on

{he vectors (74, 0B, and OC if they are directed along

the bisectors of the corresponding quadrants, the length
of each vector being equal to 2.

444. Construct a pyramid with the vertices 4 (2, 0, 0),
B, 3, 0), C(0, 0, 6), and D (2, 3, 8), compute its volume
and the altitude dropped onto the face ABC.

445. Construct the vectors a =i+ j+ 4k, b=1I0—2j, and
¢ =3i—3j+ 4k, show that they are coplanar, and find
the linear dependence of them.

446. Show that the volume of a parallelepiped construc-
ted on the diagonals of the faces of the given parallele-
piped is twice the volume of the given parallelepiped.

447. Given the unit vectors m, n, and p. The angle (m, n)=

=(p, (mxnj]:a. Prove that then (mxn)-p:%sinQa.

448. For any vectors a, b, and ¢ the vectors a—»,
b—c¢, and ¢—a are coplanar. Prove this analytically
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and geometrically (by considering the parallelepiped con-
structed on the vectors a, b, and c¢).

449. Compute the volume of a parallelepiped
0ABCO,A,B,C, given three vertices of its lower base
0, 0, 0), A(2, —3, 0), and C(3, 2, 0) and the vertex
of the upper base B, (3, 0, 4) which lies on the lateral
edge BB,, the latter being opposite to the edge 00,.



CHHAPTER 3

SOLID ANALYTIC GEOMETRY

3.1. The Equation of a Plane
1°. The equation of a plane which passes through a point

M, (x,, y,, 2,) and is perpendicular to a vector N {4, B, C}.
Let M (x, y, 2) be an arbitrary point of a plane (Fig. 20).

z
/N(A,ﬁ, c)

/:{/(X/)!/[, Z/

Fig. 20

Then MTX/I_LN, and, by the condition of perpendicula-
rity of vectors,

A(x—x)+B(y—y,)+C(2—2)=0. (1
2°. The general equation of a plane:
Ax+By+Cz+D=0. 2

The vector N{A, B, C} is called the normal vector of
plane (2) or (1).

3°. Particular cases of the equation Ax+4 By+Cz+4 D=0.

I. The equation Ax4 By-+Cz=0 (constant term D=0)
represents a plane passing through the origin.
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I1. The equation Ax—+ By+ D=0 (coeificient C=0) is
a plane parallel to the axis OZ.

ITI. The equation Ax+ By=0(C=D=0) represents
a plane passing through the axis OZ.

IV. The equation Ax+ D=0 (B=C=0) is a plane
parallel to the plane YOZ.

V. The equations of the coordinate planes: x=0, y=0,
2=0.

4°. The intercept form of the equation of a plane:

SHite=1 3

450. Construct the planes: (1) 5x—2y+32—10=0;
(2) 3x+2y—2=0; (3) 3x+22=6; (4) 22—7=0.

451. Construct the plane 2x+3y+62—12=0 and find
the angles formed by the normal to the plane and the
coordinate axes.

452. Given the points M, (0, —1, 3) and M, (1, 3, 5).
Write the equation of a plane which passes through the

point M, and is perpendicular to the vector N= /T/I:X/Iz.
453. Write the equation of a plane which passes through

the point M (a, a, 0) and is perpendicular to the vec-

tor OM. Construct this plane.
454. Write the equation of the locus of points equidi-

stant from the points A(a, —i, a) and B(O, %, OP.
el

455. Write the equation of a plane which is paral
to the axis OX and passes through the points M, (0, 1, 3)
and M, (2, 4, 5) and construct this plane.

456. Write the equation of a plane passing through the
axis 0X and point M, (0, —2, 3). Construct the plane.

457. Write the equation of a plane passing through the
axis OZ and point M, (2, —4, 3). Construct the plane.

458. Write the equation of a plane which is parallel
to the axis OY and cuts off intercepts a and ¢ on the
axes OX and OZ respectively. Construct the plane.

459. Write the equation of a plane passing through the
point M (2, —I1, 3) and intercepting equal line segments
on the coordinate axes.
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460. Write the equation of a plane passing through the
point M, (—4, 0, 4) and intercepting the line segments
a -4 and b=3 on the axes OX and OY respectively.

461. Construct the following planes: (1) 2x+y—z-+6=0;
(2) x—y—z=0; 3) y—22+8=0; 4) 2x—5=0;
() x+2z=1; (6) y+2=0.

462. Construct the plane 2x—2y+2—6=0 and find
the angles formed by its normal and the coordinate axes.

463. Through the point M (—1, 2, 3) a plane is drawn
perpendicular to OM. Write ifs equation.

464. Write the equation of a plane passing through the
axis OY and through the point (4, 0, 3). Construct the
plane.

465. Write the equation of a plane which is parallel
to the axis OZ and passes through the points M, (2, 2, 0)
and M, (4, 0, 0). Construct the plane.

466. Write the equation of a plane which passes through
the point M, (1, —3, 5) and intercepts on the axes OY
and OZ line segments twice as long as one on the axis 0X.

3.2. Basic Problems Involving the Equation of a Plane

1°. An angle formed by two planes:

_ NN __ | AAH+BBHCC
CcoS =+ NNl_i—N—Nl—’ (1)

where N and N, are the normal vectors to the planes
Ax+By+Cz+D=0 and A x+B,y+C2+D,=0.
The condition of parallelism of planes:
A B C

xBTS @
The condition of perpendicularity of planes:
AA,+ BB, +CC,=0. 3)
2°. The distance from a point M, (x,, y,, 2,) to a plane
Ax+By+Cz+D=0
d = leo+By(1)V+Czo+Q‘ . (4)
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3°. The equation of a pencil of all planes passing
through the line of intersection of two given planes:

a(Ax+By+CZ+D)+ﬁ(A1x+Bxy+Clz+D1)=0~ (8)

We may put a=1, thus eliminating the second of the
given planes from pencil (5).

467. Find the angle between the planes:

(1) x—2y+22—8=0 and x+4+2z2—6=0;
(2) x+22—6=0 and x+42y—4=0.

468. Find the plane passing through a point (2, 2, —2)
parallel to the plane x—2y—3z=0.

469. Write the equation of a plane passing through
a point (—1, —1, 2) perpendicular to the planes x—2y--
+2z—4=0 and x+2y—2z-44=0.

470. Write the equation of a plane passing through
a point (0, 0, a) perpendicular to the planes x —y—z=0
and 2y=x.

471. Write the equation of a plane passing through
the points M, (—1, —2, 0) and M, (1, 1, 2) perpendicular
to the plane x+2y+22—4=0.

472. Write the equation of a plane passing through the’
points M, (1, —1, 2), M,(2, 1, 2), and M,(1, 1, 4).

473. Through the axis OZ draw a plane at an angle
of 60° to the plane 2x+y—) 52=0.

474. Find 'the distance from the point (8, 1, —1) to the
plane x—2y—2z2+4=0.

475. Find the distance from the point (4, 3, 0) to
a plane passing through the points M, (1, 3, 0), M, (4, —1, 2),
and M, (3, 0, 1).

476. Find the distance between the two parallel planes

4x+3y—52—8=0 and 4x+43y—B8z+412=0.

Hint. Take an arbitrary point on one plane, say (2, 0, 0),
and find its distance from the other plane.

477. (1) Write the equations of planes parallel to the
plane x—2y+2z—5=0 and 2 units distant from it.
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(2) Write the equations of planes bisecting the dihedral
angle formed by the planes 2x+2y=2z and z=0, and
construct both the given and the required planes.

478. (1) Write the equation of a plane passing through
the line of intersection of the planes 2x—y+432—6=0,
x+2y—2z-+3=0 and through the point (1, 2, 4).

(2) Find two mutually perpendicular planes passing
{hrough the straight line of intersection of the planes
x=y and z2=0 if one of the required planes passes through
the point (0, 4, 2). Construct the straight line and the
required -planes.

479. Find the point of intersection of the planes:
2—y+32—9=0; x+2y+4+22—3=0; 3x+y—4z4+6=0.

480. Write the equation of a plane passing through
a point (2, —I1, 1) perpendicular to the planes 3x- 2y —
—2z+4=0 and x+y-+2—3=0. Construct this plane.

481. Write the equation of a plane that passes
through the two points (0, —5, 0) and (0, 0, 2) perpen-
dicular to the plane x4 5y-+422—10=0. Construct the
plane.

482. Find the angle between the plane passing through
the points O (0, 0, 0), M, (a, —a, 0), and M, (a, a, a) and
the plane XOY.

483. Find the distance from the coordinate origin to
the plane passing through the points M, (a, 0, 0),
M, (0, a, 0), and M, (a, a, a).

484. Write the equation of a plane passing through
the axis OX at an angle of 60° to the plane y=x.

485. Find the distance from a point (a, b, ¢) to the
plane intercepting the line segments a, b, ¢ on the coor-
dinate axes.

486. Write the equations of planes parallel to the
plane 2x+4-2y+2z—8=0 and located at a distance d =4
from it.

487. Write the equation of a plane passing through the
line of intersection of the planes 4x—y+43z—6=0 and
x—gSy—Sz-i(-)10=0 perpendicular to the plane 2x—y+-
+5z—0=0.
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3.3. Equations of a Straight Line in Space

1°. Equations of a straight line passing through a point
A(a, b, c¢) parallel to the vector P{m, n, p}. Let
M (x, y, z) be an arbitrary point of the straight line

(Fig. 21), then ZM“P and, by virtue of the condition
of parallelism of vectors, we have

x—a_y—b_z—c (1)

m n p

Equations (1) are called the canonical equations of the
straight line. Vector P{m, n, p} is called the direction
vector of that line.

Mix,y, 2} :
Afa,b,c)

P(m,n,p}

|4

Fig. 21

2°. Parametric equations of a straight line are obtained
by equating each of ratios (1) to the parameter f:

x=mt+a,
y=nt +0, 2)
2=pt +c.

3°. Equations of a straight line passing through tfwo
points:

X=X _Y—h __Z2"%4
Xo—X1 Yo—Y1 Z—2’ (3)
4°, The general equations of a straight line:
Ax+By+Cz2+ D=0, \

4
Ax+By+Cz+D,=0. | @
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5°. Equations of a straight line represented by its pro-
gections are obtained by eliminating first y and then x

rom general equations (4):
x=mz+a, }

y=nz +b. ®)

Equations (5) can be written in the canonical form:
x—-a__y—bzz—O
m ~ n 1

488. Find the traces of the straight lines
J x=2z+5
| y=4—22

on the planes XOY and XOZ, and construct the lines.

Hint. Put in the equations (a) z=0; (b) y=0.

489. Write the equation of the straight line
[ x+2y+32—13=0
| 3x4+y+4z2—14=0
nical form. Find the traces of the straight line on the
coordinate planes; construct the line and its projections.

490. Write the equations of the straight line passing
through the point A (4, 3, 0) parallel to the vector
P{—1, 1, 1}. Find the trace of the straight line on the
plane YOZ and construct this line.

491. Construct the straight line x=4, y=3 and find
its direction vector.

492. Construct the straight lines

m {4 @izl (3){::

(1) in projections; (2) in the cano-

and determine their direction vectors.

493. Write the equations of the straight line passing
through the points A(—1, 2, 3) and B(2, 6, —2), and
find its direction cosines.

494. Construct the straight line passing through the
{)oints A2, —1,3) and B(2, 3, 3), and write its equa-
ions.
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495. Write the equations of the path of a point M (x, y, 2)
which starts from the point A (4, —3, 1) and moves with
velocity '012, 3, 1}.

496. Write the parametric equations of the straight line

(1) passing through the point (—2, 1, —1) parallel to
the vector P {1, —2, 3};

(2) passing through the points 4 (3, —1, 4) and B(l, 1, 2).

497. Write the equations of a straight line passing through
the point (a, b, ¢) (1) parallel to the axis OZ; (2) perpen-
dicular to the axis OZ.

498. Find the angle between the straight line x=2z—1,
y=—2z-+1 and the straight line passing through the coor-
dinate origin and the point (1, —1, —1).

499. Find the angle between the straight lines:

{ x—y+z—4=0 q { x+y+2—4=0
%4 y—24-5=0 ° 2% 4-3y—2z—6=0.

Hint. The direction vector of each line can be deter-
mined as a vector product of the normal vectors of the
planes (P=NXN,).

500. Show that the straight line %=-§=% is perpen-

dicular to the straight line x=2+1, y=1—-z.
501. Write the equations of a straight line passing
through the point (—4, 3, 0) parallel to the straight line

{ x—2y+2=4
2x+y—2z=0.

502. Write the equations of the perpendicular dropped
from the point (2, —3, 4) onto the axis 0OZ.

Hint. The required straight line also passes through
the point (0, 0, 4).

503. Find the distance between the point M (2, —1, 3)
and the straight line x—i—l_y—4}-2 z;l

Hint. A(—1, —2, 1) is a point belonging to the straight
line; P {3, 4, 5} is the direction vector of the straight
line. Then

d=AMsina =

—_— —_
AM|PXAM| _ |PXAM|
P-AM =P .
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504. Find the distance between the parallel straight lines

x—2_ y+1_ 243 dx—l_y-—l__z—{-l
1 — 2 2 1 2 - 2

an

505. Find the traces of the straight line "‘T4=£§2=

_12- on the coordinate planes and construct the line.

506. Write the equations of the straight line
J 2x+y+82—16=0
| x—2y—2z+4+2=0
nonical form. Find its traces on the coordinate planes,
construct the straight line and its projections.

507. Write the equations of the straight line passing
through the point A4 (0, —4, 0) parallel to the vector
P {1, 2, 3}, find the trace of the straight line on the plane
X0Z and construct this line.

508. Construct the straight line x=3, z=5 and find
ils direction vector.

509. Find the direction vector of the straight line
X-y—z=0, y=x and angles formed by this line and
the coordinate axes (see the hint to Problem 499).

510. Write the equations of the perpendicular dropped
from the point (2, —3, 4) onto the axis OY.

511. Find the angle between the straight lines:

{ 2x—y—7=0 and { 3x—2y+4-8=0

(1) in projections; (2) in the ca-

2x—2z+5=0 z=23x.

512. Write the equations of a straight line passing
through the point (—I1, 2, —2) parallel to the straight
line x—y=2, y=22+1.

513. Find the distance from the point M (3, 0, 4) to the
straight line y=2x-+1, 2z=2x (see Problem 503).

8.4. A Straight Line and a Plane
x—a y—b

1°. The angle between the straight line

=3;—C and the plane Ax+By-+Cz+D=0:

IN-P| | Am+Bn+Cp|
NP : )

sinf = NP
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The condition of their parallelism (N _| P):

Am+ Bn+Cp=0. (2)
The condition of their perpendicularity (N|P):
A_B_C 3)

m n p

2°. The point of intersection of a straight line and a
plane. Write the parametric equations of the straight line"
x=mt+a, y=nt+b, z2=pt-+c, and in the equation of
the plane Ax-+By-+Cz+ D=0 replace x, y, z by their
expressions in terms of ¢{. Find ¢, and then x,, y,, 2,
which are the coordinates of the point of intersection.

3°. The condition for two straight lines lying in a single
plane: _

a—a, b—b, c—c,

m n p

ml n’l pl

=0. ()

514. Find the angle between the straight line y =3x—1,
22=—3x42 and the plane 2x+y+2—4=0.

515. Show that (1) the straight line *31—4tl_2=2
is parallel to the plane 2x+4y—z=0, (2) the straxght
line le—yjll—2_§3 lies in this plane.

516. Write the equation of a plane passing through the
point (—1, 2, —3) perpendicular to the straight line
x=2, y—z=1.

517. Write the equation of a plane passing through the
straight line 2 =222+ and the point (3, 4, 0).

518. Write the equation of a plane passing through the

. .ox—1  y41 z+2 .
straight line 54— == 3 perpendicular to the plane
2x +3y—z=4.

519. Write the equation of a plane passing through two

Y z—1 nd x+1 y—1

parallel straight lines 3%=% 2"l ang *f1_v—1_

=<
=3.
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520. Write the equations of a straight line passing through
the coordinate origin and forming equal angles with the
planes 4y=3x, y=0, and z=0. Find these angles.

521. Find the point of intersection of the straight line
v 20—1, y=t+2, z=1—t¢ and the plane 3x—2y 4 z=3.

522. Find the point of intersection of the straight line
‘,=<Z-T—l==3+— and the plane x-+ 2y -+ 32—29=0.

523. Find the projection of the point (3, 1, —1) on the
plane x4 2y+32—30=0.

524. Find the projection of the point (2, 3, 4) on the
straight line x=y==z.

525. Find the shortest distance between the non-paral-
lel straight lines:

() x—a=y—b=z—c and x—al=y—b1 =z—cl;
m n p my ny Dy
x+1 y z—I x _y+1_ 2z2-2
(2) =T=—7 and y="5-=~

Hint. Assuming that in the general case the straight
lines are skew, let us draw parallel planes in which the lines
nre contained. From the pomts Af(a, b, c) and A4, (al, b, cl)

draw the vectors AB=A4 B Pim n, p} and AC=A4 C =
. P, {my, ny, p,}. The altitude of the prism ABCA,B, C is
then the required distance.
526. Show that the straight lines
{ x=2z—2 x—2 y—4 2—2

y—2z4 180 ==

Intersect, and write the equation of the plane in which
thev are contained.

527. Write the equations of a perpendicular dropped
from the point (2, 1, 0) onto the straight line x=3z—1,
Iy =2z.

528. Construct the plane x4+ y—z=0 and the straight
line passing through the points A (0, 0, 4) and B (2, 2, 0).
FFind the point of intersection of the line and the plane
and the angle between them.
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529. Construct the plane y==z, the straight line

{ ;i;z+l and find (1) the point at which they in-
tersect; (2) the angle between them.

530. Find the projection of the point (3, 1, —I) on the
plane 3x+y+2—20=0.

531. Find the projection of the point (1, 2, 8) on the
straight line i;-‘:_il=z.

532. Write the equation of a plane passing through the
parallel straight lines le=yjﬁl=z;2 and —?:%:

z2—1

3

533. Show that the straight lines *13—¢

+1 241
2 1

and { x=32—4 intersect; find the point of intersection.

y=2+2
534. Write the equation of the perpendicular dropped
from the point (1, 0, —1) onto the straight line £#=
y—1 2z

J— e

2 -3
535. Find the shortes distance between the straight

lines x=—2y=2 and x=y=2.

8.5. Spherical and Cylindrical Surfaces

1°. The equation of a spherical surface of radius R with
C(a, b, ¢) as centre:

(x—a)*+(y—Db)*+ (z—c)* = R*. (M

2°. The equation F (x, y)=0, which does not have the
z-coordinate, defines a cylindrical surface whose generatrix
is parallel to the axis OZ. Analogously, each of the equa-
tions F(y, 2)=0 and F (x, 2) =0 determines a cylindrical
surface whose generatrix is parallel to OX and OY res-
pectively.

3°. The equation of a cylindrical surface with the di-
rectrix F (x, y)=0, z=0 and the generatrix parallel to the
vector P{m, n, p}. The equation of an arbitrary generat-
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rix will be 2= tﬂ:%, where (x,, 4o, 0) is a point
belonging to the directrix.

Determining x, and y, and substituting them into the
equation of the directrix, we get the equation of a cy-
lindrical surface:

F (x—m?z, y—% z) =0. 2)

536. Find the centre and he radius of the sphere
(1) x*+y*+22—3x+5y—42=0; (2) x>+ y* -} 2*=2az and
construct the second sphere.

537. Write the equation of a spherical surface inscribed
in a tetrahedron generated by the planes

3%x—2y+62—18=0, x=0, y=0, z=0.

538. Write the equation of the locus of points situated
{wice as near to the point A(2, 0, 0) as to the point
B(—4, 0, 0).

539. Write the equation of a sphere passing through the
x2+y2+222a2
X+y+z=a
Hint. The required equation must be of the form:

Xyt 22—t A (kg 2—a) =

540. Construct in the left-handed system of coordinates
the following surfaces:

() y*+22=4; (2) y=ax; (3) xz=4; (4) x*+y*=ar.

circle and through the point (a, a, a).

541. Write the equation of the locus of points equidistant
from the straight line x=a, y=0 and the plane YOZ.
Construct this surface.

542, Write the equations of three .cylindrical surfaces
circumscribed about the sphere x2 -+ y? 4 22— 2ax =0 whose
generatrices are parallel to (1) the axis 0X; (2) the axis OY;
(3) the axis OZ respectively.

543. Draw the curve of Viviani

{ x4y*+22=16
x24y? =4x
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in the first octant of a left-handed coordinate system,

constructing the points at x=0; 2; and 4. Show that the

projection of the curve on the plane XO0Z is a parabola.
544. Find the centre and the radius of the circle

{ 2ty 2 =10y
x+2y+422—19=0.

Hint. The centre of a circle is the projection of the
centre of a sphere onto a plane (see Problem 530).

545. Write the equation of a cylindrical surface whose
directrix is y>=4x, 2=0 and the generatrix is parallel
to the vector P{l1, 2, 3}.

546. Construct the surface (x+y)*+az=a? in the first
octant using the sections by the planes x=0, y=0, z=0,
2=h<Ca, and show that this is a cylindrical surface whose
generatrix is parallel to the straight line x +y=a, 2=0.

547. The sphere x24 y?4-22=4z is illuminated by rays
parallel to the straight line x=0, y==z. Find the shape
of the shadow cast on the plane XOY.

Hint. Write the equation of the cylindrical surface gene-
rated by the rays tangent to the sphere. Its directrix will
be the line cut from the sphere by a plane passing through
the centre of the sphere perpendicular to the rays.

548. Write the equation of a plane passing through the
centre C of the surface x*+4 y?+22—2x +y—3z=0 per-
pendicular to the straight line OC.

549. Write the equation of the locus of points situated
twice as far from the coordinate origin as from the
point (0, —3, 0).

550. Find the projection onto the plane z=0 of the
section of a spherical surface x*+ y®-+22=4(x—2y—22)
by a plane passing through the centre of the sphere per-
pendicular to the straight line x=0, y+2z=0.

551. Construct the following surfaces in the left-handed
coordinate system:

() z=4—x% (2) p*+22=4z (3) y*=x".
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552. Construct the line of intersection of the cylinders
Vip-z2=qa? and x?+y®=a® in the first octant of a left-
llanded coordinate system.

Hint. In the planes XO0Z and XOY construct quarters
of the director circles, divide them approximately into
cqual parts (for instance, into 4), and through the points
ol division draw the generatrices of the cylinders to obtain
the points of their intersection (see Fig. 64 on page 372).

553. Write the equation of a cylindrical surface whose
generatrix is parallel to the vector P{l, 1, 1} and the
directrix is x*+y?=4x, 2=0.

554. Construct a solid bounded by the surfaces y*=x,
2=0, 2=4, x=4, and write the equations of the diagonals
of the face contained in the plane x=4.

3.6. Conical Surfaces and Surfaces of Revolution

1°. Conical surfaces. Let a conical surface have the vertex
at the coordinate origin, and the directrix F(x, y)=0
on the plane z=~h. Then the equation of the generatrix

will be :%:yi:%’ where (x,, Y,, h) is a point belonging
0 0

to the directrix. Determining x, and y, and substituting

them into the equation F(x, y)=0, we get the equation

of a conical surface with the vertex at the coordinate origin:

F(Z,2)=o. (1)

2’ 2

If the vertex of a cone is situated at a point (a, b, ¢),
then equation (1) takes the form

FlEm00m0,, eZhloo 4] (g

Z2—c¢ —_

Equation (1) is homogeneous with respect to x, y, 2, and
equation (2) is homogeneous with respect to (x—a), (y—b),
and (z—c). Thus, the equation of a conical surface is re-
cognized by its homogeneity.

2°. Surfaces of revolution.
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savaton o te case | S | EUPR R
{ F (x, y)=0 0x Fx, V28 =0
z =0 oy F(V*F2, y)=0
{ F(x, 2)=0 0X F(x, ViEF22) =0
y =0 0z F(VAETHE 2)=0
{ F(y, 2)=0 oy F(y, V¥*L£2?) =0
x =0 0z F(VxFyt2)=0

555. Write the equation of a conical surface with the
vertex at the coordinate origin and the directrix x2+y%=a2,
z=c. Construct the surface.

556. Write the equation of a conical surface with the
vertex at the point 4 (0, — a, 0) and the directrix x?=2py,
z=nh. Construct the surface.

557. Determine the vertex of the cone x?-(y—a)2—22=0,
its directrix in the plane z=a, and construct the cone.

558. Determine the vertex of the cone x%=2yz, its di-
rectrix in the plane z=~h, and construct the cone.

559. Analyse the surface of the conoid* or wedge
(a?—x?) y* =h2z? using the sections by the planes z=0,
y=h, x==2c(c<a) and construct the conoid in the do-
main z >=0.

560. Write the equation of the surface generated by
revolving the curve z=x* y=0 (a) about the axis 0Z;
(b) about the axis OX. Construct both surfaces.

561. Write the equation of the surface generated by
revolving about the axis 0Z (I) the curve z=e~*", y=0;

(2) the curve 2 —7?2— , y=0. Construct both surfaces (in the
left-handed coordinate system).

* Conoid is a surface generated by a moving straight line parallel
to a given plane and intersecting a given curve and a given straight line.
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562. Write the equation of a conical surfaceé with the
2 —6)2 —
vertex 0(0, 0, 0), the directrix { P Y=0P+2=25 i

y=3
draw the surface.
563. Write the equation of a conical surface with the

2 2 2 __ o2
vertex C (0, —a, 0), the directrix { Yryitei=a , and

Yy+z=a
draw the surface.

564. Write the equation of a surface generated by re-
volving the straight line 2=y, x=0 (a) about the axis 0Y;
(b) about the axis 0Z, and draw both surfaces.

565. Show that the section of the cone 2* =xy by the
plane x+y=2a is an ellipse, and find its semiaxes.

3.7. The Ellipsoid, Hyperboloids, and Paraboloids
1°. Canonical equations. Besides cylindrical surfaces,

there are six basic types of second-order surfaces deter-
mined by the following canonical (standard) equations:

1. Ellipsoid % 4+-% +-§=1.

yﬂ 23
. ﬁ F_'c?=l (of one sheet),
I1. Hyperboloids: { ", P 2
Ftg—a==—1 (of two sheets).
I1. Quadric conical surface —: —g; %—=0‘
A ”—+y—=22 (elliptic),
IV. Paraboloids (pq > 0): ;
_;__.=22 (hyperbolic).

2°. Rectilinear generatrices. Two rectilinear generatrices
pass through each point of the hyperboloid of one sheet:

i T M0 e
p(5=5)==(1-4) ™ Le(5=2) - (144).

41895
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The same in the hyperbolic paraboloid (for p >0 and

q > 0):

(«(F+v5)=%  [W(F5+vs)-"
] and { . ’
() GE—)=

3°. Circular sections. All the surfaces having elliptic
sections also have circular sections. The greatest circular

sections of the ellipsoid %+g—:+§=l (for a>b>c¢)
are found on the sphere x%4 y2+4 22 =52 The circular sec-
2 2

tions of an elliptical paraboloid %—1——2—:22 passing
through the vertex are found on the sphere x*+y*42* =
=2pz(p > q).

566. Write the equation of the surface generated by
revolving the ellipse L:;-+z—:= I, y=0 about the axis 0Z.

567. Construct the surface %+%\+;—25-=1 and find the

areas of its sections by the plane (a) 2=3; (b) y =
568. Write the equation of a suriace generated by re-

volving the curve ;—:-—%:-= 1, y=0 (a) about the axis 0Z;

(b) about the axis 0X. Construct both surfaces (in the left-
handed system of coordinates).
569. Construct the surfaces:

() X +y'—22=4; (2) ®—y*+22+4=0.

570. Construct the hyperboloid %4—2‘;—;—2:1 and find

its generatrices passing through the point (4, 1, —3).

571. A thread model of a cylinder is twisted by turning
the upper base circle through an angle a (Fig. 22). De-
termine the equation of the ruled surface thus obtained
if its base circles lie in the planes z= +c, their centres
on the axis 0Z, and their radii equal 2a. Consider parti-
cular cases at a=90°, 120°, 180°,
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Hint. Point M (x, y, 2) divides the distance between
the points A(2acost, 2asint, —c), B[2acos({+ ),
2asin (¢ +a), ¢] in the ratio AM:MB=(c+2):(c—2).

Fig. 22

572. Write the equation of the surface generated by re-
volving the parabola az=x?, y=0 about the axis OZ.
Construct the surface using the sections by the planes
2=a, x=0, y=0.

573. Construct the surfaces:

2 xi 2

(1) 22=x2+—y2—; 2) z=c(l—F—%).

574. Construct (in the left-handed system of coordinates)
the surface x*—y?=4z and find its generatrices passing
{hrough the point (3, 1, 2).

575. Write the equation of the locus of points the ratio
of the distances of each of which from the plane x=2a
to the distances from the point F (q, 0, 0) is equal to }/2.
Construct the surface.

576. Write the equation of the locus of points the ratio
of the distances of each of which from the point F (0, 0, 2a)

v

4*
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to the distances from the plane z=a is equal to Va.
Construct the surface.

577. Write the equation of the locus of points equidi-
stant from the point F(—a, 0, 0) and from the plane
x=a. Construct the surface.

578. Find the greatest circular sections of the ellipsoid
x2 I zz_
st tg=1

579. Determine the circular sections of the elliptic

2 2
paraboloid %—f—% =z passing through the coordinate origin.

580. Name and construct each of the following surfaces:
(1) x*+y*+ 22 =2az; (6) x*=2az,

(2) x*+ y*=2az; (7) x?=2yz,

(3) x*+ 23 =2az; B) 2=2+4x24y2

(4) x*—y?=2az; 9) (z—a)*=uxy;

(5) x?*—y?=2% (10) (z—2x)2 4 4(z—2x) = y2.

581. Write the equations of the rectilinear generatrices
of the hyperboloid x*—y* 4 2? =4, the generatrices passing
through the point (2, 4, 4).

582. Write the equations of the locus of points equi-

distant from the point F(O, 0,%) and from the plane

a
z=— 7. Construct the surface.
583. Write the equation of the locus of points equidis-
tant from the point F (0, 0, %) and from the plane 2=

5 .
Construct the surface.
584. Find the least circular sections of the hyperboloid

Ky 32
sty
585. Write the equations of 2'the rectilinear generatrices
2
of the hyperbolic paraboloid ‘;—6—%=22, the generatrices
passing through the point (4, 3, 0).



HIGHER ALGEBRA

4.1. Determinants

1°. Determinants. The second-order determinant is a num.

ber denoted by the symbol Z‘ z' and given by the
cquality '

a b

a: b: =a,b,— a,b,. 1)

The third-order determinant is a number denoted by

a b ¢
the symbol |a, b, c¢,| and determined by the equality
a3 b3 ‘ca
a b ¢
a, b, c,|=aq b —b, i +¢ a b . 2
by ¢, as Cq as by
aa b8 Ca

The second-order determinants entering the right-hand
member of equality (2) are obtained from the given third-
order determinant by deleting one row and one column
and are called its minors. Formula (2) presents an expan-
sion of a third-order determinant in terms of the elements
of the first row.

2°. Properties of determinants.

I. The magnitude of a determinant does not change if
each of the rows is substituted by a column of the same
position number.
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II. If any two rows or any two columns are inter-
changed, the absolute value of a determinant remains
unaltered, while the sign is reversed.

It follows from I and II, that a determinant can be
expanded in terms of any row, since the latter can chan-
ge its place to occupy the first row.

III. A determinant with two identical rows (columns)
is equal to zero.

IV. A common factor of all the elements of one row
(or of one column) may be taken outside the sign of the
determinant.

V. If to all the elements of some column we add terms
proportional to the corresponding elements of another
column, then the new determinant is equal to the old
one. The same holds true for rows. For instance:

a b, ¢ a,+me, by+ne, ¢
a, b, c¢,|=|a,+mec, b,+nc, c,|.
a;, by ¢4 ag-+mecg; bgtnc, ¢,

Taking advantage of this property, we can get two zeros
in any column (or row) of a third-order determinant. The
latter is then evaluated in simpler fashion.

3°. The area of a triangle with the vertices 4 (x,, y,),

B(xsr y2)9 C(xar ya):

. x4 1
S=x5|% 4 1| A3)
X3 ys 1
Evaluate the determinants:
5 52| s |2 3| sss| 22
86.4 6l “le —10l" I 4 5|
a —I1 sina cos
589. V_ . 5690. . * .
a Va —cosa sine
591 sin?a cos?a
© |sin?p cos?B|’
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Evaluate the determinants, expanding them in terms
of the elements of the first column:

2 3 4 a 1 a
592, |5 —2 1|, 593. |—1 a 1].
1 2 3 a —1 a

Evaluate the determinants, expanding them in terms
of the row containing the maximum number of zeros:

1 b 1 —x 1 x
594, |0 b 0|, 595. | 0 —x —1],

b 0 —b x 1 —x
Simplify and evaluate the determinants:

a —a a 1 2 5
596. |[a a —al. 597. 3 —4 71.

a —a —a —3 12 —15

12 6 —4 x x 1
598. 6 4 4. 599. |y* y 1].

32 8 2z 1

14+cosa 1%-sina 1
600. {1 —sina 14cosa 1
1 1 1

a
2 cos?

sinee 1

2
601. 2cosz—g— sinfp 1]-

1 0 1

602. Find the area of a triangle with the vertices
A2, 3), B4, —1) and C (6, 5).
603. Do the following points belong to one straight
line:
A(l, 3), B(2, 4 and C(3, 5)?

604. With the aid of a third-order determinant write
the equation of the straight line passing through the
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points
(1) (¢, y)) and (x,, y,); (2) (2, 3) and (—1, 5).

Simplify and evaluate the determinants:

2 —3 1 m-+a m—a a
605. |6 —6 2|. 606.|n+a 2n—a af.
2 —1 2 a —a a

sin3a cos3a 1
sin2a cos2a 1].
sina cosea 1

ax a*-+x* 1
607. |ay a*+y* 1|
az a*+422 1

Hint. In Problem 607 take a outside the sign of the
determinant, then subtract the third row from the first
and the second ones and take (x—=z) and (y—2) outside

the sign of the determinant.
609. Prove that

X1+% Y1ty 1
2

608.

2 1% Y
Y1—% h—Ys =35
2 2 X2 Yo
X, Y 1
610. Find x from the equations:
x4 9 x? 3 2
M |x 2 3|=0; (2 (x —1 1|=0
1 11 0 1 4

and check the solution by substituting the roots into the
determinant.

4.2. Systems of First-Degree Equations

1°. A system of two equations of the first degree in two
unknowns

a,x+by=c, } )

ax+by=c,
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has the solution

¢ b a, cl'
_lcs by 14 &
r= a, bl' ’ y= a by|° @
a, b, a, by
. . . al 1
provided its determinant A= a b 0.
2 2

2°. A system of two homogeneous equations of the
first degree in three unknowns

a,x+by+cz2=0, } 3
ax+by—+c,z=0 @)
has solutions determined by the formulas
b, ¢, a, ¢ a, b,
=k = — =
* b, ¢ |’ y ka2 Cy |’ ¢ a, b,|’ “)

where & is an arbitrary number.
3°. A system of three homogeneous equations of the
first degree in three unknowns

anx+b|y+012=0,
a,x+b,y+c,z=0,
asx +bgy+cz=0

has non-zero solutions if the determinant of the system

(5)

a, b ¢
a2 b? C2
a, b, ¢,

A= =0, and conversely.

4°, A system of three equations of the first degree in

two unknowns
ax+by=c,
ax + by =c,,
ayx +bgy =c,
a, b ¢
a, b, ¢,|=0 and it contains no
a, by ¢,
pairwise contradictory equations.

(6)

is compatible, when A=
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5°. A system of three equations of the first degree in
three unknowns

ax+by+cz=d, }

a,x+by+c,z2=d,, ™
agx +bgy+csz =d,
has the following unique solution:
A A A
x=7&{, y:xy, Z=Tz’ (8)
where
d, b, c a, d, ¢ a, b, d,
A,=|dy b, ¢ |, A ,=|a, d, ¢,|, A,=|a, b, d,|,
dy by ¢4 a; dy a, by d

provided the determinant of the system
al bl Cl
a2 b2 c2
as by ¢

A= 0

6°. Incompatible and indeterminate systems. Let us
denote the left-hand members of equations (7) by X,,
X,, and X,. Let the determinant of system (7) A=0.
In this case two suppositions are possible.

I. The elements of two rows (columns) of the determi-

. . a b c
nant A are proportional, for instance, 2= =-Z=m

a b 4

Then X,=mX,, and

(1) if d,=md,, then the system is incompatible (the first
two equations are contradictory);

(2) if d,=md,, then the system is indeterminate (if the
first and the third equations are not contradictory).

I1. The determinant A has no rows (columns) with
proportional elements. Then there exist non-zero num-
bers m and n such that mX,+nX,= X,, and

(1) if md,+nd,=~d,, then the system is incompatible;
(2) if md,+nd,=d,, then the system is indeterminate.
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The numbers m and n can be chosen accordingly, or
found from the equations a,m--a,n=a,; bm+b,n=b;;
C,Mm—-Cyn =y

Using determinants, solve the following systems of
equations:

611 3x+42y=7 ax—3y=1
* | 4x—5y=40. ax—2y =2.
bx+2y=4 mx—ny = (m—n)?
613 { 7x 44y =8. 614 { 2x—y =n(for m=%=2n).

Solve the systems of equationS'

2x—3y+ z—2=0 2x—4y+3z=1

615. { x+5y—4z+4+5=0 616 { x—2y+42=3
4x+ y—3z2+4=0. 3x— y-+45z=2,
3x+2y— 2=0

o7 { 2§+izi§§:o. 618. { ¥= y+32=0
x+3y—4z=0.

3x+3y— z=0 X42y+3z=

619. {Qx—- y—+32=0 620. {2x+4y+62-
x+ y— z=0. 3x+ y— z=1.

x+2y+32=4 x+2y+32=4

{2x—|— y— 2=3 622 {2)6—}— y— z=3
3x+3y+2z=1. 3x+3y+22=10.

623. Do the following straight lines intersect at one
point?

2x—3y==6 2x—3y=6
(1) { 3x+ y=9 and (2){ x+2y=4
x+4y=3

Construct these lines.
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Solve the systems of equations:

20— y+ z= 2 x+2y+32=5
624, { 3x+2y+22=—2  625.{ 2x— y— z=1

x—2y+ 2= 1. x+3y+42=06.

3x— y+22=0

626. { gii;ﬂigz;g 627.{ 9% +3y—52=0
' x4+ y+ z2=0.

2x— y+32=0 x—2y+z2=4

628. { x+2y—52=0 629.{ 2x+4+3y—2=3
3x+ y—2z2=0. 4x— y+4-z=11.

4.3, Complex Numbers

1°. Definitions. The complex number is an expression of
the form x--yi, where x and y are real numbers and i
is a certain symbol, the following conditions being ob-
served:

(1) x+0i=x, O+yi=yi and li=i, (—1)i=—i;

(2) x+yi=x,+y, if and only if x=x, and y=y,;

(3) x+y)+(x+yid)=(x+x)+G+y) i

(4) (x+y") (x1+y1‘)=(xx1—yy1)+(xy1+x1!/)l'

From conditions (1) and (4) the powers of the number {
are obtained:

2=—1, #=—i, ‘=1, %=, etc. 1

A complex number x+yi, in which ys40, is called an
imaginary number, where i is the so-called imaginary unit.

2°. Operations on complex numbers. Addition, subtrac-
tion, multiplication, and involution of complex numbers
may be performed according to the rules for these opera-
tions on polynomials, the powers of i being replaced in
accordance with formulas (1).

Division and evolution of complex numbers are defined
as inverse operations.

3°. The trigonometric form of a complex number. A comp-
lex number x-yi is determined by a pair of real numbers
(x, y), and therefore is depicted by a point M (x, y)ina

plane or by its radius vector r=0M (see Fig. 12 on p. 57).
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The length of this vector r=}x*+4? is called the mo-
dulus of the complex number, and the angle ¢ between
the vector and the axis OX is called the argument of the
complex number. Since x=rcosg, y=rsing, we have

X+ yi=r(cos @+isin @). (2)
4°. Operations on complex numbers expressed in the
trigonometric form:
r=(cos@-+ising)r,(cosq,+ising,)=
= (rrl) [COS (p+ ¢,) +isin(p+ (‘pl)]' (3)

r (cos @i sin @) r )
Alos et D _ Llcos (p—gy)+isin (p—9)], ()

[7 (cos @+ isin@)]* =r"(cosnp+isinng), (5)
Vr(cosp+ising)=1y/r (cos¢+n2kn+isin(p+n2kn) , (6)
where k=0, 1, 2, ..., (n—1).
Formula (5) is called de Moivre’'s formula.
5°. Euler’s formula: ef® =cos@+ising )
6°. Logarithm of a complex number:
Inz=Inr4ig,+i2kn, 8)

where @, is the value of the argument ¢ satisfying the
inequalities —n < @,<{m. The expression Inr-+ig, is
called the principal branch of the logarithm.

630. Perform the following operations: (1) (2+ 3i) (3—2i);
@) (a-+bi) (a—bi); () B—20% (4) (1+0i)% () 1=

2i
(6) 13-

631. Solve the equations: (1) x2425=0; (2) x2—2x 4
+5=0; (3) x*4+4x+13=0, and verify the solutions by
substituting the roots into the corresponding equation.

Represent the following complex numbers as vectors,
determine their moduli and arguments, and write them
in the trigonometric form:

632. (1) 2=3; (2) 2=—2; (3) 2=3i; (4) 2=—2i.

633. (1) 2=2—2i; (2) z=14+iV3; 8) z=—V3—i.

634. (1) —V2+iV?2; (2) sina+i(l—cosa).
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635. Write the numbers given in Problems 632 to 634
in the form re'® (for —n < o< ).

636. Construct the domains of points 2z, given the fol-
lowing conditions:

(1) |2]<3; (2 |2]<2and F<o<m
B) 2<|z[<4 and —n< o< —7.

637. Show that |z,—z,| is the distance between the
points z, and z,.

638. Given the point z,=—2+ 3i. Construct the domain
of points z for which |z—z,| < 1.

639. The number conjugate with z is denoted by z. Prove

that z.z=|z .
640. Compute, using de Moivre’s formula:

(1) (14i)*; (2 (l—iVF)ﬂ; (3) (—1+i)%;
4) (l—}-cos%-{—isin%) . (6) (V'3+ ).

641. Express sin3a and cos3e in terms of functions of
the angle a, using the identity (cosa-isina)®=cos3a -+
+isin 3a.

642. Find all the values of z=1}/1 and represent them

by radius vectors for which purpose construct a circle of
radius equal to 1.

643. Find (1) y/T; (2) /i; 3) v/ =1; (4) v/ —2+F2i.

644. Find (1) VT; 2) V/—=T1+5 3) }/ —8+8i V3.

645. Solve the binomial equations: (1) x*+48=0; (2)
x*+4=0.

646. Find the principal branch of the logarithm
(1) In(—2); (2) In (1 +i); (3) Ini; (4) In (x+yi); (5) In (2— 2i).

647. Find the sum sinx-sin2x-+4sin3x4 ...+ sinnx.

Hint. Applying Euler’s formula, substitute elx—_;;lx for
sin x, and so forth.

648. Find the sum cosx -4cos2x+4cos3x+ ...+ cosnx.

649. Prove the identity x8—1=(x—1) (x2—2x cos 72°41) X
X (x2—2x cos 144° + 1).
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650. Compute:
4—3i

(l) 4_,_31; (2) (a+b‘)a_(a—b")a

Represent the following complex numbers as vectors,
determine their moduli and arguments, and write them
both in the trigonometric form and in the form ref®
(for —a< o a):

651. (1) z=444f; (2) z=—14+iV3; (B) z=1—.i.

652. (1) z=5; (2)z=—1i; (3) z=—V2—)V—2.

653. Construct the domam of points z according to the
conditions

[

1<|z]<3 and %<¢<T“.

654. Given the point z,=3—4{. Construct the domain
of points z for which |z—z,|< 5.
655. Using de Moivre’s formula, compute:

() (1—i); (2) (24 (VT2 (3)(1+cos +isin )

656. Express sin4a and cos4e in terms of functions of
the angle o using the identity (cosa +isina)*=cos 4a -}
-} isin4a. .

657. Find all the values of the radicals (1) 3/ —1 and

(2) /T and represent them by radius vectors.

658. Solve the equations: (1) x*—8=0; (2) x*+64=0;
(3) x¢—81=0.

659. Find the sum

cosx+4+cos3x+cosb5x 4 ... +cos(2n—1)x

(see Problem 647).
4.4. Higher-Degree Equations. Approximate
Solution of Egquations
1°. Cubic equation:
x3+ax3+bx+4c=0. 1)

If x,, x, x, are the roots of equation (1), then the
latter may be rewritten as (x—ux,)(x—x,) (x—x5)=0.
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Hence, a——(xl+x,—|—x3), b=xXyF X, X3+ X,%3, cC¢=
=—X, XX
The eqliatlon x84 ax?4-bx+c=0 is reduced to the form

234+ pz+4g=0 by the substitution x=z—%. The equation
284 pz+g=0 is solved using Cardan’s formula

l/ L Vs +]/———- T+ 2 —uto.

I. IfA———|—27>O then z,=u,+v,, 2,,= —‘ﬂ;;ﬂj:
:l:—‘g—ﬁilf& where u, and v, are real values of the roots
u and v.

3¢
IL If A=% 420, thenz,= 3,,_",22,3=_5=_%,
HL If A=% 42 <0, then z,=21/__pcos.‘£ 20—

=2]/:§—cos (-gl:tmo“), where cos = —7 ]/_pa.

2°. Separating the real roots of the equation f(x)=0.
There is a unique root of the equation f(x)=0 between
a and b, if f(a) and f(b) have opposite signs and f(x) is
continuous and has a derivative [’ (x)s%=0 within the in-
terval [a, b]. We suppose that also f"(x)s=0 within this
interval.

3°. The method of chords applied to approximate solu-
tion of an equation f(x)=0. Let «, be the end-point of
the root isolating interval [a, b] at which f(a,)- " (a,) < 0.
Then the approximation of the root x will be the point
a, at which the chord AB intersects the axis 0X (Fig. 23):

a, =a0_f(Zo),

where k= w.

a
4°. Method of tangents (Newton’s method). Let f, be
the end-point of the interval [a, b] at which f(8,)- " (B,) > 0.
Then the approximation of the root x will be the point f,
of intersection of the axis OX and the fangent line to the
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curve y=f(x) at the point [B,, f(B,)] (Fig. 23):

ﬂl =Bo—f(Tﬂlo)’

where k&, =f"(B,).
Applying the methods of chords and tangents once again,
we obtain the following table:

alB| f@) | 1B |k |#]aa | ap o

where & and k, are the slopes of the chords and tangents,
and

Aa=—L@ anq Aﬁ=—’—,§?—).

Continuing the process we find successive values of a
and B. The sequence has as its limit the required root.

Fig. 23

5°. Method of iterations. !f an equation f(x)=0 can
be reduced to the form x=¢(x) and in some neighbour-
hood of the root | ¢’ (x)] <8< 1, x, being any number in
this neighbourhood, then the required sequence of appro-
ximate solutions will be:

X =(E(xo)v X, =@ (X)), X3=¢(x,), etc.
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In the equations of Problems 660 and 661 choose one
root out of the integral factors of the constant term, then
divide the left-hand member by x—x, and find the rest
of the roots.

660. (1) x*—4x24+x+6=0; (2) x*—4x2—4x—5=0.
Verify the solution by forming the expressions:

Xyt Xgt Xy XXy XXt X1 Xg, Xy XX

661. (1) x*—bx2—2x424=0; (2) x*+x"4+2x—4=0;
3) I3+ 18x2—x—2=0; (4) 4x3—4x24+x—1=0.

Solve the following equations, using Cardan’s formula:

662. (1) 22*—62—9=0; (2) 2*—122—16=0.

663. (1) *—122—8=0; (2) 224 62—7=0.

664. x34+9x24 18x+9=0.

665. Given the equation f(x)=x*—x—10=0. Making
a table of signs for f(x) at x=0, 1, 2, ..., determine
the boundaries of the positive root and compute it to two
decimal places using the methods of chords and tangents.

666. Construct the graph of the function y=%s, deter-

mine graphically the boundaries of the roots of the equa-
tion x*—6x+43=0, and compute them to three decimal
places.

667. Using the method of iterations (i.e. of successive
approximations), find the real roots of the equations:
(1) x*4+60x—80=0; (2) 2*=4x; (3) x*+[lx+[3=0;
(4) x»*—2x—2=0.

668. Solve the following equations, choosing one root
among the integral factors of the constant term:

(1) x34-8x2+16x+4+18=0; (2) x®*—3x244=0.

Check the solution by writing the expressions Y x,

X%y, and X XX,

669. Solve the following equations, using Cardan’s for-
mula:

(1) 224+ 182—19=0; (2) 2*—6z2—4=0;
(3) 2*—324+2=0; (4) »*+6x*+9x+4=0.
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670. Constructing the graph of the function y——-%,de-

termine the boundaries of the roots of the equation

x4+3x—15=0 and compute the roots to two decimal
laces.

P 671. Find to two decimal places the positive roots of

the equations: (1) x3+50x—60=0; (2) x*4+x—32=0.
672. Using the method of iterations, find the real root

of the equation x®4-2x—8=0 computing the successive

approximations by the formula x=}/8—2x (with the
aid of a slide rule).



CHAPTER 5

INTRODUCTION TO MATHEMATICAL ANALYSIS

5.1. Variable Quantities and Functions

1°. Intervals. A set of numbers x satisfying the inequ-
alities a <x < b, where a and b are fixed numbers, is
called an open interval; it is usually denoted as (a, b).
A set of numbers x satisfying the inequalities a <Cx<Cb
is called a closed interval; its notation is [a, b]. A set of
numbers x satisfying the inequalities a<Cx < b or a <x<b
is called a half-open interval ([a, b) or (a, b)).

Open, closed, and half-open intervals are covered by
a single term interval.

Equivalent inequalities (for a > 0):

r<a?, |x|<a, and —a<x<a

define an interval which is symmetrical with respect
to zero.

2°. Variable quantities and functions. A quantity y is
called a function of a variable quantity x if with every
value assumed by x we can associate one or several defi-
nite values of y. Here, the variable x is called the ar-
gument.

We can put it otherwise: the quantity y depends on
the quantity x; accordingly, the argument is called the
independent variable and the function is termed the depen-
dent variable. The collection of all values which the argu-
ment of a function can assume is called the domain of
definition (or simply, domain) of the function.

If to every value of the argument there corresponds
one value of the function, the function is termed single-
valued; if there correspond two or more values, then it
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is called multiple-valued (double-valued, triple-valued,
ete.).

The symbol f(x) is an abbreviation of the phrase
“a function of x”. If two or more different functions of x
are being considered, then, in addition to f(x), we can
use such notations as f, (x), f,(x), F(x), ¢(x), @ (x).

The notation y=/f(x) expresses the fact that the quan-
lity y is equal to some function of x or that y is a fun-
ction of the argument x. The letter f is called the fun-
ction symbol.

The symbhol f(x) can be used to designate both an
unknown function and a known function.

673. Construct the interval of a variable x satisfying
the following inequalities:

() [x] <4 (2 #<9 B) [x—4|<1;

(4) —1<x—=3<2 () »*>9; (6 x—2)*< 4

674. Write in the form of inequalities and construct the
intervals of variables: [—1, 3); (0, 4); [—2, 1].
1

675. Determine the interval of the variable x=1——,

t

where ¢ takes on any value >1.

In Problems 676 to 678 plot the graphs of the given
functions over the interval |x|<3:

676. (1) y=2x; (2) y=2x+2; 3) y=2x—2.

677. (1) y=x% (2) y=x*+4+1;, (3) y=x*—1.

678. () y="; @y=5+L @ y=5—L

679. Construct the graphs of the functions: (1) y=%;

(2) y=2%, (3) y=1log,x. What feature can be noticed in
the location of these curves with respect to the coordi-
nate axes?.

680. Construct two curves in the same drawing:
(1) y=sinx; (2) y=cosx making use of the points at
which y has the maximum, minimum and zero values.
By adding the ordinates of these curves, depict the fun-
ction y=sinx-4-cosx in the same drawing.

681. Find the roots x, and x, of the function y=4x—x?
and plot its graph over the interval [x,—1, x,+1].
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682. Graph the following functions:
() y=Ixl; @) y=—]|x—=2[ @) y=|x|—x

In eath of the following problems (683 to 686), find
the domain of definition of real values of the given fun-
gtions and draw their graphs.

683..(1) y=Vx+2; (2) y=V9—x% (3) y=V &x—x-.
684. (1) y=V —x+V4+x (2) y=arcsinx—;l,

685. (1) y=£(—2—§ﬂ; @) y==xVi—x.

16 —x2
686. (1) y=—VTsinx; (2) y=_"_lﬂ25__".

687. (1) f(x)= x’—x—}—l, evaluate f), f, f(=1),
F@), Flat1) (@) o)== +1, evaluate @(0), @(—1),

¢(2) *(3) 7
688. F (x)=x?; evaluate:

(1) F(b)—F(a) . (@) F (a—i—h) F( a2—h

689. f(x)—x2 ¢ (x) =x8; evaluateig;—fp(ﬂ
690. F (x, y) =x*—3xy—y?*; evaluate F (4, 3) and F (3, 4).
691. A function f(x) is said to be even if f(—x)=f(x),
and odd if f(—x)= —f(x). Which of the following fun-

ctions are even and which are odd: (1) f(x )_Smx

@ eW=mr1 @ FW=a+5 () O)=a"—

alx; (6) ¥ (x)=xsin2x—x% (6) f, (x) =x+4x*?

692. The midpoint of any chord of a certain graphically
represented function f(x) lies above the graph of this
function. Write this property of the function using an
inequality. Check whether the function f(x)=ux? possesses
this property.

693. Which elementary function possesses the follo-
wing properties:

f)=0; f@=1 [@y=Ffx)+F?
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694. Which elementary function possesses the following
properties:

fFO=1, f)=a, [fE+y=FxF@?

695. Construct the intervals of the variable x whic};
satisfies the following inequalities:

() [x] <35 @) <4 Q) [x—2]<2; (4) (x—1)p<4

696. Determine the interval of the variable x=2+%,
where ¢ takes on any value >1.

697. Graph the functions:

1) y=4———);i over the interval |x|<{2;

(2) y=3.5-1—3x—3‘2i between the points of intersection

wilh the axis of abscissas.
698. Graph the functions:
(1) y=x—4+4|x—2| over the interval [—2, 5];
(2) y=1—cosx over the interval |x|<C2x.
699. Construct the graphs of the following functions:

(1) y=—=; (@) y=2-*

700. Find the domains of definition of real values of
the following functions:

() y=Vi=x (@) y=Vx+1—V3=x
—=1—V 9 cos Ox: — 4
(3) y=1—V2cos2x; (4) y e

and construct their graphs.

o1 (1) =3 fnd 1O, FD), F(—f)
Te—1, ()

@) ¢ (x) =% find fP(*H-");‘P(x—h);

@) f(x)=4x—ux% find f(a+1)—f(a—1).
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5.2. Number Sequences. Infinitesimals and
Infinities. The Limit of a Variable.
The Limit of a Function

1°. Number sequences. Let a variable x attain successi-
vely the values

Xiy Xgy Xgy voey Xpy oue 0))

Such an ordered set of numbers is called an infinite se-
quence or just a sequence. The sequence (1) is given by
the formula of the nth term.

For example, let x,=n-+4+(—1)*; putting n=1, 2,
3, ..., we obtain the sequence

0,325 4,1, ... ©)

Suppose the variable x attains not only the values
defined by sequence (2), but also all the intermediate
values from 0 to 3 (increasing), then from 3 to 2 (de-

g /7 2 93¢ 4 s & 7

| 1 1 1 1 1 1 1
- T~ -~

Fig. 24

creasing) and so on, then the variation of x can be rep-
resented by the path of a point M (x) moving along the
axis OX. Figure 24 illustrates the path covered by the
variable x specified by sequence (2).

Let us assume here that a variable is given by the
sequence x= [ (n), or in general by the function x=F (f)
defined on the interval a<C¢<Cb, provided x=f(¢) fol-
lows x,=f(t,), if t>1¢, (in particular, ¢ may denote
time).

2°. Infinitesimals. A variable a is called an infinitesi-
mal if for any positive number e there exists a value o,
such that each subsequent value of « will be less than e
by its absolute value.

If @ is an infinitesimal, then we say that a fends to
zero which is written as o —0. Or in other words: an
infinitesimal is a quantity whose limit is equal to zero.
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3°. An infinite quantity. A variable x is termed
an infinite quantity if for any positive number ¢ there
cxists a value x, such that each subsequent value of x
will be greater than ¢ by its absolute value. Notation:
X — 00.

If all the values of the variable x which follow a cer-
lain x, retain the sign, the notation will be: x — 4 oo
(or x ——o00).

A quantity inverse to an infinite quantity is an infini-
tesimal quantity, and vice versa.

4°. The limit of a variable. A constant a is called the
limit of a variable x if the difference between them is an
infinitesimal, i.e. if x=a4a, then limx=a, and con-
versely.

If a is the limit of the variable x, then it is also said
that x tends to a, the corresponding notation being: x—a,
or x—a—0 (if x remains on the left of a), or x—a-+0
(if x remains on the right of a).

X
J
a-g& a+e

Fig. 25

S
N2

The interval (@ —e, a +¢) is called the e¢-neighbour-
hood of the number a. We may say that x fends to a if
for any positive number e there exists a value x, such
that all successive values of x will be found within the
¢-neighbourhood of the number a (Fig. 25).

If x—+o00 (or x——o0), then it is said that the
limit of the variable x is + oo (or —oo), the correspon-
ding notation being:

limx= 400 (or limx=— o0).
5°. The limit of a function. A number b is called the
limit of a function f(x) as x lends to a, if from the fact

that x fends to a never attaining the value a it always
follows that f(x) fends to b; notation: lim f(x)=b. The

X —>a
given definition also covers special cases, when the numbers
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a or b will be replaced by the symbols 4-o00 or —oo:

lim f(x)= 4+ o0, lim f(x)=0b, lim f(x)=—o0,and
x—>a X —=>—® X >+ ®
so forth.
The limit lim f(x)= (or lim f(x)=5b) is called
x—>a—0 x—->a+0

the limit of the function f(x) as ax tends to a from the
left (or from the right).

702. Putting n=0, 1, 2, 3, etc. write the sequences:

a=n a=—=i g=(—1)
=g T T “‘(—7

and represent graphically their variation. Beginning with
what n will the modulus of each of the variables become
and remain less than 0.001; less than a given positive €?

703. Write the sequence of values of the variable

x—l—l—( _:_) and represent its variation graphically.

Begmmng with what n will the modulus of the difference
x—1 become and remain less than 0.01; less than a given
positive e?

704. Adding to 3 (or subtracting from 3) first 1, then
0.1, then 0.01, etc. show in terms of “decimal” sequences
the ways the variable tends to the limit: x—3+40,
x—3—0.

705. Writing “decimal” sequences, show how the vari-
ables tend to the following limits: x—5+4-0, x— 5—0;
x——24+0, x—>—2—0; x—1+0, x—1—0; x—1.240,
x—1.2—0.

706. Prove that lim x?*=4. Clarify this by making tab-

x—2
les of values of x and x2.

Hint. Putting x=2-4a, where o is an infinitesimal,
form the -difference x2—4 and show that it equals an
infinitesimal.

707. Prove that lim (2x—1)=5. Given the number

x—>3
e >0, find a maximum number 8§ > 0 such that for any x
from the 6-neighbourhood of the number 3 the corres-
ponding value of the function (2x—1) turns out to be
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within the e-neighbourhood of the number 5. Explain
this graphically.
708. Prove that llm (3 2x—x?)=4. From what maxi-

mum G-nelghbourhood of the number —1 is it necessary
lo take a value of x so that the corresponding value of
the function (3—2x—x?) differs from its limit by less
than ¢=0.0001?

709. Prove that sine is an infinitesimal if « is an
infinitesimal.

Hint. Show graphically that |sina|<|a]|.

710. Prove that lim sinx=sina.

X
Hint. Putting x =a+a, make up the difference sinx —
--sina.

711. Prove that lim §%ﬁ=3 Clarify this by making

tables of values of x and at x=1, 10, 100, 1000,....

Hint. Show that the difirence %443 is an infinite-
simal, as x— oo.

4x—3

712. Prove that }1_{11@2 )

will the corresponding values of the function differ from
its limit by less than 0001?

—2x2
713. Prove that llm 2+4x2 =
of x will the correspondmg values of the function differ
from its limit by less that 0.01?

714. Prove that lim 0.333...3 =— by forming the diffe-

n-—> o
n digits

. 1 . . l . . l
rences: 3——0.3, 3——0.33, —3——0.333, el —3——0.333. ..3.

=2. For what values of «x

—0.5. For what values

n digits
715. Write the sequences of values of the follo%ving

variables:
(1) x=—" 3) x==Dm,

n-|-l ’
8cosnﬂ

4) x=——2 ) x 2"""(_1) i (6) x=2""acosnn

T
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and represent their variation graphically. Does limx exist

n—»+ ®

in each case and what is it equal to?
716. Find lim 2oand lim 25 and give the

x>240%—2 x>2—-0%—
explanatory tables.
1 1
717. Find lim 2% and lim 2* and give the expla-
x> 0+0 x—>0-0

natory tables.
718. Find out the exact meaning of the following “con-
ventional” notations:

() log,00=—oo; (6) {an 90° = 4+ oo.

719. Show that lim sinx dees not exist by forming

sequences of value; -(;fmsinx at
(1) x=nmn; (2) x=—’23+2nn; 3) x=—%+2nn (n=0,

1, 2, 3, 4, ...).
720. Show that lim sin—i— does not exist.

x>0
721. Applying one of the theorems on infinitesimals,

show that lim xsin%:O irrespective of the way in which
x—0
x tends to O.

722. Inscribed in a circle of radius R is a regular n-gon
whose side is a,. Circumscribing a square about the circle,
show that a, < € as soon asn>¥, i.e. a,—0as n— oo,

723. Let r, be the apothem of a regular n-gon inscribed
in a circle. Prove that lim r,=R, where R is the radius

n— o
of the circle.

724. The vertex B of a triangle ABC keeps displacing
along a straight line BE|| AC moving off infinitely to the
right. How will the sides of the triangle, its area, its
interior angles and the exterior angle BCD change?
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725. Write “decimal” sequences to show how the vari-
ables tend to the following limits: x—4+40, x—4—0;
x——1540, x——1.5—0.

726. Prove that (1) lim x*=27; (2) lim (x®42x)=3

X1

x—+3
(see the hint to Problem 706).
727. Prove that lim *+2—9.5 showing that the diffc-

X —> ® 2x
rence 5x21-2—2.5 is an infinitesimal if x is an infinite
value. Clarify this by a table, putting x=1, 10, 100,
1000, ....
728. Prove that lim cosx=cosa (see Problem 709).

729. Write the sexq-agnces of values of the following
variables:
1\n 1
(D x=l+(——7) pQ) x=(=D"45;
2n sinL;-

(@) x=(— 1" @n+1); (4) x=——r

and represent their variation graphically. Which of the
variables has a limit at n— 4 c0?

1 1
730. Find: (1) lim 2%7; (2) lim 2% T,

x—>1-0 x—+1+0

(3) lim 3tn2g (4) lim 3en (5) lim —2_;
x_.£+ol—|—2
2

x—»%—o x——»-%+0
. 2 . . a
© xllz—ow' (7)xl—l>Tac I-fav”
2
731. Prove that lim 0.666...6==, by forming the
e n digits
differences %—0.6; %——0.66; Cee %—0.66...6.

n digits
732. Let a, be the interior angle of a reqular n-gon.
Prove that lim a,=n.

n—-wo
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733. On the extension of the line segment AB=a a.
point M is taken on its right at a distance BM =x. Find
lim 2M

5.3. Basic Properties of Limits.
Evaluating the Indeterminate Forms % and g

1°. The limit of a constant quantity is the quantity
itself.

2°. lim(u+4v)=limu+limo

3°. lim (uv)=limu-limv

4°. lim %:i:.g:—l;, if limu and limov exist and limovs40.

§°. If for all values of x within a certain neighbourhood
of point a, except perhaps x=a, the functions f(x) and
¢ (x) are equal to each other and one of them has a limit
as x—a, then the second function has the same limit.

This property is applied to evaluating the indetermi-

0 ) x2—a?
nate forms - and —. For example, r— =x+aforany x,

0
except for x=a. By property 5° ii_rpa'%:—zi= lim (x+a)=2a.

X —>a

} if limu and limov exist.

Find the limits:

s xP—dx+1
734. (I)Jl_r,n,‘,'Tx—}T’

1 +sin 2x
1—cos4x *

(2) lim

x>

735. lim ~—=2 (clarify by a table).

x -2 x—2
x2—9

s —2x—3

. x—2 .
736. LIT2 "x2_3—x_|_2 . 737. ll_l;n

Hint. Solve Problem 736 by two methods: (1) put
x=2-+a; (2) factorize the denominator.

- . tanx . sin x—cos x
738. xll_in,t e 739. llmn —
X—PT
: . Vax—x
740. lim ——2o— . 741. lim .
x>0 V1F3x—1 x—+>a *—a

3/ %—1 3,/1 “mx—1
742, lim Y. 743. lim -—f;—'""——

x=>1 V}—l x=+0
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Hint. Put x=¢% in Problem 742, and 14+ mx={* in
Problem 743.

744, lim YIE2—VI=z

x—>0
. Vi—tanx— V1+4tanx
745. ‘I:l-r:”ln T .
. 2x2—1 . 5x3—7x
746. (l)xll_l;nmm, (2) lerr:D T—93 °

Hint. Two methods can be used: (1) divide both the
numerator and the denominator by x in higher power;

(2) put x=o.
: 3x—1 . »B—1
747. lemw 2T 748. xllnl p
: V}—-Gx . 3n
749. x]me W . 750. nlem T—om -
751. lim _% 759 lim Jt2t3+...+n )
now 21—l n-o Voni F1

Find the limits:

. 3x+6 . 9—x2?

. lim *t8 754. lim ——*>_
3. Im a7 e Viz—3
755, lim X2—*—=2% 756. lim Y 1fcosx

o 1 x3+1 X 40 sin x
757. lim 2o—3%+2 758. lim —rtl

x>® 24 4x+ 17 nso ¥V 3ni41 ’

1
. 5x2 X . 143454+ @2n—1)
759. lim (—1_x2+2 ) 760. 1111_:1; RN el

X—>®
. 2—Vx—3 . sin 2x — cos 2x — |
oL lim . 762 lim o

T
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i

5.4. The Limit of the Ratio % as a—0

If an angle o is expressed in radians, then

lim$0%_ 1. lim % =1.
a—>0 a0 SING
Find the limits:
. X
. sin —
763. lim sm“. 764. 11m 3

x>0

Hint. In Problem 763 multlply both the numerator and
the denominator by 4 (or put 4x=a).

tanx sin® 3 cos 2x
765. lim . 766. lim 767. Ilm——_.
x>0 x>0 x>0 XSinx
768. l]m._s”_’i‘__. 769. limsm(x-l-h)—sm(x h).
x>0 Vit2—V72 P 7
r t n . arcsin (1 —2x
770. (1) ll_lf(l,acxa . (2 lim 30412( l )
X—b7

Hint. Put arctanx=a in (1) and arcsin(l—2x)=a
in (2).

771. llm

x>0 x>0

cosx. 772. lim tan x;sm x.

Find the limits:

773. lim—-. 774. lim ——— Sindx .
3. x>0 sm3x x—0 l/x 1 —1
. V1=cos2x . 2xsinx
775. tl_lt_no —. T776. l’(Lng secx—1°
1 — cos mx . l—cos 2x4tan2x
771. E‘l*o —_— 778. ll_{r[l) s

1
779. lim [511—2(::4—2)4—2 =2 (put x=2+a).

x—2

) i cos (x +h)—cos (x—h) . arcsin (x4 2)
70 () S @) )in S
781, lim ——t X :

%0 V14 xsinx—cosx
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5.5. Indeterminate Expressions of the Form
o0 —oo and 0-oco

Find the limits:
782. lim (V' x*+ 3x—x).

X—>+ ® | 9
784. lim (V2 +x+1—V x* —x).
X—>+®
. | 12 . 1 ]
785. lim (————— . 786. lim/—_— .
> \X—2 x~"—8> x_’0<sm3x 4siu‘*%)
. 1434 ...4@n—1)
787. '}Lrg [ 73 —n] .
788. hm(l—x)tan—x(put x=1—a).
x=>1
789. lim (V' x* +1—V x*—4x).
790. E_mg(x+2+x2 )
Find the limits:
791. lim (x—Vx2—x+1).
X—>+®
792.xl_irflw(x—Vx2—a2). 793. lm}‘ (;%’;—tan%).
x—»-?
. 14+243+...4n n
794, nhﬂ( 5 —7).

795. lin:l (x——)tanx (put x=—’23+a).

>

2
/

5.6. Miscellaneous Problems on Limits

Find the limits:

. Vx 4—2 . l4xsinx—cos2x
796. (1) lim B2 (@) lim =g

4 /=

Xx—
. =" 2
o ) i P2 @t

5-1898
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798. lim (V' x*+ax—) x*—ax).

799. (1) lim <~37%3—+2-x'>; (2) limZ 5‘5';".
Ko x>®
i BL4+1 . X2tx—
800- (l)xl—:Tl sin (x_'_l) y (2) xl_ll;n2 W.
x
801. (1) lim——=8% . (9) hm“’s—
x>0 X ( Kl +)"—1) X7 1o
. sin(1—x —
802. (1) lim =7=—; @ lim .
1
3t x| . . 3107
803. (1) 11m [ m—rT —2 ] ) ,,l_l,mw 2+ 10n+1'
Vi 2
804. (1) llm Vntci; % (2) xlile cos 3/x+l .

x—>

5.7. Comparisor of Infinitesimals

1°. Definitions. Let the functions a(x) and P (x) be
infinitesimals as x— a. Then:

I. If lim-B—=0, then P is termed an infinitesimal quan-

tity of };i—gizer order relative to a; and o is a quantity
of lower order with respect to B.

II. If llm—ﬂ—=A (finite and not equal to zero), then

B is called_’an infinitesimal of the nth order with respect
to a.

1. If limﬁ— , then p and a are termed the equi-

valent mﬁmteszmals The equivalence of infinitesimals is
denoted by the same symbol & as approximate equality.
Thus f ~a.

2°. The properties of equivalent infinitesimals:

(a) The difference a—f of two equivalent infinitesimals
a and P is an infinitesimal of higher order with respect
to either a or .

(b) If infinitesimals of the higher orders are rejected
from a sum of several infinitesimals of different orders,
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then the remaining or principal summand of the lower
order is equivalent to the entire sum.

It follows from the first property that equivalent infi-
nitesimals can become approximately equal with an arbit-
rary small relative error. Therefore, we use the symbol
=~ to denote both the equivalence of infinitesimals and
the approximate equality of their arbitrarily small values.

805. Determine the orders of the infinitesimals:
(1) 1—cosx; (2) tan x—sinx with respect to the infini-
tesimal x.

Show on the graph that a reduction of x to half its

value results in decreasing 1—cosx to approximately —l—

its value and tan x—sinx to approximately -:? its value.
806. Determine the orders of the following infinitesi-

mals: (1) 2sintx—=x% (2) Vsin2x+x% (3) VI+x—1
with respect to x.

807. Determine the order of smallness of the sagitta of
a circular segment relative to the infinitely small arc of
the segment.

808. Prove that

1) sinmx ~ mx; (2) tan mx &~ mx; (3) f/l-}-x—-l N 1 X,
( 3

as x — 0.

809. The volumetric expansion coefficient of a solid is
assumed to be approximately equal to three times the
linear expansion coefficient. On equivalence of what infi-
nitesimals is this assumption based?

810. Using the theorem that limﬁ—-llmfsl if arxa,,

p =B, and that one of the limits ex1sts ﬁnd the follow-
ing limits:
) ll smgx’ @ “ snnax+x . (3) “m3x+sm2x.

nbx sin 2x —x3

x>0

811. A water drop evaporates so that its radius tends
to zero. Determine the orders of the infinitesimals exp-
ressing the surface and volume of the drop with respect
to its radius.

5*
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812. Determine the orders of the infinitesimals:

() VIi+x—1; (2) sin2x—2sinx; (3) 1—2cosx
X <x+%> with respect to the infinitesimal x.

813. Prove that as x— 0 (1) arctan mx ~ mx;

2) l/l——i—x—lz—é-x; (3) 1—cos?x &~ 1.5sin2x.

5.8. The Continuity of a Function

1°. Definition. A function f(x) is called continuous at
a point x=a if it is defined in some neighbourhood a
and
lim f (x) = (a)

X—>a

This definition contains the following four conditions:

(1) f(x) must be defined in some neighbourhood of a;

(2) there must exist finite limits lim f(x) and lim f(x);
x—+>a-0 x—+>a+0

(3) these limits (both from the left and from the right)
must be equal to each other;

(4) these limits must be equal to f(a).

A function is called continuous on a closed interval
[x,, x,] if it is continuous at every point of the interval,
and at its end-points lim f(x)=f (x,) and limof (x)=F (x,).

. x—>x+0 X—>Xg—

Elementary functions: power function y=x", exponen-
tial function y=a*, logarithmic function y=1log,x, tri-
gonometric functions y =sin x, y=cos x, y=tan x, y=cot x,
y=secx, y=cosecx, circular or inverse trigonometric
functions y =arcsin x, y = arccos x, y=arctan x, y=arccot x,
y=arcsecx, y=arccosecx, as also their sum, product,
quotient are continuous at any x at which they have a
definite value.

2°, Discontinuities of a function. A function has a dis-
continuity at x=a if it is defined both from the left and
from the right of a, but at the point a at least one of
the continuity conditions is not fulfilled. We wusually
distinguish between two basic kinds of discontinuity.

(1) Discontinuity of the first kind. Such a case occurs
when there exist the limits on the right and on the left
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and they are finite, i.e. when the second condition of
continuity is fulfilled, and the rest of the conditions (or
at least one of them) are not fulfilled.

For example, the function y-——-l;‘—:Z—-, equal to —1 for

x<a and to +1 for x>a, has a discontinuity of the
first kind at the point x=a (Fig. 26), since there exist
the limits lim y=—1 and lim y=41, but they are

x—>a-0 x—>a+0
not equal.
Y ?
!
Y 1
[}
— |
/ | q |
a) — | X
a 1 X 1 a
l!‘/ ! _X—a v Y=y=g
1 y_. IX—UI : X—-a
I
Fig. 26 Fig. 27

(2) Discontinuity of the second kind. This is the case,
when lim f (x) either on the left or on the right is equal

xX—>a

to &4 oo.
For example, the function y=f(x)=x—_a_—& (Fig. 27) has
a discontinuity of the second kind at the point x=a.
All the fractional functions whose denominator becomes
zero at x=a, and the numerator is not equal to zero,
have a discontinuity of the second kind at the point

1

x=a. The function f(x)=2* (Problem 819, Fig. 42 on
p. 322) also has a discontinuity of the second kind at
x=0, since lim f(x)=0, but lim f(x)=oo.

x—>+0

x—+-=0
814. Indicate the point of discontinuity of the function
y=x_-4-§' find lim y, lim y, lim y, and plot the curve
+®

xX=>2-0 x—>2+0 xX—
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using the points
=—2,0,1, 3, 4, and 6.

815. Find the points of discontinuity and graph the
functions:

6 4
(1) y=—=—: (2) y=tanx; ) y=73—5

816. Graph the function

—;- for xs£2
y:
0 for x=2

and indicate the point of its discontinuity. Which of the
four continuity conditions are fulfilled at this point and
which are not?

817. Graph the functions: (1) y= |x+l|

x+ x+l . Which of the conditions of continuity are

fulﬁlled at the points of discontinuity of these functions
and which are not?
818. Graph the function

sinx

—= for x=£0
y=fx)y={ *

2 for x=0

and indicate the point of its discontinuity. Which of the
-continuity conditions are fulfilled here and which are not?

819. Indicate the point of discontinuity of the function
1

y=2%, find 11m y, lim g, l1m yand construct the graph

-0 x—+0 x>
of the functlon Whlch condltlons of continuity are not
fulfilled at the point of discontinuity?
820. Graph the function

0.5x% for |x| <2
y=f(x)= 2.5 for |x|=2
3 for | x| >2
and indicate the points of discontinuity.

and (2) Y=
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821. Find the points of discontinuity and plot the graphs

of the following functions: .
1 8 __ 42
() y=—-7; (@) y=arctan==; @) y=g;=77-
142%

822. How many single-valued functions are given by
the equation x*—y?=0? Among them define (1) an even
function; (2) an odd function so that they have finite
discontinuities (of the first kind) at x=+1, 22, 3, ...,
and plot their graphs.

823. Indicate the point of discontinuity of the function
__x , find lim y, lim y, lim yand plot its graph
y_x+2 xX>=2=0 x->=2+40 x—>+o
using the points x=—6, —4, —3, —1, 0, 2.
824. Graph the function

2 for x=0 and x= 42
y=f(x)={4—x for 0<|x| <2
for |x|>2

and indicate the points of discontinuity. Which continuity
conditions are fulfilled at these points and which are not?

825. Find the points of discontinuity and construct the
graphs of the following functions:

1 1
() y=2—L2, (@) y=2"=2, (3) y=1—27;

x
B+x 4—x2

(4) Y="oTa1 * (5 Y=1m=o7"

826. How many single-valued functions are specified
by the equation x*-y2=4? Oui of them define (1) two
continuous functions on the interval |x|<2; (2) the one
which is negative on the interval |x|<{1 and positive for
the rest of permissible values of x. Graph the latter
function and indicate its discontinuities.
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5.9. Asymptotes

Definition. The straight line AB is called the asympfote
of curve L if the distance MK from M (on L) to the
straight line AB tends to zero as M recedes to infinity.

I. If llmf(x) + oo, then the straight line x=a is an

asymptote of the curve y=f(x). For instance, the curve
Y =;é; has an asymptote x=a (Fig. 27).

II. If in the right-hand member of the equation of a
curve y=f(x) it is possible to single out a linear part
y=f (x)=kx+4b-4a (x) so that the remaining part & (x) — 0
as x— 4 oo, then the straight line y=Fkx-+b is the
asymptote of the curve. Examples: (1) the curve y =

= xs+:3_2+l=‘x +1 +xl—, has two asymptotes: y=x-1 and

x==0; (2) the curve yu;i—a=0+’~c—:z_7' has the asymptote
y=0 (Fig. 27).
III. If there exist finite limits lim Lf:k and
lim  [f(x)—kx]=b, then the straight line y=kx+b

X—>+®Or =

is an asymptote.

4

827. Determine the asymptotes of the curve y==1—-—?—

and plot the curve given the points x=41, 2, 4 4.
In Problems 828 to 830 find the asymptotes of the given

curves by singling out of the fractions a whole linear

part; construct both the asymptotes and the curves

828. (1) y=2F (@) y=2; (3 y=

X1 x2+1
2y —1 b
820. (1) y = N —1 @ y="T @) =,

—4x 4x— x8

8
830. (1) |+2x (2) y= x2_|_1 ) (3) y':'m

Find the asymptotes of the given curves and construct
the curves:

831. (1) x®*—y*=a? (2) x®*+ y*=23axy,
(3) y=x—2arctanx; (4) y=arctan ==,



Sec. 5.10. The Number e 137

832. (1) y=Vx2+1—-Vx*—1,

@ y=VeirliVr—1 @ =x—ﬁ.

833. Construct the curves: (1) J—x ManLp 2Dy %

and the parabolas to which these curves approach asympto-
tically.

834. Find the asymptoteés of the curves: (l)yz(l —%)2 ;

2) y=—x+ % and plot the curves by the points x = j:% ,

+1, +2
835. Find the asymptotes of the given curves and con-
struct the curves:

x.z . — .
(l)y--m ()Jﬁ_zx-’(‘?')y'—xz_‘}»

x3

d y=G—-

5.10. The Number e

The number e is defined as
1

lim <1+L)"= lim (1 +i>"= lim (1 4+a)% =e.
n—o n n—-—-® n o—>0

Its value is 2.71828.... Since it is an irrational num-
ber, it cannot be expressed as a fraction, or as a decimal,
or even as a recurring decimal. It is used as the base
for natural or Napierian logarithms; notation: log, x =1n x.

Common or Briggs’ logarithm: log,,x=M Inx, where
M =0.43429....

Find the limits:

836. nliinm(l—g)”(put_§=a).

837. (1) h_{rl<1__'7) (Q)nl_ETm<l+i)n+a'

1 l=x

838. (1) lin?)(l+2x)7; 2) llm (1—4” T
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839. (1) lim (#) @ lim (g;‘jr} ) *
840. (1) Ilm n[ln(n—|—3)—1nn] (2) llm(l-|-3tan x) cott x,
841. llm (cos x)eot? x (put sinzx=a).

l .

842. (1) lim ‘i(‘—ﬂ; @) lim &=

x>0
l

3) hm
x>0
Hint: In (2) put e=*—1=qa.
843. Find two consecutive whole numbers between which
the number 6 (1—1.01-199) is contained.

Find the limits:

. lim (145)" @ fim (555)°
845. (1) lim (‘;_E_f)“; @ lim et —1
846. lim (sin 2x)tan* 2% (put cos? 2x =a).
o>
847. (1) lim s mHm, @ lim n(inn—In(1+2)].



CHAPTER 6

THE DERIVATIVE AND THE DIFFERENTIAL

6.1. The Derivatives of Algebraic
and Trigonometric Functions

1°. Definitions. The derivative of the function y=f(x)
at a given point x is defined as the limit
lim [CF89=T@ _ iy 20 (1)
1 .

Ax—>0 X ht

If this limit is finite, then the function f(x) is called
differentiable at the point x; it is infallibly continuous
at this point.

If limit (1) is equal to +oo (or —oo), the function f (x)
is said to have an infinite derivative at the pcint x under
an additional condition that the function is continuous
at this point.

The derivative is denoted by y’, or f' (x), or %, or
d’d(;). The process of finding the derivative is called the

differentiation of a function.
2°. Basic differentiation formulas:

(1) ©'=0; (2) (x*) =nx""1, (3) (cu) =cu’;
(4) (u+v) =u"+0"; (5) () =u'v4uv';
© (L) =222 @) VR =

7 VE
(8) (sinx)’=cosx; (9) (cosx) =—sinx;
, 1 . . 1
(10) (tanx) =Ty (11) (cot x) =— <7

848. By computing lim ﬁ—z find the derivatives of the
Ax >0
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following functions:
(1) y=x% (2) y=x4 @) y=Vx (4) y=sinx
1
6 y=5i O y=y=i D y=m: @ y=tanx

@) =5 (10 y=VTF2%: () y=517;
(12) y=VT1+x.

Taking advantage of the differentiation formulas, find
the derivatives of the following functions:

849. (1) y:"—a—2x2+4x—5; (2) y—bx+c

850. (1) y=%—Z1x (@ y=(l—7)2.
851. (1) y=x+2V%; (2) y=V"a—V x>

10 1 1 1
852. (1) y——. @ y=7+=+7

1

854. (1) y=6x— 4% (2 y=(1_—’—_)’.

3/x

1 1
855. (1) y=5z—3z: @) y= 1/ /—
856. (1) y=x—sinx; (2) y=x—tanx.
857. (1) y=x2cosx; (2) y=x2cot x.

cosx . _x
858. (1) y= ; @) y=—77-

t

859. (1) y=m; @ y="5

__ cosx
860. (1) f(x)= ; =T—nx’ Q) ¢x) = Vl'/_,?_*_]'
861. (1) s=2-; (2) x=a(t—sint),

862. f(x)=T—x2+x; evaluate f'(0), f' (1), f (=1).
863. f(x)=x’—-2l—.,; evaluate f' (2)—f' (—2).
864. [ (1) =-LE="; evaluate 0.01- (0.01).
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Find the derivatives of the following functions:
865. (1) y=(a—bx?) @ y=00+ %)
1

1
866. (1) = o — (2)y=?/i;——l/2=x.
867. (1) y=x+sinx; (2) y=x-+cot x.
868. (1) y =x?sinx; (2) y=x*tanx.
869. (1) y=)xcoszx; ) s=—t2———t£.
2 1 x2—1

871 () y=(1+5=) @ v=rgsr
872. f(x)=3/%*; find ' (—8).
873. f(x)=5"—; find f(0), /'(2) and f' (—2).

6.2. The Derivative of a Composite Function

If y=f(u) and u=¢(x), then y is called a function of
a function or a composite function of x. Then

dy _dy du Y P
=@ oY= (1)

Now the formulas of the previous section take the ge-
neral form:

() @Y =nu"w'; (2) (sinu) =cosu-u';

(3) (cosu) =—sinu-u'; @ (Vu) = ok
(6) (cotu) =— w

sin®u *

(5) (tanu)' =

cos?u’

Find the derivatives of the following functions:

874. (1) y=sinbx; (2) y =cos (a—bx).
875.(l)y=sin%+cos%; (2)y=65in%.
876. (1) y=(1—5x)% (2) y=y/(4+3x).

877. (1) y=—(—l$2),,; Q) y=VT1—x% (3) y=Vcos 4%
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~

878. y =) 2x— sin 2x. 879. y =sin* x = (sin x)*.
880. (1) y=sin2x; (2) y=cos?x; (3) y=sec?x.
881. y=sin®x4-cos?x. 882. y=tan? x—3 tanx43x.
883. y= f/l + cos? x. 884, y=sin)/ x.

885. y =) 1+4sin2x—) 1 —sin 2x.
1

X
886. y=m. 887. y=cot3§.
in2
888. y=—— 889. y=—xl/x* —1.
890. y= VQ;‘". 891. s=acos* L.

892. (1) r=aVeos2g:  (2)r=}/ 2p-+cost (29+3)
893. f(t)=Va*+b*—2abcost; find f(%) [’ (),
(37") 894. f(x)=) x+2Vx; find f ().

Find the derivatives of. the iollowing functicns:

895. y=l/4x—|-sin 4x. 896. y=x2Vl-r—x=.

897. y=sin* x 4-cos* x. 898. y= f/l—l—cos 6x.
899. (1) y=tanx+—§—tan3x+%tan5x; (2) y=-sin®x3,
900. y = (AR 2% 901.s= )/ L —sin L.

— VixF1
x2 ‘

904. f()=VTFcostr; find f(‘?)

902. r=cosz(§—%). 903. y

6.3. The Tangent Line and the Normal to a Plane Curve
The slope (k) of the tangent to the curve y=/f(x) at

the point (x,, y,) is equal to the value of the derivative
of f(x) at the point x,:

k=tanp=[" (xy) =[Y lx=x, (1
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The equation of the fangent to the curve at the point
M (x,, y,) (Fig. 28):
Y—Yo=k(x—x,). 2

The equation of the normal:
1
Y—Yo=—5 (x—x0), (3)

where & {s determined by formula (1).

The line segments TA=y,cote and AN =y, tang
(Fig. 28) are called the subtangent and the subnormal

Y
M(x, Yo)
-
®
9 T 4 N X
Fig. 28

respectively; the lengths of the segments MT and MN
are termed the lengths of the tangent and the normal

respectively.

903. Find the slopes of the parabola y=x? at the
points x =4 2.

906. Write the equations of the tangent and the nor-
mal to the parabola y=4—x? at the point of its inter-
section with the axis OX (forx > 0) and construct the
parabola, the tangent, and the normal.

In Problems 907 to 910 write the equations of the tan-
gent lines to the given curves and construct the curves
and the tangent lines.

907. To the curve y=—’;i at the point x=—1.
908. To the curve y?>=x? at the points x, =0 and x,= 1.

909. To the versiera y=tf—xa— at the point x=2.
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910. To the sinusoid y=sinx at the point x=m.

911. At what angle does the curve y=sinx intersect
the axis OX?

912. At what angle do the curves 2y = x? and 2y =8 —x3
intersect?

913. Find the length of the subtangent, the subnormal,
the tangent, and the normal to the curve (1) y=x2
(2) y2=x® at the point x=1.

914, Prove that the subtangent of the parabola y?=2px
is equal to twice the abscissa of the point of tangency,
and the subnormal, to p.

915. In the equation of the parabola y=x24-bx4-c
determine b and c¢ if the parabola contacts the straight
line y=x at the point x=

916. Write the equations of the tangent line$ to the
hyperbola xy=4 at the points x,=1 and x,=—4 and
find the angle of their intersection. Construct the hyper-
bola and the tangents.

Write the equations of the tangent lines to the given
curves and construct the curves and the tangents:

917. y=4x—x* at the points of intersection with the
axis 0X.

918. y2=4—x at the points of intersection with the
axis OY.

919. y2=(4+4-x)* at the points ®f intersection with the
axes 0X and OY.

920. Find the distance of the vertex of the parabola
y=x*—4x-+5 from the straight line tangent to it at the
point of intersection of the parabola and the axis OY.

921. At what angle does the straight line y=0.5 inter-
sect the curve y=-cos x?

922, At what point is the tangent to the parabola y =x2 +
-+ 4x parallel to the axis 0X?

923. At what point of the parabola y=x2—2x+45 is
the line tangent to it perpendicular to the bisector of
the first quadrant?

924. Find the lengths of the subtangent, the subnormal

the tangent, .and the normal to the curve y=
the point x=1.

l+x2 at
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925. What angles are formed by the parabola y=%2

and its chord if the abscissas of the end-points of the
chord are equal to 2 and 4?

6.4. Cases of Non-differentiability of a
Continuous Function

1°. A corner point. The point A (x,, y,) of the curve
y=f(x) (Fig. 29) is termed corner if the curve has no
single derivative y’ but has two different derivatives at
this point—a leftf-hand derivative and a right-hand de-
rivative: A,E,nloi_z=k' and Aliflo —i—i—=k,. Two tangent
rays emanate from a corner point with slopes k, and &,.

2°. A cuspidal point with a vertical tangent line. The
point B (x,, y,) (Fig. 29) is called the cusp with a verti-

Fig. 29

cal tangent line if the curve has no derivative y’ at
this point, but it has a left-hand and a right-hand infinite
derivatives of opposite signs (4 oo and —oo). The cusp
is a particular caseof the corner. One vertical tangent ray
emanates from such a point, or it is better to say that
two coincident tangent rays emanate from it.

3°. A point of inflection with a vertical tangent line.
The point C (x5, ys) (Fig. 29) is called the point of inflec-
tion with a vertical tangent if the curve has an infinite

. . . sor Ay__ . Ay___
derivative at this point: y —Axﬂr-nn A—X_AXILTO T = oo
(or —oo). In such a point there exists a vertica! tangent
line.
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At the points A and B the function y={(x) has no
derivative, at the point C it has an infinite derivative.
At all three points the function is continuous but non-
differentiable.

926. Graph the function y=)'»* (or y=|x|) and find
the left-hand y. and the right-hand y; derivatives at the
corner point of the curve.

927. Graph the function y=0.5) (x— 2)? on the interval
[0, 4] and find the left-hand y_ and the right-hand y’,
derivatives at the corner point of the curve.

928. Graph the function y=)/sin®x on the interval
[—m, n] and write the equations of the tangent lines at
the corner point of the curve. ,

929. Graph the function y= =J/1+ cosx on the interval
[0, 2n] and write the equations of the tangent lines at the
corner point of the curve and find the angle between them.

930. Graph the function y=}/x* on the interval [ —2, 2]
and write the equation of the tangent line at the point
x=0.

931. Graph the function y=1—}/(x—2)? on the inter-
val [0, 4] and write the equation of the tangent line at
the point x=2.

932. Graph the function y®=4x on the interval [—2, 2]
and write the equation of the tangent line at the point
x=0.

933. Graph the function y*=4(2—x) on the interval
[0, 4] and write the equation of the tangent line at the
point x=2.

934. Graph the function y=1—)cos?x on the interval
[0, #] and write the equations of the tangent lines at the
corner point of the curve.

935. Graph the function y =}/ (x+ [)i—1 on the interval
[—2, 0] and write the equation of the tangent line at
the point x=—1.

936. Graph the function y=|4x—x?| on the interval
[—1, 5] and write the equatlons of the tangent lines at
the corner point x=0, and find the angle between them.
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6.5. The Derivatives of Logarithmic and
Ezponential Functions

The basic formulas:

’
(Inu)’' = % i @) =e*u'; (@®) =a%*lna-u'.

Find the derivatives of the following functions:
937. (1) y=xInx; (2) y—l+l"x, y = log (5x).

938. (1) y=Inx———-L; (2) y=In(x+2x).

939. (1) y=In(l+cosx); (2) y=lnsinx—%sin2x.
940. y=In(Vx+Vx+1).

2 2 2

041, y=InH1E. 942, y=In2.
= X — 1+2x

943. y lntan(4—|—2>. 944. y=1In =%
945. y=In(x+V a2+ ).
946. y=2) x—4In (2+l/x)

COos X 2
947. (1) y= iy +1In tan ; (2) y—ln—l—/——a—;.

948. Write the equation of the tangent line to the curve
=Inx at the point of its intersection with the axis 0X.
Construct the curve and the tangent line.

949. Show that the parabola y=%:- is tangent to the

curve y=Inx, and find the point of tangency. Construct
the curves.

Find the derivatives of the functions:

950. (1) y=x*+3%, (2) y=x2.2%, (3) y=ux%"*.

951. (1) y=a®in*, (2) y=e~*";, (3) y=x%~2%,
X P 1

952, y =2 eT—e'T). 953. y=Vxe'*.
954, y=112. 955. y=¢¢ cos =,
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956. (1) y=e~*(sin x+cosx); (2) y=In(e~*+4xe~%).
957. y=In 77 958. y=(e**—eox).

959. f(¢)=In(1 4-a~%); evaluate ' (0).

960. At what angle does the curve y=e?* intersect the
axis OY?

961. Prove that the length of the subtangent at any

point of the curve y=e® is equal to a.
962. Find the derivatives of the following functions:
(1) y=x% (2) y=nxti= .
Hint. First take: logarithms of the given functions.

Find the derivatives of the following functions:
963. y = Incos x—% cos? x.

964, y=In(V x—V'x—1). 965. y=lnw+2—-+—l-
966. y=1In(sinx+)/ 1+ sin?x).

967. y=ln71i___—xz. 968. y;%lntanx—{—lncosx.
969. y=1n]/l—_s—‘“—.2-"—. 970. y=ln(l+sec;).

sin 2x

971. y=aln(Vx+a+V x)—Vx*+ax.
972. y=ae ° 4xe °. 973. =%(e7+e'7>.

074, y=5To=. 975 y=In(e= + Ve 41).

—_— 1
976. y=1In ]/ML_:I 977. y==x~*.

978. f(t)—ln2+::2;; evaluate f'(

979. Write the equation of the tangent to the curve

y=1—e? at the point of its intersection with the axis OY.
Construct the curve, the tangent, and the asymptote of
the curve.
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G.6. The Derivatives of Inverse Trigonometric Functions

. u' ’
arcsinu)’ =———; (arccosu)’ = — ——=-—;
(aresinu)’ == ) Vl_ua

(arctanu)’ =

i—_%?; (arccot u)’ = l+u2 .
Find the derivatives of the following functions:

980. y=)1—x?+arcsin x.

981, y=x—arctanx. 982, y=arcsin})/ 1—4x.
983. y-——arcsin%. 984. y=arctan%.
985. y =arccos (1—2x). 986. y= arccot-:% .

987. (1) y=xl/l—x2_+arcsinx; 2) y=arcsin(e3").

14-x

988. y=arctanx+ In T—y 989. y=arccos—=

V:?’

990. y=x arctan %——;— In (x2 + a?).

I'ind the derivatives of the following functions:

9o1. y=arcsin}/ x. 992, y=arctan )/ 6x—1.
993. (1) y=arccos(1—x2); (2) y:arccotx—%.
994. y=e*)/ T—e** farcsine*.

995. y=xarccos x— )/ T—x2.

996. y=arctane>* -+ In V ezx"H .

e2x

097, s—l/4t—t2+4arcsm Vt .

998, y=arccos ) 1 —2x 4} 2x— 4x*.
999. f(2)=(2+ 1) arctan e~2?; evaluate [’ (0).
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6.7. The Derivatives of Hyperbolic Functions

sl N x_ - X -
1°. Definitions. The expressions 2 2” , & ‘*‘2‘3 and

their ratios are termed the hyperbolic sine, cosine, tangent,
and cotangent, respectively. They are denoted:

. _eX—e—¥% _e¥+te-* __sinhx
sinh x = 2 , COth————2—, taﬂhx—m,
cothx= m.

sinh x

2°. The properties of hyperbolic functions:
(1) cosh?*x—sinh®x =1,

(2) cosh?x--sinh? x = cosh 2x;

(3) sinh 2x =2sinh x cosh x;

(4) sinh0=0, cosh0=1;

(5) (sinh x)’ =cosh x, (coshx)’ =sinhx;

’ l !
(6) (tanh x) = o iiT% (coth x) =—cge
Find the derivatives of the following functiogs:
1000. (1) y= sinh’x; (2) y=x—tanhy;
(3) y=2V coshx—1.

1001. f(x)=sinh—;—+cosh%; evaluate f’ (0)+f(0).
1002. (1) y=In[coshx]; (2) y=tanh x +cothx.
1003. (1) y=x—cothux; (2) y=1In [tanhx].

1004. (1) y =arcsin [tanhx]; (2) y =V 1+ sinh® 4x.
X X

1005. The line y=—;—(e7+e-7> =acosh= is called
the catenary. Write the equation of the normal to this
line at the point x=a (see the Tables of hyperbolic func-
tions on p. 391). Construct the curve and the normal.

1006. Write the equation of the tangent to the curve
y=sinhx at the point x=—2. Construct the curve and
the tangent to it.

1007. Prove that the projection of the ordinate of any

point of the catenary curve y=acosh—2— on its normal
is a constant quantity equal to a.
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6.8. Miscellaneous Problems on Differentiation

Find the derivatives of the following functions:

1008. (1) y= V xj—-l tan® x

1009. y=V 4x—1 + arccot Vdx—1.
1010. x =In (e**+ 1)—2arctan (e?).

1011, y=4In(Vx—4+Vx)+Vrx* —4x

1012, s= %tan‘ t—-%tan2 t—1n (cos ).

+ lncosx.

+ arcsin% i Q) y=

1013. f(x)=(x*-a? arctan %—ax; evaluate ' (a).
1014. (1) y=In [x—a?z]; (2) y=x(coslnx-sinlnx).
1015. f(x)= xarcs.in-’f';—l ; evaluate f' (5).

1016. ¢ (1) =e_% coS i' show that ¢ (0) 4 ag’ (0) =
1017. f(y)—arctan— In 3/ y*—ad; evaluate [’ (2a).
1018. F(2)=—2%2_. show that F(E)—sf'(£)=3.

14sin22’

1019. Show that the function S=r— ll satisfies the diffe-
rential equation tﬁ+s=—ts“‘.
1020. Show that the function )c=t——_27e2i satisfies the

differential equation d —|—2x—e"

6.9. Higher-Order Derivatives

Let y' =f'(x) be a derivative of the function y=f (x);
then the -derivative of the function f'(x) is called the
second derivative of the function f(x) and is denoted by y”,
or f"(x), or——= i .

The second derivative is also called a second-order deri-
vative. In contrast, the function f'(x) is called a first-
order derivative, or the first derivative.
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A derivative of the second derivative is called the third
derivative of the function f(x) (or the third-order deriva-
tive). It is denoted by f'’' (x).

In similar manner we denote the derivatives of the
fourth order f'V(x), fifth order fV(x) and so forth (num-
bers are used instead of dashes to save space and Roman
numerals are used to avoid confusion with exponents).

A derivative of the nth order is symbolized by ™ (x).
Thus,

the derivative of the third order y''' =f"" (x =Ly

dx3

the derivative of the fourth order y'V=/1V(x)=

dac4 ’
and, in general,
the derivative of the nth order y™ =f" (x)= sz,

1021. Find the second-order derivative of the function:
(1) y=sin*x; (2) y=tanx; 3) y=V 1+~

1022. Find the third-order derivative of the function:
(1) y=cos’x; (2) y—— (3) y=xsinx.

x2
1023. Find the third-order derivative of the function:

(1) y=xlInx; (2) s=te~t; (3) y=arctan£.
1024, s= V2—t2+arcsm l}—. find Zjﬁ

Find the derivative of the nth order of the function:

X
1025. (1) e a; (2) Inx; (3) Vx.
1026. (1) x7; (2) sinx; (3) cos’x.
1027. Deduce the Leibniz rule by means of successive
differentiation:

(wv)" =d"v4-2u'v + ut’;
(uU)”':u”’U—'—Bu”U'+3u'U"+uU
o)tV =uVv--4u'""V - bu'Y + du'o "’—|—uv“’ and so on.
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1028. Using the Leibniz rule find the second derivative
of the function:

(1) y=e*cosx; (2) y=a*x3;, (3) y=xsinx.

1029. Using the Leibniz rule find the third derivative
of the function:

(1) y=e~*sinx; (2) y=x*Inx; (3) y=xcosx.

1030. f(x)~xe‘l find f''' (x), f(x), F*(0).
103]3(")£()())6)—(1+x)”‘ find £(0), f (0), " (0), {"""(0), ...

1032. f(x)=77fﬁ; show that for n>2

. 2
fo (0) = (— 11 L35 =9)

1033. f(x)=1——; show that

(0 nl at n=2m,
f"O=\ 0 at n—om—1.

Hint. Take advantage of the identity
1 1 1 1
=7 (=)
1034. By differentiating the identity (x—1) (x*+x3 +
4+ ...+ x¥)=xn*1—x? three times with respect to x and

putting then x =1, find the sum Zk(k )= —_(""“””("_”

and then the sum of squared numbers of the natural series

Z k2_12+22+ LAnt= n(n+l)(2n+l)

1035. Find the second derivative of the functien:

(1) y=e=*" (2) y=cotx; (3) y=arcsin%.



154 Ch. 6. The Derivative and the Differential

1036. Find the nth derivative of the function:
1 .
(1) y=a* (2) Y=175’ (3) y =sin®x.

1037. f(x)~arcsm—- find f(2), f'(2) and f"(2).

1038. Using the Lelbmz rule, find the third derivative
of the function:

(1) y=x%*, (2) y=xzsin%;
(3) y=xf"(a—x)+3f (a—x).

1039. Show that the function y=e*cosx satisfies the
differential equation y'V+4y=0.

1

1040. Show that the function y=xe * satisfies the
equation x%y"—xy’ +y 0. 4

1041. f(x)=x% “; show that f (0)= —#

1042. f(x)=e-*"; show that

[ (0)=—2(—1) [*=2(0), [em=2 (0) =0,

2 (0)=(—2)"(2m—1)(2m—3) ... 5.3-1.

1043. f(x)=x"; show that

f(1) +f (l)+f”(1)+ 20 f""(l)

6.10. The Derivative of an Implicit Function

If an equation F(x, y)=0, unsolved with respect to y,
defines y as a single-valued function of x, then y is termed
the implicit function of x. To find the derivative y’ of this
implicit function, we have to differentiate both members
of the function F(x, y)=0 with respect to x, conside-
ring y as a function of x. From the equation thus obtained
we find the required derivative y’. To find y" we have to
differentiate twice the equation F(x, y)=0 with respect
to x, and so on.

Find y’ from the equations:
1044. (1) x*+y*=a? (2) y¥*=2px; (3) z—:—i—:=l.
1045, (1) x*+xy+y*=6; (2) x*+y*—xy=0.



Sec. 6.10. The Derivative of an Implicit Function 155

2 2 2
1046. (1) x3 +y® =a?; (2) e!—e~*+xy=0.
1047. e*siny—e=¥cos x =0.
1048. x =y arccot y.

1049. e —x? -} y3=0; ﬁnd at x=0.

1050. Find y” from the equatlons
(1) x* —|—y ——a 2) ax+by—xy=c, (3) x™y"=1.
1051, a2 +Z p _1; find y" at the point (0, b).

1052. Write the equations of the tangents to the curve
X +y*+4x—2y—3=0 at the points of its intersection
with the axis OY.

1053. Find the points of intersection of the normal of
the hyperbola x*—y*=9, drawn from the point (5, 4),
with the asymptotes.

1054. Write -the equation of the tangent to the curve:

(1) —rl‘y =1; (2) y*=2px at the point (x,, y,).

1055. Write the equations of the tangents to the astroid
2

2 2
x3 4+ y3 =a? at the points of its intersection with the
straight line y=x.

1056. At what angle do the curves x24y*=5 and y* =4x
intersect?

1057. Find y' from the equations:

(1) :—:+-Z':-=1; (2) x*4y*—3axy=0.
1058. Find y" from the equations:

(1) #*—y*=a* (2) (x—a)*4(y—PB)*=R%
(3) arctany=x+4y; (4) X2+ xy+y? =a2.

1059. Write the equations of the tangents to the circle
x +y2—|-4x—4y+3--0 at the points of its intersection
with the axis OX. Construct the circle and the tangents.
1060. Write the equation of the tangent to the ellipse
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x*44y*=16 at the midpoint of the segment of a tangent
line intercepted by the coordinate axes if the point lies
in the first quadrant.

t

S
1061. te 3 t+se % =2; ﬁnd% at t=0.
1062. tInx—xInt =1, ﬁnd—sTx at t=1.
1063. x*siny—cosy+cos2y=0; find y' at y=-’21.

6.11. The Differential of a Function

1f a function y={f(x) is differentiable at the point x,
i.e. it has a finite derivative y’ at this point, then
Ay

e =y 4o, where &« — 0 as Ax— 0; hence

0
Ay=y Ax+ o Ax. (1

The principal linear part y’ Ax of the increment Ay of
the function, which is proportional to Ax, is called the
differential of the function and is denoted by dy:

dy =y’ Ax. 2

Putting y=x in formula (2), we get drx=x"Ax=
= 1.Ax=Ax, and therefore

dy =y’ dx. 3)

Formula (3) also holds true if x is a function of a new
variable ¢.

It follows from (1) that Ay=dy, i.e. for a sufficiently
small dx =Ax the increment of a function is approximately
equal to its differential.

In particular, for a linear function y =ax-+b, we have:
Ay=dy.

Find the differentials of the following functions:
1064. (1) y=x*, (2) y-—x’—3x’+3x.
1065. (1) y=VT1+x% (2 s__ﬂ

1066. (1) r=2p—sin2¢; (2) x =_'?
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1067. (1) d (sint); (2) d (1 —cosu).
1068. (1) d(%-i—arctan%); (2) d(a+Ina);

3) d (cos %) ;4 d (arcsin _;l?) .

1069. By finding the differential of each term of the
equation, find % from the following equations:
(1) x24+y2=a® (2) xy=a? (3) 2*—xy—y>=0.

1070. (1) y=x?; find the approximate value of the in-
crement of y(Ay =dy) for x varying from 2 to 2.01;

(2) y=V'x; find the approximate value of the increment
of y for x varying from 100 to 101.

1071. (1) The edge of a cube x=5 m + 0.01 m. Deter-
mine the absolute and the relative errors in computing
the volume of the cube. ;

212

(2) The length of telegraph wire s =2b(l +3T;2>' where

2b is the distance between two neighbouring poles, and f,
the maximum deflection of the wire. By how much will
the deflection f increase when the wire is elongated by ds
as a result of heating?

1072. (1) What must be the accuracy in measuring the

abscissas of the curve y=x?}x for x<< 4 in order to com-
pute its ordinates with an error not exceeding 0.1?

(2) With what relative accuracy must the radius of a
sphere be measured in order to compute its volume with
an error not exceeding 1 per cent?

1073. Find the approximate values of the: (1) area of
a circular ring; (2) volume of a spherical shell. Compare
them with the exact values.

Find the differentials of the functions:

1074. (1) y=%——l; (2) r=cos(a—by);

xZ

(3) s=V1—1.
1075. (1) y=Incosx; (2) z=arctan}V 4u—1; (3) s=e~?,
1076. (1) d(V'x+1); (2) d(tana—a); (3) d (bt —e=?).
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1077. (1) y=x3, determine Ay and dy and calculate
them for x varying from 2 to 1.98.
(2) The period of oscillation of a pendulum 7T =

= 2n |/ 9;7) sec., where [ is the length of the pendulum

in centimetres. How must the length of the pendulum
(!=20 cm) be changed to reduce the period of oscillation
by 0.1 sec?

(3) What must be the accuracy in measuring the abscis-
sas of the curve xy=4 for x>=0.5 in order to compute
its ordinates with an error not exceeding 0.1?

6.12. Parametric Equations of a Curve

Let a curve be represented parametrically by the equ-
ations x={(f) and y = ¢ (¢). Denoting the derivatives with
respect to the parameter by dots, we find:

1078. Construct the curves specified parametrically:
(x=1¢ (x=1°
1 1 2 £
()iy=7"‘ ()iy=?—t-

‘Eliminating ¢ from the given equations, write the equa-
tion of each curve in the usual form F (x, y)=0.
Reduce to the form F(x, y)=0 (or y=f(x)) the equa-
tions of the curves represented parametrically:
x=acos! x=acos®t
y=asin®t,

1079. (1) {y:bsin t;

_ et+e-t

X =
2 x=tant
1080. (1) et—e-t  (2) { 24
y== Yy =cos®t.
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1081. Construct the involute of a circle (seec Problem 368)
x=a(cost+tsint)
y=a(sint—t¢cost),

putting ¢t =0, -’21, T, 3Tn, 2m.

1082. Putting y=uxt, obtain the parametric equations
of the folium of Descartes x®+y®*—3axy=0 (see Prob-
lem 366) and investigate the motion of a current point
along the curve with ¢ varying monotonically (1) from 0
to +o0; (2) from 0 to —1; (3) from —oo to —I1.

1083. Write the equation of the tangent to the cycloid
(see Problem 367) x=a({ —sint), y=a(l—cos?) at the
point tzg-. Construct the curve and the tangent line.

1084. Write the equation of the tangent to the hypo-
cycloid (astroid) x=acos*f, y=asin®f at the point
t=%. Construct the curve and the tangent line.

Hint. Prior to constructing the curve tabulate the va-

lues of x and y at {=0; %; %; 37” and so on.

1085. Find %‘;- from the equations:

— )C=t2 — ol
(l){ x=acost @) { e, @ { x=a(t—sint)
y_ 3 ’

y=asint, y=a(l —cost).

1086. Construct the curves given by the parametric
equations:

() x=2t—1, y=1—4 (2) x=¢, y=12—2,
by finding the points of their intersection with the coor-
dinate axes and taking into account that for the second

% _ o at t=0. Write the equations of the curve

curve -
in the form F(x, y)=0.
1087. Write the equation of the tangent to the cycloid

x=a(t—sint), y=a(l —cost) at the point t=37n. Con-
struct the curve and the tangent.
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1088. Write the equation of the tangent to the involute
of the circle x=a(cost+¢sinf), y=a(sint{—itcost) at
T[

the point {=

1089. Find % from the equations

| x=2cost x=12 3 [ x=e?
() y=sint; y==I+18, 3) l y=e%,



CHAPTER 7

APPLICATIONS OF THE DERIVATIVE

7.1. Velocity and Acceleration

Let a point move along the axis OX and at a moment ¢
have the ordinate x={(¢). Then at the moment ¢

Ax _ dx
the wvelocity v= hmoTt -
Av dv _ dx
the acceleration w_AtlinoA—t— o= T

1090. An antiaircraft projectile is launched upwards at
the initial velocity of a m/sec. At what height x will it
be in ¢ seconds? Determine the velocity and acceleration
of its motion. When will the projectile reach the highest
point, and at what distance from earth’s surface will this
point he? _

1091. A body moves along a straight line OX according
to the law: x=—ta——2t2-|—3t. Determine the velocity and

acceleration of its motion. At what moments does the body
change the direction of motion?

1092. A material point is in oscillating motion obeying
the law x=acos®f. Determine the velocity and accele-
ration at the points x=4a and x=0. Show that the

acceleration ‘227’; and displacement x are related by-a diffe-

. . dx 3
rential equation —z=—w%.

1093. A revolving flywheel, which is being hindered by
a brake, in ¢ seconds turns through an angle ¢ =a - bt—ct?,
a, b, and ¢ are positive constants. Determine the angular

6 —1895
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velocity and angular acceleration. When will the fiywheel
stop?

1094. A wheel of radius a rolls along a straight line.
The angle ¢ through which the wheel turns during ¢ se-

conds is determined by the equation cp=t—|——’22—. Find the

velocity and acceleration specifying the motion of the
centre of the wheel.

1095. Let v be the velocity and w the acceleration of a
point moving along the axis OX. Show that wdx=uvdv.

1096. A point is in rectilinear motion characterized by
the equation v?=2ax, where v is the velocity and x is
the path covered, a being a constant. Determine the ac-
celeration.

1097. A body situated at a height of 10 m was thrown
upwards with an initial velocity of 20 m/sec. At what
height will it be in ¢ seconds? Determine the velo-
city and acceleration of its motion. In how many seconds
and at what height will the body reach the highest
point?

1098. A hemispherical vessel of radius R cm is being
filled with water at a constant rate of a litre/sec. Determine
the rate of water level rise at the height of # ¢cm and
show that it is inversely proportional to the area of the
free surface of the liquid.

Hint. The volume of a spherical segment V=mnh? (R— %) .
Differentiate both members of this equality with respect

to ¢, g—:’ being equal to a (by hypothesis).

1099. The relationship between the quantity x of a sub-
stance obtained in a chemical reaction and the time ¢ is
expressed by the equation x=A (1 —e~*#). Determine the

reaction rate.
1100. Let Z—;p=a) (angular velocity) and%:e (angular

d (0?)

acceleration). Show that W=28.
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7.2. Mean-Value Theorems

1°. Rolle’s theorem. If f(x) (1) is continuous on a clo-
sed interval [a, b]; (2) has a derivative inside it; (3)
f(a)=f(b), then for some value of x (say c) between a

and b
f (¢)=0. (1)

2°, Lagrange’s theorem. If f(x) (1) is continuous on a
closed interval [a, b]; (2) has a derivative inside it, then
for some value of x (say c) between a and b

fo)—Ff(a)=b—a)f (). ®)

3°. Cauchy’s theorem. If f(x) and ¢@(x) (l1) are conti-
nuous on a closed interval [a, b]; (2) have derivatives
inside it, and ¢’ (x) =40, then for some value of x (say ¢)
between a and b
f@)—=Ff(@ __ () 3)
eb)—e@ ¢ )’

These theorems are called the mean-value theorems,
since they treat some value of x=c lying between a and b.

Geometrical interpretation: Rolle’s and Lagrange’s the-
orems assert that there is at least one point between A
and B on the arc AB of a continuous curve y={f(x) where
the tangent is parallel to the chord AB, provided that
there is a tangent at every point of the arc AB. It is
obvious that on arcs having corners and cusps the condi-
tions for the mean-value theorems are not tulfilled.

The following proposition is a special case of Rolle’s
theorem when f(b)=f(a)=0: if @ and b are roots of a
function f (x), then between a and b there is at least one
root of its derivative [’ (x), provided f(x) is continuous
on a closed interval [a, b] and has a derivative inside it.

1101. Check to see that between the roots of the func-
tion f(x)=x2—4x-+3 there is a root of its derivative.
Illustrate this graphically.

1102. Is Rolle’s theorem applicable to the function

6'
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f(x) =1 —3/%* on the closed interval [—1, 1]? Illustrate
this graphically.

1103. Construct the arc AB of the curve y=|sinx|over
the interval [ 7 2] Why does the arc have no tangent

parallel to the chord AB? Which of the conditions of
Rolle’s theorem is not fulfilled here?

1104. At what point is the tangent to the parabola

= x? parallel to the chord connecting the points A (—1, 1)
dl’]d B (3, 9)? Illustrate this graphically.

1105. Write Lagrange’s formula for the function f(x)=x?
on the closed interval [a, b] and find c¢. Illustrate this
graphically.

1106. Write Lagrange’s formula for the function f(x)=
=)"x on the closed interval [1, 4] and find c.

1107. Show that on the interval [—1, 2] Lagranges

theorem is not applicable to the functions % and 1 —3/x.

Illustrate this graphically.
1108. Construct AB of the curve y=|cosx| for the in-

terval [ , 3 . Why does the arc have no tangent paral-

lel to the chord AB? Which of the conditions of Lagrange’s
theorem is not fulfilled here?
1109. Construct the graph of the function f(x)=

xfor|x¥] <2 ing tak it the points 0 (0, 0
—{1f0r|x|>2. aving taken on i e points O (0, 0)

and B(2, 1), show that between O and B the curve has
no point at which the tangent is parallel to OB. Which
conditions of Lagrange’s theorem are fulfilled for this func-
tion on the interval [0, 2] and which ones are not?
1110. A train covered the distance between two neigh-
bouring stations with a mean (average) velocity v,=40 km/h.
Lagrange’s theorem asserts that during motion there was
a moment at which the instantaneous (but not mean) ve.

locity of motion Z—: equaled 40 km/h. Show this.

1111. It is given that f(x) is continuous on a closed
interval [a, b] and has a derivative at each point inside
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it. Applying Rolle’s theorem to the function

x f(x) 1
b f®) 1
a f() 1
obtain Lagrange’s theorem. Find out the geometrical mea-
ning of the function @ (x).

1112. Write Cauchy’s formula ‘II:EZ;:{P(ZZ)=(£' 8 for the
functions f(x) =x® and ¢ (x)=x2, and find c.

1113. Cauchy’s theorem asserts geometrically that on an
arc of a curve given by the parametric equations x=e (¢),
y=1[(t) corresponding to the interval a<C¢<Cb there is
an intermediate point at which the tangent is parallel to
the chord if the functions ¢ (f) and. f(¢) on the closed in-
terval [a, b] satisfy the conditions of Cauchy’s theorem.
Prove this.

1114. Write Lagrange’s formula in the form f (x4 Ax) —
— [ (x) =Axf" (x40 Ax), where 0 < 6 < 1, for the functions:
() fx)=x% (2) f(x)=x? and show that for the first
function 0 is independent of x, and for the second it de-
pends on x and Ax. |

1115. Show that )/ 101 = 10+2——“/ﬁ~ 10.05.

1116. With the aid of Cauchy’s formula prove that if
fO=F©)=[(0)=...=f""v(0)=0,

f) _ [ 6y

Xxn nl

D (x) =

’

then

where
0<O<l.

1117. Write Lagrange’s formula
f®)—f(a)=0b—a)[' ()
for the function f(x)==x3 and find c.
1118. Write Lagrange’s formula and find ¢ for the func-
tions:
(1) f(x)=arctanx on the interval [0, 1];
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(2) f(x)=arcsinx on the interval [0, 1];
(3) f(x)=Inx on the interval [1, 2].
1119. Write Cauchy’s formula and find ¢ for the functionss

(1) sinx and cosx on the interval [O i] ;

(2) x* and V'x on the interval  [1, 4].

1120. Graph the function y=|x—l| on the interval
[0, 3). Why is it impossible here to draw a tangent pa-
rallel to the chord? Which of the conditions of Lagrange’s
theorem is not fulfilled here?

1121. At what point is the tangent to the curve y=4 — x*
parallel to the chord connecting the points A (—2, 0) and
B (1, 3)? Illustrate this graphically.

7.3. Evaluating Indeterminate Forms. L’Hospital’s Rule.

1°. The indeterminate form %. The first L’Hospital

f(x) [ (%)
rule. If llm f(x)= llm(p(x) 0, then ,,lm},cp( )—_,lvl»aq) oL
when the ldtter exlsts

2°. The indeterminate form {:% The second L’Hospi-

tal rule. If limf(x) = lim¢ (x)=o0, then lim RACI .

xX—>a xX->a x—»a ()

= lim _(’;) when the latter exists.

3x°._u'lrhe indeterminate forms 0.00, co—oo, 1® and 0°
are reduced to the indeterminate forms —g—andg by
“means of algebraic transformations.

Find the limits:

. sin 3x . eXx—1
1122, xll_r’no—x—. 1123. llmom.

. —_ —1
1124, h_rpa;’,ng—,,. 1125. XIT]I%W.

1— 1—
1126. lim = 1127, lim ~——22%,
-0 x—>0
—sin x . tanx—sinx

1128. xll-r’ﬂo p . 1129. lTo ¥ —sinx °
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. 8% . ex . Inx
1130. (l)x.l.lf]m;‘z’ (2)xl—l’n-1wﬁ. 1131. lim -

X =
. Inx . tanx
1132. x]l_l’llom. 1133. lm:t Tanaz*
x-»-i-
1134. lim (n—x) tan 5. 1135, limxIn x.
X—>7 x>0
1136. lim x".e—~, 1137, lim x*.
X >+ @ x>0
1138. lim (sin x) ten =, 1139. lim (1+3)".
x—>0 X > ® x

1140. Determine the order of the infinitesimal xe*—sinx
with respect to x—0.
1141. Prove that as x—0:

1) x—arctanxz—'fi; Q) a*—b*~xIn<;
3 b
3) e*—1—2x ~ 2x% (4) 2x—In (14 2x) &~ 2x2.

1142. Prove that (as x—-»O)x—sinxz—’g and hence

sin x & x with an error approximately equal to %3- . Eva-
luate sin 1° and sin 6° and estimate the error.

— 2

1143. Prove that (as a—0) f/l—[—a—l—%—az——ag—

and hence f/l—{-azl—}—-;—a with an error z%a.Compute
*/1.006, 3/0.991, ;/65, }/210 and estimate the error.

Find the limits:

1144, xliinof:—;{f. 1145. Jilno’#ﬂ‘.

1146. lim_ %ﬁ%’)’? 1147, x“i"o%'
=%

1148, 1im“a‘:c—0%§‘—" 1149, lim L tany
] A

1150, ,}Enoﬁl%-l_-Tlx) llSl.in_[nlll_"%.
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1
1152, lim (1—e**)cotx. 1153, lim xT-*,

x—->0 x =1

1

. 1 1 . —

1154. xll_r’no (Mc_ﬁ) . 1155, Jl_{no(ezx+x)x
1156. Prove that as x—0 arcsinx—xz%i.

1157, Prove that (as a—0) V' 14a—1— ~—§ and

hence V' 1+ax1 —{—? with an error approxnmately equal
to%. Compute }/1.006, ' T.004, }/0.998, /0.994, V55,
)/ 85 and estimate the error.

7.4. Increase and Decrease of a Function.
Mazxima and Minima

1°. Definitions. I. A function f(x) is called an increa-
sing function at a Koint x, if, in a sufficiently small
e-neighbourhood of this point,

f(xe—h) <[ (x0) <[ (%0+h)

for any Fosmve h<e.

nction f(x) is called increasing in an interval
[a b] 1f for any x, and x, within this interval f (x,) <f (x,)
when x, < x,.

A function decreasing at a point and in an interval is
similarly defined.

III. A function f(x) has a maximum or minimum (extre-
mum) at a point x, if f(x,) is less or greater, respectively,
than all neighbouring values.

2°, Sufficiency tests for the increase and decrease of a
function y=f(x) (at a point and in an interval):

if y' > 0, then the function increases;

if y* <0, then the function decreases.

3°. Necessary condition for an extremum. A functlon

=f(x) has an extremum only at points where y’=0 or
does not exist. Such points are called critical. At these
points the tangent is either horizontal (y'=0), vertical
(at a cuspidal point) or there is no definite tangent (for



Sec. 7.4. Maxima and Minima 169

instance, at a corner point). In the latter two cases y’
does not exist.

4°, Sufficient conditions for an extremum. If a function
f (x) is continuous at a point x, and has a finite derivative
within some neighbourhood of x,, except, perhaps, the
point x,, and if, when x passes through x,,

y' changes + for —, then f(x,) = Ymax

y' changes — for +, then f(x,)= Ymin,

y' does not change the sign, then there is no extremum.

"

The third case takes place at an ordinary point (for
y >0 or y <0), and also at a point of inflection and
at a corner.

Thus, to find an extremum of a function, it is neces-
sary to:

(1) Find y’ and the critical points at which y’' =0 or
does not exist.

(2) Determine the sign of y’ on the left and on the
right of each critical point, making a table of he form

X X, X, X3 X
does
'l — |0 + |t | =] 0| = |mo0| —
exist
) - | S ge- \ -
Y |decreases U incroases| /N crgaé;es in- crg:saf n\ |
min max Flection flection °T65E

Then find Yp, and Ym, and plot the curve. Figure 30
shows a graph constructed by the points given in the
table.
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5°. Sufficient conditions for an extremum (a second
method of investigation).
If at some point x==x,:

(1) ¥ =0 and y: <0, then f(xy) = Ymay}
(2) y'=0 and y" > 0, then f(x,) =Ymin:
(3) ¥ =0 and y"=0, then the problem remains unsol-

ved and it is necessary to resort to the first method.

Test the following functions for increase and decrease:
158. (1) y=x% (2) y=x% 3) y=—; (4) y=Inx.

1159. (1) y=tanx; (2) y=e*; (3) y=4x—x2.
Find the extremum of the function and construct its

graph *. e
1160. y=x* -+ 4x+5. 161, y=ar—%.
1162, y=2 —x1—3x 1163. y=1+420—%
Ly=% . -
4 2
1164, y =22 —x. 1165, y=+5+-.
1166. y=}/xi—1. 1167, y =757 -
1168, y=2"%10 1169. y=x* (1 —x).

1170. y=1—3/ (x—4)*. 171, y=e-*",

1172. y=x-4cos2x on the interval (0, m).
1173, y=4x—tanx on the interval (—%, n).

P}
174, y=1£0%, 1175. y—=x—arctan 2.
1176. (1) y=xe *; Q) y=xInx.
1177. (1) y=V sinx3; 2) y=]/e"'—l.
1178, y=sin*x +cos* x. 1179, y=xV 1—x.

* In Problems 1165, 1168, 1173 and some others the curves are
constructed by finding their asymptotes (see Sec. 5.9).
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1180

1182,
1184.

1186.

1188.
1190.
1191.

4Vx
. y=—xT2—.

J=2(—%)

y=2tanx—tan?x.

y=x%e"*.

X

2 2
1183, y=x3% +(x—2)% .
1185, y=ux3 (x4 2)2.

x3
1187. y=x2—_§.
1189. y=x-+1n(cos x).

(1) y=InV 14-x2—arctanx; (2) y=|x|(x+2).

1192, y=3}/ (xF1)2—2x.

Find the extremum of the function and construct its

graph:
1193, y=4x—x2. 1194, y=x?42x—3.
1195. y=-£3s-+x2. 1196, y=x®4 6x2-49x.
2 4
1197. y="5 1198, y=x"+75.
199, y=2 2 1200. y=2x—3 ¥/
(x—1)2 -
1201. y= Py 1202. y=xe *.
2
1203. y=x—2Inx. 1204, y=x3 (x—D5).
1205. y=sin2x—x on the interval (—%, 1;—)
1206. y=2x+cotx on the interval (0, m).
1207, y=x 4 arccot 2x. 1208. y=l+i’/(x—1)2.
1209. y=2sinx-+4cos2x on the interval (0, m).
1210, y—3x*—8xo46x2. 1211, y=10%
32 1
1212, y=x—+%. 1213, y=x+—.
1214, (1) y=ae~*cosx (forx > 0); (2) y=3x*—5x8,
3 j——
_ = _12V oy
1215. Y=90=n 1216, y=

x2+4+8
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1217, y=2-1 1218. y=(1 —x?) (1 —x2).
1219. y=}f+j;§. 1220, y=x+2V—x.

3
1221. (1) y=g%g;2; (2) y=V 1—cos x.

7.5. Finding Greatest and Least Values of
a Function

1222, A rectangular playground of the greatest possible
area is to be enclosed by a fence 120 m long. Determine
the dimensions of the playground.

1223. Break the number 10 into two addends so that,
when multiplied by each other, they yield the greatest
product.

1224. A rectangle of the greatest possible area is ins-
cribed in a triangle whose base is a and altitude h.
Determine the area of the rectangle.

1225. Equal squares are cut away from the corners of
a square sheet of cardboard and then a rectangular box
is made. What side must the cut-away square have to
get a box of the maximum volume?

1226. Determine the most economical dimensions of an
outdoor swimming pool of volume 32 m? with a square
bottom so that the facing of its walls and bottom requires
the least quantity of material.

1227. The non-parallel sides and the smaller base of
a trapezoid are equal to 10 cm each. Determine its greater
base for which the area of the trapezoid attains the grea-
test value.

1228. Inscribed in a semicircle is a trapezoid whose
base is equal to the diameter of the semicircle. Determine
the angle at the base of the trapezoid at which the area
of the trapezoid takes on the greatest value.

1229. The section of a tunnel has the form of a rectangle
completed with a semicircle. The perimeter of the section
equals 18 m. At what radius of the semicirle the section
area will be maximum?

1230. A factory A is to be connected by a highway
with a straight railway on which a town B is situated.
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At what angle a should the highway be connected with
the railway so as to ensure the least freight charges from
factory to town, if freight charges on the highway are m
rimes higher than on the railway?

1231. Two sources of light are situated 30 m apart.
On the straight line connecting these sources find the
least illuminated point if the ratio of candle powers of
the light sources is 27:8.

1232. Two aircrafts are flying in a straight line and in
the same plane at an angle of 120° to each other and
with an equal speed of v km/h. At a certain moment one
aircraft reaches the point of intersection of their routes,
while the second is at a distance of a km from it. When
will the distance between the aircraft be least and what
is that distance?

1233. A freely supported rectangular beam is uniformly
loaded over the entire length. Its bending deflection is
inversely proportional to the moment of inertia of the
beam section [=%, where x and y are the dimensions
of the beam. Determine the dimensions of the beam to
ensure the least deflection if the beam is made from a log
of diameter D.

1234. How many times does the volume of a sphere
exceed the volume of the greatest cylinder inscribed in
this sphere?

1235. Two corridors 2.4 m and 1.6 m wide intersect at
a right angle. Determine the greatest length of a ladder
which can be carried horizontally from one corridor into
the other.

1236. A cylinder of the greatest volume is inscribed in
a cone of radius 4 dm and height 6 dm. Find this volume.

1237. A rectangle of the greatest area is inscribed in a
semicircle of radius R. Determine its dimensions.

1238. On the parabola y==x? find the point least distant
from the straight line y=2x—4.

1239. A picture hangs on the wall. Its bottom i8 b cm,
and its top is a cm higher than the eye of the observer. At
what distance from the wall should the position of the
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observer be found to ensure the greatest angle of exa-
mining the picture?

1240. The total length of the walls of the house shown
in Fig. 31 must be 90 m. What width x of the corridor
ensures the greatest area of the rooms?

....... ‘f
R [T e !
i)
VL7222, 2L
~
X Ix p .
Fig. 31 Fig. 32

1241, Inscribed in a right triangle with the hypote-
nuse 8 cm long and an angle of 60° is a rectangle whose
base is situated on the hypotenuse. What must be the
dimensions of the rectangle to yield the greatest area?

1242, Given the points A (0, 3) and B (4, 5). On the
axis OX find the point M so that the distance S=AM -+ MB
is the least.

1243. The resistance of a beam to axial compression is
proportional to the area of its cross-section. What must
be the dimensions of the beam to ensure the greatest resist-
ance to axial compression if it is made from a log of
diameter D?

1244. A circular sector of angle a is convoluted to form
a cone. At what o the volume of the cone thus obtained
will be the greatest?

1245. A body of weight P lying on a horizontal plane
must be displaced by a force F applied to it (Fig. 32).
What angle o with the horizontal must the force F form to
ensure its least value? The coefficient of friction p=0.25.

7.6. Direction of Convexity and Points of
Inflection of a Curve. Construction of Graphs

1°. The convexity of a plane curve. A plane curve is
called convex up (down) at a point x==x, if in a suifici-
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ently small neighbourhood of this point the curve is
situated below (above) the tangent at this point. If at
the point x=x,

(1) y” >0, then the curve is convex down;

(2) y" <0, then the curve is convex up.

2°. The point of inflection. If a curve near some point
lies on both sides of the tangent then the point is called a
point of inflection of the curve. The necessary condition
for a point of inflection: at this point y"=0 or does not
exist, and the sufficient condition: y" changes sign.

3°. To construct a curve it is recommended to determine
the following: (1) symmetry; (2) domain; (3) points of
intersection with the axes OX and OY; (4) points of dis-
continuity of the function y=¢(x) or x=f(y) an asymp-
totes; () increase or decrease of y or x and extremum
points; (6) direction of convexity and points of inflection.

1246. Investigate the direction of convexity and con-
struct the following curves:

(1) y=x% (2) y=x% Q) y=e*; 4) y=Inx;

(5) y=x°.

1247, Determine the extrema and the points of inflection
and plot the curves:

x3 2 2% _1.

(l) y=?——x2, (2) y=e*, (3) y=l-{—_x2' (4) y=2x.

Applying some of the rules of Item 3°, graph the curves

given in Problems 1248 to 1262 by the following equa-
tions:

1248. y2=2x-49. 1249, y=—x*—4x,.

Hint. In Problem 1248 determine the symmetry, do-
main, and points of intersection with the axes, and in
Problem 1249 the point of extremum and the points of
intersection with 0X.

1250. y=sinx, y=cosx. 1251, y==sinhx, y=-coshx.

Hint. In Problems 1250 and 1251 determine the points
of extremum and inflection.
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1252, y=In (x+2). 1253. y=e~*.

Hint. In Problems 1252 and 1253 determine the domain,
points of intersection with the axes, asymptote, and
direction of convexity.

1254. (1) y? =x3; (2) y=(x+3)%.

3 1

elnx

1256. (1) y= et (2) y=-exe*.

1257. (1) y=x—|—x—4+—2; (@) y=ar——.

1258. (1) y=x—Inux; (2) y= (e" +e %)
1250. (1) y=5=1; @ y=t+%

1260. (1) y2=2x2--x“; (2) x(y—x):=4.
1261. y=(x+2)*? —(x—2)2/3, 1262. y? = xe~*.



CHAPTER 8

THE INDEFINITE INTEGRAL

8.1. Indefinite Integral. Integration
by Ezxpansion

1°. By the indefinite integral Sf(x)dx is meant a func-
tion F (x)+C, containing an arbitrary constant C, whose
differential is equal to the integrand expression f (x)dx, i. e.

§Fde=Fx)+C
d[F (x)+C]=f(x)dx.
2°. Table of basic integrals:
1. Sx"dx=:—:_+—;+c 6. Ssinxdx:—cosx+C.

(ns=—1).
2. (£=in|x|4cC. 7. (ay=tanx+C.
3. Sa"dx=—l%’%+c. g‘;’:—x=—cotx+c,
A i B
.-
arcsinx+4C
5. Scosxdx=sinx—|—C. 10. jﬁ:. —al‘cocl;)sx-i-

1
3°. The properties of the indefinite integral:

I. dSudx=udx. II. Sdu:u—l—().
HL §Audx=A§udx. V. §@toydr={udr+§odx.
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Integration by expansion means the reduction of a given
integral (by Property IV) to a sum of simpler integrals.

1263. Fill in the blanks in the following equalities:
(1) d( )=2xdx; @) d( )=xdx;
3) d( )=cosxdx; @ d( )=%;
d
5) d( ) =mursi ® d( ) =1F-

Then find the integrals: S2xdx, Sx“dx and so forth.
Find the integrals:

1264.
1265.
1266.

1267.

1268.

1269.
1270.
1271.
1272.

Find

1273.

1274

(1) S(xﬁ—i—?x—i—%)dx; @) S””‘:f"’dx.

_2dx; 2 S@j,—wdx.
W W3+ VR @ [(r—om)s
(1) j“f—;x:ﬁdx; ) X’f:/_Ld
(1) S‘e"(l—e_—x)dx; (2)Sa"( —!—V%)dx
(1) Scosicﬁjﬁ, 2 Scot”xdx.
M Ssm“xcoszx. &) 3—_%‘”’
0] Ssm27dx, 2) Scos2%dx.

M y(l-fxz_ Vl_s——x—”)dx; @) Snfxzd"

the integrals:

1) S("L;‘l”dx; @ 5 <?—/—l§-—;c%)dx

. (1) S%dx; @) jﬂz‘?ﬂﬁd,‘,
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1275. (1) S(i +—)dx, 2) S(sm——cos >dx
1276. (1) se"(l"‘cosz )dx, (2)5 (1-|-—-x,—)
1277. (=824, 1278. Stan’xdx.

sin? x

8.2. Integration by Substitution
and Direct Integration

Putting x=¢ (1), dx=¢' (1) du, we get
§fde={low]e w)du. (1)

Such transformation of an integral is called infegration
by substitution.

In simple cases the new variable u is recommended to
be introduced mentally, using the following transformations
of the differential dx:

dx=%d(ax+b); 2xdx =d (x?);

cos xdx=d (sin x); d—x’f=d(lnx) and so on,
and denoting mentally the bracketed expression by u. This
method is called the direct integration.

Find the integrals:

1279. §cos3rdx. 1280, {'sin 3 dx.

Hint. Problem 1279 can be solved by two methods:
(1) putting 3x=u, x=5— dx=d—u; (2) reducing the integ-
ral to the form —gc053xd(3x)

1281. {e-s7dx. 1282. { 5

cos,2 5x °

1283, § (6% 4o 7)dx. 1288 [V Ix—Tdx.
1285. { (3—2x)*dx. 1286. | }/5 —6xdx.
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¢

dx .
1287. y Voo 1288. Ssm (a—bx) dx.

2x—5 xdx
1289. S——de 1290. S el

Hint. Problems 1289 to 1298 are solved by the formula
S u dx_S—:lnluH—C

i.e. if the numerator of the integrand is a derivative of
the denominator then the integral is equal to the loga-
rithm of the denominator.

1201, (& 122 (% L.
1293. Scotxdx. 1294. Stanxdx.
cos 2x sin x dx
1295. S sinxcosxdx‘ 1296. SI-{—Scosx'
Cos X
1299. Ssinzxcosxdx. 1300. Scos"xsmxdx.

Hint. Problem 1299 can be solved using the substitu-
tion sinx=u or directly replacing cosxdx by d (sinx).

cos x dx sin x dx
1301. S i, 1302 S ek
1303. Sl—_gn—iﬂdx. 1304. Ssmxcosxdx.
1305. { ewos*sin x dx. 1306. { ' x1dx.

Hint. Problem 1306 can be solved using the substitution
x3=u or directly replacing x*dx by %—d(x’).
_at e *dx
1307. {e-+"xdx. 1308. | =
1309. Ve ixde. 1310 { /¥ —8xrdx.

Hint. Problem 1309 can be solved using the substitution
X+l=u or directly by writing the integral in the form

—5 x2+1) 'd(xz 1).
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wtat ) Va—' ) VEerk
x2dx
. 1312. .
1311 yf/1+xa fl/ =
3. sinx dx ) 1314, 5 Vl—}—lnxdx.
131 V1+42cosx x

1315. SV1+4sinxcosxdx. 1316. Sf/l—Gxﬁx“dx.

Find the integrals:
1317, S e"—{—e"‘)zdx 1318. Ssinaxcosxdx.

1319. j 1320. { cos (a—bx) dx.
1321. {3/ l—|—3xdx 1322. { /T2 x2 dx.
" xdx 1—2sin x
1323, | A 1324, S—de.
1325, (1tsin2y 1326. { esin»
. sntg 9% . \ein¥cos xdx.
dx
1828. (%

8.3. Integrals of the jorm S 2 £ gl 5‘ "a‘:x_xz ’ 5\ | x‘::-k
and Those Reduced to Them

1329. Show that
() S,,—ff;w%arctan%rc, putting x=atant;

2) SV%_—zarcsini—i—C, putting x=asint¢;

3) sz 2al ‘x_'_a +C, expanding
1 la4-x+a— x_l( | l).

¥—a* 2 x*—a® = 2\ x—a x+a
—
()jV“rk In|x+V@Fk|+C,
putting V' x* +k=t—x.
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1830. (1) { %% @ (=25 .
. dx
1331. (1) Sm @ |y
1332. (1) fo‘:_"_i ; @) h;‘jﬁ
1333. (1) yldei}? ) Sﬁ—d;
1334. (1)5 L @ vad’-‘_?
. x3dx
1335. (1) fy_s__—ﬂ? @ S a2
1336. (1) i’;—;—i-dx @ (E=2ax.
1337. (1)§Vf‘j+‘l (Q)Smd
1338. S% 1339, (2%

Hint. In Problems 1338 and 1339 eliminate a whole
expression from the improper fraction.
1340. { —— 1341, [ oo

x2+4x+5 6x4 13

Hint. In Problems 1340-1347 separate a perfect square
from the quadratic trinomial.

dx dx
. gy e — 1343- T e
1342 ij2+2x+3 5‘V1 —2x —x?
1344. ij xz. 1345. Sx,+3x+
l 4 . __——__:. 1347- e,
346 §V2 + 3x—2x* jlf3x2—2x—l

Find the integrals:
1348. S(x2+3+ )dx

1349. 5‘(V2—x2+l/2]+x2)dx
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1850. (%% dx. 1951 § 52

1352. ':T‘% 1353. 7?_%.
1954, { 2%, 1355. { :#;29
1856, {5 1357. j V5_4x_x2.
1358, { ¥ 1850, | st

8.4. Integration by Parts

From the formula of the differential of a product d (uv) =
= udv-4vdu we obtain the formula for integration by parts:

S udv=uv— S vdu.

This formula is widely used when the integrand is a
product of an algebraic function by a transcendental one,
for instance sze"dx or szlnxdx. Here the role of u is

played by the function to be simplified by differentiation,
and the role of dv, the portion of the integrand which
contains dx and whose integral is known or can be found.

In case of transcendental functions the role of u is
usually played by Inx, arctanx and arcsin x.

For example, in the integral szlnxdx take u=Inx

(but not x%), and in the integral Sx’e" dx, u=x* (but not ¢*).

Find the integrals:

1360. { Inxdx. 1361. § x1n (x—1)dx.
1362. Sxe”‘dx. 1363. Sxarctanxdx.
1364. Sx” cos x dx. 1365. Se" sinxdx.

1366. Show that
S % xz+kdx=%[xl/x’ +Ek+EkIn(x+V ¥ F+E)]+C.
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1367. { (Inx)2dx. 1368. { ot
1369, (12X, 1370. ——a%‘”‘.
1371. Sarcsin xdx. 1372. gxae"‘dx.
1373. S In (x24 1) dx. 1374. Scos (Inx)dx.
Find the integrals:
1375. { VxInxdx. 1376 § xie™ .
1377. Sarctanxdx. 1378. Scf)::x’
1570 S arcsin - dx
. \ e*cos xdx. 1380. S_Vﬁ .
1381, (22, 1382. { arctan )/ 2x—1 dx.

8.5. Integration of Some Trigonometric Functions

1°. Integrals of the second and other even powers of
sine and cosine are found by means of the following
power reducing formulas:
l——c2<)s2x; l+c2052x' sinxcosx=5m22x.

2°. ntegrals of the third and other odd powers of sine
and cosine are found by separating one factor from the
odd power and taking the cofunction equal to the new
va-iable u.

sin? x = cos? x

The integral Scos"‘xsin"xdx is found by rule 1° if both
m and n are even, and by rule 2° if either m or n is odd.

1383. {sin?3xdx. 1384. § (142cosx)2dx.
1385. S(l—sin 2x)2 dx. 1386. Scos4xdx.

1387. S sin? x cos? x dx. 1388. S sin® x cost x dx.
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1389. Ssin’xcos‘xdx. 1390. Ssin”xdx.

1391. Ssin’xcosaxdx. 1392. Ssin’xcos’xdx.
1393. Scos’xdx. 1394. S(l +2cos x)*dx.
1395. S“fi;;‘ & 1396. SS';‘OS’;‘”‘.
A T

1398. (1) {5 @ >Sm

1399, (XXX gy 1400. | % .
1401. { tansxdx. 1402. { cots xdx.

Hint. In Problem 1401 put tanx=¢, x=arctan’t.
1403. Ssiancosxdx. 1404. Scosmxcos nxdx.

Hint. In Problems 1403 to 1406 make use of the for-
mulas:

sinocosf = 71 [sin (@4 B) 4-sin (@ —B)],
c0s 01cos p = - [c0s (@ -HB) 4-cos (a—P)],

sinasinf= %[cos (¢ —B)—cos (@ +P)].

1405. (1) Ssin 3xsinSxdx; (2) Ssin mx sin nx dx.

1406. S sin <5x-—f->'cos (x+£)

1407. Integrating by parts, prove the “power reducing”
formulas:

(1) S sin*xdx= — %cosxsin"'l X —l-nT_l gsin”“zxdx;

1 . _ n—I1

(2) Scos"xd m Scos"‘zxdx

and using these formulas find: (1) Ssin“xdx; 2) Scos"xdx.
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1408. Find the integrals: (1) S iz (9 S o T
Hint. Apply the formulas given in the previous pro-
blem to the integrals S‘ 9 _ and S

nx

cos x°

1409. § (1+3cos2x)2dx. 1410, {sin*xdx.

1411. Ssin‘xcosﬂxdx. 1412. Scos"xdx.

1413. Ssinsxcoszxdx 1414. S(l+251nx)"dx.
1415. S(sm:l;_;;)”) dx. 1416. gsin3xsinxdx.
1417. Ssmco:;tl dx. 1418. Ssin (x—}—%)cosxdx.

8.6. Integration of Rational Algebraic Functions

[°. If the integrand is an improper firaction, then it is
necessary to take out the integral part.

2° The denominator of a proper fraction is factorized
into factors of the kind (x—a)* and (x*+ px+¢)#, and
the proper fraction itself is expanded into a sum of ele-
mentary fractions in the following way:

P (x)
T~ T T +<x—a)°="‘
Mix+ N, Myx—+ N, Mﬂx—}—NE
+x2+px+q + (x2+px+q)2+ +(x2+px+q)ﬂ +-
where P (x) is a polynomial of the degree lower than that

of the denominator.

Find the integrals:
4 8
1419. (1) S——dx @ S#a*dx; ) Sx_"ax_aadx

x—4 2x4-7
2 —_
1422, 53" ;’;f‘x 1a23. {£E L gy,

1424, S};_—"'zizdx. 1425. [ =28, dx
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2x* 5x+l 5x —1
5x+2 4x—2.4
1428. S md"- 1429, | o0t dx.

Hint. In Problem 1428 single out a perfect square in
the denominator and then put x+1=t.

252+ x4+ 4 7x—15
x2 4 2x 41
1432. 53+8 1433. Smd
1434. (1) { xFgm- @ | G-

Hint. Put x=>b tan ¢ and then (in the second case) use
formula (2) of Problem 1407.

(2x+1)dx
1435. (1) Sm (2) S (x2— 6x+ 10)3 *
4x dx x+1
1436. XW 1437. S‘x‘—|-4x2+4d

Find the integrals without applying the general method
of indefinite coefficients.

dx
148, § s 149, § g o

Hint to Problems 1438 to 1442. In the nominator of
the integrand fraction write the difference of the factors
of the denominator dividing the integral by the corres-
ponding number.

dx dx
1440. SP'—_'E 1441. Sm
dx
1442. Sm 1443, S =
Find the integrals:
2x—1 3x4-2
1444. Smdx. 1445. Smdx.

14 1lx+ 16
tage. (o= —de. 17 (Dl
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5x—8 x42
1448, § o . 1449, § oo dx,
dx
1450. st+azx x. 1451. Sm
cod
1452, { 5. 1453. S(—JF—L)EJF—W

In Problems 1454 to 1457 integrate without using the
method of indefinite coefficients.

1454, (55 1455. { 20,
1456. Sx—fj—l 1457. Sx‘

8.7. Integration of Certain Irrational
Algebraic Functions

1°. The integral SR (x, ¥/ ax+b)dx, where R (x, y) iIs a
rational function, is found by the substitution ax+b=1¢7,
and the integral of a more general form SR(x'",
f/m xm=1dx, by the substitution ax™4b=t¢n.

Mx+4N
. The inlegral j - a) Vacfoxte

the substitution x— a_T.

3°. Trigonometric substitu!ions. The following integrals
are reduced to the rational trigonometric form:

S R (x, V @®*=x*)dx by making the substitution x=asin¢,

S R (x, V a*+ x*) dx by making the substitution x =atant.

4°, The algebraic part can be separated from the integral
y ax™+axm -1+ ... +a,
V axt4bx+c

(@b ot dem (Apen=tb o+ A ) W 4, [

where W =V axt+bx—+c. The coefficients A are found on
differentiating the equality and getting rid of the deno-

dx is found by

dx by the formula
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minator by comparing the coefficients of equal powers of x
on the left and on the right.

5°. The integral of a binomial differential Sx"' (a+bxm)Pdx
is expressible in terms of elementary functions in the fol-
lowing three cases: (1) when p is an integer—by expan-
sion; (2) when mtl s an integer —by the substitution

a--bx*=t% (3) when m+tl + p is an integer—by the

n
substitution ax-"-4-b=1¢%, where s is the denominator of
the fraction p.

Using substitutions 1°, find the following integrals:

1458. jf/x—;idx. 1459. [%

1460. 5?/5:—'/; 1461. {xVa—xax.

1462. jr};‘fﬁ? 1463. f‘,";"i,‘).

Using substitution 2°, find the following integrals:
1464. f)“’xﬁ 1465. jx—Vzj——Txﬂ
1466. XW’E%T—:& 1467. S(x—l—l) Vd%Wﬁ .

Using substitutions 3°, find the following integrals:

—_— dx
S Vea—zax. 269. (2.
1468. { Va—xidx 1469 5 T

2 2 __x*dx
1470. § x2 ) T—x7dx. 1471, SVWF
1472. (V35 2x—xdx. 1473, (2%
Sl/ +2x—x%*dx Svm
Using rule 4°, find the following integrals:
x244x xdx
1474 j Ty . 1475. f T—.

1476. § V¥ FEdx. 1477. § V2ax—x* dx.
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Find the integrals of binomial differentials:

1478. S;% 1479. jx—s—;’;‘—_ﬁ
1480. jﬂ% 1481. 5%5
Find ‘he integrals:
1482. V"Q:‘_ldx. 1483. V%TT
1484. 7‘% 1485. (52— dx.
1486. jﬁ:—%‘—édx. 1487. jﬁ-%—_l
1488. 5x2+2:;”‘1/m§. 1489. fﬁﬁ
1490. 5“/1;_—’2‘?5; 1491. fﬁﬁ
1492. V’.‘% 1493. 5 V 5 dx.
Hint. In Problem 1493 put x=2sin%¢.

o ,
1494. (VixFxdx, 1495. jﬁd&
1496. 5}% 1497. f,zvdf—ﬁ
1498. fx—]/‘f‘—T; 1499. 5”/3)‘;’%

8.8. Integration of Certain Transcendental
Functions

‘ The following integrals are reduced to the algebraic
orm:
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SR (e*)dx by the substitutions e*=¢, x=Int, dx~—

S R (tan x)dx by the substitutions tan x=¢, x=arctant,

dt
dx = T
SR(sinx, cosx)dx by the substitutions tan%=t,
2 = dx — 2dt
Slﬂx—m, COSX—W' x_l+12'
Find the integrals:
e2% — 2¢%
1500. { =2 d. 1501. { tantxdx.
ed% dx
1502. Sm 1503. Ssmx
dx
1504. 5+3cosx” 1505. SBsinx'+4cosx'
dx
1506. (. 1507. Sl+3cos2

Hint. In Problems 1506, 1507, 1512, and 1513, where
the integrand expressions contain only even powers of
sinx and cosx, it is better to apply the substitutions:

t2 1 dt

— in? x — 2 g —
tan x=¢, sin X=ipm, OSX=71rm, dx e

Find the integrals:

1508. {% 1509.  tan® vdx.

1510. S"” dx 511, (=2,
dx

1512. Scow 1513. Sm

1515. S“ﬁ‘”s" dx.

sind x

1514. S?smx—i—smm'
1516. { £Edx. 1517, (Lttanx g,

sin 2x
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8.9. Integration of Hyperbolic Functions.
Hyperbolic Substitutions

1. Scoshxdxrsinhx—l-c. 2. Ssinhxdx=coshx—l—C.

3. S 2 =tanhx+-C. a. jsmhz —cothx+C.

Integrals of the second and other even powers of coshx
and sinh x are found by the following formulas:

cosh 2x+41 cosh 2x —1

cosh%c:T, sinh2x=——2——,
. inh 2x
sinh x cosh x=s—-2— .

Integrals of odd powers of sinh x and cosh x are found
in the same way as integrals of odd powers of sinx and

oS X.
Hyperbolic substitutions are sometimes used for finding
integrals of the form

SR(x, Vx*—a?) dx by the substitution x=acoshf;
SR(x, V x*+a?) dx by the substitution x=asinht¢.

In this case if x=a cosh?, thent¢=In 1} V;"2—a2

and if x=a sinh{, thent=In H‘—VW .
Find the integrals:
1518. (1) Ssinh23xdx; 2) S(I—l—sinh 2x)2 dx.
1519. { cosh® xdx. 1520. Stanhxdx.
1521, {2 1522, [
1523. (Vo +a dx. 1524. (V=g ax,

dx dx
I525o ———, 152 . iy il
5V<x2+4>3 6 yV(xz—S)a
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Find the integrals:

1527. Ssinh"Bxdx. 1528. Ssinh%ccosh?xdx.
1529. Ssinh‘*xcosh xdx. 1530. Scoth2xdx.
—_— 14 2sinh
1531. SVcoshx-{—ldx. 1532, (LLZsmne g,
1533. f—"zé- 1534. jm}dx.
V x2—3 x2

8.10. Miscella;zeous Problems on Integration

Find the integrals:

1535. j—@ 1536. j%’f
1537. S}% 1538. lfﬁ‘
1539. SW’%——T) 1540. S%,_,f——"—m%
2
1541. choszxdx. 1542. Se,T"_’;;
1543. g }%“ dx. 1544. X%’jf‘
1545. Sxtaandx. 1546. S“’;;"xd"
1547. bf‘—ji‘% 1548. ST,/_?Z%T/T
1549. J;—Ilf)qu. 1550. Sﬁ?’*
1551. Sm—xi"c—ow 1552. 5“/—0%ﬁ
1553. (T";z—jfs)—,,. 1554. Sl/mdx.
1555. ﬁf_}‘ﬁ 1556. S?-’S‘i;;-’ﬂ‘
1557. S%}r%dx. 1558. 5(2x+1) (l‘:’f Tzl

7 —1898
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1559. § cotexds. ts60. | Y24
1561, M S.ci)oss;t dx; ) sz:]ngjc
dx
1562. (1) [ ——% ., S S—
()ij+a+V7’ ()f Pt T—x
1563. { 5L ax. 1564. 5—”‘;;"2"&.
dx dx
1565, | — . 1566. Sm
1567. %_}/—xdx. 1568. S%’;ff-dx.
1569. S €08 2% ix. 1570, ( nlcosndr
1571, (2. 1572. S“’g‘)’;—;‘j"
1573, (et dr, 1574, (Y T—=sinxdx.
d.
1575. s‘m 1576. | 2o,
1577. Se-Vde. 1578. yw
Vx
1579. f-—-’ tanrdy, 1580. S‘————“"‘2+‘)""
1581. S% 1582. “5“}’ V¥ iy
X
1583. f g‘”f :;: dx. 1584. La";f‘“:’;‘“
dx x2dx
1585. (o= t586. (-2
x—a 4x+1
1587. —Vﬁdx. 1588. mdx

1589. S°°S:"‘+'dx. 1590. S dx

sin2x x4+4°



CHAPTER 9

THE DEFINITE INTEGRAL

9.1. Computing the Definite Integral

Let a function f(x) be defined on a closed interval
[a, b]. This interval is partitioned into n subintervals by
points a=x, < x, < x,<... < x,=b. In each of the subin-
tervals (x;-,, x;) take an arbitrary point & and form the

n

sum Zf(g-)Ax,-, where Ax;=x;—x;_,. The sum of the

form Zf £)Ax; is termed the integral sum, and the

limit to which this sum tends as the largest subinterval
approaches zero (max Ax;—0), if it exists and is finite,
is called the definite integral of the function f(x). The
end-points a, b of the given interval (the interval of in-
tegration) are called the limits of integration: the lower
limit (a) and the upper limit ().

The definite integral is denoted by

Ax—»

b
§fede=lim Zf(E)Ax (1)

In this case the function f(x) is called integrable over
the interval [a, b).

For a function to be integrable it is suificient that it
is either continuous on the interval [a, b] or has a finite
number of finite discontinuities.

Let f(x) be continuous on [a, b]. Then on this interval
there exists an indefinite integral

§ f)de=F (1) +G @

70
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and the following formula takes place:
b
b
{tdr=F)—F@=[{rax];, 3)
a

i.e. the definite integral of a continuous functions is equal
to the difference of the values of the antiderivative (or the
indefinite integral) for the upper and lower limits. For-
mula (3) is called the Newton-Leibnitz formula.

1591. By forming integral sums and proceeding to the
limit, find the following integrals:

(1) Saxdx; 2) Sax?dx; 3) Sae"dx; 4) §sinxdx.
0 0 0 0

Hint. When solving (2) and (4) make use of the results
of Problems 1034 and 647.
1592. Compute the lower and the upper integral sums s,

2
and S, for the integral (%, dividing the closed inter-
y

val [I, 2] into five equal subintervals. Compare the re-
sult thus obtained with the exact value of the integral.

5 5
Hint. s,=2> m/Ax, S,=2 M,Ax, where m; is the
i=1 i=1

least value, and M;, the greatest value of the integrand
function in ith subinterval.

Compute:
3 2 i
1593. \ x3dx. 1594. x4+ = ) dx.
J j ()
4 1 dx
) ) 596. .
1595 lSl/?dx 1596 §V4—x‘=

aV’3 4 3 x
M x
1597, S m. 1598. Se3dx.
0
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O — &la

1600. \ sin4xdx.
19
9 p 3
1601.5 . 1602. ( 1+tanx
4 Vx—1 ‘,’E(l-}-tanx)‘zdx
T

Hint. In Problem 1601 apply the substitution x=1¢2;
then the limits of the integral will change, which is

written in the tabular form T Analogously, in

Problem 1602, when integrating by the substitution
tan x=1¢, change the limits accordingly.

1
2 dx
1603. 1604. X .
§1+V2x+1 j]f‘;—xz
0 0
a
| 0l
dx X
1605. OSeerl 1606. Oj ]/a_xdx.
k14
) Va
1607. Ssinxcoszxdx. 1608. S 2V a—xtdx.
0 0
1 1
1609. §In(x+1)dx. 1610. { V' Trx7dx.
0 0
V3 i 3 p
X X
PR 2. —_
1611. S Vi 161 $x+x2
1

1613. From the formula of Problems 1407 obtain that

“ —
2 . 2
S sm"xdx——S sin*~2xdx,
0 0
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and compute:
7

T

7
1) S sin?xdx; (2) Ssin‘xdx; (3) \ sin®xdx.
0 0

e IN T

Compute:
a 3
1614. S(x2—ax)dx. 1615. Si’;.
0 2
n
Vs T
X X
1616. S — 1617 | &
0 L
8
4 dx 1 % g
e X
1618. jm 1619. §1+e2x.
1
5 y V72
xax
. . 21. X dx.
1620 5V4x+5 16 § VI dx
11 F14
T T
1622. S xcos xdx. 1623. Stan“xdx.
0 0

1624. From the formula of Problem 1407 obtain that

n—1
n

cos*xdx =

cos"~2 xdx,

Ce— nl:
Se—— m|:a

and compute
z X
2 2

(1) \ cosxdx; (2) Scos‘xdx; 3) Scos"xdx.
0 0

°'-’7w|=l
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9.2. Computing Areas
1°. The area of curvilinear trapezoid A,ABB, adjacent
to the axis 0X (Fig. 33):

S= lim 2yAx=Sydx. (1)
0

Ax —> P

The differential of a variable area A,AMM, isdS=ydx.
If a curve is given by the equations x={f(f) and
y=o(t), then dS=o(¢)-f' (¢)dt.

Y 8

A i
X7 \

U M_’J ax |51 X
le

Fig. 33

2°. The area of the curvilinear trapezoid adjacent to the
axis OY:
Ys
S= li Ay =\ xdy. 2
Jim 2%y §’x y ®)
The differential of a variable area dS:xdy.
3°. The area of the sector OAB (Fig. 34) of a curve
given in polar coordinates: i
Qe

S= lim E%rBAq)=S%r’dcp. 3)
[

Ap =0

The differential of the area variable d8=%r“d(p.
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Compute the areas bounded by the following lines:
2
1625. y =4—=x, y=0.  1626. a2+-" =1.

1627. y2=2px, x=h. 1628. y=3—2x—x2, y=0.
1629. xy=4, x=1, 1630. y=Inx, x=e,
x=4, y=0. y=0.

1631. y2=2x+4, x=0. 1632. y?=x3, y=8, x=0.

1633. y2=(4—x)*, x=0. 1634. The loop of the curve
4 (y2—x2)+x3=0.

1635. y=x?, y=2—x2  1636. y=x2+4x, y=x-+4.

1637. azyz—x*’(Qa—x) 1638. ( ——x)2—x3 x=1.

1639. The loop of the strophoid y%(2a—x)=x (x—a)2.

1640. Catenary y= (ea +e a), x==a and y=0.

1641. One arc of the cycloid x=a(t—sint), y=ax
X (I —cos¢) and the axis OX.

1642. Astroid x=acos®?, y=asindt.

1643. Lemniscate r® = a?cos 2¢.

1644. Cardioid r =a (1 —cos ).

1645. r =3 +sin2¢ }ﬁnd the area enclosed between the

1646. r =2—cos 3¢ [ adjacent maximum and minimum
radius vectors of each curve.

1647. r =acos 2¢. 1648. r =asin 3¢.

1649. r=a(singp+cosg).  1650. r=%, T<o<2n

1651. r_-asm3(§ , located below the polar axis.

1652. The loop of the folium of Descartes x3-+y*— 3axy=0
(see Fig. 83 on p. 386) (pass to polar coordinates).
, . in2 2¢d
Hint. In the integral SMF—OE%WZ
first dividing both the numerator and denominator by
cos® .

put tan @=u,

Compute the areas bounded by the following lines:

16563. y=6x—x2, y=0. 1654. y=x3, y=8, x=0.

1655. y*=1—x and x=—3. 1656. y>-4 x*=x2.

1657. y=x2+44x+5, x=0, y=0 and the minimum
ordinate.
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1658. A half-wave of the sinusoid y=sinx and y=0.
1659. 4y=x? and y?=4x. 1660. xy=06 and
x+y—7=0.

1661. The loop of the curve x3+4x2—y2=0.

1662. r =3—cos2¢ ) find the area enclosed between the
!adJacent maximum and minimum

1663. r =2+sin3¢ ) radius vectors of each curve.

1664. r =asin 2¢. 1665. r =acos 3¢.

1666. r =qae® from ¢g=—mn to @=m.

1667. Find the area of the common portion of the

ellipses ’ai:—l—l!:—::l and ;)‘—:—I—Z—:=l (pass to polar coordi-
nates).
1668. r =a (1 +sin22¢) and r =a.

9.3. The Volume of a Solid of Revolution

1°. The volume of a solid generated by revolving a
curvilinear trapezoid A,ABB, about the axis 0X (Fig. 35),

Y 8

Fig. 35

where AB is the arc of a curve y=/(x), is determined by
the formula
V= lim Y myAx= S ny? dx. (1)
Ax—>0 X3
The differential of a variable volume dV =mny%dx.
2°. The volume of a solid generated by revolving about
the axis OY a curvilinear trapezoid adjacent to the axis
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OY is determined by the formula

V=1 2A 2 d 2
fim, Baey={ acay ®

The differential of a variable volume dV =nx?dy.

Determine the volume of the solid generated by revol-
ving a figure bounded by the following lines:

1669.

1670.

1671.
1672.
1673.
Hint.

1674.

1675.
1676.
1677.

y=—1

y2—2px and x=~h about the axis 0X.
2
d ——1 and y=4b about the axis OY.

a2
xy= 4 x=1, x=4, y=0 about the axis 0X.
y2=(x—|—4)" and x=0 about the axis OY.

x4+ y2=a? about the straight line x=b> a.

dV =n(b+x)*dy—n (b—x)*dy = 4nbx dy.
y=acosh%, x=oa, y=0 about the axis 0X.
y*=4—x, x=0 about the axis OY.

(y—a)*=ax, x==0, y=2a about the axis 0X.

y=cosx and y=-—1 about the straight line
for —a<x<<m.

1678. y=x) —x, x=—4 and y=0 about the axis OY.
1679. y=cos(x—g), x=0, y=0 (for x>0) about
the axis 0X.

1680.

y=a—’£f and x+y=a about the axis OY.

Determine the volumes of the solids generated by re-

volving
1681.

the figures bounded by the following lines:
y=sinx (a half-wave), y=0 about the axis 0X.

1682. x*—y?=4, y= +2 about the axis OY.
1683. y=m, x==1, y=0 about the axis 0X.
1684. g—l—Z—:=l about the axis OY,

1685.
1686.
1687.

x2/8 4 y2/3 = q%3 about the axis 0X.
y=x% x=0, y=28 about the axis OY.
x2—y?=a?, x=42a about the axis 0X.
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1688. y=x2, y=4, about the straight line x=2.
Hint. dV =n (24 x)2dy—an (2—x)2 dy.
1689. One arc of the cycloid

x=a(t—sint), y=a(l—cost) about the axis 0X.
1690. (y—3)2+3x=0, x=—3 about the axis 0X.

9.4. The Arc Length of a Plans Curve

1°. The length of an arc AB of the curve y=/f(x) is
given by the integral

*B
= {Vityar. (1)
*a

Differential of arc length: ds=V"1+y" dx=V dx*+dy.
2°, The length of anarc ABof the curve x={ (¢), y = (f):

tB R

= Veiga )
ta

8°. The length of an arc AB of the curve r=f(q):
A

s=§ Ve @)

Determine the length of the arc of the curve:
1691. y2>=x® cut off by the straight line x=—g—.

1692. Of the entire curve x”—l—y"=a2
2
1693. Of the entire curve x3 +y3 =al.
1694. y2=(x-+1)3 cut off by the straight line x=4.
1695. Of one arc of the cycloid

a(t—sint), y=a(l—cost).

1696. x—f- y= 2—— between the points of inter-

section with the coordmate axes.
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1697. y=x;-—1 cut off by the axis 0X.

Hint. Sl/l +x2dx can be found by parts, or written
by the formula of Problem 1366.

1698. y= (e +e @ )——acosh% between the straight

lines x =+ a
12

1699. y=Inx from x=—2— to x=+.

Hint. The integral ‘SV—I—L—@ is found by the substi-
tution 1+ x2=t¢2.

1700. y=In(2cosx) between the adjacent points of
intersection with the coordinate axes OY and 0X.

1701. (1) 9y?=x (x—3)®> between the points of inter-
section with the axis 0X.

(2) e tanhx=1 between the points x=1 and x=2.

1702. (1) The cardioid r =a (1 —cos ¢).

(2) The first turn of the spiral r =ag.

1703. The entire curve r=asin3%.

1704. A flexible thread is suspended from the points A
and B situated at the same height; AB=2b, the sag is f.
Taking the suspended thread as a parabola, show that its
length sz?b(l-l— 3 bg) for a sufficiently small —2—.

Hint. Apply the approximate formula V' 1+a = 1 + —=a
from Problem 1157.

Find the length of the arc of the curve:
1705. 4* =+ (2—x)* cut off by the straight line x=—1.

1706. y=In(sinx) from x—%— to A—Q—;-
1707. y=ln_(l—x2) from x=—% to xzé.

1708. y2=2px cut off by the straight line x=§.
1709. x=t:, ]} between the points of intersection
y =§(12_—3) J with the axis 0X.
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9.5. The Area of a Surface of Revolution
1°. The area of a surface formed by the revolution of
an arc AB of the curve y={(x) about the x-axis is
P,=2n { yds, where ds=)/dx*+dy.
AB
2°. The area of a surface formed by the revolution of
an arc AB of the curve x=¢(y) about the y-axis is

P,=2n S xds, where ds=)dx*+dy®.
AB

Determine the area of the surface formed by revolving
the curve:
1710. x*4 y*= R? about the x-axis.

1711, y=2 cut by the straight line y=1.5, about
the y-axis.

1712, y=acosh% between x= 4 a about the x-axis.

1713. 4x2+y*=4 about the axis OY.

Hint. Taking y for an independent variable, we get the

2
required area P=nSV16—3y2dy. Then make use of the
) .

. . 4 .
substitution y——ﬁsm t.
1714. One half-wave of the curve y=sinx about the
axis 0X.
1715. One arc of the cycloid{
x-axis.
1716. The loop of the curve x=¢2, p=%(t2—3) about

the x-axis.
1717. x*+y*=a? about the straight line x=b> a.

Hint. dP =2n (b-+ x)ds+ 2n (b— x) ds.

x=a (t—sinf)

y—=a(1—cost) about the
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Determine the area of a surface formed by rotating
about the axis 0X:

1718. The arc of the curve y=§;- from x=—2 to x=2.

1719. The arc of the curve y*=4+x cut by the straight
line x=2,
1720. The entire curve x=acos®*?, y=asin®!’.
s .

1721. The arc of the curve x==—té—, y=4—i;- between
the points of intersection with the coordinate axes.

9.6. Problems in Physics

1722. Determine the force of pressure acting on a ver-
tical rectangular water lock with base 8 m and height 6 m.
Find also the force of pressure experienced by the lower
half of the lock.

1723. Compute the force of pressure acting on a verti-
cal triangle whose base a is flush with the water surface
and altitude is equal to A.

1724. Find the force of pressure acting on a semicircle
of radius R submerged vertically in water so that its
diameter is flush with the water surface.

1725. A vertical dam has the form of a trapezoid whose
upper base is 20 m, the lower one 10 m and the alti-
tude 6 m. Find the force of water pressure experienced
by the dam.

1726. Find the moments of inertia about the x- and
y-axis of the rectangle bounded by the straight lines
x=a, y=0, y="b, and x=0.

Hint. Subdividing the rectangle into horizontal strips,
multiply each strip by its squared distance from the
axis OX, i.e. by g2 Summing and passing to the limit,
we get

b
J.=li Ay =\ ay? dy.
x Ay_rg)za vy §ay Yy

Similarly J,= S bx*dx.
0
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1727. Find the moment of inertia about the x- and
y-axis of the triangle bounded by the lines x=0, y=0,
and %—I-%: 1.

1728. Find the moment of inertia about the y-axis of
the figure bounded by the lines x=2, y=x? and y=0.

1729. Find the static moments about the x- and y-axis
and the coordinates of the centre of gravity of the triangle
formed by the lines x=0, y=0, and x+y=a.

a a

Hint. The static moments: Mx=Sxydy, MU=S xydx.

0 0
. . M, M,
The coordinates of the centre of gravity: x,=—, Ye=-73>»
where S is the area of the figure.

1730. Find the centre of gravity of the figure bounded
by the lines a?y=0bx?, x=a, and y=0.

1731. Find the centre of gravity of the semicircle
x*+y*=a? cut off by the axis 0X.

1732. (1) Calculate the work needed to overcome the
force of gravity in pumping the water out of a cylindri-
cal vessel with the radius of the base circle 0.5 m if at
the starting moment the water level in the vessel reaches
2.8 m and is 0.2 m lower that the outlet hole.

(2) Calculate the work needed to overcome the force of
gravity in pumping the water out of a hemispherical boiler
of radius R m.

1733. Compute the work needed to overcome the force
of gravity in lifting a mass m from the earth surface
to a height A.

Hint. The force F of gravity at a distance x from the
centre of the earth is determined from the proportion
F:mg=R*:x*, where R is the radius of the earth.

1734. A cauldron has the shape of a paraboloid of re-
volution; its depth is H=0.5 m and the radius of the
circle base R =0.4 m. Calculate the work needed to over-
come the force of gravity in pumping the water out of a
brim-full cauldron.

1735. There is air of volume V,=0.1 m® and pressure
Po=103,300 N/m? under a piston in a cylinder. Determine
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the work done by an isothermal compression of the air
to a volume V,=0.03 ms. ’
1736. Compute the work done by a 0.001 m stretching
of a 1 m copper wire whose cross-sectional radius is 2 mm.
Hint. The force F required to stretch a wire of length
and cross-sectional area s by x is determined by the for-

mula F=E% , Where E is Young’s modulus. We may take

E ~12-10* N/m? for copper.

1737. How long would it take the water in a full cylin-
drical vessel of base area S =420 ¢cm? and height H =40 cm
to flow through an orifice on the bottom of area s =2 cm??

Hint. The velocity of discharge of a liquid at level x

is determined by the formula v=p )/ 2gx, where p is a
coefficient which depends on the liquid viscosity and the
shapes of the vessel and the orifice. We assume here, as
we shall in Problem 1738, that p=0.6.

1738. How long would it take the water to flow out of
a conical funnel of height H =40 cm, lower base radius
r=0.3 cm and the upper base radius R=6 cm (see hint
to Problem 1737)?

1739. Determine the pressure exerted by water on a
vertical triangle of height h, whose base a is parallel to,
and whose opposite vertex is on, the surface of the water.

1740. Determine the pressure exerted by water on a
vertical parabolic segment whose base is equal to 4 m
and situated on the surface of the water, and whose vertex
is at a depth of 4 m.

1741. Find the depth x at which a rectangular water
lock of height 4 may be divided horizontally into two parts
on each of which the water pressure is identical.

1742. A cylindrical cistern with horizontal axis is half
filled with oil (specific gravity 0.9). Determine the pres-
sure exerted by the oil on each of the cylinder plane
walls, if its radius is equal to 2 m.

1743. Determine the moment of inertia of the quadrant
x=acost, y=asint about the x-axis.

1744. Find the coordinates of the centre of gravity of
the area bounded by the curves y=4—x? and y=0.
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1745. Compute the work necessary for pumping the water
out of an (inverted, circular) cone-shaped hole, whose
height H =2 m and base radius R =0.3 m.

1746. Determine the work done by adiabatically com-
pressing air of volume V,=0.1 m3 under pressure p, -=
= 103,300 N/m? to a volume V,=0.03 m® (Adiabatic
compression obeys Poisson’s law: pV* = p, V%, where kx~1.4.)

1747. How long would it take the water in a full he-
mispherical bowl of radius 40 cm to flow through an ori-
fice on the bottom of area 2 cm?? (See hint to Problem
1737; set coefficient of viscosity n=0.8.)

9.7. Improper Integrals
1°. Definitions.

+® b
I. The integral S f(x)dx is defined as lim Sf(x)dx
a b+ +o 4

b
if this limit exists and is finite. The integrals’S f(x)dx

-®
+ ®

and S [ (x)dx are determined analogously.

II. If f(x) is continuous at all points of the closed
interval [a, b] except the point ¢ at which f(x) has a
discontinuity of the second kind, then the integral of the
function f(x) from a to b is defined as the sum

c—e b
lim S f (x)dx—+ lim S f(x)dx,
e—>0 4 8>0,38

if these limits exist and are finite.

Integrals with infinite limits and those of discontinuous
(unlimited) functions are called improper integrals.

If the above-mentioned limits are finite, we say that
the improper integrals converge, if they are infinite, then
we say that the improper integrals diverge.

2°. An improper integral is often tested for convergence
by the method of comparison: if for x> a|f(x)|< ¢ (x)

+ o +®

and Scp(x) dx converges, then Sf(x) dx also converges.
a a
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An analogous convergence test can also be formulated for
the integral of a function with a discontinuity.

Compute the integrals:

1748. (l)i%; (z)i%"; (3)5‘3%; (4)de.

1749. (1)5 e-*dx; (2) §xe-*’dx. 3) S T

®

w&;ﬁ%ﬁn(&Sﬂw- @Sﬂfﬁm

0 dx arctan xdx
1750. (l) §ﬁ, (2) S (3) S(x2+l)z'

6
dx dx dx
1751. (1) §m3 (2) g—(x_l')a y (3) ES?/(,;iT)ﬁ' *

1752. Test the following integrals for convergence:

¢ dx . e dx . ¢ e=¥dx .
m§Vwﬂ, T;:.wq =
(4) S‘sm xdx’ (5)S xdx ; (6) Se"".dx.

1 0

1753. (1) S",,, 2 S(b _ (for b> a).

Hint. Conslder three cases: n=1—a <1, n=1 and
n=14a>1.
1754 Compute the area bounded by the versiera y =
l+ —— and the asymptote of this curve.
x
1755. Compute the area bounded by the curve y=xe %
and its asymptote (for x > 0).
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1756. Compute the area contained between the cissoid
3
y‘=2ax_x and its asymptote.

Hint. Putting x =2asin®{, pass over to parametric equa-
tions.
1757. Find the volume of the solid formed by revolving

the cissoid yzzza’i about its asymptote (see Prob-

lem 1756).

1758. Determine the area of the surface formed by re-
volving about the x-axis an infinite arc of the curve
y=e~* for positive x.

1759. Find the volume of the solid formed by revol-
ving about the x-axis an infinite branch of the curve

y=2(———— for x> 1.
1760 Show that

(1) S e~ *xmdx =ml;

80

2) S e=*'xm+idy =%

0

b 1f m 1s a positive integer *.
|
)

1761. Compute the following integrals:

W (% @ [reran @ [ 255
0 1 1

Hmt. In case (3) use L’Hospital’s rule for finding

lim —=

X—=> ®

[ -]
* The function Se-”xf-ldx=l‘(t) is termed the gamma function

0
of ¢t. For integral ¢ > 1, as it follows from Problem 1760 (1), I (¢{) =
= (¢—1)! Putting here ¢{=1, we get conventionally 0!=TI(l)=
-

= S e~%x%dx=1. Therefore, by convention, 0l=1.
0
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. ¢ 4 ¢ dx
1762. (l) ST-{-_:(;’ (2) § V‘m ’ (3) §x2+x4'

1763. Compute the area contained between the curve
y=e~% and the coordinate axes (for x > 0).

1764. Find the volume of the solid generated by revol-
ving about the y-axis an area of infinite length contained
between the lines xy=4, y=1, x=0.

1765. Determine the volume of the solid formed by re-

volving the curve y=xe 2 (for x> 0) about its asym-
ptote.

9.8. The Mean Value of a Function

The mean-value theorem. If on a closed interval [a, b!
a function f(x) is continuous, then for some value o

b
x (x=c) between the limits of the integral Sf(x)dx

b

{ Fxyde=—a)f (). (1)
The value of the function
b
{ Fonax
Yn =1 0) =55~ 2)

is called the mean value of the function [(x) on the
interval [a, b].

1766. Determine the mean value of the following func-
tions on the given intervals:

(1) y=sinx on [0, =];
(2) y=tanx on |0, %],

(3) y=Inx on [1, e];
(4) y=x* on [a, b];

(5) y="5 on [—1, 1]

Indicate the mean value of each function on its graph.
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9.9. Trapezoid Rule and Simpson’s Formula

1°. The trapezoid formula:
b n-1
Sf(x)dxzh[‘l—/c'——i_—Qy"—l—z_:yi]. (M

where h=(b—a)/n, and y,, Y., Y, Y, are equidistant
of the curve y=f(x) on the interval [a b). The limiting
error formula (I):

e <T=2 e (1)

2°. Simpson’s formula (for parabolic trapezoids) for
two subintervals:

b
{1 dx g Got-49:+ ), (1n

where h = (b—a)/2.
3°. Simpson’s formula for 2n equal subintervals:

b n n-1
(Fax~ %[yo+yu+4}:yw-l+22y,,-]. (1)
pt i=1 i=1

where h=(b—a)/2n. The limiting error of formulas (II)
and (III)

e(h) < (b— a)h

Iylv 'maxv (2)

i.e. formula (II) is accurate for parabolas of second and
third powers: y=a-+bx-+cx2+dx3.

2
1767. Using the trapezoid rule, compute 1n2=Sd—;
1

and estimate the error by formula (1).
1768. 5Using Simpson’s formula (III), compute the in-
2

tegrals Sxadx and S,x“dx, estimate the error by for-
1 0
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mula (2), and compare the results with exact values of
the integrals.

1769. Compute the following integrals by Simpson’s
formula (III):

I
2

2
() SVTFrdc@n=4; @ §V3'—c'o"§§x'dx(2n=6);
0

4
3) Slii:x‘i (2n=4), and estimate the error, putting in
0

formula (2) A%| 4"V |max 2 | A*Y [max-

1770. Using Simpson’s formula (II), find the volume
of a barrel 50 cm high, the diameter of the bottoms being
equal to 20 cm, and the diameter of the midsection to

30 cm.
1771. Deduce the formulas for the volume of a pyramid
and a sphere from Simpson’s formula (II).

2
1772. Compute ln2=Sd;x by means of Simpson's for-

1
mula (III) (at 2n=10) and estimate the error by for-
mula (2).
1773. Find the length of the arc of the ellipse x ==
=5cost, y=3sint, applying Simpson’s formula (II) to
the integral determining the first quarte:‘ of the entire arec.

1774. Compute approximately n=65V—4‘ii'F’ apply-
0
ing Simpson’s formula (II) to the integral.
1
1775. Compute %=Si—% by means of Simpson’s for-

b
mula (III) (at 2n=10), and estimale the error, putting
approximately in formula (2) A% |y'"V | = | A% nax:
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1776. Considering the area of the portion of a circle
4

bounded by the curve x?+ y* =32, show that { 1/ 32—x* dx=

0
=4n-+8; find ©n computing the integral by Simpson’s
formula (at 2n=4).
1777. Using Simpson’s formula (I1I), compute the length
of the arc of a half-wave of the sinusoid y=sinx divi-
ding the interval |0, x| into six equal subintervals.



CHAPTER 10

CURVATURE OF PLANE AND SPACE CURVES

10.1. Curvature of a Plane Curve.
The Centre and Radius of Curvature.
The Evolute of a Plane Curve

1°. Curvature

_de _ y
Es‘- (l—]—y'2)3/2 ‘ (1)

2°. The radius of curvature

(g (2449
R=—r =T @)

3°. The coordinates of the centre of curvature

X=x—-l+y2y =X+ x2+y2 Y;
Xy—yx 3)
1 2.4 g2 .
Y=y+-1F +y gt
yx—xy

The locus of the centres of curvature C (X, Y) is cal-
led the evolute. Equations (3) are the parametric equations

of the evolute.
4°. The radius of curvature of the curve r=f(¢), where
r and ¢ are polar coordinates

_ (e
R =1 )

Determine the radius of curvature and construct the
curve and the circle of curvature of the given curve at

its vertex:
1778. y=4x—x2. 17719, y=e~*.
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x=a (t—sint),

1780. x*+4y*=4. 1781. {
y=a(l—cost).
1782. y=xe™*.
Determine the coordinates of the centre of curvature
and construct the curve and its circle of curvature:
1783. xy=4 at the point x=2.
1784. y=Inx at the point of intersection with OX.

1785. y=—""1FL at the point of intersection with 0X.

Write the equation of the evolute of the given curve
and construct the curve and its evolute:

=2cost
1786. y=1—%. 1787. {x cos
y=sint.
1788. x*—y*=a* (or x=acosht and y=asinht).
1789. x=a(cost4tsint)
y=a(sint—tcost).
1790. Find the maximum curvature of the curve y=e*.
1791. Prove that the radius of curvature of the cate-

nary y=acosh% is %2 at any point and is equal to the

segment of the normal between the curve and the x-axis.
1792. Determine the radius of curvature at an arbitrary
point of the curve (1) r=a(l—cos@); (2) r?=a?cos2¢p;

2 @
3) r " cos 29

Determine the radius of curvature and construct the
given curve and the circle of curvature of the curve at
its vertex:

1

1793. y=11e- 1794, x?—y*=4.

1795. y=sinx.  1796. 2y = x% | 4x.

Determine the coordinates of the centre of curvature
and construct the curve and the circle of its curvature:

1797. y=e* at the point of its intersection with OY.

3

1798. y=% at the point (—1, —g)

1799. y2=x3 at the point (1, 1).

1800. y=cosx at the point x=%.
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Write the equation of the evolute of the given curve
and construct the curve and its evolute:

1801, =2 (x+1). 1802 x=#, y=5.
1803. xy=4. 1804. x=acos®t, y=asin3{.
2

1805. Show that at any point of the astroid x3 4+
2 2

+y3 =a? the radius of curvature is equal to 3 f/alxyl.

10.2. The Arc Length of a Space Curve
The differential of the arc ds=}dx?+dy*+dz* or
ds=V w4+t
ty -
The length of the arc s=S]/)52+g}2+2"2 dt.
ty

Find the length of the arc of the given curve:
1806. x=t, y=12, z=%1* from =0 to t=3.
1807. x=3cost, y=3sint, z=4¢ from t=0 to an
arbitrary ¢.
x? x3
1808. y=%, z=% from x=0 to x=3.

Find the length of the arc of the given curve:

1809. x =¢t—sint, y=1—cost, z=4sin% from =0 to
t=m.

1810. x=c¢t, y=e-!, z=¢tV'2 from =0 to {=1.

1811. y=%lnx, z='§ from x=1 to x=2.

10.3. The Derivative of a Vector Function
of a Scalar Argument and Its Mechanical and
Geometrical Interpretations.

The Natural Trihedron of a Curve

The radius vector r=xi+yj+zk of a point of the
curve x=x (), y=y(), 2=z (f) is a vector function of
the scalar ¢. The derivative r=xi+yj-+ zk is a tangen-



Sec. 10.3. Derivative of a Vector Function of a Scalar 219

tlal vector and has the modulus |r|=V x* 4y 22=5=

dt Therefore, if ¢ is time, and the curve is the path

of motion, then r=o is the vector of velocity, and r=uw,
the vector of acceleration.

Through the point M (x, y, 2) of the curve (Fig. 36) draw
three planes:

(1) perpendicular to r, which is called the normal plane;

(2) containing r and r, which is called the osculating
plane;

(3) perpendicular to the normal and osculating planes.

The three planes form a natural trihedron of a curve.
They intersect along three straight lines: the fangent,
the binormal and the principal normal determined by the
vectors:

(1) r which is termed the tangential vector,

(2) B=r xr which is called the binormal vector,

(3) N=Bxr which is termed the principal normal
vector.

Let us denote the unit vectors of these directions by

T, B, v; they are related in the following way: d' Zz v
and B=txw.




220 Ch. 10. Curvature of Plane and Space Curves

Let M, (X, Y, Z) be a point on the tangent (Fig. 36).
Then MM, || #, and from the condition of parallelism of
vectors we get the equations of the tangent:

X.—x=Y'—y=ZT-z. (I)
x y 2z

Let M, (X,Y, Z) be a point in the normal plane. Then

MM2_[_r and from the condition of perpendicularity of
vectors we get the equation of the normal plane:

X(X—x)+y (Y —y)+2(Z—2)=0. (1)

The equations of the binormal and the principal nor-
mal are obtained by replacing x, y, z in equations (I)
by B,, B,, B,or N, N, N, respectively. The equation of
the osculating plane is obtained by replacing x, y, z in
equation (II) by B,, B,, B,.

1812. The radius vector of a moving point at the mo-
ment ¢ is given by the equation r=4fi—3{j. Determine
the path, velocity, and acceleration of motion.

1813. The equation of motion is r=3ti4 (4t—12)j.
Determine the path and velocity. Construct the path and
the velocity vectors for the moments ¢=0, 1, 2, and
3 sec.

1814. In Problem 1813 determine the acceleration w
dv R Vs
7 and normal w,=}w—uw?
components at any moment ¢ and at {=0.

1815. The equation of motion is r=acost-i+bsint-j.
Determine the path, velocity and acceleration and const-
ruct the vectors of velocity and acceleration at the points

J'l: n
t: 0, T, ?

In Problem 1816 through 1818 write the equations of
the tangent line and the normal plane of the curve:

1816. x=/{, y=1¢?, z=1¢3 for any point and for t=1.

1817. y=x?, 22=x for any point (x>0) and for x =4.

1818. { =10 (0 the point (1, 3, 4).
yr422=25

and its tangential w;=
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Hint. Take the differentials of both the left-hand
and right-hand members of each equation, and then find
the ratios dx:dy:dz.

1819. Find the vectors r, B, and N of the curve x =
= l—sint, y=cost, z=t at the point # =0. Find also T,
B, and v at the same point.

1820. Write the equations of the principal normal, the
binormal and the osculating plane of the curve x=1, y=1¢2,
z=1% at the point f=1.

1821. Write the equations of the principal normal and
binormal to the curve x=et, y=e-t, z=¢ at the point
t=0.

1822. Show that the equations x=/{cost, y=1t¢sint, z=t¢
determine a conical helix, and write the equations of the
principal normal, the binormal, and the tangent to it at
the origin.

1823. Write the equations of the tangent to the helix

x=acost, y=asint, z=>b¢t for any point and at t=%.

Show that the helix intersects the elements of the cylinder
b

2 2 — 2 .

x?4y?=aqa? at one and the same angle y =arccos Ve -

1824. Find the angles formed by the tangential vector
of the curve x?=2az and y*=2bz with the coordinate axes
at the point 2=V ab.

1825. The plane y=0 containing the curve 2z =x?, y=0
is wound onto the cylinder x%+y*=2y. Write the para-
metric equations of the helix formed by the given curve
and determine the binormal vector of the curve at any

point and at the point ¢=Z-, where ¢ is the angle through
which the plane is turned.

1826. The radius vector of a moving point at the moment
t is given by the equation r=a(t—sin¢)i+a(l—cos?) /.
Determine and construct the velocity and acceleration

vectors at t=—g and {=m.
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In Problems 1827 through 1829 write the equations of
the tangent to the curve:

1827, y=x, z==2x* at the point x=2.

xX4yrt2t=14

1828. { X 2Y—z = at the point (1, 2, 3) (see Prob
lem 1818).

1829, x=2¢, y=Int, z=1¢* at the point ¢ =1.

1830. r=eti+e-tj4t)V 2k. Find the angles formed by
the binormal vector & with the coordinate axes at the
point £=0.

1831. Write the equations of the principal normal and
binormal to the curve y=x® z=y? at the point x=1.

1832. Write the equations of the principal normal and

binormal of the curve x=¢—sint, y=1—cos¢, z=4sin-tg—
at the point ¢ =u.

10.4. Curvature and Torsion of a Space Curve

The curvature % is the limit of the ratio of the angle
¢ (through which the fangent is turned) to the length of
the arc As as As—0. The forsion ~ is the limit of the
ratio of the angle 0 (through which the binormal is turned)
to Asas As— 0. Since g~ |At|and 0 =~ 4= | AB|, % and —lb-
turn out to be equal to the moduli of the vectors:

di 1 dp 1
E—ﬁ"\?, 'E'=——?'V (l)

If a curve is specified by the equation r=r(#), then
1 rrr

P Irxrlr )
1833. Differentiate the equality @ =uvt with respect to ¢,

and with the aid of the first formula of (1) resolve the
acceleration w into the tangential and normal components:

v2
'w=vt+7e—v.
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1834. A point is moving along the parabola x=t¢,
y=1t—1t* where ¢ is the time of motion. Determine the

curvature % of the path and the tangential and normal

accelerations at the moment ¢ and at ¢=0.
1835. A point is moving along the ellipse x=4cos¢,
y=23sint, where ¢ is the time of motion. Determine the

curvaturekl— of the path, and also the tangential and

normal accelerations at t=%.
1836. For the motion specified by the equation r=1¢i 4

—|—t2j+%t3k determine the curvature % of the path and

the tangential and normal accelerations at any moment ¢
and at t=1.

Determine the curvature % and the torsion %of the

curve:

1837. x=t¢, y=t*, z=1¢? at any point and at {=0.

1838. x=¢t, y=e“,az=tl/2 at any point and at ¢=0.

2

1839. y=%, z=% at any point and at x=1.

1840. Show that the torsion of the right-handed helix
(x=acost, y=asint, z=>t) is positive; that of the left-
handed helix (x=acost, y=-—asint, z=>t) is negative.

Determine the curvature % and the torsion % of the curve:
1841. x=2¢{, y=Int, z=1¢* at any point and at t=1.

2
1842. x =%, z=x* at any point and at y=1.

1843. x=e'sint, y=e‘cost, z=¢' at the point ¢=0.



CHAPTER 11

PARTIAL DERIVATIVES, TOTAL DIFFERENTIALS,
AND THEIR APPLICATIONS

11.1. Functions of Two Variables and Their
Geometrical Representation

1°. Definition. A variable quantity z is called a single-
valued function of two variable quantities x and y if every
pair of numbers that may (by the conditions of the pro-
blem) be the values of the variables x and y is associated
with one definite value of z. The functional dependence
of z on x and y (which are called arguments) is written
in the form

z=F (x, y). (1)

2°. Geometrical interpretation. Geometrically equation
(1) defines some surface. A pair of values of x and y defines
a point P(x, y) in the plane XOY, and. z=F (x, y) the
z-coordinate of the corresponding point M (x, y, z) on the
surface. Therefore, we say that z is a function of the
point P (x, ¥), and we write z=F (P).

3°. The limit of the function F(P): lim F (P)=A if the

P—>P,
difference F(P)— A is an infinitesimal as p=P,P—0,
where P approaches P, in an arbitrary fashion (for instance,
along any line).
4°, Continuity of a function. A function F(x, y) is cal-
led continuous at point P, 1f llm F (P)=F (P,). In other

words, a function F (x, y) is contmuous at some point
(x, y) if
lim F (x4 Ax, y+Ay)=F (x, y).

Ax—>0
Ay—>0
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1844, Indicate the ranges of x and y for which the
following functions have real values:

() z=x2+y% (2) az=0a'—x*—y% (3) 2=ﬁ;

4) z=Va'—x"—y% (6) 2=V xy; (6) ’=V‘l__+__ya‘

— XY

(7) z2= m'
and depict the functions geometrically, cutting the surface
by the planes x=0, y=0, 2=0, and z=h.

1845. Given the perimeter 2p of a triangle. Express the
area S of the triangle as a function of its two sides x
and y. Define and construct the domain of possible values
of x and y.

1846. F (x, y) = “’y evaluate F (3, 1), F (1, 3), F(1,2),
F@2, 1), F(a, a), F(a —a).

1847. F (x, y) =V x*+ y*—2xy; prove that F (tx, ty) =
= {*F (x, yg

1848. z=x?—xy=y?; determine A,z, A2, and Az.

Compute A2, Az, Az if x varies from'2 to 2.1 and y
varies from 3 to 1'9.

18498, Show that the equation x*—y?—2z?=0 defines an
infinite number of single-valued functions z of x and y,
two of which are continuous. Indicate the domain of
definition of all these functions and represent geometrically
the positive continuous function. Give an example of
a single-valued but discontinuous function z=F(x, y),
defined by the same equation x?— y?=22.

1850. Construct the level lines (z=0, 1, 2, etc.) for the
following functions:

(1) 2= |/ l———'?———y’; 2) z2=x*—y;

@) z=x"—y* (4) z=xy.

1851. Show that the expression u=x-—i-; tends to any

limit as x— 0 and y— 0. Find the routes along which
(x, y) approaches (0, 0), for which limu=3, limu=2,
limy=1, imu=0, limu=
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Hint. Consider the variation of x and y along straight
lines y=kx.
1852, Show that

(1) lim 2Z2EHEE 2 (9) lim SRSy

x—0 Xy 4’ x>0 ’
y—>0 y—>0
. sin(x
(3) lim 228 o
x—>0 x
y—0

irrespective to the way (x, y) approaches (0, 0).
Hint. Put xy=a.
1853. Represent geometrically the function

1 for xy >0
2=F (x, y)={ 0 for xy=20
—1 for xy <0

and indicate the lines of its discontinuity.

1854. Indicate the domains of definition of the following
functions:

) e=xty @ z=5t: @) 2= Y 1-5 L,
) L1525 (6) z=x+VE—g"
® Vz=Vx+Vy

-and depict geometrically these functions.
1855. F (x, y)=Ly; show that

X—

F (a, b)+F (b, a)=1.

1856. Show that the equation z2=m‘:_—y2 defines an

infinite number of single-valued functions z of x and y,
of which two are continuous. Indicate the domain of
definition of all these functions and give the geometrical
representation of the function which is positive within
the domain x?+y*<C1 and negative outside it.
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1857. Depict geometrically the single-valued function
2=F (x, y) defined by the equation x*+ y*+ 22 =a?, posi-

tive within the domain x2+y2<aTz and negative outside
it. Indicate the line of its discontinuity.

11.2. Partial Derivatives of the First Order

The derivative of a function z=F (x, y) with respect
to the argument x, found proceeding from the assumption
that y remains constant, is called a partial derivative of 2z

with respect to x and is denoted g)z? or Fy(x, y). Analo-
gously, a partial derivative of z with respect to y:
0z —F
W_ _l/(x' y)
Find the partial derivatives of the following functions:
1858. z=x3+43x*%y—y®.  1859. z=In (x* 4 y?).

1860. z =2, 1861. z = arctan <.
X X

_xy _ | _ 1
1862. 2 =" 1863. u=In (_—?/7 —“f/:“)'
1864. c =V a®+b*—2abcosc.
1865. u=%+§—§. 1866. u = xe~4*.
1867. u=iL+_§£—. 1868. o — arcsin ({ V7).

1869. z=1In (V' x+Vy); prove that

0z 0z 1
xa—x+ya—y=7-

_ i Y, 0z 0z 2
1870. z_l/Ysm}-, prove that X tYs=7

X

1871. u=et* ; prove that 2xg—';—|-t%';—=0.

d 1 o
1872. u=x¥, prove that -3'79%+m0_;=2“'

1873. In Problem 1898 we shall prove Euler’s theorem:
8‘
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If z=F(x, y) is a homogeneous function of degree n,

Verify this theorem for the following functions:
(1) z=x*+xy*—2¢% (2) 2=V +xy+ 45

3) 2=,,T£‘?; 4) z=e§.

Find the partial derivatives of the following functions:
1874. 2 =:cos (ax—by). 1875. z=arcsin¥

7.
1876. z=3yj—2x. 1877. u=Insin(x—2¢).
1878. u =sin? (x4 y)—sin*x—sin?y.

1879. u=YV x*+ y*-2*; prove that

(2] (2] +(2)

X
1880. z=e¢V Iny; prove that xS—i{-y%:F’y..

1881. T=n ]/fE; prove that 13—f+g%%=0.

1882. z=e? sin(-’—:-—%); prove that

0z  Oz\* 1 .o Y
(a-l--a;) =5 ersin’ 5.
1883. Verify Euler’s theorem on homogeneous functions
(see Problem 1873) for the following functions:
(1) 2=-2; (@ 2=

— Y
— (3) z=arctan =

l .
Bty
11.3. Total Differential of the First Order

If a function z=F (x, y) has continuous partial deri-
vatives at point (x, y), then its total increment may be
represented in the form

a a
Az=TAx+5 Ayte-p, ()
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where e — 0 as p=)[Ax[P+|Ay[F— 0. Then the expres-
sion z—;Ax—}— EZ-Ay is the principal part of the total increment

Az; it is called the total differential of the function and
is denoted dz:

17} 7}
dz =£Ax —l—éAy. 2)

Putting in formula (2) z equal to (1) x; (2) y, we find:
dx=Ax, dy=Ay. Therefore

0z 0z '
dz=§dx+a—ydy. 3)

From (1) it follows that
Az =~ dz, (4)
i. e. for sufficiently small Ax and Ay the total increment
of a function approximately equals its total differential
(see Sec. 5.7).

A function F (x, y) is called differentiable at (x, y) if it
has a total differential at this point.

1884. Find the total differentials of the following func-
tions:

(1) e=xy; @) 2=72; @) u=et: (4) 2=VEFP.

1885. Evaluate the total differentials of the following
functions:

() z=—i— for x=2, y=1, dx=0.1, dy=0.2;
(2) u=e¥ for x=1, y=2, dx=—0.1, dy=0.1.
1886. Compute dz and Az for the function z=xy at

x=5, y=4, Ax=0.1, Ay=—0.2.
1887. Calculate approximately the change of the func-

tion (p=arctan%, when x varies from 2 to 2.1 and y from

3 to 2.5.
1888. As a result of deformation the radius R of a
cylinder increased from 2 dm to 2.05 dm, and its height H
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decreased from 10dm to 9.8 dm. Find approximately the
change in its volume V using the formula AV x~dV.

1889. When measured, the legs of a right triangle tur-
ned out to be equal to 7.5cm and 18 cm (an accuracy
of 0.1 cm). Determine the absolute error in computing
the hypotenuse.

1890. Find the total differentials of the following func-
tions:

H z=%—%; Q) s=xlInt; 3) u=Vr+y*+2-

1891. Find the values of dz and Az for the function
z=In(x2+y* if x varies from 2 to 2.1 and y from 1
to 0.9.

1892. Compute approximately the increment of the fun-

ction z=arcsin% when x varies from 5 to 4.5 and y

from 3 to 3.3.

1893. As a result of deformation the radius of a cone R
increases from 30 cm to 30.1 cm and its height H decreases
from 60cm to 59.5cm. Find approximately the change
in the volume of the cone using the formula AV x~dV.

11.4. The Derivative of a Composite Function

1°. If z=F (x, y), x=[(¢), y=¢(¢), then z is called a
composite function with respect to f. In this case
dz 0z dx 0z dy
=@ T da (1
if the functions F, f, and ¢ are differentiable.
2. If 2=F(x, y), where x=f(u, v), y=0¢ (4, v), and
if the functions F, f, and ¢ are differentiable, then
0z Jz Ox 0z dy . 02 __ 0z 0x 0z 0dy

Ou Ox Ou ' Oy ou’ =ox av+0y_6?' (2)

1894. Using formula (1), ﬁnd 2 from the equations:

() e=x*+xy+yt, x=1% y= t.
(2) 2=V x*+y?, x=sint, y=cost.
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Check the result by preliminary substitution of the values
of x and y into the expression for the function z.

__ Y —pt — ] — p2t- _di
1895. z==, x=¢é, y 1 —e?; find T
1896. z=u?, where u and v are functions of x. Find %.

1897. z=uxe¥, where y is a function of x. Find j—;.
1898. The function z=F (x, y) is called homogeneous if
F (xt, yt)y=t"-F (x, y). Differentiating both members of
this equality with respect to ¢ and putting in the result
t=1, prove Euler’s theorem on homogeneous functions:

0z 0z
)Ca-x—l-yé?/—nz.

X2 . 0z
1899. 2=, where x=u—2v, y=v+42u. Find -
0z
and 30"
1900. 2=F (x, y). Express g%andg—; in terms of %
02 ..
and 3 if:
(1) u=mx—+ny, v=px+qy;
(2) u=uxy, U=—z-.
. ou
1901. u=F(x, y); x=rcosqg, y=rsing. Express v

Qu . ou ou
and F in terms of ¥ and 5 and show that

Ou \2 1 du\2 Oou \2 Ou \2
(5 +(7%) = (&) +(5)"
1902. z=y-+ F(u), where u=x>—y® Prove that
ygé—i—xg—;:x for any differentiable function F (u).

1903. Find % from the equations:
(1) 2= Ax*+2Bxy+Cy?, x=sint, y=cost;
(2) z=arctan £, x=e" 41, y=er'—1.
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1904. z=xy+ xF (u), where u=—i—. Prove that

0z 0z
xa-i—ya—y—z+xy.

1905. 2=yo (u), where u=x*—y? Prove that
1oz, 10z 2
TaTyu=pF

0z 0z . 0z
1906. z=F (x, y). Express 5 and 3. in terms o[aand

9y
0z .
% if:
() u=x+2, v=x—y;
(2) u=V xy, v=x-4y.

11.5. Derivatives of Implicit Functions
1°. The equation F (x, y)=0, having a solution (x,, y,),
defines the variable y in the neighbourhood of x, as a
continuous function of x, provided the derivative ‘;i;eo

and is continuous in some neighbourhood of the point

(X0, Yo)- o ) )
If, in addition, in the neighbourhood of the point

(X0, Y,) there also exists a continuous derivative oF then

ox '
an implicit function has a derivative Z—i defined by the
formula
<_7f_
dy  0x
%= " oF (h
oy

2°. Under analogous conditions the equation F(x, y, 2) =0
defines z as an implicit function of x and y which has
the partial derivatives

oF oF
0z_  ox, 0z_ Oy
&= T o )

0z 0z
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Find Z_i from the equations:
1907. x2+y“—4x—|-6y—0

1908. (1) x’ —}—ys —a" (2) xe¥w —ye** =0.

1909. Ax? -+ 2Bxy-+ Cy? +2Dx—]—2Ey—|—F 0.

Find the slope of the tangent line to the given curve:

1910. x2 4 y* =10y at the point of intersection with the
straight line x=3.

1911. %3+ y3—2axy=0 at the point x=y=a.

1912. Find the points at which the tangent line to the
curve x2+y2+2x 2y =2 is parallel to (1) 0X; (2) OY.

Fmd and a; from the equations:

1913. x2+y +22—6x=0. 1914, 22 =xy.

1915. cos (ax 4 by—cz) =k (ax 4 by —-cz).

. 0z 0z _

1916. xyz = a®; prove that xa—}—y@——%.

1917. Prove that the differential equation xg—;+yg—;=z
is satisfied by the implicit function z defined by the

equation (of conical surfaces) %=q> (%) .

Find Z—i from the equations:
1918. x*—4y*=4. 1919. xy+Iny4Inx=0.
Yy

1920. y+x=e*. 1921. 2cos (x—2y) =2y —x.

1922, Find the slope of the tangent line to the curve
y*—xy=4 at the points of intersection with the straight
line x=3.

1923, x2+4y*+4 22 —22x=a%. Find g; and gf

1924. 2sin(x+2y—32)=x+42y—32. Show that
atoy=

1925. Show that the differential equation mgi-l-n ‘?;_l

is satisfied by the implicit function z defined by the equa-
tion (of cylindrical surfaces) x—mz=¢ (y—nz).
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11.6. Higher-Order Partial Derivatives
and Total Differentials
Let there be given a function 2=F (x, y) having par-
tial derivatives gF and 05. The partial derivatives of

these derivatives are called partial derivatives of the
second order (or second partial derivatives). They are
designated as follows:

oF oOF
0(0,1:) ®F "(é?)_ozﬁ,

—ox T~ o’ dy  0xoy’

oF oF
o(5%)_or . (%) _or

0x  Oyox' oy oy’

Partial derivatives of the third and still higher orders
are defined and designated in a similar way.
Mixed derivatives, differing only in the order of diffe-
rentiation, are equal if they are continuous:
#F _®F . ®F _ ®F _ &FF
Oxdy Oyox' 0x2dy 0xOyodx Odyox®
We get the following table of derivatives of higher orders:
0*F  0*F | O%F
a_xgy a'x_a!—/t b_giy

. 03F 0°F 03F | O%F
of the third order 5; SxTay oyt o and so forth.

Total differentials of higher orders are determmed in
: 2.
the fouowingway:dzz=37§dx2+2axaydxdy+ 2 dy*. This

and so on.

of the second order

equality can be rewritten symbolically as d”zz(a;dx—l—
+(—%dy>2z. Analogously, d%:(%dx—}—%dy)azand so on,
1926. z2=x3+4x2y-y° Find the partial derivatives of

the third order.

1927. Check that aff _for the following functions:

'7
(1) z=sin (ax—by); (2) z=—y7_,; 3) 2=In(x—2y).
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1928. u = x4 3x*y*—2y*. Find the 'partial derivatives
of the fourth order.

1929. uz%. Find the partial derivatives of the third

order. .
1 1Y, d% 0% _ 1
1930. S—’—‘—lﬂ(——‘—>, check that m—*-a?—x—g

x t
1931. z-=arctan-';—. Find the second-order derivatives.

1932. z=sin (%——Z—); prove that
d d\2 1 1)\?
(5+5):=—(7—3)=
1933. u =arctan (2x—/); prove that %—}-2
1934. s=}/ax+ bt; prove that
a 0\? 2s
(xb}’*"tﬁ) s=—7%-
-y
1935. Show that the function u=xe * satisfies the
differential equation
Bu Ou , Ou 0%
a2 (Gt =
1936. Prove that if z=F (x, y) is a homogeneous func-
tion of degree n, then

2 0%2

1] 92
o T 2%y b%:?+y’5_‘%=n (n—1)2

O

axor =0

X

or symbolically

(x%-{-ya%)az:n(n—l)z.

Hint. Differentiate the equality x(?—)z‘—l—yg—;:nz(see Pro-

blem 1898) (1) with respect to x; (2) with respect to y
and add termwise the results multiplied by x and by y
respectively.

1937. Check the equality (x%+y%)az=n(n—l)z for
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the homogeneous functions: (1) z=x*+xy +y*; (2) z-;y,;

@) z==—: (4) z=ln(%-—l).

xﬂ_y‘l
1938. Find diw if (1) u=%; (@) u=xIn&.
1939. z=cos (mx-ny). Prove that
d32=—z(mdx+ndy).

1940. z=In(ax-+by). Prove that: (1) dz==2dz3;
2) drz=(—1)""*(n—1)!dz".

1941. Prove that if 2=F (u, v) v:/aheare u=mx-+ny and

02 d 02 0
v=px+gqy, then gﬁ=(ma—u+p%> z, ,T;y=(m&+
] F) 0\ _ &z F) a\?

+P%)("a+qa—g)2, W:=<n5;2+40—0) z.

1942. Express 5%—4%—}-33—} as a function of the

new variables u=3x-+4y and v=x-+}y (see Problem 1941).
2 2 2
1943. Expresg. %——4%—]—4% as a function of the
new variables u=2x-+4y and v=y (see Problem 1941).
1944. Prove that if z= F (u, v), where u and v are func-

. 02z , 0 . 0\2 » 02
tions of x and y, then W=(ux0—u+vx%> 2+l g, +
. 0z . 0%z 0%z
+ U g - Determine analogously %0y and W

1945. Express x2%z—2——y23i;3 as a function of the new
variables u=xy and v=% (see Problem 1944).

022 1 o022 1 0z .
1946. Express 372+ﬁa?+75 as a function of the

new variables x =rcos ¢ and y =rsin ¢ (see Problem 1944).

1947. z= % Find the partial derivatives of the se-
cond order.

1948. u=?/x_t_. Find the partial derivatives of the

third order.
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9%z 2

_ Pz g T P
1949. z=-—2. Prove that 3 —|-20xoy+ ==y

x—y°
1950. s=In(ax—>bt); prove that (x£c+t-§t-)as=2.

1951. z=2cos’(x—-—t5); prove that 2-3:—: %:0.
X

—e7 ?: oz o
1952, z=e¢ ¥ ; prove that yax—ay—- .
1953. u=ylInx. Find d* and d%u.
1954. Express %—a“% as a function of the new
variables u=ax-+y and v=ax—y (see Problem 1941).

1955. Express xéz—z--i— Pz as a function of the new
- EXp o TYoxay

variables u=y and v=% (see Problem 1944).

1956, Show that the function u=xf%—|—<p(%> satis-
fies the differential equation

0%u 2 O%u ou Ou__
XY 5x oy TY 5y?+x§+2ya—y—-0

for any twice differentiable functions f and ¢.

11.7. Integration of Total Differentials

1° For an expression Pdx- Qdy, where P and Q are
differentiable functions of x and y, to be a total differen-
tial du, it is necessary and sufficient that the condition

oP 0Q .
3 = ox is fulfilled.
ou

To find u from the conditions 5;=P and %‘:Q we

have two expressions: u = S Pdx—+ o, (y), u=S Q dy+ o, (x).
Writing out all known terms from the first expression
and the terms containing y and missing the first one from
the second, we get the function u.

2°, For an expression Pdx-+ Qdy-+ Rdz, where P, Q,
and R are differentiable functions of x, y, and 2z, to be
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a total differential du, it is necessary and sufficient that
the following conditions are fulfilled:

oP_0Q ., OP_OR.  9Q_0R
oy =% o ox’ 0z  dy°

For finding 4 we have:
u=Sde+<p.(y, 2), u=SQdy+%(x. 2),
= S Rdz+ s (x, y).

Taking all known terms from the first expression and
the missing terms with y and z from the second and
third expressions, we get the function u.

Finding a function from its total differential is called
the integration of the total differential.

Check to make sure that the following expression is a
total differential du and find u:

1957. (2x+y)dx+ (x—2y —3) dy.

1958. x sin 2y dx 4 x* cos 2y dy.

1959. (x4 Iny)dx+ (% + sin y)dy.

xdy—ydx
1960. TE
1961. (yz—2x)dx+ (xz+y) dy+ (xy—2z)dz.

! )dz.

1962. (—-—)d +& dy__

2

1
P ey

Check to make sure that the following expression is a
total differential du and find u:

1963. (y*—1)dx—+ (2xy + 3y) dy.
1864. (sin 2y—y tan x) dx + (2x cos 2y + In cos x -+ 2y) dy.

1965. (y sin® y)dx+(x+ sin 2y +1>dy
t2+1 V*
1967. (Iny—-cos 2z) dx+ (? +z) dy + (y + 2x sin 22) dz.

1968, L2 W2 gy

1966. ¢
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11.8. Singular Points of a Plane Curve

A point of a curve F(x, y)=0 is called a singular one
if at this point %=0 and g—5=0.

The slope =y’ of the tangent at such a point is found
from the equation A +2Bk-Ck?=0, where A, B, and C
0*F  0%F d 0%*F
a7 away’ NG gy
respectively, at this singular point. Three cases are pos-
sible here:

(1) it B2— AC > 0 (two tangents), then the point is a
node.

(2) if B*—AC <0 (no tangent), then the point is an
isolated point.

(3) if B*—AC =0, then the point is either an isolated
point, or a cuspidal point (a cusp), or a point of oscula-
tion; at cusps and points of osculation there exists one
common tangent to two branches of the curve.

To arrive at a final decision in the third, doubtful, case
one has to find out whether there are points of the curve
in an arbitrarily small neighbourhood of the point under
investigation.

are the values of the derivatives

Determine the domains, points of intersection with the
coordinate axes, and singular points of the given curves;
construct the curves:

1969. x84+ x2—y?=0. 1970. y*=(x+2)°.

1971, x®—x2—y?=0. 1972, y> 4 x*—x2=0.

1973. (y—x)?=x°. 1974. y2=x (x—2)2.

Determine the domains, singular points, and asympto-
tes of the given curves; construct the curves:

1975. (x+2a)®+xy*=0. 1976. x*—y*—3y*>=0.

1977, x*+4y*—3axy=0. 1978. y?(x*—a?)=x".

Determine the domains, points of intersection with the
coordinate axes, and singular points of the given curves;
construct the curves:

1979. y?4x3—2x2=0. 1980. a*y?=x? (2ax —x?).

1981. y2=x(x-+2)2. 1982. xy? = (x +a)3.

1983. 4y = x® | 5x4, 1984. y2—x¢4x2=0.
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1985. Find the points of intersection with the coordi-
nate axes, ym.., singular point, and asymptote of the curve
4x*—y?+ x*—y*=0; construct the curve.

Determine the domains, singular points, and asymptotes
of the following curves:

1986. (1) y*(2a—x) =x (x—a)* (strophoid);

(2) a*(x*+y*) =xy.

1987. (1) x (x*+y*) =a (x*—y*);

(2) a(x*+y?) =x (x*—y?).

11.9. The Envelope of a Family of Plane Curves

A curve is called the envelope of a one-parameter family
of curves F(x, y, @) =0 if (1) it is tangent to each curve
of the family; (2) different lines of the given family touch
it at different points.

The envelope of a family of curves F (x, y, a)=0 (if it
exists) is found by eliminating the parameter a from the
equations

F(x, y, a)=0 and Fg(x, y, o)=0.

It may, however, happen that the curve thus obtained
is not an envelope but a locus of singular points of the
curves belonging to the family [see the answer to Prob-
lem 1990, (2)].

Find the envelope of the family of curves and construct
the envelope and the curves belonging to the family:

1988. (1) y=ax+a? (2) y=ax"-|—%.

1989. (1) (x—a)*+y*=R? (2) 4ay=(x—a)t.

1990. (1) y—1=(x—a)?; (2) (y—1)*=(x—a)s;

(3) (y—=1)=(x—a)* (4) 9(y—a)*=(x—a).

1991. A line segment of a constant length a slides
with its end-points along the coordinate axes. Find the
envelope of the family of such segments.

1992. Find the envelope of the family of circles passing
through the origin with centre on the parabola y*=4x.

1993. Find the envelope of the family of circles whose
diameters are radius vectors of the points belonging to
the hyperbola xy=a?.
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1994. A projectile is launched from the origin with
initial velocity b at an angle a to the axis OX. Find the
envelope of a family of trajectories for different e.

1995. Find the envelope of the family of (1) straight
lines xcosa +ysina—p=0 with p constant; (2) straight

lines y=ax+i; (3) cubic parabolas y—1=(x—a)3.
a

1996. Find the envelope of the family of circles with
centres on the x-axis, whose radii are the corresponding
ordinates of the parabola y?=4x.

1997. Find the envelope of the family of ellipses

%+%:-=l if the sum of the semi-axes has a constant

length 1.

1998. Find theenvelope of the family of parabolas having
an axis of symmetry parallel to the y-axis and passing
through the points (—a, 0), (3a, 0), and (0, 3a?) for
different a.

11.10. The Tangent Plane and the Normal to a Surface

Let a surface be given by an equation F(x, y, 2) =0
and let us take a point M (x, y, 2) on it.
The equations of the normal to the surface at this point:
X—x Y—y Z-:z
oF ~ 9F ~— oF ° 0
ox Oy 0z

The equation of the tangent plane to the surface:
oF oF oF
—5;(X—x)+W(Y—!I)+W(Z—Z)=O- (2)

In equations (1) and (2) X, Y, Z are the current co-
ordinates of the normal and of the tangent plane respec-

tively.
oF oF oF
Vector N{ v -@‘ ' Bz

} iscalled the normal vector
of the surface.
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If there is a point on the surface at which %:0,

%=0, and %;=0, then it is called a singular point.
At such a point there is neither a tangent plane nor a

normal to the surface.

Write the equations of the tangent planes to the surfaces:
1999. z2=x%4 24 at the point (1, 1, 3).

2000. xy=2? at the point (x,, Y, 2,)-

2001. xyz=a® at the point (x,, Yo, 2,).

2002. &+ L2 at i
- wtpr—==1at the points (x, y,, 2z,) and

(a, b, o).

2003. Determine the plane tangent to the surface
x*+4y*+22=36 and parallel to the plane x4 y—z=0.

2004. Write the equations of the normal at the point
(3, 4, 5) to the conical surface x?-y?=22 At what point
of the cone is the normal indeterminate?

2005. Find the angles between the coordinate axes and
the normal to the surface x?+ y*—zx—yz =0 at the point
0, 2, 2).

2006. Write the equations of the normal to the surface
x?z+y?z2=4 at the point (—2, 0, 1). Construct the nor-
mal and the surface.

2007. Show that the tangent planes to the surface
xyz=a® form pyramids of a constant volume with the
coordinate planes.

2008. Show that the sum of the squares of the inter-

.cepts cut off on the coordinate axes by a plane tangent
2 2 2 2

to the surface x 3 4+y3 423 =a? is equal to a constant
quantity a?.

2009. Find the distance from the origin to the plane
tangent to the helicoid y=xtan% at the point (a, a,%) .

na , ma
’ y ia.

Construct the surface using the sections: z=0; T 5

2010. Write the equation of the tangent plane to the
surface az=x?-+y?* at the points of its intersection with
the straight line x=y=z.
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2011. Show that the tangent plane to the surface

:_:+z_:+:_:=l at the point (x,, Yy, 2,) on it is deter-

mined by the equation
R !

2012. Write the equations of the normal to the surface
x*4+y*—(z—5)*=0 at the point (4, 3, 0). Construct the
surface and the normal in the first octant.

2013. Find the angles formed by the normal to the
surface 2z =x?*—y*® with the coordinate axes at the point
2, 2, 0).

2014. Find the distance from the origin to the plane
tangent to the conoid (2a*—2?) x*—a%y?=0 at the point
(a, a, a).

2015. Show that the sum of the intercepts cut off on

the coordinate axes by a plane tangent to the surface
1 1 1 1

x® +4y? 42 =a? is equal to a constant quantity a.
2016. At what point the tangent plane to the surface

2=4—x*—y?is parallel to the (1) plane XOY; (2) plane

2x + 2y 4 z=0? Write the equations of these tangent planes.

11.11. Scalar Field. Level Lines and Level
Surfaces. A Derivative along a Given Direction.
Gradient.

The equation u=F (x, y) defines u at each point (x, y)
of some domain which is called the scalar field of u.
Along each of the lines F(x, y)=u,, F(x, y)=u,, ...,
where u,, u,, ... are constants, the scalar u4 remains
constant and changes only when the point (x, y) passes
from one line to another. These lines are termed isolines
(isotherms, isobars, etc.), or level lines.

The equation u=F (x, y, 2) defines the scalar field « in
some part of three-dimensional space. [sosurfaces, or level
surfaces are given by the equations:

F(x, y, 2)=u,, F(x, y, 2)=u,, ....

Let a point (x, y, 2) displace along the straight line
x=x,+lcosa, y=y,+1lcosP, z=z,+/cosy with the
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velocity Z—ﬁ= 1. Then the scalar u= F (x, y, z) will change
at the rate

du du oF oF oF
V=== cosa—l—a—y cosB+-5z—cosv=N-lo,

where N{%, %, %} Is .he normal vector of a level
surface and I, {cosa, cosf, cosy} is .he unit vector of
direction {.

The derivative

du  OF oF oF
71':5‘:05“"‘3; cos f+—-cosy=N-I,

is called a derivative of the function u=F (x, y, 2) along
the given direction 1, {cosa, cosf, cosy}.
The gradient of the scalar u=F (x, y, z) is defined as

the vector grad u=%i+g—:j+g—:k. The gradient is the
vector of the rate of the quickest change of the scalar u.

2017. z=4—x*—y*. Construct the level lines and grad z
at the point A (1, 2).

2018. z=arctan-§-. Construct the level lines and grad z:

(1) at any point of the straight line y=x; (2) at any
point of the straight line y=—x, and in particular at

the points (—é—, :t%) and (1, & 1).
2019. The contours of a hill are determined by the
2
equation h=20—xT——y2. Construct the contours corres-

ponding to the height marks A=20, 19, 18, 16, and 11 m.
Here the direction of gradh determines the direction
of the line of the steepest slope, and its magnitude the
steepness of this slope. Construct gradh at the point
x=2 and y=1.

2020. Find the greatest steepness of the surface zz2=xy
at the point (4, 2).

2021. Find the derivative of the function u =1In (e*+¢¥)
in the direction parallel to the bisector of the first quadrant.
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2022. Find the derivative of the function u =x? 4%+ 2?
at the point (1, 1, 1) in the direction [{cos45°, cos60°,
cos 60°}; find grad « and its length at the same point.
Construct the level surfaces.

2023. Construct the level surfaces of the scalar u=x2-|
+y?*—2z; find and construct grad « at the points of inter-
section of the axis OX with the surface u=4. .

2

2024. Find the derivative of the function « =z—:+z—:+c—2

at the point (a, b, ¢) in the direction of the radius vector
of this point.

2025. z=)ﬁy2. Construct the level lines and grad z at

the point (—1, 2), and find |gradz|.
2026. u=xyz. At any point and at the point (I, 2, 1)

find derivative %—‘li in the direction forming equal angles

with the coordinate axes.

2027. Construct the level surfaces of the scalar u=x2+
+y*—2z?, determine grad u on the surface passing through
the origin, and construct it at the points of this surface
at which y=0 and z=2.

2028. u=V) x*+y*+22 Find gradu and its length.

2029. Construct - the level surfaces of the function

2 x2 y? . . .
u ==-—"y—+7 and find the derivative of u at the point

(@, b, ¢) in the direction of the radius vector of this point.

11.12. The Extremum of a Function of Two Variables

1°. Necessary conditions. A function z=F (x, y) can

have an extremum only at the points where %=0 and

oF

E{-:O. These points are called critical.

2°. Sufficient conditions. Let A, B, and C denote the

. . 0%F 0%F 02F .
v?lues of the derivatives o oy and o at the cri-
tical point (x,, ¥,)-
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If
AB F (x,, yo)=zmax for A<0
0[5 ¢l >0 ten | i J T o 4o
2) g g < 0, then we have no extremum;
3) gg =0, then the existence of an extremum Iis

doubtful (it may exist, and it may not).

3°. Conditional extremum. To find the extremum of the
function z=F (x, y), provided x and y are related by the
equation ¢(x, y)=0, form an auxiliary function u«=
= F(x, y) +rp (%, y).

The coordinates (x, y) of the extremum must satisfy

three equations: ¢ (x, y)=0, %%=0, %=O, wherefrom A,

x, and y are found.

Find the extrema of the following functions:
2030. z=x>*—xy -+ y* +9x— 6y 4 20.

2031, z=yV x—y*—x+ 6y.
2032, z=x3+ 8y?—6xy+ 1.

X
2033. z=2xy—4x—2y. 2034, z=e? (x+ yo).
2035. z=sinx-siny+sin(x+4y) for ngg-g- and
0<y<3-

1 1 .

2036. 2=;+? lf1x+!1/=2.]

2037. z=x+y if x—,+?=?.

2038. Determine the dimensions of a rectangular out-
door pool having the least surface if its volume is equal
to V.

2039. Construct the ellipse x®*44y>*=4 and the straight
line 2x+3y—6=0 and find the points on the ellipse
whose distances from the line are the greatest and the
least.

2040. On the hyperbola x*—y?=4 find the point nearest
to the point (0, 2).
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2041. Determine the dimensions of a cylinder of the
greaiest volume if its total surface S=6xn dm®.

2042. (1) In the ellipse x24-3y2=12 inscribe an isosceles
triangle with its base parallel to the major axis so that
its area is the greatest.

(2) The axis OX is situated on the boundary line of
two media. Along what path must a beam of light pass
from the point A (0, a) to the point B(c, —b) in order
to spend minimum time to cover this distance (a >0,
b>0, ¢c>0)

Hint. Find the minimum of the function 7 = —2

v; cos a+

+m, if atan a+4btan P=c, where v, and v, are

the velocities of light in the two media, and « and B are
the angles of incidence and refraction respectively.

Find the extrema of the following functions:
2043, z=3x+6y—x*—xy—y°.

2044. z=x2+y2-—2x—4l/7c_——2y+8.

2045. 2=2x3—xy? 4 5x2+4 4.

2046. z=3x2—2xV y+y—8x+8.

2047, z=xy if x*4y2=2

2048. Find the greatest volume of a right parallelepi-
ped if the length of its diagonal is equal to 2)/3.

2049. (1) On the parabola y*=4x find the point nearest
to the straight line x—y44=0.

(2) A rectangle of he greatest area is inscribed in the
ellipse Z—:—i—%:-: 1. Find this area.

2050. Determine the dimensions of a cone of the grea-
test volume, provided its lateral area is S.



CHAPTER 12

DIFFERENTIAL EQUATIONS

12.1. Fundamentals

1°. An equation of the form
_ Fx, 9, 9,9, ..., y")=0 Iy
is called an ordinary differential equation of the nth order.

A function ¢@(x) which when substituted into
equation (1) instead of y turns it into an identity is
called its solution. The equation y=¢(x) or D (x, y)=0is
called the infegral of the differential equation. Each in-
tegral defines in the plane XOY a curve which is called
an integral curve of the differential equation.

The equation

Ox, y, C, C,y ..., C,)=0, 2)

containing x, y, and n arbitrary constants, is called the
general integral of equation (1) in the domain of exis-
tence and uniqueness of solution if, giving different va-
lues to the arbitrary constants in equation (2), we get
‘the integral curves passing inside this domain and only
these curves.

Integrals obtained from the general integral for certain
values of the arbitrary constants are called particular
integrals.

Differentiating general integral (2) n times with respect
to x and eliminating n arbitrary constants from the ob-
tained n equations and equation (2), we get the given
differential equation (1).

f 2°. A differential equation of the first order has the
orm

F(x, 4, %)“0- %)
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Solving equation (3) with respect to :—:g (if it is pos-
sible) we obtain:
d
2= y). (4)

Equation (4) defines the slope k =tana=5—i=f(x, y) of

the integral curve at a point (x, y), i.e. defines the di-
rections of field of integral curves.

If in some domain a function f(x, y) is continuous
and has a limited partial derivative f;(x, y), then it
turns out that only one integral curve passes through
each interior point (x,, y,) of this domain.

In such a domain equation (4) has a general integral
y=¢(x, C) or ®(x, y, C)=0 from which we can find
the only partial integral satisfying the initial conditions:
y=y, at x=x,.

2051. Check by substitution that y=Cx? is the solution
of the differential equation 3y—xy=0. Construct the
integral curves passing through the points:

M(L3)@ame (L —3)

2052. Check by substitution that the differential equa-
tions (1) ¥y"+4y=0 and (2) y'''—9y’ =0 have the gene-
ral integrals (1) y=C,cos2x+C,sin2x and (2) y=C,+
+C,e%* + Cye~3* respectively.

2053. Construct the parabolas y=Cx® for C=0; +I;
+2 and derive a differential equation of a family of such
parabolas.

2054. Represent graphically a family of (1) circles
x*4-y*=2Cx; (2) parabolas y=x342Cx and derive their
differential equations.

2055. Represent graphically the direction fields defined
by each of the following equations:

d d d
M ZE=%: @ Z=y—x @) Z=y+x.

2056. Represent graphically the direction field defined
by the equation g{=l/x’+y’ with the aid of circles along
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which dy ; : 1; 2; 3; ... . Draw approximately the in-

tegral curve passing through the origin.

12.2. First-Order Differential Equation with
Variables Separable. Orthogonal Trajectories

1°. The first-order differential equation
Pdx+ Qdy=0, (1
where P and Q are functions of x and y, is termed the
equation with separable variables if the coefficients P and Q

of the differentials are factorized into multipliers which
depend only on x, or only on y, i.e. if it has the form

f(x)e ) de+F, (x) @, (y)dy=0. (2)

Dividing both terms of equation (2) by ¢ ()f, (x), we
get

f(x)dx | o (y)dy
f1 (x) + ¢ () =0. (3)

The total integral of equation (3) and, consequently,
of (2) will be:

[ (x)dx P (y)dy _
f1(x) + ¢ (y) =C. (4)

2°. Orthogonal trajectories of a family of lines F(x,
y, a)=0 are defined as lines intersecting the lines ol the
given family at right angles. Differentiating the equa-
tion F(x, y, a)=0 with respect to x and eliminating a
from the obtained and given equations, we get the diffe-
rential equation of the lines of the given family y’'=f (x, y).
Then the differential equation of the orthogonal trajectories
will be y TR

In each of the following differential equations: (1) find
the general integral; (2) construct several integral curves;
(3) find the particular integral for the given initial
conditions: x=—2, y=4.

2057. xy —y=0. 2058. Xy "+y=0.

2059. yy'+x=0. 2060. y' =

Find the total integrals of the following equations:
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2061. x*y' +y=0. 2062. x4+ xy+y' (y+xy)=0.

2063. @*dr+ (r—a)de=0. 2064. 2st*ds = (1 + £*)dt.

In the following equations find the total and particu-
lar integrals for the given initial conditions:

2065. 2y’ Vx=y, y=1 at x=4.

2066. y' = (2y+ 1) cot x, y=% at x=

2067. £y’ +y*=0, y=1 at x=—1.

2068. Construct the integral curves of each of the equa-
tions: (1) y (x*—4)=2xy, (2) y +ytanx=0 passing
through the points:

9 1 1
M © ;@ (0 5): @ (0 —5); @ © —.
2069. Find the curve passing through the point (1, 5

if the slope of the tangent to it at any point of the curve
is three times the slope of the radius vector of the point
of tangency.

2070. A curve passes through the point A4 (0, a); MN is
an arbitrary ordinate of the curve. Determine the curve
from the condition that the area of 0OAMN =as, where s
is the length of the arc AM.

2071. Find the curve passing through the point (a, a)
if its subtangent at any point is twice the length of the
abscissa of the point of tangency.

2072. Find the curve passing through the point (—I,
—2) if its subnormal at any point is equal to 2.

2073. In what time a body heated to 100°C will cool
to 25°C in a room with ambient temperature of 20°C if
in 10 minutes it cools to 60°C? (According to Newton’s
law, the rate of cooling is proportional to the difference
of temperatures.)

2074. The load carried by a cable of a suspension bridge
(see Fig. 6 on p. 39) irom each unit length of the hori-
zontal beam amounts to p N. Neglecting the weight of
the cable, find its shape if the tension of the cable at
the lowest point is taken to be equal to / N._

Hint. Take an arbitrary point M on the arc OC (Fig. 6).
Three forces will act on the sector OM: a horizontal
force H (to the left of the point M), a vertical one, i.e.
the weight px, and a tangential force of tension T (to

T

>
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the right of the point M). For equilibrium to exist the
sum of the projections of the forces on the axes 0X and OY
must be zero.

2075. Determine and construct the curve passing through
the point P (—a, a) if the segment AB of any tangent
to it contained between the coordinate axes is bisected
by the point of tangency M.

2076. Find the orthogonal trajectories of a family of
parabolas ay =x2. Construct them.

2077. Find the orthogonal trajectories of a family of
parabolas xy=c.

2078. Find the orthogonal trajectories of a family of
semicubic parabolas ay?=x?.

2079. Find the orthogonal trajectories of a family of
ellipses x4 4y? =a?.

Solve the equations:

2080. y'x3=2y. 2081. (x*+x)y =2y 1.

2082. y'Val+x*=y. 2083. (14+x2)y' +1+y*=0.

2084. dr4-rtangde=0; r=2 at p=n.

2085. y' =2V ylnx; y=1 at x=e.

2086. (1+x2)y +yV1+x=xy, y=1 at x=0.

2087. Determine the curve passing through the point 4
(—1, 1) if the slope of the tangent at any point of the
curve is equal to the squared ordinate of the point of
tangency.

2088. A curve passes through the point A (0, @), MN is
an arbitrary ordinate of the curve. Determine the curve
if the area of OAMN =a(MN —a).

2089. Determine and construct the curve passing
through the point (—1, —1), for which the line segment OT
cut off on the x-axis by the tangent to the curve at any
point is equal to the squared abscissa of the point of
tangency.

2090. Find the orthogonal trajectories of a family of
hyperbolas x?—2y? = a2,

2091. Determine the curve the radius vector of any

oint of which is equal to the segment of the normal

etween the curve and the x-axis.
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2092. Determine the line if the area bounded by the
coordinate axes, this line, and its arbitrary ordinate is
equal to one third the area of a rectangle constructed on
the coordinates of the end-point of the line.

12.3. First-Order Differential Equations:
(1) Homogeneous, (2) Linear, (8) Bernoulli’s

1°. Homogeneous. The equation Pdx+ Q dy=20 is called
homogeneous if P and Q are homogeneous functions of x

and y of the same order. It is reduced to the form
Z—%:cp(%) and is solved by the substitution £=u or
y=ux.

2°. Linear. A differential equation is called linear if it
is of the first degree with respect to the required function
y and all of its derivatives. A linear equation of the first
order has the form y'+4 Py= Q. It is reduced to two equa-
tions with separable variables by the substitution y=uuv.
Another method of solution (variation of constants) con-
sists in that first we solve the equation y'+4 Py=0; we

get y=—Ae'IPd”. Substituting this solution into the gi-
ven equation (taking A as a function of x), we then find
A’ and A.

3°. Bernoulli’s equation y' + Py= Qy" is solved in the
same way as a linear one, i.e. either by the substitution
y=uv or by variation of the arbitrary constant. Ber-
noulli’s equation is reduced to the linear one by means of
the substitution z=y*-".

Integrate the following differential equations:

2093. yy' =2y—x. 2094. x2 -+ y:—2xyy' =0.
ds _ s ¢ , 3y
2095. =7 5" 2096. y'— > =X
-
2097. y' + 2;-"’ = 5x—x . 2098. y' cosx—ysinx=sin2x.
2099. y'x+y=—xy?. 2100. y' —xy=— ye~*,

' Y — y_
2101. xy’ cos=-=ycos - —x.

2102, x3y' =y*+xy. 2103. xy'+y=Inx+1.
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2104. x*y?y’ +yx®=1.
In Problems 2105 to 2107 find the particular integrals
for the given initial conditions:

2105, y+Vx*fy*—xy =0, y=0 at x=1.
2106. 125 =92ts—3;s=1at t=—1.

2107. xy'=y<l+ln%>; y=% at x=1.

2108. Find the family of curves, the subtangent at any
point of which is the arithmetic mean of the coordinates
of the point of tangency.

2109. Find the orthogonal trajectories of the family of
circles x24 y2=2ax.

2110. Current intensity ¢ in a circuit with resistance R,
inductance L, and electromotive force E satisfy the

differential equation L%’H—Ri:E. Solve this equation

taking R and L for constants and the electromotive for-
ce E for a linearly increasing quantity: E==kf. The ini-
tial conditions are: i=0 at {=0.

2111. Find the shape of a_mirror that will reflect all
incident rays from a point source parallel to a given di-
rection.

Hint. Considering the plane section of the mirror, take
a given source as the origin, and a given direction for
the y-axis. The tangent to the required curve at the
point M forms equal angles with OM and the y-axis,
i.e. cuts off on the y-axis an intercept ON =0OM.

Solve the following differential equations:
2112, xy+y2=(2x24+xy) y'.
2113. (a24+x)y' +xy=1.

2114. xy’' +2V xy=y. 2115. 2x+ 1)y +y=x.
2116. y'—ytanx=cotx. 2117. tds—2sdt=1¢3Intdt.
2118. y' +xy =xy°. 2119. y' +ycosx=sin2x.

2120. y’=z—:——'z—; for x=—1y=1.
2121, 3y’ +y*=x+1; for x=1y=—1I.
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2122. (1—x?)y' —xy=xy?, for x=0 y=0.5.

2123, Determine the curve passing through the point
A (a, a) if the distance of the origin from the tangent
at any point of the curve is equal to the abscissa of this
point.

12.4. Differential Equations Containing
Differentials of a Product or a Quotient

d () =xdy+ydr; d(L)=2UHE,
d (i)_ydx—xdy
y) ¢
Such equations are sometimes solved easily if we put

xy=u, y== or L=u, y=ux respectively.

2124. x*dy+xydx=dx. 2125. y*’xdy—y3dx=xdy.
Hint. In Problem 2125 the equation is reduced to the
form

yd (%)r—dy or y*du=dy.

2126. ydx+ (x—y®)dy=0. 2127, ydx— (x—y?) dy=0.
2128. ycosxdx -+ sinxdy=cos2xdx.

2129, 1% _s=sInt. 2130. x2y?+ 14 x*yy’ =0,
2131. f3sdt+t3ds=dt. 2132. xdy—ydx=x2dx.

X
2133. xy’' +tany=2xsecy. 2134. y(ye—T—}—l):xy'.

12.5. First-Order Differential Equations in
Total Differentials. Integrating Factor

1°. If in the differential equation

Pdx+Qdy=0,
P _3Q

% =%’ then it has the form du=0 and its general
integral will be u=C.
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If =,e aQ, then for certain conditions there exists

a functlon p(x, y) such that pPdx+pQdy=du. This
function p (x, y) is called the integrating factor.
The integrating factor is readily found in the follo-
wing cases:
9P 9Q
dy  ox
Q
aQ aP

5;__

(1) if

= (x), then Inp= SCD(x)dx,

=@, (y), then lnp.—SCD (y) dy.

The differential equations considered in Sec. 12.4 are
particular cases of the equations treated in the present
section.

@ if

Solve the following differential equations “in total diffe-
rentials”:

2

m%.@—%)u+%@=a

2136. 3x2e¥dx - (x%¥—1)dy =0.

2137. e Ydx+ (1—xe %) dy=0.

2138. 2xcos? ydx 4 (2y —x?sin 2y)dy = 0.

Find the integrating factors and solve the following
differential equations:

2139. (x*—y)dx+4xdy=0.

2140. 2xtanydx 4 (x*—2siny)dy =0.

2141. (e*—y?)dx +ydy=0.

2142. (1 4 3x2siny)dx—xcot ydy=0.

Show that the left-hand members of the following diffe-
rential equations are total differentials, and solve the
equations:

2143. (3x24-2y)dx -+ (2x—3)dy=0.

2144. (3x%y—4xy?)dx -+ (x*—4x3y 4 12¢4%) dy =0.

2145. (xcos2y+4 1)dx—x?sin2ydy =0.

Find the integrating factors and solve the equations:
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2146. y2dx+ (yx—1)dy=0.

2147, (x*—3y?)dx+2xydy=0.

2148. (sinx+e¥)dx4cosxdy =0.

2149. (xsiny+y)dx+ (x?cosy+x1nx)dy=0.

12.6. First-Order Differential Equations Not
Solved for the Derivative.
Lagrange’s and Clairaut’s Equations

I°. If F(x, y, y')=0 is a second-degree equation with
respect to y’, then it has two solutions with respect to
y:y =Ff(x, y) and y' =, (x, y), continuous with respect
to x and y in some domain, and, geometrically, deter-
mines two directions of integral curves at any point
(X0, Yo) of this domain.

Such differential equations F (x, y, y')=0, in addition
'to the total integral ®(x,y,C)=0and particular integrals, so-
metimes also have a singular integral which does not con-
tain an arbitrary constant and at the same time is not
obtained from the total integral whatever is the value
of the constant.

A singular integral, if it exists, can be obtained by
eliminating p=y’ from the equations F(x, y, p)=0 and
F,(x, y, p)=0 or by eliminating C from the total integ-
ral ®(x, y, C)=0 and ®;=0. Geometrically, a singular
integral determines the envelope of a family of integral
curves *.

2°. Lagrange’s equation

y=xf(p)+o(p), (1)

where p=y’, is integrated in the following way.
Differentiating (1) with respect to x, we find:

p=F (o) +[xF () + o' () 2.

This equation is a linear one with respect to x and
We get the following solution:
x=CA(p)+ B (p). 2

* For the definition of the envelope see Sec. 11.9,

dx
dp -’

9 1895
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Equations (1) and (2) parametrically determine the
general integral. Eliminating from them the parameter p
(if it is possible), we get the general integral inthe form
d (x,y, C)=0.

3°. Clairaut’s equation

y=px+o(p) 3

is a particular case of Lagrange's equations. It has a ge-
neral integral y=Cx-+ ¢ (C) and a singular one obtained
by eliminating the parameter p ifrom the equations y=
=px+ ¢ (p) and x=—¢' (p).

2150. Construct several integral curves of the equation
y'*=4y. Find two integral curves passing through the
point M (1, 4).

2151. Construct two integral curves of the equation
y'*+y*—1=0. Determine the two integral curves pas-

sing through the point M(.., VQ)

2152 Show that the integral curves of the equation
xy' —2yy’ +4x=0 are contained inside the acute angle
between the straight lines y= =+ 2x. Construct the integ-

ral curves, putting in the rotal integral C=i%, + 1,

=+ 2, etc.
2153. Solve the equations:

) w4y x—y)—x=0; (2 xy’+2xy' —y=0

and construct the integral curves.
2154. Solve the equations with one of the variables
expressed implicitly:

() y=1+y"% @ x=2 —y—.

Hint. Denoting y' by p, diflerentiate the first equation
with respect to x, and the second one with respect to y.

2155. Find the general and singular integrals of Lag-
range’s equations:

- < 1 12
1) y=xy’ Q) y=2xy +—; (3) =_*
D) y=xy +y, 2y xy%y,, (3) 2y 2
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2156. Find the general and singular integrals of Clai-
raut’s equation and construct the integral curves:

() y=xy'—y'" @) y=xy'—aV 14y
@) y=xy' + .
Yy

2157. Construct the integral curves of the equation
Yy +y=1. Determine two integral curves passing through

the point M (l, %)

2158. Solve the equations with one of the variables
expressed implicitly: (1) y=y" " +y'"; (2) x=—Z

’ x? ’2
2159. y=2y'x+5+y".

2160. Find the total and singular integrals of Clai-
raut’s equation and construct the integral curves:

(N y=y’x+%; @) y=xy'+y +y".

2161. Find the curve whose tangents form with the
coordinate axes a triangle of constant area equal to 2a2.

2162. Find the curve whose tangent cuts off intercepts
on the coordinate axes the sum of which is a.

12.7. Differential Equations of Higher Orders
Allowing for Reduction of the Order

1°. An equation of the form y™=f(x) is solved by
successive n-fold integration of the right-hand member.
Each integration yields one arbitrary constant, with the
final result containing n arbitrary constants.

2°. The equation F (x, y', y")=0, not containing y in
an explicit form, by means of the substitution y'=p

y"=‘;_g is reduced to the form

F (x, p, Z—f:)=0.

9*
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3°. The equation F(y,y’, y’)=0, not containing x in
an explicit form, by means of the substitution y'=p

y"=%=p3—; is reduced to the form
d
F(y, p,pd—’y’)=0-

Solve the equations:
2163. (1) y'” = the initial conditions: for x=1
y=2’ y'=l, yn= 1; (2) yn=4c052x; for X=Oy=0, y:=0;

" 1
Q)Y =13=-
2164. x3y"+xty =1. 2165. yy"+y*=0.
2166. y'+y' tan x=sin2x. 2167. y"+2y(y')*=0.
2168. y'xIlnx=y'. 2169. y"tany =2 (y').

2170. (1) xy"'—y' =e*x?; (2) y'+2xy*=0.

2171. Determine the bending curve for a horizontal
beam whose one end is fixed and the other is acted upon
by a concentrated force P (the weight of the beam should
be neglected and the bend considered small enough so
that 14y~ 1).

2172. Determine the curves whose radius of curvature
is twice the length of the normal.

2173. Determine the curves whose radius of curvature
is equal to the length of the normal.

2174. On the closed interval [0, 1] determine the curve
tangent to the axis OX at the origin if its curvature
k=x, i.e. increases uniformly along the x-axis (the
transition curve). Put 14y2~1.

Solve the equations:

" | o __In2 '
2175.‘1/:-005_24\’." for X—T y———2—,y—l.
2176. (14-x2)y"+2xy'=x3. 2177, y'y3=1.

2178. 29y’ = (y')". 2179. t 25 4 & -0
2180. 2yy" =1+ y™. 2181, y'tanx =y’ + 1.

2182. Determine the curves whose radius of curvature
is equal to the cubed length of the normal.
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2183. In the interval —%, % determine the curve

tangent to the axis OX at the origin if at any point its
curvature k=cosx.

12.8. Linear Homogeneous Differential Equations
with Constant Coefficients

The homogeneous linear differential equation
Y +pyntV+ 4 py =0, (1)

where p; is a function of x, has a general solution of
the form

y=Cuy+Cy+ ... +Coyp, (2)

where y,, Y,, ..., Y, are linearly independent particular
solutions of equation (1) and C,, C,, ..., C, are arbitrary
constants.

If the coeificients p,, p,, ..., p, of equation (l) are
constant, then the particular solutions y,, y,, ..., y, are
found with the aid of the characteristic equation

rrprt i P =0. 3

(1) To each real root r=a of equation (3) of multipli-
city m there correspond m particular solutions e**,
xe®* .., xm~le®x,

(2) To each pair of imaginary roots r =a &+ pi of mul-
tiplicity m there correspond m pairs of particular solu-
tions

e**cos Bx, xe**cosPx, ..., x™"1e**cos Px,
e** sin Bx, xe** sinfx, ..., x” e sin fx.
Solve the equations:
2184. ' — 4y’ +3y=0. 2185. ' — 4y’ + 4y =0.
2186. y"—4y’ +13y =0. 2187. y'—4y =0.
2188. 4 +4y=0. 2189. y”—|—4y =0.

dx dx
2190‘W+37_4x=0‘ 2191. 4 dq>2+p 0.
2192. t2+2dt+23_0 for t=0 s=1, s'=1.
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2193. y'* —5y"+ 8y —4y=0.

2194. y‘V—IG =0. 2195. y'*' —8y=0.
2196. y’ -|—3ay”+3a2y +a*y=0.
2197. y'V 4+ 4y=0. 2198. 4y!V —3y"—y=0.

2199. Determine the equation of oscillations of a pen-
dulum of mass m suspended from a thread of length !/
(neglect the resistance and put sina~a for small a).
Determine the period of oscillation.

2200. Two equal weights are suspended from the end of
a spring. Under the action of one weight the spring is
elongated by a cm. Determine the motion of the first
weight if the second one drops (resistance should be neg-
lected). Determine the period of oscillation.

2201. Solve Problem 2200 taking into consideration
the resistance which is proportional to the speed of motion.

Solve the equations:

2202. y'+ 3y’ +2y=0. 2203. y"+2ay’ 4+ a*y=0.
2
2204. y”—|—2y’+5y=0. 2205. £X 0% 3y 0.
2206. TX 4 wix=0. 2207. 4% L 4%
’dtz ode? at =
2208. x,,+ 2%+ 3x=0. 2209. y' —3y" + 4y =0.
2210. y!vV—3y"—4y=0. 2211. y!vV +8y"+ 16y =0.

2212. Find the integral curve of the equation y"—y =0
tangent to the straight line y=x at the point (0, 0).

12.9. Linear Non-homogeneous Differential
Equations with Constant Coefficients

1°. Basic property. Let there be given the equations:

Yy +py~V+ ...+ p.y=Ff (x)—non-homogeneous, (1)
Y+ pyn-v4 ...+ p,y=0—homogeneous, 2)
and let u be the general solution of equation (2), and y,

a particular solution of equation (1). The general solu-
tion y of equation (1) will be:

y=u+y,. (3)
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2°. The method of undetermined coeificients. With con-
stant p,, p,, ..., p, the particular solution y, is found
by the method of undetermined coefficients in the follo-
wing cases:

(1) f(x) is a polynomial,

(2) f(x)=em* (acosnx-+bsinnx),

(3) f(x) is a sum or a product of the previous fun-
ctions.

In these cases the particular solution y, has the same
form as f(x), differing from the latter only by coeffi-
cients.

Exceptions are the cases when: (1) f(x) is a polyno-
mial but r=0 is the root of a characteristic equation of
multiplicity %; (2) f(x)=e™* (acosnx-4bsinnx) but
r=m=ni is the root of a characteristic equation of mul-
tiplicity k. In these special cases y, differs from f(x) not
only by coefficients, but also by the factor x*.

3°. The method of variation of constants. The most
common method of solving a non-homogeneous linear
equation is Lagrange’s method, or the method of variation
of constants.

If y, and y, are independent particular solutions of the
equation y"-+py +qy=0, then the solution of the equa-
tion y"+4 py’ +qy=1F(x) by Lagrange’s method is found in
the form y= Ay, + By,, where A and B are functions of x
satisfying the system of equations

{ A'yl+ B’y2=0,
Yi+ B’y =1 (x).

Hence
AI=_!I2,(")' Bl=y1f(") and w=lyl ye .

w w Y Y,

Solve the equations:

2213. y'—2y' +y=e**. 2214, y"— 4y =83,

2215. y"+ 3y’ + 2y =sin 2x 4+ 2 cos 2x.

2216. Y’ +y=x- 2e*. 2217. y"+ 3y’ =9x.

2218. y’+ 4y’ + by =5x2—32x+ 5.

2219. y'— 3y’ + 2y —e*. 2220. 9% 4 kax =2k sin kt.
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2221.

2223.
2224.
2225.

2227,
2229.

2230.
2232,
2234.
2235.

y'—2y=uxe %, 2222, y'—2y’ =x2—x.
Y +5y +6y=e-*fex

X+ 2kx ++ 2k%x = 5k sin kt.

Yty =6x+te* 2226, y!v—8ly=2Te"3%

x+x=3t2, 2228, y'*' + 8y =e~2%.

(1) x4+ 4x+4x=e"2; (2) a’x+ax=1.

" l

Y +4y=—55- 2231. y"'—4y’ +5y~

y'—2y +y=x-*.  2233. y'+y=tanx.
" ’ 1 " ’ -2

D) ¥ +y +1mws @ ¥+ + =

A unit mass moves along the axis OX under the

cosx

action of a constant force a directed along the axis with
tractive resistance numerically equal to the velocity of
motion. Find the equation of motion if at =0 x=0 and
velocity v=0.

Solve the equations:

2236.
2238.
2240.

2242.

2243.
2244.
2245.

Y +y —2y=6x2.  2237. y"—by'+ 6y =13 sin 3x.
Y+ 2y +y=e*. 2239. y"+y' +2.5y=25cos 2x.
4y —y=x>—24x. 2241, y"—y=e~*.

d2s 3
d12+2dt-]—23—2t —2.

(1) §'—2my’ +m*y=sinmx; (2) n*y'—4ny =38.
y'V 4+ 5y" + 4y =3 sin x.
Yy =3y + 3y —y=e*.

Solve the following equations using the method of va-
riation of constants:

2246.

2247. (1) y"+y=
2248, y'—2y' 4+ y= v

Yy +4y' +4y=e~**Inx.
2) y'+4y=

ex
4 —x%°

cos®x sinx *
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12.10. Differential Equations of Various Types

Determine the type of the following differential equa-
tions and solve them:

2249. o' +1—_%= e~*. 2250. y'+ytanx=tanux.
2251, (x—x¥)y + (2x2—1)y=x°

2252, (1+x2) y +y(x—VT+x%)=0.

2253. f2ds-+2sdt =etdt. 2254. xy' =4(y+V'y).
2255. 2xyy’ =242+ V y* + x°.

2256. xy'+y =Inx. 2257, yy'—2y"* =0.

2258. y'—miy=e~"*, 2259. y'xInx+y=2Inx.

2260. xy'—]—yln%:O. 2261. 2y' +y=y3 (x—1).
2262. """ —2y +y ==x2. 2263. y'=y +y".

d3s
2264. p T

2265. (1) sintds=(4tsin2’7 +s)dt; @) yy'x —yp=1.
2266. (1) xy’'+y(xtanx++1)=secx; (2) y''' +y=e~*.

" - ’ sx e ”n._ r
2267. (1) ' =3y +2y =175 () ¥""y=yy"

2268. A cylinder of radius a m and weight P=a3N
floats on water with its axis in the vertical position.
Find the period of oscillation which is caused when the
cylinder is a bit dipped into the water and then is left
free. Tractive resistance should be taken approximately
equal to zero.

2269. A hollow iron sphere has the radii of the surfa-
ces a and 2a. Its interior surface is kept at a constant
temperature of 100°C, its exterior surface at 20°C. De-
termine the temperature inside the wall at any distance r
from the centre (a<Cr<C2a) and at r=1.6a.

3%;-2$=sint+2cost.

Hint. The rate of temperature drop ZTT in a conductor

with stationary distribution of temperature is inversely
proportional to the area of its cross section.
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12.11. Euler’s Linear Differential Equation
zy M+ az YtV a2y ey =f(2)

A particular solution of a homogeneous equation (for
f(x)=0) can be found in the form y=ux", where r is a
constant number. To find r we have to substitute y=x"
into a homogeneous differential equation and to solve the
obtained characteristic equation with respect to r. In this
case:

(1) To each real root r=a of multiplicity m there cor-
respond m particular solutions x2, x® Inx, x%(Inx)3, ....

(2) To each pair of imaginary roots r =o 4 pi of mul-
tiplicity m there correspond m pairs of particular solu-
tions:

{ x*cos (Blnx), x*cos(PBlnx)lnx, ...,

x*sin(flnx), x%*sin(Blnx)inx, ...

Euler’s non-homogeneous differential equation is solved
by the method of variation of constants.

Solve the equations:
2270. (1) x3y'"" —3xy’ +3y=0; (2) x2y"—2y=0;

3) x2y"+2xy’—n(n+1)y=0.
2271. (1) x%"+5xy’ +4y=0; (2) x*y"+xy'+y=0.
2272, (1) xy"42y' = 10x; (2) xy"—6y=121nx.
2273. (1) x%y"—2xy’ + 2y = 4x;

(2) x3y"+3x%y' +xy=61Inx.
2274. (1) x2y"—4xy' 4+ 6y=x5 (2) x%" +xy' +y=x.

12.12. Systems of Linear Differential Equations
with Constant Coefficients

Solve the equations:

d d.
Sty=0 {‘ FHr—y=¢
2275 2276.
) dx  dy dy _
@ ar =%ty L@ ty=e.
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Hint to Problem 2275. By differentiating the first equa-
tion with respect to ¢, eliminate y and %’- from three
equations.

dx dy -
57—274-4)(—!/—8 t
22717.

{ Z—;—]— 8x—3y ="5e-1.
po7s, { X4+ dr—y=0

\ y+ 4y + 4y —24x = 16¢t.

Solve the equations:
( x =
9979, { ¥ HY=0 ¢, o

y—x+y=0, =1 y=I
x=y
2280. { y=x-+42sinht.

12.13. Partial Differential Equations
of the Second Order (the Method of Characteristics)

2281. Find the general solution (containing two arbi-
trary functions) of the equations:

0%u . Pu__ . 0%u 1 du
D) 55=0 @ 33=0 @ zgm—75m=0

0%u X
Hint. Put %=2.
Y

2282, Find the particular solution of the equation

02 e ey ey 0
(722=0 for the initial conditions: for x=1 z=ys, 0—i=y2.

2283. Reduce the equation %—4%+3%=0t0 the

canonical form and find its general solution.
2284. Reduce the equation

0%u 0%u 0%y
ot 2xya—x0y+yza—y,=0
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to the canonical form and find its general solution.

For the following differential equations find the general
solutions, and, if given the initial conditions, also the
particular solutions:

0%u 0%u 0%u
Pu Pu e 0w
2286. a—x;,—a—y2=0, for x=0u=siny, 5 =y.
0% 0%u

for x=1 u=2y+1,%‘-;=y.

2288. %—xz%;:O; for t=1 u=2x2, g——;‘=x2.

Find the particular solutions of the following differential
equations:

2089, 24y 4 %y,
for t=0 u=0, %~ _x_1.
2290. davx 24—2% 1 202 % 0,
for t=0 u=0, —gti=ax.
2291, @ T4 =L for =0 u=F(x), J=F (x).



CHAPTER 13

DOUBLE, TRIPLE, AND LINE INTEGRALS

13.1. Computing Areas By Means of Double Integrals

1°. If a domain (S) is defined by the inequalities
a<<x<b, y, (0)<Y<y.(x),

then the area of this domain
Ye (x)

S= lim XY AxAy= Sdedy de dy.
4= 2t

2°. 1If a domain (S) is determined by the inequalities
h<y<h, % () <x<x, (),
then
l x2(Y)

=S dedyzg dy S dx.
() h

X1 (y)

3°. If a domain (S) is defined in polar coordinates by
the inequalities @, < << @,, 7, (9)<r<r, (), then the area
of this domain
Qs r: (@)

S Srdrd@—g do S rdr.
()

P ro(@)

Express by double integrals and compute the areas
bounded by the following lines:

2292, xy=4, y=x, x=4.
2293. (1) y=x2, 4y=x2’ y=4,
(2) y=2x2, dy=2x%, x==+2.
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2294. y2=4+x, x+3y=0.

2295. ay =x*—2ax, y=x.

2296. y=Inx, x—y=1 and y=—I.

2297. Construct the domains whose areas are expressed
bv the following integrals:

a Vat—y? a V2ar1= 13

() Saefay @§ay § ax; @ fax § ay.
0 0 0 a-y 0 x

Change the order of integration.

Hint. To get the equations of the lines bounding the
domain equate the limits of the integral with respect to
dx to x, and those with respect to dy to y.

2298. Construct the domains whose areas are expressed

1 2—xt 0 0

by the integrals: (1) {dx { dy; (@ {dy § dx. Change
0 x -2 -4

the order of integration and compute the areas.

2299. Compute the area bounded by the lines
r=a(l—cos¢) and r=a and situated outside the circle.

2300. Compute the area bounded by the straight line
rcosa=a and the circle r=2a.

Compute the areas bounded by the lines:

a? X
2301. xy=—, =20 y=3, y=2x

Hint. In this problem it is advantageous to pass over
to the new coordinates xy=u and y=wvx; then the area is

determined by the formula ({|J/|dudv, where J=

o oy
= gz g‘; and is called the Jacobian. In Problem 2302
v v
put y>=ux, vy>=x% and in Problem 2303 pass over to
generalized polar coordinates x=rcos® @ and y=rsin®¢.
2302. y*=ax, y*=I16ax, ay®=ux3, 16ay®=ux3,

2 3
3 3

2
2303. x3 +y® =a
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Compute the areas bounded by the following lines:

2304. y=x2, y=x-+2.

2305. ax=y*—2ay and y+x=0.

2306. y=sinx, y=cosx, and x=0.

2307. y2=a*—ax, y=a-+x.

2308. r=4(14cos¢), rcosp=3 (to the right of the
straight line).

2309. r=a(l—cosg), r=a and situated outside the
cardioid.

2310. xy=1, xy=8, y*=x, y*=28x.

2311. Construct the domain whose areas are expressed
by the integrals:

b x a Vaal =3 8—x
() §ax §ay; @§ay § dx (3)de { ay.
a a 0 Vay 2Vx

Change the order of integration and compute the areas.

13.2. The Centre of Gravity and the Moment of Inertia
of an Area with Uniformly Distributed Mass
(for Density p=1)

The coordinates of the centre of gravity of an area S
with uniformly distributed mass:

ngdxdy Sgydxdy

Xe =35 ycz_—'s_' (1
The moments of inertia of the area S

Jo=Cpdeay, v,=(Cxdrdy, 7,=(§rdray.
S)

(S) (S) (

Determine the centre of gravity of an area bounded by
the given lines:
2312. y=0 and a half-wave of the sinusoid y=sinux.
2313, y=x%, x=4, y=0. 2314. y*=ax and y=x.
2315. x*4+y*=aqa® and y=0.
2

2 2
2316. The astroid x3 -+ y® =a® and the axis 0X.
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Hint. Pass over to generalized polar coordinates
x=rcos’¢e and y=rsin®e.

2317. Determine the moments of inertia J,, J, and J,
of the area of a rectangle bounded by the lines x—O
x=a, y=0, and y=b.

2318. Determine the moment of inertia about the axis 0X

of the area bounded by the lines y=%, x=a, y=a.

2319. Determine the moment of inertia about the axis OY
of the area of a triangle with the vertices A (0, 2a),
B(a, 0), and Ca, a).

In Problems 2320 through 2323 determine the polar
moment of inertia of an area bounded by the lines:

2320. x+y=a, x=0, y=0.

2321. r*=a?cos 2¢.

2322. A circle r=a.

2323. y*=ax, x=a.

Determine the centre of gravity of:
2324. The hali-segment of the parabola y®=ax, x=a,
y=0 (for y>0). .

2325. The semi-ellipse 2—:—|-z—:=l cut off by the x-

axis.
2326. Determine the moment of inertia about the y-

axis of the area bounded by the lines y=a-|—i:-, y=2x,

and x=0.

2327. Determine the moment of inertia about the x-
axis of the area of a triangle with the vertices A (I, 1),

2, 1), C(3, 3).

Determine the polar moment of inertia of the area bo-
unded by the lines:

2328. —l——-—] x=0, y=0.
2329. y 4—x2 and y=0. 2330. r=a(l—cosg).
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13.3. Computing Volumes by Means of
Double Integrals

The volume of a solid bounded from the top by a sur-
face z=F(x, y), from the bottom by a plane z=0, and
from the sides by a cylindrical surface cutting off a do-
main (S) on the plane XOY, is equal to

V= SS 2dxdy = SS F(x, y) dx dy.
s (s)

Compute the volumes of solids bounded by the follo-
wing surfaces:

2331, z=x24y?, x+y=4, x=

2332. z=x+y-+a, y*=ax, x
y>0).

2333. (x4-y)?+az=a?, x=0, y=0, z=0 (construct
the surface using the sections: x=0, y=0, 2=0, z=
= h<a; see Problem 546).

2334. x*-y2=aq?, x?+422=a? (see Problem 552).

2335. 22=xy, x=a, x=0, y=a, y=0.

2336. az=x2—y?, z2=0, x=a.

2337. 22=xy, x+y-=a.

2338. x+y-t+2=3a, x*+y*=a? z=0.

Hint. In Problems 2338 to 2344 pass to polar coordi-
nates.

2339. z=mx, x+y*=a?, z=0.

2340. az=a>—x?—y?, 2=0.

2341, x*+y*+ 22 =4a?, x*+y*=a® (outside the cylin-
der).

2342, x*+y?+22=aqa?, x*+y?4ax=0 (inside the cy-
linders).

2343. The first turn of the helicoid y=xtan% inside
the cylinder x*+y®=a® and the plane z=0.

2344. 22 =2ax, x*+y*=ax.

2z x? P
2345, —-=1 — T T3 2=0.
c a b

Hint. In Problems 2345 and 2346 pass to elliptic polar
coordinates: x =ar cos ¢, y=>brsinq.

0, y=0, z=0.
=a, 2=0, y=0 (for
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xl yl
2346, z=ce @ o and % = —l—b2 =1.
2 2

2347. x’ +y® 428 =a3 (put x=rcos® @, y=rsind@).

Compute the volumes of solids bounded by the follo-
wing surfaces:

2348. z=a—x, y*=ax and 2_0.

2349. z—x"‘—|-y y=x% y=1, z2=0.

2350. y +zz—4ax y’—ax x—3a (outside the cylinder).

2351. 02+b2 ,a2+y =1.

2352. Conoid x2y?4-h322 =a3y? for 0<Cy<Ch (see Prob-
lem 559).

2 3 2 L]

2353. x3 423 =a?, x3 4y

2354. 4z=16—x2—y, z2=0,
cylinder).

Hint. In Problems 2354 to 2358 pass to polar coordi-
nates.

2355. 2? =(x+a)?, x*+ y?=a’.

2356. z=m, 2=0, 34+y2=1, x4 y*=4.

2357, az=x*+y?, z2=0, x*+y*+ax=0.

2358, az=a>—x*—y?, 2=0, x*+y% 4 ax =0 (inside the
cylinders)

2359. 2—{—[)2—|-——1
Hint. Put x=arcosq, y=brsine.

+y2 4 (outside the

13.4. Areas of Curved Surfaces

The area ¢ of a portion of the surface F(x, y, 2)=
whose projection on the plane z=0 defines the domain

(@,). is

o= (] V (&) +‘g—567> HE) o (SS)

ToF T dx dy.
0z

(%)
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Analogously, when projecting on the two other coordi-
nate planes we get

(W N
0=5STdXdZ, 0'=SS aFldde.

(o)1 9y (9%)

Compute the area of:

2360. The surface of the cylinder 2z =x? cut off by the

planes y=%, y=2x, x=2V2.

2361. The surface of the cone 2*=2xy cut off by the
planes x=a and y=aforx>0 and y>0.

2362. The surface of the cone y2?4-22=x? located inside:
the cylinder x2+4 y2=a2.

2363. The surface az=xy situated inside the cylinder
x4 y?=a.

2364. The surface of the cone x24-y?=2? situated inside
the cylinder 22=2px.

Compute the area of:

2365. The surface of the cylinder x2-1L22=aqa? situated
inside the cylinder x%+ y?=a®.

2366. The surface of the sphere x%-y? 4 22=a? situated.
inside the cylinders x2+y? 4 ax=0.

2367. The surface of the paraboloid x2+ y?=2az loca-
ted inside the cylinder x*+ y*=23at.

2368. Using the double integral, determine the area of
the portion of the earth surface bounded by the meri-
dians 0° and B°, the equator, and the parallel of lati-
tude a°. Consider the particular case: o =30°% B =60°.

13.5. The Triple Integral and Its Applications
If a domain (V) is defined by the inequalities
a<x<<h, Y ()<Y<y,(x), 2 YIS (x, y),
then

Ys(X)  23(x, Y)

b
((CFw, y, pydvdydz=§ax § dy § Fx, g, 2)dz.
1%

W) a Yi(x)  24(x, 4)
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For F(x, y, 2)=1 we get the volume V. The coordinates
of the centre of gravity of a homogeneous body of the
volume V are computed by the formulas:

xc=%5§§xdxdydz, yc=Tl,-S;§§ydxdydz and so on.

2369. Determine the volume of a solid bounded by the
surfaces az=x2-+4y?, 2az=aqa%—x2—y2.

2370. Determine the volume of a solid bounded by the
surfaces x24y2—22=0, x24 y®-+22=a? inside the cone.

2371. Show that the cone x24y*—22=0 divides the
volume of the sphere x2-4-y24-22=2qz in the ratio 3:1.

2372. Determine the mass of a pyramid formed by the
planes x+y+2=a, x=0, y=0, z=0 if the density at
each of its points is equal to the z-coordinate of this
point.

Determine the centre of gravity of a uniform solid boun-
ded by the surfaces:

2373. x+y+2=a, x=0, y=0, z=0.

2374. az=a*—x*—y?, z=0.

Determine the moment of inertia about the axis OZ of
a body bounded by the surfaces (density p=1):

2375. x=0, y=0, y=a, 2z=0, and x+z=a.

2376. x4+y+z=al 2, 2+ y*=a? 2=0.

2377. Determine the volume of a body bounded by a
closed surface:

(1) (324222 =a’x; (2) (0 4y + 2% =az (x*+y?).

Hint. Pass to spherical coordinates using the formu-
las: x=rsinBcosg, y=rsinBsingp, z=rcose; the ele-
ment of volume dV =r2sin0drded®.

Determine the volume of a body bounded by the given
surfaces:

2378. az=x*+y?, x4 y?+ 22 =2a2.

2379. x24y*—22==0, z=6—x2—y2.

2380. az=x* +y?, 22=x2+y°
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2381. Determine the mass of a solid bounded by the
surfaces x*4y*—22=0 and z=h if the density at each
of its points is equal to the z-coordinate of this point.

2382. Determine the mass of a solid bounded by the
surfaces 2x+2z=2a, x+z=aqa, y*=ax, y=0 (for y > 0)
if the density at each of its points is equal to the ordi-
nate y of this point.

2383. Determine the centre of gravity of a uniform
hemisphere x4 y%?+422=a?, z=0.

2384. Determine the moment of inertia about the axis
0OZ of a solid bounded by the surfaces 22=2ax, z=0,
x4+ y*=ax.

2385. Determine the volume of a solid bounded by the
surface (x*+y?-+22)2=axyz (pass to spherical coordina-
tes; see Problems 2377).

2386. Determine the mass of a spherical layer between
the surfaces x*4-y2+22=a? and x*-+y?®422=4a? if the
density at each of its points is inversely proportional to
the distance of a point from the origin (pass to spheri-
cal coordinates).

13.6. The Line Integral. Green's Formula

1°. Definition of a line integral. Let a continuous func-
tion P(x, y, z) be defined on an arc AB of a rectifiable
curve. Partition AB into elementary arcs by points
A(xO' y(h zO)’ Ml (xl’ yl’ 21)’ A | Mn—l (xn—lv yn—l’
2,-,), and B(x,, Y, 2,); let x;—x;,_;=Ax;. Then

lim X P (x; y;, 2;) Ax; is called the line integral taken

Axi—>0i=l

along the arc Av8, and is denoted SP(x, Y, 2)dx. The
AB

integrals SQ(x, y, 2)dy and SR(x, Yy, 2)dz are defi-

AB AB
ned similarly: the sum of the previous integrals is

S(de—l-Qdy—}-Rdz). Finally, there also exists a line

AB
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integral of the form: S P(x,y,2)ds= lim 2 P (x;, y;, 2;) As;,
iB AS‘.—>0 i=1

where As;=M;_ M.

2°. Computing a line integral. Let a curve AB be given
by the equations x=f(¢{), y=¢(¢), z=19(f), and the
parameter { changes monotonically when a point M (¢)

moves along the arc AB in one direction; then

‘g
{ P, y, 2dx= P[0, o), vOIf (O at,
AB ta

i. e. all the variables and differentials of the integrand
must be expressed in terms of one variable (t) and its diffe-
rential (dt) from the equations of the curve.

3°. Mechanical meaning of a line integral. An integral
of the form S (Pdx+Qdy-+ Rdz) expresses the work per-

AB
formed during the displacement of unit mass along an

arc AB in a field of a force F{P, Q, R}.

4°, The case of a total differential. If in a certain do-
main (V) Pdx+Qdy+ Rdz=du, then S (Pdx+ Qady +

AB

+ Rdz)=ug—u,, i. e. equal to the difference between
the values of the function u (x, y, 2) at the points B and
A and is independent of the path of integration AB taken
in the domain (V).

5°. Green’s formula

g)(deJrQ dy)=§;§<%—%§>dxdy

transforms a line integral of the expression Pdx-+ Qdy

taken counterclockwise along a contour (C) into a double

integral over the domain (S) bounded by this contour,.
6°. The area bounded by the contour (C):

1
S=7§ (xdy —ydx).
©)
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2387. Given the points A4 (2, 2) and B (2, 0). Compute

S (x4+y) dx along (1) the straight line 0A; (2) the arc 04
©

of the parabola y=’ﬁ; (3) the polygonal line OBA.

2388. Given the points A (4, 2) and B(2, 0). Compute
{ [(x+y) dx—xdy] along (1) the straight line 04; (2) the

(©) .
polygonal line OBA.

2389. Solve Problem 2388 for the integral S (y dx+ xdy).
(©
Why is the value of the integral here independent of the
choice of the path of integration?
2390. Given the points A(a, 0, 0), B(a, a, 0), and

C (a, a, a). Compute the integral S (ydx+2zdy+ xdz) along

(1) the straight line OC; (2) the polygonal line OABC.
2391. A field is formed by a force F{P, Q}, where
P=x—y, Q=x. Construct the force F at each vertex of
a square with sides x=4-a and y=4a, and compute
the work performed by this force acting on unit mass
which is in motion along the contour of the square.

2392. A field is formed by a force F{P, Q}, where
P=x+y, Q=2x. Construct the force F at the beginning
of each quarter of the circle x=acost, y=asint and
compute the work performed by this force acting on unit
mass which is in motion along the circle.

Solve the same problem if P=x+y, Q=x. Why is
the work equal to zero here?

2393. A field is formed by a force F{y, a}. Determine
the work performed by this force acting on mass m mo-
ving along the contour made up of the coordinate semi-
axes and the first quarter of the ellipse x=acost/,
y=bsint.

2394. A field is formed by a force F{x, y, z}. Compute
the work performed by this force acting on unit mass
moving along the polygonal line 0ABCO joining the points
0(, 0, 0), A, a, 0), B(a, a, 0), C(a, a, a).

2395. Write and check Green’s formula for f[(x—i—y) dx —
©
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—2xdy) along the perimeter of a triangle with the sides
x=0, y=0, x+y=a.
2396. Compute the integrals: S [2xy dx 4 x*dy];

2) S[COSdex—stindey]; 3) S anydx+xsec2ydy]
AB AB
along any line from A(l, %—) to B(Q, T
2397. Applying Green’s formula, compute the integral
f[yzdx+(x+y)2dy] along the contour of A ABC with

(C
th)e vertices A (a, 0), B(a, a) and C (0, a).

2398. Determine the area of the ellipse x=acost,
y=>bsint by means of the line integral.

2399. Determine the area enclosed by the loop of the
curve x34x2—y2=0 using the line integral (see Fig. 53
on p. 357).

Hint. Pass to parametric equations putting y=x¢.

2400. Determine the area enclosed by the loop of the
folium of Descartes x*4y3—3axy=0 using the line in-
tegral (see the hint to Problem 2399 and Fig. 83 on p. 386).

2401. With what force does the mass M uniformly dis-
tributed over the upper semicircle 2+ y* =a? attract the
mass m concentrated at the origin?

Hint. Let p be the line density; ds, the element of the
length of the semicircle; 8, the angle formed by the radius
vector with the axis OX; X and Y, the projections of the
S‘kmp.cos(-)ds Y = kmp sin 0ds

r? r 5T

attractive force. Then X = =

(© ©
where k& is the gravity constant.

2402. Given the points A (—a, a) and B(a, a). What
is the force with which a mass M uniformly distributed
along the line segment AB attracts the mass m concen-
trated at the point (0, 0)?

2403. Given the points A (a, 0), B (0, a), and C(—a, 0).
What is the force with which a mass M uniformly distri-
buted along the polygonal line ABC attracts the mass m

concentrated at the origin?
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2404. Given the points A (0, 1), B(2, 5), and C (0, 5).
Compute S [(* +.y)dx—2ydy] along (1) the straight

(©) —
line AB; (2) the arc AB of the parabola y=x2+1; (3) the
polygonal line ABC.

2405. Given the points A (—a, 0) and B (0, a). Compute
the work performed by the force F{P, Q}, where P=y
and Q =y—ux, acting on unit mass moving along (1) the
straight line AB; (2) the polygonal line AOB; (3) the

arc AB of the parabola y—a—-x—
2406. Show that f[ydx—]—(x—}-y)dy] taken along any

(©)
contour is equal to zero. Check this by computing the
integral along the contour of a figure bounded by the
lines y=x? and y=4.
2407. Write and verify Green’s formula for the integral

ﬁ(d—;—?) taken along the contour of a triangle ABC

(€
with the vertices A(1, 1), B(2, 1), and C (2, 2).

2408. Determine the area of the astroid x-acos-"t
y=asin®¢{ by means of the line integral.

2409. Determine the area bounded by the curve y24- x* —
—x?*=0 using the line integral. (Pass to parametric
equations putting y=xt.)

13.7. Surface Integrals.
Ostrogradsky’s and Stokes’ Formulas

1°. Ostrogradsky’s formula:

S(Pcosa—i—Qcosﬁ—i—RcosV)ds:
)

“XSH ) dedyds,

where a, B, and y are the angles of the external normal
to the closed surface S, and V is the volume bounded by

(S
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this surface. The first integral can be written in the form
oF oF OF 7 dxdy .
=+ [PW+Qa—y+R _62—] —F» Where F(x, y, 2)=0
53 oz

is an equation of a surface, and S, is the projection of S
on the plane z2=0.
2°. Stokes’ formula:
cosa cosfi cosy
$(Pdrt+Qdy+Rd=\\| 2 2 2 |gs
ox dy 0z ’

© S| P Q R

where o, f§, and y are the angles of the normal to the
surface S directed in such a way that the traverse of the
contour C is counterclockwise.

2410. Compute Sg[xcosoc—|—ycosﬁ+zcosy]ds over the

()
upper surface of the plane x4y+z=a situated in the
first octant.
2411. Compute

S S [x2 cos (nf\i) 4- y2 cos (n/,\j) + 22 cos (fl/,\k)]ds
(S)

over the upper surface of the paraboloid x2+- y?4- 2az=aqa?
situated in the second octant (where x <0, y >0, z > 0).
Hint. Reducing the integral to the form

dxdy
a ’

S(x3+y3+a22)
(52
pass to polar coordinates. The angle ¢ will vary from
121— to m.
2412. Write and check Ostrogradsky’s formula for the
integral Sg[xcos(n/,\i)-i—ycos (n/,\j)—}-zcos(n/,\k)]ds, ta-
)
ken over the surface of the sphere x?+ y?+ 22 =a?.
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2413. Write and check Ostrogradsky’s formula for the
integral

(§ (x2cos (7, 1)+ 42 cos (1, )+ 22 cos (, )] ds,
(S)

taken over the outside surface of a solid bounded by the
surfaces x24y*+2az=a?, x=0, y=0, z=0 inside the
first octant.

Hint. The double integral over plane faces of the solid
is equal to zero since, for instance, on the plane z=0

both cos(, #)=0 and cos (, J)=0.
2414. Putting in Ostrogradsky’s formula P=x, Q =y,
R =2, obtain the formula for the volume:

V= %SS [x cos a4y cos B+ zcos y] ds.
(s)

Using this formula, compute the volume of the ellipsoid
X2 y2 z‘.’.
Ftepta=1
2415. Putting in Ostrogradsky’s formula P=%, Q=g—‘;
and R=2% (i.e. putting the vector {P, Q, R} to be
equal to grad u), prove that

S:é‘)s Audxdydz= Sés;j—zds,

where Au= %——}-%‘;—l—g%‘ is the Laplacian operator.

2416. Check the formula obtained in the previous prob-
lem for the function u=x*+4y*+22 on the surface
x2+y2+22=a2.

2417. Show with the aid of Stokes’ formula that
S(yzdx+xzdy +-xydz) taken along any contour is equal
(©
to zero. Check this by computing the integral along the

contour of a triangle OAB with the vertices 0 (0, 0, 0),
A, 1, 0), and B(l, 1, 1).
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2418. Write and check Stokes’ formula for the integral

f[(z——y)dx+(x—z)dy+(y—x)dz] taken along the con-
©)
tour of a triangle ABC with the vertices A(a, 0, 0),
B(0, a, 0), and C (0, 0O, a).

Hint. The double integral can be taken over any sur-
face passing through the perimeter of the triangle ABC,
for instance, over the plane x4y+z=a.

2419, Write and check Ostrogradsky’s formula for the
integral S S [x3 cos (nf\ i) +y® cos (n,/\ J)+23cos (n,/\k)] ds

(S)
taken over the surface of the sphere x2- y?4 22=a2.

Hint. Transform the triple integral to spherical coor-
dinates.

2420. Write and check Stokes’ formula for the integral
f[x(z—y)dx—l—y(x—z)dy—}—z(y——x)dz] taken along the
(©)
contour of a triangle with the vertices A(a, 0, 0),
B (0, a, 0), and C (0, 0, ). (See the hint to Problem 2418.)

2421, With the aid of Ostrogradsky’s formula compute

the integral SS(x“dydz—l—y“dxdz—kz“dxdy) taken over

(S)
the outside surface of a pyramid formed by the planes
x+y+z=a, x=0, y=0, z=0.



CHAPTER 14

SERIES

14.1 Numerical Series

1°, A series u,+u,+us+...+u,+ ... is called con-
vergent if the sum S, of its first n terms (as n— o)
tends to a finite limit S: lim S,=S. The number S is

n—>wo
termed the sum of the convergent series. If the sum S,
has no finite limit, then the series is called divergent.
For a series to be convergent it is necessary but not
sufficient that u,—0 as n— oo.
2°. The integral test for convergence of a positive series
with decreasing terms:
if u,=f(n), where f(n) is a decreasing function, and

¢ j A, then a series converges,
ff(n)dn={oo’ then a series diverges.
1

3°. D’Alembert’s test for a positive series: if

lim %z+1 _

n—> o n

> 1, then a series diverges,

< 1, then a series converges,
r
=1, then the problem remains unsolved.

4°, Comparing positive series:

U, ‘gt + .o +u,+ ..., (1)
U4V, FU0F . U .. 2)

(1) If u,<v, and series (2) converges, then series (1)
converges too.

(2) If u,>v, and series (2) diverges, then series (1)
diverges too.
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5°. The alternating series u,—u,+u,—u,+4 ... con-

verges if u, >u,>u,> ... and lim u,=0.
6°. Absolute and conditional go—;lzlbergence. The series
Uyt utu+ .U+ 3)
definitely converges if the positive series
[y |4+ |+ us |+ .o un ]+ ... (4)

composed of the absolute values of the terms of the given
series converges. In this case series (3) is called absolu-
tely convergent. But if series (3) converges and series (4)
diverges, then series (3) is termed conditionally convergent.

Check whether the necessary condition for convergence
is fulfilled:

| 3 5 7

2422, 4 4o+ ottt ...
1 1 1 1

2423. —l-—}—-3—-|—€—|-7+
2 4 6 8

2424. st tagtgt -

Test the series for convergence by means of the integ-
Tal test:

2425. 144 +++3+ ...

2426. 1+ Vli+lfl7+lflﬁ+“'
2427, ottt

2428, |£|2+1+122+1J:32+“°
2429, 14{12+1j2z+1j32+-“
2430. it + g + T+ - -

1 1 1
281 gty T T
Test the series for convergence using d’Alembert’s test:
2 4 6 8
2432, S +g+gtat .-
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2 ]

2433. 1+g+;—!+w+
1-2  1.2.3

2434. l—l-ﬁ-f-m'l‘ e

3 32 33
2435. ]+ ﬁ+22—.5+§—7—+ cee

1, 3 5! 7!

2436. ”2‘+2.—4+2.4-6+2-4-6.8+

0437 1+ 5 4 9 n 13 n
V3 VY23 ' Y33 Vi o

By comparing with a harmonic series or a decreasing
progression, test the series for convergence:

1 1 1
2438.1+V.2_+V§—|—V7+...

| 1 1
2439 I+ ot wmt et -

1 1 1 1
2440. et s T s + s T
2441. Using the method of comparison, show that the
. 1 1 1 . .
series e + T + s + ... is divergent for |x|< 1,

and convergent for |x|> 1.

Hint. In the first case replace x2, x*, x® ... by uni-
ties, in the second case delete the unities from the deno-
minators.

Find the sum of the series:

1 | |

2442. 5+5mtat .-

Hint. Expand u, into partial fractions.
1 | 1

2443. Attt -

Test the series for convergence:

1 1 1
2444 | ——+ ——=——F7+ ...
1 1 1
2445. I—F_'_?_ﬁ-l-"‘
1 1 1

2In2 ~_ 3In3 +41n4""°'
sin 2o sin 3a

2447, T2 02 4 2 L

2446.
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2448. Show that the sum S of the conditionally con-
vergent series l—%—l—%—%—l— ... will decrease by one half

if two successive negative terms are placed after each
positive term, and will increase by one and a half times
if one negative term is placed after each two positive
ones.

Test the series for convergence:

|
2M91+3V3 V3+
1
2450. 14-16T4—§6T4—§5T4-...
3
2451, 1+ e

2452 14342474

2453. 14 s+ 75+ s+ - - -

2454, 4 4ot ot mt ... 2455 24 A 0L
2%&%+%+%+”.2%7L_——+V5
2458. 1 — o4z — 5+ -

| 1 1
2459. lv—W—}—W—m—i— ..

Find the sum of the series:

1 1 1
2460. m+ﬁ+ﬁ+ cee

1 1 1
2461. o3 tazataast -

14.2. Uniform Convergence of a Functional Series

1°. The totality of values of x “for which the functional
series u, (x)4u, (x)+ ... +u, (x)+ ... converges is called
the domain of convergence of this series.
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The function S (x) = llmS (x) is called its sum, and the

difference R, (x)=S (x) S, (x) the remainder of the series.

9> Functional series ) convergent in an interval [a, b]
is called wuniformly convergent in that interval if the re-
mainder R, (x) beginning with some number N, which is
the same for all values of x considered, remains less in
absolute value than any preassigned positive number e:

|R, (x)| < & for n =N ().
3°. A test for uniform convergence. Series (1) converges

absolutely and uniformly in an interval [a, b] if there
exists a convergent positive series

C,+C,+Cy+...Co+...
such that |u, (x)|<<C, for a<<{x<b.

2462. Determine the sum and the remainder of the series
l4x+x2+x3+ ... for |x| <1 and show that it conver-
ges- uniformly in the interval [O, —;— . At what n is the
remainder | R, (x)| less than 0.001 for any x on this interval?

2463. Show that the series

x+x(l—x)+x(1—x)24+x(1—x)3+...
converges nonuniformly in the interval [0, 1] and uniformly
in the interval B— , l]. At what n the remainder | R, (x)| <

< 0.01 for any x on the interval [% 1]?

2464. Show that the series i x2+’f; ... converges

uniformly in the interval [0, l] At what values of n and
any x on this interval | R, (x)|<0 1?

2465. Show that the series x3 +-—— 1+x3 + ﬁaxa)fl— ... con-

verges nonuniformly for x > 0 and uniformly for x >1. At
what n the remainder |R,| < 0.001 for any x>1?

2466. Show that th i ‘ ‘
66l Show ? e series Vl+x+3Vl+3x+
+ + + ... converges uniformly in the

2Y1+6x  3RYI1+7x

10 — 1895
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interval 0<C{x < oo. At what n (and any x>0) the re-
mainder of the series | R, (x)| < 0.01?

Hint. Compare the given series with a convergent nu-
merical series.

1 1 1
CF1 x214 + 9
—?ﬁ—l- ... converges uniformly over the entire number

line. At what n (and any x) the remainder of the series
| R, (x)| < 0.0001?

. 1 1
2468. lShow that the series x(x+l)+ GIDGTY -+

. 1 . .
+W3—)+... uniformly converges to + in the in-

terval 0 < x < oco. At what n (and any x > 0) the remain-
der of the series | R, (x)| < 0.1?

. 1 1 !
2469;Show that the series Vi + Voo + V2“+3x+

+72“—_m+ ... converges uniformly in the interval
0<<x < oo. At what n the remainder | R, (x)]| < 0.01?

2467. Show that the series

14.3. Power Series
Let there be given a power series
aytax+axt4...4ax"+4... N

The number R is called the radius of convergence of series
(1) if for |x| < R the series converges, and for [x|> R
it diverges. R can be found either by investigating se-
ries (1) for absolute convergence using d’Alembert’s test,
or by the formula R= lim [-2& I when all a; are different

n-»o n+1
from zero. In particular, if this limit equals oo, then
series (1) converges absolutely along the entire axis
0X.

A power series converges not only absolutely, but also
uniformly on any interval [a, b] lying inside the interval
of convergence (— R, R).




Sec. 14.83. Power Series 291

Determine the interval of convergence of the series and
test it for convergence at the extremities:

2 8
2470. 1+3%+3’f73-+%‘+...

x X3 X8

2471. l—-sV_2+52V._3.—58V_4—|—...
2x 4x2 8x3

U2 It et o m T

2473. 3" X oa7q, 32T
n=1 n=1

3nxn
— V(3n-2) on’

2476. (1) Exn Ll (2) L e

2477, (x+l)+"‘+ +"‘§rjf+"‘j;3 Fo

2xl—3 (2x— 3)“+(2x—3)3__
Determine the interval of convergence and the expres-
sion for sum of the series:
2479. 1 4-2x4-3x2+4x34- ... X

Hint. In finding the sum S first determine § Sdx.
0

2475.

2478.

x®
2480. x— 3+5 7—!-...

Hint. First find —.

2481, 1 4+3x4+5x247x8 4 ..
Hint. Denoting the sum of the serles by S write the
expression S—Sx in the form of a summable series.

2482, 143 x4 2D mE DD oy

m(m

Hint. Show that ——+-— S, and solve this differential
equation.

10*
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Determine the interval of convergence and test the
series for convergence at the extremities:

4x? 8x3
2483, 1+V__+V95,+ et

X2 x4 x8
2484. 1— 3.2V 2 32.31/3—33-4V’4‘+"‘
™ 10nxn u; x2n=-1
2485. . 2486. —1)n-1 .
2y Al =

x—1, (x—1)2 x—1)3

(
2487 Sl G ot L
24gg, 2l @r P, G DT,

8

Find the interval of convergence and the sum of the
series:
2489. 1 —3x2}-5x*—Tx®4 ...

Hint. To find the sum S first find \ Sdx.

O3

2490. x+% + % 4 ... Hint. First find &,

2491. l—4x+7x2——10x3—|—
Hint. Form the expression S+Sx

14.4. Taylor's and Maclaurin’s Series

1°. Maclaurin’s formula:

[0 =1O+52 x4+ 0004 4R ()

where R, (x)=2-fr(6x), 0<<0< 1.
2°. Taylor’s formula:

fo=1@+520—a+ L@@ —ar+ .. 4R, (0, (@)
where R, (x)= (—xn—la)-f"” [a+8(x—a)).
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3°. Maclaurin’s and Taylor’s series. If as n — oo in for-
mulas (1) and (2) R, (x) — 0, then they yield infinite series:

F)=FO+LO Ly 3)

f0=F@+ 0 x—a)+ L@ —ap+..., (@

converging to f(x) for the values of x at whichlim R, (x) = 0.

n—»w

4°. Series expansions of elementary functions:

x , x2 X3
= l+{i+5r g+ o '

8 x converge to the function
smx-_x—g,-—}—gl——..., i

for all values of x;

2
cosx=l—-—;—!+':—l—... J
(l+x'"=l+%x+m('ln.2_l)x2+... the binomial series;

it converges to the binomial (1+ x)»
for || < 1;

ln(l+x)=x——%2+%3—... converges to In (1 +x)
for —1 <x<1;
X3 xb

arctan x=x —3 +5-—... converges to arctan x for

x<1

2492. Expand the following functions in series of powers
of x: (1) cos (x—a); (2) sin® x; (3) xe*; (4) sin (mx+ g );write

and analyse the formula of the remainder term.

2493. Write the first three terms of the expansion of
the function f(x)=1In(1-+4¢**) in a series.

2494. Using Maclaurin’s formula, write the expansion

of the binomial l+—a—>m in a series of powers of x, and
show that the obtained series converges for |x| < a.
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2495, With the aid of the binomial series show that
for |x| <1

(ﬁ;= 1—3x 4+ 6x2—10x3 ... =
=Zn(n2+l)(—x)”‘1.
n=1

2496. With the aid of the binomial series obtain the
expansion of the function in a series
——}——ml—ix'—l-l—'s—x‘—i'sx“—{— for [x| <1
V142 2 22.21 28.31 T '

2497. Expand the function in a series of powers of x:

() In{EE; (@) In@—3v+x%; (3) In(1—x+x9),

2498. By integrating the series obtained in Prob-

lem 2496, write a series for In(x+1'1+x%).
X

2499. Expand e@ in a series of powers of x—a; write
and analyse the formula of the remainder term of the series.

2500. Expand the function f(x)=x3—3x in a series of
powers of x—1.

2501. Expand x* in powers of x-1.

2502. Expand the function f(x)==—)lc in a series of po-

wers of x4+ 2 and test the series for convergence by means
of d’Alembert’s test.

2303. Expand the following functions: (1) f(x)=cos

P
Pl
in powers of x—=; (2) f(x)=sin3x in powers of x—l—%.

2504. Expand the function f(x)=3}/x in a series of po-

wers of x-+1; test the obtained series for convergence by
means of d’Alembert’s test.

2505. Expand the following functions in series of powers
of x: (1) 2%, (2) cos mx-{-—f:-) ; write and analyse the for-
mulas of the remainder terms of the expansions.
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2506. Expand the function f(x)=x*—4x* in a series
of powers of x-2.
2807. Expand the function [(x)=cos®x in a series of

powers of x—-“a—; write and  analyse the formula of the
remainder term.

2508. Expand the function f(x)=sin—ﬂ§‘- in a series of
powers of x—1.

2509. Expand the function f(x)=1x in a series of po-
wers of x—4 and test the obtained series for convergence
by means of d’Alembert’s test.

2510. With the aid of a binomial series show that

1 sy 13 4 135
m_—l-}— x—l—222l —1—233!x+ . for x| < 1.

2411. Integrating termwise the series obtained in Prob-
lem 2510, write a series for arcsinx.

14.5. The Use of Series for Approximate
Calculations

2512. Write the binomial series for ' 1+x and calcu-
late V/'1.004, 1/0.992, /90 by taking only the first two
terms of the series. Estimate the error.

2513. Write a binomial series for 3,/ 1+x and compute

2/1.006, 3/0.991,. /130 by taking only the first two terms
of the series. Estimate the error.

2514. Compute sin 12° by taking only two terms of the
series for sinx, and estimate the error.

Hint. x=12° or in radian measure x=-1£5=0.2094. De-

termine the upper limit of the error from the condition
x < 0.3.
2515. Dividing the numerator of the fraction by its de-

. . . 1 .-
nominator, obtain the expansion = Z(—l)"'lxg""z;

integrating the obtained series termwise, write an expan-
sion for arctan x.
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1. , .
—= in the expansion arctanx =
V3

—_— -1 x2n-1 . . .
= 2(—1)2""—_'%-, obtain a series for computing m:
n=1

2516. Putting x=

(=1n-!
n=2)73 2(2 —y 5

2517. Compute n by taking the first five terms from
the series of Problem 2516.

2518. With the aid of the series obtained in Problem
2497:

14-x X3 xb
ll'll_x=2 l'/\+—3—+—5-+ ...]

compute 1n2; ln3 1n4- In 6.
Hint. Puttmg =2, find x and so on.

2519. Express the mtegrals gs'zxdx and Se;dx in the
form of series.

X
2520. Write the function ® (x) = { e-*'dx in the form
0

of a series and evaluate (D(—é-) taking as many terms as
is necessary to reduce the error to less than 0.001.

2521. Write the function (D(x)=gf/l+x"‘dx in the
0

form of series and evaluated)(%) taking as many terms

as is necessary to reduce the error to less than 0.00001.
2522, Find the solution (in the form of a series) of the
equaltion y" = x?y for the initial conditions: for x=0
y=1,y =1
2523. Find the first four terms of the serles determin-
ing the solution of the Riccati equation y' =14 x—y?
for the initial conditions: y =1 at x=0.
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2524. Write the solution (in the form of a series) of
the Bessel equation xy”"+y’+ xy = 0 for the initial con-
ditions: for x=0y=1 and y' = 0.

2525. Compute 1/1.005; }/1.0012; 1/0.993; }/0.997;

V'110; /70, }/40 taking the first two terms of the bino-
— 2

mial series (14 x)” = l+mx+ﬁ(m—2|l)—x—|— ..., and esti-

mate the error.
2526. Compute cos12° by taking the first two terms
of the expansion of cosx. Estimate the error.

2527. Putting x=% in the expansion of arcsin x (Prob-

lem 2511), compute m by taking the first three terms of
the series.

Hint. First compute the first of the rejected terms, and
then express each of the first three terms of the series as
a decimal fraction with the error not exceeding the first
rejected term.

2528. Using the identity % = arctan%+ arctan%, write
the expression for n as the sum of two infinite series.

2529. Putting xz% in the expansion of In(l4x),
obtain the formulas:

() In(N+1)=InN + [%—Q—;Iﬁs—h‘,a— .. ] ;
(@) log,, (N+1) = log,, N+0.4343 [%—Q—A‘,ﬁg—h'la—h ]

2530. Knowing In2 = 0.6931, compute In5 and Inl10
and show that the modulus M =ﬁz0.4343.

2531. Compute log,, 101 and log,, 102.
2532. Determine the length of an elliptic arc in the
form of a series.
0.5

2533. Compute S V'1 4+ x3dx taking as many terms as

0
is necessary to reduce the error to 0.001.
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x

2534. Determine the function @ (x) =§cos i‘;;-dx in the

form of a series and evaluate @ % to six decimals.

2535. Write the first three terms of the series determin-
ing the solution of the equation y’ = x2+ y2, the equation
satisfyin%/the condition: y =0 at x=0.

2536. Write the solution (in the form of a series) of
the equation y"+4xy =0 for the initial conditions: for
x=0y=1 and y' =0.

2537. Write (in the form of a series) the equations of
a transition line along which the curvature & increases
in proportion to the length of the arcs.

Hint. Find ¢ from the condition %:%, where C is
a constant, and then solve the equations: dx =dscos¢

and dy=dssin¢.
14.6. Taylor's Series for a Function of
Two Variables

The Taylor series for a function of two variables can
be written in three forms:

Fla+h, y+0=F @ o)+ [h g+ 5] F e 9+

ta etz Fe o+ O
Fx, ) =F (@ 0+ [6—a 5+ u—b 5] F @ b+
+y[e—agtu—b g F@ o+...  an
Y=Yo+0 Ay

2538. Construct the expansion of the function F (x+h,
y-+1) using the Taylor formula (I) if F (x, y) = x*+ xy + y2.

2639. Expand the function F (x, y)=x3+ 2xy? in powers
of (x—1) and (y—2) [formula (II)].
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2540. Expand the function F (x, y)=In(x—y) in powers
of x and (y+4 1) keeping the terms of the first and second
orders and the remainder term [formula (II)].

2541. Expand the function F(x, y)= sin(mx—+ ny) in
powers of x and y keeping the terms of the first, second,
and third order and the remainder term [formula (II) at
a=b=0].

2542. Expand the function e=*'-»" in powers of x and
y lformula (II) at a = b= 0].

2543. Determine the increment Az of the function z =
= x2—xy+y? [formula (III)] and compute it if x varies
from 2 to 2.1 and y from 3 to 2.8.

2544, Determine the increment Az of the function z =
= cos (ax—by) keeping the first two terms of formula (III)
and the remainder term. ’

2645. Expand the function F(x, y) = x?y in powers of
(x—1) and (y+1) [formula (II)].

2546. Expand the function F (x, y) = arctan ;;’- in powers

of (x—1) and y keeping the terms of the first and second
orders.

2547, Expand the function z=y* in powers of (x—2)
and (y—1) keeping the terms of the first and second
orders, and compute 1.1%:1,

2548. Determine the increment Az for the function z ==
= x?3y—y? and compute it to the fourth decimal if x varies
from 2 to 1.99 and y from 5 to 5.02.

14.7. Fourier Series. Fourier Integral

1°. Definition. A function f(x) is considered to satisfy
Dirichlet’s conditions in an interval [a, b] if, inside this
interval,

(1) it has a finite number of discontinuities, all of
them being of the first kind;

(2) it has a finite number of extrema;

(3) for all points of (a, b) f(x)= f(x—O)-;-f(x+oz.
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2°. A function f(x), satisfying the Dirichlet conditions
on an interval [—/, [], can be defined for all points of
this interval by the Fourier series:

f(x)———{—z [a cos 'mx-l—b sin 'mx] 8]
where

1
=—;—S (x)cos%‘idx, b=+ Sf(x)sinﬂdx (2)
eyl

If f(x) f(—x), i.e. if f(x) is an even function, then

n =

Fo) =3+ aycos = 3)

n=1

If f(x)=—f(—x), i.e. if f(x) is an odd function, then
a,=0 and

f (%) =2 b,sin 7. (4)

n=1

If a function [(x) defined by series (Vl) in a closed in-
terval [—1, [] is continued according to a periodic law

with period 2/ and it is required that f (/)= f—(l—:w

_then this function will be determined by serles (1)
throughout its entire length.
3°. If a function f(x) is absolutely integrable in the

+®
interval (— oo, o0) <i.e. if S | f(x)]dx converges> and
satisfies the Dirichlet conditions in any finite interval,
then it can be represented by the Fourier integral:

©

f(x)zj’i—bgda S f(t) cos a (x— ¢) dt=S[a(a)cosax+
-0 0
+0b (@) sinax]da, (8)
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where
®

a(o) =~ S f(tycosatdt and b(@) =~ ( f(t)sinatdt. (6)

®

Construct a Fourier series for the following periodic
functions with period 2m.

2549. f(x)=1 for 0 < x<m and f(—x)=—f(x). With
the aid of the obtained series show that
1 1 1 11
l—§+g—7+...=T.
2550. f(x)=x for 0<<x<Cn and f(—x)=f(x). With
the aid of the obtained series show that

3

l+3—12'+%+7_lf+...=-8—.

2551. f(x)=x% for —n<{x<{n. With the ald of the
obtained series show that

1 1 1 )
M l—m+m—gmt... =’%$

l 1 1 3
@) I+m+tgatmt... ==%.

for —n<x<O,
x for 0<<x<<m.
Expand in a Fourier series the following periodic func-
tions with period 2!:
2553. f(x)=1 for 0 < x <! and f(—x)=—f(x).
2554. f(x)=1—x for 0<<x<1, f(—x)=f(x), I=1.
55 0 for —1 < x<0,
2555. f(x)= x for 0Lk <.

2556. A function f(x) s represented graphically (Fig. 37)
and continued according to (1) an even; (2) an odd periodic
law with period 2/=4. Expand each of these functions
in a Fourier series.

2557. Heat propagation in a lgar of length [ is deter-

. . 1 d 0
mined by the equation E’_%zﬁ;’ where u (x, t) is the

l b4
2552. f(x)=\ .
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temperature, and the following conditions:
(1) boundary: u=0 for x=0 and for x=1;

x for x < é,
(2) initial: u= at t=0.

| —x for x>7

Determine the function u(x, ) using the Fourier method.
2558. Longitudinal oscillations of a bar of length I,
whose one end (at x=0) is fixed and. the other (at x=1)

Y

g / 2 x
Fig. 37

2
Is free, are determined by the equation Z‘,—%:% , Where

u(x, t) is longitudinal displacement, and the following
conditions:

(1) boundary: u=0 for x=0; g—;‘=0 for x=1;
(2) initial: u=F(x), 2 =0 for ¢=0.

Determine the function « (x, ¢) using the Fourier method.
2559. Transverse oscillations of a bar of length [ resting
on supports at both ends are determined by the equation

1 0% 0%u
@ o toa =0
and the following conditions:
(1) boundary: =0 and ng‘;=0 for x=0 and x=/1;
(2) initial: u=F(x) and 2£=0 for t=0.

Determine the function u (x, ¢) using the Fourier method.
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In Problems 2560 to 2562 write the Fourier integral
for the given functions:

1 for 0<x<1,
2560. f(x)={ 0 fZ: );>1 and f(—x)=—Ff(x).

’1/\
|
2 =1 oL/
\i/,' 7 X
| :
]

Fig. 38

2561. f(x)=e-P* for x>0 and f(—x)=f(x).
2562. f(x) represented graphically on the closed interval
[—2, 2] (Fig. 38) and equal to zero outside this interval.

Expand the following functions in Fourier series:

2563. f(x)=”2—x for 0 < x<<m;

f(—x)=F®), Fx+2n)=Fx).

2564. f(x)=|sinx|; with the aid of the series obtained

I l 1 1
show that F§+ﬁ+5_-'i+ =g

{ x for 0<x<1'2- ,
2568. [ (x)= and f(—x)=—Ff(x).

n—x for %gxgn
2566. [ (x)=x for 0<Cx <
f(=x)=Fx), f(x+2)=F(x).

1 for —1<<x<<0,
2567. f(x)={ cior 0<x<l and f(x42)="{(x).

2568. f(x)=e* for —l<x<! and f(x+2l)=f(x).
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2569. Using the Fourier method, solve the equation
2 2
%—:% that satisfies the following conditions:

{ for x=0u=0, for x=mx g—"———O;
X

for t=0 u=f(x) and %:0.

2570. Write the Fourier integral for the function

{ l for —1<x<1,
)= 0 for |x|>1.



ANSWERS

1. AB=9, BC=—6, AC=3, 9—6=3. 3. 5(2+ V'9), 90°, 45°.
5 20.6. 5V 2 7. (5 5), (5, —3). 8. B(0, 2) and B(0, —4)-
9. x=a+ VY c*—b% for ¢>|b| two points, at c¢=|b| one, for
¢ < |b|none. 10. M(5,0). 11. Centre (1, —1), R=5. 12. prox AB=—2,

— - — — —
proyAB=—4, |AB|=2 V5. 13.B(5,8),| AB|=3 V2. 14. B(4, —3).
15. —4, 1, 3. 16. 18 V2. 17. (0, 2.9). 18. B(4, 0), B,(—8, 0).
19. Centre (2, —1), R=5. 21. X=7, Y=—1; 5 V2. 22. M(l, 4).

23. M (13, 16). 24. x="11TM9% 96 96 om from the centre of 100-g
my ~m,

ball. 27. (1, 2.5). 20. OC=5, OD = ;/2 . 80. (3, 3). 31.95q. units.

33. 13 sq. units. 34. (1, 3) if the forces are in one direction, and

(25, 27) if in different ones. 35. (1, —1). 36. % 87, x=x—’+"é—l+"—’;

y=y_1ir—y;i¥-3. 38. (%;- g) 39. C,(3, 0), Ca(—7, 0). 40. M (2,—6),
NG, 8), P(—4, 1), k=-;—. 42. P+ —6x—8y=0, A and O lie on
the circle. 43. x—y—2=0, D and E lie on the line. 45. x2+ y2>=38.
46. y= + x. 47. %—}-y =1. 48. y=':—2—x+2. 49. y= 1 2x. 51. (1, 0),
(3, 0), (0, 3). 53. y2=8 (x—2). 54. 2r—y-+5=0. B and D lie on the

line. 55. x24y2=4. 57. y=’£:-+1. 58. V{x+2°F(y+2)3°—
— VE—22F(y—2°2=4 or xy=2; at x=j:-;—. +1, +£2, +4,
y==+4, £2, +1, :!:%; the curve can be plotted by these points.
59. y=x+3, y=—x43. 60. y=x V) 3—3, y=—=x}) 3—3.

62. y=—1.5x 63. (1) k:%, b=—2; (2) k:—%. b=0; (3) k=0,
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b=-—3; (4) k=—3, b=3. 68. k=1, b=1, y=x-41. 66. (l)%+
y __q. X Y _ 0 Ay — 0 ye=de dy—
+:2.—l, ) _4/3+2 =1. 67. y=0; 4x—3y=0; y=4; 4x—3y +

—_ —_
112=0. ss.%-%:-.lor -5 %y=1. 69. proxAB=8, proyAB =6,
—
|AB|=10. 70. A and C are on the straight line, B is above and D
below the straight line. 71. The inequalities define: (1) all points lying
above the straight line y=3x-1 (a half-plane); (2) all points situated
below the straight line y=3x-4-1; (3) all points located both above
and on the straight line y=4—2x; (4) the points lying below the
straight line y=4—2x. 73. x—y=+d a. 74. In ¢ seconds the coordi-
nates of the point M will be: x=a-+mt, y=>0-nt¢. Eliminating ¢,

x—a_y—b N ay
—="——. 75. (1) y=xV3—2

@2 y=—xV 3—2. 76. k=1, b=5. 77. x+y—4=0; x—y+4=0;
- = XL _ XY _ XY
y=3, y=0. 78. H + 3 =+1. 79. 7 + 3 1 and —2+—6—1’

we get the equation of the path:

— —_—
80. y=4+2(x+3). 8. AB+4 VY 5, proxAB=4, proyAB=S8.

3 o o o o a®>—b?
82. (1) arctan —; (2) 45°% (3) 45°% (4) 0°% (5) 90°% (6) arctan 5ab

4
86. 5x+2y+4=0; 5x+2y=25. 88. x—3y+2=0; Sx—y=4;

3x4y=12. 89. 28° 12°30" and 139°30". 90. y=3x and y=—-7x

91. x—5y+6=0; 5x+y=—4. 92. y=2x—6; y=—2x+6. 93. (3, —1),
3,3); <_ % %) , 45°, 71°34', 63°06. 94. (% %) 95. AE: 2x—5y=
=—4 AD: x—2=—2; V'29. 96. A=18°26"; B=26°34"; C=135".
97. x42y—11=0. 98. tan A=%; tan B=tan C=2; S=16.
99, (1, —1), (% _2). 100. 2x+y=—4; 2x—y=—4; 2x+y=4.

103. 2.8; 0; 1.4. 103. 1213 . 106. k=12, 107. Two straight lines

parallel to the given one: 4x—3y +20=0. 108. 8x—15y+6=0;
8x—15y=130. 109. x—y=0 and x+4+y—4=0. 110. 3x—y=12 and
x+3y=4. 111. x+y=2 or 4x-4y—8=0. 112. 3lx-4 26y=—21.

113, x+3y=2. 114, YT0. 115. 3r—dy-10=0; x=2. 116 h=—1o_

Y3’
117. Straight lines: x4y=0 and x—3y=0; distances: d;=2 V"2,
dy=0.4 Y'10. 118. A pair of straight lines x+2y=0 and x+2y=10.

119. x4-3y=0 and 3x+y=0."120. 1lx+22y=74. 121. y=-—% and
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y=——%x. 122, x+2y=4. 123. y=0; 2x+43y=—4 y=—4;
2+3y=0; x4+2y=—2; y=—1x; tana=%. 124, 18°26’, 108°27';

2b% a? . oRO’ oRor
SA:T' 125. 5 s units. 126. A =36°2; B=127°52’,
127. 4 (V104 V' 5); 20. 128. 2x—y+ 6 =0; x— 4y =4; 2x—3y+2=0.
129. y=x-+42; x—5y=6; y=—x; 2y=x. 130. )y 10. 131. The point
moves along the sides of a square bounded by the straight lines:
6 3 19
—_ = = . 33. = = . . —_ -
x—3y=+5, 3x+y=+5 133. h=h, Vs 134 (6’ 5),

—%, 15—7 135. (4, 5). 136. (0, 2), (4, 0), (2, 4), (-2, 6).

137. y—x=2; x+2y=4; 2x+y=8. 138. B(2, 1), C(—I, —5).
139. y=2x—|—6,F2,4DAB ~ 53°. 140. x2 -+ y? 4 8x—6y=0; A and O

are on the circle, B is outside it. 141. x24 42+ 4x—6y=0. 143. (0, 0),
(—2.5, 2.5). 144. (x—1)24-(y—1)2=1 or (x—5)24-(y—5)2=25.
145. tana=—2.4, a=112°37". 146. (x4 4)*4 (y+1)2=25. 147. x24

+ y2—8y=0. 149. y=ixand y=0. 150. y>=x (a—x). 151. (x—3)24

3.
+y2=9. 152. x2+< —%>2=%. 153. x24 y2 =a?. 154. x4 42 = ax.
155. X2 g2 —6y—9=0. 156. (1) (3, —2), R =6; (2)(—3, %) R=4
@) (0, — 7) R= T 157, 2 g2 4y =0; (0, 0), (2, —2), (—2, —2).

158. x2+-y2+ax+ay= 0 159. y=0, 15x+8y=0. 160. 90°. 161. x4 y=23.
162. x24-y*+ax=0. 163. (x—2)24y?=16. 164. x24y2=2ax.
s h—o. = _ V3 RPN
l6a.a_4,b—2,c——2]/3,e——T. 166. (1) 5z +5 =1 () g+g =1
167.b=1.4;3; 4; 4.8; 5; 6 =0.96;0.8; 0.6; 0.28; 0. 168. a= 150,000.000 km;

_1 2o, V3 : _
3_6—0.A169. wtT=1 =5 i r=4—V'3 =4+ V3.

170. S+5g=L r=1L =5 171 4 V3 172. V04.
2 V‘ 15 ye3 X2 g2
173. (7, :l: > 174. (_T' iT). 175. %—I—T——l.
28 rye_ 2 2ye_
176. % .4 +4 3 ® —1. 178, a2+b2 =1 or Jp+Zg=1.179. %=1,
2R x2 yz_ L ]/_3 _ _ ST
or =-75=1.180. 5y 4=l e=—5—,r=8,r,;=9. 181. V 2(aF0%).

4V 2 1

182. (i —, 3) and (0, —1). 183. (=5, 7). 184. (x V15, £1).
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185. x2 4 442 =16. 186. —+—_1 187. a——V;— 53°08’. 188. r=1,
- __ﬁ_. Xy v
ri=9. 189. (1) =1 @ H—F=" 190. % 12.- =0 2V 3 and

2 —_—
6 1 3. 191. '13_'9“=" 192. x*—y?=a2 193. (0, £ a} 2); 90°
Ve b ab
2

194. y+4+2=+ x. 195. b; 2 arctan e 196. -7172_-—_11—2; b>a.

2 2
197. (1) e=2; (2) e=seca. 198. y<<—3, y < —|x|. 199. "T_ﬁ=|

y2 x2 2
200.x2—§=l (for x> 0). 201. x2—y2=aqa2 202. F_b—2=l'
3 2 2 2 -
203. %-—%—_—1 (or x——y—=—1). 204. (0, 0) and (6, +2 ¥V 3).
208. y=;{;—%(x+5). 206. (—9.6, is/sl/u 9). 207. (£ V6, £ V 2).
4 3 y? X2y
208. (—4, 3) and (-7, —7) 209. 16 —=1 210. g5 =1
. 2
(for x > 0). 211. y=3—%. 212. f2=8(x+2). 214. (1) y2=9x
(2) y=—x2. 213. y=l;i_2x2. 216. (x-——-) +y2=p% (%, :I:p).

2 —_
217. =—’f2—. 218. (3, +3 ¥ 2). 219. 40 cm. 221. yP=px.

222, y?=4ax and y=0. 224. y?=8 (2—x). 225. y_x——— 0, (2, 1).
226. (1) y?=—A4x; (2) y=x2. 227. y2=—23x. 228. (0, 0), (6, £2 V" 3).
229. x=0; x+y+2=0. 230. y=—Y 3(x+1); %} 231. r=7.4
d=9.25. 232. Directrices x=+3.2; e=1.25; r=10.25; d=8.2.

2
233. 3‘4—+y2=1. 234. % —y2=12. 235. Conjugate diameter y=——%;
‘a,=b;= V'10. 236. Conjugate diameter 4y+x=0; 31°. 237. The
equation of the diameter y—%x; its length V 2 (a?--52). 238. y=1.5x.

239. y=2. 240. 8x—9y-26=0. 241. y=2x+4-3. 243. (1) x1:2 V 3y=8;
(2) 2x £ y=1; (3) x+£2y=—2. 248. x—y=+5. 246. y=+ 2x6.
247, x+y=Va*Fbi. 249, y=2x + 4 V2. 2s0. Equation of the
normal MN: a?yox—b%xoy=c?xyy,. Putting y=0, find the abscissa of
the point N of intersection of MN and OX: x,=e2x,. Then
FN=x—¢elx,=er, F\N=c+e,=er,, i.e. the normal MM divides
FF, in the ratlo riry, and therefore is a bisector. 252. The normal to
the parabola y?=2px has the equation yox-l—py Yo (p+xp). Putting

y=0, we find x;=p+x,, M=x,—————+xo-— FM,ie. AJFMN=
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= / FNM. 253. (+3.2, +24). 254. The diameters y=x and
yz-i; the angle 59°02’.  255. y=%. 256, 4x—y=06.
257. arctan3 A2 71°31". 259. x+y+2=0. 260. (1) O.(l, 2),
@) tantp=%. 261. (5) X24-4Y2=16; (6) Y2=4X; (7) X2 —4Y2=¢4;

) ycé X2, 262. (1) X2-4-4Y2=16; (2) X3 —4Y2=16. 263. X2—Y2=8.

264. (1) XY =6; (2) XY = —6; (3) XY =4; (4) XY = —6. 268. Equ-
ation of the ;et: y=16 (x — x2); at x=075m y=3m.

269. y=b (l—%). 270. x4y +4x=0. 271. (1) 45°% (2) arctan2.

2
272. y=uxtan tp—Tg:c%—(—'; . 273. y*==24x43x3 (hyperbola).
1)

3 3
275. (1) Ellipse; (2) hyperbola. 276. (1) —)-(-5——}——)%—-1, 0,8, —1);

(2) X2—Y3=9; (3) Y2=2X; (4) X2=4Y. 277. X2+ 2V%=4. (I, )
and (—1, —1)." 278 (rh1P =4 279, (x—3) 4 (y—FP=2.

—9\2
280. x+3y=0. 281, 2 =4 (x+4). 283, i’f—wi+—ly-2-n 1.
284 24 g2 —ax—by=0. 285. ¥ O . 28. The base AB=2a,
a a?
altitude OD =——, area . 287. Take for the origin point O
Vv Ve gin p

which divides AB in the ratio AO:OB=m, and the straight line OB
for the axis OX; let OB=a, then the coordinates of the points A and
B will be: A(—ma, 0), B(a, 0). The equation of the required line
(m—1)x2+(m—1) y*=2max; for m#1 a circle: x2+y2=nf'_n_al
for m=1 a straight line: x=0. 288. Take O for the origin, and OB
for the axis OX. The equation of the required line: (a—¥b) (x24y2)=2abx;
for a # b a circle: x’—]—yzzaQbe
289. 2 (k24?4 y?) =a? (k24 1); an ellipse for k # 1, a circle x2+y2=a?

2 2

for ke=1. 290.-’fi25'9f+%=0. 291. 3a2 V3. 202. arctun%z 36°52".
203. (£ a, +a). 204. A(V'6 0); B2, —2), C(—2V 2, V'2); the
area of AABC=V 2+ V 3+ V6. 206. 2V 2, y=x—2.

2
297. 2+2ﬁ. 208. (x—%)z_f_y%_—_-glie. 299, ax—by-+a®+b2=0;

jelab]
Veie
4 (y—x)=(y-+x) (y—x); hence (1) y=x; (2) x4 y=4; consequently,
the points of intersection of the parabolas lie either on the straight
line y=x, or on x4 y==4; we find: x;=2; xg= —6; the chord length

X3

x; for a=b a straight line: x=0.

300. Subtracting the equations termwise, we get
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(x—2)?

8 V2. 801.30. 302. x2+fy?=a(x+y). 303. T —+Hyi=1 an
2 __
ellipse with the centre (2, 0). 304. xy—4. 305. y=£__6g+_25,
J— 2 2
306. X2 —Y®=4; 0,(2, —3). 307. “—2225&—%=1, a hyperbola

with the centre (2.5, 0). 308. Let M(x: y) be a point of the ellipse.

Then FM+4F M=AF+ AF, or V(x—a)?+(y—a)+

+ V(x+a)2+(y+a)2=4a; 3x2 —2xy+3y*=8a?, on rotating the
1

2
0. va 2 g2 . = = .
axes through 45° X% 2V2=4a2. 309. cos ¢ Viftanie V5 '

1
sin p=—=; the new equation X®—Y2=4. 310. 3x2 4 8xy— 3y == 20;
? Ve q +8xy— 3y’
by rotating the axes through the angle q>-=arctan% it 1s reduced to

the form X2—Y%=4 (see 309). 311. y2=2px+{ (e2—1)x3. 313. (1) a
pair of straight lines y=+ 2x; (2) a point (0, 0); (3; an imaginary
circle; (4) a point (3, 4); (5) a pair of straight lines x=0, y= —x;
(6) a pair of straight lines y=+ ;1; (7)2a pair of straight lines y=x

and y=—. 814. (1) (1, —1), ')t(s‘+T=‘" @ (@ 1), X3—Yi=9;

3
X2 yﬂ X' y’
2 2 —_— —=] — — —— I
(3) 2X3 45XV 2V2m8. 315, (1) ptp=1i @) G~ L.
2 2 2 2
316. (1) XT+YT=" @ XT“YT=" 817. (1) V=2 VBX;

(2) a pair of straight lines x—2y=3+1. 318, (1) 8y=2x—74(x—2);
(2) a point (2, —I); (3) 4y=—2x—3+1. 3819. 4X2—Y2=8; centre
(2, 0); tanp=—1/2. 320. 5(x—1)2(y—2)2=9. 821. Rotating the

X2 a
axes through —45° we get; Y =-——-+———. The equation
g g V3 + V3 q

l/x—}- V?/: V a defines an arc AB of this parabola (Fig. 91), on
which x<<a and y<<a. 322. (x—m)?+4-(y—n)2—¢e? (x cos oty sin a+
49)?=0; A+C=2—¢? 6=1—e? 323. (1) A pair of straight lines
x £+ 2y=0;, (2) a p(z)int (2—2, 2); (3)ﬂa paﬁir of straight lines y=1x,

x+6y=0. 324. (1)%+T=1; @ S5 —5=1- 325. (1) V3=t Vox;
(2) straight lines: x4y=2+ 1. 326, (1) y=x—24%1;

(2) 3y=x—5 £ 2(x+1). 327. (1) 7x2—2xy-}+T7y® —48x—48y+| 144 =0;
(2) x2+4xy-4y2+6x+6y—18=0. 328. (x—y)?—2a(x+y)+a%=0;
Y:—a V2X. 329. x2—4xy—y?—4x+8y—12=0; X2—Y3=3.2 V5,

_ . __asina _asin (f—a)
35 () r=groes @ r="g0 336, r="G
337. r=2acos ¢. 338. (1) rmay=5 at @=135° 315% rpia=1 at
@=145° 225°% r=3 at @=0° 90°, 180° 270°% (2) rmax=3 at @=0°
120°, 240°% rpmin=1 at @=60° 180° 360°% (3) rmax=2 at @=90°,
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210°, 330°% rmin=0 at ¢==30° 150°, 270° 339. (1) ryax=a at p=30°,
150°, 270°% r=0 at @==0° 60° 120° 180° 240° 300°% (2) r=a at
¢=45° 225° r=—a at @=135° 315°% r=0 at ¢=0° 90°, 180°,

2

° i 2 a H =q;
270° (see Fig. 87 on p. 386). 340. (1) r cos 5 @) r=aq;
3) ra#; (4) tanp=1; (5) r=a cosq; (6) r?=a? cos 2¢.

cos (p—o,
841. (1) x=aqa; (2) x2+ y2=2ay, (32) xy=a?; 4) x+y=2a;
2 2

(5) (¥-Fy2—ax)®=a® (x*+y2). 342. (1) —2’55—4—%2=1; @ T"g_y_= 1

9
2= =2 — =2 % sing)
(3) y2=06x. 343. r SNy +b. 344. r=0B + AB oS ¢
—0)2
in Cartesian coordinates y2=££2Ta)_ . 345. FM2=r2?+{qa2—2ra cos g;

F M2er24a®42racos ¢; FM?2 FiM?2=(r24-a?)?2—4r2a2 cos? p=0b%;
hence r4—2a?r? cos 2p=b*—al. 346. r =a (l-4-cos ¢); (x2-+y2—ax)?=
=a? (x2+4y?). 347. Let C be the centre of the fixed circle, C; the
centre of the displaced circle, and M (¢, r) a ‘moving point. Since

£ 0CCy= / MC,C=¢ and CO=CIM==—;-a, then OM || CC;. Projec-

ting the polygonal line COMC, on CC,, we get: igl' cos q)—l—r—f—% cos ¢ =a.

Hence r=a(l—cos ¢). 348. (1) rpax=>5 at =0° 180°% rpjn=1 at
@=90°, 270% (2) rmax=4% at p=90°% 210°, 330°% ria=2 at @=30°,
150°, 270°% (3) r=a at ¢p=0° 180°% r= —a at p=90°, 270°% r=0 at

o o o o . ab sin (B—-d)
¢@=45° 135°, 225° 31b°. 350. r= TS G —0) +65m B—9)

2 2
331. (1) —’%——l—y2=l; 2) -)—64—-—-_1/2=I; () y*=x. 352. r?==2c? cos 2¢;

(x2+y2)2=2c% (x*—y?. In Fig. 84: ¢ V 2=a. 353. r=b-acosq.

354. From A OAM: r=0M=O0Acos¢p, but from A OAB:

OA =2asin@; hence r=asin2p. 358. Let point A be on the axis

0X, point Bon OY, and £ OAB=¢. Then x=BM cos ¢t = BC cos?t =

=qgcosdt, y=AMsint=ACsin?f=asind¢; thus, x=acosd¢,
2 2 2

y=asind#; hence x® +y°® =a®

6 2 — px? 3y2-1-x2)2=—=
360. y p+x.361.(y+x)

= 4x? (a2—y?). 362. In polar coordinates: r=0OM = AB=BD sin ¢ =ax

3
Xtan ¢-sin @; in Cartesian coordinates: yzz-—-axTx (Fig. 89). 365. Denoting

the angle between OA and OX by ¢, we find x=2acot ¢, y=2asin?¢,

o _ 8a3 x=a (t—sint),
Eliminating, ¢ we get Y=eria 367. {y=a(l—cost).
268, {x_—_a(cost—I—tsmt),

x
y=a(sint—t¢ cos t). 369. y=x cot a’
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x=(R-r)cost—r cos M ,
870. R g ;
y=(R+r)sint—r sin (_-l;_r)_’ where ¢ I8 the rotation angle
x=(R—r)cost+r cosR’-r ¢,
of the centre line. 371. R—
y=(R—r)sint—r sin Lt

874. X=X;=8; Y=V;=—2 OM=V8ri=2)T.

375. V8+2V 3. 38m. () c=“‘;b; @ a=2—b.

2 —_— —
380. =§(a—b). 881. m+p=n; OB=3(m-+n); BC=3 (n—m);

-— —_— —_ —
EO=3(m—n); OD=3(2n—m); DA=6 (m—n). 382. AC=2(n—m);
OM=2n-+m; ON =3m+n; MN=2m—n. 383. 6 V3. 384. X =
- X4 X, + Xyg=—3; Y=YY;=6 OM=y9+36=3V5.
885. (1) a=3(c—b); (2 c=2b—a V3. 386. OM=r=5YV%
cosa=05 )2, cosp=—03V2 cosy=04V2 387 r=7,

cosa::%. 388. P ~52° or 128°. 389. M(3 )Y 2. 3, -—3),

r=3(V 2i+j—k). 390. u—=2i—6j+3k u=7. 391. OC =i —2j+k,
OC=V'6, AB=k—4j—i; AB=3 V2. 392. The end-point

B4, —2, 5) or B,(4, —2, —7), cosa:%; cosﬁ:—%; cos y =
=+ S 30 a=20—0.8c. 394. u=3 )5, cosa=~—2:.
7 3V's
895. cos a=cos P = cos 7271—3—. 396. 45° or 135° 397. D(4, 0, 6).
398. c=2b—2a. 399. 135° 400. B=C=45° 401. costp=;_=
Yio
= 0.316; ¢=71°35'". 402. cos @:%:0.894; ¢ =~ 26°37'. 403. 60°.
4V72

404. arccos 0.8. 405. 90°. 406. pr a= 3 407. 2. 408. (1) 2 4

+ V'3 (2 40. 409. (a+b)>=a2+b%42abcos@ (law of cosines);
(a+b)2+(a—b)2=2a2-}-26% (property of diagonals of a parallelo-

gram). 410. 7. 411. R=V (@ tb+ec+d2=100V 412 Y2~ 253 N.
412. V7 and VT3, 418, cos (@, m)—-m—mm _ 5

Vem—_np1 2V7.
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cos'(a/.,\n)=——2_—. aa. 2 4, OM=2(i+j+2k); ON =
V7 6
=2(i+2j+k); cos 9=—5-. 416. cos:p:i_, 417. cos ¢=0.26 ¥V 10;
6 V7 ‘
@~ 2442, 418, D(—1, 1, 1y, @=120°. 419. Pfab=Ai§D:

=—6. 420. OM=V@n+tmeE=V 7, ON=V@minr=1V 13

—_— —
cosq=O0MON _ 17T __ 17 0.891;p—27° 421. 120°. 423. 60 J,

OM-ON 2 V91 19.08
472 - 1
cosO:T. 424. a V6. 425. cos p=—. 426. a X b equals:

(1) —6j; (2) —2k; (3) 61—4j+6k. The area equals: (1) 6; (2) 2;
() 2V22. 427. 245 428. V21 sq. units, h= V42
429. (1) 2 (B—1); (2) 2aXc; (3) axc; (4) 3. 430. The area of a paral-
lelogram constructed on the diagonals of a given parallelogram is
twice the area of the given parallelogram. 431. 50 2. 432. 1.5 V2.

sym

433. 3V'17, Sp= $q. units. 434. S, =7 V'5 sq. units, BD =

_2 13/21 .435. [a+b|=|a—b|=V 5 S= V6 sq. units. 437. 1.5.
438. V=51, leit-handed. 439. V=14 cu. units, H=_ 1:5 .

441, c=5a-+b. 443. 252. 444, V=14 cu. units, H= VT

445. c=a+2b. 446. V=|(a-}b)[(b+c)X(a+e)]|=2|abc)|.

447. (mXn)-p=|mxn|-1.cos o =sina cos a:é— sin2c.  449. 52.

451. cosa:z—,?—, cosﬁ=£, cosy:%. 462. x-+4y—22=2.

453. x4+ y=20. 464. x—y+z=a. 455. 2y —32+7=0. 456. 3y | 22 =0,
= X4z = *.y

457. 2x+y=0. 458—. a+c =1. 459. x+y+2z=4. 460. 3 +3 +

2

2 2 1 o1 1s
+—2—=1. 462. cosa=§,cos[3=—§,cosy=§. a=48°11’,

P=13149", y=70°32'. 463. x—2y—3z-+4-14=0. 464. 3x—4z=0.
465. x+y=4. 466. %+%+%=1. 467. (1) 45°% (2) 78°30'.
468. x—2y—3z=4. 469. 2x-43y--4z=3. 470. 2x+}y+z=a.
471, 2x—2y+2=2. 472, 2x—y+42=>5. 473. 3x—y =0 and x+3y=0.

474. 3. 475. V6. 476. 2V 2. 477. (1) x—2y+2z=11 and x—2y +
+2z2=—1; (2) x4+y—22=9 and x+y+2=0. 478. (1) x—8y+ 92 =
=2; (@ x—y+42=0 and x—y—z=0. 479. (1, —1, 2).
480. 3x—4y--z=11. 481. 2y—52z410=0 482. The equation of the
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plane: x4 y—2z==0; the angle between this plane and the plane

6 la]
2=0: cosp=—— ~ 0.8165; ¢=35°15". 483, —=. 484. =tz
abe
485. . 486, 2x 42y +2=20 and 2x42 4 =0.
e +2y+ x+2y+ 2+

487. Tx+14y+-24=0. 488. (1) (5, 4, 0) and (7, 0, 2); (2) (0, —4, 0)
and (2,0, 2). 489. xm=—z2-+3, y=—z-5; x=8_y—5_ 2

1 1 p—
490. —="7—=7. 491. P{0, 0, 1}. 492, (1) P=1i: (2) P=i+k

@) P=j+k. 493 x+1‘_y:2 _53, cosa=0.3 V' 2; cos =
=04V 2 cos y=—0.5 V2. 4904, x=2, 2=3. 495. In ¢ seconds
the coordmates of the point M will be: x=4+42¢{; y=-—3+3¢;

z=1-41; 4 y;ra ’Tl. 4968, (1) x=—2-+¢, y=1-—2¢,

—a_y—b
0 0
x=qa x—a__y—b
y=b; (2) z=c and =

x—4 y—-3__z_

=—143 2 x=14t, y=1—1, 2=
z2—c
1
1
498. cos p=——. 499. cosp=—. 501. The direction vector
*=V3 =%
P—NXN,—=i+3j+5k The equations of the straight line *2-2 "+

=

.

, which means: {

=45-=5 . 502. 3x+2y=0; z=4. 503. 0.3 V38. B804 “/2
505. (4,2 0), (3, 0,2), (0, —6,8). 506, x=6—3z, y—-—22—|—4
X=6_4—4_ 2. \he traces: (6, 4, 0), (0, 0, 2). 507. Y4 _2

508. P {0, 1, 0}. 509. P{1, 1, 2}; a=ﬂ=arccos-%é_-. 510. y=—3;
2x—2=0. 5115 Reduce the equations to the canonical form:
x_y+7_2—5 x_y—4_z. 20 0= 1748
T="9 =3 and 5 ="3 5 cosq>==2l~0.952,(p_l7 48'.
512. Representing the equations of the given straight line in the form

tine: 21022202 sip a0, 41, 0, AW -1, 4,

P{l 2, 2} d= V'17. 514. sin 9=—13-. 515. For both straight lines

Am+4-Bn+4Cp=2-2+1(—1)4(—1)-3=0, but the point of the first
one (—1, —I1, 3) does not lie in the plane while the point of the
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second one (—1, —1, —3) does. 516. y+z-41=0 (the equations of

the straight line may be rewritten as = ) 2:::"’—7—‘::% . 517, x—

—2y+2+4+5=0. 518. 8x—5y-+4z—11=0. 519. x+42y—2z=1.

520. -;-a%z—l— 17°33’. 521. (5, 5, —2). 522. (6, 4, 5). 523. (5, 5, 5).
AA,pP 1

524. (3,3,3). 525 d=""1""l—o 526. x-+2y—52=0.
|PxP,| V3

527. ”_——;’zy—;1=l—zl. 528. (1,1,2); 70°% 529. (—I, 2, 2), 30%.

530. (6, 2, 0). 531. (3, —1,1). 532, x—y—2z=0. 533. (—I, 3, 1),

534, ! _“f4 z—|—l. 535. The points on the straight lines
0(0, 0, 0) and A(2 2 0); their direction vertors: P{0, 0, 1} and

OAPPI —§—. 536. (1) C(1.5, —2.5, 2), R =

- |[PxP,| V5

5772 (2) C(0,0, a), R=a. 537. (x—1)2+ (y+ 1)+ (z—1)2=1.
538 x2+y2-i 22=8x. 539. x2+y2+z“‘—a(x+y+z)._ . b4l Y2 =
= 2ax—x2?. 542, x2+ y?=2ax, x2+ 22=2ax, y?-} 22=a? 544. (l 7,2),
R=4. 545. (3Y —2Z)*=12(3X—2Z). 546. (l) y=0; x2=a%—az (para-
bola); (2) x=0; y>=a%—az (parabola); (3) z=h; x+y=+V a(a—h)
(a straight line parallel to x4+ y=a (see Fig. 63 on p. 372))
547 Cylmdrlcal surface 2x2 -+ (y—z--2)2=_8, the shape of the shadow

+(y+ s =lisanellipse. 548.2x — y 4 32—7=0. 549. x2 + (y - 4)2+-

T8
+ z2=4. 550. (";62) Rt Jlr;) =1. 553. (x—2)2+ (y—2)2 = 4 (x—2).

2
554. x=4, z + y=2. 555. + z—2.556. h2x? =2pz [h (y + a)— az].

557. (0, a, 0), the directrixis a c1rcle 2=a, x2+ (y—a)*=a?. 558. The
vertex (0, 0, 0), the directrix is a parabola z=h; x2=2hy. 559. For

z2=0 x=4a; for y=h x?+4y?==a?; for x=4 ¢ straight lines

Va—a
2= —p—

line parallel to the plane YOZ and intersecting the circle ABC (see
Fig. 69 on p. 374) and the axis 0X. 560. (a) 2=x2+4y42% (b) V y2+22=x2.
561. - (1) z=e~(*¥"+4"); (9) z=x2—:_'y—2. 562. 9 (x2-+ 2%) = 1642,
563. x3+z’—z(§+a). 564. (a) x®4-22=y?% (b) 22=1x+ 4% 565. Rota-
ting the axes OX and OY about the axis OZ through 45°, we obtam
the equations of the surface and the plane in the form 278 =X2—

X=a V2. Hence the section: X=a l/2, 21;24— — =1 an ellipse thh

P, {2, —1, 2}, d=

y, i.e. the surface is generated by a moving straight
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the semi-axes a }/f and a. 566.
x2? + y: 2

(b) 475::. 568. (a)
X Y42
() }F_y c
X, 2z
TT63
570. Xz
4 6
571.

567.

x2+y2 zZ
a2 +E§'=l

(hyperboloid

(a) 3.84m;

—5=1

of one sheet);

23
=1 (hyperboloid of two sheets).

(

x.—.%[(e——z) cos £ 4 (¢ 4-2) cos (t +a)],

X F4
s (1+4). Ipiai-L,
and
_y X _Z_ 1414
2) ri ki

yz?a [(c—2)sint 4

2 2 2

+ (c+2) sin (-} a)); hence: x;;y ——%(l—cosa):l—{-cosa; at

_ 5 x2+y2 22_ . _ ° x2+y2 322 .
a =90 52 ~Ez——l. at =120 T—?=-l. at
o X24-y* 2F 91 5 x+y=4,
a=180 i = =0 (cone). 572. x2+4 y?’=az. 574. X—y=12
x+y=2z, xR +2 21y g2— 042 .
{ N—y=2. 575. 2 s+ 1. 576. x2 4 y2— 22 =—2a? (hyperbo

loid of two sheets). 577. x~—z—i§/~ 578. 9x = £ 132. 579. 4y = +3z.

580. (1) A sphere with the centre (0 0, a) and radius R=a; (2) para-
boloid of revolution about 0Z; (3) cylmder (4) hyperbolic paraboloid;
(5) cone; (G) parabolic cylinder; (7) cone; (8) paraboloid of revolution;

. : x+y=2+z, x+y=3(2—2),
(9) cone; (10) cylinder. 581. X—y=2—1z. { 3(y—x)=z+2.
24y
582. x24 y?=2az. 583. z=a— % 584, 2y= 132,
ses, | =24, [ 2=0, o5 o6 587. —38. 588. 7. 589. 2.
3x— 4y=12z 3x=4y.

590. 1. 591. sin (a-+P)-sin(a—P). 592. —10. 593. 4a. 594. —2b2

505. —2x. 596. —4aS. 597. 144. 598. 72. 599. (x—y) (y—¢) (x—2).

600. 1. 601. sin (B—a). 602, 10. 603. They lie on the straight line
x y 1 x y 1

y=x+2. 604. (1) |x; y, 1[=0; (2) 2 3 1{=0. 603. 10.
X9 Yg —1 5 1

606. amn. 607. a(x—2)(y—z)(y—x). 608. 4sinasln’%—.

610. (1) x,=2, %,=3; (2 x,=0, xgm—2. 611. x=5; y=—4.

612, x=— y=1. 613. x=0; y=2. 614, x=m; y=2m—n.

615. 5; 6; 10. 616. —1; 0; 1. 617. 7k; 8k; 13k. 618, Sk; —11k;, —Tk.

2|52

619. x=y=2z =0. 620. Incompatible. 621. Indeterminate: x= 3
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y= y —1; 2. 626. 2&;
k; —4k. 627. x=y=2=0. 628. — k; 13k; 5k. 629. Indeterminate:
y=7—3x, z=18—T7x. 630. (1) 124-5i; (2) a®4-b2% (3) 5—12i;
4 —2+42i; 6) ¢ 6) 14+i. 634. (1)2 (cossT"-l—isin %—);

© 2cos%<sin %-—f—isin %) 640. (1) 32i; (2) 64 (3) 4 (1—i);
4) 2+2V2)i; (5 8. 64l. sin3a=3sina cos? a— cos®a,

cos 3o =cos® a—3 sin2 a cos a.. 642. cos%n-—{—lsink—u; k=0,1, ..., 5.

3
lil}/3 i+ V3 Vai;
2

_5—T2
T

;@) i, EVIE!

(4) 1414 —l.36+0.365!; 0.365— 1.36i. 644. (1) i:;t'
@ V/2(cos g+ising); @=45°, 165°, 285% (3) +2(V3+i),
+2(—14iV3). 65 (1) —2 1+£iV3 (@2 x!+i

646. (1) 1n 24 mi; (2)%ln2+%i; 3) %‘; 4) In Vx’—l—y’—}-iarctan%;

643. (1) 1, D@ —i,

.. nx . n+l1 nx n+1
3 n sin ? sin ) X sm —2- Ccos 9 X
(6)5In2—21 1. —— 648. —
2 D)
ai i
650. (1) — 24' . (2) 2 (3a2—b2)i. 651. (N4V%R; 2 23
nt il 3l

@ V2 ©. 652 (I) 5(cosO+isin0); (2 e 2; (3) 2 *.
654. Points inside a circle with centre C(z) and r=>5. 655. (1) 8i;
(2) 512(1—i V'3); (3) —27. 857, (1) *'"/:’2_:‘ i (2) cos @i sin g,
where =0°, 72°, 114°, 216°, 288°. 658. (1) 2, —1 +{ V'3; (2) + 2,

+V3+i; B) +8, +3i. 659 ;'“ﬂf’;". 660. (1) —1, 2, 3; (2) 5,

ﬂﬁﬁ' 661. (1) x,=3, x3=4, x3=—2; (2) %=1, x= -2,

— 1 i
x9,4=iiV2; (3) X1==—2, x2,8=i—3_; (4) x1=l, xi,8=:t7'

—3+iV3.
662. (1) A=$ >0, wu;=2, vuv=I1, 2z=3§, za,a'—'_sj:;_‘/’
(2) A=0, 2,=4, z,=23=—2. 663. (I) A <0, p=060°, z; =4 cos 20°,
2,, 3 =4 cos (20° £+ 120°).
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665.
« 8 f () F(B) k ky A AB
1 2 —10 4 14 31 0.71 | —0.13
1.71 1.87 —3.2 | 0.36 22 26 0.14 | —o0.01

1.85 < x < 1.86.
666. 2.15; 0.524; —2.66. 667. (1) 1.308; (2) 4 and 0.310; (3) —0.682(;

(4) x;=1.494, x3=—0.798 (x; is found by the formula x= V2x+2»
x44-3x—2 .
and x, by the formula x--i;———) . 668 (1) —6, —1 iV 2;

2 —1, 2, 2. 669. (1) A=—lﬁ >0, u;=3, vy =—2, z;=1, 25,9 =

3
—1+5 V3

= g (@ A=—4<0, 9=45 =2V 2cosl5°=

=14 V'3, 2g=—2, 23=1— V3 B) A=0, z;=—2, 2z,3=1;
(4) puttingx=2—2, we get 28—32+42=0; A=0; 2, =—2, 2,=25==1;
x;=—4, xg=x3=—1. 670. 1.76 and —2.15. 671. (1) 1.17; (2) 3.07.
672. 1.67. 675. 0<<x< 1. 68l. x;=0, x,=4. 683. (1) x=—2;
(2) —3<r<3; (B0=<<r<<4. 684.(l) —4<<x<<0; (2) -1 <<x<3.
685. (1) x=0; (2) x<<4.686. (1) 2kn << x << (k1) m; (2) 4<x<<-+4.
687. (1) f(O)=1, f()=1, f(=1)=3, f(2)=3, f(a+1)=a2+a+t1.
. b+a
688. (1) b+a; (2) 2ah. 689. Frata: 690. F (4, 3)=19, F (3, 4)=
= — 26. 691. (1) even; (2) odd; (3) even; (4) odd; (5) odd; (8) neither

odd, nor even. 692 L&) Jg’ ) o, f("‘;""). 693. log, x. 694. a*.

696. 2 < x<<3. 700. (1) [x|<2 (2 —l<x<3; (3) —%+kn<x<
g'—}—{—kn; 4) | x|=2. 701. (2) 6x2-2h% (3)4(2—a). 702. Variation

of the variable az(——é—)n is shown graphically in Fig. 39.

Ja| < 0.001, as soon as n > or n >0—33==10; |a] < e, assoon

3
log 2

2 1 6 1
-—Q . 708. x=2, - l-g, 7, l?...

3 — 1. |x—1] < 0.01,



Answers 319

as soon as n=50; |x—1|< e, as soon as n >l¥. 704. x=4;
3.1; 3.01; ... —34+0; x=2; 2.9; 2.99; ... — 3—0. 705. x=6; 5.1;
5.01; ... —540; x=4; 4.9; 4.99; ... — 5—0;

=—1; —1.9; —1.99; —1.999; ... — —2+0;

=-—23; —2.1; —2.01; —2.001; ...— —2—0.

Fig. 39

707. 6=%. 708. §=0.01. 712. For | x| > 2500.5. 713. For | x | >7.036.

715. lim x in (1) is equal to I, in (2)to—1, in (4) to 0, in (5) to 2
n-—>w

in (6) to 0, in (3) does not exist.

716.
; 3; 2.1; 2.01; ... ——»2—}—0; lim 3 — 1 w.
—5|3; 30; 300; ... — oo %>2405—2
X I; 1.9 1.99; ... —2—0 . 3
3 H lim —2=— 0,
5| —3 —30; —300; ...——oo ¥>2-04—
717.
x |15 0.1; 0.01; ..., —+0 | 1
T i lim 2% =co.
2x 2; 210; 2100; . —>+°° x—=>+0
x |—1 —0.1; —0.01; ... ——0, 1
|11 1 ’ lim 2% =0.
2% |27 210, om0, .. 0 x=>=0
8. () lm 20 @ lm 22— o im 2= o
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(3) lim 3%=co; 4) lim 3*=0; (®) lim logx=— oo;
X —>+» X >=co x —>+0

6) lim tanx=-+ oo; lim tanx=— oo. 724. AB— w,
x = 90°=0° x - 90°+0°

CB—» w, / BCD—0°, / ACB —» 180°.
725. x=>5; 4.1; 4.01; 4.001; ... — 4+4-0;

x=3; 3.9; 3.99; 3.999; ... — 4—0;

x=—0.5; —1.4; —1.49; —1.499; ... ——1.540;

x=—2.5; —1.6; —1.51; —1.501; ... ——1.5—0.
729. Only the first variable has a limit: lim x=1, in the rest of the
n— o

cases lim x does not exist. The graph shown in Fig. 39 can be trans-
n-— o

formed to depict the behaviour of the first variable. To this end the
origin O should be shifted to the left by 1, ——‘;— replaced by -I—%-,

-1 by -|-—g— and so on. The graph for the second variable x =

8
=(—l)"+§l; for n=0, 1, 2, ... is given in Fig. 40. 730. (1) 0;

-1~ 1% 2
© o

...é 0
¢ ©
]

7
¥
T
I
]
1

]

I

Fig. 40

(2) 00; (3) ; (4) 0; (5) 2; (6) 0; (7) O for a > 1, % for a=1, a for

O<a< 1. 733. 1. 734. (1) —0.6; (2) 1. 735. 4. 736. 1. 737. —g—
1 1 2 1 )

738. ?. 739. —-—7_?. .740. 3 741, — '—2— for a > 0. and o for

2 m 1 2 ,

a<0. 742, T 743. T 744. 1. 745. —5- 746. (1) 7 (2) —2.5.

3 1 1 1
47. 0. 748. . T749. —2. = . 0l ——. .= . =
747. 0. 748. . T749. —2. 750 5 51 V3 752 5 753 7

754, —12. 755. —1. 756. lim Isinel 1 25 9.
X =+ 7+0 sin x Vl—cosx V_2



Answers 321

758. V' 3. 1759. —4. 760.2. 76l. 1 762 — V2. 1763. 4.

56
764. % 765. 1. 766. -:-. 767. 2. 768. 6 V 2. 769. 2 cos x. 770. (1) 1;
1 1 1 1 l/_2|sinx|
@ — 5. 7T 5. 772 5 . T13. 5. T74. 8. TT5. xlf.m.o—x—“
— 2
= — V32 776. 4. T71. ”’T 778. 3. 779. %. 780. (1) —2sin x;
1 1 1 1
(@ —-. 7811 782 15 783. . 784. 1. 785. . 786. .
787. —3. 788. 2. 789. —2. 790. — - 791. L. 792. 0 793. L.
n 4 2 2
] 1 3 .
9% — . 795. —1. 796. (1) 5; (D) 3. 797 (1) 35 (2 2 [put in

(1) x=112, and in (2) | 4+2x=1¢4). 798. —a. 799. (1) —I; (2) —0.2.
800. (1) 3; (2 % 801. () I; (2 —%. 802. (1) —2; (2) —O0.1.

803. (1) —2.5; (2) 1.5. 804. (1) — Vaa; (2) —1. 805. (1) 2nd; (2) 3rd.
806 (1) 4th; (2) Ist; (3) 3rd. 807. 2nd. 809. Aso — 0 (1 +a)3—1 = 3et.

81). (1) 2.5; (2)%; @3) 1.5. 811. 2nd and 3rd. 812. (1) 2nd; (2) 3rd;

2"; ln; 3)at x= 4 2. 816. At x=2

the first three conditions are fulfilled, while the fourth is not.

(3) Ist. 815. (1) at x=0; (2) at x=

—1 for x < —1 x—1 for x < —1,
817. . (h y={ 1 for x >—1, @ y:{ x+1 for x >—1.
'4
2
_Jz For x=0
—{"—‘X”—X for x#0

X
- 0l =
Fig. 41
At x=—1 the functions have a discontinuity of the Ist kind (only

the second condition of continuity is fulfilled). 818. At x=0 only the
fourth condition is not fulfilled (Fig. 41). 819. A discontinuity at x=0.

lim y=o0, lim y=0, lim y=1 (Fig. 42). 820. Discontinuities at
x=+0 x—=>=0 X > ®

x==+42. 821. (1) A discontinuity of the Ist kind at x=0, and

11 — 1895
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lim y=0, lim y_l lim y=%, lim y=_l. (Fig. 43); (2) A dis-
x—++0 x—+>-0 X—>+® X >=-® 2
continuity of the first kind at x=a, and lim y= -2, lim yzi

x-»a 0 2 x—+>a+0 2

2
lim y=0; (3) y=% for x > 1 and —?forx< 1; atx=1 adis-

X =>4+ ®

continuity of the first kind, and lim yz—L, while lim y:i.

Xx—>1-0 2 x>1+0 2
Y
.‘/=Z§
/yr
/
=1 !
t, Y=i574 o
1 X - 0 X
Fig. 42 Fig. 43

822, The equation x2—y2=0 defines y as an infinite number of single-
valued functions of x, two of them y=x and y=— x being continuous.
The rest of them (discontinuous) are defined by the equation y=xon
some intervals of the axis OX, and by the equation y=—x on the
others. An even function with discontinuities at x=4 1, 42, £3, ...
may be defined as:

_{ —|x| for 2n—1<x< 2n
y= +|x] for 2n<x<2n+1,

‘an odd one as:

_{ —x for 2n—1< x < 2n,
y= +x for 2n<x< 2n+1,

where n=0, +1, +2, +3,
823. A dlscontmmty of the 2nd kind at x=—2. lim 61/:—{— 0,
X >=2=

lim y=— o, lim y=1. 824. At x=0 only the fourth condi-
x—+=2+0 X >+ o
tion of continuity is not fulfilled; at x= 4 2 the third and the fourth
825. The points of discontinuity: (1) x=0; (2) x=2; (3) x=0; (4) x=0
(5) x==% 2 and x=0. 826. Infinite number of functions. Ouf of them

(1) continuous ones: y= ¥ 4—x2? and y=— ¥ 4—x?% (2) the required
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discontinuous function is
—V4Ea=x for |x|<]1,
y={ +Vi—x2 for 1<|x|<2
827.x=0 andy=1. 828. (1) x=0and y=x; (2) x=—1 and y=x—1;
3) y=]. 829. (1) x=0, y=—1; (2) x=0 and y=x—1; 8) x=——

and y_ . 830. (l)x———;- and y=—2; (@) y=x (B) y=—=x.
81. (1) y=%x ( x+y=—a @) y=xm & y=—7.
832. (1) =0, (2) y=+2x, (3) x=0 and y=wx. 833. Parabolas:

1) y= —, (2) y=x2. 834. (1) x=0and y=1; (2) x=0 and y=—x.
835. (1) x=—2, y=?; @) x=1and y=— +l ;1 (B)x=2,x=—2,
1

1 )

y=1 (Fig. 44); (4) x=1, x=—1 and y=—x. 836. & 837. (1) e “;

Y|
!
-2 g Z X
=Xt
9=x13
Fig. 44

(2) eb. 838. (1) €2 (2) e=4. 839. (1) e=1; (2) e—2. 840. (1) 3; (2) e®.
842. (1) I; (2) —1; (3) 2lna. 843. 3 and 4. 844. (1) %

Ve
@) — L 1. —
© eV? . 845. (1) ?, (21) 3. 846. = 844. :1) —i @ | 2.
2. 3. . . —— [ —
848. (1) 3x2%; (2) 4x%; (3) Ve Vs (4) cos x; (5) e (6) 2xl/-x~‘

11*
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"N ——=: ©®
(12)

l . 3 .
cos’x' © ——: (10) Vit (ll)__(3—x+_2)3_’
89. (1) (x—2)% @) i. 850. (1) (—1)% (2) ¥ —

m'
30 X4 243
x4 :

- (D 1+V— @ 1- ]/— 862. (I) —5: (2 —

853. (1) (1—%—)’; @ 3<l—_l':_?)' 854. (1) 5

L
2 1 1 2 —l_/—lxzz—ﬁ ’
® % (75 =yw) (e 7)

856. (1) 2sm’2, (2 —tax. 857. (1) x(2cosx—uxsinx);

865. (1) '_;J_‘; )

bl«"
x (sin 2x —x) xsinx+ 2cosx 2x
@ —mry - ¥ O ———— O @y
859. (1) ! dr—sin2x 60, (1) I

(l—4x)“; @) 4x Vx costx l—sinx’
S S : in2 L o
2) 3 V—(V_-!- g 861. (1) gt. (2) 2asin 5 - 862. 1; 0; 4.

863. 8.25. 864. —90. 865. (1) —6bx (a—bx%)% (2) ——= [ —=—F1
/ </ )

866. (1) 3”2%'-; @ %(-‘/—;—-?7';> 867. (1) 2 cos? 5 (2) — cotx.
868. (1) x (2 sin xx cos x); (2) % 869.(1)(:%;2_‘2/%;

ds 1 2 (x24-1)2 x
@ Z=zt+z: 870. (1) —0(—: @ [

1 1 \2, 2+4sinx 1
871, (l)—x_3,7?(l+i‘/—:?)' @ —qrrame M — 7

1 1 .
873. —1; -5 874. (1) ‘yosﬁx, (2) b sin(a—bx).

875. (1) %(cos%—sin i); @ —2si % 876. (1) —20 (1 —5x)%;
2 10x % _
2) . 877. (1 ;2 ; (3) —2 tan 4x )/ coséx.
® s T O = @ = @ s
2sin?x . . .
878. —————— .- 879. 4sin3xcosx. 880. (1) sin2x; (2) — sin 2x;
V2x—sin 2x

(3) 2tanxsec?x. 881. 2 sin 2x sin (x;—dt-) . 882. Standx.

%3 7
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. — sin 2x cos Vx
3. 4f/(l+cos2x)3' o2y
+ V1+Fsin2x); plus for cos2x >0; minus for cos 2x < 0, and at

885. + (VY T—sin 2x+

cos2x=0 y’ does not exist lim y¢'=V2, and
x-»i-o
e
x
. cot? —
. , 20 sin 4x 3
llI;l] Yy =— ﬁ\. 886. m. 887. —_ : 2_4\:..
X—>T+0 / sin 3
. 2x2—1 l—x 2t
888. sin x (1 J-sec? x). &89. . 890. . 891. — sin— .
( ) Yy x2—1 2 Vox—1 a
. .
892. (1) ‘%____ 111/§1n2(2p . @ Ed%= 2sin?2¢ .
cos 2¢ ]/ 2¢ - cos? (2¢+%)
T ab 3n ab
893. [’ —_—=— f,(ﬂ =0, f, (-—')=——-‘—.
! (2) Vatoe ) 2 Va1t
2 — 2
894, . 895, —200"2%  ggq XC3%)  ger _ Gindx
V3 ) V ax +sin 4x V1—x
898. —V;j—f_ﬁ_x_—-. 899. (1) seclux; ) 3x2 sin 2x3.
v/ (14 cos 6x)?
t
sin? —
4 cos 2x ds 4 dr 1
900. m)—z. 901. 7‘7—2_1/-.t_—=[. 902. w-——é' CcosQ.
?—sm —2—
003, — 2CGxHD gy _ 1/1. 805. k=tana= 1+ 4.
2 6

906. y=8—4x, x—4y=2. 907. y=x+%. 908. y=0 and
y=+ %(3,\:—1). 909. y=—%—|—2. 910. y=mn—x. 911. 45° and 135°,

4 ! V5 . 2 3 Vi3
9I2._arctan§. a3 (1) =, & 5. V5; (2 T T e
—‘{2—19. 915. y=x2—3x-44. Parameter b is found from the condition
y'=2x+4+b=4+4+b=1, and c from the condition that (2, 2) is the
point of tangency. 916. y =—4x+8, y=— Tx—2; ¢=arctan %’) =~ 62°.
917. y=4x, y——4x+15. 918. x + 4y=8. 919. y=+ (3x+8) and
y=0. 920. 921. 40°54° or 139%'. 922, (—2, —4).

-
<
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923. (l lz).924. 1, V2, V2. 025 11°0° and 7°7.

2’ 1

926. yl=—I, y;=1 927. _=—%; yl=%. 928. y=x and
V— ; 109°30°. 930. x=0. 931. x=2. 932. x=0.

933. x=2. 034. y—l=:l:(x-—-?) 935. x=—1. 936. y— & 4x; 28°.

937. (1) Inx+1; (2 "”‘ 3) 0'?43.938. a &£,

@ igig 939. (1) —tani; (@) cotxcos?x. 940. ﬁ

941, Ff’“_%. 942. x(lL_m 943. —cols_x.su. T

945, ﬁ 946. 2—+IV—; 047. (1) —2;‘;‘1"; @ - _anr, .

948, y=x—1. 949. Mutually tangent at the point (Ve_;
950. (1) 2x4+3¥In3; (2) (2v+x2In2)2% (3) x(2-+x)ex.
X x

951. (1) a®!"* cos x In a; (2) —2re=*% (3) 2x (1 —x) e-2x. 952.¢% +¢ °.

1 v/, 1 2e% 1 = X X
953. 5 € <l } ]/7) 954. = 955. i (cos;—sm;).
T P X (x— ) 2a% 2
956. (1) —2e~* sin x; (2) T 957. e . 958, 2a (e?a% —e—20%),
959. —Ina. 960.  26°35'. 962. (1) x* (Inx+1);
i 1
2) xsinx [cosxlnx smx] . 963. — tan x sin%x. 964, — ———n— .
2 + YV
1 cos X 1
965, — —0——. . ——. 967. ———. 968. cot 2x.
x Vit V1+sintx x(1—x?)
cot 2x tan x X X —-::—
969. T—sin 2% . 970. l—{—Tsx' 971. ——Va—' _m.. 972. —;e .
073, + ( i e-%) 074 ! 075, 2o
) : C T =R " Verfo
2 2 1—Inx x
—_— X J—
976. P 977. «x reamt 978. 16. 979. y——?.
T—x x3 1 a
980. 981. . 982, ———n—— . 983, —M8MM—
I+x° l+x2 V x—4x? lal Vaa—x2 "
1
984. . —— . — . . —Xx2;
84 az—l-x” 985 Vi 986 re 987. (1) 2V 1—x%



Answers 327

) e 988. —2 989 ! 990. arctan X
Y 1—et= : Tol—xt" t o9y 1/',:1' : : a’
1 1 1
991. —. 992, . 993, (1 ; .
2V x—xt 2% YV b6x—1 ( ) x| Vz @ x2+x‘
S 4e2"
[y ~ 1.
994. 2% ' T—¢™. 995 arccosx. 996. —zg. 997. ]/ t 1

998. %_4. 999. X_1. 1000. (1) sinh2; (2 tanh'x;

L
sinh2 2x°

(3) Vcoshx+1. 1001, 1.5. 1002. (1) tanhx; 2)

2 .

1003. (1) coth?x; (@) ———. 1004. (1) hx (2) 4sinh 4x.
1—x

1005. x+1.175y=2.815a. 1006. y=3.76x-3.89. 1008. (l)-———;
x2 Y x2—1

— t (ot
@ tandx. 1000, YE—1 010, & _2 1
2x dt e2t—f»-l ]
X 4 _ tans na
s 1012, =tanst, ERS
I

2 2
1014. (1) %ﬂi_"a—z) (2) 2cos(Inx). 1015, % 1017, —o.

1
1021. (1) 2 cos 2x; (2) 2tan xsec?x; (3y —— . 1022, (1) —4 sin 2x;
2) (@) O o (1)
4

2) — 255 () —(xcos x+3sinx). 1023. (1) - @ e~t(3—1);

2a (3x2—qa?) 2 1 \» -Tx.
(3) W. 1024. —m. 1025. (l) <—;) e |
—1)n-11.3.5 ... (2n—3)

(=hr-t(n—1! (

(2) sin (x-l—n \ (3) 27=1cos (2x+n—> . 1028, (1) —2e*sinx;
2) xa* (x2 ln2 a+6x In a+6); (3) 2sinx44xcosx—x2sinx.
1029. (1) 2e—%(sinx-4cosx); (2) %; (8) xsinx—3cosx.

1011.

1026. (1)n!;

x+na

1030. f (x)=’%33ae7; Fm (x) = e_a'; F® {0) =
1031. 1, m, m(m—1), m(m—21)(m—2) ey m(m—l) oo (Mm—n41).
_ cot x x . .
1035. (1) 2 x2(2;;2_l), @ S @) A= 1036. (1) a (l:/a) ;
n 3
@) (—n (l+2x';"+1’ 3) —2n- 1cos(2x+n—) 1037. 6 P — i
7V3

35 1038. (1) e* (x3+49x%4-18x+6);
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1 X x X
—_ 2008 in— — x2? 2. — xfIV(g—
(%)) p) (Ga cos P 6ax sin S Xt cos ), 3) xftV (a—x).

X
1041. By the Leibnitz rule f""(x)=x2e 7(——";)"+

. .
+nzw e (=) T g (—%) *. Hence,

a
n(n—1) n(n I)

[ 0) =—F3= (=hr. 1042, ' (x)=
= —2xe—** = —2xf (). Usmg then the Leibnitz rule, [ (x% =
= [—2xf (x)]'»=D and so on. 1044. (l) —i; 2) ﬂ; 3) 2—1

—lyr=2=

y
1045. (1)—2_—";5; ()2" y 1046. (1)— ]/_ ey:'xy
1047. —% 1048 —-|-1 1049, 3. 1050. (1) —Fz
@ 2(£y_‘b)‘;); (3)'"('"3:”)”, 1051. —a’;. 1052. y=3—x and
y=x—1. 1053. (‘199. 49—0) and (40, 40). 1054, (1) TSy
@ yyo=p (x-1o). 1055. x+y=:{:VL§. 1056.  arctan 3.
1057. (1) —”—" @ :;:Z{ 1058. (1) —"y—z; @ —G%)_“‘

21 6a?
o -2 o - E

1060. x+2y=4 V2. 1061, 1—-:-. 1062. e(e—1). 1063. +2.

1059. 2y=—x—3 and 2y=x+1.

xdx

Vit
(2) ds=gtdt. 1066, (1) dr=4sin®qdg; @ dx____2t_da_t.
_ ad dx . @ (@ +1)da
x2(a®+x2)° ) a ’

« 1070. () 0.04; (2) 0.05.

1071. (1) dV=3x2dx=075; %=0.006 or 0.6%; (2) d=318)—fds.

< 0.005; (2) the error in measuring the radius

1064. (1) dy=nx"—1dx; (2) dy=3(x—1)2dx. 1065. (1) dy=

1067. (1) sin 2¢ dt; (2) sin udu. 1068. (1)

dx

T XV el

1
() — sin % de; (4)

1072. (1) dx<

V—
should not exceed —l-%. 1073. (1) S=nR? AS ~ dS=2nRdR;

3
@ Vv =—;— aRY, AV~ dV =4aR%R. 1074. (1) @ —x:) dx;
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Ldt

2 b sin (a—b) dg; (3 _—, 1075. (1) —tan xdx;
2) ( P) do ) Vi—r _
du dx
) ——————  (3) —2-2d:, 1076. (1) ; (2) tan? ada;
@ % Vau—1 ] 2Vx
B) b(1e-bhyar 1077. (1) Ay= 3x2Ax+3xAx2+Ax3_—0.2376,
dy=3x* dx = —0.24; (2)dl=_'_4 f'
A 2 x ? g
1078. (1) 4y2=x3 (2) y =x(—3——1) . 1079. (1) _aT+b—2=l;
3 2 2 1
— 2 2 —=1- — — =
2) x3 4y3 =a3%. 1080. (1) x2—y2=1; (2) ¢ R 1082. x
_ Bat __ Bat? 4—mn)a _a
=TI y'—l-}-t”' 1083. y= x+——. 1084. x+y_7—§—_,
1 P41 | _
1085. (1) —asmii’ (2) —5— vk 3) ———. 1086. (1) y=

4a sin® —
a Sin 9

=—x2—2x; (2) (y+ 28=4x2 1087. «x -+ y=a(3Tn-|—2).
1 32 —1

an 3
1088, y—x— TV 1089, () —ze—mi @) s (3)3_
- g_f” @ dx -4 s
1090. x=at— T a—gt; aGE = g; in t—g sec, x—%—
(the highest point). ~1091. ‘;—;‘_tz —4 43 f=1; ty=3
dx dv . .
1095. v=—pi =W multiply termwise. 1096. de—t—%ﬁ_—?‘w
dv d%x
hence w=—r-=a. 1097. x—10+20t—-2—2—-, 2—=20 —gt; Fi=—¢
. 0 dh
At the highest point E =0; t_E~204sec. 1098. i
m=iﬁ 1099. dt =k(A—x). 1100. d(0)=20do,
2!
409 _ 20 3—3—2 2 %:2@3;‘)—:2& 1101. The roots of the

P
function: 1; 3. The root of the derivative f' (x)=2x—4 1s2; 1<2<3
1102. Not applicable, since at x=0 the function has no derivative.
1103. Because the point x=0 is a corner (two tangents). 1104. The
slope ot the chord (AB): k=g;:=2; f(x)=2¢=2 x=1; at the

point x=1 the tangent is parallel to the chord. 1105. f (b)=0?2,
[(@)=a?, [ (c)=2c; substitute this into the Lagrange formula
b*—a?=(b—a)-2; hence c=b—-;—a. 1106. c=% 1108. At x=3-2‘-

there is a correr point on the arc, at which the function has no deri-




330 Answers

vative. 1109. The function is continuous and has a derivative inside the
interval [0, 2], but is discontinuous at its right-hand end-point.
1110. Let s=f(¢) be the equation of motion, and ¢, and ¢, the initial
and final moments of motion respectively. By Lagran%es theorem,

between ¢, and {, there can be found #4 for which fL’)T( f' (t3),
[ fe o

ie 40=f (ts)__— at the moment f5. 1111. @' (x)=(b f(b) 1].
a f() 1

Since @ (b)) =® (@) =0 and the function has a derivative @’ (x) in the

interval (a, b), then, according to Rolle’s theorefm, between a and »
1 f@© O

we can find x=c¢ for which @’ (c)=0, i.e. b f®) l =0; hence

f®)—f(@)=(b—a) [ (c). The function CD(x) is {lge) doubled area of

b3 —a"' 32 s
A AMB, where M is any point on the arc AB. 1112, =%
_2(@+ab4b?) s
hence c_—-m)— 1113. The slope of the tangent is Franrant
and at the point {=c k—f Ec; The slope of the secant is k; =

—4_IO—/@. ; accordmg to Cauchy's theorem, between a
n—h ~ 9 ) —9(a)
and b there exists ¢t =c for which ky=k, i.e. the tangent is parallel
to the chord. And since ¢’ (f) #0, we have @(a) < @ (c) < @ (b) (or
vice versa), and the point of tangency is situated inside the arc.

7. c= ]/%”“’2 118, (1) ]/-;—t——l; @ ]/1—%;

3 L me. () & @ i/ls *~24. 1120. The functi
()m. '()T'() T)N" . e function

y=|x—1| has no derivative at x=1. 1121. At the point x=—-;—.
1122. 3. 1123. % 1124, nanl_l . 1125. 1. 1126. ﬁ . 1127, %
1128. —‘15— 1129. 3. 1130. (I) oo; (2) 0. 1131. 0. 1132. 0. 1133, 3.
1134. 2. 1135. 0. 1136. 0. 1137. 1. 1138. 1. 1139. ¢3. 1140. Of the
9nd order. 1144. a—b. 1145. — . 1146. . 1147. In & 1148.——.
3 8 b V3
1149. 1. 1150. 1. 1151. —% 1152, —2. 1153. %. 1154. -é— 1155. e3.
16

1160. At x=—2ypin=1. 16l At x=—2ymn=—7; at x=2

ym,‘=+-%§; the points of intersection with 0X: x,=0; x, 3=
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o

=42V 3~ £3.4. 1162. At x=—1 Ymax=153 at x=3 ymin <=9

the points of intersection with OX: x;=0, x; 3 ~ 1,56 & 3.3. 1163. At
x=22 Ynax="5; at x=0 yppn=1; at y=0x = ;{:29 1164. At x=0

y=0, an inflection; at x=3 ymm=—6~i'- . 1165, At x=—2 ypax=—2;

at x=2 ynin=2; the asymptotes: x=0 and y=%. 1166. At x=0

Ymin=—1 (a cusp); the points of intersection with 0X: x=4+1.
1167 At x=0 Ymax=1; as x — 0 y— 0, i.e. y=0 is an asymptote.
The curve is symmetric about the axis OY (why?). 1168. At x=1
Ymax=—4; at x=0>5 ypj,=4; the asymptotes x=3 and y=x—3.

4
5 170 At x=4 yma=1,
at y=0 x=3 or x=5 at y=—3 x=—4 or 12. 1171. At x=0
Ymax = l; the asymptote y=0. Symmetric about OY. 1172. At x=%

.

1169. At x=0 ypmij, =0; at x=%ymax=

5n
12

Ymax=15 —2— = 1.1; at x=—% ymin ~ 0.4. 1173, At x._g Ymax=

A ~ 245 at x=— 2y V32T o 245 The
3 3 8

asymptotes x—-i-—. 1174. At x=1 ypay=1; a8 x— 0 y—>—»; as

X —> © y—»O The asymptotes: x=0 and y=0. The point of inter-
section with 0X: 14+Inx=0, Inx=—I, x=e-1x 0.4. 1175, At x=—;-

ymln=-%-——il —0.28; at x=— ; Ymax ~ 0.28. The asymptotes:

y=x;[;-—2—‘ 1176. (1) At x=2 ymax=—§—. The asymptote: y=0.

(2) At x=% ym|n=—-l—; lim y=0 (an end-point); at x=1 y=0.

€ x»>+0

1177, (1) At x=0 yp;, =0 (a corner); at x= % V4n+ln Ymax=1}
1 . 3n_ 5n
(2) at x=0 ypin= 0 (a corner). 1178, Ymin=-g at r=7i 5 g

eee} Ymax=1 at x=0; %; M %l .. . 1179, The domain of the curve
is x<1; ymax= at x= -l—- s y=0 at x;=0 and x,=1. 1180. At

V"2

$=2 Ymax= V2 the domain of the curve is x > 0. 1181, The asymp-
totess x=1 and x=4 (discontinuities); Ymn=—"g at x=-2,

Ymax=—1 at x=2, 1182, At x=1 yp)p=1.5. The curve asymptoti.
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2
cally approaches the parabola y=% and the axis OY. 1183. At x=0

and x=2 ypin= 31/ 4~ 1.6; at x=1 ymax =2 (the cusps are located
at the points of minimum). 1184. At x=0 yj,q=0; at x=1
Ymax =0.2; at x=3 ypin=—5.4. 1185. At x;=—2 Ymax=0, at

Xy=—12 ypin = —1.1, at x=0 yjp=0. 1186. At x=2 y, =

'2—1
at y=0 x=1, the asymptotes are the coordinate axes. 1187. At
Y
4
Y y=xi g
2
=
g2
O X
2 / |
-2/ 2 - :%m
/ 0 X |
[
I
I
Fig. 45 Fig. 46

x=—3 Ymax=—%5, at x=0 yj,n=0, at x=3 ypmi, =+4.5, the
asymptotes: y=x and x=+ V 3.1188. At x=%+kn Ymax=1; at x =

=i2t-+kn—-discontinuities. 1189. At x=—'}—{—2kn ym,,‘:—n——'r- 2kn—

4
——;—ln2. 1190. (1) At x=1 yml,‘:%ln?-—%—; (2) at x=-—1
Ymax =1, at x=0ym;, =0 (a corner with slopes k= 12). 1191. At x=0
Ymin=0; at x=2 ym;,,(=ei2 z%; the asymptote: y=0. 1192. At

x=—1 a cusp Ymin=2, at x=0 ypax=3, at y=0 x.=~ 4. 1193. At
x=2 ymax=4% at y=0, x;=0, x,=4. 1194 At x=—1 ypin=—4%
at y=0x,=1, x,=—3. 1195, At x=0 yp),=0; at x=—2 ymx=—;—;
at y=0 x;,=0, xg=—3. 1196. At x=—1 ypin=—4; at x=-3
Pmax=0. 1197, At x=0 ypx=0; at x=2 y=+ o; at x=4 ypj, =8;
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the asymptotes: x=2 and y=x+2 (Fig. 45). 1198. At x=-—3
Ymin=—6.75; at x=0 yip=0; at y=0 x, =0, x,=—4 (Fig. 46).
1199, At x=42 ypp=—4; at x=0 ymax=0; at y=0 x,=0,
Xy 3=+ V8~ +28. 1200, At x=0 a CUSP Ymax=0; at x=1
Ymin=—1; at y=0 x, =0, x,=3% (Fig. 47). 1201. At x=-—I

Ymax=2; at x=1 ypi,=0; at x=0 y=1. The asymptote: y=1.
1

1202. At x=—1 ypijn=— Ve ~ —0.6; at x=1 ymax = 0.6; the axis
e
OX is the asymptote. 1203. At x=2 ypm, =2 (1—1In2) = 0.6; the axis
Y
|y
a \Ymin, X
_z/=2x—.7(/x2
Fig 47

OY is the asymptote; at x=1 y=1; at x=e2x 7.4 y~ 3.4. 1204. At
3 -

x=0 a cusp Ymax=0; at x=2 ypj,=—3 ;/4z——4.8; at x=5 y=0.

The graph is similar to the one shown in Fig. 47. 1205. At x=+%

3
!/max=L2—_'—% ~ 0.34; at x=—-—g- Ymin ® —0.34; at x=4+ %

n n T 3n
y=F 5=F157. 1208. At x=—7 ymin=5+1~257; at x=—

Ymax =—+3.71; the asymptotes: x=0 and x=m. 1207. At x=——;-

I | 3n 1 T
y“‘”‘:__f_l_T ~ 1.85; at =7 Ymin ¥ 1.28; at x==0 y=%- The

asymptote: y=x. 1208. At x=1 a cusp ypijpn=1; at x=0 y=2, at

x=2 y=2. 1209. At x=-g—[ and Tn Ymax = 1.5; at x=% Ymin = 1.

1210. At x=0 ymp =0, at x=1 yjp=1. 1211. x=e, yma,(:% =~ 0.4;

at y=0 x=1. The asymptotes: x=0 and y=0. 1212, At x=-—3
Ymin=06; at x=—2 y=o0 (a discontinuity); at x=—1 ym,n=2.
The points of intersection with the axes: x=0, y=15; y=0,
t=+4 V 3~ +1.7. The asymptotes: x=—2 and y=2—x. 1213. At
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x=1 Ypin=2, at x=—1 ypax=—2, at x=0 (a discontinuity). The
asymptotes: y=x and x=0. 1214. (1) At x=0 y=a. The points of

intersection with the axis 0X: x=§-|—kn. The extrema: at x; =

=—3££—}—2kn a minimum, at x2=14£—|—2kn a maximum. The curve

is a graph of damped oscillations; it is inscribed in the curves
y= =+ ae—* on which the extrema are found. Begin construction with
the curves y= 4+ ae—*, The axis OX is the asymptote. (2) At x=—1
Ymax=2, at x=0 a point of inflection, at x=1 ypuin=—2, at y=0
x1=0, X,a= +13. 1215, At x=1 ypniz=3; at x=2 y=o
(a discontinuity); at x=4 yj,5=0; at x=0 y ~ 3.6. 1216, At x=—2
Ymin=0; at x=—4 yp,,=0.8; at x=1 ymax =~ 2.8; OX is the asymp-

tote. 1217. At x= 11 ymx=1; at y=0 x=:l:;2 ~ +0.7. The

asymptotes: the axes OX and OY. 1218. At x=0 ypax=1; at x=1
Ymin=0; at y=0 x=41. 1219. At x=—1I ym1n=—;—; at x=1
ymax=3 at x=0 y=1; the asymptote: y=1. 1220. At x=—1
Ymax=1, at y=0 x;,=0, x,=—4, the domam of the curve is x<C0.
1221. (1) At x=—2 y= o0 (a discontinuity); at x=—3 y,;;=0; at

x=0 Ymin ® 62 the asymptotes: x=—2 and y=x+5. (2) ymiy=0
at x= 20, Ymay=V 2 at x=(2n-+1)m. At the points of minimum
y’ does not exist (corner points). 1222, 30 mXx60 m. 1223. 5 and 5.
1224, ak 1225. %. 1226. 4 mx4 mX2 m. 1227. 20 cm. 1228. 60°.

4"

18 1 . 1 a .
1229. Fra”s ~ 2.5. 1230. cosa=-”7 (provnded Z<ﬁ' where a is

the projection of AB on the direction of the railway). 1231. 18 m

from the brighter light source. 1232. In %’ hours the minimum distance

will be equal to o km. 1283, x=%,y=D‘;—3. 1234. V3~ 17

hmes 1235 l~5.6 m; determined as a maximum of the function

- 128m . o . _
-—m-]—m. 1236. Upmax= 5 dm3® at the height x=2 dm.

1237. Spmax= R? at the height x=

R —_
. 1238, (1, 1). 1239. V ab.
V3 (L b
1240. At x=2m. 1241. 4 cm and V 3 ~ 1.7 cm. 1242, x=1.5. 1243. The
section is a square with the side D _ 1244, At a=2n ]/—- ra-
V2

S U
cos o - sina

dians =~ 294°. 1245, F= ; tana=p=0.25, a = 14°.
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1246. (1) y=x2, y"=2 > 0; the curve is convex down everywhere;
(2) y=2x3, y"=6x, the curve is convex down for x >0 and up for
x< 0, x=01s a cusp; (3) y=e*, y"=e*¥ >0 is convex down every-
where, (0, 1) is the point of intersection with OY; (4) y=Inx(x > 0),

y”:-—xl2 < 0, the curve is convex up everywhere, (I, 0) is the point
of intersection with OX; (5) (0, 0) is the point of inflection. 1247. The

1
points of inflection: (1) (2, —%); 93 ( V_l—2' e_?>;

@ (i V3 & V?) and (0, 0); (4) at x=—l;—2 ~—0.35. 1262. The
domain x > —2. The points of intersection with the axes: (—1, 0)
and (0, 1n2); y increases everywhere, the curve is convex up. The
asymptote is x=—2. 1263. y > 0, y=0 is the asymptote. 1254. (1) Sym-
metric about OX. The domain: x=0. The upper branch is convex
down, the lower one up. Both branches contact OX at the point
(0, 0). The curve is called the semicubical parabola (forming the letter
K together with the axis OY); (2) the same as the previous curve, but
shifted by three units left. 1255. (1) At x=0 ym.x=—1, the asympto-
tes: x=—2, ¥x=2 and y=0 (three branches); (2) at x=1 ynx=2,
at x=—1 ymin=—2, intersects with OX at x=+V3, a point of
inflection at x=+ ¥ 2, the asymptotes: OX and OY. 1256. (1) The
domain: x > 0; at y=0 x=1; the asymptotes: OX and OY. At x=e
p % , the axis 0X
is the asymptote, at x=0 y=0. 1257. (1) At x=0 ymin=2; the
asymptotes: x=—2 and x—y=0; (2) symmetric about OY, at y=0

Ymax=1; (2) at x=1 ymax=1, at x=2 yjpyy=— =

x=+ .‘/2__2 ~ 0.7, at x=%1 ypipn=—1, the asymptote: the axis OY.

1258. (1) The domain: x >0; at x=1 ymia=1; convex down; the
asymptote: the axis OY; (2) OY is the axis of symmetry. at x=0
Ymin =a; convex down everywhere. The curve is termed the catenary.

1259. (1) At x=0 ypax=0, at x= f/ll—'z 1.6 Ymin z2.l,atx=-—3|/ 2~
~ —1.3 yinsr =& —0.8, the asymptotes: x=1 and y=x; (2) at x=—1
Ymin=—3, at y=0 x=—‘?/0.25 ~ —0.6, the asymptotes: the axes
OX and OY. 1260. (1) Symmetric about OX and OY, tﬂe domain is
|21 <V'2 at x==41 yex==%1, at y=0 x=0 or + V' 2; (2) on the
2 2
branch y=x+—— Ymin=3 at x=1, the branch y=x——= inter-
Y + V——;_!/mm Yy 7—;
sects 0X at x= f/4 ~ 1.6, both branches have asymptotes: y=x and
x=0. 1261. At x=—2 ypmin=—73/16 % —2.52, at x=2 ymay ~ 2.52
(both points are cusps), the axis OX is the asymptote since
8x
Tt @97 G-

—0 as x— o, 1262. Sym-
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metric about OX; the domain: x=0; the asymptote: the axis
3
0X (lim y=0); at x=1 extremum gy, =+ el ~ $0.3. 1264. (I)% +
X=» 00

+x2flnx+C; (2 2x°-%,+c. 1265. (1) ';"+c;

© "2—2+2|n x———I—C 1266. (1) x(% V_x—l-% f/‘x>+c;

@ 2V x—4y/ x+C. 1267, (1) 2"3',/7‘—3x+61/7—mx+c;
2 3():—4)';‘/32+c. 1268. (1) ex+l+c; ) n;i_FQ+C-
1269. (1) — cot x—tan x+}C; (2) — cot x — x| C. 1270. (1)5.
=Ssm2x—|-cos x

sm‘xcos‘x
Snircosty =tanx—cetx4-C;  (2) Stanx+2cotx+-C.
sinx sinx

1271. (1) ———+C 2) 2—]——+C 1272. (1) 2arctanx—
-, .2 2(x+2)

@) 33/ %x+—=+C. 1274. (1) —_+C;(2)4Inx—-—_—— C.

v +Vx+ Vs v +

1275. (1) Inx—l?— +=+C; (2) x4cosx-+4C. 1276. (1) e*+-tanx4C;

2x2

a* 1
2 m—a—m—l—C. 1277. cosx—cotx4C. 1278, tanx—x-C.
1279. %sin&c—{—C. 1280. —2cos—-|—C 1281. —%e-”‘-}-c.
X
1282 %tanSx—l—C 1283. 2( T _e >+c 1284. l(4x—|;’/-+c
1285. —8— 2"’ +-C. 1286. __(5 6x)/24-C. 1287. —1/3 2%+ C.

1288. % cos (a—bx)—l—C. 1289. In (x® — 5x 7)1 C. 1290. —2- In (x2+1)+C.

1291. —0.11n]1—10x|4C 1292, —% In|1—2e2%|+C.

1293. In|sinx|4+C. 1294. — in|cosx|4+C. 1295. In|sin2x|4C.

1296. —-:li—ln|l+3cosx|+C. 1297. —12—ln|l+25inx]+CA
ind

1298. 1n|1+|nx|+r 1299. s"; X1c.  1300. _°°S *ic.
1 2— cosx

1301. 35msx +C. 1802, oo d-C. 1303 T2 4C

sm x

1304. +4-C. 1305. — ecos * 4-C. 1306. —l—e +C. 1307. —ie *icC.
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1308. 2" *C. 1309. %V(x2+1)8+c. 1310. %f/(;a» R

1311. '?i/u Fx3E4C. 1312. — Y T— 224+C. 1313. — YV T+2cos x |-C..
1314. %V(i——rln_x)3+C. 1315. %(1-;-4 sin )" +-C.

Slﬂ X

1316. ‘216“ —6x8)*"74-C. 1317. 2x+%(e2x e—~2%)4C. 1318. +C.

1319. _%V T—4x-C. 1320. —-% sin (@— bx)4-C. 1321.7(1+3x)T+c.

7 .
1822 —4 (1 =295 4C 1928 VTTo4C 1s24 252 e

1325. 21n | sin x| —cot x4 C. 1326. ¢sin xJ-C. 1327. —%ln| 1—x3|+C.

1328. ‘_2t7(al——bx)2+c' 1330. (1) 0.1 In i;g|+c; @ %arotan +c.
1331. (1) aresin —;——{-C; (2 In(x+ V' ¥2F5)+C.
1332. () In|x+VE=4|+C @ T/%arctan '/‘_34-0.
2
1333. (1) arcsin V_+c (2)—arctan—+C 1334. (l)—larcsm ‘;3 +C;
(2) —l-ln — +C. 1335. (1) -;—al'csin—QV.-—_a-+C;

2) %ln(x‘—}- VE=1)+C. 1336. (1) 251n(x2+4)—arctan-—+c

(2 % In (x2—4)—In

|+c 1337. () V @ F1+In(x+ VEF1)LC;

@) —VI.—x2—|~arcsm x+C. 1338, x—arctan x--C. 1339. §+'§x-——

— 3V°3 In|X= V3 1340. arctan (x4 2)4-C.
2 x4+ V3
1341. -é—arctan 5 3+c. 1342. In(x41+ VYV 2F2x +3)4C.
.ox+1 L x—2 2 2x—1—3
1343. arcsin +C. 1344. arcsin ——+-C. 1345. —= arctan C.
V2 7 PRy el
1 4 __
1346. —— arcsin +c 1347. —— In|3x— 1+ V9x=_6x+3|+c.
V2 V
_V3
1348. ¥V 3( arctan ——=In = Y+cC. 1349, acsin —=
( V +V3 V
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+1n (x+ V2Fx2)+C.  1350. 2ln(x2+5)—V5arctanV_

1351. x+Tl K: —+C. 1352. 3-—2x+2 V_Zarctan-V.——_+C.

1353. arcsin (e¥)4C. 1354. arctan (2¢2)+C. 1355. 0.2 arctan T-I_C'

l-{-C. 1357. arcsin%-{—c. I358.%In (x24-x+4-1) —
-C. 1359. z‘,—ln ©Qc+14+Va&rrax£3)+-C.

1356. %arctanx_
1 2x+1

— ——arctan
V3 V3 , e
1360. xIn|x|—x+4C. 1361. %ln]x—l|——2— 52—+x+ln|x-—1|)+C.
x241
2

5 arctan x— ——[—C.

1364. x?sin x+2xcos x—2sinx+C. 1365. % e* (sin x—cos x)+C.
1367. x[(In]x|— 1)2—}— 114-C. 1368. —xcotx+-In|sinx|+C.
1369. ""‘ Injxl+1, ¢ 1370. 2 VT fxarcsinx+4 VT1—x-+C.
1371. x arcsin x+ Vi—x2+cC. 1372. —e—* (x343x246x+6)4C.
1373. x1In (x2+1)—2x+2 arctan x+C. 1374. % (cos In x+sin In x)+C.

X

1362. le“ (x——21—)—|—C. 1363.

1375. % VF<1n|x|—%)—|—C. 1376. —2 * (x244x+8)+C.
1377. xarctanx—%ln(l—l—xz)—i-c. 1378. xtanx-1In|cosx|+C.

1379.%@‘ (sin x4 cos x)+C. 1380. 4 Vafx—2 V2—xarcsm——+C.

1 X — V2x—1
1381. -—-2—<Sm—2x+cotx)+c. 1382. x arctan sz—l———

1384. 3x+4 sin x+sin 2x+4C. 1385. 3_x+ cos 2x —
3x

+C.
+cC.

3x sin2x | sindx __sm4x 3x sm4x

1386. I + 39 +C. 1387. 8 35 +4-C. 1388. 98~ 198
sin8x x sindx | sin32x 3

-+ 1024 ——+4C. 1389. 60 R T 8 +C. 1390. —cosx—l——cos x—

o8 = +C. 1391, S”; x_sin? = +C. 1392, %sm‘x—% sin® x4 C.

1393. smx——sin"x—}——3-sm“x—%sm’x-{—(] 1394, 7x+ 14 sin x 4
85m X

sm 4x

+C. 1395. ———I———smx—f—C 1396. ———}—cosx+C
+C.

+3sin2x—
l397.%ln| tan x |4+-C. 1398. (1) lnltan -2-|+c; (@ In ltan (?Jr%)
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1 X X 14
1399. 5[1n|tan?l+ln|tan (?"‘T)” +c. oo, [t
dx 1 dx

(_’i
Ssinx—sin(?—-x) V2 Ssm( —%‘-) VQ 2

2
-%)]4-0. 1401, 2% 0 cos x [ C. 1402 — 0

+C. 1403. —L(cos 4x4 2 cos 2x)+C.  1404. —é— [

—In| sin x [4-

+
sm(m——nn)x] ~+C for m#n and —-}—m sin 2mx+C for m=n. 1405.

m_
sin(m—n)x _sin(m+n)x}| |
preyu— mn +C for

sin (m+-n) x
m-+n

) ——-sm2.’¢:—i sin8x+C; (2) - 5 [

m#n and f——%sxrﬂmx—l-c for m=n. 1406. —1g cos 6x—-§ sin 4x+4-

1 5 3
+C. 1407, (1) —x — cosx (S”é +5s;;‘ "+5S‘l’g") 1C. 1408

cos x x|, A x ., o
(1) 2% 4 in tan3|+c. @ — 4 1In | tan ( 42 )|-|-c.

1409. % +3sin 2x+—— sin4x+4-C. 1410. 57 sin ‘2x—|——sin 4x+4-C.
x sin4x sin32x . 2sindx | sinfx
1411. 660 — 48 +C. 1412, sinx— 3 —I——5—+ C.

5 3
- cos? s~ +C. 1414. 7x—14 cos x—3 sin 2x-|—8c°S *+c.

1418, -Llnltanxl—x—}—C 1416. —(2 sin 2x —sin 4x) -+ C.
~+cos x+tanx4-C. 1418. -—-l-cos(Qx—l— )+%x—|—(,‘(

sin x
2cos?x

1413.

1417.

cosx
1419. (l)-§—+xz—|—4x+81n|x—2l—|—6; 2) T—azx—}—a’ arctan %-{—C;
C(x—2)? (x—1)3
Te=31 e |t
1423 4y i E=D°

. 2+ +In K +C.

X—a

++C.

1421. In

()] %—I—%a In|x3—a3| +C. 1420. In

Cx (x—1)
e
424, +4in , l+c 125. o ln

+C. 1422 In

X—a
X

x—2 2

Tt e

1426. In|Cx(x—1, H—;_—l . 1427. In

1428, —g— In| (x242x+ 10) | —arctan ’%‘—FC.

1420, 21n| (—0.2¢+0.17) |—5 arctan X =14 .
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1430. in | x+ 1|V ¥214+-C. 1431. 31n szl—xfx+5+2 arctanx;I-I-C
1 (x+2)? 1 VEfl
1432. 2—4|n 2x-|-4+4 V_ arctan—V.—_- 1433. In——— 1]
__T-f-a;c;:n.\;—};c 1434, (N W(arctan ?-l—m)«{— H
x (562 + 3x2) x+9
(2) 8b4 [W+—afctaﬂ— -I'-C 1435. (l) m—

1 3) (3x2—18x-4-32
16arctan ;— +C; (2 3 [(x (xg( Zx-i—lf);t )+3arctan(x—3)] +

+C. 1436 "Ke“ﬁ:ﬁ"‘;:-lﬁrc 1437, 4—(’-;—2}225-1-
+l/-—_2arctany_+c 1438. ;ln|x+a +c.

139, —Loin iiz +c 1440, 4 In |l——|+C
1441, lopl/‘s n x_H'g - "/_ arctan ‘2 +C. 1442, -x—+
+ & In|x+l +C. 1443 - 5'4;:4"_1:2’;2“_11 V%—l_ﬂ-l_
e, 1| SE2 1445. In|C(x—1) VZEF3|.
1446. Cg—fé);‘z—?% . 1447. ,,,S,IH Ci";” - x_f_2 .
1448. 21n| =5 — 1449, lnv——??m-{—%rctan(x-l)-{—
+C. 1450. < 1n V;‘ 'IF" 4 arctan Z4C.

1451. %—ln 'x;l_:_l +3 V— arctan Vx_2+C.

M2 o l"|x2(—|—2x+4l V— arctan ";3_’ +C.

1453. —% [ﬁﬁ"' arctan (x+ 1)] +C.

1454. %lnl;—:—_gl—kc. 1455, = S’;:?;f‘_:;: 3';—
—é—llf—g-arctan %}_——I—C. 1456. 2 ’:jcj_—l—ll_.)_((xx;:ll))-d =
=i| ;I—:l—-;—arctanx-}-C. 1457. -3— '(-f—z-i:l_ll)——(siz_-%)d =

1 x—V2 1 x+2
=6V§|nlx+‘/§l—§arctanx+c. 1458, = v 3x+ 1)*+C.
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1459. 2"i;'(:z VT I—3)4+C.  1460. s[ﬂ_!QJr Y —

— Q1+ '{/;)] +cC. 1461. %(3x2—ax—-2a2) Va—x+cC.
g o
1462. %[—@Q—tﬁ—f/x‘-}-l+ln(f/x‘+l+l)]+€.

2__ 2 L9
1463. (_x_4)3l/._x_—t_2+a 1464. T arcsin %—|—C(~ forx >0 and
Cx
+ 14 V2x2+2x +1
+C 1467. In

+ for x < 0). 1465. In

1466, — 2a_
a

C(x+1) l
1+ Vefoetra|’

X

——C
4V4—|—x2+

x3
. ————}-C
322 ¥V (@ + %)
1472. S V4—(x— 1)2dx is solved by the substitution x—1=2sin¢,
- _ T 7 ___ 3
j V-4—45in‘3t2costdt=2:arcsinx2 LB ) 3+2x ud

1468. 1 [x l/—a“‘ — x%2+-a?arcsin _x_] +C. 1469.

1470. 2arcsm-———(2 x)V4—x2+C 1471

1473.

W":-x—z—arcsm V'+C 1474. 2(x+5) Vx2+2x+2_35><
xIn|x+14+ V 2+ 2x +2|+C. 1475. — Y 3—2x—x% —arcsin i-{-c.

—_ 2 3
147 .x2a —x2+%arcsin —|—C 1478. ——l 1/l+x ! +
|/|+x3+1
+%arctan V1t s4C. 1479, —K%IT"—)—+C. 1480. '"_:F_3+
+p=_22+l-{-%=integer; putting  x—241=¢2, we get:
2y 2 2
x—2x=3dx —- ¢ ldt= 14 2x +C. 1481. rn-|—1=3—|—l —
3 2 Vit 2
(x_2+l)2 1 (2 2a— bx?
a4 —a ,__2a—bx
= integer; putting a—bx?=1¢2, we get: b“f P dt b“ Va_;b_x‘l+c'
Vax—1 3x+1 +
1482. H%-@c. 1483. (""') Ot L @x+1)?

1
+1In|Bx+1)% —1]|+C. 1484, x—2Vx+2In(Vx+1)+C.
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1485.  —0.3(2x+3a) ) (a— x*C. 1486. f/2 Vi—24+
_ pra 3 (e 1)< (x2+ 1)2
+ V2 arctan ]/T+c. 1487. 5 +
|/x + 1 )
C. 1488. In(1 e )
+ + "(+V(+"”+1+V1+a+c

1489. x2 + 3 YV @E—x234-C; here it is advantageous first to rationa-

lize the denominator. 1490. F )%2+C(—forx>0 and

+ forx < —2). 1491. arccos xil—i—C. 1492, 2arcsin % —
—% Vi—x*4cC. 1493. 2 arcsin ]/-%— Vax=x24C.

1494. 2—+—” Vixf2—2In|x+2+ V& + 22| +C.

1495. _:_c_-{-_6 V 5+4x—x2+garcsinx;2
2
—1 M-pc. 1497. —_——“j"-l-c. 1498. Putting

+C. 1496. —V;—*;"a +

+ %]
l-—x"—t“, we find:
x2dx _2§ dt | YI=5—1 1o
x"]/-l—x"—? fa=1 *
1499. Putting x=—lt—, we find:
dt t x+1
_‘S‘V:;_— 7——1‘7=—§V4_ m:arccos —-C.

1500. 7ln (e2*+1)—2 arctan (e¥)4C. 1501. —3—tan3x—tanx+x+0.

2
1502. e—2f—2e"—|—4ln (€¥42) +C. 1503. lnltani +cC.
1 1 X 1 2tan—+l
1504. —arctan | - tan= |+C. 1505, —In|—|4C.
2 g a3 5 X
tan ——2
2
3
1508, — °°; X cotx4-C. 1507. %arctan (ta%“)q-c.
) 1 2
1508. e*fInjex—1|+C.  1509. taz "—ta'; X —1In|cos x|+C.

X

1 (tan?>
1510. ex.|_-2-ln e"+l|+c‘ 1511. l/‘_eu'ctzm Vs +C.
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Answers
1512. fan® =+ tanx+C. 1513. —;- arctan (2 tan x)+C.
1514. %‘ tan +— tan? ——}—C 1515. 5 ln tan —l —

—!Tcotz?+c. 1516. 2In|e¥—1|—x+4C. 1517, ?(tanx-[—

+lIn|tanx|)+C. 1518, (1) s'"he" -’2‘-+c; @ %+cosh2x+

+smh 4x+c 1519. (1) sinhx+smh x_|_C 1520. In|cosh x|4-C.

1 —coshx

1521, ——fiC 1522 (2-|-s""h2"-|-s”‘h2 )+c
X

1523 and 1524. See Problem  1366. 1525. “/.T_xz-{—C.
1526. —5———‘/;‘2_5 +C. 1521. °°S:‘: 3"—°°5h 3% 1 c. 1528, Si"3*'24"—
——;-Jrc. 1529, SioR° "+C 1530. x—coth x4C.
1531. 2VM+C (first multiply both the numerator and
denominator of the integrand by ¥ coshx—1). 1532. Smh;;x2+c
1533. i1n]x+ V=345 VE—3+C. 1534. In|x+ VF3|—

V"2+3+c 1585. 2V xFT-+In M +c.
1536. (a“:ta"")z-w 1537. aizln %" ——+c
1538. tan (7—7)4-0. 1539. 2arcsin V'x +C (put x=sin?1).
1540. ab arctan <£ tan x) +C. 1541. % ( X2+ x sin 2x -

+—2—cos 2x)+C 1542. In| C (e¥+1) | —x—e=*. 1543. j]/l_l_x

dy=arcsinx 4+ YV T—x2+C. 1544. COt d —ZtcC.

zfm

1545. xtanx+ln|cosx]-i‘2-'-|-c. 1546. In

tan %I—}-cos x+C.

1 1 1
1547. ——;-arctan X pC. 1598 3x° — 12¢° 424 ln< "+2>+
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b—3ax 1
+ C. 1549. 6a (ax +b)3+C (put ax+b=t). 1550. —7+arctan x+C.
1551. ————(dividc both the numerator and denominator by cos?xand
tan x4-1

I
B —T) (a—br-1 T &

for n # 1 and ——lnla bx3|4-C at n=1. 1554. Singling out a

put tan x=¢). 1552. 3 V ablnx+C. 1553.

perfect square in the radicand, put x-41= ¥ 2sint (or use the me-

thod of indefinite coefficients); x-|2—l V1—2x—x2-|—arcsin x'j.—2_l +C.

2Vx+1 1 x®  arctanx
1555. —'(—V;——I-:l)—z--l-c. 1556. ?ln l+x2 X
1 ex 1 1 C Vox+1
1557. — arctan —— x4 —1In (44¢%%)4C. 1558. In | —————|.
7 2 g g rtginétent I+ Vgl
I—x2
1559. x-cotx— -;—cot3x+C. 1560. —‘—/4x—x——arcsin %—}—C.
. |
sin <x+——)
1561. (1) —- _ln' V3 +cotx ! 6 /+c;
2V3 | V3 —cotx 2;/3 sm(x_%)
1
2) — 4 C. 1562. (1) Rationalize the denomi-
2 V3 V'3 —tanx
2 T T 1 S
nator: 3 [(x+a) 2 —x’] +C; 2) 1 [x Vx2+l+
2 |
+in(x+ VEF D+ 22 +C. 1563. %+x+7+
3
+In MI 1564, _—("+2)2 +C (put x=L)_
x 3 t
1565. %arctan Y ¢3—1+4+C (put x3—1=1¢2). 1566. —|2—[x+

+1n|sinx4cosx||4+C.  1567. 2[Vxarcsin Vx+ VI—x]+C.

2y __gqin2
1568. tan2x4C or cos® x—sin? x

+Cy. 1569 S—— dx =

co's.2 X sin® x

cot? x—i—C 1570. —cot x In (cos x)—

=—Scot2x d(cot x)+Sd(cot x)=cotx—

— x-+4C. 1571, e-x-l-? n e"-i—l |-|-C 1572. !Ttan"x-l—C (put tan
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x=t). 1573. lnlxl—'%l-lnlx-l—l |+C. 1574, S VI —sinxdx =

cos x dx

=z Vﬁ= +2 V'1—|-‘sinx+C (4 for cosx >0 and
—for cos x < 0). 1575. V_ ——arctan (V' 2 tanx)4C.

1 d (x? x241—(x2—2 X
1570, (e ) =g =5 G gy 4 O =g e+
1577. —2~V* (Vx+1)+C. 1578. 2 anrctan Vi—In|l+x|+C.
1579. Vfanx4C (put tan x=¢). 1580. In|x|— 2;*; In (x241)4-C.

1581. ﬁarctan (@*)+C. 1582. 2(V'x +cos Vx)+C.

1583. ?—"‘;“—7) Viti+2V2In |——”+l_'/2|—|—6 (put x-1=¢2).

Vx+i+V?2
1584. x— Vl—x“’arcsinx-{—C. 1585. ﬁﬂ;l- (put x=—;—).
3x243 1
1586 —%L—‘l)t+c (put x4 1=1). 1587. V Paxrtr—2aln|x+

+a+ V2xFx2|+C (p. 192, item 4°.  1588. |In ‘f‘;"l +C.

14 cos xsin? x C (x2+2x4-2)
1589. — LT ——L=—Z4C.  159. 16 In —Wl+
+ -:T arctan Qi'xz [the denominator is factorized in the tollowing
way: 4+ 4=xt44x2 {4 — 4):2—(,v:2 + 2)2—4x2 and so onj.
1592. s,=0.646, S;=0.746, S——-O 693. 1593. 20. 1594. 2—2-.
14 & 1
1595. 5 1596.— 6 1597. l2 . 1598. 3(e—1). 1599. In(1+ ¥ 2). 1600. 5

1601. Putting x=¢2 and changing the limits accordingly, we get:
3

S—?t—dz-_[2t-|—2ln(t—l)]3—2(l+ln2) 1602. 2—_2'/—3
) Vi
n 3 2e a(m—2)
1603. 2—In2. 1604. — 375 . 1605. ln-—_{_—l 1606. — (put
. 1 na®
x=asint).  1607. 1608. 4", 1609.  2In2—1.

3 I
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0. Y Ztn L(,H' Va) 1611. VL;—Q
3 Il =n 1.3 m
1612. In 5 - 1613. (1) 55 2) 54° 7
1.3.5 =« ad 1 V3 —1
A3) 546 5 1614. -5 1615. 5 1616. 1. 1617. —
1 n 17
1618. 21n 1.5—-§ . 1619. arctan e— = 0.433.  1620. 5
n—2 Fi1 1—In2 1 =
1621, ——. 1622. - —1. 1623, ———=. 1624. (1) 5 -5 ;
1.3 = 1.3.:5 = 32 2
(2) 2.—4 . 7, (3) m . ?. 1625. ? . 1626. mab. 1627. 3 of the

product of the base (2 ¥ 2ph) by the altitude A. 1628.%g. 1629. 8 1n 2.
6 8 8 5

1630. 1. 1631. % 1632. 19.2. 1633. 25.6. 1634. SE . 1635. T 1636. 20? .

1637. na®? (see Fig. 60 on p. 361). 1638. 0.8 (see Fig. 57 on p. 359).

—_— 2
1639. % ; put x=2asin?¢ (Fig. 88 on p. 387). 1640. 242 sinh 1 =
2 2
— a?(e—e~1) ~ 2.35q2. 1641. 3ma®. 1642. 3”T". 1643. a2. 1644. 3‘;‘1 ]

1645. rmax =4 at 29 =90°4-360°x, i. e. at ¢ =45°-180°n =45°, 225°%
rmin=2 at 2¢=—90°+4360°n, i. e. at ¢=—45°4-180°2=135°, 315°.
Adjacent extreme radius vectors at 45° and 135°. The required area

3_:1,
4
1 . 197 3n na? na?
—_ 2 — — — — —_—
equals ) S(3+sm2(p) dp= g 1646. ruls 1647, 5 - 1648. yul
JT
)

1649. r=a(sinp-+cos@)=a ¥V 2cos (cp—%—); rmax=2¢ V' 2 at
n 1 7T 1 7T 3n
¢—7=0 ¢=7; mmin=0 at 9g—F=+ 5, ¢=—- and .

1%

na?

The area S= (a V2)? cos? (@—%) dcp=7 . The answer is

2| —
SE >

obtained in a simpler way if the Cartesian coordinates are used: x2 y2 =

2 2
=a(x+y) is a circle. 1650. %. 1651. (10427 V73) &-.
1652. %az. 1653. 36. 1654. 12. 1655, %? 1656. %(see Fig. 56 on
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1658. 2. 1659. —. 1660. 17.5—61In6.

14 16
3 3

p. 358).  1657.

0
1661, 2 S —x Vx+ldx=r85 (see Fig. 53 on p. 357). 1662. rp,, =4

=1
if 29p=180°4360°2, @=90°4180°2=90° or 270% rpi,=2 if

J

2
2¢p=0°4360°2, ¢=180°1; 0° or 180°. The area S=2LS(3+
0

2 2

+ cos 2¢)? dp—=—= ’9“. 1663, %Tl. 1664. “—g— 1665. %
2

1666. T(eﬂ-e-ﬂﬂ):% sinh 2x. 1667. 4ab arctanﬂ 1668. ﬂmﬁ
8nab

1669. mpht. 1670. . 1671. 12 1672. 58.5m. 1673. 2nta%.

1674. na (S‘“h2+1> 1675. % 1676. %—na"’. 1677. 3n2.

512n a5z V3 nad i

1678. . 1679, T(T"’T)' 1680. . 1681 .

64 (n+2)n 4 _, 32na3

1682. 2. 1683 LT 1684 —ma. 1685 T

1686. 19.27. 1687. 8%. 1688, V= 12:“. 1689. 5n%a3. 1690. 72

1691. 12172 1693. 6a. 1694. %’ 1695. 8a. 1696. The points of inter-

l*/—s
section with the axes at #;,=0 and ¢,= f/@. s= S V163t =
0
= 4%. 1697. YV 6+In(V 24+ ¥V 3). 1698. 2asinhl ~ 2.35a.

12 13
B 5
ViFe 2
1699, s= 5‘ lx—l-x dx;  we put 14x2=¢% s= St:itl =
3 5
T T
t+1n iz 1]2'6 1.354-1n2 ~ 2.043.  1700. Th
[ -|— m 151 +1n 2 =~ 2.043. . e axes are

z i
3 i 3
i A X cos x dx
intersected at x;=0 and x,=-=; s=S =S 5"2 —
3 cos2x
0 0
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sin2x~

5
Sld(smx) In(2+ V73) ~ 1.31. 1701. (1) 4V 3;
0

(2) ? In (2 cosh 2) =~ 1.009. 1702. (1) 8a; (2) ma V¥ l-|—4n2—|--%ln 2n 4

+ V1§4n3).  1703. EE 1705. @ 1706. In3. 1707, 2In3—1.

2 3°
14n

1708. p[V 2+In(1+ ¥V 2)] ~2.29p. 1709. 4 V3. 171L. -5

1712. na? (sinh 2+2). 1713. 2n< V_>' 1714. 22 [V 2+ 1n (1 +
+ V72)]. 1715, %‘*uaz. 1716, 3n. 1717, 4ntab. 1718, 2V 172 ';7”2:;
1719. f’%'l. 1720. 2.47g2. 1721. 29.6n. 1722. 1.44.10¢ N. 1.08.10° N.
ah? 2 ab3 a%b
—_— — R3 . 6 —_ —_—
1723, ——. 1724. = RS. 1725. 24100 N 1726, Jy=—5; Jy=—5".
ab’ ash a3
1727, Jy=—i Jy=5. 1728 64, 1729 M =My=-;

a

a
1
x¢=y¢.=§-. 1730. Mx—_—S%ydx:O.lab?; My=Sxydx=Tba2;
0

0
a
y
0
S=§yd =?, xt=Ta. y.=0.3b. 1731. x,=0, yc=W=
0 R+h R
— A o~ 1732, (1) 11 2007 J; (2) 25000R J. 1733, ( TERE 4 —
3n 9 2
R
4 2H2
L mg Rh  10ay 1OWRPH® 9103, 1735. 12410, 1736. 0.247J.
RFH 6
. H+h
1737. t = S dx = 100 sec. l738.1=—R———— xV x dx,
0.6s Vogx 0.6r2H2 V' 2g

where h ~ 2 is the altitude of the additional cone. The computation
yields ¢ ~ 42 sec. 1789, 2o, 1740, 175 . 1741, — 1742, 2.4-104N

3 15 V2

4
4 2 2 _—
at sin2¢ cos tdt_ 6"

o _—y|2

a
on each wall. 1743. I, = Syzx dy=
0
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2
§yrax H
2. 4
1744, x,=0; y,=L2—-—=%. 1745. “RH,'O S(H—;)zxdxz
2Sydx 0

0
k-1
~300nJ. 1748, :°"°l [( "°) —1] ~ 15980 J.

4nR* /R _ 4001
15.5.0.8 2g_ 3

1747, t=

and (3) diverge; (4)

for n > 1, diverges for n<|1.

1749. (1) 1; (2 l, (3) _j“-, 4) |, (5) In2; (6) 16. 1750. (1)

‘2

@ —+ ';2, @ 22 1751, (1) 63/2; (2 diverges; (3) 6.

® -
1752. (1) s'__iix_ converges, since _l < —l—, and ﬂ-
ViFa VT3 1 X

0 © 1
converges (see Problem 1748); (2) 3 diverges, since

b1
®

?/T‘:: %, and S‘? diverges; (3)S converges. since for
xr>1 E—;—x<e-", and Se-xdx converges (see Problem 1749);

1
© @

sin x dx . | sin x | 1 dx
“4) 57—— converges absolutely, since P> é;z— , and S?

xdx . :
diverges. since for

converges (see Problem 1748); (5) j

®
x S x , 5‘
Vi1 Y x4+t
1 @® :
= Se-x“dx—}-s e=**dx converges, since for x=1 e-* < e~%, and
0

x>1

dlverges. (6) S e-*dx =
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e=*dx converges. 1753. (1) S%:li ~ for n <1 and diverges
0

—e-m8

(b—a)-n
1—n

b
for n=1; (2) S(b fx)"_ for n < 1 and diverges for n>=1.
a

1754. 7. 1755. 2. 1756. 3ma®. 1757. 2n%a®. 1758. n[V 2+ In(1+

+ VD] 1759. %". 1761. (1) %; 2) %; 3) I; (4) diverges.
1762. () In(1+V2);, 2 2 3 l—i. 1763. % 1764. 16w,
2 2
1765. 2n. 1766. (1) —: () 31"2. @) —; @4 LEo+bt,
L4 e—1 3
n 4 55
G) - 1768. () e ()=0; () |e(h)|<{g<03 1770. Fax
~ 28.8 dms3. 1772. In2=0.6932; le(h) | << 2 10 <0.0001-
1773.  8.16m. 1777.  Approximately 1.22n. 1778. Rz%.

1779. R=%. 1780. At the vertex (2, 0) R,=%; at the vertex

©, 1) Ry=4. 1781, R=4a. 1782. yma,(:%'at x=1; R=e.

1783. (4, 4). 1784. (3, —2). 1785. (0, 1). 1786. 27X248Y3=0.
1787. (2X)%/34-Y¥/3 =3%/3, 1788, X2/3—Y?/3=(2a)¥/3. 1789. X =a cos ,
2

maxzm
In2 2 a2 3
at x=——4—~—0.347. 1792. (1) R:f VQar, (2) 3 3) ="

Y=asint or X24Y2=q2 1790. k=e*(1J-e2%)-3/2; k

2

1793. 1794. 2. 1795. 1. 1796. 1. 1797. (—2, 3).

4 11 16 n 3
1798. (0, —-3—). 1799. <—§-, 3) 1800. X_T—--2—~

Y=—V2x—14. 1801. 8X3—27Y2 =0, 1802. X =
2 2
=—12( l+tT) , Y=4¢ ( l+%) ; to construct the curve and its

o] —

— 0.7,

evolute make a table of values of x, y, X, Y for t=0; #+1;

«lﬂ m|w

2 2 2 2
1803. (X+Y)? —(X—VY)? =4. 1804, (X4Y)® +(X—Y)® = ;



Answers 351

on rotating the axes through 45° this equation takes the form
2 2 2

2% +y.®=(2a)?, ie. the evolute of the astroid is also an astroid

with doubled dimensions and turned through 45°. 1806. 21. 1807. 5¢.

1808. 7.5. 1809. 2n. 1810. 2sinh 1 ~ 2.35. 18I11. 3-|-]n2’ 1812. 3x+

)
2
+4y=0; %:41-3} 1813. y=%x—%; %=3i+2(2—t)j.
dor 4[t—2| 6
=2 W= —e———; W, = ;
d? Ji we Var_i6t+25 = Var—I16t 12

x: oy .
at t=0 wy =16; w,=1.2. 1815. a—2—|—b—2=1; o=—asinti+

1814. w=

S x—t_y—it* _ z—13 X—x
+bcostf; w=—r. 1816. = o — 37 - 1817. =
Y—x2 Z—V'x x—1 y—3 z—4 _
m———=— 1818. o= —2— 3 ° 1819. r=—1i+&,
2V x
—i+k i+k .
B=i+k, N=—2f, 1= —, p= , v=—j. 1820. B=rx
- + J V3 .ﬁ Vs J
Xr=6i—6j42k, N=(rxryxXr=—221—16f-118k; the equations
f the principal normal: *—L=¥=1_2=1 i ttpe binormal: Xt =
of the principal normal: —g—==p—=-—¢-, of the binormal: ——=
= y__—?l=zl—l , and of the osculating plane: 3x—3y+2=1.1821. N=

=3(i+f), B=—1+j+2k. The equations of the principal normal:

x=y, z=0; of the binormal:’%—:yTl:%. 1822, Eliminating ¢,

we get x24y2=22, the equatior}.of a conical surface. 7=(cos ¢ —1 sin ¢) i+

+(sin t4¢ cos t) j+-k=Ii+k; r=(—2sint—t cos t)i+(2 cos t—t sin ¢) j=

=2, B=rXr=2i+2k, N=4j. The tangent: x=2z and y=0, the

principal normal: OY, the binormal: x4-z2=0 and y=0. 1823. At
br

x T Va

=3 X - , =a. 1824. cosa = + ————a—; cos =
2=a" "5 'Y y Varvs: P
Vo 4ab . .
=4 ————; cos y=+ ————; the choice of sign depends
Vat Vo Vat+ Vb

on the choice of direction on each branch of the curve. 1825. The
equation of the helix: x=sin2¢, y=1—cos2f, 2=2¢%, where ¢ is
the angle of turn (Fig. 48). The unit binormal vector f at the point C

(for t=_’2£): 3=i‘;%. 1826. At t=3 v=a(i+)), w=al.
b1
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. x—2_y—2 2—8 x—1_ y—2 _ x—2
1827. =7 =% . 1828. 5= =" and z=3. 1829, 5 =
=%=z—g—l-. 1830. 120°, 60°, 45°. 183l =— 261 —31/+ 22%&,

x—1_y—1_ 2z2—1, x—1_y—1_ 2—1

b=16i—12j+ 2k: % ~ 31  —93° 8~ —6 1

1832. N=—4j—4k B=2y—2k. The equations of the principal nor-
mal: x=n, 2=y-+2; of the binormal: x=mn, y+2=6. 1834. v =r=

it (1—20)j, w=F=—2, %:%:%;h VI— @ Far;

. 4¢ —2 —_ v 2 .
W=l=—— = — 2,w =—=——=" 2. 1835. o=r=
N Ve2—atar V2o =g=3
. . —4f+3j - 4§+ 3§ 11
= — 3 T e——— =pr= —-— —_—_—=—
4sinti+3costy Vs w=r V3 , B Pl
Y T W R R T S . 7 sin 2t n 5
= in 2 — . 3 -2 —
v= )V 16sin?{ +9cos®¢{, v= TR tt_4 v V._Q. Wy
) 7 - v 12 12V2 !
== = = ,7 et — et —1 = . . . =
b= 0.7V72 w, =7 = 2.4Y2. 1836. o
—Feit2j+ A%k, w=2j 4k, v=2w 4], %=“’va‘”=
2 2. R 20Qe41)2
_m—g, wt—v—4t—4. W, = R—w—?(at any

point). 1837. First write a matrix of the coordinates of the vectors



Answers 353

r t 6o
r 1 2t 3
r 0 2 6f|. Then find: (1) |F|= V14295
r 0 0 6

rxr |62 —6t 2

@ IFXFI=2 VIRTIEL  (3) rrr=12 (#) p=
2 Vo1 1 12 1
=1 T =92 (§) —=—————=3. 1838. — =
V(U Fa2F 9ty ® S =@ rorTn 8- R

Ve V2. 1_ V2 1 V2 1_1
= (x—l—y)z:T' -E__—— = 1839. R="3 '5=3% 1840. For
b b

the right-hand helix:

—l- ; for the left-hand: i=
[y Y

a?+ b2’ i

1 2t 2 xu __2 _¥
1841. E=(2tz———_—i_l—)2—'9—, ) = (—_Qtz—l-l)z— 9" 1842. r_‘ai-|-
g, 1 _%+4f4l 141 3 vz,
tutTE =iy o 7 M R

—=—=— —. 1844. (3) The whole plane, except the point (0, 0);

% Z=iiv gyt
Fig. 49 Fig. 50

4 x*4y*<a® (5) xy >0 (the first and the third quadrants);

(6) x2+y? < 1; (7) the whole plane, except the straight line y=x.
Equations (1) and (2) determine paraboloids of revolution; (3) a sur-

face of revolution about the axis OZ of the curve z=);i=| and y=0
(Fig. 49); (4) a hemisphere; (5) a cone which is depicted by taking

12--1895
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the following sections: x=a, 2?2=ay and y=»>b, z?=0bx (parabolas

shown in Fig. 50); (6) a surface of revolution of the curvez=——l—

Vi—x'
y=0 about OZ; (7) a cone with the generatrices y==kx, z= k,il
the directrices y=~h, (x—h)(z+h)=—h? (equilateral hyperbolas)
with the vertices on the axis OY and one of the asymptotes in the
plane y=x (x=~h, y=~h); such hyperbolas are also obtained from the
sections x="h or z=~h (Fig. 51). 1845. s=V p (p—x) (p—y) (x+ y—p).

The domain of the function: 0 < x<p, 0 <y< p and x+y > p, i.e.
a set of points inside a triangle bounded by the lines x=p, y=p and

z

.

and

Fig. 51

‘x+4y=p. 1848. Ayz=(2x—y—+Ax) Ax=0.21; Ayz=(2y—x+ Ay) Ay=
= —0.19; Az=sz—|-Ayz—AxAy=0.03. 1849. “Being continuous and
single-valued in the domain |y|<|x|[, the functions 2=+ } x2—y?
and z=—V x®— 4% are represented by the upper and lower surfaces
of a circular cone (with the axis 0X). An example of a discontinuous
function defined by the equation 2= % ¥ x*—y? is the function _
-i—l/x—_z—y” for 0<x< 1 } The straight lines x=1,

—_— x=2, etc. are lines of
z={ — V= for 1<x<2 discontinuity.

4+ V= for 2<x<3 and so on.
It is depicted by alternate strips of the| urper and lower surfaces of
Y

the cone. The domain of this function: < |x|, i.e. a set of points
inside an acute angle between the straight lines y=+x and on these
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lines. 1854. (2) The whole plane except the straight line y=—ux;
x2
(3) points inside the ellipse 2—|—b2._l and on the ellipse; (4) the

whole plane; (5) points inside the angle |y|<|x | and on its sides;
(6) quadrant of the planes x>0 and y=0. (2) is a cylindrical sur-

face with the generatrices z=h, x4y= hi and the directrix z=%,
y=0(Fig. 52). (5) and (6) are conical surfaces; surface (4) is a paraboloid.

Fig. 52
1858, 3¢ (x-+-2¢); 3 (x2—y?). 1860. —Z; L 1ge1. =¥, _*_
' ' ' X2 x oty x2+y2'
y: . % |/t

1862. — ————; ——=. 1863.
(x—y)2' (x—y) 3(?/x—?/t) #(y/t— /x)

dc_a—bcosa O b—acosa 6 Oc __absina

1864, =102 Sl SR 1866. 5- =
== (1—xy); g—‘;=— x2%e-%Y. 1867. z—z=(x+i%)—z; g—:‘=— (}%
1868. %?_{th—_x%ﬁ' %"t‘z V% ) 1874.hg—)zc=—asin(ax—by);
g—;=b sin (ax—by). 1875. %:-mz_—L%F : %:x—f/’%.
1876. %"Weﬁu—)y g—‘;:—(—ayij%—)z. 1871. g——l;=cot (x—2f),
g—‘;:- 2 cot (x—2¢). 1878. %:2 sin y cos (2x+y); g_u =

12*
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= 2 sin xcos (x-}2y).  1885. (1) 0.075; (2) —0.le? =~ —0.739.
1887. —0.1. 1888. 1.2nndm3. 1889. 0.13 cm. 1890. (1) dz2=— (%-[--;—) dx+

+ (%+y )dy. @ ds—lntdx-l—'f—d-f. 1891. Az=0.0431, dz=0.04.

1892. 0.15. 1893. —30m cm3. 1895, gd—i=—- (et +e-t)y=—2cosh t.

dz dy 0z 2x X 0z
o= y 22 212y, Z__ 2% d
1897. e-"—}-xea - - 1899, au y (l ) o= i (4.1. ; )
0z 0z0u , 0z0v 0z 02 02 0z
1900. (1) =% 0u0x+600x au"‘ 3 "t a—u @ =

9z yoz oz 1 0z Oou_Ou ou
Y%~ e 3 =x u+T55' 1901. 7 ox cosxy-l—aysmcp.a—-

=( zxsmqﬂ-a—cosq))r. 1903. (l)-—_2[(.4x+By)cost—(Bx+

+ Cy) sin )= (A—C) sin 2t 4-2B cos 2t; 2 dz__ 2%
Y =( + : @ dt_e“+l'

‘Z_d_z_l_a_z 0z_o02 0z ) 02_02 Vy
Ox Ou'Ov' Oy ~Ou ov’ @ Z=% 2'/x+0v

oz oz Vi y V
= 2|/y+0v 1907. F="m. 1908, Y

2ye? 3
(2)% 1910, &, 1911 —L.  1812. (1) (=1, 3) and
. 02_3—x 0z gy
(=1, —1); (2) (1, 1) and (=3, 1). 1913. ramraiil Al
0z2__y  0z_ x 02__a 0z_ b dy _x
w2 o 1916, ~=—; =7 1918. T
2 2
1919. — % 920, EEWEY o0y L yepp AL gp3. %2,
X Xy 2 6’ 5 ox
0z___y . 9. 0 ’ by, 2 . oy
=Tt 1926. 6; 2; 0; 6. 1920, ——2; —; 0; 0. 1931. T
ypox =2 1938. (1) -2(3y2dx2—4xy dx dy+ x2dy?);
(422" P+ x4 '
(2) (ydx—x y)2

a2z o, 0\2 8

1942. ( Ju a—u) =951t T ow
AV o, 0% 0%

oy ( du 8_0) 5‘+a_o)z=3 et

0’2 ( )’ 9%z 0%2 0%

1906. (1)

1914,

6u’+ oudv  0vt 3

022 0%2 02%2 0%z
et =5
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1943. Writing in the same way as in the previous problem, we get
0%z

4-3-0—2.
?z2_ 2 o% 4x 0% 8x?

1006, L2192 (o7 = c 22
T ox® oyt ToxtT 1—2y' dxdy (1—2y)2' 0y (1—2y)3°

1998, 0; 0; —3—; —— 2% . 1953, dﬁu=-%dxﬂ+-§-dxdy;
92/t 278 Y/ 1 "

2453 e s 0% 0% , vioe.

Pu=TFdd—sddy. 1954 4a? 2. 1955, —0d e o

2
1959. u=%+x Iny—cos y+C. 1962. u=§+—}‘-+ln y—arctanz4-C.
2
1963. u=xy2—x+3%+(). 1964. u=xsin2y-+ylncos x+y24C.

1965. u—xy+3"01 0 1966, u= Y z(+ VEFI)+O.

X

1967. u=xln y—x cos 2z-+yz+ C. 1968. u=x-—zSy+C' 1969. y =

Y

yZ:Xa_}_XZ

Fig. 53
= +xV 14x; the domain: 14-x=0; x> —1. Points of intersection

with 0X: y=0, xr=0 or2—l. The singular point 0(0, 0) is a node.
2
Extremumof y at x=— — |, yex=F ——= ~ F = (Fig. 53). 1970. y=
Y 3 Yex :F3 V-S F 5 (Fig. 53) y

=4 (x+2) Vx+2; the domain x=—2. (—2. 0) is a singular point
(a cusp). The points of intersection with the axes: at x=0 y= +2 VY
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atdy=0 x=—2 (Fig. 54). 1971. y=+x V' x—1. The domain: x> 1
and x=0, y=0 (a singular isolated point). At x=1 y=0, at x=2

4 4
=42, The points of inflection: x=—, y=4+ —— (Fig. 58).
Yy p 3 Y 373 (Fig. 58)

1972. y=+xV T—x% the domain |x|<1 or —! <<x<<1. The points
of intersection with the axes: at y=0 x, =0, x,=1, x3=—1. Thesin-

Y

Y 2= (x+2)° /

Fig. 54 Fig. 55

gular point O (0, 0) is a node. Extrema at x=+ —V!? ~30.7 Yex =

=+ —;- (Fig. B6). 1973. y=x+x V x. The domain: x=0; the points
of intersection with the axes: at y=0 x=0 or x=1; the singular

point 0(0, 0) is a cusp of the first kind with the tangent y=x. The
4 4 .

function y=x—xV x has an extremum: at r=3 ymax=f(Flg. 57).

1974, y=+ x—2)V 5 x=0; at y=0 x=0 or x=2; the singular
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point (2, 0) is a node. The curve has the same shape as the ong shown in

Fig. 53 but is displaced to the right. 1075. y=4 (x4-2a) )/ —*L2¢,
the curve is situated in the domain —2a«Cx < 0, where x and x | 2a
have opposite signs. (—2a, 0) is a singular point (a cusp); x=0 is
the asymptote. The curve is a cissoid similar to the one shown in Fig. 89

L
but displaced to the left by 2a. 1976. y=+ }/ % .
y<x. The points of intersection with the axes: at x=0 y=20 or

Y

, the domain:

Fig. 57 Fig. 58
y=—3. (0, 0) is a singular point (a cusp). Let us find the asymptote
]
y=kx-+b. Divide the equation by x® termwise: —(%) -
2
—3(i> L_0. Hence, k=lim L=1, b=lim (y—x) ==
X X x> X x> ®

= lim =3 _
rom Xy yE
mum of the function x=¢ (y)=:1i/lls+§!/2: at y=—2x = 3|/ 4~ 1.6
at x=0y=—3 §a point of inflection (Fig. 58)). 1977. x5+ y3—3axy =0
is the folium of Descartes (see Problem 366). O (0, 0) is a singular
point (a node) with the tangents y=0 and x=0. Let us find the

3
asymptote y=kx-|b. Bring the equation to the form 14- (%) —

— 1. Thus, the asymptote is y=x—1. An extre-

¥\ 1 _,. = lim £ —— = i .
—3a (-;) 7—0, hence, k_,,l_l,":,x— 1, b—xl_l’rr; (y+x) =
= lim 3a.xy

Jim m,e=—a. Thus, y=—x—a is the asymptote
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X
(see. Fig. 83). 1978. y=+ Vo Symmetric with respect to 0X

and OY. The domain: |x| > a, and |y| > |x]. 0(0, 0) is a singular
isolated point. At x=+alV 2 it has an extremum y=+ 2a. The
asymptotes: x=+ a and y= & x (Fig. 59). 1979. y=+ x ¥V 2—x; the

V]
AlN

domain: x<{2. The points of intersection with the axis 0X: at y=0
=0, x,=2. (0, 0) is a singular point (a node). The extrema of y:

at x=—§- yex=i%=i 1.08. (The curve has the same shape as
in Fig. 53.) 1980. y= + -;‘- V@& —(x—a)% the domain: [tr—a|<a
o —ax—aa or 0<<x<<2a At y=0 x,=0, x3=2a. The point
0, 0) is a cusp. At y'=0, V2ax— 2+ M:O. k=38 ,

V 2ax —x2 2
Yex= % 3 ‘:Ea =~ + -%a (Fig. 60). 1981, y=4 (x+2) ¥ x. The domain:

x=0 and an isolated point (—2, 0). A point of inflection at x=% .
The curve is the same as in Fig. 55 but displaced to the left. 1982. Two
domains: (1) x>0; (2) x <—a. Three asymptotes: y=x+§2‘—1 ,

a

y=—x—%a, and x=0. A cusp (—a, 0). Extrema of y: at x= 5 Yex=
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2
=1 3’23"z +26a. 1983, y=+ - VxF5 x=>—5. (0, 0) isa

point of osculation. Extrema of y: at x=—4 |y|max=28; at x=0
|9 |min=0 (Fig. 61). 1984. y=+ xV'x* —1. The domains: |x|>1
with an isolated point O (0, 0). The graph is the same as in Fig. 55
with a symmetric curve added at the left. 1985. At y=0 x;,=0 and
Xg=—14; at x=0 y,; =0, y,=— 1. (0, 0) is a singular point (a node)

with the slope of the tangents k= 4 2. At x=-——g— Ymax = 1.8 and at
x=0 ymin=—1. The asymptote: y=x-41. The curve intersects the

)

a %a
a%yt=x(2a-x)

Fig. 60

asymptote at x=—0.4 and then describes a loop passing through the
points (0, 0) and (0, —1). 1986. (1) y=1 (x—a) |/ 5—; the
domain: 0<<x< 2a, i.e. the curve is situated where x and 2a—x
have the same signs. (@, 0) is a singular point (a node) with the tan-
gents k=1 1. The asymptote: x=2a (Fig. 88). (2) y=1 —e,
x2—a
the domain: |x| > a and |y| > a with an isolated point (0, 0). The
asymptotes: x=+4a and y= 1 a. There are no points of the curve
between each pair of the asymptotes except for the singular point since
|x| >a and |y| > a. The curve consists of four symmetric branches
approaching the asymptotes x=+a and y=+a 1987. (1) y=
=+x g—:—":; —a < x<<a. The points of intersection with the
axis 0X: y=0, x;,=0, x;=a. (0, 0) is a singular point (a node). The
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asymptote: x=—a. The curve is a strophoid; it is obtained by folding
the graph shown in Fig. 88 along the axis OY and then translating
this axis to the left by a. (2) Domains: x=a, x < —a, and x=0.
(0, 0) is an isolated point. The asymptotes: x=—a, y=a—x and

y=x—a. At x=——a—(L25—i£ ~—1.6a Yoy ~ + 3.3a. 1988. (1) y=

3
=_-"4—; @ y=+2x 1989. (1) y=+R; (2) y=0 and y=—=x.
1990. (1) y=1; (2) y=1 is the locus of cusps but not the envelope;

(3) y=1 is both the locus of cusps and the envelope; (4) y=x—=
2 2 2

is the envelope, y=x 1is the locus of cusps. 1991. .:CT—l-y—a—=aT .

1992. y2=—x+2. 1993. (x24-y?)2=4a2xy. 1994. A family of paths

—_— —_— g H « ”).
y=x tan o B cost Their envelope (parabola of “safety”):

y=0 B2 q9e5. () webgr=p% () gi=dn @) y=I
9 2b% . po ’ .

1996. y2=4(x+1). 1997. /s y'/s=1"s, 1098. y=—x24/3.
1999. 2x 4 4y—2z=23. 2000. xy,+ yx,=222,. 2001. xyo2y+yxe2o-+2%eYy =

=305 2002. 20y Mo To g0, xty—z=+ 9. 2004 X0
==y—E—‘E._Z_55, at the point (0, 0, 0). 2005. cosa=— cosf =
= CO08 y:—Vl-_é-.. 2006. y=0, x+2z-41=0; the surface is represented
in Fig. 49 on p. 353. 2009. The tangent plane: x— y+2z_£2q- Its
distance from the origin is 2;3 . A helicoid is a ruled surface.
‘Straight lines are obtained in the sections z=h. At z=0 y=0;
at z=-’—;—a— y=x; at z=% x=0; at 2—33: y=—ux;, at z=na y=0
. . _a x—4 y—3 2z
(Fig. 62). 2010. z=0 and x—[—y—z—?. 2012. 4 =3 =%
2013. cosa=%; cosﬁ:—%; cos y=-—%. 2014. Plane

2+ y—x=a, p=T}_—3_. 2016. (1) z2=4; (2) 2x-+2y-+2z=6. 2017. grad z=

=— 2 —2yj=— 2 (I+2j). 2018. (1) grad z=_2ix+j; (2) grad z=

='—$1. 2019, gradh=—%i—2j. 2020. tang=|gradz|=
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2 2 10
- ]/" +y =——V‘;10z0.79. 2021. %=Q. 2022. L—24 V'

grad u=2{+2j+2k; |grad u]|=2V 3. 2023. grad u=% 4l
———————. 2025. grad z=0.32{—0.64/; | grad z | =0.32 /5.
2024, VW 5g Ji | grad z | 14
2026, 9u_LTXZTX O 9007,
V3 V3

lgrad u|=2zV 2. 2028, grad u=£i_ﬂl{_—¥-_z_le; |grad u|=1 at any

grad u=2 (xityj—zk);

% Hellcold y=xtan%
Fig. 62
oint. 2029 3 2030. z 1 at x=—4 I
p M . V‘m . . min - ) l/ .
2031, 2zp,x=12 at x=y=4. 2082. 24;,=0 at x=1, y=-—-é-.
2033. No extremum. 2034. zmin=—-% at x=—2 y=0.

at x=y=--. 2036. zmu,=2 at xr=y=1.

2035 2573y = 5

2

2037. Zpay=—4 at x=y=—2 and zp,=4 at8 x=y=2,
—y=3/37 7053 8§ 3y (_8 _3
2038. x=y=/ 2V, 2=0.5}/2V. 2039. (5. =) -

2040. It is necessary to find the minimum of the function z=d? =
= x24(y—2)% for the condition ¥2—y2—4=0. The required points:
(£ V5, 1). 2041. R=1, H=2. 2042, (1) Vertices (+ 3, —1) and
(0, 2); (2) the ray must pass in such a way that sin a: sin f=uv,:v,, as
it actually happens in nature. 2043. zp;;=9 at x=0 and y=3.
2044. 2z, =0 at x=y=2. 2045. zpj,=0 at x=0 and y=0,
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2046. 2y =0 at x=2, y=4. 2047. 2y =1 at x=y=13 I; zpiu=—1
at x=—y=:41. 2048. V=8. 2049. (I) Find the minimum of

x—y+4 - ips
d=———— or the minimum of z=x—y-44 for the condition
Ve vt
4x—y2=0. The required point is (1, 2); (2) 2ab. 2050. R = ]/ S =
n
3

2051. Equations of integral curves: (1) y=§; (2) y=x3 (3) y=_.’;— .

2053. xy’ =2y. 2054. (1) y2—x2=2xyy’; (2) x*+y=xy’. 2057. y=Cx,

y=—2x. 2058. xy=C, xy=—8, 2059. x24 y2=C?, x2}y2=20.
1

2060. y=Ce*, y=4e**% 2061, y=Ce*. 2062. x+y=
1

£2— 14 Ct

=1In|C(x+1)(y+1)|. 2063. r=Ce® +-a. 2064. s2— -

— .
2065. y=Ceﬁ, y=ey"‘2. 2066. y=Csm+l

2067. —i——[——;{-=Cg y=—x. 2068. General integrals: (1) y=C (x2—4);

1
.y —9 sin2 —_
s y=2sin%x 5

(2) y=C cos x. All integral curves of the first equation intersect the

axis OX at x=42, and those of the second at x=(2n—1) g-

X X
(singular points). 2069. y=i;-. 2070. Sydx=aS VY 1+4y'? dx; hence,
0 0

S y2
y=a Vl-l—y'? y== ]/-a—z —1; put y=acoshu, then asinhu-u’'=
= & sinhu. Hencet (1) sinhu=0, coshu=1, y=a; (2) adu= £ dx,
x+C
a

au= + (x+4C), y=acoshu=acosh ; at x=0 y=a and C=0.

Thus either y=acosh§— (a catenary) or y=a (a straight line).
2071, y2=ax. 2072. y2=4(x+42). 2073. In 40 min. Solution 1If in ¢

seconds the temperature of the body will be T, then %:— k (T —20°C),
where & is for the present an unknown factor; In (T720°C)=—kt+C;

_ e _ o _ . 80°C s
at ¢t =0 T = 100°C, therefore C =1n 80°C, k¢ =In T—90°C " Substituting

T,=25°C and Ty=60°C and dividing termwise, eliminate the un-

. kt _lﬂ16 _ . ~ _ _
known k: F10=Tng * d t =40 min. 2074. ZXI——H+T cos =0,

= ina=0: _dy_px P .,
ZY,—-px-i-T-sma—O, hence, tan a=—-2="r, y=3p ¥ +C
(parabola). 2075. Equation of the tangent: ¥ —y=y¢'-(X —x). Putting

Y =0, we find the abscissa of the point A of intersection of the
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tangent and the axis OX: XA=x——:—,-. By hypothesis X, =2x;
g

x=—7; solving this differential equation, find the required curve
xy=—a? (a hyperbola). 2076. x2-4-242=c2.  2077. y*—x2=C.
1
2078. 2x2+3y=——3a’ 2079. y=Cx¢. 2080. y=Ce *'.
C—x
2 2
2081. 2y_(l+ L —1. 2082, y=C (x4 V ®+a?). 2083. o
2084. r=Ccos¢, r=—2cos Q. 2085. Vy=xInx—x+C,
T 2 2
Vy=xlnx—x+1 2086. y= CV1+_x , Y= VHL .
x+ V I+ x+V 1+
X
2087. xy—=—I. 2088. y—ged. 2089. y=l2”x. 2090. x%y=C.

2091. Radius vector OM= V' x®+4?, a segment of the normal

MN = cosa =y Vittanfa=ylV 14y*. The required curve is

either x2+4-y2=C? (a circle) or x2—y2=C (a hyperbola). 2092. y=Cx?,
X

C
2093. y—x=CeY™*. 2094. 12—y2=Cx.  2095. s?=21In—.

—e—x2 —_
2096. y=Cx®—ix2.  2097. y=C—2;2—. 2008. gz%%‘—’
1 ex?
— - J— -_—
2099. V=TT Cr" 2100. y—2x+C' 2101. sin -|-lnx C.
x Cc
2002 y=z—"—. 2103, y=Inx+=. 2104, y3=§-|-—x—3-.
2105, y=2= 2_'. 2108. s=Ct2+Tl-; s=2t2-|--tl—. 2107 y=xeC%;
X
y=xe °%. 2108. (x—y)2=Cy. 2109. x24-y2=2Cyg.

.kt kL t
2110. 1=T+T e L —l). 2111. Putting X =0 in the equation
of the tangent Y —y=y'(X—x); find Vo=—ON=y—xy’,
- 2__
ON=xy —y=0M= Vx2+y”. Hence, y=x 5C
-2
be a paraboloid of revolution. 2112, g?=Cxe *. 2113. y=

: -
S ICUAVEED 14y por x>0 ]/—y-=ln—q-. for x <0
Vot * ¥

2
. The mirror must

v 1 c In lCtan l
]/'; =In Cx. 2115. y=-—3_-+—l_/_—2_x_ﬁ . 2"6. = l+ oS X
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217, s=#3(Inf—1)4+Cf2. 2118, y2—=—"

14-Cex*
—9 (sin x— ~-sinx _ 2 . 2
2119. y=2 (sinx—1)+4Ce . 2120. Y=1—ca’ ¥=T1—3="
1
2121. = x4 Ce~%; o= x — 201 =%, 2122, y=m———o—nvu— .
P=x+ 4 7 S
InCx
2123. (x—a)?+}y®>=a?. 2124. y= rant 2125. y?=x(Cy—1).

9 x 9P _ 9
2126. xy_--4—-|-C. 2127. -!—/~—|- 5 =C. 2128. y=cosx+} el
t Ct—1
—_— — 242 = . = .
2129. S_C-{—t—t TR 2130. x2424-2Ilnx=C. 2131. s I
2132. y=x2+4Cx. 2133. sin y=x+% . 2134, y= ad 5
C+2 °*
2135. 4x®+4y?=Cx. 2136. x3¥ —y=C. 2137. y-+-xe-v=C.
2138. x2 cos? y4 y2=C. 2139. p.=%; x—l——i—:C. 2140. In p=In cos y;
x2 sin y—l—% cos 2y=C. 2141. p=e-2%; y2 = (C —2x) e2*,
— l . x 3 — 3 —_
2142. p= sing’ siny+x =C. 2143. x342xy—3y=C.
2
2144. xdy—2x%2 1 3yi=C. 2145. "—"P;ﬁ+x=c. 2146. p,=%;
xy—Iny=0. 2147. p,=%; y2=Cx3+4-x2. 2148. p=e—Y; e—¥ cos x=C-}x.

2149. Inp=—Inx; p=%; xsiny+ylnx=C. 2150. y=(C & x)2.
Through the point M (1, 4), the curves y=(1-+x)? and y=(3—x)%

2151. y=sin (C + x). Through the point M %, # , the curves
y=sin (x—-%) and y=sin(3an—x . 2152. y=Cx2—|—(l:—; singular
integrals y= 4 2x. 2153. (1) y=x+4C and x24y2=C%

2
2 x( Vl—|—-ii + l) =C or (y—C)?=4Cx. Singular integrals x=0
and y=-—x. Parabolas: for x >0 y=—x, for x <0 y < —x. The
parabolas are tangent both to the axis OY and to the straight line

—C)2
=—x. 2154. (1) y=l—|—-(x—4c)—; singular integral y=1;
2 x=2 —#, y=p2—%—|—C. 2155. (1) y=(C + Vx+1)? singular
integral y=0;, (2) x=Ct*—2t3; y=2Ct—3¢%, where t=%;
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3) Cy=(x—C)?, singular integrals y=0 and y=—4x. 2156. (1) y =
x2
= Cx—C?; singular integral y._— (2) y=Cx—a V 14 C?; singular

2
integral x24-y2=a?; (3) y=Cx-|—é——Cz; singular integral y=1. 5x3 .

2157. y=l—-g%c)2; through M(l, —'2—) two curves pass: y—l—%
and y=x—':—2. 2158. (1) x=2p+? p2+C; y=p2+p3;
@) x24+(y+C)2=at. 2159. =—i:-—|—Cx-|—Cz; y=—);—2.
2160. (1) y=Cx—|—(l:—; singular integral y?=4x; (2) y=C (x+1)+C?,
y=—&41)2. 2161. Line segments of the tangent Y —y=y¢' (X—x)

on the coordinate axes: XA=x—?y,-, Yg=y—xy’. By hypothesis

&-2'-}-/—3—_—211% (Yy—xy'2=—4a%y’, y=xy' + V Zaazy (Clairaut’s equa-

tion). Any straight line of the family y=— Cx £+ 2a VC and also
the "curve determined by the singular ‘integral xy=a? solve the pro.
blem. 2162. Parabola (y—x—a)>=4ax. 2163. (1) y=3 In x+4-2x>—6x-6,

2) y_l—cos 2x; (3) y=Cyx+xarctanx—In ¥ 14+x24C,.
2164. y=—~4C1 Inx+Cy. 2165. y*=Cyx+Cy.

2166. y=Cj sin x—x—% sin 2x+ C,. 2167. 3+ Ciy+Cy=3x.
2168. y=Cyx(Inx—1)+C,. 2169. cot y=C,—Cyx.
2170. (1) y=e* (x—1)+Cyx24-Cy;  (2) x=—l———arctan

X
ye et et G

1 x—V —C,
for C; > 0), ——In C, (for C; < 0),
(for Cy ) QV—Cl x—l—V—Cl +Cy (for Cy )

C,—% (for Cy=0). 2171. y”=§(l—-x). For x=0 y=0 and y'=0.

Y=23E7 3
(Clx—{-C

P (lxz—ﬁ) is the equation of the flexion curve. 2172. C,y =
x=b x=b
i Lt o) 4y, 2173, y=acosh (_"{ﬁ=%<ea +e @ )
x3
2174, y=F. 2176, y=C;x+C,—Incos x; the particular integral
— In (cos x). 2176. y_————--l-Cl arctan x+C,. 2177, Ciy® =

= 14 (Cix4-Cy)2. 2178, y=(Cyx+Cy)?. 2179, s=_T+Cl In ¢ +C,.
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2180. 4 (Cyy—1)=(Cyx+Cy)2. 2181, y=Cy,—C;cos x—x. 2182, See
2177. 2183. y=—Incosx. 2184, y=Ce¥|Cped*. 2185. y=
=(C1+Cqyx)e2*. 2186. y=e?%(Acos3x+-+ Bsin3x). 2187, y=
=C,e2%¥ + Cpe—2% = A cosh 2x -+ B sinh 2x. 2188. y= A cos 2x--
-+ B sin 2x=a sin (2x+@). 2189. y=C,+Cqe—%%. 2190. x=
= Cyet 4 Cye—*t. 2191. p = A cos %—Q—B sin % .2192, s=e~t (A cos ¢ +
4+ Bsint); s=e-t(cost-+2sinf). 2193. y=Ce¥ 4 (Cy+Cyx)e?*.
2194. y=Cy cosh 2x+C, sinh 2x+Cjy cos 2x+C, sin 2x. 2195, y=
=Ce2%+e=%(Cycos xV 3+CgsinxV 3). 2196. y=(C;+Cox +
- Cgx?) e=9%,2197. y = A sin x sinh x + B sin x cosh x - C cos x sinh x-}

+ D cos xcoshx. 2198. y=Acoshx-]—Bsinhx—l—Ccos—;f--{—Dsin %

2199. Displacement x=a sin ]/% (t—ty); period T=2n ]/% .

2200. x=a cos ]/%— ¢; period T=2n ]/% . 2201, x=ae—=Ftsin (ot +@),

2
where 0= %—% . 2202, y=C,e~2*+Cge—*, 2203, y=(Cyx+C,) e8*.

2204, y=e—*(Cycos 2x}+Cysin2x). 2205, x=C.e3t |- Cpe-".

2206. x=C,cos 0! +C,sinwf. 2207, §=C,;+Coe-t. 2208. x=

=e-t(Acost V 2+BsintY 2). 2209. y=Cie=*+ (Cox+ Cg)e®*.

2210, y=C,e2¥+Coe=2% - Cgcos x+C,sinx. 2211. y=(Cy;+Cpx) X
ex¥ —e—X%

X cos 2x+ (Cg+ Cyx) sin 2x. 2212, y=—2—=sinhx. 2214, y ==

= C1e2% | Cpe=2% —2x3 —3x. 2215, y=Cie~*+Coe=2%4+0.25V 2 X

X cos %—2):) . 2218. y=C; cos x+Cysin x+x-+e%. 2217. y=C, -

+ C,e-“—{—% x2—x. 2218, y=e=2% (C; cos x+C, sin x) - x2—8x 7.

2219. y=Ce**+(Cq—x)e*. 2220, x=Asink(t—1ty)—¢cos kt.
Ol - 5 3

2221, y=Cye* V2 +-Cpe™ V2 — (x—2) e=%. 2222. y=Cr+Cots =1 .

2223, y=% =%+ xe=2% | Cie~2% |- Cpe=3%, 2224, x=e~ k! (C, cos kt +
-+ C, sin kt)--sin kt—2 cos kt. 2225, y=C;-} Cox-+(Cg -+ x)e=*+x3—3x2,
2206, y=Ce3%+ (c,- - %) e=3% | Cy cos 3x+C, sin 3x. 2227, x ==

=C; + Cycost 4 Cgsint 4 t3—6¢. 2228, y=(61 —i—l—';) e—2%
+ (Cycos x ¥V 3+CysinxV 3)ex. 2229, (1) x= (C,+C,t-|——t22—) e-2t;

(2) x=Acos La -+ B sin %-}-% . 2230, In our case y,=cos2x, y,=sin 2x,
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w=2, A=—%-|—Cl; B=—41- In sin 2x+C,y, and y = (Cl — %) cos 2x+
+ (C,-I-% In sin 2x } sin 2x. 2231, y={[(Cy+ In cos x) cos x |

+ (Cg+x) sin x] e2*. 2232, y=(C; —In x} Cyx) ex. 2233. y=C, cos x+
-+ C, sin x—cos x-In tan (12‘--1-%) . 2234, (1) y=C;+Che~*—

—(I4e-%)1In(1+ e")+x' @) y—e-2% (cl+czx-|-2l> 2287, y =
= Cle2x+C2e"x—|— 3 (6 cos 3x— sin 3x). 2238, y = (Cyx+Cy) e-x—l—ie’f

x
2239. y=e (Clcos——l—C,sn3—) —6 cos 2x+ 8 sin 2x. 2240, y =

X
=Ce?+Che 2 —x3. 2241. y=C,ex+(C,—~)2£> e—%, 2242, s=
=e~t(C, cost+C2sint)+(t—12)3. 2243. (1) y=em% (C;+4Cox) +
X

+C;S ;nx (2) y=Cie" +C,e_7—72l- . 2244, y = A cos x+ B sin x+

+ C cos 2x+ D sin 2x—ix cos x. 2245, y = (Cl+czx+csx2_l_%> o

2
2246, y— (" ‘2"" & +cl+czx)e-2x 2247. (1) y=C, sinx+

-+ C, cos x-l—m; @y = (Cy — In| sin x|) cos 2x 4+ (Cy—x —

——;-cot x) sin 2x. 2248, y= (Cl-f— Vi—x*+x arcsin —+ng) ex,

—_— -X
2249, y=C_(_’;$2l)e— 2250. y=1-+Ccosx. 2251. y=x(I+
—_— X et+C
CVT=), linear. 2252. y=C (1 4+ —— - .
+ 4 x?%), linear ] (-i—m) 2253. s = 7

2254. V y=Cx2—1. 2255, 2Cy2=x (C2x2—1). 2256, y=xIn x—2x +-
4 Cy In 4Cy. 2257. y (C—Cyx)=1. 2258. y=C,em* + ( c,—im) e-mx,

<
x

2259. y=In x-}-li 2260. y=xe . 2261, y2= . 2262, y=

+C e*
= (C1+Cyx) e*+C,,+—+2x2—|—6x 2263. Cyy =1+ CyeC*. 2264, s=
sin ¢

.=Cle2‘+e-‘(C,+Cat)——— 2265. (1) s=(t2--C) tan? ) y”—

sin x+- C cos x

=Cx*— 1. 2266. (1) y= . i@y _e-x(Cl+_) + Cze
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X cos xV_3+C3e-"sin x 5 3 . 2267. (1) y=(C,—InVTF&) ex+

2
—+ (Cyarctan eX) e2%; (2) y=C1eV°_" -+ Cge"V“ and y=Cyx+C,.
a d* 10 Y 10 10 ¥ 10n
2268, —; —-+1000 x=0, x=Acos ———— gf{+B sin ————g¢,
ng~dt2+'/_ Va et Va &
. 2ny a dT kR .k .
vperlod T——-]O—g’—v.ﬁo 2269. d7= m—, T—s—m+c, k and C
s opop_ R o K .
are founii from the conditions: 20 C_m ~-C and 100 C__m—l—-c,
T = 163C0—60°C=40°C. 2270, (1) y=Cpr—4Cor=2+Cox¥ (2) y=

=%+sz2; 3) y=Cx"+4Cox—tn+1), 2271, (1) y=x—-2(C;+C,Inx);
{2) y=Cycos (lnx)+Cysin (Inx). 2272. (1) y=5—';2—{—C1x—1—{—Cz;
@ y=C1x3+%—2ln x+—;—. 2278, () y=Cux+Cox—4xlnx
2) y=C—‘w. 2274. (1) y= (%8+clx+ca> x% (2 y=
= %_i_ C, cos (In x)+ C, sin (In x). 2275.  x=Cyet + Cye-3t,

y=— %: Ce!—3C,e~3%, 2276, x = €1 4-C,4-Coe—2t y=et4C,—Cye—2t,

2277, x=2—t|Ciet 4 Coe=2t, y=3e—143C,et-}-2Ce—2t. 2278, x =

= el 4 C,e% 4 Coe—3t - Cy cos (1 -+ ). 2279, x=e—2t (1 —2¢). 2280. x=

= C,et+Coe—t+tcosht, 2281. (1) u=¢ (*¥)+V () (2 u=yp (x)+

+P@); 3) u=xp@+Vvk); (@) u=axtln y+b§g+q>(xH52\P (®)-
— 2 — i gu L

2282. z=y2 (x+y—1). 2283. To reduce the equation A Fro +2B 3% 0y +
2

+ C%—y‘é=F to the canonical form we have to solve the characte-

ristic equation Ady?—2Bdxdy+Cdx*=0; in two of its integrals:
¢ (x, y)=E and ¢ (x, y)=7Ltake the arbitrary constants § and n for
new variables and express the given equation as a function of the new
variables (see Problems 1941 and 1942). In our example we have to solve
the equation dx2--4dxdy-3dy?=0, hence dy+dx =0, dy-3dx=
=0, y+x=E y-+3x=mn. Expressed in terms of the new variables,

the given equation takes the form aazu =0. Hence,u=¢ (§)4+vy (n)=
=@ (y+x)+ ¢ (y+ 3x). 2284. Characteristic equation x2dy? —
— 2y dxdy+y*dx2=0 or (xdy—ydx)®=0or d % =0; %=§. The
solutions are equal; we can take y to be equal to m. Thus, the two

new variables are: %:g and y=n. The equation will take the form
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(see Problems 1944 and 1945): %uz=0; u=n9E)+VvE or
u=yp (4 +¢(% : 2285.  u=yp (y 429+ (y+2%).

2286. u=xy-sin y cos x. 2287. (See Problem 1944.) u=ylnx+4 2y 1.
— . s
2288. u=Viig (Tx)—]—lp (xt); particular solution u=x_(lt+t ).
2289. u=e-*@ (x—¢)+p(v); particular solution u=(x—¢)e-t—x,
2290. Particular solution u=x at-|-%a818. 2201, u=f(x—at)-|2-f(x+at)+
x+at .
+%1 S F(2)dz. 2292. 6—41In2~3.28. 2293. (1) 10? sq. unitsg

x=-at

2
(2) 4 sq. units. 2204, 20%. 2295. 97“. 2296, —;——ei
a, x a a . a Vat=yt
2297. 1t dede=_dede=%; @ de S dx =
0 0 0 Y 0 a-y
a Vat-x3 . 1 2-x2
=de dy=a2(n:2); 3) “—;’-. 2208. (1) de S dy =
0 a-x 0 X
1y 2 Vioy | 0 0 0 0
=dede—|—de S dx=l—6—' 2) S dyS dx= de S dy =
0 0 1 -2 yr-4 -4 “-Virx
=?. 2299. (%—l—?)a‘z. 2300. The area of the smaller segment:
(331,— 1/_3) a? ~ 2.457a%. 2301. 311;12 2302. §l—‘? a®. 2303. %naz.
2
2304. 4.5. 2305. %-. 2306. ¥V 2—1. 2307. — q2. 2308. 8n-+9 V3.

6

)
b X
2309. (2—%) a®.  2310. 7In2. 2311. (1) Sadey dede:
] a a

a

xﬁ
. a V2at—ys a a aV2 Vagi—xt
_-.(”_—21’-; @ de S dx=dede+ S dx S
0 Vay 0 0 a 0
y’

i@;‘z;'*’), &) de S dy=5dy5 dx+§dy §ydx=
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non 28 a 4a
z g). 2313. (3, 4.8). 2814 (— —). 2315, (o, 3—n)

256a ‘17a*
, m) 2318. 5% 2319.

2312. (

23186. (0

Fig. 63 Fig. 64

nat 88a? 3a 3a 4b at

2322. 2. 2828 S35 oana, (3, ?). 2325, (o, E) 23%6. 2.
2 2 4

2327. 3. 2328, M&‘-ﬂ. 2329. 47.5. 2330. 35—1’6‘5‘1-. 2331. 42%-.

Fig. 65

2332. g%a”. 2333. The sections by the planez=h, x4 y=+ Va(a—h)

are parallel straight lines, i.e. we have a cylindrical surface (Fig. 63).
a a=Xx
as

16 4 - ;
7 2334. 34 (Fig. 64).

The required volume V=2§dx § 2dy=
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8
2335. (See Fig. 50 on p. 333.) -a%. 2336, 5 . 2337. 7L 5. 2338. 3nab,

(Fig. 65). 2340, _’1;3?

4mad

2339. V=4

S 1O b

a
mcosq>dcp5‘r2dr=
0

l !
)
xitryl=ax g{\ 4

v X
Fig. 66 Fig. 67

- 4q8 .
2341, 4n)/ 3ab. 2342 = (3n—4) (Fig. 66). 2343. n2a* (Fig. 62).

15 2 35
1

1

8 88 .

2348. l—5a“. 2349, V=2deSzdy=r6§ (Fig. 67). 2350. V =
0 x?

3a 2 Vax
= 48 dx S V Iax—y? dy= 30 (4n—3 V 3) (Fig. 68).
0

Viax

3
o3aa, 16V 2 o oogs TAC  onse b (1_%). 2347, 12°

_b Vat=x?
a

a
2
2351. V=35%yaa—_;adx S dy— 16;1; .
b 0

a &k

— 2
2352. V=4§dx5% Vai—x2 dy=‘%h, i.e. equal to the area of
0 0

128 o

the conoid base multiplied by half its altitude (Fig. 69). 2353. 105 4™
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2354. 18m. 2355. 2mad. 2356. 8mIn2 (see Fig. 49 on p. 353).

3 Bna 4nabe 8V 2
2357. [pmad. 2358, k. 2339, ——. 2360. 13. 2361 —

as,

2 —_
2362. 2ma?. 2363. 2-’53-(21/‘2‘—1). 2364. 2np? V2. 2365. 8al.

2 2 2
2366. 4a? (n—2). 2367. %‘-na“‘. 2368. o=SS —————M_zy_{_zdxdy=
N
V4
/4
Z X
F~"
h
A . a _i0
y Conoid (a%x%)y?=h?z%
Fig. 69

np P — —30° g R? "_as(radius
=l8—0R2-sma, at f=60° and a=30° o= 5 2369. 3

3 —_
of section r= ) 2370. %Ta 2—Vv2).

V3



Answers 375

a a-x a-x-y a . . .
2372, §dx § dy § zde=—ro. 2373, (T' T T)'
2374, (o, 0, -g-> 275, 2. 2378, “‘;‘% 2977 (1) %,
(2)’31;. 2378. “T"s(s V 2—7). 2379. %231 2380. “Ta 2381. ”Th‘.
2382. % 2383. (0, 0, %" . 2384. ”TV?‘” 2385. %.

2386. 6kna®, where k is the factor of proportionality.
4 when taken along the straight line 0A,

2387. S (x+y) dx= % when taken along the arc OA,

2 when taken along the polygon line OBA.
2388. (1) 8; (2) 4. 2389. S(x dy+ydx)=8 in both cases. This is

because here %— ?35 2390. (1) 1.5a% (2) a2. 2391. 8a2. 2392. na?.
Tunab 1
. . 0. . —; 2) — -
2303. — 2304. 0. 2396. (1) =5 (@ i (3) 2 75
2397. 2L 2398. mab. 2399. 8 2400. 3a2 2401. X =0, Y=2kmM.
3 15° 2 na?
2402, v ="M 9403, Y_k’"M . (1) —16; (2)——, (3) —12.
a2V 2
3a2 lla 3 4 ad
2405. (1) = (@) 2 ; (3) - 2408. o ma®. 2409 . 2410. .
2411. % 2412. Each part of the formula is equal to 4ma8. 2413. Each

4
part of the formula is equal to % ( ; +16> 2419. Each part of the

formula is equal to %na". 2421, 0.15a5. 2422. No. 2423. Yes.

2424. Yes. 2425. Diverges. 2426. Diverges. A 2427. Converges, since
®

-]

(xde)l:)"=%' 2428. Converges, since Sﬂ‘i:%=%. 2429. Diver-
1 ° 1
ges, since S s =o0. 2430. Converges, since
1
S [ —] l —In2. 2431. Converges.
2x+- 1)2—1 x41

2432. Converges. 2433. Converges. 2434. Converges, since
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lim M=% < 1. 24356. Diverges. 2436. Diverges. 2437. Converges.

n—o>o Un

2438. Diverges. 2439. Converges. 2440. Diverges. 2442. 1. 2443. %
2444. Converges not absolutely. 2445. Converges absolutely. 2446. Con-
verges not absolutely. 2447. Converges absolutely. 2448. After the
first rearrangement of the terms we get the series in the form:

1 1 1 1 1 1 1 1 .
(l—?)—T+(?——€)—-§+(3‘—T6>—'l—2+... . Opemng the
brackets, we obtain a series whose terms are half the terms of the

given series. After the second rearrangement any three terms may be
expanded as follows:
1 1 1 1 1 1 1 1 1
3Tl = dn—3 T3 dn—1 dn =2 s’
n=1,2 3, ...
the first four terms form the given series with sum S, and the last

for

two terms with sum —;—S. 2449. Converges. 2450. Diverges, since

- ®

dx . xdx m .
Sm_m. 2451. Converges, since ‘S‘ Tr—38" 2452, Diverges
1 1

@
since SQx;l dx=o. 2453, Converges. 2454. Converges, since

1

. u"""—i . s Upy1_ g 20n 421 _
n]Lnl_u,.__ ) < 1. 2458, Converges, smcenl_n’rg ", .._nl_nglo P

= %- < 1. 2456. Converges. 2457, Converges not absolutely. 2458, Con-

verges absolutely. 2469. For a > 1 converges absolutely, for a=1 con-
verges not absolutely, for a < 1 diverges. 2460. 1/2. 2461. 1/4.

2462. The sum of the series S(x)=

llx for x < 1, the remainder

xn . 1 1
R"=S_S"=l—x' On the interval [O, ?] |R,| < o=t < 0.001,
as soon as n—1 >_lolg_0;0§(1(l_; n>=11. 2463. The series has the sum

s x { 1 for 0< x<,
]===l—(fl—J:)= Olfor x=0, and the remainder
_Jd=x)rfor 0<x<, : .
R,,_{ 0 for x=0. For any__n the remainder R, will be
greater, say, 0.9 as soon as x < 1—1'70.9. i.e. on the closed interval

[0, 1] the series converges non-uniformly. But on the interval [%, l]

it converges uniformly, since then for any x |R,| < 3m < & as soon as
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a> -T—;:%i; in particular, | R, | < 0.01 for n>>7. 2464. The remalnder

of a series with alternating signs is less by modulus than lln fhist
rejected term. Therefore, on the interval [0, 1] | R, (x)| <X

n | a1l
_l}_l<01 as soon as n+1210 or n=9. 2465. The
3
series has the sum S = 1% for x> 0, and the remainder
0 for x=0,
1 for x >0

'For any n the remainder R,
0 for x=0.

will be greater, say, 0.1 as soon as x3 < n—ll/ 10—1, i.e. for x=0
the series converges non-uniformly. But for x =1 it already converges

uniformly, since in this case |R,,]< ll < e as soon as n—I >
—loge
> Tog 2

non-negative x the terms of the given series are less than, or equal to,

; in particular |R,| < 0.001 for n>=11. 2466. For any

the terms of the convergent series l—|—%+3la+3ia+... . Hence, the
series converges uniformly for all x=0, R, (x) is less than the remain-
1\n

? 1

der of the number series, i.e. R, (x) < =531 < 0.01 as soon

3
as 37-1 > 50 or n=5 for any x=0. 2467. | R, (x)| < hl7<0'0001 as
1 1

soon als n;lloo for any x. 24681. u"=x—+—n——_l—x—|—_n Therefore,

S":?—m; S=nllr2 S,,=7 for any x # 0. In particular, for
1 1

x>0R, (x)=-x_+_—n < FQO.I as soon as n=10. 2469. For any

non-negative x the terms of the given series are less than (or equal

to) those of the convergent series l+—;——|—%+%—|—... . Therefore, the

(=)
series converges uniformly for all x>0, R, (x)<—2—1—+2n;_l<

-7
< 0.01 as soon as 27-1 > 100 or n=8. 2470, —3<<x< 3.

271, — VY 5<x<V 5. 472, — '23 <r< V;S 2473. Converges
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absolutely along the whole number line. 2474, —1 < xs 1.

2475. —‘/32 <x< '32. 2476, (1) R=0; (2) R=e.

UL —S<x<3 M I<x<2 M. g for [x] <1

2480. arctanx for |x|<C1. 2481. (l+ for | x| < 1. 2482, (1+x)™=.

2483, —'2 <x<V 2484. —Vi<x< V3.

2485, —0.1<<x < 0.1. 2486. —l<<x<1. 2487, —1<<x < 3.
—_—2

2488. —l<<x < 0. 2489. (ll "2)2 for | x| < 1. 2490. —In(l—x)
—2x

for —legx < 1. 2491 (I_'QT)“‘ for |x| < 1. 2492. (1) cos (x—a)=

—sma( !—1—5] ; .)—I—cosa(l—i‘;-l—z—:--l----); Ry (%)=

xn 2x2  23x4 2648
=—cos(9x—a+n?), (2) sin? ===t =

al
@) xe"=x+f—:-]—;—?—}—%:—+...; @) sin (mx—}—g-):g X
NI EEIE

2493, In(1+ek*)=1In 2+ +’;;‘: i:;s“‘ . 2497. (1) 1n‘i‘=
=2 [x+—3-+?+...]; @) In@—3x+x2) = In(l —x) @—) = In2—

]

— Y429 Es @ m—spay =t [ 52

n=1
2x8

f’;‘+ Al ]—_zzcos——%; 2498. In (x+ VT 22) =

x
(2n—1) x2n+1

- 1.3... & I, x—a
=x+2(—l)" St et 2499, e°=e[l+m+

n=1
— _— —a\n 146 %—-l
R I (T ys00. w0
—Br= 23— DGR 2001 =14 G )6 1)
I
— 4 (x4 1) (x4 1)4. 2502, %.:— R [1-;-"”r2

2 (1_ :
+(x_;;2)z+("+T2)°+. . ] for —4 < x < 0. 2503, (1) cos %____V2_7x
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xL_("‘%) (x__g_)zl ]_i("_%)"—l @n—

Mg 2o T T et ST
assuming O! conventionally equal to 1 (see the note on p. 211 to

® 2n -1
Problem 1760); (2) sin 3x=2(—1)"(3(xz;';+)1;. 2504. 3/ x =

n=1

2.5.8...(3n— 1

+2 3n+1(n+l)l T (e for —2.< < 0. 2505, (1) ¥ =1+

+’%‘,‘2+’ﬂ2’}—2.. i Ry |= 2002 905, (9 cos (mat 2 ) =V 2
242

x [1_'7_!"_%4-...] - EZ"’ 37 cos @n—1) § (putting 01 =1).

n=1

2506, x4 — 4x2 = (x4 2)* —8 (x4 2)3+ 20 (x +2)2— 16 (x - 2).

n w3 n\8
I (g2 2 [ x—=
1 1/“3[" 3 < 3> ( 3)
2 oo _— £ — !
2507, cos x== LT 3 -+ Bl oo |4
2 6
1 2<x——g—> 23 <x—£> 26 (x—%)
—_ — L
+3 7 7y ]

-]
LTX arx—1)ym o fn T . _
2508.  sin 3= E S SiN (-:-3——|—n 2) (putting O0!=1).

n=0

_ x—4 (x—4)?  1.3(x—4)® 1.3.5(x—4)

2509. V—‘Q[H“za 1r_ ot evar T gmar T
1.3 x8 | 1.3.5 &7 T

2511. arcsinx= x+2 3-|—22 5 g toagr 7+ 2512 Y 0.992 =

= Y 1=0.008 ~ 1—0.004=0.996; V' 90= V8I+9=9 ]/1-|-%z

z9<l—}—%>=9.5. 2513, 3/0.991=j/T—0.009 ~ 0.997; }/130=

— 1 1 1 X
3 — — — | =5— —_
= ,/l25+5.—5 i/ l-|—25 ~ 5(l-|—75> 515. 2515. arctan x

T —
x3  x8 — 1 1
-5 ?—....25]7.n=2]/.3(1—‘;3—3+5.32 733+934>
sin x 3
= 1.814V3 ~3.142. 2519, (I)S dx=C—|—x—m—|——5§—...,
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X

@ S ﬁax=c+ x4 2o X 9520 CI)(x)—Se-x’dx:
x NTog T3 T 0 TW=

x? 1 1 1 .
_x'-_lﬁ"l_ 915 317 Y20 nERRH 0(3-) ~-§—-3—~0.419 with an

error < 2521. @ 1 2d +— w_2 . ®
2430 (x)— |/ +x2dx=x TR +

2.5 x’ 1 )

+ 3531 38.31 "7 o (g‘) x g—l-m ~ 0.2008 with an error
< 3550 < 0.0001. 2522. Differentiating the equation n times and
substntutmg x=0, we‘;et Y& —n(n—1) y&"?. Hence, yg=yo =0,

I"——2 1, yo y=3.2, ]

Maclaurin’s series y=!/o+—“— 'QT"2+"-’ we find: y._1+T+
x'l xb. xﬂ _ x2 x3 x4

+3—4+ﬁ+3—47§+. 2523. Y= l—l— 9 3 + 6 —.... 2524. The

2
solution is a Bessel function of order zero: Io(x)=l—-g—2--[—?:7-—
x8

=0 and so om. Substituting these values into

— ~ . 3/70015 ~ | 0004
—mEet 2525. V/1.005 ~ 1.0025; 3/ T.0012 ~ 1.0004;
1/ 0.993 ~ 0.9965; 3/ 0.997 ~ 0.999; Y 10= VI00+10 ~
1
zlo(1+20) 10.5; l/70~4(1+32>_4 125; l/40~2<1+20)
1-3
=2.1. 2521. n=6(?+2 b7 Forgeg T )

~ 3(140.041740.0047) ~ 3.14. 2528. =2 [1 ——2-§+,—2-4 -

‘ﬁ*" ‘J+%[' 331"‘5 3 7136 ] 3+2 S‘(—“

1 2 _ 2 ain? 2 oyl —
X(V"‘ﬂ)' 2532. s=4 \ V@il FEcostidl =

n
T
g2 1.3\2 g4 1.3:5
— — a2 2 = —_————— ] ¢ ——
4a§V_| @2 cos? ¢ df 2na[l 5 (2.4) 3 (246)X

;6
x-%-—...] » where e is eccentricity of the ellipse, and a its major

oty ro|a
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0.5
semi-axis (see Problem 1624 and the answer to it). 2533. S 14-x3dx=
0

x4 x7 05 ] 11 1 65 '
= [x-l—m——?z'?”—*—...]o =-§+-2—'_'F— ~l—28~0508
. 1 I Xt 1 x®
with an error < 7_—210. 2534. CD(x)=x——2TE—5+Tm—-‘..,
1 | 1 . 1
6] (?) —?—5—.2? e R 0.499805 with an‘ error < —27—2—20— .
2535, y=o i E 2536. Differentiating th ti
. y—T—|—32.7-.|—33.7. “-|-... . . Differentiating the equation
n times and substituting x=0, we get: y**® = — ny{"~V, hence yo=1,
. " » 3
Y0=0, yo=0, yo =—1, v =y =0, y'=14.., y=l-%+
S
1.4.x8 1.4.7.x° s? st
! — = — = —_———
s o +....2537. x Scos 5C ds s[l 3 (20)2.5—{-
0

ST $ (1 s
‘I-...] y Y= sin _QEdS—Z_C_ [§_3!_(W7+']’ where the
0

constant C=R-L, R is the radius of the circular curve, and L the
length of the transition curve. The curve is called the clothoid (Fig. 92,
p. 388). 2538. F (x+4-h, y4-)=x4-xy+y>+-h (2x+y)+ 1 (2y+x) +
+ 2l 0, 2539, x84 2xy2 =9+ 11 (x—1)+8 (y—2) +
+3(x—1248 (x—1) (y—2) +2(y—2)+(x — 13+-2(x— 1) (y — 2)2.

2540. In (x—y)=x— (y+ l)—%a—kx (y+ l)—g-y—+21-)—2—|-R3, where Rg=

(mx + ny)?

(x—y—1)3
3+

T 3Bx+1—0(+ DP’
+ gmx_;l-l_ny_)" sin 0 (mx -+ ny). 2543. dx=0.1; dy=—0.2; Az=(2x—y) dx+

2541. sin (mx-+ny) =mx+ny—

+ Qy—=x)dy+dx?—dx dy+dy?=—0.63. 2544. Az= —(adx—bdy)X
X sin (ax— by)—%(a dx—0b dy)® cos (ax—by)+ R, where R,=%x
X(a dx—b dy)? sin [a (x+ 0 dx)—b (y+ 0 dy)). 2545. x2y = —]=2 (x—1)4-

+ W+ 1)—(x—1)2+4(x—1)(y+1). 2546. arctan %:y—(x— Dy+....

— _ _ (y—1)2 2.1
2647, yF=142@y—D+Ex=)@Y~)+—5—+F..4 LI" 51+
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2
+2~0.1+0.l-0.l—|-&§1—=l.215. 2548. dx=—0.01, dy=0.02; Az=

=2yxdx + (x2—2y)dy+ydx? + xdx dy—dy2+%-dx2 dy ~ —0.1407.

sin (2n— l)x cos (2n—1)x . a®
2549. —}‘ T 20, —-42——-—])2_ 2551. T+
cos nx smx sm 2x  sin 3x
+42!(—1)n o 2552, ——[ P —...]+
cosx , cos3x , cos 5x 3nx
+? [ 12 + 32 + 52 J|= ] 2553. — [Slﬂ—+3 T+
++ sin—l—-{—...] . 2554, ; s [°°s“" 'r°°53“”+...] .
l 2l nx 3nx ! . TX
2555. T—F[COST—l—FCOS—l———i— e ]—{——J{ [Sll’l—l—

1 . 2nx 4 nx 2 2nx
-3 sm—l——|—...] . 2556, (1) -|- 3 [cosT—?{cos—Q—-}-

1 3nix 1 Smx 2 6mx

2 iy
+?COS—2— ?COST—FCOST—{—...] M (2) —[Sll’l—2—+

1 . 2ax 1 . 3mx 4 . T 3y
+5 sm—2--|—§ sm—2——|-...]+? [sm 5 ""3"3'5‘“ —+

1 . 5ux 4\ 1 T =
e ein 2t —_ ___ 14l .
+ 57 sin—g ] 2557, y== p - sin 2% sin 22X ¢
n=1
° 2n+1 2n41 2 ¢
n . 2n
2558. u= E: ap €08 —57 amntsin o T where a,,=TSf(§)x
n=0 0
. 2n+41 nnx an2n?t
X sin ngdg. 26569, u= E b, sin — TS —p—> where b, =

n=1

l

% f (&) sinZe Edg 2560. f(x)= S"—;{’“‘ sin Ax dA. 2561. f(x)=
0

cos k) sin A

§'
)

__ 2B ( cosAx _400=

=7 VPTR dh. 2562. f(x)= S sin Ax dA.
cos 3x | cos bx . 4

2663. ——+—- [cos G+ —= 32 +—— 5 + ] . 2564. | sin x]=-;(—-—l—_t-x
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cos 2x | cos 4x , cos 6x 4 . sin 3x
[l3+35+57+ ] 2565.—[5111):— 3T
r 3nx
sin 5x 4 !
—+ 52 —-l 2566. ———2[ 3 +.. ].
3 2 [cosnx |, cos3nx I [sinnx , sin 2nx
2567. T [ +—=— 3 —|—] ——n—[ I —}-—2———}-‘..] .

nx 2nx . X
1 <COSl— COS'T > <l~sm—l—
2568. sinh ! 7—21 ,n2—}-l2 _22n2+12+"’ +2n n2+12 -

2. sin 2nx ®
l _ 2n+1, . 2n+41
Ry —|—> . 2569. u= E ap €0 — ¢ sin 7% where

n=0

f (&) sin 2"+lgdg 2570. f (¥) == dh.

[ ]
2 2 (*sin A cos Ax
W=7 —

°"~/3::

APPENDICES

I. SOME REMARKABLE CURVES (FOR REFERENCES)

Y Yi
-
0 X 4 X
a{y:x"
ﬂyzaxl
Fig. 70. Fig. 71.

Cubic parabola Semicubical parabola
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q| X

Fig. 72.
Semicubical parabola

Fig. 74.
Logarithmic curve

St

ayt=x(x-a)?

Fig. 73.
Loop parabola

_/ y=ex

7 X

Fig. 75.
Graph of the exponential function



RLID

: ! Y 1 1
|
. , l : v
1 | I |
A Y
: : I |
L o/ L ox/
: /1 y X
! ] ! ! a
| | | |
T Y . Y
i | ! : g] X
: y=tanx | ! 1 y=acosh§ = %(651- 2d)
Fig. 76. Fig. 77.
Tangent curve Catenary
|4
7/
g
X
/ 7 y=asinh £
0" x=a(t-sint) y=a(l-cost) X
Fig. 78. Fig. 79.
Graph of the Cycloid

hyperbolic sine

Fig. 80. Fig. 81.
Witch of Agnesi (or versiera) “Probability” curve

131895
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x3+y3—daxy=0 Y

Fig. 82. Fig. 83.
Astroid Folium of Descartes

* rit=alcosip r=a(1-cosp)
Fig. 84. Fig. 85.
Bernoulli’s lemniscate Cardioid
a q/
P 7 ,
a — e, 4
r a.s‘mJgo 7
r=asinl¢
Fig. 86. Fig. 87.

Three-leafed rose Four-leafed rose



v\ _a(ttsing)
006’;0

r=a tanp.ringp

Asymptote

2_ x(a-x)?
9°=Z2a=x
Fig. 88. Fig. 89.
Strophoid Cissoid
Y
!
!
Asymptote h
—___—
8
\a
q 1/&\\
\}6\ .
P o T4 A X

.

Fig. 90.
Hyperbolic spiral

Fig. 91.
Parabolic arc inscribed
in angle XOY.

13¢



/] e — X

e
S
:5'2
x=[coss ds
/ 2c

s g
=/ sin4., ds
y/ 7

Fig 92.
Clothoid



II. TABLES

1. Trigonometric functions

a® sina tan o cot a cos o a® radi‘:ms sina tana
0 0.0000 0.0000 — 1.000 90 0 0 0.000 0.000
5.73 0.1 0.100 +4-0.100
1 0175 0175 57.3 1.000 89 11.5 0.2 0.199 +0.203
2 0349 0349 28.6 0.999 88 17.2 0.3 0.296 +0.310
3 0523 0524 19.1 999 87 22.9 0.4 0.389 -+0.422
4 0697 0699 14.3 998 86 28.7 0.5 0.480 +0.547
5 0.0872 0.0875 11.4 0.996 85 34.4 0.6 0.564 -+0.684
6 1045 1051 9.51 995 84 40.1 0.7 0.644 -+0.842
7 1219 1228 8.11 993 83 45.0 % 0.707 +1.000
8 139 141 7.11 990 82 45.8 0.8 0.717 +1.028
9 156 158 6.31 988 81 51.6 0.9 0.784 +1.260
57.3 1.0 0.842 +1.558
10 0.174 0.176 5.67 0.985 80 63.0 1.1 0.891 +1.963
11 191 194 5.145 982 79 68.8 1.2 0.932 +2.579
12 208 213 4.705 978 78 74.5 1.3 0.964 +3.606
13 225 231 4.331 974 77 80.2 1.4 0.985 +5.789
14 242 249 4.011 970 76 £6.0 1.5 0.998 +14.30

15 0.259 0.268 3.732 0.966 75 90.0 % 1.000 —
16 276 287 487 961 74 91.7 1.6 0.999 —33.75
17 292 306 271 956 73 97.4 1.7 0.992 —7.695
18 309 325 3.078 951 72 103.1 1.8 0.974 —4.292
19 326 344 2.904 946 71 108.9 1.9 0.946 —2.921
114.6 2.0 0.909 —2.184
20 0.342 0.364 2.747 0.940 70 120.3 2.1 0.863 —1.711
21 358 384 605 934 69 126.1 2.2 0.808 —1.373

68¢€



Continued

a .
(A4 sina tan o cota cos a a’ radians sina tana
22 375 404 475 927 68 131.8 2.3 0.745 —1.118
23 391 424 356 921 67 135.0 STH 0.707 —1.000
24 407 445 246 914 66
25 | 0.423 | 0.466 | 2.145 | 0.906 | 65 | J3¢-5 24 9.676 ook
26 438 488 | 2.050 899 64 12976 5 et o eos
27 454 510 | 1.963 891 63 154'7 - 0 208 o4
28 469 532 881 883 62 160 4 8 0 338 o a5
29 485 554 804 875 61 o] 59 0 510 0 o0
30 | 0.500 | o0.577 | 1.732 | o.es | 6o | J71-2 5.0 008 0. 142
31 515 601 664 857 59 1800 - 07000 o 006
32 530 625 600 848 58 - :
33 545 649 54g 839 gg
34 559 675 48 829
35 | 0574 | 0700 | 1.428 | 0819 | 55 | sinfol si_Y3
36 588 727 376 809 54 6 2 6 2
37 601 754 327 799 53 a1 n _
38 616 781 280 788 52 | tang=ox, cot==V73,
39 629 810 235 777 | 51 V3
40 | 0.643 0.839 | 1.192 0.766 50 || gin—eos Moo L
41 656 869 150 755 49 3 Y3
42 669 900 111 743 48 .
43 682 933 072 731 47 Tt
44 695 966 036 719 | a6 | A gTcot =l
45 | 0.707 1.000 | 1.000 0.707 45
| cosa cot o tana sina a’
o degree 1 2 3 4 | 5 6 7 8 9
a radians 0.017 0.035 0.052 ]0.070] 0.087 | 0.105 | 0.122 | 0.140 | 0.157

1 radian=57°17"45"
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2. Hyperbolic functions

x sinh x cosh x x sinh x cosh x
0 0 1
0.1 0.100 1.005 2.1 4,022 4.289
0.2 0.201 1.020 2.2 4.457 4.568
0.3 0.304 1.045 2.3 4.937 5.037
0.4 0.411 1.081 2.4 5.466 5.5567
0.5 0.521 1.128 2.5 6.050 6.132
0.6 0.637 1.185 2.6 6.695 6.769
0.7 0.759 1.255 2.7 7.407 7.474
0.8 0.888 1.337 2.8 8.192 8.253
0.9 1.026 1.433 2.9 9.060 9.115
1.0 1.175 1.543 3.0 10.02 10.07
1.1 1.336 1.669 3.1 11.08 11.12
1.2 1.509 1.811 3.2 12.25 12.29
1.3 1.698 1.971 3.3 13.54 13.58°
1.4 1.904 2.151 3.4 14.97 15.00
1.5 2.129 2.352 3.5 16.54 16.57
1.6 2.376 2.578 3.6 18.29 18.32
1.7 2.646 2.828 3.7 20.21 20.24
1.8 2.942 3.107 3.8 22.34 22.36
1.9 3.268 3.418 3.9 24.69 24.71
2.0 3.627 3.762 4.0 27.29 27.31
X
For x >4 assume that sinh x =~ cosh x = % (accurate to 0.1).
X __p=X X -X
sinh x=e—2e—; coshx:e—+2-e—-;

e* =sinh x -+ cosh x;

e*i =sin x i cos x.
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3. Inverse quantities, square and cubic roots, logarithms, exponential function

x -{— Vx V10 x -:li/x ?/le 13/1001: log x In x ex x
1.0 1.000 1.00 3.16 1.00 2.15 4.64 000 0.000 2.72 1.0
1.1 0.909 05 32 03 22 79 041 095 3.00 1.1
1.2 833 10 46 06 29 93 079 192 3.32 1.2
1.3 769 14 61 09 35 5.07 114 252 3.67 1.3
1.4 714 18 74 12 41 19 146 336 4.06 1.4
1.5 0.667 | 1.23 3.87 1.15 2.47 5.13 176 0.405 4.48 1.5
1.6 625 27 4.00 17 52 43 204 470 495 |.1.6
1.7 588 30 12 19 57 54 230 530 5.47 1.7
1.8 556 34 24 22 62 65 255 588 6.05 1.8
1.9 526 38 36 24 67 75 279 642 6.69 1.9
2.0 0.500 1.41 4.47 1.26 2.71 5.85 301 0.693 7.39 2.0
2.1 476 45 58 . 28 76 94 322 742 8.17 2.1
2.2 455 48 69 30 80 6.03 342 789 9.03 2.2
2.3 435 52 80 32 84 13 362 833 9.97 2.3
2.4 417 55 90 34 88 21 380 875 11.0 2.4
2.5 0.400 1.58 5.00 1.36 2.92 6.30 398 0.916 12.2 2.5
2.6 385 61 10 38 96 38 415 955 13.5 2.6
2.7 370 64 20 39 3.00 46 431 993 14.9 2.7
2.8 357 67 29 41 04 54 447 1.030 16.4 2.8
2.9 345 70 39 43 07 62 462 065 18.2 2.9
3.0 0.333 1.73 5.48 1.44 3.11 6.69 477 1.099 20.1 3.0
3.1 323 76 57 46 14 77 491 131 22.2 3.1
3.2 313 79 66 47 18 84 505 163 24.5 3.2
3.3 303 81 75 49 21 91 519 194 27.1 3.3
3.4 294 84 83 50 24 98 532 224 30.0 3.4
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Continued
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1 — 3/— 3/7— | 3 ex
- Vx V10 x l/x y 10x ‘/IOOx log x In x x
0.286 1.87 5.92 1.52 3.27 7.05 544 1.253 33.1 3.5
278 90 6.00 | 53 30 11 556 281 36.6 -3.6
270 92 08 55 33 . 18* 568 308 40.4 3.7
263 95 16 56 36 24 580 335 44.7 3.8
256 98 25 57 39 31 591 361 49.4 3.9
0.250 2.00 6.33 1.59 3.42 7.37 602 1.386 54.6 4.0
244 03 40 60 45 43 613 411 60.3 4.1
238 05 48 61 48 49 623 435 66.7 4.2
233 07 56 63 50 55 634 458 73.7 4.3
227 10 63 64 53 61 644 482 81.5 4.4
0.222 2.12 6.71 1.65 3.56 7.66 653 1.504 90.0 4.5
217 15 78 66 58 72 663 526 99.5 4.6
213 17 86 68 61 78 672 548 110 4.7
208 19 93 69 63 83 681 569 121 4.8
204 21 7.00 70 66 88 690 589 134 4.9
0.200 2.24 7.07 1.71 3.68 7.94 699 1.609 148 5.0
196 26 14 72 71 99 708 629 164 5.1
192 28 21 73 73 8.04 716 649 181 5.2
189 30 28 74 76 09 724 668 200 5.3
185 32 35 75 78 14 732 686 221 5.4
0.182 2.35 7.42 1.77 3.80 8.19 740 1.705 244 5.5
179 37 48 78 83 24 748 723 270 5.6
175 39 55 79 85 29 756 740 299 5.7
172 41 62 80 87 34 763 758 330 5.8
170 43 68 81 89 39 771 775 365 5.9
0.167 2.45 7.75 1.82 3.92 8.43 - 778 1.792 403 6.0
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Continued ‘§

1 — — 3,— | 3/— |3 .
- Vx V10 x x 10 x /IOOx log x In x e x

6.1 0.164 2.47 7.81 1.83 3.94 8.48 785 1.808 446 6.1
6.2 161 49 87 84 96 53 792 825 493 6.2
6.3 159 51 94 85 98 57 799 841 545 6.3
6.4 156 53 8.00 86 4.00 62 806 856 602 6.4
6.5 0.154 | - 2.55 8.06 1.87 4.02 8.66 813 1.872 665 6.5
6.6 152 57 12 88 04 71 820 887 735 6.6
6.7 149 59 19 89 |. 06 75 826 902 812 6.7
6.8 147 61 25 90 08 79 833 918 898 6.8
6.9 145 63 31 90 10 84 839 932 992 6.9
7.0 0.143 2.65 8.37 1.91 4.12 8.88 845 1.946 1097 7.0
7.1 141 67 43 92 14 92 851 960 1212 7.1
7.2 139 68 49 93 15 96 857 974 1339 7.2
7.3 137 70 54 94 18 9.00 863 982 1480 7.3
7.4 135 72 60 95 20 05 869 2.001 1636 7.4
7.5 0.133 2.74 8.66 1.96 4.22 9.09 875 2.015 1808 7.5
7.6 132 76 72 97 24 13 881 028 1998 7.6
7.7 130 78 78 98 25 17 887 041 2208 7.7
7.8 128 79 83 98 27 21 892 054 2440 7.8
7.9 127 81 89 99 29 24 898 067 2697 7.9
8.0 0.125 2.83 8.94 2.00 4.31 9.28 903 2.079 2981 8.0
8.1 124 85 9.00 0l 33 32 909 092 3294 8.1
8.2 122 86 06 02 34 36 914 104 3641 8.2
8.3 121 88 11 03 36 40 919 116 4024 8.3
8.4 119 90 17 03 38 44 924 128 4447 8.4
8.5 0.118 2.92 9.22 2.04 4.40 9.47 929 2.140 4914 8.5
8.6 116 93 27 05 41 51 935 152 5432 8.6




Continued

1 — — 3, | 3,— |3 .
x - Vx Viox l/x 10 x ‘/IOOx log x In x e x
8.7 0.115 2.95 9.33 2.06 4.43 9.55 940 2.163 6003 8.7
8.8 114 97 38 07 45 58 945 175 6634 8.8
8.9 112 98 43 07 47 62 549 186 7332 8.9
9.0 0.111 3.00 9.49 .| 2.08 4.48 9.66 954 2.197 8103 9.0
9.1 110 02 54 09 50 69 959 208 8955 9.1
9.2 109 03 59 10 51 73 S64 219 9897 9.2
9.3 108 05 64 10 53 76 $69 230 10938 9.3

9.4 106 07 69 11 55 80 973 241 12088 9.4
9.5 0.105 3.08 9.75 2.12 4.56 9.83 978 2.251 13360 9.5
9.6 104 10 80 13 58 87 982 263 14765 9.6
9.7 103 11 84 13 60 S0 987 272 16318 9.7
9.8 102 13 90 14 61 93 991 282 18034 9.8
9.9 101 15 S5 15 63 97 996 293 19930 9.9

10.0 0.100 3.16 10.00 2.15 4.64 10.00 000 2.303 22026 10.0

Given in the column “log x” are mantissas of common logarithms.
Natural logarithms of numbers greater than 10 or less than 1 are to be found by the formula

In(x-10*) =1n x+ % In 10.
In 10=2.303; In 102 =4.605;
log x=0.4343 In x; In x=2.303 log x.
Formulas for approximate taking of roots:
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1. MULTIPLE INTEGRALS, FIELD THEORY AND SERIES. AN
ADVANCED COURSE IN HIGHER MATHEMATICS

B. M. Budak and S. V. Fomin

Covers branches of mathematics increasingly required by physicists,
such as multiple, line, and improper integrals, the theory of fields,
and power and trigonometric series. Based on lectures read by the authors
in the Physics Faculty of Moscow University, the book endeavours to
show the connection between the various mathematical concepts and
their applications, and wherever possible their physical meaning as
well.

Contents. Double Integrals. Triple and Multiple Integrals. Elements
of Differential Geormetry. Line Integrals. Surface Integrals. Theory of
Fields. Tensors. Functional Sequences and Series. Improper Functions.
Integrals Depending on Parameters. Fourier Series and the Fourier
Integral.

Appendices on (a) Asymptotic Expansions and (b) Universal
Computers.



2. DIFFERENTIAL EQUATIONS AND, THE CALCULUS OF
VARIATIONS ’

L. Elsgolts

This text is meant for students of higher schools and deals with .
the most important sections of mathematics—differential equations
and the calculus of variations. The book contains a large number of
examples and problems with solutions involving applications of
mathematics to physics and mechanics.

Contents. First-Order Differential Equations. Differential Equations
of the Second Order and Higher. Systems of Differential Equations.
Theory of Stability. First-Order Partial Differential Equations. The
Method of Variations in Problems with Fixed Boundaries. ' Variational
Problems with Moving Boundaries and Certain Other Problems. Suffi-
cient Conditions for an Extremum. Variational Problems Involving a
Conditional Extremum. Direct Methods in Variational Problems.



3. THE THEORY OF FUNCTIONS OF A COMPLEX VARIABLE
A. G. Sveshnikov, A. N. Tikhonov

The book deals with fundamental concepts in the theory of func-
tions of a complex variable and operational calculus, covering such
topics as the complex variable, functions of a complex variable, series
of analytic functions, analytic continuation, the Laurent series, the
calculus of residues and their applications. Serious consideration is
given to the principles of conformal mapping and the application of
methods of complex-variable theory to the solution of boundary-value
problems in hydrodynamics and electrostatics.

Two methods—the sadle-point method and the Wiener-Hopf
method—which have found extensive application in physics are treated
in considerable detail in the appendix. A valuable feature of the book
is the large number of worked examples.
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