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tliAPTER 1 

PLANE ANALYTIC GEOMETRY 

1.1. Coordinates of a Point on a Straight Line 
and in a Plane. The Distance Between Two Points 

1°. The distance d between two points A (x1 ) and B (x2) 

on an axis: 
d = / X2 -X1 I= V (x2 -X1 ) 2 • (I) 

2°.· The value AB (algebraic) of a directed segment of 
an axis: 

(2) 

3°. The distance d between two points A (x1 , yJ and 
B (x2 , y2) in a plane: 

d = V (.,-X-~ -x-.,1)-2 -+-(,...-y2--Y...,.-1)2 • (3) 

4°. The projections of a directed segment having A (x1 , yJ 
as its initial point and B (x2 , y2) as its terminal point on ____,. 
the coordinate axes, or those of a vector AB in a plane 

____,. 
pr0 vAB=Y=y2-y1 • (4) 

I. Plot the points A (-5), B ( + 4), and C (-2) on the 
number axis, and find the values AB, BC, and AC of the 
segments on the a xis. Check that AB + BC = AC. 

2. Do the same exercise for the points A ( + 1), B (-4), 
and C(+5). 

3. Construct a triangle with the vertices A (-4, 2), 
B (0, -1), and C (3, 3) and determine its perimeter and 
angles. 

4. Prove that the triangle with the vertices A (-3, 2), 
B (0, -1), and C (-2, 5) is a right triangle. 
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3. Plot the points A (-4, 0), B (-1, 4) and A1 , 8 1 

which are symmetric to the given ones with respect to 
the axis OY. Calculate the perimeter of the trapezoid 
ABBIAI. 
· 6. Point B is symmetric to A (4, -1) with respect to 

the bisector of the first quadrant. Find the length of AB. 
7. Find the point 5 units distant both from the point 

A (2, 1) and the axis OY. 
8. On the axis of ordinates find the point 5 units di­

stant from the point A (4, -1). Explain by construction 
why two solutions are possible. 

9. On the axis of abscissas find the point c units distant 
-from the point A (a, b). Analyse the solution for c > I b I , 
c = 1 b 1 , and c < 1 b I . 

10. On the axis OX find the point equidistant from the 
origin of coordinates and from the point A (8, 4). 

11. Find the centre and the radius of the circle circum­
scribed about a triangle.withthevertices A(4, 3),8{-3, 2), 
and C{1, -6). · 

12. Given the points A (2, 6) and B (0, 2); construct the - . vector AB, its components on the axes and compute - -pr0 xAB, pr0 yAB and the length AB. 
13. Applied at the point A (2, 5) is a force whose pro­

jections on the coordinate axes are X= 3 and Y = 3. 
-+ 

Determine the end-point of the vector AB representing 
the force, and the magnitude of the force. 

14. Applied at ·the point A (-3, -2) is a force whose 
projection Y = -1, and the projection X is positive. 

-+ 
Determine the end-point of the vector AB representing the 
force if its magnitude is equal to 5 V2. 

15*. Plot the points A {1), B {-3), and C {-2) on the 
number axis and find the values AB, BC and CA of the 
segments on the axis. Check that AB + BC + CA = 0. 

* Each_ section of the present book is supplied by a stock of pro­
blems which are recommended for home tasks or recapitulation pur­
poses. They are given below a separating line. 
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16. Plot in a plane the points A(-7, 0), 8(0, 1) and 
points A,, 8, which are symmetric to A and 8 with 
respect to the bisectors of the first and third quadrants. 
Compute the perimeter of the trapezoid A88,A,. 

17. On the axis of ordinates find the point equidistant 
from the origin and from the point A (-2, 5). 

18. On the axis of abscissas find the point 3 V5 units 
distant from the point A (-2, 3). 

19. Determine the centre and the radius of the circle 
circumscribed about a triangle with the vertices A (-3, -1), 
R (5, 3), and C (6, -4). 

20. Given the points A (x,, y 1 ) and 8 (x2 , y2). Applied 
at the origin are two forces represented by the vectors --.. _____,. _____,. 
OA and 08. Construct the resultant force OC and prove 
that its projection on the coordinate axis is equal to the 
sum of the projections of the components on the same 
axis. 

· 21. Given the points A ( 1, 2), B (3, 5), C (5, 2), and 
--.. -D (2, -2). Applied at the point A are forces A8, AC -and AD. Find the projections of the resultant force on 

the coordinate axes and its value. 

1.2. Dividing a Line Segment in a Given 
Ratio. The Area of a Triangle and a Polygon 

1°. Dividing a line segment in a given ratio. Given 
two points A (x,, y1 ) and 8 (x2 , y2). The coordinates of 
the point M (x, y) that divides the segment AB in the 
ratio AM:MB=J. are determined by the formulas 

x, +'-x2 y- y, +'Ay2 
X=~, - I+'A. 

In a particular case when M is the 
segment AB (i.e. when lv=1:1=1) 

x1+x2 YttY' X=-2-, Y= . 

(1) 

midpoint of the 

(2) 

2°. The area S of a polygon with the vertices A (x" y,), 
B (x,, Y2), C (x3 , y3), ••• , F (xn, Yn) is given by the for-
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mula 

The expression lx1 Ytl equals X1y2 -X-df1 and is caJJej 
X2 Y2 

a determinant of the second order*. 

22. Plot the points A (-2, I), and B (3, 6) and find 
the point M which divides AB in the ratio AM:MB=3:2. 

23. Given the points A (-2, I) and B (3, 6). "Divide" 
the segment AB in the ratio AM:MB=-3:2. 

24. Masses m1 and in2 are placed at the points A (x1) 

and B (x2 ) on the axis OX. Find the centre of mass of 
this system. 

25. Masses m1 , m2, and m8 are placed on the axis OX 
at the points A (x1), B (x2), and C (x3 ) respectively. Show 
that the centre of mass of this system is found at the 

· t m1x1 +m~2+m8x8 
pJtn X= mt+m2+ms 

26. The ends of a 40 em 500 g uniform bar are fitted 
\\ ith balls weighing IOO g and 400 g. Determine the centre 
of gravity of this system. 

27. Masses of 60 g, 40 g, and I 00 g are placed at the 
points A (-2, 4), B (3, -I), and C (2, 3) respectively. 
Determine -the centre of mass of this system. 

28. Determine the midpoints of the sides of a triangle 
with the vertices A(2, -I), 8(4, 3), and C(-2, I). 

29. In a triangle with the vertices 0 (0, 0), A (8, 0), 
and B (0, 6) determine the lengths of the median OC and 
of the bisector OD. 

30. Find the centre of gravity of a triangle with the 
vertices A (I, -1), 8(6, 4), and C(2, 6). 
· Hint. The centre of gravity of a triangle is found at 
the point of intersection of its medians. 

31. Compute the surface area of a triangle whose ver­
tices are A (2, 0), B (5, 3), and C (2, 6). 

• For more detail see Chapter 4. 
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32. Show that the points A ( 1, 1 ), B ( -1, 7), and C (0, 4) 
belong to one straight line. 

33. Calculate the area of a quadrangle with the ver· 
tices A (3, I), B (4, 6), C (6, 3), and D (5, -2). 

34. Two parallel forces equal to 300 N and 400 N are ·app­
lied at the points A (-3, -1) and B (4, 6) respectively. 
Find the point of application of the resultant force. 

35. Masses of 500 g, 200 g, and 100 g are placed at the 
points 0 (0, 0), A (2, -5), and B (4, 2) respectively. De­
termine the centre of mass of this system. 

36. In a triangle with the vertices A ( -2, 0), B (6, 6), 
and C (1, -4) determine the length of the bisector AE. 

37. ,Find the centre of gravity of a triangle with the 
vertices A (x1 , y1 ), B (x2, Y2), and C (X3 , Y3). 

38. Find the centre of gravity of a uniform quadran­
gular board with the vertices A (-2, 1), B (3, 6), C (5, 2), 
and D (0, -6). -

Hint. Using the formulas obtained in Problem 37 find 
the centres of gravity of the triangles ABC and ADC and 
divide the distance between the centres in the ratio rever­
sely equal to the ratio of the areas of the triangles. 

39. Given the points A(l, 2) and B(4, 4). On the axis 
OX determine a point C so that the area of the triangle 
ABC is equal to f) square units. Construct the triangle ABC. 

40. In a triangle with the vertices A (-2, 2), B (I, -4), 
and C ( 4, 5) each side is extended by one third of its 
length in the direction corresponding to the counter­
clockwise traverse of the perimeter of the triangle. Deter­
mine the end-points M, N, and P of the extensions and 
find the ratio k of the areas of triangles M N P and ABC. 

1.3. The Equation of a Line as a Locus of Points 

The equation of a line is defined as the equation which 
relates the variables x and y if and only if the coordinates 
of any point of this line satisfy the equation. 

The variables x and y entering the equation of a line 
are called running (moving, or current) coordinates, and 
the literal constants- parameters. For instance, in the 
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equation of a circle (Problem 41) x2 +y2 =R2 the variab­
les x and y are the running coordinates, and the con­
stant R is a parameter. 

To set up an equation of a line as a locus of points 
possessing one and the same property we have to: 

(I) take an arbitrary (running) point M (x, y) on the line, 
(2) express the general property of all the points M of 

the line through an equation, 
(3) express the line segments (and angles) entering this 

equation in terms of the running coordinates of the point 
M (x, y) and through the coordinates given in the spe­
cific problem. 

. 
41. Show that x2 + y2 = R2 is the equation of a circle 

of radius R and with the origin as centre. 
42. Write the equation of a circle with the centre at 

C(3, 4) and radius R=5. Do the points A(-1, 1), 
B (2, 3), 0 (0, 0), and D ( 4, 1) lie on this circle? 

43. Write the equation of a line generated by a mo­
ving point M (x, y) which is equidistant from the points 
A (0, 2) and B (4, -2). Do the points C (-1, 1), D (1, -I), 
E (0, -2), and F (2, 2) lie on this line? 

44. Write the equation of the trajectory of a moving 
point M (x, y) which always remains three times farther 
from the point A(O, 9) than from the point B (0, 1). 

45. Write the equation of the trajectory of a moving 
point M (x, y) which always remains twice nearer to the 
point A (-1, I) than to the point B (-4, 4). 

46. Write the equations of the bisectors of all the 
quadrants. 

47. Write the equation of the locus of points the sum 
of the distances between each of them and the points 

· F (2, 0) and F, (-2, 0) being equal to 2 V5. Construct 
the line by its equation. 

48. Write the equation of the locus of points equidi­
stant from the point F (2, 2) and the axis OX. Construct 
the line by its equation. · 

49. Write the equation of the line along which a point 
M (x, y) moV"es remaining twice farther from the axis OX 
than from the axis OY. 
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50. Construct the following lines: ( 1) y = 2x + 5; 
(2) y=7-2x; (3) y=2x; (4) y=4; (5) y=4-x2 • 

17 

51. Determine the points of intersection of the line 
y = x2 - 4x + 3 and the axes of coordiijates and plot them. 

52. Determine the points of intersection of the axes of 
coordinates and the following lines: (1) 3x-2y=12; 
(2) y=x2 +4x; (3) y2 =2x+4. Construct these lines. 

53. Write the equation of the locus of points equidis~ 
tant from the axis OY and the point F (4, 0). Construct the 
line on the basis of its equation. 

54. Write the equation of the line along which a point 
M (x, y) moves remaining equidistant from the origin and 
the point A (-4, 2). Do the points B (-2, 1), C (2, 3), 
D ( 1, 7) belong to this line? 

55. WriJe the equation of the trajectory of a moving 
point M (x, y) which all the time remains twice nearer 
to the point A (0, -1) than to the point B (0, 4). Con~ 
struct the trajectory of its motion. 

56. Determine the points of intersection of the axes of 
coordinates with the following lines: (1) 2x+5y+ 10=0; 
(2) y=3-2x-x2 ; (3) y2 =4-x. Construct these lines. 

57. Write the equation of the locus of points equidi­
stant from the axis OX and the point F (0, 2). Construct 
the line by its equation. 

58. Write the equation of the locus of points the diffe­
rence between the distances of each of which from the po­
ints F 1 (-2, -2) and F (2, 2) is equal to 4. Construct the 
line on the basis of its equation. 

1.4. The Equation of a Straight Line: . 
( 1) Slope-Intercept Form, (2) General Form, 

(3) Intercept Form 

1°. The slope-intercept equation of the straight line: 

y=kx+b. (1) 

The parameter k is equal to the tangent of t~e inclination 
angle a of a straight line with respect to the axis OX 
(k =tan a) and is called the slope of the line. The para-
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meter b is the length of the intercept on the axis OY or 
the initial ordinate. 

2°. The general equation of the straight line 

Ax+By+C=O. (2) 

Particular cases: 

(a) if C=O, then y=- ~ x-the straight line passes 

through the origin; 

(b) if B = 0, then x =- ~ =a- the straight line is pa­

rallel to the axis OY; 

(c) if A= 0, then y =- ~ = b-the straight line is pa-

rallel to the axis OX; 
(d) if B=C=O, then Ax=O, x=O-the axis OY; 
(e) if A=C=O, thenBy=O, y=O-the axis OX. 
3°. The intercept equation of the straight line: 

:+~=I, (3) 

where a and b are the intercepts cut off by the line on 
the OX- and OY-axis respectively. 

59. Construct a straight line cutting off an intercept 
b=3 on the axis OY and forming with the axis OX an 
angle of: (I) 45°; (2) I35°. Write the equations of the lines. 

60. Construct a straight line cutting off an intercept 
b=-3 on the axis OY and forming with the axis OX an 
angle of: (I) 60°; (2) I20°. Write the equations of the lines. 

61. Write the equation of a straight line passing through 
the origin and inclined to the OX-axis at an angle of: (I) 45°; 
(2) 60°; (3) 90°; (4) I20°; (5) I35°. 

62. Construct the straight line passing through the ori­
gin and the point (-2, 3) and write its equation. 

63. Determine the parameters k and b for each of the 
following straight lines: (I) 2x-3y=6; (2) 2x+3y=0; 

(3) y=-3; (4): + ~ = l. 
64. Construct the following straight lines: (I) 3x + 4y = I2; 

(2) 3x-4y=0; (3) 2x-5=0; (4) 2y+5=0. 
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65. Determine the parameters k and b of the straight 
line passing through the point A (2, 3) and forming an 
angle of 45° with the axis OX. Write the equation of this line. 

66. Reduce the following equations of the straight lines 
to the intercept form: (1) 2x-3y=6; (2) 3x-2y+4=0. 

67. Given the points 0 (0, 0) and A (-3, 0). Constructed 
on the segment OA is a parallelogram whose diagonals 
intersect at the point B (0, 2). Write the equations of the 
sides and diagonals* of the parallelogram. 

68. Write the equation of the straight line passing through 
the point A (4, 3) and cutting off from the corresponding 
quadrant a triangle whose area equals 3 square units. 

69. The straight lines y = -2 and y = 4 intersect the 
straight line 3x-4y- 5 = 0 at the points A and B respec· 

-+ 
tively. Construct.the vector AB; determine its length and 
its projections on the axes of coordinates. 

70. Are the points A (3, 5), B (2, 7), C (-1, -3), and 
D (-2, -6) on the straight line y = 2x-l or are they 
above or below this line? 

71. What is the geometrical meaning of the inequalities: 
(l) y>3x+I; (2)· y<3x+I; (3) 2x+y-4;;;?=0; 
(4) 2x+y-4<0? 

72. Construct the domains** containing the points whose 
coordinates satisfy the inequalities: 

(l) y < 2-x, x > -2, y > -2; 
(2) y > 2-x, x < 4, y < 0; 

(3) : +f~ l, y;;;?=x+2, x;;::?=-4. 
73. A point M (x, y) moves so that the difference of the 

squares of its distances from the points A(- a, a) and 
B (a, -a) remains equal to 4a2 • Write the equation of its 
trajectory. 

74. Write the equation of the trajectory of the point 
M (x, y) whose projection on the axis OX moves at the 

* The expression "the equations of the sides and diagonals", as 
used in this book, means "the equations of the straight lines on which 
the sides and diagonals lie". 

** The term "domain" here means a portion of the plane XOY 
containing points such that the coordinates of each of them satisfy 
certain conditions (say, inequalities). If a domain contains the boundary 
points, then it is called a closed domain. Otherwise it is called an open 
domain. 
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velocity of m units per second, and the projection on the 
axis OY at n units per second. The starting position of 
the point is M0 (a, b). 

------
75. Construct the straight lines given by the parameters: 

(1) b = -2, cp = 60° and (2) b = -2, cp = 120° and write 
their equations. 

76. Determine the parameters k and b of the straight 
line passing through the point (-2, 3) and forming an 
angle of 45° with the axis OX. Construct this line and 
write its equation. 

77. An isosceles trapezoid with bases of 8 em and 2 em 
has an acute angle of 45°. Write the equations of the sides 
of the trapezoid taking its greater base for the axis OX 
and the axis of symmetry of the trapezoid for the axis OY. 

78. Write the equations of the sides of a rhombus with 
the diagonals 10 em and 6 em long, taking the greater 
diagonal for the axis OX and the smaller for OY. 

79. Write the equation of the straight line passing through 
the point (-4, 6) and cutting from the coordinate axes 
a triangle whose area is equal to 6 square units. 

80. Write the equation of the line along which a point 
M (x, y) moves remaining twice farther from the axis OX 
than from the straight line x = -3. 

81. The straight lines x = -1 and x = 3 intersect the 
straight line y=2x+I at the points A and Brespectively. 

Determine the length of the vector AB and its projections 
on the coordinate axes. 

1.5. The Angle Between Two Straight Lines. 
The Equation of a Pencil of Straight Lines 

Passing Through a Given Point. The Equation 
of a Straight Line Passing Through 'Two 
Given Points. The Point of Intersection 

of Two Straight Lines 

1°. The angle cp between the two straight lines y = k1x +b1 

and y = k2x + b2 , as measured counterclockwise is determi­
ned by the formula 

(I) 
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For two straight lines given by the equations 

A1x+B1y+C1 =-0 and A.x+B2y+C2 =0 

the above formula takes the form 

t A18 2-A28 1 

an <p- A1A2 + 818s. 

The condition for the parallelism of two straight lines 
is the equality of their slopes 

k k A1 8t 
1 == a or -A = 8. 

2 2 

The condition for the perpendicularity of two straight 
lines is given by the relation 

1 
k2 =-k; or A1A1 +B1B2 =0. 

2°. The equation of a pencil of straight lines passing 
through a given point A (x1 , y1) 

y-y1 = k (x-x1). (2) 

3°. The equation of a straight line passing through two 
given points A (xu y 1 ) and B (x2 , y 2) 

(3) 

4°. The point of intersection of two non-parallel straight 
lines A1x+ B1y+C1 =0 and A2x+ BaY+C2 = 0 is found by 
solving the system of their equations. We get 

l=g: ::1 I ~1 
. g121 

X = ......,_, A-:-=-1 ---;:8,.-::..cl I ' y = ..!....:-1-'":-~ 1 ~81.:;-:-1 • 
A2 8 2 A2 8 2 

82. Determine the angle between two straight lines: 

(u=2x-3, 

(l) tu={x+l; 
(2) {5x-y+7=0, (3) {2x+y=0, 

2x-3y+ ls:::rO; u=3x-4; 
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- - { ~+L= I, 
(4){3x+2y-0, (5){3x-4y-6, (6)J a b 

6x+4y+9 =0; Bx+6y =II; 1 ~+JL= I 
\ b a · 

83. Which of the straight lines 3x-2y+7 =0, 6x-4y­
-9=0, 6x+4y-5=0, 2x+3y-6=0 are parallel or 
perpendicular to each other? 

84. Write the equation of a pencil of straight lines 
passing through the point A (2, 3). Choose out of this pencil 
the straight lines inclined to the axis OX at angles: (I) 45°, 
(2) 60°, (3) I35°, (4) 0°, and construct them. 

85. Plot the point A (-2, 5) and the stiaight line 
2x-y = 0. Write the equation of a pencil of straight lines 
passing through the point A, and choose from the pencil: 
(I) the straight line parallel to the given one, (2) the 
straight line perpendicular to the given one. 

86. At the points of intersection of the straight line 
2x-5y-I0=0 with the coordinate axes perpendiculars 
are erected to this line. Write their equations. 

87. Write the equation of the straight line passing 
through the points A (-I, 3) and B (4, -2). 

88. In a triangle with the vertices A (-2, 0), B (2, 6), 
and C (4, 2) the altitude BD and the median BE are drawn. 
Write the equations of the side AC, the median BE, and 
the altitude BD. 

89. Find the interior angles of a triangle whose sides 
are given by the equations: x+2y=0, x+4y-6=0, 
x-4y-6=0. 

Hint. To find the interior angles of a triangle it is ne­
cessary to arrange the angular coefficients of the sides in 
the decreasing order: k1 > k2 > k3 , and then to compute 

t t f th I . th f I . k1-k2 k2-ka angen s o e ang es usmg e ormu as. 1 + k1k2 , 1 + k 2k 8 , 

and t+~1~~. Check the solution by making a drawing and 
placing one of the vertices at the origin. 

90. Write the equations of the straight lines passing 
through the origin at an angle of 45" to the straight line 
y=4-2x. 
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91. Write the equations of the straight lines passing 
through the point A (-1, 1) at an angle of 45° to the 
straight line 2x + 3y = 6. 

92. A light beam emanates from the point A (5, 4) at 
an angle cp =arctan 2 to the OX-axis and is reflected by 
the latter. Write the equations of the incident and reflected 
beams. 

93. Determine the vertices and the angles of a triangle 
whose sides are given by the equations: x+3y =0, x=3, 
x-2y+3=0. 

94. A segment of the straight line 3x + 2y = 6 cut off 
by the coordinate axes serves as the hypotenuse of a right 
triangle. Find the vertex of the right angle if it is known 
that it is situated above the given line. 

95. Given a triangle with the vertices A (-2, 0), B (2, 4), 
and C (4, 0). Write the equations of the sides of the triangle, 
the median AE, the altitude AD and find the length of the 
111edian AE. 

96. Write the equations of the sides and find the angles 
of a triangle with the vertices A (0, 7), B (6, -1), and 
C(2, 1). 

97. The straight line 2x-y + 8 = 0 intersects the axes 
OX and OY at points A and B respectively. A point 
M divides AB in the ratio AM:MB=3:1. Writr the 
equation of the perpendicular erected to AB at the 
point M. 

98. Construct a triangle whose sides are given by the 
L'quations: x+ y = 4, 3x-y = 0, x-3y-8 = 0; find the 
angles and the area of the triangle. 

99. Find the point of intersection of the medians and 
the point of intersection of the altitudes of a triangle 
whose vertices are the points A (-4, 2), B (2, -5), and 
c (5, 0). 

I 00. A light beam emanates from the point A ( -5, 6) 
at an angle cp =arctan (-2) to the axis OX and is reflected 
by this axis and then by the axis OY. Write the equations 
of all three beams. 



24 Ch. I. Plane Analytic Geometry 

1.6. The Normal Equation of a Straight Line. 
The Distance of a Point from a Straight Line. 

Equations of Bisectors. The Equations of a 
Pencil of Straight Lines Passing Through 

the Point of Intersection of 
Two Given Straight Lines 

1°. The normal equation of a straight line: 

xcos~+ysin~-p=O, (1) 

where p is the length of the perpendicular (the normal) 
dropped from the origin to the straight line and ~ is the 
angle of inclination of this perpendicular to the axis OX. 
In order to reduce the general equation of the straight 
line Ax+By+C=O to the normal form we havetomul-

tiply all its terms by the normalizing factor M = ± ~ 
A2+B2 

taken with the sign opposite to that of the constant term C. 
2°. The distance d of a point (x0 , Yo) from a straight 

line is found by substituting the coordinates (x 0 , Yo) for the 
current coordinates in the left-hand member of the normal 
equation of the straight line. The resulting number is taken 
by the absolute value: 

or 
d=lx0 cos~+y0 sin~-pi, (2) 

d =I Axo+ Byo+C I 
JfA2+B2 

(2') 

3°. The equations of the bisectors of the angles between 
the straight lines Ax+ By+ C = 0 and A1x + B1y + C1 = 0: 

Ax+By+C _ ± A1x+B1y+C1 

y~- VA~+B~ 
(3) 

4°. The equation of a pencil of straight lines passing 
through the point of intersection of two given straight 
lines: 

a (Ax+JitJ+C)+~ (A 1x+ B1y+C1) =0. (4) 

Putting a= 1 we thus exclude the second straight line from 
the two given out of the pencil (4). 
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101. Reduce the following equations of straight lines 
to the normal form: 

(1) 3x-4y-20=0, (2) x+y+3=0, (3) y=kx+b. 
102. Construct the straight line if the length of the nor­

mal p =- 2, and the angle ~ of its inclination to the axis OX 
is equal to: (1) 45°, (2) 135°, (3) 225°, (4) 315°. Write the 
equations of these straight lines. 

103. Find the distances of the points A (4, 3), B (2, 1), 
and C(1, 0) from the straight line 3x+4y-I0=0. Plot 
the points and the straight line. 

104. Find the distance between the origin and the 
straight line 12x-5y+39=0. 

105. Show that the straight lines 2x-3y=6 and 4x-6y= 
= 25 are parallel, and find the distance between them. 

Hint. Take an arbitrary point on one of the lines and 
find its distance from the other line. 

106. Find k from the condition that the distance bet-
ween the straight line y = kx + 5 and the origin is d = vr5. 

107. Write the equation of the locus of points 4 units 
distant from the straight line 4x-3y = 0. 

108. Set up the equation of the straight line 4 units 
distant from the point A (4, -2) and parallel to the 
straight line 8x-I5y-= 0. 

109. Write the equations of the bisectors of the angles 
between the straight lines 2x+3y= 10 and 3x+2y= 10. 

1 10. Write the equations of the bisectors of the angles 
between the straight lines 3x+ 4y = 12 and y = 0. 

111. Write the equation of the trajectory of a moving 
point M (x, y) which, during its motion, remains three 
times farther from the straight line y = 2x-4 than from 
the straight line y = 4-2x. 

1 12. Write the equation of the straight line passing 
through the point M of intersection of the straight lines 
2x+y+6=0 and 3x+5y-15=0 and the point N(1, -2) 
(without finding the point M). 

113. Write the equation of the straight line passing 
through the point M of intersection of the straight lines 
5x-y+ 10=0 and Bx+4y+9=0 parallel to the straight 
line x+3y=0 (without finding the point M). 
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114. Find the altitude BD in a triangle with the verti­
ces A ( -3, 0), B (2, 5), and C (3, 2). 

115. Write the equation of the straight line passing 
through the point A (2, 4) at a distance of d = 2 from the 
origin. 

116. Check to make sure that the points A ( -4, -3), 
B(-5, 0), C(5, 6), and D(l, 0) serve as the verticesof 
a trapezoid, and find its altitude. 

117. A straight line is drawn through the origin at equal 
distances from the points A (2, 2) and B (4, 0). Find this 
distance. 

118. Write the equations of a locus of points V5 distant 
from the straight line x+2y-5=0. 

119. Write the equation of the trajectory of a moving 
point M (x, y) which, while in motion, remains twice as 
far from the straight line y=x as from the straight line 
y=-X. 

120. Write the equation of a straight line passing through 
the point M of intersection of the straight lines 2x-3y+ 
+5 = 0 and 3x + y-7 = 0 perpendicular to the straight 
line y = 2x (without finding the point M). 

1.7. Miscellaneous Problems 

.121. Through the origin draw a straight line forming with 
the straight lines x + y "'""a and x = 0 a triangle whose a rea 
is a2 • 

122. Given the points A ( -4, 0) and B (0, 6). Through 
the midpoint of the line segment AB draw a straight line 

·cutting off an x-intercept twice as long as the y-intercept. 
123. Given the points A ( -2, 0) and B (2, -2). Const­

ructed on the line segment OA is a parallelogram OACD 
whose diagonals intersect at the point B. Write the equa­
tions of the sides and diagonals of the parallelogram and 
find the angle CAD. 

124. Find the angles and the area of the triangle formed 
by the straight lines y=2x, y=-2x, and y=x+b. 

125. Drawn from the origin are two mutually perpendi­
cular straight lines forming an isosceles triangle together 
with the straight line 2x + y =a. Find the area of this 
triangle. 
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126. Find the interior angles of a triangle given the 
t•quations of its sides: (AB)x-3y+3=0 and (AC) x+3y+ 
j- 3 = 0, and the foot D ( -1, 3) of the altitude AD. 

127. Given the equations of the lateral sides of an isosce­
les triangle: 3x + y = 0 and x-3y = 0, and a point (5; 0) 
on its base. Find the perimeter and the area of the triangle. 

128. Given in a triangle ABC: (I) the equation of the 
side (AB) 3x+ 2y = 12, (2) the equation of the altitude 
(BM)x+2y=4, (3) theequationof the aJtitude(AM)4x+y=6, 
where M is the point of intersection of the altitudes. Write 
the equations of the sides AC, BC and the altitude CM. 

129. Two sides of a parallelogram are given by the equa­
tions y =x-2 and 5y =x+ 6. Its diagonals intersect at 
the origin. Write the equations of two other sides of the 
purallelogram and its diagonals. 

130. Given a triangle with the vertices A (0, -4), B (3, 0), 
und C (0, 6). Find the distance between the vertex C and 
the bisector of the angle A. 

131. Write the equation of the trajectory of a point 
M (x, y) moving so that the sum of its distances from the 

straight lines y = 2x and y =- ~ remains constant and is 

equal to V5. 
132. Construct the domains the coordinates of the points 

of which satisfy the inequalities: 
(1) x-2<y<0, and x>O; 
(2) -2~y~x~2; 
(3) 2 < 2x + y < 8, x > 0, and y > 0. 
133. The sides AB and BC of a parallelogram are given 

by the equations 2x-y+5=0 and x-2y+4=0; its 
diagonals intersect at the point M (1, 4). Find its altitudes. 

184. Find the vertices of a right isosceles triangle given 
the vertex of the right angle C (3, -1) and the equation 
of the hypotenuse 3x-y+2=0. 

135. Given two vertices of a triangle A ( -4, 3) and 
B (4, -1) and the point of intersection of the altitudes 
M (3, 3). Find the third vertex C. 

136. Compute the coordinates of the vertex of a rhom­
bus given the equations of two of its sides: x+2y=4 and 
x+ 2y = 10, and the equation of one of its diagonals: 
y=x+2. 
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137. Set up the equations of the sides of a triangle 
knowing one of Its vertices A (0, 2) and the equations 
of the altitudes (BM)x+y=4 and (CM)y=2x, where M 
is the point of intersection of the altitudes. 

138. Given the straight line x+2y-4=0 and the point 
A (5, 7). Find: (I) the projection B of the point A on the 
given line, (2) the reflection C of the point A In the 
given straight line. 

Hint. Writing the equation of the perpendicular AB and 
solving-" it together with the equation of the given line, 
find the point B which is the"'midpoint of AC. 

139. Given the straight line 2x+y-6=0 and two points 
on it A and B with the ordinates YA = 6 and y8 =- 2 
respectively. Write the equation of the altitude AD of the 
triangle AOB, find its length and the angle DAB. 

1.8. The Circle 

A circle of radius R with centre at the point C (a, b) 
is given by the equation 

(x-a)2 + (y-b)2 = R2. (1) 

It may be rewritten as 

x2 + y2 + mx + ny + p = 0. (2) 

To pass over from Eq. (2) again to the equation of the 
form (1) we have to single out perfect squares in the left­
hand member of equation (2): 

' . ( m )2 ('>, n) 2 m2 n2 -\+2 + \y +2 -4+-:r-P· (3) 

140. Write the equation of a circle of radius R = 5 with 
centre C ( -4, 3) and construct the circle. Do the points 
A ( -1, -1 ), B (3, 2), 0 (0, 0) lie on this circle? 

141. Given the point A ( -4, 6). Write the equation 
of a circle for which the line segment OA serves as the 
diameter. 

142. Construct the circles: (1) x2 +y2 -4x+6y-3=0; 
(2) x2 +y2 -8x=0; (3) x2 +y2 +4y=0. 

143. Construct the circle x2 + y2 + 5x = 0, the straight 
line x + y = 0 and find the points of intersection. 
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144. Write the equation of a circle tangent to the coordi­
nate axes and passing through the point A (1, 2). 

145. Find the angle between the radii of the circle 
x2 + y2 + 4x-6y = 0 drawn to the points of intersection 
of the circle and the axis OY. 

146. Write the equation of a circle passing through the 
points A(-1, 3), B(O, 2), and C(l, -1). 

flint. Write the equation of the required circle in the 
form x 2 + y2 + mx + ny + p = 0, substitute the coordinates 
of each point into it, and then find m, n, and p. :'.;• 

147. Write the equation of· a circle passing through the 
points of intersection of the circle x2 + y2 + 4x-4y = 0 ana 
the straight line y =- x, and through the point A (4, 4). 

148. Determine the location of the curve y=-V -x2-4x. 
Construct the curve. 

149. Write the equations of the straight lines drawn 
from the origin and t-angent to the circle x2 + y2 -8x­
- 4y+ 16=0. 

150. Given the point A (a, 0). A point M moves so that 
the angle OMA in the triangle OMA remains right. Deter­
mine the trajectory of the point M. 

151. Given the points A ( -6, 0) and B (2, 0). Find the 
locus of points wherefrom the line segments OA and OB 
are seen at equal angles. 

152. Determine the trajectory of a point M (x, y) which 
moves so that the sum of its squared distances from the 
points A (-a, 0), B (0, a), and C (a, 0) remains equal to 3a2 • 

153. Determine the trajectory of a point M (x, y) which 
moves so that the sum of its squared distances from the 
bisectors of the quadrants remains equal to a 2 • ;•· 

154. Given the circle x2 + y2 = a 2 • From the point A (a, 0) 
belonging to this circle all possible chords are drawn. 
Determine the locus of the midpoints of the chords. 

155. Given the points A ( -3, 0) and B (3, 6). Write 
the equation of the circle for which the line segment AB 
is the diameter. 

156. Find the centres and the radii of .the circles: 
(l) x2 +y2 -6x+4y-23=0; (2) x2 +y2 +5x-7y+2.5-..::00 
(3) x2 + y2 + 7y = 0. Construct the circles. 
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157. A circle is tangent to the axis OX at the origin 
and passes through the point A (0, -4). Write the equa­
tion of the circle and find the points at which it inter­
sects the bisectors of the quadrants. 

158. Write the equation of a circle passing through the 
origin and the points of intersection of the straight line 
x+y+a=O with the circle x2 +y2 =a2 • 

159. Write the equations of the tangent lines drawn 
from the origin to the circle passing through the points 
A (I, -2), B(O, -1), and C(-3, 0). 

160. Find the angle between the radii of the circle 
x2 + y 2 - 4x + 6y- 5 = 0 drawn to the points at which it 
intersects the axis OX. 

161. Show that the point A (3, 0) is located inside the 
circle x2 +Y2 -4x+2y+ I =0 and write the equation of 
the chord bisected at the point A. 

Hint. The required chord is perpendicular to CA where C 
is the centre of the circle. 

162. A point M (x, y) moves so that the sum of its 
squared distances from the origin and the point A (-a, 0) 
remains equal to a 2 • Determine the trajectory of the 
point M. 

163.Given the circle x2 +y2 =4. From the point 
A ( -2, 0) belonging to it a chord AB is drawn and exten­
ded by a distance BM = AB. Determine the locus of 
points M. 

164. A line segment AM= a moves in the plane XOY 
remaining parallel to OX so that its left end-point A 
slides along the circle x2 +y2 =a2 • Determine the trajec­
tory of the point M. 

1.9. The Ellipse 

An ellipse is the locus of points, the sum of the distan­
ces of which from two given points F and F1 (called the 
foci) is a constant, 2a. This constant is required to be 
greater than the distance between the foci (F1F) (the 
fo.cal length). 

The canonical (standard) form of the· equation of the 
ellipse: 

(l) 



Sec. 1.9. The Ellipse' 31 

The ellipse given by equation (I) is symmetrical with 
respect to both the axis OX and the axis OY (Fig. I). 
The param~ters a and b are called the semi-axes of the 
ellipse. Let a> b, then the foci F and F 1 are found on 
the axis OX at a distance c = Va2 -b2 from the centre. 

The ratio .£..=8 <I is called the eccentricity of the ellipse. 
a 

The distances of a point M (x, y) of the ellipse from its 

y 

Fig. I 
. ' 

foci (the so-called focal radi~s vectors) are determined by 
the formulas 

(2) 

If a< b, then the foci are located on the axis OY, 
Vb-- c b c= 2-a2 , 8=-;;. r= ±ey. 

165. Construct the ellipse x8 +4y2 = 16; find its foci and -
the eccentricity. 

166. Write the canonical equation of the ellipse knowing 
that (1) the focal length is equal to 8 and the minor 
semi-axis b = 3; (2) the major semi-axis a= 6 and the 
eccentricity 8 = 0.5. 

167. Find the minor semi-axis b and the eccentricity e 
of the ellipse whose major semi-axis a= 5 and the para­
meter c is equal to: ( 1) 4.8; (2) 4; (3) 3; ( 4) 1.4; (5) 0. 
Construct each of the ellipses. 

168. The earth orbits the sun forming an ellipse, the 
sun being situated at one of its foci. The minimum dis­
tance of the earth from the sun is approximately equal 
to 147.5 million kilometres and the maximum . distance 
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to 152.5 million kilometres. Find the major semi-axis and 
the eccentricity of the earth's orbit. 

169. An ellipse symmetrical with respect to the coor­
dinate axes passes through the points M (2, V3) and 
B (0, 2). Write its equation and find the focal radius 
vectors of the point M. 

170. An ellipse, symmetrical with respect to the coor­
-dinate axes and whose foci are found on the x-axis, passes 
through the point M (- 4, V2f) and has the eccentricity 

e =! . Write the equation of the ellipse and find the focal 

radius vectors of the point M. 
171. Find the length of the chord which bisects the 

angle between the axes of the ellipse x2 + 2y2 = 18. 
172. Find the eccentricity of an ellipse whose focal 

length is equal to the distance between the end-points of 
the major and minor semi-axes. 

173. Inscribed in the ellipse x2 + 4y2 = 4 is a regular 
triangle one of whose vertices coincides with the end-point 
of the major semi-axis. Determine the coordinates of two 
other vertices of the triangle. 

Hint. Write the equation of one of the sides having the 
slope k =tan 30°, and find the points at which it intersects 
the ellipse. 

174. On the ellipse 9x1 + 25y2 = 225 find the point whose 
distance from the right-hand focus is four times the dis­
tance from the left-hand focus. 

175. The ordinates of all the points of the circle x2 +y2 =36 

are reduced by ~ . Write the equation of the new curve. 

176. Determine the trajectory of a moving point M 
which all the time remains twice nearer to the point 
F(-1, 0) than to the straight line x=-4. 

177. A line segment AB of a constant length a+b moves 
so that its end-point A slides along the axis OX, and the 
end-point B slides along the axis OY. Determine the tra­
jectory of a moving point M of the segment which divides 
the latter into the following portions: BM =a and M A =b 
(Leonardo da Vinci's elliptic compass). 

178. Given the circleg x2+y2=b2 and x2 +y2 =Q2 (b <a). 
An arbitrary ray OBA intersects them at points B and A 
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respectively, wherefrom straight lines are drawn parallel 
to the coordinate axes to intersect at point M. Determine 
the locus of points M. 

179. Write the simplest equation of the ellipse in which 
the distances of one of the foci from the ends of the major 
axis are equal to 5 and I. 

180. An ellipse symmetrical with respect to the coor-
dinate axes passes through the points M (2 V3, V6) and 
A (6, 0). Write its equation, find its eccentricity and the 
distances of the point M from the foci. 

x2 y2 
181. Find the length of the chord of the ellipse li2+7J2= I 

directed along the diagonal of the rectangle constructed 
on the axes of the ellipse. 

182. Find the points common for the ellipse x2+4y2=4 
and a circle passing through the foci of the ellipse and 
having its centre at the upper vertex of the ellipse. 

183. On the straight line x =- 5 find the point equi­
distant from the left-hand focus and upper vertex of the 
ellipse x2 + 5y2 = 20. 

184. On the ellipse x2 + 5y2 = 20 find the point whose 
radius vectors are mutually perpendicular. 

Hint. The required points are the points at which the 
ellipse is intersected by the circle passing through the 
foci of the ellipse and having its centre at the origin. 

185. The abscissas of the points of the circle x2 + y 2 = 4 
are doubled. Determine the curve thus obtained. 

186. Determine the trajectory of a moving point M which 
all the time remains three times nearer to the point 
A (l, 0) than to the straight line x = 9. 

1.10. The Hyperbola 

The hyperbola is the locus of points whose distances 
from two fixed points F and F 1 (called the foci) have a 
constant ditJerence 2a (0 < 2a < FJ). 

The canonical (standard) equation of the hyperbola: 

x2 y2 (1) 
lif-bi"=l. 
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The hyperbola given by equation (I) is symmetric about 
the coordinate axes (Fig. 2). It intersects the axis OX at 
two points A (a, 0) and A 1 (-a, 0). These points are the 
vertices of the hyperbola. The axis OY is not intersected 
by the hyperbola. The parameter a is called the transverse 
semi-axis; b, is the conjugate semi-axis. The parameter 
c= Va2 +b2 is the distance of the focus from the centre. 
The ratio ~ = e > I is called the eccentricity of the hyper-a 

bola. The straight lines y = + : x are called the asymp­
totes of the hyperbola. The distances of a point M (x, y) 

Fig. 2 

of the hyperbola from its foci (called the focal radius 
vectors) are determined by the formulas 

r=lex-al, r1 =lex+al. (2) 

The hyperbola in which a= b is termed equilateral, 
equiangular, or rectangular; its equation is x2 - y 2 = a2 , 

and the equations of the asymptotes are y = ± x. The 
x2 y2 y2 x2 

hyperbolas (i2-b2 =I and TJ2-(i2 =I are called conjugate. 

187. Construct the hyperbola x2 -4y2 = I8 and its 
asymptotes. Find the foci, the eccentricity, and the angle 
between the asymptotes. 

188. A point M with the ordinat~ equal to unity is 
taken on the hyperbola x2 -4y2 = 16. Find the distances 
of the point M from the foci. 
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IHII. Write the canonical equation of the hyperbola given 
(I 1 tlw focal length 2c= 10 and the distance between the 
\••rlkl'S 2a=8; (2) the transverse semi-axis a=2V5 and 
Ill•· l'l'centricity 8 = VTI. 

1110. A hyperbola is symmetric about the coordinate 
11 ~, • .,, passes through the point M (6, -2 V2), and has 
ll11• ron jugate axis b = 2. Write its equation and find the 
d hi a nces of the point M from the foci. 

1111. Write the equation of a hyperbola whose vertices 
,,,,. ~ituated at the foci, and the latter at the vertices of 

x2 y2 
ll11• l'llipse 25 +--g= I. 

102. Write the equation of the hyperbola which has the 
,.,.,.l'lltricity 8 = V2, passes through the point (2a, a V3) 
1111d is symmetric about the coordinate axes. · 

1!1:1. Construct the hyperbola y2 = a2 +x2 , find the coor.. 
dl11ates of its foci and the angle between the asymptotes. 

I 114. Write the equations of the straight lines draWn 
lrorn the point A (0, -2) tangent to the hyperbola 
I" ·1y2 = 16. 

1115. Find the distance of the focus of the hyperbola 
I' 1/~ 

1 -,~ = 1 from its asymptotes, and the angles between ,, } 

ll11• asymptotes. 
1!16. Find the side of the square inscribed in the hyper-

2 2 

hoi a .; - Yb2 = 1 and analyse in which hyperbolas a square 
(I 

,. 1111 be inscribed. 
1!)7. Find the eccentricity of the hyperbola whose asymp­

lolL• forms with the transverse (real) axis an angle of: 
( I ) 60°, (2) a. 

lOR. Determine the location of the curve y= -V9+x'. 
I :oll~;truct this curve. 

I 00. Determine the trajectory of a moving point M (x, y) 
which all the time remains twice nearer to the straight 
I i 11e x = 1 than to the point F ( 4, 0). 

200. Given the points A (-I, 0) and B (2, 0). A point M 
moves so that in the triangle AMB the angle B all the 
time remains twice the magnitude of the angle A. Deter­
mine the trajectory of the point M. 
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201. Given the point A (a, 0). A point B moves along 
the axis OY. On a straight line BE, which is parallel to 
the axis OX, line segments BM and BM1 are laid off, 
each of them being equal to AB. Determine the locus of 
the points M and M1 • 

202. Given the straight llnesx-==±b and x=±a(b<a). 
An arbitrary ray OA (Fig. 3) intersects the line x = b (or 
x=-b) at point B, and the line x=a (or x=-a) at 

X 

Fig. 3 

point A. With OA as radius an arc is drawn to intersect 
OX at point C. Through the points B and C straight lines 
are drawn parallel to OX and OY, respectively, to intersect 
at point M. Determine the locus of points M. 

203. Write the canonical equation of a hyperbola knowing 
that the distances of one of its vertices from the foci are 
equal to 9 and I. 

204. Find the points of intersection of the asymptotes 
of the hyperbola x2 -3y2 = 12 and a circle having its 
centre at the right-hand focus of the hyperbola and passing 
through the origin. 

205. A hyperbola passes through the point M ( 6, ~ VD) , 
is symmetric about the coordinate axes, and has a trans-
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VI'I'SI' semi-axis a= 4. Write the equations of the perpen­
d kulars dropped from the left-hand focus of the hyperbola 
lo its asymptotes. 

:.!110. On the hyperbola 9x2 -16y2 = 144 find the point 
I win· as far from the right focus as from the left one. 

:.!117. On the hyperbola x 2 - y2 = 4 find the point whose 
111 ·al radius vectors are mutually perpendicular (see the 
lii11t to Problem 184). 

:.!IIH. A point M divides the focal length of the hyperbola 
'h" 16y2 = 144 in the ratio F1M:MF=2:3, where F1 is 
111,. l('ft-hand focus of the hyperbola. Through the point 
M 11 straight line is drawn at an angle of 135° to the 
11.xls OX. Find the points at which this line intersects the 
..,,,. 111 ptotes of the hyperbola. . 

2119. Determine the tr"ajedory of a point M which moves 
··' that it remains twice as far from the point F (-8, 0) 
~~~~ from the straight line x=-2. 

210. Given the points A (-a, 0) and B(2a, 0). A point 
,\1 111oves so that the angle MAB remains one third the 
,.,dnior angle AMC of the triangle AMB. Determine the 
lrnjl'dory of point M. 

1.11. The Parabola 

The parabola is the locus of points (M) equidistant 
from a given point (the focus) and a given straight line 
illw u irectrix). 

The canonical equation of the parabola has two forms: 
(I) y2 = 2px if the parabola is symmetric about the axis 
IJX (as in Fig. 4); 

(2) x2 = 2py if the parabola is symmetric about the axis 
UV (as In Fig. 5). · 

In both cases the vertex of the parabola, i.e. the point 
lying on the axis of symmetry, is found at the coordinate 
ori~in. 

The parabola y2 = 2px has the focus F ( ~ , 0) and· the 

directrix X=-~ ; the focal radius vector of a point 

M (x, y) on it is r = x + ~ . 
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The parabola x2 = 2py has the focus F ( 0, ~ ) and the 

directrix y =- ~ ; the focal radius vector of a point 

M(x, y) on it is r=y+~. 

y 

J:s 
~ 

.~ 
<:::! 

X 

Fig. 4 Fig. 5 

211. Set up the equation of the locus of points equi­
distant from the point F (0, 2) and the straight line y=4. 
Find the points at which this curve intersects the coor­
dinate axes and construct it. 

212. Set up the equation of the locus of points equi­
distant from the coordinate origin and the straight line 
x =- 4. Find the points at which this curve intersects 
the coordinate axes and construct it. 

213. Construct- the parabolas given ·by the equations: 
(1) y2 =4x; (2) y2 =-4x; (3) x2 =4y; (4) x2 =-4y, and 
also their foci and directrices; write the equations of the 
directrices. 

214. Write the equation of a parabola: (1) which passes 
through the points (0, 0) and (1, -3) and is symmetric 
about the axis OX; (2) which passes through the points 
(0, 0) and (2, -4) and is symmetric about the axis OY. 

215. The cable of a suspension bridge has the form of 
the parabola (Fig. 6). Write its equation with respect to 
the axes shown in the drawing if the cable deflection 
OA =a and the span BC = 2b. 

216. Write the equation of a circle tangent to the 
directrix of the parabola y2 = 2px, the j;entre of the circle 
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h·lrr~.: i11 the iocus of the parabola. Find the points of 
l11l•·r~l·ct ion of the parabola and the circle. 

~ 17. Write the equation of the parabola and its direct­
rl' I I the parabola passes through the points of intersec­
lloll of a straight line x+y=O and a circle x2 +y2 +4y=0, 

y 

Fig. 6 

111111 Is symmetric about the axis OY. Construct the circle. 
Ill•· ~1 ra ight line, and the parabola. 

:liN. On the parabola y2 =6x find the point whose focal 
111dlrrs vector is equal to 4.5. 

y 8 

A41------+-+-+-.~ 

A 3 r----+---1---?.-7 

Az 

At 
Mt 

oL-----------------x 
Fig. 7 

219. The mirror surface of a searchlight is generated 
hy revolving a parabola about its axis of symmetry. The 
diameter of the mirror is equal to 80 em; its depth, to 
10 em. At what distance from the vertex of the parabola 
should a light source be placed? 
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Hint. In order to reflect the light as a parallel beam 
the source should be placed in the focus of the parabola. 

220. Determine the location of the curve y =-V- x. 
Construct this curve. 

221. All possible chords are drawn from the vertex of 
the parabola y2 = 2px. Write the equation of the locus of 
midpoints of these chords. 

222. Determine the locus of the centres of circles tan­
gent to the circle x2 + y2 = 2ax and the axis OY. 

223. Given the points A (0, a) and B (a, a). The line 
segments OA and AB are divided into n equal parts by 
points A11 A2, A3 , • • • and Bu B2 , B3 , • • • (Fig. 7). Let 
Mk be the point of intersection of the ray OBk and the 
straight line AkMk which is parallel to OX. Show that 
such points M.t lie on the parabola y2 =ax. Construct the 
parabolas y2 = 4x, y2 = 5x, and y2 = 3x using this method. 

224. Derive the equation of the locus of points equi­
distant from the origin and the straight line x = 4. Find 
the points at which this curve intersects the coordinate 
axes and construct it. 

225. Derive the equation of the locus of points equi­
distant from the point F (2, 0) and the straight line y = 2. 
Find the vertex of the parabola and the points of its 
intersection with the axis OX. Construct the parabola. 

226. Write the equation of the parabola: (1) passing 
through the points (0, 0), (-1, 2) and symmetric about 
the axis OX; (2) passing through the points (0, 0), (2, 4) 
and symmetric about the axis OY. 

227. Write the equation of a parabola and its directrix 
if the parabola passes through the points of intersection 
of the straight line y = x and the circle x2 + y2 + 6x = 0 
and is symmetric about the axis OX. Construct the straight 
line, circle, and parabola. 

228. A regular triangl~ is inscribed in the parabola 
y' = 2x. Determine its vertices (see the hint to Problem 173). 

229. Write the equations of the tangent lines to the 
parabola y 2 = Bx drawn from the point A (0, -2). 
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11:111. A straight line is drawn through the focus of the 
Jtlll'uhola y2 = -4x at an angle of 120° to the OX-axis. 
Wrllt• the equation of the straight line and find the length 
ul !111· chord thus obtained. 

1.12. Directrices, Diameters, and Tangents 
to Curves of the Second Order 

1". The directrices of the ellipse ~: + ~: = 1 (for a>b) 
xz yz . 

1111d hyperbola az -b2 = 1 are defined as the straight lines 

purnlll•l to the axis OY and drawn at a distance !!.... from 
8 

lhh uxis, where e is the eccentricity. 
The equation of the directrices: 

X=±!!_, 
6 

(1) 

For any point of the ellipse or hyperbola the ratio of 
II.\ distance from the focus to the distance from the cor­
' , .. ,,wnding directrix is equal to the eccentricity: 

r 
d=e. (2) 

~". The locus of the midpoints of parallel chords is cal­
lc·d the diameter of a curve of the second order. The dia­
llll'it•rs of the ellipse and hyperbola turn out to be all the 
~~·~~llll'llts and rays of the straight lines passing through 
I ht· centre, and the diameters of the· parabola are the rays 
purallel to its axis. 

This is the equation of the diameter bisecting the chords 
with the slope tan ex. · k: 

xz y2 
lor the curves a2 ± v= 1 (ellipse and hyperbola) 

b2 
y= =t= a2k x; 

for the parabola y2 = 2px 
p 

Y=fi· 

(3) 

(4) 

Two diameters of the ellipse or hyperbola such that 
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250. Prove that a normal to an ellipse is the bisector 
of the angle between the radius vectors of the correspon­
ding point of the ellipse. 

251. Prove that a tangent to a hyperbola is the bisector 
of the angle between the radius vectors of the point of 
tangency. 

252. Prove that the rays emanating from the focus of 
a parabola are reflected from the parabola along straight 
lines parallel to its axis. 

Hint. Write the equation of the normal MN, find the 
point N at which it intersects the axis of the parabola, 
and prove that F M = F N, where F is the focus of the 
parabola. 

253. Find the points of intersection of the asymptotes 
2 y2 

of the hyperbola ~6 - 9 = 1 and its directrices. 

254. Construct the ellipse x2 + 4y2 = 16, its diameter 
y=x and the conjugate diameter, and find the angle 
between these diameters. 

255. Determine the locus of midpoints of the chords 
drawn in the hyperbola x2 -4y2 = 16 which form an angle 
of 45° with the axis OX. 

256. Given the hyperbola 4x2 -y2 = 4. Through the point 
(2, 2) draw a chord bisected at this point. 

257. Taken on the ellipse x2 +2y2 =6 is a point M with 
the ordinate equal to unity and a negative abscissa. Find 
the angle between the straight line tangent to the ellipse 
at the point M and the line OM. 

258. Show that if the straight line Ax+By+C=O is 
tangent to the parabola y2 = 2px then B2p = 2AC (see the 
hint to Problem 244). 

259. Write the equation of the straight line tangent to 
the parabola y2 = 8x and para lie! to the straight line 
x+y=O. 

1.13. Transformation of Cartesian Coordinates. 
The Parabolas y=ax2 +bx+c 

and x=ay2 +by+c. The Hyperbola xy=k. 

1°. The coordinates (x, y) in a given "old" system are 
transformed to the coordinates (X, Y) in a "new" system 
by the following formulas: 
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(I) for translating the coordinate axes and displacing 
flrt• origin to the point 0 1 (a, ~) 

x=X+a, y=Y+~; (1) 

(2) for rotating the axes by an angle <p 

x=Xcos<p-Ysin<p, y=Xsin<p+Ycos<p. (2) 

2°. By carrying the origin to the point 0 1 (a, ~). the 
t•quation y=a(x-a)2 +~ is transformed to the form 

o~ 
a 

Fig. 8 

X 

X 

X 

Fig. 9 

Y '=- aX 2 and, consequently, defines a parabola with the 
vt•rtex 0 1 (a, ~) and an axis of symmetry parallel to 
the Oy-axis (Fig. 8). By singling out a perfect square 
In the right-hand member, the equation y=ax2 +bx+c 
is transformed to the previous one and, therefore, also 
defines a parabola. For a> 0 the parabola is directed 
"upwards" from the vertex, for a< 0, "downwards". 

:3°. By rotating the coordinate axes through an angle 
cp = 45° the equation xy = k is transformed to the form 
X 2 -Y2 =2k and consequently defines an equilateral hyper­
hola whose asymptotes coincide with the coordinate axes 
(Fig. 9). By translating the origin to the point 0 1 (a, ~) 
the equation (x-a) (y-~) =k is brought to the form 
XY = k and therefore also defines an equilateral hyperbola. 

260. (1) As a result of a translation of the coordinate 
axes the point A (3, 1) attains new coordinates (2, -1). 
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each one bisects the chords parallel to the other one are 
called conjugate. Their slopes k and k1 are connected by 

~ ~ 
the relation kk1 =- - 2 (for the ellipse) and kk 1 = 2 (for a a 
the hyperbola). 

3°. The equations of lines tangent to: 
. ( x2 y2 ) XXo YYo 1· the elltpse a2 + v= 1 £i2+fj2= ' 

h h b 1 ( x2 y2 1 ) XXo YYo - 1 . t e yper o a fi2-v= Ci2-b2- , 

the parabola (y2 = 2px) YYo = p (x + Xo). 
where (x0 , y 0) is the point of tangency. 

231. Construct the ellipse ~~ + ~2 = 1, its directrices 
and find the distances of the point with the abscissa 
x = -3 from the right-hand focus and right-hand directrix. 

232. Construct the hyperbola ~~ - u; = 1, its directrices 

and find the distances of the point with the abscissa x = 5 
from the left-hand focus and left-hand directrix. 

233. Write the canonical equation of the ellipse whose 

directrices are the straight lines x = + ; 3 and whose 

major semi-axis is equal to 2. 
234. Write the equation of the hyperbola whose asymp­

totes are y = ± x, and the directrices are x = + J16. 
235. Construct the ellipse x2 + 4y2 = 16, the diameter 

y :.-= ~ and its conjugate diameter, and find the lengths 

a 1 and b1 of the constructed semi-diameters. 
236. Construct the hyperbola x2 -4y2 =4, the diameter 

y =- x and its conjugate diameter. Find the angle bet­
ween the diameters. 

237. Find the length of the diameter of the ellipse 
2 y2 

~2 + v= 1 which is equal to its conjugate diameter. 
x2 y2 

238. The asymptote of the hyperbola (i2-b2 = 1 forms 

an angle of 60° with the axis OX. Write the equation of 
the diameter conjugate to the diameter y = 2x. Choose an 
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111 hitrary line segment a and construct the curve, the 
cllumders, and the chords parallel to the given diameter. 

2:m. Determine the locus of the midpoints of chords 
111 I he parabola y2 = 4x which form an angle of 45° with 
lht· axis OX. 

x2 y2 
2411. Given the ellipse g-+ 4 = l. Through the point 

:2, I) draw a chord bisected at this point. 
241. Given the parabola y2 = -4x. Through the point 

:!., -1) draw a chord bisected at this point. 
242. Making use of Problem 235 check the Apollonius 

llll'orl'm: a~+ b~ = a2 + b2 and a,b, sin cp = ab, here a, and b1 

111'1' the lengths of the conjugate semi-diameters, a and b, 
1111' semi-axes of the ellipse, and cp, the angle between 
lilt' conjugate diameters. 

24:J. Write the equations of the straight lines tangent 
l11 the curves: (1) x2 +4y2 = 16; (2) 3x2 -y2 =3; (3) y2 =2x 
ut the point with the abscissa X 0 =2. 

244. Show that if the straight line Ax+ By+ C = 0 is 
x2 y2 

tHIIJ.!L'nt to the ellipse a 2 +hi= 1, then A2a2 +B2b2 =C2 • 

/lint. From the proportionality of the coefficients of 

tl11· L'quations x;o +Yt: = 1 and Ax+By+C=O determine 
2 y2 

1., and Yo and substitute them in the equation ~2 +hi= 1. 
245. Write the equations of the tangent lines to the 

t•llipse x2 -f-4y2 =20 which are parallel to the bisector of 
1111' first quadrant. 

246. Write the equations of the tangent lines to the 
t•llipse x2 -t-2y2 =8 drawn from the point (0, 6). 

247. Write the equation of a tangent line to the ellipse 

x: + Yb: = l cutting off equal positive intercepts on the 
u . 
coordinate axes. 

248. Show that if the straight line Ax+By+C=O is 
x2 y2 

tangent to the hyperbola a2 -b2= 1, then A2a 2 -B2b2=Ca 

(sl'c the hint to Problem 244). 
249. Write the equations of the straight lines tangent 

to the hyperbola 4x2 -9y2 =36 and perpendicular to the 
straight line x-t-2y=0. 
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Construct both the given and the new coordinate axes 
and plot the point A. 

(2) Find the acute angle through which the coordinate 
axes should be rotated for the point A (2, 4) to attain 
the new abscissa 4. Construct both systems of coordinates 
and plot the point A. 

261. Translating the coordinate origin, simplify the 
following equations: 

(1) (x /)2+(y+l)2=l; 

(3) (y+2) 2 =4(x-3); 
(5) x2 +4y2 -6x+By=3; 
(7) x2 -4y2+ Bx-24y = 24; 

(2) (x+3)2_(y-1)2 =I· 
9 4 ' 

(4) 2y=-(x+2) 2 ; 

(6) y2 -By=4x; 
(8) x2 +6x+5=2y. 

Construct both the old and the new coordinate axes 
and plot the curves. 

262. Rotating the coordinate axes through 45°, simplify 
the equations: (1) 5x2 -6xy+5y2 =32; (2) 3x2-10xy+ 
+ 3y2 + 32 = 0. Construct both the old and the new coor­
dinate axes and plot the curves. 

263. Plot the curve xy = -4 and transform the equa­
tion by rotating the axes through an angle <p = -45°. 

264. Translating the coordinate origin, bring to the 
form xy = k the equations of the following curves: 

(1) xy-2x=6; (2) xy-2x-y+B=0; (3) xy-x+2y=6; 
(4) xq+2x=3y. 

Hint. Write the equation xy+Ax+By+C=O in the 
form (x+B)(y+A)=AB-C. 

265. Construct the parabolas: 

(1) y=(x-2)2 ; (2) y=(x-2)2 +3; 
(3) y=(x+2)2; (4) y=(x+2)2-3. 

266. Construct the parabolas: 
(1) y=x2 -4x+5; (2) y=x2 +2x+3; (3) y= -x2+ 

+2x-2 by singling out perfect squares in the right-hand 
members of the above equations. 

267. Construct the parabolas: (I) y= 4x-x2 and 
(2) 2y = 3 + 2x- x2 finding the points at which they inter­
sect the axis OX. 
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268. A water jet from a fountain reaches its maximum 
height of 4 m at a distance of 0.5 m from the vertical 
passing through the point 0 of water outlet. Find the 
height of the jet above the horizontal OX at a distance 
of 0. 75 m from the point 0. 

269. Derive the equation of the parabola which is 
symmetric about the axis OY and cuts off on it an inter­
rl·pt b, and on the axis OX, intercepts a and -a. 

Hint. Substitute the given coordinates of the points 
on the parabola (-a, 0), (a, 0), and (0, b) in the equa­
l ion of the form y = Ax2 + Bx + C and then find A, B, 
und C. 

270. The parabola y = ax2 + bx + c passes through the 
points 0 (0, 0), A (-I, -3), and B (-2, -4). Write the 
<·qtwtion of the circle whose diameter is the x-intercept 
cut off by the parabola. 

271. Through what angle is it necessary to rotate the 
coordinate axes in order to eliminate the term containing 
X!f in the equations: (1) x2 -xy+y2 -3=0; (2) 5x2 -4xy+ 
1 ~y2 -24 = 0? Construct both the old and the new coor­

dinate axes and plot the curves. 
272. Determine the trajectory of a bullet shot at an 

angle of IJl to the horizon with the initial velocity v0 • 

Determine also the bullet range and the highest point of 
the trajectory (air resistance should be neglected). 

273. Write the equation of the locus of points M (x, y), 
the ratio of the distances of which from the point F (4, 0) 
to the distances from the straight line X=-2 is equal 
to 2. 

274. Show that, by translating the coordinate origin 
x2 y2 

in the left-hand vertex of the ellipse iii+ b2= I or in the 
x2 y2 

right-hand vertex of the hyperbola ii2-b2 =I both equa-

tions are brought to the same form y2 = 2px + qx2 , where 
b2 

p=- and q=e2 -l. a 
275. Using the resuLts of Problem 274, determine the 

eccentricity and the type of the curve (I) y2 =X-! x 11 ; 
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(2) y2 =x+! x2 ; (3) y2 =x. Construct the curves finding 

for the first two of them the points of their intersection 
with the axis OX and the parameters a and b. 

276. Singling out perfect squares and translating the 
coordinate origin, simplify the following equations of lines: 

(I) 2x2 +5y2 -12x+ IOy+ 13=0; 
(2) x2 -y2 +6x+4y-4=0; 
(3) y2 +4y=2x; 
(4) x2 -l0x=4y-13. 

Construct both the old and the new axes and plot the 
curves. 

277. By rotating the coordinate axes through 45° simp­
lify the equation 3x2 -2xy+3y2 -8=0. Determine the 
coordinates of the foci in the old system. 

278. Write the equation of ·the circle whose diameter 
is the x-intercept cut off by the parabola y = 3-2x-x2 • 

Construct both curves. 
279. Write the equation of the circle whose diameter 

is the segment of the straight line x + y = 6 cut off by 
the hyperbola xy = 8. Construct each of the three lines. 

280. A is the vertex of the parabola y = x2 + 6x + 5, 
B is the point of intersection of the parabola and the 
OY-axis. Write the equation of the perpendicular erected 
at the midpoint of the line segment AB. 

281. Derive the equation of the parabola which is 
symmetric about the axis OX and cuts off on it an inter­
cept -4, and on the axis OY, intercepts 4 and -4. 

·Hint. The equation of the parabola must be of the 
form x = ay2 + c (why?). 

282. Using the points of intersection with the coordi­
nate axes, construct the parabolas: 

(1) 3y=9-x2 ; (2) y2 =9-3x; (3) y2 =4+x; (4) x2 = 
= 4+2y. 

283. Write the equation of the locus of points M (x, y), 
the ratio of the distances of each from the point F (4, 0) 
to the distances from the straight line x = 10 being equal 

I 
to 2 . 
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1.14. Miscellaneous Problems 
on Second-Order Curves 

284. Write the equation of the circle whose diameter 

Is a segment of the straight line = + ~ = l intercepted 
by the coordinate axes. 

285. Find the distance of the centre of the circle 
x~ +-y2 +ay=0 from the straight line y=2(a-x). 

286. A straight line is drawn through the centre of 
the circle x2 + y2 = 2ax parallel to the straight line x + 2y = 0 
und intersecting the circle at the points A and B. Find 
the area of the triangle AOB. 

287. Show that the locus of points M, which are m 
times farther from a given point A than from another 
given point B, is a straight line at m = 1 and a circle 
ifm=/=l. 

288. A line segment AB is divided into two parts: 
AO =a and OB =b. Show that the locus of points, from 
which the segments AO and OB are seen at equal angles, 
is a straight line at a= b, and a circle when a =1= b (the 
circle of Apollonius). 

289. Determine the trajectory of a point M (x, y) mo­
ving in such a manner that the sum of the squares of 
its distances from the straight lines y = kx and y = -kx 
remains constant and equal to a 2 • 

290. An ellipse symmetric about the axis OX and the 
straight line x=-5 passes through the points (-1, 1.8) 
and (-5, 3). Write the equation of the ellipse and const­
ruct it. 

291. Find the area of an equilateral triangle inscribed 
In the hyperbola x2-y2 =a2. 

292. Find the angle between the diagonals of a rec­
tangle whose vertices are found at the points of intersec-­
tion of the ellipse x2 +3y2 = 12/2 and the hyperbola. 
x2-3y2 = 6/2. 

293. A circle with the centre at the coordinate origin 
passes through the foci of the hyperbola x2 - y 2 = a 2 • Find 
the points of intersection of the circle and the asympto­
tes of the hyperbola. 

294. Construct the hyperbolas xy = -4 and x2 -y2 = 6: 
and find the area of the triangle ABC, where A and B 
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.are the vertices of two intersecting branches of the hy­
perbolas and C is the point of intersection of the two 
other branches of the hyperbolas. 

295. Prove that the product of the distances of any 
point of the hyperbola from its asymptotes is a constant 

a2b2 
equal to - 2 • c 

296. Find the length and the equation of a perpendi-
x2 

cular dropped from the focus of the parabola y = - 8 
onto a straight line cutting off the intercepts a= b = 2 
on the coordinate axes. 

297. Construct the ellipse x2 + 4y~ = 4 and the parabola 
x2 = 6y and find the area of the trapezoid whose bases are 
the major axis of the ellipse and a common chord of the 
ellipse and parabola. 

298. From the focus of the parabola y2 = 2px as centre 
a circle is described so that a common chord of the cur­
ves is equidistant from .the vertex and the focus of the 
parabola. Write the equation of the circle. 

299. Find the length and the equation of the perpen­
dicular dropped from the vertex of the parabola by =x2+ 
+2ax+a2 +b2 onto the straight line cutting off intercepts 
a and b on the coordinate axes. 

300. Plotting the points of intersection with the coor­
dinate axes, construct the parabolas 4y= 12-x2 and 
4x "'= 12-y2 and find the length of their common chord. 

301. Find the area of a quadrilateral whose vertices 
lie in the points of intersection of the parabola y = 4-x2 

. and the axis OX and the straight line y = 3x. 
302. Write the equation of a circle passing through 

the coordinate origin and the points of intersection of the 
2 

parabola y =: -:-2x +a with the coordinate axes. 

303. Given the ellipse x2 + 4y2 = 16. From its vertex 
A ( 4, 0) all possible chords are drawn. Determine the lo­
cus of midpoints of these chords and construct the curves. 

304. Determine the trajectory of a point M (x, y) mo­
ving so that the difference of the squares of its distances 
from the bisectors of the quadrants remains equal to 8. 

305. Derive the equation of the locus of centres of the 
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r11r k·s passing through the point A (3, 4) tangent to the 
iiXis OX. 

:106. Singling out perfect squares and translating the 
origin, simplify the equation of the curve x2 -y2 -4x­

liy-9=0. Construct both the old and the new coordi­
llale axes and plot the curve. 

:Hl7. Find the locus of midpoints of the focal radius 
\'l'dors drawn from the right-hand focus to all points of 

x2 y2 
llil' hyperbola 9 - 16= 1. 

:ws. Write the equation of the ellipse passing through 
!Ill' point A (a, -a) if its foci are found at the points 
F (a, a) and F 1 (-a; -a). 

Simplify the equation by rotating the coordinate axes 
through an angle of 45°. 

:J09. By rotating the coordinate axes through an angle 

'I' c arctan ; simplify the equation of the curve 3x2 + 
1 8xy-3y2 = 20. Construct both the old and the new 

coordinate axes and plot the curve. 
:J10. Write the equation of the locus of points, the 

d i !Terence of the squares of whose distances from the 
straight line 3x + 4y = 0 and from the axis OX remains. 
constant and equals 2.4. 

311. Write the equation of the locus of points M (x, y), 

the ratio of whose distances from the point F ( e~ 1 , 0) 
to the distances from the straight line x = - e (e~ I) is e. 

312. Construct the domains, the coordinates of whose 
points satisfy the following inequalities: 

(1) R2 < x2 +y2 < 4R2 and x2 > ~2 ; 
(2) x 2 -y2 > a2 and x 2 < 4a2 ; 

(3) xy > a 2 and jx+yl < 4a; 
(4) 2x<y2 +4y and x2 +y2 +4x+4y<O. 

1.15. General Equation of a Second-Order Curve 

1°. A curve which is represented by an equation of the 
second degree in a Cartesian coordinate system is called 
a curve of the second order. The general equation of the 
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second degree is usually written as 
Ax2 +2Bxy+Cy2 +2Dx+2Ey+F=0. (1) 

Let us form two determinants using the coefficients of 
equation (1): 

lA Bl A B D 
6 = B C and a= B C E 

D E F 

The determinant a is called the discriminant of equa­
tion (l ), and 6, the discriminant of its senior terms. De­
pending on the magnitudes of 6 and L\, equation (l) de­
fines the following geometric image: 

I 
ll.*O I ll.=O 

6 >-0 1 Ellipse (real or imaginary) I Point 

6<0 Hyperbola A pair of intersecting straight 
lines 

6=0 Parabola A pair of parallel str-aight 
lines (real or imaginary) 

2°. Transforming equation (I) to the centre. If 

6 =I~ g I =I= 0, then the curve has a centre whose coor­

dinates are found from the equations 

<D~ (x, y) = 0, <D~ (x, y) = 0, (2) 

where <D (x, y) is the left-hand member of equation (1). 
By translating the origin to the centre 0 1 (x 0 , y 0) (see 
Fig. 10), we reduce equation (1) to the form 

(3) 
where 

(4) 
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:l''. Transforming equation (3) to the axes of symmetry. 
lly rotating the axes 0 1X1 and 0 1y 1 through some angle q> 
( l,.ig. 10), equation (3) is transformed to the canonical 
form 

(5) 

The coefficients A1 and C1 are the roots of the equation 

J-2 -(A+C)J-+6=0. (6) 

llw angle of rotation c:p is found by the formula 
B 

tanc:p=A~-c· (7) 

4°. Transforming the equation of a second-order curve 
having no centre. If 6 = 0, the curve has no centre or 

!I 

0 X 

Fig. 10 

has no defined centre. Its equation then may be written 
in the form 

(ax+~y)2 +2Dx+ 2Ey+F =0. (8) 

Case I. D and E are proportional to a and ~: D = ma, 
E = m~. Equation (8) takes on the form (ax+ ~y)2 + 
1-2m (ax+~Y)+F=O, whence ax+~Y= -m± V m2 -F, 

i.e. a· pair of straight lines. 
Case I I. D and E are not proportional to a and ~. 

Equation (8) may be rewritten as 

(ax+~y+n)2 +2m (~x-ay+q) = 0. (9) 
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The parameters m, n, and q are f9und by comparing 
the coefficients of equations (8) and (9). Taking then the 
straight line ax+~y+n=O for the axis O,X and the 
straight line ~x-ay+q=O for the axis 0 1Y (Fig. 11), we 
find: 

Now equation (9) takes on the form Y 2 = 2pX, where 
p = I m I . The axis 0 1X is directed towards the half-

JI a.2+~2 
!I 

X 

Fig. II 

plane in which ~x-ay+q has the sign opposite to that 
of m, as is obvious from equation (9). 

313. Determine the geometric objects represented by the 
following equations: 

(I) 4x2 -y2 =0; (2) 4x2 +y2 =0; (3) x2 +y2 +2x+2=0; 
(4) x2 +y2 -6x-8y+25=0; (5) x2 +xy=0; 
(6) y2 -l6=0; (7) x2 -3xy+2y2 =0. 

314. Find the centres and transform to them the equations 
of the curves: 

(1) 2x2 + .3y2 -4x+ 6y-7 =0; 
(2) x2 -y2 -4x+2y-4=0; 
(3) 2x2+ 5xy+ 2y2 -6x-3y-8 = 0. 
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315. By rotating the coordinate axes, bring the equations 
to the canonical form and construct the curves: 

(I) 5x2 -4xy+2y2 =24; (2) 2x2 +4xy-y2 = 12. 

316. Reduce the equations to the canonical form and 
construct the curves: 

(I) 3x2 -2xy+ 3y2 -4x-4y-12 = 0; 
(2) x2 -6xy+ y2 -4x-4y+ 12 = 0. 

317. Transform the equations to the canonical form: 

(I) x2 + 4xy+ 4y2 -20x+ !Oy-50 = 0; 
(2) x2 -4xy + 4y2 -6x+ 12y+ 8 = 0; 

and construct the curves represented by them. 
318. Making use of the discriminants 6 and d, determine 

the geometric objects represented by the following equations: 

(I) x2 -4xy+ 3y2 -8x+ 14y+ 15 = 0; 
(2) x2 +2xy+4y2 -2x+4y+4 =0; 
(3) x2 + 4xy+ 4y2 + 3x+ 6y+ 2 = 0. 

On solving the first and third equations with respect toy, 
construct the curves determined by these equations. 

319. Bring to the canonical form the equation of the 
3x2-12x+4 . 

curve y = 4x-B and construct tt. 
320. Write the equation of the second-order curve whose 

centre is the point 0 1 ( 1, 2) and which passes through 
the coordinate origin and the points (0, 4) and (1, -1). 

321. Show that the equation Vx+ V'Y= Va defines an 
arc of the parabola, construct this parabola and find its 
vertex. 

Hint. Rotate the coordinate axes through an angle 
cp = -45°. 

322. Write the equation of the locus of points M (x, y), 
the ratio of the distances of each of which from the point 
F (m, n) to its distance from the straight line xcos a+ 
+ ysina-q=O is e. Denoting the coefficients of the 
obtained equation by A, B, C, ... , determine the inva-

riants A+C and 6=1~ gj. 
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323. Determine the geometric objects represented by 
the following equations: 

(I) x2 -4y2 =0; 
(2) x2 +2y2 + 4x-By+ I2 = 0; 
(3) x2 +5xy-6y2 =0. 

324. Transform to the canonical form the equations and 
construct the curves: 

(I) x2 -xy+y2 -2x-2y-2=0; 
(2) 3x2 + IOxy+ 3y2 -I2x-I2y + 4 = 0. 

325. Transform to the cartonical form the equations: 

(I) x2 - 2xy + y 2 - I Ox- 6y + 25 = 0; 
(2) x2 +2xy+y2-4x-4y+3 =0 

and construct the curves represented by them. . 
326. Making use of the discriminants 6 and d determine 

the geometric objects represented by the equations: 

(I) x2 - 2xy + y2 - 4x + 4y + 3 = 0; 
(2) x2 -2xy-3y2 +6x+ IOy-7=0. 

After solving each equation with respect toy construct 
the curve determined by it. 

327. Write the equation of the locus of points M (x, y), 
the ratio of whose distances from the point F (3, 3) to 
the distances from the straight line x + y = 0 is equal to: 

1 
(I) 8=2; (2) 8=2. 

328. Write the equation of the locus of points M (x, y) 

equidistant from the point F ( ]-, ; ) and the straight 

line x+ y = 0 and reduce it to the canonical form. 
329. Write the equation of the locus of points the diffe­

rence of the squared distances of each from the straight 
I ine x-2y = 2 and from the axis OX remaining constant 
and equal to 3.2. Transform it to the canonical form and 
construct the curve. 



Sec. 1.16. Polar Coordinates 57 

1.16. Polar Coordinates 

In a plane (Fig. 12) take an arbitrary point 0 (pole) 
and draw a ray OP (polar axis). Then the position of any 
point M in the plane may be specified by 

(I) the polar angle <p=L MOP; 
(2) the radius vector r =OM. 
The numbers <p and r are termed the polar coordinates 

of the point M. 
When studying the equations associated with r and <p 

it is useful to consider the polar coordinates <p and r as 

Fig. 12 

attaining any positive and negative values. Negative angles 
<p are usually measured clockwise, and negative r are 
laid off not on the ray but on its extension beyond the 
pole. 

If we take the pole for the origin of the Cartesian rectan­
gular coordinates and the polar axis OP for the axis OX, 
then the cartesian coordinates (x, y) of the point M and 
its polar coordinates (<p, r) will be related as follows: 

x = r cos <p, y = r sin <p; (1) 

r = v-X 2 + Y2 ' tan <p = .J!.. . (2) 
X 

If we now take the focus of the ellipse, hyperbola, or 
parabola for the pole, and the focal axis of symmetry 
for the polar axis drawn in the direction opposite to the 
nearest vertex, then the equation in polar coordinates for 
all the three curves will be the same: 

r= P 
1-e cos <p' 

(3) 
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where e is the eccentricity, and p, the parameter. For 
• b2 

the ellIpse and hyperbola p =a . 
330. Construct the following points using polar coor­

dinates (cp, r): A(O, 3), n(~, 2), c(~, 3), D(n, 2), 

£(3;,3). 
331. Construct the following points: A ( ~, -2) , 

B (- ~ , 3) , C (- ~ , -4) , D ( 2; , -3) . 
332. Construct the line r F 2 + 2 cos cp. 

Hint. Tabulate the values of r for cp = 0; + ~ ; + ; ; 
2:rt 

+3; n. 
333. Construct the following curves (Figs. 84, 85, and 90): 

(1) r=acp (the spiral of Archimedes) 
(2) r =a (l-eas cp) (the cardioid) 
(3) r 2 = a2 cos 2cp (the lemniscate) 
(4) r =_!!__ (the hyperbolic spiral) 

q> 
(5) r =a (1 + 2 cos cp) (the limaron of Pascal) 

334. Construct the lines: ( l) r =a; 
b 

:rt 
(2) cp = 4; 

(3) r=-. -. 
Sin q> 

335. Write in polar coordinates the equation of the (l) 
straight line cutting off an intercept a on the polar axis 
and perpendicular to it; (2) straight line passing through 
the point A (a; a) and parallel to the polar axis. 

336. Write in polar coordinates the equation of the 
straight line passing through the point A (a, a) at an 
angle ~ to the polar axis. 

337. Write in polar coordinates the equation of the 
circle whose centre lies at the point C (0, a) and the radius 
equals a. 

338. Construct the curves: 

(l) r=3-2sin2cp; (2) r=2+cos3cp; (3) r=l-sin3cp. 
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Hint. First determine the angles at which we have r max 

lllld 'min· 
:J39. Construct the curves (see Figs. 86 and 87 on 

page 386): 

(I) r =a sin 3cp (three-leafed rose); 
(2) r =a sin 2cp (four-leafed rose). 

340. Transform the following equations of the lines to 
pol3r coordinates: 

(I) x2 -y2 = a 2 ; (2)x2 + y 2 =a2 ; (3) xcosa + y sin a-p = 0; 
(4) y=x; (5) x2 +y2 =ax; (6) (x2 +y2 ) 2 =a2 (x2 -y2). 

341. Transform the following equations to the Carte-
sian-coordinate form and construct the corresponding 
I ines: 

(I) rcoscp=a; (2) r=2asincp; (3) r 2 sin2cp=2a2 ; 

(4) rsin(cp+~)=aV-2; (5) r=a(l+coscp). 

342. Write the canonical equations of the second-order 
curves: 

9 9 3 
( 1) r = · (2) r = · (3) r =.,----

5 -4 cos qJ ' 4 -5 cos qJ ' I -cos qJ ' 

343. Conchoid. Draw a straight line through the point 

A ( ~ , a) and parallel to the polar axis. An arbitrary 

ray OB intersects this straight line at point B. On 08 
Jay off, on either side of B, the line segments BM = BM 1 =b. 
Determine the locus of points M and M 1 in polar coor­
dinates and construct the curve. 

344. Strophoid. A straight line x =a intersects the axis 
OX at point A and an arbitrary ray OB at point B. On 
OB lay off, on either side of B, the line segments BM 1 

and BM 2 equal to AB. Write the equation of the locus 
of points M 1 and M 2 both in polar and Cartesian coordina­
tes (see Fig. 88). 

345. Cassinian curve (oval of Cassini). A point M (cp, r) 
moves so that the product of its distances from the points 
F (0, a) and F 1 (n, a) remains equal to b2 • Write in polar 
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coordinates the equation of the path covered by the 
point M. 

346. Cardioid. An arbitrary ray OA intersects the circle 
r=acosc:p at point A. On OA lay off, on either side of A, 
the line segments AM=AM1 =a. Derive the equation of 
the locus of points M and M 1 both in polar and Cartesian 
coordinates. 

347. Epicycloid. A circle of diameter a rolls without 
sliding along a circle of the same diameter outside this 
circle. Write the equation of the curve described by a 
point M on the rolling circle if the point of tangency of 
circles is taken for the pole and the starting position 
of the point M, and the polar axis is drawn through the 
centres of the circles (in the starting position). 

348. Construct the curves: (I) r = 3 + 2 cos 2c:p; (2) r = 3 .:...._ 
-sin 3c:p; (3) r =a cos 2c:p (see the hint to Problem 338). 

349. Construct: (I) r = 4 (I +cos c:p); (2) r = 2-sin c:p. 
350. Write in polar coordinates the equation of a straight 

line passing through the given points A (a; a) and B (~; b). 
Hint: Consider the relationship among the areas of the 

triangles AOM, BOM, and AOB, where M (c:p, r) is an 
arbitrary point of the straight line. 

351. Write the canonical equations of the curves of the 
second order: 

I I 
(I) r= V ; (2) r= V ; (3) r= 

2- 3 cos cp 2- 5 cos cp 2-2 cos cp 

352. Lemniscate of Bernoulli. A point M (c:p, r) moves 
so that the product of its distances from the points F (0, c) 
and F 1 (n, c) remains equal to c2 • Write the equation of 
the path traversed by M both in polar and Cartesian coor­
dinates. 

Hint. According to the law of cosines F M 2 = r2 + c2 -

-2rccosc:p and F1M 2 =r2 +c2 +2rccosc:p, and, by hypo­
thesis, FM 2 ·F1M 2 =c4 • 

353. Limm;on of Pascal. Draw an arbitrary ray OA. From 
the point A where OA intersects the circle r=acosc:p lay 
off, on both sides of A, the line segments AM =AM 1 =b. 
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Derive the equation of the locus of points M in polar 
coordinates. 

354. Four-leafed rose. The ends of a line segment AB = 2a 
slide along the axes of the Cartesian coordinate$. A per­
pendicular OM is dropped from the origin onto AB. Write 
the equation of the locus of points M (x, y) for all possible 
positions of AB. 

1.17. Algebraic Curves of the Third 
and Higher Orders 

355. Construct the following curves (see Figs. 70 to 73 
on pages 383, 384): 

xa 
( 1) y = 3 (cubical parabola); 

(2) y2 = xa } 

(3) ys=x2 
(4) y 2 = x (x-4) 2 

(semicubical parabola); 

(loop parabola). 

356. Construct the curves: 
2 2 2 

( 1) x 3 + y 3 =a 3 (equilateral astroid); 
2 2 

(2) (;)3+(~)3=1, b=i=a (non-equilateral astroid). 

Hint. Find the points of intersection of the curves and 
the axes OX and OY and also the points at which the 
first curve intersects the straight lines y = ± x, and the 

second curve the straight lines y = ± !!... x (see Fig. 82 on 
a 

page 386). 
357. On the line segment [ -1, 1] construct the follo­

wing curves: (1) y = x2n+l; (2) y = x2n; (3) x2n + y2n = 1 if 
n = 1, 2, 4. What polygonal lines do these curves approach 
as n--+ oo? 

Hint. Find the points at which the first curve intersects 

the straight line y = ;n; the second, the straight line 

y = 2~, and the third, the straight line y = x. Ten squares 

of squared paper should be taken for a scale unit. 
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358. Astroid. The end-points of a line segment AB =a 
slide along the axes of the Cartesian coordinates. Two 
straight lines AC and BC parallel to the coordinate axes 
intersect at point C. A perpendicular CM is dropped 
from C onto AB. Write the equation of the locus of po­
ints M (x, y) for all possible positions of the line seg­
ment AB. 

359. Construct the curves: 

xa 
( l) y2 =- (cissoid, Fig. 89 on page 387); a-x 

8a3 
(2) y --- (versiera, Fig. 80 on page 385). - x2 +4a2 

360. Each point P (x 0 , y0 ) of the parabola y2 = 2px is 
'displaced parallel to the axis OX by a distance PM --: 
= + OP. Find the locus of points M. 

361. A bar OA =a rotates about the origin 0. Hinged 
to it at point A is another bar AB = 2a, whose end-point 
slides along the axis OX. Write the equation of the line 
described by the midpoint M of the line segment AB. 

362. Cissoid. An arbitrary ray 0 A (Fig. 89 on page 387) 
intersects the circle x2 + y2 =ax at point A and the straight 
line x =a at point B. A line segment OM= AB is laid 
off on the ray. Derive the equation of the locus of points M. 

363. An arbitrary ray OB (Fig. 89 on page 387) in­
tersects the straight line x=a at point B. Point Cis the 
projection of B on the axis OY, and M is the projection 
of C on OB. Show that the locus of points M is a cissoid. 

364. Prove that, if from the vertex of the parabola 
y 2 =- 4ax perpendiculars are drawn to the tangent lines 
to this curve, then the locus of the feet of the perpendi­
·culars is a cissoid. 

365. Versiera. An arbitrary ray OA intersects the circle 
x 2 + y2 = 2ay and the straight line y = 2a at points A and 
B respectively. From these points two straight lines are 
.drawn: one parallel to the axis OX, the otherto the axis OY 
to intersect each other at a point M. Determine the locus 
of points M. 

366. Folium of Descartes: x8 + y 3 -3axy = 0. Show that, 
by rotating the coordinate axes through an angle of 45°, 
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this equation is reduced to the form Y 2 = x~~!~-x~), whe­

re b = n . Construct the curve, determining the location 

oi the curve and its symmetry, the points of intersection 
with the straight line y = x and the asymptote. Show that 
the equation of the asymptote in the new system of coor­
dinates will be X=-b, while in the old one x+y+a=O 
(see Fig. 83 on page 386). 

1.18. Transcendental Curves 

367. Cycloid. A circle of radius a rolls along a straight 
line OX without sliding. Derive parametric equations of 
the curve described by point M of the circle, taking the 
angle of rotation of the rolling circle for the parameter t 
and putting that at t = 0 the point M is found at the 
origin. 

368. Involute of a Circle. This is a curve described by 
the extremity of a taut string unwinding from (or win­
ding onto) a circular spool, the equation of the circle 
being x 2 + y2 = a2 • Set up parametric equations of the curve 
if the starting point of the extremity is (a, 0). Take the 
length of the unwound arc (in radians) for the parameter t. 

369. Quadratrix. An arbitrary ray OM, forming an ang­
le t (in radians) with the axis OY, intersects the straight 
line x =at at point M. Write the equation of the locus 
of points M. 

370. Epicycloid. A circle of radius r rolls without sli-
ding along a circle of radius R outside it. Set up para­

. metric equations of the curve described by point M of 
the rolling circle. (At r = R an epicycloid turns into a 
cardioid. See Problem 347.) 

371. Hypocycloid. A circle of radius r rolls without 
sliding along a circle of radius R > r inside it. Set up. 
parametric equations of the curve described by point M 
of the rolling circle. (At r = ~ a hypocycloid turns into 

2 2 2 ) 
an astroid x3 + y3 =aT. 



CHAPTER 2 

VECTOR ALGEBRA 

2.1. Addition of Vectors. Multiplication of a 
Vector by a Scalar 

1°. Definitions. A vector quantity, or a vector (in the 
broad sense of the word), is any quantity possessing di­
rection. A scalar quantity (or scalar) is a quantity that 
does not possess direction. 

In geometry, a vector (in the narrow sense) is any di­
rected line segment. 

A vector with initial point A and terminal point B is 

denoted as AB (Fig. 13). 

Fig. 13 

A vector can also be denoted by a single letter as in 
Fig. 13. In printing this letter is given in boldface type 
(a), in writing it is given with a bar (a). 

The length of a vector is also called the absolute value 
(or modulus) of the vector. The absolute value of a vector 
is a scalar quantity. 

The absolute value of a vector is denoted by two ver-

tical lines: IABI or ial or lal. 
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In the two-letter notation of a vector, its absolute va­
lue is sometimes denoted by the same letters without an 

arrow (AB is the absolute value of the vector AB), in the 
single-letter notation, the absolute value is denoted by a 
normal weight letter (b is the absolute value of the vector b). 

Vectors parallel to one straight line are termed col­
linear. Vectors parallel to one plane are called coplanar. 
Two vectors a. and b (Fig. 13) are equal if they (1) have 
the same modulus, (2) are collinear, (3) are in the same 
direction. 

Fig. 14 

2°. Multiplication of a vector by a scalar. To multiply 
a v!'ctor a (multiplicand) by a number (scalar) m means 
to construct a new vector (product) the absolute value of 
which is obtained by multiplying the absolute value of 
the vector a by the absolute value of the number m, the 
direction coinciding with the direction of the vector a or 
being in the opposite sense, depending on whether the 
number m is positive or negative. If m = 0, the product 
is the null vector. 

3°. Addition of vectors. The sum of the vectors a -J-b + c __,. 
is a fourth vector R=OC (Fig. 14) joining the initial 
point 0 of the vector a to the terminal point of the vec­
tor c, i.e. connecting the end-points of .the polygonal line 
OABC constructed from the given vectors. In particular, 
in a parallelogram, constructed from the given vectors 
------.. -+ __,. 
OA =a and OB = b, one vector-diagonal OC is the sum 

-+ a+ b, the other BA being the difference a-b of the given 
vectors. 

4°. The projection of a vector on an axis. Let a vec­
tor a form an angle cp with the axis OX. Then the pro-

3-1895 
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jection of the vector on this axis is determined by the 
formula 

__......... 
proxa =I a I cos cp =a cos (a, OX). 

The projection of a sum of vectors on some axis is equal 
to the sum of the projections of those vectors on the same 
axis: 

prox (a+ b)= proxa + proxb. 

372. Laid off on the sides OA and OB of 
OACB are the unit vectors i and j (Fig. 15). 

M 
8..-----r---,0 

N 

j 

o..._.....,...j---+--....,!A 
i 
Fig. 15 

----+- ~ -?- ---+ --+ ---+ 

a rectangle 
Express the 

vectors OA, AC, CB, BO, OC, and BA in terms of i and j 
if the length OA = 3 and OB = 4. 

373. Let M be the midpoint of BC and N, the midpoint 
---+ -of AC (Fig. 15). Determine the vectors OM, ON, and 

MN if 0A=3 and 08=4. 
374. Given in a plane are the points A (0, -2), B ( 4, 2), 

---+ ---+ ---+ 
and C (4, -2). Forces OA, OB, and OC are applied at 

---+ 
the coordinate origin. Construct the resultant force OM, 
and find its projections on the coordinate axes and its 

-+ ~ ----+- --.. 
magnitude. Express the forces OA, OB, OC, and OM in 
terms of the unit vectors i and j of the coordinate axes. 

375. Given three coplanar unit vectors m, n, and p, 
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............. ............... 
(m, n) = 30° and (n, p) = 60°. Construct the vector u = 

m+ 2n-3p and compute its modulus. 
lfint. In the polygonal line constructed from the vec­

lors m, 2n and -3p extend the first line segment to in­
ll·rsect the third one. 

:J76. Check analytically and geometrically the vector 
i dl'ntities: 

377. A parallelepiped is constructed on three non-co-
--+ - -planar vectors OA=a, OB=b, and OC=c. Indicate tho-

~(' of its vector-diagonals which are equal to a+ b-e, 
a -b+ c, a-b-c, and b-a-c respectively. 

378. With the aid of the drawing of Problem 377 check 
I he commutative property of the vector sum: 

a+b-c=a-c+b=b+a-c=b-c+a. 
__,.. --+ --+ 

379. Given vectors OA=a and OB=b. Vector OC=c 
i~ a median of the· triangle OAB. Resolve analytically 
;1nd geometrically (1) the vector c into a and b; (2) the 
v(·ctor a into b and c. 

380. In a rectangle OACB (Fig. 15) M and N are the 
lllidpoints of the sides BC=3 and AC=4. Resolve geo-

--+ 
111drically and analytically the vector OC=c into the - -vC'dors OM= a and ON= b. 

Hint. Substitute the expressions of a, b, and c in terms 
of land j into the condition C=ma+nb and compare 
the coefficients of l and j in the left-hand and right-hand 
111embers. 

381. Given a regular hexagon OABCDE with side 0A=3. 
--+ --+ --+ 

Denoting the unit vectors of the directions OA, AB, BC 
in terms of m, n, and p, find the relationship among 
them (for instance, by considering the trapezoid OABC). 

~ ----+- ---;)... ~ ~ 

Express then the vectors OB, BC, EO, OD, and DA in 
terms of m and n. 
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382. In an isosceles trapezoid OACB (Fig. 16) the angle 
BOA=60°, OB =BC=CA=2, M and N are the 
midpoints of the sides BC and AC. Express the vectors 
--+- ---i'- --+- ____,.. 
AC, OM, ON, and MN in terms of m and n which are - -the unit vectors of the directions of OA and OB. 

oi 
M 

\ 
I 

m A 
Fig. 16 

383. Given vectors a and b the angle between which 
equals 120°. Construct the vector C=2a-I.5b and de­
termine its modulus if a=.3 and b=4. 

384. Given in a plane are the points A (3, 3), B (-3, 3), 
and C(-3, 0). Applied at the coordinate origin are for-

----+ ----+ ____,.. ---+ 

ces OA. OB, and OC. Construct the resultant force OM and 
find its projections on the coordinate axes and its 

---+ ----+ ~ ---+ 
magnitude. Express the forces OA, OB, OC, and OM in 
terms of the unit vectors l and j of the coordinate axes. 

385. (I) In a trapezoid OACB: BC= ~ OA and BC 1/ OA. 

Resolve geometrically and analytically the vector OA=a - -into the vectors OC = c and OB =b. 
Hint. In the triangle OBC express c in terms of b and 

a and then solve the obtained equation with respect to a. 
(2) Point B divides a circular arc AC = 90° in the ra­

tio I :2. 0 is the centre of the circle. Resolve the vector 
_....,... ---+ ---+ 

OC = c into vectors OA =a and OB =b. 

2.2 Rectangular Coordinates of a Point and a 
Vector in Space 

1°. Definition. Let there be given three mutually per­
pendicular coordinate axes with a common origin 0 and 
a point M (Fig. 17). The projections of its radius vector 
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·-+ 
UM=r on the coordinate axes OM 1 =x, OM 2 =y, and 
OM 8 = z are called the rectangular coordinates of the point M 

---+ 
or the vector r =OM. 

z k 

j 
y 

i X 
Fig. 17 

2°. The radius vector of a point in space. The modulus -or the length of the radius vector OM = r is expressed in 
terms of its coordinates by the formula 

(I) 

The unit vectors of the coordinate axes i, }, and k are 
r;t]]ed the basis vectors. The radius vectors are expressed 
i11 terms of the basis vectors 

r=xi+yJ+zk. (2) 

3°. A vector given by the coordinates of the initial 
nnd terminal points. Let there be given points A (x10 Yu Z1) 

~ 

and B (x2 , y2 , z2). The projections of the vector u = AB 
on the coordinate axes will be 

proxAB=X=X2 -X1,} 

proy~= Y =y,-y10 

prozAB =Z = Z2 -Z1 • 

(3) 
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We may write formulas analogous to formulas (I) and (2): 

u = VX 2 + P+Z2 = V (x2 -X1 ) 2 + (y2 -y1 ) 2 + (Z2 -Z1 ) 2 , (4) 
--+ 

U=AB=Xi+YJ+Zk. (5) 

If ex, ~. and I' are the angles formed by the vector 
--+ 

u = AB with the coordinate axes, then 
X Y Z 

cos ex = u , cos ~ = u , cos I'= u , ( 6) 
and 

cos2 ex+ cos2 ~ + cos2 I' = I, (7) 

i.e. the sum of the squared direction cosines of a vector is 
equal to 1. 

It follows from formulas (4), (5), and (6) that the vec­
tor u is completely determined by the three numbers: X, Y, 
and Z, i.e. by its projections, or its coordinates. There­
fore, we sometimes write or say: Given a vector u {X, Y, Z}. 

386. Construct the point M (5, -3, 4) and determine 
the length and the direction of its radius vector. 

--+ 
387. Construct the vee tor r = 0 M = 2i + 3j + 6k and de-

termine its length and direction (check using formula (7)). 
388. A vector is inclined to the axis OX at an angle of 

40° and to OZ at 80°. Find the angle between the vector 
and the axis OY. 

389. The radius vector of a point M forms an angle 
of 45° with the axis OX and of 60° with OY. Its length 
r = 6. Determine the coordinates of the point M, if its 

-+ 
coordinate z is negative, and express the vector OM= r 
in terms of the basis vectors i, j, k. 

390. Given the points A (I, 2, 3) and B (3, -4, 6). 
--+ 

Construct the vector AB = u, its projections on the coor-
dinate axes and determine the length and the direction 
of the vector. Construct the angles formed by the vector u 
with the coordinate axes. 

--+ 
391. Construct a parallelogram on the vectors OA = i + j 

--+ 
and OB =k-3}, and determine its diagonals. 

392. A force R=7 is applied at the point A (2, I, -1). 
Given two coordinates of the force X= 2 and 
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I' = -3, determine the direction and the terminal point 
ol the vector representing the force. 

:J93. Given in a plane XOY are the points A (4, 2), 
II(~. 3), and C (0, 5) and constructed on it are the vee-_.., __.,. ~ 

lors OA =a, OB=b, and OC=c. Resolve geometrically 
111td analytically the vector a into the vectors b and c. 

:J94. Given the points A (2, 2, 0) and B (0, -2, 5). Con­

•,( ruct the vector AB = u and determine its length and 
d i rcct ion. 

-+ 
:i95. A vector OM= r forms equal acute angles with 

the coordinate axes. Determine these angles and construct 
t ltc vector r if its length is 2 V"3. 

396. A vector forms angles of 60° and 120° with the 
nxes OY and OZ respectively. What is the angle between 
t lte vector and the axis OX? 

397. Given three consecutive vertices of a parallelogram 
11 (I, -2, 3), B (3, 2, 1), and C (6, 4, 4), find its fourth 
vl'rtex D. 

--+ --+ 
/fint. It follows from the equality AD=BC that the 

coordinates of these vectors are also equal: x-1 :_ 6-3, 
l'k. ~ -

398. Construct the vectors OA =a= 21, OB =b=3i + 3}, -;111d OC = c = 2i + 6j in the plane XOY. Resolve gPometri-
rally and analytically the vector c into the vectors a 
;1nd b. 

2.3. Scalar Product of Two Vectors 

!0 • Definition. The scalar product of two vectors is the 
product of their absolute values by the cosine of the angle 
between them. 

The scalar product of a vector a by a vector b is deno­
ted: a·b or ab. By definition, 

a·b =abcoscp. ( 1) 

As is obvious from Fig. 18, b cos cp = pra b. Therefore 

a·b=abcoscp=aprab=bprba. 12) 
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~0 • Properties of a scalar product. 
I. a·b=b·a (commutative property). 
II. a·(b+c) =a·b+a·c (distributive property). 

I 
I 
I 
I 
I 
I 

8 

o f-'-..,..._--;.;~a,___,_A 
1------=-::oCO.:c:_'S r,t! __ l 

Fig. 18 

III. If allb, then a·b=±ab. In particular, a2 =a·a= 
= aa cos oo = a2 ; hence 

a= Va 2 • (3) 

IV. If aj_b, then a-b=abcos90°=0. 
V. The scalar products of basis vectors: 

i·J=O, J·k=O, l·k=O, i·i=I, J.J=I, k·k=I. 

VI. If vectors are given by coordinates a {ax, ay, az} 
and b {bx, b11 , bz}, then 

a. b = axbx + ayby + azbz. 

3°. The angle between vectors: 

(4) 

a·b axbx+ayby+azbz (5) cos cp = - = -;r=~~====;!';-',~=========::= 
ab V ai+a~+ai V b~+b~+b~ 

The condition of parallelism of vectors: b = ma or 
bx= by=bz=m. 
ax a11 az 

The condition of perpendicularity of vectors: a-b=Oor 

axbx + ayby + azbz = 0. 

399. Determine the angle between the vectors a= -l + j 
and b=i--2J+2k. 

400. Determine the angles of a triangle ABC with the 
vertices A(2, -1, 3), B(1, 1, 1) and C(O, 0, 5). 

401. Given the points A (a, 0, 0), B (0, 0, 2a), and 
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- -L' (a, 0, a). Construct the vectors OC and AB and find the 
angle between them. 

402. Given in a plane is a triangle with the vertices 
() (0, 0), A (2a, 0), and B (a, -a). Find the angle for­
med by the side OB and median OM of this triangle. 

403. Find the angle between the bisectors of the angles 
XOY and YOZ. 

404. Drawn from a vertex of a square are two straight 
I ines bisecting the opposite sides. Find the angle between 
these lines. 

405. Find the angle between the diagonals of a paral­
lelogram constructed on the vectors a= 21 + j and b = 
-o-2J+k. 

406. Given the vectors a =i+J+2k and b=l-J+4k. 
Determine prb a and pra b. 

407. Remove the parentheses in the expression 

(21-j) ·1+ (j-2k) ·k+ (i-2k)2 • 

408. Compute: (1) (m+n) 2 if m and n are unit vectors 
and the angle between them is equal to 30°; (2) (a-b)2 

if a=2V2, b=4 and (a),)=l35°. 
409. Remove the parentheses in the expressions 

(l) (a+ b) 2 ; 2) (a+ b) 2 + (a-b) 2 

and find out the geometrical meaning of the formulas 
obtained. 

410. Given coplanar vectors a, b, and c; a= 3, b = 2, 
............. ............. 

r = 5, (a, b)= 60°, and (b, c)= 60°. Construct the vector 
U=a+b-c and compute its absolute value, using the 
formula 

u = V<a +b-c)2. 

41 t. Find the resultant of four coplanar forces applied 
at point 0 if each of them is equal to 100 N and the 
angle between two consecutive forces equals 45°. 

412. Determine the lengths of the diagonals of a paral­
lelogram constructed on the vectors a= 2m+ n and 
b = m- 2n, where m and n are unit vectors forming an 
angle of 60°. 
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413. Given the vector a= 2m-n, where m and n are 
unit vectors and the angle between them is 120°. Find 

,.........__ .,........ 
cos (a, m) and cos (a, n). 

414. Determine the angle between the bisectors of two 
plane angles of a regular tetrahedron drawn from one of 
its vert ices. 

Hint. If m, n and p are the unit vectors of the edges, 
then m+n and m+p are vectors directed along the 
bisectors. 

415. Lay off equal line segments a=4 on the axes OX, 
OY, and OZ and construct a cube on them. Let M be the 
centre of the upper face, and N the centre of the right­
hand lateral face of the cube. Determine the vectors - -OM and ON and the angle between them. 

----- -----416. GiventhevectorsOA=a andOB=b; a=2, b=4, _...._ 
and (a, b)= 60°. Determine the angle between the medi-

----. -----an OM of the triangle AOB and the side OA. 
417. Drawn from a vertex of a rectangle with the sides 

6 em and 4 em long are two straight lines bisecting the 
opposite sides. Find the angle cp between them. 

418. Given the three consecutive vertices of a paral­
lelogram: A (-3, -2, 0), B(3, -3, 1), and C(5, 0, 2). 
Find its fourth vertex D and the angle between the vee-

----. -----tors AC and ED. 
419. Given the points A (3, 3, -2), B (0, -3, 4), 

C (0, -3, 0), and D (0, 2, -4). Construct the vectors - -AB =a and CD= b and find pra b. 
420. In an isosceles trapezoid OACB (Fig. 16) M and N 

are the midpoints of the sides BC = 2 and AC = 2. The 
acute angle of the trapezoid is equal to 60°. Determine 

the angle between the vectors OM and ON. 
421. Find the angle between the vectors a= 2m+ 4n 

and b=m-n, where m and n are unit vectors forming 
an angle of 120°. 
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422. Show that the angle between the diagonals of a 
n·dangle constructed on vectors a and b (a j_ b) is de­

a2-b2 
ll·rmined by the formula cOSqJ=±a2 +b2 • 

423. The projections of the displacement of a moving 
point on the coordinate axes are sx=2m, sy= 1m, sz = 

-2m. The projections of an acting force F on the 
coordinate axes are Fx=50 N, Fy=40 N, and Fz=30 N. 
':nmpute the work A of the force F(A=F·s) and the 
alll-(lc between the force F and the displacement s. 

424. Applied to a vertex of a regular tetrahedron with 
flit· edge a are three forces represented by its vector 
t·dgcs. Determine the absolute value of the resultant force. 

/lint. The required value is equal to aV(m+n+p) 2 , 

\\'here m, n, and p are the unit vectors of the given 
forces. 

425. A square is divided into three strips of equal 
widlhs and then made up into a regular triangular prism. 
1.-ind lhe angle between two adjacent segments of the 
polygonal line formed by the diagonal of the square. 

2.4. Vector Product of Two Vectors 

1°. Definition. The vector product of a vector a by a 
vl'dor b is a third vector c (Fig. 19), which is constructed 
as follows: 

c=axh 

Fig. 19 

(1) its absolute value is numerically equal to the area 
of a parallelogram constructed on the vectors a and b; 

(2) its direction is perpendicular to the plane of the 
parallelogram; 
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(3) the direction of the vector c is chosen (from two 
possible directions) so that the vectors a, b, c form a 
so-called right-handed system, in which the shortest rota­
tion from a to b is considered as being carried out counter­
clockwise. 

Notation: 

f (I) 

if l (2) 
(3) 

c=axb 
c = I a X b I = ab sin <p, 

cj_a and c j_ b, 
a, b, c form a right-handed 

2°. Properties of a vector product: 
I. axb=-bxa. 

system. 

I I. ax (b +c) =ax b +a X c (distributive property). 
III. If a!lb, then axb=O; in particular, axa=O. 
3°. The vector products of basis vectors: 

lxj=k, jxk=i, kxi=J. 
In general, a product of any two adjacent vectors in the 
sequence 

--++ 
ijkij 

-+---

yields the next vector with the plus sign, in case of the 
reversed sequence with the minus sign. 

4°. Expressing a vector product in terms of the coor­
dinates of the factors a {ax, ay, az} and b {bx, by, bz}: 

l j k 
a X b = ax ay az (2) 

bx by . bz 

5°. The area of a parallelogram constructed on the 
vectors a and b:· 

So=laxbl, (3) 

and the area of a triangle constructed on the vectors 
a and b: 

(4) 



Sec. 2.4. Vector Product of Two Vectors 77 

426. Determine and construct the vector c =ax b if 
(I) a=3i, b=2k; (2) a=i+J. b=l-j; (3) a=2i+3J, 
h·-:lj+2k. For each case find the area of a parallelog­
ra 111 constructed on the vectors a and b. 

427. Compute the area of a triangle with the ver~ices 
;1 (7. 3, 4), B (1, 0, 6), and C (4, 5, -2). 

428. Construct a parallelogram on the vectors a= 2}+ k 
und b=i+2k and compute its area and altitude. 

429. Remove the parentheses and simplify the expres­
~ions: 

(I) lx(J+k)-jx(l+k)+kx(l+J+k); 
(2) (a+b+c)xc+(a+b+c)xb+(b-c)xa; 
(:3) (2a+ b) x (c-a) + (b+c) x (a+ b); 
(4) 2l·(Jxk)+3J.(lxk)+4k·(ixj). 

430. Prove that (a-b) x (a+ b)= 2a x b, and find out 
I he geometrical meaning of this identity. 

431. Vectors a and b form an angle of 45°. Find the 
area of a triangle constructed on the vectors a-2b and 
:la 1- 2b if I a I= I b I= 5. 

432. Find the area of a parallelogram whose diagonals 
Hre the vectors 2m-n and 4m-5n, where m and n are 
lhe unit vectors forming an angle of 45°. 

Hint. a+b=2m-n and a-b=4m-5n, where a 
and b are the vector sides of the parallelogram. Multi­
plying we find the vector 2bxa whose modulus is equal 
lo twice the required area. 

433. Construct the vectors a= 3k-2}, b = 3l- 2}, and 
c =ax b. Compute the absolute value of the vector c and 
the area of a triangle constructed on the vectors a and b. 

434. Construct a triangle with the vertices A ( 1, -2, 8), 
B (0, 0, 4), and C (6, 2, 0). Compute its area and the 
altitude BD. 

435. Compute the diagonals and the area of a paralle­
logram constructed on the vectors a= k- j and b = l + J+k. 

436. Prove that (2a+b)x(a+2b)=3axb. 
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437. Find the area of a parallelogram constructed on 
the vectors a = m + 2n and b =2m+ n, where m and n 
are the unit vectors forming an angle of 30°. 

2.5. Scalar Triple Product 

1°. Definition. The scalar triple product of three vec­
tors ·a, b, and c is the expression (ax b)· c, i.e. the 
scalar product of the vector product ax b by the vector c. 

If the vectors a, b, and c are given by their coordi­
nates, then 

ax ay az 
(axb)·C= bx by bz 

Cx Cy Cz 

2°. The properties of a scalar triple product. 

(1) 

I. An interchange of any two factors reverses its sign: 

(axb)·C=-(axc)·b=-(cxb)·a. (2) 

II. A triple product having at least two equal or parallel 
vectors is zero. 

Ill. The signs of operations may be interchanged: 
(axb)·C=a·(bxc), therefore the scalar triple product is 
usually written as abc, i.e. without the signs of opera­
tions and without parentheses. 

3°. The volume of a parallelepiped constructed on the 
vectors a, b, and c: 

f +for a right-handed system 
V =+abc1 

par - t- for a left-handed system. 

The volume of a pyramid constructed on the vectors 
a, b, c: 

1 
vpyr = + 6 abc. 

4°. Criterion of coplanarity. If the system a, b, c is 
right-handed, then abc> 0; if it is left-handed, then 
abc< 0. But if the vectors a, b, c are coplanar, then 
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abc= 0. In other words, the vanishing of the triple pro­
duct abc is a criterion of the coplanarity of the vectors 
a, b, c. There exists a linear dependence of a, b, and c 
of the form c = ma + nb. 

438. Construct a parallelepiped on the vectors a= 3/ + 4}, 
h ~ -3j+k, C= 2}+ 5k and calculate its volume. Will 
the system (a, b, c) be right-handed or left-handed? 

439. Construct a pyramid with the vertices 0 (0, 0, 0), 
:1 (5, 2, 0), B (2, 5, 0), and C (1, 2, 4) and compute its 
volume, the area of the face ABC and the altitude of 
lhl' pyramid dropped onto this face. 

440. Show that the points A (2, -1, -2), B (1, 2, 1), 
C' (:2, 3, 0), and D (5, 0, -6) lie in one and the same 
plane. 

441. Show that the vectors a=-i+3J+2k, b=2l­
:l}-4k, C=-3i+ 12j+6k are coplanar and resolve 

I ill' vector c into the vectors a and b. 
tJ42. Show that: (1) (a+b)·[(a+c)xb]=-abc; 

(:.!) (a+ 2b-c) ·[(a-b) x (a-b-c)]= 3abc. 
443. Find the volume of a tetrahedron constructed on 

~ --+ ~ 

till' vectors OA, OB, and OC if they are directed along 
I ill' bisectors of the corresponding quadrants, the length 
of each vector being equal to 2. 

444. Construct a pyramid with the vertices A (2, 0, 0), 
n (0, 3, 0), C (0, 0, 6), and D (2, 3, 8), compute its volume 
and the altitude dropped onto the face ABC. 

445. Construct the vectors a= i + j + 4k, b = i- 2j, and 
c-=3i-3j+4k, show that they are coplanar, and find 
lhe I inear dependence of them. 

446. Show that the volume of a parallelepiped construe­
led on the diagonals of the faces of the given parallele­
piped is twice the volume of the given parallelepiped. 

/"'<.. 

447. Given the unit vectors m, n, andp. The angle (m, n)= 
- - I 

=[p, (mxn)]=a. Prove that then (mxn)·p= 2 sin2a. 

448. For any vectors a, b, and c the vectors a-b, 
b-e. and c-a are coplanar. Prove this analytically 
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and geometrically (by considering the parallelepiped con­
structed on the vectors a, b, and c). 

449. Compute the volume of a parallelepiped 
OABC01 A1B1C1 given three vertices of its lower base 
0 (0, 0, 0), A (2, -3, 0), and C (3, 2, 0) and the vertex 
of the upper base B1 (3, 0, 4) which lies on the lateral 
edge BB1 , the latter being opposite to the edge 00~" 



CHAPTER 3 

SOLID ANALYTIC GEOMETRY 

3.1. The Equation of a Plane 

) 0 • The equation of a plane which passes through a point 
M1 (x1 , Yu z1 ) and is perpendicular to a vector N {A, B, C}. 

Let M (x, y, z) be an arbitrary point of a plane (Fig. 20). 

z 

----+ 

XN(A,8,C) 

M1(x1,y1,z1 
0,~ 

M(X,y,z) 

---y 

Fig. 20 

Then M 1M j_ N, and, by the condition of perpendicula-
rity of vectors, 

A (X-X 1 ) + B (y-y 1) + C (z-z1) = 0. (I) 

2°. The general equation of a plane: 

Ax+By+Cz+D=O. (2) 
The vector N {A, B, C} is called the normal vector of 

plane (2) or (1). 
3°. Particular cases of the equation Ax+ By+ Cz + D = 0. 
I. The equation Ax+By+Cz=O (constant term D=O} 

represents a plane passing through the origin. 
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II. The equation Ax+By+D=O (coefficient C=O) is 
a plane parallel to the axis OZ. 

III. The equation Ax+By=O(C=D=O) represents 
a plane passing through the axis OZ. 

IV. The equation Ax+D=O (B=C=O) Is a plane 
parallel to the plane YOZ. 

V. The equations of the coordinate planes: x = 0, y = 0, 
Z=O. 

4°. The intercept form of the equation of a plane: 

~+L+~=l. a b c (3) 

450. Construct the planes: (I) 5x-2y+3z-10=0; 
(2) 3x+2y-z=0; (3) 3x+2z=6; (4) 2z-7=0. 

451. Construct the plane 2x + 3y+ 6z-I2 = 0 and find 
the angles formed by the normal to the plane and the 
coordinate axes. 

452. Given the points M 1 (0, -1, 3) and M 2 (I, 3, 5). 
Write the equation of a plane which passes through the 

point M 1 and is perpendicular to the vector N= M 1M2 • 

453. Write the equation of a plane which passes through 
the point M (a, a, 0) and is perpendicular to the vee-

--+ 
tor OM. Construct this plane. 

454. Write the equation of the locus of points equidi-

stant from the points A (a, - ; , a) and B ( 0, ; , 0 ). 

455. Write the equation of a plane which is parade! 
to the axis OX and passes through the points M 1 (0, I, 3) 
and M 2 (2, 4, 5) and construct this plane. 

456. Write the equation of a plane passing through the 
axis OX and point M 1 (0, -2, 3). Construct the plane. 

457. Write the equation of a plane passing through the 
axis OZ and point M 1 (2, -4, 3). Construct the plane. 

458. Write the equation of a plane which is parallel 
to the axis OY and cuts off intercepts a and c on the 
axes OX and OZ respectively. Construct the plane. 

459. Write the equation of a plane passing through the 
point M (2, -1, 3) ilnd intercepting equal line segments 
on the coordinate axes. 
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460. Write the equation of a plane passing through the 
point M 1 (-4, 0, 4) and intercepting the line segments 
11 -4 and b = 3 on the axes OX and OY respectively. 

461. Construct the following planes: (I) 2x+ y-z+6=0; 
(~) x-y-z=O; (3) y-2z+8=0; (4) 2x-5=0; 
(G) x+z= I; (6) y+z=O. 

462. Construct the plane 2x-2y+z-6=0 and find 
the angles formed by its normal and the coordinate axes. 

463. Through the point M (-I, 2, 3) a plane is drawn 
perpendicular to OM. Write its equation. 

464. Write the equation of a plane passing through the 
:1xis OY and through the point (4, 0, 3). Construct the 
plane. 

465. Write the equation of a plane which is parallel 
to the axis OZ and passes through the points M 1 (2, 2, 0) 
and M2 (4, 0, 0). Construct the plane. 

466. Write the equation of a plane which passes through 
the point M 1 (1, -3, 5) and intercepts on the axes OY 
and OZ line segments twice as long as one on the axis OX. 

:1.2. Basic Problems Involving the Equation of a Plane 

1°. An angle formed by two planes: 

± N·N1 + AA 1+BBt+CCt (I) 
cos cp = N N 1 = - N N 1 ' 

where N and N1 are the normal vectors to the planes 
Ax +By+Cz+D=O and A1x+B.y+C1z+ D1 =0. 

The condition of parallelism of planes: 
A 8 C (2) 

The condition of perpendicularity of planes: 

AA 1 +BB1 +CC1 =0. (3) 

2°. The distance from a point M 0 (x 0 , y 0 , Z 0) to a plane 
Ax+By+Cz+D=O 

(4) 



84 ... Ch. 8. Solid Analytic Qeometry 

3°. The equation of a pencil of all planes passing 
through the line of intersection of two given planes: 

a (Ax+By+Cz+D)+~ (A 1x+B1y+C1z+D1 ) =0. (5) 

We may put a= 1, thus eliminating the second of the 
given planes from pencil (5). 

467. Find the angle between the planes: 

(1) x-2y+2z-8=0 and x+z-6=0; 
(2) x+2z-6=0 and x+2y-4=0. 

468. Find the plane passing through a point (2, 2, -2) 
parallel to the plane x-2y-3z = 0. 

469. Write the equation of a plane passing through 
a point (-1, -1, 2) perpendicular to the planes x-2y+ 
+z-4=0 and x+2y-2z+4=0. 

470. Write the equation of a plane passing through 
a point (0, 0, a) perpendicular to the planes x-y-z=O 
and 2y=x. 

471. Write the equation of a plane passing through 
the points M 1 ( -1, -2, 0) and M 2 ( 1, 1, 2) perpendicular 
to the plane x+2y+2z-4=0. 

472. Write the equation of a plane passing through the· 
points M 1 (1, -1, 2), M 2 (2, 1, 2), and M 3 (1, 1, 4). 

473. Through the axis OZ draw a plane at an angle 
of 60° to the plane 2x+y-V5z=0. 

474. Find 'the distance from the point (5, 1, -1) to the 
plane x-2y-2z+4=0. 

475. Find the distance from the point (4, 3, 0) to 
a plane passing through the points M 1 (1, 3, 0), M 2 (4, -1, 2), 
and M 3 (3, 0, 1). 

476. Find the distance between the two parallel planes 

4x+3y-5z-8= 0 and 4x+3y-5z+ 12=0. 

Hint. Take an arbitrary point on one plane, say (2, 0, 0), 
and find its distance from the other plane. 

477. (1) Write the equations of planes parallel to the 
plane x-2y+2z-5=0 and 2 units distant from it. 
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(2) Write the equations of planes bisecting the dihedral 
angle formed by the planes 2x+2y=z and z=O, and 
l'onstruct both the given and the required planes. 

478. (I) Write the equation of a plane passing through 
the line of intersection of the planes 2x-y+3z-6=0, 
x+2y-z+3=0 and through the point (1, 2, 4). 

(2) Find two mutually perpendicular planes passing 
through the straight line of intersection of the planes 
x = y and z = 0 if one of the required planes passes through 
the point (0, 4, 2). Construct the straight line and the 
required planes. 

479. Find the point of intersection of the planes: 
:2x-y+3z-9=0; x+2y+2z-3=0; 3x+y-4z+6=0. 

480. Write the equation of a plane passing through 
a point (2, -1, I) perpendicular to the planes 3x+2y­
-z + 4 = 0 and x + y + z-3 = 0. Construct this plane. 

481. Write the equation of a plane that passes 
through the two points (0, -5, 0) and (0, 0, 2) perpen­
dicular to the plane x+ 5y+ 2z-10 = 0. Construct the 
plane. 

482. Find the angle between the plane passing through 
the points 0 (0, 0, 0), M 1 (a, -a, 0), and M 2 (a, a, a) and 
the plane XOY. 

483. Find the distance from the coordinate origin to 
the plane passing through the points M 1 (a, 0, 0), 
M 2 (0, a, 0), and M 3 (a, a, a). 

484. Write the equation of a plane passing through 
the axis OX at an angle of 60° to the plane y =X. 

485. Find the distance from a point (a, b, c) to the 
plane intercepting the line segments a, b, c on the coor­
dinate axes. 

486. Write the equations of planes parallel to the 
plane 2x+2y+z-8=0 and located at a distance d=4 
from it. 

487. Write the equation of a plane passing through the 
line of intersection of the planes 4x-y+3z-6=0 and 
x+5y-z+ 10=0 perpendicular to the plane 2x-y+ 
+5z-5=0. 
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3.3. Equations of a Straight Line in Space 

1°. Equations of a straight line passing through a point 
A (a, b, c) parallel to the vector P{m, n, p}. Let 
M (x, y, z) be an arbitrary point of the straight line 

----+ 
(Fig. 21), then AM 11 P and, by virtue of the condition 
of parallelism of vectors, we have 

x-a=y-b =z-c (l) 
m n p 

Equations (1) are called the canonical equations of the 
straight line. Vector P{m, n, p} is called the direction 
vector of that line. 

z 

0 

X 

M(x,y, Z}; 

A(a,b~ 
P(m,n,p} 

y 

Fig. 21 

2°. Parametric equations of a straight line are obtained 
by equating each of ratios (1) to the parameter t: 

x=mt+a, 1 
y=nt +b, 
Z=pf +c. 1 

(2) 

3o. Equations of a straight line passing through two 
points: 

x-x1 y-y1 z-z1 -- --=--

4°. The general equations of a straight line: 

Ax+By+Cz+D=O, \ 
A1x+B1y+C1z+D1 =0. J 

(3) 

(4) 
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5°. Equations of a straight line represented by its pro­
jections are obtained by eliminating first y and then x 
from general equations (4): 

x=mz+a, } 
y=>~~<nz +b. 

(5) 

Equations (5) can be written in the canonical form: 
x-a y-b z-0 
---;n = -n- = -,-

488. Find the traces of the straight lines 

f x=z+5 d (2) x-3 y-2 z-3 
(I) \ y = 4- 2z an ---r =-2-=-,-

on the planes XOY and XOZ, and construct the lines. 
Hint. Put in the equations (a) z = 0; (b) y = 0. 
489. Write the equation of the straight line 

1 x + 2y + 3z- I 3 = 0 . . . . 
·\ 3x+y+ 41 _ 14 =O (I) In proJectiOns; (2) tn the cano-

IJical form. Find the traces of the straight line on the 
coordinate planes; construct the line and its projections. 

490. Write the equations of the straight line passing 
through the point A (4, 3, 0) parallel to the vector 
P{-1, I, 1}. Find the trace of the straight line on the 
plane YOZ and construct this line. 

491. Construct the straight line x=4, y=3 and find 
its direction vector. 

492. Construct the straight lines 

(1) { y=3 
z=2, 

(3) { X =4 
Z=y 

and determine their direction vectors. 
493. Write the equations of the straight line passing 

through the points A (-1, 2, 3) and B (2, 6, -2), and 
find its direction cosines. 

494. Construct the straight line passing through the 
points A (2, -1, 3) and B (2, 3, 3), and write its equa­
tions. 
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495. Write the equations of the path of a point M (x, y, z) 
which starts from the point A (4, -3, I) and moves with 
velocity 'V {2, 3, I}. 

496. Write the parametric equations of the straight line 
(I) passing through the point (-2, I, -I) parallel to 

the vector P {I, -2, 3}; 
(2) passing through the points A (3, -I, 4) and B (I, I, 2). 
497. Write the equations of a straight line passing through 

the point (a, b, c) (I) parallel to the axis OZ; (2) perpen­
dicular to the axis OZ. 

498. Find the angle between the straight line x = 2z- I, 
y = -2z + 1 and the stnlight line passing through the coor­
dinate origin and the point (I, -1, -I). 

499. Find the angle between the straight lines: 

{ x-y+z-4=0 { x+y+z-4=0 
and 

2x+y-2z+5=0 2x+3y-z-6=0. 

Hint. The direction vector of each line can be deter­
mined as a vector product of the normal vectors of the 
planes (P=NXN1). 

500. Show that the straight line ~ = ~ = T is perpen­

dicular to the straight line x = z +I, y = I-z. 
501. Write the equations of a straight line passing 

through the point (-4, 3, 0) parallel to the straight line 

{ x-2y+z=4 
2x+y-z=0. 

502. Write the equations of the perpendicular dropped 
from the point (2, -3, 4) onto the axis OZ. 

Hint. The required straight line also passes through 
the point (0, 0, 4). 

503. Find the distance between the point M (2, -1, 3) 

and the straight line xt 1 = Yt 2 = z 5 1 

Hint. A ( -1, -2, I) is a point belonging to the straight 
line; P {3. 4, 5} is the direction vector of the straight 
line. Then 

-->- -->-

d AM . AM]PXAMI 
= sma= P·AM -

IPXAMI 
}J 
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504. Find the distance between the parallel straight lines 

x-2_y+I_z+3 and x-I_y-I_z+I 
1-2-2 1-2-2' 

505. Find the traces of the straight line x 1 
4 = Y 2 

2 = 

'~2 on the coordinate planes and construct the line. 

506. Write the equations of the straight line 
J 2x+y+8z-16=0 (I). . t' (2). th 1 x- 2y-z+ 2= 0 tn proJec 10ns; tn e ca-

nonical form. Find its traces on the coordinate planes, 
construct the straight line and its projections. 

507. Write the equations of the straight line passing 
through the point A (0, -4, 0) parallel to the vector 
P {I, 2, 3}, find the trace of the straight line on the plane 
XOZ and construct this line. 

508. Construct the straight line x = 3, z = 5 and find 
its direction vector. 

509. Find the direction vector of the straight line 
x -1- y- z = 0, y = x and angles formed by this line and 
the coordinate axes (see the hint to Problem 499). 

510. Write the equations of the perpendicular dropped 
!'rom the point (2, -3, 4) onto the axis OY. 

511. Find the angle between the straight lines: 

{ 2x-y-7=0 and { 3x-2y+8=0 
2x-z+ 5=0 z=3x. 

512. Write the equations of a straight line passing 
through the point (-1, 2, -2) parallel to the straight 
line x-y=2, y=2z+1. 

513. Find the distance from the point M (3, 0, 4) to the 
straight line y=2x+1, z=2x (see Problem 503). 

3.4. A Straight Line and a Plane 

1°. The angle between the straight line ~=y-b = 
m n 

= z-c and the plane Ax+By+Cz+D=O: 
p 

. e-~- IAm+Bn+Cpl 
sm - NP - NP (l) 
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The condition of their parallelism (N j_ P): 
Am+Bn+Cp-=0. (2) 

The condition of their perpendicularity (Nil P): 
A B C 
-=z-:::c:::::-. 
m n p 

(3) 

2°. The point of intersection of a straight line and a 
plane. Write the parametric equations of the straight line· 
x=mt+a, y=nt+b, z=pt+c, and in the equation of 
the plane Ax+By+Cz+D=O replace x, y, z by their 
expressions in terms of t. Find f 0 , and then x0 , y 0 , z0 

which are the coordinates of the point of intersection. 
3°. The condition for two straight lines lying in a single 

plane: 

n p =0. 

Pr 

(4) 

514. Find the angle between the straight line y=3x-1, 
2z=-3x+2 and the plane 2x+y+z-4=0. 

515. Show that (l) the straight line xt 1 = Y+/ = z 3 
3 

Is parallel to the plane 2x+ y-z = 0, (2) the straight 

line xt 1 =Y+/ = zt3 lies in this plane. 

516. Write the equation of a plane passing through the 
point (-1, 2, -3) perpendicular to the straight line 
x=2, y-z=l. 

517. Write the equation of a plane passing through the 
x-2 y-3 z+l h . straight line - 1-=-2-=-3- and t e pomt (3, 4, 0). 

518. Write the equation of a plane passing through the 

straight line x 1 
1 = Yt 1 = zt 2 perpendicular to the plane 

2x+3y-z =4. 
519. Write the equation of a plane passing through two 

x-3 __ _ Y __ z-1 and x+ I __ y-1 __ parallel straight lines 2 1 2 2 1 
z 

=2· 
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520. Write the equations of a straight line passing through 
Ill(' coordinate origin and forming equal angles with the 
planes 4y=3x, y=O, and z=O. Find these angles. 

521. Find the point of intersection of the straight line 
'21-l, y=t+2. z= 1-t and the plane 3x-2y+z=3. 

522. Find the point of intersection of the straight line 

;, , _y~I =z!l and the plane x+2y+3z-29=0. 

1523. Find the projection of the point (3, 1, -1) on the 
pla11e x+2y+3z-30=0. 

524. Find the projection of the point (2, 3, 4) on the 
.,(raight line x=y=z. 

525. Find the shortest distance between the non-paral­
l1·l straight lines: 

(I) x-a=y-b=z-c and x-a1 =y-b1 =z-c1 ; 

m n p m1 n1 P1 

('2) x+I=JL=z-I and ~=y+l=z-2 
I I 2 I 3 4 . 

/lint. Assuming that in the general case the straight 
I i Ill'S are skew, let us draw parallel planes in which the lines 
nn· contained. From the points A (a, b, c) and A1 (a1, b1, c1) 

----+- --+ --+ ---+ 
draw the vectors AB=A 1B1 =P{m, n, p} and AC=A 1C1 = 
. P 1 {m1 , n10 p1}. The altitude ot the prism ABCA 1B1C1 is 

llil'n the required distance. 
526. Show that the straight lines 

{ X=Z-2 d x-2 y-4 z-2 an --=--=-
y=2z+ 1 3 I I 

Intersect, and write the equation of the plane in which 
t liev are contained. 

527. Write the equations of a perpendicular dropped 
from the point (2, l, 0) onto the straight line x = 3z-1, 
.11 =- 2z. 

528. Construct the plane x + y-z = 0 and the straight 
line passing through the points A (0, 0, 4) and B (2, 2, 0). 
Find the point of intersection of the line and the plane 
and the angle between them. 
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529. Construct the plane y=z, rhe straight line 

{ ;-;-z+I and find (I) the point at which they in­

tersect; (2) the angle between them. 
530. Find the projection of the point (3., I, -I) on the 

plane 3x+y+z-20=0. 
531. Find the projection of the point (I, 2, 8) on the 

straight line x-;-i = Yi = z. 

532. Write the equation of a plane passing through the 
x-i y+ I z-2 d x y+- I parallel straight lines - 1-=-=2=-3- an T= '2 = 

z-1 
=-3-. 

. x+3 y+i z+i 533. Show that the stra1ght lines - 1-=-2-=-1-

and { ; : :~ 2 4 intersect; find the point of intersection. 

534. Write the equation of the perpendicular dropped 

from the point (I, 0, -1) onto the straight line x;l = 
y-1 z 

= -2-==3· 
535. Find the shortes distance between i he straight 

lines x=-2y=z and x=y=2. 

8.5. Spherical and Cylindrical Surfaces 

1°. The equation of a spherical surface of radius R with 
C (a, b, c) as centre: 

(1) 

2°. The equation F (x, y) = 0, which does not have the 
z-coordinate, defines a cylindrical surface whose generatrix 
is parallel to the axis OZ. Analogously, each of the equa­
tions F (y, z) = 0 and F (x, z) = 0 determines a cylindrical 
surface whose generatrix is parallel to OX and OY res­
pectively. 

3°. The equation of a cylindrical surface with the di­
rectrix F (x, y) = 0, z = 0 and the generatrix parallel to the 
vector P {m, n, p}. The equation of an arbitrary generat-
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rix will be x-xo =Y-!Io =_!_, where (x0 , y0 , 0) is a point 
m n p 

belonging to the directrix. 
Determining x0 and Yo and substituting them into the 

l'quatlon of the directrix, we get the equation of a cy­
lindrical surface: 

(2) 

536. Find the centre and he radius of the sphere 
(I) x2 +y2 +z2-3x+ 5y-4z = 0; (2) x2 + y2 + z2 = 2az and 
construct the second sphere. 

537. Write the equation of a spherical surface inscribed 
In a tetrahedron generated by the planes 

3x-2y+6z-18=0, x=O, y=O, z=O. 

538. Write the equation of the locus of points situated 
twice as near to the point A (2, 0, 0) as to the point 
B (-4, 0, 0). 

539. Write the equation of a sphere passing through the 

circle and through the point (a, a, a). { x2 + y2 + z2 = a2 

x+y+z=a 
Hint. The required equation must be of the form: 

x2+y2 +z2-a2 +f.. (x+y+z-a) =0. 

540. Construct In the left-handed system of coordinates 
the following surfaces: 

(I) y2 +z2 =4; (2) y2 =ax; (3) xz=4; (4) x2 +y2 =ax. 

541. Write the equation of the locus of points equidistant 
from the straight line x =a, y = 0 and the plane YOZ. 
Construct this surface. 

542. Write the equations of three . cylindrical surfaces 
circumscribed about the sphere x2 + y2 + z2 -2ax = 0 whose 
generatrices are parallel to (1) the axis OX; (2) the axis OY; 
(3) the axis OZ respectively. 

543. Draw the curve of Viviani 

{ x2 + y2 + z2 = 16 

x2 +y2 =4x 
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in the first octant of a left-handed coordinate system, 
constructing the points at x = 0; 2; and 4. Show that the 
projection of the curve on the plane XOZ is a parabola. 

544. Find the centre and the radius of the circle 

{ x2 + y2 + z2 = I Oy 

x+2y-+2z-19=0. 

Hint. The centre of a circle is the projection of the 
centre of a sphere onto a plane (see Problem 530). 

545. Write the equation of a cylindrical surface whose 
directrix is y 2 = 4x, z = 0 and the generatrix is parallel 
to the vector P {1, 2, 3 }. 

546. Construct the surface (x + y) 2 + az = a2 in the first 
octant using the sections by the planes x = 0, y = 0, z = 0, 
z = h ~a, and show that this is a cylindrical surface whose 
generatrix is parallel to the straight line x + y =a, z = 0. 

547. The sphere x2 +y2 +z2 =4z is illuminated by rays 
parallel to the straight line x = 0, y = z. Find the shape 
of the shadow cast on the plane XOY. 

Hint. Write the equation of the cylindrical surface gene­
rated by the rays tangent to the sphere. Its directrix will 
be the line cut from the sphere by a plane passing through 
the centre of the sphere perpendicular to the rays. 

548. Write the equation of a plane passing through the 
centre C of the surface x2 +Y2 +z2-2x+y-3z=0 per­
pendicular to the straight line OC. 

549. Write the equation of the locus of points situated 
twice as far from the coordinate origin as from the 
point (0, -3, 0). 

550. Find the projection onto the plane z = 0 of the 
section of a spherical surface x2 +y2 +z2 =4(x-2y-2z) 
by a plane passing through the centre of the sphere per­
pendicular to the straight line x = 0, y + z = 0. 

551. Construct the following surfaces in the left-handed 
coordinate system: 

(I) z=4-x2 ; (2) y2 +z2 =4z; (3) y 2 =x3 • 
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552. Construct the line of intersection of the cylinders 
.1" -1- z2 = a 2 and x2 + y 2 = a 2 in the first octant of a left­
handed coordinate system. 

Hint. In the planes XOZ and XOY construct quarters 
of the director circles, divide them approximately into 
!'qual parts (for instance, into 4), and through the points 
of division draw the generatrices of the cylinders to obtain 
the points of their intersection (see Fig. 64 on page 372). 

553. Write the equation of a cylindrical surface whose 
gcneratrix is parallel to the vector P{l, 1, 1} and the 
directrix is x2 + y2 = 4x, z = 0. 

554. Construct a solid bounded by the surfaces y2 = x, 
z = 0, z = 4, x = 4, and write the equations of the diagonals 
of the face contained in the plane x = 4. 

3.6. Conical Surfaces and Surfaces of Revolution 

! 0 • Conical surfaces. Let a conical surface have the vertex 
at the coordinate origin, and the directrix F(x, y) = 0 
on the plane z =h. Then the equation of the generatrix 
will be!..=.!!_= hz , where (x0 , y0 , h) is a point belonging 

Xo Yo 
to the directrix. Determining x0 and Yo and substituting 
them into the equation F (x, y) = 0, we get the equation 
of a conical surface with the vertex at the coordinate origin: 

F (xh yh) =O. 
z ' z (I) 

If the vertex of a cone is situated at a point (a, b, c), 
then equation (1) takes the form 

F fix-a) (h-e)+ a 
L z-c ' 

(y-b)(h-c)+b] =O. 
z-c (2) 

Equation (I) is homogeneous with respect to x, y, z, and 
equation (2) is homogeneous with respect to (x-a), (y-b), 
and (z-c). Thus, the equation of a conical surface is re­
cognized by its homogeneity. 

2°. Surfaces of revolution. 
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Equation of the curve I Axis of I revolution 
Equation of the surface 

of revolution 

{ F (x, y)=O ox F (x, J!y2 +z2)=0 
z =0 OY F ( Vx2+z2, y) =0 

{ F (x, z)=O OX F(x, YY2+z2)=0 
y =0 oz F ( Yx2 +y2 , z) =0 

{ F(y, z)=O OY F(y, Yx2 +z2)=0 
X =0 oz F ( Yx2 +y2 , z) =0 

555. Write the equation of a conical surface with the 
vertex at the coordinate origin and the directrix x2 +y2 =a2 , 

z =c. Construct the surface. 
556. Write the equation of a conical surface with the 

vertex at the point A (0, -a, 0) and the directrix x2 = 2py, 
z =h. Construct the surf ace. 

557. Determine the vertex of the cone x2+(y-a) 2-z2 =0, 
its directrix in the plane z =a, and construct the cone. 

558. Determine the vertex of the cone x2 = 2yz, its di­
rectrix in the plane z = h, and construct the cone. 

559. Analyse the surface of the conoid* or wedge 
(a2-x2)y2=h2z2 using the sections by the planes z=O, 
y = h, x = + c (c ~a) and construct the conoid in the do­
main z~O. 

560. Write the equation of the surface generated by 
revolving the curve z=x2 , y=O (a) about the axis OZ; 
(b) about the axis OX. Construct both surfaces. 

561. Write the equation of the surface generated by 
revolving about the axis OZ (1) the curve z=e-x2

, y=O; 

(2) the curve z = ~, y = 0. Construct both surfaces (in the 
X 

left-handed coordinate system). 

* Conoid is a surface generated by a moving straight line parallel 
to a given plane .and intersecting a given curve and a given straight line. 
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562. Write the equation of a conical surface with the 

vertex 0(0, 0, 0), the directrix , and { x
2 + (y-6) 2 +z2 = 25 

y=3 
draw the surface. 

563. Write the equation of a conical surface with the 

vertex C (0, -a, 0), the directrix , and { xz + yz + z2 = az 

y+z=a 
draw the surface. 

564. Write the equation of a surface generated by re­
volving the straight line z=y, x=O (a) about the axis OY; 
(b) about the axis OZ, and draw both surfaces. 

565. Show that the section of the cone z2 = xy by the 
plane x + y = 2a is an ellipse, and find its semi axes. 

3.7. The Ellipsoid, Hyperboloids, and Paraboloids 

1°. Canonical equations. Besides cylindrical surfaces, 
there are six basic types of second-order surfaces deter­
mined by the following canonical (standard) equations: 

. . xz yz z2 
I. Elltpsotd 2 +-b2 +2 = 1. a c 

-+---=I (of one sheet), 
{

xz y2 z' 
• a2 b2 cz 

II. Hyperbolotds: 2 2 2 

~z + ~2 - ~ =-I (of two sheets). 
x2 yz z2 

III. Quadric conical surface 2+-b2 -2= 0. 
a c 

IV. Paraboloids (pq > 0): ~ q2 

- { x2 +Jt = 2z (elliptic), 

!__fL= 2z (hyperbolic). 
p q 

2°. Rectilinear generatrices. Two rectilinear generatrices 
pass through each point of the hyperboloid of one sheet: 

{ 
a ( ~ + ; ) = ~ (I + ~ ) and { y ( : + ; ) = 6 (I- ~ ) 
~(~-;)=a(I-~) 6(~-;)=y(I+t)· 

4-1895 
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The same in the hyperbolic paraboloid (for p > 0 and 
q > 0): 

( a ( ~ + ~q ) = 2~ and f I' ( V P + V q ) = {)z 

1 ~(-x __ Y )=az I 6(-x __ Y )=2y. 
\ JIP yq \ yp yq 

3°. Circular sections. All the surfaces having elliptic 
sections also have circular sections. The greatest circular 

x2 y2 z2 
sections of the ellipsoid 2 +-bs + 2 = I (for a> b >c) a c 
are found on the sphere x2 +y2 +z2 =b2 • The circular sec-

tions of an elliptical paraboloid x2 +.!C.= 2z passing p q 
through the vertex are found on the sphere x2 + y2 + z2 = 
= 2pz(p > q). 

566. Write the equation of the surface generated by 
x2 z2 

revolving the ellipse -;;a+ 2 = 1, y = 0 about the axis OZ. a c 
x2 y2 z2 

567. Construct the surf ace 9 + -f+ 25 = 1 and find the 

areas of its sections by the plane (a) z =3; (b) y = 1. 
568. Write the equation of a surface generated by re-

x2 z2 
volving the curve 2 - 2 = 1, y =0 (a) about the axis OZ; a c 
(b) about the axis OX. Construct both surfaces (in the left­
handed system of coordinates). 

569. Construct the surfaces: 

(I) x2 + y2-z2 = 4; (2) x2 -y2 + z2 + 4 = 0. 

x2 y2 z2 
570. Construct the hyperboloid 16 +4 - 36 = 1 and find 

its generatrices passing through the point (4, 1, -3). 
571. A thread model of a cylinder is twisted by turning 

the upper base circle through an angle a (Fig. 22). De­
termine the equation of the ruled surface thus obtained 
if its base circles lie in the planes z = +c, their centres 
on the axis OZ, and their radii equal 2a. Consider parti­
cular cases at a=90°, 120°, 180°. 
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Hint. Point M (x, y, z) divides the distance between 
the points A(2acost, 2asint, -c), B[2acos(t-j-cx), 
2asin(t+cx), c] in the ratio AM:MB=(c+z):(c-z). 

Fig. 22 

572. Write the equation of the surface generated by re­
volving the parabola az=x2 , y=O about the axis OZ. 
Construct the surface using the sections by the planes 
l=a, x=O, y=O. 

573. Construct the surfaces: 

(I) 2z = x2 + ~ ; (2) z = c ( 1-::- ~:) . 

574. Construct (in the left-handed system of coordinates) 
the surface x2-y2 =4z and find Its generatrices passing 
ll1rough the point (3, I, 2). 

575. Write the equation of the locus of points the ratio 
of the distances of each of which from the plane x = 2a 
to the distances from the point F (a, 0, 0) is equal to V2. 
Construct the surface. 

576. Write the equation of the locus of points the ratio 
of the distances of each of which from the point F (0, 0, 2a) 

4. 
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to the distances from the plane z =a is equal to V2. 
Construct the surface. 

577. Write the equation of the locus of points equidi­
stant from the point F (-a, 0, 0) and from the plane 
x =a. Construct the surface. 

578. Find the greatest circular sections of the ellipsoid 
x2 y2 z2 
169+25+-g= I. 

579. Determine the circular sections of the elliptic 

paraboloid~~ +Y; = z passing through the coordinate origin. 

580. Name and construct each of the following surfaces: 

(1) x2 + y2 + z2 == 2az; (6) x' = 2az; 
(2) x2 + y2 = 2az; (7) x2 = 2yz; 
(3) x2 +z2 =2az; (8) z=2+x2 +y2 ; 

(4) x2-y2 =2az; (9) (z-a) 2 =xy; 
(5) x2-y2 =z2 ; (10) (z-2x) 2 +4(z-2x)=y2 • 

581. Write the equations of the rectilinear generatrices 
of the hyperboloid x2-y2 + z2 = 4, the genera trices passing 
through the point (2, 4, 4). 

582. Write the equations of the locus of points equi-

distant from the point F ( 0, 0, ~) and from the plane 
a z =- 2 . Construct the surface. 

583. Write the equation of the locus of points equidis­

tant from the point F ( 0, 0, ~) and from the plane z = ~. 
Construct the surface. 

584. Find the least circular sections of the hyperboloid 

x2 y2 3z2 
25+9-25= I. 

585. Write the equations of the rectilinear generatrices 

of tht> hyperbolic paraboloid ~;-Y; = 2z, the genera trices 

passing through the point (4, 3, 0). 



HIGHER ALGEBRA 

4.1. Determinants 

1°. Determinants. The second-order determinant is a num 

ber denoted by the symbol I:: ~~ / and given by the 

t·quality 

(1) 

The third-order determinant is a number denoted by 

a1 b1 C1 1 
the symbol a2 b2 C2 and determined by the equality 

aa ba .Ca 

(2) 

The second-order determinants entering the right-hand 
member of equality (2) are obtained from the given third­
order determinant by deleting one row and one column 
and are called its minors. Formula (2) presents an expan­
~ion of a third-order determinant in terms of the elements 
of the first row. 

2°. Properties of determinants. 
I. The magnitude of a determinant does not change if 

each of the rows is substituted by a column of the same 
position number. 
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I I. If any two rows or any two columns are inter­
changed, the absolute value of a determinant remains 
unaltered, while the sign is reversed. 

It follows from I and II, that a determinant can be 
expanded in terms of any row, since the latter can chan­
ge its place to occupy the first row. 

III. A determinant with two identical rows (columns) 
is equal to zero. 

IV. A common factor of all the elements of one row 
(or of one column) may be taken outside the sign of the 
determinant. 

V. If to all the elements of some column we add terms 
proportional to the corresponding elements of another 
column, then the new determinant is equal to the old 
one. The same holds true for rows. For instance: 

a 1 b1 c1 

a, b, c, 
aa ba Ca 

a1 +mc1 b1 +nc1 c1 

a2 + mc2 b, + nc2 C2 

a8 +mc8 b8 +nc3 C8 

Taking advantage of this property, we can get two zeros 
in any column (or row) of a third-order determinant. The 
latter is then evaluated in simpler fashion. 

3°. The area of a triangle with the vertices A (x1 , y 1), 

B(x,, Y2). C(xa, Ya): 
XI Yt 

I 
S=±2 x2 y2 (3) 

X a Ya 

Evaluate the determinants: 

586. 13 -2, 4 6 . 587. 1: -1~1- 588.,_: -21 5 . 

589. Iva -II· 
a Va 

590. I sina cosa t 
-cosa sina · 

I sin2 a cos2 a/ 
591. ~ ~ . sin2 ..., cos2 ..., 
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Evaluate the determinants, expanding them in terms 
of the elements of the first column: 

2 3 4 a 1 a 
592. 5 -2 1 . 593. -1 a 1 

1 2 3 a -1 a 

Evaluate the determinants, expanding them in terms 
of the row containing the maximum number of zeros: 

1 b I -X 1 X 

594. 0 b 0 . 595. 0 -X -1 . 
b 0 -b X 1 -X 

Simplify and evaluate the determinants: 

596. 

598. 

a -a a 1 2 5 
a a -a 597. 
a -a -a 
12 6 -4 
6 4 4 . 599. 
3 2 8 

1+cosa l'+sina 

3 
-3 

x2 X 

y2 y 
z2 z 

-4 
12 

1 

7 
-15 

600. 1 -sin a 1 +cos·a 
1 1 

a; 
2cos2 2 sin a 

601. 2 cos2 1!. sin ~ 2 
1 0 

602. Find the area of a triangle with the vertices 

A (2, 3), B (4, -1) and C (6, 5). 

603. Do the following points belong to one straight 
line: 

A(1, 3), B(2, 4) and C(3, 5)? 

604. With the aid of a third-order determinant write 
the equation of the straight line passing through the 



104 Ch. 4. Higher Algebra 

points 

(1) (x~> y1) and (x2 , y2); (2) (2, 3) and (-1, 5). 

Simplify and evaluate the determinants: 

2 -3 m+a m-a a 
605. 6 -6 2 . 606. n+a 2n-a a 

2 -1 2 a -a a 
ax a2 + x2 sin 3a cos 3a 

607. ay a2 + y2 608. sin 2a cos 2a 
az a2 +z2 sin a cos ex 

Hint. In Problem 607 take a outside the sign of the 
determinant, then subtract the third row from the first 
and the second ones and take (x-z) and (y-z) outside 
the sign of the determinant. 

609. Prove that 

xl+x2 Y1+Y2 
-2- -2-

=_!_I X1 yll· X1-X2 YI-Y2 
-2- -2- 2 x2 Ys 

xl Yt 

610. Find x from the equations: 

x2 4 9 x2 3 2 
(1) X 2 3 =0; (2) X -1 1 =0 

1 1 1 0 1 4 

and check the solution by substituting the roots into the 
determinant. 

4.2. Systems of First-Degree Equations 

1°. A system of two equations of the first degree in two 
unknowns 

a1x+b1y=c1 , } 

a2x+bzY=C2 

(1) 
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has the solution 

X= ~~~ ~:1 
I a1 b I ' 
a2 b; 

provided its determinant !1 =I a1 b1 I =F 0. 
a2 b2 

(2) 

2°. A system of two homogeneous equations of the 
first degree in three unknowns 

a1x+b,y+c,z _ 0, } 
a2x+b2y+c2z-O (3) 

has solutions determined by the formulas 

lbt ct I I at ct I X=k ' Y=-k ' b2 c2 a2 c2 
• 

where k is an arbitrary number. 
3°. A system of three homogeneous 

first degree in three unknowns 

a1x+b 1y+c1z=0, } 
a2x+b2y+c2z= 0, 
a3x+bay+c3z = 0 

equations of the 

(5) 

has non-zero solutions if the determinant of the system 

at bt ct 
ll = a2 b2 c2 = 0, and conversely. 

aa ba Ca 

4°. A system of three equations of the first degree ir'l 
two unknowns 

a1x+b1y=cu} 
agX + b2y = C2 , 

GaX +baY =Ca 
at bl ct 

(6) 

is compatible, when !1 = G2 b2 C2 = 0 and it contains no 
Ga ba Ca 

pairwise contradictory equations. 
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5°. A system of three equations of the first degree in 
three unknowns 

a1x+b1y+c1z _ d1 , } 

a2x + b2y + c2z- d2 , 

a8x +b3y+c8z =d3 

has the following unique solution: 

where 

dl bl 
!:!. = X d2 b2 

ds ba 

provided the 

cl a I 
c2 

' !:!. = y a2 
Ca a a 

dl 
d2 
da 

~z 
Z=-;r-, 

cl 
c2 

' !:!,.z = 
Ca 

determinant of the system 

at bl ct 
A= a2 b2 c2 =f=O 

a a ba Ca 

(7) 

(8) 

a] bl dl 
a2 b2 d2 ' 
as ba da 

6°. Incompatible and indeterminate systems. Let us 
denote the left-hand members of equations (7) by X 17 

X 2 , and X 8 • Let the determinant of system (7) !:!. = 0. 
In this case two suppositions are possible. 

I. The elements of two rows (columns) of the determi-

nant A are proportional, for instance, a2 = bb 2 = 5._ = m. 
at 1 c, 

then X 2=mX10 and 
(1) if d2 =f= md1 , then the system is incompatible (the first 

two equations are contradictory); 
(2) if d2 = md1 , then the system is indeterminate (if the 

first and the third equations are not contradictory). 
I I. The determinant A has no rows (columns) with 

proportional elements. Then there exist non-zero num­
bers m and n such that mX1+nX2 =X8 , and 

(I) if md1 + nd1 =f= d8 , then the system is incompatible; 
(2) if md1 + nd1 = d8 , then the system is indeterminate. 
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The numbers m and n can be chosen accordingly, or 
found from the equations a1m-!-a2n=a3 ; b1m+b2n=b3 ; 

c1m + C2n = C3 • 

Using determinants, 
equations: 

solve the following systems of 

{ 3x+2y=7 
61 1. 4 5 0 X- y=4 . 

{ ax-3y= I 
612. 2 2 ax- y= . 

{ 5x+2y=4 
613. 7 4 8 x+ y=. 

{ mx-ny=(m-n)2 
614· 2x-y =n(for m=¥=2n). 

Solve the systems of equations: 

{ 
2x-3y+ z-2=0 

615. x+5y-4z+5=0 
4x+ y-3z+4=0. 

{ 2x-5y+2z=0 
617. 4 3 0 x+ y- z= . 

{ 
3x+3y- z=O 

619. 2x- y+3z =0 
x+ y- z=O. 

{ 
x+2y+3z=4 

621. 2x+ y- z =3 
3x+3y+2z = 7. 

• 

616. x-2y+4z=3 { 
2x-4y+3z= l 

3x- y+5z=2. 

{ 
3x+2y- z=O 

618. 2x- y+3z=0 
x+3y-4z=0. 

{ 
x+2y+3z=4 

620. 2x+4y+6z=3 
3x+ y- z= l. 

{ 
x+2y+3z=4 

622. 2x+ y- z=3 
3x+3y+2z= 10. 

623. Do the following 
point? 

straight lines intersect at one 

{ 
2x-3y=6 

(I) 3x+ y=9 and 
x+4y=3 

Construct these I ines. 

{ 
2x-3y=6 

(2) x+2y=4 
x-5y=5. 



108 Ch. 4. Higher Algebra 

Solve the systems of equations: 

{ 
2x- y+ z= 2 { x+2y+3z=5 

624. 3x+2y+2z=-2 625. 2x- y- z= 1 
x-2y+ Z= 1 x+3y+4z=6. 

I 3x+2 +2z=0 { 3x- y+2z=0 
626. 1 Sx+/+ 3z=O. 627. 2x+3y-5z=0 

~ y x+ y+ z=O. 

{ 
2x- y+3z=0 { x-2y+z=4 

628. x+2y-5z=0 629. 2x+3y-z=3 
3x+ y-2z=0. 4x- y+z= 11. 

4.3, Complex Numbers 

1°. Definitions. The complex number is an expression of 
the form x + yi, where x and y are real numbers and i 
is a certain symbol, the following conditions being ob­
served: 

(1) x+Oi=x, O+yi=yi and li=i, (-1)i=-i; 
(2) x+yi=x1 +y1i if and only if x=x1 and y=y1; 

(3) (x+yi)+(x1 +y1i)=(x+x1 )+(Y+Yt)i; 
(4) (x+ yi) (x1 + y1i) = (xx 1-yy1 )+ (xy 1 +x1y) i. 
From conditions ( 1) and ( 4) the powers of the number i 

are obtained: 

i2=-1, ia=-i, i'= 1, i~=l, etc. (1) 

A complex number x + yi, in which y =1= 0, is called an 
imaginary number, where i is the so-called imaginary unit. 

2°. Operations on complex numbers. Addition, subtrac­
tion, multiplication, and involution of complex numbers 
may be performed according to the rules for these opera­
tions on polynomials, the powers of i being replaced in 
accordance with formulas (1). 

Division and evolution of complex numbers are defined 
as inverse operations. 

3°. The trigonometric form of a complex number. A comp­
lex number x+yi is determined by a pair of real numbers 
(x, y), and therefore is depicted by a point M (x, y) in a 

---+ 
plane or by its radius vector r =OM (see Fig. 12 on p. 57). 
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The length of this vector r = V x2 + y 2 is called the mo­
dulus of the complex number, and the angle <p between 
the vector and the axis OX is called the argument of the 
complex number. Since x=rcoscp, y=rsin<p, we have 

x+yi=r(coscp+isin<p). (2) 

4°. Operations on complex numbers expressed in the 
trigonometric form: 

r =(cos cp+ i sin cp) r1 (cos <p 1 + i sin <p1 ) = 
= (rr 1 ) [cos (cp+cp1 ) +i sin (cp+cp1)], (3) 

r (cos c:p + i sin c:p) r [ . • ] 
rdcosc:p1 +isinc:pt) f7 cos(cp-<pt)+tstn(<p-<pl), (4) 

[ r (cos cp + i sin cp) Jn = rn (cos ncp + i sin ncp), (5) 

Vf r (cos cp+ i sin <p) = Vfr (cos c:p+:kn + i sin c:p+n2kn), (6) 

where k=O, I, 2, ... , (n-I). 
Formula (5) is called de Moivre's formula. 
5°. Euler's formula: eicp =coscp+isincp (7) 
6°. Logarithm of a complex number: 

Inz=lnr+icp0 +i2kn, (8) 

where cp0 is the value of the argument <p satisfying the 
inequalities - n < <p0 ~ n. The expression In r+ icp0 is 
called the principal branch of the logarithm. 

630. Perform the following operations: (I) (2 + 3i) (3 -2i); 

(2) (a+bi)(a-bi); (3) (3-2i)2 ; (4) (l+i)3 ; (5) :+~; 
2i 

(6) l+i' 
631. Solve the equations: (I) x2 +25=0; (2) x 2 -2x + 

+ 5=0; (3) x2 +4x+ I3=0, and verify the solutions by 
substituting the roots into the corresponding equation. 

Represent the following complex numbers as vectors, 
determine their moduli and arguments, and write them 
in the trigonometric form: 

632. (I) Z=3; (2) Z=-2; (3) Z=3i; (4) Z=-2i. 
633. (I) Z=2-2i; (2) Z=l+iV3; (3) Z=-V3-i. 
634. (I) - V2 + i V2; (2) sin a+ i (I-cosa). 



110 Ch. 4. Higher Algebra 

635. Write the numbers given in Problems 632 to 634 
in the form re1fP (for - n < <p ~ n). 

636. Construct the domains of points z, given the fol-
lowing conditions: 

< 1) I z I < 3; (2) 1 z I< 2 and ~ < <p < n; 

(3) 2 < I z / < 4 and - n < <p <- ~ . 
637. Show that I z1 -Z1 / is the distance between the 

points Z1 and Z9 • 

638. Given the point z0 = -2 + 3i. Construct the domain 
of points z for which I z-z0 I< 1. 

639. The number conjugate with z is denoted by z. Prove 
thatz.z=lz/ 2 • 

640. Compute, using de Moivre's formula: 

(1) (1 + i)10 ; (2) (1-i J/3)8 ; (3) (-1 + i)6; 

(4) (I+cos~+isin~)'; (5) (V3+i)3 • 

641. Express sin 3a and cos 3a in terms of functions of 
the angle a, using the identity (cos a+ i sin a}8 =cos 3a + 
+i sin3a. 

642. Find all the values of z = Vf and represent them 
by radius vectors for which purpose construct a circle of 
radius equal to I. 

643. Find (1) Vf; (2) Vi; (3) V-I; (4) V -2+2i. 

644. Find (I) Vi; 2) V-I+i; (3) V -B+BiV3. 
645. Solve the binomial equations: (I) x3 +8=0; (2) 

x4 + 4 =0. 
646. Find the principal branch of the logarithm 

(I) In (-2); (2) In (I+ i); (3) ln i; (4) ln (x+yi); (5) ln (2-2i). 
647. Find the sum sinx+sin2x+sin3x+ ... +sinnx. 

elx -e-lx 
Hint. Applying Euler's formula, substitute 2i for 

sin x, and so forth. 
648. Find the sum cosx+cos2x+cos3x+ ... +cosnx. 
649. Prove the identity x&-1 =(x-1) (x2-2x cos 72°+ 1) x 

x ( x2 - 2x cos 144 o + 1). 
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650. Compute: 

(l) !+~~; (2) (a+ bi)8 -(a-bi)3 • 

Represent the following complex numbers as vectors, 
determine their moduli and arguments, and write them 
both in the trigonometric form and in the form retrp 
(for -n < <p~n): 

65]. (1) Z=4+4£; (2) Z=-1 +iJ/3; (3) Z= 1-i. 

652. (l) z=5; (2) z=-i; (3) z=-V2-V-2. 
653. Construct the domain of points z according to the 

conditions 

654. Given the point z0 = 3-4l. Construct the domain 
of points z for which lz-z0 J< 5. 

655. Using de Moivre's formula, compute: 

(l)(J-i)8; (2) (2+ lVT2)5; (3) ( 1 +cos i +i sin ~ r. 
656. Express sin 4a and cos 4a in terms of functions of 

the angle a using the identity (cos a+ i sin a)4 =cos 4a + 
+ isin4a. 

657. Find all the values of the radicals (l) V -1 and 
(2) vr and represent them by radius vectors. 

658. Solve the equations: (1) x8-8=0; (2) x8 +64=0; 
(3) x'-81 =0. 

659. Find the sum 
cosx+cos 3x+cos5x+ ... +cos (2n-1)x 

(see Problem 647). 

4.4. Higher-Degree Equations. Approximate 
Solution of Equations 

} 0 • Cubic equation: 
x8 +ax~ +bx+ c = 0. (1) 

If x 1 , X2 , x 8 are the roots of equation ( 1 ), then the 
latter may be rewritten as (x-x1)(x-x.)(x-x,) = 0. 
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Hence, a=-(x1 +x~+x3), b=X1X2 -!-X1X8 -!-X2X8 , c= 
=-XlX2Xa. . 

The equation x8 + ax2 + bx + c = 0 is reduced to the form 

z8 -f-pz-t-q=0 by the substitution x=z-;. The equation 

z3 -f-pz-t-q=0 is solved using Cardan's formula 

Z= v- ~ + -vq: +~; +V- ~- vq42 +~3 =u+v. 

q2 pa u1 +v1 
I. If ~ = 4 + 27 > 0, then z. = u1 + V 11 zM = --2- ± 

±u1 ; 01 iV3, where u 1 and v1 are real values of the roots 

u and v. 
f q2 p3 3q 3t z 1 

II. I ~=4+ 27 =0, then Z1 =-p· Z2,3=-2P=-2· 

q2 pa .. 1 -p <~> 
III. If ~= 4 -t- 27 <0, then z1 =2y 3 cos 3 , z2 , 3 = 

= 2 y 3P cos ( j ± 120°) , where cos cp = - ~ : V .J/ . 
2°. Separating the real roots of the equation f (x) = 0. 

There is a unique root of the equation f (x) = 0 between 
a and b, if f (a) and f (b) have opposite signs and f (x) is 
continuous and has a derivative f' (x) =I= 0 within the in­
terval [a, b]. We suppose that also f" (x) =1= 0 within this 
interval. 

3°. The method of chords applied to approximate solu­
tion of an equation f (x) = 0. Let ex" be the end-point of 
the root isolating interval [a, b] at which f(ex,,)·f"(ex 0 ) < 0. 
Then the approximation of the root x will be the point 
ex1 at which the chord AB intersects the axis OX (Fig. 23): 

where k = f (b)- f (a) 
b-a 

ex =ex _f (cto) 
I 0 k I 

4°. Method of tangents (Newton's method). Let ~o be 
the end-point of the interval [a, b] at which f (~ 0 ) • f" (~ 0 ) > 0. 
Then the approximation of the root x will be the point [3 1 

of intersection of the axis OX and the tangent line to the 
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rurve y = f (x) at the point [~ 0 , f (~ 0)] (Fig. 23): 

A =A _f(~o) 
t't t'c k, • 

where k1 = f' (~ 0). 
Applying the methods of chord:> and tangents once again, 

we obtain the following table: 

a I~ I f (a) I f (~) I k I k1 I Aa I A~ 
·+·I ·· I ·· 1··1··1 ··I·· . 

(2) 

where k and k 1 are the slopes of the chords and tangents, 
and 

Continuing the process we find successive values of a 
;md ~· The sequence has as its limit the required root. 

Fig. 23 

5°. Method of iterations. If an equation f(x)=O can 
be reduced to the form x = «p (x) and in some neighbour­
hood of the root I .-p' (x)l < e ~ 1, x0 being any number in 
this neighbourhood, then the required sequence of appro­
ximate solutions will be: 

XI= ce (Xo), X2 = qJ (Xl), X a= qJ (X 2 ), etc. 
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In the equations of Problems 660 and 66I choose one 
root out of the integral factors of the constant term, then 
divide the left-hand member by x-x1 and find the rest 
of the roots. 

660. (I) x8-4x2 +x+6=0; (2) x3-4x2-4x-5=0. 
Verify the solution by forming the expressions: 

X 1 + X 2 + X8 , X1X2 + X 2X8 + X1X8 , X1X.,X8 • 

661. (I) x3 -5x2-2x+24=0; (2) x'+x8 +2x-4=0; 
(3) 9x3 +18x2-x-2=0; (4) 4x8-4x2 +x-1=0. 

Solve the following equations, using Cardan's formula: 
662. (1) z3 -6z-9=0; (2) z3-l2z-I6=0. 
663. (I) z3 -I2z-8=0; (2) z8 +6z-7=0. 
664. xs+9x2 + 18x+9=0. 
665. Given the equation f (x) = x'-x-IO = 0. Making 

a table of signs for f (x) at x = 0, I, 2, ... , determine 
the boundaries of the positive root and compute it to two 
decimal places using the methods of chords and tangents. 

xs 
666. Construct the graph of the function y = 3 , deter-

mine graphically the boundaries of the roots of the equa­
tion x3 -6x+3=0, and compute them to three decimal 
places. 

667. Using the method of iterations (i.e. of successive 
approximations), find the real roots of the equations: 
(1) x3 +60x-80=0; (2) 2x=4x; (3) x3 +l2x+l8 =0; 
(4) x4 -2x-2=0. 

668. Solve the following equations, choosing one root 
among the integral factors of the constant term: 

(1) x8 +8x2 + I5x+ I8=0; (2) x8 -3x2 +4=0. 

Check the solution by writing the expressions ~x1, 
~X;X1 , and X1XzXa· 

669. Solve the following equations, using Cardan's for­
mula: 

(1) z8 + I8z-I9 =0; (2) z8-6z-4=0; 
(3) z8-3z+2=0; (4) x8 +6x2 +9x+4=0. 
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670. Constructing the graph of the function y = x; , de­

termine the boundaries of the roots of the equation 
x4 + 3x-15 = 0 and compute the roots to two decimal 
places. 

671. Find to two decimal places the positive roots of 
the equations: (1) x3 +50x-60=0; (2) x3 +x-32=0. 

672. Using the method of iterations, find the real root 
of the equation x3 +2x-8=0 computing the successive 
approximations by the formula x = VB-2x (with the 
aid of a slide rule). 



CHAPTER 5 

INTRODUCTION TO MATHEMATICAL ANALYSIS 

5.1. Variable Quantities and Functions 

1°. Intervals. A set of numbers x satisfying the inequ­
alities a< x < b, where a and b are fixed numbers, is 
called an open interval; it is usually denoted as (a, b). 
A set of numbers x satisfying the inequalities a~ x ~ b 
is called a closed interval; its notation is [a, b]. A set of 
numbers x satisfying the inequalities a~ x < b or a< x~b 
is called a half-open interval ([a, b) or (a, b]). 

Open, closed, and half-open intervals are covered by 
a single term interval. 

Equivalent inequalities (for a> 0): 

x2 < a2 , 1 x I < a, and -a < x < a 

define an interval which is symmetrical with respect 
to zero. 

2°. Variable quantities and functions. A quantity y is 
called a function of a variable quantity x if with every 
\'alue assumed by x we can associate one or several defi­
nite values of y. Here, the variable x is called the ar­
gument. 

We can put it otherwise: the quantity y depends on 
the quantity x; accordingly, the argument is called the 
independent variable and the function is termed the depen­
dent variable. The collection of all values which the argu­
ment of a function can assume is called the domain of 
definition (or simply, domain) of the function. 

If to every value of the argument there corresponds 
one value of the function, the function is termed single­
valued; if there correspond two or more values, then it 
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lg called multiple-valued (double-valued, triple-valued, 
etc.). 

The symbol f (x) is an abbreviation of the phrase 
"a function of x". If two or more different functions of x 
are being considered, then, in addition to f (x), we can 
use such notations as f1 (x), f2 (x), F (x), cp (x), <D (x). 

The notation y = f (x) expresses the fact that the quan­
tity y is equal to some function of x or that y is a fun­
ction of the argument x. The letter f is called the fun­
ction symbol. 

The symhol f (x) can be used to designate both an 
unknown function and a known function. 

673. Construct the interval of a variable x satisfying 
the following inequalities: 

(1) lxl <4; (2) X2 ~9; (3) Jx-41 < 1; 
(4)-1<x-3~2; (5)x2 >9; (6)(x-2)2 ~4. 

674. Write in the form of inequalities and construct the 
intervals of variables: [ -1, 3 ]; (0, 4); [ -2, 1 ]. 

675. Determine the interval of the variable x=1-+, 

where t takes on any value ~ 1. 
In Problems 676 to 678 plot the graphs of the given 

functions over the interval I xI~ 3: 
676. (1) y=2x; (2) y=2x+2; 
677. (1) y=x2 ; (2) y=x2 +1; 

xs xs 
678. (1) y= 3 : (2) y= 3 +1; 

(3) y=2x-2. 
(3) y=x2 -1. 

xa 
(3) y= 3 -I. 

679. Construct the graphs of the functions: (1) y=~; 
X 

(2) y = 2x; (3) y = log2 x. What feature can be noticed in 
the location of these curves with respect to the coordi­
nate axes? 

680. Construct two curves in the same drawing: 
( 1) y =sin x; (2) y =cos x making use of the points at 
which y has the maximum, minimum and zero values. 
By adding the ordinates of these curves, depict the fun­
ction y=sinx+cosx in the same drawing. 

681. Find the roots x1 and x2 of the function y = 4x-x1 

and plot its graph over the interval [x1-1, x2 + 1]. 
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682. Graph the following functions: 

(1) y=lxl;. (2) y=-lx-21; (3) y=jxj-x. 

In eath of the following problems (683 to 686), find 
the domain of definition of real values of the given fun­
ctions and draw their graphs. 

683., (I) y = V x + 2; (2) y = V9-x2 ; (3) y = V 4x-x2 • 

684. (1) y=V-x+V4+x; (2) y=arcsinx 2
1 • 

685. (1) y=x(2 ~Yx); (2) y=+xV4 x. 

1 .~ x Yl6 x2 
686. ( ) y= -v 2smx; (2) u=- 2 . 

687. (1) f(x) =X2 -x+ 1; evaluate f(O), f(1), f(-1), 
f ( 2x-3 

f(2), a+I); (2) cp(x)=x2 + 1 ; evaluate cp(O), cp(-I), 

cp ( ~ ) , cp ( ; ) , <p ~x) • 
688. F (x) =x2 ; evaluate: 
(l)F(b!=~(a); (2) F(ath)-F(a 2 h)· 

689. f(x)=X2 cp(x)=x8 • evaluate /(b)-f(a). 
' ' <p(b)-<p(a) 

690. F (x, y) =x8-3xy-y2 ; evaluate F (4, 3) and F (3, 4). 
691. A function f(x) is said to be even if f(-x)=f(x), 

and odd if f ( -x) =- f (x). Which of the following fun-
ctions are even and which are odd: (I) f (x) = si~ x; 

ax-1 1 
(2) cp(x)=ax+ 1 ; (3) F(x)=ax+ax; (4) <l>(x)=ax-

-~; (5) 'l'(x) 'xsin2 X-x3 ; (6) { 1 (x)=x+x2? 

692. The midpoint of any chord of a certain graphically 
represented function f (x) lies above the graph of this 
function. Write this property of the function using an 
inequality. Check whether the function f (x) = x2 possesses 
this property. 

693. Which elementary function possesses the follo­
wing properties: 

{(1)=0; f(a)=1; f(xy)=f(x)+f(y)? 
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694. Which elementary function possesses the following 
properties: 

f(O)= I, f(l)=a, f(x+y)=f(x)f(y)?. 

695. Construct the intervals of the variable x which 
satisfies the following inequalities: 

(I) [xf<3; (2) x2 ~4; (3) lx-2[<2; (4) (x-1)2~4. 

696. Determine the interval of the variable x = 2 + +, 
where t takes on any value ~ I. 

697. Graph the functions: 
xa 

(I) y = 4-2 over the interval I xI~ 2; 

(2) y = 3.5 + 3x- ~2 between the points of intersection 

with the axis of aoscissas. 
698, Graph the functions: 
(I) y=x-4+fx-21 over the interval [-2, 5]; 
(2) y = I-eos x over the interval I xI~ 2n. 
699. Construct the graphs of the following functions! 

(I) y=-.i_; (2) y=2-x. 
X 

700. Find the domains of definition of real values of 
the following functions: 

(I) y=V4-x2 ; (2) y=VX+T-V3-x; 

(3) y= l-V2cos2x; (4) y= 4 
I+ ViEt 

and construct their graphs. 
2x+ I ( 1) 701. (I) f(x) =x2+ 1 ; find f(O), f(-2), f --r , 

f(x-1), t(;); 
(2) <p (x) = x 8 ; find cp (x+h)-;;cp (x-h); 

(3) f(x)=4x-x2 ; find f(a+l)-f(a-1). 
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5.2. Number Sequences. lnfinitesimals and 
Infinities. The Limit of a Variable. 

The Limit of a Function 

1°. Number sequences. Let a variable x attain successi­
vely the values 

(I) 

Such an ordered set of numbers is called an infinite se­
quence or just a sequence. The sequence (1) is given by 
the formula of the nth term. 

For example, let xn=n+(-I)n; putting n=I, 2, 
3, ... , we obtain the sequence 

0, 3, 2, 5, 4, 7, ... (2) 

Suppose the variable x attains not only the values 
defined by sequence (2), but also all the intermediate 
values from 0 to 3 (increasing), then from 3 to 2 (de-

0 I 2 J4 SG 7 

Fig. 24 

creasing) and so on, then the variation of x can be rep­
resented by the path of a point M (x) moving along the 
axis OX. Figure 24 illustrates the path covered by the 
variable x specified by sequence (2). 

Let us assume here that a variable is given by the 
sequence x=f(n), or in general by the function x=f(t) 
defined on the interval a~ t ~ b, provided x = f (t) fol­
lows x0 =f(t 0 ), if t>to (in particular, t may denote 
time). 

2°. Infinitesimals. A variable a is called an infinitesi­
mal if for any positive number e there exists a value a 0 

such that each subsequent value of a will be less than e 
by its absolute value. 

If a is an infinitesimal, then we say that a tends to 
zero which is written as a___,. 0. Or in other words: an 
infinitesimal is a quantity whose limit is equal to zero. 
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3°. An infinite quantity. A variable x is termed 
1111 infinite quantity if for any positive number c there 
l'Xists a value x0 such that each subsequent value of x 
will be greater than c by its absolute value. Notation: 
X ---->00. 

If all the values of the variable x which follow a cer­
tain x 0 retain the sign, the notation will be: x-+oo 
(or X--+-oo). 

A quantity inverse to an infinite quantity is an infini­
tl'simal quantity, and vice verS<~. 

4°. The limit of a variable. A constant a is called the 
limit of a variable x if the difference between them is an 
infinitesimal, i.e. if x=a+a, then limx=a, and con­
versely. 

If a is the limit of the variable x, then it is also said 
that x tends to a, the corresponding notation being: X--+a, 
or X--+a-0 (if x remains on the left of a), or X--+a+O 
(if x remains on the right of a). 

0 a x 
--<J pzzzz?;z~ •' 

a-a a+e 

Fig. 25 

The interval (a - e, a +e) is called the £-neighbour­
flood of the number a. We may say that x tends to a if 
for any positive number e there exists a value x0 such 
that all successive values of x will be found within the 
r-neighbourhood of the number a (Fig. 25). 

If X--++oo (or X--+-oo), then it is said that the 
limit of the variable x is + oo (or -oo), the correspon­
ding notation being: 

limx= +oo (or limx=-oo). 

5°. The limit of a function. A number b is called the 
limit of a function f (x) as x tends to a, if from the fact 
that x tends to a never attaining the value a it always 
follows that f (x) tends to b; notation: lim f (x) =b. ThE' 

X-+Q 

given definition also covers special cases, when the numbers 
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a or b will be replaced by the symbols + oo or - oo: 

lim f(x)= +oo, lim f(x)=b, lim f(x)=-oo, and 
x-+a X-+-00 

so forth. 
The limit lim f(x)=b (or lim f(x)=b) is called 

X-+a-0 X-+a+O 
the limit of the function f (x) as x tends to a from the 
left (or from the right). 

702. Putting n = 0, 1, 2, 3, etc. write the sequences: 

a=21n• a=-21n• a.=(-;r 
and represent graphically their variation. Beginning with 
what n will the modulus of each of the variables become 
and remain less than 0.001; less than a given positive e? 

703. Write the sequence of values of the variable 

x = 1 + ~n~; and represent its variation graphically. 
Beginning with what n will the modulus of the difference 
x-1 become and remain less than 0.01; less than a given 
positive e? 

704. Adding to 3 (or subtracting from 3) first 1, then 
0.1, then 0.01, etc. show in terms of "decimal" sequences 
the ways the variable tends to the limit: x -+3 + 0, 
x-3-0. 

705. Writing "decimal" sequences, show how the vari­
ables tend to the following limits: x-5+0, X-+5-0; 
x--2+0, X-+-2-0; X-+1+0, X-+1-0; X-+1.2+0, 
x-.1.2-0. 

706. Prove that lim x2 = 4. Clarify this by making tab-
x-+2 

les of values of x and x2 • 

Hint. Putting x=2+cx., where a is an infinitesimal, 
form the ·difference x2-4 and show that it equals an 
infinitesimal. 

707. Prove that lim (2x-1)=5. Given the number 
X-+3 

e > 0, find a maximum number 6 > 0 such that for any x 
from the 6-neighbourhood of the number 3 the corres­
ponding value of the function (2x-1) turns out to be 
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within the e-neighbourhood of the number 5. Explain 
this graphically. 

708. Prove that lim (3-2x-x2)=4. From what maxi-
x-+-1 

tnum IS-neighbourhood of the number -1 is it necessary 
lo take a value of x so that the corresponding value of 
the function (3-2x-x2 ) differs from its limit by less 
than e=0.0001? 

709. Prove that sin a is an infinitesimal if a is an 
Infinitesimal. 

Hint. Show graphically that I sinal< jaj. 
710. Prove that lim sinx=sina. 

x-+a 

Hint. Putting x=a+a, make up the difference sinx-;­
. -sin a. 

711. Prove that lim 3x+ 4 = 3. Clarify this by making 
X-+00 X 

3x+4 
tables of values of x and -x- at X= I, 10, IOO, 1000, .... 

H · t Sh th t th d'ff 3x+ 4 3 · · fi 't ttl . ow a e 1 erence --- Is an m m e-x 
sima!, as X-+ oo. 

l 4x-3 
712. Prove that im 2 +I =2. For what values of x 

X-+00 X 

will the corresponding values of the function differ from 
its limit by less than O.OOI? 

. l-2x2 
713. Prove that lim 2+ 4 2 = -0.5. For what values 

X-+ a:> X 

of x will the corresponding values of the function differ 
from its limit by less that 0.01? 

714. Prove that lim 0.333 ... 3 = ~ by forming the diffe-
n-+"' ---.--

n digits 
I I I I 

rences: 3 -0.3; 3 -0.33; 3 -0.333; ... ; 3 -0.333 ... 3. 
n digits 

715. Write the sequences of values of the following 
variables: 

n n (-l)nn 
(I) X=n+l; (2)x=-n+l; (3) X=--n:t=T; 

:n 
8 cos n 2 2 +< l)n 

(4) X= n+ 4 ; (5) X= n n- ; (6) x=2-nacosnn 
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and represent their variation graphically. Does lim x exist 
n-++ao 

in each case and what is it equal to? 
716. Find lim _2_2 and lim _2_2 and give the 

x-+2+0x- x-+2-0x-

explanatory tables. 
1 1 

717. Find lim ix and lim 2X. and give the expla-
X-+ 0+0 x .... 0-0 

natory tables. 
718. Find out the exact meaning of the following "con­

ventional" notations: 

2 2 
(I) QO =0; (2) o= ± oo; (3) 3"' =oo; (4) 3-"' =0; 
(5) log10 0= -oo; (6) tan 90° = ± oo. 

719. Show that lim sin x d~es not exist by forming 
X-+ fiJ 

sequences of values of sin x at 

(I) X=nn; (2) x= ~ +2nn; (3) x=-i+2nn (n=O, 

I, 2, 3, 4, ... ). 
720. Show that lim sin.!. does not exist. 

X-+0 X 

721. Applying one of the theorems on infinitesimals, 

show that lim xsin.!.=o irrespective of the way in which 
X-+ 0 X 

x tends to 0. 
722. Inscribed in a circle of radius R is a regular n-gon 

whose side is an. Circumscribing a square about the circle, 
show that an< e as soon as n > BR, i.e. an-+ 0 as n--.. oo. 

e 
723. Let r n be the apothem of a regular n-gon inscribed 

in a circle. Prove that lim r n = R, where R is the radius 
n-+<X> 

of the circle. 
724. The vertex B of a triangle ABC keeps displacing 

along a straight line BEll AC moving off infinitely to the 
right. How will the sides of the triangle, its area, its 
interior angles and the exterior angle BCD change? 
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725. Write "decimal" sequences to show how the vari­
ables tend to the following limits: x-4+0, x-4-0; 
x--1.5+0, x--1.5-0. 

726. Prove that (1) lim x3 =27; (2) lim (x2 +2x)=3 
X-+3 X-+l 

(see the hint to Problem 706). 

727. Prove that lim 5x2+2 = 2.5, showing that the diffe-
x-+rR X 

5x+ 2 2 5 · · fi 't · 1 'f · · fi ·4 renee ~- . 1s an m n1 es1ma 1 x 1s an m nile 

value. Clarify this by a table, putting x= I, 10, 100, 
1000, .... 

728. Prove that lim cos x =cos a (see Problem 709). 
x-+a 

729. Write the sequences of values of the following 
variables: 

2 . n:n 
nsm 2 

(3) x=(-l)n(2n+I); (4) X= n+l 

and represent their variation graphically. Which of the 
variables has a limit at n---+ + oo? 

I I 

730. Find: (1) lim 2 x-1; (2) lim 2x=T. 
X-+1+0 ' X-+ 1-0 

(3) Jim 3tan 2x; (4) Jim 3tan 2x; (5) 

(6) lim 2 · (7) lim _a_ 
:n I+2tanx' X-++ao I-f-a''' 

X-+ 2-0 

731. Prove that lim 0.666 ... 6= ~, by forming the 
n_,.x 

" digits 

differences : -0.6; ~ --0.66; ... ; ~ -0.66 ... 6. 
o digits 

732. Let an be the interior angle of a reqular n-gon. 
Prove that lim a.n=Jt. 

n-+<X> 
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733. On the extension of the line segment AB =a a 
point M is taken on its right at a distance BM = x. Find 
I . AM 

Jill BM' 
" --+ ao 

5.3. Basic Properties of Limits. 

Evaluating the Indeterminate Forms ~ and : 

1°. The limit of a constant quantity is the quantity 
itself. 

2°. lim(u+v)=limu+limv} . . . . 
3°. lim(uv)=limu·limv tf hmu and ltmv extst. 

4o 1· u lim u · f I' d I' . t d I' 0 . 1m -=-1.-, 1 tmu an tmv exts an tmv=/= . 
(I lffi(l 

5°. If for all values of x within a certain neighbourhood 
of point a, except perhaps x =a, the functions f (x) and 
cp (x) are equal to each other and one of them has a limit 
as x- a, then the second function has the same limit. 

This property is applied to evaluating the indetermi-
o ~ ~-~ nate forms-0 and-. For example, --=x+aforanyx, 

~ x-a 
x2-a2 

except for x=a. By property 5° lim --= lim (x+a)=2a. 
x-..a x-a x_..,.a 

Find the limits: 
. x2-4x+l 

734. (I) hm 2 + 1 ; 
X-+2 X 

(2) lim I +sin 2x. 
:rc l-cos4x 

X-+4 

735. x2-4 lim --2 (clarify by a table). 
x-+2x-

1. x-2 737 I' x2-9 
tm 2 3 +2. • lm 2 2 3 . 

X-+ 2 X - X X-+ 3 X - X-
736. 

Hint. Solve Problem 736 by two methods: (I) put 
K = 2 +ex; (2) factorize the de nomina tor. 

738. lim t.an2x . 739. lim sin x-cos x 
X -+ :rc Sin X :rc COS 2X 

X-+T 

740. lim y x . 
x-+0 1+3x-l 

741. lim Yax-x. 
x -+a x-a 

v-x-1 
742. lim y . 

x-+1 x-1 

V l+mx-1 
743. lim . 

X X-+0 
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Hint. Put x=t 6 in Problem 742, and 1+mx=t3 in 
Problem 743. 

744. lim VT'+X- vr=x . 
x .... o X 

745 I. Vl-tanx-Vl+tanx 
• Jm . 2 • 

x _.:t Sin X 

. 2x2-l 
746. (I) hm 3 2 4 ; 

x_.a; X- X 

. 5x3-7x 
(2) !Jm I-2 a • 

x-...co X 

Hint. Two methods can be used: (I) divide both the 
numerator and the denominator by x in higher power; 

(2) put X=...!.._. 
a. 

I. 3x-I 
747. 1m ~+I 

X~ co X 

I. Vx-6x 
749. 1m 3 +I 

X-+ rt:J X 

751 I . V2fi2+1 
· Jm 2 -I · 

n-+-ex> n 

Find the limits: 
. 3x+6 

753. lun x3+B 
x--2 

• 1. x2 -x-2 
755. 1m 3 + 1 

x..,.-1 X 

. 5x2 -3x+2 
757· !~ 2x2+4x+ I' 

759. lim ( I~2 
2 + 2 +). 

X-+-CID X 

1 I. 2- Yx-3 
76 • Jm z-49 • 

x_.7 X 

I. x3-I 
748. 1m ~+I. x..,.,., x 

9-x2 

754. lim V . 
x- 3 3x-3 

756. lim VI +cosx 
sin x 

758 I . 3n+ I 
• Jm.~. 

n-"' r 3n2 + I 

760. lim I~3+5+ ... +(2n-I) 
n-+<» +2+3+ ... +n • 

762 I . sin 2x- cos 2x-l 
• liD . • 

n cosx-smx 
x-+T 
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5.4. The Limit of the Ratio sin a as a~ 0 
a 

If an angle a is expressed in radians, then 

lim _;=._ = 1. I. sin a 1 till--=; 
a. ...... o a cx.-+O s1n a 

Find the limits: 
. X 

sln-
763. lim sin 4x. 764. lim --3 

X-+0 X X-+0 X 

Hint. In Problem 763 multiply both the numerator and 
the denominator by 4 (or put 4x=a). 

765. 

768. 

770. 

I . tan x 
lffi--. 

sin2 .!._ 
766 I. 2 767 1. I-eos 2x 

. tm-2-. • tm . . 
X-+0 X ~-+O X X-+O X Sin X · 

I . sin3x 
1m --;:==---==-

...... o Yx+2- Jf2 
769. lim sin (x+h);sin (x-h) 

h-+0 

(1) lim arctanx; 
X-+0 X 

(2) I. arcsin(I-2x) 
tm 4 2 I . 

t x-
x-+2 

Hint. Put arctanx=a in (1) and arcsin(l-2x)=a 
in (2). 

771 1. I-cosx 772 1. tanx-sinx 
• lffi 2 • • lffi 3 • 

X-+0 X X-+0 X 

Find the limits: 

773. lim~. 774. lim y sin 4x 
x ... ostn x x-o x+I-1 

I. Jfl-cos 2x 77 1. 2x sinx 
775. lffi . 6. tmsecx-1' 

X-+-0 X X-->-0 

777 I. I- cos mx 778 1. 1- cos 2x+tan2x 
. tm "2 • • tm . . 

X-•0 X-+0 X Stn X 

779. lim [sin;x--:; 2>+2-<x~Zl'J (putx=2+a). 
X-+2 )C-

780. (1) lim cos (x+h>-;;-cos(x-h); (2) lim arcs!n (x+2) 
h ..... o x-+- 2 x +2x 

781. lim sin~x 
x-•0 Yl+xsinx-cosx 
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5.5. Indeterminate Expressions of the Form 
oo-oo and O·oo 

Find the limits: 

782. lim (Vx 2 +3x-x). 
X-++ oo 

783. Jim (-1-1-+--1 ) . X-+1 X- X-

784. lim (V x2 +x+ 1-V~x2 -x). 
X-++ aD 

785. ~~~(xI 2- x3~8). 786. lim(~- 1 )· 
X-+0 Sin X 4 . 2 X 

Slll 2 

787 I . [1+3+ ... +(2n-l)_ J . tm +3 n . 
n-+ct:> n 

788. lim (1-x) tan~ x (put X= l-ex). 
X-+1 

789. lim (Vx 2 +1-Vx2 -4x). 
x ........ -CIO 

790. lim ( +1 
2+ 2~ 4 ). 

X-+-2 X X 

Find the limits: 
791. I i m ( x- Vr-x-=-2 -x-+...,........,.1 ) . 

792. lim (x- Vx2 -a2 ). 
X-++ aD 

794. r ('+2+3+ ... +n 
"~ n+2 

793. lim (sin. x -tan 2x). 
n cos2 x 

%-+2 

~). 
795. li~ (x-~)tanx (put x=~+a). 

%2 
I 

5.6. Miscellaneous Problems on Limits 

Find the limits: 

796. (I) 
. Vx+4-2 

(2) lim 
I +x sin x-~os2x 

ltm sin 5x ; sin 2 x 
.t-+0 x-o 

797. (I) 
Vx-I 

(2) r x 
lim V 1m 4 • 
x-+1 x-1 x-+0 VI+2x-l 

5-!891) 
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798. 

799. 

800. 

lim (V x2 +ax-Vx2 -ax). 
x.-..-ao 

(1) lim (al-2x +2-x"); (2) limx-1 st5'nx. 
X-+<tJ VI+ 8.x3 X-+a> - X 

(1) I. x3 +1 (2) 1. x2+x-2 
1m . ( +I); liD 2+ 2 • 

X-+- I Sin X X-+-2 X X 

801. (1) lim ~-cos x ) ; 
x-.oX( I+x-1 

X cos-
(2) lim --2 • 

X-+~ X-:Tt 

802. (1) lim si~-x); 
x-+1 x-1 

. [3x' +] 803. (1) ~~~ 1_ 2x,-2 ; 

804. (1) lim Y I +cos 2x ; 
~ 0 V:n-V2x 

X-+T+ 

. l-IOn 
(2) ltm 'I+ JOn+l' 

n-++ oo 

. 3-IOn 
(2) n~t_:l<tJ 2+ IOn+l' 

:rt (x+ I) 
(2) lim cos V +l · 

X-+-1 X 

5.7. Comparison of lnfinitesimals 

1°. Definitions. Let the functions a (x) and ~ (x) be 
infinitesimals as x--+ a. Then: 

I. If lim!.= 0, then ~ is termed an infinitesimal quan-
x-+a a 

tity of higher order relative to a; and a is a quantity 
of lower order with respect to ~· 

II. If lim~= A (finite and not equal to zero), then 
x-.a a 

~ is called an infinitesimal of the nth order with respect 
to a. 

III. If lim!.= 1, then ~ and a are termed the equi-
x-.a a 

valent infinitesimals. The equivalence ef infinitesimals is 
denoted by the same symbol ~ as approximate equality. 
Thus ~~a. 

2°. The properties of equivalent infinitesimals: 
(a) The difference a-~ of two equivalent infinitesimals 

a and ~ is an infinitesimal of higher order with respect 
to either a or ~· 

(b) If infinitesimals of the higher orders are rejected 
from a sum of several infinitesimals of different orders, 
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then the remaining or principal summand of the lower 
order is equivalent to the entire sum. 

It follows from the first property that equivalent infi­
nitesimals can become approximately equal with an arbit­
rary small relative error. Therefore, we use the symbol 
~ to denote both the equivalence of infinitesimals and 
the approximate equality of their arbitrarily small values. 

805. Determine the orders of the infinitesi mals: 
(l) 1-cosx; (2) tan x-sinx with respect to the infini­
tesimal x. 

Show on the graph that a reduction of x to half its 

value results in decreasing 1-cosx to approximately! 

its value and tan x-sin x to approximately ~ its value. 

806. Determine the orders of the following infinitesi­
mals: (1) 2sin'x-x&; (2) Vsin 2 x+x'; (3) VI+x8-l 
with respect to x. 

807. Determine the order of smallness of the sagitta of 
a circular segment relative to the infinitely small arc of 
the segment. 

808. Prove that 

(1) sin mx ~ mx; (2) tan mx ~ mx; (3) VI +x-1 ~ .j.x, 

as x---.. 0. 
809. The volumetric expansion coefficient of a solid is 

assumed to be approximately equal to three times the 
linear expansion coefficient. On equivalence of what infi­
nitesimals is this assumption based? 

810. Using the theorem that lim 1.. =lim~~ if ex~ cx1 , 
a a1 

~ ~ ~1 , and that one of the limits exists, find the follow­
ing limits: 

(I) lims~n5x; (2) limsinax+x2. (3) lim3~1sin2~· 
x-+O sin 2x x .... o tan bx ' x-+O sin x-x 

811. A water drop evaporates so that its radius tends 
to zero. Determine the orders of the infinitesimals exp­
ressing the surface and volume of the drop with respect 
to its radius. 

s• 



132 Ch. 5. Introduction to Mathematical Analysis 

812. Determine the orders of the infinitesimals: 

(1) Vl+x2 -1; (2) sin2x-2sinx; (3) 1-2cosx 

X ( x +;) with respect to the infinitesimal x. 

813. Prove that as x-0 (1) arctanmx;:::;:mx; 

(2) VT+X-1;:::;:-}x; (3) 1-cos3 x;:::;: 1.5sin2 x. 

5.8. The Continuity of a Function 

1°. Definition. A function f (x) is called continuous at 
a point x =a if it is defined in some neighbourhood a 
and 

lim f (x) = f (a) 
x-+a 

This definition contains the following four conditions: 
( 1) f (x) must be defined in some neighbourhood of a; 
(2) there must exist finite limits lim f (x) and lim f (x); 

X-+a-0 X-+a+O 

(3) these limits (both from the left and from the right) 
must be equal to each other; 

(4) these limits must be equal to f (a). 
A ! unction is ca lied continuous on a closed interval 

[x1 , x2 ] if it is continuous at every point of the interval, 
and at its end-points lim f (x)=f (x1) and lim f (x)=f (X2). 

X-+X1 + 0 X-+X1 - 0 
Elementary functions: power function y =xn, exponen­

tial function y =ax, logarithmic function y = loga X, tri­
gonometric functions y =sin x, y=cos x, y=tan x, y=cot x, 
y =sec x, y =cosec x, circular or inverse trigonometric 
functions y =arcsin x, y =arccos x, y=arctan x, y=arccot x, 
y = arcsec x, y = arccosec x, as also their sum, product, 
quotient are continuous at any x at which they have a 
definite value. 

2°. Discontinuities of a function. A function has a dis­
continuity at x =a if it is defined both from the left and 
from the right of a, but at the point a at least one of 
the continuity conditions is not fulfilled. We usually 
distinguish between two basic kinds of discontinuity. 

(I) DiscO'Itinuity of the first kind. Such a case occurs 
when there exist the limits on the right and on the left 
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and they are finite, i.e. when the second condition of 
continuity is fulfilled, and the rest of the conditions (or 
at least one of them) are not fulfilled. 

For example, the function y = 1 x-a I , equal to -1 for x-a 
x <a and to +I for x >a, has a discontinuity of the 
first kind at the point x=a (Fig. 26), since there exist 
the limits lim y=-1 and lim y=+l, but they are 

x~a-0 x~a+O 

not equal. 

y 

I 
I I 

a' 

x-a 
y= IX-af 

Fig. 26 

X 

y 

a 
Y=x-a 

Fig. 27 

X 

(2) Discontinuity of the second kind. This is the case, 
when lim f (x) either on the left or on the right is equal 

x-+a 
to + oo. 

For example, the function y = f (x) =-a- (Fig. 27) has x-a 
a discontinuity of the second kind at the point x =a. 
All the fractional functions whose denominator becomes 
zero at x=a, and the numerator is not equal to zero, 
have a discontinuity of the second kind at the point 

I 

x =a. The function f (x) = 2x (Problem 819, Fig. 42 on 
p. 322) also has a discontinuity of the second kind at 
x = 0, since lim f (x) = 0, but lim f (x) = oo. 

X-+-0 X-++0 

814. Indicate the point of discontinuity of the function 
4 y = ---2, find lim y, lim y, Jim y, and plot the curve 

X- X-+2-0 .<-+2+0 X-+±<0 
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using the points 

X=-2,0,1, 3, 4, and 6. 

815. Find the points of discontinuity and graph the 
functions: 

(1) y= -~; (2) y=tanx; (3) y=-4 
4 

2 • 
X -X 

816. Graph the function 

{ 
~ for x :;i= 2 

y= 
0 for x=2 

and Indicate the point of its discontinuity. Which of the 
four continuity conditions are fulfilled at this point and 
which are not? 

817. Graph the functions: (1) y= 1;!: 1 and (2) y= 

=x+ 1:t: 1 • Which of the conditions of continuity are 

fulfilled at the points of discontinuity of these functions 
and which are not? 

818. Graph the function 

y = f (x) = { si2;x for x =P 0 
for x= 0 

and indicate the point of its discontinuity. Which of the 
·continuity conditions are fulfilled here and which are not? 

819. Indicate the point of discontinuity of the function 
I 

y = 2-x, find lim y, lim y, lim y and construct the graph 
X-+-0 X-+ +0 X-+±a> 

of the function. Which conditions of continuity are not 
fulfilled at the point of discontinuity? 

820. Graph the function 

{ 
0.5x2 for I xI < 2 

y = f (x) = 2.5 for I x 1 = 2 
3 for I xI> 2 

and indicate the points of discontinuity. 
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821. Find the points of discontinuity and plot the graphs 
of the following functions: 

I a ~-~ 
(I) y=--1 ; (2) y=arctanx=a; (3)y= 2 /x-ll' 

1+2x 

822. How many single-valued functions are given by 
the equation x2-y2 = 0? Among them define (I) an even 
function; (2) an odd function so that they have finite 
discontinuities (of the first kind) at x=± 1, ±2, ±3, ... , 
and plot their graphs. 

823. Indicate the point of discontinuity of the function 
Y = _x_, find lim y, lim y, lim y and plot its graph 

x+2 X-+-2-0 X-+-2+0 X-+±«> 

using the points x=-6, -4, -3, -1, 0, 2. 
824. Graph the function 

y=f(x)= 4-X2 for 0 < \x\ < 2 { 
2 for x = 0 and x = ± 2 

4 for \xI> 2 

and indicate the points of discontinuity. Which continuity 
conditions are fulfilled at these points and which are not? 

825. Find the points of discontinuity and construct the 
graphs of the following functions: 

( 1) y = 2- I ; I ; 

x8 +x 
(4) y=2TXT; 

1 

(2) y=2x-2; 

4-x2 

(S) Y = j4x-xsj ' 

1 

(3) y= 1-2X; 

826. How many single-valued functions are specified 
by the equation x 2 + y2 =- 4? Our of them define (1) two 
continuous functions on the interval I xI~ 2; (2) the one 
which is negative on the interval I xI~ 1 and positive for 
the rest of permissible values of x. Graph the latter 
function and indicate its discontinuities. 
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5.9. Asymptotes 

Definition. The straight line AB is called the asymptote 
of curve L if the distance MK from M (on L) to the 
straight line AB tends to zero as M recedes to infinity. 

I. If lim f (x) = ± oo, then the straight line x =a is an 
x-+a 

asymptote of the curve y = f (x). For instance, the curve 

y =_a_ has an asymptote x =a (Fig. 27). x-a 
II. If in the right-hand member of the equation of a 

curve y = f (x) it is possible to single out a linear part 
y=f (x)=kx+b+a (x) so that the remaining part a (x)- 0 
as X---+±oo, then the straight line y-=kx+b is the 
asymptote of the curve. Examples: (l) the curve y = 

x8 +x2 + I I 
= x2 =X+ I+ xz has two asymptotes: y=x+ 1 and 

x-0; (2) the curve y--a-=0+_!:... has the asymptote x-a x-a 
v-o (Fig. 27). 

III. If there exist finite limits lim f(x) = k and 
X-++=or-"' X 

lim (f(x)-kx]=b, then the straight line y=kx+b 
A:-++ oo or-= 
is an asymptote. 

827. Determine the asymptotes of the curve y = 1----i­x 
and plot the curve· given the points x = ± I, ± 2, ± 4. 

In Problems 828 to 830 find the asymptotes of the given 
curves by singling out of the fractions a whole linear 
part; construct both the asymptotes and the curves. 

x2 +I x2 xs 
828. (I) y =-X- ; (2) y = x + I ; (3) Y = X2 + I · 

829. (I) Y =-121-1; (2) y=x2-x-l; (3) y = ax++b . 
X X ~ n 

l-4x x8 4x- x8 

830• (1) Y=l+2x; (2) y= x2+!; (3) Y= x2+4 · 
Find the asymptotes of the given curves and construct 

the curves: 
831. (I) x2-y2 =a2 ; (2) x8 +y8 =3axy; 

X 
(3) y=x-2arctanx; (4) y=arctan-. a-x 
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832. (1) y=Vx~-+I-JI-x~-1; 

(2) Y = V X 2 +I+ Vrx 2 - I; 
1 

(3) y=x- Vx. 
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x 4 + 1 x3 + x2 - 2 833. Construct the curves: (I) y = ~; (2) y = x+ 1 

and the parabolas to which these curves approach asympto­
tically. 

834. Find the asymptotes of the curves: (1) y= ( 1 - ~ r ; 
(2) y=-x+ ~2 and plot the curves by the points x = ± +, 
+1, ±2. 

835. Find the asymptotes of the given cun·es and con­
struct the curves: 

x-4 ~ ~ 
(1) Y = 2x + 4 ; ( 2) Y = 2- 2x ; ( 3) Y = x2- 4 ; 

x'l 
(4) y=-J-"2'' 

-X 

5.10. The Number e 

The number e is defined as 
I 

lim (1 +_!_)n = lim (1 +_!_)n = lim (1 +afii" =e. 
n-+oo n n ...... -"' n tt-+0 

Its value is 2. 71828 .... Since it is an irrational num­
ber, it cannot be expressed as a fraction, or as a decimal, 
or even as a recurring decimal. It is used as t·he base 
for natural or Napierian logarithms; notation: loge x =In x. 

Common or Briggs' logarithm: log10x =MInx, where 
M = 0.43429 .... 

Find the limits: 

836. lim ( 1 -~)n (put-~ =a). 
rz-+-® n n 

837. (1) 1m --~ ; (2) 1m 1 +- . I. ( 1 I )n 1. ( 4 )n+a 
n-+ eo un n-+- IXo n 

I I-x 

838. (I) lim (1 + 2xfx; (2) lim (l-4x) x 
x-+0 x-+0 
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839. (1) :~ (n~ I r; (2) :~ ( ~:+: yx. 
840. (1) lim n(ln(n+3)-lnn]; (2)lim(l+3tan2 x)cot•x. 

n-~ x-o 
841. lim (cosx)cot•x(put sin2 x=a). 

K-0 

842. (1) lim ln(l+c.t); 
a-o c.t 

(2) lim e-x- I ; 
X-+0 X 

(3) lim a2x -1 . 
X-+0 X 

Hint: In (2) put e-"-1 =a. 
843. Find two consecutive whole numbers between which 

the number 6 (1-1.01-100) is contained. 

Find the limits: 

844. 

845. 

846. 

n 

(I) lim ( 1 +~)sn; (2) lim (n-3 ) 2 . 
n-+a:> n n-""a:> n 
. (3x-2)2" . e-ax_l 

(1) hm 3 +1 ; (2) hm ---
x__..a:> X x~oo X 

lim (sin2x)tan" 2x (putcos2 2x=a). 
:n 

X'-+4 

(2) lim n [In n-ln (n + 2) ]. 
n-~ 



CHAPTEH 6 

THE DERIVATIVE AND THE DIFFERENTIAL 

6.1. The Derivatives of Algebraic 
and Trigonometric Functions 

1°. Definitions. The derivative of the function y = f (x) 
at a given point x is defined as the limit 

I. f (x+t.J.x) -f (x) 1• t.J.y 
1m = IITI-

l'!.x-+0 t.J.x ,. l'!.x->-0 t.J.x • 
(I) 

If this I imit is finite, then the function f (x) is called 
diOerentiable at the point x; it is infallibly continuous 
at this point. 

If limit (1) is equal to +oo (or -oo), the function f(x) 
is said to have an infinite derivative at the pcint x under 
an additional condition that the function is continuous 
at this point. 

The derivative is denoted by y', or f' (x), or ~~, or 

d~~). The process of finding the derivative is called the 

diOerentiation of a function. 
2°. Basic differentiation formulas: 

(1) (c)'=O; (2) (x")'=nx"- 1 ; (3) (cu)'=cu'; 
(4) (u+v)'=u'+v'; (5) (uv)'=u'v+uv'; 

(6) (!!:._)' = u'v~v'u ; (7) (Vx)' = .~r- ; 
V U 2 I' X 

(8) (sin x)' =cos x; (9) (cos x)' =--'-sin x; 

(10) (tan x)' =-12-; (II) (cotx)' =--. 1-2 -. 
COS X Sin X 

848. By computing lim ~Y find the derivatives of the 
l'!.x-+0 uX 
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following functions: 

(1) y=x3 ; (2) y=x'; 
1 1 

(5) y=-; (6) y= .r-; 
X J1 X 

(3) y=Vx; (4) y=sinx; 
I 

(7) y=X2; (8) y= tanx; 

(9) y = : 3 ; (10) y= V"'71-+--=2=-x; 1 
(11) Y= 3x+2; 

( 12) y = V 1 + x2 • 

Taking advantage of the differentiation formulas, find 
the derivatives of the following functions: 

xa bx+c 
849. (1) y= 3 -2x2 +4x-5; (2) y=-a-· 

xb 2xa ( x2 )2 850. (1) y= 5 - 3 +x; (2) y= 1-2 . 

851. (1) y=x+2V:X; L2> y=(Va-Vx)2 • 

10 I 1 1 
852. (1) y= xa; (2) Y=x-+X2+xa· 

1 1 1/.': 853. y =x+ X2- 5x6 ; (2) y=3x-6r x. 

854. (1) y=6Vx-4Vx; (2) y=(1-v--xr· 

I 1 8 6 
855. (1) y= 2x2-3xa; (2) Y= tfx- v-x· 
856. (1) y=x-sinx; (2) y=x-tanx. 
857. (1) y =x2 cosx; (2) y =x2 cot x. 
858. (1) y = co;2 x ; (2) y = x2x_:_ 1 • 

859. (1) Y=l~4x; (2) y=t~. 
1 f COS X •!":: 

860. ( ) (X)= I . ; (2) ( ) r X -smx <p X= .r-:: . 
~2 r x+I 

861. (1) s=T; (2) x=a(t-sint). 
xs 

862. f(x)= 3 -x2 +x; evaluate f'(O), f'(1), f'(-1). 
I 

863. f(x)=x 2 - 2x2 ; evaluate f'(2)-f'(-2). 

864. f(x)= (Yx-!)2
; evaluate O.Ol·f'(O.Ol). 

X 
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Find the derivatives of the following functions: 

865. (1) y=(a-bx2 ) 8 ; (2) y=(1 + Vx) 2 . 

I I 3 2 
866. (1) Y= lOx~- 4x4 ; (2) y= Vx- Vx. 

867. (1) y=x+sinx; (2) y=x+cotx. 
868. ( 1) y = x2 sin x; (2) y = x2 tan x. 

1~ t 2 869. ( 1) y = r x cos x; (2) s = 2 - T. 
2 1 x2-l 

870. (1) y=x--x- 3xs; (2) y= x2+1 • 

871. (1) y= ( 1 + v-x r; (2) y= ~-:~ss;nx 

872. f (x) = V x2 ; find f' (-8). 

873. f (x) = 2x~ 1 ; find f' (0), f' (2) and f' ( -2). 

6.2. The Derivative of a Composite Function 

If y = f (u) and u = <p (x), then y is called a function of 
a function or a composite function of x. Then 

~=dy.du or y'=f'(u)·u'. 
dx du dx (1) 

Now the formulas of the previous section take the ge· 
neral form: 

(1) (un)'=nun-tu'; (2) (sinu)'=cosu-u'; 

(3) (cosu)'=-sinu·u'; (4) (Vu)'= ,~-; 
2 r u 

u' 
(6) (cotu)'=-sin2 u. 

u' 
(5) (tan u)' = -2-; 

cos u 

Find the derivatives of the following functions: 
874. (1) y=sin6x; (2) y=cos(a-bx). 

875. (1) y =sin ~ +cos ~ ; (2) y = 6 sin i-. 
876. (1) y=(l-5x)~; (2) y= V(4+3x)2 • 

877. (1) Y= (l_!x2) 6 ; (2) y=V1 X2 ; (3)y=Vcos4x 
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878. y = V2x- sin 2x. 879. y =sin' x =(sin x)'. 
880. (1) y=sin 2 x; (2) y=cos2 x; (3) y=sec2 x. 
881. y = sin3 x + cos3 x. 882. y=tan8 x-3 tanx+3x. 
883. y=Vl+cos2 x. 884. y=sinVx. 
885. y = V 1 +sin 2x-VI-sin 2x. 

886. Y = (I +c~s 4x)~ 887. y =cots ~ . 
sin2 x 

888. y = cosx . 889. y = x V x2 - I. 

Y2x-I 891 2 t 890, Y = X , • S =a COS a 
892. (1) r =a V~; (2) r= y 2<p+cos2 ( 2<p+ ~). 

893. tU)=Va2 +b2 -2abcost; find r(~). f'(n), 

f' ( 32:t ) • 894. f (X)=-( X+ 2 v- X ; find f' (1 ). 

Find the derivatives of the following functions: 

895. y = v 4x +sin 4x. 896. y = X2 v~. 

897. y =sin• x+cos• x. 898. y = Vt +cos 6x. 

899. (1) y=tanx+ ~ tan3 x+! tan&x; (2) y=sin2 x3 • 

900 =I+sin2x 
• Y !-sin 2x · 

902. r =cos2 ( -i--%). 
904. f (t) = V-1 + cos2 t2 ; 

901. s= y ~ -sin~. 
903 = V4X+I • y x2 • 

~nd f' ( V:). 
6.3. The Tangent Line and the Normal to a Plane Curve 

The slope (k) of the tangent to the curve y = f (x) at 
the point (x 0 , y 0 ) is equal to the value of the derivative 
of f (x) at the point x0 : 

k =tan <p = f' (X0) = [y']x"'xo• (I) 
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The equation of the tangent to the curve at the point 
M (x 0 , Yo) (Fig. 28): 

Y-Yo = k (X-X 0 ). 

The equation of the normal: 
1 

y-y0 = -k (X-X0), 

where k is determined by formula (1). 

(2) 

(3) 

The line segments T A= Yo cot q> and AN= Yo tan q> 
(Fig. 28) are called the subtangent and the subnormal 

NX 
Fig. 28 

respectively; the lengths of the segments MT and MN 
are termed the lengths of the tangent and the normal 
respectively. 

905. Find the slopes of the parabola y = x2 at the 
points x = ± 2. 

906. Write the equations of the tangent and the nor­
mal to the parabola y = 4-x2 at the point of its inter­
section with the axis OX (for x > 0) and construct the 
parabola, the tangent, and the normal. 

In Problems 907 to 910 write the equations of the tan­
gent lines to the given curves and construct the curves 
and the tangent I ines. 

xa 
907. To the curve y = 3 at the point x :::z:- 1. 

908. To the curve y2 = x3 at the points X1 .... 0 and x2 = 1. 

909. To the versiera y = 4;x2 at the point x = 2. 
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910. To the sinusoid y =sin x at the point x = n. 
911. At what angle does the curve y=sinx intersect 

the axis OX? 
912. At what angle do the curves 2y = x2 and 2y = 8-x' 

intersect? 
913. Find the length of the subtangent, the subnormal, 

the tangent, and the normal to the curve (1) y=x2 ; 

(2) y2 = x3 at the point x = 1. 
914. Prove that the subtangent of the parabola y2 = 2px 

is equal to twice the abscissa of the point of tangency, 
and the subnormal, to p. 

915. In the equation of the parabola y=x2 +bx+c 
determine b and c if the parabola contacts the straight 
line y=x at the point x=2. 

9t6. Write the equations of the tangent line~ to the 
hyperbola xy = 4 at the points x, = 1 and X 2 =- 4 and 
find the angle of their intersection. Construct the hyper­
bola and the tangents. 

Write the equations of the tangent lines to the given 
curves and construct the curves and the tangents: 

917. y = 4x-x2 at the points of intersection with the 
axis OX. 

918. y2 = 4-x at the points of intersection with the 
axis OY. 

919. y2 =(4+x) 3 at the points 'of intersection with the 
axes OX and OY. 

920. Find the distance of the vertex of the parabola 
y =x2 -4x+ 5 from the straight line tangent to it at the 
point of intersection of the parabola and the axis OY. 

921. At what angle does the straight line y=0.5 inter­
sect the curve y =cos x? 

922. At what point is the tangent to the parabola y = x2 + 
+ 4x parallel to the axis OX? 

923. At what point of the parabola y=x2 -2x+S is 
the line tangent to it perpendicular to the bisector of 
the first qu'adrant? 

924. Find the lengths of the subtangent, the subnormal, 
2 

the tangent, .and the normal to the curve y = 1 +x2 at 

the point x = 1. 
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x2 
925. What angles are formed by the parabola y = T 

and its chord if the abscissas of the end-points of the 
chord are equal to 2 and 4? 

6 .4. Cases of Non-differentiability of a 
Continuous Function 

I o. A corner point. The point A (x 10 y1) of the curve 
y = f (x) (Fig. 29) is termed corner if the cu·rve has no 
single derivative y' but has two different derivatives at 
this point-a left-hand derivative and a right-hand de-

. ~y ~y 
rivative: ltm "'A= k 1 and lim -;t= k1 • Two tangent 

&x-+-0 LlX &x .... +O LlX 

rays emanate from a corner point with slopes k 1 and k1 • 

2°. A cuspidal point with a vertical tangent line. The 
point B (x2 , y2) (Fig. 29) is called the cusp with a verti-

B 

0 x, 
Fig. 29 

cal tangent line if the curve has no derivative y' at 
this point, but it has a left-hand and a right-hand infinite 
derivatives of opposite signs ( + oo and - oo ). The cusp 
is a particular case of the corner. One vertical tangent ray 
emanates from such a point, or it is better to say that 
two coincident tangent rays emanate from it. 

3°. A point of inflection with a vertical tangent line. 
The point C (x8 , y8 ) (Fig. 29) is called the point of inflec­
tion with a vertical tangent if the curve has an infinite 

derivative at this point: y' = lim ~Y = lim ~Y = -1- oo 
t.X-+-0 LlX i'>X-++0 LlX 

(or - oo). In such a point there exists a vertical tangent 
line. 
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At the points A and B the function y = f (x) has no 
derivative, at the point C it has an infinite derivative. 
At all three points the function is continuous but non­
di jjerentiable. 

926. Graph the function y = VXi (or y =I xI) and find 
the left-hand y:_ and the right-hand y~ derivatives at the 
corner point of the curve. 

927. Graph the function y=0.5V(x-2) 2 on the interval 
[ 0, 4] and find the left-hand y'_ and the right-hand y~ 
derivatives- at the corner point of the curve. 

928. Graph the function y= Vsin2 x on the interval 
[ -n, n] and write the equations of the tangent lines at 
the corner point of the curve. • 

929. Graph the function y = V1 +cos x on the interval 
[0, 2n] and write the equations of the tangent lines at the 
corner point of the curve and find the angle between tqem. 

930. Graph the function y= Vx 2 on the interval [ -2, 2) 
and write the equation of the tangent line at the point 
x=O. 

931. Graph the function y=1-V(x-2) 2 on the inter­
val [0, 4) and write the equation of the.tangent line at 
the point x = 2. 

932. Graph the function y8 = 4x on the interval [ -2, 2) 
and write the equation of the tangent line at the point 
x=O. 

933. Graph the function y8 =4 (2-x) on the interval 
[0, 4] and write the equation of the tangent line at the 
point x= 2. 

934. Graph the function y = 1-V cos2 x on the intervai 
[0, n] and write the equations of the tangent lines at the 
corner point of the curve. 

935. Graph the function y = V(x+ 1 )2-1 on the interval 
[- 2, 0) and write the equation of the tangent line at 
the point x=-1. 

936. Graph the function y = J4x-x2 J on the interval 
[-1, 5) and write the equations of the tangent lines at 

:the corner point x = 0, and find the angle between them. 
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6.5. The Derivatives of Logarithmic and 
Exponential Functions 

The basic formulas: 

Find the derivatives of the following functions: 
I+Inx 937. (1) y=xlnx; (2) y=--; y=log(5x). 

X 

(2) y =In (x2 + 2x). 2 I 
(1) y=lnx----· x 2x2 ' 

938. 

939. 

940. 

(1) y=ln(l+cosx); (2) y=lnsinx-fsin2 x. 

y= In (Vx+ Vx+ 1). 
a2+x2 

941. y =In - 2--2 • a-x 

943. y =In tan ( ~ + ~). 
945. y =In (x + Va2 +x2 ). 

942. 

944. 

x2 
y=ln-1--2 • 

-X 

-./l+2x 
y=ln V !-2x" 

946. y=2V-x-4tn (2+ Vx). 
cosx x x2 

947. (1) y=-.-2-+lntan-2 ; (2) y=ln y . 
sm x !-ax' 

948. Write the equation of the tangent line to the curve 
y =In x at the point of its intersection with the axis OX. 
Construct the curve and the tangent line. 

x2 
949. Show that the parabola y = 2e is tangent to the 

curve y =In x, and find the point of tangency. Construct 
the curves. 

Find the derivatives of the functions: 
950. (1) y=x2 +3x; (2) y=x2 ·2x; (3) y=x2ex. 
951. (1) y = a•ln x; (2) y = e-x•; (3) y = x2e- 2x. 

952. y = 2 ( e; - e- ~ ) . 953. y = VxeVi" . 

l+ex 
954. y= l-ex. 

.. 
- X 955. y = e a cos - . 

a 
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956. (1) y=e-x(sinx+cosx); (2) y=ln(e-x+xe-x). 
ex 

957. y=lnx2+I' 958. y=(eax_e-ax)2. 

959. f(t)=ln(l+a- 21 ); evaluate f'(O). 
960. At what angle does the curve y=e2x intersect the 

axis OY? 
961. Prove that the length of the subtangent at any 

X . 

point of the curve y = e a is equal to a. 
962. Find the derivatives of the following functions: 

(1) y=xx; (2) y=x•inx. ' 
Hint. First take· logarithms of the given functions. 

Find the derivatives of the following functions: 
I 963. y= lncosx-2 cos2 x. 

964. y=ln(Vx-V"x-1). 965. y=ln I+ VX2+1 
X 

966. y =In (sin x + Vl + sln 2 x). 
967. y= In~. 968. Y-:- ~ lntanx+lncosx. 

V sin2x • 
969. y = In 1 . 2 • 970. y = In ( 1 +sec x). -stn x 

971. y=a In (V x+a + Vx)- Vx2 +ax. 

972. y = ae : + xe- ~. 973. y = i ( e ~ + e- ~). 
eX+e-X v--) 974. y =ex-e-x. 975. y =In (e2x + eu + 1 . 

-.f~ I 
976. y= In V e4x+J. 977. y=xx. 

2 +tan t , ( n ) 978. f (t) =In 2 -tan 1 ; evaluate f 3 . 
979. Write the equation of the tangent to the curve 

X 

y = 1-e2 at the point of its intersection with the axis OY. 
Construct the curve, the tangent, and the asymptote of 
the curve. 
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fiJi. The Derivatives of Inverse Trigonometric Functions 

u' u' 
(arcsin u)' = V ; (arccos u)' =- V , ; 

1-u2 l-u 2 

u' u' 
(arctan u)' = 1 + u2 ; (arccot u)' =- 1 +u2 • 

Find the derivatives of the following functions: 

980. y = V 1-x2 +arcsin x. 

981. y=x-arctanx. 

983. y =arcsin~. a 

982. y =arcsin V 1 - 4x. 

984. y =arctan!.... a 

985. y=arccos(1-2x). 986. y=arccot~+:. 

987. (1) y=xV1-x2.+arcsinx; (2) y=arcsin(e3x). 

-./!+x 1 
988. y =arctan x + In V 1_x. 98!l. y =arccos Vx . 

x a 
\190. y = x arctan a--2 In (x2 + a2 ). 

Find the derivatives of the following functions: 

091. y =arcsin Vx. 992. y =arctan V 6x-l. 

H93. (l) y=arccos(1-x2); (2) y=arccotx-.!_. 
X 

1194. y =ex V 1-e2x +arcsin ex. 

1)!15. y = x arccos x-V1-x2 • 

r e2x+ I 
11!.16. y=arctane2x+ln J! e2x_ 1 • 

1197. s = V 4t-t2 +4 arcsin _!f.-. 
1198. y =arccos Vl-2x+ V2x- 4x2• 

ll99. f (z) = (z + 1) arctan e- 2z; evaluate f' (0). 
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6.7. The Derivatives of Hyperbolic Functions 

T e"-e-x ex+e-x 
1°. Definitions. he expressions 2 , 2 and 

their ratios are termed the hyperbolic sine, cosine, tangent, 
and cotangent, respectively. They are denoted: 

. eX-e-x 
smhx = 2 , 

e"+e-x 
coshx= 2 , t h sinh x 

an X= coshx' 

cothx= ~~~~~. 
2°. The properties of hyperbolic functions: 
(1) cosh~x-sinh2 x= 1; 
(2) cosh2 x +sinh~ x =cosh 2x; 
(3) sinh 2x = 2 sinh x cosh x; 
(4) sinh0=0, coshO=l; 
(5) (sinhx)'=coshx, (coshx)'=sinhx; 

(6) (tanh x)' = cos~2 x, (coth x)' =- sin~2 x. 

Find the derivatives of the following functions: 
0 • 

1000. (1) y= smh2 x; (2) y=x-tanhx; 
(3) y=2Vcoshx-1. 

1001. f (x) =sinh i +cosh i; evaluate f' (0) + f (0). 

1002. (1) y=ln[coshx]; (2) y=tanhx+cothx. 
1003. (I) y=x-cothx; (2) y=ln[tanhx]. 

1004. (1) y =arcsin [tanh x]; (2) y =VI+ sinh24x. 

1005. The line y = i ( e~ + e -~) =a cosh~ is called 

the catenary. Write the equation of the normal to this 
line at the point x=a (see the Tables of hyperbolic func­
tions on p. 391). Construct the curve and the normal. 

1006. Write the equation of the tangent to the curve 
y=sinhx at the point x=-2. Construct the curve and 
the tangent to it. 

1007. Prove that the projection of the ordinate of any 
X 

point of the catenary curve y =a cosh- on its normal 
a 

is a constant quantity equal to a. 
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6.8. Miscellaneous Problems on Differentiation 

Find the derivatives of the following functions: 

151 

Y x2 I I tan~ x 
1008. (I) y= +arcsin-; (2)y=-2-+lncosx. 

X X 

1009. y = V 4x-1 + arccot V 4x-1. 
1010. x=ln(e2t+ 1)-2arctan(et). 
lOll. y=4ln(Vx 4+Vx)+V"x-=2-4,.....x. 

I I 
1012. s= 4 tan't-2 tan2 t-ln(cost). 

1013. f (x) = (x2 + a2 ) arctan ~-ax; evaluate f' (a). a 

1014. (l)y=ln[x-:J; (2) y=x(coslnx+sinlnx). 

1015. f (x) =arcsin x-l; evaluate f' (5). 
X 

u 

1016. cp (u) = e -a cos !:. ; show that cp (0) + acp' (0) = 0. 
a 

1017. f (y) =arctan ~-In V y'-a'; evaluate f' (2a). a 

1018. F (z) = 1 ~o=i~~ z; show that F ( -i) -3F' ( ~) = 3. 

1019. Show that the function s = tl~ct satisfies the diffe­

rential equation t ~: +s=-ts2 • 

t-e-tz 
1020. Show that the function x = ~ satisfies the 

differential equation t ~; + 2x = e-t2
• 

6.9. Higher-Order Derivatives 

Let y' = f' (x) be a derivative of the function y = f (x); 
then the ·derivative of the function f' (x) is called the 
second derivative of the function f (x) and is denoted by y", 

f" ( ) d2y or x , or dx2 • 

The second derivative is also called a second-order deri­
vative. In contrast, the function f' (x) is called a first­
order derivative, or the first derivative. 
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A derivative of the second derivative is called the third 
derivative of the function f (x) (or the third-order deriva­
tive). It is denoted· by f"' (x). 

In similar manner we denote the derivatives of the 
fourth order f1v (x), fifth order fv (x) and so forth (num­
bers are used instead of dashes to save space and Roman 
numerals are used to avoid confusion with exponents). 

A derivative of the nth order is symbolized by f<n> (x). 
Thus, 

the derivative of the 
d3 

third order y"' = f"' (x) = d/a , 
the derivative of the 

d4 
fourth order y1v = { 1v (x) = dx~ , 

and, in general, 

the derivative of the nth order y<n> = f<n> (x) = ddn~. 
X • 

1021. Find the second-order derivative of the function: 

(I) y=sin2 x; (2) y=tanx; (3) y=VJ+"X2. 

1022. Find the third-order derivative of the function: 
I 

(l)y=cos2 x; (2)y=x2 ; (3)y=xsinx. 

1023. Find the third-order derivative of the function: 

(1) y=xlnx; (2) s=te-t; (3) y=arctan;. 

t v--2 . t . d3s 1024. s= 2 2-t +arcsm y-2 , find dts· 

Find the derivative of the nth order of the function: 
X 

1025. (I) e a; (2) In x; (3) Vx. 
1026. (I) xn; (2) sin x; (3) cos2x. 
1027. Deduce the Leibniz rule by 

differentiation: 

(uv)" =u"v+2u'v'+uv"; 

(uv)"' = u"'v+ 3u"v' + 3u'v" + uv'"; 

means of successive 

(uviv =u111v-j-4u"'u'-j-6u"u"+4u'u'"+uv1v and so on. 
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1028. Using the Leibniz rule find the second derivative 
of the function: 

(1) y,.,.,excosx; (2) y=axx3 ; (3) y=x2 sinx. 

1029. Using the Leibniz rule find the third derivative 
of the function: 

(I) y=e-xsinx; (2) y=x2 lnx; (3) y=xcosx. 

X 

1030. f (x) =xea; find f"' (x), f<n) (x), f<nl (0). 
1031. f(x)=(l+x)m; find f(O), f'(O), f"(O), f"'(O), ... 

. . . , f<n) ~0). 

1032. f (x) = y x ; show that for n ~ 2 
l+x 

f<nl(O) = (-l)n-1 1·3·5.2.n.(~n-3) n. 

I 
1033. f (x) = l-x2 ; show that 

{ 
n! at n =2m, 

f(n) (0)-
- 0 at n=2m-1. 

Hint. Take advantage of the identity 

I I ( I I ) 
l-x2 =2 l+x+l-x · 

1034. By differentiating the identity (x-1) (x2 +x3 + 
+ ... +xn) """xn+x_x2 three times with respect to x and 

n 

puttingthenx=l, find the sum ,L.k(k-l)=(n+l)~(n-l) 
k=l 

and then the sum of squared numbers of the natural series 
n 

L k2= P+ 22+ ... +n2 =n(n+l)6(2n+ I). 
k=l 

1035. Find the second derivative of the functi•n: 

(I) y=e-x2
; (2) y=cotx; (3) y=arcsin ~. 
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1036. Find the nth derivative of the function: 
1 

(1) y=a"; (2) y= 1+ 2x; (3) y=sin2 x. 

1037. f (x) =arcsin.!..; find f (2), f' (2} and f" (2). 
X 

1038. Using the Leibniz rule, find the third derivative 
of the function: 

(I) y=x8e"; (2) y=x2 sin~; 
a 

(3} y=xf'(a-x)+3f(a-x). 

1039. Show that the function y=excosx satisfies the 
differential equation y1v+4y=0. 

1 

1040. Show that the function y =xe -x- satisfies the 
equation x8y"-xy' + y = 0. • 

-~ n(n 1)( l)n 
1041. f (x) = x2e a ; show that f<n> (0} = -n 2- • 

z a 
1042. f (x) =e-x; show that 
ftn> (0) = -2 (n- 1) f<n-2> (0), f<2m-l) (0) = 0, 
f2m(0)=(-2)m(2m-1)(2m-3) ..• 5·3·1. 
1043. f (x) =xn; show that 

f(l)+f'~l)+/"2(/)+ • • • + f<n~l(l) =2n. 

6.10. The Derivative of an Implicit Function 

Tf an equation F (x, y) = 0, unsolved with respect to y, 
defines y as a single-valued function of x, then y is termed 
the implicit function of x. To find the derivative y' of this 
implicit function, we have to differentiate both members 
of the function F (x, y) = 0 with respect to x, conside­
ring y as a function of x. From the equation thus obtained 
we find the required derivative y'. To find y" we hwe to 
differentiate twice the equation F (x, y) = 0 with respect 
to x, and so on. 

Find y' from the equations: 
x2 y2 

1044. (1) x2 +y2 =a2; (2) y 2 =2px; (3) (i2-b2=1. 

1045. (I) x2+xy+y2 =6; (2) x2 +y2-xy=0. 
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I 2 I 

1046. (I) x3 +y8 =as; (2) eY-e-x+xy=O. 
1047. ex sin y-e-Y cos x = 0. 
1048. x=y+arccoty. 

1049. eXY-x2 +y3 =0; find~ at x=O. 

1050. Find y" from the equations: 
( 1) x2 + y2 = a2 ; (2) ax+ by-xy = c; (3) xmyn =I. 

x2 y2 
1051. li2+b2= 1; find y" at the point (0, b). 

1052. Write the equations of the tangents to the curve 
x2 +y2 +4x-2y-3=0 at the points of its intersection 
with the axis OY. 

1053. Find the points of intersection of the normal of 
the hyperbola x2-y2 = 9, drawn from the point (5, 4), 
with the asymptotes. 

1054. Write the equation of the tangent to the curve: 
x2 y2 

(1) 'ii2+b2= 1; (2) y2 = 2px at the point (X0 , y0). 

1055. Write the equations of the tangents to the astroid 
2 I I 

x 8 + y 8 =a 3 at the points of its intersection with the 
straight line y = x. 

1056. At what angle do the curves x2 + y2 = 5 and y2 = 4x 
intersect? 

1057. Find y' from the equations: 
x2 y2 

(1) G2+b2= 1; (2) x3 +y3 -3axy=0. 

1058. Find y" from the equations: 

(1) x'-y2 = a2 ; (2) (x-a.)2 + (y-~)2 = R2 ; 

(3) arctany=x+y; (4) x2 +xy+y2=a2. 

1059. Write the equations of the tangents to the circle 
x2 +y2 +4x-4y+3=0 at the points of its intersection 
with the axis OX. Construct the circle and the tangents. 

1060. Write the equation of the tangent to the ellipse 
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x2 +4y•=-16 at the midpoint of the segment of a tangent 
line intercepted by the coordinate axes if the point lies 
in the first quadrant. 

. s t 
-- -- ds 

1061. te 2 +se •=2; find& at t=O. 
dx 

1062. tlnx-xlnt=l; finddt at t=l. 

1063. x2 siny-cosy+cos2y=0; find y' at y= ~. 

6.11. The Differential of a Function 

If a function y = f (x) is differentiable at the point x, 
i.e. it has a finite derivative y' at this point, then 

~~ = y' +a, where a- 0 as ~x __.. 0; hence • 

~y=y' ~x+a~x. (1) 

The principal linear part y' ~x of the increment ~y of 
the function, which is proportional to ~x, is called the 
differential of the function and is denoted by dy: 

dy = y' ~X. (2) 

Putting y=x in formula (2), we get dx=x'~x= 
= l . ~x = ~x, and therefore 

dy=y' dx. (3) 

Formula (3) also holds true if x is a function of a new 
variable t. 

It follows from (l) that ~y ~ dy, i.e. for a sufficiently 
small dx=~x the increment of a function is approximately 
equal to its differential. 

In particular, for a linear function y=ax+b, we have: 
11y=dy. 

Find the differentials of the following functions: 
1064. (l) y=xn; (2) y=x3 -3x2 +3x. 

V-- gtl 
1065.(l)y= l+x2 ; (2)s= 2 . 

1066. (1) r = 2cp-sin 2cp; (2) X= 1
1
2 • 
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1067. (I) d(sin 2 t); (2) d(l-cosu). 

1068. (I) d (: +arctan ~); (2) d (a+ In a); 

(3) d (cos ~); (4) d (arcsin ~). 

1069. By finding the differential of each term of the 

equation, find :~ from the following equations: 

(I) x2 +y2 =a2 ; (2) xy=a2 ; (3) x2 -xy-y2 =0. 
1070. (I) y=x2 ; find the approximate value of the in­

crement of y (!:ly ~ dy) for x varying from 2 to 2.01; 
(2) y= Vx; find the approximate value of the increment 

of y for x varying from 100 to 101. 
1071. (I) The edge of a cube x = 5 m + 0.01 m. Deter­

mine the absolute and the relative errors in computing 
the volume of the cube. 

(2) The length of telegraph wire s = 2b (I+~~:) , where 

2b is the distance between two neighbouring poles, and f, 
the maximum deflection of the wire. By how much will 
the deflection f increase when the wire is elongated by ds 
as a result of heating? 

1072. (I) What must be the accuracy in measuring the 
abscissas of the curve y=x2 Vxfor x~4 in order to com­
pute its ordinates with an error not exceeding 0.1? 

(2) With what relative accuracy must the radius of a 
sphere be measured in order to compute its volume with 
an error not exceeding I per cent? 

1073. Find the approximate values of the: (1) area of 
a circular ring; (2) volume of a spherical shell. Compare 
them with the exact values. 

Find the differentials of the functions: 
I I 

1074. (1) y=--2 ; (2) r=cos(a-bcp); 
X X 

(3) s = VI-t 2 • 

1075. (1) y =In cos x; (2) z =arctan V 4u -1; (3) s =e- 2t. 

1076. (1) d(Vx+ 1); (2) d(tanct-ct); (3) d(bt-e-tJ1). 
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1077. (I) y=x3 ; determine !ly and dy and calculate 
them for x varying from 2 to 1.98. 

(2) The period of oscillation of a pendulum T = 

= 2n ~ sec., where l is the length of the pendulum 

in centimetres. How must the length of the pendulum 
(/ = 20 em) be changed to reduce the period of osci II a tion 
by 0.1 sec? 

(3) What must be the accuracy in measuring the abscis­
sas of the curve xy = 4 for x ~ 0.5 in order to compute 
its ordinates with an error not exceeding 0.1? 

6.12. Parametric Equations of a Curve 

Let a curve be represented parametrically by the equ­
ations x=f(t) and y=q:;(t). Denoting the derivatives with 
respect to the parameter by dots, we find: 

dy y. 
dx=~· 

d2y d ( t) yx·-x!i 
-=--= 
dx2 dx x3 

1078. Construct the curves specified parametrically: 

( x=i 2 ( x=t 2 

(1) t y= ~ f3; (2) 1 y= ~ -t. 

Eliminating t from the given equations, write the equa­
tion of each curve in the usual form F (x, y) =0. 

Reduce to the form F (x, y) = 0 (or y = f (x)) the equa­
tions of the curves represented parametrically: 

{ x =a cost { x =a cos3 t 
1079· (1) y=bsint; (2) y=asin3 f. 

1080. (l) { 
x =tan t 

(2) y =COS2 f. 
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1081. Construct the involute of a circle (sec Problem 368) 

{ x =a (cost+ t sin t) 

y =a (sin t-t cost), 

putting t = 0, ~ , n, 3; , 2n. 

1082. Putting y =xt, obtain the parametric equations 
of the folium of Descartes x3 +y3 -3axy=0 (see Prob­
lem 366) and investigate the motion of a current point 
along the curve with t varying monotonically (1) from 0 
to + oo; (2) from 0 to -1; (3) from -oo to -1. 

1083. Write the equation of the tangent to the cycloid 
(see Problem 367) x=a(t-sint), y=a(I-cost) at the 

point t = ~ . Construct the curve and the tangent line. 

1084. Write the equation of the tangent to the hypo­
cycloid (astroid) x=acos3 t, y=asin3 t at the point 

t = T. Construct the curve and the tangent line. 

Hint. Prior to constructing the curve tabulate the va-
n n 3n 

lues of x and y at t = 0; 4 ; 2 ; T and so on. 
. d2y 

1085. Ftnd dx2 

{ 
X=QCOS t 

(l) y=asint; 

from the equations: 

(2) { yx '13: -t·, { x=a(t-sint) 
(3) y=a(I-cost). 

1086. Construct the curves given by the parametric 
equations: 

(I) X=2f-}, y=l-4( 2 ; (2) X=f 3 , y=f2 -2, 
by finding the points of their intersection with the coor­
dinate axes and taking into account th:~t for the second 

curve ~ = oo at t = 0. Write the equations of the curve 

in the form F (x, y) = 0. 
1087. Write the equation of the tangent to the cycloid 

x =a {t-sin t), y=a (I-eos t) at the point t = 3; . Con­

struct the curve and the tangent. 
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1088. Write the equation of the tangent to the involute 
of the circle x=a(cost+tsint). y=a(sint-tcost) at 

the point t= ~. 

1089. Find ::; from the equations 

{ 
x=2cos t 

(l) y=sint; 
{ x=t 2 

(2) Y = t + ta; 



CHAPTER 7 

APPLICATIONS OF THE DERIVATIVE 

7 .1. Velocity and Acceleration 

Let a point move along the axis OX and at a moment t 
have the ordinate x = f (t). Then at the moment t 

th l •t r 1\x dx e ve oct y v = tm /It = df ; 
lit~ 0 

th I t . r 1\v dv d2x 
e acce era ton w = tm 7J = dt = dt2. 

t.t~o 

1090. An antiaircraft projectile is launched upwards at 
the initial velocity of a m;sec. At what height x will it 
be in t seconds? Determine the velocity and acceleration 
of its motion. When will the projectile reach the highest 
point, and at what distance from earth's surface will this 
point he? 

1091. A body moves along a straight line OX according 

to the law: x = ~ -2t2 + 3t. Determine the velocity and 

acceleration of its motion. At what moments does the body 
change the direction of motion? 

1092. A material point is in oscillating motion obeying 
the law x =a cos rot. Determine the velocity and accele­
ration at the points x =+a and x = 0. Show that the 

acceleration !;; and displacement x are related by-a diffe-

t . l t• d2x 2 ren ta equa ton IJJ2 =- ro x. 

1093. A revolving flywheel, which is being hindered by 
a brake, in t seconds turns through an angle cp=a+bt-ct2 , 

a, b, and c are positive constants. Determine the angular 

6 -1895 
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velocity and angular acceleration. When will the flywheel 
stop? 

1094. A wheel of radius a rolls along a straight line. 
The angle IP through which the wheel turns during t se-

conds is determined by the equation IP = t + t; . Find the 

velocity and acceleration specifying the motion of the 
centre of the wheel. 

1095. Let v be the velocity and w the acceleration of a 
point moving along the axis OX. Show that wdx = vdv. 

1096. A point is in rectilinear motion characterized by 
the equation v2 = 2ax, where v is the velocity and x is 
the path covered, a being a constant. Determine the ac­
celeration. 

1097. A body situated at a height of 10 m was thrown 
upwards with an initial velocity of 20 m;sec. At what 
height will it be in t seconds? Determine the velo­
city and acceleration of its motion. In how many seconds 
and at what height will the body reach the highest 
point? 

1098. A hemispherical vessel of radius R em is being 
filled with water at a constant rate of a litre/sec. Determine 
the rate of water level rise at the height of h em and 
show that it is inversely proportional to the area of the 
free surface of the liquid. 

Hint. The volume of a spherical segment V=nh 2 ( R- ~). 
Differentiate both members of this equality with respect 

to t, ~being equal to a (by hypothesis). 

1099. The relationship between the quantity x of a sub­
stance obtained in a chemical reaction and the time t is 
expressed by the equation x=A(I-e-k1). Determine the 
reaction rate. 

1100. Let :; =ro (angular velocity) and~ = e (angular 

acceleration). Show that d (ro2
)- 2e dq> - • 
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7.2. Mean-Value Theorems 

I0 • Rolle's theorem. If f (x) (I) is continuous on a clo­
sed interval [a, b]; (2) has a derivative inside it; (3) 
f (a)= f (b), then for some value of x (say c) between a 
and b 

f' (c)= 0. (I) 

2°. Lagrange's theorem. If f (x) (I) is continuous on a 
closed interval [a, b]; (2) has a derivative inside it, then 
for some value of x (say c) between a and b 

f(b)-f(a)=(b-a)f'(c). (2) 

3°. Cauchy's theorem. If f (x) and q> (x) (1) are conti­
nuous on a closed interval [a, b]; (2) have derivatives 
inside it, and cp' (x) =1= 0, then for some value of x (say c) 
between a and b 

f (b)- f (a) f' (c) 
cp(b)-cp(a) = cp' (c)· (3) 

These theorems are called the mean-value theorems, 
since they treat some value of x = c lying between a and b. 

Geometrical interpretation: Rolle's and Lagrange's the­
orems assert that there is at least one point between A 
and B on the arc AB of a continuous curve y = f (x) where 
the tangent is parallel to the chord AB, provided that 
there is a tangent at every point of the arc AB. It is 
obvious that on arcs having corners and cusps the condi­
tions for the mean-value theorems are not fulfilled. 

The following proposition is a special case of Rolle's 
theorem when f (b)= f (a)= 0: if a and b are roots of a 
function f (x), then between a and b there is at least one 
root of its derivative f' (x), provided f (x) is continuous 
on a closed interval [a, b] and has a derivative inside it. 

1101. Check to see that between the roots of the func­
tion f(x)=x 2 -4x+3 there is a root of its derivative. 
lllustrate this graphically. 

1102. Is Rolle's theorem applicable to the function 

6* 
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f(x) =1-Vx2 on the closed interval [-1, 1)? Illustrate 
this graphically. 

II 03. Construct the arc AB of the curve y =I sin x 1 over 

the interval [- ~ , ~] . Why does the arc have no tangent 

parallel to the chord AB? Which of the conditions of 
Rolle's theorem is not fulfilled here? 

1104. At what point is the tangent to the parabola 
y=x2 parallel to the chord connecting the points A (-1, 1) 
and B (3, 9)? Illustrate this graphically. 

1105. Write Lagrange's formula for the function f (x)=,X1 

on the closed interval [a, b] and find c. Illustrate this 
gra phica II y. 

1106. Write Lagrange's formula for the function f (x)= 
= Vx on the closed interval [ 1, 4) and find c. • 

1107. Show that on the interval [ -1, 2) Lagrange's 

theorem is not applicable to the functions ..! and 1-V x2 : 
X 

Illustrate this graphically. 
ll08. Construct A8 of the curve y =I cos xI for the in-

terval [ 0, 2;] . Why does the arc have no tangent paral­

lel to the chord AB? Which of the conditions of Lagrange's 
theorem is not fulfilled here? 

1109. Construct the graph of the function f (x)= 

{ x for lx I< 2 
= 1 for I xI~ 2. Having taken on it the points 0 (0, O) 

and B (2, 1), show that between 0 and B the curve has 
no point at which the tangent is parallel to OB. Which 
conditions of Lagrange's theorem are fulfilled for this func­
tion on the interval [0, 2] and which ones are not? 

1110. A train covered the distance between two neigh­
bouring stations with a mean (average) velocity v0=40 km;h. 
Lagrange's theorem asserts that during motion there was 
a moment at which the instantaneous (but not mean) ve. 

locity of motion ¥t equaled 40 km/h. Show this. 

lilt. It is given that f (x) is continuous on a closed 
interval [a, b] and has a derivative at each point inside 
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it. Applying Rolle's theorem to the function 

x f (x) I 
<D(x)= b f(b) I, 

a f (a) 1 

• 165 

obtain Lagrange's theorem. Find out the geometrical mea­
ning of the function <D (x). 

1112. Write Cauchy's formula f(b)-f(a) = f'(c) for the 
cp (b)- cp (a) cp' (c) 

functions f (x) = x3 and <p (x) = x2 , and find c. 
1113. Cauchy's theorem asserts geometrically that on an 

arc of a curve given by the parametric equations x=<p (t), 
y = f ( t) corresponding to the interval a~ t:::;;;. b there is 
an intermediate point at which the tangent is parallel to 
the chord if the functions <p (t) and f (t) on the closed in­
terval (a, b] satisfy the conditions of Cauchy's theorem. 
Prove this. 

1114. Write Lagrange's formula in the form f (x+~x)­
- f (X)= ~xf' (X+ 8 ~X), where 0 < 8 < 1, for the functions: 
(I) f(x)=x 2 ; (2) f(x)-=x8 , and show that for the first 
function e is independent of x, and for the second it de­
pends on x and ~x. 

V- l 
1115. Show that 101 = 10+ y ~ 10.05. 

2 100+8 
1 116. With the aid of Cauchy's formula prove that if 

then 

where 

f (0) = f' (0) = f" (0) =, , , = f<n-ll (0) = 0, 

f (x) f<n> (Ox) 
-xn=-n-1-

1117. Write Lagrange's formula 

f (b) -4 (a)= (b-a) f' (c) 

for the function f (x) = x3 and find c. 
1118. Write Lagrange's formula and find c for the func­

tions: 
(I) f (x) =arctan x on the interval [0, 1 ]; 
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(2) f (x) =arcsin x on the interval [0, 1 ]; 
(3) f (x) =In x on the interval [I, 2]. 
1119. Write Cauchy's formula and find c for the functions! 

(I) sin x and cos x on the interval [ 0, ~ J ; 
(2) x 2 and Vx on the interval [I, 4]. 
1120. Graph the function y =I x-II on the interval 

[0, 3]. Why is it impossible here to draw a tangent pa­
rallel to the chord? Which of the conditions of Lagrange's 
theorem is not fulfilled here? 

1121. At what point is the tangent to the curve y=4- ~~ 
parallel to the chord connecting the points A (-2, 0) and 
B (I, 3)? Illustrate this graphically. 

7.3. Evaluating Indeterminate Forms. £'Hospital's Rule • 
I 0 • The indeterminate form ~ . The first L'Hospital 

rule. If lim f (x) = lim q> (x) = 0, then lim f ((x)) =lim f', ((x)), 
x->-a X-+a x-.a<ll X X-+a<p X 

when the latter exists. 

2°. The indeterminate form 00 • The second L'Hospi-
oo 

tal rule. If lim f (x) = lim q> (x) = oo, then lim f (x) = 
x _,. a x -+- a x _,. a <p (x) 

= lim f', ((x)) , when the I atter exists. 
x-+-a<p x 

3°. The indeterminate forms 0-oo, oo-oo, I"' and 0° 
f 0 00 

are reduced to the indeterminate orms 0 and 00 by 

· means of algebraic transformations. 

Find the limits: 

1122. lim sin 3x. 
X-+0 X 

I . x-a 
1124. tm ,....---;; . 

x-~aX -a 

1126. lim 1-cosax. 
x _ 0 I-eos bx 

1128. lim x- s~n x. 
X-+ 0 X 

I. ex- I 
1123. tm -.-2- • 

.t _,. 0 Sin X 

I. x-1 
1125. tm -1 - • 
.; .t-+ 1 nx 

1127. lim 1 -c~sx. 
X-+ 0 X 

1129. lim tan x-.sin x. 
x _,. 0 X- Sin X 
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. e" . ex 
1130. (1) hm ;i; (2) hm a. 

X-+-+aoX X-+-aoX 

1 131. lim In x . 
X-t-aD X 

1132. lim lntx . 
X-+ 0 CO X 

. tanx 
1133. ltm -t 3 • 

l't an x 
X-+2 

1134. lim (n-x) tan ~ . 
X-+-l't 

1135. limxln x. 
X-+0 

1136. lim xn·e-". 1137. lim x". 
X-++ oo X-+0 

1138. lim (sin x) tan x. 1139. lim ( 1 + ~)". 
X-+0 X-+ao X 

1140. Determine the order of the infinitesimal xex -sin x 
with respect to x ~ 0. 

1141. Prove that as x~o: 
x~ a 

(I) x-arctanx~ 3 ; (2) a"-b"~xlnb; 

(3) e2"-1-2x~2x2 ; (4) 2x-ln(l+2x)~2x2 • 
xs 

1142. Prove that (as x--. 0) x-sin x ~ 6 and hence 

sin x ~ x with an error approximately equal to ~ . Eva­
luate sin 1° and sin 6° and estimate the error. 

V-- I a2 
1143. Prove that (as a---+0) 1+a-1-3a~-9 

V-- I a 2 
and hence 1 +a~ 1 +a a with an error ~ 9 . Compute 

V1.oo6, Vo.991, V65, V2to and estimate the error. 

Find the limits: 
eax_ebx 

I 144. lim . • 
X-+ O Sin X 

l . 1-sinax 
1146. liD (2 )2. 

l't ax-n 
x-+ 2a 

1148• lim 1-2 sin x. 
n cos 3x 

X-+S 

. e2x_J 
1150• J~o In (1+2x) • 

1145. lim x-ar~tanx. 
X-+ 0 X 

. aX-lX 
1147. lim -t--· 

x ..... 0 an x 

ll49 I' J-tan X 

• lmn cos 2x • 
X-+4 

1151. lim 1 lnx~. 
x-+1 -x 
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1152. lim (l-e2") cot x. 
JC-+0 

I 

1153. lim xr=x. 
JC-+) 

I 

1154. lim (-.1 --~). 1155. lim (ezx + xfx. 
x -+ O X Sin X X x -+ 0 

x3 
1156. Prove that as X---+0 arcsinx-x~ 6 . 

1~ ct ct2 
1157. Prove that (as a.---+ 0) r 1 + u.-l- 2 ~ - 8 and 

hence VI +a.~ 1 + ~ with an error approximately equal 

to ~2 • Compute v 1.006, VI.004, vo.998, V0.994, V65, 

V85 and estimate the error. 

7.4. Increase and Decrease of a Function. 
Maxima and Minima 

1°. Definitions. I. A function f (x) Is called an increa­
sing function at a point x0 if, in a sufficiently_ small 
e-neighbourhood of this point, 

• 

f (Xo-h) < f (X0) < f (xo+h) 

for any positive h <e. 
I I. A function f (x) is called increasing in an interval 

[a, b] if for any x1 and X2 within this interval f (x1) < f (x2) 

when X1 < X2 • 

A function decreasing at a point and in an interval is 
similarly defined. 

III. A function f (x) has a maximum or minimum (extre­
mum) at a point x0 if f (x0) is less or greater, respectively, 
than all neighbouring values. 

2°. Sufficiency tests for the increase and decrease of a 
function y = f (x) (at a point and in an interval): 

if y' > 0, then the function increases; 
if y' < 0, then the function decreases. 
3°. Necessary condition for an extremum. A function 

y=f (x) has an extremum only at points where y' =0 or 
does not exist. Such points are called critical. At these 
points the tangent is either horizontal (y' = 0), vertical 
(at a cuspidal point) or there is no definite tangent (for 
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instance, at a corner point). In the latter two cases y' 
does not exist. 

4°. Sufficient conditions for an extremum. If a function 
f (x) is continuous at a point x0 and has a finite derivative 
within some neighbourhood of X0 , except, perhaps, the 
point X0 , and if, when x passes through x0 , 

y' changes + for -, then f (X0 ) = Ymax• 
y' changes - for +. then f (xo) = Yriiln• 
y' does not change the sign, then there is no extremum. 

Fig. 30 

The third case takes place at an ordinary point (for 
y' > 0 or y' < 0), and also at a point of inflection and 
at a corner. 

Thus, to find an extremum of a function, it is neces-
sary to: · 

(I) Find y' and the critical points at which y' =0 or 
does not exist. 

(2) Determine the sign of y' on the left and on the 
right of each critical point, making a table of he form 

X Xt Xz XJ x4 

I 

0 
does 

0 y - + not -· - -oo -
exist 

y decreases v increases A de- ~. de- il de-f./1- P.eases min max creases flection lftectiol. creases 

Then find Ymax and Ymln and plot the curve. Figure 30 
shows a graph constructed by the points given in the 
table. 
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5°. Sufficient conditions for an extremum (a second 
method of investigation). 

If at some point x=x0 : 

( 1) y' = 0 and y" <0, then f (Xo) = Ymaxl 
(2) y' = 0 and y" > 0, then f (x0) = Ymln; 
(3) y' = 0 and y" = 0, then the problem remaIns unsol-

ved and it is necessary to resort to the first method. 

Test the following functions for increase and decrease: 

1158. (1) y=x2 ; (2) y=x8 ; (3) y=...!..; (4)y=lnx. 
X 

1159. (1) y=tanx; (2) y=ex; (3) y=4x-x1 • 

Find the extremum of the function and construct its 
graph"'· • 

1160. y=x2 +4x+5. 

1168. 
x2 -6x +13 

y= x-3 · 

1170. y= 1-V(x-4)2. 
1172. y=x+cos2x on the 

1173. y=4x-tanx on the 

1174. 
l+lnx 

y=-x-· 
X 

1176. (1) y = xe 2. 

' 
1177. (1) y=Vsinx1 ; 

1178. y =sin4 x+cos4 x. 

X~ 
1161. y=4x-3 . 

x' 1163. y=1+2x11 - 4 . 

X 2 
1165. u= 2 +-x. 

I 
1167. Y = l+xa. 

1169. y=x1 (1-x). 

1171. y =e-x'. 
interval (0, n). 

interval (- ~ , ~). 
1175. y = x-arctan 2x. 

(2) y=x lnx. 

(2) y =-{ ex•- 1. 

1179. y=xV I x. 

"' In Problems 1165, 1168, 1173 and some others the curves are 
constructed by finding their asymptotes (see Sec. 5.9). 
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4 vx­
tt8o. y = x+2 . 
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2 2 
x2 I 

ll82. y=2+-x· 1183, y=x 3 + (x-2)9. 
x6 

ll84. y=s--x'+x8 • ll85. y=x3 (x+2)2. 

1186. y=2(!-:2 ). 1187. Y=xt 3 . 

1188. y=2tan-x-tan2 x. 1189. y=x+ln(cosx). 
1190. (1) y=ln~-arctanx; (2) y=lxl (x+2). 
1191. y=x2e-x. 1192. y=3 V(x+l) 2 -2x. 

Find the extremum 
graph: 

ll93. y = 4x-xz. 
xa 

1195. y = 3 +x2 • 

xz 
tt97. y=-2 . 

X-

ll99. 

1201. 

x' Y=-:r-2xz. 

(x-J)2 
y= x2 +1 ' 

of the function and construct its 

1194. y =X2 + 2x-3. 

1196. y=x3 +6x2 +9x. 
x4 

1198. y = x8 + 4 . 

V-1200. y = 2x -3 x2. 
x• 

2 

1203. y=x-21nx. 1204. y=xs(x-5). 

1205. y=sin2x-x on the interval(-]-,~). 
1206. y=2x+cotx on the interval (0, :n). 

1207. y=x+arccot2x. 1208. y=1+V(x-1f~. 
1209. y=2sinx+cos2x on the interval (0, :n). 

lnx 
1210. y=3x4 -8x3 +6x2 • 1211. y=-. 

X 

3-x2 1 
1212. y= x+ 2 . 1213. y=x+-x· 

1214. (1) y=ae-xcosx(forx> 0); (2) y=3x6 -5xs. 

1215 (4-x)a 1216 - 12 V;+2}2 
' y= 9(2-x) · • Y- xz+B • 
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1217. 

1219. 

1221. 
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1218. y = (1-x2) (1-x3), 

1220. y=x+2V x. 

(2) y= V 1-cosx. 

7.5. Finding Greatest and Least Values of 
a Function 

1222. A rectangular playground of the greatest possible 
area is to be enclosed by a fence 120 m long. Determine 
the dimensions of the playground. 

1223. Break the number 10 into two addends so that, 
when multiplied by each other, they yield the greatest. 
product. 

1224. A rectangle of the greatest possible area is ins­
cribed in a triangle whose base is a and altitude h. 
Determine the area of the rectangle. 

1225. Equal squares are cut away from the corners of 
a square sheet of cardboard and then a rectangular box 
is made. What side must the cut-away square have to 
get a box of the maximum volume? 

1226. Determine the most economical dimensions of an 
outdoor swimming pool of volume 32 m3 with a square 
bottom so that the facing of its walls and bottom requires 
the least quantity of material. 

1227. The non-parallel sides and the smaller base of 
a trapezoid are equal to 10 em each. Determine its greater 
base for which the area of the trapezoid attains the grea­
test value. 

1228. Inscribed in a semicircle is a trapezoid whose 
base is equal to the diameter of the semicircle. Determine 
the angle at the base of the trapezoid at which the area 
of the trapezoid takes on the greatest value. 

1229. The section of a tunnel has the form of a rectangle 
completed with a semicircle. The perimeter of the section 
equals 18 m. At what radius of the semicirle the section 
area will be maximum? 

1230. A factory A is to be connected by a highway 
with a straight railway on which a town B is situated. 
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At what angle a should the highway be connected with 
1 he railway so as to ensure the least freight charges from 
factory to town, if freight charges on the highway are m 
1 imes higher than on the railway? 

1231. Two sources of light are situated 30 m apart. 
On the straight line connecting these sources find the 
least illuminated point if the ratio of candle powers of 
the light sources is 27:8. 

1232. Two aircrafts are flying in a straight line and in 
the same plane at an angle of 120° to each other and 
with an equal speed of v km;h. At a certain moment one 
aircraft reaches the point of intersection of their routes, 
while the second is at a distance of a km from it. When 
w111 the distance between the aircraft be least and what 
is that distance? 

1233. A freely supported rectangular beam is uniformly 
loaded over the entire length. Its bending deflection is 
inversely proportional to the moment of inertia of the 

beam section I=~~, where x and y are the dimensions 

of the beam. Determine the dimensions of the beam to 
ensure the least deflection if the beam is made from a log 
of diameter D. 

1234. How many tinies does the volume of a sphere 
exceed the volume of the greatest cylinder inscribed in 
this sphere? 

1235. Two corridors 2.4 m and 1.6 m wide intersect at 
a right angle. Determine the greatest length of a ladder 
which can be carried horizontally from one corridor into 
the other. 

1236. A cylinder of the greatest volume is inscribed in 
a cone of radius 4 dm and height 6 dm. Find this volume. 

1237. A rectangle of the greatest area is inscribed in a 
semicircle of radius R. Determine its dimensions. 

1238. On the parabola y=x2 find the point least distant 
from the straight line y=2x-4. 

1239. A picture hangs on the wall. Its bottom is b em, 
and its top is a em higher than the eye of the observer. At 
what distance from the wall should the position of the 
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observer be found to ensure the greatest angle of exa­
mining the picture? 

1240. The total length of the walls of the house shown 
in Fig. 31 must be 90 m. What width x of the corridor 
ensures the greatest area of the rooms? 

J 
5x 

Fig. 31 

Jx p 

Fig. 32 
• 

1241. Inscribed In a right triangle with the hypote­
nuse 8 em long and an angle of 60° is a rectangle whose 
base is situated on the hypotenuse. What must be the 
dimensions of the rectangle to yield the greatest area? 

1242. Given the points A (0, 3) and B ( 4, 5). On the 
axis OX find the point M so that the distance S=AM+MB 
is the least. 

1243. The resistance of a beam to axial compression is 
proportional to the area of its cross-section. What must 
be the dimensions of the beam to ensure the greatest resist­
ance to axial compression if it is made from a log of 
diameter D? 

1244. A circular sector of angle a is convoluted to form 
a cone. At what a the volume of the cone thus obtained 
wil 1 be the greatest? 

1245. A body of weight P lying on a horizontal plane 
must be displaced by a force F applied to it (Fig. 32). 
What angle a with the horizontal must the force F form to 
ensure its least value? The coefficient of friction f.1 = 0.25. 

7 .6. Direction of Convexity and Points of 
Inflection of a Curve. Construction of Graphs 

1°. The convexity of a plane curve. A plane curve is 
called convex up (down) at a point x=x0 if in a suffici-
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entl y small neighbourhood of this point the curve is 
situated below (above) the tangent at this point. If at 
the point x =X0 

(1) y" > 0, then the curve is convex down; 
(2) y" < 0, then the curve is convex up. 
2°. The point of inflection. If a curve near some point 

lies on both sides of the tangent then the point is called a 
point of inflection of the curve. The necessary condition 
for a point of inflection: at this point y" = 0 or does not 
exist, and the sufficient condition: y" changes sign. 

3°. To construct a curve it is recommended to determine 
the following: (1) symmetry; (2) domain; (3) points of 
intersection with the axes OX and OY; (4) points of dis­
continuity of the function y = <p (x) or x = f (y) an asymp­
totes; (5) increase or decrease of y or x and extremum 
points; (6) direction of convexity and points of inflection. 

1246. Investigate the direction of convexity and con­
struct the following curves: 

(1) y =X2 ; (2) y =x3 ; (3) y =ex; (4) y = lnx; 
6 

(5)y=xs. 

1247. Determine the extrema and the points 
and plot the curves: 

x3 • 2x 
(I) Y=r;-x2; (2) y=e-x; (3) y=I+xz; 

of inflection 

Applying some of the rules of Item 3°, graph the curves 
given in Problems 1248 to 1262 by the following equa­
tions: 

1249. y=-x2 -4x. 

Hint. In Problem 1248 determine the symmetry, do­
main, and points of intersection with the axes, and in 
Problem 1249 the point of extremum and the points of 
intersection with OX. 

1250. y =sin x, y =cos x. 1251. y =sinh x, y =cosh x. 
Hint. In Problems 1250 and 1251 determine the points 

of extremum and inflection. 
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1252. y =In (x + 2). 1253. y=e-". 

Hint. In Problems 1252 and 1253 determine the domain, 
points of intersection with the axes, asymptote, and 
direction of convexity. 

1254. (I) y2 =x3 ; (2) y2 =(x+3)3. 
12 3 I 

1255. (1) y=2+x2 _ 4 ; (2) y=-x-xa · 
e lnx 

1256. (1) y=-x-; (2) y= exe-". 
4 

1257. (1) y=x+ x+ 2 ; 

1258. (1) y=x-lnx; 

I 2 
(2) y= x• -7". 

(2) y = ; ( e; + e- ; ) . 
x4 4 I 

1259. (1) y= x3-I; (2) y=-x+x.-· 
1260. (I) y 2 = 2x2 -x4 ; (2) x (y-x)2 = 4. 
1261. y = (x + 2) 213 - (x- 2) 2/3. 1262. y 2 = xe-". 

• 



CHAPTER 8 

THE INDEFINITE INTEGRAL 

8.1. Indefinite Integral. Integration 
by Expansion 

1°. By the indefinite integral ) f (x) dx is meant a func­
tion F (x) + C, containing an arbitrary constant C, whose 
differential is equal to the integrand expression f (x) dx, i. e. 

) f (x) dx = F (x) + C 
if 

d [ F (x) + C] = f (x) dx. 

2°. Table of basic integrals: 

S xn+l r 
I. xndx = n+i +C 6. J sinxdx=-cosx+C. 

(n =1=- l ). 

2. sd: =In jx I+C. 7. S--4--= tanx+C. 
COS X 

3. S a"dx = l~xa +C. 8. S si~~x=- cot x+C. 

S dx {arctan x+ C 
9. 1 + 2 = or 

x l-arccotx+C1• 

{
arcsinx+C 

r s dx or 5. Jcosxdx=sinx+C. 10. Yl-x2 = -arccosx+ 
+Cl. 

3°: The properties of the indefinite integral: 

I. d) udx=udx. II. ) du =u+C. 

III. )Audx=A)udx. IV. )(u+v)dx=~udx+)vdx. 
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Integration by expansion means the reduction of a given 
integral (by Property IV} to a sum of simpler integrals. 

1263. Fill in the blanks in the following equalities: 
(1) d ( } =2xdx; (2} d ( ) =x~dx; 

(3) d ( ) =cosxdx; 

(5) d ( 

(4} d ( 

(6) d ( 

dx 
} --· -X I 

dx 
)=1+x2 ' 

Then find the integrals: S 2x dx, S x8 dx and so forth. 
Find the integrals: 

1264. (1) 5(x2 +2x+ ~)dx; 
1265. (1) 5 x x3 2 dx; 

1266. (1) ~ (Vx+ Vx)dx; 

1267. (1) J ( Vx;l}a dx; 

1268. (1} 5 ex ( 1-e:2x) dx; 

(2) 5 10x;4+3 dx. 

(2) 5 (xz ~ 1)2 dx. 

(2) s ( ;x-V xs) dx. 

(2) J V ~z dx. 

(2) J ax ( 1 + ;,; ) dx. 

1269. (l) 5 cos 2x dx· (2) (' coPxdx. 
cos2 xsin2 x ' J 

1270. (1) 5 dx (2) 53-2cot2xdx. 
sin2 x cos 2 x ' cos2 x 

1271. (1) 5 sin2 ; dx; (2) 5 cos2 ~ dx. 

1272. (1) J (-2-- V 3 ) dx; (2) 5 ~dx. 
1+~ 1-~ 1+~ 

Find the integrals: 

1273. (1) 5(x2~ 1 )2 dXI 

1274. (I) J V; dx; 



Sec. 8.2. Integration by Substitution 179 

1275. (I) S (-!-+-! +-1 ) dx· x x2 xB ' (2) S( sin~- cos ; y dx. 

1276. (I) S e" ( I + e-2x ) dx; (2) Sa" ( 1 + a:," ) dx. 
COS X 

1277. s l-sin8 x d 
sin2 x X. 1278. ~ tan2 x dx. 

8.2. Integration by Substitution 
and Direct I ntegratton 

Putting x = «p (u), dx = «p' (u) du, we get 

~ f (x) dx = ~ f [ «p (u)] «p' (u) du. (1) 

Such transformation of an integral is called integration 
by substitution. 

In simple cases the new variable u is recommended to 
be introduced mentally, using the following transformations 
of the differential dx: 

I 
dx=-d(ax+b); 2xdx=d(x2 ); 

a 

dx cosxdx=d(sinx); -=d(lnx) and so on, 
X 

and denoting mentally the bracketed expression by u. This 
method is called the direct integration. 

Find the integrals: 

1279. ~cos 3x dx. 1280. S sin ; dx. 

Hint. Problem 1279 can be solved by two methods: 

(1) putting 3x = u, x = i', dx = d; ; (2) reducing the integ-

ral to the form { S cos 3xd (3x). 

1281. r e-ax dx. 1282. s d:5 . 
.) COS X 

1283. S (e~ +e- ~ )dx. 

1285. ~ (3-2x)' dx. 

1284. ~ V 4x -1 dx. 

1286. ~ V5 -6x dx. 
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1287. 

1289. 

Hint. 

Ch. B. The Indefinite Integral 

S dx 

V3-2x' 

5 2x-5 
x2 -5x+7 dx. 

Problems I289 

1288. ~sin (a-bx) dx. 

5 xdx 
1290. x2+ 1 • 

to I298 are solved by the formula 

5 u' dx 5 du -u-= -u=lnlui+C, 

i.e. if the numerator of the integrand is a derivative of 
the denominator then the integral is equal to the loga­
rithm of the denominator. 

1291. 5 I ~~Ox • 

1293. ~ cotxdx. 

1292. 

1294. 

5 e2" dx 
l-3e2" • 

~tan xdx. 

1295. 5 cos 2x d 1296. 5 sinxdx 
sin x cos x X. I+ 3 cos x ' 

1297.5 cosx d 1298. s dx 
I +2 sin x X. x(l +lnx)' 

1299. ~ sin2 xcosxdx. 1300. ~ cos8 xsinxdx. 

Hint. Problem I299 can be solved using the substitu­
tion sinx=u or directly replacing cosxdx by d(sinx). 

1301. 5 cosxdx 1302• s sinxdx 
sin4 x • cossx · 

1303. s I-~ ~OS X dx. 1304. \Sin X COS X dx. 
Sill X J 

1305. ~ecosxsinxdx. 1306. ~e"3 x2 dx. 
Hint. Problem I306 can be solved using the substitution 

x8 =u or directly replacing x2 dx by fd(x8). 

1307. ~ e-x• xdx. 
l eVxdx 

1308. J Vx . 

1309. ~ Vx2 +I xdx. 1310. ~ V x3 Bx2 dx. 

Hint. Problem I309 can be solved using the substitution 
x2 +I= u or directly by writing the integral in the form 

~ S (x2 + 1) ~ d (x2 + I). 
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x2 ±a2 a2-x2 x+k 

131 .. s v2 dx . 
I +x3 

1312. s xdx . 
YI -x2 

1313. s sinxdx . 
y 1 +2 cosx 

1314. s Y1+;nxdx. 

1315. ~ Vt +4sinxcosxdx. 1316. ~ VI - 6x6 x4 dx. 

Find the integrals: 

1317. ~ (ex+ e-x) 2 dx. 1318. ~ sin3xcosxdx. s dx 1320. ~ cos (a-bx) dx. 1319. JIT=4X . 
1-4x 

1321. ~ Vt +3xdx. 1322. ~ Vt-2x3 x2 dx. 
,. xdx s I-2 sin x dx. 1323. J Y1 +x2 

1324. 
cos2 x 

1325. s I +sin 2x d 
sin2 x X. 1326. ~ esln X cos X dx. 

1327. s x2dx 
I -x3 ' 

1328. S (a~x)3 · 

8.3. Integrals of the form S 2 d±x 11, S ~ , 
x a a2-x2 S dx 

Y x2 +k 
and Those Reduced to Them 

1329. Show that 

S dx 1 X 
(1) a2 +x2 =-aarctan-a+C, putting x=atant; 

(2) S ~ =arcsin~+C, putting x=asint; 
a2-x2 a 

(3) S x2 dx a2 = 2~ In I:+: I+ C, expanding 
_1 __ _!_a+x+a-x _ _!_ (-I ___ l_). 
x2-a2- 2a x'-az - 2a x-a x+a ' 

(4) S V iix = lnlx+Vx2 +ki+C, 
x2 +k 

putting V x2 + k = t -x. 
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1330. (I) S x2~25 ; S dx 
(2) x2+9' 

1 33 t. (I) s y dx ; 
4-x2 

1332. (I) s Y dx ; 
x2 -4 

1333. (I) S Y dx ; 
5-x2 

(2) S Yx~x+5 · 
r dx 

(2) J x2-j-3. 

1334. (I)s xdx ·, (2) s dx 
Y3-x' b2x2-a2. 

1335. (I) s y 3~ 4x2 ; (2) s y:sd~ I. 

S 5x-2 s 3x 4 1336. (I) x2 +4 dx; (2) x2 _ 4 dx. 

1337. (I) S x+ 1 dx (2) S x+ 1 dx. 
Yx2+1 1 Y I x2 

S x2 dx s x4 dx 1338. x2+ 1 • 1339. x2 _ 3 . 

• 

Hint. In Problems I338 and I339 eliminate a whole 
expression from the improper fraction. 

S d . s dx 
1340. x2+4; +5' 1341. x2-6x+ 13. 

Hint. In Problems I340-I347 separate a perfect square 
from the quadratic trinomial. 

1342. S dx • y x2 +2x+3 
1343. S dx • 

Yl-2x-x2 

S dx 
1344. y . 

4x-x2 
S dx 

1345. x2 +3x+3. 

1346. s dx • 
Y2 +3x-2x2 

1347. s dx • 
Y3x2 -2x-1 

Find the integrals: 

1348. S ( x2~ 3 + x2 
6 

3 ) dx. 

1349. S(v 1 + ~)dx. 2 -x2 2+x2 
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S4x-5 
1850. x2 +5 dx. 

S x4 dx 
1332. x2+2 . 

S xdx 
1354· x'+0.2K' 

i356. s x~-~:+5. 
S xdx 

1358. x2+x+ l . 

S x2 dx 
1351. x2-2. 

1353. s ex dx • 
YJ-e2x 

S dx 
1355· x2+ 4x+29' 

1357. S dx , 
Y5-4x-x2 

1359. s dx . 
Y4x2 +4x+3 

8.4. Integration by Parts 
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From the formula of the differential of a product d (uv) = 
"""udv+vdu we obtain the formula for integration by parts: 

) udv = uv-) vdu. 

This formula is widely used when the Integrand is a 
product of an algebraic function by a transcendental one, 

for instance ) x2ex dx or ) x2 In x dx. Here the role of u is 
played by the function to be simplified by differentiation, 
and the role of dv, the portion of the integrand which 
contains dx and whose integral is known or can be found. 

In case of transcendental functions the role of u is 
usually played by lnx, arctanx and arcsinx. 

For example, in the integral ) x2Jnxdx take u=lnx 

(but not x1), and In the integral ) x2ex dx, u = x2 (but not ex). 

Find the integrals: 

1360. ) inxdx. 

1362. ) xe2x dx. 

1364. ) x2 cos x dx. 

1366. Show that 

1361. 

1363. 

1365. 

) x ln (x-·1) dx. 

) x arctan x dx. 

)exsinxdx. 

S V x2 +kdx= ~ [xVx1 +k+k in (x+ Vx2 +k)]+C. 
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1367. ~ (In x)2 dx. 

1369. 51nxdx 
x2 • 

1371. ~ arcsin x dx. 

1373. ~In (x2+ 1)dx. 

Find the integrals: 

1375. ~ Vx!nxdx. 

1377. ~ arctanxdx. 

1379. ~ex cos x dx. 

1381 . 5 x c?s x dx • 
sm3x 

5 xdx 1368. sin2x· 

1370. s arcsin x dx 
YT+x . 

1372. ~ x 3e-x dx. 

1374. ~cos (In x) dx. 

1376. 5 x2e -fdx. 

5 
xdx 

1378. cos2 x. 

. X i arcsm 2 dx 
1380. Y2 X 

1382. ~arctan V 2x 1 dx. 

8.5. Integration of Some Trigonometric Functions 

1°. Integrals of the second and other even powers of 
sine and cosine are found by means of the following 
power reducing formulas: 

. 2 1-cos 2x 2 I +cos 2x . sin 2x 
Stn X= 2 COS X= 2 ; Sin X COS X= - 2-. 

2°. ntegrals of the third and other odd powers of sine 
and cosine are found by separating one factor from the 
odd power and taking the cofunction equal to the new 
va-iable u. 

The integral ~ cosm x sin n x dx is found by rule 1° if both 
m and n are even, and by rule 2° if either m or n is odd. 

1383. ~ sin 2 3x dx. 1384. ~(I +2cosx)2 dx. 

1385. ~ (1-sin 2x)2 dx. 1386. ~ cos4 xdx. 

1387. ~ sm2 x cos2 x dx. 1388. ~ sin4 x cos• x dx. 
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1389. ~ sin2 xcos4 xdx. 1390. ~ sin5 xdx. 

1391. ~sin2 xcos3 xdx. 1392. ~sin3 xcos3 xdx. 

1393. ~ cos7 x dx. 1394. ~ (I + 2 cos xV dx. 

1395. sco~3xdx. 1396. ssin3xdx. 
sm2x cos2x 

1397. s ~= s sin2.x+cos2x dx=? 
Sin 2X 2 Sin X COS X 

1398. (1) s~. (2) 5~ sin x ' cos x • 

1399. 

1401. 

S cosx+sinx d 
sin 2x X. 

~ tan3 xdx. 

1400. 

1402. 

S dx 
sin x-cos x • 

~ cot3 xdx. 

Hint. In Problem 1401 put tanx=t, x=arctan·t. 

1403. ~ sin3xcosxdx. 1404. ~ cosmxcosnxdx. 

185 

Hint. In Problems 1403 to 1406 make use of the for-
mulas: 

sinexcosB =~[sin (ex+~)+sin (ex-~)], 
1 

cos ex cos~= 2 [cos (ex+~) +cos (ex-~)], 

sinexsin~=! [cos(ex-~)-cos(ex+~)]. 

1405. (1) ~sin3xsin5xdx; (2) ~sinmxsinnxdx. 

1406. S sin ( 5x- ~):cos ( x+ ~) dx. 

1407. Integrating by parts, prove the "power reducing" 
formulas: 

(l) S sinnxdx=- ~ cosxsinn-Ix+n n 1 S sinn- 2 xdx; 

(2) S cosnxdx:::::o: ~ sinxcosn-Ix+n n 1 S cosn- 2 xdx 

and using these formulas find: {I) ~ sin6 x dx; (2) ~ cos6 x dx. 



186 Ch. 8. The Indefinite Integral 

1408. Find the integrals: (I) 5~, (2) 5--4--. 
SID X COS X 

Hint. Apply the formulas given in the previous pro-

blem to the integrals s~ and s~. 
Stn X COS X 

1409. ~(I+ 3 cos 2x)2 dx. 1410. ~sin' xdx. 

1411. ~ sin' x cos2 x dx. 1412. ~ cos6 x dx. 

1413. ~ sin3 x cos2 x dx. 1414. ~ (1+2sinx)3 dx. 

1415. 5 (sin x- cos x)2 d 
sin 2x X. 1416. ~sin 3x sin x dx. 

1417. 5 sin3 x+ 1 dx. 
cos2 x 1418. 5 sin (x+ ~) cosxdx. 

8.6. Integration of Rational Algebraic Functions 

1°. If the integrand is an improper fraction, then it is 
necessary to lake out the integral par~ 

2° The denominator of a proper fraction is factorized 
into factors of the kind (x-a)a and (x2 + px+ q)~, and 
the proper fraction itself is expanded into a sum of ele­
mentary fractions in the following way: 

P (x) At + A2 + + Aa 
(x-a)a(x2 +px+q)~ ... =x=a (x-a)2 ••• (x-a)a+ 

Mtx+N1 M~+N2 + Mt~x+Np 
+ x2 +px+q + (x2 +px+q)2+ · · · (x2+px+q)fl + · · ·' 

where P (x) is a polynomial of the degree lower than that 
of the denominator. 

Find the integrals: 

1419. (1) 5 x x3 2 dx; (2) 5 x2 ~a2 dx; (3) 5 x/§ a~dx. 
5 x-4 5 2x+7 

1420. (x-2) (x-3) dx. 1421. x2+x-2 dx. 

1422. 5 3x2 + 2x-3 dx. 1423. 5 (x+ l)s dx. 
xs-x x2-x 

1424. 5 xa"+~2 dx. 1425. 5 !: ::lidx. 
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1426. 5 2x2-5x+ I d 1427 5 5x- I d 
xB-2x2+x X. ' x8 -3x-2 X. 

5 5x+2 5 4x-2.4 
1428. x2 + 2x+ 10 dx. 1429. x2 -o.2x+O.l? dx. 

Hint. In Problem 1428 single out a perfect square in 
the denominator and then put x+ 1 =t. 

Hint. Put x = b tan t and then (in the second case) use 
formula (2) of Problem 1407. 

5 (2x+ I) dx 
1435. (1) (x2 + 2x+ 5)2 • 

S 4xdx 5 x+ I 
1436. (l+x)(I+x2) 2 • 1437. x4+4x2+4 dx. 

Find the Integrals without applying the general method 
of indefinite coefficients. 

5 dx 
1438. x(x+a)' 5 dx 

1439. (x+a) (x+b) . 

Hint to Problems 1438 to 1442. In the nominator of 
the integrand fraction write the difference of the factors 
of the denominator dividing the integral by the corres­
ponding number. 

1440. 5 /x 2 • 
X- X 

1442. s 4dx 2. 
X -X 

Find the integrals: 

5 2x-l 
1444. (x-I) (x- 2) dx. 

S 5x-14 
1446. 3 2 4 + 4 dx . 

X -X- X 

S dx 
1443. xa +4x. 

S 3x+2 
1445. 2x2 +x-3 dx. 

5 llx+I6 
1447. (x-I)(x+ 2)2 dX. 
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1450. S x:+:2xdx. 1451. S xa+x2 : 2x+ 2 

1452. \ dx 1453 s xdx 
J x3 -8' · (x2 +2x+2)2 ' 

In Problems 1454 to 1457 integrate without using the 
method of indefinite coefficients. 

1454. S x2:sx. 1455. S x•!ax2 • 

1456. s X/~ I . 

8.7. Integration of Certatn Irrational 
Algebraic Functions 

1°. The integral ~ R (x, iY ax +b) dx, where R (x, y) Is a 

rational function, is found by the substitution ax+b=tn, 

and the integral of a more general form ~ R(xm, 
y axm +b) xm-l dx, by the substitution axm + b = tn. 

2°. The integral S ~+N dx is found by 
(x-a) ax2 +bx+c 

the substitution x-a =-}. 
3°. Trigonometric substitutions. The following integrals 

are reduced to the rational trigonometric form: 

~ R (x, Va2-x2 ) dx by making the substitution x =a sin t, 

~ R(x, Va 2 +x2 )dx by making the substitution x=atant. 
4°. The algebraic part can be separated from the integral 

SaoXm+atxm- 1+ ···+am dx by the formula 
Y ax2+bx+c 

saoxm+ w .+am dx= (Aoxm-1+ ... +Am-1) W +Am s~, 

where W = Vax 2 + bx +c. The coefficients A are found on 
differentiating the equality and getting rid of the deno-
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minator by comparing the coefficients of equal powers of x 
on the left and on the right. 

5°. The integral of a binomial differential ~ xm (a+bxn)Pdx 
is expressible in terms of elementary functions in the fol­
lowing three cases: (1) when p is an integer- by expan-

sion; (2) when m+l is an integer-by the substitution 
n 

a+bxn=t5 ; (3) when m+l +P is an integer-by the 
n 

substitution ax-n +b = t 5 , where s is the denominator of 
the fraction p. 

Using substitutions 1°, find the following integrals: 

S x+l 
1458. V dx. 

3x+l 

1460. s Vx~ Vx, 

1459. r xdx . 
J V 2x+I+I 

1461. ~ x Va-x dx. 

1463. S x3dx , 
Yx2 +2 

Using substitution 2°, find the following integrals: 

S dx 
1464. JIX2=T. 

x x2 -l 
1465. s dx . 

x V2x2 +2x+ I 

1466. s v dx • 
x 2ax -x2 

1467. 5 dx , 
(x+I) Yx2 -t-2x+2 

Using substitutions 3°, find the following integrals: 

1468. ~ Va2 -x2 dx. 1469. s dx • y (4+x2)a 

1470. ~ x2 V 4 x2 dx. 1471. s x2dx • 
V (a2+ x2)1! 

1472. r V3+2x-x2 dx. 1473. J- x2 dx • 
J V (2-x2)a 

Using rule 4°, find the following integrals: 

1474. S x2+4x dx. 1475. s xdx , 
V x2 +2x+2 V3-2x-x2 

1476. ~ V x2 + k dx. 1477. ~ V 2ax-x2 dx. 
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Find the integrals of 

1478. s vx . 
x l+x3 

1480. S dx • 
x2 Y(l + x2)3 

Find 'he integrals: 

1482. J ;-I dx. 
2x-l 

1484. J Vxdx . 
Yx+l 

1486. .r x. S x+l d 
x r x-2 

1490. S Y dx . 
x x2 + 2x 

1492. 5 x2dx • 
V4-x2 

binomial differentials: 

1479. s vx . 
x8 2-x3 

1481. S/S, S x3 dx 

(a-bx2) 

1483. s V dx • 
3x+ 1-1 

1485. J V x dx. 
a-x 

Hint. In Problem 1493 put x=2sin 2 t. 

1494. rv4x+x2 dx. 1495. s y x2 dx. 
J 5+4x-x2 

1496. s ydx . 
x3 I+ x2 

1497. s ydx . 
x2 I+ x2 

1498.5 ~-
X l-x3 

1499. S dx 
x V3x2 -2x-1 

8.8. Integration of Certain Transcendental 
Functions 

The following integrals are reduced to the algebraic 
form: 
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5R(ex)dx by the substitutions ex=t, x=lnt, dx=~t; 
~ R (tan x)dx by the substitutions tan x=t, x=arctant, 

dt 
dx = t +t2; 

S R (sin x, 
X cosx)dx by the substilutions tan 2 =t, 

. 2t I - t2 d 2dt 
sm x = 1 + 12 , cos x = 1 + 12 , x = 1 + 12 • 

Find the integrals: 

1500. ~ e2x_2ex 
e2x+ 1 dx. 1501. ~ tan4 xdx. 

1502. s eax dx 
ex+2' 1503. 5 s~x· 

1504. 5 dx 
5+3 cosx. 

1505. 5 dx 
3 sin x'+4 cos x' 

1506. 5 sia; x · 
1507. s dx 

I +3 cos2 x · 

Hint. In Problems 1506, 1507, 1512, and 1513, where 
the integrand expressions contain only even powers of 
sin x and cosx, it is better to apply the substitutions: 

t . 2 - _t2_ 2 -_I - d - dt anx=t, sm x- 1+12 , cos x- 1+12 , x- 1+ 12 • 

Find the integrals: 

1508. s e2x dx 
ex-t • 

1509. ~ tan6 xdx. 

1510. s eax dx 
e2x_J • 1511. 5 dx 

3+cos x • 

1512. 5 dx 
cos4 x • 

1513. s dx 
1+3sin2 x' 

1514. s dx 
2 sin x +sin 2x ' 1515. 51+cosx d 

sin3 x x. 

5eX+J 1516. ex_ 1 dx. 1517. s I +tanx d 
sin 2x X. 
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8.9. Integration of Hyperbolic Functions. 
Hyperbolic Substitutions 

I. ~ coshxdx =sinhx+C. 2. ~ sinhxdx=coshx+C. 

n ~ s ~ 3. j cosh2 x=tanhx+C. 4. sinh 2 x=-cothx+C. 

Integrals of the second and other even powers of cosh x 
and sinh x are found by the following formulas: 

h2 cosh 2x+ I . h2 cosh 2x-l 
COS X= 2 , Sin X= 2 , 

. sinh 2x 
smh x cosh x = - 2-

lntegrals of odd powers of sinh x and cosh x are found 
in the same way as integrals of odd powers of sin x and 
cosx. 

Hyperbolic substitutions are sometimes used for finding 
integrals of the form 

~ R (x, Vx2-a2 ) dx by the substitution x=acosh t; 

~ R(x, Vx2 +a2 )dx by the substitution x=asinht. 

In this case if x=a cosht, thent=lnjx+V~~. 

and if x=a sinht, thent=lnlx+~j. 
Find the integrals: 

1518. (1) ~ sinh2 3xdx; 

1519. ~ cosh 3 xdx. 

1521. S coshd:+ I· 

1523. ~ Vx2 +a2 dx. 

1525. s dx • 
Jf(x2+4)3 

(2) ~ ( 1 +sinh 2x)2 dx. 

1520. ~ tanhxdx. 

1522. S dx 
tanhx-1 · 

1524. ~ Vx2 -a2 dx. 

1526. s dx • 
Jf(x2-5)3 
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Find the integrals: 

1527. ~ sinh3 3xdx. 

1529. ~ sinh~ x cosh x dx. 

1531. 5 V cosh x + 1 dx. 

1533. s :2 dx . 
y x2 -3 

1528. ~ sinh2 x cosh2 x dx. 

1530. ~ coth2 x dx. 

1532. 5l+2sinhxd 
cosh2 x X. 

1534. S VX2+3 dx. 
x2 

8.10. Miscellaneous Problems on Integration 

Find the integrals: 

1535. s Yl;xdx. 1536. s arctan x dx 
I+x2 • 

1537. 5 dx 
x3 +ax2 • 

1538. 5 dx 
I+sinx' 

1539. s dx 1540. ~ dx 
Yx(l-x) · sin 2 x + cos2 x • 

a2 b2 

1541. 5 xcos2 x dx. 1542. 5 dx 
e2x+ex · 

\ yl-x 1543. . 1 +x dx. 1544. s cos2xdx 
sin4 x · 

1545. 5 xtan 2 xdx. 1546. 5 co~2 xdx. 
Sin X 

1547. 5 sinxdx s dx 
b2 +cos 2 x · 1548. v v . 

x 2 +2 x 

1549. 5 ax-b 
(ax+b)4dx. 1550. 5 dx x4+x2. 

1551. s dx 
(sin x+ cos x)2 • 

1552. s dx 
x Va+b lnx ' 

1553. 5 x2dx 
(a-bx3)n · 1554. 5 J/1-2x-x2dx. 

s dx 1555. (I+ Yx)a' 1556. 5 arctanxdx 
x2 . 

1557. 5 ex-2 
e2x+4dx. 1558. s dx . 

(2x+ I) (I+ Y2x+ I) 

7 -18911 
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1559. ~ cot'xdx. s Y4-x2 
1560. x2 dx. 

-
(I) S cos x dx· (2) s ~in x dx. 1561. cos 3x ' sm 3x 

1562. (1) J y dx Vx ; 
x+a+ x 

(2) s dx • 
Yx2 +1-x 

1563. s x4+1 1564. s V x;a+2x dx. -a--2dx. 
X -X 

1565. s dx 
x Y xa 1 · 1566. s 1+~nx. 

1567. s arcsin Yx d yx X. 1568. s sin 2x dx. 
cos4x 

1569. s cos 2x d 
sin4 x X. 

1570. rn (~os x)dx. 
sm2 x 

1571. s dx 
e3"-eX. 1572. s sin3xdx 

COS 0 X • 

1573. sin (x~ l)dx. 1574. SVl-sinxdx. 

1575. s dx 
1+sin2 x' 1576. s xdx 

x4 -x2 -2 · 

1577. S e-Vxdx. 1578. s arctan Yx dx 
Yx ' 

1579. s Y tanxdx 
sin 2x • 1580. sin (x2 + 1) dx 

x3 • 

1581. s a"dx 
a2x+ 1 • 1582. J 1-sin Vx d 

Yx x. 

1583. s y<x+1)3 
(x-1)2 dx. 1584. s x arcsin x dx 

Y I x2 ' 

1585. Sx2 Y~-1· 1586. s x2dx 
(x+ 1)4 • 

1587. s x-a d Y 2ax+x2 X. 
1588. s 4x+ I d 

2x3 +x2-x X. 

1589. s cos3 x+ 1 d 
sin2 x x. 1590. s dx 

x4 +4 • 



CHAPTER 9 

THE DEFINITE INTEGRAL 

9.1. Computing the Definite Integral 

Let a function f (x) be defined on a closed interval 
[a, b ]. This interval is partitioned into n subintervals by 
points a= X0 < X1 < X2 < ... < Xn =b. In each of the subin­
tervals (x;-u x;) take an arbitrary point ~i and form the 

n 

sum ~ f (~;) 11x;, where 11x;=X;-X;_ 1 • The sum of the 
i= I 

n 

form ~ f (~;) 11x; is termed the integral sum, and the 
i= I 

limit to which this sum tends as the largest subinterval 
approaches zero (max 11x;---+0), if it exists and is finite, 
is called the definite integral of the function f (x). The 
end-points a, b of the given interval (the interval of in­
tegration) are called the limits of integration: the lower 
limit (a) and the upper limit (b). 

The definite integral is denoted by 
b n 

~ f (x) dx = lim ~ f (~;) 11x;. (1) 
a max!'.x; .... Oi=l 

In this case the function f (x) is called integrable over 
the interval [a, b]. 

For a function to be integrable it is sufficient that it 
is either continuous on the interval [a, b] or has a finite 
number of finite discontinuities. 

Let f (x) be continuous on [a, b ]. Then on this interval 
there exists an indefinite integral 

~ f (x) dx-= F (x) + C (2) 

7* 
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and the following formula takes place: 
b 

~ f (x) dx = F (b)- F (a)= U f (x) dx J: , (3) 
a 

i.e. the definite integral of a continuous functions is equal 
to the difference of the values of the antiderivative (or the 
indefinite integral) for the upper and lower limits. For­
mula (3) is called the Newton-Leibnitz formula. 

1591. By forming integral sums and proceeding to the 
limit, find the following integrals: 

a a a :t 

(1) ~ xdx; (2) ~ x2 dx; (3) ~ exdx; (4) ~ sinxdx. 
0 0 0 0 

Hint. When solving (2) and ( 4) make use of the resu Its 
of Problems 1034 and 647. 

1592. Compute the lower and the upper integral sums s6 

2 

and s6 for the integral \dx. dividing the closed inter-
.., X 
I 

val [1, 2] into five equal subintervals. Compare the re­
sult thus obtained with the exact value of the integral. 

5 5 

Hint. s6 = ~ m,-!J..x, S 5 = ~ M,.!J..x, where m,- is the 
i= I i= I 

least value, and M,., the greatest value of the integrand 
function in ith subinterval. 

Compute: 
3 2 

1593. 5 x3 dx. 1594. 5 ( x2 + x14 ) dx. 
I I 

4 I 

1595. ~ Vxdx. 1596. s v dx ,, • 
I 4-x-

0 

a¥3 3 X 

1597. 5 dx 
~ e3 dx. a2+x2. 1598. 

a 0 



Sec. 9.1. Computing the Definite Integral 197 

I 

S dx 
1599. y . 

x2+J 
0 

9 

S dx 
1601. Yx . 

x-1 
4 

1T 

4 

1600. ~sin 4x dx. 
0 

n 
3 

1602. \ I +tan2 x 
~ (I+ tan x) 2 dx. 
4 

Hint. In Problem 1601 apply the substitution x = t2 ; 

then the limits of the integral will change, which is 
xj4j9 

written in the tabular form -,-, -. Analogous! y, in 
t 2 3 

Problem 1602, when integrating by the substitution 
tan x=t, change the limits accordingly. 

4 I 

1603. r dx 
J I+ Y2x+l' 

1604. s x2dx 
Y4-x2 

0 

1605. 

0 . 

I 

5 dx 
ex+ I · 

0 

n 
2 

a 
2 

1606. J -.I x dx. V a-x 
0 

v-a 
1607. ~ sinxcos2 xdx. 

0 

1608. ~ x2Va-x2 dx. 
0 

1609. 

1611. 

I 

~ln(x+l)dx. 
0 

V3 

S dx 

Jf(l +x2)3 · 
I 

I 

1610. ~VI +x2 dx. 
0 

3 

1612. 5 x~x2 • 
I 

1613. From the formula of Problems 1407 obtain that 
n n 
2 2 
S sinnxdx= n n 1 S sinn- 2 xdx, 
0 0 
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and compute: 
n 
2 

n 
2 

l't 
2 

(1) ~ sin2 xdx; 
0 

(2) ~ sin' x dx; 
0 

(3) ~ sin6 x dx. 
0 

Compute: 
a 3 

1614. S (x 2-ax) dx. 1615. s~ x2 • 
0 2 

.1t 

V3 6 

1616. s xdx 
1617. S co~2x • V4-x2 ' 

0 .1t 

8 

4 I 

1618. s (1+ r.)2. 1619. s exdx 
1 +e2x. 

I 0 

5 V2 
1620. s xdx 1621. ~ V2-x2 dx. 

V4x+5 ' 
I 

I 

n n 
2 4 

1622. ~ xcosxdx. 1623. ~ tan8 xdx. 
0 0 

1624. From the formula of Problem 1407 obtain that 
n n 
2 2 

~ COSn X dx = n n 1 ~ cosn- 2 X dx, 
0 0 

and compute 
n 
2 

(I) ~ cos2 x dx; 
0 

.1t 

2 

(2) ~ cos' x dx; 
0 

n 
2 

(3) ~ cos6 x dx. 
0 
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9.2. Computing Areas 

1°. The area of curvilinear trapezoid A 1ABB1 adjacent 
to the axis OX (Fig. 33): 

x. 

S = lim ~y ~x= ~ ydx. 
ax ..... 0 x, 

(I) 

The differential of a variable area A 1AMM1 is dS = ydx. 
If a curve is given by the equations x=f(t) and 

y=<p(t), then dS=<p(t)·f'(t)dt. 

y 8 

X p 
Fig. 33 Fig. 34 

2°. The area of the curvilinear trapezoid adjacent to the 
axis OY: 

u.· 
S= lim ~x~y= ~ xdy. 

au ..... o 11, 
(2) 

The differential of a variable area dS=xdy. 
3°. The area of the sector OAB (Fig. 34) of a curve 

given in polar coordinates: 

(3) 

The differential of the area variable dS = ~ r2 d<p. 
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Compute the areas bounded by the following lines: 
xz y2 

1625. y=4-x2 , y=O. 1626. li2+7i2=1. 

1627. y2 =2px, x=h. 1628. y=3-2x-x2 , y=O. 
1629. xy=4, x=l, 1630. y=inx, x=e, 

x=4, y=O. y=O. 
1631. y2 =2x+4, x=O. 1632. y2 =x3 , y=8, x=O. 
1633. y2 =(4-x)3 , x=O. 1634. The loop of the curve 

4 (y2 - x2 ) + x3 = 0. 
1635. y=x2 , y=2-x2 • 1636. y=x2 +4x, y=x+4. 
1637. a 2y2 =X3 (2a-x). 1638. (y-x) 2 =x3 , x=l. 
1639. The loop of the strophoid y2 (2a-x) = x (x-a) 2 • 

1640. Catenary y= ~ (e: +e -~), x= +a and y=O. 

1641. One arc of the cycloid x=a(t-sint), y=ax 
~ (1-cos t) and the axis OX. 

1642. Astroid X=acos 3 t, y=asin3 t. 
1643. Lemniscate r 2 = a2 cos 2cp. 
1644. Cardioid r =a (1-cos cp). 
1645. r = 3 +sin 2cp } find the area enclosed between the 
1646. r=2-cos3cp adjacent maximum and minimum 

radius vectors of each curve. 
1647. r =a cos 2cp. 1648. r =a sin 3cp. 

a n 
1649. r=a(sincp+coscp). 1650. r=-;p· 4 ~cp~2n. 

1651. r=asin3 ~, located below the polar axis. 

1652. The loop of the folium of Descartes x3 +y3 -3axy=0 
(see Fig. 83 on p. 386) (pass to polar coordinates). 

H . t I th . t I s sin2<pcos2<pd<p t t tn . n e m egra (sins IP+ cos a <p)2 pu an cp = u, 

first dividing both the numerator and denominator by 
COS6 cp. 

Compute the areas bounded by the following lines: 
1653. y=6x-x2 , y=O. 1654. y=x8 , y=8, x=O. 
1655. y2 =l-xand x=-3. 1656. y2 +x4 =x2 • 

1657. y=x2 +4x+5, x=O, y=O and the minimum 
ordinate. 
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1658. A half-wave of the sinusoid y =sin x and y = 0. 
1659. 4y=x2 and y2 =4x. 1660. xy=6 and 

x+y-7=0. 
1661. The loop of the curve x3 +x2 -y2 = 0. 
1662. r = 3 -cos 2q> 1 find the area enclosed between the 

} adjacent maximum and minimum 
1663. r=2+sin3cp) radius vectors of each curve. 
1664. r =a sin 2cp. 1665. r =a cos 3cp. 
1666. r=ae'P from <p=-:n: to q>=n. 
1667. Find the area of the common portion of the 

xz y2 x2 y2 
ellipses li2+b2= 1 and b2+li2= 1 (pass to polar coordi-
nates). 

1668. r=a(1 +sin2 2cp) and r=a. 

9.3. The Volume of a Solid of Revolution 

1°. The volume of a solid generated by revolving a 
curvilinear trapezoid A1ABB1 about the axis OX (Fig. 35), 

y 8 

0 

Fig. 35 

where A8 is the arc of a curve y = f (x), is determined by 
the formula 

x, 

V = lim ~ny2~x = ~ ny2 dx. (1) 
l\x~o x, 

The differential of a variable volume dV = :n:y2 dx. 
2°. The volume of a solid generated by revolving about 

the axis OY a curvilinear trapezoid adjacent to the axis 
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OY is determined by the formula 
v. 

V = lim ~nx2Lly= ~ nx2 dy. 
t.y-+O Yt 

(2) 

The differential of a variable volume dV = nx2 dy. 

Determine the volume of the solid generated by revol­
ving a figure bounded by the following lines: 

1669. y2 =2px and x=h about the axis OX. 
x2 y2 

1670. iii-iii= 1 and y= ± b about the axis OY. 

1671. xy=4, x=1, x=4, y=O about the axis OX. 
1672. y2 = (x + 4)3 and x = 0 about the axis OY. 
1673. x2 + y2 = a2 about the straight line x = b >a. 
Hint. dV =n (b+x) 2 dy-n (b-x)2 dy= 4nbxdy. 
1674. y=acosh~. x=±a, y=O about the axis OX. 

a 
1675. y2 =4-x, x=O about the axis OY. 
1676. (y-a)2=ax, x=O, y=2a about the axis OX. 
1677. y=cosx and y=-1 about the straight line 

y=-1 for -n~x~n. 
1678. y=xV -x, X=-4 and y=O about the axis OY. 

1679. y=cos(x-~). x=O, y=O (for x>O) about 
the axis OX. 

x2 
1680. y=a-- and x+y=a about the axis OY. a 

Determine the volumes of the solids generated by re-
volving the figures bounded by the following lines: 

1681. y=sinx (a half-wave), y=O about the axis OX. 
1682. x2 -y2 =4, y=±2 about the axis OY. 

1683. y= 1 ~x2 , x=±1, y=O about the axis OX. 
x2 y2 

1684. ii2+iJ2= 1 about the axis OY. 

1685. x 2ta + y 218 = a218 about the axis OX. 
1686. y=x3 , x=O, y=8 about the axis OY. 
1687. x2-y2 =a2 , x= ±2a about the axis OX. 
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1688. y=x2 , y=4, about the straight line x=2. 
Hint. dV = n (2 + x) 2 dy-n (2-x) 2 dy. 
1689. One arc of the cycloid 

x=a(t-sint), y=a(1-cost) about the axis OX. 

1690. (y-3)2 +3x=0, x=-3 about the axis OX. 

9.4. The Arc Length of a Plane Curve 

P. The length of an arc AB of the curve y = f (x) is 
given by the integral 

"B 

s = ~ V 1 + y' 2 dx. (1) 
"A 

Differential of arc length: ds=V1+y' 1 dx=Vdx2 +dy2 • 

2Q. The length of an arc ABof the curve x=f (t), y=<p (t): 
tB 

s= ~ v x2 +y2 dt. 
tA 

8°. The length of an arc AB of the curve r=f(<p): 
(jiB 

s = ~ v,. + r' 1 d<p. 
((!A 

Determine the length of the arc of the curve: 
1691. y2 = X 3 cut off by the straight line X= f. 
1692. Of the entire curve x2 +y'=a2 • 

2 2 2 

1693. Of the entire curve x3 +y3 =aT. 
1694. y2 = (x + 1 )3 cut off by the straight line x = 4. 
1695. Of one arc of the cycloid 

x=a(t-sint), y=a(1-cost). 

(2) 

(3) 

f6 t4 
1696. x= 6 , y=2-4 between the points of inter-

section with the coordinate axes. 
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x2 
1697. y= 2 -1 cut off by the axis OX. 

Hint. ~ V1 +x2 dx can be found by parts, or written 
by the formula of Problem 1366. 

1698. y= ~ (e= +e-= )=acosh ~between the straight 

lines x= +a. 
3 12 

1699. y=Inx from x= 4 to x= 5 . 

Hint. The integral J Jf~dx is found by the substi­

tution 1 +x2 =t2 • 

1700. y =In (2 cos x) between the adjacent points of 
intersection with the coordinate axes OY and OX. 

1701. (1) 9y2 =x(x-3)2 between the points of inter-
section with the axis OX. 

(2) e2Y tanh x = 1 between the points x = 1 and x = 2. 
1702. (1) The cardioid r=a(l-coscp). 
(2) The first turn of the spiral r = acp. 

1703. The entire curve r =a sin3 j. 
1704. A flexible thread is suspended from the points A 

and B situated at the same height; AB = 2b, the sag is f. 
Taking the suspended thread as a parabola, show that its 

length s::::::; 2b ( 1 + ! [: ) for a sufficiently small t. 
Hint. Apply the approximate formula V 1 +a::::::; 1 +}a 

from Problem 1157. 

Find the length of the arc of the curve: 

1705. y2 =! (2-x)3 cut ofr by the straight line x= -1. 

1706. y =In (sin x) from x = 3- to x = 2; . 

I I 
1707. y=ln(l-x2 ) from x= - 2 to x= 2 . 

1708. y2 =2px cut off by the straight line X=~. 

1709· X= t2
' \ b t th . t f . t t• I e ween e potn s o tn ersec ton 

y =~ (t2-3) J with the axis OX. 
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9.5. The Area of a Surface of Revolution 

1°. The area of a surface formed by the revolution of 
an arc AB of the curve y = f (x) about the x-axis is 

Px=2n ~ yds, where ds= V dx 2 +dy2 • 

.48 

2°. The area of a surface formed by the revolution of 
an arc AB of the curve x = <p (y) about the y-axis is 

Py=2n ~ xds, where ds= Vdx 2 +dy2 • 

.48 

Determine the area of the surface formed by revolving 
the curve: 

1710. x2 +Y2 =R 2 about the x-axis. 

171 1. y = ~2 cut by the straight 1 ine y = 1.5, about 

the y-axis. 

1712. y =a cosh~ between x =±a about the x-axis. 
a 

1713. 4x2 +y2 =4 about the axis OY. 

Hint. Taking y for an independent variable, we get the 
2 

required area P = n ~ V16 -3y2 d!f. Then make use of the 
0 

substitution y= -/a sin t. 

1714. One half-wave of the curve y=sinx about the 
axis OX. 

f h l'd{x=a(t-sint) b h 1715. One arc o t e eye 01 y=a(I-cost) a out t e 
x-axis. 

t 
1716. The loop of the curve x=t2 , p= 3 (t 2 -3) about 

the x-axis. 
1717. x2 +y2 =a2 about the straight line x=b>a. 
Hint. dP = 2n (b +x) ds+2n (b-x) ds. 
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Determine the area of a surface formed by rotating 
about the axis OX: 

xs 
1718. The arc of the curve y =-= 3 from x .... -2 to x = 2. 

1719. The arc of thecurvey2 =4+xcut bythestraight 
line x=2. 

1720. The entire curve x=acos3 t, y=asin3 t. 
t3 (2 

1721. The arc of the curve x= 3 , y=4-2 between 

the points of intersection with the coordinate axes. 

9.6. Problems in Physics 

1722. Determine the force of pressure acting on a ver­
tical rectangular water lock with base 8 m and height 6 m. 
Find also the force of pre~sure experienced by the lower 
half of the Jock. 

1723. Compute the force of pressure acting on a verti­
cal triangle whose base a is flush with the water surface 
and altitude is equal to h. 

1724. Find the force of pressure acting on a semicircle 
of radius R submerged vertically in water so that its 
diameter is flush with the water surface. 

1725. A vertical dam has the form of a trapezoid whose 
upper base is 20 m, the lower one 10 m and the alti­
tude 6 m. Find the force of water pressure experienced 
by the dam. 

1726. Find the moments of inertia about the x- and 
y-axis of the rectangle bounded by the straight lines 
x=a, y=O, y=b, and x=O. 

Hint. Subdividing the rectangle into horizontal strips, 
multiply each strip by its squared distance from the 
axis OX, i.e. by y2 • Summing and passing to the limit, 
we get 

b 

Jx= lim ~adyy2 = ~ ay2 dy. 
/!.y-+0 0 

a 

Similarly Jv= ~ bx2 dx. 
0 
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1727. Find the moment of inertia about the x- and 
y-axis of the triangle bounded by the lines x = 0, y = 0, 

X y I and a+b= . 
1728. Find the moment of inertia about the y-axis of 

the figure bounded by the lines x = 2, y = x2 , and y = 0. 
1729. Find the static moments about the x- andy-axis 

and the coordinates of the centre of gravity of the triangle 
formed by the lines x = 0, y = 0, and x + y =a. 

a a 

Hint. The static moments: Mx = ~ xydy, My=~ xydx. 
0 0 

My Mx 
The coordinates of the centre of gravity: xc = s, Yc = s, 
where S is the area of the figure. 

1730. Find the centre of gravity of the figure bounded 
by the lines a2y = bx2 , x =a, and y = 0. 

1731. Find the centre of gravity of the semicircle 
x2 + y2 = a 2 cut off by the axis OX. 

1732. (I) Calculate the work needed to overcome the 
force of gravity in pumping the water out of a cylindri­
cal vessel with the radius of the base circle 0.5 m if at 
the starting moment the water level in the vessel reaches 
2.8 m and is 0.2 m lower that the outlet hole. 

(2) Calculate the work needed to overcome the force of 
gravity in pumping the water out of a hemispherical boiler 
of radius R m. 

1733. Compute the work needed to overcome the force 
of gravity in lifting a mass m from the earth surface 
to a height h. 

Hint. The force F of gravity at a distance x from the 
centre of the earth is determined from the proportion 
F:mg=R 2 :x2 , where R is the radius of the earth. 

1734. A cauldron has the shape of a paraboloid of re­
volution; its depth is H=0.5 m and the radius of the 
circle base R = 0.4 m. Calculate the work needed to over­
come the force of gravity in pumping the water out of a 
brim-full cauldron. 

1735. There is air of volume V0 =0.1 m3 and pressure 
Po= I03,300 N/m 2 under a piston in a cylinder. Determine 
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the work done by an isothermal compression of the air 
to a volume vl = 0.03 m3. 

1736. Compute the work done by a 0.001 m stretching 
of a I m copper wire whose cross-sectional radius is 2 mm. 

Hint. The force F required to stretch a wire of length l 
and cross-sectional area s by x is determined by the for-

mula F=E 5t, where E is Young's modulus. We may take 

E~ 12-1010 N/m 2 for copper. 
1737. How long would it take the water in a full cylin­

drical vessel of base area S = 420 cm 2 and height H = 40 em 
to flow through an orifice on the bottom of area s = 2 cm 2? 

Hint. The velocity of discharge of a liquid at level x 
is determined by the formula v = f..t V2gx, where 1-t is a 
coefficient which depends on the liquid viscosity and the 
shapes of the vessel and the orifice. We assume here, as 
we shall in Problem 1738, that ~-t=0.6. 

1738. How long would it take the water to flow out of 
a conical funnel of height H = 40 em, lower base radius 
r = 0.3 em and the upper base radius R = 6 em (see hint 
to Problem 1737)? 

1739. Determine the pressure exerted by water on a 
vertical triangle of height h, whose base a is parallel to, 
and whose opposite vertex is on, the surface of the water. 

1740. Determine the pressure exerted by water on a 
vertical parabolic segment whose base is equal to 4 m 
and situated on the surface of the water, and whose vertex 
is at a depth of 4 m. 

1741. Find the depth x at which a rectangular water 
lock of height h may be divided horizontally into two parts 
on each of which the water pressure is identical. 

1742. A cylindrical cistern with horizontal axis is half 
filled with oil (specific gravity 0.9). Determine the pres­
sure exerted by the oil on each of the cylinder plane 
walls, if its radius is equal to 2m. 

1743. Determine the moment of inertia of the quadrant 
x =a cost, y =a sin t about the x-axis. 

1744. Find the coordinates of the centre of gravity of 
the area bounded by the curves y = 4-x2 and y = 0. 
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1745. Compute the work necessary for pumping the water 
out of an (inverted, circular) cone-shaped hole, whose 
height H = 2 m and base radius R = 0.3 m. 

1746. Determine the work done by adiabatically com­
pressing air of volume V0 = 0.1 m3 under pressure Po ·.-= 
= 103,300 N/m2 to a volume V1 =0.03 m3 . (Adiabatic 
compression obeys Poisson's law: pVk = p0V:, where k ~ 1.4.) 

1747. How long would it take the water in a full he­
mispherical bowl of radius 40 em to flow through an ori­
fice on the bottom of area 2 cm 2? (See hint to Problem 
1737; set coefficient of viscosity f.t = 0.8.) 

9.7. Improper Integrals 

1°. Definitions. 
+o:> 

I. The integral ~ f (x) dx is defined as 
a 

b 

lim ~ f (x) dx 
b-++aoa 

b 

if this limit exists and is finite. The integrals· ~ f (x) dx 

+o:> 

and ~ f (x) dx are determined analogously. 
-co 

I I. If f (x) is continuous at all points of the closed 
interval [a, b] except the point c at which f (x) has a 
discontinuity of the second kind, then the integral of the 
function f (x) from a to b is defined as the sum 

c-e b 

lim ~ f(x)dx+ lim ~ f(x)dx, 
8-+0 a 1\-+0c+l\ 

if these lim its exist and are finite. 
Integrals with infinite limits and those of discontinuous 

(unlimited) functions are called improper integrals. 
If the above-mentioned limits are finite, we say that 

the jmproper integrals converge, if they are infinite, then 
we say that the improper integrals diverge. 

2°. An improper integral is often tested for convergence 
by the method of comparison: if for x >a If (x) I~ <p (x) 

+~ +oo 

and ~ <p (x) dx converges, then ~ f (x) dx also converges. 
a a 
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An analogous convergence test can also be formulated for 
the integral of a function with a discontinuity. 

Compute the integrals: 
QO 

1748. (l) s ~~; 
I 
QO 

1749. (1) Se-x dx; (2) 
0 

"' 
(4). ~ x2 ::2_! ; 

.. 
1750, (1) s X~ ; 

2 

6 

1751. (1) ~ V<:~x)2 ; 

QO "' 
(3) s '~; 

I r X 
(4) s~. 

I 
QO ... 

\ -x• d . (3) s dx . ~ xe x, I 1 +x2 ' 
GO co X 

(5) ~ x2~x ; (6) ~ x 2e -2 dx. 

"' "' 
(2) s arctan x dx . (3) s dx 

x2 ' (x2+ 1)2' 
I I 

2 2 

S dx 
(2) (x-1)2 ; 

0 
(3) i V<:~ 1)2 • 

1752. Test the following integrals for convergence: 

"' QO "' 
{1) ~ v~:x3 ; (2) ~ v:-1 ; (3) s e-: dx j 

I 

"' QO QO 

(4) ssinx~dx; (5) s xdx (6) Se-x' dx. 
2 Yx4 +1' I 0 

I b 

1753. (1) s~:; (2) S (b d\)n (for b >a). 
0 a 

Hint. Consider three cases: n=l-a< 1, n=l and 
n=l+a>l. 

1754. Compute the area _bounded by the versiera y = 

= 1 ~x2 and the asymptote of this curve. 

1755. Compute the area bounded by the curve y = xe -~ 
and its asymptote (for x > 0). 
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1756. Compute the area contained between the cissoid 
xa 

y1 = 2-- and its asymptote. a-x 
Hint. Putting x = 2a sin2 t, pass over to parametric equa­

tions. 
· 1757. Find the volume of the solid formed by revolving 

3 

the cissoid y2 =-2 x about its asymptote (see Prob-a-x 
lem 1756). 

1758. Determine the area of the surface formed by re­
volving about the x-axis an infinite arc of the curve 
y=e-x for positive x. 

1759. Find the volume of the solid formed by revol­
ving about the x-axfs an infinite branch of the curve 

y = 2 ( ! - :2 ) for x ~ 1. 
1760. Show that 

(1) ~ e-xxmdx=m!; l 
! ~ If m Is a positive integer •. 

(2) ~ e-"2x2m+ldx =~I J 

1761. Compute the following integrals: 

"" 
(1) s~:; 

2 

Hint. In 
1. In x 
tm-. 

Jt-+r:s> X 

"' oo e 

(2) s x»e-"adx; (3) s ln;dx; (4) s x~~x· 
0 I I 

case (3) use L'Hospital's rule for finding 

00 

* The function ~ e-xxt-l dx= r (t) is termed the gamma function 
0 

of t. For integral t > 1, as it follows from Problem 1760 (I), r (t) = 
=(t·-1)! Putting here t=l, we get conventionally Ol=f(l)= 

"" 
= ~ e-xxo dx= I. Therefore, by convention, 01 = 1. 

0 



212 Ch. 9. The Definite Integral 

00 "' "' 

1762. (1) s dx . (2) s dx . (3) s ____!!!._ 
x Y! +x~ ' Y(J +x)a ' x2 +x' · 

1 0 1 

1763. Compute the area contained between the curve 
y=e- 2x and the coordinate axes (for x > 0). 

1764. Find the volume of the solid generated by revol­
ving about the y-axis an area of infinite length contained 
between the I ines xy = 4, y = 1, x = 0. 

1765. Determine the volume of the solid formed by re-
x 

volving the curve y=xe -2 (for x > 0) about its asym­
ptote. 

9.8. The Mean Value of a Function 

The mean-value theorem. If on a closed interval [a, bl 
a function f (x) is continuous, then for some va I ue of 

b 

x(x=c) between the limits of the integral ~ f(x)dx 

b 

~ f(x)dx=(b-a)f(c). 
a 

The value of the function 
b 

~ f (x) dx 

Ym = f (c) = ...:a:..._b_a_ 

a 

(1) 

(2) 

is ca lied the mean va 1 ue of the function f (x) on the 
interval [a, b ]. 

1766. Determine the mean value of the following func-
tions on the given intervals: 

(1) y=sinx on [0, n]; 

(2) y =tan x on [ 0, ~ J ; 
(3) y=1nx on [1, e]; 
(4) y=x2 on [a, b]; 

I 
(5) y= I+x2 on [-1, 1]. 

Indicate ihe mean value of each function on its graph. 
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9.9. Trapezoid· Rule and Simpson's Formula 

1°. The trapezoid formula: 

f f (x) dx ~ h [Yo t Yn + z Yi] ' (I) 

where h = (b-a);n, and y0 , y 1 , y 2 , ••• Yn are equidistant 
of the curve y = f (x) on the interval [a, b]. The limiting 
error formula (1): 

(b-a)h2 , 
e(h)~ 12 IY lmax· (I) 

2°. Simpson's formula (for parabolic trapezoids) for 
two subintervals: 

b 

S f(x)dx~ ~ (Yo+4Yt+Y2), (I I) 
a 

where h = (b-a)/2. 
3°. Simpson's formula for 2n equal subintervals: 

f f(x)dx~ ~ [Yo+Y2n+4~Y2i- 1 +2~1 Y2i]. (III) 

where h = (b-a);2n. The limiting error of formulas (II) 
and (III) 

(h)~(b-a)h41'vl e -.::: 180 Y max• (2) 

i.e. formula (II) is accurate for parabolas of second and 
third powers: y=a+bx+cx2 +dxa. 

2 

1767. Using the trapezoid rule, compute ln2=Sd: 
I 

and estimate the error by formula (1). 
1768. Using Simpson's formula (III), compute the in-

5 2 

tegrals J x 3 dx and J x4 dx, estimate the error by for-
1 0 
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mula (2), and compare the results with exact values of 
the integrals. 

1769. Compute the following integrals by Simpson's 
formula (Ill): 

n 
2 2 

(1) ~Vl+x~dx(2n=4)i 
0 

(2) ~ V 3-cos 2x dx (2n'"'" 6)J 

4 

(3) S l~x4 (2n=-=4), and estimate the error, putting in 
0 

formula (2) h'l yiV lmax ~ I d'y lmax· 
1770. Using Simpson's formula (II), find the volume 

of a barrel 50 em high, the diameter of the bottoms being 
equal to 20 em, and the diameter of the midsection to 
30 em. 

1771. Deduce the formulas for the volume of a pyramid 
and a sphere from Simpson's formula (II). 

2 

1772. Compute In 2 = S ¥by means of Simpson's for­
I 

mula (III) (at 2n = 10) and estimate the error by for­
mula (2). 

1773. Find the length of the arc of the ellipse x""' 
= 5cost, y=3sint, applying Simpson's formula (II) to 
the integral determining the first quarter of the entire arc. 

I 

1774. Compute approximately n = 6S Y dx , apply-
4-x2 

0 
ing Simpson's formula (II) to the integral. 

I 

1775. Compute ~ = S i~x2 by means of Simpson's for­
o 

mula (III) (at 2n = 10), and estimale the error, putting 
approximately in formula (2) h' I y1V lmax ~ J d 4y lmax· 
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1776. Considering the area of the portion of a circle 
4 

bounded by the curve x~ + y2 = 32, show that~ V 32-x2 dx= 
0 

= 4n+ 8; find n computing the integral by Simpson's 
formula (at 2n = 4). 

1777. Using Simpson's formula (III), compute the length 
of the arc of a half-wave of the sinusoid y =sin x divi­
ding the interval I 0, n I into six equal subintervals. 



CHAPTER 10 

CURVATURE OF PLANE AND SPACE CURVES 

10.1. Curvature of a Plane Curve. 
The Centre and Radius of Curvature. 

The Evolute of a Plane Curve 

I o. Curvature 
dm y" k = ....:r..- --"--,-­
ds - (I+ y'2)3/2 · 

2°. The radius of curvature 

(I+ y'2)8/2 (x2 + y2)8/2 

R= IY"I = i!ix-xyl 

3•. The coordinates of the centre of curvature 

X=x--,-y =x+ ... ... y, 

(1) 

(2) 

l+y'2 , x2+!i2 ... } 
Y xy- yx 

l+y'2 x2+iP . (3> 
Y=y+-,-=y+ ... ... X. 

Y yx-xy , 

The locus of the centres of curvature C (X, Y) is cal­
led the evolute. Equations (3) are the parametric equations 
of the evolute. 

4°. The radius of curvature of the curve r = f (<p), where 
r and <p are polar coordinates 

(4) 

Determine the radius of curvature and construct the 
curve and the circle of curvature of the given curve at 
its vertex: 

1778. y=4x-x2 • 1779. y=e-x•. 
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1780. x2 + 4y2 = 4. 

1782. y =xe-x. 

1781 . { x=a(t-sint), 
y =a (I-eos t). 

Determine the coordinates of the centre of curvature 
and construct the curve and its circle of curvature: 

1783. xy=4 at the point x=2. 
1784. y =In x at the point of intersection with OX. 
1785. y=-x3 f 1 at the point of intersection with OX. 
Write the equation of the evolute of the given curve 

and construct the curve and its evol u te: 

I x2 1787. { X= 2 cos t 
1786. y= -2· 

y=sin t. 
1788. x2-y2 =a2 (or x=acosht and y=asinht). 
1789. { x=a(cost+tsint) 

y=a(sint-tcost). 
1790. Find the maximum curvature of the curve y=ex. 
1791. Prove that the radius of curvature of the cate-

nary y=acosh~ is Y2 at any point and is equal to the a a 
segment of the normal between the curve and the x-axis. 

1792. Determine the radius of curvature at an arbitrary 
point of the curve (I) r=a(l-cosq:>); (2) r2 =a2 cos2q:>; 

a2 
(3) r 2 --­- cos 2<p. 

Determine the radius of curvature and construct the 
given curve and the circle of curvature of the curve at 
its vertex: 

I 
1793. y= l+x2 • 1794. x2-y2=4. 

1795. y=sinx. 1796. 2y=x2 +4x. 
Determine the coordinates of the centre of curvature 

and construct the curve and the circle of its curvature: 
1797. y=ex at the point of its intersection with OY. 
1798. y=x; at the point (-I, - ~). 
1799. y2 =x3 at the point (I, I). 

1800. y=cosx at the point x=-i-· 
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Write the equation of the evolute of the given curve 
and construct the curve and its evolute: 

[3 
1801. y2 =2(x+l). 1802. x=i\ y= 3 . 
1803. xy=4. 1804. x=acos3 t, y=asin3 t. 

2 

1805. Show that at any point of the astroid x 3 + 
2 2 

+y3 =a3 the radius of curvature is equal to 3 VaJxyJ. 

10.2. The Arc Length of a Space Curve 

The differential of the arc ds = V dx2 + dy 2 + dz 2 or 

ds = l/ X2 + il + Z2 dt. 
t. 

The length of the arc s = ~-(" x2 + y2 + z2 dt. 
t, 

Find the length of the arc of the given curve: 
2 

1806. x=t, y=t2 , z= 3 ts from i=O to 1=3. 
1807. x=3cost, y=3sint, z=4t from t=O to an 

arbitrary t. 
x2 xs 

1808. y= 2 , z= 6 from x=O to x=3. 

Find the length of the arc of the given curve: 

1809. x=t-smt, y=l-cost, z=4sin ~from t=O to 

t=n. 
1810. x=e1, y=e- 1, z=tV2 from t=O to 1=1. 

I x2 
1811. y= 2 lnx, z= 2 from x= 1 to x=2. 

10.3. The Derivative of a Vector Function 
of a Scalar Argument and Its Mechanical and 

Geometrical Interpretations. 
The Nat ural Trihedron of a Curve 

The radius vector r =xi+ yj + zk of a point of the 
curve x = x (t), y = y lf), z = z (t) is a vector function of 
the scalar t. The derivative r=xi+yj+zk is a tangen-
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tial vector and has· the modulus 1 rl = V x2 + y2 + z2 = s = 
= ~~. Therefore, if t is time, and the curve is the path 

of motion, then r = 'lJ is the vector of velocity, and r = w, 
the vector of acceleration. 

Fig. 36 

Through the point M (x, y, z) of the curve (Fig. 36) draw 
three planes: 

{1) perpendicular to r, which is called the normal plane; 
(2) containing r and r, which is called the osculating 

plane; 
(3) perpendicular to the normal and osculating planes. 
The three planes form a natural trihedron of a curve. 

They intersect along three straight I ines: the tangent, 
the binormal and the principal normal determined by the 
vectors: 

{I) r which is termed the tangential vector, 
(2) B = r'x ,:·which is ca !led the binormal vector, 
(3) N = B x r which is termed the principal normal 

vector. 
Let us denote the unit vectors of these directions by 

't, ~. v; they are related in the following way: ::=I~: I v 
and ~='t'XV. 
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Let M 1 (X, Y, Z) be a point on the tangent (Fig. 36). 
-----+ . 

Then MM 1 11 r, and from the condition of parallelism of 
vectors we get the equations of the tangent: 

X-x Y-y Z-z -.-=-.-=-.-. (I) 
X y Z 

Let M 2 (X, Y, Z) be a point in the normal plane. Then 
-----+ . 
MM 2 j_ r, and from the condition of perpendicularity of 
ve;::tors we get the equation of the normal plane: 

x (X-x) + y (Y -y) +i (Z-z) =0. (II) 

The equations of the binormal and the principal nor­
mal are obtained by replacing x, y, i in equations (I) 
by Bx, By, Bz or Nx, NY, Nz respectively. The eq_uat.io~ of 
the osculating plane is obtained by replacing x, y, z in 
equation (II) by Bx, By, Bz. 

1812. The radius vector of a moving point at the mo­
ment t is given by the equation r = 4ti-3tj. Determine 
the path, velocity, and acceleration of motion. 

1813. The equation of motion is r=3ti+(4t-t2)j. 
Determine the path and velocity. Construct the path and 
the velocity vectors for the moments t = 0, I, 2, and 
3 sec. 

1814. In Problem 1813 determine the acceleration w 
and its tangential W-r:=:~ and normal wn=Vw2 -wi 
components at any moment t and at t = 0. 

1815. The equation of motion is r=acost·i+bsint-j. 
Determine the path, velocity and acceleration and const­
ruct the vectors of velocity and acceleration at the points 

n n ' 
t=O, 4• 2· 

In Problem 1816 through 1818 write the equations of 
the tangent line and the normal plane of the curve: 

1816. x=t, y=t 2 , z=t3 for any point and for t=I. 
1817. y=x2, z2 =x for any point (x~O) and for x=4. 

1818. for the point (1, 3, 4). { xB+y2= 10 

Y2+z2 =25 
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Hint. Take the differentials of both the left-hand 
and right-hand members of each equation, and then find 
the ratios dx:dy:dz. 

1819. Find the vectors r, B, and N of the curve x = 

= 1-sint, y=cost, z=t at the point t =0. Find also 't, 

p, and " at the same point. 
1820. Write the equations of the principal normal, the 

binormal and the osculating plane of the curve x = t, y = t 2 , 

z = t 3 at the point t =I. 
1821. Write the equations of the principal normal and 

binormal to the curve x=e1, y=e- 1, z=t at the point 
t=O. 

1822. Show that the equationsx=tcost, y=tsint, z=t 
determine a conical helix, and write the equations of the 
principal normal, the binormal, and the tangent to it at 
the origin. 

1823. Write the equations of the tangent to the helix 

x=acost, y=asint, z=bt for any point and at t = ~. 
Show that the helix intersects the elements of the cylinder 

x2 + y2 = a 2 at one and the same angle I'= arccos V b 
a2+b2 

1824. Find the angles formed by the tangential vector 
of the curve x2 = 2az and y2 = 2bz with the coordinate axes 
at the point z = V ab. 

1825. The plane y = 0 containing the curve 2z = x2, y = 0 
is wound onto the cylinder x2 + y2 = 2y. Write the para­
metric equations of the helix formed by the given curve 
and determine the binormal vector of ihe curve at any 

point and at the point t = ~ , where t is the angle through 

which the plane is turned. 

1826. The radius vector of a moving point at the moment 
t is given by the equation r=a(t-sint)i+a(I-cost)j. 
Determine and construct the velocity and acceleration 

n 
vectors at t = 2 and t = n. 
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In Problems 1827 through 1829 write the equations of 
the tangent to the curve: 

1827. y = x, z = 2xll at the point x = 2. 

{ x2 + yll + z2 = 14 
1828. +2 0 at the point (1, 2, 3) (see Prob-

x y-z-4 
lem 1818). 

1829. x = 2t, y""" In t, z = t1 at the point t = 1. 
1830. r=etl+e-~+tV2k. Find the angles formed by 

the binormal vector b with the coordinate axes at the 
point t =0. 

1831. Write the equations of the principal normal and 
binormal to the curve y=xll, z=y2 at the point x= 1. 

1832. Write the equations of the principal normal and 

binormal of the curve x = t-sin t, y = 1-cos t, z = 4 sin~ 
at the point t = n. 

10.4. Curvature and Torsion of a Space Curve 

The curvature ~ is the limit of the ratio of the angle 

q> (through which the tangent Is turned) to the length of 

the arc L1s as L1s--.. 0. The torsion _.!_ is the limit of the 
p 

ratio of the angle e (through which the binormal is turned) 

to L1s as L1s--.. 0. Since q> ~I t1T I and e ~+I L1~ 1. ~ and ~ 
turn out to ~e equal to the moduli of the vectors: 

d1: I dp I 
-=-'V -=--'V (1) ds R ' ds p · 

If a curve is specified by the equation r = r (t), then 

I I ;. X r I I rr r 
R= lrl3 ' -p= Jrxrl2 

(2) 

1833. Differentiate the equality 'V==V't' with respect tot, 
and with the aid of the first formula of (I) resolve the 
acceleration w into the tangential and normal components: 

v2 
W=V't'+Rv. 
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1834. A point is moving along the parabola x = t, 
y = t-t 2 , where t is the time of motion. Determine the 

curvature ~ of the path and the tangential and normal 

accelerations at the moment t and at t = 0. 
1835. A point is moving along the ellipse x=4cost, 

y=3sint, where t is the time of motion. Determine the 

curvature ~ of the path, and also the tangential and 

normal accelerations at t = ~ . 
1836. For the motion specified by the equation r = ti + 

+ t 2j + ~ t8k determine the curvature ~ of the path and 
the tangential and normal accelerations at any moment t 
and at t =I. 

Determine the curvature ~ and the torsion ~ of the 

curve: 
1837. x=t, y=i2 , z=t3 at any point and at i=O. 
1838. x=e1, y=e- 1, Z=tV2 at any point and at 1=0. 

x2 x3 
1839. y = 2 , z= 3 at any point and at x= I. 
1840. Show that the torsion of the right-handed helix 

(x=acost, y=asint, z=bt) is positive; that of the left­
handed helix (x=acost, y=-asint, z=bi) isnegative. 

Determine the curvature ~ and the torsion ~ of the curve: 

1841. x=2t, y=Int, z=t2 at any point and at i=l. 
2 

1842. x = ~ , z=x2 at any point and at y= I. 
1843. x=e1 sint, y=e1cost, z=e1 at the point t=O. 



CHAPTER 11 

PARTIAL DERIVATIVES, TOTAL DIFFERENTIALS, 
AND THEIR APPLICATIONS 

11.1. Functions of Two Variables and Their 
Geometrical Representation 

1°. Definition. A variable quantity z is called a single­
valued function of two variable quantities x andy if every 
pair of numbers that may (by the conditions of the pro­
blem) be the values of the variables x andy is associated 
with one definite value of z. The functional dependence 
of z on x and y (which are called arguments) is written 
in the form 

Z=F(x, y). (l) 

2°. Geometrical interpretation. Geometrically equation 
(I) defines some surface. A pair of values of x andy defines 
a point P (x, y) in the plane XOY, and. z = F (x, y) the 
z-coordinate of the corresponding point M (x, y, z) on the 
surface. Therefore, we say that z is a function of the 
point P (x, y), and we write z = F (P). 

3°. The limit of the function F (P): lim F (P) =A if the 
P-+P0 

difference F (P)- A is an infinitesimal as p = P0P-.. 0, 
where P approaches P 0 in an arbitrary fashion (for instance, 
along any line). 

4°. Continuity of a function. A function F (x, y) is cal­
led continuous at point P0 if lim F (P) = F (P0). In other 

P-+ Po 

words, a function F (x, y) is continuous at some point 
(x, y) if 

lim F (x+ ~x. y+ ~y) =F (x, y). 
AX-+0 
A.y-+0 



Sec. JJ .I. Functions of Two Variables 225 

1844. Indicate the ranges of x and y for which the 
following functions have real values: 

4 
(1) z=x~+y1 ; (2) az=a2-x1-y2 ; (3) Z=x'+Y'; 

(4) z=Va1-x1-y2 ; (5) z=Vxy; (6) Z= 1 
Y 1-xs-ys' 

(7) z = _!1!_ ' y-x 

and depict the functions geometrically, cutting the surface 
by the planes x=O, y=O, z=O, and z=h. 

1845. Given the peri meter 2p of a triangle. Express the 
area S of the triangle as a function of its two sides x 
and y. Define and construct the domain of possible values 
of x and y. 

x-2y I F 1846. F(x, y)=-2-; eva uateF(3, 1), F(1,3), (1,2), x-y 
F (2, 1), F (a, a), F (a, -a). 

1847. F(x, y)=Vx'+y'-2xy; prove that F(tx, ty) = 
= t 2F (x, y). 

1848. z = x2-xy = y2; determine L\xz, L\11z, and L\z. 
Compute L\xz, L\11z, L\z if x varies from 2 to 2.1 and y 

varies from 2 to 1.9. 
1849. Show that the equation x2-y2-z2 =0 defines an 

infinite number of single-valued functions z of x and y, 
two of which are continuous. Indicate the domain of 
definition of all these functions and represent geometrically 
the positive continuous function. Give an example of 
a single-valued but discontinuous function z=F(x, y), 
defined by the same equation x2-y2 =z2 • 

1850. Construct the level lines (z=O, 1, 2, etc.) for the 
following functions: 

(l) z = v 1-~ - yt ; (2) z =x1-y; 

(4) Z=Xy. 

1851. Show that the expression u =-11- tends to any x-y 
limit as x-0 and y-O. Find the routes along which 
(x, y) approaches (0, 0), for which lim u = 3, lim u == 2, 
lim u= 1, lim u=O, lim u =-2. 

8 -1195 
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Hint. Consider the variation of x and y along straight 
lines y =kx. 

1852. Show that 

(I) lim 2 - VXY+4 = _ _!_; 
x-+0 xy 4 

(2) lim sin (xy) = I; 
x-+0 xy 

y-+0 y-+0 

(3) lim sin (xy) = 0 
x-+0 X 
y-+0 

irrespective to the way (x, y) approaches (0, 0). 
Hint. Put xy=a. 
1853. Represent geometrically the function 

{ 
I for xy > 0 

z = F (x, y) = 0 for xy = 0 
-1 for xy < 0 

and indicate the lines of its discontinuity. 

1854. Indicate the domains of definition of the following 
functions: 

4 z Y x2 y~ (1) Z=x+y; (2) Z=-+ ; (3) -= l-2-b2; x y c a 
z x2 y2 v--(4) -= 1---- · (5) Z=X_j__ X2-y2· 
c a2 b2 ' ' ' 

(6) Vz = Vx+ V!l 
and depict geometrically these functions. 

1855. F (x, y) = _x_; show that 
x-y 

F(a, b)+F(b, a)=l. 

1856. Show that the equation z2 = 4 ! 2 defines an 
-X -y 

infinite number of single-valued functions z of x and y, 
of which two are continuous. Indicate the domain of 
definition of all these functions and give the geometrical 
representation of the function which is positive within 
the domain x2 +y2 ~1 and negative outside it. 
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1857. Depict geometrically the single-valued function 
z = F (x, y) defined by the equation x2 + y 2 + z2 =a2 , posi-

2 

tive within the domain x2+ y2 ~ ~ and negative outside 

it. Indicate the line of its discontinuity. 

11.2. Partial Derivatives of the First Order 

The derivative of a function z = F (x, y) with respect 
to the argument x, found proceeding from the assumption 
that y remains constant, is called a partial derivative of z 

with respect to x and is denoted ~: or F~ (x, y). Analo­
gously, a partial derivative of z with respect to y: 

~~ = F~ (x, y). 

s• 

Find the partial derivatives of the following functions: 
1858. z = x8 + 3x2y-y 3 • 1859. z =In (x2 + y 2 ). 

1860. z=L. 1861. z =arctan .JL. 
X X 

1862. z = ..!JL. 
x-y 1863. u =In ( Vx- vr) . 
;-;;,....,-....-;;---;:~--

1864. c= ~· a2 +b2 -2abcosa. 

1865. 

1867. 

1869. 

y Z X 
U=-+---. 

X y Z 
2x-t 

U= x+2t · 

z =In (Vx+ Vlj); 

X 

1866. U=Xe-YX. 

1868. a= arcsin (t Vx). 
prove that 

t2. th t 2 au au 1871. u=e , prove a xax-+tar=O. 
h X au I au 

1872. u = xY; prove t at Y Tx + In x iJy = 2u. 

1873. In Problem 1898 we shall prove Euler's theorem: 
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If z = F (x, y) is a homogeneous function of degree n, 
iJz iJz 

then X ax+ y iJy = nz. 
Verify this theorem for the following functions: 

(I) z=x8 +xy2-2y8 ; (2) z=Vx2 +xy+y2 ; 

I 
(3) Z=~; 

X -tl 

X 

(4) z =e'Y. 

Find the partial derivatives of the following functions: 

1874. z=cos(ax-by). 1875. z=arcsin1L. 
X 

X 1876. z= 3- 2 • 1877. u=lnsin(x-2t). y- X 

1878. u =sin2 (x+ y)-sin2 x-sin2 y. 
1879. u = V x 2 + y2 + z2 ; prove that 

(~~r+(~~r+(~~r=l. 
1880. 

.!.... oz oz z z=eu lny; prove that x;;-+Y::s-=-1 -. uX uy ny 

1881. -. /T iJT iJT 
T=n y g; prove that lar+gag-=0. 

X 

1882. z=e"'~ sin(~-~); prove that 

( i)z+iJZ)' I . 2 Y - - =-exsm -. ox iJy 2 2 

1883. Verify Euler's theorem on homogeneous functions 
(see Problem 1873) for the following functions: 

x8 I y 
(I) Z=x-y; (2) Z=x2+Y2 ; (3) z=arctanx. 

11.3. Total Differential of the First Order 

If a function z = F (x, y) has continuous partial deri­
vatives at point (x, y), then its total increment may be 
represented in the form 

(1) 
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where e ~ 0 as p =Vi L\x 12 +I L\y 12 -+ 0. Then the expres­

sion ~:L\x + ~; L\y is the principal part of the total increment 
L\z; it is called the total differential of the function and 
is denoted dz: 

iJz iJz 
dz = iJx L\x + iJy L\y. (2) 

Putting in formula (2) z equal to ( 1) x; (2) y, we find: 
dx = L\x, dy = L\y. Therefore 

iJz iJz 
dz=axdx+-aydy. (3) 

From (1) it follows that 

L\z~dz, (4) 

i.e. for sufficiently small L\x and L\y the total increment 
of a function approximately equals its total differential 
(see Sec. 5. 7). 

A function F (x, y) is called differentiable at (x, y) if it 
has a total differential at this point. 

1884. Find the total differentials of the following func­
tions: 

s 

(I) z=x2y; (2) z=/Yy; (3) u=eT; (4) z=Vx2 +y2 • 

1885. Evaluate the total differentials of the following 
functions: 

(1) z=JL for x=2, y= I, dx=O.I, dy=0.2; 
X 

(2) u =trY for x= 1, y =2, dx= -0.1, dy= 0.1. 

1886. Compute dz and L\z for the function z =xy at 
x=5, y=4, dx=O.l, dy=-0.2. 

1887. Calculate approximately the change of the func-

tion q> =arctan f, when x varies from 2 to 2.1 and y from 

3 to 2.5. 
1888. As a result of deformation the radius R of a 

cylinder increased from 2 dm to 2.05 dm, and its height H 
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decreased from 10 dm to 9.8 dm. Find approximately the 
change in its volume V using the formula L1V ~ dV. 

1889. When measured, the legs of a right triangle tur­
ned out to be equal to 7.5 em and 18 em (an accuracy 
of 0.1 em). Determine the absolute error in computing 
the hypotenuse. 

1890. Find the total differentials of _the following func­
tions: 

(1) z=f-;; (2) s=xlnt; (3) u=Vx2 +Y~+z2 • 
1891. Find the values of dz and dz for the function 

z =In (x2 + y2 ) if x varies from 2 to 2.1 and y from 1 
to 0.9. 

1892. Compute approximately the increment of the fun-

ction z =arcsin.! when x varies from 5 to 4.5 and y 
X 

from 3 to 3.3. 
1893. As a result of deformation the radius of a cone R 

Increases from 30 em to 30.1 em and its height H decreases 
from 60 em to 59.5 em. Find approximately the change 
In the volume of the cone using the formula L1V ~ dV. 

11.4. The Derivative of a Composite Function 

1°. If z = F (x, y), x = f (t), y = cp (t), then z is called a 
composite function with respect to t. In this case 

dz az dx az dy 
Tt=-ax&+ au Tt (1) 

If the functions F, f, and cp are differentiable. 
2°. If z = F (x, y), where x = f (u, v), y = cp (u, v), and 

if the functions F, f, and cp are differentiable, then 

~-~~+~au. ~-!!....ax+~ au (2) au - ax au ay au ' au - ax au iJy av . 

1894. Using formula (1), find :: from the equations: 

(1) z=x1 +xy+y2 , x=t2 , y=t; 
(2) z = V x' + y2 , x = sin t, y =cos t. 
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Check the result by preliminary substitution of the values 
of x and y into the expression for the function z. 

1895. z=-f, x=et, y=I-e2t; find::. 

1896. z = uv, where u and v are functions of x. Find :: . 

1897. z = xeY, where y is a function of x. Find ~. 
1898. The function z = F (x, y) is called homogeneous if 

F (xt, yt) =tn.p (x, y). Differentiating both members of 
this equality with respect to t and putting in the result 
t =I, prove Euler's theorem on homogeneous functions: 

iJz iJz 
x 0x+Ya-y=nz. 

~ ~ 
1899. z=-y. where x=u-2v, y=v+2u. Find Tu 

iJz 
and 0-. 

v 

1900 F ( ) E az d az in terms f a:z , z = X, y . X press JX an ay 0 au 

d az 'f an av I : 

(I) u=mx+ny, v=px+qy; 
(2) u = xy, v = JL. 

X 

au 
1901. u=F(x, y); x=rcoscp, y=rsincp. Express a, 

i}u au au 
and acp in terms of ax and ay and show that 

( ~) 2 + ( ..!._ au ) 2 = ( _?!!:_ ) 2 + ( _?!!:_ ) 2. ar r acp ax ay 

1902. z=y+F(u), where u=x2-y2 • Prove that 
az az f y ax +xay=x or any differentiable function F (u). 

1903. Find ~; from the equations: 

(I) z=Ax2 +2Bxy+Cy2 , x=sint, y=cost; 

(2) z = arctanlL., x = e2t +I, y =e2t_l. 
X 
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1904. z=xy+xF(u), where u= ~. Prove that 

az az 
xax+Yay=z+xy. 

1905. z=yrp(u), where u=x1-y1• Prove that 
1az 1az z 
x ax+ y au- ya · 

1906. z=F (x, y). az 
Express ax and 

az . f i)z 
ay tn terms 0 . au and 

iJz ·r· iJu I . 

(1) u=x+2y, 
(2) u=YXy, 

v=x-y; 
v=x+y. 

11.5. Derivatives of Implicit Functions 

1°. The equation F(x, y)=O, having a solution (x0,y0), 

defines the variable y in the neighbourhood of x 0 as a 

continuous function of x, provided the derivative ~= :::pO 

and is continuous in some neighbourhood of the point 
(Xo, Yo). 

If, in addition, in the neighbourhood of the point 

(x0 , y 0) there also exists a continuous derivative ~~, then 

an implicit function has a derivative :~ defined by th~ 
formula 

aF 
dg ax 
ax=- aF ' ( 1) 

au 

2°. Under analogous conditions the equation F(x, y, z) = 0 
defines z as an implicit function of x and y which has 
the partial derivatives 

aF 

(2) 
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Find :! from the equations: 

1907. x2 + y2 -4x+ 6y = 0. 
2 2 I 

1908. (1) x3 +ya =aT; (2.) xe2Y-ye2x=O. 
1909. Ax2 +2Bxy+Cy2 +2Dx+2Ey+F=0. 
Find the slope of the tangent line to the given curve: 
1910. x2 +y2 =lOy at the point of intersection with the 

straight line x=3. 
1911. x3 +y3 -2axy=O at the point x=y=a. 
1912. Find the points at which the tangent line to the 

curve x2 +y2 +2x-2y=2 is parallel to (1) OX; (2) OY. 

Find ~;and ~~ from the equations: 
1913. x2 +y2 +z2 -6x=0. 1914. z2 =xy. 
1915. cos (ax+by-cz) =k (ax+by-cz). 

iJz iJz 
1916. xyz = a3 ; prove that x ax+ y oy = -2z. 

1917. Prove that the differential equation x~~+Y~~=z 
is satisfied by the implicit function z defined by the 

equation (of conical surfaces) ~ = cp ( ~). 

Find :~ from the equations: 

1918. x2 -4y2 =4. 1919. xy+lny+lnx=O. 
u 

1920. y+x=e'X. 1921. 2cos(x-2y)=2y-x. 
1922. Find the slope of the tangent line to the curve 

y1 -xy=4 at the points of intersection with the straight 
line x=3. 

1923. x2 +y'+z'-2zx=a2• Find ~and~;. 
1924. 2sin(x+2y-3z)==x+2y-3z. Show that 

a~+az _ 1 
OX iJy- . 

1925. Show that the differential equationm 0°z+n~2 =1 
x ay 

is satisfied by the implicit function z defined by the equa­
tion (of cylindrical surfaces) x-mz = cp (y-nz). 
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11.6. Higher-Order Partial Derivatives 
and Total Differentials 

Let there be given a function z=F(x, y) having par-
t . I d . t. oF d oF Th t. I d . t. f ta enva tves ox an oy . e par ta enva tves o 
these derivatives are called partial derivatives of the 
second order (or second partial derivatives). They are 
designated as follows: 

a(~=)_ a2F. 
ax--ox2 ' 

0 ( ~= ) _ o2F . 
ax--ayox' 

Partial derivatives of the third and still higher orders 
are defined and designated in a similar way. 

Mixed derivatives, differing only in the order of diffe­
rentiation, are equal if they are continuous: 

iJ2F o2F aap asp 03F 
oxoy = oyox; ox2 oy = oxoy ox= oy i}x2 and so on. 

We get the following table of derivatives of higher orders: 
i}2F i}2F i}2F 

of the second order ax2 ; ax oy ; oy2 , 

. aap aap aap aap 
of the thtrd order axs; ax2 oy ; ox ay2 ; ays and so forth. 

Total differentials of higher orders are determined in 
. ()2z ()2z ()2z 
the following way: d2z= axa dx2 + 2 oxoy dx dy + aya dy2. This 

equality can be rewritten symbolically as d2z = (:xdx + 
+ ~dy yz. Analogously, d3z = (:Xdx+ :Ydy Yz and so on. 

1926. z=x3 +x2y+y3 • Find the partial derivatives of 
the third order. 

()2 iJ2 
1927. Check that , ~ =, ! for the following functions: vxvy :~yvx 

x2 
(1) z =sin (ax-by); (2) z = ya; (3) z =In (x-2y). 
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1928. u=x'+3x2y2 -2y'. Find the "partial derivatives 
of the fourth order. 

1929. u = JL. Find the partial derivatives of the third 
X 

order. 
( I I ) iJ2s iJ2s I 

1930. s =In -x-T ; check that oxot +ox'= XJ· 

1931. z =arctan JL. Find the second-order derivatives. 
X 

1932. z =sin ( ~- ~); prove that 

(.£,+.£.)2z =- (.I__.I_)'z. ox oy a b 

iJ2u iJ2u 
1933. u =arctan (2x-t); prove that ax2 + 2 oxot = 0. 

1934. s = V ax+ bt; prove that 

(x:x+t!Ys=-2;. 
y 

1935. Show that the function u = xe -X' satisfies the 
differential equation 

X iPu + 2 (iJu + ou) = o'u axoiJ ax oy Y 8Yi · 
1936. Prove that if z c:: F (x, y) is a homogeneous func­

tion of degree n, then 
iJiz (JII iJ2z 

X2 iJx' + 2xy ax oy + Y2 oy' == n (n -1) z 

or symbolically 

( xfx+y :UYz = n (n-1) z. 

Hint. Differentiate the equality x;;+u~;=nz(seePro­
blem 1898) (1) with respect to x; (2) with respect to y 
and add termwise the results multiplied by x and by y 
respectively. 

1937. Check the equality (x!+u:UYz=n(n-1)z for 
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the homogeneous functions: ( 1) z = x1 + xy + y2 ; (2) z - ~ ; 

(3) Z=~; (4} Z=ln(L-1). 
X -y X 

1938. Find d1u if (1) u=Y:; (2) u=xlnL. 
X X 

1939. z =cos (mx + ny). Prove that 

d2z=- z(mdx+ndy)2 • 

1940. z=ln(ax+by). Prove that: (1) d3z=2dz3 ; 

(2) dnz = (-1)n-l (n-1) I dzn. 
1941. Prove that if z=F(u, v) where u=mx+ny and 

azz ( a a )2 a2z ( a 
V=px+qy, then ax2= mau+Pav z, axay= mau+ 

a ) ( a a ) a2z ( a a )2 + P au n au+ q au z; ayz = n au+ q au z. 
iJ2z a2 z CJ2z . 

1942. Express ax2 -4 axay +3 ayz as a functiOn of the 

new variables u=3x+y and v=x+y (see Problem 1941). 
iJ2z azz azz 

1943. Express -a 2-4-a iJ + 4 -a 2 as a function of the 
. X X y y 

new variables u=2x+y and v=y (see Problem 1941). 
1944. Prove that if z = F (u, v), where u and v are func-

t . f d th a2z ( ' a+ ' a )2 + " az + tons 0 X an y, en ax2 = Ux aij Vx au Z Uxx au 
, az . a2 z a2z 

+vxxav. Determme analogously axoy and ay2 • 

iJ2z a2z 
1945. Express X 2 ax2-y2 ay2 as a function of the new 

variables u = xy and v = !!_ (see Problem 1944). 
X 

· iJ2z I a2z I az · 
1946. Express-a2 +-;;a---z+-a- as a functton of the r r· cp r r 

new variables x = r cos cp andy= r sin cp (see Problem 1944). 

xz 
1947. z= 1_ 2Y. Find the partial derivatives of these-

cond order. 

1948. u = Vt . Find the partial derivatives of the 

third order. 
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1949. z = _!}/_ . Prove that 0°2
: + 2 / 2

0z + 0°2~ = - 2-. 
X- y X vX y y X- y 

1950. s =In (ax-bt); prove that (X!+ t ~ r s = 2. 

( t ) iJ2z azz 
1951. z=2cos2 x- 2 ; prove that 2w+ axat =0. 

JC 

11 • iJ2z iJz iJz 
1952. z =e ' prove that y iJxiJy= iJy- ax . 

1953. u =yIn x. Find d2u and d8u. 
iJ2z iJ2z 

1954. Express iJxD - a 2 iJy2 as a function of the new 

variables u=ax+y and v=ax-y (see Problem 1941). 
iJ2z iJ2z 

1955. Express x iJx2 + y iJxiJy as a function of the new 

variables u=y and v=.l!... (see Problem 1944). 
X 

1956. Show that the function u = xf ~x) + c:p ( ~ ) sa tis­

fies the differential equation 
iJ2u 2 iJ2u iJu 2 iJu 

xyaxay+Y ays +xax+ Yay= 0 

for any twice differentiable functions f and c:p. 

11.7. Integration of Total Differentials 

1 o For an expression P dx + Q dy, where P and Q are 
differentiable functions of x and y, to be a total differen­
tial du, it is necessary and sufficient that the condition 
ap iJQ . I II 
iJy = iJx ts fu fi ed. 

To find u from the conditions ~~ = P and ~; = Q we 

have two expressions: u = ~ P dx + c:p 1 (y), u = ~ Q dy + c:p2 (x). 
Writing out all known terms from the first expression 
and the terms containing y and missing the first one from 
the second, we get the function u. 

2°. For an expression P dx + Q dy + R dz, where P, Q, 
and R are differentiable functions of x, y, and z, to be 
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a total differential du, it is necessary and sufficient that 
the following conditions are fulfilled: 

oP aQ . oP oR . oQ aR 
oy = ax , az = ax , i}z = oy . 

For finding u we have: 

U=~Pdx+CJJ1 (y, z), u=~ Qdy+CJJ2 (x, z), 

U= ~ Rdz+CJJ8 (x, y). 

Taking all known terms from the first expression and 
the missing terms with y and z from the second and 
third expressions, we get the function u. 

Finding a function from its total differential is called 
the integration of the total differential. 

Check to make sure that the following expression is a 
total differential du and find u: 

1957. (2x+ y) dx+ (x-2y-3) dy. 
1958. x sin 2ydx+x2 cos 2ydy. 

1959. (x+Jny)dx+(; +siny)dy. 

1960. xdy-ydx 
x2+y2 

1961. (yz-2x) dx + (xz + y) dy+ (xy-z) dz. 

1962. (...!...-...!...)dx+dy_(-=-+-1-)dz. z x2 y z2 I +z2 

Check to make sure that the following expression is a 
total differential du and find u: 

1963. (y2-l) dx+ (2xy+3y) dy. 
1964. (sin 2y- y tan x) dx + (2x cos 2y +In cos x + 2y) dy. 

1965. ( y- si~: Y) dx+ ( x+ si:2Y + 1) dy. 

1966. t Vt2~ 1 dt+ 1 +2~ dx. 

1967. (In y-cos 2z) dx + ( ; + z) dy + (y + 2x sin 2z) dz. 

1968. dx~3dy + 3y;z dz. 
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11.8. Singular Points of a Plane Curve 

A point of a curve F (x, y) = 0 is called a singular one 

if at this point :~ = 0 and :: = 0. 

The slope k = y' of the tangent at such a point is found 
from the equation A+28k+Ck2 =0, where A, 8, and C 

. . a2F a2F a2 F 
are the values of the denvatlves ax2 , axay, and ay2 , 

respectively, at this singular point. Three cases are pos­
sible here: 

(1) if 8 2 -AC>O (two tangents), then the point is a 
node. 

(2) if 8 2 -AC < 0 (no tangent), then the point is an 
isolated point. 

(3) if 8 2 -AC=O, then the point is either an isolated 
point, or a cuspidal point (a cusp), or a point of oscula­
tion; at cusps and points of osculation there exists one 
common tangent to two branches of the curve. 

To arrive at a final decision in the third, doubtful, case 
one has to find out whether there are points of the curve 
in an arbitrarily small neighbourhood of the point under 
investigation. 

Determine the domains, points of intersection with the 
coordinate axes, and singular points of the given curves; 
construct the curves: 

1969. x3 +x2-y2 =0. 1970. y2 =(x+2)3 • 

1971. x3-x2 -y2 = 0. 1972. y2 +x'-x2 = 0. 
1973. (y-x) 2 =X3 • 1974. y2 =X (x-2) 2 • 

Determine the domains, singular point<>, and asympto­
tes of the given curves; construct the curves: 

1975. (x+2a) 3 +xy2 =0. 1976. x3 -y3 -3y2 =0. 
1977. x3 +y3 -3axy=0. 1978. y2 (x2 -a2)=x'. 

Determine the domains, points of intersection with the 
coordinate axe<;, and singular points of the given curves; 
construct the curves: 

1979. y2 +x3 -2x2 =0. 
1981. y2 =x(x+2)2 • 

1983. 4y2 = x& + Sx'. 

1980. a2y2 =x2 (2ax-x2). 

1982. xy2 =(x+a)a. 
1984. y2-x'+x2 =0. 
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1985. Find the points of intersection with the coordi­
nate axes, Ymax• singular point, and asymptote of the curve 
4x2-y2 +x8-y8 =0; construct the curve. 

Determine the domains, singular points, and asymptotes 
of the following curves: 

1986. (I) y• (2a-x) =x (x-a)' (strophoid); 
(2) a• (x2 + y 2) = x2y'. 
1987. (I) x(x2 +y2)=a(x2-y2); 

(2) a (x' + y 2) = x (x2 - y2). 

11.9. The Erwelope of a Family of Plane Curves 

A curve is called the envelope of a one-parameter family 
of curves F (x, y, a.) =.0 if (I) It is tangent to each curve 
of the family; (2) different lines of the given family touch 
it at different points. 

The envelope of a family of curves F (x, y, a.)=O (if it 
exists) is found by eliminating the parameter a. from the 
equations 

F(x, y, a.)=O and F:.X,(x, y, a.)=O. 

It may, however, happen that the curve thus obtained 
is not an envelope but a locus of singular points of the 
curves belonging to the family [see the answer to Prob­
lem 1990, (2)]. 

Find the envelope of the family of curves and construct 
the envelope and the curves belonging to the family: 

1 
1988. (I) y=ax+a•; (2) y=ax•+-a· 

1989. (I) (x-a)'+y2 =R 2 ; (2) 4ay=(x-a)•. 
1990. (I) y-l=(x-a)'; (2) (y-l)3 =(x-a)1 ; 

(3) (y-1)2 = (x-a)3 ; (4) 9 (y-a)1 = (x-a)3 • 

1991. A line segment of a constant length a slides 
with its end-points along the coordinate axes. Find the 
envelope of the family of such segments. 

1992. Find the envelope of the family of circles passing 
through the origin with centre on the parabola y"' = 4x. 

1993. Find the envelope of the family of circles whose 
diameters are radius vectors of the points belonging to 
the hyperbola xy=a2 • 
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1994. A projectile is launched from the origin with 
initial velocity b at an angle a to the axis OX. Find the 
envelope of a family of trajectories for different a. 

1995. Find the envelope of the family of (1) straight 
lines xcosa+ysinct-p=O with p constant; (2) straight 
lines y=ax+_!_; (3) cubic parabolas y-1 =(x-a)3 • 

a 
1996. Find the envelope of the family of circles with 

centres on the x-axis, whose radii are the corresponding 
ordinates of the parabola y2 = 4x. 

1997. Find the envelope of the family of ellipses 
x2 y2 
li2+b2= I if the sum of the semi-axes has a constant 
length l. 

1998. Find the envelope of the family of parabolas having 
an axis of symmetry parallel to the y-axis and passing 
through the points (-a, 0), (3a, 0), and (0, 3a2) for 
different a. 

11.10. The Tangent Plane and the Normal to a Surface 

Let a surface be given by an equation F (x, y, z) = 0 
and let us take a point M (x, y, z) on it. 

The equations of the normal to the surface at this point: 

X-x Y-y Z-z crr-=ar-ar-· (I) 
ax Tv Tz 

The equation of the tangent plane to the surface: 

~(X-x)+: (Y-y)+~~ (Z-z)=O. (2) 

In equatIons ( 1) and (2) X, Y, Z are the current co­
ordinates of the normal and of the tangent plane respec­
tively. 

{ aF aF aF} . Vector N ax' au' az IS called the normal vector-
of the surface. 
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If there is a point on the surface at which ~~ = 0, 

~: = 0, and ~~ = 0, then it is called a singular point. 
At such a point there is neither a tangent plane nor a 
normal to the surface. 

Write the equations of the tangent planes to the surfaces: 
1999. z=x2 +2y2 at the point (1, 1, 3). 
2000. xy = Z2 at the point (x0 , y0 , Z0). 

2001. xyz = a 3 at the point (X0 , y0 , Z0). 

xz yz z2 
2002. 2 + -b2 ----r = 1 at the points (x0 , y0 , Z0 ) and a c 

(a, b, c). 
2003. Determine the plane tangent to the surface 

x2 +4y2 +z2 =36 and parallel to the plane x+y-z=O. 
2004. Write the equations of the normal at the point 

(3, 4, 5) to the conical surface x2 + y2 = z2 • At what point 
of the cone is the normal indeterminate? 

2005. Find the angles between the coordinate axes and 
the normal to the surface x2 +y2 -zx-yz=0 at the point 
(0, 2, 2). 

2006. Write the equations of the normal to the surface 
x2z + y2z = 4 at the point (- 2, 0, 1). Construct the nor­
mal and the surface. 

2007. Show that the tangent planes to the surface 
xyz = a3 form pyramids of a constant volume with the 
coordinate planes. 

2008. Show that the sum of the squares of the inter­
cepts cut off on the coordinate axes by a plane tangent 

2 2 2 2 

to the surface x 3 +YT +zT =a3 is equal to a constant 
quantity a2 • 

2009. Find the distance from the origin to the plane 

tangent to the helicoid y = x tan ~ at the point (a, a, ~a) . 
Construct the surface using the sections: z = 0; n4a ; n2a ; na. 

2010. Write the equation of the tangent plane to the 
surface az=x'+y' at the points of its intersection with 
the straight line x = y = z. 
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2011. Show that the tangent plane to the surface 
x2 y2 z2 t d Q2+b2+C2= I at the point (x0 , y0 , z0 ) on i is eter~ 

mined by the equation 

XXo + YYo + ~ _ I 7 b2 c2-. 

2012. Write the equations of the normal to the surface· 
x2 +y2 -(z-5)2 =0 at the point (4, 3, 0). Construct the 
surface and the normal in the first octant. 

2013. Find the angles formed by the normal to the 
surface 2z = x2 - y2 with the coordinate axes at the point 
(2, 2, 0). 

2014. Find the distance from the origin to the plane 
tangent to the conoid (2a2-z2)x2-a2y 2 =0 at the point 
(a, a, a). 

2015. Show that the sum of the intercepts cut off on 
the coordinate axes by a plane tangent to the surface 

1 1 1 1 

xi +y2 +z2 =aT is equal to a constant quantity a. 
2016. At what point the tangent plane to the surface 

z=4-x2-y2 is parallel to the (l) plane XOY; (2) plane 
2x+2y+z=0? Write the equations of these tangent planes. 

11.11. Scalar Field. Level Lines and Level 
Surfaces. A Derivative along a Given Direction. 

Gradient. 

The equation u = F (x, y) defines u at each point (x, y) 
of some domain which is called the scalar field of u. 
Along each of the lines F (x, y) = u1 , F (x, y) = u2 , ••• , 

where u1 , U 2 , • • • are constants, the scalar u remains 
constant and changes only when the point (x, y) passes 
from one line to another. These lines are termed isolines 
(isotherms, isobars, etc.), or level lines. 

The equation u=F(x, y, z) defines the scalar field u in 
some part of three-di mensiona I space. I sosurfaces, or level' 
surfaces are given by the equations: 

F(x, y, z)=u 1 , F(x, y, z)=U 2 , •••• 

Let a point (x, y, z) displace along the straight line 
X=x0 +lcosa, Y=Yo+lcos~, z=z0 +lcosy with the 
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velocity :~ = 1. Then the scalar u = F (x, y, z) will change 
at the rate 

du du oF oF oF 
v = dl = df =ax cos a+ ay cos ~ + Tz cos 'Y = N ·l0 , 

{ aF aF aF} where N Tx, ay, Tz Is .he normal vector of a level 
surface and l 0 {cos a, cos~. cosy} is , he unit vector of 
direction l. 

The derivative 

du aF aF aF 
df = ax cos a + 011 cos ~ + Tz cos 'Y = N ·l0 

Is called a derivative of the function u = F (x, y, z) along 
the given direction l 0 {cos a, cos~. cosy}. 

The gradient of the scalar u = F (x, y, z) is defined as 

the vector grad u = ~~ i + ~; i+ ;~ k. The gradient is the 
vector of the rate of the quickest change of the scalar u. 

2017. z = 4-x2-y2 • Construct the level lines and grad z 
at the point A (1, 2). 

2018. z =arctan L. Construct the level lines and grad z: 
X 

(1) at any point of the straight line y=x; (2) at any 
point of the straight line y= -x, and in particular at 

the points U, ± ~) and (1, ± l). 
2019. The contours of a hill are determined by the 

x2 
equation h = 20- 4 -y2 • Construct the contours corres-

ponding to the height marks h= 20, 19, 18, 16, and 11 m. 
Here the direction of grad h determines the direction 
of the line of the steepest slope, and its magnitude the 
steepness of this slope. Construct grad h at the point 
x=2 andy= 1. 

2020. Find the greatest steepness of the surface z2 = xy 
at the point (4, 2). 

2021. Find the derivative of the function u =In (ex+eY) 
in the direction parallel to the bisector of the first quadrant. 
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2022. Find the derivative of the function u=x2 +y2 +z2 

at the point (1, 1, 1) in the direction I {cos 4S0 , cos 60°, 
cos 60°}; find grad u and its length at the sa me point. 
Construct the level surfaces. 

2023. Construct the level surfaces of the scalar u=x2+ 
+y2-2z; find and construct grad u at the points of inter­
section of the axis OX with the surface u = 4. 

a 2 a 
2024. Find the derivative of the function u = xa + by2 +-;.. a c 

at the point (a, b, c) in the direction of the radius vector 
of this point. 

2025. z = 2 +4 
2 • Construct the level lines and grad z at 

X y 
the point (-1, 2), and find lgradzl. 

2026. u=xyz. At any point and at the point (1, 2, l) 

find derivative ~~ in the direction forming equal angles 

with the coordinate axes. 
2027. Construct the level surfaces of the scalar u=x2+ 

+y2-z2 , determine grad u on the surface passing through 
the origin, and construct it at the points of this surface 
at which y=O and z=2. 

2028. u = V X2 + y2 +z2 • Find grad u and its length. 
2029. Construct the level surfaces of the function 

2 2 

u = ~- ~2 - t2 and find the derivative of u at the point 
(a, b, c) in the direction of the radius vector of this point. 

11.12. The Extremum of a Function of Two Variables 

l o. Necessary conditions. A function z = F (x, y) can 
aF have an extremum only at the points where ax= 0 and 

~~ = 0. These points are called critical. 

2°. Sufficient conditions. Let A, B, and C denote the 
. . a2F a2F a2F 

va I ues of the den va tt ves axa , ax ay, and aya at the cri-
tical point (X 0 , Yo)· 
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If 

I A B I { F (Xo, Yo)= Zmax for A < 0 
(l) B C > O, then F (X0 , Yo)= Zmln for A> 0; 

(2) ~~ ~~ < 0, then we have no extremum; 

(3) l ~ ~I= 0, then the existence of an extremum ls 

doubtful (it may exist, and it may not). 
3°. Conditional extremum. To find the extremum of the 

function z=F(x, y), provided x andy are related by the 
equation cp(x, y)=O, form an auxiliary function u= 
= F (x, y) +lvcp (x, y). 

The coordinates (x, y) of the extremum must satisfy 
. ~ ~ r A three equatwns: cp(x, y)=O, ax-=0, ay-=0, where1rom , 

x, and y are found. 

Find the extrema of the following functionst 
2030. z=x2 -xy+y2 +9x-6y+20. 
2031. z=y Vx-y 2-x+6y. 
2032. z=x3 +8y3 -6xy+ 1. 

X 

2033. z= 2xy-4x-2y. 2034. z=e2 (x+ y1). 

2035. z =sin x+siny+sin (x+ y) for 0~ x~-]- and 
n 

O~y~2· 

2036. z=_!_+.!_ if x+y=2. 
X y 

2037. Z=X+Y if~+~= 2
1 • 

X y 

2038. Determine the dimensions of a rectangular out­
door pool having the least surface if its volume is equal 
to V. 

2039. Construct the ellipse x2 + 4y2 = 4 and the straight 
line 2x + 3y- 6 = 0 and find the points on the ellipse 
whose distances from the line are the greatest and the 
least. 

2040. On the hyperbola x2 -y2 = 4 find the point nearest 
to the point (0, 2). 
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2041. Determine the dimensions of a cylinder of the 
greatest volume if its total surface S = 6n dm 2 • 

2042. (1) In the ellipse x 2 +3y2 = 12 inscribe an isosceles 
triangle with its base parallel to the major axis so that 
its area is the greatest. 

(2) The axis OX is situated on the boundary line of 
two media. Along what path must a beam of light pass 
from the point A (0, a) to the point B (c, -b) in order 
to spend minimum time to cover this distance (a> 0, 
b > 0, c > 0)? 

Hint. Find the minimum of the function T =_a_+ 
u1 cos a 

+ ~ , if a tan a+ b tan ~ = c, where V1 and v2 are 
[12 cos t' 

the velocities of light in the two media, and a and ~ are 
the angles of incidence and refraction respectively. 

Find the extrema of the following functions: 
2043. z = 3x+ 6y-x 2-xy-y2 • 

2044. z=x2 +y2 -2x-4 V'Xy-2y+8. 
2045. z = 2x3-xy2 + 5x2 + y2 • 

2046. Z= 3x2 -2x v~.Y + y-Bx+B. 
2047. Z=XY if x2 +y2 =2. 
2048. Find the greatest volume of a right parallelepi-

ped if the length of its diagonal is equal to 2 V3. 
2049. ( 1) On the parabola y2 = 4x find the point nearest 

to the straight line x-y+4=0. 
(2) A rectangle of he greatest area is inscribed in Hte 

2 2 

ellipse ~2 + t2 = 1. Find this area. 

2050. Determine the dimensions of a cone of the grea­
test volume, provided its lateral area is S. 



CHAPTER 12 

DIFFERENTIAL EQUATIONS 

12.1. Fundamentals 

1°. An equation of the form 
F(x, y, y', y", ... , y<nl)=O (l) 

is called an ordinary diOerential equation of the nth order. 
A function !p (x) which when substituted into 

equation (I) instead of y turns it into an identity is 
called its solution. The equation y = !p (x) or <D (x, y) = 0 is 
called the integral of the differential equation. Each in­
tegral defines in the plane XOY a curve which is called 
an integral curve of the differential equation. 

The equation 

(2) 

containing x, y, and n arbitrary constants, is called the 
general integral of equation (1) in the domain of exis­
tence and uniqueness of solution if, giving different va­
lues to the arbitrary constants in equation (2), we get 

the integral curves passing inside this domain and only 
these curves. 

Integrals obtained from the general integral for certain 
values of the arbitrary constants are called particular 
integrals. 

Differentiating general integral (2) n times with respect 
to x and eliminating n arbitrary constants from the ob­
tained n equations and equation (2), we get the given 
differential equation (1). 

2". A differential equation of the first order has the 
form 

(3) 
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Solving equation (3) with respect to ~ (If it is pos­

sible) we obtain: 

:~ = f (x, y). (4) 

Equation (4) defines the slope k =tan a-=:~= f (x, y) of 

the integral curve at a point (x, y), i.e. defines the di­
rections of field of integral curves. 

If in some domain a function f (x, y) is continuous 
and has a limited partial derivative f;(x, y), then it 
turns out that only one integral curve passes through 
each interior point (x0 , Yo) of this domain. 

In such a domain equation (4) has a general integral 
y = cp (x, C) or <D (x, y, C)= 0 from which we can find 
the only partial integral satisfying the initial conditions: 
Y=Yo at X=Xo. 

2051. Check by substitution that y=Cx3 is the solution 
of the differential equation 3y-xy = 0. Construct the 
integral curves passing through the points: 

(1) (t, !); (2) (1, 1); (3) (1, -{). 

2052. Check by substitution that the differential equa­
tions (1) y"+4y=0 and (2) y'"-9y'=0 have the gene­
ral integrals (1) y=C1 cos2x+C2 sin2x and (2) y=C,+ 
+C2e3x + C3e- 3x respectively. 

2053. Construct the parabolas y = Cx2 for C = 0; ± 1; 
+2 and derive a differential equation of a family of such 
parabolas. 

2054. Represent graphically a family of (1) circles 
x2 + y2 = 2Cx; (2) parabolas y =X~+ 2Cx and derive their 
differential equations. 

2055. Represent graphically the direction fields defined 
by each of the following equations: 

(1) :!= ~; (2) :~=y-x; (3) :~=y+x2. 

2056. Represent graphically the direction field defined 

by the equation :~ = V x2 + y2 with the aid of circles along 
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which tx=+; I; 2; 3; .: . . Draw approximately the in­
tegral curve passing through the origin. 

12.2. First-Order Differential Equation with 
Variables Separable. Orthogonal Trajectories 

I0 • The first-order differential equation 

Pdx+Qdy=O, (I) 

where P and Q are functions of x and y, is termed the 
equation with separable variables if the coefficients P and Q 
of the differentials are factorized into multipliers which 
depend only on x, or only on y, i.e. if it has the form 

f (x) rp (y) dx + f, (x) rp, (y) dy = 0. (2) 

Dividing both terms of equation (2) by rp (y) fJr:), we 
get 

f (x) dx + <p 1 (y) dy = O. 
f1 (x) <p (y) 

(.3) 

The total integral of equation (3) and, consequently, 
of (2) will be: 

5 f (x) dx + 5 <p 1 (y) dy =C. 
ft (x) <p (y) 

(4) 

2°. Orthogonal trajectories of a family of lines F (x, 
y, a)= 0 are defined as lines intersecting the lines of the 
given family at right angles. Differentiating the equa­
tion F(x, y, a)=O with respect to x and eliminating a 
from the obtained and given equations, we get the diffe­
rential equation of the lines of the given family y' =f (x, y). 
Then the ditferential equation of the orthogonal trajectories 

will be y' =- f(x~ y). 

In each of the following differential equations: (I) find 
the general integral; (2) construct several integral curves; 
(3) find the particular integral for the given initial 
conditions: x = -2, y = 4. 

2057. xy'-y= 0. 2058. xy' +Y =0. 
2059. yy' +X= 0. 2060. y' = y. 
Find the total integrals of the following equations: 
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2061. x2y' +y=O. 2062. x+xy+y' (y+xy)=O. 
2063. cp2 dr + (r- a) dcp = 0. 2064. 2st 2 ds = ( l + t 2 ) dt. 
In the following equations find the total and particu-

lar integrals for the given initial conditions: 
2065. 2y'Vx=y, y=l at X=4. 

2066. y'=(2y+l)cotx, y= ~ at x=:. 
2067. x2y' +y2 =0, y= l at x=-l. 
2068. Construct the integral curves of each of the equa­

tions: (I) y'(x2 -4)=2xy, (2) y'+ytanx=O passing 
through the points: 

(l) (0, 1); (2) ( 0, +); (3) ( 0, - ~); (4) (0, -1). 

2069. Find the curve passing through the point ( l, ~) 
if the slope of the tangent to it at any point of the curve 
is three times the slope of the radius vector of the point 
of tangency. 

2070. A curve passes through the point A (0, a); MN is 
an arbitrary ordinate of the curve. Determine the curve 
from the condition that the area of OAMN =as, where s 
is the length of the arc AM. 

2071. Find the curve passing through the point (a, a) 
if its subtangent at any point is twice the length of the 
abscissa of the point of tangency. 

2072. Find the curve passing through the point (-1, 
-2) if its subnormal at any point is equal to 2. 

2073. In what time a body heated to l00°C will cool 
to 25°( in a room with ambient temperature of 20°C if 
in lO minutes it cools to 60°C? (According to Newton's 
Jaw, the rate of cooling is proportional to the difference 
of temperatures.) 

2074. The load carried by a cable of a suspension bridge 
(see Fig. 6 on p. 39) from each unit length of the hori­
zontal beam amounts to p N. Neglecting the weight of 
the cable, find its shape if the tension of the cable at 
the lowest point is taken to be equal to H N. 

Hint. Take an arbitrary point M on the arc Oc (Fig. 6). 
Three forces will act on the sector OM: a horizontal 
force H (to the left of the point M), a vertical one, i.e. 
the weight px, and a tangential force of tension T (to 
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the right of the point M). For equilibrium to exist the 
sum of the projections of the forces on the axes OX and OY 
must be zero. 

2075. Determine and construct the curve passing through 
the point P (-a, a) if the segment AB of any tangent 
to it contained between the coordinate axes is bisected 
by the point of tangency M. 

2076. Find the orthogonal trajectories of a family of 
parabolas ay = x2 • Construct them. 

2077. Find the orthogona I trajectories of a family of 
parabolas xy =c. 

2078. Find the orthogonal trajectories of a family of 
scmicubic parabolas ay2 =x3 • 

2079. Find the orthogonal trajectories of a family of 
ellipses x2 +4y2 =a2. 

Solve the equations: 
2080. y'x3 =2y. 2081. (x2 +x)y'=2y+l. 
2082. y' Va2 +x2 =y. 2083. (I +x2)y' + 1 + y2 =0. 
2084. dr + r tan cp dcp = 0; r = 2 at cp = n. 

2085. y'=2Vylnx; y=1 at x=e. 
2086. (I +x2)y' + yV1 +x2 =xy; y = 1 at x=O. 
2087. Determine the curve passing through the point A 

(-1, 1) if the slope of the tangent at any point of the 
curve is equal to the squared ordinate of the point of 
tangency. 

2088. A curve passes through the point A (0, a), MN is 
an arbitrary ordinate of the curve. Determine the curve 
if the area of OAMN =a (MN -a). 

2089. Determine and construct the curve passing 
through the point (-1, -1), for which the line segment OT 
cut off on the x-axis by the tangent to the curve at any 
point is equal to the squared abscissa of the point of 
tangency. 

2090. Find the orthogonal trajectories of a family of 
hyperbolas x2 -2y2 =a2. 

2091. Determine the curve the radius vector of any 
point of which is equal to the segment of the norm::Jl 
between the curve and the x-axis. 
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2092. Determine the line if the area bounded by the 
coordinate axes, this line, and its arbitrary ordinate is 
equal to one third the area of a rectangle constructed on 
the coordinates of the end-point of the line. 

12.3. First-Order Differential Equations: 
( 1) Homogeneous, (2) Linear, (3) Bernoulli's 

1°. Homogeneous. The equation Pdx+Qdy=O is called 
homogeneous if P and Q are homogeneous functions of x 
and y of the same order. It is reduced to the form 

:~ = <p ( ~) and is solved by the substitution ~ = u or 

y=ux. 
2°. Linear. A differential equation is called linear if it 

is of the first degree with respect to the required function 
y and all of its derivatives. A linear equation of the first 
order has the form y' + Py = Q. It is reduced to two eq ua­
tions with separable variables by the substitution y = uv. 
Another method of solution (variation of constants) con­
sists in that first we solve the equation y' + Py = 0; we 

get u= -Ae- fPdx. Substituting this solution into the gi­
ven equation (taking A as a function of x), we then find 
A' arid A. 

3°. Bernoulli's equation y' + Py = Qyn is solved in the 
same way as a linear one, i.e. either by the substitution 
y=uv or by variation of the arbitrary constant. Ber­
noulli's equation is reduced to the linear one by means of 
the substitution z=yl-n. 

Integrate the following differential equations: 
2093. yy' =2y-x. 2094. x2 +y2 -2xyy' =0. 

ds s t , 3y 
2095. dt=T--; 2096. y --x=x. 

2097. y' + 2Y = e-x•. 2098. y' cosx-ysinx=sin2x. 
X X 

2099. y'x+y=-xy1• 2100. y'-xy=-y8e-x._ 

2101. xy' cos.lL=ycos .lL-x. 
X X 

2102. x1y'=y2 +xy. 2103. xy'+y=lnx+l. 
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2104. x2y2y' +yxa= 1. 
In Problems 2105 to 2107 find the particular integrals 

for the given initial conditions: 
2105. u+Vx2 +y2 -xy'=O; y=O at x=l. 

ds 
2106. t2 dt=2ts-3; s=l at t=-1. 

2107. xy'=u(I+ln ~); y=;.., at x=l. 

2108. Find the family of curves, the subtangent at any 
point of which is the arithmetic mean of the coordinates 
of the point of tangency. 

2109. Find the orthogonal trajectories of the family of 
circles x2 + y2 = 2ax. 

2110. Current intensity i in a circuit with resistance R, 
inductance L, and electromotive force E satisfy the 

differential equation L~+Ri=E. Solve this equation 

taking R and L for constants and the electromotive for­
ce E for a linearly increasing quantity: E=kt. The ini­
tial conditions are: i = 0 at t = 0. 

2111. Find the shape of a. mirror that will reflect all 
Incident rays from a point source parallel to a given di­
rection. 

Hint. Considering the plane section of the mirror, take 
a given source as the origin, and a given direction for 
the y-axis. The tangent to the required curve at the 
point M forms equal angles with OM and the y-axis, 
i.e. cuts off on the y-axis an intercept ON =OM. 

Solve the following differential equations: 
2112. xy+ y2 = (2x2 +xy) y'. 
2113. (a 2 +x2 )y'+xy=1. 
2114. xy' + 2 V xy = y. 2115. (2x+ 1) y' + y =x. 
2116. y'-ytanx=cotx. 2117. tds-2sdt=t 8 lntdt. 
2118. y'+xy=xy3 • 2119. y'+ycosx=sin2x. 

2120. y'=Y:_..fL; for x=-1y=1. 
X X 

2121. 3y2y'+y8 =x+1; for x=l u=-1. 
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2122. (1-x2 )y'-xy=xy2 ; for x=O y=0.5. 
2123. Determine the curve passing through the point 

A (a, a) if the distance of the origin from the tang-ent 
at any point of the curve is equal to the abscissa of this 
point. 

12.4. Differential Equations Containing 
Differentials of a Product or a Quotient 

d (xy) =xdy+ ydx; d (~) = x dy~ydx; 

d (;) =ydx;;xdy. 

Such equations are sometimes solved easily if \Ve put 

xy=u, y=!!:.... or ..!L=u, y=ux respectively. 
X X 

2124. x2 dy+xy dx =dx. 2125. y 2xdy-y3 dx =x2 dy. 
Hint. In Problem 2125 the equation is reduced to the 

form 

y2d ( ~ ) = dy or y2du = dy. 

2126. ydx+(x-y3 )dy= 0. 2127. ydx-(x-y3 )dy=0. 
2128. ycosxdx+sinxdy=cos2xdx. 

ds 
2129. tdt-s=s2 lnt. 2130. x2y2 +1+x8yy'=0. 

2131. t2s dt + t3 ds =dt. 2132. xdy-ydx =x2 dx. 

2133. xy'+tany=2xsecy. 2134. y(ye-: +l)=xy'. 

12.5. First-Order Differential Equations in 
Total Differentials. Integrating Factor 

1°. If in the differential equation 

Pdx+Qdy=O, 

iJP iJQ th it h th form du=O d 't I oy =ox , en as e an 1 s genera 
integral will be u =C. 
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2°. If :: =1= :~, then for certain conditions there exists 

a function fl(X, y) such that flPdx+flQdy=du. This 
function fl (x, y) is called the integrating factor. 

The integrating factor is readily found in the follo­
wing cases: 

aP aQ 

( 1) if ay~<Ji = <D (x), then In fl = ~ <D (x) dx; 

aQ aP 

(2) if ax ~ ay = <D1 (y), then In fl =) <Dt (y) dy. 

The differential equations considered in Sec. 12.4 are 
particular cases of the equations treated in the present 
section. 

Solve the following differential equations "in total diffe­
rentials": 

( ya) 2y 
2135. 4-xr dx+-xdy =0. 

2136. 3x2eY dx+ (x3eY-1) dy =0. 
2137. e-Ydx+(l-xe-u)dy=O. 
2138. 2x cos2 ydx + (2y-x2 sin 2y) dy = 0. 
Find the integrating factors and solve the following 

differential equations: 
2139. (x2 -y)dx+xdy=0. 
2140. 2x tan ydx+ (x2-2 sin y) dy = 0. 
2141. _ (e2x -y2) dx + y dy = 0. 
2142. (1+3x2 siny)dx-xcotydy=0. 

Show that the left-hand members of the following diffe­
rential equations are total differentials, and solve the 
equations: 

2143. (3x 2 +2y)dx+(2x-3)dy=0. 
2144. (3x1y-4xy2 ) dx+ (x3-4x2y+ 12y3) dy= 0. 
2145. (xcos2y+ 1)dx-x1 sin2ydy=0. 
Find the integrating factors and solve the equations: 
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2146. y2 dx+(yx-I)dy=0. 
2147. (x2 -3y2 ) dx+ 2xydy = 0. 
2148. (sin x + eY) dx +cos x dy = 0. 
2149. (x sin y+ y) dx+ (x2 cosy +x In x) dy =0. 

12.6. First-Order Differential Equations Not 
Solved for the Derivative. 

Lagrange's and Clairaut's Equations 

I0 • If F (x, y, y') =0 is a second-degree equation with 
respect to y', then it has two solutions with respect to 
y': y' =f. (x, y) and y' = f2 (x, y), continuous with respect 
to x and y in some domain, and, geometrically, deter­
mines two directions of integral curves at any point 
(x0 , Yo) of this domain. 

Such differential equations F (x, y, y') = 0, in addition 
to the total integral <D(x,y,C)=Oand particular integrals, so­
metimes also have a singular integral which does not con­
tain an arbitrary constant and at the same time is not 
obtained from the total integral whatever is the value 
of the constant. 

A singular integral, if it exists, can be obtained by 
eliminating p = y' from the equations F (x, y, p) = 0 and 
F~(x, y, p) =0 or by eliminating C from the total integ­
ral <l>(x, y, C)=O and <l>c=O. Geometrically, a singular 
integral determines the envelope of a family of integral 
curves •. 

2°. Lagrange's equation 

y=xf(p)+~(p), (I) 

where p = y', is integrated in the following way. 
Differentiating (I) with respect to x, we find: 

p=f(p)+[xf' (p)+~' (p)]:~. 

This equation is a linear one with respect 

We get the following solution: 

x = C A (p) + B (p). 

* For the definition of the envelope see Sec. 11.9. 

9 -Ji9s 

dx 
to x and dp" 

(2) 
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Equations (1) and (2) parametrically determine the 
general integral. Eliminating from them the parameter p 
(if it is possible), we get the general integral in the form 
<D (x, y, C)=O. 

3°. Clairaut's equation 

y= px+ flJ (p) (3) 

is a particular case of Lagrange's equations. It has a ge­
neral integral y = Cx+ qJ (C) and a singular one obtained 
by eliminating the parameter p from the equations y= 
=px+ qJ {p) and X=- qJ' (p). 

2150. Construct several integral curves of the equation 
y' 2 = 4y. Find two integral curves passing through the 
point M(1, 4). 

2151. Construct two integral curves of the equation 
y' 2 + y2 - I = 0. Determine the two integra I curves pas-

sing through the point M ( ~ , ; 2) . 

2152. Show that the integral curves of the equation 
xy' 2 -2yy' + 4x = 0 are contained inside the acute angle 
between the straight lines y=+2x. Construct the integ-

1 
raJ curves, putting in the :otal integral C = + 2 , ± 1, 

+ 2, etc. 
2153. Solve the equations: 

(1) yy''+y'(x-y)-x=O; (2) xy' 2 +2xy' -y= 0 

and construct the integral curves. 
2154. Solve the equations with one of the variables 

expressed implicitly: 

(1) y= I +y''; (2) X=2y'- y1,,. 

Hint. Denoting y' by p, differentiate the first equation 
with respect to x, and the second one with respect to y. 

2155. Find the general and singular integrals of Lag­
range's equations: 

( 1) y = xy'· + y'"; (2) y = 2xy' -j- 1/~z ; (3) 2y = ,/~'2 • 
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2156. Find the general and singular integrals of Clai­
raut's equation and construct the integral curves: 

(I) y =xy' -y' 2
; (2) y =xy' -a V 1 + y' 2

; 

(3) y=xy'+-l-2. 
2y' 

2157. Construct the integral curves of the equation 
y'" + y =I. Determine two integral curves passing through 

the point M ( 1, ! ) . 
2158. Solve the equations with one of the variables 

expressed implicitly: (1) y=y'"+y' 3
; (2) x=~. 

I +y'" 
2159. y=2y'x+ ~2 +y''. 

2160. Find the total and singular integrals of C!ai­
raut's equation and construct the integral curves: 

(l) y = y' x + J,; (2) y = xy' + y' + y'". 
!I 

2161. Find the curve whose tangents form with the 
coordinate axes a triangle of constant area equal to 2a2 • 

2162. Find the curve whose tangent cuts off intercepts 
on the coordinate axes the sum of which is a. 

12.7. Differential Equations of Higher Orders 
Allowing for Reduction of the Order 

1°. An equation of the form y<nl = f (x) is solved by 
successive n-fold integration of the right-hand member. 
Each integration yields one arbitrary constant, with the 
final result containing n arbitrary constants. 

2°. The equation F (x, y', y") = 0, not containing y in 
an explicit form, by means of the substitution y' =p 

y" = 'f!x is reduced to the form 

F (x, p, :~)=0. 
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3°. The equation F(y, y', y")=O, not containing x in 
an explicit form, by means of the substitution y' = p 

y" =.!!..!!.. = p dp is reduced to the form 
dx dy 

F ( y, p, p ::) = 0. 

Solve the equations: 

2163. (I) y"' = 6
3 ; the initial conditions: for x =I 

X 

y = 2, y' = I, y" = I; (2) y" = 4 cos 2x; for x = 0 y = 0, y' = 0; 

(3) y" = 1 ~xz . 

2164. x3y"+xV=l. 2165. yy"+y'2 =0. 
2166. y"+y' tan x=sin2x. 2167. y"+2y(y') 3 =0. 
2168. y"xlnx=y'. 2169. y"tany=2(y') 2 • 

2170. (I) xy"-y'=exx2 ; (2) y"+2xy' 2 =0. 
2171. Determine the bending curve for a horizontal 

beam whose one end is fixed and the other is acted upon 
by a concentrated force P (the weight of the beam should 
be neglected and the bend considered small enough so 
that I+ y' 2 ~I). 

2172. Determine the curves whose radius of curvature 
is twice the length of the normal. 

2173. Determine the curves whose radius of curvature 
is equal to the length of the normal. 

2174. On the closed interval [0, I] determine the curve 
tangent to the axis OX at the origin if its curvature 
k=x, i.e. increases uniformly along the x-axis (the 
transition curve). Put I+ y' 2 ~ I. 

Solve the equations: 

2175. y" =-1-2-; for X= n4 y = ln2 2 , y' =I. 
COS X 

2176. (I --j-x2 )y"+2xy'=x3 • 2177. y"ya= 1. 
d2s ds 

2178. 2yy" = (y') 2 • 2179. t dJ2 + dt +: = 0. 

2180. 2yy" =I+ y'2 • 2181. y" tan x = y' +I. 
2182. Determine the curves whose radius of curvature 

is equal to the cubed length of the normal. 
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2183. In the interval (- ~ , ~) determine the curve 

tangent to the axis OX at the origin if at any point its 
curvature k=cosx. 

12.8. Linear Homogeneous Differential Equations 
with Constant Coefficients 

The homogeneous linear differential equation 

y<nl+piy<n-1)+ • •. +PnY=O, (1) 

where P; is a function of x, has a general solution of 
the form 

(2) 

where y1 , y2 , ••• , Yn are linearly independent particular 
solutions of equation (I) and C1 , C2 , ••• , Cn are arbitrary 
constants. 

If the coefficients p1 , p2 , ••• , Pn of equation (I) are 
constant, then the particular solutions y1 , y2 , ••• , Yn are 
found with the aid of the characteristic equation 

rn+pirn-l+ ... +Pn=O. (3) 

(1) To each real root r =a of equation (3) of multipli­
city m there correspond m particular solutions eax, 
XCax, . •., xm-Ieax. 

(2) To each pair of imaginary roots r=a+~i of mul­
tiplicity m there correspond m pairs of particular solu­
tions 

xeax COS ~X, ••. , xm -Ieax COS ~X, 

xeax sin ~X, ••. , xm-leax sin ~X. 

Solve the equations: 
2184. y"-4y' +3y=0. 
2186. y"-4y'+13y=0. 
2188. y" + 4y = 0. 

d2x dx 
2190. dt 2 +3dt-4x = 0. 

d2s ds 
2192. dt2+2dt+2s=0; for 

2185. y"-4y' +4y=0. 
2187. y"-4y=0. 
2189. y" + 4y' = 0. 

d2p 
2191. 4 d~2 +p=O. 

t = 0 s = 1, s' = I. 
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2193. y"'-5y"+By'-4y=0. 
2194. y1V-I6y=0. 2195. y"'-8y=0. 
2196. y"' +3ay" +3a2y' +a3y=0. 
2197. y 1V+4y=0. 2198. 4y1V-3y"-y=0. 
2199. Determine the equation of oscillations of a pen-

dulum of mass m suspended from a thread of length l 
(neglect the resistance and put sin a~ a for small a). 
Determine the period of oscillation. 

2200. Two equal weights are suspended from the end of 
a spring. Under the action of one weight the spring is 
elongated by a em. Determine the motion of the first 
weight if the second one drops (resistance should be neg­
lected). Determine the period of oscillation. 

2201. Solve Problem 2200 taking into consideration 
the resistance which is proportional to the speed of motion. 

Solve the equations: 
2202. y" + 3y' + 2y = 0. 2203. y" + 2ay' + a2y = 0. 

d2x dx 
2204. y"+2y'+5y=0. 2205. dt 2 -2dt-3x=0. 

d2x d2s ds 
2206. dt 2 + w2x = 0. 2207. dt2+a dt = 0. 

22os. xtt + 2x1 + 3x = o. 2209. y'"- 3y" + 4y = o. 
2210. yiV_3y"-4y=0. 2211. y 1V+8y"+16y=0. 
2212. Find the integral curve of the equation y"-y=O 

tangent to the straight line y = x at the point (0, 0). 

12.9. Linear Non-homogeneous Differential 
Equations with Constant Coefficients 

1°. Basic property. Let there be given the equations: 

y1n'+p 1y<n-ll+ ... +PnY=f(x)-non-homogeneous, (I) 
y<nl + p1yen-u + ... + PnY = 0-homogeneous, (2) 

and let u be the general solution of equation (2), and y1 

a particular solution of equation (1 ). The general solu­
tion y of equation (1) will be: 

(3) 
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2°. The method of undetermined coefficients. With con­
stant P~t p2 , ••• , Pn the particular solution y, is found 
by the method of undetermined coefficients in the follo­
wing cases: 

(1) f (x) is a polynomial, 
(2) f(x)=emx (acosnx+bsinnx), 
(3) f (x) is a sum or a product of the previous fun­

ctions. 
In these cases the particular solution y 1 has the same 

form as f (x), differing from the latter only by coeffi­
cients. 

Exceptions are the cases when: ( 1) f (x) is a pol yno­
mial but r=O is the root of a characteristic equation of 
multiplicity k; (2) f(x)=emx (acosnx+bsinnx) but 
r=m+ni is the root of a characteristic equation of mul­
tiplicity k. In these special cases y1 differs from f (x) not 
only by coefficients, but also by the factor xk. 

3°. The method of variation of constants. The most 
common method of solving a non-homogeneous linear 
equation is Lagrange's method, or the method of variation 
of constants. 

If y1 and y2 are independent particular solutions of the 
equation y"+py'+qy=O, then the solution of the equa­
tion y" + py' + qy = f (x) by Lagrange's method is found in 
the form y = Ay1 + By2 , where A and B are functions of x 
satisfying the system of equations 

Hence 

{ A'y1 +B'y2 =0, 

A'y; + B'y; = f (x). 

A'=_ Y2f (x) 
w ' 

B' =ytf (x) 
w 

Solve the equations: 
2213. y"-2y' +y=e2". 2214. y"-4y=8xs. 
2215. y" + 3y' + 2y =sin 2x + 2 cos 2x. 
2216. y"+y=x+2e". 2217. y"+3y'=9x. 
2218. y" +4y' + 5y =5x2 -32x+ 5. 

2219. y"-3y' + 2y =e". 2220. ~:~ +k2x= 2k sin kt. 
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2221. y"-2y=xe-x. 2222. y"-2y'=x2 -x. 
2223. y" + 5y' + 6y =e-x +e- 2x, 
2224. x + 2kx + 2k2x = 5k2 sin kt. 
2225. y"'+y"=6x+e-x. 2226. yiV_81y=27e-ax. 

2227. x+x=3f2 • 2228. y"' +By =e- 2x. 
2229. (1) x+4x+4x=e- 2t; (2) a3x+ax= 1. 

1 e2x 
2230. y"+4y= sin 2x. 2231. y"-4y'+5y=cosx' 

2232. y"-2y' +y=x-2ex. 2233. y"+y=tanx. 
1 e-2x 

2234. (1) y"+y'+ l+ex; (2) y"+4y'+4Y=xa· 

2235. A unit mass moves along the axis OX under the 
action of a constant force a directed along the axis with 
tractive resistance numerically equal to the velocity of 
motion. Find the equation of motion if at f=O x=O and 
velocity v= 0. 

Solve the equations: 

2236. y" + y' -2y = 6x2 • 

2238. y" + 2y' + y =ex. 
2240. 4y"- y = x3 - 24x. 

2237. y"-5y'+6y= 13sin3x. 

2239. y"+y'+2.5y=25cos2x. 
2241. y"-y=e-x. 

d2s 2 ds 2 - 2 a 2 2242. ([j2 + dt + s - t - . 

2243. (I) y"-2my' +m2y=sinmx; (2) n3y"-4ny=8. 
2244. y1V + 5y" + 4y = 3 sin x. 
2245. y"'-3y"+3y'-y=ex. 
Solve the following equations using the method of va­

riation of constants: 

2246. y" + 4y' + 4y =e- 2x In x. 

2247. (I) y"+y=-13-; (2) y"+4y=-.-;-. 
COS X Stn X 

ex 
2248. y" -2y' + y = . 

Jf4-x2 
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12.10. Differential Equations of Various Types 

Determine the type of the following differential equa-
tions and solve them: 

2249. y'+ 1tx=e-x. 2250. y'+ytanx=tanx. 

2251. (x-x3)y' +(2x2 -I)y=x3 • 

2252. (I+x 2 )y'+y(x-VI +x2 )=0. 
2253. t 2 ds+2tsdt=e1 dt. 2254. xy'=4(y+Vy). 
2255. 2xyy' = 2y2 + V.y4 + x4 • 

2256. xy" + y' = lnx. 2257. yy"-2y'2 =0. 
2258. y" -m2y =e-mx. 

2260. xy' +yIn _E.= 0. 
X 

2259. y'xlnx+y=21nx. 

2261. 2y'+y=y3 (x-l). 

2262. y"'-2y"+y'=x2 • 2263. y"=y'+y'2 • 

d3s ds . 
2264. dt 3-3 di-2s =sm t +2 cost. 

2265. (I) sintds=(4tsin2 ~ +s)dt; (2) yy'x-y2 =1. 

2266. (1) xy' +Y (x tan x +I)= sec x; (2) y"' + y =e-x. 
e3x 

2267. (I) y"-:3y'+2y=l+e2x; (2) y"'y=y"y'. 

2268. A cylinder of radius a m and weight P = a3 N 
floats on water with its axis in the vertical position. 
Find the period of oscillation which is caused when the 
cylinder is a bit dipped into the water and then is left 
free. Tractive resistance should be taken approximately 
equal to zero. 

2269. A hollow iron sphere has the radii of the surfa­
ces a and 2a. Its interior surface is kept at a constant 
temperature of 100° C, its exterior surface at 20° C. De­
termine the temperature inside the wall at any distance r 
from the centre (a~ r ~ 2a) and at r = 1.6a. 

Hint. The rate of temperature drop ~; in a conductor 

with stationary distribution of temperature is inversely 
proportional to the area of its cross section. 
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12.11. Euler's Linear Differential Equation 
x"y<nl+ a.xn-ly<n-ll + ... + a,_.xy' + a,.y = f (x) 

A particular solution of a homogeneous equation (for 
f (x) = 0) can be found in the form y = xr, where r is a 
constant number. To find r we have to substitute y=xr 
into a homogeneous differential equation and to solve the 
obtained characteristic equation with respect tor. In this 
case: 

(I) To each real root r=a of multiplicity m there cor­
respond m particular solutions xa, xa In x, xa (In x)2, .... 

(2) To each pair of imaginary roots r =a± ~i of mul­
tiplicity m there correspond m pairs of particular solu­
tions: 

{ 
xacos(~lnx), xacos(~lnx)lnx, ... , 

xa sin(~ In x), xa sin(~ In x) In x, ... . 

Euler's non-homogeneous differential equation is solved 
by the method of variation of constants. 

Solve the equations: 
2270. (I) x3y"'- 3xy' + 3y = 0; (2) x2y"- 2y = 0; 

(3) x2y'' + 2xy' -n (n +I) y = 0. 
2271. (I) x2y"+5xy'+4y=0; (2) x2y"+xy'+y=0. 
2272. {I) xy" + 2y' =I Ox; (2) x2y"-6y = I2ln x. 
2273. (I) x2y"- 2xy' + 2y = 4x; 

(2) x3y" + 3x2y' + xy = 6 In x. 
2274. (l) x2y"-4xy' + 6y = x5 ; (2) x2y" +xy' + y =X. 

12.12. Systems of Linear Differential Equations 
with Constant Coefficients 

Solve the equations: 

{ 

dx 
&+y=O 

2275. dx dy 
di-d!= 3x + y. 
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Hint to Problem 2275. By differentiating the first equa­

tion with respect to t, eliminate y and ~~ from three 
equations. 

{ 
5~-2.!!:JL+4x-y=e-t 

dt dt 
2277. d 

~ d; +Bx-3y=5e-t. 

2278 ( ~-4~+4x-y=0 
· ~ y+4y+4y-24x= I6et. 

Solve the equations: 

2279. f ~+ 3x+y=O for t =0 x= I, y= I. 
~ y-x+y=O, 

2280. { x=y 
y=x+2sinht. 

12.13. Partial Differential Equations 
of the Second Order (the Method of Characteristics) 

2281. Find the general solution (containing 1.wo arbi-
trary functions) of the equations: 

(I) iJ2u = O· (2) iJ2u O (3) o2u I ou O 
ax ay • oy2 = ; ax oy --x ay = ; 

iJ2u x 
(4) ;;---:o = 2a- +b. uxuy y 

au 
Hint. Put iJy = z. 

2282. Find the particular solution of the equation 

~~=0 for the initial conditions: for x=I z=y3 , ~:=y2 • 
iJ2u iJ2u iJ2u 

2283. Reduce the equation ax2-4 oxoy +3 ay2=0 to the 

canonical form and find its general solution. 
2284. Reduce the equation 

iJ2u iJ2u iJ2u 
x2 iJx2 + 2xy ox oy + y2 iJy2 = 0 
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to the canonical form and find its general solution. 
For the following differential equations find the general 

solutions, and, if given the initial conditions, also the 
particular solutions: 

a2u a2u a2u 
2285. ax2-4 axay + 4 ay2 =0. 

2286. a2u a2u . au 
ax2-ay2=0; for x=O U=smy, ax=y. 

2287. a2u a2u 
x-+y--0· ax2 axay- • 

au 
for X= 1 U = 2y + 1, ax= y. 

a2u a2u 2288 t 2 x2 - O· . at 2 - ax2- • 

Find the particular solutions of the following differential 
equations: 

a2u a2u au 
2289· a12 +ax at+ at= O; 

au 1 for t=O U=O, Tt=-X- . 

2290. 
a2u a2u au 

4a2x ax2- at2 + 2a2 ax= 0; 

for t=O u=O, ~~=ax. 
~u ~u ~ 

2291. a2 ax2 =wi for t=O U=f(x), ar=F(x). 



CHAPTER 13 

DOUBLE, TRIPLE, AND LINE INTEGRALS 

13.1. Computing Areas By Means of Double Integrals 

1°. If a domain (S) is defined by the inequalities 
a<x<b. Yt (x)<Y<Y2(x), 

then the area of this domain 
b y 2 (X) 

S= lim ~~Lh~y= ~ ~ dxdy= S dx ~ dy. 
!ix -+ 0 (S) ' y (x) 
t.y ...... o a t 

2°. If a domain (S) is determined by the inequalities 
h < y ~ l, X1 (y) ~ x ~ X2 (y), 

then 
1 x,(y) 

S = ~ ~ dx dy = ~ dy ~ dx. 
(S) h x, (y) 

3°. If a domain (S) is defined in polar coordinates by 
the inequalities <p1 ~ <p ~ <p2 , r 1 (<p)~r<r2 (<p), then the area 
of this domain 

<p, r, (QJ) 

S = ~ ~ r dr d<p = ~ d<p ~ r dr. 
(S) <p1 r,(<p) 

Express by double integrals and compute the areas 
bounded by the following lines: 

2292. xy=4, y=x, x=4. 
2293. (1) y=x2 , 4y=x2 , y=4; 

(2) y=X2 , 4y =X2 , X=± 2. 
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2294. y2 =4-j-x, x-j-3y=0. 
2295. ay=x2 -2ax, y=x. 
2296. y=!nx, x-y=l and y=-1. 
2297. Construct the domains whose areas are expressed 

by the following integrals: 

a x a Va•-y• a V2a•-x• 

(1) ~ dx ~dy; (2) ~ dy ~ dx; (3) ~ dx ~ dy. 
a-y X 

Change the order of integration. 
Hint. To get the equations of the lines bounding the 

domain equate the limits of the integral with respect to 
dx to x, and those with respect to dy to y. 

2298. Construct the domains whose areas are expressed 
I 2-x• 0 0 

by the integrals: (1) ~ dx ~ dy; (2) ~ dy ~ dx. Change 
0 X -2 i/1 - 4 

the order of integration and compute the areas. 
2299. Compute the area bounded by the lines 

r=a(l-cosqJ) and r=a and situated outside thecircle. 
2300. Compute the area bounded by the straight line 

r cos a= a and the circle r = 2a. 
Compute the areas bounded by the lines: 

a2 x 
2301. xy=T, xy=2a2 , y= 2 , y=2x. 

Hint. In this problem it is advantageous to pass over 
to the new coordinates xy = u and y = vx; then the area is 
determined by the formula ~~I J I du dv, where J = 

ax oy 

= : :; and is called the Jacobian. In Problem 2302 

ov ov 
put y2 =ux, vy2 =x8 , and in Problem 2303 pass over to 
generalized polar coordinates x=rcos3 qJ and y=rsin3 qJ. 

2302. y2 =ax, y2 =16ax, ay2 =X8 , 16ay2 =X8 • 

2 2 2 

2303. x3 -t-y3 =as. 
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Compute the areas bounded by the following lines: 
2304. y=x2 , y=x+2. 
2305. ax=y2 -2ay and y+x=O. 
2306. y=sinx, y=cosx, and x=O. 
2307. y2 =a2 -ax, y=a+x. 
2308. r=4(l+cos<p), rcos<p=3 (to the right of the 

straight line). 
2309. r=a(l-cos<p), r=a and situated outside the 

cardioid. 
2310. xy=l, xy=B, y2 =x, y2 =8x. 
2311. Construct the domain whose areas are expressed 

by the integrals: 

h x a V2a•-v• 4 8-x 

(I) ~ dx ~ dy; (2) ~ dy ~ dx; (3) ~ dx ~ dy. 
a a o Vay 0 2 Vx 

Change the order of integration and compute the areas. 

13.2. The Centre of Gravity and the Moment of Inertia 
of an Area with Uniformly Distributed Mass 

(for Density fl.= I) 

The coordinates of the centre of gravity of an area S 
with uniformly distributed mass: 

~ ~ x dxdy 
Xc = S ' 

~ ~ ydxdy 
Yc=--s--· (l) 

The moments of inertia of the area S 

J x = ~ ~ y2 dx dy, 
(Sl 

J 11 = ~ ~ x2 dx dy, 
(Sl 

J 0 = H r 2 dxdy. (2) 
(S) 

Determine the centre of gravity of an area bounded by 
the given lines: 

2312. y=O and a half-wave of the sinusoid y=sinx. 
2313. y=x2 , x=4, y=O. 2314. y2 =ax and y=x. 
2315. x2 +y2 =a2 and y=O. 

2 2 2 

2316. The astroid xl + y 8 =as and the axis OX. 
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Hint. Pass ovtr to generalized polar coordinates 

x = r cos3 cp and y = r sin3 cp. 

2317. Determine the moments of inertia Jx, JY and J 0 

of the area of a rectangle bounded by the lines x = 0, 
x=a. y=O, and y=b. 

2318. Determine the moment of inertia about the axis OX 
of the area bounded by the lines y = ~ , x =a, y =a. 

2319. Determine the moment of inertia about the axis OY 
of the area of a triangle with the v.ertices A (0, 2a), 
B (a, 0), and C (a, a). 

In Problems 2320 through 2323 determine the polar 
moment of inertia of an area bounded by the lines: 

2320. x+y=a, x=O, y=O. 
2321. r 2 = a2 cos 2cp. 
2322. A circle r =a. 
2323. y2 =ax, x =a. 

Determine the centre of gravity of: 
2324. The half-segment of the parabola y2 =·ax, x =a, 

y=O (for y > 0). 
x2 y2 

2325. The semi-ellipse (i2+ v= I cut off by the x-

axis. 
2326. Determine the moment of inertia about the y-

axis of the area bounded by the lines y=a+~, y=2x, 
a 

and x=O. 
2327. Determine the moment of inertia about the x­

axis of the area of a triangle with the vertices A (I, 1), 
B (2, 1), C (3, 3). 

Determine the polar moment of inertia of the area bo­
unded by the lines: 

2328. ~+r=l. x=O. y=O. 
2329. y=4-x2 and y=O. 2330. r=a(l-coscp). 
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13.3. Computing Volumes by Means of 
Double Integrals 

273 

The volume of a solid bounded from the top by a sur­
face z = F (x, y), from the bottom by a plane z = 0, and 
from the sides by a cylindrical surface cutting oiT a do­
main (S) on the plane XOY, is equal to 

V = ~ ~ zdxdy = ~ ~ F (x, y) dx dy. 
(S) (S) 

Compute the volumes of solids bounded by the follo­
wing surfaces: 

2331. z=x2 +y2 , x+y=4, x=O, y=cO, z=O. 
2332. z=x+y+a, y2 =ax, x=a, z=O, y=O (for 

y > 0). 
2333. (x + y) 2 + az = a2, x = 0, y = 0, z = 0 (construct 

the surface using the sections: x=O, y=O, z=O, Z= 
= h ~a; see Problem 546). 

2334. x2 + y 2 = a 2 , x2 + z2 = a2 (see Problem 552). 
2335. Z2 =xy, x=a, x=O, y=a, y=O. 
2336. az=x2-y2 , z=O, x=a. 
2337. z2 =xy, x+y-=a. 
2338. x+y+z=3a, x2 + y2 =a2 , z=O. 
Hint. In Problems 2338 to 2344 pass to polar coordi-

nates. 
2339. z = mx, x2 + y2 =a2 , z = 0. 
2340. az=a2-x2 -y2 , z=O. 
2341. x2 +Y2 +z2 =4a2, x2 +y2 =a2 (outside the cylin­

der). 
2342. x2 + y2 + z2 = a 2 , x2 + y2 +ax= 0 (inside the cy­

linders). 

2343. The first turn of the helicoid y = x tan~ inside a 
the cylinder x2 +y2 =a2 and the plane z=O. 

2344. z2 = 2ax, x2 + y2 =ax. 
z x2 y2 

2345. -= 1-2 -b2' z=O. c a 
Hint. In Problems 2345 and 2346 pass to elliptic polar 

coordinates: x=arcoscp, y=brsincp. 
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x• u• 
2346. z = ce- a• -bl and x2 + Y2 = 1 a2 b2 • 

2 2 2 2 

2347. x 8 +ya +z3 =a3 (put x=rcos3 cp, y=rsin3 cp). 

Compute the volumes of solids bounded by the follo-
wing surfaces: 

2348. z =a-x, y2 =ax and z = 0. 
2349. z=x2 +y2 , y=x2 , y= 1, z=O. 
2350. y2 +z2 = 4ax, y2 =ax, x = 3a (outside the cylinder). 

x2 z2 x2 y2 
2351. a2 + b2 = I, a2 + b2 = I. 
2352. Conoid x2y2 + h2z2 = a2y2 for 0 ~ y ~ h (see Prob­

lem 559). 
2 I 2 I I 2 

2353. x3+zs=a8, xl+ya =as. 
2354. 4z=16-x2-y2 , z=O, x2 +y2 =4 (outside the 

cylinder). 
Hint. In Problems 2354 to 2358 pass to polar coordi­

nates. 
2355. z2 =(x+a)2, x2 +y'=a2 • 

4 
2356. Z= x 2 +Y2 , z=O, x2 +y2 = I, x2 +y2 =4. 
2357. az=x2 +y2 , z=O, x2 +y2 ±ax=0. 
2358. az=a2 -x2 -y2 , z=O, x2 +y2 ±ax=0 (inside the 

cylinders). 
x2 y2 z2 

2359. 2 + b2 + 2 = 1. a c 
Hint. Put x = ar cos cp, y = br sin cp. 

13.4. Areas of Curved Surfaces 

The area a of a portion of the surface F (x, y, z) =0 
whose projection on the plane z = 0 defines the domain (cr.,), is 

_ rr v(~r+(~Y+(~r d d = rr ~d d 
cr-JJ laFI x Y JJ laFI x y. 

(Oz) az (Oz) az 
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Analogously, when projecting on the two other coordi­
nate planes we get 

a= i i J a~ 
1 

dx dz, a = i i \a~ I dy dz. 
(Oy) iJy (Ox) OX 

Compute the area of: 
2360. The surface of the cylinder 2z =X2 cut off by the 

X v-planes y= 2 , y=2x, x=2 2. 
2361. The surface of the cone z2 = 2xy cut off by the 

planes x =a and y =a for x ~ 0 and y ~ 0. 
2362. The surface of the cone y2 + z2 = x2 located inside· 

the cylinder x2 +y2 =a2 • 

2363. The surface az =xy situated inside the cylinder 
x2+y2=a2. 

2364. The surface of the cone x2+y2=Z2 situated inside 
the cylinder z2=2px. 

Compute the area of: 
2365. The surface of the cylinder x2 + z2 = a2 situated 

inside the cylinder x2 +y2 =a2 • 

2366. The surface of the sphere x 2 +y2 +z2 =a2 situated 
inside the cylinders x2+y2 +ax=0. 

2367. The surface of the paraboloid x2 + y2 = 2az loca­
ted inside the cylinder x2 +y2 =3a2 • 

2368. Using the double integral, determine the area of 
the port ion of the earth surface bounded by the meri­
dians oo and ~o. the equator, and the parallel of lati-­
tude CX 0 • Consider the particular case: a=30°; ~=60°. 

13.5. The Triple Integral and Its Applications 

If a domain (V) is defined by the inequalities 

a~x~b, y1 (x)~y~y2 (X), Z1 (X, y)~Z~Z2 (X, y), 

then 
b Us (X) z, (x, Y) 

~~~F(x,y,z)dxdydz=~dx ~ dy ~ F(x,y, z)dz .. 
(V) t1 y1 (x) z1 (x, y) 
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For F (x, y, z) = 1 we get the volume V. The coordinates 
of the centre of gravity of a homogeneous body of the 
volume V are computed by the formulas: 

Xc= ~ SSS xdxdydz, Yc= ~ SSS ydxdydz and so on. 
(V) (V) 

2369. Determine the volume of a solid bounded by the 
surfaces az=x2+y2, 2az=a2-x2-y2. 

2370. Determine the volume of a solid bounded by the 
surfaces x2 + y2-z2 = 0, x2 + y2 + z2 = a2 inside the cone. 

2371. Show that the cone x2 +y2 -Z2 =0 divides the 
volume of the sphere x2 + y2 + z2 = 2az in the ratio 3: 1. 

2372. Determine the mass of a pyramid formed by the 
planes x+y+z=a, x=O, y=O, z=O if the density at 
each of its points is equal to the z-coordinate of this 
point. 

Determine the centre of gravity of a uniform solid boun­
ded by the surfaces: 

2373. x+y+z=a, x=O, y=O, z=O. 
2374. az=a2-x2-y2, z=O. 

Determine the moment of inertia about the axis OZ of 
a body bounded by the surfaces (density ~ = 1): 

2375. x=O, y=O, y=a, z=O, and x+z=a. 
2376. x+ y+z=aVi, x2+ y2=a2, z=O. 
2377. Determine the volume of a body bounded by a 

closed surface: 
( 1) (x2 + y2 + z2)2 = aax; (2) (x2 + y2 + z2)2 = az (x2 + y2). 
Hint. Pass to spherical coordinates using the formu­

las: x = r sine cos cp, y = r sine sin cp, z = r cos cp; the ele­
ment of volume dV = r 2 sine dr dcp de. 

Determine the volume of a body bounded by the given 
surfaces: 

2378. az=x2 + y2, x2 + y2 + z2 = 2a2. 
2379. x2 +y2 -z2 =0, z=6-x2-y2 • 

2380. az=x2 +y2, z2=x2+y2. 



Sec. 13.6. The Line Integral 277 

2381. Determine the mass of a solid bounded by the 
surfaces x2 +y2-z2 =0 and z=h if the density at each 
of its points is equal to the z-coordinate of this point. 

2382. Determine the mass of a solid bounded by the 
surfaces 2x+z=2a, x+z=a, y2=ax, y=O (for y>O) 
if the density at each of its points is equal to the ordi­
nate y of this point. 

2383. Determine the centre of gravity of a uniform 
hemisphere x2 +y2+z2 =a2, z=O. 

2384. Determine the moment of inertia about the axis 
OZ of a solid bounded by the surfaces Z2=2ax, z=O, 
x2+Y2=ax. 

2385. Determine the volume of a solid bounded by the 
surface (x2 + y2 + z2) 2 = axyz (pass to spherical coordina­
tes; see Problems 2377). 

2386. Determine the mass of a spherical layer between 
the surfaces x2 + y2 + z2 = a2 and x2 + y2 + z2 = 4a2 if the 
density at each of its points is inversely proportional to 
the distance of a point from the origin (pass to spheri­
cal coordinates). 

13.6. The Line Integral. Green's Formula 

1°. Definition of a line integral. Let a continuous func­
tion P (x, y, z) be defined on an arc AB of a rectifiable 
curve. Partition AB into elementary arcs by points 
A (Xo, Yo. Zo), M1 (x1, Y1• Z1), · · · • Mn-1 (Xn-1• Yn-r• 
Zn_1), and B (xn, Yn• Zn); let xi-xi- 1 =llxi. Then 

n 

lim ~ P (xi, Yi• zi) llxi is called the line integral taken 
lixr-• o i= 1 

along the arc AB, and is denoted ~ P (x, y, z) dx. The 
A8 

integrals ~ Q (x, y, z) dy and ~ R (x, y, z) dz are defi-
A'B A8 

ned similarly: the sum of the previous integrals is 

~ (Pdx+Qdy+Rdz). Finally, there also exists a line 
A8 
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n 

integral of the form: ~ P (x, y, z) ds = lim L P (xi, Yi• zi) ().si, 
.48 t.si- 0 l=l 

where L1si=M~-=:Mi. 
2°. Computing a line integral. Let a curve AB be given 

by the equations x=f(t), y=cp(t), z='ljl(t), and the 
parameter t changes monotonically when a point M (t) 
moves along the arc AB in one direction; then 

In 
~ P(x, y, z)dx= ~ P[f(t), cp(t), 'ljl(t)]f'(t)dt, 

AB 1A 

i. e. all the variables and differentials of the integrand 
must be expressed in terms of one variable (t) and its diffe­
rential (dt) from the equations of the curve. 

3°. Mechanical meaning of a line integral. An integral 

of the form ~ (P dx + Q dy + R dz) expresses the work per­
AB 

formed during the displacement of unit mass along an 
"-" 

arc AB in a field of a force F{P, Q, R}. 
4°. The case of a total differential. If in a certain do-

main (V) Pdx+Qdy+Rdz=du, then~ (Pdx+Qdy+ 
AB + R dz) = u8-uA, i. e. equal to the difference between 

the values of the function u (x, y, z) at the points Band 
A and is independent of the path of integration AB taken 
in the domain (V). 

5°. Green's formula 

1 (P dx+ Q dy) =55 ( ~~- ~~) dxdy 
(C) (S) 

transforms a I ine integral of the expression P dx + Q dy 
taken counterclockwise along a contour (C) into a double 
integral over the domain (S) bounded by this contour. 

6°. The area bounded by the contour (C): 

S=f 1 (xdy-ydx). 
(C) 
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2387. Given the points A (2, 2) and B (2, 0). Compute 

~ (x+y)dx along (1) the straight IineOA; (2) the arc OA 
(C) 

x2 
of the parabola y = 2 ; (3) the polygonal line OBA. 

2388. Given the points A (4, 2) and B (2, 0). Compute 

~ [(x+y)dx-xdy] along (1) the straight line OA; {2) the 
(C) 

polygonal line OBA. 

2389. Solve Problem 2388 for the integral ~ (ydx+xdy). 
(C) 

Why is the value of the integral here independent of the 
choice of the path of integration? 

2390. Given the points A (a, 0, 0), B (a, a, 0), and 

C(a, a, a). Compute the integral ~ (ydx+zdy+xdz) along 

(1) the straight line OC; (2) the polygonal line OABC. 
2391. A field is formed by a force F{P, Q}, where 

P=x-y, Q=x. Construct the force Fat each vertex of 
a square with sides x =+a and y =±a, and compute 
the work performed by this force acting on unit mass 
which is in motion along the contour of the square. 

2392. A field is formed by a force F {P, Q}, where 
P = x + y, Q = 2x. Construct the force F at the beginning 
ofeachquarter of the circle x=acost, y=asint and 
compute the work performed by this force acting on unit 
mass which is in motion along the circle. 

Solve the same problem if P=x+y, Q=x. Why is 
the work equal to zero here? 

2393. A field is formed by a force F {y, a}. Determine 
the work performed by this force acting on mass m mo­
ving along the contour made up of the coordinate semi­
axes and the first quarter of the ellipse x=acost, 
y=bsmt. 

2394. A field is formed by a force F {x, y, z}. Compute 
the work performed by this force acting on unit mass 
moving along the polygonal line OABCO joining the point.s 
0 (0, 0, 0), A (0, a, 0), B (a, a, 0), C (a, a, a). 

2395. Write and check Green's formula for p[(x+y)dx­
<C> 
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-2xdy] along the perimeter of a triangle with the sides 
x=O, y=O, x+y=a. 

2396. Compute the integrals: (1) ~ [2xydx+x2dy]~ 
A8 

(2) 1[cos2ydx-2xsin2ydy]; (3) ~ [tanydx+xsec 2 ydy} 
AB AB 

along any line from A( I,~) to s(2. ~)· 
2397. Applying Green's formula, compute the integral 

p[y2dx+(x+y) 2 dy] along the contour of t-_.ABC with 
(C) 

the vertices A (a, 0), B (a, a) and C (0, a). 
2398. Determine the area of the e 11 ipse x =a cost, 

y = b sin t by means of the I ine integral. 
2399. Determine the area enclosed by the loop of the 

curve x3 +x2 -y2 =0 using the line integral (see Fig. 53 
on p. 357). 

Hint. Pass to parametric equations putting y=xt. 
2400. Determine the area enclosed by the loop of the 

folium of Descartes r 3 +y3 -3axy=0 using the line in­
tegral (see the hint to Problem 2399 and Fig. 83 on p. 386). 
. 2401. With what force does the mass M uniformly dis­
tributed over the upper semicircle x 2 +y2 =a2 attract the 
mass m concentrated at the origin? 

Hint. Let f! be the line density; ds, the element of the 
length of the semicircle; e, the angle formed by the radius 
vector with the axis OX; X and Y, the projections of the 

tt - t' f Th X 5 km~-tcos8ds y 5 km~-tsin8ds a 1 a::: 1 ve orce. en = r2 , = r2 , 
(Cl (C) 

where k is the gravity constant. 
2402. Given the points A (-a, a) and B (a, a). What 

is the force with which a mass M uniformly distributed 
along the line segment AB attracts the mass m concen­
trated at the point (0, 0)? 

2403. Given the points A (a, 0), B (0, a), and C (-a, 0). 
What is the force with which a mass M uniformly distri­
buted along the polygonal line ABC attracts the mass m 
concentrated at the origin? 
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2404. Given the points A (0, 1), B (2, 5), and C (0, 5). 

Compute ~ [(x +.Y) dx-2ydy] along (1) the straight 
(C) ..__ 

1 ine AB; (2) the arc AB of the parabola y = x2 + 1; (3) the 
polygonal line ABC. . 

2405. Given the points A (-a, 0) and B (0, a). Compute 
the work performed by the force F{P, Q}, where P=y 
and Q = y-x, acting on unit mass moving along (1) the 
straight line AB; (2) the polygonal line AOB; (3) the 
~ x2 

arc AB of the parabola y =a--. a 

2406. Show that 1 [y dx + (x + y) dy] taken a long any 
(C) 

contour is equal to zero. Check this by computing the 
integral along the contour of a figure bounded by the 
1 ines y = x2 and y = 4. 

2407. Write and verify Green's formula for the integral 

1 ( ~-d:) taken along the contour of a triangle ABC 
(C) 

with the vertices A (1, 1), B (2, 1), and C (2, 2). 
2408. Determine the area of the astroid x=acos3 t, 

y =a sin3 t by means of the I ine integral. 
2409. Determine the area bounded by the curve y2 + x4 -

-x2=0 using the line integral. (Pass to parametric 
equations putting y=xt.) 

13.7. Surface Integrals. 
Ostrogradsky's and Stokes' Formulas 

1°. Ostrogradsky's formula: 

E (P cos a +Q cos~+ R cosy) ds = 
(S) 

Sss ( aP aQ oR ) 
= ax-+ay-+az dxdydz, 

{V) 

where a, ~. and I' are the angles of the external normal 
to the closed surface S, and V is the volume bounded by 
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this surface. The first integral can be written in the form 

l l [ oF oF oF J dx dy + JJ Pax+Qay+R Tz oF , where F(x, y, z)=O 

(Sz) oz 

is an equation of a surface, and Sz is the projection of S 
on the plane z = 0. 

2°. Stokes' formula: 

p (Pdx+ Q dy+Rdz)= ll 
(C) JJ 

(S) 

COSet COS~ COS')' 

o o a 
ax 
p 

oy 
Q 

az 
R 

ds, 

where a, ~. and I' are the angles of the normal to the 
surface S directed in such a way that the traverse of the 
contour C is counterclockwise. 

2410. Compute ~~ [xcosa+ycos~+zcosv]ds over the 
(S) 

upper surface of the plane x + y + z =a situated in the 
first octant. 

2411. Compute 

~ ~ [x2 cos (n-:f) + y2 cos (;;:',Ji + z2 cos (;;:'k) J ds 
(S) 

over the upper surface of the paraboloid x2 + y2 + 2az = a2 

situated in the second octant (where x < 0, y > 0, z > 0). 
Hint. Reducing the integral to the form 

ss (xa+ya+az2)dx:y, 
(Sz) 

pass to polar coordinates. The angle <p will vary from 
n 
2 ton. 

2412. Write and check Ostrogradsky's formula for the 

in~egral ~~ [xcos(n-:/>+ycos(n:"j)+zcos(,t,'k)]ds, ta-
(Sl 

ken over the surface of the sphere x2 +y2 +z2 =a2 • 
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2413. Write and check Ostrogradsky's formula for the 
integral 

~ ~ {x2 cos (n,-i) + y2 cos (n,-j) + z2 cos (n:k)] ds, 
(S) 

taken over the outside surface of a solid bounded by the 
surfaces x2 +Y2 +2az=a2 , x=O, y=O, z=O inside the 
first octant. 

Hint. The double integral over plane faces of the solid 
is equal to zero since, for instance, on the plane z = 0 

.....-- ----both cos (n, i) = 0 and cos (n, j) = 0. 
2414. Putting in Ostrogradsky's formula P=x, Q =y, 

R = z, obtain the formula for the volume: 

V = -} 55 [ x cos a + y cos ~ + z cos l'] ds. 
(S) 

Using this formula, compute the volume of the ellipsoid 
x2 y2 z2 
Q2+b2+C2=1. 

2415. Putting inOstrogradsky'sformulaP=~~. Q=~~ 

and R = ~~ (i.e. putting the vector {P, Q, R} to be 

equal to grad u), prove that 

555 !!.u dxdydz= ss~~ds, 
(V) (S) 

a2u a2u a2u 
where !!.u = ax2 + ay2 + az2 is the Laplacian operator. 

2416. Check the formula obtained in the previous prob­
lem for the function u = x2 + y2 + z2 on the surface 
xz + y2 + z2 = a2. 

2417. Show with the aid of Stokes' formula that 

~ (yzdx+xzdy+xydz) taken along any contour is equal 
(C) 

to zero. Check this by computing the integral along the 
contour of a triangle OAB with the vertices 0 (0, 0, 0), 
A(I, 1, 0), and B(l, 1, 1). 
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2418. Write and check Stokes' formula for the integral 

§[(z-y)dx+(x-z)dy+(y-x)dz] taken along the con­
(C> 

tour of a triangle ABC with the vertices A (a, 0, 0), 
B (0, a, 0), and C (0, 0, a). 

Hint. The double integral can be taken over any sur­
face passing through the perimeter of the triangle ABC, 
for instance, over the plane x + y + z =a. 

2419. Write and check Ostrogradsky's formula for the 

integral ~ ~ [x3 cos (n-:- i) + y3 cos (n-:--.j) + z3 cos (n:-k)] ds 
(S) 

taken over the surface of the sphere x2 + y 2 + z2 = a 2 • 

Hint. Transform the triple integral to spherical coor­
dinates. 

2420. Write and check Stokes' formula for the integral 

p [x(z-y)dx+y(x-z)dy+z(y-x)dz] taken along the 
(C) 

contour of a triangle with the vertices A (a, 0, 0), 
B (0, a, 0), and C (0, 0, a). (See the hint to Problem 2418.) 

2421. With the aid of Ostrogradsky's formula compute 

the integral ~ ~ (x3 dy dz + y3 dx dz + z3 dx dy) taken over 
(S) 

the outside surface of a pyramid formed by the planes 
x+y+z=a, x=O, y=O, z=O. 



CHAPTER 14 

SERIES 

14.1 Numerical Series 

1°. A series u1 +u2 +ua+ ... +un+ ... is called con­
vergent if the sum Sn of its first n terms (as n---+ oo) 
tends to a finite limit S: lim Sn =S. The number S is 

n->-<~:~ 

termed the sum of the convergent series. If the sum Sn 
has no finite limit, then the series is called divergent. 

For a series to be convergent it is necessary but not 
sufficient that Un---+0 as n---+oo, 

2°. The integral test for convergence of a positive series 
with decreasing terms: 

if Un = f (n), where f (n) is a decreasing function, and 
00 

Sf ( ) d ={'A, then a seri~s co.nverges, 
n n oo, then a senes diverges. 

I 

3°. D'Alembert's test for a positive series: if 

I • Un+l tm -u- = r > 1, then a series diverges, 
n-+«> n 

{ 
< 1, then a series converges, 

= 1, then the problem remains unsolved. 

4°. Comparing positive series: 

U1 + U 2 + U3 + ... + Un + ... , 
V1 +v2 +va+ ... +vn + .. . 

(1) 
(2) 

(1) If Un ~ Vn and series (2) converges, then series (l) 
converges too .. 

(2) If Un ~ Vn and series (2) diverges, then series (1) 
diverges too. 
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5°. The alternating series u1 -u2 -f-U 3 -u,+ ... con­
verges if U 1 > U 2 > u3 > ... and lim Un = 0. 

n-a> 
6°. Absolute and conditional convergence. The series 

u, -f-U2-f-Ua-f- ... -f-un+... (3) 

definitely converges if the positive series 

lu~l+lu2l+lual+ · · · +!unl+... (4) 
·composed of the absolute values of the terms of the given 
series converges. In this case series (3) is called absolu­
tely convergent. But if series (3) converges and series (4) 
diverges, then series (3) is termed conditionally convergent. 

Check whether the necessary condition for convergence 
is fulfilled: 

I 3 5 7 
2422. 2 + 4 + 6 + 8 + ... 

I I I I 
2423. 1 + 3 + 5 + 7 + ... 

2 4 6 8 
2424· 3+9+27+81+ ... 
Test the series for convergence by means of the integ­

:ral test: 
I 1 I 

2425. 1 + 3 + 5 + 7 + ... 
1 1 1 

2426. 1 + ,17 + .r- + .r- + ... 
r4 r7 riO 

I 2 3 
2427. 23+33+43+ ... 

I I 1 
2428. 1 + 12 + I+ 22 + 1 + 32 -f- · · • 

1 2 3 
2429. 1-j-12 + 1-j-22 + 1-f-32 + ... 

I 1 1 
2430· 32 -1 + 52 -1 + 72 -1 + ... 

I 1 1 
243 1. 2 ln2 2 + 31n2 3 + 4 ln24 + · · · 
Test the series for convergence using d'Alembert's test: 

2 4 6 8 
2432· 3+9+27 +BT+ · · · 
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2 4 R 
2433. l + 2f + 3f + 4T + ... 

1·2 1·2·3 
2434. l + "[":3 + 1·3·5 + ... 

3 32 33 

2435· I+ 2-3 + 22.5 + 23·7 + · · · 
I 3! 5! 7! 

2436· 2+2·4+2·4·6+2·4·6·8+ ... 
I 5 9 13 

2437. ,;-;; + .~ + .r- + .r- + · · · 
r 3 r2·32 r3·33 r4·34 

By comparing with a harmonic series or a decreasing 
progress ion, test the series for convergence: 

I I I 
2438. I + Y2 + Y3 + Y4 + ... 

I I I 
2439· I+ 2.5 + 3·52 + 4.53 + · · · 

I I I I 
2440. 102 + Ti13+ Tri4+Tr15 + ... 
2441. Using the method of comparison, show that the 

series 1 ~x2 + 1 ~x4 + 1 ~x6 + ... is divergent for I xI~ I. 
and convergent for I xI> I. 

Hint. In the first case replace x2 , xt, x6 , ••• by uni-
ties, in the second case delete the unities from the deno­
minators. 

Find the sum of the series: 
I I I 

2442. r:2 + 2·3 + 3·4 + ... 
Hint. Expand Un into partial fractions. 

I I I 
2443. n+w+7.1o+ ... 
Test the series for convergence: 

I I I 
2444 I - V"2 + }/3 - V4 + ... 

I I I 
2445. I- 32 +52- 72 + ... 

I I I 
2446. 2Tr12- 3 In 3 + 4TiiT- ... 

2447 sin a+ sin 2a +sin 3a+ 
' I 22 32 . ' ' 
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2448. Show that the sum S of the conditionally con­

vergent series I-++~-{+ ... will decrease by one half 

if two successive negative terms are placed after each 
positive term, and will increase by one and a half times 
if one negative term is placed after each two positive 
ones. 

Test the ~eries for convergence: 
I I 

2449. I + .r- + .~ + ... 
3r 3 5r 5 
I I I 

2450· 1 + TiiT + 201 + 301 + ... 
I 2 3 

2451. 1 + 14 + I + 24 + I + 34 + ... 
3 5 7 

2452. 1 +-;r+g-+ 16+ ... 
I I I 

2453. 1 + 42+ 72+ 102+ ... 
I 3 5 7 21 41 61 

2454. 2 + 22 + 23 + 24 + . . . 2455. 3 + 9 + 27 + ... 
2 4 6 I I 

2456. 1 + 31 +5!+ ... 2457. 1- y"3 + Jl.5 - ... 
I I I 

2458. 1- 23 + 33- 43 + ... 
I I I 

2459· l- 2a2 + 3a4- 4a6 + · · · 
Find the sum of the series: 

I I 1 
2460. r:s+3·5+5.7+ ... 

I I I 
246 1. 1·2·3 + 2·3·4 + 3·4·5 + ... 

14.2. Uniform Convergence of a Functional Series 
'; 

1°. The totality of values of x for which the functional 
series u 1 (x) + U2 (x) + ... + un (x) + ... converges is cal led 
the domain of convergence of this series. 
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The function S (x) = lim S,. (x) is called its sum, and the 
1l->:<J 

difference Rn (x) = S (x)- S,. (x) the remainder of the series. 
2° Functional series (I) convergent in an interval [a, b] 

is called uniformly convergent in that interval if the re­
mainder Rn (x) beginning with some number N, which is 
the same for all values of x considered, remains less in 
absolute value than any preassigned positive number e: 

IRn(x)J<e for n~N(e). 

3°. A test for uniform convergence. Series (I) converges 
absolutely and uniformly in an interval [a, b] if there 
exists a convergent positive series 

C1 +C2 +Cs+ ... C,.+ ... 

such that I Un (x)l ~en for a~ X~ b. 

2462. Determine the sum and the remainder of the series 
I+x+x 2 +x3 + ... for lxi<I and show that it conver-

ges- uniformly in the interval [ 0, + J. At what n is the 

remainder I R,. (x) /less than O.OOI for any x on this interval? 
2463. Show that the series 

x+x(l-x)+x(I-x) 2 +x(l-x) 3 + ... 

converges nonuniformly in the interval [0, I] and uniformly 

in the interval [ +, 1 J. At what n the remainder 1 R,. (x) I< 

< 0.01 for any x on the interval [ +, I J? 
X X~ xB 

2464. Show that the series T-2 + 3 - ... converges 

uniformly in the interval [0, I]. At what values of nand 
any x on this interval I Rn (x)/ < 0. I? 

2465. Show that the series X8 + 1 :x3 +(I :x3) 2 + ... con­
verges nonuniformly for x > 0 and uniformly for x ~I. At 
what n the remainder I Rn I< 0.001 for any x ~I? 

2466. Show that the series ~ + ~ + 
l+x 3 1+3x 

+ ~ + VI + ... converges uniformly in the 
32 I+5x as I+7x 

tO - 1895 
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interval O~x<oo. At what n (and any x~O) there­
mainder of the series I Rn (x)l < 0.01? 

Hint. Compare the given series with a convergent nu­
merical series. 

2467. Show that the series 1 1 + 1 
x2+ I- x2 +4 x2+9-

- x2 ~ I6 + ... converges uniformly over the entire number 

line. At what n (and any x) the remainder of the series 
I Rn (x)l < 0.0001? 

2468. Show that the series x (x~ I)+ (x+ I)\x+ 2) + 
+ (x+ 2)\x+a) + ... uniformly converges to + in the in­
terval 0 < x < oo. At what n (and any x > 0) the remain­
der of the series I Rn (x)l < 0.1? 

2469. Show that the series ~ + y I + y I + 
I +x 22 +2x 24 +3x 

I + y + . . . converges uniformly in the interval 
20 +4x 

0 ~ x < oo. At what n the remainder I Rn (x) I< 0.01? 

14.3. Power Series 

Let there be given a power series 

ao+a,x+a2x2+ ... +anxn+ ... (I) 

The number R is called the radius of convergence of series 
(I) if for lxl < R the series converges, and for lxl > R 
it diverges. R can be found either by investigating se­
ries (1) for absolute convergence using d'Alembert's test, 

or by the formula R = lim /....!!.E.../ when all a1 are different 
n-+-a> an+l 

from zero. In particular, if this limit equals oo, then 
series (1) converges absolutely along the entire axis 
ox. 

A power series converges not only absolutely, but also 
uniformly on any interval [a, b] lying inside the interval 
of convergence (- R, R). 
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Determine the interval of convergence of the series and 
test it for convergence at the extremities: 

x x2 xa 
2470· I+ 3·2 + 32 ·3 + 3s.4 + · · · 

2471. I x xs x6 
- 5¥2 + 52 y3 - 58 V4 + ... 

2x 4x2 8x3 

2472. I + 32 V3 +52 V 32 + 72 Jf33 + ... 

"' ~ xn 
2473. kJ. nl' 

n=l 

00 

"'\.""" (- xn)n-1 • 2474. kJ. 
n=l 

"' "' 4 I ~ n-1 . '\......., n I xn 
2 76. ( ) kJ.X ·nl, (2) kJ. (n+ 1)n • 

n=l n=l 

2477 ( +I)+ (x+l)2 +(x+1)3+(x+l)~+ -
' X 2·4 3·42 4·43 ' '' 

2478. 2x 1 3 (2x-;3)2 + (2x~3)3 

Determine the interval of convergence and the expres· 
sion for sum of the series: 

2479. I +2x+3x2 +4xs+ ... 
X 

Hint. In finding the sum S first determine ~ S d.x. 
0 

xa x6 x7 
2480. x-3 +5 - 7 + ... 

Hint. First find~:. 
2481. I + 3.x + 5x2 + 7 .xs + ... 
Hint. Denoting the sum of the series by S write the 

expression S-S.x In the form of a summable series. 

2482 I+m +m(m-1) 2 + m(m-1)(m-2) 8 + 
• T.x 1.2 .x 1·2·3 .x .. • 

S' S'x 
Hint. Show that -+-=S,and solve this differential m m 

equation. 
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Determine the interval of convergence and test the 
series for convergence at the extremities: 

2x 4x2 8x3 

2483' I+ )I 5·5 + Jf9·52 + Jfl3·53 + ... 

"' "' 
2485. L IOnxn. 2486. L (-l)n-1 ;;n-~. 

n=l Yn n=l 

x-1 (x-1)2 (x-1)8 
2487. T-"2' + ""3.22 + 5· 28 + .. . 

2488. 2xt I+ (2xt 1)2 + (2x t l)a + .. . 

Find the interval of convergence and the sum of the 
series: 

2489. I-3x2 +5x'-7x'+ ... 

Hint. To find the sum S first find 

x2 xs . . 
2490. x+ 2 + 3 + ... Htnt. Ftrst 

2491. I - 4x + 7 x2 - 1 Ox3 + ... 
Hint. Form the expression S +Sx. 

:. 

~ Sdx. 
0 

dS 
find dx • 

14.4. Taylor's and Maclaurin's Series 

) 0 , Maclaurin's formula: 

xn 
where Rn (x)= Til f" (Sx), 0 ~ e < 1. 

2°. Taylor's formula: 

f (x) = f (a)+ f'1~a) (x-a) + r2~a> (x-a)1 + ... + R,. (x), (2) 

(x-a)"f [ ] where Rn (x) = -n-l - (II) a+ e (x-a). 
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3°. Maclaurin's and Taylor's series. If as n- oo in for­
mulas (I) and (2) Rn (x) -+0, then they yield Infinite series: 

f f f' (0) f" (0) I 
(X)=-= (0) + - 1-1 X+"""]! X + ... , (3) 

f(x)=f(a)+f' 1\a)(x-a)+f"2\a)(x-a)'+ .. . , (4) 

converging to f (x) for the values of x at which lim Rn (x) = 0. 
n-+oo 

4°. Series expansions of elementary functions: 

eX = 1 + ~ + ;; +; + ... ' l 
sin x = x- xs + x& _ t converge to the function 

31 51 • • ·' for all values of x; 
x2 x4 

COSX= 1-2f+4f-·.. ) 

(1 )m 1 m +m(m-1) 2+ h b +x. = +Tx 1.2 x ... t e inomial series; 

it converges to the binomial (I +x)111 

for 1 xI< 1; 
x2 x3 

In ( 1 + x) = x-2 + 3 - ... converges to In (I +x) 

for -I< x~ I; 
x3 xa 

arctan x=x-3 +5 -- ... converges to arctan x for 

/X/~ 1. 

2492. Expand the following functions in series of powers 

of x: (1) cos (x-a); (2) sin2 x; (3) xeX; (4) sin (mx+ ~}write 
and analyse the formula of the remainder term. 

2493. Write the first three terms of the expansion of 
the function f (x) =In (I +ekx) in a series. 

2494. Using Maclaurin's formula, write the expansion 

of the binomial ( 1 + = t in a series of powers of x, and 
show that the obtained series converges for I xi< a. 
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2495. With the aid of the binomial series show that 
for I xI< 1 

(I ~x)a = 1-3x + 6x2 -10x3 + ... = 
CJ) 

=L n(n:I)(-x)n-1. 
n=l 

2496. With the aid of the binomial series obtain the 
expansion of the function in a series 

1 = 1-..!..x'+~x'- 1 ' 3 ' 5 x6 + ... for lxl < 1. YI +x2 2 22.21 23 ·31 
2497. Expand the function in a series of powers of x: 

(1) In~+;; (2) ln(2-3x+x2}; (3) ln(1-x+x1). 

2498. By integrating the series obtained in Prob-
lem 2496, write a series for ln(x+V1 +x2). 

JC 

2499. Expand ell in a series of powers of x-a; write 
and analyse the formula of the remainder term of the series. 

2500. Expand the function f (x)=x3-3x in a series of 
powers of x-1. 

2501. Expand x' in powers of x+ 1. 

2502. Expand the function f (x) = ! in a series of po­
wers of x + 2 and test the series for convergence by means 
of d'Alembert's test. 

2503. Expand the following functions: ( 1) f (x) =cos ~ 

in powers of x- ~ ; (2) f (x) =sin 3x in powers of x + ~ . 

2504. Expand the function f (x) = Vx in a series of po­
wers of x + 1; test the obtained series for convergence by 
means of d'Alembert's test. 

2505. Expand the following functions in series of powers 

of x: (1) 2x; (2) cos ( mx+ ~);write and analyse the for­
mulas of the remainder terms of the expansions. 
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2506. Expand the function f (x) = x'-4x2 in a series 
of powers of x+ 2. 

2507. Expand the function f (x) = cos2 x in a series of 

powers of x- ~ ; write and· analyse the formula of the 

remainder term. 

2508. Expand the function f (x) =sin ~ in a series of 

powers of x-I. 
2509. Expand the function f (x) = Vx in a series of po­

wers of x-4 and test the obtained series for convergence 
by means of d 'Alembert's test. 

2510. With the aid of a binomial series show that 
1 I 1 2 1·3 , 1·3·5 6 f I 
~ +-x +-x +-x + ... or JxJ< . 

2 22 ·21 23·31 

2411. Integrating termwise the series obtained in P~:ob­
lem 2510, write a series for arcsinx. 

14.5. The Use of Series for Approximate 
Calculations 

2512. Write the binomial series for VI +x and calcu­
late VI.004, V0.992, V90 by taking only the first two 
terms of the series. Estimate the error. 

2513. Write a binomial series for VI +x and compute 
VI.006, vo.99I ,. VI30 by taking only the first two terms 
of the series. Estimate the error. 

2514. Compute sin 12° by taking only two terms of the 
series for sin x, and estimate the error. 

Hint. x=I2°, or in radian measure x=~=0.2094. De­

termine the upper limit of the error from the condition 
x< 0.3. 

2515. Dividing the numerator of the fraction by its de-
00 

nominator, obtain the expansion 1 ~x2 = L (-l)n- 1x2n- 2 ; 

n=l 

integrating the obtained series termwise, write an expan­
sion for arctan x. 
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2516. Putting X= v\ in the expansion arctan X= 

"" ( l)n-1 x2n-l 
= L - 2n-l , obtain a series for computing n: 

n=l 

V- -rJ (-J)n-1 
n """2 3 L (2n-l) 3n-1. 

n=l 

2517. Compute n by taking the first five terms from 
the series of Problem 2516. 

2518. With the aid of the series obtained in Problem 
2497: 

compute In 2; In 3; In 4; In 6. 

Hint. Putting :+; = 2, find x and so on. 

. ssinxd Se"d 2519. Express the mtegrals -x- x and x x In the 

form of series. 
X 

2520. Write the function <I> (x) = ~ e-"'1 dx in the form 
0 

of a series and evaluate <l> ( {) taking as many terms aa 

is necessary to reduce the error to less than 0.001. 
JC 

2521. Write the function <l>(x) = ~ Vl +x2 dx In the 
0 

form of series and evaluate <l> ( ~) taking as many terms 

as is necessary to reduce the error to less than 0.00001. 
2522. Find the solution (in the form of a series) of the 

equation y" = x2y for the initial conditions: for x = 0 
y =I, y' = I. 

2523. Find the first four terms of the series determin­
ing the solution of the Riccati equation y' = 1 +x-y2 
for the initial conditions: y = 1 at x = 0. 
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2524. Write the solution (in the form of a series) of 
the Bessel equation xy" + y' + xy = 0 for the initial con­
ditions: for x = 0 y = 1 and y' = 0. 

2525. Compute VTOQS; VL0012; V0.993; vo.997; 
Jl110; V70; V 40 taking the first two terms of the bino-

. . m(m-l)x2 
mtal senes (1 + x)m == 1 + mx+ 21 + ... , and esti-

mate the error. 
2526. Compute cos 12° by taking the first two terms 

of the expansion of cosx. Estimate the error. 

2527. Putting x = ~ in the expansion of arcsin x (Prob­

lem 2511), compute n by taking the first three terms of 
the series. 

Hint. First compute the first of the rejected terms, and 
then express each of the first three terms of the series as 
a decimal fraction with the error not exceeding the first 
rejected term. 

2528. Using the identity ~ =arctan++ arctan ! , write 
the expression for n as the sum of two infinite series. 

2529. Putting x = ~ in the_ expansion of In (1 +x), 
obtain the formulas: 

(1) In (N + 1) =InN+ [ ~ - 2~z + 3~a- · .. ] ; 

[ I I 1 ] (2) Jog10 (N+1) =iog10 N+0.4343 N- 2N2 + 3N3 - •.• • 

2530. Knowing In 2 = 0.6931, compute In 5 and In 10 
I 

and show that the modulus M =In 10 ~ 0.4343. 
2531. Compute log, 0 101 and log 10 102. 
2532. Determine the length of an elliptic arc in the 

form of a series. 
0.5 

2533. Compute ~ V"I+"XS dx taking as many terms as 
0 

is necessary to reduce the error to 0.001. 
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X 

2534. Determine the function <I> (x) = J cos ~2 dx In the 

form of a series and evaluate <I> (;) to six decimals. 

2535. Write the first three tirms of the series determin­
ing the solution of the equation y' = x2 +y2 , the equation 
satisfying the condition: y = 0 at x = 0. 

2536. Write the solution (in the form of a series) of 
the equation y" +xy = 0 for the initial conditions: for 
x = 0 y = 1 and y' = 0. 

2537. Write (in the form of a series) the equations of 
a transition line along which the curvature k increases 
in proportion to the length of the arcs. 

Hint. Find IF from the condition ~~ = ~ , where C is 

a constant, and then solve the equations: dx = dscos qJ 
and dy = ds sin Ill· 

14.6. Taylor's Series for a Function of 
Two Variables 

The Taylor series for a function of two variables can 
be written in three forms: 

F (x+h, y+ l) = F (x, y)+-ir [ h !+ t:U] F (x, y)+ 

+ ;, [ h ! + l :y r F (x, y) + ... , (I) 

F(x, y) = F(a, b)+-fr [<x-a)!+(y-b):J F(a, b)+ 

+it- [<x-a)!+(y-b):J 2 F(a, b)+... (II) 

dz d2z dnz I 
~z =u+2f+ ... +Til x=x.+et.x' 

Y=Yo+e t.y 

(II I) 

2538. Construct the expansion of the function F (x+ h, 
y+ l) using the Taylor formula (I) ifF (x, y) = x2 + xy+ y2 • 

2539. Expand the function F (x, y) = x3 + 2xy2 in powers 
of (x-1) and (y-2) [formula (II)]. 
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2540. Expand the function F (x, y) =In (x-y) in powers 
of x and (y + 1) keeping the terms of the first and second 
orders and the remainder term [formula (II)]. 

2541. Expand the function F(x, y) = sin(mx+ny) in 
powers of x and y keeping the terms of the first, second, 
and third order and the remainder term [formula (II) at 
a=b=O]. 

2542. Expand the function e-x•-y• in powers of x and 
y [formula (II) at a= b = 0]. 

2543. Determine the increment flz of the function z =­
= x2 -xy+y2 [formula (III)] and compute it if x varies 
from 2 to 2.1 and y from 3 to 2.8. 

2544. Determine the increment flz of the function z = 
-=cos (ax-by) keeping the first two terms of formula (III) 
and the remainder term. · 

2545. Expand the function F (x, y) = x2y in powers of 
(x-1) and (y+ 1) [formula (II)]. 

2546. Expand the function F (x, y) = arctan .JL in powers 
X 

of (x-1) and y keeping the terms of the first and second 
orders. 

2547. Expand the function z = yx in powers of (x-2) 
and (y-1) keeping the terms of the first and second 
orders, and compute 1.1 1 ·1. 

2548. Determine the increment flz for the function z­
= x2y-y2 and compute it to the fourth decimal if x varies 
from 2 to 1.99 and y from 5 to 5.02. 

14.7. Fourter Sertes. Fourter Integral 

1 o. Definition. A function f (x) is considered to satisfy 
Dirichlet's conditions in an interval [a, b] if, inside this 
interval, 

(1) it has a finite number of discontinuities, all of 
them being of the first kind; 

(2) it has a finite number of extrema; 
(3) for all points of (a, b) f (x) = I (x-O)t I (x+O). 
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2°. A function f (x), satisfying the Dirichlet conditions 
on an interval [-I, 1], can be defined for all points of 
this Interval by the Fourier series: .. 

'() a0 ~[ nnx b. nnx] 
X =2+ ~~ ancos-1-+ nsm-1- , (1) 

where 
l l 

~ 5 , nnx ~s nnx an = T (x) cos -z dx; bn = T f (x) sin - 1- dx. 
-l -l 

(2) 

If f(x)=f(-x), i.e. if f(x) is an even function, then 
bn=O and .. 

f a0 ~ nnx 
(x) = 2 + k.. ancos-1 • (3) 

n•d 

If f (x) =- f (-x), i.e. If f (x) is an odd function, then 
an=O and 

f (x) = L bn sin n7x • (4) 
n .. l 

If a function f (x) defined by series ( 1) in a closed in­
terval ( -1, I] is continued according to a periodic law 
with period 21 and it Is required that f(l)=f(l-O)tf(l+O), 

. then this function will be determined by series (1) 
throughout its entire length. 

3°. If a function f (x) is absolutely integrable in the 

interval (- oo, oo) ( i. e. If ): If (x) I dx converges) and 

satisfies the Dirichlet conditions In any finite interval, 
then it can be represented by the Fourier integral: 

.. '<0 .. 

f (x) = ~ ~ da 5 .. f (t) cos a (x- t) dt =~[a (a) cos ax+ 

+b(a)sinax]da, (0) 
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where 
+~ +~ 

a(a)=* 5 f(t)cosatdtandb(a)=* St(t)sinatdt. (6) 
-oo 

Construct a Fourier series for the following periodic 
functions with period 2n. 

2549. f(x)=l for O<x<n and f(-x)=-f(x). With 
the aid of the obtained series show that 

I I 1 n 
l-3+5-7+ · ·· =T· 

2550. f(x)=x for O<x~n and f(-x)=f(x). With 
the aid of the obtained series show that 

I I I n1 

1 +32+52+12+ · · · =s· 
2551. f (x) = x2 for -n < x ~ n. With the aid of the 

obtained series show that 

1 1 1 nl 
(1) 1-22+32-42+ ... = 12; 

1 1 1 n2 
(2) 1 +22+32+42+ ... =6. 

J n for -n<x<O, 
2552. f (x) = '\ f 0 __.. ____ 

1 n-x or """'x"""'n. 
Expand in a Fourier series the following periodic func­
tions with period 2!: 

2553. f(x)=l for O<x<l and f(-x)=-f(x). 
2554. f(x)=I-x for O~x~l. f(-x)=f(x), l=l. 

{ 0 for -l<x<O, 
2555· f(x)= x for O~x< l. 
2556. A function f (x) Is represented graphically (Fig. 37) 

and cant inued according to ( 1) an even; (2) an odd periodic 
law with period 21 = 4. Expand each of these functions 
In a Fourier series. 

2557. Heat propagation in a bar of length l Is deter-
• 1 au i)2u 

mined by the equatiOn a2 at= ax2 , where u (x, t) is the 
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temperature, and the following conditions: 

(1) boundary: u = 0 for x = 0 and for x = l; 

{ 
x for x < ~, 

(2) initial: u= 1 at t=O. 
l-xforx> 2 

Determine the function u (x, t) using the Fourier method. 
2558. Longitudinal oscillations of a bar of length l, 

whose one end (at x = 0) is fixed and the other (at x = L) 

y 

I 

0 

Fig. 37 

I o2u o2u 
Is free, are determined by the equation (i2 at 2 = ax2 , where 

u (x, t) is longitudinal displacement, and the following 
conditions: 

au 
(I) boundary: u = 0 for x = 0; ax= 0 for X= l; 

(2) initial: u = f (x), ~~ = 0 for t = 0. 

Determine the function u (x, t) using the Fourier method. 
2559. Transverse oscillations of a bar of length l resting 

on supports at both ends are determined by the equation 
I o2u o4u 

(i2 8[2 + iJx4 = 0 

and the following conditions: 
iJ2u 

(I) boundary: u = 0 and ax2 = 0 for x = 0 and x = l; 

(2) initial: u = f (x) and ~~ = 0 for t = 0. 

Determine the function u (x, t) using the Fourier method. 
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In Problems 2560 to 2562 write the Fourier integral 
for the given functions: 

{ I for O<x< 1, 
2560. f(x)= 0 for x> I and f(-x)=-f(x). 

Fig. 38 

2561. f (x) = e-f3x for x ~ 0 and f (- x) = f (x). 
2562. f (x) represented graphically on the closed interval 

[ -2, 2] (Fig. 38) and equal to zero outside this interval. 

Expand the following functions in Fourier series: 
:rt-X f 2563. f (x) = - 2 - or 0 < x ~ n; 

f(-x)=f(x), f(x+2n)=f(x). 

2564. f (x) =I sin xI~ with the aid of the series obtained 
I I I I 

show that n + 3.5 +50 7 + ... = 2 . 

{ 

:rt 
x for O~x~2 , 

2565. f (x) = :rt and f (-x) = -f(x). 
n-x for 2~x~n 

2566. f(x)=x for O~x~l; 

f (- x) = f (x), f (x+ 2/) = f (x). 

{ I·for -I ~x~O, 
2567. f (x) = f 0 ___. 1 and f (x + 2) = f (x). 

x or < x::::::::, 
2568. f (x} =ex for -l < x < l and f (x + 21) = f (x). 
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2569. Using the Fourier method, solve the equation 
iPu a2u at 2 = ax2 that satisfies the following conditions: 

{ 
for x = 0 u = 0, for x = n ~~ = 0; 

au 
for t = 0 u = f (x) and at = 0. 

2570. Write the Fourier integral for the function 

{ 1 for -1 < x < 1, 
f (x) = 0 for I xI > 1. 



ANSWERS 

I. A8=9, 8C=-6, AC=3. 9-6=3. 3. 5(2+ y2), 90°, 45°. 
5. 20. 6 .. 5 ¥2. 7. (5 5), (5, -3). 8. 8 (0, 2) and 8 (0, -4)· 
9. x=a± Jfc2 -b2 ; for c>jbj two points, at c=lbl one, for 

c<jbjnone. 10.M(5,0). 11.Centre (I,-I),R=5.12.pr 0 xAB=-2, 

pr 0 yAB=-4, IAB/=2 V5. 13.8(5,8),jAB/=3 ¥2.14.8(4,-3). 
15. -4, I, 3. 16. 18 Jf'2. 17. (0, 2.9). 18. 8 (4, 0), 8 1 (-8, 0). 
19. Centre (2, -1), R=5. 21. X=7, Y=-1; 5 y2. 22. M(l, 4). 

23. M (13, 16). 24. x=m1x1 !maXs. 26. 26 em from the centre of 100-g 
ml m2 

24¥2 . 
ball. 27. (I, 2.5). 29. 0C=5, OD=-7-. 30.(3,3). 31.9sq.umts. 

33. 13 sq. units. 34. (1, 3) if the forces are in one direction, and 

(25, 27) if indifferent ones. 35. (I, -1). 36. 10 r .37.X=xl+x;txa; 

Yt+Y2+Ys (37 13) , Y= 3 . 38. 27 , 27 . 39. C1 (3, 0), Cs(-7, 0). 40. M t2. -6), 

N (5, 8), P (-4, I), k= ~ . 42. x9ty2 -6x-8y=0, A and 0 lie on 

the circle. 43. x-y-2=0, D and E lie on the line. 45. x2 ty2 =8· 
x2 x2 

46. Y'= ± x. 47. s+Y2 = I. 48. y= 4 -xt2. 49. y= ± 2x. 51. (1, 0), 

(3, 0), (0, 3). 53. y2 =8 (x-2). 54. 2x-yt5=0. 8 and D lie on the 

line. 55. x2 +y2 =4. 57. y=~ +I. 58. Jf(x+2)2 t(yt2F-

I 
- Jf(x-2)2 t(y-'2)2 =4 or xy=2; at x= ± 2 , ±I, ±2, ±4, 

I . 
y=±4,±2, ±1, ± 2 ; the curve can be plotted bythescpomts. 

5!). y==xt3. y=-x+3. 60. Y=X V3-3, y=-X v~-3. 
2 2 

62. y=-1.5x. 63. (I) k="3· li=-2; (2) k=- 3 , b=O; (3) k=O, 
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3 X 
b=-31 (4) k=- 4 , b=3. 65. k=1, b=1, y=x+l. 66. (l)a+ 

+ Y2=1; (2) -~;a+~ =1. 67. y=Oi 4x-3y=0; y=4; 4x-3y+ 

X y X 2y -+ -+ 
+12=0. 68. 2 - 3 =1 or - 4 + 3 =1. 69. pr0 xAB=8, pr 0 yAB=6, 

-+ 
1 AB 1 = 10. 70. A and C are on the straight line, B is above and D 
below the straight line. 71. The inequalities define: (1) all points lying 
above the straight line y=3x+ 1 (a half-plane); (2) all points situated 
below the straight line y=3x+ I; (3) all points located both above 
and on the straight line !i=4-2x; (4) the points lying below the 
straight line y=4-2x. 73. x-y= ±a. 74. In t seconds the coordi· 
nates of the point M will be: x=a+mt, y=b+nt. Eliminating t, 

x-a y-b .ro 
we get the equation of the path: ---;n-=-n-. 75. (I) y=;x y 3-2; 

(2) y=-X ¥3-2. 76. k= 1, b=5. 77. x+y-4=0; x-y+4=0; 
X y X y X y 

y=3, y=O. 78. S ± a-=±1. 79. 4"+a=l and _ 2+ _ 6=1. 
-+ -+ 

80. y= ±2 (x+3). 81. AB+4 Jl5, pr 0 xAB=4, pr 0 yAB=B. 
3 ~-~ 

82. (I) arctan '4; (2) 45°; (3) 45°; (4) 0°; (5) 90°; (6) arctan~. 

86. 5x+2y+4=0; 5x+2y=25. 88. x-3y+2=0; 5x-y=4; 

3x+y=12. 89. 28°, 12°30' and 139°30'. 90. y=3x and y=--}x. 

91. x-5y+6=0; 5x+y=-4. 92. y=2x-6; y=-2x+6. 93. (3, -I), 

{3, 3); (- ~, ~), 45°, 71°34', 63°26'. 94. ( ~, ~). 95. AE: 2x-5y= 

= -4; AD: x-2y=-2; V29. 96. A= 18°26'; 8=26°34'; C= 135'. 
4 . 

97. x+2y-ll=0. 98. tan A=a; tan B=tan C=2; S=16 . 

. 99. (I, -1), ( ~ , -2). 100. 2x+y=-4; 2x-y=-4; 2x+y=4. 

103. 2.8; 0; 1.4. 105. V: . 106. k= ±2. 107. Two straight lines 

parallel to the given one: 4x-3y ± 20=0. 108. Bx-15y+6=0; 
8x-15y=130. 109. x-y=O and x+y-4=0. 110. 3x-y=12 and 
x+3y=4. Ill. x+y=2 or 4x+y-8=0. 112. 31x+26y=-2l. 

18 
113. x+3y=2. 114. y"TTi. 115. 3x-4y+ 10=0; x=2. 116. h= y34. 

117. Straight lines: x+y=O and x-3y=O; distances: d1 =2 V2.' 
d2 =0.4 y"to. 118. A pair of straight lines x+2y=0 and x+2y= 10. 

119. x+3y=0 and 3x+v=O.' 120. llx+22y=74. 121. y=- ; and 
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3 
g=-2x. 122. x+2y=4. 123. y=O; 2x+3y=-4; y=-4; 

2x+3y=0; x+2y=-2; y=-x; tan a=! . 124. 18°26', 108°27'i 

2b2 a2 s6 = T. 125. 5 sq. units. 126. A =36°52'; B= 127°52'. 

127. 4 ( VIO+ y'S); 20. 128. 2x-y+6=0; x-4y=4; 2x-3y+2=0. 
129. y=x+2; x-5y=6~ y=- x; 2y=x. 130. VIO. 131. The point 
moves along the sides of a square bounded by the straight lines: 

6 ( 3 19) x-3y=±5, 3x+y=±5. 133. h1 =h2=V5· 134. 5' 5, 

(- :. 1;). 135. (4, 5). 136. (0, 2), (4, 0), (2, 4), (-2, 6). 

137. y-x=2; x+2y=4; 2x+y=8. 138. 8(2, 1), C(-1, -5). 
12 

139. y=2x+6, y'5 ; L.DAB ~53°. 140. x2 +y2 +8x-6y=0; A and 0 

are on the circle, B is outside it. 141. x2 +y2 +4x-6y=0. 143. (0, 0), 
(-2.5, 2.5). 144. (x-1)2 +(y-1)2 =1 or (x-5)2+(y-5)2=25. 
145. tana=-2.4, a=ll2°37'. 146. (x+4)2+(y+l)2 =25. 147. x2+ 

4 
+y2-8y=0. 149. y=3 x and y=O. 150. y2 =x (a-x). 151. (x-3)2+ 

+y2=9. 152. x2+(y- ;r=a; 0 153.x2 +y2 =a2 • 154.x2 +y2 =ax. 

155.x2 +y2 -6y-9=0.156.(1)(3,-2),R=6;(2)(- ;. ~). R=4i 

(3) (o.- ~), R= ~. 157.x2 +y2 +4y=O; (0,0),(2,-2),(-2,-2). 

158. x2+y2+ax+ay=0. 159. y=O, 15x+8y=0. 160.90°. 161. x+ y=3. 
162. x2 + y~+ax= 0. 163. (x-2) 2 + y2 = 16. 164. x2 + y2 = 2ax. 

_ _ y3 «z y2 xz y2 
16:J. a=4; b=2;c=2Y3; e=-2-. 166. (I) 25+-g=l; (2) 36+ 27 =l. 

167. b = 1.4; 3; 4; 4.8; 5; e =0.96; 0.8; 0.6; 0.28; 0. 168. a= 150,000.000 km: 
I xz y2 Y3 

e= 60 . 169. 16+ 4 =1; e=-2-; r=4- Y3; r 1 =4+ }"3: 
x2 y2 

170. 64 + 28 =1; r=ll; r 1 =5. 171. 4Jf3. 172. yiT. 

( 2 4 Y3) ( 15 Y63) x2 y2 
173. 7' ±-7- 0174. -4· ±-4- • 175. 36+4=1. 

x2 y2 x2 y2 x2 y2 x2 y2 
176.T-\-"3=1. 178.(!2-l-7)2=1 or fj2-l-(i2=1. 179. g+ 5 =I, 

x2 y2 x2 y2 Y3 
or s+g-=1. 180. 34-\-g= I; e=-2-. r=3, rt=9. 181. Y2(a2+b2). 

182. ( ± 4 r. ~) an~ (o, -t). 183. <-5, 7). 184. (± VI5. ± 1). 
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185. x2 +4y2 =16. 186. ~+~=1. 187. 8= v;, 53°08'. 188. r=-1, 

x2 y2 x2 y2 x2 y2 
r1 = 9. 189. (I) 16 - 9 = I; (2) 20 - 4 = 1. 190. 12 - 4 = I; 2 y3 and 

~ ~ -6 Jf3. 191. 16-g-=1. 192. x2-y2 =a2 • 193. (0, ± aJf2); 90°. 

V2 b ab 
194. y+2= ± - 2- X. 195. b; 2 arctan a. 196. Jfb2-a2 ; b >a. 

x2 y2 
197. (I) e=2; (2) 8=seca. 198. y,.;;;;;-3, u<-lxl. 199. 4 - 12=1. 

~ ~ ~ 200. x2 -a=l (for x > 0). 201. x2-y2 =a2 • 202. (i2-fj2= I. 

x2y2 (x2y2) 203. 16--g= I or 9 - 16=-1 . 204. (0, 0) and (6, ±2 y3). 

203. y= ± ~ (x+5). 206. (-9.6, ±3/5 .,ri19). 207. (± V6, ± Jl2). 
( 4 3 ) x2 y2 x2 y2 

208. (-4, 3) and - T' - 1 . 209. 16 - 48 = I. 210. li2-Ja2 = 1 
. x2 

(for x > 0). 211. y=3-4 . 212. y2 =8(x+2). 214. (I) y2=9x; 

(2) y=-x2• 215. Y= b~ x2 • 216. ( x- ~ r +Y2 = p~; ( ~ , ± p). 

x2 ( -
217. IJ=- 2 . 218. 3, ±3 y 2). 219. 40 em. 221. y2 =px. 

x2 
222. y2 =4ax and y=O. 224. y2 =8(2-x). 225. y=x- 4 ; OJ(2, 1). 

226. (I) y2=-4x; (2) y=x2. 227. y2=-3x. 228. (0, 0), (6, ±2 Jl3) . 
.. r;:; 16 

229. x=O; x+ u+2=0. 230. u=- r v (x+ I); 3 . 231. r =7.41 

d=9.25. 232. Directrices x= ± 3.2; 8= 1.25; r= 10.25; d=8.2. 

233. ~2 +u2=1. 234. xll-y2=12. 235. Conjugate diameter y=- ~; 
·a1 =b1 = JflO. 236. Conjugate diameter 4y+x=0; 31°. 237. Tha 

equation of tha diameter y-.!!.. x; Its length Y 2 (a2 + b2). 238. y= 1.5x. a 
239. y=2. 240. 8x-9y+25=0. 241. y=2x+3. 243. (I) x±2 y3y=B; 
(2) 2x ± u= I; (3) x±2u= -2. 245. x-y= ± 5. 246. u= ± 2x+6. 
247. x+y= Y a2+bi. 249. yz=2x ± 4 Vi. 250. Equation of the 
normal MN: a2uoX-b1x0y=c2x0y0 • Putting y=O, find the abscissa of 
the point N of Intersection of MN and OX: x1 =82x0 • Then 
FN=x-82X0 =-8r, F1N=c+82X0 =er1 , i.e. the normal MN divides 
FF1 in the ratio r:r1, and therefore is a bisector. 252. The normal to 
the parabola y2 =2px has the equation y0x+py=y0 (p+x0). Putting 

y=O, we find x1 =p+x0 , FM=x1 - ~ = ~ +x0 =FM, i.e. L.FMN= 
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- L FNM. 253. (± 3.2, ± 2.4). 254. The diameters u=x and y-- ~; the angle 59°02'. 255. u=: 0 256. 4x-y=6. 

257. arctan3~71°3l'. 259. x+u+2=-0. 260. (1) 0 1 (1, 2), 
3 

(2) tan (jl=T. 261. (5) X2+4Y2= 16; (6) Y' =4X; (7) xa-4y2 =4; 

(8) Y-=; X2. 262. (I) X2+4Y2=16; (2) X2 -4Y2=16. 263. X2-Y2=8. 

264. (1) XY=6; (2) XY=-6; (3) XY=4; (4) XY=-6. 268. Equ­
ation of the jet: Y= 16 (X-X2); at X-=0.75 m y=3 m. 

269. y=b ( 1- ~:). 270. x2+y2+4x=0. 271. (I) 45°; (2) arctan 2. 
gx2 

272. u=xtan(jl 2 2 0 273. y2 -24x+3x2 (hyperbola). 
vo cos (jl 

xa ys 
275. (I) Ellipse; (2) hyperbola. 276. (!) -g-+2 -1, 01 (3, -I); 

(2) X2-Y2=9; (3) Y2=2X; (4) XB=4Y. 277. X2+2Y2-4. (1, I) 
and (-1, -1). 278. (x+ !)2+ya=4. 279. (x-3)2+(y-3)2,.,2. 

280. x+3u=O. 281. y2 =4 (~+4). 

284. x2 +y2 -ax-by=0. 285. a ~5 . 

(x-2)2 ya 
283. 16 +12:1Z I. 

286. The base . AB = 2a, 

a a2 
altitude OD = YS , area Jf5 . 287. Take for the origin point 0 

which divides AB in the ratio AO:OB=m, and the straight line 08 
for the axis OX; let 08 =a, then the coordinates of the points A and 
8 will be: A (-ma, 0), 8 (a, 0). The equation of the required line 

(m-l)x2 +(m-l) y2=2max; for m f= I a circle: x2+y2= 2ma1x; 
m-

for m= I a straight line: x=O. 288. Take 0 for the origin, and OB 
for the axis OX. The equation of the required line: (a-b) (x2+y2)=2abx; 

for a f= b a circle: x2 +y2 = 2abbx; for a=b a straight line: x=O. 
a-

289. 2 (k 2x2 +y2)=a2 (k 2 + I); an ellipse for k f= 1, a circle x2+y2=a2 

for k=i. 290. x2t5!0x +~2 =0. 291. 3a2 ¥3.292. arctanf::::::36°52'. 

293. (±a, ±a). 294. A ( ¥6; 0); B (2, -2), C (-2 ¥2, Jf2); the 
area of A ABC= ¥2+ ¥3+ ¥6. 296. 2 Jf2; y=x-2. 

297 2+ Y3 298 ( _.!!_) 2 + 2_ 9P2 9 b + 2 b2-0· · 2 · · x 2 u-16 .29.ax-y a+-, 

d = I ab I 300. Subtracting the equations termwisa, we get Y a2+b2 . 
4(y-x)=-(y+x) (y-x); hence (I) y=x; (2) x+u=4; consequently, 
the points of intersection of the parabolas lie either on the straight 
line y- x, or on x + u""' 4; we find: x1 = 21 x1 =- - 6; the chord length 
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.~ ~-zy 8 r 2. 301. 30. 302. x2 +y2 =a(x+y). 303. 4 +y2 =1, an 

ellipse with the centre (2, 0). 304. xy=4. 305. y x2
- 6: + 25 

306. X2 - Y 2 = 4; 0!(2, -3). 307. (x;-:55)2 ~2 =I, a hyperbola 

with the centre (2.5, 0). 308. Let M (x, y) be a point of the ellipse. 
Then FM +F1M =AF+AF1 or Jf(x-a)2 +(y-a)2 + 
+ Jf(x+a)2 +(y+a)2 =4a; 3x2 -2xy+3y2 =8a2 ; on rotating the-

1 2 
axes through 45°: X2 +2Y2 =4a2• 309. cos cp= li -=~;. 

Y I +tan cp r 5 

sin cp= ~; the new equation X11 -Y2=4. 310. 3x2 +Bxy-3y'-=20; 

by rotating the axes through the angle cp=arctan ; it Is reduced to 

the form X2 -Y2 =4 (see 309). 311. y2 =2px+(e2 -1)x2 • 313. (1) a 
pair of straight lines y= ± 2x; (2) a point (0, 0); (3) an Imaginary 
circle; (4) a point (3, 4); (5) a pair of straight lines x--0, y= -x; 
(6) a pair of straight lines y= ± 4; (7) a pair of straight lines v~x 

x X' ya 
and Y=2· 314. (I) (1, -1), 6 + 4 =1; (2) (2, 1), X1 -Y11 -=9; 

xa ya xa y• 
(3) 2X'+5XY+2Y2 =-8. 315. (I) 24 + 4 =1; (2) 4-6-1. 

xa ys xa ya 
316. (I) s+T=I; (2) 8 - 4 =1. 317. (1) Y 1 -=2 Ji3Xl 

(2) a pair of straight lines x-2y=3± 1. 318. (1) 3y=2x-7±(x-2); 
(2) a point (2, -1); (3) 4y= -2x-3± 1. 319. 4X2-Y2 =8; centre 
(2, 0); tancp=-1/2. 320. 5(x-1)2+(y-2)2 =9. 821. Rotating the 

X2 a 
axes through -45° we get; Y = .r- + .r- . The equation 

ar2 2r2 
Yx+ YY= Va defines an arc AB of this parabola (Fig. 91), on 
which xr;;;;;a and yr;;;;;a. 322. (x-m)2+(y-n)2-e2 (xcosa+ysina+ 
+q)2=0; A+C=2-e2; 6=1-e2 • 323. (1) A pair of straight lines 
x ± 2y=0; (2) a point (-2, 2); (3) a pair of straight lines y=x, 

xa ya xa ya 
x+6y=0. 324. (1)!2+4 =1; (2)'20-s=l. 325.(1)Y'=-=4Jf2X; 

(2) straight lines: x+y=2 ± 1. 326. (I) y=x-2 ±I; 
(2) 3y=x-5 ± 2 (x+ 1). 327. (I) 7x2 -2xy+7y2 -48x-48y+l44==0; 
(2) x2 + 4xy+ y2+ 6x+ 6y-18=0. 328. (x-y)2 -2a (x+ y)+a2-=0; 
Y2 =a Y2x. 329. x2 -4xy-y2-4x+By-12=0; X 2-Y2 =3.2 V5. 
335. (I) r=-a-; (2) r=a~ina. 336. r=asin(~-a) 

cos cp sm cp sin (~ -cp) 
337.r=2acoscp. 338. (I) fmax=5 at cp=l35°, 315°; 'mln"'=l at 
cp=45°, 225°; r=3 at cp=0° 90°, 180°, 270°; (2) fmax=3 at <p=0°, 
120°, 240°; 'min=1 at <p=60°, 180°, 360°j (3) 'max=2 at cp=90°, 
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210°, 330°; 'mtn=O at cp-30°, 150°, 270°. 339. (I) 'ma/b"""a at q>=30°, 
150°, 270°; r=O at q>=0°, 60°, 120°, 180°, 240°, 300; (2) r=a at 
<p=45°, 225°; f""'--a at <Jl"""135°, 315°; r-0 at (jl=0°, goo, 180°, 

a2 
270° (see Fig. 87 on p. 386). 340. (1) r 2 =--2-; (2) r=a; 

cos q> 

(3) r=- { ); (4) tancp=l; (5) r=acoscp; (6) r2 =a2 cos2cp. cos cp-a 
341. (I) x-a; (2) x2 +y2 -2ay; (3) xy=a2 ; (4) x+y=2a; 

x2 y2 x2 y2 
(5) (x2+y2-ax)2=a2 (x2+y2). 342. (I) "25+-g=l; (2) 16--g= I; 

(3) y2=6x. 343. r=-/!:..- ±b. 344. r=OB ± AB=a(l ± sincp) or 
mncp ooscp 

x (x-a)2 
In Cartesian coordinates y2 2 . 345. F M2=r2+a2-2ra cos cp; a-x 
F1M2 -r2+a2 +2ra cos cp; F M2-F1M2=- (r2+a2)2-4r2a2 cos2 cp= b4 ; 

hence r4 -2a2r2 cos 2cp=b4 -a4 • 346. r =a (!+cos cp); (x2+y2-ax)2= 
=a2 (x2+ y2). 347. Let e be the centre of the fixed circle, e 1 the 
centre of the displaced circle, and M (q>, r) a ·moving point. Since 

L oee1= L Mele=cp and eo=elM= ~a, then OM II eel. Projec-

ting the polygonal line eoMe1 on ee1, we get: ; cos cp+r+; cos cp =a. 

Hence r=a(1-coscp). 348. (I) fmax=5 at q>=0°, 180°; 'mtn=1 at 
<p =goo, 270°; (2) 'max= 4 at q>= goo, 210°, 330°; r min= 2 at q>= 30°, 
150°, 270°; (3) r=a at q>=0°, 180°; r= -a at q>=90°, 270°; r=O at 

45o 135o 225o 315o. 350 - ab sin (~-a) 
q>= • • • · '-a sin (cp-a)+b sin (~-q>) · 

x2 x2 
351. (1) 4 +u2 =1; (2) 4 -y2 =1; (3) y2 ==x. 352. r2=-2c2cos2cp: 

(x2+y2)2=2c2(x2-y2). In Fig. 84: c "V2=a. 353. r=b+acoscp. 
354. From .,t.OAM: r=OM=OAcosq>, but from .,t.OAB: 
OA = 2a sin q>; hence r =a sin 2cp. 358. Let point A be on the axis 
OX, point B on OY, and L OAB = t. Then x = BM cost= Be cos2 t = 
=-acosat, y=AMsint=Aesin2t=asin3t; thus, x=acosst, 

2 2 2 

3 3 3 px2 
Y""asin 8 t; hence x +Y =a . 360. y2=-+ . 361. (3y2+x2)2= 

p X 
= 4x2 (a2-y2). 362. In polar coordinates: r =OM= AB= BD sin q> =aX 

xtan q>· sin cp; In Cartesian coordinates: y2=_::__ (Fig. 8g). 365. Denoting 
a-x 

the angle between OA and OX by t, we find x=2acott, y=2asln2t. 
. . 8a3 {x=a (t- sin t), 

Ellmmatmg, t we get y= 2 + 4 2 . 367. (1 t) x a y=a -cos . 

368. {x=a(c?st+tsint), 369. =xcot~. 
y=a (sm t-t cost). Y a 
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{ x=(R+r)cost-rcos(R~r)t, 
y=(R+r) sint-r sin (R+r)t, where tIs the rotation angle 

r 

{

X= (R-r) cos t+r cos R, 't, 
of !he centre line. 871. R -r 

y==(R-r) sin t-r sin-- t. r 

374. x=~x,=s: v-~v,=-2: oM= VM+i-2 vn. 
V ,;-;, a+b 

375. 8+2 " 3. 379. (1) c=-2-; (2) tJ==2c-b. 

2 - -880. c= 3 (a-b). 881. m+p=n; OB=3(m+n); BC=3 (n-m); 
__..... -+ --+ ~ 

E0=3(m-n); 0D=3(2n-m); DA=6(m-n). 382. AC=2(n-m); 

0M=2n+m; 0N=3m+n; MN=2m-n. 383. 6 ¥3. 384. X= 
-X1 +X2 +X8 =-3; Y=~Yt=6; OM= Jf9+36=3 Jl5. 
886. (I) a=3(c-b); (2) c=2b-a ¥3. 386. 0M=r=5 Jl2: 
cos~=0.5 y2, cos~=-0.3 V2. cosy=0.4 Jl2. 387. r=7, 
cos~= ~ . 388. ~ ;:::: 52° or 12~ 0 • 389. M (3 V2. 3, -3), 

r=3(Y2i+j-k). 390. u=2i-6j+3k, u=7. 391. 0C=i-2j+k, 
OC= V6, AB=k-4j-i; AB=3 Jf2. 392. The end-point 

2 3 
8(4, -2, 5) or B!f4, -2, -7), cos ~=-y; cos ~=--y; cosy= 

6 2 =±y- 393. a=2b-0.8c. 394. u~~3V5. COS~=-3vs· 

395. cos~= cos~= cosy= ~3 . 396. 45° or 135°. 397. D (4, 0, 6). 

398. c=2b-2a. 399. 135°. 400. 8=C=45°. 401. COS(jl= .;_ = 
" 10 

2 
==0.316: (jl=71°35'. 402. cosqJ= Vs =0.894: (jl;:::: 26°37'. 403. 60°. 

404. arccos 0.8. 405. 90°. 406. pr ba = 4 ~2 . 407. 2. 408. (1) 2 + 

+ V3: (2) 40. 409. (a+b)2 =a2 +b2 +2ab cos qJ (law of cosines); 
(a+b)2 +(a-b)2 =2a2 -+-2b2 (property of diagonals of a parallelo-

gram). 410. 7. 411. R=V<a+b+c+d)2 =100V4+2 Jf2;::::253 N . 
.,.........__ (2m-n)m 5 

cos(a m)= =--· 
' Jf(2m-n)2·1 2 J17 ' 

412. V7 and YTI. 413. 
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_........._ 2 5 -+ -----+ 
cos (a, n)=- .r- . 414. -. 415. OM =2 (l+J+2k); ON= 

I' 7 6 
5 2 .r--

= 2 (i+2J+k); cos 8=-. 416. cos (j!= .r-. 417. cos qJ=0.'.?6} 10; 
6 I' 7 

A8.c1J 
qJ ~ 34°42'. 418. D (-l, I, l); qJ= 120°. 419. pr ab =AB = 

=-6. 420. OM= Jf(2n+m}2 = }17; ON= Jl-(3m-f-n}2 = Yl3; 

cosrp=OM·ON = !J._=-17-;:;:;0.89l;lfl=27°. 421.120°.423. &OJ, 
OM ·ON 2 r 91 19.08 
4 V2 .r- 1 . cos8=-15-. 424. a r 6. 425. cosqJ=- 4 . 426. axb equals. 

(I) -6j; {2) -2k; {3) 6l-4J+6k. The area equals: {1) 6; (2) 2; 
(3) 2 V22. 427. 24.5. 428. Y2T sq. units, h= ¥4.2. 
429. (I) 2 (k-l); (2) 2axc; (3) axe; (4) 3. 430. The area of a paral­
lelogram constructed on the diagonals of a given parallelogram is 
twice the area of the ilven parallelogram. 431. 50 }12. 432. 1.5 Y 2: 

.r- 3 VI1 .r-433. 3 r 17, S~--2-sq. units. 434. S~=-7 r 5 sq. units, BD-

2 V2T .r- .r-
= - 3-. 435. I a+b /-=I a-b I= r 5, S= r 6 sq. units. 437. 1.5. 

7 Y3 438. V -51, left-handed. 439. V = 14 cu. units, H =-3-

2 V2 .r-441.c=5a+b. 443.-3-. 444. V=l4 cu. units, H"""r14. 

445. c=a+2b. 446. V= I (a+b)·[(b+c)X(a+c)]l=21 abc I· 

447. (mXn)·p= I mxn l·l·cos a= sin a cos a={ sin 2a. 449. 52. 

2 3 6 
451. cos a=y. cos~=...,. cos v=y. 452. x+4y-2z=2. 

453. x+y=2a. 454. x-y+z=a. 455. 2y-3z+ 7=0. 456. 3y+2z=0. 

457. 2x+y=0. 458. ~+-=-=1. 459. x+y+z=4. 460. x4 +1L3 + _ a c 
z 2 2 1 

+ 2 =1. 462. cosa=3 ; cos~=- 3 ; rosv= 3 ; a=48°ll', 

~= 131°49', y=70°32'. 463. x-2y-3z+ 14=0. 464. 3x-4z=O. 

465. x+y=4. 466. ~+~+f=i. 467. {I) 45°; {2) 78°30'. 

468. x-2y-3z=4. 469. 2x+3y+4z=3. 470. 2x+y+z=a. 
471. 2x-2y+z=2. 472. 2x-y+z=5. 473. 3x-y=0 and x+3y=O. 
474. 3. 475. V6. 476. 2}12. 477. (1) x-2y+2z=ll and x-2y+ 
+2z~-l; (2) x+y-2t=V and x+y+z=O. 478. (I) x-8y+9z=-­
= 21; (2) x-y+2z=0 and x-y-z=O. 479. (I, -1, 2). 
480. 3x-4y+z= II. 481. 2y-5z+ 10=0 482. The equation of the 



314 Answers 

plane: x+y-2z-=O; the angle between this plane and the plane 

Z=O: cosc:p= ~ :=::: 0.8165; c:p=35°!5'. 483. ~. 484. y= ±z. 

2abc 
485. Y . 486. 2x+2u+z=20 and 2x+2y+z+4 =0. 

a2b2 + a2c2 + bzc2 
487. 7x+ 14y+24=0. 488. (I) (5, 4, 0) and (7, 0, 2); (2) (0, -4, 0) 

x-3 y-5 z 
and (2, 0, 2). 489. x-=-z+3. y=-z+5; - 1-=-1-= _ 1. 

x-4 y-3 z } 
490. -I =-1-=T. 491. P{O, 0, I . 492. (I) P=i: (2) P=i+k; 

x+ I y-2 z-3 .rn 
(3) P=J+k. 493. - 3-=-4-= _ 5 ; cos a=0.3 r 2; cos~= 

= 0.4 Jl2; cos i' = -0.5 ¥2. 494. x = 2, z = 3. 495. In t seconds 
the coordinates of the point M will be: X=4+2t; y=-3+3t; 

x-4 y+3 z-1 
z=l+t; - 2-=-3-=-1-. 496. (I) x=-2+t. y=l-2t, 

x-a y-b 
z=-1+3t; (2)x=l+t. y=l-t, z=2+t. 497. (1) - 0-=-0-= 

z-c . { x-a x-a y-b 
= - 1-, whtch means: b (2) z.,.c and --=--. 

Y=; m n 

498. cos c:p= J3 . 499. cos c:p= ~!. 501. The direction vector 

P=NXN1 =i+3J+5k. The equations of the straight line xi 4 = 
y-3 z ,r;;n 4 ¥2 

= - 3-=5 . 502. 3x+2y=O; z=4. 503. 0.3 r 3o. 504. 3 
505. (4, 2, 0), (3, 0, 2), (0, -6, 8). 506. x=6-3z, y=-2z+4: 
x-6 y-4 z x y+4 z 
_ 3 = _ 2 =T; the traces: (6, 4, 0), (0, o, 2). 507. 1 =-2-=3 . 

I 
508. P{O, I, 0}. 509. P{l, I, 2}; a=~=arccos VB. 510. y=-3; 

2x-z=0. 511. Reduce the equations to the canonical form: 
x u+ 7 z-5 x y-4 z 20 o , 
T=-2-=-2- and 2=-3-=6 ; cos c:p=:2T ~ 0.952; c:p= 17 48. 

512. Representing the equations of the given straight llne In the form 
I 

z--
x-2 y 3 
- 2-=2=-3-, we get the equation of the required straight 

ll·ne· x+l=y- 2=z+ 2 513 A(O I 0 A77'{3 I 4} ' 2 2 I ' ' ' + ' ), liM ' - ' ' 

P{l. 2, 2}, d= ¥11. 514. sin 8= ~. 515. For both straight lines 

Am+Bn+Cp=2·2+1 (-1)+(-1)·3=0, but the point of the first 
one (-1, -1, 3) does not lie in the plane, while the point of the 



Answers 315 

second one (-1, -1, -3) does. 516. u+z+1=0 (the equations of 

x-2 y-1 z) the straight line may be rewritten as - 0-=-1-=T . 517. x-

- 2y+z+5-0. 518. 8x-5y+z-11 =0. 519. x+2y-2z= I. 

520. ~ =- i :oz ~ ; 17°33'. 521. (5, 5, -2). 522. (6, 4, 5). 523. (5, 5, 5). 
---+-

524. (3, 3, 3). 525. d=AA 1PP1= .;_. 526. x-!-2y-5z=0. 
I PXPd r 3 

x-2 y-1_ z . o 527. _ 9 =-8--TI. 528. (1, I, 2), 70. 529. (-1, 2, 2), 30u. 

530. (6, 2, 0). 531. (3, -1, 1). 532. x-y-z=O. 533. (-1, 3, I). 
x-1 y z+ 1 . 

534. - 5-= _ 4 = _ 1 . 535. The points on the straight hnes 

0 (0, 0, 0) and A (2, 2, 0); their direction vertors: P {0, 0, 1} and -OAPP1 6 
P 1 {2.-1,2},d= """,r-E· 536. {I) C(L5,-2.5,2),R= 

IPXPd r 5 
=2.5 ¥2; (2) C(O, 0, a), R=a. 537. (x-1)2 -!-(Y-!-1)2 +(z-1)2=I. 
538. x2-!-y2 -\-z2=8x. 539. x2+y2-!-22 -a(x+u+z)=O. 541. y2 = 
= 2ax-x2 • 542. x2 +y2=2ax, x2 +z2 =2ax, y2+z2 =a2 • 544. (1, 7, 2), 
R =4. 545. (3Y -2Z)2 = 12 (3X-Z). 546. (I) y=O; x2 =a2-az (para· 
bola); (2) x=O; y2 =a2-az (parabola); (3) z=h; x+u= ± Ya(a-h) 
(a straight line parallel to x+ y =a (see Fig. 63 on p. 372)). 
547. Cylindrical surface 2x2 + (y- z + 2)2 = 8, the shape of the shadow 

~2 + (Y1 2)2 =I is an ellipse. 548. 2x-y-!-32-7=0. 549.x2+ (y-!-4)2+ 

+z2=4. 550. (x--;2)2 +(Yt8
4)2 =1. 553.(x-2)2-!-(y-2)2=4(x-z). 

x2+ y2 22 
554. x=4, 2 ± y=2. 555. --2 -= 2 . 556. h2x2 =2p2[h(y-!-a)-a2). 

a c 
557. (0, a, 0), the directrix is a circle z=a, x2+(y-a)2=a2 • 558. The 
vertex (0, 0, 0), the directrix is a parabola 2 = h1 x2 = 2hy. 559. For 
z=O x= ±a; for Y"'=h x2 +y2 -a2; for x= ± c straight lines 

Jfa2 c2 
z = ± h y, i.e. the surface Is generated by a moving straight 

line parallel to the plane YOZ and Intersecting the circle ABC (see 
Fig. 69 on p. 374) and the axis OX. 560. (a) 2=x2+y2; (b) Y y2+z2=x2. 

( I I) 4' 56).· (I) Z=e-X+Y; (2) Z= 2 + 2 . 562. 9(x2-!-z2)=16y2. 
X y 

563. x2 -l-22 =z(y+a). 564. (a) x2 -!-z2 =y2; (b) z2 =x2 -!-y2. 565. Rota· 
ting the axes OX and OY about the axis OZ through 45°, we obtain 
the equations of the surface and the plane in the form 2Z2 = X2 - Y2 , 

,r- -- Y2 Z2 
X=a r 2. Hence the section: X=a )!2, -2 2 +2 =1 an ellipse with a a 
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_ x2+ y2 z2 
the semi-axes a Y2 and a. 566. - 2-+::2 =I. 567. (a) 3.84n; 

a c 
45 x2+ y2 z2 

(b) -4 n. 568. (a) --2 --2 = I (hyperboloid of one sheet); a . c 
x2 y2+z2 

(b) a2 - -c2- =I (hyperboloid of two sheets). 

{ ~+ ~ =+ (I+~), { : +i=t- ~, 
570. !.__.!_= 3 ( 1_.}!_) and !__!_=I+}!_ 

4 6 2 4 6 2' 
a a 

571. x=c-l(c-z) cos t+(c+z) cos (t+IX)], v=c ((c-z) sin t + 

x2+ y2 z2 
+(c+z)sin(t-\a.)]; hence: 2T-c2 (1-cos1X)=I+coset; at 

o x2 + y~ z2 . x2 + y2 3z2 
IX=90 2T-C2=1, at IX=I20° ----ar--&""'1; at 

2-j 2 2 { + 4 IX= 180° :__4 / - z2 =0 (cone). 572. x2+ y2 =az. 574. x y= • 
a c x-y= z; 

{ x+y--2z x2 y2+z2 
-- ' 575. -+--=I. 576.x2+yZ-z2 =-2a2 (hyperbo-x-y=2. 2a2 az 

z2+ y2 
Joid of two sheets). 577. x=-~. 578. 9x= ± 13z. 579. 4y= ±3z. 

580. (I) A sphere with the centre (0, 0, a) and radius R=a; (2) para­
boloid of revolution about OZ; (3) cylinder; (4) hyperbolic paraboloid; 
(5) cone; (G) parabolic cylinder; (7) cone; (8) paraboloid of revolution; 

. { x+y=2+z { x+y=3 (z-2) (9) cone; (10) cylinder. 581. ' ' 
x-y=2-z; 3(y-x)=z+2. 

2+ 2 
582. x2+y2=2az. 583. z=a-x 2aY. 584. 2y=±3zo 

{ 3x+4y=24, { z=O, 6 38 8 585. 3 4 _ 12 . 3 _ 4 586. 2 . 587. - 0 58 . 7 0 589. 2a. x- y- z, X- y. 
q90. I. 591. sin (IX+~)· sin(IX- ~)o 592. -100 /\93. 4ao 594. -2b2o 
595. -2x. 596o -4a3 . 597. 144. 598. 720 599. (x-y) (y-z) (x-z). 
600. I. 601. sin (~-IX). 602. IOo 603. They lie on the straight line 

y=x+2. 604. (IJ 1;1 !1 : 1=0; (2) I ~ ~ ! 1-o. 603. 10. 
x2 Ys I -1 5 I 

6060 amn. 607 0 a (x-z) {y-z) (y-x). 608. 

610. (!) x1 =2, x2 =3; (2) x1 =0, X1 -=-20 611. 

IX 4 sin IX sln1 2 o 

x;=5; y,;,-40 
4 

612o x=-; y= I. 613. x=O; y=2o 614. x=m; y=-2m-no 
a 

615. 5; 6; 100 616. -1; 0; I. 617. 7k; 8k; 13k. 618. 5k; -llk; -7ko 

619. x=y=z =Oo 620. Incompatible. 621. Indeterminate: x= 2t5z, 



Answers 317 

5-7z . 
y=-3 -. 622. lncornpatJble. 624. 2; -1; -3. 625. I; -1; 2. 1126. 2k; 

k; -4k. 627. x=y=z=O. 628. - k; 13k; 5k. 629. Indeterminate: 
y=7-3x, z= 18-7x. 630. (I) 12+5i; (2) a2 +b2; (3) 5-12i; 

(4) -2+2i; (5) i; (6) l+i. 634. (I) 2 (cos 3: +i sin~-); 

(2) 2 cos ~ (sin ~ + i sin ~) . 640. (I) 32i; (2) 64; (3) 4 (I- i); 

(4) 2(3+2 y2)i; (5) 8i. 641. sin3a=3slncxcos2cx-cos3 cx, 

cos 3cx = cos3 cx-3 sin2 ex cos ex. 642. cos k; + i sink; ; k ""'0, I, ... , 5. 

643. (I) I, -1 ±2i y3 ; (2) - i, i ± ra; (3) ± i, ± -.:3 ± i ; 

l+i (4) l+i; -1.36+0.3651; 0.365-1.36i. 644. (I) ± yf ; 

(2) V2(cos <p+i sin cp); <p-=45°, 165°, 285°; (3) ± 2 ( y3 +i), 
± 2(-l+i Jf3). 645. (I) -2, I± i y3; (2) :l: l ± i. 

I ni ni .r-- Y 
646. (I) In 2+ ni; (2)2 1n 2 + 4 ; (3) 4 ; (4) In r x2 + y2+ iarctan x; 

647. 

. nx . n+l 
Sin 2 Stn - 2- X 

. X 
Stn 2 

648. 

. nx n+l 
Stn 2 COS - 2- X 

. X 
sm 2 

ni 2:ni 

650. (I} 7 
25

24i; (2) 2b (3a2 -b2) i. 651. (I) 4 )12e4 ; (2) 2e T; 

ni nl 3nl 

(3) y2e 4 • 652. (I) 5(cosO+isinO); (2) e-2; (3) 2e-4 
654. Points inside a circle with centre C (z0) and r =5. 655. (I) 8i; 

(2) 512(1-i y3); (3)-27. 657. (I)± ~:i; (2) cos<p+isincp, 

where <p=0°, 72°, IW, 216°, 288°. 658. (I) 2, -1 ± i y3; (2) ± 2i, 
- sin 2nx 

± Y3 ± i; (3) ± 3, ± 3{. 659. -2-.-. 660. (I) -1, 2, 3; (2) 5, 
Sin X 

-I ±2i y5. 661. (I) x1 --3, 4 2 (2) I 2 x2 = , x8 =- ; x1 = , x2 = - , 

I i 
x3 • 4 =±iY2; (3) x1=-2, x2, 8 =± 3 ; (4)x1 =1,x11 , 8 =± 2 . 

49 -3 ± i V3. 
662. (I) &= 4 > 0, U1=2, [11=1, Zt=3, Z2,a= 2 • 

(2) & = 0, :z1 = 4, z1 = z8 =-2. 663. (I) & < 0, <p=60°, z1 =4 cos 20°, 
Z2, 3 = 4 COS (20° ± 120°). 
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665. 

(I I II I f (a) I f (fl) I lr. I k, I A a I Afl 

I I 2 I -10 I 4 I 14 I 31 
J 

0.71 I -0.13 

1.71 I 1.87 

I 
-3.2 I 0.36 j 22 I 26 I 0.14 I -0.01 

1.85 < X < 1.86. 
666. 2.15; 0.524; -2.66. 667. (I) 1.305; (2) 4 and 0.310; (3) -0.6821; 

4/­
(4) x1 =1.494, x1 =-0.798 (Xt Is found bytheformula x=v 2x+2• 

x'+3x-2) .~ and x1 by the formula x- 5 . 668. (1) -6, -I ± i r 2; 

1225 
(2) -1, 2, 2. 669. (I) 11=-4->0, Ut=3, Vt=-2, Zt=1, z1 ,s==-

-1±5i¥3 .r-=--2--; (2) 11=-4< 0, q>=45°, z1 =2 r 2cosl5°= 

= I + ya, z2 =- 2, z3 = 1- ya; (3) 11 = 0, Z1 =- 2, z2, 3 = I; 
(4) puttingx=z-2, we get z3 -3z+2=0; 11=0; Z1 =-2, z2=z3 =1; 
x1=- 4, X 2 =X3 =-1. 670. 1.76 and -2.15. 671. (I) 1.17; (2) 3.07. 
672. 1.67. 675. O~x < I. 681. x1 =0, x2 =4. 683. (I) x:;:;,- 2; 
(2) -3o;;;;;xo;;;;3; (3)0o;;;;x.;;;;;4. 684.(1)-4o;;;;x~0;(2)-1.;;;;;x.;;;;;3. 
685. (I) x;;:;;,. 0; (2) x ~ 4. 686. (I) 2kn.;;;;; xo;;;;;; (2k +I) n; (2) -4..;;;; xo;;;; + 4. 
687. (I) /(0)=1, 1(1)=1, /(-1)=3, f(2)=3, f(a+1)=a2+a+!. 

b+a 
688. (I) b+a; (2) 2ah. 689. b'+ab+a2 • 690. F(4, 3)=19, F(3, 4)= 

-- 25. 691. (I) even; (2) octd; (3) even; (4) odd; (5) odd; (6) neither 

odd, nor even. 692. f (x1) 1 f (x2) > f ( x1 txa) . 693. loga x. 694. ax. 

n 
696. 2<x~3. 700. (I) lxl~2; (2) -1o;;;;;;x~3; (3) - 4 +kn.;;;;;x<; 

c;;; -i'+kn; (4) I x 1;;;;. 2. 701. (2) 6x2 +2h2; (3) 4 (2-a). 702. Variation 

ef the variable ct= (- ; r is shown graphically in Fig. 39. 

3 3 I« I< 0.001, as soon as n > log 2 or n > 0 .3=10; I a 1 <a, as soon 

I 
loge 2 1 6 1 

es n > log 2 . 703. x=2; 3 ; 15 ; 1 ; 19 ... -+ 1. lx-11 < 0.01, 
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1-e 
a3 soon as n~50; lx-ll<e, as soon as n>""26. 704. x=4; 

3.1; 3.01; ... --.3+0; X=2; 2.9; 2.99; ... --.3-0. 705. X=6; 5.1; 
5.01; ... -s+o; x=4; 4.9; 4.99; ... -s-o; 
X=- I; -1.9; -1.99; -1.999; ... --+- 2+0; 
X=-3; -2.1; -2.01; -2.001; ... --.-2-0. 

8 
707. <'l= 2 . 708. 8=0.01. 712. For I xI> 2500.5. 713. For I x 1>7.036. 

715. lim x in (I) is equal to I, in (2)to-1, in (4) toO, in (5) to2. 
n-+~~> 

in (6) to 0, in (3) does not exist. 

716. 

X 13; 2.1; 2.01; ... --+ 2+0. 

3 I . x- 2 3; 30; 300; ... -.+oo 

X I I; 1.9; 1.99; ... --+ 2-0. 

3 I . x- 2 -3; -30; -300; ... --+- oo 

717. 

X II; 0.1; 0.01; 

2 + 12; 210; 2100; -+ ()() 
x 1-1 -0.1; -O.OI; ... --o. 
I II 1 1 

2x 2; 210; 2100 ; • • • - 0 

718. (I) 2 . lim -=0, 
X .... .., X 

(2) li 2 
m -=+ oo; 

X-++0 X 

3 
lim --=+ oo. 

X-+2+0 x-2 

I. 3 
1m --=- 00 

X-+2-0X-2 ' 

I 

lim 2 x =co. 
X -++0 

I 

lim 2x =0. 
JC -+-0 

2 lim -=- 001 
X-+-0 X 
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(3) lim 3"'= co; (4) lim 3-"=0; (5) lim logx=- co; 
X--..+ QO X_.,_ 00 X -t-+0 

(6) lim tanx=+ oo; lim tanx=- oo. 724. AB-... co, 
X_,.90°-0° X-+90°+0° 

CB-+ co, L. BCD-+ 0°, L. ACB-+ 180°. 
725. X=5; 4.1; 4.01; 4.001; .. , -+ 4+0; 

x=3; 3.9; 3.99; 3.999; ... -+ 4-0; 
X=-0.5; -1.4; -1.49; -1.499; ... -+-1.5+0; 
X=- 2.5; -1.6; -1.51; -1.501; ... -+-1.5-0. 

729. Only the first variable has a limit: lim x = 1, in the rest of the 

cases lim x does not exist. The graph shown in Fig. 39 can be trans-

formed to dep1d the behaviour of the first variable. To this end the 
I 1 

origin 0 should be shifted to the left by 1, - 2 replaced by +2 . 
1 7 -8 by + 8 and so on. The graph for the second variable x = 

1 = (-1)"+- for n=O, I, 2, ..• is given in Fig. 40. 730. (I) 0; 
2" 

-1-t -i 0 lfr f z 
0 

X [ I I xu 
I x, I I 
I I 
I Xz 
I I 

XJ I 
I 

X4, 

Fig. 40 

1 
(2) co; (3) oo; (4) 0; (5) 2; (6) 0; (7) 0 for a> I, 2 for a= I, a for 

3 0 < a< 1. 733. 1. 734. (I) -0.6; (2) 1. 735. 4. 736. I. 737. 2 . 

I 1 2 I 
738. 2 . 739. - V2 . . 740. 3 741. - 2 for a> 0, and oo for 

2 m I 2 · 
a< 0. 742. 3 . 743. 3 . 744. I. 745. - 2 . 746. (I) 3 ; (2) -2.5. 

3 _ I I I 
747. o. 748. oo. 749. -2. 1so. - 2 .. st. y-2 . 1s2. 6 . 753. 4 . 

I sin xI I 
754. -12. 755. -1. 756. lim y =- .!""n. 757. 2.5. 

X -+ 11+0 sin X 1-COS X f 2 
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,;-;; I .r-758. r 3. 759. -4. 760. 2. 761. - 56 . 762. - r 2. 763. 4. 

I I 
764. 3. 765. I. 766. 4. 767. 2. 768. 6 Jl2. 769. 2 cos X. 770. (I) I; 

I I I I Y2i sinx I 
(2) - -2 . 771. -2 . 772. -2 . 773. -3 . 774. 8. 775. lim 

X -+-0 X 

.r- m2 I . 
= - r 2. 776. 4. 777. T. 778. 3. 779. 4 . 780. (I) -2 sm x; 

I I I I 
(2) - 2 . 781. I. 782. 1.5. 783. 2 . 784. I. 785. 2· 786. 4' 

2 l I I 
787. -3. 788. 11 . 789. -2. 79o. - 4 . 791. 2 . 792. o. 793. 2 . 

79t.- ~. 795. -1. 796. (I) 2
1
0 ; (2) 3. 797. (IJ!; (2) 2 [put in 

II) x=t12 , and in (2) I +2x=t4 j. 798. -a. 799. (l) -1; (2) -0.2. 
3 I 

800. (I) 3; (2) "2. 801. {I) I; (2) - 2 . 802. (I) -2; (2) -0.1. 

803. (I) -2.5; (2) 1.5. 804. (I) - Jf2n;; (2) -I. 805. (l) 2nd; (2) 3rd. 
806 (I) 4th; (2) 1st; (3) 3rd. 807. 2nd. 809. As c.t ........ 0 (I +c.t)3-l ~ 3c.t. 

a 
81 J. (I) 2 . .!i; (2) b; (3) 1.5. 811. 2ncl and 3rd. 812. (I) 2nd; (2) 3rd; 

2n-l 
(3) I st. 815. (I) at x=O; (2) at x = - 2-n; 3) at x= ± 2. 816. At x=2 

the first three conditions are fulfilled, while the fourth is not. 

I { -1 for x <-I { x-1 for x <-I, 
817. ( ) Y= (2) y= 

I for x >-1; x+l for x >-1. 
y 

2 

' 
0 

Fig. 41 

At x =- I the functions have a discontinuity of the 1st kind (only 
the second condition of continuity is fulfilled). 818. At x=O only the 
fourth condition is not fulfilled (Fig. 41). 819. A discontinuity at x=O. 

lim y = co. lim y = 0, lim y = I (Fig. 42). 820. Discontinuities at 
t-++0 X-+-0 X_.,(l) 

x= ± 2. 821. (I) A discontinuity of the 1st kind at x=O, and 

11 - 11i95 
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lim y=O, lim Y= J, lim y= 2
1 , lim y= 2

1 (Fig. 43); (2) A dis· 
X-+-+0 X-+--0 X-+-+O> X-+-CX> 

continuity of the first kind at x =a, and lim y = -~ , lim y == _:::, 
X-+-a-0 2 X-+-a+O 2 

x2 x2 
lim y=O; (3) y=-2 for x >I and --2 forx <I; atx=l a dis· 

X-+-±"' 

continuity of the first kind, and lim y=- 2
1 , while lim y= 2

1 . 
X-+1-0 X-+-1+0 

y 

X X 

Fig. 42 Fig. 43 

822. The equation x2- y2 = 0 defines y as an infinite number of single· 
valued functions of x, two of themy=xandy=-xbeing continuous. 
The rest of them (discontinuous) are defined by the equation y = x on 
some intervals of the axis OX, and by the equation y=-x on the 
others. An even function with discontinuities at X=± I, ±2, ±3, ... 
may be defined as: 

an odd one as: 

{ -lxl for 2n-l < x < 2n 
y= +I xi for 2n < x < 2n+I, 

{ -x for 2n-l < x < 2n, 
Y= 

+ x for 2n < x < 2n + I, 

where n=O, ±I, ±2, ±3, .... 
823. A discontinuity of the 2nd kind at x =- 2. lim y = + oo, 

X -?-2-0 

lim y=- oo, lim y= I. 824. At X=O only the fourth condi· 
X-+--2+0 X-+±a:> 

tion of continuity is not fulfilled; at x = ± 2 the third and the fourth. 
825. The points of discontinuity: (I) x=0;(2)x=2;(3)x=0;(4)x=0; 
(5) X=± 2 and X= 0. 826. Infinite number of functions. Out of them 
(1) continuous ones: y= Y 4 x2 andy=- Y 4 x2; (2) the required 
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discontinuous function is 

u={-V4 x2 for lxl..;;;l, 
+ Y4-x2 for I< I xlo;;;;;2. 

827. x=O andy= I. 828. (I) x=O and y=x; (2) x=-1 and y=x-1; 
n 

(3) y=l. 829. (I) X=O, y=-1; (2) x=O and y=x-1; (3) X=-­
m 

a I 
and y=m:. 830. (I) x=- 2 and y=-2; (2) y=x; (3) y=-x. 

:rt 
831. (I) y= ± x; (2) x+y=-a; (3) y=x ± :rt; (4) y=--:r. 

832. (I) y=O, (2) y= ± 2x, (3) x=O and y=x. 833. Parabolas: 
xs 

(I) Y=3"; (2) y=x2 • 834. (I) x=O and y= I; (2) X=O and y=-x. 

I x+l 
835. (I) X=-2, y= 2 ; (2) X= I and y=--2-; (3) X=2,x=-2, 

1 
. I -3 

V= I (Ftg. 44); (4) X= I, X=-1 and y=-x. 836. T. 837. (I) e i 
e 

) 
y 

1 

xz 2 (0 \ 2 
!J=xZ-4 \ 

X 

Fig. 44 

(2) e'. 838. (I) e2; (2) e-4. 839. (I) e-1; (2) e-2. 840. (I) 3; (2) es. 
I 

841. y-;· 842. (I) I; (2) -1; (3) 2lna. 843.3 and 4. 844. (I) e&i 

I I I 1 
(2) ,r:- . 845. (I) 2; (2) -3. 846. ,r:-. 84i. (I) -; (2) -2. 

ere e re x 
1 I I 

848. (I) 3x2; (2) 4x3; (3J .~; (4) cos x; (5) --2 ; (6) - .r-1 
2 rx x ~r x 

11* 
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(7) - ~ ·, (8) - 1-. (9', -~. (10) . (11) - 3 
... - cos2 x' x' ' Y1 +2x' (3x+ 2)2 

X b 
(12) ,r;--;--::o· 849. (1) (x-2)2; (2) -. 850. (1) (x2-1)2; (2) x3-2x. 

, 1+x-· a 

851. (1) I+ Jx: (2) 1- y; . 852. (1) ~ ; (2)- x2+~:+ 3 . 

853. (1) ( 1- ~ )'; (2) 3 ( 1- /rx). 854. (I) V2x2 - V1x3 ; 

2 ( 1 1 ) I -x 2 ( I I ) 
(2) 3x vx-vx2 . 855. (I) X'' (2) x Vx- tft" . 

856. (I) 2sin2 ~; (2) -~x. 857. (I) x(2cosx-xsinx); 
b~-'-

(2) x (s~7n~x.:x). 858. (I) _ x sin x~ 2 cos x (2) (x2 ~ l) 2 • 

859. (I) (l_I4x)2; (2) 4x4xixs~:::x. 860. (I) 1-!inx' 

(2) .r:- ( •1r:- )2 861. (I) gt; (2) 2a sin2 ~ . 862. I; 0; 4. 
2rx rx+l 

863. 8.25. 864. -90. 865. (I) -6bx (a-bx2) 2; (2) 3 Vx ( vx-+ I). 
866. (1) 2x2~ 1 ; (2) ; ( ~x-Vx). 867. (I) 2 cos2 ~ ; (2)- cot2x. 

868. (I) x(2sinx+xcosx); (2)x(sin~+x>. 869.(1)cosx-.~xsinx; 
COS X 2 r X 

(2) : = ~ + ~~ . 870. (I) (x2~ l)2 
• (2) (x2 ~xl)2 

I ( I )2 2+ sin x I 
871. (I) -X Vx 1+ Vx ; (2) (1+2 sin x)2. 872. -3. 

1 I 
873. -1; - 9 :- 25 . 874. (I) lcos6x; (2) bsin(a-bx). 

875. (I) f( cos; -sin ~); (2) -2si~~. 876. (1) -20(1-5x)3 ; 

2 lOx . f . 3 .r--
(2) V . 877. (1) (1 2) 6 , (2) ,,r;--:-:q, ( ) -2 tan 4x r cos4x. 

4+3x -x r 1-x2 
2 . 2 

878. .r sm x .- 879. 4 sin3 x cos x. 880. (I) sin 2x; (2) - sin 2x; 
r 2x-sin 2x 

(3) 2 tan x sec2 x. 881. ~ sin 2x sin ( x~ :) . 882. 3 tan• x. 
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- sin 2x cos Vx 
883 . 884. Yx . 885. ± (VI-sin 2x+ 

· 4 t/ (I+ cos 2 x)a 2 x 
+ Y I+ sin 2x) ; plus for cos 2x > 0; minus for cos 2x < 0, and at 
cos 2x = 0 y' does not exist ( li~ y' = Jf2, and 

X-+ --0 • 
886. 

20 sin 4x 
(I+ cos4x)6 

887. 
cot 2 =. 

3 

sin 2 ~ • 
3 

2x2-l . 890. 1-x . 2/ 888. sin x (I +sec2 x). 889. ,r::;;----'1 .r . 891. - sm-
r x2 -l x2 r 2x-l a 

892• (I) !!:!_=- a sin 2ql ; (2) dr = 2 sin2 2ql 
dql y' cos 2ql dql .. / ( 1t )' • Jl 2ql+ cos2 2(Jl+T 

893. f' ( ~ ) = Va:~ b2 , f' (n) = 0, f' ( ~n) =-~ • 
894 .• ;._.895. v4 cos22x .896. x;-3x2

) 897. -sin4x. 
r 3 4x +sin 4x I -x2 

898. . 2 sin fix . 899. (I) sece x; (2) 3x2 sin 2x3• V (I+ cos 6x) 2 

sin 2 _!_ 
4 cos 2x ds 4 dr I 

900. 1 2 2 • 901. -dl = V . 902. -=-2 cosm. ( -sin x) dn. T 
2. .!._- sin _!_ -r 

2 2 

903. 
2 (3x+ I) 

xa ~4x+ I· 
1104. - v ~. 905. k=tana= ± 4. 

2 
906. y=8-4x, x-4y=2. 907. y=x+ 3 . 908. y=O and 

y= ± { (3x-l). 909. y=- ~ +2. 910. y=n-x. 911. 45° and 135°, 

4 I V5 .I? 2 3 Yl3 
912.arctan 3 . 913. (I) 2 . 2, - 2-. r5;(2) 3' 2' - 3-, 

~13 . 915. y=x2 -3x+4. Parameter b is found from the condition 

y'=2x+b=4+b=l, and c from the condition that (2, 2) is the 
. I 15 

pomt of tangency. 916. y=-4x+B, y=- 4 x-2; ql=arctan B::::: 62°. 

917. y=4x, y=-4x+ IS. 918. x ± 4y=8. 919. y= ± (3x+8) and 
4 

y=O. 920. ,r;-;; 921. 40°54' or 139°6'. 922. (-2, -4). 
r 17 
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923. (! , 'f). 924. I; I; Jl2; V2. 925. U020' and 7°7'. 

, ' , I , I 
926. Y-=-1, Y+=l. 927. Y-=- 2 ; Y+= 2 . 928. y=x and 

y=-X. 929. y= ± ~--;.::; 109°30'. 930. X=0. 931. X=2. 932. X=O. 
f 2 

933. X=2. 934. y-1= ± (X-~). 935. X=-1. 936. y= ± 4x; 28°. 

937. (I) In x+ I; (2) - ln2x ; (3) 0 ·4343 . 938. (I) (x+3!)2 
; 

X X X 

(2) 2 ~x!!~· 939. (I) -tan x2 ; (2) cotxcos2 x. 940. ~ 
X X 2 x2+ X 

4a2x 2 I 2 
941. a4-x4. 942. x (l-x2). 943. cos x. 944. 1_ 4x2 • 

945. ~- 946. 'v . 947. (I) _ 2 ~0 t 2 x; (2) _ 2_• . 
a2+x2 2+ x stn x x-ax 

948. y =x-1. 949. Mutually tangent at the point ( Ve; ; ) . 

950. (1) 2x+3Xin3; (2) (2x+x21n2)2x; (3) x(2+x)ex. 
X X 

951. (I) a"10 xcosxlna;(2)-2xe-x2;(3)2x(l-x)e- 2x.952.e2 +e-2. 
X 

953. ! el'X (I+ Jx). 954. (!~~)2• 955. ! eli (cos~ -sin~). 
_ . . x (x-1)2 

956. (I) -2e x sm x, (2)- 1 +x. 957. x2 + 1 . 958. 2a (e2ax -e-2ax). 

959. -Ina. 960. 26°35'. 962. (l)xx(lnx+l); 

1 [ sin x] . 1 (2) x•nx cosxlnx+-- . 963. -tanxsm2 x. 964.- JIX2=X. 
X 2 ~-X 

1 COS X 1 
.~. 966. V . 967. (I 2). 968. cot 2x. 

x r 1+x· I+sin 2 x x -x 
965. 

X 

9 cot 2x 970 tanx x 97 _.=_e-li. 
69· l-sin2x· · I+cosx' 971. -Vax+x2' 2' a 

973. 2
1 ( e:- e-:). 974. - (ex-~-x)2 • 975. 2e2x 

Jle4x+t' 
1 

2 x 1-lnx x 
976. e4X + l . 977. X --xr- 978. 16. 979. y =- 2 . 

-. /1-x x2 1 a 
980. Jl I+x' 981. I+x2 • 982. -Vx-4x2 • 983./a/ ~. 

984. a2 ~x2 • 985. V x'_x 2 . 986. - 1 ~ x2 . 987. (I) 2 Jlt x2; 
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3eax 2 I arctan ~. 
(2) y' I eox . 988. 1-x' . 989. 2x V x-1 . 990. a 

I 1 2x I 
991. .r . 992. .r . 993. (I) .r ; (2) 2+ ,. 

2 r x-x2 2x r 6x-l lxl r 2-x2 x x 
4e2x (-4-

994. 2ex Jfl-e2x. 995. arccosx. 996. l-eax· 997. J; T-1. 

998. V~. 999. ~-I. 1000. (I) sinh 2x; (2) tanh2 x; 

(3) Vcoshx+l. 1001. 1.5. 1002. (I) tanhx; (2) -sin:22x. 

1003. (I) coth2 x; (2) ~h2 . 1004. (I) h ; (2) 4sinh4x. 
Stn X COS X 

1-x 
1005. x+ 1.175y=2.815a. 1006. y=3.76x+3.89. 1008. (1) ,1.:?1; 

x2 r x2-l 

(2) tan3 x. 1009. V4X=l IOIO. dx 2e1 (e1 -I) 
2x dt e2t-f-l . • 

1012. :: = tan5 t. 1013. ~a. lOll. 
X 

Vx2 -4x · 
~+~ I 

1014. (I) x (x2-a2); (2) 2 cos (In x). 1015. I5. 1017. - 3a. 

1021. (I) 2 cos 2x; (2) 2 tan x sec2 x; (3) 1 ,1 . 1022. (I) -4 sin 2x; 
(I +x2) • 

(2) - 2;; (3) -(xcosx+3sinx). 1023. (I)-~; (2) e- 1 (3-t); 
X. X 

2a (3x2-a2) 2 ( I )n _ __!_ 
(3) ( 2+ 2) 3 • 1024. - ,1 . 1025. (I) -- e a i 

X a (2-t) a a 
(2) (-l)n-l(n-1)!; (3) (-l)n-11.3·5 ... (2n-3). 1026. (l)n!; 

xn 2n Vx2n-l 

(2) sin(x+n ~); (3) 2n-lcos(2x+n ~)· 1028. (I) -2eXsinx; 

(2) xax (x2 ln2 a+6x In a+6); (3) 2 sin x+4x cos x-x2 sin x. 

1029. (I) 2e-X(sinx+cosx); (2) ~; (3) xsinx-3cosx. 
X 

x+3a _:_ x+na _:_ n 
1030. f'"(x)=--e 0 • f<n>(x)=--e 0 • f<n>(O)=--. aa • an • an-I 
1031. I, m, m(m-1), m(m-l)(m-2), ... , m(m-1) ... (m-n+l). 

1035. (I) 2e-X2 (2x2-l), (2J 2 _co2tx; (3) x •;. 1036. (I) aX(Ina)n; 
Sin X (4-x2) • 

(2) (-J)n (I !n2~~~+l; (3) -2n-1 cos ( 2x+n ~). 1037. ~ ; - ~3'; 
7 J:3 1038. (I) ex (~+9x2+ 18x+6); 
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(2) - 1-. (6a2 cos~-6axsin~-x2 cos~)· (3) -xflV(a-x). 
a3 a a a ' 

1041 By the Leibnltz rule f<nJ (x) = x2e- ~ (- ~ r + 
_.!_ ( 1 )n-1 n (n-1) -~ ( 1 )n--2 

+n·2xe a -a +-1-.2-2e a - 0 . Hence, 

f<nl (0) = n (n-1) (-I)n-2= n <n-; I) (-1 )n. 1042. f' (x) = 
an-2 an 2 

= -2xe-"1=-2xf (x). Using then the Leibnitz rule, f<nl (x) = 
x p b2x 

= [-2x/ (x)J'n-u and so on. 1044. (I) --y; (2) y; (3) a2y. 

2x+u. 2x-y vY. e-"+Y 1045. (I) - +2 • (2) -2-. 1046. {1)- -. (2) --:;;--+ • 
X 1/ X- y X e" X 

1047. e sin u+e-u sin x 1048. _!..+I. 1049. _!_. 1050. (I) - ~. 
ex cos y+e u cos x y2 3 y3 ' 

(2) 2 (y-a); (3) m(m+n)y 1051. _!!._, 1052. y=3-x and 
(x-b)2 n2x2 ' a2 

y=x-1. 1053. (~0 . ~) and (40, 40). 1054. (I) -:;0 +~~0 =1; 
a 

(2) YYo=P (x+x0). 1055. x+y= ± V2' 1056. arctan 3. 

b2x x2 -ay a2 R2 

1057. (1) -a2y; (2) ax-y2 ' 1058. (l) --ya; (2) -(y-~)3 ; 

(3) _ 2 (1;112),. (4) 6a2 1059 2 3 d 2 +I - (x+ 2Y)3 • • y=- x- an y=x . 
1 

1060. x+2y=4 V2, 1061. 1-e. 1062. e(e-1). 1063. ±2. 

1064. (1) dy=nxn- 1dx; (2) dy=3(x-l)2 dx. 1065. (1) dy= ;dx . 
I+x2 ' 

(2) ds=gtdt. 1066, (I) dr=4sin2 <pd<p; (2) dx=-~~~. 

1067. d) sin2tdt; (2)sinudu. 1068. (1)- aadx · (2) (<X+l)d<X. 
x2(a2+x2)' <X , 

3 I. <pd 4 dx 
( ) -- Sin - <p; ( ) - • 

2 2 x)!'x2-1 
1070. (1) 0.04; (2) 0.05. 

2 • ~ ~ds 1071. (1) dV=3x dx=0.75, xa-=0.006 or 0.6%; (2) d= 8f 

1072. ( 1) dx <. O. ~~ < 0.005; (2) the error in measuring the radius 
5x r x 

1 
should not exceed 3 % 1073. (1) S=nR2, ~S~dS=2nRdR; 

(2) 
4 

V=anR~. 1074. (I) 
(2-x) dx. 

x3 • 
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(2) b sin (a- bljl) dq>; (3) 1075. (I) -tan x dx; 

(2) du · (3) -2e- 21dt. 1076. (I) ~~; (2) tan2 ada; 
2u y 4u- I ' . 2 r x 

(3) b (I+ e-bf) dt 1077. (I) Lly = 3x2Llx+ 3xLlx2 + Llxs = -0.2376, 
14 x2 -0 I 

dy = 3x2 dx = -0.24; (2) dl = -n ::::: 4.46 em; (3) 1 dx I~ - 4 -· ~ 0.006. 

( x )2 x2 y2 
1078. (I) 4y2=xa; (2) y2 =x 3 -1 . 1079. (I) li2+v=l; 

, 2 2 1 
(2) x s +Y 3 =a 3. 1080. (I) x2 -y2 = I; (2) y= 1 +x2 • 1082. x = 

3at 3at2 {4-:n) a a 
= 1+ 13 ,y= 1+ 13 . 1083.y=x+ 2 . 1084. x+y=yf' 

I t2+ I I 
1085. (I) -a sins 1 ; (2) 4t3; (3) t . 1086. (I) y = 

4a sin4 2 

=-x2-2x; (2) (y + 2)s=x2 • 1087. x + y=a ( 3; +2). 

a:n I 3/2 -I 3 
1088. y=x- 2 yf. 1089. (I) - 4 sin3 /; \2) ~; (3) 4et' 

g/2 dx d2x . a a2 
1090. x=at- 2 ; dt=a-gt; d/2 =-g; tn t=-g sec, x=rg 

dx 
(the highest point). "1091. -;u-=12 -41+3; 11 =1; /9 =3. 

1095. v= :: ; :~ =w; multiply termwise. 1096. 2v :~ =2a: =2au; 

du gt2 dx d2x 
hence W=dt=a. 1097. X= I0+20t--2-; dt=20 -gt; dt 2 =-g. 

. ~ w ~ 
At the highest pomt di =0; t =-g::::: 2.04 sec. 1098. dt =-

a a dx 
-:nh(2R-h)=:nr2 . 1099. dt=k(A-x). 1100. d(w2)=2wdw, 

d (w2) dw dw dt I 
(i(j)= 2w dq> = 2w IF d(p=2we 00 =2e. 1101. The roots of the 

function: I; 3. The root of the derivative f' (x) =2x-4 Is 2; I< 2 < 3 
1102. Not applicable, since at x=O the function has no derivative. 
1103. Because the point x=O is a corner (two tangents). 1104. The 

9-1 
slope ol the chord (AB): k= 3+1=2; f'(x)=2x=2, x=!; at the 

point x =I the tangent is parallel to the chord. 110.'1. f (b)= b2, 
f (a)=a2, f' (c)=2c; substitute this into the Lagrange formula 

b+a 9 :n b2-a2=(b-a)·2c; hence c=-2- 1106. c= 4 1108. At x=T 

there is a corner point on the arc, at which the function has no derl· 
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vative. 1109. The function is continuous and has a derivative inside the 
interval [0, 2], but is discontinuous at its right-hand end-point. 
1110. Let s = f (t) be the equation of motion, and t 1 and ! 2 the initial 
and final moments of motion respectively. By Lagrange's theorem, 

between t 1 and t 2 there can be found /8 for which f (t ;>- ~ (t 1) = f' (t 3), 
2- 1 

i.e. 40=f'(t3)=d: at the moment t8• Jill. <D'(x)= b f(b) 1. 
d 11 f' (x) 0 I 

a f (a) 1 
Since <D(b)=<D(a)=O and the function has a derivative <D'(x) in the 
interval (a, b), then, according to Rolle's theorem, between a and b 

we can find x = c for which <D' (c)= 0, I.e. b f (b) 1 = 0; hence 1
1 f' (c) 0 I 

a f (a) 1 
f (b)-f (a)=(b-a) f' (c). The function <D (x) is the doubled area of 

ba-aa 3c2 , 
A AMB, where M is any point on the arc AB. 1112. bT---'2=-2 ; 

-a c 
2 (a2 +ab+b2) • dy f' (t) 

hence c 3 (a+ b) . 1113. The slope of the tangent IS dx = cp' (t), 

and at the point t =c k= ~: ~~~ . The slope of the secant is k1 = 

=y2 -y1 f(b)-f(a); according to Cauchy's theorem, between a 
x2-x1 q:> (b)-q:>(a) 

and b there exists t =c for which k1 = k, i.e. the tangent is parallel 
to the chord. And since cp' (t) f= 0, we have q:> (a) < q:> (c) < q:> (b) (or 
vice versa), and the point of tangency is situated inside the arc. 

1117. c= ya"+~b+b2 • 1118. (1) y ~-1; (2) y1- ~2 ; 

(3) 1; 2 . 1119. O> ~; (2) V(~r::::2.4. 1120. The function 

y=lx-11 has no derivative at x=l. 1121. At the point x=-;. 
· 1 I a 2 I 
1122. 3. 1123. 2. 1124. nan-I . 1125. 1. 1126. 7)2 • 1127. 2 . 

I 
1128. 6' 1129. 3. 1130. (I) oo; (2) 0. 1131. 0. 1132. 0. 1133. 3. 

1134. 2. 1135. 0. 1136. 0. 1137. I. 1138. 1. 1139. e8• 1140. Of the 
I I a I 

2nd order. 1144. a-b. 1145. -. 1146. -. 1147. In -. 1148.--. 
3 8 b y3 

I I ~ I 
1149. 1. 1150. 1. 1151. -3 0 1152. -2. 1153. e. lliJ4, 6. 1155. e3• 

16 
1160. At X=-2 Ymin =I. 1161. At X=-2 Ymin =-3; at X=2 

I6 
Ymax = + 3; the points of intersection with OX: x 1 = 0; x2 , 3 = 
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2 
= ±2 va~ ±3.4. 1162. At x=-1 Ymax= 13; at X=3 Ymln -"--~1; 

the points of intersection with OX: x1 = 0, x2, 3 ~ I ,5 ± 3.3. 1163. At 
x=±2 Ymax=5; at x=O Ymin=l; at y=O x~ ±2.9. 1164. At X=O 

y=O, an infi(clion; at x=3 Ymin=-6!. 1165. At x=-2Ymax=-2; 

X 
at x = 2 Ymin = 2; the asymptotes: x = 0 and y = 2 . 1166. At x = 0 

Ymin=-1 (a cusp); the points of intersection with OX: x=±l. 
1167. At x=O Ymax=l; as x--- oo y---0, i.e. y=O is an asymptote. 
The curve is symmetric about the axis OY (why?). 1168. At x =I 
Ymax=-4; at x=5 Ymin=4; the asymptotes x=3 and y=x-3. 

2 4 
1169. At X=O Ymin=O; at X=3Ymax= 27 . 1170. At X=4 Ymax=l, 

at y=O x=3 or x=5; at y=-3 x=-4 or 12. 1171. At x=O 

Ymax=l; the ~symptote y=O. Symmetric about OY. 1172. At x=-c; 

n Jf3 5n n 
Ymax= 12+-2- ~ 1.1; at X=12 Ymin ~ 0.4. 1173. At x= 3 Ymax= 

4n ,,-., n ,,-., 4n 
= 3 - r 3 ~ 2.45; at x=- 3 Ymin= r 3-8 ~ -2.45. The 

n 
asymptotesx=± 2 . 1174. Atx=l Ymax=l; asx---Oy-..-oo; as 

x-. oo y--o. The asymptotes: x=O and y=O. The point of inter­

section with 9X: I +lnx=O, lnx=-1, x=e- 1 ~ 0.4. 1175. At x= ~ 
I n I 

Ym1n=2-T ~ -0.28; at X=-2 Ymax ~ 0.28. The asymptotes: 

n 2 
y=x ± 2. 1176. (I) At x=2 Ymax =-;. The asymptote: y=O. 

(2) At x=_!_ Ymln =-_!_; lim y=O (an end-point); at x= I y=O. 
e e x-++ o 

, /4n+l 
1177. (I) Atx=0Ymln=O(acorner);atx=± y-2-numax=l; 

l n 3n 5n 
(2) at x=O Ymin= 0 (a corner). 1178. Ym1n=2 at X=T; 4; 4: 

... ; Ymax = I at x = 0; ~ ; n; 3; •••. 1179. The domain of the curve 

I l 
is x.,;;;; I; Ymax=--;;;=;; at x=-; y=O at x1 =0 and x2 = l. 1180. At 

2 r 2 2 
x = 2 Ymax = V2; the domain of the curve is x > 0. 1181. The asymp· 

totes: x=l and x=4 (discontinuities); Ymt11 =-! atx=-2, 

Ymax =-1 at x=2. 1182. At X= 1 Ymln = 1.5. The curve asymptoti• 
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x2 
cally approaches the parabola Y=T and the axis OY. 1183. At x=O 

and x = 2 Ymln = V4 ~ 1.6; at x = I Ymax = 2 (the cusps are located 
at the points of minimum). 1184. At x=O Ytnfl =0; at X= I 
Ymax=0.2; at x=3 Ymtn=-5.4. 1185. At X1 =-2 Ymax=O, at 

I 
x1 =-1.2 Ymln ~ -1.1, at x=O Yinu=O. 1186. At X=2 Y.nax=2• 

at y=O x= I, the asymptotes are the coordinate axes. 1187. At 

y 

Fig. 45 Fig. 46 

x = -3 Ymax = -4.5, at X= 0 Yinfl = 0, at x = 3 Ymln = +4.5, the 

asymptotes: y=x and X=± Jf3, 1188. At X=~ +kn Ymax =I; at x = 

= ~ +kn-discontinuities. 1189. At x=: +2kn Ymax = ~ + 2kn-

I I n - 2 In2. 1190. (I) At x=l Ymtn=2ln2-4 ; (2) at x=-1 

Umax =I, at x=O Ymin =0 (a corner with slopes k = ±2). 1191. At X= 0 
4 I 

Urnin =0; at x=2 Ymax=7 ~ 2; the asymptote: y=O. 1192. At 

X=-1 a cusp Ymtn=2, at x=O Ymax=3, at y=O x.~ 4. 1193. At 
X=2 Ymax=4; at y=O, Xt =0, X2=4. 1194. At X=-1 Ymin =-4; 

at y=O Xt =I, X2=-3. 1195. At X=O Ymln =0; at X=-2 Ymax= ~; 
at y=O x1 =0, x8 =-3. 1196. At X=-1 Ymt 0 =-4; at x=-3 
fmax·=O. 1197, At x=O Ymax =0; at X=2 y= ± oo; at X=4 Ymin =8; 
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the asymptotes: X=2 and y=x+2 (Fig. 45). 1198. At X=-3 
Ymin=-6.75; at x=O Yinf1=0; at y=O x1 =0, x2 =-4 (Fig. 46). 
1199. At X=±2 Ymin=-4; at x=0Ymax=0; aty=O x1 =0 
x2,a=± vs~ ±2.8. 1200. At X=O a cusp Ymax=O; at x=i 

Ymin =-1; at y=O x1 =0, X2 =3 ~ (Fig. 47). 1201. At X=-1 

Ymax=2; at x=l Ymin=O; at x=O y=l. The asymptote: y=l. 

1202. At x=-1 Ymin=- ;e ~ -0.6; at x= I Ymax ~ 0.6; the axis 

OX is the as:rmptote. 1203. At x=2 Ymln=2(1-ln2) ~ 0.6; the axis 

y 

Fig 47 

OY is the asymptote; at X= I y= I; at x=e2 ~ 7.4 y ~ 3.4. 1204. At 
3/-

x=O a cusp Ymax=O; at X=2 Ymln=-3 V 4~-4.8;atx==5y=0. 

The graph is similar to the one shown in Fig. 47. 1205. At x=+ ~ 

~ n n n 
Ymax =-2--6 ~ 0.34; at X=-6 !/min~ -0.34; at X=± 2 

n n n 1n 
fi==F 2==F1.57. 1206. At X=4 Ym1n=2+1 ~ 2.57; at X=T 

I 
flmax=+3.71; the asymptotes: X=O and X=n. 1207. At x=- 2 

I 3n I n 
Ymax=- 2+4 ~ 1.85; at X=2 flmln ~ 1.28; at X=O y=2. The 

asymptote: y=x. 1208. At X= I a cusp Ymin= I; at X=O y=2, at 
n 5n rc 

X= 2 y = 2. 1209. At x=6 and 6 Ymax = 1.5; at X=2 Ymin =I. 

I 
1210. At X=O Ymln=O, at X= I Yinu=l. 1211. x=e, Ymax=- ~ 0.4; e . 
at y=O x= I. The asymptotes: x=O and y=O. 1212. At X=-3 
Ymln=6; at X=-2 y=oo (a discontinuity); at X=-1 Ymax=2. 
The points of intersection with the axes: x=O, y= 1.5; y=O, 
x= ± y3 ~ ± 1.7. The asymptotes: x=-2 and y =2-x. 1213. At 
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X=l Ymin=2, at X=-1 Ymax=-2, at x=O (a discontinuity). The 
asymptotes: y=x and x=O. 1214. (I) At x=O y=a. The points of 

intersection with the axis OX: x= ~ +kn. The extrema: at x1 = 

= 3
4Jt +2kn a minimum, at x2 = 7: +2kn a maximum. The curve 

is a graph of damped oscillations; it is inscribed in the curves 
Y= ± ae-x on which the extrema are found. Begin construction with 
the curves y = ± ae-x. The axis OX is the asymptote. (2) At x =-1 
Ymax = 2, at x = 0 a point of inflection, at x = I Ymin = -2, at y = 0 
Xl=O, x2.a~±1.3. 1215. At X=l Ymin=3; at X=2y=oo 
(a discontinuity); at x=4 Yinr1=0; at x=O y ~ 3.6. 1216. At x=-2 
Ymin=O; at X=-4 Ymax=0.8; at X= I Ymax ~ 2.R; OX is the asymp· 

I 
tote. 1217. At X=±l Ymax=l; at y=O x=± V2 ~ ±0.7. The 

asymptotes: the axes OX and OY. 1218. At X=O Ymax= I; at X= I 
I 

Ymin=O; at y=O X= ±I. 1219. At X=-1 Ym1n=3; at X= I 

llmax=3; at x=O y=l; the asymptote: y=l. 1220. l\t x=-1 
!!max= I, at y = 0 x1 = 0, x2 = -4, the domain of the curve is x.;;;;;; 0. 
1221. (I) At x=-2 y= oo (a discontinuity); at x=-3 Ylnfl =0; at 

3 
x=O Ymin ~ 64'; the asymptotes: X=-2 and y=x+5. (2) Ymln =0 

at x=2nn, Ymax= Y2 at x=(2n+l):t. At the points of minimum 
y' does not exist (corner points). 1222. 30 mX60 m. 1223. 5 and 5. 

1224. a4h. 1225. ~. 1226. 4 mx4 mx2 m. 1227. 20 em. 1228. 60°. 

18 I ( . I a 1229. Jt + 4 ~ 2.5. 1230. cos a= m provided m c;;; AB, where a is 

the projection of AB on the direction of the railway)· 1231. 18 m 

from the brighter light source. 1232. In 2av hours the minimum distance 

. a D D)f3 .r-
Wlll be equal to 2 km. 1233. x=2 , y=-2-. 1234. r 3 ~ 1.7 

times. 1235. l ~ 5.6 m; determinPd as a maximum of the function 

l = ~.4 +~. 1236. v · 128Jt dm8 at the height x=2 dm. 
Sill <.t cos a max 9 

1237. Smax=R2 at the height X=.:;, . 1238. (I, 1). 1239. Yab. 
1240. At x=2 m. 1241. 4 em and Jf3 ~ 1.7 em. 1242. X= 1.5. 1243. The 

section is a square with the side ~ . 1244. At a=2Jt y { ra-

JlP dians ::::! 294°. 1245. F ; tana=J-1=0.25, a~ 14°. 
cos a+l-4 sin a 
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1246. (I) y=x2 , y"=2 > 0; the curve is convex down everywhere; 
(2) y = x3 , y" = 6x, the curve is convex down for x > 0 and up for 

'x < 0, x = 0 is a cusp; (3) y =ex, y" =ex > 0 is convex down every­
where, (0, I) is the point of intersection with OY; (4) y= In x (x > 0), 

y"=-_!_2 < 0, the curve Is convex up everywhere, (I, 0) is the point X . 
of Intersection with OX; (5) (0, 0) is the point of inflection. 1247. The 

points of inflection: (I) ( 2, - ~ ) ; (2) ( ± .,)2 , e --}); 

(3) ( ± ¥3, ± V:) and (0, 0); (4) at x=- 1 ~ 2 ~ -0.35. 1252. The 

domain x > -2. The points of intersection with the axes: (-1, 0) 
and (0, In 2); y increases everywhere, the curve is convex up. The 
asymptote is x=-2. 1253. y > 0, y=O is the asymptote. 1254. (I) Sym­
metric about OX. The domain: x;;;?: 0. The upper branch is convex 
down, the lower one up. Both branches contact OX at the point 
(0, 0). The curve is called the semicubical parabola (forming the letter 
K together with the axis OY); (2) the same as the previous curve, but 
shifted by three units left. 1255. (I) At x = 0 Ymax =-I, the asympto­
tes: X=-2, x=2 and y=O (three branches); (2) at x=l Ymax=2, 
at X=-1 Ymin =-2, intersects with OX at x= ± ¥3, a point of 
Inflection at x= ± Y2, the asymptotes: OX and OY. 1256. (I) The 
domain: x > 0; at y=O x= I; the asymptotes: OX and OY. At x=e 

Ymax =I; (2) at x =I Ymax =I, at x = 2 Yinfl =f ~ ~ , the axis OX 

is the asymptote, at x=O y=O. 1257. (I) At x=O Ymtn=2; the 
asymptotes: X=-2 and x-y=O; (2\ symmetric about OY, at y=O 

x= ± ~ ~ ±0.7, at X=± I Ymtn =-1, the asymptote: the axis OY. 

1258. (I) The domain: x > 0; at x= I Ymtn =I; convex down; the 
asymptote: the axis OY; (2) OY is the axis of symmetry. at x=O 
Ymin =a; convex down everywhere. The curve is termed the catenary. 

V - 3/<'j 1259. (I) At x=O Ymax=O, at X= 4~ 1.6 Ymln ~ 2.1, atx=-v 2 ~ 
~ -1.3 Yinfl ~ -0.8. the asymptotes: X= I and y=x; (2) at x=-1 V-Ymin =-3, at y=O X=- 0.25 ~ -0.6, the asymptotes: the axes 
OX and OY. 1260. (I) Symmetric about OX and OY, the domain is 
I x 1 < ¥2, at x = ± I Yex = ± I, at y = 0 x = 0 or ± y2; (2) on the 

branch y=x+ A Ymin =3 at x= I, the branch y=x- lx inter-

sects OX at x= V4 ~ 1.6, both branches have asymptotes: y=x and 
V-

X=O. 1261. At X=-2 Ymin=- 16 ~ -2.52, at X==2 Ymax ~ 2.52 
(both points are cusps), the axis OX Is the asymptote since 

8x 
y= • • • --..0 as x- ±co. 1262. Sym-

(x+2) /'+(x2 -4) Ia+ (x-2) Ia 
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metric about OX; the domain: x;;, 0; the asymptote: the axis 

OX(limy=O); at X=l extremum Yex=± _.!._;::; ±0.3. 1264. (1)~33 + 
~- e 

I 1-x 
+x2 +1nx+C; (2) 2x6 - xa+C. 1265. (I) """'X2+C; 

(2) ~+21nx-~2+C. 1266.(1) x(;rx+fVx)+c; 

(2) 2Yx-4Vx+c. 1267. (I) 2xr -3x+6Yx-lnx+c; 

3 v- I ax 2 (2) -4 (x-4) x+C. 1268. (I) ex+-+C; (2) 1-- ,r.: +C. 
x n a r x 

1269.(1)-cotx-tanx+C;(2)-cotx-x+C.1270.(1)5. 2 dx 2 
Sin XCOS X 

5 sin2 x+ cos2 x 
= . 2 2 dx=tanx-cotx+C; (2) 3tanx+2cotx+C. 

Sin X COS X 
x ~nx x ~nx 

1271. (I) 2 - - 2-+C; (2) 2 +-2- +C. 1272. (I) 2 arctan x-

x3 xt-1 
-3arcsinx+C; (2) 3 -x+arctanx+C. 1273. (I) '2T-21nx+C; 

(2) 3V"i+ ,;-+C. 1274. (I) 2 <;,-+ 2) +C: (2) 41n x- .~- _ _!_+C. 
r X X r X X 

I I 
1275. (I) lnx-x-- 2x2+C; (2) x+cosx+C. 1276. {I) ex+tanx+C; 

ax I 
(2) 1---4 4 +C. 1277. cosx-cotx+C. 1278. tanx-x+C. 

na x 

1279. j.sin3x+C. 1280. x-2cosx~+C. 1281. -!e- 3X+C. 

I ( - --:-) I · 1282 5 tan5x+C. 1283.2 e 2 -e ~ +C.1284. 6 (4x-I)·/·+C. 

(3- 2x)6 I ., • r--
1285. - 10 +C. 1286. - 8 (5-6x) •+C. 1287. - y 3-2x+C. 

· I I 
1288. b cos(a-bx)+C. 1289. In (x2 -5x+7>+C. 1290. 2 1n (x2+l)+C. 

I 
1291. -O.IInii-IOxi+C 1292. - 6 1nll-2e2xi+C. 

1293. lnlsinxi+C. 1294. -lnlcosxi+C. 1295. lnlsin2xi+C. 

1296. -!lnll+3cosxi+C. 1297. +lnl1+2sinxi+C. 
• 3 4 

1298. In II+ In x I+C. 1299. st~ x +C. 1300. -co~ x +C. 

1301. --1-+C 1302. - 1-+C 1303. 2-cos x+C 
3 sins x · 2 cos2 x · sin x · 

1304 sin2 x +C cos A C 1306 I x• C I -x• .-2- .1305. -e + . . 3 ~ + . 1307. - 2 e +C. 
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1308. 2ev-x+C. 1309 f Jf(x2+ 1)3 +C. 1310. f VfXB. M1• 1 r· 

1311. ~ Vo +x3)2+C. 1312. - Jfl- x2+C. 1313. - Jfl+2 cos x 1-r:. 

1314. fvff+Inx)3+C. 1315. !(1+4sinx)"'•+C. 

1316.- 4
1
0 (l-6x6)•;,+C. 1317. 2x++ (e2X-e-2X)+C. 1318. si~• X +C. 

4 
I -- I I -

1319. - 2 VI -4x+C. 1320. -b sin (a-bx)+C. 1321.T(I+3x) 3 +C. 

1322. --7
1 (I -2x3) ~ +C 1323. Jfl +x2 +C. 1324. sin x- 2 +C. 

COS X 

1325. 2ln 1 sin x 1-cot x+C. 1326. esin x+C. 1327. - ~ In 11-x31 +C. 

I ,x-51 1 X 1328. 2b (a-bx)2 +C. 1330. (1) 0.1 In x+ 5 +C; (2) 3 arctan 3 +c. 

1331. (l) arcsin ~+C; (2) ln(x+ Vx2 +5)+C. 

1332. (I) In I x+ V x2 -4I+C; (2l ~3 arctan ~+C. 
x I x3 1 x2 

1333. {I) arcsin Jls +C; (2) 6 arctan 2 +c. 1334. (1)2' arcsin Y3 +C; 

(2) 2!blni~:+.:I+C. 1335. (l) ~arcsin~ +C; 

(2) ! In (x4 + V x8- I) +C. 1336. (1) 2.5 In (x2 + 4)-arctan ~ +C; 

(2); ln(x2 -4)-lni:~;~+C. 1337.(11 Jfx2+1+In(x+Jfx2+1)+C; 

(2) -VI- x2 +arcsin x+C. 

- 3Jf3 ln~x- y31+C. 
2 x+ V 3 

x3 
1338. x-arctanx+C. 1339. 3 +1x-

1340. arctan <x+2>+C. 

1341. I x-3 ( .r ) 
2 arct~<n-2 -+C. 1342. In x+l+ r x2+2x+3 +C. 

. x+ I . x-2 2 2x+3 
1343. arcsm .rn +C. 1344. arcsin - 2 +C. 1345 . • r- arctan --==+C. 

r 2 r 3 V 3 
I . 4x- 3 I 1 .r 1 1346. y"2 arcsm - 5 -+C. 1347. VJ In 3x-l+ r 9x2 -6x+3 +C. 

1348. n(arctan V3 +In I;~~ l)+c. 1349. BICSin V2 + 
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+In (x+ Y 2-t- x2)+C. 1350. 21n (x2 -t-5)- ¥5 arctan rs +c. 

1351. x+ ; 2 1n I;~~ I+C. 1352. ~~ -2x+2 ¥2 arctan V"2+C. 

1353. arcsin(eX)+C. 1354. arctan(2x2)-t-C. 1355. 0.2arctanxt 2+C. 

I x-1 . x-t-2 I 
1356. 2 arctan-2-+C. 1357. arcsm-3-+C. 1358. 2 1n (x2+x+l)-

-J3 arctan 2~1 -f-C. 1359. ~ In (2x+ I+ Y4x2 +4x -t-3)-t-C. 

1360. xlnlxl-x+C. 1361. ~2 1nlx-ll- ~ ( x; +x+lnlx-ll)+c. 

I ( I ) x2+ I x 1362. 2 e2x x-2 +C. 1363. - 2-arctanx- 2 +c. 

1364. x2 sinx+2xcosx-2sinx+C. 1365. + eX(sinx-cosx)+C. 

1367. x[(lnlxl-1)2-t-IJ+C. 1368. -xcotx+lnl sinxi+C. 

1369. lnlxi+I+C. 1370. 2 JIT+Xarcsinx+4 Yl-x+C. 
X 

1371. x arcslnx+ Yl-x2 +C. 1372. -e-x (x3 -t-3x2 +6x-t-6)-t-C. 

1373. x In (x2 + l)-2x+2 arctan x+C. 1374. ~ (cos lnx+sin In x)+C. 
X 

1375. ~ Y x3 (In I x 1- ~)+C. 1376. -2e 2 (x2 +4x+B)+ C. 

I 
1377. xarctanx- 2 1n(l-t-x2)-t-C. 1378. xtanx+lnlcosxi+C. 

I . ,r- ,r- x 
1379. 2 ex (sin x+ cos x) +C. 1380. 4 r 2-t-x-2 r 2-xarcsin 2 -t-c. 

I ( x ) ,r-- Y2x-l 
1381. - 2 sin2 x +cot x +C. 1382. x arctan r 2x-l- 2 +C. 

1384. 3x+4 sin x+ sin 2x+C. 1385. 3; +cos 2x- si~ 4x +C. 

1386. ~+si~2x+si~24x+C.I387. ~ _si~24x+C. 1388. 13;8_sit2!x+ 

sin8x x sin4x sin3 2x 2 3 + 1024 +C. 1389. 16 -64'"""+----:w----+C. 1390. -cos x-t-3 cos x-
6 ·a '6 I I _cos x+C 1391 Sin x _Sin x+C 1392 _ . 4 __ . 6 +C 

5 • • 3 5 · . 4 Sin X 6 Sin X . 

1393. sin x- sins x+ ~ sin6 x- ; sin 7 x+ C. 1394. 7x+ 14 sin x + 

+3sin2x-Ssi3n
3 x+C. 1395. --.1--sinx+C. 1396. - 1-+cosx+C. 

stnx cosx 

1397. +In 1 tan x I+C. 1398. (I) In I tan ~ I+C; (2) In I tan ( ~ + ~) I+C. 
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1399. { [tn I tan~ I+Inltan ( ~ + 7 )I] +C. 1400. S sin x~cosx 
r dx I r dx I I (X 

=Jsinx-sin(~-x)=¥2 Jsin(x-~)=Y2 1n tan 2 -

n )I tan2 x cot2x . - 8 +C. 1401.-2-+Injcosxj-j-C. 1402.--2--lnjsinxl+ 

I I [sin (m-j-n) x 
+C. 1403. - 8 (cos 4x+ 2 cos 2x)-j-C. 1404. 2 m+n + 

sin (m -n) x] x I . +C for mt=n and -2 +-4 sin 2mx-j-C for m=n. 1405 .. 
m-n m 

(I) ..!._ . 2 _..!._ . 8 +C· (2) _!_ [sin (m-n)x _sin (m+n) x] , C f 
4 Sin x 16 sin x , 2 m-n m+n 1 or 

m:j::nand ~ - 4~sin2mx-j-C for m=n. 1406. -/2 cos6x-! sin4x+ 

+C. 1407. (I) 1
5
6 x- cosx (si~6 x + 5 s~~ 3x + 5 s1i~x) +C. 1408. 

(I) 2c~~:x+ ~In ltan-ii+C; (2) - 2~~s:x+ ~In I tan (; +~)l+c. 
1409. l~x -j-3sin 2x+; sin4x-j-C. 1410.: x- ~sin 2x+;2 sln4x-j-C. 

1411 . ::..__ sin4x _ sin3 2x+C 1412 . _ 2 sinsx + sin6x + C 
16 64 48 . • Sin X 3 5 • 

1413. cos6x cossx+C 1414 .7 14 3 . 2 + 8cos3x+C - 5---2- . . X- COS X- Sin X - 3- • 

1413. ~ In I tan x 1-x+ C. 1416. ! (2 sin 2x- sin 4x) +C. 

1417. co~x +cos x+tan x-j-C. 1418. -! cos ( 2x+ ~ )+! x+C. 

~ ~ X 
1419. (I) a+x2 -j-4x+81n 1 x-21 +C; (2) 3 -a2x-j-a3 arctan a-+C~ 

~ as C (x-2)2 I (x-1)3 1 
(3)a+alnlxa-asi+C.l420.1n lx-3 l .1421.ln x+ 2 + 

+c. 1422. In I ex:~~ I) I· 1423. ~2 +4x+ In (XI.: ~) 8 +C. 

1424. !+lnlxx21+C. 1425. ~21nlxxal+xax2a+C. 
2 ~x-21 2 1426. lniCx(x-l,l+x-l' 1427. In x-j-l -x+I+C. 

5 x-j-1 
1428. 2 tn 1 (x2 -j-2x+ 10) !-arctan - 3-+C. 

lOx- I 
1429. 2ln 1 (x2 -0.2x+O.I7) 1-5 arctan - 4-+c. 
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v-
1459. 2x~ 1 (2Y2x+l-~)+C. 1460. 6[~x--f-+V;-

-In(!+ v;)] +C. 1461. I~ (3x2 -ax-2a2) Va-x+ c. 

1462. ! [ V (x~ + 1 )! - Vx' + I + In ( V x1 + I + I) ] +C. 

(x2 -4) Vx2 + 2 I 
1463. 3 +C. 1464. =t arcsin x-+C(- forx > 0 and 

+for X< 0). 1465. In I vex I· 
x+ I+ 2x2 +2x+ I 

1466. _ _!_-./2a-x+C. 1467. Inl C(x+l) I· 
a y X I+ y x2+ 2x+ 2 

2! [x Va2-x2 +a2 arcsin ~]+C. 1469. ~+C. 
a 4 4+ x2 

1468. 

X X ,r-- :.;3 
1470. 2arcsin---(2-x2) r 4-x2 +C. 1471. 1-C. 

2 4 3a2 V(a2+x2)3 

1472. ~ Y 4- (x- 1)2 dx is solved by the substitution x-I= 2 sin t, 

S .r x-l (x-1) Y3+2x-x2 
r 4-4sin2t 2 cost dt =2arcsin - 2-- 2 +C. 

1473. Y x arcsin .~-+C. 1474. 2
1 (x+5) Y x2 +2x+2- 3.5x 

2- x2 r 2 

xln/x+I+ Vx2 +2x +2I+C. 1475.- V3-2x-x2-arcsin xtl +C. 

x-a.r a2 x-a I l+x3-l IV- I 1477.-2- r 2ax-x2+ 2 arcsin--+C. 1478. 3 1n V + 
a l+xa+l 

2 v-- V(2-x3)2 m+ I 
+ 3 arctan l+r+C. 1479. - 4x2 +C. 1480. -n-+ 

-2+1 3 
+P=-2-+2=integer; putting x- 2+1=/2, we get: 

~ x-2x-3d~ ~t2-ldt= 1+2x2 +C. 1481. m+I=3+I = 
f2 x Y I+ x2 n 2 

(x-2+ l) 2 

_. t . tt· b 2-f2 t· I sf2-adt- 2a-bx2 +C - tn eger, pu mga- x - , wege. b2 - 12 - .r . · 
b2 r a- bx2 

1482. <x- 2>{2X=t+c. 

+In/ (3x+ I)T -1/+c. 1484. 

2_ I 

1483. (3x~ I) 3 +(3x+ 1)3 + 

x-2 Vx+21n(Yx+I)+C. 
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V--
1485. -0.3(2x+3a) (a-x)2+C. 1486. 2 Vx=-2 + 

3 (x2+ I)( V(x2+ 1)2 + 
2 5 

.r- -. /x-2 
+ r 2 arctan v-2-+C. 1487. 

+ v~ +~)+c. 1488. In (1 + Y(l +x2)) +----;-;-+c. 
I+ r I +x2 

1489. x2+ ~ Y(4-x2)3 +C; here it is advantageous first to rationa-

lize the denominator. 1490. =f V x~ 2 + C (-for x > 0 and 

f 2 4 I 2 .X + or x < - ). 1 91. arccos x-i+ C. 1492. arcsm 2 -

- ~ Y4-x2 +C. 1493. 2arcsin V ~- Y2x-x2+C. 

1494. 2tx Y4x+ x2 -21n I x+2+ Y4x+ x2I+C. 

x+6 17 . x-2 Y i+x2 
1495. --2- Y 5+4x-x2 + 2 arcsm-3-+C. 1496. 2x2 + 

+ ; In Y~+ 1 +C. 1497. ~+C. 1498. Putting 

1-x3 =t2, we find: 

S x2dx 2 s dt I I Yf=Xi-11 
x3Yi-xa 3 ta-r=aln Vr-xs+l +G. 

1499. Putting x=+, we find: -s dt s dt x+l 
Y3-2t-t2 Y4-(t+i)2 arccos'"F+C. 

I I 
1500. 2 1n(e2X+I)-2arctan (eX)+C. 1501. 3 tan3x-tanx+x+C. 

e2x I x 1502. 2 -2eX+4In (eX+2) +C. 1503. In tan 2 +C. 

X 

I ( I ) I 2 tan 2 + I 
1504. 2 arctan 2 tan~ +C. 1505. 5 1n x +C. 

tan 2 -2 

1506. 

1508. 

co!3 x 
--3-~cot x+C. 1507. ; arctan ca; X)+ C. 

tan 4 x tan2 x 
1509. - 4---2 --lnlcosxi+C. 

1 I ex -l I 1 (tan ~ ) 
1510. ex+ 2 1n eX+l +C. 1511. Y 2 arctan Y 2 +C. 
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tan3 x I 
1512. - 3 -+tanx+C. 1513. 2 arctan(2tanx)+C. 

1514. ~ In I tan ; /+! tan2 ; +C. 1515. ~ In I tan ; I-
I X I - 4 cot2_2 +c. 1516. 2lnJeX-IJ-x+C. 1517. 2 (tanx+ 

sinh 6x x x 
+lnJtanxi)+C. 1518. (I) - 1-2--2 +C; (2) 2 +cosh2x+ 

+sin~ 4x+C. 1519. (I) sinhx+sintx+C. 1520. lnJcoshxJ+C. 

1521. 

1523 

_!-.cosh x +C. 
smh x 

1522. _ ( ~ +sin~2x+si~h2x)+c. 

X 
See Problem 1366. 1525. ,r.;-;--::;-+C. 

4 r 4+x2 
and 1524. 

1526. x +C. 1527. coshga 3x- cos3h 3x +C. 1528. sin3h24x-
5 Yx2 -5 

. h6 
-~+C. 1529. sm5 x +C. 1530. x-coth x+C. 
1531. 2 Ycosh x-1 + C (first multiply both the numerator and 

denominator of the integrand by Vcoshx-1). 1532. sinhxh- 2 +C. 
COS X 

1533. ; lnj x+ Jfx2-3J+ ~ Yx2 -3+C. 1534. In I x+ Yx2+31-

- v~+C. 1535. 2 Yx+l +ln/x+2-XVI+Xj+c. 

1536. (arcta2nx)2 +C. 1537. _!_Injx+aj _ _!_+C. 
a 2 x ax 

1538. tan(~-~)+c. 1539. 2arcsin Yx+C (put x=sin2f). 

1540. abarctaq(: tanx)+c. 1541. ~ ( x2 +xsin2x+ 

I ) s-./1-x + 2 cos2x +C. 1542. lnJC(eX+l)l-x-e-x.1543. V l+xdx= 

S I -x .r-- cot3 x 
= .r dx=arcsinx+ r l-x2 +C. 1544. --3-+c. 

r l-x2 

1545. xtanx+lnjcosx!-~~+C. 1546. lnjtan; j+cosx+C. 

1 1 ' 1 ) I cosx - - ( -
1547. -b arctan -b-+C. 1548. 3x 3 - 12x 6 +24ln x 6 +2 + 
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b-3ax I 
+C. 1549. 6a (ax+W+C (put ax+b=t). 1550. --x+arctan x+C. 

1551.- tan ~+I (divid~ both the numerator and denominator by cos2 xand 

2 I 
put tan x=l). 1552. b Jfa+b lnx+C. 1553. ab (n-1) (a-bx3 )n 1 +C; 

for 11¢: I and - 3
1blnja-bx3 l+C at n=l. 1554. Singling out a 

perfect square in the radicand, put x+ I= J!2 sin t (or use the me· 

!hod of indefinite coefficients); xtl Jfl-2x-x2 +arcsin x;d +C. 

2 Yx + 1 1 ___::___arctan x 
11>55. - ( Yx + l) 2 +C. 1556. 2 1n 1 +x2 x +C. 

I ex I I 2x ICJ!Tx+TI 151>7. 2 arctan 2 - 2 x+ 4 In (4+e )+C. 1558. In .r . 
I+ r 2x+l 

I Jf4-x2 x 
1559. x+cotx- 3 cot3x+C. 1560. - x arcsin 2 +C. 

1561. (I)~ In " 3 +cot x +C =~In 6 +C; i
.r-

1 
sin ( x+~) II 

2V3 Jf3-cotx 2Jf3 1 sin(x-~) 

(2) ~In I y:f +tan xI+ C. 1562. (I) Rationalize the denomi-
:! Jf3 V3 -tan x 

nator: 3~ [<x+a)f -x+] +C: 

+ln(x+ JIK2+TI+x2 J+C. 1563. 

8 

+ lniC(x;l)2 1 1564. - ~ (x~ 2 ) 2 +C (put X=+), 
1565. ~ arctan ~ + C (put x3 -l =1 2). 

I 
1566. T [x+ 

+lnjsinx+cosxiJ+C. 1567. 21 Vxa.rcsin Vi+ VI-xJ+C. 

1568. t 2 +C or +C 1569 cos-t-stn x d 1 s • · 2 
an x cos2 x ,. · sin 4 x x = 

5 5 cot3 x ...,_ cot2xd(cotx)+ d(cotx)=cotx--3-+C.I570.-cotxin(cosx)-

-x+C. 1571. e-x+f n I::+: I+C. 1572. ~ tan4 x+C (put tan 
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x=t). 1573.lnlxl-xtllnlx+II+C. 1574. 5 Yl-sinxdx = 

= ± s cosxdx ± 2 Jfl+sinx+C <+for cosx > 0 and 
Jfl+sinx 

- for cos x < 0). I .r-
1575. y2' arctan ( y 2 tan x) +C. 

I (' d (x2) I 5 x2+1-(x2-2) I lx2-2j 
1576· 2j (x2+ I) (x2-2) 6 (x2+1) (x2-2) d (x2

) =5ln x2 + I +C. 

1577. -2e-V.< ( Yx+ I)+C. 1578. 2 Jfxarctan Yx-ln 11 +x J+C . 
• r- x2 +1 1579. y tan x+ C (put tan x=t). 1580. In I x 1- 2x2 In (x2+ l)+C. 

1581. -1 
1- arctan (ax)+C. 1582. 2 {Vi+ cos Jfx)+C. 

na 

1583. 2 lx+ ?) J!'X+T + 2 y2 In I J.IX+T- Y21 +C (put x+l=t 2 ). 

3 J.IX+T + Jf2 

1584. x- Yl-x2 arcsin x+C. 1585. Y~ (put x=+). 

3x2 +3x+ I ,r·n----,----;;-
1586. - 3 (x+ !)3 +C (put x+ I =t). 1587. y 2ax+x2-2a lnix+ 

,r-- (2X-IJ2 
+a+ y 2ax+x2 l+C (p. 192, item 4°). 1588. In I xz+xl +C. 

1589. -I+ cos. x+ sin2 x +C. 1590. ...!... In I C (x2+ 2x+ 2) I+ 
sm x 16 x2 -2x+2 

++arctan 2 ~x2 lthe denominator is factorized in the lollowing 

way: x'+4=x4 +4x2 +4-4x2 =(x2 +2)2 -4x2 and so on]. 
2 

1592. Sb=0.646, S,=0.746, 5 d: =0.693. 1593. 20. 1594. 2-}-. 
I 

14 n n .r- I 1595. 3 . 1596.6 . 1597. 12a. 1598. 3(e-l). 1599. In(!+ y 2). 1600. 2 . 
1601 Putting x=t2 and changing the limits accordingly, we get: 
3 

5 ~~: =[2t+21n (t-1Ja=2 (I +In 2). 
2 

1603. 2-ln 2. 
1t y3 2e 

1604. 3 --2-. 1605. In e+ 1 • 

x; =a sin2 t). 
I na2 

1607. 3. 1608. 16. 

1602. 2-¥3 
2 

1606. a <n;- 2) (put 

1609. 21n 2-1. 
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1610. ¥2 +In (I+ Y2) 1611. ¥3-¥2 
2 2 

1612. 
3 

1613. (I) 
I :rt 

(2) 1·3 :rt 
ln 2 . 2.2; 2·4 .2; 

(3) 
1·3·5 :rt 

1614. 
as I 

1616. I. 1617. 
¥3-1 

2·4·6 ·2· -6. 1615. 6. 2 

1618. 21n 1.5- ; . 1619. arctan e- ~ ~ 0.433. 1620. ~ 
:rt-2 :rt 1-

2
ln 2 . 1624. I :rt 

1621. -4-. 1622. 2- I. 1623. (1) 2. 2; 
1 . 3 :rt 1 . 3. 5 :rt 32 2 

(2) 2 .4 ·2; (3) 2 .4 .6 • 2 . 1625. 3 . 1626. nab. 1627. 3 of the 

product of the base (2 Y 2ph) by the ,altitude h. 1628. ~2 • 1629. Bin 2. 

16 8 8 5 
1630. I. 1631.3. 1632. 19.2. 1633. 25.6. 1634. 815. 1635. 3. 1636. 206. 

1637. na2 (see Fig. 60 on p. 361). 1638. 0.8 (see Fig. 57 on p. 359). 
(4-n) a2 

1639. 2 ; put x = 2 a sin2 t (Fig. 88 on p. 387). 1640. 2a2 sinh 1 = 

= a2 (e-e- 1 ) :::::: 2.35a2 • 1641. 3na2• 1642. 3~a2 • 1643. a2• 1644. 3~a2 • 
1645. 'max=4 at 2cp=90°+360°n, i.e. at q>=45°+180°n=45°, 225°; 
'min=2 at 2cp=-90°+360°n, i.e. at q>=-45°+180°n=l35°, 315°. 
Adjacent extreme radius vectors at 45° and 135°. The required area 

3n 
4 

1 s . 19n 3n :rta2 na2 
equals 2 (3+sm2cp)2 dcp=-8-. 1646. 4 . 1647. 2 . 1648. 4 . 

n 
4 

1649. r =a (sin cp+ cos q>)=a ¥2 cos ( cp- ~); 'max =a V2 at 

n n n n n 3n 
q>;- 4 =0; q>=4; 'min=O at cp-4=±2, cp=-4 and T. 

3n 
T 

The areaS= ; S (a J'2) 2 cos 2 ( cp- ~ ) dcp= 31
;

2
• The answer is 

n 
-4 

obtained in a simpler way if the Cartesian coordinates are used: x2 + y2 = 
7a2 a2 

=a(x+y) is a circle. 1650. 4n' 1651. (10n+27v'3) 64 . 

1652. : a2• 1653. 36. 1654. 12. 1655. a;. 1656. : (see Fig. 56 on 
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p. 358). 
14 

1657. 3. 1658. 2. 
16 

1659. 3. 1660. 17.5-61n 6. 

0 

1661. 2 S -x Jfx+ldx= 1
8
5 (see Fig. 53 on p. 357). 1662. 'max=4 

-I 
if 2qJ = 180° + 360°n, (jl =goo+ 180°n =goo or 270°; r min= 2 if 

19:n 3n 
+cos 2qJ)2 d(jl=-8-. 1663. 4 

a2 a2 
1666. T (e2lt -e-m)=T sinh 2n. 1667. 

area 

rca2 
1664. 2. 

b 
4ab arctan - . 

a 

3t 

2 

S= ~ s (3+ 
0 

:na2 
1665. 4' 

1668. ~I rca2. 

2 8rca2b 
1669. nph. 1670. - 3-. 1671. 12n. 1672. 58.5n. 1673. 2n2a2b. 

1674. na3 (sin: 2 +I) . 1675. 5 !~n . 1676. ~ na3. 1677. 3n2 • 

1678. 51irc 1679. ~ ( 5; + ~3) . 1680. nt. 1681. ~2 • 
1682. 64n 1683 (n+ 2)rc 1684. _! 2b 1685 32na3 

3 · · 4 · 3 :na · · 105 · 

1687 8rca3 16 V 128n 9 5 2 3 ' 1686. 19.2rc. . - 3-. 88. =-3-. 168 . n a. 1690. 72Jt. 

112 670 . . 
1691. W. 1693. 6a. 1694. 2f. 1695. Sa. 1696. The pomts of mter-

t/8 
section with the axes at f 1 =0 and t2 = t/8. s= ~ Jlt4+1·t 3dt = 

0 

1697. ¥6+ In ( V2+ )13). 
12 
5 

1698. 2a sinh I :::::: 2.35a. 

13 
5 

1699. s= 5 ~ dx; we put l+x2=f2; s = s f2df = 
t2-l 

3 5 
T 

[ I t-1]2.6 
= t +2ln t + 1 1.25 = 1.35+ In 2 :::::: 2.043. 1700. The axes are 

:rt 1I 

3 3 

intersected at x1 =0 and S= s~= s COSXdX = 
cos x cos 2 x 

0 0 



348 Answers 

:n 
3 

= 5 d (sin x) In (2+ )"3):::::: 1.31. 1701. (I) 4 }13; 
1-sin2x 

0 

I • f1"""iA::'9 a (2) 2 In (2 cosh 2) :::::: 1.009. 1702. (I) Sa; (2) na r I+ 4n2+2 In (2n + 

·~) 3n:a 28 + r ,, .. ,.- . 1703. - 2-. 1705. 3 . 1706. In 3. 1707. 2 In 3-1. 

[ .to 14n 
1708. p r 2+1n(I+ Jf2)]:::::2.29p. 1709. 4 y3. 1711. - 3-. 

1712. na2 (sinh 2+2). 1713. 2n (I+ 3 ~"3) . 1714. 2n [ Jf2 +In (-1 + 

•In)] 64 2 2 34 )!17- 2 + r 2 . 1715. 3 na . 1716. 3n. 1717. 4n ab. 1718. 9 n. 

1719. 6;n. 1720. 2.4na2 • 1721. 29.6n. 1722. 1.44-106 N. 1.08-106 N. 

ah2 2 ab3 a3b 
1723. 6 . 1724. 3 Rs. 1725. 2.4-106 N 1726. Jx= 3 ; J 11 = 3 . 

aba aab as 
1727. Jx=J2; J 11=J2· 1728. 6.4. 1729. Mx=M 11=6; 

a a 

Xc=Yc=;. 1730. Mx=5fudx=0.1ab2; M 11 =Sxydx=!ba2; 

0 0 

a 

S= 5 ydx=~; Xc=! a, Yc=0.3b. 1731. Xc=O, 
0 

Yc= 0.5na2 

R+h 
4 4 5 mg R2 

= 3n a :::::: 9 a. 1732. (I) II 200n J; (2) 2500nR4 J. 1733. ~ dx = 

R 

1734. IO'n:2H2
:::::: 2IOJ. 1735. 124IOJ. 1736. 0.24nJ. mg Rh 

= R+h. 
H H+h 

1737. t =S s ~ = 100 sec. 1738. t R2 S x Vx dx, 
0.6s 2gx 0.6r2H2 ffg 

0 h 
where h :::::: 2 is the altitude of the additional cone. The computation 

yields t:::::: 42 sec. 1739. a~2 • 1740. 17 1~. 1741. ~ . 1742. 2.4-104 N 

on each wall. 

11 

a 2 
S S n~ 

1743./x= y2xdy= a'sin2 tcos2 tdt=16. 
0 0 
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2 

~y2dx H 

1744. Xc=O; Yc = 0 
2 = : . 1745. nj;2

104 S (H-x) 2 xdx ~ 
2~ydx 0 

0 

~ 300n J. 1746. :oVol ( ( ~: r-l -I] ~ 15 980 J. 

14n R2 -. /R 400.rt 
1747. t IS·s·0.8 V 2g=-3- ~ 419 sec. 1748. (I) I; integrals (2) 

ao 

and (3) diverge; (4) sdx=-1- 1 for n >I, diverges for n,;;;;; I. xn n-
1 . 

I n n 
1749. (I) I; (2) 2 ; (3) 4 ; (4) I; (5) ln2; (6) 16. 1750. (I) 6 ; 

n ln2 n-2 a 
(2) 4+2; (3) - 8-. 1751. (I) 6 V2; (2) diverges; (3) 6. 

ao ao 

1752. (I) 

'

dx . I I sdx ,r converges, smce -v-==~- < -.1-, and -.1-•. r I +xa I +x3 x • x • 
0 I 

converges (see Problem 1748); (2) diverges, ~ince 

ao ao 

I I fdx se-Xdx -::--:===- > -x , and - diverges; (3) -x- converges, since for Vx3-l • x 

e-x 
x;;;;. I -,;;;e-x, 

X 

2 I 

"' 
and Se-x dx converges (see Problem 1749); 

I 
ao ao 

S sin x dx . I sin x I I s dx (4) --v2- converges absolutely, smce --2-.,;;;; 2 , and -. 
~ X X x• 

I I 
ao 

converges (see Problem 1748); (5) s V x dx diverges. since for 
x4 +I 

2 
ao ao 

X > I ~ > vm . and s ~;- diverges; (6) ~ e-X1 dx = 
x'+l x'+x' x r 2 0 

2 
I ao 

= ~ e-x"dx+ ~ e-x2 dx converges, since for x;;;;o I e-x'.;;;e-x, and 
0 I 



350 Answers 

"' I 

\e-x dx converges. 1753. (I) S dx --1- for n < I and diverges 
J xn-J-n 
I 0 

b 

S dx 
for n ~ I; (2) -(b-­-x)n 

a 

(b ap-n 
- for n < I and diverges for n~ I. 
1-n 

1754. n. 1755. 2. 1756. 3na2. 1757. 2n2a3. 1758. n [ V2 +In (I+ 
.r 4n I I 

+ r 2}]. 1759. 3 . 1761. (I) 2 ; (2) 3 ; (3) I; (4) diverges . 

• r- n I 1762. (I) In (I+ r 2 ); (2) 2; (3) 1-T. 1763. 2 . 1764. 16n. 

2 31n 2 I a2 +ab+b2. 
1765. 2n. 1766. (I) n; (2) -· -n-; (3) e -1 ; (4) 3 • 

n 4 55 
(5) T. 1768. (I) e (h) =0; (2) 1 e (h) j.;;;; 15 < 0.3. 1770. 6 n::::: 

2·10- 4 
~ 28.8 dm3• 1772. In 2=0.6932; 1 e (h) j.;;;; - 1-5- <0.0001. 

1773. 8.16n. 1777. Approximately 1.22n. 
1 

1778. R= 2 . 

1779. 
I I 

R = 2 . 1780. At the vertex (2, 0) R1 = 2 ; at the vertex 

I 
(0, I) R 2 =4. 1781. R=4a. 1782. Ymax=-·at x=l; R=e. 

e 
1783. (4, 4). 1784. (3, -2). 1785. (0, 1). 1786. 27X2+8Y3=0. 
1787. (2X)2ta+Y2ta=321a. 1788. X21a_y213=(2ap1a. 1789. X=acost, 

Y=asint or X2+Y2=a2. 1790. k=eX(I+e2X)-3 12; kmax= ;r-
3 r 3 

ln2 2 - a2 ,a 
at x=-y:::::-0.347. 1792. (I) R= 3 V2ar; (2) 3,; (3)a2 • 

I 
1793. 2. 1794. 2. 1795. I. 1796. I. 1797. (-2, 3). 

1798. ( 0, - :) . 1799. ( - 1
2
1 , 1

3
6) . 1800. X=:-~ :::::-0.7, 

v = - V2:::::- 1.4. 1801. 8X3-27Y2=0. 1802. X= 

= - 12 ( I + ~2 ) , Y = 4t ( I+ ~ ) ; to construct the curve and its 

3 
evolute make a table of values of x, y, X, Y for t=O; ±I; -!:: 2 . 

2 2 2 2 2 

1803. (X+Y) 8 -(X-Y) 3 =4. 1804. (X+Y)3 +(X-Y)a =2a3; 
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on rotating the axes through 45° this equation takes the form 
2 2 2 

x18 + y18 = (2a) 8 1 i.e. the evolute of the astroid is also an astroid 
with doubled dimensions and turned through 45°. 1806. 21. 1807. 51. 

. 3+ln2 
1808. 7.5. 1809. 2n. 1810. 2 smh 1 ~ 2.35. 1811. - 2-. 1812. 3x+ 

dr 4 x2 dr 
+ 4y=0; dt =4i-3j. 1813. y=JX-g; dt =3l+2 (2-t)j. 

d2r 41 t-21 6 
1814. Ul=-d 2 =-2}; W't= v ; Wn= ' 

t 4t2-16t+25 Y4t2-16t-r25 1 

x2 y2 
at t=O w't =1.6; Wn=l.2. 1815. az+b2=1; !1=-asinti+ 

+ b tj 1816. x-t y-t2 z-t3 1817. X 1 x = 
cos ; w=-r. - 1-=-u=3f2· 

Y-x2 Z- Vx x-1 y-3 z-4 = 2x 1 1818. -w= _ 4 =-3-. 1819. r=-i+k~ 

2 Vx 
-l+k l+k . 

B=l+k~ N=-2}; 't'= y'2 I P= V2 I v=-J. 1820. B=rx 

xr=6l-6J+2k 1 N=(r'xr)Xr=- 22l-16J+ 18k; the equations 
x-1 y-1 z-1 x-1 

of the principal normal: - 1-1-=-8-= _ 9 I of the binormal: - 3-·= 

y-1 z-1 
= _ 3 = - 1- I and of the osculating plane: 3x-3y+ z =I. 1821. N = 

=3(l+J)1 B=-l+J+2k. The equations of the principal normal: 
x-1 y-1 z 

x=y 1 z=O; of the binormal: _ 1 =-1-= 2 . 1822. Eliminating 11 

we get x2+y2=z2 , the equation of a conical surface. r=(cos t -t sin t) i+ 
+(sin t+t cos t)J+k=i+k; r=(-2 sin t-t cos t)i+(2 cos t-t sin t)j= 
=2}; B=rxr=2i+2kl. N=4J. The tangent: X=Z and y=OI the 
principal normal: OY, the binormal: x+z=O and y=O. 1823. At 

bn 
z-- ya 

t= ~ xa=~l y=a. 1824. cos a=± va+ Jib; cos~= 

= ± yb' : cos '\' = ± vr~ ; the choice of sign depends 
Va+ Jib a+ b 

on the choice of direction on each branch of the curve. 1825. The 
equation of the helix: x=sin2t 1 y=1-cos2t 1 Z=2121 where tis 
the angle of turn (Fig. 48). The unit binormal vector Pat the point C 

(fort=~): P=~· 1826. At t=~ o=a(l+J), w=al. 
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1827. x-2 y-2 z -8 1828 x-1 y-2 d 3 1829.x-2 2 = - 1-=-1-=-8-. .-2-=-=r an Z= . 

= ~ = 2 -; I. 1830. 120°, 60°, 45°. 1831. N=- 26i-31J+22k, 

E= 16i-12J+2k; 
x-1 y-1 z-1 
26=--ar--= -22; 

x-1 y-1 z-1 
-8-= -6 =-~-· 

1832. N=- 4j-4k. B=2J-2k. The equatiom of the principal nor­
mal: x=n, z=y+2; of the binormal: x=n. y+ z =6. 1834. v =r= 

X 

Fig. 48 

= t+(l-2t)J. w =r=- 21. ~=I v~w '= ~; tl= V2-4t + 4t 2 ; 

. 4t -2 tl2 2 . 
W"I=V= -JI2,Wn=-=-=V2. 1835.t7=T= 

Jf2-4t +4t2 R t1 

. . -41+3} ·· 4i+3J I 12 
=-4stntl+3coslJ= V 2 W=r=- Y'2 • R=U3; 

, 1 . . . 7 sin 2t n 5 
tl= r 16 stn2 t +~ cos 2 t. tl=--2v-; at t =-:r t1 = Jl2 , w, = 

. 7 - v2 12 12 Y2 .r · 
==V= 5 n=0.7 Jf2, Wn=R=v=-5-=2.4y 2. 1836. 'D= 

• I /'DXW/ =r=i+2ti+2t 2k, w=2J+4tk, u=2t 2 +I. R= v3 

2 2 • u2 2 (21 2 + I )2 

= (2t2+ 1)2 9 ; w"' = t1=4t =4, Wn=R= (2t2+ 1)2 =2 (at any 

point). 1837. First write a matrix of the coordinates of the vectors 
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r t t2 t8 . 
r I 2t 3t2 .. 

0 2 6t . Then find: (I) It I= Y I +4t 2 +9t': r ... 
r 0 0 6 

rxr 6t2 -6t 2 

(2> lrxrl=2 Y9t 4+9t2+1; (3) ~~;·=12; (4) ~ = 
- 2 Y9t4+9t2+1 -2· (5> __!_ 12 3 1838 __!__ 
- V(l+4t2+9t4)3-. p 4(9t 4+9t 2+1) . . R-

Jl2 Jl2 I Jf2 I _ Jl2 . I I 
=(x+y)2=-4-; -p=--4-. 1839. R--3-,-p=a· 1840.For 

I b I b 
the right-hand helix: p= a2+b2 ; for the left-hand: -p=- a2 +b2 • 

I 21 2 I 21 2 y2 
1841. R =(2t2+l)2 -g: -p=-(212 +!)2=--g· 1842. r= 2 t+ 
+YJ.+t.44k; _!__9y4+4y6+1 14. _!_=_1_ 1843 __!_= Y2. 

R2-(y2+I+ys)a 27' p 7. . R 3 ' 
I I p-=- 3 . 1844. (3) The whole plane, except the point (0, 0); 

z 

X 

Fig. 50 

(4) x2 +y2 <;a2; (5) xy > 0 (the first and the third quadrants); 
(6) x2 + y2 < I; (7) the whole plane, except ·the straight line y=x. 
Equations (I) and (2) determine paraboloids of revolution; (3) a sur-

face of revolution about the axis OZ of the curve z= ~ and y=O 
X 

(Fig. 49); (4) a hemisphere; (5) a cone which is depicted by taking 

12-1895 
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the following sections: x=a, z2=ay and y=b, z2=bx (parabolas 

shown in Fig. 50); (6) a surface of revolution of the curve z = Y 1 , 
l-x2 

g=O about OZ; (7) a cone with the generatrices y=kx, Z= /x 1 and 

the directrices y = h, (x-h) (z+ h)=- h2 (equilateral hyperbolas) 
with the vertices on the axis OY and one of the asymptotes in the 
plane g=x (x=h, y=h); such hyperbolas are also obtained from the 
sections x=h or z = h (Fig. 51). 1845. s= Y p (p-x) (p- y) (x+ y-p). 
The domain of the function: 0 < x < p, 0 < y < p and x+ y > p, i.e. 
a set of points inside a triangle bounded by the lines x = p, y = p and 

X 

y 

Fig. 51 

x+y=p. 1848. AxZ=(2x-y+6x) Ax=0.2I; Ayz=(2y-x+AY) Ay= 
= -0.19; Az=Axz+Ayz-6x6y=0.03. 1849. Being continuous and 
single-valued in the domain I y I,.;;;; I x 1. the functions z= + Y x2 g1 

and z=- Yx2-y2 are represented by the upper and lower surfaces 
of a circular cone (with the axis OX). An example of a discontinuous 

function defined by the equation z = ± Y x2 y2 is the function , 

{ 
+Yx2-yz for O..;;;x< I} The straight lin~s x=I, 
.r-- f I-- 2 x=2, etc. are lmes of 

z= -I' x2-y2 or -x < discontinuity. 
+ Vxz-yz for 2..;;;x < 3 and so on. 

It is depicted by alternate strips of the urper and lower surfaces of 
the cone. The domain of this function: I y ,;;;;; I x 1. i.e. a set of points 
inside an acute angle between the straight lines y= ±x and on these 
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lines. 1854. (2) The whole plane except the straight line y = -x; 
2 2 

(3) points inside the ellipse ~+~=1 and on the ellipse; (4) the 

whole plane; (5) points inside the angle I y I .r;;;; I x I and on its sides; 
(6) quadrant of the planes x;;;;.O and y;;;;.O. (2) is a cylindrical sur. 

face with the generatrices z=h, x+y=: and the directrix z=! , 
y=O (Fig. 52). (5) and (6) are conical surfaces; surface (4) is a paraboloid. 

z 

x· 

Fig. 52 

y 1 -y X 
1858. 3x(x+2y); 3(x2-y2). 1860. -_xz; x· 1861. x2 +Y2 ; x2+y2 ' 

V- v-y2 x2 t x 
1862'- (x- y)2 ; (x y)'l.. 1863' 3x( Vx- Vt); 3t (Vt- V x) , 

1864. iJc=a-bcosa.; iJc b-acosa.; ac=absina. 1866. au= 
aa c ab c aa. c . OX 

- -xY (1- )• i)u=- 2 -xY 1867 i!!!:_= 5t . i)u=- 5x 
- e xy' ay X e . ' ax (x+2t)2 ' iJt (x+2t)2' 

aa. t i)a, y--x- ··az ' 
1868. ;;-= .r ; "t = -1 12 • 1874. :;;-=-asm(ax-by); 

ux 2 f x-x2f2 v -x ux 

i)z =b sin (ax-by). 1875. ~ =- Y I xI . i)z I xI 
ay OX x2 y x2 y2 • iJy X y x2 y2 • 

i)z 3y i)z 3x au 
1876. ax (3y-2x)2; ay=-(3y-2x)2' 1877. ax=cot(x-2t), 
au . au . au 
i}t =- 2 cot (X-2/). 1878. (h =2 Sin y COS (2x+ y); ay = 

12* 
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= 2 sin xcos (x+2y). 1885. (1) 0.075; (2) -0.1e2 :::::: -0.739. 

1887. -0.1. 1888. 1.2ndml. 1889. 0.13cm. 1890. (1) dz=- (~++) dx+ 

+(!+~)dy; (2) ds=lntdx+x:t. 1891. ~z=0.0431, dz=0.04. 

dz 
1892. 0.15. 1893. -30ncms. 1895. dt=-(et+e-t)=-2cosht. 

1897. dz =eJ' +xeY dy. 1899. az =~ ( 1- -=-); az =- ~ ( 4-1-~). 
dx dx au y y ar· y I y 

az az au az iJv az az az az az az 
1900• (1) ax=auax+auax=mau+pav; ay=nau+qav; (2) ax= 

az y az az az 1 az au au au . au = ua-- 2 ;;:. ; a-=xa-+- a-. 1901. a-=a- cos ~J~+;;- sm <p: "= 
U X VII !/ U X [I f X II!/ u<p 

=(-~~sin<p+~~cos<p )r. 1903. (I) ~=2[(Ax+By)cost-(Bx+ 
dz 2e21 

+ Cy) sin t] =(A -C) sin 2t +28 cos 2t; (2) dt = e4t + 1 · 

1906_ (1) az =dz +~ az = 2 az -~. (2) az =az. Vi! + ~-
ax au av • au au av • ax au 2 Vx av· 

az =az • ¥?. +~. 1907. dy 2-x 1908. (1) - V' JL. 
ay au 2 Jf y av dx = !/ + 3 • X ' 

2ye2"-e2Y 3 
(2) 2xe2Y_e2". 1910, ± 4 , 1911.-1. 1912. (1) (-1, 3) and 

az 3-x oz y 
(-1, -1); (2) (1, l) and (-3, 1). 1913. ax=-z-; ay=--z 

)914. az y az X J915 az =~; az =!!.._. 1918. dy =~. 
ax=2z; ay=2z' . ax c au c ex 4y 

_ .JL. 1920. x2+xu+ y2. 1 4 1 az 
1919. x xy 1921. 2 .1922. 5 : 5 1923.ax=l; 

~ y ~ 2 ~ 
ay =x=z . 1926. 6; 2; 0; 6. 1929. - x' ; x3 ; 0; 0. 1931. (x2 + y2)2; 

y2-x2 -2xy 2 
.,..::,--;--;= • 1938 (1) :::;. (3y2dx2-4xy dx dy+ x2dy2),· 
(x2 + y2)2 • (x2 + y2)2 • • ... -
(2) _ (y dx-x dy)2. 

xy2 
a2z ( a a )2 a2z ()2z ()2z 

1942. iJx2= 3 au+ av z =9 au2+6 au iJv + av2 

a2z ( a a ) ( a a ) a2z a2z a2z -4 
axay= 3 au+av au+av z=3 au2+ 4 auav+av2 

a2z (a a )2 a2z a2z ()2z 
ay2= au+ av z = au2+ 2 au av- iJv2 

a2z a2z a2z --4-+3-ax2 ax ay ay2 

c)2z 

=-4duiJv' 

a 
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1943. Writing in the same way as in the previous problem, we get 
a2z 

4 iJv2. 
a2z (J2z y2 (J2z y? a2z 2y uz 

1945· ax2 = y2 i}u2- 2 X2 au au +Xi ou2 + x3 au 
a2z a2z a2z I a2z 
ay2=x2 au2+2 au au +X2 au2 

1966. U= Vx(l+ Vt 2+1)+0. 

x-3y 
1967. u=xlny-xcos2z+yz+C. 1968. u=--+C, z 

Fig. 53 

1969. y= 

= ±x VI+ x; the domain: 1 +x ~ 0; x ~-I. Points of Intersection 
with OX: y=O, ~=0 or -1. The singular point 0(0. 0) is a node. 

2 2 2 
Extremum of yat x=-3, Yex= i= 3 y'3:::: i= 5 (Fig. 53). 1970. Y= 

= ± (x + 2) V x + 2; the domain x ~ -2. ( -2. 0) is a singular point 
(a cusp). The points of intersection with the axes: at x=O y= ±2 Y2i 
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at/=0 X=-2 (Fig. 54). 1971. y= ±x Vx I. The domain: x~ I 
an x=O, y=O (a singular Isolated point). At X= I y=O, at X=2 

y= ±2. The points of lnftectlon: X=-: , Y= ± 3 ; 3 (Fig. 55). 

1972. y= ±x Yl-x2; the domain I xI,;;;;;; I or -I os;;;; x...:;; I. The points 
of Intersection with the axes: at y = 0 x1 = 0, x2 =I, x8 =-I. The sin-

X 

Fig. 54 Fig. 55 

l 
gular point 0 (0, 0) is a node. Extrema at x = ± y"2" ~ ± 0. 7 Yex = 

= ± ~ (Fig. 56). 1973. y =x±x Vx. The domain: x;;::,. 0; the points 

of Intersection with the axes: at y = 0 x = 0 or x = I; the singular 

-I 

point 0 (0, 0) is a cusp of the first kind with the tangent y = x. The 

function y=x-xVx has an extremum: at X=! Ymax= 2~(Fig. 57). 

1974. Y= ± (x-2)Vx; x;;::,.O; at y=O X=O or x=2; the singular 
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point (2, 0) is a node. The curve has the same shape as the one 1hown In 

Fig. 53 but is displaced to the right. 1975. 11=± (x+2a) y-x-: !la; 

the curve is situated in the domain -2a <; x < 0, where x and x 1 !.111 

have opposite signs. ( -2a, 0) is a singular point (a cusp); x- 0 Is 
the asymptote. The curve is a cissoid similar to the one shown in FiR.Il!l 

.. /~ 
but displaced to the left by 2a. 1976. u= ± v-3-. the domnln: 

v o;;;;. x. The points of Intersection with the axes: at x = 0 v = 0 or 

Fig. 57 Fig. 58 

y=- 3. (0, 0) is a singular point (a cusp). Let us find the asymptote 

y= kx+ b. Divide the equation by x8 termwise: 1-(! )'-
-3(x11 ) 2 x1 =0. Hence, k=llm JL=l, b=lim (g-x)=-

x ..... ao X x-:,..oo 
-3y2 

= lim 2+ + 2 =-I. Thus, the asymptote Is y=x-1. An extrl!-
x-+"' x xy y 

V-- v-mum of the function x=q>(y)= y3+3Y2: aty=-2Xex= 4:::::: 1.6; 
at x=O u=-3 (a point of inflection (Fig. 58)). 1977. x~+y3-3axy=0 
is the folium of Descartes (see Problem 366). 0 (0, 0) is a singulnr 
point (a node) with the tangents y=O and x=O. Let us find the 

asymptote y= kx+ b. Bring the equation to the form I+ ( ~ r -
-3a (1L) ~=0· hence, k= lim JL=-1, b= lim (y+xl =-

x X 1 X-+CIJ X X-+CIJ 
3axy 

- lim ---a Thus, y=- x- a is the asymptote 
x-+"' x2-xy+ y2 - . 
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xll 
(see. Pig. 83). 1978. Y= ± V xs-ai. Symmetric with respect to OX 

and OY. The domain: I xI > a, and I g I > I xI· 0 (0, 0) is a singular 
isolated point. At x= ±a Jl2 it has an extremum y= ± 2a. The 
asymptotes: x= ±a and v= ± x (Fig. 59). 1979. y= ± xV 2 x; the 

Fig. 59 

domain: x c;;;; 2. The points of intersection with the axis OX: at y = 0 
x1 = 0, x2 = 2. (0, 0) is a singular point (a node). The extrema of y: 

4 4¥2 
at x = 3 Yex= ± 3 Jla = ± 1.08. (The curve has the same shape as 

in Fig. 53.) 1980. y= ± ~ V a2 -(x-a)2 ; the domains I x-a I .;;;a 
a 

or -a<;x-ao;;;;a or Oo;;;xoE0;2a. At y=O x1 =0, x2 =2a. The point 

(0, 0) is a cusp. At y' = 0, Jf2ax- x2+ V (a-x) 0, x = 3
2a , 

2ax-x2 

Yex= ± 3 ~a:::: ± ~a (Fig. 60). 1981. y=± (x+2) yX: The domain: 

x::;;;;. 0 and an isolated point ( -2, 0). A point of inflection at x = ~ . 
The curve is the same as in Fig. 55 but displaced to the left. 1982. Two 

domains: (1) x > 0; (2) x <-a. Three asymptotes: u=x+ 32a , 

3a a 
v=-x-2, and x=O. A cusp (-a, 0). Extrema of y: at x= 2 Yex= 
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3Jf3Q x2 .~ 
= ± - 2-:::::: ± 2.6a. 1983. y= ± T r x+5; x~-5. (0, 0) is a 

point of osculation. Extrema of y: at X=-4 1Yimax=8; at X=O 
IYimin=O (Fig. 61). 1984.y=±xYx2 -l. The domains: lxl~l 
with an isolated point 0 (0, 0). The graph is the same as in Fig. 55 
with a symmetric curve added at the left. 1985. At y= 0 x 1 = 0 and 
x2 =-4; at x=O y1 =0, y2=- I. (0, 0) is a singular point (a node) 

with the slope of the tangents k = ± 2. At x =- : Ymax = 1.8 and at 

x=O Ymin=-1. The asymptote: y=x+!. The curve intersects the 

X 

Fig. 60 Fig. 61 

asymptote at x =- 0.4 and then describes a loop passing through the 

points (0, 0) and (0, -1). 1986. (I) y = ± (x-a) , /' 2 x ; the V a-x 
domain: 0.;;;;; x,.;;;; 2a, i.e. the curve is situated where x and 2a- x 
have the same signs. (a, 0) Is a singular point (a node) with the tan· 

ax 
gents k = ± I. The asymptote: x = 2a (Fig. 88). (2) y = ± ,r . 

r x2-a2 • 
the domain: I xI > a and I y I > a with an isolated point (0, 0). The 
asymptotes: X=± a and Y= ±a. There are no points of the curve 
between each pair of the asymptotes except for the singular point since 
I x 1 > a and I y I > a. The curve consists of four symmetric branches 
approaching the asymptotes X=± a and y= ±a. 1987. (1) y = 
=±x-{:+~; -a<x<;a. The points of Intersection with the 

axis OX: y=O, x1 =0, x1 =a. (0, 0) is a singular point (a node). The 
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asymptote: X=- a. The curve is a strophoid; it is obtained by folding 
the graph shown in Fig. 88 along the axis OY and then translating 
this axis to the left by a. (2) Domains: x;;,. a, x <-a, and x = 0. 
(0, 0) is an isolated point. The asymptotes: X=-a, y=a-x and 

a(Y .. S+ I) 
y=x-a. At X= 2 ~-!.6a Yex ~ ± 3.3a. 1988. (I) u= 

x2 
- 4 ; (2) u= ± 2x. 1989. (I) Y= ± R; (2) u=O and u=-x. 

1990. (I) y= 1; (2) y= 1 is the locus of cusps but not the envelope; 

(3) u= I is both the locus of cusps and the envelope; (4) y=x-! 

is the envelope, y = x is 
xll 

1992. y2=- x+ 2 . 1993. 

2 2 2 

the locus of cusps. 1991. x 3 + y3 =a 3 . 

(x2 + y2)2 = 4a2xy. 1994. A family of paths 

gx2 
Y-x tan r:x Their envelope (parabola of "safety"): - 2b2 cos 2 r:x • 

b2 gx2 
u=2i- 2b2 . 1995. (I) x2 +y2=p2; (2) y2=4x; (3) y=l. 

1996. y2 =4(x+l). 1997. x•f,+y'l•=t'l•. 1998. u=-x24/3. 
1999. 2x+4y-z=3. 2000. XYo+YXo=2ZZo. 2001. xuozo+uxozo+ZXoYo = 

XX0 + YYo ZZ0 X-3 = 3a8• 2002. (i2 b2-C2= I. 2003. x+u-z= ± 9. 2004. - 3- = 
y-4 z-5. = ----- 1 at the point (0, 0, 0). 2005. cos r:x =- cos ~ = 4 --5 

I 
=cosy= ya. 2006. y=O, x+z+ I =0; the surface is represented 

:na 
in Fig. 49 on p. 353. 2009. The tangent plane: x-y+2z=2 . Its 

distance from the origin is ~:- . A helicoid is a ruled surface. 
2 y 6 

Straight lines are obtained in the sections z=h. At z=O y=O; 
:rta :rta 3:rta 

at Z=T y=x; at Z=T X=O; at Z=T u=-x; at Z=:rta y=O 

a x-4 y-3 z 
(Fig. 62). 2010. z=O and x+u-z= 2 . 2012. - 4-=-3-=5. 

2 2 1 
2013. cosr:x= 3 ; cos~=-3 ; cosy=- 3 . 2014. Plane 

a 
z+y-x=a, P= Y3. 2016. (1) Z=4; (2) 2x+2u+z=6. 2017. grad z= 

=-2xl-2y}=-2(l+2J). 2018. (I) grad Z= :x+J; (2) grad Z= 

-= itJ. 2019. gradh=- ~ l-2j. 2020. tan<p=jgradz/= 
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-./xz+y2_Y10 ~o79 2021 !!:!!:__Y2 2022 du 2 .r-V 4xy - 4 ~ · • • dl - 2 · • (ff = + r 2 ; 

grad u=2l+2J+2k; jgrad uj=2VJ. 2023. grad u= ± 41. 
6 .r-2024. . 2025. grad z=0.32l-0.64j; I grad z 1 =0.32 r 5. 

Ya2+b2+c2 

2026. du yz+xz+xy - 5- 2027. grad u= 2 (xl+yJ-zk); 
dl va == ¥3. 

jgrad ul=2zlt'2. 2028. grad u=xl+uf+zk; jgrad uj=1 at any 
u 

point. 2029. 

1 
2031. Zmax=l2 at X=y=4. 2032. Zmtn=O at X=l, y=-2 • 

2 
2033. No extremum. 2034. Zmin =-- at x =- 2, y = 0. e 

3VJ 1t 
2035. Zmax=-2- at x=y=a. 2036. Zmtn = 2 at x = y = 1. 

2037. Zmax=-4 at X=y=-2 and lmin=4 at X=y=2. 

2038. X=y= v2v. Z=0.5vw. 2039. ( ~ • ; ) • (- ~ • -;) • 

2040. It is necessary to find the minimum of the function z =d2 = 
= x2+(y-2)2 for the condition x2-y2-4=0. The required points: 
(± }""5, 1). 2041. R=1, H=2. 2042. (1) Vertices(± 3, -1) and 
(0, 2); (2) the ray must pass in such a way that sin a:: sin ~ = v1 : v2, as 
it actually happens in nature. 2043. Zmin=9 at x=O and y=3. 
2044. Zmin =0 at x=y=2. 2045. Zmin =0 at x=O and y=O. 
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2046. Zmln =0 at X=2, y=4. 2047. Zmax= 1 at X=Y= ± 1; Zmtn=- 1 
at x=-y=:l: 1. 2048. V=B. 2049. (l) Find the minimum of 

d= x-.:::;:. 4 or the minimum of z=x-y+4 for the condition 

4x-y2=0. The required point Is (1, 2)i (2) 2ab. 2050. R= y n~. 
2051. Equations of integral curves: (l) y=;: (2) y=x3 ; (3) y=- ~3 • 

2053. xy'=2y. 2054. (1) y2 -x2 =2xyy'; (2) x2 +y=xy'. 2057. y=Cx, 
y=-2x. 2058. xy=C, xy=-8. 2059. x2+y2=C2, x2+y2=20. 

I 

2060. y=Cex, y=4ex+ 2• 2061, y=Cex. 2062. x+y= 
I 

=In I C (x+ 1) (y+ 1) I· 2063. r=Ce'P +a. 2 / 2-1 +Ct 
2064. s = t • 

YX _ Y'x-2 _Csin2 x-l. _ . 2 1 
2065. y=Ce , y-e . 2066. Y- 2 , y- 2 sm x-2 . 

2067 • ..!..+..!..=Ct y=-x. 2068. General integrals: (I) y=C (x2-4); 
X y 

(2) y = C cos x. All integral curves of the first equation intersect the 
n 

axis OX at x=±2, and those of the second at x=(2n-l) 2 
X X 

(singular points). 2069. y= ; • 2070. S y dx =aS V 1 + y'2 dx; hence, 
0 0 

y=aY!+y'2, y'= ± y ~: -1; put y=acoshu, then asinhu·u'= 

= ± sinhu. Hencet (1) sinhu=O, coshu=l·, y=a; (2) adu=± dx, 
x+C au=± (x+C), y=acoshu=acosh--; at x=O y=a and C=O. 

a 

Thus either y=a cosh~ (a catenary) or y=a (a straight line). . a 
2071. y2 =ax. 2072. y2 =4(x+2J. 2073. In 40 min. Solution If in t 

seconds the temperature of the body will beT, then ~~ =- k (T -20°C), 

where k is for the present an unknown factor; In (T- 20°C) = -kt + C; 

at t = 0 T = 100°C, therefore C =In 80°C, kt =In T ~;~oc. Substituting 

T1 =25°C and T1 =60°C and dividing termwise, eliminate the un-
kt lnl6 . ~ 

known k: k·IO= In 2 , and 1=40 mm. 2074. ~ X1=-H +T cos a=O, 

~ . dy px p 
~Y1=-Px+T·sma=O; hence, tana=dx=H' y= 2Hx2 +0 

(parabola). 2075. Equation of the tangent: Y-y=y'·(X-x). Putting 
Y =0, we find the abscissa of the point A of intersection of the 
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tangent and the axis OX: XA =x-J!,.. By hypothesis X .A= 2x; 
y 

x =-..!!,; solving this differential equation, find the required curve 
y 

xy=- a2 (a hyperbollt). 2076. x2+2y2=c2. 2077. y2 -x2 =C. 
1 

2078. 2x2 +3y2=3a2. 2079. y=Cx'. 2080. y=Ce--x;· 

2081.2y=(l~:)2 -l. 2082. y=C(x+Yx2+a2). 2083.y=(+~x· 
2084. r=Ccos<p, r=-2cos<p. 2085. Vu=xlnx-x+C. 

VY =X In x-x+ l 2086. u= c yr:::j:'Xi • u= V'f"+X2 
x+ Vl+x2 x+ VI+x2 

X 
2x 

2087. xy=-l. 2088. y=aea. 2089. y=l-x' 2090. x2g=C. 

2091. Radius vector OM= Vx2 +y2, a segment of the normal 

MN = _Y_= y VI+ tan2 a= y V I+ y'1 • The required curve is 
cos a 

either x2 +y2 =C2 (a circle) or x2-y2 =C (a hyperbola). 2092. u=Cx2. 
X C 

2093. y- x = Ce y-x. 2094. x2- g2 = Cx. 2095. s2 = 2t2 In 7 . 
C-e-~2 2098. = C-cos 2~. 2096. y=Cx8-x2. 2097. y y 

2x2 2 cos x 
I e~2 y 

2099. y---- 2100. y2 = 2x+C. 2101. sin -x +In x=C. - xln Cx · 
X C 3 C 

2102. u=c-lnx· 2103. u=lnx+x-· 2104. y8=2x+xa· 

~-1 I I 
2105. y=-2-. 2106. s=Ct2+T; s=2t2+T. 2107. y=xec~; 

X 

y=xe 2 . 2108. (x-y)2 =Cy. 2109. x2+y2 =2Cy. 

kt kL ( - ..!i t ) 
2110. i=R+R e L -I . 2111. Putting X=O in the equation 

of the tangent Y-y=y'(X-x); find V0 =-0N=y-xy', 
.r-- x2-C2 

ON=xy'-y=OM= r x2 +y2 • Hence, u=----u;-· The mirror must 

_JL 
be a paraboloid of revolution. 2112. y2 = Cxe x. 2113. y = 

= InC (y.+ V~ , 2114. For x > 0 , /' y =In C , for x < 0 
a2+x2 V x x 

VY x-l C In lctani-1 
- =lnCx. 2115. g=-3-+ Jf2X+f. 2ll6.y=l+ . 
x 2x+ 1 cos x 
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2117. s = t8 (In t-1) + Ct2. 2118. y2 

2119. y=2 (sin x-1)+Ce-slnx. 

1+Cex2 • 

2x 
2120. y= 1-Cx2 ; 

2122. y 

2x 
y= l-3x2 • 

I 

lnCx 
2123. (x-a)2+y2 =a2. 2124. y=--. 2125. y2 =x(Cy-i). 

X 
y4 X y2 

2126. xy=-.r-+C. 2127. -y+T=C. 2128. 
c 

y=cosx+---. 
Sin X 

t 
2129. s=C+t-tlnt" 2130. x2y2+2lnx=C. 2131. 

Ct-1 
S=-t-2-. 

2132. y=x2+Cx. 2133. sin y=x+!:. 2134. y 
X 

X 

X 

C+2e 2 

2135. 4x2+y2 =Cx. 2136. x3eY-y=C. 2137. u+xe-Y=C. 

2138. x2cos2y+y2=C. 2139.1J.=~; x+lL=C. 2140. ln~.t=lncosy; 
X X 

x2 sin Y+ ~ COS 2y=C. 2141. 1J.=e-2X; y2=(C-2x) e2x. 

2142. 11.--1- · _x_+x3-C 2143. xa+2xy-3y=C . .--siny' siny - · 

2144. x3y-2x2y2+3y4 =C. 2145. x2 c~s 2y +x=C. 2146. ~.t= ~; 
1 

xy-lny=O. 2147. ~.t= x4; y2=Cx3+x2. 2148. ~.t=e-Y; e-Ycosx=C+x. 

2149. ln~.t=-lnx; ~.t=..!..; xsiny+ylnx=C. 2150. y=(C ± x)2. 
X 

Through the point M (I, 4), the curves y= (I+ x)2 and y = (3-x)2. 

2151. y= sin (C ± x), Through the point M ( ~ , ~"2 ). the curves 

·y=sin ( x- ~)and y=sin ( 3: -x). 2152. y=Cx2+b; singular 

integrals y= ± 2x. 2153. (I) y=x+C and x2 +y2 =C2; 

(2) X ( V1+f ±I r =Cor (y-C)2 =4Cx. Singular integrals X=O 

and y=-x .. Parabolas: for x > 0 y;;::-x, for x < 0 y < -x. The 
parabolas are tangent both to the axis OY and to the straight line 

(x-C)2 
y=-x. 2154. (1) y=l+ 4 ; singular integral y=i; 

(2) X=2p-~. Y=P2 -.!+c. 2155. (I) u=(C+ JIX:t=-T) 2 ; singular 
p p 

I 
integral y=O; (2) x=Ct2-2t3; y=2Ct-3t2 , where t=-; 

p 
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(3) Cy=(x-C)2 , singular Integrals y=O and y=-4x. 2156. (I) y = 

= Cx-C2; singular integral y= ~2 ; (2) y=ex-a Y I +e2; singular 

1 ...!.. 
Integral x2+y2=a2; (3) y=Cx+2e 2 ; singular Integral y= I. 5x s 

(x+C)2 ( 3) x2 
2157. Y= 1---4-; through M 1, 4 two curves pass: y= I- 4 

x2 3 
and y=x-4 . 2158. (I) x=2p+'2 p2+C; Y=P2+p3; 

x2 x2 
(2) x2+(u+C)2=a2. 2159. y=-4 +Cx+C2 ; y=-y· 

2160. (I) y=ex+ ~ ; singular integral y2=4x; (2) y=C (x+ I)+C2 , 

y=-(x~l)2 • 2161. Line segments of the tangent Y-y=y'(X-x) 

on the coordinate axes: XA=x-..1!.,, YR=y-xy'. Byhypothcsis 
!I 

xA.yR .r--
-2-=2a2; (y-xy')2=-4a2y', y=xy' ± r -4a2y' (Clairaut's equa-

tion). Any straight line of the family Y=- ex± 2a YC and also 
the curve determined by the singular integral xy=a2 solve the pro. 
blem. 2162. Parabola (y-x-a) 2=4ax. 2163. (I) y=3 In x+2x2-6x+6· 
(2) y=l-cos2x; (3) y=e1x+xarctanx-ln Y I+x2 +e2• ' 

1 
2164. y=-+e1 Inx+C2• 2165. y2 =e1x+C2• 

X 

2166. u=e1 sin x-x-; sin 2x+C2• 2167. yB+e1y+e2=3x. 

2168. y=C1x(lnx-I)+e2. 2169. coty=e2-e1x. 
1 X 

2170. (I) y=ex (x-l)+e1x2+e2; (2) X= ,r;:;- arctan ,r;:;- + e 2 
r C1 r C1 

I ~x-~, (for e 1 > 0), y In .r +e2 (for e 1 < 0), 
2 -C1 x+r-C1 

C2 - ~ (for e 1 =0). 2171. y"=:l (l-x). For x=O y=O and y'=O. 

y = 2~ 1 ( lx2- x;) is the equation of the flexion curve. 2172. e 1y = 

=(ClxtC2)2+L 2173. y=acosh (x-;;b)=~ (ex;b +e_x~b). 
2174. y= ~ . 2175. y = e 1x+ e 2 -ln cos x; the particular integral 

x3 x 
y=- In (cos x). 2176. Y="f2 - 4 +e1 arctan x+C2 • 2177. e 1y2 = 

t2 
=1+(e1x+e2) 2. 2178. y=(C1x+C2) 2. 2179. s=-4 +e1 Int+e2. 
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2180. 4 (C1y-l)=(C1x+C2)2 • 2181. y=C2 -C1 cos x-x. 2182. See 
2177. 2183. y=-lncosx. 2184. y=C1eX+C2e3x. 2185. y= 
=(Cl +Cax) e2X. 2186. u=e2X (A cos 3x++ B sin 3x). 2187. y = 
=C.e2X+C2e- 2X=Acosh2x+Bsinh2x. 2188. u= Acos2x+ 
+Bsin2x=asin(2x+cp). 2189. y=C1 +Cse- 4x. 2190. x= 

= c.et+C2e-4t. 2191. p =A cos ~ +B sin~. 2192. S=e-t (A cost+ 

+Bsint); S=e-t(cost+2sint). 2193. u=C.eX+(C2+Cax)e2X. 
2194. y=C1 cosh 2x+C2 sinh 2x+C3 cos 2x+C4 sin 2x. 2195. u= 
=C1e2X+e-X(C2 cosxY3+C3 sinxJ(3). 2196. y=(C1 +C~+ + C8x2) e-ax. 2197. u=A sin xsinh x + B sin xcosh x+C cos xsinh x+ 

+Dcosxcoshx. 2198. y=Acoshx+Bsinhx+Ccos ~+Dsin ~. 

2199. Displacement X=a sin V f (t -/0)1 period T =2n V ~ 
2200. x=a cos V! t; period T=2n V; . 2201. x=ae-ktsin (wt+cp), 

where W= Vf-r. 2202. u=C.e- 2X+C2e-x. 2203. u=(C.x+C2) eax. 

2204. y=e-x (C1 cos 2x+C2 sin 2x). 2205. x=C1e3t+C2e-t. 
2206. x=C1 coswt+C2 sinwt. 2207. s=C1 +C#-at. 2208. x= 
=e-1(Acost Y2+Bsinty2). 2209. u=C.e-X+(C2x+Ca)e2X. 
2210. y=C1e2X+C2e- 2x+C3 cos x+C4 sin x. 2211. Y=(C1 +C~)X 

ex-e-x· 
xcos2x+(C3+C4x)sin2x. 2212. y 2 sinhx. 2214. u=~ 

= c.e2X+C2e- 2X-2x3-3x. 2215. y=C.e-X+C#- 2X+0.25 Y2 X 

xcos( ~- 2x) . 2216. y=C1 cos x+C2 sin x+x+ex. 2217. y=C1 + 
+ C2e-llx+ ~ x2 -x. 2218. y=e-2x (C1 cos x+C2 sin x)+x2-Bx+ 7. 

2219. y=C1e2x+(C2 -x) ex. 2220. x=A sink (t-1 0)-t cos kt. 

2221. y=C1eXV2 +C2e- x¥2 -(x-2)e-x. 2222. y=C1 +C,e2x_ ~a 
1 

2223. y=2e-x+xe-2X+C1e-2x+C,e-ax. 2224. X=e-kt (C1 cos kt + 

+ C2 sin kt)+sin kt-2 cos kt. 2225. y=C1+C~+(C3 +x)e-x+x3-3x2 • 

2226. y = c.e3X + (eli- :) e- 3X + Cs cos 3x+ c4 sin 3x. 2227. X=~ 

=c.+ c2 cost+ Cs sin t + t~-6!. 2228. u= ( Cj + ~~) e- 2X + 

+ (C2 cos x 'V3+Cs sin x¥3) ex. 2229. (1) x= ( C1 +C2t+ t;) e-21; 

(2) X= A cos.!....+ B sin.!....+_!_. 2230. In our case y1 =cos2x, y2=sin 2x, a a a 
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w=2, A=-~ +C1; B=! In sin 2x+C1 , andy= ( C1 - ~)cos 2x+ 

+ (c.+! In sin 2x) sin 2x. 2231. Y= [(Cl +In cos x) cos X+ 
+ (C2 +x) sin x] e2". 2232. y= (C1 -In x+C2x) e". 2233. y=C1 cos x+ 

+ C2 sin x-cos X· In tan ( ~ + ~). 2234. (I) y=C1 +C2e-"-

-(I +e-") In (I +e")+x; (2) y=e- 2" ( C1 +C2x+ ~). 2237. y = 

= C1e2x+C2eax+! (5 cos 3x- sin 3x). 2238. y = (C1x+C2) e-x+! e". 

2239. y=e- ~ ( C1 cos 3; +C2 sin 3;) -6 cos 2x+B sin 2x. 2240. y = 
X X 

=C1e2 +C2e- 2 -x3 • 2241. y=C1ex+(C2 -i)e-x. 2242. s= 

=e-t(C1 cost+C2 sint)+(t-1)3• 2243. (I) y=emX(C1 +C.x)+ 
2x 2x 

cos mx - -- 2 +-2 2 ; (2) y=C1en+C2e n __ . 2244.y=Acosx+Bsinx+ 
m n 

I ( xl') + C cos 2x+ D sin 2x-2 x cos x. 2245. Y= C1 +CaX+C8x2-f-lf e". 

· (x21nx 3x2 ) 2246. Y= - 2--4 +C1 +C2x e- 2x. 2247. (I) y=C1 sin x+ 

I 
+C2 cos x+-2--; (2)y = (C1 -In I sin xi) cos 2x+(C2-x­cos X 

- ~ cot x) sin 2x. 2248. Y= ( C1 + V4-x2 +x arcsin ~ +C2x) ex. 

C-(x+2) e-x 
2249. y x+ 1 . 2250. y=1+Ccosx. 2251. y=x(1+ 

+ C V1-x2), linear. 2252. y=C (1 + ~) . 2253. s = et_t"c • 
1 +x2 t 

2254. Vy=Cx2 -1. 2255. 2Cy2=x(C2x2 -1). 2256. y=xlnx-2x+ 

+ C1 1n x+C1 • 2257. y (C2-C1x)=l. 2258. y=C1emx + ( C,-;m) e-m". 
c 

C --I 1 
2259. y=lnx+-1 -. 2260. y=xex .226l.y2 =--c-.2262.y= 

nx x+ ~ 
x3 

= (C1 +C2x) eX+Ca+3+2x2+6x. 2263. C1y= 1 +C2ec,x. 2264. s= 

~nt t . = C1e2t+e-t ~C2 +C3t)--2-. 2265. (1) s=(f2+C) tan 2 ; (2) y2= 

sinx+Ccosx ( x) ~ 
=Cx2-1.2266.(1)y x ;(2)y=e-"C1+a +C2e 2 x 
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x¥'3 . x¥3 .~ xcos-2-+C3e-xsm-2-.2267. (I) y=(C1 -Inr l+e2X)ex+ 

+(C1 +arctaneX)e2x; (2) y=C1eVCx + C~-Vcx and y=C1x+C2• 

a d 2x 10 y'l'On . 10 ~ 
'2268. :ng2 dt2 +IOOOx=O, x=Acos Ya gt+B sm Y a gt, 

2:n Va dT k k 
period T ,rT;C:. 2269. d-=--4 2 : T= 8-+C; k and C 

lOg ,. 1vn r :nr :nr 

.are found from the conditions: 20°C= 8 k2 +C and 100°C=-8k +C; 
:n a :na 

160°C a 
T = ---60°C=40°C. 2270. (!) y=C1x+C2x- 1 +C3x3; (2) y = 

r 
c 

=2+C2x2; (3)y=C1xn+C~-(n+l>. 2271. (!) y=x- 2 (C1 +C2 lnx); 
X 

5x2 
{2) y=C1 cos (lnx)+C2 sin (Inx). 2272. (I) u= 3 +C1x- 1 +C2; 

{2) y=C1xa+ C2 -2ln x+ 3
1 . 2273. (I) y=C1x+C~2 -4x lnx; 

x2 

(2) y C1 + C2 I: x+ In ax . 2274. (!) y= ( ~ +C1x+ C2) X2; (2) Y = 

= ~ + cl cos (In x) + c2 sin (ln x). 2275. X= Clet + C2e-st, 

y =-~ = C1ef-3C2e- 3x. 2~76. x=et+C1+C2e- 2t y=et+C1-C2e-2t, 

2277. x=2e-t+C1et+C2e- 2t, y=3e-t+3C1et+2C9e- 2t. 2278. x = 
= et+C1est+C2e-st+C8 cos (t+<p). 2279. X=e- 2t (l-2t). 2280. x= 
= C1et+C2e-t+t cosh t. 2281. (!) u=<p (x)+'IJl (y); (2) u=y<p (x) + 
+'IJl(x); 3) u=x<p(y)+'IJl(x); (4) u=ax21ny+bxy+<p(x)+'IJl(y). 

82u 82u 
'2282. z=y2 (x+y-I). 2283. To reduce the equation A ax2 +2B ax ay + 

82u 
+ C ay2 =F to the canonical form we have to solve the characte-

ristic equation A dy2- 2B dx dy + C dx2 = 0; in two of its integrals: 
<p(x, y)=s and 'ljl(x, y)=TJ take the arbitrary constants sand TJ for 
new variables and express the given equation as a function of the new 
variables (see Problem~ 1941 and 1942). In our example we have to solve 
the equation dx2 +4dxdy+3dy2=0, hence dy+dx = 0, dy+3dx = 
,_~ 0, u+x=s. y+3x=TJ. Expressed in terms of the new variables, 

the given equation takes the form a~2;TJ =0. Hence, u = <p (s)+'IJl (TJ)= 

= <p (y+x)+'IJl (y+3x). 2284. Characteristic equation x2 dy2 -

- 2xy dx dy+li dx2 =0 or (xdy-ydx)2 =0 or d ( ~) =0; ~ =s· Th~ 
solutions are equal; we can take y to be equal to TI· Thus, the two 

new variables are: L=6 and y=TJ. The equation will take the form 
g 



(see Problems 1944 and 

Answers 

1945): 
iJ2u 
<1rJ2=0; 

371 

u =yep (;) +¢ ( ~). 2285. u=ycp (y+2x)+¢ (y+2x). 

2286. u=xy+sin y cos x. 2287. (See Problem 1944.) u=ylnx+2y+ I. 
.r- ( x ) x2 (I+ fB) 2288. u= r xtcp T +¢(xt); particular solution u= t . 

2289. u=e-xcp (x-t)+¢ (x); particular solution u=(x-t) e-t-x. 

2290. Particular solution u=x at+~ asta. 2291. u=f(x-at)tf(x+at) + 

x+at 

+ 2~ S F (z) dz. 2292. 6-41n 2 ~ 3.28. 2293. (I) 10; sq. units; 
x-at 

(2) 4 sq. units. 

2297. 

5 
2294. 206. 

9a2 
2295. 2. 

(2) 

I I 
2296. 2--e· 

a Va•-u• 

S dy S dx= 
0 a-y 

I 2-x• 

2298. (I) S dx S dy= 
0 X 

I y 2 V 2-y 0 0 0 0 

= S dy S dx+ S dy S dx= 1! ; (2) S dy S dx= S dx S dy = 
0 0 I 0 -2 y1 -4 -4 -V4+x 

= 1:. 2299. ( ~ +2) a2. 2300. The area of the smaller segment: 

( ~:n: ;- J!3) a2.~ 2.457a2. 2301. 3; 2 ln 2. 2302. 8
1
6
5
8 a2 . 2303. ~ :n:a2. 

a2 , 1 - 9 ,;-.; 
2304. 4.5. 2305. 6 . 2306. r 2-1. 2307. 2 a2. 2308. 8:n:+9 r 3. 

b X b b 

2309. (2- ~) a2. 2310. 71n 2. 2311. (l) S dx S dy= S dy 5 dx = 
a 

= (b 2 a)2 ; (2) 

a2 (3:n:-2) 
= 12 ; 

a a Y 

dy= 

40 
dx=3 .. 
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2312. ( ~ , ~) . 2313. (3, 4~8). 2314. Csa, ; ) . 2315. ( 0, :~). 
2316. ( 256a ) ·I7a4 a4 a4 

0, 315n . 2318. 96 . 2319. T. 2320. 6 . mz' 2321. 8 . 

z 

y 
Fig. 63 Fig. 64 

mz' 88a4 (3a 3a) ( 4b ) a4 
2 . 2323. 105 . 2324. 5 ' 8 . 2325. 0, 3:n; . 2326. 30 • 

ab (a2 +b2) 35ruz4 2 
3. 2328. 12 . 2329. 47.5. 2330. ~. 2331. 423. 

2322. 

2327. 

z 

Fig. 65 

79 .r--
2332. 60 w. 2333. The sections by the planez=h,x+u=± y a(a-h) 

are parallel straight lines, i.e. we have a cylindrical surface (Fig. 63). 
a a-x 

The required volume V = 2 ~ dx J z dy= ~ . 2334. ~ a3 (Fig. 64). 



Answers 373 

2335. (See Fig. 50 on p. 353.) : a3 • 2336. ~ • 2337. ~ a8 • 2338. 3na8
• 

n 

2339. 

2341. 

2344. 

T a 
V=4~ mcoscpdcp~r2dr= 4~as (Fig. 65). 

z 
z 

Fig. 66 Fig. 67 

.r- 4as (Fig. 66). 2343. n2a3 (Fig. 62). 4n r 3a8 • 2342. --g (3n-4) 

2345. n~c. 2346. nabc (•-+)· 2347. 4~~· 16 Y2 8 
15 a· 

1 1 . 
V=2 S dx S zdy=::s (Fig. 67). 2350. v = 

0 "' 3a 2lfa:i 
=4~ dx ~ V4ax-y2dy=3a3(4n-3¥3) (Fig. 68). 

0 V'iii 
...£. V'iii="ii a a 

\ b s i6ab' 2351. v = 8 ~ a y a2 x2 dx 0 dy= -a. 
a h 

2352. V = 4 S dx S ~ Va2-x2 dy = n~2h, I.e. equal to the area of 
0 0 

the conoid base multiplied by half its altitude (Fig. 69). 2353. ~~~ a3
• 
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2354. 18n. 2355. 2:rta8• 2356. 8n In 2 (see Fig. 49 on p. 353). 

2357. 3 3 2358. 5n1t. 2359. ~. 2360. 13. 2361. 8 }123 
2 a~. 16 na . " 

Fig. 68 

2362. 2rta2 • 2363. 2~a2 (2 ¥2-1). 2364. 2np2 y2. 2365. 8a2 • 

2366. 4a2 (n-2). 2367. ~4 na2 • 2368. <1=55 Yx2+/2 +z2 dxdy= 
(S) 

z 

X 

a JC-
"" I .. 

Conoid (aZ-J<Z)yZ=nZzZ 

Fig. 69 

~ ~2 = 180 R2 ·sinct; at ~=60° and ct=30° a=-6-. 2369. ~~3 (radius 

a ) 2na3 -of section r= Jl3 . 2370. T (2- V 2). 
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a a-x a-x-v 

~ dx ~ dy ~ z dt-= ;: . 2373. ( : , : , : ) . 
0 0 0 

2372. 

( a ) a~ :Tia~ l'taa 
2374. 0, 0, a . 2375. ""4 . 2376. y'2 . 2377. (I) T; 

na3 :n:a3 ,r- 32 l'ta~ :n:h4 
(2) 60 . 2378. 6 (8 r 2-7). 2379. 3 :n:. 2380. 6 2381. 4 . 

a4 ( 3a) 32 V2a~ as 
2382. 12 . 2383. 0, 0, 8 . 2384. 135 . 2385. 360. 

2386. 6kna2 , where k is the factor of proportionality. 

{ 
4 when taken along the straight line OA, 

2387. ~ (x+ y) dx = 1
3° when taken along the arc OA, 

2 when taken along the polygon line OBA. 

2388. (I) 8; (2) 4. 2389. ~ (x dy+ y dx) = 8 in both cases. This is 

aQ aP 
because here ax=ay. 2390. (I) 1.5a2; ('2) a2 • 2391. 8a2 • 2392. na2. 

2393. :n~ab 2394. 0. 2396. (I) 5
6:n: ; (2) -{; (3) 2- ~3 . 

2a3 8 3 2 2kmM 
2397. 3 . 2398. :n:ab. 2399. 15 .2400. 2 a. 2401. X=O, Y= :na2 • 

~M ~M ~ 
2402. Y = ,rn . 2403. Y =-2-. 2404. (I) -16; (2)--3 ; (3) -12. 

a2 r 2 a 
3a2 a2 II a2 3 4 as 

2405. (I) T; (2) T; (3) - 6-. 2408. 8 :n:a2 • 2409. a· 2410. T· 
na4 

2411. 4B. 2412. Each part of the formula is equal to 4:n:aa. 2413. Each 

part of the formula is equal to ; 4 
(: + ~) . 2419. Each part of the 

formula is equal to ~2 :n:a6 • 2421. 0.15a5 • 2422. No. 2423. Yes. 

2424. Yes. 2425. Diverges. 2426. Diverges. , 2427. Converges, since 
~ ~ 

S xdx 3 . s dx :n: 
(x+ l)a=s. 2428. Converges, stnce !+'X2="4. 2429. Diver-

1 I 
00 

ges, since S 1 ;x2 dx= co. 2430. Converges, since 
I 

00 

S (2x/~2 _ 1 = [{In x~ 1] ~={In 2. 2431. Converges. 

I 
2432. Converges. 2433. Converges. 2434. Converges, since 
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Jim un+t= 2
1 < 1. 2435. Diverges. 2436. Diverges. 2437. Converges. 

n ~ cc Un 

2438. Diverges. 2439. Converges. 2440. Diverges. 2442. I. 2443. f. 
2444. Converges not absolutely. 2445. Converges absolutely. 2446. Con­
verges not absolutely. 2447. Converges absolutely. 2448. After the 
first rearrangement of the terms we get the series in the form: 

( 1- ~)-! +(!-!)-! +( i - 1~) -~+ .... Opening the 
brackets, we obtain a series whose terms are half the terms of the 
given series. After the second rearrangement any three terms may be 
expanded as follows: 

I I 1 I I I I I I 
4n-3+ 4n-1-2n = 4n-3-4n-2+ 4n-l- 4n + 4n-2- 4n; for 

n= I, 2, 3, 
the first four terms form the given series with sum S, and the last 

two terms with sum ~ S. 2449. Converges. 2450. Diverges, since 

"' S dx 
lOOx-99 

1 

"' 

QO 

oo. 2451. Converges, since S 1 ~:4 = ~ . 2452. Diverges 
I 

S2x-1 
since --xr- dx = oo. 2453. Converges. 2454. Converges, since 

I 

I. Un+l 1 1 2455 C . 1. Un+l 1. 20n+21 1m --=-2 < . • onverges, smce 1m--= 1m 3(20 + 1)= 
n ... oo Un n ..... oo Un n-+oo n 

I 
= 3 < 1. 2456. Converges. 2457. Converges not absolutely. 2458. Con-

verges absolutely. 2459. For a> 1 converges absolutely, for a= I con­
verges not absolutely, for a< 1 diverges. 2460. 1/2. 2461. 1/4. 

2462. The sum of the series S (x) = 1 
1 x for x < 1, the remainder 

Rn=S-Sn=1 xn X. On the interval [o. ~ J I Rn I< 2nl-l < 0.001, 

log 1000 . 
as soon as n -1 > log 2 ; n;,;;;,: 11. 2463. The senes has the sum 

x { I for 0 < x EO; I, 
S= . 1-(1-x) 0 for x=O, and the remamder 

R {(1-x)nfor0<xc;;1, F th 'd R 'llbe n= 0 for x=O. or any n e rematn er n wt 

greater, say, 0.9 as soon as x < 1-JY 0. 9, i.e. on the closed interval 

(0, I] the series converges non-uniformly. But on the interval [ ~, I J 
It converges uniformly, since then for any x I Rn I < 2

1n < e as soon as 
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-logs . 
n > log 2 ; In particular,! Rn I< 0.01 for n ";;:it 7. 2464. Tht· H'lllltilld•·• 

of a series with alternating signs Is less by modulus thnn tlu· lit \I 
x" t' 

rejected term. Therefore, on the interval [0, I] I Rn (x) I < ii/1 < 
I 

<n+ 1..-;0.1 as soon as n+1~10 or n:;;.9. 2465. The 

. { 1 +x8 for x > 0, senes has the sum S = 0 f _ 0 and the remainder 
or x- , 

{ 1 
Rn= ~ (1 +xS)n-1 for x > 0• For any n the remainder Rn 

t 0 for x=O. 

will be greater, say, 0.1 as soon as x3 < n-Vio-1, i.e. for x;;;;.O 
the series converges non-uniformly. But for x;;;;.l it already converges 

uniformly, since in this case IRnl..-; 2n~ 1 < e as soon as n-1 > 

> ~~0~ 8 ; in particular I Rn I < 0.001 for n;;;;,: II. 2466. For any 

non-negative x the terms of the given series are less than, or equal to, 

the terms of the convergent series I+{+ 3
1
2 + 3~ + .... Hence, the 

series converges uniformly for all x;;;;,: 0, R n (x) is less than the remain-

der of the number series, i.e. Rn (x) < ( ! r = 2 . 3~_ 1 < 0.01 as soon 
1-3 

I 
as 3n-l >50 or n;;;;,: 5 for any x;;;;. 0. 2467. I Rn (x) I< n2 .;;;; 0.0001 as 

I 1 
soon as n;;;;,: 100 for any x. 2468. un -+ . Therefore, 

x+n-1 x n 

Sn=..!._--+1 ; S=lim Sn=_!_ for any x ¥= 0. In particular, for 
X X n n-+oo X 

1 I 
x > 0 Rn (x)=-+ < -.,.;;;; 0.1 as soon as n;;;;,: 10. 2469. For any x n n 
non-negative x the terms of the given series are less than (or equal 

to) those of the convergent series 1 + ~ + ! + ! + .••. Therefore, the 

series converges uniformly for all x;;;;. 0, Rn (x) < ( ~ ~n + 2}_1 < 
1-2 

< 0.01 as soon as 2n- 1 > 100 or n;;;;.B. 2470. -3os;;;;x < 3 . 
• r- .r- Jl3 Jl3 2471. -r S.o;;xoo;r 5. 2472. --2-o;;;;;x..;-2-. 2473. Converges 
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absolutely along the whole number line. 2474. -1 < xo;;;;; I. 
¥2 V2 

2475. --3 - < x < - 3-. 2476. (I) R=O; (2) R=e. 

2477. -5EO;;x < 3. 2478. I< x..;;;;2. 2479. (l-x)2 for lxl <I. 

l+x m 
(l-x)2 for I xI < I. 2482. (I +x) . 

-JI3or;;;;;x,.,;;; ¥3. 
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(X- ~ ) (X- ~ r ] 00 (X- ~ r -1 
(2n _ 1 )1t 

II 2 2122 +" · = L (n-1)1 2n 1 cos 4 ; 
n:l 

assuming 01 conventionally equal to I (see the note on p. 211 to 

00 (3x+n)2n-1 v-
Problem 1760); (2) sin 3x= L (-l)n (2n-l)l . 2504. x = 

n=l 

=-f/l-( +l)=-l+x+l+2(x+l)2+ =-i+x+l+ 
X 3 . I ! 32 • 21 . .. 3 

+ ~ 2 ' 5 '8 ···<3n-l)( +I n+1 f 2 0 5 I I ~ 3n+l (n+ l)l x ) or - < x < . 2 05. ( ) 2x= + 
n=l 

xln2 x2 ln22 . _xninn2 ex. ( n) V2 
+ - 11-+-2-1 - ... , I Rn 1--n-!- 2 , (2) cos mx+4 =-2-x 

[ mx m2x2 ] oo (mx)n-1 n . 
X 1-IT-21"+ ... = L(n-l)l cos(2n-1) 4 (puttmg 01=1). 

n=l 
2506. x4 -4x2=(x+2)4-8 (x+2)3+20 (x+2)2 -16 (x+2). 

2 I Jf3[ X- ~ 22 (X- ~ r 24 (X- ~ r 
2507, COS X=-:r--3- --~~-- 31 + 51 

I [2 (X-~ r 23 (X-~ r 2& (X-~ r ] 
+ 2 2! - 41 + 61 . .. . 

. nx 00 
Jl;n (x- I )n . ( 1t 1t ) 

2508. sm T= L 3nnl sm 3 +n T (putting 0! =I). 
n=O 

.r-:: [ x-4 (x-4)2 1·3 (x-4)3 1·3·5 (x-4)4 ] 
2509. r x=2 1+ 23.1!-~+ 29 .31 212. 41 + ... · 

. I x3 1·3 x~ 1·3·5 x7 .r--
2511. arcsmx=x+2 .3 + 22 .21 ·s+ 23 . 31 .7 + .... 2512. r 0.992 = 

= Yl-0.008 ~ 1-0.004=0.996; J!OO= YBT+'9=9 V'+ ~ ~ 
~9(1+,~)=9.5. 2513. vo.99l=Vl-0.009~0.997; VI30= 

= VI25+5=5 ~ ~ s( I+/5)=s,15. 2515. arctanx= ~-
x3 x' .r-( I I I I ) 

- a+5- .... 2517. 1t=2 r 3 I- 3·3+ 5·32- 7·33 + 9·3' = - s sin x xs x• 
= 1.814 Y3 ~ 3.142. 2519. (I) -x-dx=C+x- 313 +5!5- · ., 
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11 

2 

Answers 

n 
2 

2532. s=4 S Va2 sin2 t+b2 co.; 2 /dt = 

0 

=4aS Vl-e2 cos2 tdt=2na [t-~-(~) 2 .£-(~)'x 22 2·4 3 2·4·6 
0 

c• J x5 -... , where e is eccentricity of the ellipse, and a its major 



Answers 38r 

0.5 

semi-axis (see Problem 1624 and the answer to it). 2533. S V 1 +x3 dx= 

0 

l- x' x7 ] 0.5 1 I I I 65 
= x+2-4-22·217 + .. · o =2+2. T'F- · · · :::l 128 :::l 0·508 

. I lx§ lx9 
w1th an error< 7.210 . 2534. <ll(x)=x-2! 42 , 5+41 4,, 9 - ... ; 

( I) I I I <I> 2 =2- 5. 210 +· .. :::l 0.499805 with an error < 27 _220 . 

.t' x7 2·x11 
2535. y=3+32 . 7+3a. 7. 11 + .... 2536. Differentiating the equation 

n times and substituting x=O, we get: y~n+2>=-ny~n-l>, hence y0 =1, 
, " ,., IV v VI . x8 

Yo=O, yo=O, Yo =-1. Yo =yo =0, Yo =1·4, ... , y=I-3T+ 
s 

1-4·xB 1·4·1·x9 s s2 [ s4 
+-6-1-- 91 + .... 2537. X= cos 2C ds=s 1-21 (2C)2 , 5 + 

0 

+ ... ] , y = S sin ;~ ds = :C [ ~ - 31 ( 2~)2 • 7 + ... ] , where the 
0 

constant C=R·L, R is the radius of the circular curve, and L the 
length of the transition curve. The curve is called the clothoid (Fig. 92, 
p. 388). 2538. F(x+h. y+l)=x2+xy+y2 -f-h(2x+u)+l(2y+x>+ + h2+hl +12. 2539. x8+2xy2=9+ II (x-1)+8 (y-2) + 
+ 3 (x-1)2+8 (x-1) (y-2) +2 (y-2)2+(x- 1)3+2 (x-I) (y- 2)2_ 

x2 (y+ 1)2 
2540. In (x-y)=x- (y+ l)-2 +x (y+ 1)--2-+Ra. where R3= 

(x-y-1)3 • (mx+ny) 3 

= 3 [Bx+I-B(y+l)JB' 2541. sm(mx+ny)=mx+ny- 31 + 

+ (mxtny)4 sin 8 (mx+ny). 2543. dx=O.I; dy=-0.2; ~z=(2x-y)dx+ 

+ (2y-x)dy+dx2-dxdy+dy2 =-0.63. 2544. ~z= -(adx-bdy)X 

xsin(ax-by)-;1 (adx-bdy)2 cos(ax-byJ+R8 , where Ra=i, X 

X(a dx-b dy)B sin [a (x+8 dx)-b (y+B dy)J. 2545. x2y=-1-2 (x-I)+ 

+ (Y+ l)-(x-1)2 +(x-1)(y+ 1). 2546. arctan L=y-(x-1) Y+· . .• 
:r 

2547. r= 1+2 (y-l)+(x-2)(y-l)+(y 2 l)
2 + .. ,J 1.1 2• 1 :::l 1 + 
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0 12 
+ 2·0.1 +0.1·0.1+-T= 1.215. 2548. dx=-0.01, dy=0.02; ~z= 

I 
= 2yxdx + (x2 -2y)dy+ydx2 + xdxdy-dy2+3 dx2cty::::! -0.1407. 

00 00 

2549. ! L sin~!~~ l)x. 2550. ~ -4 L co~~~~--;)12)x ,- 2551. ~2 + 
n=l n=l 

"" 
+ 4 L ( _ l)n co~2nx . 2552. 3: _ [ si7 x _ si~ 2x + sin3 3x _ ... J + 

n=l 

+ .E._ [~+cos 3x + cos 5x + J 2553 _! [ . nx +_!._ . 3nx+ 
n 12 32 52 . . . . . n stn l 3 stn l 

1 . 5nx ] 1 4 [ cos nx cos 3nx ] 
+ S Stn -1-+ .. , • 2554, 2+-;t2 -1-2 -+-3-2- + . " • 

l 21 [ nx I 3nx ] l [ . nx 
2555. T - n2 cos -~- + 32 cos -~- + . . . + n Stn -~- -

1.2nx J 3 4[ nx 2 2nx - 2 sm-1-+··· . 2556. (1) -:r+-;t2 cos 2 - 22 cos-2-+ 
1 3nx 1 5nx 2 6nx J 2[ nx + 33 cos-2-+52 cos-2--62 cos-2-+ ... : (2) n stn 2 + 

+ I . 2nx + I . 3nx + ] + 4 [ . nx 1 . 3nx + 2 Stn -2- 3 Stn -2- . . . -;t2 Stn T-v sm -2-

m n•:rc•a•t 
I . 5nx ] 41 ~ 1 nn nnx --1-.- • 

+52' sm - 2--., . . 2557. u= n2 ~ 1i2 sin T sin - 1- e 
n=l 

"" t 
~ 2n + 1 . 2n + 1 2 s 2558. u= ~an cos~ antsm 2lnx, where an=y tmx 
n=O 0 

"" ~ . nnx an2n2t 
2559. u= ~ bn sm - 1- cos - 1-2-, where bn = 

n=l 
I m 

2 s . nn~ 2 s 1-cos A . =y rmsm-l d~.2560.f(x)=-; A StnAxdA.2561.f(x)= 
0 0 

"" 00 

- 2~ s cos AX d' 
- n ~2+ A2 /1,, 

0 

2562. f (x) = ! S (1- co~~) sin A sin AX d'J... 

0 

2563 _::+_! [ +cos 3x +cos 5x+ 
. 2 n cos x 32 52 j .2564.1sinxi=.E_ _ _!X 

n n 



______________________ A~pp~e_n_d_ic_es ___________________ 183 

[ cos 2x+cos 4x+cos 6x+ ] 
X 1·3 3·5 5·7 .. . . 

2565. _i_ l . si 11 :lx :rt Sill X-~ f-

lr nx 3.n:x ] 
sin 5x J l 41 cos -~- cos -~-+ _5_2 __ ... . 2566. 2-J12 J2 + 32 +.. . 

2567 ~-~ [cos nx+cos 3:rtX+ J _ ~ [sin :rtX+sin 2:rtx J 
. 4 :rt2 J2 32 . . . :rt I 2 +. . . • 

. I cos -~- cos -~- I . Sin -~-[ ( 
:rtX 2:rtX ) ( . :rtX 

2568. sinh l ~-21 .:rt2+z2 22:rt2+l2 +· .. +2:rt :rt2+z2 

2 . 2nx )] 00 
·Sin--~- 2n+l . 2n+ I 
22:rt2 + 12 + . . . . 2569. u = L an cos - 2- t Sin --2-- x, where 

n=O 
n oo 

2 s f (t) . 2n + I t dt 2570. f (x) = : s sin ')., ~os 'Ax d'. an=-;:t ., stn-2 -., .,. " ,., 

0 0 

APPENDTCES 

I. SOlliE REMARKABLE CURVES (FOR REFERENCES} 

y y 

Fig. 70. 
Cubic parabola 

Fig. 71. 
Semicubical parabola 
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y 

I 

y 

Y"=axz 

X 

Fig. 72. 
Sernicubical parabola 

l 
I 

~~--~---~------
0 e X 

y=tnx 

Fig. 74. 
Logarithmic curve 

X 

Fig. 73. 
Loop parabola 

Fig. 75. 
Graph of the exponential function 



y 

y 

Fig. 76. 
Tangent curve 

X 

y=osinh~ 

Fig. 78. 
Graph of the 

hyperbolic sine 

y 

Fig. 80. 
Witch of Agnesi (or versiera) 

13-1895 

X 

y 

0 X 

!/=a cosh~ = f ( el+ e§) 

Fig. 77. 
Catenary 

a 

X=a(t-sinf) y-a(l-co.rt) 

Fig. 79. 
Cycloid 

y~ 

Fig. 81. 
"Probability" curve 

X 
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I 
I 
I 

, 
I 

I 

y 

, ... ,..---

Fig. 82. 
Astroid 

~ 

/ 

/ ' 
/ r 2=a 2coSZ¥J 

Fig. 84. 
Bernoulli's lemniscate 

Fig. 86. 
Three-leafed rose 

p 

Fig. 83. 
Folium of Descartes 

r=a(!.:.COS(j)) 

Fig. 85. 
Cardioid 

r=asinZ(j) 

Fig. 87. 
Four-leafed rose 

p 



Fig. 88. 
Strophoid 

y 

8 

r=lL 
9 

a 

p 

Fig. 90. 
Hyperbolic spiral 

13* 

I 
I 
I 

Fig. 89. 
Cissoid 

387 

X 

A 
---- :-;· .q 

Fig. 91. 
Parabolic arc inscr I bl~d 

in angle XOY. 



8 2 
x=jc&L ds 

0 zc 
8 z 

y=Jsinfcds 
0 

Fig 92. 
Clothoid 



II. TABLES 
I. Trigonometric functions 

a• I sin a I tan a I cot a I cos a I a• 

0 0.0000 

I 0175 
' 2 0349 

3 0523 
4 0697 
5 0.0872 
6 1045 

7 1219 

8 139 
9 156 

10 0.174 
II 191 
12 208 
13 225 
14 242 

15 0.259 

16 276 
17 292 
18 309 
19 326 

20 0.342 
21 358 

0.0000 

0175 
0349 
0524 
0699 

0.0875 
1051 

1228 

141 
158 

0.176 
194 
213 
231 
249 

0.268 

287 
306 
325 
344 

0.364 
384 

57.3 
28.6 
19.1 
14.3 
11.4 
9.51 

8.11 

7.11 
6.31 

5.67 
5.145 
4.705 
4.331 
4.011 

3.732 

487 
271 

3.078 
2.904 

2.747 
605 

1.000 

1.000 
0.999 

999 
998 

0.996 
995 

993 

990 
988 

0.985 
982 
978 
974 
970 

0.966 

961 
956 
951 
946 

0.940 
934 

90 

89 
88 
87 
86 
85 
84 

83 

82 
81 

80 
79 
78 
77 
76 

75 

74 
73 
72 
71 

70 
69 

0 
5.73 

11.5 
17.2 
22.9 
28.7 
34.4 
40.1 

45.0 

45.8 
51.6 
57.3 
63.0 
68.8 
74.5 
80.2 
86.0 

90.0 

91.7 
97.4 

103.1 
108.9 
114.6 
120.3 
126.1 

I radi~ns I 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
n 

T 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
n 

2 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 

sin a 

0.000 
0.100 
0.199 
0.296 
0.389 
0.480 
0.564 
0.644 

0.707 

0.717 
0.784 
0.842 
0.891 
0.932 
0.964 
0.985 
0.998 

1.000 

0.999 
0.992 
0.974 
0.946 
0.909 
0.863 
0.808 

tan a 

0.000 
+O.IOO 
+0.203 
+0.310 
+0.422 
+0.547 
+0.684 
+0.842 

fl.OOO 

+!.028 
+!.260 
+!.558 
+1.963 
+2.579 
+3.606 
+5.789 
+14.30 

-33.75 
-7.695 
-4.292 
-2.921 
-2.184 
-1.711 
-1.373 ~ 



Continued 
-

ao I sin a I tan a I cot a I cos a I II ao I rad~ans I sin a I tan a :8 
22 375 404 475 927 68 131.8 2.3 0.745 -1.118 
23 391 424 356 921 67 135.0 

3n 
0.107 -1.000 

24 407 445 246 914 66 T 
137.5 2.4 0.676 -0.916 25 0.423 0.466 2.145 0.906 65 143.2 2.5 0.599 -0.748 26 438 488 2.050 899 64 149,0 2.6 0.515 -0.602 27 454 510 1.963 891 63 154.7 2.7 0.428 -0.472 28 469 532 881 883 62 

29 485 554 804 875 61 160.4 2.8 0.336 -0.356 
166.1 2.9 0.240 -0.247 

30 0.500 0.577 1.732 0.866 60 171.9 3.0 0.141 -0.142 
31 515 601 664 857 59 177.6 3.1 0.042 -0.042 
32 530 625 600 848 58 180.0 n 0.000 -0.000 
33 545 649 540 839 57 
34 559 675 483 829 56 . n I n Jl3 35 0.574 0.700 1.428 0.819 55 Sinlf=2, COSlf=-2-, 
36 588 727 376 809 54 
37 601 754 327 799 53 n I n y--
38 616 781 280 788 52 tan 6 = Jl3, cot 6 = 3, 
39 629 810 235 777 51 
40 0.643 0.839 1.192 0.766 50 n n I 

I 41 656 869 150 755 49 sin-:r=cos-:r= vr' 
42 669 900 Ill 743 48 
43 682 933 072 731 47 n n 

tan 4 =cot -:r=l. I 

44 695 966 036 719 46 
45 0.707 1.000 1.000 0.707 45 

I 

I cos a I cot a I tan a I sin a I ao I 

a degree I I I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 

a radians I 0.017 I 0.035 I 0.052 I o.o7o 1 0.087 I 0.105 I 0.122 I 0.140 I 0.1571 
1 radian=57°17'45" 

-·- - - --



2. Hyperbolic functions 

X 

I 
sinh x 

I 
cosh x 

II 
X 

I 
0 0 I 

0.1 0.100 1.005 2".1 
0.2 0.201 1.020 2.2 
0.3 0.304 1.045 2.3 
0.4 0.411 1.081 2.4 
0.5 0.521 1.128 2.5 
0.6 0.637 1.185 2.6 
0.7 0.759 1.255 2.7 
0.8 0.888 1.337 2.8 
0.9 1.026 1.433 2.9 

1.0 1.175 1.543 3.0 
1.1 1.336 1.669 3.1 
1.2 1.509 1.811 3.2 
1.3 1.698 1.971 3.3 
1.4 1.904 2.151 3.4 
1.5 2.129 2.352 3.5 
1.6 2.376 2.578 3.6 
1.7 2.646 2.828 3.7 
1.8 2.942 3.107 3.8 
1.9 3,268 3.418 3.9 
2.0 3.627 3.762 4.0 

ex 
For x > 4 assume that sinh x ~ cosh x ~ T (accurate to 0 .1). 

sinh X= 
ex-e-x ex+e-x 

2 
; coshx= 2 ; 

ex=sinh x+cosh x; exi =sin x+i cos x. 

sinh x 
I 

4.022 
4.457 
4.937 
5.466 
6.050 
6.695 
7.407 
8.192 
9.060 

10.02 
11.08 
12.25 
13.54 
14.97 
16.54 
18.29 
20.21 
22.34 
24.69 
27.29 

cosh x 

4.289 
4.568 
5.037 
5.557 
6.132 
6.769 
7.474 
8.253 
9.115 

10.07 
II . 12 
12.29 
13.58 
15.00 
16.57 
18.32 
20.24 
22.36 
24.71 
27.31 

"" <a 



3. Inverse quantities, square and cubic roots, logarithms, exponential function ~ 
1-:1 

I 
I 

I vx- I VIOX I v; 1v~1v~1 log x 

I 
In x 

I 
ex 

I X X 
X 

1.0 1.000 1.00 3.16 1.00 2.15 4.64 000 0.000 2.72 1.0 
1.1 0.909 05 32 03 22 79 041 095 3.00 1.1 
1.2 833 10 46 06 29 93 079 192 3.32 1.2 
1.3 769 14 61 09 35 5.07 114 252 3.67 1.3 
1.4 714 18 74 12 41 19 146 336 4.06 1.4 
1.5 0.667 1.23 3.87 1.15 2.47 5.13 176 0.405 4.48 1.5 
1.6 625 27 4.00 17 52 43 204 470 4.95 . 1.6 
1.7 588 30 12 19 57 54 230 530 5.47 1.7 
1.8 556 34 24 22 62 65 255 588 6.05 1.8 
1.9 526 38 36 24 67 75 279 642 6.69 1.9 
2.0 0.500 1.41 4.47 1.26 2.71 5.85 301 0.693 7.39 2.0 
2.1 476 45 58 28 76 94 322 742 8.17 2.1 
2.2 455 48 69 30 80 6.03 342 789 9.03 2.2 
2.3 435 52 80 32 84 13 362 833 9.97 2.3 
2.4 417 55 90 34 88 21 380 875 11.0 2.4 
2.5 0.400 1.58 5.00 1.36 2.92 6.30 398 0.916 12.2 2.5 
2.6 385 61 10 38 96 38 415 955 13.5 2.6 
2.7 370 64 20 39 3.00 46 431 993 14.9 2.7 
2.8 357 67 29 41 04 54 447 1.030 16.4 2.8 
2.9 345 70 39 43 07 62 462 065 18.2 2.9 
3.0 0.333 1.73 5.48 1.44 3.ll 6.69 477 1.099 20.1 3.0 
3.1 323 76 57 46 14 77 491 131 22.2 3.1 
3.2 313 79 66 47 18 84 505 163 24.5 .3.2 
3.3 303 81 75 49 21 91 519 194 27 .I 3.3 
3.4 294 84 83 50 24 98 532 224 30.0 3.4 



I 
I 

I vx- I lii""O"X I v; X 
X 

3.5 0.286 1.87 5.92 1.52 
3.6 278 90 6.00 53 
3.7 270 92 08 55 
3.8 263 95 16 56 
3.9 256 98 25 57 
4.0 0.250 2.00 6.33 1.59 
4.1 244 03 40 60 
4.2 238 05 48 61 
4.3 233 . 07 56 63 
4.4 227 10 63 64 
4.5 0.222 2.12 6.71 1.65 
4.6 217 15 78 66 
4.7 213 17 86 68 
4.8 208 19 93 69 
4.9 204 21 7.00 70 
5.0 0.200 2.24 7.07 1. 71 
5.1 196 26 14 72 
5.2 192 28 21 73 
5.3 189 30 28 74 
5.4 185 32 35 75 
5.5 0.182 2.35 7.42 1.77 
5.6 179 37 48 78 
5.7 175 39 55 79 
5.8 172 41 62 80 
5.9 170 43 68 81 
6.0 0.167 2.45 7.75 1.82 

----

I v~lvlOOxl log x I 
3.27 7.05 544 

30 11 556 
33 18' 568 
36 24 580 
39 31 591 

3.42 7.37 602 
45 43 613 
48 49- 623 
50 55 634 
53 61 644 

3.56 7.66 653 
58 72 663 
61 78 672 
63 83 681 
66 88 690 

3.68 7.94 699 
71 99 708 
73 8.04 716 
76 09 724 
78 14 732 

3.80 8.19 740 
83 24 748 
85 29 756 
87 34 763 
89 39 771 

3.92 8.43 778 

In x I 
1.253 

281 
308 
335 
361 

1.386 
411 
435 
458 
482 

1.504 
526 
548 
569 
589 

1.609 
629 
649 
668 
686 

1.705 
723 
740 
758 
775 

I. 792 

Continued 

ex 

I X 

33.1 3.5 
36.6 3.6 
40.4 3.7 
44.7 3.8 
49.4 3.9 
54.6 4.0 
60.3 4.1 
66.7 4.2 
73.7 4.3 
81.5 4.4 
90.0 4.5 
99.5 4.6 

110 4.7 
121 4.8 
134 4.9 
l48 5.0 
164 5.1 
181 5.2 
200 5.3 
221 5.4 
244 5.5 
270 5.6 
299 5.7 
330 5.8 
365 5.9 
403 6.0 c.:> 

<.0 
c.:> 



Continued ~ .,. 

I 
I 

I vx- I VTOX I X x v; I VIO: I V!OOx I log x I In x I. ,x 

I X 

6.1 0.164 2.47 7.81 1.83 3.94 8.48 785 1.808 446 6.1 
6.2 161 49 87 84 96 53 792 825 493 6.2 
6.3 159 51 94 85 98 57 799 841 545 6.3 
6.4 156 53 8.00 86 4.00 62 806 856 602 6.4 
6.5 0.154 . 2.55 8.06 1.87 4.02 8.66 813 1.872 665 6.5 
6.6 152 57 12 88 04 71 820 887 735 6.6 
6.7 149 59 19 89 06 75 826 902 812 6.7 
6.8 147 61 25 90 08 79 833 918 898 6.8 
6.9 145 63 31 90 10 84 839 932 992 6.9 
7.0 0.143 2.65 8.37 I. 91 4.12 8.88 845 1.946 1097 7.0 
7 .I 141 67 43 92 14 92 851 960 1212 7.1 
7.2 139 68 49 93 11) 96 857 974 1339 7.2 
7.3 137 70 54 94 18 9.00 863 982 1480 7.3 
7.4 135 72 60 95 20 05 869 2.001 1636 7.4 
7.5 0.133 2.74 8.66 1.96 4.22 9.09 875 2.015 1808 7.5 
7.6 132 76 72 97 24 13 881 028 1998 7.6 
7.7 130 78 78 98 25 17 887 041 2208 7.7 
7.8 128 79 83 98 27 21 892 054 2440 7.8 
7.9 127 81 89 99 29 24 898 067 2697 7.9 
8.0 0.125 2.83 8.94 2.00 4.31 9.28 903 2.079 2981 8.0 
8.1 124 85 9.00 01 33 32 909 092 3294 8.1 
8.2 122 86 06 02 34 36 914 104 3641 8.2 
8.3 121 88 II 03 36 40 919 116 4024 8.3 
8.4 119 90 17 03 38 44 924 128 4447 8.4 
8.5 0.118 2.92 9.22 2.04 4.40 9.47 929 2.140 4914 8.5 
8.6 116 93 27 05 41 51 935 !52 5432 8.6 

-- - ---



Continued 

I 
I 

I vx- I VIOX I v- 1v~1v~1 log x I In x I ex 

I 
X - X X X 

8.7 0.115 ?.95 9.33 2.06 4.43 9.55 940 2.163 6003 8.7 
8.8 114 97 38 07 45 58 945 !75 6634 8.8 ! 

8.9 112 98 43 07 47 62 949 186 7332 8.9 
9.0 0.111 3.00 9.49 2.08 4.48 9.66 954 2.197 8103 9.0 
9.1 110 02 54 09 50 69 959 208 8955 9.1 
9.2 109 03 59 10 51 73 S64 219 9897 9.2 
9.3 108 05 64 10 53 76 969 230 10938 9.3 

_.9.4 106 07 69 II 55 80 973 241 12088 9.4 
9.5 0.105 3.08 9.75 2.12 4.56 9.83 978 2.251 13360 9.5 
9.6 104 10 80 13 58 87 982 263 14765 9.6 
9.7 103 

I 
II 84 13 60 90 987 272 16318 9.7 

9.8 102 13 90 1-t 61 93 991 282 18034 9.8 
9.9 101 15 95 15 63 97 996 293 19930 9.9 

10.0 0.100 3.16 10.00 2.15 4.64 10.00 000 2.303 22026 10.0 
Given in the column "log x" are mantissas of common logarithms. 
Natural logarithms of numbers greater than 10 or less than I are to be found by the formula 

ln(x·!Ok)=ln x+k In 10. 
In 10=2.303; In 102 = 4.605; 
logx=0.4343 In x; In x=2.303 log x. I 

Formulas for approximate taking of roots: i v- X 1-n (I) 1 +x::::: 1 +n-+ 2n2 x2 for I xI < 1. 

(2) an+b:::::a 1+-+--·- for- <1. v- ( b 1-n b2
) I b I nan 2n2 a2n an w 

<.0 
Ol 
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I. MULTIPLE INTEGRALS, FIELD THEORY AND SERIES. AN 
ADVANCED COURSE IN HIGHER MATHEMATICS 

B. M. Budak and S. V. Fomin 

Covers branches of mathematics increasingly required by physicists, 
such as multiple, line, and improper integrals, the theory of fields, 
and power and trigonometric series. Based on lectures read by the authors 
in the Physics Faculty of Moscow University, the book endeavours to 
show the connection between the various mathematical concepts and 
their applications, and wherever possible their physical meaning as 
well. 

Contents. Double Integrals. Triple and Multiple Integrals. Elements 
of Differential Geometry. Line Integrals. Surface Integrals. Theory of 
Fields. Tensors. Functional Sequences and Series. Improper Functions. 
Integrals Depending on Parameters. Fourier Series and the Fourier 
Integral. 

Appendices on (a) Asymptotic Expansions and (b) Universal 
Computers. 



2. DIFFERENTIAL EQUATIONS 1\ND THE CALCULUS OF 
VARIATIONS ' .. 

L. Elsgolts 

This text is meant for students of higher schools and deals with . 
the most important sections of mathematics-differential equations 
and the calculus of variations. The book contains a large number of 
examples and problems with solutions involving applications of 
mathematics to physics and mechanics. 

Contents. First-Order Differential Equations. Differential Equations 
of the Second Order and Higher. Systems of Differential Equations. 
Theory of Stability. First-Order Partial Differential Equations. The 
Method of Variations in Problems with Fixed Boundaries. Variational 
Problems with Moving Boundaries and Certain Other Problems. Suffi­
cient Conditions for an Extremum. Variational Problems Involving a 
Conditional Extremum. Direct Methods in Variational Problems. 



3. THE THEORY OF FUNCTIONS OF A COMPLEX VARIABLE 

A. G. Sveshnikov, A. N. Tikhonov 

The book deals with fundamental concepts in the theory of func­
tions of a complex variable and operational calculus, covering such 
topics as the complex variable, functions of a complex variable, series 
of analytic functions, analytic continuation, the Laurent series, the 
calculus of residues and their applications. Serious consideration is 
given to the principles of conformal mapping and the application of 
methods of complex-variable theory to the solution of boundary-value 
problems in hydrodynamics and electrostatics. 

Two methods-the sadie-point method and the Wiener-Hopf 
method-which have found extensive application in physics are treated 
in considerable detail in the appendix. A valuable feature of the book 
is the large number of worked examples. 
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