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ADVERTISEMENT.

TaE first three parts of this treatise, comprising Plane Trigono-
metry, Navigation and Surveying, and Spherical Trigonometry, have
been revised for the present edition, under the direction of the
author. Some sections have been rewritten, and some additions
have been made, but in all essential respects the book remains un-
altered. The original numbering of the formulas has been preserved ;
and in the few cases in which the numbering of the sections has
been changed, that of the former editions has been speedily restored.

In the Spherical Astronomy, the notation of the chapter on Eclipses
has been conformed to that used in the American Ephemeris and
Nautical Almanac.

The tables of the Navigator referred to in the first three parts
of the work may be found, with a very few exceptions of slight im-
portance, in Bowditch’s Useful Tables, a convenient selection from
the Navigator, published by Messrs. E. and G. W. Blunt, New
York. The only necessary tables, indeed, in this portion of the
book, are those of logarithms of numbers, of logarithmic sines &c.,
of meridional parts, and of the correction for the middle latitude.

1861, March.
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GEOGRAPHICAL POSITIONS

OF PLACES MENTIONED IN THIS WORK.

Authorities : the U. S. Coast Survey Reports, the American
Ephemeris, the Connaissance des Temps, and Bowditch’s Navi-
gator.

(Observatory) . . 38 b4
Yankee Straits, New South Shetln.nd . . | 62 80

Places. Latitudes, Logfi:e':ld:fcg.om
Albany e e e 42° 89/ N, | 178° 46/ W.
Athens (Parthenon) . . . . | 87 68 N. 28 44 E.
Barcelona (Cathedral) o« . o e 41 28 N 2 10 E.
Boston (* Light) . . . . . |42 20 N 70 63 W.
¢ (State House) . . . 42 21 N 71 03 W.
Botany Bay (Cape Banks) . . . .18 02 8. |151 138 E.
Canton . . . . . 28 08 N. (1183 17 E.
Charleston (nght) . . . |82 42 N 79 52 W.
Disappointment I., N. Pacific Ocean . . 27 16 N. | 140 51 E.
Dlsn.ppomtmentls 8. Pacific Ocean . . |14 10 8. | 141 18 W.
Gibraltar . . . . 86 07 N. b 21 W,
Good Hope, Cape of (Pomt) . . . . |8 228 18 29 E.
Georgetown, Bermudas . . . . 82 2 N 64 383 W.
Greenwich (Observatory) . . . . |61 29 N, 0 00
Halifax (Dockyard) . . . . . 44 40 N 68 85 W.
Horn, Cape, (Point) . . . . .| 66 69 B 67 16 W.
Java Head . . . . e . . 6 48 8. [ 106 13 E.
Land’s End . . . . . . 160 04 N 5 42 W,
Lima (8. J. de DIOB) . . P . 12 03 8 77 08 W.
Liverpool (Observatory) . . . . .| 58 26 N, 8 00 W.
London (8t. Paul’s) . N . . 51 81 N 0 06 W.
Melbourne, Australia . . . . . {87 48 8. | 144 59 E.
Moscow (Observatory) . . . . 66 46 N. | 87 84 E.
Nantucket (Gr. Point Light) . . . |41 28 N 70 02 W.
Newfoundland (8. Pt. Great Bank) . . 42 66 N 50 00 W.
New Orleans (City Hall). . . . . 129 68 N 90 07 W.
New York (Battery) . . . 40 42 N 74 01 W.
LO (‘Navesmk nght) . . . 140 24 N 78 659 W.
Paris (Observatory) . . . . 48 50 N 2 20 E.
Portland (Light) . . . . . . |48 87 N 70 12 W.
St. Helena (Observatory) . . . . 16 56 8. b 43 W.
St. Roque, Cape . . . . +| b 28 B 8 17 W.
8t. Thomas, Cape . . . . 22 03 8, 41 00 W.
St. Vincent, Cape, (Convent) . . . {87 038 N 9 00 W.
San Francisco (Pt. Boneta Light) . . 37 49 N. (122 381 W,
Santa Cruz, C. Verde Islands . . . |17 02 N 26 15 W,
Smeerenburg Harbor, Spitzbergen . . 79 44 N 11 11 E.
Stockholm (Observatory) « « « .89 21 N.| 18 038 E.
Verde, Cape . o e 14 43 N 17 381 W.
Washmgton (‘Ca.pltol) o e e . |88 53 N 77 00 W,
N. Ww.
8 w.

* Used in the examples in Navigation.

N. B. A few other places are referred to, in the Astronomy; but their geo-
graphioal positions are given, where they occur.
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PLANE TRIGONOMETRY.

CHAPTER 1I.
GENERAL PRINCIPLES OF PLANE TRIGONOMETRY.

1. Trigonometry is the science which treats of angles and
triangles. :

2. Plane Trigonometry treats of plane angles and plane:

triangles. [B., p. 36.%]
8. The sides and angles of a triangle are called its parts.

A triangle is said to be known, when all its parts are known.

To solve a triangle is to calculate the values of its unknown
parts.

It has been proved in Geometry that, when three of the six parts

of a triangle are given, the triangle can be constructed, provided

one at least of the given parts is a side. In these cases, then, the
unknown parts of thé triangle can be determined geometrically,
and it may readily be inferred that they can also be determined
algebraically ; that is, that it is possible to find equations which
express the relation of the unknown parts to the known, and by
which the unknown parts can be computed numerically.

But a great difficulty is met with on the very threshold of the
attempt to apply the calculus to triangles. It arises from the cir-
cumstance that two kinds of quantities are to be introduced into
the same formulas, — sides and angles. These quantities are not only
of an entirely different species, but the law of their relative increase
and decrease is so complicated that they cannot be determined from
each other by any of the common operations of Algebra.

* References between the brackets, preceded by the letter B., refer to the
pages in the stereotype edition of Bowditch’s Navigator.
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4. To diminish the difficulty of solving triangles as much as
possible, every method has been taken to compare triangles
with each other, and the solution of all triangles has been
reduced to that of a Limited Series of Right Triangles.

a. It is easily seen that the solution of all triangles is reducible ‘to
that of right triangles. For every oblique triangle is either the
sum or the difference of two right triangles; and the sides and
angles of the oblique triangle are the same with those of the right
triangles, or may be obtained from them by addition or by subtrac-
tion. Thus the triangle ABC is the sum (fig. 2), or the difference
(fig. 8), of the two right triangles ABP and BPC. In both fig-
ures the sides AB, BC, and the angle A belong at once to the
oblique and the right triangles, and so does the angle BCA (fig.
2), or its supplement (fig. 3); while the angle ABC is the sum
(fig. 2), or the difference (fig. 8), of ABP and PB('; and the side
AC is the sum (fig. 2), or the difference (fig. 3), of AP and -PC. '

b. It follows from the well known propositions of Geometry con-
cerning the similarity of right triangles [B., pp. 8, 12] that any
assumed value of one of the acute angles of a right triangle deter-
mines the value of the other acute angle and the values of the
various ratios between its sides, and that any assumed value of one
of these ratios determines the values of the other ratios and of the
acute angles. 'If, then, in the triangle ABC (fig. 4), right angled at
C, we denote‘the hypothenuse by k& and the legs opposite to the angles
A and B by a and b respectively, and if we arrange in one column
of a table all the possible values of the angle 4, from 0° to 90°, and

then calculate and arrange in other columns the corresponding

values of the six ratios J» ;l, gv ;’ =1 and —v and of the angle B,

wa shall have a series of right triangles, in which every possible
case of the right triangle will be represented, and by reference to
which, provided a sufficient number of parts are given, it can be
solved. Suppose, for instance, that the angle 4 and the adjacent
leg b are given. We are to look through the series of calculated
triangles till we find one which has the angle A equal to the given
angle; and this triangle is similar to that which we seek to solve.
Then, to find the leg a, we have only to multiply the value which

we have found of the ratio by 5, and to find the hypothenuse, we
have only to multiply -b'f by b, and the value of the angle B is given
directly in the table.
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Moreover, since one of the acute angles of every right triangle is
included between 0° and 45°, it is evident that the last half of the
above series is essentially a repetition of the first half, and is there-
" fore unnecessary.

¢. But as there is an infinite variety of values which an angle
may assume, between any given limits, a perfect series of right
triangles could never be constructed or calculated. Fortunately,
such a series is not required; and it is sufficient for all practical
purposes to calculate a series in which the successive angles differ
only by a minute, or at least, by a second. Intermediate triangles
can be obtained, when needed, by that simple principle of interpo-
lation which is made use of to obtain the intermediate logarithms
from those given in the tables.

5. Plane Trigonometry then embraces the methods of calcu-
lating the series, or table, above described, and of applying it to
the solution of all kinds of plane triangles, together with such
investigations as naturally grow out of the general theory of the
science, though they may not be directly connected with the
solution of triangles.

1-
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CHAPTER II.

SINES, TANGENTS, AND SECANTS.

6. The six ratios between the three sides of the right triangle,
which ratios, as it has been seen, are fully determined by the
value of either of the acute angles, are called the trigonometric
Junctions of either acute angle ; or, sometimes, the trigonome-
tric_ratios.

7. Each trigonometric function has its distinctive name.

The Sine of an angle is the quotient obtained by dividing
the leg opposite it in a right triangle by the hypothenuse.

Thus, if we denote (fig. 4) the legs BC and AC by the letters a
and b, and the hypothenuse AB by the letter 4, we have

. . b

sm.A:%, sin. B = i (1)

The Tangent of an angle is the quotient obtained by divid-
ing the leg opposite it in a rig}}t triangle by the adjacent leg.

Thus, (fig. 4),

: a b
tang. 4 = B tang. B == (2)
The Secant of an angle is the quotient obtained by dividing
the hypothenuse by the leg adjacent to the angle.
Thus, (fig. 4),
h

h
sec, A = 5 sec. B= 7 3)

The Cosine, Cotangent, and Cosecant of an angle are re-
spectively the sine, tangent, and secant of its complement.

8. Corollary. Since the two acute angles of a right triangle
are complements of each other, the sine, tangent, and secant of

the one must be the cosine, cotangent, and cosecant of the
other.
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\ \
Thus, (fig. 4),

sinn. A=cos. B=
cos. A—=sin. B=
tang. A = cotan. B—=
: (4)

cotan. 4 — tang. B =

- sec. A =— cosec. B —

cosec. A —sec. B—

Q> gqgnﬁlv VR §-l°'>|§

9. Corollary. It is evident that the sine and cosine of every
angle are less than unity, that the secant and cosecant of every
angle are greater than unity, and that the tangent and cotangent
may have any value, the tangent being greater than unity
when the cotangent is less, and less when the cotangent is
greater.

10. Corollary. By inspecting the preceding equations (4),
we perceive that the sine and cosecant of an angle are reci-
procals of each other; as are also the cosine and secant, and
also the tangent and cotangent.

So that .

cosec. A4 X sin. A:gx%:i—::l

sec. A X cos. A::;—x%:;i:l (5)
tang. A X cotan.A:Z—X :—zg%_ 1

whence

cosec. A = sinl. 2 °F sin, 4 = coTelc.—A

sec. A= co:. 3 OF cos. A= ﬁecl. y (6)
cotan. 4 = tanl. y il tang. 4 = cotaln. y
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!
As soon, then, as the sine, cosine, and tangent of an angle are

known, their reciprocals, the cosecant, secant, and cotangent, may
easily be obtained.

11. Problem. To find the tangent of an angle when its sine
and cosine are known.

Solution. The quotient of sin. A divided by cos. 4 is, by equa-
tions (4),

sinnd_a b ah_a
cos. A"k kbR B .
But by (4),
tang. A:;,
hence
sin. 4
tang.A_m. (7)

12. Corollary. Since the cotangent is the reciprocal of the
tangent, we have
cos. 4

cotan. 4 = A (8)

13. Problem. To find the cosine of an angle when its sine
8 known.

Solution. We have, by the Pythagorean proposition, in the right
triangle ABC (fig. 4),
a4 5 = k3~
But by (4),

a -{-b’ h?
;,n+),2 B R T

or (sin. 4)24- (cos. 4)2=1; 9)

(sin. 4)2 4 (cos. 4)2 = 1, |

that is, the sum of the squares of the sine and cosine of any angle
18 equal to unity.
Hence (cos. 4)2 =1 — (sin. 4)3,
cos. A=/ 1—(sin. 4)% (10)
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14. Corollary. Since
W —a? =8,
we have by (4), .

B e k—a? 1

2 __ e " _ T 7

(sec.,A) (tan. 4)2 = B RT TR == 1,
or (sec. A)3— (tang. 4)2=1; ) (11)
whence (sec. A)? =1+ (tang. A)2

15. Corollary. Since
B—32= g2,
we have by (4),
RO¥ R—h

(cosec. 4)? — (cotan. 4)2 = B m= g =0b

or (cosec. A)2 — (cotan. 4)2=1; (12)

whence (cosec. A)?=1 (cotan. 4},

16. Scholium. The whole difficulty of calculating the tri-
gonometric tables of sines and cosines, tangents and cotangents,
secants and cosecants is, by the preceding propositions, reduced
to that of calculating the sines alone. This agrees with the
statement of § 4 b, that any one ratio determines the others.

17. ExAMPLES.

1. Given the sine of the angle A, equal to 0.4568, calculate its
cosine, tangent, cotangent, secant, and cosecant.

Solution. By equation (10)

cos. A =4a/1 — (sin. 4)2 =4/ (14 sin. 4) (1 — sin. 4).

t 14-sin. A=1.4568 0.16340
1 —sin. 4 =X0.5432 9.73496
(cos. 4)? 2/9.89836 -
cos. A — 0.8896 9.94918
By (7) and (8), ;
tang. 4 —sin. 4 cotan, 4 = o A

cos. A’ . sin. 4
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sin. A = 0.4568 9.65973 (ar. co.) 10.34027
cos. A= 0.8896 (ar.co.) 10.05082 9.94918
- 9.71055 (ar. co.) 10.28945
tang. A = 0.5135 cotan. 4 =1.9474.
By (6),
. 1 1
sec. A = Py cosec. 4 = |

log. sec. A —=—1log. cos. A = 0.05082,
sec. 4 =1,1241,
log. cosec. A = — log. sin. 4 = 0.34027,
cosec. A =2.1891.

2. Given sin. 4 = 0.1111; find the cosine, tangent, cotangent,
secant, and cosecant of 4. '
Ans. cos. A= 0.9938
tang. 4 =0.1118
cotan., A — 8.9452
sec. A =—1.0062
cosec. A =9.0010

3. Given sin. A = 0.9891; find the cosine, tangent, cotangent,
secant, and cosecant of A.

Ans. cos. A=0.1472 /
tang. A =64173 7/’
cotan. 4 — 0.1489 7/

Vé b
sec. A =6.794} ,‘f/f v

cosec. A =1.0110

18. Theorem. The sine of an angle is equal to the perpen-
dicular let fall from one extremity of the arc which measures it,
in the otrcle whose radius is unity, upon the radius passing
through the other extremity.

* The cosine 8 equal to 8o much of the radius drawn perpen-
dicular to the sine as i8 included between the sine and the
centre.

Proof. Let ACB (fig. 5) be the angle, and let the radius of the
circle ABA’A be the unit of length. Let fall on the radius CA
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the perpendicular BP, and we have by §7, in the right triangle
BPC,

_ PB_PB _

Bln.ACB_-éE——l—-_PB
CP CP

cos. ACB = B=T1°~ CP.

19. Theorem. In the circle of which the radius is unity, the
‘ secant i8 equal to the length of the radius which is drawn through
one extremity of the arc which measures the angle and produced
till it meets the tangent drawn through the other extremity.
The trigonometric tangent is equal to so much of the tan-
gent drawn through ome extremity of the arc as t8 intercepted
between the two radiv which terminate the arc.

Proof. If CB (fig. 5) is produced to meet the tangent AT at T,
we have, by (2) and (3), in the right triangle ACT,

CT_ CT

sec. ACB:EZ—T=CT
AT AT

2 == ———=AT.

tang. ACB A= 1 T.

20. Corollary. 1If, in fig. 5, a radius CA” be drawn per-
pendicular to CA, the angle A”CB will be the complement of
ACB. Hence, if a tangent AT be drawn to meet the pro-
duced radius C'T, the lengths A”T” and CT" will be equal
respectively to the tangent and the secant of A”CB; that is,
to the cotangent and the cosecant of ACB.

21. Scholium. On account of their relation to the unit-
circle, the trigonometric functions are often called circular
Junctions ; and most writers upon trigonometry have defined
the sine, cosine, &c., as lines drawn in the manner described
in §§18-20, but without limiting the radius of the circle to
unity. [B., p. 6.]

If any radius is taken at pleasure, the values of the sine, &ec., of
any given angle are not fixed, but vary with the value of the radius ;
whereas, if the unit of length is always taken as radius, though any
line may be made the unit, so that the actual lengths of the lines
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which represent the sine, &c., may vary, yet the numerical values of
these lines remain the same, being their fixed ratios to the radius,
which is always the unit. Hence, if R represents the value of the
radius adopted in the common system, we have

din., cos., &c., in the common system — R X sin., cos., &c.,

in this system.

22. Corollary. If the angle is very small, as C (fig. 6), the arc
AB will be sensibly a straight line, perpendicular to the two radii,
CA and CB, drawn to its extremities, and will sensibly coincide
with the sine and tangent; while the cosine will sensibly coincide
with the radius CA, and the secant with the radius CB.

Hence, the sine and tangent of a very gmall angle are nearly
equal to the arc which measures the angle in the circle of which
the radius is unity ; and its cosine and secant are mearly equal
to unity.

238. Problem. To find the sine of a very small angle.

Solution. Let the angle C (fig. 6) be the given angle, and sup-
pose it to be exactly one minute. The arc AB must in this case be
todog of the semicircumference of which unity or CA is radius.
But the value of the semicircumference of which unity is radius has
been found in Geometry to be 3.1415926. Therefore, by § 22,

3.1415926

sin. '!= AB = —os00 — 0.000290888. (13)

In the same way we might find the sine of any other small angle,
or we might, in preference, find it by the following proposition.
L 4

24. Theorem. The sines of very small angles are proportional
to the angles themselves.

Proof. Let there be the two small angles, ACB and ACB'
(fig. 7). Draw the arc ABB’ with the centre C and the radius unity.
‘Then, as angles are proportional to the arcs which measure them,

ACB: ACB'=AB: AB.
Buat, by‘ §22,
sin. ACB = AB, sin, ACB'= AB,
whence

ACB: ACB' —=sin. ACB : sin. ACB'.
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Scholium. §§ 22 —24 are only approximately true of any angle;
but the smaller the angle, the less is the error of these propositions.
It is found that, for angles less than two degrees, the values of the
sine found by this method are accurate in the first five places of
decimals. Consequently, in calculating the sines of angles to five
places of decimals, this method may be applied to angles less than
two degrees ; the investigation of the sines of larger angles requires
the introduction of some new formulas. If more than five places are
desired, the more accurate formulas must be introduced at an earlier
point.

25. Corollary. It follows from the preceding theorem that if x.
is a very small angle,

sin. £ = r sin. 1/, ' (14)
provided that x in the second member @enotes the number of minutes
in the angle. But if z is expressed in seconds, we have

sin. z —=.z 8in. 1”7 (15)
and if z represents the angle by denoting the length of the arc which
measures it in the circle of which the radius is unity,

sin.x=ux; ‘ (16)
and either of these different notations may be used at pleasure.

26, Exampres. > )
1. Find the sine of 12’ 13", knowing that
sin. 1/ = 0.0002909.

Solution. By (14),
1/: 12/ 13” = sin. 1': sin. 12/ 18",
or
60" : 733" = 0.0002909 : sin. 12/ 18",
Hence

733 % 0.0002909
60

2. Find the sine of 7/ 15", knowing that
sin. 1" = 0.0002909.
Ans, siln. 7! 15" = 0.00211.
8. Find the sine of 1° 2/ 32", knowing that
sin, 1/ =0.0002909.
Ans. sin. 1° 2/ 32 = 0.01819.

sin, 12/ 13" —= — 0.00355. Ans.
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27. Problem. Given the sine.of any angle, to find the sine
of another angle which exceeds it by a very small quantity.

Solution. Let the given gngle be ACB (fig. 8), which we will
denote by the letter f; and let the angle whose sine is required be
ACB', exceeding the former by the angle BCB', which is supposed
to be so small that the arc BB’ may be considered as a straight line,
as in § 22, and which we will denote by the letter m ; so that

M= ACB, m= BCH,
M+4m= ACBHB.

From the vertex C as a centre, with the radius unity, describe the
arc ABB'. From the points B and B, let fall BP and B'P’ per-
pendicular to AC.

We have, by §18, o
sin. M= PB, cos. M= CP,

sin. ACB' = sin. (M 4 m) = P'B'.
Draw BR perpendicular to B/’P'; and
P'B'=PB+ RB/,

or
sin (M 4 m) = sin. M 4 RB.
The right triangles BCP and BB'R, having their sides perpen-
dicular each to each, are similar, and give the proportion
CB: BB =CP: RB.
But, by §22,
BB’ = sin. m.

Hence
1:8in.m—cus. M: RB';

and RB' = sin. m . cos. M,
which gives, by substitution,
sin. (M 4 m) = sin. M 4 sin. m . cos. M [¢Y))
If mis 1/, (17) becomes, by (13),
sin. (M4 1’) = sin. M - sin. 1. cos. M,
= sin. M+ 0.00029 cos. M. (18)
We may, by this formula, find the sine of 2’ from that of 1,

thence that of 3/, then of 4/, of 5/, &c., to the sine of an angle of
any number of degrees and minutes.
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28. Corollary. We can, in a similar way, deduce the value of
cos. (M + m).
For, by §18,
cos. (M+m) = CP'= CP—PP
. —=cos. M— RB.
But the similar triangles BB'R and BCP give the proportion
CB: BB'=PB: RB,

or
1: sin. m —=sin. M : RB.
Hence
RB —sin, m . sin. M,
whence

cos. (M 4 m) = cos. M —sin. m . sin. M ; (19)
and, if we make m — 1/, this equation becomes
‘cos. (M 4 1') = cos. M — sin. 1/ . sin. M,
= cos. M —0.00029 sin. M. (20)

~29. ExampLEs.
1. Given the sine of 23° 28’ equal to 0.39822, to find the sine of
23° 29/, : .
Solution. We find the cosine of 23° 28’ by (10) to be
cos. 23° 28’ = 0.91729.
Hence, by (18), making M — 23° 28’
sin. 23° 29/ — sin. 23° 28’ 4 0.00029 cos. 23° 28/,
= 0.39822 - 0.00026,
= 0.39848.
Ans. sin. 23° 29/ — 0.39848.
2. Given the sine and cosine of 46° 58/ as follows,
sin. 46° 58’ — 0.73096, cos. 46° 58’ — 0.68242,
find the sine and cosine of 46° 59'. '
Ans. sin. 46° 59’ = 0.73116,
cos. 46° 59/ — 0.68221.

8. Given the sine and cosine of 11° 10’ as follows,
sin. 11° 10/ =0.19366, cos. 11° 10’ = 0.98107,
find the sine and cosine of 11° 11/, ’ ’

Ans. sin. 11° 11/ = 0.19395.
cos. 11° 11/ = 0.98101.
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80. By the formulas here given, a complete table of sines,
cosines, &c., may be calculated. Such tables have been actually
calculated, but generally by methods more convenient in prac-
tice than that explained in this chapter. Table XXIV of the
Navigator is a table of sines and cosines calculated to five
places of decimals ; ‘and Table XXVII gives the five-place
logarithms of all the trigonometric functions.

The trigonometric functions themselves are called natural, as in
Table XXIV, to distinguish them from their logarithms, which are
more often used, and which are sometimes called the artificial
sines, &c.

Table XXIV is constructed on the system of §21, the radius
being
* 105 = 100,000 ;

8o that this table is reduced to the present system by dividing each
number by this radius; that is, by putting the decimal point five
places back, or prefixing it to each number asit is given in the table.

The radius of Table XXVII is
101 = 10,000,000,000 ;

so that this table is reduced to the present system by subtracting
from each number the logarithm of this radius, which is 10; that
is, by subtracting 10 from each characteristic.

These values of the radius are taken in order to avoid printing
the decimal point in the first case, and to avoid negative characteris-
tics in the second case.

The method of using these two tables is fully explained in pp.
83— 85 (given at the end of the Useful Tables) and pp. 391, 392 of
the Navigator. It is supposed to be understood in the remainder
of this book.

If we disregard the ¢ Hour” columns in Table XXVII, with
which at present we have nothing to do, and the insertion of angles
greater than 90°, which will be explained in a future chapter, this
table corresponds precisely to the series of right triangles described
in § 4, the two opposite angles being always complements of each
other, and the six principal columns giving the values of the six
trigonometric ratios, each of which, as in § 8, bears complementary
relations to the two angles,
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CHAPTER IIL
RIGHT TRIANGLES.

81. The general formulas which are obtained for the solu-
tion of triangles should in each case, as far as possible, express
the unknown parts in terms only of those which are given at the
outset ; but it is occasionaly better, for practical reasons, in the
working of a numerical example, to compute certain of the
unknown parts first, and then use these in finding the others.

Two classes of problems in the solution of right triangles
may be distinguished ; — the first class including those in which
an acute angle and a side are given ; the second, those in which
‘two sides are given.

In problems of the first class, the general method of finding
either unknown side is to see what trigonometric function of the
known angle is represented by the ratio of the side sought to the
given side, find its value in the table, and multiply it by the given
side. The unknown angle is the complement of the known
angle.

In problems of the second class, the general method of find-
ing either acute angle is to see what function of this angle 1is
represented by the ratio of the given sides, find the value of this
ratio, and look out the corresponding value of the angle in the
table. The unknown side may be found by the Pythagorean
Proposition.

82. Problem. To solve a right triangle, when the hypothe-
nuse and one of the angles are known. [B., p. 88.]

Solution. Given (fig. 4) the hypothenuse & and the angle 4, to
solve the triangle.

First. To find the other acute angle B, subtract the given angle
from 90°,
2
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Secondly. To find the opposite sidc; a, we have, by (1),

v sin, A = ;,
‘which, multiplied by &, gives ‘ .
) a="hsin, 4; (21)
or, by logarithms,
log. a = log. h 4 log. sin. 4.
Thirdly. To find the side# we have, by (4),

cos, 4 = ;,
which, multiplied by &, gives .

b=hcos. A; (22)
or, by logarithms, ¢
log. & = log. k +-log. cos. 4.

33. Problem. To solv;z a right triangle, when a leg and the
opposite angle are known. [B., p. 89.]

Solution. Given (fig. 4) the leg.a and the opposite angle A4, to
solve the triangle.

First. The angle B is the complement of 4.
Secondly. To find the hypothenuse &, we have, by (4),

cosec. A = l' ,
a

which, multiplied by a, gives, by (6),

a
h=acosec. 4 = rwi (?3)

or, by logarithms,
log. h =log. a4 log. cosec. 4 = log. a - (ar. co.) log. sin. 4.
Thirdly. To find the other leg b, we have, by (4), '

cotan, A — é,
a

b=acotan. 4; (24)
log. b =log. a -}-log. cotan A.

34. Problem. To solve a right triangle, when a leé and the
adjacent angle are known. [B., p. 39.] . [

Solution. Given (fig. 4) the leg a and the angle B, to solve the
triangle. .

First. The angle 4 is the complement of B.
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Secondly. 'We have for & and b, from (4) and (6),

a
h—=—asec. B= m, (25)

b=a tang. B; (26)
or, by logarithms, .
log. & = log. a + log. sec. B,
log. b = log. a 4 log. tang. B.

85. Problem. To solve a right triangle, when the hypothe-
nuse and a leg are known. [B., p. 40.]

Solution. Given (fig. 4) the hypothenuse A and the leg a, to solve
the triangle. :

First. The angles A and B are obtained from equation (4),

sin. 4 = cos. B= ‘;‘; (27)
or, by logarithms,
log. sin. A = log. cos. B = log. a4 (ar. co.) log. A.

Secondly. 'The leg b is deduced from the Pythagorean property

of the right triangle, which gives

ad 4 B2 =12, (28)
B¥B=B—a*=((h+4a)(h—a),
b=w (B—a)=a[(h+a) (h—a)]; (29)

log. b=} log. (A®—a?) = } [log. (h 4 a) +-log. (h —a)].

86. Problem. To solve a right triangle, when the two legs are
known. [B., p. 40.]

®Solution. Given (fig. 4) the legs a and b, to solve the triangle.
First. 'The angles are obtained from (4),

tang. A = cotan. B=7 B (30)

log. tang. A = log. cotan. B = log. a +- (ar. co.) log. &.
Secondly. To find the hypothenuse, we have, by (28),
h=a/ (a2 4 82). (81)

Thirdly. A practically better way of finding the hypothenuse
. is to make use of (23) or (25),

h = a cosec. A — a sec. B; (82)
log. & = log. a 4 log. cosec. A = log. a -} log. sec. B.
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37. ExaMPLES.
1. Given the hypothenuse of a right triangle equal to 49.58, ahd

one of the acute angles equal to 54° 44/ ; to solve the triangle.

Solution. The other angle =— 90° — 54° 44/ — 35° 16’. Then
making & = 49.58, and 4 = 54° 44/; we have, by (21) and (22),

= 49.58 1.69531 ) 1.69531
A = 54° 44/ - %gin. 9.91194 cos. 9.76146
— -
a = 40.481 '1.60725; b= 28.627 1.45677
Ans. The other angle — 35° 16/;
40.481
The legs = { 28.627

2. Given the bhyptb)thenuse of a right triangle equal to 54.571, and
one of the legs equal to 23.479; to solve the triangle.

Solution. Making kb = 54.571, a—28.479; we have, by (27),

a—23.479 1.37068
h = 54.571 (ar. co.) 8.26304
— ° / M
il BT
By (29),

h+ a=178.050 1.89237

h—a=231.092 1.49265
8 2 [B.38502 ’

b—=49.262 1.69251

Ans. The other leg — 49.262

25° 29/

The angles = g 64° 31/

3. Given the two legs of a right triangle equal to 44.375, and
22.165 ; to solve the triangle,

* To avoid negative characteristics, the logarithms are retained as in the
tables, according to the usual practice with the logarithms of decimals, as in
B., p. 29.
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Solution. Making a = 44.375, b = 22.165; we have

a = 44.375 1.64714 1.64714
b= 22.165 (ar. co.) 8.65433

} 10.30147;

A = 63° 27/ 28" tang.

cosec.
B — 2604 32’ 82/ cotan. c. ; 10-04837

h = 49.603 1.69551
Ans. The hypothenuse — 49.603

63° 27/ 28"

The angles = { 26° 327 32n

4. Given the hypothenuse of a right triangle equal to 37.364, and
one of the acute angles equal to 12° 30/; to solve the triangle.

Ans. The other angle = 77° 30/

8.087
The legs = { 36.478

5. Given one of the legs of a right triangle equal to 14.548, and
the opposite angle equal to 54° 24'; to solve the triangle.
Ans. The hypothenuse — 17.892
The other leg  =10.415
The other angle — 35° 36’

6. Given one of the legs of a right triangle e&ual to 11.111, and
the adjacent angle equal to 11° 11/; to solve the triangle.
: Ans. The hypothenuse — 11.326
The other leg = 2.197
The other angle =—178° 49’

7. Given the hypothenuse of a right triangle equal to 100, and
one of the legs equal to 1; to solve the triangle.

Ans. The other leg = 99.995

' 0° 34’ 23"

The angles — { 89° 95/ 37/
8. Given the two legs of a right triangle equal to 8.148, and
10.864 ; to solve the triangle.
: Ans. The hypothenuse = 13.58

36° 52/ 11"
The angles = { 53° 71 497
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CHAPTER 1V.
GENERAL FORMULAS.

38. Certain general problems, concerning the mutual rela-
tions of the trigonometric functions of angles which have simple
relations to each other, are perpetually recurring in the applica-
tions of trigonometry ; and as some of them arise in the solution
of oblique triangles, it is convenient to bring them together and
investigate them at this point.

89. Problem. To find the sine of an angle equal to the sum
of two other angles, in terms of the trigonometric functions of the
two latter angles ; or, more briefly,

To find the sine of the sum of two angles.

Solution. Let the two angles be CAB and B'AC (fig. 9), repre-
sented by the letters M and N. At any point C in the line AC,
erect the perpendicular BB'. From B let fall on AB’ the perpen-
dicular BP. Then represent the several lines as follows,

a®CB, o =B'C, b=AC
h=AB, k="AB, 2=PB
M= CAB, N=PBAC. ‘
Then, by (4),

/

. . a . a
sin. CAB —=sin. M = e sin. N—= W
b b
cos. M:IT’ _cos. K:,p N
. . _PB =
sin, BAB =sin. (M4 N) = 1B=

Now the triangles BPB’ and B'AC, being right-angled, and
having the angle B’ common, are equiangular and similar.
Whence we derive the proportion
AB': BBB=AC: PB,
or
h:ata=b:r;
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whence

>
ab+4a'b 5
I=—, . .
h .
and . a o
: . z _ab+4ab T !
sin. (M 4 N)=’7= :;., !

The second member of this equation may be separated into factors,
as follows, "

. ab ba
sin. (M+N)=h—h’+_h_h’—
ad b a
=R tThw
whence, by substitution, we obtain
sin. (M+ N)=sin. M cos. N - cos. M sin. IV. (88)

40. Problem. To find the sine of the difference of two angles.

Solution. Let the two angles be CAB and CAB’ (fig. 10), repre-
sented by M and IN. At any point C in the line AC erect the
perpendicular CB’B. From B let fall on AB’ the perpendicular
BP. Then, applying to fig. 10 the notation of § 39, we have

. . PB z -
sin. B'AB = sin. (M— N) = a8 =7

The triangles B’AC and BB'P are similar, because they are right-
angled and the angles at B’ are vertical and equal.

‘Whence
AB : BB=AC: PB,
or
W:a—a=b:z;
whence
ab — a'd °
&= —p
and
— 7
sin. (M—N) = = L2=0¢
__abd ba
YA Y
_adb ba
TRRT R

N
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and by substitution, '
sin. (M — N) =sin. M cos. N— cos. M sin. V. (34)

41, Problem. To find the cosine of the sum of two angles.

Solution. Making use of fig. 9, with the notation of §39 and
also the following,
y=AP,z=PB';
we have ,
AP gy
cos. (M4 N) = 4B =i
But
y—=AB' — PB' = k' —2.
The similar triangles BPB' and B’AC give the proportion
AB : BB=B'C: PB,

or
M:ada =a:z;
whence
_aa +a?
PET
and
aad 4 a?
y:h’—z:h’—-——’j———
__hr—a?—ad
_*’l,——--

But, from the right triangle AB'C,
h?2—a?=(AB')?— (B CR2 = (402 = ¥;

whence
B2 —aa
y= W
and .
y __B—aad
cos. MM =F=—3—
2 ga
YN Y
v _bbd ada \
= il. e l_l . h—' ’
whence, by substitution,
cos. (M4 N)=rcos. M cos. N— sin. M sin. IV. (35)
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42. Problem. To find the cosine of the difference of two
angles.

Solution. Msking use of fig. 10, with the notation of the preced-
ing section, we have

AP gy
.BAB—=cos.  H—N) ===
cos. B'A cos. ( ) TB= 3
But y=AB' 4+ BP="h' 4=z

The similar triangles BB'P and B'AC give the proportion
' AB:BB=CB':BP,

or K:ia—a=ada:12;
aa' —a?
whence 1=
I — q?
and y:h’-{-z.—_k'-{-a_ih—,-a—
K2 —a?4aa
—_— ————7",——‘.
But h?2— a2 = B3,
b2 !
Hence y=$i,
y B+4aa
and cos. (M——N):-/;= A
b aad
T RE T RN
b5 a a
=i Thw
or, by substitution,
cos. (M — IN) = cos. M cus. N sin, M sin. V. (36)

43. Corollary. The.similarity, in all but the signs, of the for-
mulas (33) and (34) is such that they may both be written in the
same form, as follows,

sin. (M 2= N) = sin. M cos. IV = cos. M sin. NV, (37)
8
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in which the upper signs correspond with each other, and also the
lower ones.

In the same way, by the comparison of (35) and (36), we are led
to the form .
cos. (M 4= N)= cos. M cos. N =F sin. M sin. NN, (38)

in which the upper signs correspond with each other, and also the
lower ones.

44. Corollary. The sum of the equations (83) and (34) is

sin. (M 4 N) +4 sin. (M — N) = 2 sin. M cos. NV. (89)
Their difference is

sin. (M4 N) — sin, (M—N) =2 cos. M sin. N. (40)
45, Corollary. The sum of (35) and (36) is
cos. (M 4 N) -+ cos. (M — N)=2 cos. M cos. N. (41)

Their difference is

cos, (M — N) — cos. (M4 N)= 2 sin. M sin. V. (42) "

Formulas (39 —42), like (37) and (38), may obviously be applied
to any values of the angles M and IN; and they are often found
useful in trigonometric investigations.

46. Corollary. If, in (89 - 42), we make
M+ N=A,and M— N=B;
that is,
M=}(4+B), N=3(4—B);
they become, as follows,
sin. A 4 sin. B =2 sin. } (4 4 B) cos. %(A—B) (48)
sin. 4—sin. B =2 cos. } (4 + B) sin. } (4 — B) (44)
cos. A 4 cos. B=2 cos.} (A4 B) cos. 4 (4— B) (45)
cos. B—cos. A =2 sin. § (4 4 B) sin. } (A — B); (46)

and, in (43-46), A and B represent any two angles, because it is
always possible to find two angles, M and N, of which the sum is
equal to A4 and the difference to B.

47. Corollary. The quotient obtained by dividing (48) by (44)
is '
sin. A4-sin. B sin. § (A4 B) cos. 3 (A— B)

sin. A —sin. B ™ cos. 3 (44 B) sin. § (4 — By’
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Reducing the second member by means of equations (6), (7), (8),
We general formula: —

sin, A 4-sin. B
sin. A —sin. B

__tang. 3 (44 B) _ cotan. } (A— B)
" tang. 3 (A— B) ™ cotan. } (4 4+ B)’

= tang. § (4 + B) cotan. § (4— B)

(47)

48. Corollary. Dividing (46) by (45), and reducing, we have
the general formula: —

cos. B—cos. 4
cos. B+ cos. 4

__ tang. 3 (A4 B) _ tang. 3 (4— B) (48)
" cotan. } (A— B) ~ cotan. } (A4 B)’

= tang. } (4 4 B) tang. } (A— B)

49, Corollary. If, inv(33) and (35), we suppose M and IV equal
to each other and represent their common value by A, we obtain, for
the sine and cosine of the doubdle of any angle,

sin. 2 A = sin. A cos. A 4 sin. A cos. A =2 sin. A cos. A (49)
cos. 2 A =cos. A cos. A —sin. A4 sin. 4
= (cos. 4)®— (sin. 4)2. (50)

§0. Corollary. Comparing equation (50) with the following
‘equation, which is the same as (9),

1 = (cos. A)3 4 (sin. 4)3,

we obtain, by addition and by subtraction,
1+4cos. 2 A =2 (cos. 4)? (51)
1—cos. 2 A =2 (sin. 4)2 (52)

51. Corollary. Making 2 A= Cand 4 =} C, in (49-52), we
obtain

sin. C =2 sin. § Ccos. 3 C (58)
cos. C = (cos. § C)2 —(sin. § C)? (54)
1+4-cos. C=2 (cos. § C)? (55)
1 —cos. C=2 (sin. § C)?; (56)
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and the equations (55) and (56) give, for the sine, cosine, and tan-
gent of the half of any angle,

cos. 3 C= o/ [} (1 4 cos. C)] (57)
sin. § C=a/[% (1 — cos. C)] (58)
tang. § C= ci:;—g_g = (—_:;z: g . (59)

62, Problem. To find the tangent and ¢otangent of the sum
and of the difference of two angles.

Solution. First. To find the tangent of the sum of two angles,
which we will suppose to be M and IV, we have, from (7),

sin, (M -+ V)
tang. (M4 N)= a)s.((lld——l-*—lv_))' .
Substituting (33) and (85), :

__sin. M cos. N+ cos. M sin. NV
v tang. (M +N) = cos. M cos. N —sin. M sin. N °

Divide every term of both numerator and denominator of the second
member by cos. M cos. IV; ,

sin. M cos. N + cos. Msin. IV
cos. M cos. N ' cos. M cos. N
tang. (M + N) = cos. M cos. N sin. M sin. N

cos. M cos. N cos. Mcos. N

sin. M  sin. N

cos. M +cos N
sm M gin. I\’
~cos. M cos. N

which, reduced by means of (7), becomes

tanv M+ tang. N
—tang. M tang. V' (60)

tang (M4 N)=
Secondly. To find the tangent of the difference of M and N,
Since by (7)

in. (M—
tang. (M — N) :‘s:%s.(w_—_ll%’
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a bare inspection of (37) and (38) shows that we have only to
change the signs which connect the terms in the value of tang. (M

- N) to obtain that of tang. (M — N). This change, being made
in (60), produces

tang. M — tang. N (61)
1+ tang. M tang. N’

Thirdly. As the cotangent is merely the reciprocal of the tan-
gent, we have, by inverting the fractions, from (60) and (61),
1— tang. Mtang. N

tang. (M— IN) =

cotan. (M+N) = tang. M - tang. N’ (62)
__ 14 tang. M tang. N
cotan. (M —N) = tang. M — tang. N (63)

63. Corollar;y. Make M=N=A, in (60) and (62). They
give, for the double of any angle,

__ 2tang. A
tang. 2 A = T— (tang. 47 (64)
__ 1—((tang. 4)2
cotan. 2 4 = “Stang. 4 (65)

"BOSTON -
WMASS
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CHAPTER V.

VALUES OF THE SINES, COSINES, TANGENTS, COTANGENTS,
SECANTS, AND COSECANTS OF CERTAIN ANGLES.

54. The definitions of sine, cosine, &c. given in §7 can be
applied directly to acute angles only ; but the general formulas
which have been deduced from the definitions can be used to
find values of these functions for obtuse angles, and, indeed, for
angles of any magnitude. .

We shall, therefore, by a natural enlargement of our previous
conceptions, henceforth regard the sine, &c., as functions which
belong to every angle, always having such values as to satisfy
the general formulas which have been established.

An angle may be regarded as the measure of the rotation of a line
which turns in a plane about one of its own points. When the line
has made more than half a revolution, the angle of rotation is greater
than 180°; when it has made more than a whole revolution, the
angle is greater than 360°; and we thus arrive at Yhe conception of
angles of all magnitudes, up to infinity. We may even conceive of
negative angles ; for if the line, after having made a certain rotation,
turn back towards its first position, the angle is diminished, and it
is, therefore, proper to consider this backward rotation as negative;
so that if rotation in one direction is positive, rotation in the opposite
direction is negative, and the angle which measures it is negative,
and this angle may be of any magnitude.

55. Problem. To find the sine, ec. of 0° and of 90°.

Solution. Since 0° and 90° are complements of each other, the
sine of the one is the cosine of the other. It is evident, moreover,
that § 22 is applicable strictly, and not merely approximately, to an
angle of 0°. Hence ) -

sin. 0° = cos. 90° = 0. © (66)
cos. 0° = sin. §0° = 1. (67)
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By (6) and (7), we have

sin. 0° 0

tang. 0° = cotan. 90° = o 0 =1 0 (68)
1 1

cotan. 0° = tang. 90° = fang.0° =5= Ho* (69)
1 1

sec. 0° = cosec. 90° = e P11 1 (70)
1 1

cosec. 0° = sec. 90° = S0 =0= +w. (71)

56. Problem. To find the sine, ge. of 180°.

" Solution. Make A = 90°in (49).and (50); they become, by
means of (66) and (67),

sin. 180° = 2 sin. 90° cos. 90° =2 X 1 X 0 =10 (72)
cos. 150° = (cos. 90°)2—(sin. 90°2 =0—1=—1. (73)
Hence, by (6) and (7),
o__8in.180° 0
tang. 180° = s 180° = —1 = (74)
cos. 180° —1 -
cotan. 180° = e T Rl + o (75)
1 ' 1
© — o= T ——
sec. 180 = s 1800 =T = 1 (786)
. 1 1
cosec. 180 =s—im)—o=6=:1:oo. ()

57. Problem. To find the sine, 4-c. of 270°.
Solution. Make M —=180° and N = 90° in (33) and (35). Tl;ey
become, by means of (66, 67, 72, 73),
v sin. 270° = sin. 180° cos. 90° -} cos. 180° sin. 90° =—1 (78)
cos. 270° = cos. 180° ¢os. 90° — sin, 180° sin, 90° = 0. (79)
. Hence, by (6) and (7),
' sin, 270° —1

tang. 270° = —— — —
g cos. 270° 0

=4 o (80)

* If the denominator of L is reduced to zero, the fraction itself becomes in-
a

. . 1 1 1
ﬁ'nte; ﬂnds«n°°+0=—~0,we hilveo——“--»—oz—‘-w orl_ =:0= —_—

¥ 0
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o__C08.270° 0 —o 81
cotan. 270° = g — —1 = @1
1 1
sec. 270° —= T i e + o (82)
1 1
e — = = 1. 83
cosec. 270° — oin. 270° — (83)

58. Problem. To find the sine, &c. of 360°.

Solution. Make A = 180° in (49) and (50); and they become
by (72, 73, 66, 67)

sin. 360° — 0 = sin. 0°

€0s. 360° = 1 = cos. 0°.

(84)

Hence all the trigonometric functions of 360° are the same as
those of 0°.
59. Problem. o find the sine, &c. of 45°.

Solution. Make C = 90° in (57) and (58). They become, b
means of (66), .

cos. 45° = A/ (1 4 cos. 90°)] =A/3 (86)
sin. 45° =a/[} (1 — cos. 90°)] =a/4 = cos. 45°.  (87)
Hence, by (6) and (7), )

sin. 45°
ta.ng. 45° = m—d— =1 (88)
1
cotan. 45° = m =1= tang. 45° (89)
sec. 45°= —— _—_1 _ /9 (90)
o TV Sk
1 1
L — J— —_— — ]
cosec, 45° = 0. 45 = N3 =4a/2 =sec. 45°.  (91)

60. Problem. T find the sine, &e. of 30° and 60°.

Solution. Make A =230°in (49). It becomes‘,‘ from the consid- .

eration that 30° and 60° are complements of each other,
sin. 60° = cos, 30° =2 sin. 80° cos. 30°.
Dividing by cos. 30°, we have
¥ = 2 sin. 30°,

(85).
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ll .

—e

or sin. 80° ==cos. 60° = }; (92) -
whence, from (6), (7), and (10),
cos. 30°=sin. 60° =A/(1—})=3%4/3 (93)
o__ o__ % _ 1 _
tang. 30° = cotan. 69 =373 _75-_4\/,_} (94)
cotan.30° = tang. 60° = 715- =A3=38A1% (95)
sec. 30° = cosec. 60° = 1}—13 = -}5—3 =2A/3 (96)
cosec. 30° — sec. 60° = %: 2. (97)

61. Problem. To find the sine, 4-c. of the supplement of an
angle. ' .

Solution. Make M = 180° in (34) and (36). They become, by
means of (72) and (73),
sin. (180° — IV) = sin. 180° cos. IV — cos. 180° sin. N = sin. IV (98)
cos. (180° — V)= cos. 180° cos. N -}- sin. 180°sin. N= — cos.V, (99)
whence, by (6) and (7),

tang. (180°— IN)= —%:;)sNN — —tang. N (100)

cotan. (180° — N) = g N — cotan. IV (101)

sec. (180°—N) = c(:s = —sec. N - (102)
1

cosec. (180° — N) = TN = cosec N; (103)

that is, the sine and cosecant of the supplement of an angle are
the same with those of the angle itself ; and the cosine, tangent,
cotangent, and secant of the supplement are the negatives of those
of the angle.

62. Corollary. Since every obtuse angle is the supplement
of an acute angle, it follows, from the preceding proposition,
that the sine and cosecant of an obtuse angle are positive, while
118 cosine, tangent, cotangent, and secant are negative.
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In the application of logarithmic calculation to negative numbers,
the absolute values of these numbers are used (that is, their values
taken without regard to their signs), and the effect of the signs on
the result is considered separately. B., Table XXVII is extended,
on this principle, to angles between 90° and 180°; and each line
of the table corresponds to two angles, supplements of each other,
which are given as having the same log. sin., &c. 'When the logarithm
of the cos., tang., cotan., or sec. of an obtuse angle is taken, the
letter n may be written after the log., to show that it corresponds to
a negative number. On the other hand, when we have to find an
angle by this table, from its log. cos., log. tang., log. cotan., or log.
cosec., we should take the acute value of the angle or the obtuse
value, according as the function is known to be positive or negative ;
but when only the log. sin. or log. cosec. ts given, either value of the
angle may be taken, if the function is positive, and neither value, if
the function is megative. When both the values are admissible,
the geometrical conditions of the problem which may be under con-
sideration will either enable us to discriminate between these values
or else show that the problem admits of two solutions.

63. Corollary. The preceding corollary may also be obtained,
and the relation between the two angles which are found on the
same side of the page, in B., Table XXVII, may be illustrated, by
making M =90° in (33) and (35). For ‘we have, by (66) and
(67,

gin. (96° 4+ N)=  cos. IV (104)
cos. (90° 4+ N) = — sin. IV; . (105)
whence, by (6) and (7),
tang. (90° 4 IN) — — cotan. N (106)
cotan. (90° 4- N) = — tang. N (107)
sec. (90° 4 N) = — cosec. N (108)
cosec. (90° 4+ N)= sec. NN; (109)

that is, the sine and cosecant of an angle which exceeds 90° are
equal to the cosine and secant of its excess above 90°, while its
cosine, tangent, cotangent, and secant are equal to the negatives
of the sine, cotangent, tangent, and cosecant of this excess.

64. Problem. To find the sine, &c. of a negative angle.
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Solution. Make M —0° in (34) and (86). They become, by
means of (66) and (67),

sin,. (—N)=—sin. N (110)
cos. (—N)=cos. N; (111)
whence, by (6) and (7),
tang. (— N)= —tang. N C(112)
cotan. ( — NN) = — cotan. N (113)
sec. (—N)= sec. N (114)
cosec. (— IN) = — cosec. IV; (115)

so that the cosine and secant of the megative of an angle are the
same with those of the angle itself ; and the sine, tangent, cotan-
gent, and cosecant of the negative of the angle are the negatives
of those of the angle.

65. Problem. To find the sine, §c. of an angle which exceeds
180°.

Solution. Make M — 180° in (33) and (35). They become, by
means of (72) and (73),

sin. (180° 4 V) = — sin. IV (116)
cos. (180° 4 N) = — cos. IV; (117)
. whence, by (6) and (7), ‘
tang. (180°4-N)—=. tang. N (118)
cotan. (180°4 N) = cotan. N (119)
sec. (180°4 N)—=—sec. N (120)
cosec. (180° 4 IN) == — cosec. IV; (121)

that is, the tangent and cotangent of an angle which exceeds
180° are equal to those of its excess above 180°; and the sine
cosine, secant, and cosecant of this angle are the negatives of
those of its excess.

66. Corollary. If the excess of the angle above 180° is less
than 90°, the angle is contained between 180° and 270°; so
that the tangent and cotangent of an angle which "exceeds 180°
and is less than 270° are positive; while its sine, cosine, secant,
and cosecant are negative.
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If the excess of the angle above 180° is greater than 90° and
less than 180°, the angle is contained between 270° and 860° ;
so that, by §§ 65 and 62, the cosine and secant of an angle which
exceeds 270° and 18 less than 860° are positive ; while its sine,
tangent, cotangent, and cosecant are negative.

By the help of §65, B., Table XXVII can be used to find the
sine, &c. of an angle which exceeds 180°.

67. Corollary. The results of the preceding ¢.:orollary may also
be obtained from (84) and (36). For by making M = 360°, we
have, by § 58,

' sin. (360°— N)=—sin, N=sin. (—N) (122)

cos. (360°—N)= cos. N=cos. (— N); (123)
whence, by (6) and (7),

tang. (860° — IN) = — tang. N =tang. (— NV) (124)

,cotan, (360° — IN) — — cotan. NV = cotan. ( — V) 4 (125)

sec. (360°—N)— sec. N=sec. (—N) (126)

cosec. (360° — IN) = — cosec. IV = cosec. (— N) ; (127)

that is, the cosine and secant of an angle are the same with those
of the remainder after subtracting the angle from 360° while its
sine, tangent, cotangent, and cosecant are the negatives of those
of this remainder.

68. Problem. To find the sine, &c. of ‘an angle which exceeds
360°.
Solution. Make M — 360° in (33) and (35). They become, by
means of (84) and (85),
sin. (360° 4 N) = sin. N " (128)
cos. (860° - IV) = cos. IV ;! (129)

that is, all the trigonometric functions of an angle which exceeds
860° are equal to those of its excess above 360°.

\ .

69. Theorem. The sine, tangent, and secant of an acute angle
increase with the increase of the angle ; the cosine, cotangent, and
cosecant decrease.

Proof. 1. 1t appears from (17) that sin. (M -+ m) exceeds sin. M
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by sin. m cos. M, which is a positive quantity when M is acute,
If, therefore, an acute angle is increased by a very small amount, its
sine is increased.

II. It appears from (19) that cos. .M exceeds cos. (M + m) by sin.
m sin. M, which is a positive quantity ; and, therefore, the cosine of
the acute angle decreases with the increase of the angle.

III. The tangent of an angle is, by (7), the quotient of its sine
divided by its cosine. It is, therefore, a fraction whose numerator
increages with the increase of the angle, while its denominator de-
creases. [Either of these changes in the terms of the fraction would
increase its value; and, therefore, the tangent of an acute angle in-
creases with the increase of the angle.

IV. The cosecant, secant, and cotangent of an angle are, by (6),
the respectivé reciprocals of the sive, cosine, and tangent. But the
reciprocal of a quantity increases with the decrease of the quantity,
and the reverse. It follows, then, from the preceding demonstra-
tions, that its secant increases with the increase of the acute angle,
while its cosecant and cotangent decrease.

70. Theorem. The absolute values (that is, the values taken
without regard to their signs) of the sine, tangent, and secant of
an obtuse angle decrease with the increase of the angle; while
those of the cosine, cotangent, and cosecant increase.

Proof. The supplement of an obtuse angle is an acute angle of
which the sine, &c. are, in absolute value, by §61, the same as
those of the obtuse angle. But this acute angle decreases with the
increase of the obtuse angle, and at the same time its sine, tangent,
and secant decrease, while its cosine, cotangent, and cosecant in-
crease.

T1. Scholium. The trigonometric functions of any angle can
be represented geometrically, by lines drawn according to the
conditions prescribed in §§18-20; provided we adopt the
principle, which has been already applied to angular magni-
tude, of using the opposite signs, plus and minus, to denote
opposite directions.

Thus if ABCD (figs. 64, 65, 66, and 67) is a circle, described with
the radius unity, the trigonometric functions of the angle AOE can
be represented as follows ;, — '

4
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sin. AOE = PE = OR, tang. AOE= AT, sec. AOE= OT,
cos. AOE = RE = OP, cotan. AOE — BS, cose¢. AOE = OS.

To prove this, it is only necessary to show that these equations
can always be made to conform with the results deduced above from

. the general formulas, if we assume those directions as positive which
* will make the functions of an acute angle positive.

Let it be agreed to measure the angle AOE from the line OA,
calling the circular direction ABCD positive, and the circular

direction ADCB negative ; to call upward direction positive, for the . -

sine and tangent, and downward, negative; direction towards the
right positive, for the cosine and cotangent, and that towards the
left negative ; the direction of the radius OE positive, for the secant
and cosecant, and the opposite direction negative.

Then, first, the trigonometric functions are represented, in the
figures, with the true signs. All the functions of the acute angle

" (fig. 64) are made positive ; if the angle is obtuse (fig. 65), the sin.

(PE) and cosec. (OS) are made positive, while the cos. (RE), tang.
(AT), cotan. (BS), and sec. (OT) are made negative, as in § 62;
and, in like manner, § 66 is sustained, for angles in the third and
fourth quadrants (figs. 66, 67).

Secondly, the true absolute values are given in the figures. Thus,
the functions of the obtuse angle AOE (fig. 65) are, by the figure,
the same, absolutely, as those of its supplement EOC, as in § 61.
For, in absolute value,

sin. EOC = RE, tang. EOC=CQ = AT, sec. EOC= 0Q = OT,
cos. EOC = RE, cotan. EOC = BS, cosec. EOC = OS.

- 8o it may be shown that figs. 66 and 67 give the same results as § 65.

'Again. the functions are the same, in the figures, whether we re-
gard AOB as measured by the arc AB or by a whole circumference
plus that arc; which agrees with § 68. And they are the same,
whether we measure AOB in the direction ABCD or in the direc-
tion ADCB ; which agrees with § 67.

Moreover, as the angle increases, its functions increase or decrease,
in the figures, conformably to §§ 69 and 70. '

Lastly, the results of §§55-58 are easily obtained from the
figures. The geometrical interpretation of 4= o may be illustrated
in the case of tang. 90° ; — the radius OB, being then parallel to
the tangent drawn at A, may be conceived to intersect it, if pro-
duced, at an infinite distance from A, either above or below.
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CHAPTER VI.
OBLIQUE TRIANGLES.

. T2. Theorem. The sides of a triangle are directly propor-
tional to the sines of the opposite angles. [B., p. 18.]
Proof. In the triangle ABC (figs. 2 and 3) denote the sides op-

posite the angles A, B, C, respectlvely, by the letters @, b, c. We
are to prove that

sin. A : sin. B:sin. C=a:b:c. (130)

From the vertex B, let fall on the opposite side the perpendicular
BP; and let

p— PB$
The right triangle BAP gives, by (1),
PB _p.
sin, A =45 =3¢}
or p =csin, A. (131)
Also, the right triangle BCP gives .
. _PB__p.
sin. C = 'C—-B —_ -

for if C is acute (as in fig. 2), this follows directly from (1); and if
C is obtuse (as in fig. 3), it has, by § 61, the same sine as its supple-
ment PCB. Hence we bave
p=asin. C. - (132)
Comparing (131) and (132), we have
¢ sin. A = a sin. C,
which may be converted into the following proportion,
gin. A :sin. C=a:ec.
In the same way, it may be proved that
sin. 4 : sin. B—=a: b;
and these two proportions may be written in one, as follows: —
sin. A : a=sin. B: b =3sin. C: c;
or as in (130).
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78. Problems To solve a triangle, when one of s sides and
“ two of its angles are known. [B., p. 41.]

Solution. First. The third angle may be found by subtracting
the sum of the two given angles from 180°. '

Secondly. To find either of the other sides, we have only to make
use of a proportion, derived from §72. As the sine of the angle
opposite the given side is to the sine of the angle opposite the re-
_quired side, so is the given side to the required side. Thus, if a
(fig. 1) were the given and & the required side, we should have the
proportion :

sin. 4 : sin. B—a: b;
whence by (6)
a sin. B
= -——— = asin. . A 133
4 —asin B cosec. 4 (133)

74. Exampres.
1. Given one side of a triangle equal to 22.791, and the adjacent
angles equal to 32° 41’ and 47° 54’ ; to solve the triangle.
Solution. Making

a=22.791, B = 82° 41/, C = 47° 54'
we have
A = 180° —(82° 41/ 4 47° 54') = 99° 25/,
Then, by (133),

A = 99° 25' cosec. 10.00589 10.00589
B = 82° 41’ sin. ©9.73289 C =47° 54’ sin. 9.87039
a=22.791 ' 1.35776 1.35776
b= 12.475 *1.09604; c=17.141  *1.23404
Ans.” The other angle = 99° 25’
12.475

The other sides — 17.141

2. Given one side of a triangle equal to 327.06, the opposite angle

* 20 is subtr:cted from each of these characteristics, because the two sines
and the cosecant are taken from the table without the diminution which is re-
quired by § 80.
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equal to 8° 8/, and one of the adjacent angles equel to 154° 22';
to solve the triangle.

Ans. The other angle == 17° 35’

. 1010.4
The other sides — { 705.5

75. Problem. To solve a triangle, when two of its sides and
an angle opposite one of the given sides are known. [B., p. 42.]

Solution. First. The angle opposite the other given side is found
by the proportion of § 72. As the side opposite the given angle is
to the other given side, so is the sine of the given angle to the sine
of the required angle. Thus, if (fig. 1) a and 6 are the given sides
and A the given angle, the angle B is found by the proportion.

a:b—nzsin. A:sin. B;

whence
bsin. 4

]

sin. B = . (134)
Secondly. The third angle is found by subtracting the sum of the
two known angles from 180°.

Thirdly. The third side is found by the proportion. As the sine
of the given angle is to the sine of the angle opposite the required
side, so is the side opposite the given angle to the required side.
That is, in the present case,

gin. A:sin. C=a: c;
whence
a sin, C

=4 = esin C cosec. A.: (135)

76. Scholium. Since the angle B is found by means of its sine,
and since the value of sin. B obtained from (134) is necessarily
positive, we must, by § 62, have recourse to the geometrical condi-
tions of the problem in order to determine which of the two supple-
mentary angles given in the tables for the same sine ought to be
taken as the value of B. The triangle is constructed geometrically
from the given data as follows : — Draw an angle 4 (fig. 68) equal
to the given angle, on one of its legs lay off AC equal to the adja-
. cent side b, and from C as a centre, with a radius equal to a, describe

an arc cutting the other leg of the angle A at B; draw AB, and ©

4%
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ABC is the triangle required. Itis evident that if 4 is acute and if
the radius a is less than & and greater than the perpendicular PC,
the arc will cut AP in two points, B’ and B”, giving the two triangles
AB'C and AB'C; and, since B'CB" is isosceles, it is further evident
that the two values of B, CB"A and CB'A, are supplements of each
other. The two values of B found by (134) corresPond, therefore,
to two solutions of the problem; but in some cases, one of these
solutions is impossible, and, in some cases, both are impossible.

77. Scholium. If the given value of A is obtuse, the obtuse value
of B and the corresponding solution of the problem must be rejected,
because a triangle can have only one obtuse angle. In this case, the
point B” (fig. 69) falls on the wrong side of A, so that the triangle
AB'"C does not contain the given angle,

If A is obtuse, and & = b or a <C b, neither solution is possible, for
the obtuse angle of a triangle must be opposite the greatest side. In
these cases, the geometrical construction also fails (fig. 69). If,
however, a >> b, that solution is always possible in which B is acute.

78. Scholium. If A is acute, and a =25 or a >> b, the obtuse
value of B cannot be taken, because the obtuse angle must be oppo-
site the greatest side; and this is also evident (fig. 70) from the
geometrical construction. But, in these cases, that solution is always
possible in which B is acate.

If a is so much less than b as to be equal to the perpendicular
P(0, which is, by (1), equal to b sin. 4, the points B’ and B" coin-
cide, and there is only one solution, the right triangle APC.

If a < b sin. A, the circle will not cut AP at all, and neither
solution of the problem is possible.

79. Scholium. The above results may be also obtained from the
trigonometric solution of the problem. For we must have 4 4 B <C
180°, since A 4+ B4 C=180°. Now, if a >> b, (134) gives

sin. B <sin. 4;
so that, by § 69, if A is acute, denoting the acute value of B by B’

"and the obtuse by B’, we have

B < A, B> 180°— 4;
but, if 4 is obtuse, by § 70,
B> A, B < 180°—4;
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and, in either case,
A+ B < 180°, A4 B> 180°;
and B’ must be rejected.
It may be shown in like manner that if a =25, and if 4 is acute,
B must be rejected, but if A is obtuse, both B’ and B” must be

rejected ; also that if @ <C b, both values of B are admissible when
A is acute, and inadmissible when A is obtuse.

If a = b sin. A, we have by (67),
bsin. 4 __

a

sin. B = 1,

B' = B'"=190°;
and if a < b 8in. 4,
sin B> 1,
which is impossible for any real value of B.

80. ExAMPLES.

1. Given two sides of a triangle equal to 77.245 and 92.841, and
the angle opposite the first side equal to 55° 28/ 12”; to solve the
triangle.

Solution. Making

b=92.841, a=T7.245, A —55°28'12",
we have, by (134),

a=77.245 (ar. co.) 8.11213
b = 92.341 1.96540
A = 55° 28’ 12/ sin. 9.91584
B =280°1 or — 99° 59/ sin. 9.99337

4+ B —=135° 29/ 12" or — 155° 27/ 12
) C= 44° 30’ 48" or— 24° 32' 48"
Then, by (135),

a—"77.2456 1.88787 . 1.88787

C = 44° 30’ 48’ sgin. 9.84576 or — 24° 32’ 48" sin. 9.61850

A= 55 28’ 12/ cosec. 10.08416 10.08416

¢ —=—165.734 1.81779 or — 38.952 1.69053
Ans. The third side — 65.734 or = 38.952

80° 1/ __ [ 99° 59/

b = =1
The other angles { 44° 307 48" °F 24° 32/ 48"

A
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2. Given two sides of a triangle equal to 77.245 and 92.841, and
the angle opposite the second side equal to 55° 28/ 12/ ; to solve the
triangle.

Ans. The third side = 110.7
' 43° 33’ 44"

The other ajngles = { 80° 58/ 4/

8. Given two sides of a triangle equal to 40 and 50, and the angle

opposite the first side equal to 45°; to solve the triangle.
Ans. The third side . = 54.061 or= 16.65

62° T/ 117° 53’
72° 58 17 7

4. Given two sides of a triangle equal to 77.245 and 92.341, and
the angle opposite the second side equal to 124° 31’ 48”; to solve
the triangle.

Ans. The third side — 28.129

43° 33’ 44"
11° 54’ 28"

The other angles — { or = g

The other angles — z

5. Given two sides of a triangle equal to 77.245 and 92.341, and
the angle opposite the first side equal to 124° 31’ 48’/ ; to solve the
triangle. '

Ans. The question is impossible.

6. Given two sides: of a triangle equal to 75.486 and 92.341, and
the angle opposite the first side equal to 55° 28/ 12”; to solve the
triangle.

Ans. The question is impossible.

81. Theorem. The sum of any two sides of a triangle is to
their difference as the tangent of half the sum of the opposite
angles is to the tangent of half their difference. [B., p. 18.]

Proof. We have (fig. 1)

a: b=zsin. 4:sin. B;
whence, by the theory of proportions,
a+4b:a—b=sin. 4 +4sin. B: sin. A —sin. B,
which, expressed fractionally, is
a+b _sin. A4sin. B

a—b " sin. A — sin, B’
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But the general formula (47) gives, for any two angles A and B,

sin. 4 4-sin. B__ tang. § (A4 B)
sin. A—sin. B~ tang. 4 (A— B)’

whence
atb _tang. 3 (A+ B).
a—b tang. 3 (A— B)’ (136)

a+4b:a—>b=tang. § (A} B): tang. }(A—B).

or

82. Problem. 'To solve a_triangle, when two of its sides and
the included angle are given. [B., p. 43.]

Solution. Let the two sides @ and b (fig. 1) be given, and the
included angle C; to solve the triangle. o -

First. To find the two unknown angles. Subtract the given
angle C from 180°, and the remainder is the sum of 4 and B, for the
sum of the three angles of a triangle is 180°; that is,

A4 B=180°—C,
and 3 (44 B)=90° —} C = complement of } C.
The difference of A and B is then found by (136)
ad-b: a—b._tang % (A4 B) : tang. } (4 — B).

But we have
tang. § (4 4 B) =cotan. } C;

whence

tang. 3 (A — B) = cotan.g C; (137)

+btang 14+ B="2

in which the acute value given in the tables must be taken for %
(A — B), being made positive when a >> b, so that tang. 4 (A — B)
comes out positive, and, by (112), negative when a < b, so that
tang. 3 (4 — B) comes out negative. '

The angle A is then found by adding } (4 — B) to § (4 4 B),
and the angle B by subtracting § (4 — B) from (4 + B).

Secondly. The third side is found by the proportion
sin. A :8in. C=a:c;

a sin, C

sin. A4

whence c=
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83. ExAMPLES.

1. Given two sides of a triangle equal to 99.341 and 1.234, and
their included angle equal to 169° 58'; to solve the triangle.

Solution. Making @ —99.341, b=—1.234, C=—169°58';
we have } (44 B) =90°—} C=5° 1’; and, by (137),

a4 b=100.575 (ar. co.) 7.99751
a— b= 98.107 1.99170
3(A4+B)y=5°1 tang. 8.94340
3 (A—B)=4°53 39" . tang. 8.93261
A =9° 54/ 39"
B=0° 21"
a = 99.341 1.99712
C—=169° 58/ sin. 9.24110\_
A —=9° 54/ 89" cosec. 10.76519
¢ =100.56 2.00241
Ans. The third side = 100.56
9° 54/ 39"
. ‘The other angles = { 0° 79

2. Given two sides of a triangle equal to 10.121 and 15.421, and
the included angle equal to 41° 2/; to solve the triangle.

Ans. The other side = 10.236
40° 28/ 28"

The other angles — { 98° 29’ 82"

Ke::‘:) 84. Theorem. - Either side of a triangle 18 to the sum of the
\@ other two as their difference 18 to the difference of the segments of
the first side made by a perpendicular from the opposite vertex,
if the perpendicular fall within the triangle, or to the sum of the
distances from the extremities of the base to the foot of the perpen~
dicular, if it fall without the triangle. [B.; p. 14.]
Proof. Let AC (figs. 12 and 13) be the side of the triangle ABC
on which the perpendicular is dropped, and BP the perpendicular.

From B as a centre, with a radius equal to BC, the shorter of the
other two sides, describe the circumference CC'E’'E. Produce AB
to E' and AC to C', if necessary.
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Then, since AC and AB are secants, they are inversely propor-
tional to their parts without the circle ; that is, in both figures,

AC: AE'= AE: AC. o
But
AE = AB+ BE'= AB+ BC Du Lats
AE—=AB—BE = AB— BC, -
and
(fig. 12) AC' = AP — PC' = AP — PC
(fig. 18) AC' = AP 4 PC' = AP 4 PC;
whence

(fg. 12) AC: AB+ BC=AB— BC: AP— PC
(fg. 13) AC: AB+ BC=AB— BC: AP+ PC.

85. Problem To solve a triangle, when its three sides are
given. [B., p. 43.] h .
Solution. Suppose a perpendicular BP (ﬁg 2 orjg) dropped on
the ‘side b from the opposite vertex. ¢
First find the value of the fourth term z of fhe proportmn,
bieta=c—a:a;
and we have, by figs. 2 and 3 and § 84,
b= AP 4 PC,
2= AP PC;
in which the upper signs correspond to the case (fig. 2) of the per-
pendicular falling within the triangle, and the lower signs to the
case (fig. 3) of its falling without. If 2z <, we have the former
case ; if  >> b, the latter. In either case, by finding the half sum of
b and z, we have AP; and by finding the half difference of 4 and =,
we have PC.
Then, in triangles ABP and B CP we have

b—l—z
cos. A =T— ;
PC b—a:
and (fig. 2) cos. C = = =T’
PC. b—=z

, by (99), (f =— =——= .
or, by (99), (fig. 8) cos. C - cos. PCB p o

The third angle B is found by subtracting the sum of A and C
from 180°.

/
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86, Corollary. The above proportion gives
(c+a)(c—a)_—a
g= =

’
whlch added to b, gives, by § 85,

pa— ] 2 a2
24P=bfo=bt IZEBRETT

b
Hence,
5 42— a2
4P = 2b
_ AP B 4c2—a?

cos. 4 = — = R Y I (188)

and, by reduction and transposition,
@@=+ c2—2bccos. 4; (139)

that is, the square of either side of a triangle is equal to the sum of
the squares of the other two sides diminished by twice their product
multiplied by the cosine of the included angle.

87. Corollary. The above proposition, when applied to the right
triangle, becomes the Pythagorean proposition. For,if A4 is the
right angle and a the hypothenuse, cos. 4 = 0, by (66), and (139)
becomes

a® = b} ¢%;
but if ¢ is the hypothenuse, cos.' 4 = cé by (4), and (139) becomes
=04 c2—22=c2— 12

88. Corollary. Add unity to both sides of (138), and we have

1+cos A=14 +09—09_b9+2b;;tcn_a2

Gty o
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\

. Since the numerator of (140) is the difference of two squares, it
may be separated into two factors, and we have

(b4 c+a)(db+c—a)
14cos. A= _ 5he .
Now, representing half the sum of the three sides uf a triangle
by s, we have .
2s=a+b-{-c, (141)

and
2s—2a=2(s—a)=a+4bt+c—2a=b4c—a. (142)

- If we substitute these values in the above equation, it becomes ’

1+cos.A=4s(2$;a) =28(Z:a)' (143)
But, by (55),
' 14 cos. 4 =2 (cos. § 4)%
Hence »
2 (cos. § A)2 = 2s (; ;—J—l)—
or (cos. 3 A)2= f—('ib_;—a)— (144)
cos.g,A=,,/(‘_(ib‘c'—")>. (145)

Since A may represent either of the angles, provided a represents
the opposite side, we have similar equations for the angles B and C;

that is,
' + cos.&B:V(#—) (146)
cos. 3C=w (____.s (sa_b- ) ) H (147)

and (145 -147), which correspond to B., p. 14, prop. LXI, may be
used to calculate the angles of a triangle when the three sides are
known ; each half angle being taken less than 90°, so that the whole
angle may be less than 180°.

89. Corollary. Subtract both sides of (138) from unity, and we
have )
B4 2—a2 2 —12+2bc—c?
2bc 2b¢
_a®— (b— c)?

D © (148)

l1—cos. A=1—
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’

Since the numerator of (148) is the difference of two squares, it
may be separated into two factors, as follows,

1—cos. 4= (a—b-.{-c;b(:ﬁ-b—c) .

]'Sut, from (141),
25—2b=2(s—b0=a+b4c—2b=a—b4c (149)
28—2c=2(s—c)=at+db+c—2c=a4b—c. (150)

If we substitute these values in the above equation, it becomes
4(s—D) (s—c) _2(s—1d) (s—¢)

1—cos. A= 2 be be — (151)
But, by (56),
1—cos. 4 =2 (sin. } 4)%

Hence, by reduction,

sin. g,sz((:““_")Ef—“ﬁ)). (152)
In the same way, we have

sin. 3 B=a/ (("___"lc("’——")) (153)

sin. §c=~/((’;‘_‘)7’(”;_"”)); (154)

and these formulas give a third method of solving a triangle, when
the three sides are known.

90. Corollary. The quotients of (152, 153, and 154) divided by
(145, 146, and 147), are by (7)

tang. 3 A = a/ (____<—’(’) (e ;")) - (155)
tang. 3 B= a/ ((s—’I gs?_fsb;‘ ) (156)
tang.t}CZ'\/(gs—ng)_(_s—c)-—D); (157)

which furnish a _fourth method of solution, when the sides are given.
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91. The product of (148) by 151) is
45(s—a) (s—0) (s—c)

1 —(cos. 4)3= _ 12 &
But, by (9),
1 — (cos. A4)2 = (sin. 4)3.
Hence
(sin. A= 43(s—a) b(: ;—b) (s— c)’
or :
sin.A=2 V[s(s—a) b(sc—b) (S—C)J. (158)

Similar formulas may be given for sin. B and sin. (; and we thus
have a fifth method of solution, when the sides are given.

92. Scholium. The problem is impossible, if the given value of
either side exceed the sum of the other two. '

93. ExaAMPLES.
1. Given the three sides of a triangle equal to 12.348,.18.561, and
14.091 ; to solve the triangle.

~ Solution. First Method.
Make (fig. 2 or 8) a = 12.348, b= 13.561, ¢ = 14.091.

Then, by § 85,
b =18.561 (ar. co.) 8.86771

¢+ a=26.439 1.42224
c—a= 1.743 0.24130
z = 3.3982 0.53125 Since we find z < b,
‘ : - — the case is that of fig. 2.
3 (d+2)=AP=8.4796 ©0.92838
3 (b—z)=PC=5.0814 0.70598
¢ = 14.091 (ar. co.) 8.85106
a—=12.348 (ar. co.) 8.90840

A=153°0 cos. 9.77944

C = 65° 42/ cos, 9.61438
B=180°— (44 0C)
= 180°—118° 42/ —61° 18'.




52 PLANE TRIGONOMETRY, [cH. viI

Second Method.
By (145, 146, and 147),

a=—12.348 (ar. co.) 8.90840 (ar. co.) 8.90840
b =13.561 (ar. co.) 8.86771 (ar. co.) 8.86771

¢ = 14.091 (ar. co.) 8.85106 (ar. co.) 8.85106
$ =20.000 1.30103 1.30103 1.30103

3-a—"1.652 0.88377

8-b—=6.429 . 0.80882
8~-¢=5.909 0.77151
2] 19.90357 2. 19.86931 2| 19.84865
| I ) —
cos. 9.95179 9.93466 9.92433

3+ A=26°30, 3 B=230°39, }C=32°5V
A=153° ¢, B=61°18, C=65° 42'.

' (53° O
Ans, The angles = { 61° 18’
65° 42", 7
The third, fourth, and fifth methods, furnished by (152 -154),
(155 -157), and (158), might also be applied.

2. Given the three sides of a triangle equal to 17.856, 13.849,
and 11.111; to solve the triangle,
93° 19’ 16"
Ans. The angles = { 48° 16/ 24"
38° 24/ 20",
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CHAPTER VII.

LOGARITHMIC AND TRIGONOMETRIC SERIES.

94. Problem. To develop the expression

149’

53

(159)

in which x 18 finite, and i 18 any infinitesimal, into a series

arranged according to powers of x.

Solution. Since the binomial theorem is applicable to the de-

velopment of all powers, it gives at once

a+a=145+7(F-1).5

#(51) (=)t e

Butg is infinite and gives, therefore,

:f—l =f, f—'2:fa &c.
(2 (] (2

which, substituted in (160), give

= 22 23 =
At =14t ottt

95. Corollary. When z =1, (162) becomes
1

1
(14 3y =1+1+1%2+1._;,§+1.2.3.4+&°

which we may denote by e.
b*

(160)

(161)

(162)

(163)
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This quantity e is one of frequent occurremce in analysis,
and 18 celebrated on account of its having been adopted by
Napier as the base of his system of logarithms, which were
called by him Ayperbolic logarithms, but are known as the Na-
perian logarithms.

The value of ¢ is easily computed, from the consideration
that it is the sum of the series (163) of which the first term is
unity and each succeeding term is obtained by dividing the pre-
ceding term by the number of the place of this preceding term.

Thus 1)1.000000

2)1.000000
3) .500000
4) .166667
5) .041667
6) .008333
7) .001389

8) .000198
9) .000025
.000008 .

1
(149 = e = 2.71828; (164)

which gives the value of e to five places. The sixth place is neg-
lected, in the sum of the decimals, as being uncertain.

-
96. Corollary. The zth power of e is by (164 and (162)

1 z
- \° 3 z? z3
°‘=<(1+1)'> =1+ =14e+ 5+ 755+ & (165)
97. Corollary. The ith power of (164) is

é=141 (166)
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98, Corollary. The logarithm of (166) is
log. (1 4 %) =1 log. e, (167)

in which, since 4 represents any infinitesimal, we may substitute — ¢,
and thus we have

log. (1 —1t) = —ilog. e. (168)
99. Problem. To develop log. (1 — x) into a series of terms
arranged according to the powers of x.
Solution. Let the series be denoted as follows,
log. (1—2)=A+ A,z 4+ 4,2+ &c. . . 4 A, 2" + &e’; (169)
in which the coefficients do not involve z, and the number below the
coefficient denotes the power of z to which it belongs.
First. To find the value of 4 ; let
z2—=0, )
which, by the principles of logarithms, reduces (169) to
log. 1=A4=0, (170)
and this term may, therefore, be dropped in the second member of
(169).
Secondly. To find the value of 4,; let
z—=1.
Then, in the second member of (169), each term is infinitely smaller

than the preceding term and may be neglected in comparison with
it, because

t:1=2:t=8: 2= &c.;

and the whole second member may be reduced toits first term, 4, 4;
so that, by (168),

log. 1 —i)=A4,i=—ilog. e (171)
A, =—log. e, (172)
Thirdly. To find the value of any coefficient, 4,; let 7, lr', r,
r', . . . r»=! be the n roots of the equation
_ @*=10ora"—1=0, (173)
and by the theory of equations, we have for all values of z
r—1=(—r) (z—r) (z—r") &. (174)
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Moreover the product of the negatives of the roots of an equation is
equal to the constant term, which is, in this case,— 1; that is,

—1l=(—r)(—7r) (—r") &c. (175)
The quotient of (174) by (175) is

—rz—r z—7r
"

=(1—;) (1-%) (1—-%’) &. (176)

the logarithm of which is

log. (1 —a") = log. (1——)-{-108 (1—:.1/) :

1—2a"=—

+log. (1——)+&c (177)

But by substituting z* for z, in (169), and the values of A and 4,
found above, we have

log. (1 — #*) = —log. € z* 4 4; 2™ 4 &e. '(178)

and any term of the second member of (177), as the first, is by
(169)

z T "
log.{1——= ) =——log.e— e veee —. 179
og (1 r) log cr+&c +A"r" (179)
Since 7 is a root of the equation (173), that is, since
r=l1, (180)

the term of (179) multiplied by z” becomes A, z", which is indepen-
dent of the particular root r, #/, &c., and, therefore, the same for
each term of the second member of (177). The sum of all the
terms of the second member of (177) which are multiplied by z* is
equal to either of them multiplied by their number, which is n; that
is, it is

n A, 2", ' (181)
Hence this term must be equa.l to the term of (178) which is multi-
plied by #*; or

n A, =—1log. ea" (182)
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A_=—}l-log. e; (183)
that is,
A;=—13%log. e, Ay — — } log. e, &c.;
and the resulting value of (169) is
log. (1—z)=1log. e (—z—3}22 —f 3 —} 2t —&ec.) (184)

100. Corollary. By reversing the sign of z in (184), we have
log. (14-z)=log.e (t—}23 4423 —} at 4} 25— &e.) (185)

101. Corollary. The remainder of (185) diminished by (184) is

log.ii:=2log.e(x+;};z3+-g-x5++z7+&c.) (186)

102. Corollary. Since
, ‘ a +z=a (1 + 2)
we have, by (185),

log. (a4 2) = log. a + log. (1+§)

'

z
a

=log.a+l°g-3( %2-:—:""&':—:—*:;'*_&0-) (187)

103. Corollary. Equations (184), (185), and (187) may be used
in calculating logarithmic tables. But, for this purpose, log. ¢ must
first be obtained ; that is, by the definition of logarithms, we must
solve the equation

10° — e = 2.71828,
which gives
log. e = z = 0.43429. (188)

104. ExAMPLES.
1. Find the logarithm of 1.1.

Solution. By making, in (185),

z=0.1



58 PLANE TRIGONOMETRY. [om. viI1.

we have
' % 2 =10.005000
3 23=0.000333
3} 24 =0.000025

1 25=0.000002
z—3}a4 a3 —} ot 4 1 25 = 0.09536

log. (1 4-2) = (0.09536) (log. ¢) = 0.09536 X 0.43429 = 0.04139

2. Find the logarithm of 625, knowing that
' log. 624 = 2.79518.
Solution. In this case we have, in (187),

1

T
a—624,1_1,;—m'

and 2 is 80 small that its square and higher powers may be neglected

in (187), whence

' log. 625 = log. 624 4 l‘:g—;e
=2.79518 4 0"232‘129 = 2.79518 4 0.00070
=2.79588.
8. Find the logarithm of .9. Ans. —0.04576 or 1.95424.
4. Find the logarithm of 1.01. Ans.  0.00432.

5. Find the logarithm of 1.095.  Ans. 0.03941.
6. Find the logarithm of 1.003. Ans.  0.00130.
7. Find the logarithm of 463, knowing that

log. 462 = 2.66464. ’
Ans. 2.66558.




§ 54.] TRIGONOMETRIC SERIES. 59

8. Find the logarithm of 1291, knowing that

log. 1290 = 8.11059.
Ans. 8.11093.

9. Find the logarithm of 123.6, knowing that

log. 123 = 2.08991
Ans. 2.09202.

105. Problem. To express sines and cosines by means of
ezponential functions.

Solution. The first member of the equation
cos2z4sin2z—=1 (189)

may be written cos.? x — (— sin.2 z); that is, the difference of the
two squares cos.? z and (— sin.? z), of which the roots are cos. z
and sin. z . o/ — 1. This first member is, therefore, the product of
the sum and difference of these two roots, or (189) may be written

(cos. x| sin. ;.V— 1) (cos. z—sin. 2. 4/ — 1) = 1.

The logarithm of this equation is
log. (cos. z -} sin. £ .o/ — 1) 4 log. (cos. z—sin. 2.4/ —1) =0
or
log. (cos. z - sin. z.4/— 1) = —log. (cos. z —sin. 2. o/— 1). (190)
Denote either member of (190) by y, so that

log. (cos. z 4 sin. z .4/ — 1) =y, }

log. (cos. z —sin. z . 4/ — 1) = —y, (191)

or
cos.z - sin.z.4/ — 1 = 10%, cos. z — sin. x. 4/ — 1 = 1077, (192)
The sum of the last two equations s

. 2 cos. & =10*4- 107, (193)

A
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Hence, by (55 and 56),
cos.23z =% (1+cos.z) =% (24 2cos.z) = } (10" 424 10)
—sindtz =4 (cos.z—1)=}(2cos.2—2) = } (10— 2 4- 107%),
of which the square roots are )
cos. 3 z =} (10¥ 4 107¥)
sin. 3 2.4/ —1 =3 (10¥ —107¥),
and the sum of these two equations is

cos. 3 z4sin. §z.4/ —1=10¥, (194)

The comparison of (194) with the first equation of (192) shows that
z may be changed into § z, provided thaty is changed into 4 y. The
same changes may, therefore, also be made in (194), or } = may be
changed into its half, that is, into } @, provided % y is changed into
} y; which gives

cos. } z4sin. f .4/ — 1 =10%, (195)

A repetition of this change gives R

cos. § 4 sin. § 2.4/ —1 = 10, " (196)

By continuing this process, z may be divided by any power of 2,
however great, provided y is divided by the same power. Let,
then,

m=2" (197)
and we have
X . x R4
cos.—"—‘--}-sm.;.\/—l:l()"'; ~(198)
the logarithm of which is
xr . z Y :
log. . — = =1 )=,
og (cos - + sin - N 1) - (199)

But if, in (197), n is made infinite, m will also be infinite, and =z
m
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will be an infinitesimal, of which the cosine is unity and the eine is

equal to its arc in the circle of which radius is unity ; that is, (199)
becomes, if the angle is expressed as in (16),

1og.(1+—:; V—l):%. (200)

But, again, since -:T is an infinitesimal, (200) becomes by means of

(167),

log.c.—;—‘;\/——lz%,ory:z/\/—-l.log.e, i(201)

which substituted in (191) gives
log. (cos.z+sin.z.4/ —1) = z o/ — 1. log. e = log. e"v~"'

log.(cos. z — sin. z o A/—1) = — 2z A/— 1. log. e =log. e*v=1(202)

or

cos. 4 sin. z .4/ — 1 =¢*v~!

cos. z—sin. 2. A/ —1=¢"*v~! (209)
106. Corollary. Half the sum of (20.3) is
cos. z =3 (e=v~' 4 e D, (204)
and half their difference, multiplied by o/ — 1, is
gin, 2= — } (eV'—e v s/ — 1. (205)

107. Problem. To dévelop cos. x and sin. X in terms
arranged according to powers of x.

Solution. Since we have
(zA/—1)2=—2%(a0/—1)° = —288/—1, (28/ — 1)4=2?, &c. (206)
the substitution of 24/ — 1 for z in (165) gives

ev-i=1tay—1.— & EV =1

1.27 123
A Ba —1 '
d + Tes7 tigzsas — &~ (207)

6
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which gives, by reversing the sign of z,

—_— 22 Ba/—1
T/l =1 — —_—1,—— —_—
€ l—ed/—1l.— 5 + 33

4 4/ —1
+ 1.2.3.4  1.2.3.4.5

Half the sum of (207) and (208) is, by (204),

&e. (208)

2 z4 ab
cos.z=1—1o+ 054 " T23456 T (209
Half their diﬁ‘erenée, multiplied by 4/ — 1, is, by (205),
‘. . 13 1‘5
sxn.x_m—i-—2.—3+m—&c. (210)

which are the series required. But it must not be forgotten that, in
the second member of these equations, x is expressed in terms of the
radius as unity, as in (16).

108. Corollary. Equations (209) and (210) can be used for cal-
culating tables of sines and cosines.
109. ExAMPLES.

1. Find the sine and cosine of 13° 25/,

Solution. In this case, since 13° 25’ — 805/, z, or the arc of 13°
25/ in the circle of which radius is unity, is 805 times the arc of 1/;
that is, by (13), .

z =805 sin. 1/’ =805 X 0.000290888 — 0.234165

a2 28
2= 0.027416, . 123 — 0.002140
8
1234= 0.000125, 12345 = 0.000006
Hence cos. z = 0.97271 sin. £ = 0.23203

2. Find the sine and cosine of 6° 10,
Ans. sin. 6° 10/ = 0.10742
cos. 6° 10 = 0.99421
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NAVIGATION AND SURVEYING.

CHAPTER 1.
PLANE SAILING.

1. The figure of the earth is considered, in Navijgation, to
be that of a perfect sphere, from which, in fact, it differs but
slightly ; and very small portions of its surface are regarded as
plane. [B., p. 46.] ‘

The earth performs a daily revolution around one of its
diameters, which is called the earth’s azis. [B., p. 48]

The extremities of this axis on the surface of the earth are
the terrestrial poles ; one being the north pole, and the other the
south pole. [B., p. 48.] '

2. The section of the earth or the circumference of the sec-
tion made by a plane which passes through the earth’s centre
and is perpendicular to its axis is the terrestrial equator.
[B., p. 48.]

Parallels of latitude are the circumferences of small circles
the planes of which are parallel to the equator.

8. Meridians are the circumferences of great circlesl which
pass from one pole to the other. [B., p. 48.]

The first meridian is one arbitrarily assumed, to which all
others are referred. In most countries, that has been taken as
the first meridian which passes through the capital of the
country.

4. The latitude of a place is its angular distance from the

equator, the vertex of the angle being at the centre of the
6*
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earth ; or it is the arc which is comprehended between the place
and the equator, on the meridian passing through the place.
[B., p. 48]

If D (fig. 18) is the centre of the earth, C one of the poles,
A'B’ a portion of the equator, and B'C a portion of a meridian, the
latitude of the place B is the angle B'DB or the arc B'B.

Latitude is commonly expressed in degrees, &c. and is reckoned
north and south of the equator from 0° to 90°; one direction being
sometimes regarded "as positive, and the other as negative. Thus,
the latitude of Melbourne (Australia) is 37° 48’ 8., or — 37° 48' N.

5. The difference of latitude of two places is the angular
distance between the parallels of latitude in which they are
respectively situated, the vertex of the angle being at the centre
of the earth ; or it is the arc which is comprehended between
the parallels of latitude, on any meridian. [B., p. 52.]

The difference of latitude of two places is equal to the dif-
JSerence of their latitudes, if they are on the same side of the
equator, and to the sum of their latitudes, if they are on opposite
sides of the equator. [B., p. 50.]

Difference of latitude is often regarded as a length and expressed
in terms of the nautical mile, which is equal to a minute of arc
measured on the circumference of a great circle. Thus, the diff. of
lat. of San Francisco and Melbourne is 37° 49/ 4 87° 48' = 37° 49’
— (—37° 48") = 75° 37" = 4537 miles.

8. The longitude of a place is the angle made by the plane
of the meridian which passes through the place with the plane
of the first meridian ; or it is the arc of the equator compre-
hended between these two meridians. [B., p. 48.]

If A'C (fig. 18) is a part of the first meridian, the l(;ngitude of B
is the anglo A’DB’ or the arc A'B'. . .

Jongitudo is reckoned east and west of the first meridian from 0°
to 180°, or only towards the west from 0° to 360°. Thus, the lon-
gitude of Melbourne from Greenwich is 144° 59’ E or — 144° 59' W
or (360° — 144° 59') W = 215° 1 W,
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7. The difference of longitude of two places is the angle con-
tained between the planes of their meridians ; or it is the arc of
the equator comprehended between their meridians.

The difference of longitude of two places is equal to the dif-
Serence of their longitudes, if they are on the same . side of the
Jirst meridian,-and to the sum of their longitudes, if they are
on oppostte sides of the first meridian, unless their sum be greater
than 180°, in which case the sum must be subtracted from 360°
to give the difference of longitude. [B., p. 5.0]

Thus, the diff. of long. of Melbourne and San Francisco is 360° —
(122° 31/ 4 144° 59’) =215°1/—122° 31’/ =92° 30’ —= 5550 miles.

8. A rhumb line, or rhumb, is a line drawn on the surface of
the earth so as to cross every meridian at the same angle. Any
two places can be connected by a rhumb line, and the length
of the rhumb line is called the nautical distance between them.
[B., p- 52.]

The parallels of latitude and the equator are rhumb lines running
at right angles with the meridians, and any meridian’ is a rhumb line
running north and south. In general, however, the rhumb line is
not an arc of a circle, but, when indefinitely produced, it winds
round and round the earth, somewhat after the manner of the thread
of a screw, being always convex to the equator. Any very small
part of it is, sensibly, a straight line.

The shortest distance between two placesis that which is measured
on the arc of a great circle. Ships are, therefore, sometimes navi- -
gated on great circles, but more commonly on rhumb lines, because
the increase of distance is, in most cases, small, while there are
several practical advantages in favor of rhumb sailing. In this
treatise, thumb sailing alone is considered, and the word distance is
always used to denote the nautical distance.

9. The course of a ship at any time is the angle which her
path at that time makes with the meridian she is crossing. The
bearing of two places from each other is the angle at which the
rhumb line connecting them crosses the meridians. [B., p. 52.]

When a ship sails on a rhumb, her course is everywhere the same
and equal to the bearing of the place reached from the place left.
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10. The departure of two places from each other is the actual _
amount of easting or westing made by a ship in sailing on a
rhumb from one place to the other. If the places are so near
each other that their meridians may be considered as parallel,
the departure is obviously the distance of either place from the
meridian of the other. But if the distance is great, let it be
divided into very small portions, and the departure of the places
is the sum of the departures corresponding to all these portions;
and, since the portions may be made as small as we please, this
method of finding the departure can be carried to an unlimited
degree of accuracy. [B., pp. 62, 66.]

Thus, to find the departure of the places A.and B (fig. 71); draw
the rhumb line AB, divide it into small portions at the points a, b,
¢, &c., draw the meridians PA, PB, Pa, Pb, Pc, &c., and the
parallels of latitude AA’, BB/, am, bn, cp, &c., 80 that ma is the
departure of 4 and a, n b that of a and b, &c. ; then

dep. of A and B:ma+nbl+pc+&c.

The departure of 4 'and B must be distinguished from the meridional
distances AA’and BB/, and also from the diff. long., which, when
expressed in miles, is the meridional distance L L’ measured on the
equator.

11. For the purpose.of expressing the course, navigators
are in the habit of dividing the quadrant into eight equal parts
called points, and of subdividing the points into halves and

. quarters. A point, therefore, is equal to one eighth of 90°, or

"t0.11° 15, Names are given to the directions determined by
the different points, as in fig. 14, which represents the face of
the card of the Mariner’s Compass. [B., p. 52.]

The Mariner's Compass consists of this card, attached to a
magnetic needle, which has the property of constantly point-
ing toward the north, and thereby shows the ship’s course.
[B., p. 62.]

Other ways of expressing the course are easily understood. Thus,
N. 30° E. means 30° from N. towards E.

B., p. 53 contains a table of the degrees and minutes which cor-
respond to every quarter-point of the compass; and B., Table XXV
gives the log. sine, &c., for every quarter-point.
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12. Plane Sailing embraces those problems of Navigation
which involve only the Nautical Distance, the Course, or Bear-
ing, the Difference of Latitude, and the Departure. It is a
method of calculating any two of these quantities, when the
other two are known. [B., p. 52.]

13. Problem. To find the difference of latitude and the de-
parture when the course and the distance are known. [B., p. 64.]

Solution. First. Take the case where the distance is 8o small that
the curvature of the earth’s surface may be neglected: — Let AB
(fig. 15) be the distance. Draw through A the meridian AC, and
let fall on it the perpendicular BC. The angle A is the course, AC
is the difference of latitude, and CB is the departure. Then, as in
Pl Trig. § 82,

. diff. lat. = dist. X cos. course, (211)
departure — dist. X sin. course. (212)

Secondly. 'When the distance is great, as AB (fig. 71):—
Divide it into small portions, as in §10. Then AB’, the difference
of latitude of A and B, is evidently equal to the sum of the partial
differences of latitude which correspond to the distances 4 a, &ec.
Hence, and by § 10,

diff. lat. = Am-4an+bp -4 &e.
departure=ma 4 n b 4 pc 4 &e.
But, since A B is a rhumb, each of the angles m Aa, nabd, p b.c, &ec.
is equal to the given course. Hence the right triangles A ma, an 3,
bp ¢, &e. give '
Am = A a X cos. course, ma = A a X sin. course;
an— ab X cos. course, nb=abd X sin. course;
bp =25 c X cos. course, p ¢ = b ¢ X sin. course; &c. &c.
Adding each of these sets of equations, we have
diff. lat. —= Am 4an4bp+ &e.
= (A a+ ab+4 bc+ &e.) X cos. course,
departure = m a - nb 4 p ¢+ &e.
B =(Ada+4ab+4bc—+ &c.) X sin. course.

ut .
Aa+ab+ be+ &ec. = AB = distance.
Hence

diff. lat. = dist. X cos. course,

departure — dist. X sin. course ;
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precisely the same with (211) and (212) ; so that the diff. lat., dep.,
dist., and course have, in all cases, the same relative magnitude as if
they formed the right triangle of fig. 15.

Hence all the problems of Plane Sailing may be solved by this
right triangle. [B., p. 52.]

Tables of difference of latitude and departure, such as B., Tables
I and II., may be calculated by (211) and (212).

14. Problem. Tbo find the distance and the difference of lati-
tude, when the course and the departure are known. [B., p. 55.]

Solution. There are given (fig. 15) the angle A and the side CB.
Hence, as in P1. Trig. § 33,

distance — departure X cosec. course, (213)
diff. lat. — departure X cotan. course. (214)

15. Problem. To find the distance and the departure when the
course and the difference of latitude are known. [B., p. 55.]

Solution. There are given (fig. 15) the angle A and the side AC.
Then, as in Pl. Trig. § 34, -
distance = diff. lat. X sec. course, (215)

departure — diff. lat. X tang. course. (216)

16. Problem. To find the course and the difference of lati-
tude, when the distance and the departure are known. [B., p. 57.]

Solution. There are given (fig. 15) the hypothenuse AB and the
side CB. Then, as in Pl Trig. § 35,

sin. course = de.p artulﬁ, (217)
distance
diff. lat. = &/ [(dist.)2— (departure)?]. (218)

17. Problem. To find the course and the departure when the: -

distance and the difference of latitude are known. [B., p. 56.]

Solution. There are given (fig. 15) the hypothenuse AB and the
leg AC. Then, as in Pl. Trig.'§ 35, '
diff. lat.
“distance ’
departure = o/ [(dist.)? — (diff. lat.)?]. (220)

cos. course =— (219)
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18. Problem. To find the course and the distance when the
departure and the difference of latitude ave known. [B., p. 57.]

Solution. There are given (fig. 15) the legs AC and BC. Then,
as in Pl. Trig. § 36,

tan __ departure
| g- course = ——mr, (221)
dist. = diff. lat. X sec. course. (222)

19. ExAMPLES.

1. A ship sails from latitude 3°'45’ 8., upon a course N. by E., a
distance of 2345 miles; to find the latitude at which she arrives and
the departure which she makes.

Ans. Latitude — 34° 34'N.
Departure — 457 miles.

2. A ship sails from latitude 62° 19’ N., upon a course W.N. W..,

" till she makes a departure of 1000 miles; tofind the latitude at which

she arrives and the distance sailed.
Ans. Latitude — 69° 13’ N.

Distance — 1082 miles.

3. The bearing of Paris from Athens is N. 54° 56’ W, ; find the
distance and departure of these two places from each other.

Ans. Distance = 1135 miles.
Departure = 929 miles.
4. A ship sails, from latitude 72° 8’ 8., a distance of 2000 miles,

upon a course between the north and the west, and makes a departure
of 1000 miles ; find the latitude at which she arrives and the course.

Ans. Latitude ==43° 11’/ 8,
Course = N. 30°W.
5. The distance from New Orleans to Portland is 1256 miles;

find the bearing and departure.
Ans. Bearing = N. 49° 18’ E.

Departure — 952 miles.

6. The departure of Boston from Canton is 8786 miles ; find the

bearing and distance. : :
Ans. Bearing = N. 82° 81’ E.

Distance — 8862 miles.

-
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CHAPTER 1II.
TRAVERSE SAILING. ‘

20. A traverse is an irregular track made by a ship which
sails on several different courses in succession.

The object of Traverse Sailing is to reduce a traverse to a
single course ; that is, to find the single track which is equivalent
to the combination of several successive tracks ; when the whole
distance sailed is so small that the curvature of the earth’s sur-
face may be neglected. This is called working the traverse.
[B., p. 69.]

21. Problem. To reduce several successive tracks of a ship to
one, when the curvature of the earth’s surface may be neglected.
[B., p- 59.]

Solution. Suppose the ship to start from the point 4 (fig. 17),
and to sail first from A to B, then from B to C, then from C to E,
and lastly from E to F'; to find the bearing and distance of F from
* A. Call the differences of latitude corresponding to the 1st, 2d, 3d,
and 4th tracks, the 1st, 2d, 3d, and 4th differences of latitude ; and
call the corresponding departurés the 1st, 2d, 3d, and 4th departures.
The whole northing or southing made by the ship on her successive
courses is evidently equal to the difference of latitude of the place of
arrival and that of starting ; and, if we neglect the earth’s curvature
and constder the meridians as parallel, the whole easting or westing
made is equal to that which would have been made on a direct
course ; that is, to the departure of the places; or, in the case of
fig. 17,

diff. lat. of 4 and F = 1st diff. lat. — 2d diff. lat.

~+ 3d diff. lat. — 4th diff. lat.
dep. of A and F — 1st dep. — 2d dep. — 3d dep. - 4th dep.

Hence, the difference of latitude of the place of arrival and the
place of starting is found by taking the difference between the sum
of the northings made on the northerly courses and the sum of the
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southings made on the southerly courses; and their departure is
Sound by taking the difference between the sum of the eastings
made on the easterly courses and the sum of the westings made
on the westerly courses. When the difference of latitude and the
departure are known, the direct course and the nautical distance
can be found by § 18.

22. The calculations of traverse sailing are usually put into
a tabular form, as in the following example. In the first column
of the table are the numbers of the tracks ; ; in the second and
third columns are the courses and distances; in the fourth and
Jifth columns are the differences of latitude, the column headed
N. correspending to the northerly courses; and that headed
S. to the southerly courses; in the sizth and seventh columns
are the departures, the column headed E. corresponding to
the easterly courses, and that headed W. to the westerly
courses. [B., p. 59.]

23. ExAMPLES.

1. A ship sails on several successive tracks, in the order and with
the courses and distances of the first three columns of the following
table ; find the bearing and distance of the place the ship is in from
that which she left.

No Course\. Dist. N. S. E. W.
1| N.N.E | 80 | 277 11.5
2 N. W. 80 56.6 56.6
3 ‘West. 60 60.0
4 |S.E.byS.| 55 45.7 | 30.6
15 North 43 43.0
6 S. by W. 152 149.1 29.7
Sum of columns, 127.3 194.8 42.1 146.3

127.3 42.1

— e

Diff. lat. = 67.5 S. dep. = 104.2 W,
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Dep. = 104.2 2.01787
Diff. lat. = 67.5 (ar. co.) 8.17070 1.82930

Bearing = 57° 4’ tang. 0.18857 sec. 0.26467

Dist, = 124.2 « 2,09397
Ans. Bearing — 8. 57°4' W,

Distance — 124.2 miles.

2. A ship sails on the following successive tracks, N. E. 12 miles,
E. 1 8. 10 miles, 8. E. by.S. 14 miles, 8. 31° W. 7 miles, E. N. E.
25 miles. ' .

Required the bearing and distance of the place reached from the
place left. A

: Ans. Bearing — East .
Distance — 45.8 miles.

8 A ship sails on the following successive tracks, South 10 miles,
W. S. W. 25 miles, S. W. 80 miles, and West 20 miles ; she is bound
to a port which is at a distance of 100 miles from the place of start-
ing and bears W. by S.

Required the bearing and distance of the port to which the ship
is bound from the place at which she has arrived.
Ans. Bearing — N. 57° 47" W,
Distance = 40 miles.
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CHAPTER IIIL

PARALLEL SAILING.

24. Parallel Sailing considers only the case where the
ship sails exactly east or west and therefore remains con-
stantly on the same parallel of latitude. Its object is to find
the change in longitude corresponding to the ship’s track ; and,
in general, tq investigate the relation of the Difference of Lon-
gitude of two places on the same parallel to their Departure.
[B., p. 63.]

25. Problem. 'To find the difference of longitude in parallel
sailing. [B., p. 65.]
)

Solution. Let AB (fig. 185 be the distance sailed by the ship on
the parallel of latitude AB. As the course is exactly east or west,
the distance sailed must, by § 10, be itself equal to the departure
made.

The latitude of the parallel is A’DA, or A'’A. The angle AEB
= A'DB’, or the arc A'B', is, by § 7, the difference of longitude.
Denote the radius of the earth DA’— DB'—= DA by R, and the
radius of the parallel EA = EB by r; also the circumference of the
earth by C, and that of the parallel by e.

Since AB and A’'B’ correspond to the equal angles AEB and
A'DB’, they must be similar arcs and give the proportion,

AB: A'B'=¢: C,
or dep. : diff. long. =¢: C,
But, as circumferences are proportional to theit radii,
c:C=r:R
Hence, leaving out the comﬁlon ratio, |

dep. : diff. long.=17r: R.
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Putting the product of the extremes equal to that of the means,
r X diff.long. = R X departure.
But, in the triangle ADE, since
EAD = A'DA = latitude,
we have, from (22),
r = R X cos. lat.,

which, substituted in the above equation, gives, if the result is di-
vided by R,

diff. long. X cos. lat. = departure (or distance). (2238)
Hence, by (6),

dep. (or dist.)

diff. long. = cos. lat.

= dep. (or dist.) X sec. lat.  (224)

26. Problem. To find the distance between two places which are
upon the same parallel of latitude.

Solution. This problem is solved at once by (223).

27. The Table, p. 64, of the Navigator, which ¢ shows for every
degree of latitude how many miles distant two meridians are whose
difference of longitude is one degree,” is readily calculated by this
formula.

28. Corollary. It appears from {223) and (224) that if a
right triangle (fig. 18) is constructed of which the hypothenuse
is the difference of longitude and one of the acute angles the
latitude, the leg adjacent to this angle is the departure. All
the cases of parallel sailing may, then, be reduced to the solution
of this triangle.

29. ExAMPLES.

1. A ship sails from Boston 1000 miles exactly east; find the
longitude in which she arrives.

Ans. Longitude sought = 48° 20’ W,
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2. Find the distance of Barcelona (Spain) from Nantucket (Mas-
sachusetts).
Ans. Distance = 3250 miles.
3. Find the distance between two meridians whose difference of
longitude is one degree, in the latitude of 45°. ‘
. Ans. Distance — 42.43 miles.

4. Find the difference of longitude which corresponds to a de-
parture of one league, or three sea miles, in the latitude of 72°.

Ans. Diff. long. =9 42",

7e
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CHAPTER 1IV.
MIDDLE LATITUDE SAILING.

80. Middle Latitude Sailing is an approximate method of
solving those problems of rhumb sailing which involve the con-
sideration of the Difference of Longitude. It is properly
applicable to cases in which the difference of latitude is small,
and consists in calculating the difference of longitude from the
departure or the departure from the difference of longitude by
the formulas of Parallel Sailing, on the hypothesis that the de-
parture is equal to the distance between the extreme meridians
measured at the Middle Latitude ; that is, at the latitude of the
. middle point of the rhumb. [B., p. 66.]

If A and B (fig. 71) are situated on the same side of the equator,
A being in the higher latitude, their departure is less than the
meridional distance BB’ and greater than the meridional distance
AA', since each of the partial departures, as ma, is less than the
corresponding arc of BB’ and greater than the corresponding arc of
AA'. Hence, the departure of A and B must be equal to the
meridional distance measured on some intermediate parallel, DD’;
so that the departure and difference of longitude of A and B are the
same as those of D) and J’. Since the meridional distance regularly
increases, as we go from AA’ to BB/, it is natural to take the middle
parallel as an approximation to the position of DD'; and it is evident
that if the difference of latitude is small, little error can result from
this assumption, especially if the places are near the equator, where
the meridians converge but slightly.

It is evident that '

mid. lat. of two places = } sum of their lats.

= either lat. 4= } diff. lat.  (225)

81. Corollary. By combining the triangle (fig. 15) of Plane
Sailing with that (fig. 18) of Parallel Sailing, and making the
latitude in the latter equal to the middle latitude, we obtain a
triangle (fig. 19) by which all the cases of Middle Latitude
Sailing can be solved.
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82. Problem. To find the difference of latitude, the departure,
and the difference of longitude, when the course and the distance
are known, and the latitude of one extremity of the ship’s track.
[B., p. T1.] .

Solution. The triangle (fig. 19) gives at once, as in Plane Sailing

diff. lat. — dist. X cos. course
dep. — dist. X sin. course.
The middle latitude may then be found by (225); and we have,
as in (224),
dep.

Wnﬁ.—ht- = dep. X sec. mid. ht. (226)

diff. long. =

or, by substituting the value of the departure,
diff. long. = dist. X sin. course X sec. mid. lat. (227)

33. Problem. 1o find the bearing and the distance of two
given places from each other. [B., p. 68.]

Solution. The places being given, their latitudes and longitudes
are supposed to be known, so that the diff. lat., mid. lat., and diff.
long. are easily found. Then we have (fig. 19), by the principles of
the solution of right triangles,

departure — diff. long. X cos. mid. lat. (228)
. . departure

tﬂ.ﬂg. bearmg -— m (229)

dist. = diff. lat. X sec. bearing. (230)

84. Problem. To find the course, the distance, and the dif-
ference of longitude, when both latitudes and the departure are
given. [B., p. 70.] ‘

Solution. The difference of longitude is found by (226), the
course by (229), and the distance by (230).

85. Problem. To find the departure, the distance, and the
difference of longitude, when both latitudes and the course are
gwen. [B., p. 72.]

Solution. The departure is found by the formula

departure = diff. lat. X tang. course; (231}
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_ the distance by (230) ; and the difference of longitude may be found
by (226), or by substituting (231) in (226), as follows,

dxﬂ' long. = diff. lat. X tang. course X sec. mid. lat. (232)

86. Problem. To ﬁml the course, the departure, and the dif-

Serence of longitude, when both latitudes and the distance are
gwen. [B., p. 73.]

Solution. The course is found by the formula

diff. lat.
cos. course = -——m- 3 (283)
the departure by (212) or by the formula
departure — o/ [(dist.)2 — (diff. lat.)?] ; (234)

and the difference of longitude by (226) or (227).

87. Problem. To find the difference of latitude, the distance,
and the difference of longitude, when one latitude, the course, and
the departure are given. [B., p. T4.]

Solution. The difference of latitude is found by the formula

diff. lat. = dep. X cotan. course ; (285)
the distance by the formula
dist. — dep. X cosec. course ; (236)

the mid. lat. by (225); and the difference of longitude by (226).

_ 88. Problem. To find the course, the difference of latitude,
and the difference of longitude, when one latitude, the distance,
and the departure are given. [B., p. 75.]
Solution. The course is found by the formula
dep.

sin. course = Tt (237)
the difference of latitude by (211) or by the formula _
diff. lat. — 4/ [(dist.)? — (dep.)?]; (238)

and the difference of longitude by (226).

89. Scholium. If two places are in opposite latitudes, the middle
latitude may evidently differ considerably from the latitude of DD';
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though it may still be used with little error. But it is better to divide
the rhumb at the equator and use the middle latitude of each part
separately, in connexion with the departure and the difference of
longitude which correspond to that part; or we may, by an obvious
extension of the principle of middle latitude sailing, take for the ap-
proximate latitude of DIV a latitude which is intermediate in amount
between these two partial middle latitudes and differs less from the
middle latitude which corresponds to the greater part of the rhumb,
in proportion as that part is the greater. Thus, if the latitudes are 1
and 7/, taken without regard to their signs as north and south, the
middle latitades of the two parts of the rhumb are 3 Land 3 ¥; the
lengths of these parts of the rhumb and the corresponding depart-
ures are proportional to / and /; and l,, the approximate latitude of
DI, is found by the proportion

Lh—3):GI1=n=1:1,
LS L
l"'2(1+1/)‘

The approximate latitude of DD’ for all cases is bxpressed by the
formula

which gives

Ry 12

2(=F2)’
in which the upper signs or the lower are to be used according as
the places are on the same side of the equator or on opposite sides,
and  and ' denote the latitudes, taken independently of their signs ;
for if the places are on the same side of the equator the formula
becomes

ll.——-

B—
“‘20 —&a+m

40. ExAMPLES.

Note. The calculations of Middle Latitude Sailing are rendered
accurate by applying to the middle latitude a correction, which may
be found in the table of B., p. 76 (given in the Useful Tables® after
‘p. 329). The method of computing this correction will be explained
in the next chapter. The corrected mid. lat. is the true lat. of DD¥
(fig. 71) and is always a little greater than the actual mid. lat.

1. A ship sailed from Halifax (Nova Scotia) a distance of 2515
miles, upon a course S. 79° 30’ E.; find the place at which she ar-
rived.
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Solution. By § 32,

dist. = 2515 3.40054 3.40054
course — 79° 30/ cos. 9.26063 sin. 9.99267
diff. lat. =458’ — 7° 38’ S. 2.66117
lat. left == 44° 40’ N. m. lat. = 40° 51/
lat. in =37 2' N. cor. — 7

cor. mid. lat. =— 40° 58’ sec. 10.12200

diff. long. = 3275’ = 54° 35' E. 3.51521
long. left =63°35'W.
long. in = 9° 0'W.

Ans. The place arrived at is lat. 37° 2/ N., long. 9° 0/ W.;
which is one mile south of Cape St. Vincent, in Portugal.

2. Find the bearing and distance of Canton from Washington.

Solution. Byﬁ 33,
lat. of Washington — 38° 53' N. long.= 77° O'W.
lat. of Canton =23° 8'N. long. =113° 17" E.

diff. lat. = 945'= 15° 45, sum of longs. —190° 17’

mid.lat. = ° 81° O/ diff. long. =169° 43'=1018%'
cor. . = 31/

cor.mid. lat. = 31° 31’ cos. 9.93069

diff. long. = 10188/ 4.00788

diff. lat. = 945 ar. co. 7.02457 2.97548
bearing = 8. 83° 47/ W. tang. 10.96314 sec. 10.96570
dist. = 8732 miles. 3.94113

3. A ship sails from New York a distance of 6504 miles, upon
a course S. E. 1 8.; find the place at which she arrives.

Ans. 15% miles to the west of Georgetown, in Bermuda.

4. Find the bearing and distance of Portland (Maine) from New

Orleans.
Ans. The bearing. = N. 49° 18’ E.

The distance — 1256 miles.
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5. A ship from the Cape of Good Hope sails northwesterly, that
is, between north and west, until her latitude is 22° 38’ S., and her
departure 3115 miles; find her course, distance sailed, longitude,
and distance from Cape St. Thomas (Brazil).

Ans. Course = N. 76°39'W.
Distance = 3201 miles.
Longitude = 40° 36’ W.
Distance to the Cape St. Thomas = 22 miles.

6. A ship sails from Boston upon a course E. by N. until she
arrives in latitude 45° 20’ N.; find the distance sailed, the longitude
reached, and the distance and bearing from Liverpool.

Ans. Distance sailed = 928 miles.
Longitude = 49° 59' W.
Distance from Liverpool = 1893 miles.
Bearing from Liverpool = 8. 75° 9' W.

7. A ship sails southwesterly from Gibraltar a distance of 1500
miles, when she is in latitude 14° 43’ N.; find her course, the lon-
gitude she is in, and her distance from Cape Verde.

Ans. Course =—3S8.31° 8 W,
Longitude = 19° 47' W.
Dist. from Cape Verde = 132 miles.

8. A ship sails from Nantucket upon a course 8. 62° 11’ E., until
she has made a departure of 2274 miles ; find the distance sailed and
the place arrived at.

.Ans. Distance = 2571 miles,

The place arrived at is 261 miles north of Santa Cruz (Cape Verde
Islands). .

9. A ship sails southwesterly from Land’s End (England) a dis-
tance of 3466 miles, when her departure is 3306 miles; find the
« r:e and the place arrived at.

Ans. The course — 8. 72° 30’ W.
The place arrived at is Charleston (South Carolina).
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CHAPTER V.
- MERCATOR’S SAILING.

41. Mercator’s Sailing is an accurate method of solving
those problems of rhumb sailing which involve the Difference
of Longitude. [B., p. 78.]

42. Problem. T find the difference of longitude, when both
latitudes and the course are known.

Solution. Let A and B (fig. 71) be the places. Suppose the
rhumb A B divided into very small portions A4 a, a b, b ¢, &c., which
are such that the difference of longitude is the same for each of
them. Let :
"D = the required difference of longitude of B and 4,

d = the small difference of longitude which corresponds to either of
‘ the small portions of the rhumb,
L = the given latitude of B,
L’ = the given latitude of 4,

! = the latitude of.any one of the points of division, as ¢,

U = the latitude of 4, the next point towards 4,

= the given course,
n = the number of portions into which B4 is divided.

Now, since we suppose the rhumb to be divided into as many
parts as we please, we may suppose each of the parts to be so small
that the formulas of middle latitude sailing can be applied to it with-
out error ; 8o that we have for any one of them, as ¢ b, by (232),

d=(I'—1) X tang. C X sec. } (V' 4 1), (239)
or, by dividing by 2 tang. C, we have, by (6),
3 d cotan. C= % ! (240)
But } (!'—1) is a very small arc; so that, if it is expressed in
minutes, we have, by (14),
3 (' —1)sin. I =sin. } (! —1); (241)
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which, substituted in (240) multiplied by sin. 1/, gives

. .
3 dsin. 1/ cotan, C = —:‘T‘:—gg,— +-?)‘ . (242)
Let now o . )
m =} d sin. 1/ cotan. Cz—%—%:_—%; (243)
and (243) may be written in the usual form of a proportion
) sin. § (V' —10):cos. § (U 0)=m:1; (244)
whence, by the theory of proportions,
cos. § (' 1) 4sin. F (V=1 _14m (245)

cos. (V- )—sin. § (' —0) " 1—m
But if in (47), in which 4 and B may have any values, we take
A=90°—3 (4D, B=34@—0, (246)
A+B=90°—1, A—B=90"—1, (247)
and (47) becomes

cos. § (V 4-1) 4 sin. § ('—1) _ cotan. (45°—3 1) (248)
cos. 3 (! 41)—sin. § (! — 1) cotan. (45°—3 )’

and, if we put

we have

M= :_'t———: (249)

(245) and (248) give :
cotan, (45° — } )
cotan. (45°— 3 1)

Now, since the course C is everywhere the same, and since d is
assumed to be the same for each portion of the thumb, m is, by (243),
the same for each portion of the rhumb, and, therefore, by (249), M,
the ratio of cotan. (45° — 3 I') to cotan. (45° — } 1), is likewise the

=M. (250)

. same for each portion of the rhumb., Hence the successive values of

cotan. (45° — § 1), for the points B, . ... ¢, b, a, 4, form a geometric
progression, of which
cotan. (45°— F L) = the first term,
cotan. (45°— & L’) = the last term,
M = the common ratio,
n - 1 = the number of terms.

Therefore, by the theory of geometric progression,
cotan. (45° —§ L) = cotan. (45° — § L) . M*, (251)
and, by logarithms, '
log. cotan. (45° — } L’) —log. cotan. (45° — § L) = log. M*. (252)
8 . .
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Since the value of d is the same for each portion, we have,
by (243),

_D _ Dsin10

"= 4T 2mtang C’ _ (253)
and, if we put
1
, e=M"", : (254)
we have, by (253),
Dsin, 1’
M= e3""=¢ "€ o (255)
__Dsin. v _ log. e .

log.‘M"_— tang. C log. e = D——‘—_“cosec. 1’ tang, G (256)

which, substituted in (253), gives by a simple reduction

[coliegc 1 log. cotan. (45°— § LI)—COSBC llog cotan.(45°—§L)]
X tang. C= D. (257)
c. 1/

Now the value of —l‘ oz e log cotan. (45° — } L) has been

calculated for every minute of latitude and inserted in tables,
such as B., Table ITII. It is called the Meridional Parts of the
Latitude, and the method of computing it is given in §44.

The algebraic difference between the meridional parts of two
latitudes is called the Meridional Difference of Latitude.

Hence (257) gives .
D = diff. long. = mer. diff. lat. X tang. course, (258)
Since (45° — L) is the complement of (45° 4- § L), we have, by
the principles of logarithms,
log. cotan. (45° — } L) ==log. tang. (45° 4- 3 L),
=— log. cotan. (45°4 3 L); (259)

-and it is evident that (45°— % L) and (45° 4 3 L) are the halves of
the angular distances between the place of which L is the latitude
and the two poles of the earth.

In order to apply (257) to the case of two places on opposite sides
of the equator, we must consider L as negative, since, in the above
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solution, the latitude continually increases from L to L', If L =—
L,, we have, by (259),

cosec. 1/ o cosec. 1/ o
—_ = — —————log. cot. (45° —
Tog. log. cot. (45° — 3 L) = - Tog. ¢ log. cot. ( 3L)

or
mer. parts of L = — mer. parts of L,.

Hence, if the latitudes are taken without regard to their
signs, the Meridional Difference of Latitude of two places on the
same gide of the equator is equal to the difference between the
meridional parts of their latitudes ; and that of two places on
opposite sides of the equator is equal to the sum of the meridional
parts.

Since it is supposed, in the above solution, that (¥ —1I) is expressed
in minutes, d is found by (289) in minutes, and, therefore, the value
of D given by (257) is expressed in minutes.

- 43, Corollary. It appears from (258) that the diffenence of
longitude is the leg DE (fig, 20) of a right triangle of which
AD is equal to the meridional difference of latitude and the
angle 4 to the course. This triangle may be combined with
the triangle ABC of Plane Sailing; and all the cases of Merca-
tor’s Sailing are reduced to the solution of these two similar right
triangles.

44. Problem. To calculate the table of Meridional Parts.

Solution. 1. In finding the value of e, which is involved in the
expression for the meridional parts, the portions into which the rhumb
is divided are supposed to be infinstely small. Hence d is infinitely
small, and therefore, by (243), m is also infinitely small.

We have, then, by (249), together with (167) and (168),
log. M =1log. (14 m) —log. (1 —m),
=mlog. e mlog. e = 2mlog. ¢;
which gives

1

e=Min,
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which is identical with (254); so that c'in (254) has the same value
as in (164); that is
e =2.71828. (260)
I1. This value of € gives by (13)
cosec. 1/ 34377 34317
log.e = log. (2.71828) ~ 0.43429
8o that we have by (257)
Jmer- parts of L = 7915.7 log. cotan. (45° — } L)
' = 7915.7 log. tang. (45° 4} L), (262)

which agrees with the explanation of Table III. given in the Preface
to the Navigator. '

= 7915.7, (261)

45, ExAMPLES.
1. Calculate the meridional parts of latitude 45° 48/
Solution. ' 2)45° 48’

45° — } L = 45° — 22° 54/ = 22° 6'
22° 6/ log. cotan.  0.39141 log. 9.59263

, 7915.7 8.89849
mer. parts of 45° 48/ = 3098 ‘ 3.49112
2. Calculate the meridional parts of latitude 28° 14/,
Ans. 1767
3. Calculate the meridional parts of latitude 83° 59'.
Ans. 10127.

46. Problem. To calculate the correction for middle latitude
sailing. ~

Solution. If the angle DBC (fig. 19) were exactly what it should
be in order that the hypothenuse BD should be the difference of
longitude and the leg BC the departure, it would be the corrected
middle latitude, or the true latitude of DD’ (fig. 71), and we should
have

diff. long. = sec. cor. mid. lat. X departure
‘ = sec. cor. mid. lat. X diff. lat. X tang. course, (263)

d
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‘

which, compared with (258), gives, by dividing by tang. course,
mer. diff. lat. = sec. cor. mid. lat. X diff, lat. (264)

. mer. diff. lat.
.whence sec. cor. mid. lat, = — .0 4 —— (265)
If from the corrected middle latitude, calculated by this
formula, the actual middle latitude is subtracted, the correction
of the middle latitude is obtained, and thus a table like that on
p. 76 of the Navigator may be computed. The meridional
difference of latitude should, be obtained for these calculations,
not from the tables of meridional parts, but directly from the
tables of logarithmic sines, &c., by means of (257) and (262) ;
and when the difference of latitude is less than 14°, tables
should be used in which the logarithms. are given to seven
places of decimals.

" 47. Corollary. A formula adapted to calculation by logarithms
of five places can be obtained by the following process.

Let L, = the middle latitude = (L +4- L)
r = the correction of mid. lat.
1, = the difference of latitude = L'— L,

and, by § 42,

cosec. 1/ cotan. (45°—3 L')

mer. diff. lat. — Tog_e 08: o @ =4 L)

(266)

By changing, i (248), the small letters to large ones, we obtain

cotan. (45° —3 L) cos. Ly 4 sin. 3 [,
" cotan. (45° — F L) 98 Gos. L, —sin. § b

log

1 4 sin. 3 I, sec. Ly
= log. 1 —sin. 3 losec. Ly ° (267)
But, by (186),

1 4-sin. 3 7, sec. L,
log. 1 —sin. 4/, sec. L,

+ 3 (sin. § Ly sec. Ly)* 4§ (sin. § % sec. Ly)5 4 &e.]  (268)
g

=2 log. e [sin. § [, sec. L,
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which gives, by substitution in (267) and (266),
mer. diff. lat. = 2, cosec. 1/ [sin. § [, sec. L,
=+ & (sin. § [, sec. L)3 4 &e.] (269)
and (265) gives '

l B
cosec. 1/

sec. (L4 z) = 3 [sin. & J, sec. L,

+4 (sin. § & sec. Lo)* + &e.] ~ (270)
/s
48. ExAMPLES.

1. Find the correction for middle latitude sailing, when the middle
latitude is 35°, and the difference of latitude 14°,

Solution. Greater lat. — 35° + 7° =42°
Less lat. = 35° — 7° = 28°
45° — 4 gr. lat. = 24° log. cotan, 0.35142
45°—} less lat. — 31° ' log. cotan. 0.22123
log. cotan. 24° —log. cotan. 31° 0.13019 log. 9.11458
, .
= 1 7915.7 log. 3.89849
og. €
diff, lat, 840’ log. ar. co. 7.07572
corrected mid. lat. = 35° 24/ log. sec. 10.08879

correction — 35° 24/ — 85° = 24/,

2. Find the correction for middle latitude sailing, when the middle
_latltude is 66°, and the difference of latitude 10°,



§ 48.] MERCATOR’S SAILING, 91
Solution. In this case } [, = 5° =300, L,— 66°.

5% sin. 8.94030
66° sec. 0.39069

sin. 5° sec. 66° = 0.21428 9.33099 ' 0.21428
(sin. 5° sec. 66°)3 = 0.00984 7.99297 3(0.00984) = 0.00328
(sin. 5° sec. 66°)8 = 9.00045 6.65495 1(0.00045) = 0.00009
(sin. 5° sec. 66°)7 = 0.00002 5.31693 $(0.00002) = 0.00000

(0.21765) log. 9.33776 - 0.21765
300’ - ar.co. 7.52288
v ~ cosec. 8.53627

66° 22/ sec. 0.39691
cor. of mid. lat. — 66° 22’ — 66° = 22'.

8. Find the correction for middle latitude sailing, when the middle
latitude is 30°, and the difference of latitude 4°,

Solution. In this case § I, = 2°=120", L,= 80°.

2° sin. 8.54282
80° sec. 0.06247

sin. 2° sec. 80° =—=0.040298 8.60529 0.040298
(sin. 2° sec. 30°)3 = 0.000065 5.81587 0.000022
8.60552 0.040320

120/ ar. co. 7.92082
1/ cosec. 3.53627

30° 2’ sec. 0.06261
cor. of mid. lat. = 30° 2'—30° =2,
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4. Find the correction for middle latitude sailing, when the middle
latitude is 60°, and the difference of latitude 16°.

Ans. 46/,

5. Find the correction for middle latitude sailing, when the middle
latitude is 8°, and. the difference of latitude 16°.

Ans. 77,

6. Find the correction of the middle latitude and also that of I,
(found as in § 39), when the middle latitude is 2°, and the difference
of latitude 32°.

Ans. Cor. of mid. lat. = 450’; cor, of l; =82,

7. Find the corrections of the middle latitude and of I,, when the '
middle latitude is 0°, and the difference of latitude 32°.

Ans. Cor. of mid. lat. = 557’3 "cor. of I, = 77".

. 8, Find the correction for middle latitude sailing, when the middle
latitude is 21°, and the difference of latitude 3°. ’

Ans. V.

- 9. Find the correction for middle latitude sailing, when the middle
latitude is 24°, and the difference of latitude 6°.

Ans. 5.

10. Find the correction for middle latitude sailing, when the middle
latitude is 15°, and the difference of latitude 12°.

Ans. 26,

49. Problem. To find the bearing and the distance from
each other of two given places. [B.,p.79.]

Solution. 'We have by (fig. 20) for the bearing, .

diff. long.

tang. bearing =

(271)

and the distance is found by (230).
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50. Problem. 'To find-the course, the distance, and the dif-
ference of longitude, when both latitudes and the departure are
given. [B., p. 80.]

Solution. The course is faund by (229), the difference of longi-
tude by (258), and the distance by (230). .

51. Problem. To find the distance and the difference of lon-
gitude, when both latitudes and the course are given. [B., p. 82.]

Solution. The distance is found by (230), and the difference of
longitude by (258).

52. Problem. To find the course and the difference of longi-
tude, when both latitudes and the distance are given. [B., p. 83.]

Solution. The course is found by (233), and the difference of
longitude by (258). ‘

58. Problem. To find the distance, the difference of latitude,
and the difference of longitude, when one latitude, the course, and
the departure are given. [B., p. 84.]

Solution. The distance is found by (236), the difference of latitude
by (235), and the difference of longitude by (258).

54. Problem. To find the course, the difference of latitude,
" and the difference of longitude, when one latitude, the distance,
and the departure are given. [B., p. 85.] ’

Solution. The course is fourld by (237), the difference of latitude
by (238), and the difference of longitude by (258) or by the following
proportivn deduced from the similar triangles of (fig. 20),

diff. lat. : dep. = mer. diff. lat. : diff. long. (272)

65. ExaAMPLES.

1. A ship sails from Boston a distance of 6743 ﬁiles, upon a course
8. 46° 57} E.; to find the place at which she arrives.
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Solution.
dist. ~=16743 3.82885
course. = 46° 57} cos. 9.83412 tang. 10.02971

diff. lat. — 76° 42’ 8. = 4602/, 3.66297 m. d. lat. == 5007, 8.69958

lat. left = 42° 20’ N. mer. p. 2809 diff. long. = 5362, 3.72929

lat. in = 34° 22’ S. mer. p. 2198 = 89° 22’ E.

—

mer. diff. lat. = 5007 long. left = 70° 53' W.

'long. in = 18° 29’ E.
Ans. The place reached is the Cape of Good Hope.

2. Find the bearing and distance from Moscow to St. Helena.

Solution. -
Moscow, lat. 55° 45’ N. mer. parts 4047 long. 37° 84’ E.

St. Helena, lat. 15° 55’ S. mer. parts 968  long. §° 43’ W.

——

diff. lat. = 71° 40’ mer. diff. lat. = 5016 d. long. —=43°17" *

= 4300/ ' = 2597
mer, diff. lat. . ='6015 (ar.co.) 6.29973
diff. long. = 2597 3.41447
bearing = 8. 27° 23’ W. tang. 9.71420 sec.  10.05157
diff. lat. = 4300 ‘ 3.63347
dist. = 4842 miles 3.68504

Ans. The bearing = S. 27° 23’ W.; the distance — 4842 miles.

8. A ship sails from a position 200 miles to the east of Cape Horn
a distance of 3636 miles, upon a course N. N. E. ; find the position
at which she has arrived.

Ans. It has arrived at the equator in the longitude of 83° 12’ W.

4. Required the bearing and distance of Botany Bay from Lon-
don.

Ans. Bearing = §. 57° 28' E.
Distance = 9544 miles.
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5. A ship sails northwesterly from Lima until she arrives in the
latitude 28° 8’ N., and has made a departure of 9967 miles; find the
place at which she has arrived.

' " Ams. Canton.

6. A ship sails from Disappointment Island in the North Pacific
Ocean, upon a course S. 61° 163’ E., until she has arrived in latitude
14° 10’ 8.; find the place at which she has arrived.

Ans. 'The Disappointment Islands in the South Pacific Ocean.

7. A ship sails from Smeerenburg Harbor (Spitzbergen) a distance
of 8979 miles southwesterly, when she has arrived in latitude 62°
80’ 8. ; find the place at which she has arrived.

Ans. Yankee Straits in New South Shetland.

8. A ship sails from the Cape of Good Hope, upon a course 8. 82°
12/ E., until she has made a departure of 10951 miles; find the
position at which she has arrived. .

Ans. Her position is 203 miles south of Cape Horn.

9. A ship sails southeasterly from the South Point of the Great
Bank of Newfoundland a distance of 2812 miles, when she has made
a departure of 7993 miles; find the position at which she has
arrived. .

Ans. Her position is 208 miles north of Cape St. Roque.

56. Mercator’s Chart is a map of the earth’s surface or of any
part of it, constructed on the principle of representing departure
by difference of longitude and difference of latitude by meridional
difference of latitude. [B., p. 87.]

In this chart, the equator and the parallels of latitude are repre-
sented by parallel straight lines, and the meridians by straight lines
perpendicular to the equator. The distance between any two merid-
ians is proportional to their difference of longitude (expressed in
miles), and the distance of any parallel from the. equator is in the
" same proportion to the meridional parts of its latitude (which are also
to be regarded as expressed in miles). The position of any place on
the chart is determined by finding the point of intersection of its
parallel with its meridian.
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Mercator’s Chart gives a distorted view of the earth’s surface as a
whole, since the scale on which the regions of the earth are repre-
sented increases continually from the equator towards either pole.
But as .both dimensions are increased the same ratio, any small
territory is given with approximate correctness. The chart is, how- -
ever, excellently adapted to the purposes of the navigator, in sailing
on a rhumb. For the spherical figure AB'B or AA'B (fig. 71) formed
by the rhumb with the meridian of one of its extremities and the
parallel of the other is converted, on the chart, into the correspond-
ing triangle ADE (fig. 20) of Mercator's Sailing; the rhumb be-
coming a straight line, since it crosses all the meridians at the same
angle ; and the course or bearing remaining unchanged, since each
of the small triangles, A m a, &c., 18 converted into a similar triangle.
Hence the mariner can easily estimate, by means of the chart, the

"bearing of one given place from. another or the position which has
been reached by sailing on a given course. The nautical distance is
not correctly given on the chart; but it can be estimated by methods
explained in the Navigator. [B., p. 88.]

The ease of laying down rhumbs on Mercator’s chart furnish one
of the reasons for preferring rhumb sailing to great circle sailing.
Another reason is found in the fact that the problems of rhumb
sailing can be solved by plane trigonometry ; and a third in the use
of the mariner’s compass in steering. Great circle sailing is used,
however, in some long voyages; but it consists practically in sailing
on a succession of rhumbs, approximating to the arc of a great circle ;
for as long as the ship’s head is kept on any given point of the com-
pass, it is plain that she is sailing on a rhumb.

Professor Chauvenet has invented a very ingenious chart, founded
on the properties of the stereographic projection of the earth, for
showing the courses to be taken and the distance to be sailed in
great circle sailing.
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CHAPTER VI.
SURVEYING.

57. Surveying is the art of the mensuration of portions of the
earth’s surface. An accurate survey of extensive territories or
coasts involves the knowledge of the true figure of the earth,
ascertained with the utmost possible exactness. Such surveys
belong to the department of (Feodesy. But we are here to
consider only the determination of the areas of portions of the
earth’s surface which are so small that they can be regarded as
plane.

The measure commonly used by land-surveyors is Gunter’s chain.
The chain is divided into 100 links, and is equal to 4 rods, or 66
feet, or gy of a statute mile. The square chain (that is, the surface
equal to the square of which the side is a chain) is consequently
equal to 10000 square links, or 16 square rods, or 4356 square feet,
Or 4%y of a square mile, or y}; of an acre.

68. Problem. To find the area of a triangular field, when
tts angles and one of its sides are known.

Solution. Let ABC (fig. 2 or 8) be the triangle to be measured
and c the given side. The area of the triangle is equal to half the
product of its base by its altitude, or

area of ABC =14 bp. (273)
But, by (130),
sin, C:sin. B::¢: b,

whence
' p—¢ sin. B
~ sin, C ’
and, by (131),
p=csin. 4,
Substituting in (273), we have
area of ABC = c2 sin. 4 sin. B, (274)

2sin. C
9
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59. Problem. To find the area of a triangular field, when
two of s sides and the included angle are known.

Sofition. Let ABC (fig. 2 or 3) be the triangle to be measured,
b and c the given sides, and A4 the given angle. Then, by (273),

area of ABC =} bp,
and, by (131), o
p =csin. A.
Hence
area of ABC=14%becsin. 4; (275)

that is, the area of a triangle is equal to half the continued
product of two of its sides and the sine of the included angle.

60. Problem. To find the area of a triangular field, when
iL8 three sides are known.

Solution. Let ABC (fig. 1) be the given triangle. Then, by
(275),
area of ABC =14 besin. 4;

but, by (158),
2V =0 (b =]

sin. 4 =

in which s denotes the half sum of the three sides of the triangle.
Hence
besin. A =24/[s(s—a) (s— ) (s—¢c)];
and
area of ABC = A/ [3(s—a) (s—13) (s—¢)]; (276)

that is, to find the area of a triangular field, subtract each side
separately from the half sum of the sides, and the square root of
the continued product of the half sum and the three remainders i8
the required area.

61. ExAMPLESs.

1. Given the three sides of a triangular ﬁeld equal to 45.56 ch.,
52.98 ch., and 61.22 ch. ; to find its area.
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Solution. Let a = 45.56 ch., 5 = 52.98 ch., c = 61.22 ch.

2 s —159.76 ch.
s= 79.88 ch. 1.90244
$—a=— 84.32 ch. 1.53555
8 —b=— 26.90 ch. 1.42975
s§—c = 18.66 ch. 1.27091

2| 6.13865

Area of ABC = 1173.07 sq. ch. 3.06932,
Ans. Thearea— 117 A.1R. 9.

2. Given the three sides of a triangular field equal to 32.56 ch.,
57.84 ch., and 44.44 ch.; to find its area.
Ans. Thearea—171 A.3R.12r.

8. Given one side of a triangular field equal to 17.95 ch., and the
adjacent angles equal to 100° and 70°; to find its area.
Ans. The area —85 A. 3R. 17 .

4. Given two sides of a triangular field equal to 12.34 ch. and
17.97 ch., and the included angle equal to 44° 56 ; to find its area.

Ans. Thearea— 7 A.3 R.13r.

62. Problem. 10 find the area of an trregular field bounded
by straight lines.

First Method of Solution. Divide’the field into triangles in
any manner best suited to the nature of the ground. Measure
all those sjdes and angles which can be measured conveniently,
remembering that three parts of each triangle, one of which is
a side, must be known to determine it.

But it is desirable to measure more than three parts of each tri-
angle, when it can be done; because the comparison of them with
. each other will often serve to correct the errorsof observation. Thus,
if the three angles were measured, and their sum were found to differ
from 180°, there must be an error of measurement equivalent to the
difference ; and the error, if small, might be 8ivided between the
angles ; but if it were large, it would show the observations were so
inaccurate that they must be taken again.
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The area of each triangle is to be calculated by one of the pre-
ceding formulas, and the sum of the areas of the triangles is
the area of the whole field.

This method of solution is’ general and may be applied to
surfaces of any extent, provided each triangle is so small as not
to'be affected by the earth’s curvature.

Second Method of Solution. Let ABCEFHA (fig. 21) be the field
to be measured. Starting from its most easterly or its most westerly
point, the point A for instance, measure successively round the field
the bearings and lengths of all its sides. Through A draw the
meridian IVS, on which let fall the perpendiculars BB', CC’, EE',
FF, and HH'. Also draw CB"E", EF", and HF", parallel to NS,

Then the area of the required field is

ABCEFHA = AC'CEFFA —[ACCBA+4 AHFF A).
But
i AC/'CEFFA=CCEE'+4 E'EFF;
and ' .
AC'CBA+ AHFFA—= CCBB' + B'BA+4 AHH 4 H'HFF.
Hence, .
ABCEFHA = [C'CEE'+ E'EFF]—[C'CBB' + B'BA
+ AHH' 4 HHFF');
or doubling and changing a very little the order of the terms,

2 ABCEFHA =[2 C'CEE' +2 E'EFP]—

277
(2 BBA+ 2 C'CBB' 4 2 HHFF + 2 AHH). (277)

Again, by the principles of the measurement of triangles and trape-
zoids,

2 BBA = B'B X AB

2 C'CBB'=(B'B+4 CC) X BC

"9 C'CEE' = (CC+ EE) X CE

2 EEEFP = (E'E+4 FF) X E'F

2 HHFF = (FF 4+ HH) X FH

2 AHH' = HH - X HA.

(278)
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So the determination of the required area is now reduced to the
calculation of the several lines in the second members of (278).
But the rest of the solution may be more easily comprehended by
means of the following table, which is precisely similar in its
arrangement to the table actually used by syrveyors, when calculating
areas by this process.

Sides.| N. | 8. | B. | W. |Dep. ‘ Sum. I N.Areas. | 8.Areas.
AB|AB’ B‘B B'B BB 2 B‘'BA

BC |B/C’ BB”|C'C| B'B4-C'C | 2C'CBB’

CE C'E’ E“E' : E’EI CC4+EE 2 C'CEE/
EF E'F/\F'F F'F\E’E4F'F 2E‘EFF’
FH [F'H’ FF/" H’H! FF4+HH|2 H'HFF'

HA H'A HH'| 0 H'H 2 AHH'

In the first column of the table are the successive sides of
the field. . o

In the second and third columns are the differences of latitude
of the several sides ; the column headed N. corresponding to the
sides running in a northerly direction, and that headed S.
corresponding to those running in a southerly direction.

These two columns are célculated by the formula

Diff. lat. = dist. X cos. bearing.

In the fourth and fifth columns are the departures of the
several sides; the column headed E. corresponding to the
sides running in an easterly direction, and that headed W. to
those running in a westerly direction.

These two columns are calculated by the formula

Departure = dist. X sin. bearing.

In the sizth column, headed Departure, are the departures
of the several vertices of the field from the vertex A. This
column is calculated from the two columns E. and W. in the

following manner. The first number in columin Departure is
g
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the same as the first in the two columns E. and W.; and every
succeeding number in column Departure is obtained by adding
the corresponding number in columns E. and W.,if it is of the
same column with the first number in those two columns, to the
previous number in column Departure, or by subtracting it
Jfrom that previous number, if it is not of the same column with
the first number in columns E. and W.

Thus
B'B= BB
C'C = BB" = B'B— BB
EE= E'E'+ E'E= CC + E'E
FF=FF' 4 F'F = EE+4 F'F
HH=FF" = F'F — FF"
0 = H'H — HAH'.

In the seventh column, headed Sum, are the first factors of
the second members of (278). This column is calculated from
column Departure in the following manner. The first number
in column Sum is the same as the first in column Departure ;
and every other number in column Sum is the sum of the cor-
responding number in column Departure added to the previous
number tn column Departure, as is evident from simple in-
spection.

In the eighth and nintk columns are the values of the areas
which compose the first members of (278). These columns
are calculated by multiplying the numbers in column Sum by
the corresponding numbers in columns N. and 8., which con-
tain the second factors of the second members of (278). The
products are written in the column of North Areas when the
second factors are taken from column N., and in that of South
Areas when the second factors are taken from column S.

~ If we compare the columns of North and South Areas with
(277), we find that all those areas which are preceded by
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the negative sign are the same with' those in' the column of
North Areas ; while all those which are preceded by the positive
sign belong to the column of South Areas. To obtain, therefore,
the value of the second member of (277), that is, of double the
required area, we have only to find the difference between the
sums of the columns of North and South Areas. [B.,p.107.]

63. Corollary. The columns N., S., E., -and W, are those which
would be calculated in Traverse Sailing, if a ship was supposed to
start from the point 4 and procged round the sides of the field till
it returned to the point A. .The difference of the sums of columns
N. and 8. is, then, by Traverse Sailing, the difference of latitude
of the point from which the ship starts and the point at which she
arrives ; and the dlﬂ'erence of columns E. and W. is the departure ,
of the same two pomts But as both the points are here the same,
their difference of latitude and their departure must be nothing; or

Sum of column N. = sum of column 8.

Sum of column E. = sum of column W.
But when, as is almost always the case, the sums of these columns
differ from each other, the difference must arise from errors of
observation. If the error is great, new observations must be taken;

but if it is small, it may be divided among the sides by the followmg
proportion : —

The sum of the sides : each side = whole error: '

error corresponding to that side. (279)

The errors corresponding to the sides are .then to be sub-
tracted from the differences of latitude or departures which
are in the larger column, and added to those which are in the
smaller column. .

64. Exnn’x.is.

1. Given the bearings and lengths of the sides of a field, as in the
three first columns of the following table ; to find its area.

Solution. The table is computed by § 62.



[cH. vI.

NAVIGATION AND SURVEYING.

104

.u.u.no...e.

- 81 "4 8 'V 9% = IV oy,

0¥

za¥'e .

i . :

rog ey

¥819'895% (0L -

895 L2983 oL Nog' |

£89L°009% | _ _ 90°6.L 0901

9066°L801 T 4890095 -[18'6L |18'6L [5LOTT ZLOTL|6L’ 08" '90'6L |98'6L |gOTT ‘9gOTT
oF50°L8LT 0895 000 | log'se 2999 81" 80° 86°9% 9L'99 (W FL A owE'N 8
_ 8o69 0895 | |86 | o oo 009 w09 | 2wex | L

80LL'¥236 | oUes lsize | |0o'ge (s1'86 | 9 o | 98’28 |20°86 |'u0 66 A0z '8 9

gotr'ior | bazol l8g'99 |1eor we™| o [t egor oL8 [wo 11l mooLs g

6610'1211 | 66°I11[10°99 (80 10°01 20" [10° | 00°01 [0 01| “wmog | ¥

9682'05% | o629 [s6'cg [10%g 18 bI° 50 1829 oLg [t 39 M o08°S 8
loLizer [isot |6t | [esE 1765 [80° 80" | 10°81 FZ'6% (1028 T o¥8 N B
i - |
lo96°025 [06°¥1 [06°F1 06°%1 g8F1 (90" 50° 98I g%t 0o 15 "M ogb'N T

_ q | N |
weay g | wweay N |wng | doq | M | E | B | N |900[0| M | E | § | N | W@ Bunwg oy




§ 65.] SURVEYING. 105

2. Given the lengths and bearings of the sides of a field, as
follows ; to find its area,

1st side; N.17° E:; 25ch. ¢
2nd side; East ; 28 ch.
8rd side; South ; 54 ch.

4th side; S.4°W.; 22 ch.
5thside; N.33°W.; 62 ch,
Ans. Thearea =167 A.3R. 21 1.

65. Problem. To find the area of a field bounded by sides
trregularly curved. '

Solution. Let ABCEFHIKL (fig. 22) be the field to be meas- °
ured, the boundary ABCEFHIKL being irregularly curved. Take
any points C and F so that when we join AC,CF, and FL, the field
ACFL, bounded by straight lines, may not differ much from the
given field.-

Find the area of ACFL by either of the preceding methods, and
then measure the parts included between the curved and the straight’
sides by the following method of offsets.

Take the points a, b, c, d, so that the lines A a, ab, be,cd,d C
may be sensibly straight. Let fall on AC the perpendiculars a a’,
by, cc’, dd'. Measure these perpendiculars and also the distances
Ad,a'b, V¢, cd,d C.

The trianglés Aaa',Cdd, and the trapezoids aba'd’, bcb'c,
cd c'd' are then easily calculated, and their sum is the area of ABC.

In the same way.may the areas of CEF, FHI*and IKL be calcu-
lated ; and then the required area is found by the equation.

ABCEFHIKL = ACFL— ABC+ CEF+4 FHI— IKL.

ExAMPLE. -
!

Given (fig. 22) A a’=5 ch, a' =2 ch,, ¥ ¢/=6 ch.,,c'd
=1ch,d C=4ch.; alsoaa =38 ch, ¥ =2ch.,cc’ = 2.5 ch.,
dd' =1 ch.; to find the area of ABC.

vins. Required area=2 A. 3 R. 36 1.
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CHAPTER VII.
HEIGHTS AND DISTANCES.

66. The plane of the sensible horizon at any place is the plane
which is tangent to the earth’s surface at that place.

Any line or plane which is parallel to the plane of the horizon
is said to be horizontal ; and any line or plane which is perpen-
. dicular to the plane of the horizon is said to be vertical.

The visible horizon for any observer is the circumference of a
small circle of the earth which limits his view of the earth’s
surface.

The plane of the sensible horizon coincides with the surface of
tranquil water, when this surface is so small that its curvature can be
neglected ; and it is perpendicular to the plumb line.

67. The angle of elevation of an object is the vertical angle
which a line drawn to the object from the place of the observer
makes with the horizontal plane at that place, when the object
is above this horizontal plane; the angle of depression is the
same angle, when the object is below the horizontal plane.

The bearing of an object from the place of the observer is the
horizontal angle which the vertical plane passing through the
place and the object makes with the plane of the meridian of
the place. ) ’

Various instruments have been devised for estimating the direction
of any visible object from the observer, with reference to the plane
of the horizon or to that of the meridian or to the directions of other
visible objects. The most important of these instruments in land-
- surveying is the theodolite, which consists of a telescope, capable of
being rotated onm its stand, about a vertical axis, into the same ver-
tical plane with any visible object, and also of beiné rotated in that
plane, about a horizontal axis perpendicular to it. By measuring these
rotations, we can measure the horizontal angle made by the vertical
plane of the object with the plane of the meridian (which is indicated
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by the compass) or with any other vertical plane, and also the angle
of elevation or depression of the object. Other instruments, such as
the quadrant, the sextant, and the azimuth compass, are used on ship-
board for measuring angles.

. 68. Problem. To determine the height of a vertical tower
situated on a horizontal plane. [B.,p. 94.] -

Solution. Observation. Let AB (fig. 23) be the tower whose
height is to be determined. Measure off the distance BC on the
horizontal plane of any convenient length. At the point C observe
the angle of elevation BCA.

Calculation. We have, then, given, in the right triangle ACB,
the angle C and the base BC, as in § 34 of Pl. Trig., and the leg
AB is found by (26).

ExAMPLE.

At the distance of 95 feet from a tower, the angle of elevation of
the tower is found to be 48° 19’. Required the height of the tower.

Ans. 106.69 feet.

69. Problem. o find the height of & vertical tower situated
on an inclined plane.

Solution. Observation. Let AB (fig. 24) be the tower, situated
on the inclined plane BC. Observe the angle B which the tower
makes with the plane. Measure off the distance BC of any con-
venient length. At the point C, observe the angle BCA by which
the top of the tower is elevated above the inclined plane.

Calculation. In the oblique triangle ABC, there are given the
side BC and the two adjacent angles B and C, and BA may be found
as in § 73 of Plane Trigonometry.

\

ExAMPLE.

Given (fig. 24) BC = 89 feet, B =113° 12/, C=28° 27’5 to
find BA. ’ ’ ‘ : :
Ans. BA = 51.595 feet. , -



108 NAVIGATION AND SURVEYING. [cH. VIL

70. Problem. To find the distance of an tnaccessible object.
{B., pp- 89 and 95.]

Solution. Observation. Let B (fig. 2) be the point the distance
of which is to be determined, and A the place of the observer.
Measure off the distance AC of any convenient length, and observe
the angles 4 and C.

Calculation. AB and CB are found by § 73 of P1. Trig.

71. Corollary. The perpendicular distance PB of the point B
from the line AC and the distance AP and PC are found, in the
triangles ABP and BPC, by § 32 of Pl. Trig.

72. Corollary- Instead of directly observing the angles A and C,
the bearings of the lines AB, AC, and CB may be observed, when
the plane AB( is horizontal ; and the angles 4 and C are then easily
determined, since the meridians may be considered as parallel.

73. ExAMPLES.

1. An observer sees a cape which bears N. by E.; after sailing
80 miles N. W., he sees the same cape bearing east; find the dis-
tance of the cape from the two points of observation.

Ans. The first distance — 21.63 miles.
The second dist. — 25.43 miles.

2. Two observers, stationed on directly opposite sides of a cloud,
observe the angles of elevation to be 44° 56/ and 36° 4, their dis-
tance apart being 700 feet; find the distance of the cloud from each
observer and its perpendicular altitude.

Ans. Distances from observers — 417.2 feet, and = 500.6 ft.
Height = 294 .7 feet.

" 8. The angle of elevation of the top of a tower at one station is
observed to be 68° 19/, and at another station, 546 feet farther from
the tower, the angle of elevation is 32° 34/ ; find the height and dis-
tance of the tower, the two points of observation being supposed to
be in the same horizontal plane with the foot of the tower.

Ans. The height . . . . . . ==467.44 ft,
The distance from the nearest point of observ. — 185.86 ft.
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74. Problem. To find the distance of an object from the foot
of a tower of known height, the observer being at the top of the
tower.

Solution., Observation. Let the tower be AB (ﬁg. 28) and the
object C. Measure the angle of depression HAC.

Calculation. Since
ACB= HAC,

we know in the triangle ACB the leg AB and the opposite angle C,
8o that we can find BC as in § 33 of Pl. Trig.

ExAMPLE.

Given the height of the tower = 150 feet, and the angle of depres-
sion — 17° 25/; to find the distance from the foot of the tower.

Ans. 478.16 feet.

75. Problem. Tv find the height of an inaccessible object
above a horizontal plane, by means of observations taken at any
two points in that plane. [B., p. 96.]

Solution. Observation. Let A (fig. 25) be the object, and let D
be the foot of the perpendicular dropped from A on the horizontal
plane. At two different stations in the horizontal plane, B and C,
whose distance apart and bearing from each other are known, observe
the bearings of the object, which are the same as the angles made by
BD and CD with the meridians of B and C. Also observe the angle
of elevation of A at one of the stations, as B.

Calculation. In the triangle BCD, the side BC and its adjacent
angles are known, so that BD is found by § 78 of Pl. Trig. In the
right triangle A BD, the height DA is, then, computed by § 34 of
Pl. Trig.

ExaAMPLE.

At one station, the bearing of a cloud is N. N. W., and its angle
of elevation 50° 35’. At a second station, whose bearing from the
first station is N. by E. and distance 5000 feet, the bearing of the
cloud is W. by N. Find the height of the cloud.

Ans. 7316.5.
10



110 ) NAVIGATION AND SURVEYING. [cH. vII.

76. Problem. To find the distance of two objects whose
relative position is known. [B., p. 90.]

Solution. Observation. Let B and C (fig. 1) be the two known
objects, and A the position of the observer. Observe the bearings of
B and C from 4. )

Calculation. In the triangle ABC, the side BC and the three
angles are known. The sides AB and AC are found by §78 of
Pl Trig.

ExaMPLE.

The bearings of the two objects are, of the first N. E. by E., and
of the second E. by S.; the known distance of the first object from
the second is 23.25 miles, and the bearing N, W. ; find their distance
from the observer. ‘

Ans. The distance of the first object is — 18.27 miles.

That of the second object = 32.25 ntiles.

7. Problem. To find the distance a;art of two objects
separated by an impassable barrier, and their bearing from each
other. [B., p. 91.]

Solution. Observation. Let A and B (fig. 1) be the objects the
distance and bearing of which from each other is sought. Measure
the distances and bearings from any point C to both 4 and B.

Cadlculation. In the triangle ABC, the two sides ACand BC and
the included angle C are known. The side AB and the angles A
and B may be found by § 82 of Pl. Trig.

ExaAMPLE.

Two ships sail from the same port, the one N. 10° E. a distance of
200 miles, the second N. 70° E. a distance of 150 miles ; find their
bearing and distance from each other.

Ans. The distance . . . . . == 180.3 miles.
The bearing of the first ship from the second — N. 36° 6’ W.

78. Problem. To find the distance apart of two inaccessible
objects situated in the same plane with the observer, and their
bearing from each other. [B., p. 92.]
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Solution. Observation. Let A and B (fig. 26) be the two inac-
cessible objects. At two stations, C and E, observe the bearings of
A and B; and observe the bearing and distance of C from E.

Calculation. In the triangle AEC, we have the side CE and the
angles ECA and AEC, so that CA is found by § 73 of Pl. Trig.

In the same way CB is calculated from the triangle BCE.

Lastly, in the triangle ABC, we know the two sides CA and CB
and the included angle BCA.

Hence AB and the angles BAC and CBA are found by Pl Tr.
§ 82. :

ExaMPLE.

" An observer from a ship saw two headlands; the first bore E. N,
E., and the second N. W. by N. After he had sailed N. by W. 16.25
miles, the first headland bore E. and the second N. W, by W.; find
the bearing and distance of the first headland from the second.

Ans. Distance = 55.89 miles.
Bearing —= 8. 80° 42'E.

79. Problem. 1To find the distance of an object of known
height, which 8 just seen in the visible horizon.

Solution. 1. If light moved-in a straight line, and if A (fig. 27)
were the eye of the observer, and B the object, the straight line
APB would be that of the visual ray. Thé point P, at which the
ray toliches the curved surface CPD of the earth, is the point of the
visible horizon at which the object is seen. The distances PA and
PB may be calculated separately, when the heights CA and DB are
known. For this purpose, let O be the earth’s centre, let BD be
produced to E, and let

h=CA, H= DB,
l= P .A., L = P B,
R — the earth’s radius.
Since BP is a tangent and BOE a secant to the earth, we have
EB: PB=PB: DB; )
and DB is so small in.comparison with the radius that we may take

EB—=ED=2R, .
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and the above proportion becomes
2R:L=0L: H;

whence
L*=2 RH, L=4/(2 RH), (280)
L2
H= TR/ (281)
and in the same way
B=2Rh l=a/(2RbH), (282)
h= % . (283)

II. In consequence, however, of its refraction by the earth’s
atmosphere, light does not move in a straight line near the earth’s
surface, but in a line curved towards the earth’s centre, which line is
nearly an arc of a circle whose radius is seven times the earth’s radius ;
so that for the point of contact P and the distances ! and L, the
positions of the eye and of the object are A’ and B'. Now if we put

BB=H, DB=H—=H—H
CA’: hl!

we can find the value of H’ with sufficient accuracy by changing in
(281) R into 7 R, which gives

[ — LQ —
B=gg=tH
H=H—~H=§ H= ?111;;, 1284)
whence L=/ (3 RH). (285)

III. In calculating the value of L by (285), it is usually desired
in statute miles, while the height H, is given in feet. Now the radius
of the earth is, as given in the Preface to the Navigator, page v,

R=20911790 feet, . (286)
whence % R = 48794177 feet,
log. o/ (§ R) = % log. § R =3.84418,
and  log. (L in feet) — 3.84418 4~} log. (H, in feet).
L in feet

But . mex;es: -—W’



§ 81.] HEIGHTS AND DISTANOES. 113

so that log. L in miles = log. L in feet— 3.72263
= 0.12155 4 } log. H, in feet ; (287)

which agrees with the formula given in the Preface to the Navigator
for calculating Table X.

IV. Table X may be used for finding L and I, when H, and A,
are given, and then the required distance is the sum of L and Z

80. Corollary. Table X gives the correction for the error which
is committed in § 68 by neglecting the earth’s curvature, for it is
evident that to the height PB (fig. 28) of the object above the visible
level must be added the height CP of the level above the curved
surface of the earth, as in B., p. 95.

81. ExamrpLEs.

1. Calculate the distance in Table X at which an object can be
seen from the surface of the earth, when its height is 5000 feet.
Solution.

% log. 5000 = % (3.69897) — 1.84948
constant log. 0.12155

dist. = 93.5 m. (as in Table X)  1.97103

2. Being on a hill 200 feet above the sea, I see just appearing in
the horizon the top of a mast, which I know to be 150 feet above
water ; how far distant is it ?

Solution. By Table X,
200 feet corresponds to 18.71 miles.
150 feet corresponds to 16.20 miles.

—

The distance is 84.91 miles.

3. At the distance of 7} statute miles from.a hill the angle of
elevation of its top is 2° 18/; find its height in feet, the observer
being 20 feet above the sea.

10¢
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Solution.
2° 13/ tang. 8.58779
73 miles = 39600 4.59770
1533 feet 8.18549

observer’s dist. from hill  =17.50
height 20 gives observer’s dist. from horizon = 5.92

—

dist. of hill beyond horizon —1.58,
which gives 1 foot correction.

Ans. 1534 feet.

4. Calculate the distance in Table X, when the height is 450 feet.
Ans. 28.06 miles.

5. Upon a height of 5000 feet, the top of a hill, one mile high, is
just visible in the horizon ; how far distant is the hill ?

Ans. 189.6 miles.

6. At the distance of 25 statute miles from a mountain the angle
of elevation of its top is 8°; find its height, the observer being 60
feet above the intervening sea.

Ans. 7042 feet.
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SPHERICAL TRIGONOMETRY.

CHAPTER 1.
DEFINITIONS.

1. Spherical Trigonometry treats of the solution of spherical
triangles.

A Spherical Triangle is a portion of the surface of a sphere
included between three arcs of great circles.

2. The sides of a spherical triangle are the measures of the
angles formed, at the centre of the sphere, by the lines of in-
tersection of their planes ; and they are said to be acute or ob-
tuse, according as they are less or greater than 90°.

The angles of a spherical triangle are the same as the angles
formed by the planes of the sides; for any two sides are perpen-
dicular, at their point of intersection, to the line of intersection
of their planes.

The solution of spherical triangles in which any of the sides
or angles are greater than 180° can always be reduced to the
solution of spherical triangles in which all the parts are less than
180° ; and, in this treatise, the discussion is limited to the latter
class of triangles, and when values greater than 180° are found,
in the solution of a triangle, for its unknown parts, they are
rejected. '

The student is directed to Chauvenet’s Trigonometry for a chapter
on the ¢ Solution of the General Spherical Triangle.”

8. Besides the usual method of denoting sides and angles
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by degrees, minutes, &c., another method of denoting them is
so often used in Spherical Astronomy that it will be found
convenient to explain it here.

The circumference is supposed to be divided intos 24 equal
arcs called hours, each hour is divided into 60 minutes of time,
each minute into 60 seconds of time, and so on.

Hours, minutes, seconds, &c. of time are denoted by &, m, s, &c.

4. Problem. To comvert degrees, minutes, §ec. of arc tnto
hours, minutes, §c. of time.

v

Solution. Since
860° = 24*
we have 15° =14, 1°=K*=4",

18 =1 1 =4,
15"=1%, 1"=4,
Hence a®°=4a" a=4a, a'=4d;

so that to convert degrees, minutes, §c. of arc into time, multiply
by 4, and change the marks ° ' ¥ respectively into ™**.

5. Corollary. To convert time into degrees, minutes, &ec. of
arc, multiply the hours by 15 for degrees, and divide the minutes,
seconds, &c. of time by 4, changing the marks™** into °'"'.

The turning of degrees, minutes, &c. of arc into time and the re-
verse may be at once performed by table XXI of the Navigator.

6. ExXAMPLES.

1. Convert 225° 47’ 38 into time.

Solution. By § 4. By Table XXI.
225° = 900~ = 15* 154
47 =188 = 3~ & 3~ g
38" = 152 = . 2°32* 2¢ 32¢

225° 47' 38" = 15*3~ 10 32° 15* 3= 10 32
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2. Convert 17* 19™ 13* into degrees, minutes, &ec. of arc.

Solution. By § 5. By Table XXI.
17 = 255° 17* 16 = 259°
19 13* = 4° 48’ 15/ ™12 = 48/
1= 157

17 19™ 13'= 259° 48’ 15"

17 19 13* = 259° 48/ 15"
8. Convert 12° 34' 56” into time. Ans. 50™ 19°* 44",

4, Find the difference of longitude, in time, of Portland and San
Francisco,

Ans. 8*29™ 16°.
5. Convert 8* 2™ 12* into degrees, minutes, &c. of arc.

Ans. 45° 38/,
_ﬁ; L ’ KA
6. Convert 11* 59™ 59° into degrees, minutes, &c. of arc.

. Ans. 179° 59/ 45",

7. When an arc is given in time, its log. sine, &c. can be
found directly from Table XXVII, by means of the column
headed Hour P. M., in which twice the time is given, so that
the double of the angle must be found in this column.

The use of the table of proportional parts for these columns is ex-
plained upon page 35 of the Navigator. When the time exceeds
6*, the difference between it and 12" or 24* must be used.

.
K ExaMPLES.

1. Find the log. cosine of 19* 33" 11°.
Solution.
24* — 19* 33™ 11* — 4* 26™ 49*
2 X (4* 26™ 49") — 8* 53" 38°
8* 53" 36° P. M. cos. 9.59720
prop. parts of 2° 7

8 53" 38" P.M.  cos.  9.59713
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2. Find the angle in time of which the log. tang. is 10.12049.

™2™ 40'P. M tang. 10.12026
7° prop. parts 23
2) 2”47 P. M 10.12049

Ans. 331733}

3. Find the log. sine of 3* 12™ 2°. Ans.  9.87118.
4. Find the log. cosine of 11* 3™ 13°, Ans.  9.98653,.
5. Find the log. tang. of 15* 0™ 9°. Ans. 10.00057.
6. Find the log. cotan. of 28* 59™ 59°. Ans. 10.57183,.
7. Find the angle in time whose log. secant is 10.23456.

Ans. 3 37" 26",

8. Find the angle in time whose log. cosecant is 10.12346.
Ans. 8*15™ 15,

8. An isosceles spherical triangle is one which has two of its
sides equal.

An equilateral spherical triangle is one which has all its
sides equal.

9. A spherical right triangle is one which has a right angle ;
all other spherical triangles are called odlique.

We shall in spherical trigonometry, as we did in plane trigonom-
etry, attend first to the solution of right triangles.

.
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CHAPTER IIL

SPHERICAL RIGHT TRIANGLES.

10. Problem. To investigate some relations between the sides
and angles of a spherical right triangle.

Solution. The importance of this problem is obvious ; for, unless
some relations were known between the sides and the angles, they
could not be determined from each other, and there could be no such
thing as the solution of a spherical triangle.

Let, then, ABC (fig. 29) be a spherical right triangle, right-angled
at C. Call the hypothenuse AB, k; and call the legs CB and AC,
opposite the angles A and B respectively, a and 5.

Let O be the centre of the sphere. Join O4, OB, OC.

The angle of the planes BOA4 and COA is, by §2, equal to the
angle A. The angle of the planes BOC and BOA is equal to the
angle B. The angle of the planes BOC and AOC is equal to the
angle C, that is, to a right angle ; these two planes are, therefore,
perpendicular to each other.

Moreover, the angle A OB, measured by AB, is equal to AB,or 4 ;
COB is equal to its measure CB, or a; and AOC is equal to its
measure AC, or b.

Through any point A’ of the line OA, suppose a plane B’A'C' to
pass perpendicular to OA. Its intersections A’C’ and A'B' with the
planes COA and BOA must be perpendicular to OA’, because t.hey
are drawn through its foot in the plane B/A’'C'.

As the plane B'A’C’ is perpendicular to OA, it must be perpen-
dicular to the plane AOC, which contains OA4 ; and its intersection
B'C’ with the plane BOC, which is also perpendicular to A0C, must
likewise be perpendicular to AOC. Hence B'C' must be perpen-
dicular to 4’C' and OC', which pass through its foot in the plane

40C.
11
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The triangles OA'B’, OA'C’, OC'B’, and A’C'B’ are then right-
angled, the first two at A/, and the last two at C’; and the com-
parison of them leads to the desired equations, as follows : —

First. We have, from triangle OA’'B’, by (4),

. OA/
| cos. A’/OB' = cos. h — o5
and, from triangles OA’'C' and OC'B/,
. oA
cos. A’0OC' =cos. b — oo
oc H
cos. C'OB' = cos. a =—OB’ .

The product of the last two equations is

o4  oC oA

COS. @ COs. b:w X 0B =0

hence, from the equality of the second members of these equations,

cos. k= cos. a cos. d. (288)

Secondly. From triangle A'C'B’ we have, by (4), and the fact
that the angle C'A’B’ is equal to the inclination of the two planes
AOC and BOA,

A
aB’

and, from triangles OA’C’ and OA'B/, by (4),

cos. CA'B' = cos. A=

AT
 J— —
tang. AOC' = tang. b= oA
, o4’
cotan. A'OB’' = cotan, h —= YO _ .

The product of these equations is

AC 04 AC.
04 X AB —AB’

hence cos. A = tang. b cotan. A. (289)

tang. b cotan. A =
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Thirdly. Corresponding to the preceding equation between the
hypothenuse %, the angle 4, and the adjacent side b, there must be
a precisely similar equation between the hypothenuse 4, the angle B,
and the adjacent side a; which is

cos. B — tang. a cotan. A. (290)
Fourthly. From triangles OC'B’, OA'B’, and A'C'B/, by (4),
sin. C'OB’' =sin. a = g-l—-g,,
sin. A'OB' = sin. h= g_'g,
sin. C'A’B' = sin. A —= gll—gl,.

The product of these last two equations is

A'B' X CB _ CHB
0B “4B~ 0B’

hence sin. @ = sin. & sin. A. . (291)

sin. A sin. 4 =

Fifthly. The preceding equation, between A, the angle A, and the
opposite side a, leads to the following corresponding one, between 4,
the angle B, and the opposite side b ;

sin. b = sin. A sin. B. (292)

. Sizthly. From triangles 0A'C’, A'C'B', and OC'B', by (4),

sin. 4'0C' = sin. b —_-:‘b_'g,
y AC
cotan. C'A’B’ —cotan. 4 — oD’
L _op
tang. C'OB’' = tang. a = oc"

The product of these last two equations is

A'C C'B’ A C/
| La=_— =
cotan tang. a ChB X 00 = 0C H

" hence sin. b = cotan. 4 tang. a. (293)
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Seventhly. The preceding equation, between the angle 4, the
opposite side a, and the adjacent side b, leads to the following cor-

responding one, between the angle B, the opposite side b, and the
adjacent side a ;

sin. @ = cotan. B tang. b. (294)
Eighthly. From (7),
’ ¢ _sina
A8 = s, @
sin. b
tang. b= cos. b’

which, substituted in (294) and (293), give

cotan. B sin. b

cos. b ’ y

sin, a =

cotan. A sin. a
cos. a :

sin. b =
[ ]

Multiplying the first of these equations by cos. b, and the second
by cos. a, we have

sin. @ cos. 5 — cotan. B sin. J,
sin. b cos. a = cotan. A4 sin. a.
The product of these equations is

sin. a sin. b cos. a cos. b = cotan. A cotan. B sin. a sin. b;
which, divided by sin. a sin. 4, becomes

cos. a cos. b = cotan. A cotan. B.
But, by (288),

cos. h = cos. a cos. b;

hence cos. h = cotan. A cotan. B. (295)

Ninthly. We have, by (288) and (292),

cos. h

cos. a =
cos. b’

sin. &

sin. B = ik’
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the product of which is, by (7) and (8),

sin. b cos. A __sin. b cos. h
cos. b sin. A~ cos. " sin. A

cos. @ sin. B =

— tang. b cotan, A.

But, by (289),
¥ cos. A = tang. b cotan. h;

hence cos. A = cos. a sin. B. (296)

Tenthly. The preceding equation, between the side a, the opposite
angle 4, and the adjacent angle B, leads to the following similar
one, between the side b, the opposite angle B, and the adjaccnt angle
4;

cos. B = cos. b sin, 4. (297)

11. Corollary. The ten equations (288-297) have, by a
most happy artifice, been reduced to two very simple theorems,
called, from their celebrated inventor, Napier’s Rules.

In these rules, the compl¢gments of the hypothenuse and of
the angles are used instead of the hypothenuse and the angles
themselves, and the right angle is neglected.

There are, then, five parts: the legs, the complement of the
hypothenuse, and the complements of the angles. Either part
may be called the middle part. The two parts including the
middle part on each side, are called the adjacent parts; and
the other two parts are called  the opposite parts. The two
rules are as follows : —

I. The sine of the middle part is equal to the product of the
tangents of the two adjacent parts.

II. The sine of the middle part is equal to the product of the
cosines of the two opposite parts. [B., p. 438.]

Proof. To demonstrate the preceding rules, it is only necessary to
compare all the equations which can be deduced from them with
those previously obtained (288 —297).

11+
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Let there be the spherical right triangle ABC (fig. 30), right-
angled at C. '

First. If co. k were made the middle part, then, by the above
rules, co. 4 and co. B would be adjacent parts, and a and b opposite
parts ; and we should have

sin. (co. k) = tang. (co. 4) tang. (co..B),
sin. (co. k) = cos. & cos. b;
or cos. i = cotan. 4 cotan. B,
cos. h = cos. a cos. b;

which are the same as (295) and (288).

Secondly. 1If co. A were made the middle part, then co. k and &
would be adjacent parts, and co. B and a opposite parts; and we

should have
sin. (co. 4) = tang. (co. &) tang. b,
sin. (co. A) = cos. (co. B) cos. a;
or cos. 4 = cotan. k tang. b,

cos. A =sin. B cos. a;

which are the same as (289) and (296).

In like manner, if co. B were made the middle part, we should
have

cos. B = cotan. & tang. a,

cos. B —=sin. 4 cos. b;
which are the same as (290) and (297).

Thirdly. If a were made the middle part, then co. B and b would
be the adjacent parts, and co. 4 and co. & the opposite parts; and
we should have

sin. a = tang. (co. B) tang. b,

sin. a = cos. (co. 4) cos. (co. h);
or sin. @ = cotan. B tang. b,

sin. @ — sin. A4 sin. k;

which are the same as (294) and (291).
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In like manner, if b were made the middle part, we should have

sin. b = cotan. A tang. a,

sin. 5 = sin. B sin. A;
which are the same as (293) and (292).

Having thus made each part successively the middle part, the ten
equations which we have obtained must be all the equations in-
cluded in Napier'’s Rules; and we perceive that they are identical
with the ten equations (288 - 297).

12. Theorem. The three sides of a spherical right triangle
are either all less than 90°, or else, one 18 less while the other
two are greater than 90° ; unless one of them is equal to 90°,

as in § 16.

Proof. If the two legs a and b are both acute or both obtuse, the
factors of the second member of (288) are, by Pl. Trig. § 62, both
positive or both negative. In either case, the first member of (288)
must be positive ; and consequently A must be less than 90°, or acute.

If one of the legs a'and b is acute, and the other obtuse, the two
factors of the second member of (288) have opposite signs; so that
the first member is negative, and % is greater than 90°, or obtuse.

138. Theorem. The hypothenuse of a spherical right triangle
differs less from 90° than does either of the legs; the case of
either side equal to 90° being excepted.

Proof. The factors cos. a and cos. b of the second member of
the equation (288) are, by Pl. Trig. §§9 and 61, or § 71, each less,
in absolute value, than unity. Their product, neglecting the signs,
must then be less than either of the factors, as cos. a for instance; or

cos. h < cos. a;

and therefore, by Pl. Trig. §§ 69 and 70, or § 71, A must differ less
from 90° than a does.
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14. Theorem. An angle and its opposite leg in a spherical
right triangle must be both acute or both obtuse or both equal to
90°.

Proof. In the second member of (296), the factor sin. B is, by
Pl: Trig. § 62, always positive, since all the sides and angles are
supposed to be less than 180°. Therefore, the first member, cos. 4,
and the other factor, cos, a, of the second member must be both

positive or both negative, unless they are both equal to zero; that
is, A and a must be both acute or both obtuse or both equal to 90°.

15. Theorem. Either angle of a spherical right triangle differs
less from 90° than its opposite leg ; unless both are equal to 90°.

Proof. Since the second member of (296) is the product of the
two fractions cos. a and sin. B, each of which is, absolutely, less than
unity, the first member must, in absolute value, be less than either
of them. Thus, neglecting the signs,

cos. A < cos. a;

hence A differs less from 90° than a does.

16. Theorem. When in a spherical right triangle either side
8 equal to 90°, one of the other two sides is also equal to 90°;
and each side of the triangle s equal to its opposite angle.

Proof. 1. If either of the legs is equal to 90°, the corresponding
factor of the second member of (288) is, by (66), equal to zero;
which, substituted in (288), gives

cos. h=0,
or, by (66),
h = 90°.
Again, if we have
h = 90°,

it follows, from (66) and (288), that
) ' == co0s. a cos. b,

and therefore either cos. a or cos. b must be zero; that is, either a
or b must be equal to 90°.
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II. When either of the three sides is equal to 90°,7it follows
from the preceding proof that
h=190°;
which substituted in (291) produces, by (67),
sin. a =sin. 4;

so that a is equal either to A or, by Pl. Trig. § 61, to the supple-
ment of 4. But, by Sph. Trig. § 14, a cannot be equal to the sup-
plement of A; and therefore a = A.

17. Corollary. When both the legs of a spherical right tri-
angle are equal to 90°, all the sides and angles are equal to
90°. In this case, the triangle is called quadrantal.

18. Theorem. When two of the angles of a spherical triangle
are equal to 90°, each side of the triangle is equal to its opposite
angle.

Proof. Tor in this case, one of the factors of the second member
of the equation (295) must, by (68), be equal to zero, since either
4 or B is 90°; hence (295) gives

cos. h—=20;
or, by (66),
h=90°;

and the remainder of the proposition follows from § 16.

19. Corollary. When all the angles of a spherical triangle
are equal to 90°, all the sides are also equal to 90°; and the
triangle is quadrantal. -

20. Theorem. The sum of the angles of a spherical right tri-
angle i8 greater than 180° and less than 360°; and each angle
is less than the sum of the other two.

Proof. 1. Itis proved in Geometry that the sum of the angles of
any spherical triangle is greater than 180°.

II. It is proved in Geometry that each angle of any spherical tri-
angle is greater than the difference between two right angles and the
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sum of the other two angles. Hence, if the sum of the two angles
A and B is greater than 180°, we have

C, or 90° > A 4 B — 180°,
or 44 B<L 270°
or ' A+ B+ 90° < 360°;

that is, the sum of the three angles is less than 360°; and in case
the sum of the angles A and B is less than 180°, the sum of the
three angles is obviously less than 360°.

III. Since the sum of the three angles is greater than 180°, we
have
90° 4+ A4 B> 180°,
or ‘ A4 B> 90°;

that is, if the right angle is the greatest of the three angles, the
greatest angle is less than the sum of the other two.

But if one of thg other angles A is the greatest of the three angles,
we have, since each angle is greater than the difference between 180°
and the sum of the other two,

B> 90° 4 A — 180°,
or B> A—90°,
or A< B+490°;

so that, in every case, each angle is less than the sum of the other
two.

21. To solve a spherical right triangle, two parts must be
known in addition to the right angle. From “the two known
parts the other three parts are to be.determined, separately, by
equations derived from Napier’s Rules; each equation contain-
ing the two given parts and one of those which are to be deter-
mined. The three parts which are to enter into any single
equation are either all adjacent to each other, in which case the
middle one is taken as the MIDDLE PART, and the other two are,
by § 11, ADJACENT PARTS ; or one is separated from the other two,
and then the part which stands by itself is the MIDDLE PART, and
the other two are, by § 11, orrostTE PARTS. The desired equa-
tion can then be formed by § 11, and the unknown part de-
termined.
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29. Problem. 'To solve a spherical right triangle, when the
hypothenuse and one of the angles are given.

Solution. Let ABC (fig. 30) be the right triangle, right-angled at
C; and let the sides be denoted as in §10. Let 4 and A be given;
to solve the triangle. :

First. To find the other angle B. The three parts which are to
enter into the same equation are co. h, co. 4, and co. B; and, by
§21, as they are all adjacent to each other, co. & is the middle part,
and co. 4 and co. B are adjacent parts. Hence, by Napier’s Rules,

sin. (co. k) = tang. (co. 4) tang. (co. B),

or cos. h = cotan. 4 cotan. B;
and, by (6),
tan B——cﬂi—cos h tang. A
cotan. B = ——— = cos. g. A.

Secondly. To find the opposite leg a. The three parts are co. 4,
co. k, and a ; of which, by §21, a is to be taken as the middle part,
and co. & and co. A are the opposite parts. Hence, by Napier’s
Rules, '

sin. @ = cos. (co. k) cos. (co. 4),

or sin. a — sin. A sin. A.

Thirdly. To find the adjacent leg'd. The three parts are co. 4,
co. h, and &; of which co. 4 is the middle part, and co. & and b are
the adjacent parts. Hence, by Napier’s Rules,

sin. (co. 4) = tang. (co. &) tang. b,
or cos. A = cotan. h tang. b;
and, by (6),
cos. 4
cotan. h

23. Scholium. In the use of the above formulas and of all the
‘formulas of Spherical Trigonometry, the precepts of Pl. Trig. §62,
with regard to the signs of the trigonometric functions, must be
carefully observed, in order that we may determine whether the un-
known parts are to be taken acute or obtuse. These precepts are
sufficient for determining B and &, in the above solution; but a,
being found by means of its sine, is left doubtful. But, by § 14, 4
must be taken acute or obtuse according as the given value of A4 is
acute or obtuse.

ta.ng.‘ b= = tang. & cos. 4.
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We can easily test the results of the solution of a spherical right
triangle, by comparing them with §§12 — 20 or with the ten equa-
tions (288 —297).

24. Scholium. When % and A are both given equal to 90°, a is,
by (67), equal to 90°, in the above solution, and the values of cotan.
B and tang. b are indeterminate, since cos. h, cotan. 4, cos. 4, and
cotan. % are then, by (66) and (68), all equal to zero. Now, it is
geometrically evident that, in this case, the problem has an infinite
number of solutions ; that is, that an infinite number of triangles can
be formed in which 4, C, a, and A are each equal to 90°; but b and
B are, by § 16, subject to the limitation that they are equal to each
other in each solution.

If the given value of % is equal to 90°, while that of A differs from
90°, B and b are each equal to 90°, and a is equal to 4, as in § 16.

The problem is impossible, by § 18, if the given value of A differs
from 90°, while that of 4 is equal to 90°; and, in this case, the
formulas give B and b equal to 0° or 180°, and a equal to A or 180°
—h; that is, the triangle degenerates into either a single arc or a
lunary surface.

25. ExaMPLES.

1. Given in the spherical right triangle (fig. 30) A = 145° and
A = 23° 28'; to solve the triangle.

Solution.
h, cos. 9.91336n,% sin. 9.75859, tang. 9.84523»
A, tang, 9.63761, sin. 9.60012, cos. 9.96251

B, cotan. 9.55097»; a sin. 9.35871; b tang.9.80774a
Ans. B—=109° 34’ 33", a=18° 12/ 12", b= 147° 17’ 15".

2. Given in the spherical right triangle (fig. 30) A = 32° 34/ and
A = 44° 44'; to solve the triangle.
Ans. B=50° 8’21,
a—22°15' 43",
b= 24° 24/ 19",

* The letter n placed after a logarithm indicates that it is the logarithm of
& negative quantity; and it is plain that, when the number of such logarithms
to be added together is even, the sum is the logarithm of a positive quantity;
but when the number is odd, the sum is the logarithm of & negative quantity.
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26. Problem. To solve a spherical right triangle, when its
hypothenuse and one of its legs are given. ‘

Solution. Let ABC (fig. 30) be the triangle, & the given hypo-
thenuse, and a the given leg.

First. To find the opposite angle A ; a is the middle part, and
co. A and co. h are the opposite parts. Hence, by Napier's Rules,

sin. ¢ —sin. A sin. 4
and, by (6),

. sinna . .
sin. A — —— ‘= sin. a cosec. A.
sin. A

Secondly. To find the adjacent angle B; co. B is the middle part,
and co. & and a are the adjacent parts, Hence, by Napier’s Rules,

cos. B —tang. a cotan. A.

Thirdly. To find the other leg &; co. k is the middle part, and
a and b are the opposite parts. Hence, by Napier’s Rules,

cos. h = cos. a cos. b;
and, by (6),
08. h

¢
cos. b= — sec. a ¢o8. h.
co

27. Solution. When % and a are both equal to 90°, it may be
shown, as in § 24, that the values of B and b are indeterminate ; and
the problem has an infinite number of solutions.

28. Scholium. The problem is impossible, by § 13, when the given
value of & differs more from 90° than that of a; and such values
would give sin. A, cos. B, and cos. b each greater than unity, in the
above solution.

29. ExAMPLE.
Given in the spherical right triangle (fig. 30) a = 141° 11’ and

h =127° 12/; to solve the triangle.
Ans. A =128° &' 54",

B= 52°21' 45",
b= 89° 628"
80. Problem. To solve a spherical right triangle, when one of
us legs and the opposite angle are given.
12

\
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Solution. Let ABC (fig. 80) be the tnangle, a the given leg, and
4 the given angle.

First. To find the hypothenuse 4 ; a is the middle part, and co. A

and co. A are the opposite parts. Hence
sin. a — sin. h sin. 4;
and, by (6),
sin. h= —— % — gin. a cosec. 4.
sin. 4

Secondly. To find the other angle B; co. A is the middle part,

and a and co. B are the opposite parts. Hence

cos. A = cos, a sin, B;

and, by (6),
cos. A
cos. a

sin. B —= — sec. a cos. A.

Thirdly. To find the other leg b; b is the middle part, and a and
co. A are the adjacent parts. Hence

sin. b = tang. a cotan. 4.

31. Scholium. Since h, B, and b are found by means of their
sines, they may be taken either acute or obtuse, consistently with the
formulas. In fact, there are two triangles ABC (fig. 31) and A’BC,
formed by producing the sides AB and AC till they meet at A/,
both of which satisfy the conditions of the problem. For the side
BC, or a, is common to both these triangles, the angle A’ is,.by 52
equal to A4, and the angle BCA/, being the supplement of ACB, is,
like ACB a right angle.

Now ABA' and ACA’ are semicircumferences. Hence BA/, or &/,
is the supplement of AB, or h; A’'C, or ¥/, is the supplement of CA4,
or b; and A’BC is the supplement of CBA. One set of values,
then, of the unknown parts corresponds to the triangle ABC, and
the other set to A’BC; and the values must be distributed between
the two triangles conformably to §§12 and 14.

82. Corollary. When the g1ven values of a and A are equal, the
above formulas give ‘

sin. h=1, sin. B=1, sin. $=1;
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or, by (67),
h=190°, B=190° b5=190°;
and the case is that of § 16.

33. Corollary. When a and A are both ejual to 90°, the values
of band B are indeterminate, as in § 24, and, & is also equal to 90°.

34. Scholium. The problem is impossible, by § 14, when the given
values of @ and 4 are one acute and the other obtuse ; or, by §§15
and 16, when A differs more from 90° than does d'; or, by §17, when
A is equal to 90°, while a differs from 90°. In the first of these
cases, the above formulas give sin. B and sin. b negative, so that B
and b can be neither acute nor obtuse; in the second case, we have
sin. A <sin. a, cos. 4 >> cos. a, and tang. 4 < tang. a, so that sin.
h, sin. B, and sin. b are greater than unity ; and, in the third case,
B and b are equal to 0° or 180°, and & is equal to a or 180° — a.

35. ExXAMPLE.

Given in the spherical right triangle (fig. 30) a —35° 44’ and
A = 37° 28'; to solve the triangle.
Ans. h—=73° 45’ 15" h=106° 14’ 45"
B =177° 54/ } or {B=102° 6’
b= 69° 50’ 24" b=110° 9’ 86".

36. Problem. To solve a spherical right triangle, when one
of its legs and the adjacent angle are given.

Solution. Let ABC (fig. 30) be the triangle, a the given leg, and
B the given angle. ’

First. 'To find the hypothenuse % ; co. B is the middle part, and
co. h and a are adjacent parts. Hence
cos. B — tang. a cotan. & ;
and, by (6),

cos. B
cotan. h = ——— — cotan. a cos. B.
tang. a

‘Secondly. To find the other angle A4 ; co. 4 is the middle part,
and co. B and a are oppogite parts. Hence

cos. A = cos. a sin. B.
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Thirdly. To find the other leg 4; a is the middle part, and co. B
and b are adjacent parts. Hence

sin. a = tang. b cotan. B}
and, by (6),

sin. a .
tang. b= m —Ssin. a tang. B-

87. EXAMPLE.
Given in the spherical right triangle (fig. 30) a = 118° 54/ and
B =12° 19/; tv solve the triangle.
Ans. h=118° 20’ 20",
A= 95°55 2/,
b= 10°49' 17",

38. Problem. To solve a spherical right triangle, when its
two legs are given.

Solution. Let ABC (fig. 30) be the triangle, @ and b the given
, legs.

First. To find the hypothenuse %; co. % is the middle part, a and
b are opposite parts. Hence

cos. & = cos. @ cos. b.

Secondly. To find either of the angles, as A; b is the middle
part, and co. 4 and « are adjacent parts. Hence

sin. b = tang. a cotan. 4;

and, by (6),

sin. b

cotan. 4 = — cotan. q sin. b.

tang. a
In the same way, *

cotan. B — cotan. b sin. a.
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39. ExAMPLE.

Given in the spherical right triangle (fig. 80) a=1°and b=
100° ; to solve the triangle. .
Ans. h=99° 59’ 54",
A= 1° 056",
B =190° 10/ 385",

40. Problem. To solve a spherical right triangle, when the
two oblique angles are given.

Solution. Let ABC (fig. 30) be the triangle, 4 and B the given
angles.

First. To find the hypothenuse &; co. & is the middle part, and
co. A and co. B are adjacent parts. Hence

cos. h — cotan. 4 cotan. B.

Secondly. To find either of the legs, as a; co. A is the middle
part, and co. B and a are the opposite parts. Hence

cos. A = cos. a sin. B;
and, by (6),
cos. A

cos. @ = —

sin. B

= cos. A cosec. B.

In the same way,
cos. b = cosec. A cos. B.

41. Scholium. The problem is, by §20, impossible, when the
sum of the given values of A and B is less than 90° or greater than .
270°, or when their difference is greater than 90°. In either of these
cases, the above formulas give- cos. %, cos. a, and cos. b greater than
unity, in absolute value.

42. ExXAMPLE.

Given in the spherical right triangle (fig. 30) 4 =135° and B
= 60°; to solve the triangle.
Ans. h=125° 15’ 53/,
a = 144° 44’ 13/,
b= 45° 0" 5.
12+
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CHAPTER III.
SPHERICAL OBLIQUE TRIANGLES.

43. Theorem. The sines of the sides, in any spherical tri-
angle, are proportional to the sines of the opposite angles.
[B., p. 439.]

Proof. Let ABC (fig. 32 or 33) be the given triangle. Denote
by a, b, c, the sides respectively opposite to the angles 4, B, C.
From either of the vertices, as B, let fall the perpendicular BP upon
the opposite side AC. Then, in the right triangle ABP, if we make
BP the middle part, co. ¢ and co. BAP are the opposite parts.
Hence by Napier’s Rules, ‘

gin. BP — sin. ¢ sin. BAP — sin. ¢ sin. A.
For BAP is either the same as A (fig. 32), or it is its supplement
(fig. 83), and in either case it has the same sine, by (98).

Again, in the right triangle BPC, if we make BP the middle
part, co. @ and co. C are the opposite parts. Hence, by Napier's
* Rules, .
sin. BP —sin. a sin. C;
and, from the two preceding equations,
sin. ¢ sin. 4 = sin. a sin. C,
which may be written as a proportion, as follows: —

sin. @ : sin. 4 = sin. ¢ : sin. C.

In the same way, it must be true that 0

sin. a : gin. A — sin. b : sin. B.

44. Theorem. Bowditch’s Rules for Oblique Triangles.
If, in a spherical triangle, two right triangles are formed by a
perpendicular let fall from either of its vertices upon the oppo-.
site side; and if, in the two right triangles,the middle partg
are so taken that the perpendicular is one of the adjacent parts
in each of them ; then
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The sines of the middle parts in the two triangles are pro-
portional to the tangents of the other adjacent parts.

But, if, in the two right triangles, the middle parts are so
taken that the perpendicular is one of the opposite parts in each
of them ; then

"The sines of the middle parts are proportional to the cosines
of the other opposite parts. [B., p. 439.]

Proof. Let M denote the middle part in one of the right triangles,
and m the middle part in the other right triangle, and let p denote
the perpendicular.

First. If the maddle parts M and m are so taken that the perpen-
dicular is an adjacent part in both triangles, we have, by Napier's
Rules, if 4 and a denote the other two adjacent parts in the two
triangles,

sin. M — tang. A4 tang. p,

sin. m — tang. a tang. p;

whence
sin. M  tang. 4 tang.p __ tang. 4
sinnm ~ tang.atang.p = tang.a
or sin. M : sin. m = tang. 4 : tang. a.

Secondly. If M and m are so taken that the perpendicular is an
opposite part in both the triangles, we have, by Napier’s Rules, letting
O and o denote the other two opposite parts in the two triangles,

sin. M = cos. O cos. p,

sin. m — Cos. 0 cos. p;

whence
sin. ¥ _ cos. Ocos.p __cos. O
sin.m ~ cos.0cos.p ~ cos.o’
or sin. M : sin. m = cos. O : cos. o.

45. It is sometimes found useful, in the solution of a spherical
triangle, to refer to the following propositions, which are proved
in Geometry.
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I. The sum of the sides of a spherical triangle is less than 360°.
II. Each side i less than the sum of the other two.
III. The sum of the angles is greater than 180°.

IV. Each angle is greater than the difference between 180°
and the sum of the other two.

V. Of any two sides, that is the greater which s opposite the
greater angle.

V1. Of any two sides, that which differs the most from 90° is
opposite to the angle which differs the most from 90°; and this
side and its opposite angle are either both acute or both obtuse.

46. Problem. To solve a spherical triangle, when two sides
and the included angle are given. [B., p. 440.]

Solution. Let ABC (fig. 32 or 33) be the triangle, @ and & the
given sides, and C the given angle. Let BP be a perpendicular
dropped from B on AC, and falling either within or without the

triangle.

~First. To find the segment CP. In the right triangle BPC, we
know the hypothenuse a and the angle C. Hence, we have, by
Napier’s Rules, taking co. C as the middle part and CP and co. a
as adjacent parts,
tang. CP = cos. C tang. a; (298)
and, according as CP is less or greater than the given side 5, we
shall know that the perpendicular BP falls within or without the
triangle.

Secondly. The segment PA is the difference between CA and
CP; that is, according as the perpendicular falls within or without
the triangle,

(fig. 32) PA=0b— CP, or (fig. 33) PA=CP—b. (299)
Thirdly. To find the side ¢. If, in the triangle BPC, co. a is
the middle part, CP and PB are opposite parts; and if, in the tri-
angle APB, co. ¢ is the middle part, BP and PA are the opposite

parts. Hence, by Bowditch’s Rules, since the perpendicular is an
opposite part in both triangles,

cos. CP : cos. PA =sin. (co. a) : sin. (co. c),
or cos. CP :-cos. PA =cos. a: cos. c. (300)
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Fourthly. To find the angle A. 1If, in the triangle BPC, CP is
the middle part, co. C and BP are adjacent parts; and if, in the
triangle APB, PA is the middle part, co. BAP and BP are adjacent
parts. Hence, by Bowditch’s Rules, since the perpendicular is an
adjacent part in both triangles,

sin. CP : sin. PA = cotan. C : cotan. BAP; (801)

and the angle A is the same as BAP (fig. 32), when the perpen-
dicular falls within the triangle; or it is the supplement of BAP
(fig. 33), when the perpendicular falls without the triangle.

Fifthly. B is found by means of § 43, which gives
gin. ¢ : sin. C —sin. & : sin. B. (302)
47. Scholium. In using (298), (8300), and (801), we must care-
fully attend to the signs of the several functions, in order to deter-

mine, by Pl. Trig. § 62, whether CP, ¢, and BAP are acute or
obtuse.

B, being found by means of its sine, cannot be thus determined ;
but all ambiguity is avoided by taking that ome of the twe given
sides which differs the most from 90° as the side b; since, in that
case, by § 45, proposition VI, B will be acute or obtuse according as
b is acute or obtuse.

48. Corollary. Since, by (111) and (36),
cos. (b CP) = cos. (CP —b) = cos. b cos. CP - sin. b sin. CP,
(300) gives, by (299),

cos. CP : cos. b cos. CP+-sin. b sin. CP =cos. a : cos. ¢;
cos. ¢ = cos. a cos. b 4 sin. b cos. a tang. CP- (303)
But, by (298), )
cos. a tang. CP = cos. C tang. a cos. a =cos. C sin. a; (304)
which, substituted in (303), gives
cos. ¢ = cos. a cos. b sin. a sin. b cos. C. (305)

Since ¢ and C may denote any side and its opposite angle, we
have also

' cos. @ = cos. b cos. ¢ - sin. b sin. ¢ cos. 4, (306)
cos. b = cos. ¢ cos. a--sin. ¢ sin. a cos. B; (307)
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and these three equations are fundamental equations of Spherical
Tregomometry.

49. Corollary. In like manner, we can deduce from (301) the
equation

cotan, 4 sin, C = cotan. a sin. b — cos. b cos. C; (807 a)

which represents a group of six other fundamental equations of
Spherical Trigonometry.

50. Corollary. 'We have, by (55),

cos. C=—1 42 (cos. § C)2,
which, substituted in (305), gives, by (35), .
cos. ¢ = cos. (a+-b) +- 2 sin. a sin. b (cos.  C)2, (308)

from which the value of the side ¢ can readily be found by using the
table of Natural Sines; and which, like (305), may be applied to
either of the three sides.

We have, by (56),

cos, C = 1-—2 (sin. § C)2

which, substituted in (305), gives, by (36),
cos. ¢ = 008. (@ — b) — 2 sin. a sin. b (sin. § C)?, (809)

which can be used like formula (308) to find the side ¢; and which
may be applied to either of the three sides.

51. Corollary. The use of formula (309) is much facilitated by
“means of the column of Rising in Table XXIII of the Navigator.
This column contains the values of

log. 2 (sin. } C)? =2 log. sin. 3 C+ log. 2
= 2 log. sin. 3 C4-0.30103.  (310)

But the decimal point is supposed to be changed so as to-corres-
pond to the table of Natural Sines, that is, 5 is added to the logarithm ;
and 20 is to be subtracted from the value of 2 log. sin. } C, as ob-
tained from Table XXVII, as is evident from Pl Trig. §80. So that
the column Rising of Table XXIII is constructed by the formula

log. Ris. C = 2 log. sin. 3 C 4- 5.30108 — 20
: =2 log. sin. 3 C — 14.69897, (311)
which agrees with the explanation in the Preface to the Navigator.
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We have then the following rule for finding the third side by
using Table XXIII, when two sides and the included angle are
given.

Add together the log. Rising of the given angle and the log.
sines of the two given sides. The sum is the logarithm of a
number which ig to be subtracted from the natural cosine of the
difference of the two given sides (regard being had to the sign of
this cosine). The difference is the natural cosine of the required
side. :

, ) 52. ExAMPLES.
1. Calculate the value of log. Ris. of 67° — 4* 28™.

Solution.
3 (428" =2 14" sin. 9.74189
2

 19.48378
— 14.69897

log. Ris. 4" 28™ = 4.78481

2. Given in a spherical triangle two sides equal to 138° 32/ and
45° 54/, and the included angle equal to 98° 44’; to solve the
triangle. . '

Solution. 1. Of the two given sides, the former differs most from
90°. Therefore, let

a=—45° 54/, b=138° 32/, C=198° 44/,
Then, by (298),

C= 98° 44’ cos. 9.18187,
a= 45° 54 tang. 10.01365
CP—=171° &' 43" tang. 9.19502x

Since CP >> b, the case is that of fig. 33, and by (299),
PA=171° 5'43" —138° 32/ — 32° 83’ 43".

By (300),
CP =171° &' 43" sec. 10.00527x
PA = 32° 33 43" cos. 9.92573
a= 45° 54/ cos. 9.84255

c=126° 25’ 7" cos. 9.773554



144 SPHERICAL TRIGONOMETRY. [cxm. 111.

By (801),
CP=171° &' 43" cosec. 10.81024
PA = 382° 33’ 43" sin. 9.73095
C= 98° 44 cotan. 9.18644x
BAP —=118° 6’/ 26" cotan. 9.72763s

A =180° —118° 6/ 26" = 61° 53’ 34",

By (302),
c=126° 25’ 7" cosec. 10.09436
C = 98° 44/ sin. 9.99494
b= 138° 32/ sin. 9.82098
B=—125° 34 30"  sin. 9.91028

Ans. e¢=126° 25" 7"
A= 61° 53 34"
B =125° 34’ 30",

II. The third side is thus calculated by means of (308).

2 log. 0.30103

a= 45° 54 ' log. sin. 9.85620

b =138° 32/ log. sin. 9.82098

3 C= 49°22 2 log. cos. 19.62744
0.40332 = 2 sin. a sin. b (cos. § C)? log. 9.60565

— 0.99701 = Nat. cos. (a 4 ) =N. cos. 184° 26' = — N. cos. 4° 26/

— 0.59369 — Nat. cos. 126° 25’ 10”.
Ans. ¢ =126° 25’ 10",

III. The third side is thus calculated by (309) and Table XXIII.

0= 98° 44’ = 6* 34™ 56° log. Ris. 5.06139

a=— 45° 54 log. sin. 9.85620

b= 138° 32’ log. sin. 9.82098
—2 sin. a sin. b (sin. § C)? —54774  log. 4.73857
a—b= 92°38 N.cos. — 4594

" ¢=126°25'8" N. cos. — 59368
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8. Calculate the log. Ris. of 11* 12" 20°, Ans. 5.29632.

4. Given in a spherical triangle two sides equal to 125° and 100°,
and the included angle equal to 45°; to solve the triangle.

Ans. The third side = 47° 55’ 52"/,
The other two angles — 128° 42’ 48"/, and = 69° 43/ 48",

53. Problem. To solve a spherical triangle, when one of its
gides and the two adjacent angles are given. [B., p. 440.]

Solution. Let ABC (fig. 32 or 33) be the triangle, a the given
side, and B and C the given angles. From B let fall on AC the
perpendicular BP.

First. To find CBP. We know, in the right triangle BPC, the
hypothenuse a and the angle C. Hence, by Napier's Rules, if we
make co. @ the middle part, ‘

cotan. CBP = cos. a tang. O; (812)
and if CBP is less than the given angle B, the perpendicular BP
falls within the triangle; if CBP is greater than B, the perpendicular
falls without.

Secondly. - PBA is the difference between CBA and CBP,
that is,

(fig. 32) PBA= B— CBP, }
or (fig. 33) PBA = CBP— B.

Thirdly. To find the angle A. If, in the triangle PBC, co. C is
the middle part, PB and co. CBP are the opposite parts; and if, in’
the triangle ABP, co. BAP is the middle part, PB and co. PBA
are the opposite parts. Hence, by Bowditch’s Rules, o
cos. (co. CBP) : cos. (co. PBA) = sin. (co. C) : sin. (co. BAP),
or sin. CBP : sin. PBA = cos. C: cos. BAP; (814)

and the angle 4 is either BAP or its supplement, according as the
perpendicular falls within or without the triangle.

Fourthly. To find the side c. If, in the triangle PBC, co. CBP
is the middle part, PB and co. a are the adjacent parts; and if, in
the triangle ABP, co. PBA is the middle part, PB and co. c are the
adjacent parts. Hence, by Bowditoh’s Rules,

cos. CBP : cos. PBA = cotan. a : cotan. c. (315)
18

(313)
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Fifthly. The side b is found by the proportion of § 43,

sin. A : sin. a = sin. B : sin. b. (816)

54. Scholium. We must carefully attend to the signs of the
several functions, in the use of (312), (314), and (315), in order to
determine, by Pl. Trig. § 62, whether CBP, BAP, and c are acute
or obtuse.

The side b, being found by means of its sine, cannot be thus de-
termined ; but if we take that one of the two given angles which
differs the most from 90° as the angle B, the side & must, by § 45,
proposition VI, be acute or obtuse according as B is acute or obtuse.

55. Corollary. If we denote by A’B’C’ the triangle which is polar
to ABC, A’ being the pole of the side a, B’ of b, and C' of ¢, we
have, by Geometry, for the sides and angles of the polar triangle,

a'—180°— A4, b =180°— B, ¢ =180°—C,
A'=180°—a, B'=180°—b, C'=180°—ec.

‘We have given, then, in the problem of § 53, the sides ¥ and ¢’ and
the included angle A’ of the triangle A’B’C’; so that we might find
the unknown parts of the triangle ABC of that problem by solving
its polar triangle A’B'C' by § 46. In fact, we are thus led to the
same formulas as those of § 53.

It is evident that the great circle of which B’'P’is an arc passes
through the point B, since it is perpendicular to ¢/, of which B is
the pole, and that it is perpendicular to ¢, since it passes through B,
the pole of c. The relations of the segments A’P’ and P'C’ to the
angles CBP and PBA are, then, easily determined.

56, Corollary. If formula (306) is applied to the polar triangle
A'B'C, it gives
cos. @’ = cos. ¥’ cos. ¢’ 4 sin. b’ sin. ¢’ cos. 4’,
or cos. (180° — A) = cos. (180° — B) cos. (180° — C)
" ~-sin. (180°— B) sin. (180° — C) cos. (180° — a),
or, by (98) and (99),

— co8. A = (— cos. B) (—cos. C) + sin. B sin. C (— cos. a),
or cos. A = —cos. B cos. C + sin. B sin. C cos. a; (317)
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and this equation, which may be applied to either of the three
angles of a spherical triangle, is another fundamental equation of
Spherical Trigonometry.

57. Corollary. In like manner, we can obtain, from the six equa-
tions represented by (307 a), six equations of the form

cot. ¢ sin. @ = cot. C sin. B 4 cos. B cos. a;

but, as they can also be obtained from the equations (307 a) by sim-
ple transposition, they do not constitute a distinct group of equations.

58. Corollary. In the same way (308) gives for A’B'C’, if we
change ¢ to a’, a to 4/, b to ¢', and C to 4/,
cos. a’ = cos. (b’ 4 ¢’) 4 2 sin. ¥’ sin. ¢’ (cos. § 4')?,
or cos. (180° — A4) = cos. (360° — [ B 4 C])
+2 sin. (180° — B) ein. (180°— C) (cos. [90° — 3§ a])3,

or, by (98), (99), and (123), and since cos. (90° — } a) = sin. § a,
cos. A =— cos. (B+4 C) — 2 sin. B sin. C (sin. § a)?; (318)

which, like (317), may be applied to either of the three angles, and
which may be used, like (309), in connexion with Table XXIII, to
find the value of the unknown angle in the problem of § 53.

In like manner, (309) gives, for A’B'C',
cos. a’ = cos. (3 —¢') — 2 sin. ¥ sin. ¢ (sin. § 473,
or, by (98), (99), and (111), or (36),
cos. A = — cos. (C— B) 2 sin. B sin. C (cos. § a)?
= —cos. (B— C)+-2 sin. B sin, C (cos. } a)?; (319)
which may also be applied to either of the three angles, and which

may be used to find the value of the unknown angle in the problem
of § 53. '

59. ExXAMPLES.

1. Given in a spherical triangle one side equal to 175° 27/, and
the two adjacent angles equal to 126° 12/ and 109° 16’; to solve the

triangle. .
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Solution. I. Observing that B should denote the angle which
differs most from 90°, let

a=175° 27, B=126° 12/, C =109° 16'.

Then, by (812),
a=175° 27 cos. 9.998634
C=109° 16' tang. 0.45650.
CBP = 19° 19’ 24" cotan. 0.45513

Since CBP < B, the perpendicular falls within the triangle, as in
fig. 32. Hence, by (313),

PBA =126° 12/ — 19° 19’ 24" == 106° 52° 36".

By (314),
CBP = 19° 19/ 24"  cosec. 10.48031
PBA = 106° 52' 36" sin. © 9.98088
C =109° 16’ cos. 9.51847»
BAP = 162° 36’ cos. 9.97966~
' A= BAP—162° 36'.
By (315),
CBP = 19° 19/ 24" sec. 10.02518
PBA = 106° 52’ 86" cos. 9.46287»
a=175° 27 cotan, 1.09920
c= 14° 30’ 10" cotan. 0.58725n
By (816),
A —=162° 36’ cosec. 10.52427
a=175° 27 sin. 8.89943
'B=126° 12/ sin. 9.90685
b=167° 38/ 21” sin. 9.33055
Ans. A = 162° 36/
y b—167° 38’ 21"

c= 14° 30’ 10",
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II. The third angle is thus calculated by (318) and Table XXIII.

a=175° 27 =11* 41" 48* log. Ris. 5.30035

B =126°12' log. sin. 9.90685

C =109 16/ log. sin. 9.97497

— 2 gin. B sin. C (sin. } a)? — 152114 5.18217
B4 C=235°28' —N.cos. -+ 56689
A =162°36'7" N.cos. — 95425

III. The third angle is thus calculated by means of (319).

2 log. 0.30103

$a=13 (175° 27") = 87° 43’ 30" 2 log. cos. 17.19748

B—=126°12 log. sin. 9.90685

C=109° 16 log. sin. 9.97497

2 sin. B sin. C (cos. § a)? - 0.00240 7.38033

B—C= 16° 56 —N.cos. —0.95664

A = 162° 36/ N. cos. —0.95424

2. Given in a spherical triangle one side — 45° 54, and the two
adjacent angles — 125° 37’ and = 98° 44’; to solve the triangle.

Ans. The third angle — 61° 55' 2.
The other two sides — 138° 34/ 17/, and — 126° 26/ 11",

60. Problem. To solve a spherical triangle, when two sides
ard an angle opposite one of them are given. [B., p. 439.]

Solution. Let ABC (fig. 32 or 33) be the triangle, a and c the
given sides, and C the given angle. From B let fall on AC the per-
pendicular BP,

First. To find CP. We know, in the right triangle PBC, the
side a and the angle C. Hence, by Napier’s Rules, as in § 46,

tang. CP = cos. C tang. a. (820)

Secondly. To find PA., If, in the triangle PBC, co. a is the
middle part, CP and BP are the opposite parts; and if, in the tri-
angle ABP, co. c is the middle part, PA and PB are the opposite
parts. Hence, by Bowditch’s Rules,

cos. a : cos. ¢ = cos. CP : cos. PA. (321)
18
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Thirdly. To find b, It is evident that this problem, like the
corresponding one of Plane Trigonometry § 75, may have two solu-
tions for the same values of the given parts, in one of which the
perpendicular falls within the triangle, as in fig. 32, and

b= CP+ P4, A (322)

while in the other the perpendicular falls without the triangle, as in
fig. 33, and
b= CP— PA. (323)

But, if PA is greater than CP, the second solution is impossible,
and, if CP 4 PA is greater than 180°, that is, if PA is greater than
the supplement of CP, the first solution is impossible.

Fourthly. A and B may be found by the proportions
sin. ¢ : sin. C =sin. a: sin. A (324)
gin. ¢ : sin. C =sin. b : sin. B. (325)

61. Scholium. In determining CP and PA by (820) and (321),
the precepts of Pl. Trig. § 62 concerning the signs of the trigonome-
tric funetions must be carefully attended to.

Since A is found by means of its sine, two supplementary values
of A are given by (324). These two values correspond to the two
solutions of the problem, since BAP, which is equal to 4 in fig. 32
and its supplement in fig. 83, must have the same value in both
solutions. Also, as PB is the leg opposite C in the right triangle
BPC, and the leg opposite BAP in the right triangle BPA, there-
fore, by § 14, C, PB, and BAP are, in both solutions, either all
acute or all obtuse. Hence, in the first solution (fig. 32) C and A are
both acute or both obtuse, and in the second solution (fig. 33) one of
them is acute and the other is obtuse.

The two values of b are to be substituted separately in (825) ; and,
for each value of b, (325) gives two values of B, of which the correct
one is to be selected by the rules of §45. But,instead of using (325),
we can find CBP by (312), PBA by (315), and B by the equation

B = CBP 4 PBA.

62. Scholium. If the given value of c differs less from 90° than
that of a ; that is, if sin. ¢ > sin. a; only one solution of the problem
is possible, since, by § 45, prop. VI, a and 4 must be both acute or
both obtuse. In this case, (321) gives, since cos. ¢ <C cos. a, if
absolute values only are considered,

cos. PA < cos. CP.

—
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If, then, a and C are alike ; that is, both acute or both obtuse; CP
is, by (320), acute; so that PA > CP, and PA <{180°— CP.
But, if @ and C are unlike ; that is, one acute and the other obtuse ;
CP is, by (320), obtuse ; so that PA < CP, and P4 >>180° — CP.
Therefore, in the former case, the first solution is the possible one,
and, in the latter case, the second solution is the possible one.

If ¢ differs more from 90° than a; that is, if sin. ¢ <sin. a; (321)
gives, in absolute value,

cos. PA™> cos. CP.

If, then, ¢ and C are unlike, the first ratio of (321) is opposite in sign
to the second member of (320) and, therefore, to cos. CP; so that
(821) gives cos. PA negative ; that is, PA is obtuse; and we have
PA> CP, PA™>180° — CP, and neither solution of the problem
3 possible. This also appears from § 45, prop. VI. But if c and
C are alike, PA is acute; and we have PA < CP, PA <{180°—
CP, and both solutions are possible.

If, however, sin. ¢ < sin. a sin. C; that is, if sin. ¢ <'sin. BP;
(824) gives sin. A™>1; so that the problem ¢s impossible. In this
case, (321) will also give cos. PA > 1.

63. Scholium. The various cases of this problem may be com-
pared with those of Pl. Trig. §75; a, ¢, and C, in this problem,
corresponding respectively with b, a, and 4, in that.

64. ExAMPLESs.

1. Given in a spherical triangle one side — 85°, a second side =
142°, and the angle opposite the second side = 176°; to solve the
triangle. .

Solution. Let a=385° c¢=—=142°, C=176°.

Since ¢ differs less from 90° than a, while a and C are unlike, the
second solution alone is possible. Then, by (320) 2nd (321),

C=176° cos. 9.99894,

a= 85° tang. 9.84523 sec. 10.08664
CP —=145° 856" tang. 9.84417. cos. 9.91371a

c =142° cos. 9.89653.
PA = 37° 56' 30" cos. 9.89688
By (323),

b=145° 3’ 56" — 37° 56’ 30" =107° 7/ 26",
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By (324) and (825),

¢ = 142° cosec. 10.21066 cosec. 10.21066

C=176° sin, 8.84358 sin. 8.84358

a= 35° sin. " 9.75859

b=107° 7' 26" sin. 9.98031
sin. 8.81283 sin. 9.03455

(§ 45, props. VI, IV.) 4 =38° 43’ 34"; B = 6° 12/ 58".
) Ans. b=107° 7' 26"
A= 3° 43" 84"
B= 6°12 58",

2. Given in a spherical triangle one side = 120°, a second side =
135°, and the angle opposite the second side — 155°; to solve the
triangle.

Ans. The third side = 94° 38’/ 18" or = 17° 58/ 54",
The first angle = 142° 14/ 22" or = 37° 45' 38",
The third angle — 135° 11’/ 14" or — 12° 36’ 31”.,

3. Given in a spherical triangle one side — 54°, a second side —
22°, and the angle opposite the second side = 30°; to solve the
triangle.

Ans. The question is impossible.

65. Problem. To solve a spherical triangle, when two angles

and a side opposite one of them are given. ~ [B., p. 440.]

Solution. Let ABC (fig. 32 or 33) be the triangle, A and C the
given angles, and a the given side.

From B let fall on AC the perpendicular BP. This perpendicular
must fall within the triangle, if A and C are either both obtuse or
both acute; bat it falls without, if one is obtuse and the other acute.
This is evident from § 61.

First. CBP may be found, as in § 53, by (312).
Secondly. PBA may be found by (314); that is,

cos. 0: cos. BAP =sin. CBP: sin. PBA. (326)

Thirdly. To find B. We have
(fig. 32) B= CBP+ PBA. (327)
or (fig. 38) B—= CBP— PBA; (328)

according as A and C are alike or unlike.
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Fourthly. The sides ¢ and b may be found by the proportions
: sin. A : sin. ¢ = ssin. C: sin. c, (829)
sin. 4 : sin. ¢ = sin. B : sin. J. (330)

66. Scholium. Since PBA is found by means of its sine, two
values of PBA, supplements of each other, are given by (326).
These two values correspond to two solutions of the problem. For, if
the triangle CBA’ (fig. 72) is a solution of the problem, and if the
angles PBA’ and PBA" are supplements of each other, CBA" is
likewise a solution. For, if A’B and A’C are produced till they
meet at A'", they form a lunary surface, in which the angle 4"/ — the
angle A’; and, since A’/BP = the supplement of PBA’'= PBA’,
the right triangles A’/PB and A”PB are symmetrical, and BA"P

" \=BA'P=the given angle A; so that CBA” contains the given

values of 4, C, and a. But both solutions are alike in respect to the
position of the perpendicular within or without the triangle.

If, when the perpenaicalar falls within the triangle, either value of
PBA is greater than the supplement of CBP, or if, when the per-
pendicular falls without, either value is greater than CBP, that value
must be rejected, and the corresponding solution is impossible.

Two supplementary values of ¢ are given by (329), which evidently
correspond to the two solutions of the problem; and since, by § 14,
C and PB are alike, and PBA and PA are alike, therefore, in each
solution, by §12, C, PBA, and ¢ must be either all acute or else one
acute and the other two obtuse.

Each value of B gives two values of 3, by (330), of which the true
value is to be selected by the rules of § 45. But, instead of using
(880), we may find CP by (298), PA by (301), and b by (322)
or (323).

67. Scholium. If A differs less from 90° than C; that is, if sin.
A>sin. C; we have cos. BAP < cos. C, and (326) gives

sin. PBA < sin. CBP.

Hence the acute value of PBA is less, and the obtuse value of PBA
is greater, than CBP and than the supplement of CBP; so that,
whether BP falls within or without, the problem has dut one solution ;
namely, that in which PBA is acute. This also follows from § 45,
prop. VI.

If A differs more from 90° than ('; that is, if sin. A <[sin. ‘C;
(326) gives

sin. PBA > sin. CBP.
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Hence, if CBP is acute; that is, by (312), if @ and Care alike; both
values of PBA are greater than CBP and less than its supplement
but, if CBP is obtuse ; that is, if @ and C are unlike ; both values of
PBA are less than CBP and greater than its supplement. But B
is found by (827), when A and C are alike, and by (328), when 4
and C are unlike. Therefore, if a and A are alike, both solutions are
possible ; and, if a and A are unlike, neither solution is possible.

If, however, sin. 4 <sin. C sin. a ; that is, if sin. 4 <sin. BP;
the problem is impossible, since (329) gives sin. ¢ > 1. In this case,
(826) also gives sin. PBA > 1.

68. Scholium. The formulas of §65 might also be obtained by
applying those of § 60 to the polar triangle A’B’C', supposing a/, ¢’
and A’ to be known; and the various cases of the two problems
correspond to each other. The ambiguity of solution arises, in the
former problem, from doubt whether the perpendicular BP falls
within or without the triangle, and, in this, from doubt whether PBA
is acute or obtuse. Nevertheless, the two solutions of the former
problem correspond to the two solutions of this.

69. ExAMPLEs.

1. Given in a spherical triangle one angle = 95°, a second angle
=104°, and the side opposite the first angle —188°; to solve the
triangle. :

Solution. Let A =95° C =104°, a—138°.

Since A and C are both obtuse, the perpendicular falls within the
triangle ; and, since A differs less from 90° than C, PBA is acute,
and there is only one solution. Then, by (312) and (326),

a — 1388° cos. 9.87107»

C=104° tang. 10.60323. sec. 10.61632a
CBP = 18° 32’ 49" cotan. 10.47430 sin. 9.50254
BAP = 95° cos. 8.94030a
PBA —= 6° 34’/ 49" sin. 9.05916

By (827),

B = 18° 32/ 49" 4 6° 34/ 49" = 25° 7' 38",
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By (829) and (330),

A= 95° cosec. 10.00166 cosec. 10.00166
a—138° sin. 9.82551 sin. 9.82551
C=104° sin. 9.98690
B—= 25° 738" sin. 9.62801

sin. 9.81407 sin. 9.45518

(§ 45, prop. VI.) c=139° 19 40”; b=16° 34’ 19",
Ans, b= 16° 34’ 19"
c=139° 19’ 40"
B—= 25° 738"

2. Given in a spherical triangle one angle — 135° a second
angle — 60°, and the side opposite the first angle — 155°; to solve
the triangle.

Ans. The third angle = 94° 38/ 18" or = 17° 58/ 54/,
The second side = 37° 45’ 38/ or — 142° 14/ 22",
The third side = 135° 11’ 14” or = 12° 36’ 81",

70. Problem. To solve a spherical triangle, when its three
sides are given. [B., p. 440.]

Solution. Equation (305) gives, by transposition and division,
€os. ¢ — cos. a cos. b

cos. C= St
sin. @ sin. b

, (331)

whence the value of the angle C may be calculated ; and in the same
way either of the other angles.

71. Corollary. An equation more easy for calculation by loga-
rithms may be obtained from (308), which gives, by transposition
and division,

cos. ¢ —cos. (a4 b)

2 (cos. 3 C) = "~ sin.asin. b (332)

Now, letting s denote half the sum of the sides, or
s=3}(a4+b+4c); (883)
if we make, in the general formula (42),

M=3(@a+bd4c)=s,
N=3(a4b—c)=s—c;
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we have M4 N=a+b,
M—N=c;
and (42) becomes
cos. ¢ — cos. (a4 &) = 2 sin, s sin. (:—é);
which, substituted in (332), gives

2 sin. s sin. (8 —c)

2 (cos. § Ot = sin.asin. & (334)
c0s. 3 C=a/ (% X (335)

The angles A and B may, in like manner, be found by the two
following equations, which are easily deduced from (335),

sin. 8 sin. (s — a)

cos. § A =~/( Al et A (336)
cos.%B:;\/(gim—s;%;b)). ‘ (337)

72. Corollary. Another equation, equally simple in calculation,
can be obtained from (309), which gives, by transposition and di-
vision,
cos. (a— b) —cos. ¢

sin. a sin. b

2 (sin. } C)2 = , (338)

whence C can be found by the aid of Table XXIII.

73. Corollary. If, in (42), we make
M=3(a—b+c)=s—20,
N=3(—a+b+c)=s5—a;

we have M4 N=c,
‘ M—N=a—b;
and (42) becomes
cos, (@a— b) —cos. ¢ = 2 sin. (8— a) sin. (s — 3);
which, substituted in (338), gives
2 sin. (s — a) sin. (s — b)
sin. a sin. b

sin. (8 — a) sin. (s — b) )

sin. a sin. b :

2 (sin. 3 C)2 = , (339)

(340)

sin. 3 0=~/(
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In the same way we might deduce the following equations :
sin. (s — ) sin. (s—c)

in. § A= V( i (341)

sin. 3 B= v( sin. (’; ? ::: f: =9). (342)

74. Corollary. The quotient of (341), divided by (336), is, by (),

wedd=g =V (PRI S) 69
In the same way,

tang. 3 B= V(“i“'sg_s:i)n “i’(“' (_‘:) AN (344)

tang. 3 C=/ (smmf ;2 sl(l: (e 5 b)) (345)

75. ExXAMPLES.

1. Given in the spherical triangle ABC the three sides equal to
46°, 72°, and 68°; to solve the triangle.

Solution. 1. By (336), by (337), by (335),
a = 46° cosec. 10.14307 10.14307
b = 72° cosec. 10.02179 10.02179
¢ = 68° cosec. 10.03283 10.03283
8 — 93° sin. 9.99940 9.99940 9.99940
8 — a = 47° sin. 9:86413
8§ — b —21°sin. 9.56433
8§ — ¢ = 25° sin. 9.62595

2) 19.91815 2) 19.72963  2) 19.79021

cos. 9.95908 9.86482 9.89510
3} A=24°29 5", $ B=42°54' 8", } C=38°14/21"
A=48°5810", B=85°48'16", C=T76°28' 42",

II. By Table XXIII and equation (338). '

a—b=—26° N. cos. 89879 a log. cosec. 0.14307
c= 68° N. cos. 387461 b log. cosec. 0.02179
52418 ’ log. 4.71948

C = 5* 5™ 55° = 76° 28/ 45", log. Ris. 4.88434

14
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In like manner, we find A — 48° 58’, B — 85° 48’ 15",
2. Given in a spherical triangle the three sides equal to 3°, 4°, and
5°; to solve the triangle.
Ans. The three angles are 36° 54/ 15", 53° 10’ 9/, and 90° 2/ 5",

76. Napier obtained two theorems for the solution of a
spherical triangle, when a side and the two adjacent angles are
given, by which the two sides can be calculated without
the necessity of calculating the third angle. [B., p. 441.] These
theorems, which are given in §§79 and 80, and are called
Napier’s first and second Analogies, can be obtained from
equations (343 — 845) by the assistance of the following lemmas.

77. Lemma. If we have an equation of the form

tang. M__ =
fang. N 3’ (346)
we can deduce from it the equation
sin. (M4-N) z4y
sin. (M—N) " z—y" (347)
Proof. We have from (7)
sin. M sin. IV _

tang. M=c°s.Mandtang. sz,

which, substituted in (346), give
sin, Mcos. N_ =z
cos. Msin. N~ y°
This equation is the same as the proportion
sin. M cos. N: cos. M sin, N==z:y;
whence, by the theory of proportions,
sin. M cos. N+ cos. M sin. IV : sin. M cos. N—cos. M sin. N
=z+y:z—y,
or, by (33) and (34), -
sin. (M-.|-N) ssin (M—N)=z+4y:z—y;

which may be written in the form of an equation, as in (347).
78. Lemma. If we have an equation of the form
‘ tang. M tang. N— :—, (348)
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we can deduce from it the equation
cos. (M —_2
Th =N oo EM:L-.{:)) = :-{-z' (349)
Proof. We have, by (348) and (7),
sin. Msin. N =z
cos. Mcos. N~ g
" This equation is the same as the proportion
cos. M cos. N: sin. Msin. N=y: z;
whence, by the theory of proportions,
" cos. M cos. N—sin. M sin. N : cos. M cos. N - sin. M sin. N
=y—z:y+4a

or, by (35) and (36),
cos. (M4 N):cos.  M—N)=y—=z:y+4z;
which may be written as in (349).

79. Theorem. The sine of half the sum of two angles of a
spherical triangle ts to the sine of half their difference as the
tangent of half the interjacent side is to the tangent of half the
difference of the opposite sides ; that is, in the spherical triangle
ABC (fig. 82 or 33),
sin. 3 (A4 C) : sin. § (A— C)=tang. } b : tang. ¥ (a —c). (350)

Proof. The quotient of (343) divided by (345) is, by an easy
reduction,

tang. } A sin. (s—¢)

tang. § C~ sin. (s—a) (851)

Hence, by § 77,
sin. § (A4 C) _ sin. (s —¢) 4 sin. (s —a)
sin. 3 (A—C) ~ sin. (s —c) —sin. (s —a)’ (352)
If, in equation (47), we put '
A=s—c=3(a+b—¢),
=s—a=3}(—a+b4¢);

A+ B=1%,
A—B=a—c;

we have

and (47) becomes
sin. ($—¢) 4-sin. (s—a)  tang. } b
sin, (8 — c) —sin. (s—a)~ tang. 3 (a—¢)’
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This equation, substituted in the second member of (852), gives
szn.&(A-{-C): tang. . (353)
sin. § (4A—C) tang. 3 (a—¢)

which is the same as (350).

80. Theorem. The cosine of half the sum of two angles of a
spherical triangle s to the cosine of half their difference as the
tangent of half the interjacent side 18 to the tangent of half the
sum of the opposite sides ; that is, in the spherical triangle ABC
(fig- 32 or 33),
cos. 3 (A4 C):cos.} (A~ C)=tang. 3b: tang. § (a}-c¢). (354)

Proof. The product of (343) and (345) is, by a simple reduc-
tion,

__sin. (s—13)
ta.ng. % Ata.ng. % C'_—ﬁs—°
Hence, by § 78,
cos. 3 (A4 C) _ sin, s—sin. (s — ) (355)

cos. $ (A— C) ~ sin. s4-sin. (s — &)’
If, in equation (47) inverted, we put
A=3s =% (a4b+¢),
B=s—b=3(a—0b+4¢);
we have
A4+ B=a+c,
A—B=1b;
and (47) becomes
sin. s —sin. (s —b) tang. 4 &
sin. s4sin. (s— &) ~ tang.  (a4-¢)
This equation, substituted in (855), gives
cos. $(44C)  tang. 33 (356)
cos. 3 (A— C) ™ tang. ¥ (a4¢)’
which is the same as (354).

81. Scholium. In using (350) and (354), the signs of the terms
must be attended to, by reference to Pl. Trig. §§ 62 and 64 ; and it
will be seen that, by (354), a 4 c is greater or less than 180°,
according as A 4 C is greater or less than 180°.
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82. ExaMPLES.

1. Given in a spherical triangle two angles —158° and — 98°,
and the interjacent side = 144° ; to find the other two sides.

Solution. By (350) and (354),

3 (A4 C)=128° cosec. 10.10347 sec. 10.21066»
3(4—0C) = 30° sin.  9.69897 cos. 9.93753
3y =12 tang. 10.48822  tang. 10.48822

3(a—c) = 62°53 2/ tang. 10.29066
3 (@46 =103 024" tang. 10.63641.
Ans. a=165° 53 26",
c= 40° 722"

2. Given in a spherical triangle two angles = 126° 12/ and =
109° 16/, and the interjacent side — 175° 27’; to find the other two

sides. .
Ans. 167° 38’ 19 and 14° 80’ 11", \

83. Problem. To solve a spherical triangle, when its three
angles are given. [B., p. 441.]

Solution. When the angles of the triangle ABC are given, the
sides of its polar triangle A’'B'C’ are readily found. The desired
solution may, then, be obtained by applying to A’B/C’ any of the
methods of §§ 70 - 74.

84. Corollary. Applying (331) to A’B'C’, we have, by (98) and

(99),
cos. C +-cos. 4 cos. B
sin. 4 sin. B ! (857)

which may also be derived from (317), and which may be used to
find either side, when the angles are given.

CO8, c =

85. Corollary. If we put
S=}(4+B+0), (358)
we have, in the polar triangle A'B'C/,

8§ =270°—3S,
14
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¢ —a' =co.(S—A4),¥—¥ =co.(S—B), ¥ —c =co.(S—C);

so that equations (335 ~ 337), when applied to 4°B'C’, give by (34),
(78), (19), and (98),

(IO,
inp=v (TR GTD). o)
sin. § e= 7 (=25 S0e (S C)). (361)

86. Corollary. Equations (340 — 342), applied to 4'B'C, give

cos. } a =~/(°°" (‘:;—2::(‘2‘0)), (362)
cos. § b=a/ (= (ss;c;):: (j—") (363)
cos.}c=a/ = (5:31)::.,2—3)) (364)

87. Corollary. Equations (343 — 345), applied to A'B'C', give

cos. Scos. (S— A)
tang. ya=o/ (eos (S—B)cos.(S—C) )’ (365)
_ —cos. S cos. (S— B)
tang- § b=/ c08.(S—C)cos.(S—A4) )’ (366)
tang. § ¢ = A/ — cos. Scos. (S— C) (367)

cos(S—A)cos. (S—B)

and it should be observed that, if 4, B, and C are each less than
180° and conform to § 45, prop. III, the quantities under the radicals
in (359 — 867) are all positive.

88. Corollary. Equation (332), applied to the polar triangle,
gives

— cos. C— cos. (A+B)
sin. 4 sin. B

2 (sin.  )?= (368)

which may be used with Table XXIII, like equation (338).
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89. ExAMPLE.

Given in a spherical triangle the three angles equal to 177°,176°,
and 175°; to solve the triangle.

Ans. The three sides are 143° 5’ 45”7, 126° 49’ 51", and 89° 57’ 55/,

90. Theorem. The sine of half the sum of two sides of a
spherical triangle i to the sine of half their difference as the
cotangent of half the included angle is to the tangent of half
the difference of the other two angles ; that is, in ABC (fig. 32
or 33),

sin. § (a4¢) :'sin. 3 (@a— ¢) =cotan. } B: tang. } (4 — C). (369)

Proof. This theorem is at once obtained by applying (850) to
the polar triangle. .

91. Theorem. The cosine of half the sum of two sides of a
triangle is to the cosine of half their difference as the cotangent
of half the included angle is to the tangent of half the sum of
the other two angles ; or, in ABC (fig. 32 or 83),

cos. § (a4 c): cos. § (a—c) = cotan. § B : tang. (4 4 C). (370)

Proof. This theorem is at once obtained by applying (354) to the
polar triangle.

92. Corollary. These two theorems, similar to §§ 79 and
80, were given by Napier for the solution of the case in which
two sides and the included angle are given; and they are known
as Napier’s third and fourth Analogies. By means of them the
other two angles can be found without the necessity of calcu-
lating the third side. [B.,p.441.] In using them, regard
must be had to the signs of the terms, by means of Pl. Trig.
§§ 62 and 64.

938. ExaAwMPLE.

1. Given in a spherical triangle two sides — 138° 382’ and = 45°
54/, and the included angle = 98° 44/; to find the other angles.
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Solution. By (369) and (370),
3 (a4¢) =92° 13 cosec. 10.00033 sec. 11.41253.
3 (a—c) = 46°19 sin. 9.85924 cos.  9.83927
3B = 49° 22/ cotan. - 9.93354 cotan. 9.93354

3(A— C)=81° 50’ 29" tang. 9.79311
(A4 C)=93° 44 2" tang. 11.18534a
Ans. A=125° 34 817,
C= 61° 53" 33"
2. Given in a spherical triangle two sides — 100° and = 125°,
and the included angle = 45°; to find the other two angles.
Ans.  69° 43' 49" and 128° 42/ 517,

94. The problems of Great- Circle Sailing are easily reduced
to problems in the solution of a spherical triangle on the surface
of the earth ; the three vertices of this triangle being one of the
terrestrial poles and the two extremities of the great-circle
track. [B., p. 452.]

Chauvenet’'s elegant chart, the ¢ Great-Circle Protractor,” has
been already mentioned, on page 96.

95. ExAMPLE.

A ship sails from one mile south of Cape St. Vincent (Portugal)
on a course N. 61° 38’ W. and continues on a great circle for 2472
miles; to find the place arrived at, the course at the end of the voy-
age, and the situation of the northernmost point of the track.

Ans. The place reached is Halifax; the course at the end of the
voyage is S. 81° W. ; and the northernmost point of the track is in
lat. 45° 23/ N., long. 50° 53' W.
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SPHERICAL ASTRONOMY.

CHAPTER 1.

THE CELESTIAL SPHERE AND ITS CIRCLES.

1. Astronomy is the science which treats of the heavenly
bodies. ‘

2. Mathematical Astronomy is the science which treats of
the positions and motions of the heavenly bodies.

The elements of position of a heavenly body are (Geo. § 8) dis-
tance and direction.

8. Spherical Astronomy regards only one of the elements of
position, namely, direction, and usually refers all directions to
the centre of the earth.

4. In Spherical Astronomy, all the stars may, then, be re-
garded as at the same distance from the earth’s centre, upon
the surface of a sphere, which is called the celestial sphere.

Upon this imaginary sphere are supposed to be drawn various
circles, which are divided into the well known classes of great and
small circles. [B., p. 47.]

- ¢ All angular distances on the surface of the sphere, to an eye at
the centre, are measured by arcs of great circles.” [B., p. 48.]
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5. ¢ Secondaries to a great circle are great circles which
pass through its poles, and are consequently perpendicular to
it.” [B., p. 48.]

6. ¢ If the plane of the terrestrial equator be produced to the
celestial sphere, it marks out a circle called the celestial equator ;
and if the axis of the earth be produced in like manner, it be-
comes the axis of the celestial sphere ; and the points of the
heavens to which it is produced are called the poles, being the
poles of the celestial equator.”

“ The star nearest to the north pole is called the north pole
star. [B., p. 48.]

7. ¢ Secondaries to the celestial equator are called circles of
declination ; of these, 24, which divide the equator into equal
parts of 15° each, are called kour circles.”

“Small circles, parallel to the celestial equator, are called
parallels of declination.” [B., p. 48.]

The parallels of declination correspond, therefore, to the terres-
trial parallels of latitude, and the circles of declination to the terres-
trial meridians. A certain point of the celestial equator has been
fixed by astronomers, and is called the vernal equinoz. The circle
of declination which passes through the vernal equinox bears to the
other circles of declination the same relation which the first meridian
does to other terrestrial meridians.

8. “The declination of a star is its angular distance from
the celestial equator,” measured upon its circle of declination.

[B., p. 49.]

9. The right ascension of a star is the arc of the equator
intercepted between its circle of declination and the vernal
equinox. [B., p. 49.]

Right ascension is either estimated in degrees, minutes, &c., from
0° to 360°; or in hours, minutes, &c. of time, 15 degrees being
allowed for each hour, as in Sph. Trig. § 3.
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The positions of the stars are completely determined upon the

celestial sphere, when their right ascensions and declinations are.

known. Catalogues of the stars have accordingly been given, con-
taining- their right ascensions and declinations. [B., Table VIII.,

p. 80.] .

" 10. “ The sensible horizon is that circle in the heavens, whose
plane touches the earth at the spectator.”

« The rational horizon is a great circle of the celestial sphere
parallel to the sensible horizon.” [B., p. 48.]

- 11. The radius, which is drawn to the observer, is called the.

vertical line.

The point, where the vertical line meets the celestial sphere
above the observer, is called the zemith; the opposite point,
where this line meets the sphere below the observer, is called
the nadir.

Hence the vertical line is a radius of the celestial sphere perpen--

dicular to the horizon ; and the zenith and nadir are the poles of the
horizon. [B., p. 48.] .

12. Circles whose planes pass through the vertical line are

called vertical circles. [B., p. 48.]

The vertical circles are secondaries to the horizon.

18. The vertical circle at any place, which is also a circle of
declination, is called the celestial meridian of that place. [B.,

p- 48.]

The plane of the celestial meridian of a place is the same with thas
of the terrestrial meridizn.

14. The points, where the celestial meridian cuts the hori-
zon, are called the north and south points. [B., p. 48.]

The north point corresponds to the north pole, and the south point
to the south pole.
15

.
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15. The vertical circle, which is perpendicular to the merid-
ian, is called the prime vertical. [B.,p. 48.]

16. The points, where the prime vertical cuts the horizon,
are called the east and west points. [B., p. 48.]

¢ To an observer, whose face is directed towards the south, the
east point is to his left hand, and the west to his right hand. Hence
the east and west points are 90° distant from the north and south.
These four are called the cardinal points.”

« The meridian of any place divides the heavens into two hem-
ispheres, lying to the east and west; that lying to thae east is called
the eastern hemisphere, and the other the western hemisphere.”

17. The altitude of a star is its angular distance from the
horizon, measured upon the vertical circle passing through the
star. [B., p. 48.] :

18. The azimuth of a star is the arc of the horizon inter-
cepted between its vertical circle and the north or south point.
[B., p. 48.]

A star may be found without difficulty, when its altitude and azi-
muth are known. But these elements of position are constantly

varying.



§ 21.] ‘ DIURNAL MOTION. ' m

_CHAPTER II.

THE DIURNAL MOTION.

19. ¢« Stars are distinguished into two kinds, fized and wan-
dering.” [B., p. 45.] '

Most of the stars are fixed, that is, retain constantly almost the
same relative position ; so that the same celestial globes and maps
continue to be accurate representations of the firmament for many
years. This is a fact of fundamental importance, and furnishes the
fixed points for arriving at a complete knowledge of the celestial
motions. Small changes of position, have, indeed, betn detected
evenin the fixed stars, as will be shown in the course of this treatise;
but these changes are too small to disturb the general fact; they
are, indeed, too small ever to have been detected, if the positions of
the stars had been subject to great variations.

AN

20. Of the wandering stars there are eleven, which are
called planets. They are Mercury (%), Venus (), the
Earth (@), Mars (3), Vesta (&), Juno (§), Pallas (9);
Ceres (), Jupiter (), Saturn (h), and Uranus (®).
[B.,p. 45.]

21. For the sake of remembering the stars with greater
ease, they have been divided into groups called constellations :
and to give distinctness. to the constellations, they have been
supposed to be circumscribed by the outlines of some figure
which they were imagined to resemble. [B., p. 45.]

The stars have also been distinguished according to their
brilliancy, as of the first, second, &c. magnitude.

Proper names have been given to the constellations and to
the most remarkable stars.
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The catalogues and the maps of the stars are now so accurate,
that no new star could appear without being detected ; and any
change in the place of any of the larger stars would be immediately
discovered. ’ :

22. All the stars appear to have a common motion, by which
they are carried round the earth from east to west in 24 hours.
This rotation of the heavens, or of the celestial sphere, is called
the diurnal motion.

By its diurnal motion, the celestial sphere rotates, with the most
perfect uniformity, about its axis. The pole star would, therefore,
if it were exactly at the pole, remain stationary; but since it is not
exactly at the pole, it revolves in a very small parallel of declination
about the stationary pole. -

Any star in the equator revolves in the plane of the equator, and
all other stars revolve in the planes of the parallels of declination in
which they are situated.

If O (fig. 34) is the place of the observer, NESW his horizon,
Z his zenith, P and P’ the poles, the star which is at the distance
-from P, '

PM=PM

will appear to describe the circumference MH'M'H. It will rise in
the east at H and set-at H', if the distance PM' from the pole is
greater than the altitude PIV of the pole. But if its distance from

' the pole
PL=PL

is less than PNV, the star will not set, but will describe a circle above
the horizon ; and if its distance from the pole
PG =PG&
is greater than the greatest distance PS from the pole to the horizon,
the star will never rise so as to be seen by the observer at O, but
will describe a circle below the horizon.
28. The time which it takes a star to pass from any position
round again to the same position, is called a sideral day, that
is, literally, a star-day. This day is divided into 24 hours,
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and clocks regulated to this time are said to denote sideral
time. [B., p. 147.]

24. Each point of the celestial equator passes the meridian
once in a sideral day ; and the arc contained between two hour
circles passes it in a sideral hour. The sideral time, therefore,
which has elapsed since the vernal equinox was upon the equa-
tor is equal to the right ascension of the meridian expressed in

time. [B., p. 208.]

The meridian changes its right ascension at each instant, precisely
as if the'celestial sphere were stationary, and the observer, with
his meridian and zenith, were carried uniformly round the earth’s
axis from west to east once in a sideral day.

25. The angle ZPB (fig. 35) which the circle of declina-
tion of the star makes with the meridian is called its hour
angle.

While the star moves from the point C in the meridian to the
point B with an uniform motion, the arc PC is cerried to the position
PB, and the angle CPB is described with an uniform motion. This
angle converted into time is, then, the sideral time since the passage
of the star over the meridian.

26. Corollary. The difference of the right ascensions of the star
and of the meridian is the hour angle of the star.

27. The distance of a star from the east or west point of the
horizon, at the time of its rising or setting, is the amplitude of
the star. [B., p. 48.]

28. Problem. To find the altitude and azimuth of a star,
when its declination and hour angle are known, and also the
latitude of the place.

Solution. 1If P (fig. 35) is the pole, Z the zenith,and B the star,
we have

PZ = polar dist. of zenith = co. latitude = 90°— L,
156
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PN=90°—PZ =1,
PB = polar dist. of star = p,
= co. declination of star, when it is on the same side of
the equator with the pole.
=—90° + declination of star, when it is on the different
side of the equator from the pole.
=90°=F D,
ZB — zenith dist. of star = z,
= co. altitude of star, when it is above the horizon.
= 90° 4 depression of star, when it is below the hori-
zon.
ZPB = %’s hour angle =&,

PZB — azimuth of star counted from the direction of the ele-
vated pole,

= a — azimuth, when less than 90°.
= 180° — azimuth, when greater than 90°.
There are, then, given in the spherical triangle PZB, the two sides

PZ and PB, and the included angle ZPB; so that the side BZ and
the angle PZB can be calculated by Sph. Trig. § 46.

If we let fall the perpendicular BC upon PZ,

tang. PC = cos. h tang. (90° &F D) = - cos. k cotan. D (871)
CZ=PZ—PC=90°—(L+ PC),
or =PC—PZ=(L+4 PC)—90°. (872)
Hence, by (300),
cos. PC : sin. (L 4 PC) == sin. D : cos. z; (373)
in which formulas the upper sign is used when the star is upon the

same side of the equator with the elevated pole, that is, when D and
L are of the same name ; and, by (301),

sin. PC: 4 cos. (L4 PC) = cotan. h : cotan. a.  (374)

29. Corollary. When the altitude and azimuth are both to be
found, the calculation by the above method is as short as by any
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other ; but when, as is usually the case, the altitude only is required,
the following method is preferable.

-

We have
PZ 4 PB=180°— L+ D =180°— (L & D)
PB—PZ=FD+L=(L=FD);

whence, by (308) and (309),

cos. 2 =— cos. (L 4= D)+ 2 cos. D cos. L (cos. § k)2 (375)

cos. z == cos. (L F D) —2 cos. D cos. L (sin. § )2, (376)

which may be used at once, and (376) may be calculated by the aid
of the column of Rising in Table XXIII. The rule obtained from

(876) is the same with that on p. 250 of the Navigator, remember-
ing that when the star is above the horizon

cos. z = sin, X’s alt. (317)
But when the star is below the horizon

co8. z == —sin. Xk’s depreséion. (878)

80. Corollary. 1If the given hour angle is 6* — 90°, the problem
is at once reduced to the solution of a right triangle. We in this
case have, by Napier’s Rules,

cos. z = sin. L cos. p,
or sin. %’s alt. = 4 sin. L sin. D (379)
cotan. a = cos. L cotan. p

cotan. %k’s azimuth'= 4- cos. L tang. D. (880)

The upper sign is to be used in formulas (379) and (380), when
the declination is of the same name with the latitude ; otherwise the
lower sign. In the former case, therefore, the star is above the
horizon when its hour angle is six hours, and on the same side of the
prime vertical with the elevated pole; but, in the latter case, it is
below the horizon, and on the same side of the prime vertical with
the depressed pole.
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31. Corollary. If the starisin the celestml equator, as in (fig. 36),
we have in the right triangle BZQ,
BQ=BPQ=h
ZQ=L
QZB =180°—a,
whence cos. z == cos. L cos. A,
or sin. %’s alt. = cos. L cos. k (381)
cotan. (180° — a) = sin, L cotan. A,
or cotan. ¢ — — sin. L cotan. A. (382)

Hence, if the hour angle is less than six hours, the star which
moves in the celestial equator is above the horizor and on the same
side of the prime vertical with the depressed pole; but if the hour
angle is greater than six hours, this star is below the horizon and on
the same side of the prime vertical with the elevated pole.

82. Corollary. 1If the place is at the equator, as in (fig. 37), the
celestial equator of ZE is the prime vertical, so that if the hour
circle PB is produced to C, we have in the right triangle ZBC,

ZC=ZPB=h
BZC=90°—a
BC=D,
whence cos. z = cos. D cos. A,
or sin. X’s alt. = cos. D cos. k ' (383)

cotan. (90° — a) = sin. A cotan. D,
or tang. a = sin. & cotan. D; (384)

so that the star is above the horizon when the hour angle is less than
six hours, and below the horizon when the hour angle is greater than
six hours. .

33. ExamprLES.

1. Find the altitude and azimuth of Aldebaran to an observer at
Boston, in the year 1830, when the hour angle df this star is 3*
25™ 12°,
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Solution. We find by Tables VIII and LIV

D = 16° 10’ N. L = 42° 21’ N.
Hence
h = 325" 12° log. col. Ris. 4.57375
L = 42° 21/ cos. 9.86867
D = 16° 10/ cos. 9.98248
i 26601 4.42490
L —D =26° 10/ nat. cos. 89752
alt. = 39° 10/ nat. sin. 63151 sec. 10.11052
h = 51° 18’. sin. 9.89233

. D cos. 9.98248
azimuth from South = 75° 11/ sin.  9.98533

2. Find the altitude and azimuth’ of Aldebaran at Boston, in the
year 1830, six hours after it has passed the meridian.

Solution. By formulas (379) and (380),

L — 42° 21/ sin. 9.82844 cos. 9.86867

D = 16° 10/ sin. 9.44472 tang. 9.46224
alt. = 10° 49/ sin. 9.27316

azimuth from north = 77° 54’ cotan. 9.33091

3. Find the altitude and azimuth of a star in the celestial equator
to an observer at Boston, when the hour angle of the star is 3*
25™ 12°.

Solution. By formulas (381) and (382),

L = 42° 21/ cos. 9.86867 sin. 9.82844

h = 51° 18/ cos. 9.79605 cotan. 9.90371
alt, = 27° 31/ sin. 9.66472 ,

azimuth from South — 61° 39/ cotan. 9.73215

4. Find the altitude and azimuth of Aldebaran to an observer at
the equator, in the year 1830, when the hour angle of the star is
3* 25" 127
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Solution. By formulas (383) and (384), .

D =16°10'. cos. 9.98248 cotan. 10.53776
h = 51° 18/ cos. 9.79605 sin. 9.89233
alt. = 86° 54/ sin. 9.77853 —_—
azimuth from North — 69° 87 tang. 10.43009

5. Find the altitude and azimuth of Fomalhaut to an observer at
Boston, in the year 1840, when its hour angle is 2* 8™ 20°.
' Ans. Itsaltitude . . - = 11°59.
Its azimuth from the South = 26° 51/,

6. Find the altitudesand azimuth of Dubhe to an observer at
Boston, in the year 1840, when its hour angle is 9* 30™,
Ans. Its altitude . . . =19°11.
Its azimuth from the North — 17° 15'.

7. Find the altitude and azimuth of Fomalhaut to an observer at
Boston, in the year 1840, when its hour angle is 6*,

Ans. Its depression below the horizon = 19° 58'.
Its azimuth from the South = 66° 30'..

8. Find the altitude and azimuth of Dubhe to an observer at
Boston, in the year 1840, when its hour angle is 6* :
Ans. Its altitude . . . == 86° 44/,
Its azimuth from the North — 85° 2.

9. Find the altitude and azimuth of a star in the celestial equator
to an observer at Stockholm, when the hour angle is 2* 3™ 20°.

Ans. Its altitude . . . = 25° 58,
Its azimuth from the South — 34° 45/,

10. Find the altitude and azimuth of a star in the celestial equator
to an observer at Stockholm, when the hour angle is 9* 30™.

Ans. Its depression below the horizon — 28° 51/,
Its azimuth from the North = 41° 45/,
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11. Find the altitude and azimuth of Fomalhaut to an observer at
the equator, in the year 1840, when its hour angle is 2% 3m 20-.

Ans. 1ts altitude . . . = 47° 45
Its azimuth from the South = 41° 4/,

12. Find the altitude and azimuth of Dubhe to an observer at the
equator, in the year 1840, when its hour angle is 9* 30",

Ans. Its depression below the horizon —21° 24’.
Its azimuth from the North =17°380".

34. In the triangle ZPB (fig. 35) other parts might be
given instead of the two sides ZP, PB, and the included
angle P, and the triangle might be resolved. Of the problems’
thus derived, we shall only, for the present, consider two
cases.

85. Problem. To find a given star's hour angle and altitude,
when it 18 upon the prime vertical.

Solution. The angle PZB is, in this case, a right angle, and if
we use the preceding notation, we have

cos. h = cotan. L cotan. p = = cotan. L tang. D (385)
cos. z = cos. p cosec. L, ~

or sin. %k’s alt. = = sin. D cosec. L ; (386)

so that when the declination and latitude are of the same name, the
hour angle is less than 6 hours, and the star is above the horizon ;
but when the declination and latitude are of different names, the hour
angle is greater than 6 hours, and the star is below the horizon.

86. Scholium. The problem is, by Sph. Trig. § 27, impossible,
when the declination is greater than the latitude ; so that, in this case,
the star is never exactly east or west of the observer.

87. Scholium. The problem is, by Sph. Trig. § 28, indeterminate,
when the latitude and declination are both equal to zero ; so that, in
this case, the star is always upon the prime vertical.
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38. ExaMPLES.

1. Find the hour angle and altitude of Aldebaran, when it is
exactly east or west of an observer at Boston, in the year 1840.

Ans. The hour angle = 4% 45™ 442,
The altitude = 24° 26'.

2. Find the hour angle and altitude of Fomalhaut, when it is
exactly east or west of an observer at Boston, in the year 1840.
Ans. The hour angle . . = 8k 40m 512,
The depression below the horizon — 48° 49'.

3. Find the hour angle and altitude of Dubhe, when it is exactly
east or west of an observer at Boston, in the year 1840.

Ans. Dubhe is never upon the prime vertical of Boston.

4. Find the hour angle and altitude of Canopus, when it is exactly
east or west of an observer at Boston, in the year 1840.

Ans. Canopus is never upon the prime vertical of Boston.

89. Problem. To find the hour angle.and anplitude of a -
star, when it is in the horizon. )

Solution. In this case the side ZB (fig. 35) of the triangle ZPB
. i8 90°. The corresponding angle of the polar triangle is, therefore,
a right angle, and the polar triangle is a right triangle, of which the
other two angles are
180° — PZ —180° — (90°— L) =90° 4 L,
and 180° — PB = 180° — (90° =F D) = 90° 4 D.
The hypothenuse of the polar triangle is 180° — k, and the leg,
opposite the angle, 90° 4= D, is 180° —a.

Hence, by Sph. Trig. § 40, and Pl. Trig. § 60 and 62,
— co8. h = 4 tang. L tang. D,

or cos. h = =F tang. L tang. D (387)
~— cos. a =  sin. D sec. L,
or cos. a = = sin. D sec. L; (388)

in which the upper sign is used when the latitude and declination
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have the same name, and the lower sign when they have different
names ; so that in the former case the hour angle is greater than 6
hours, and the azimuth is counted from the direction of the elevated
pole; but in the latter case, the hour angle is less than 6 hours, and
the azimuth is counted from the direction of the depressed pole.
The amplitude is the difference between the azimuth a and 90°.
Hence

cos. %’s azim. = sin. %’s amp. = sin D sec. L. (383)
40. Scholium. The problem is, by Sph. Trig.'§ 41, impossible,

when the sum of the declination and latitude is greater than 90°; so
that, in this case, the star does not rise or set.

41. EXAMPLES.
1. Find the hour angle and amplitude of Aldebaran, when it rises
or sets, to an obscrver at Boston, in the year 1840.
Ans. The hour angle = 7* 1™ 217,
The amplitude == 22° 9’ N.
2. Find the hour angle and amplitude of Fomalhaut, when it rises
or sets, to an observer at Boston, in the year 1840.
Ans. The hour angle = 3* 50™ 18°.
The amplitude — 43° 19’ 8.

3. Find the hour angle and amplitude of Dubhe, when it rises or-
sets, to an observer at Boston, in the year 1840.

Ans. Dubhe neither rises nor sets at Boston.

4. Find the hour angle and amplitude of Canopus, when it rises or
sets, to an observer at Boston, in the year 1840.

Ans. Canopus neither rises nor sets at Boston.

16
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CHAPTER III. .

THE MERIDIAN.
42. THE intersection of the plane of the meridian with that "™
of the horizon, is called the meridian Gne.

.43. Problem. To determine the meridian line.

Solution. First Method. Stars obviously rise to their greatest
altitude in the plane of the meridian ; so that if their progress could
be traced with perfect accuracy, and the instant of their rising to
their greatest height be observed, the direction of the meridian line
could be exactly determined. But stars; when they aré at their
greatest height, change their altitude so slowly, that this method is
of but little practical value.

Second Method. A star is evidently at equal altitudes, when it is
at equal distances from the meridian on opposite sides of it. If,
therefore, the direction and altitude of a star are observed before it
comes to the meridian; and if its direction is also observed, when it
has descended again to the same altitude, after passing the meridian ;
the horizontal line, which bisects the angle of the two horizontal lines
drawn in the direction thus determined, is the meridian line.

Third Method. [B., p. 147.] The time which elapses between the
superior and inferior passage of a star over the meridian is just half
of a sideral day. If, then, a telescope were placed so as to revolve
on a horizontal axis in the plane of the meridian, the two intervals
of time between three successive passages of a star over the central
wire, must be exactly equal. But if the vertical plane of the tele-
scope is not that of the meridian, these two intervals will not be
equal, and the posi‘ion of the telescope must be changed until they
become equal.
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Thus, if Z M m N (fig. 88) is the plane of the meridian, Z Ss T
that of the vertical circle described by the telescope, M S Wsm E
the circle of declination described by the star about the pole P; this
star will be observed at the points S and s instead of at the points
Mand m. Now the star describes the circle of declination with an
uniform motion, and therefore the arc SP moves uniformly with the
star around the.pole, so that the angle SPM is proportional to the
time of its description; that is, the angle SPM, reduced to time,
denotes the sideral time of its description. / .

Let then
T = the sideral time of describing the arc SM,
t = the sideral time of describing the arc s m,
I — interval from the observation at S to that at s,
t = interval from the observation at s to that at S,
8 ¢ = the difference of these two intervals;

we hav;a then, in sideral time,
I=12% —T—t=12" —(T+ 1)
f=1284-T4t=120 4 (T4 ¢)
di=i—I=2(T+41); (390)

g0 that if T'and ¢ were equal to each other, and they are nearly so
in the case of the pole-star, we should have

31=4T=41t
T=t=1}38¢;

that is, the time of describing the arc MS or m s is nearly one quar-
ter part of the difference betwsen the intervals.

But the error of this result can be calculated without much diffi-
culty. For this purpose, let

L = the latitude of the place = 90° — PZ,
p = the polar distance of the star— PS=P s,
a = the azimuth of ZST=TN= TZN.
The arcs MS and m s are so small, that they do not differ sensibly

from the arcs of great circles drawn from Sand s perpendicular to
ZPN.
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If, then, in ;;he two right triangles PSM and ZSM, PM and ZM
are the middle parts, SM, co. SZM, and co. SPM are the adjacent

parts, so that
sin. PM : sin. ZM = cotan. SPM : cotan. SZM
- r .1
" tang. SPM " tang. SZM
~=tang. SZM: tang. SPM.
But ZM=ZP —PM=90°—L —p,

and the angle SZM and SPM are so small, that they are sensibly
proportional to their tangents, whence

sin. p: cos. (p+ L)=1a: SPM, (391)
or a: SPM —sin. p : cos. p cos. L — sin. p sin. L

=1 : cotan. p cos. L —sin. L,
and if T is expressed in sideral hours .
T.15° = SPM=a cotan. p cos. L —a sin. L.
In like manner, we find
t.15°=23s P m= a cotan. p cos. L 4-a sin. L.
Hence, by (390),

(T41t)15°=%34.15° =2 a cotan. p cos. L
acotan. p cos. L=1814.15°
T.15°=484.15°—asin. L
t.15°=}0814.15°+4asin. L
a=1}d1¢.15° tang. p sec. L (392)
T=}8i—}3itang. ptang. L
t=131i4} 81 tang. p tang. L,

80 that the correction is i
1 8 tang. p tang. L, (393)

which s to be added to the quarter interval at the lower transit; and
to be subiracted from the guarter interval at the upper transit.

This correction is proportional to the quarter interval, so that 1f it
- is computed for any supposed value of this interval, it may be com-
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puted for any other interval by a simple proportion. Now Table A,
page 151, of the Navigator, is the value of this correction, when the
interval is 1000°. It may be observed, that it is not necessary tirat
this time should be sideral time, because all the terms of the values
of T and t are expressed in the same time, which may be that of the
clock.

The azimuth a is given in Table B [B., p. 151], and may be com-
puted from the formula (392). But the interval in the formula is
supposed to be sideral time, whereas the time of the table is that
called solar time, to which clocks are usually regulated, and which
is soon to be described ; all that need be known for the present is,
that an interval of sideral time is reduced to solar time by Table LII
of the Navigator, or by the formula

an interval of solar time
an interval of sideral time

= 0.9972695.  (394)

Fourth Method. [B., p. 149.] This method of determining the
meridian is by means of two known circumpolar stars, which differ
nearly 12 hours in right ascemsion. The upper passage of one of
these stars is to be observed, and the lower passage of the other.
" Then any deviation in the plane of the instrument from the meridian,
will evidently produce contrary effects upon the observed times of
transit, exactly as in the upper and lower transits of the same star.
The time, which elapses between the two observations, will differ
from the time which should elapse by the sum of the effects of the
. deviation upon the two stars. In the use of this method, therefore,
the time of the clock must be known, so that it can readﬂy be
reduced to sideral time.

The deviations in the time of passage of a star, corresponding to
any azimuth, can be calculated by means of equation (391). For
this formula gives for the time of describing the arc SM .

T . 15° = a cos. (p 4 L) cosec..p, .
or T=+% a cos. (p+ L)cosec.p; (395)

which may be ul;ed if Tis expressed in sideral seconds, and the arc
a in seconds of space. But if T'is expressed in solar time, we have,
by (394),

T = 0.0664846 a cos. (p + L) cosec. p. (896)
16+ .
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In the same way the value of ¢ for an inferior passage is found to
be .
t = 0.0664846 a cos. (p — L) cosec. p. (897) -
Now, since these values of T and ¢ are proportional to the azimuth
a, their values may be computed for a given value of the azimuth, as"
1000”, and arranged in a table like Table C, p. 152 of the Navigator,
and their values for any other azimuth can be obtained by a simple
proportion.

Fifth Method. | B., p. 149] This method consists in observing the
transits of two stars, which differ but little in right ascension. The
error in the position of the telescope is, in this case, equal to the
difference in the errors of the observed transits, mstead of the sum
as in the preceding method.

44. In making calculations where angles are introduced as
factors, some labor, in reducing them to the same denomination,
is often saved by means of a table of Proportional Loganthms
such as Table XXII of the Navigator.

This table was particularly designed for reducing lunar distances,
given in the Nautical Almanac, for every 3 houses to any intermediate
time. It contains, on this account, the logarithm of the ratio of 3
hours to each angle expressed in time; ,that is, if A is the angle.

3A
Prop. log. 4 = log. z—' = log. 3* — log. 4 = log. 180" — leg. A

= log. 10800° — log. 4, (398)
so that if 4 in the second member is reduced to seconds,
Prop. log. A = 4.03342 — log. A in seconds; (399)

" neglecting the right hand figure, so as to retain only four decimal
places. This agrees with the explanation of the table in the Introduc-
tion to the Navigator ; and it is evident that it is immaterial whether
the angles, whose ratios are sought, are given in time or in de-
-grees, &c.

Suppose, now, that the logarithm of the ratio of two angles is
-sought, 4 and a; we have, evidently, :

A
log. o= log. 4 — log. a = Prop. log. a — Prop. log. 4; (400)
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s0 that if this ratio, which we will denote by M, were known, and if
«a were known, A might be calculated by the formula

Prop. log. A= Prop. log. @ —log. M
— Prop. log. a 4 (ar. co.) log. M; (401)
which is, therefore, the formula for calculating the value of A, given

by the equation. ‘ b
A=a M. (402)

!

Finally, the use of formula (401) is facilitated by remembering that
the arithmetical complements of the logarithms of the sine, cosine,
* tangent, cotangent, secant, and cosécant of an angle, are respectively
the logarithms of its cosecant, secant, cotangent, tangent, cosine, and

' sine.

45. EXAHPLE8;

1. Calculate the proportional logarithm of 0° 5’ 45.

Solution. By (399), ' 4.03342
0° 5 45'= 345", . 2.53782
Prop. log. & 45" = 14.596

as in Table XXII.

2. Calculate the corrections of Tables A and B [B., p. 151], when
the latitude is 42°, and the polar distance of the star is 30°.

Solution. By means of proportional logarithms, and equations
(392) and (398), :

31000 =47 100 Prop. log. 1.6855 1.6355
L—42° " cotan. 10.0456 eos. 9.8711
30° cotan. 10.2386  10.2385

-

corr. A == 130* = 2™ 10* Prop. log. 1.9197

0.0664846 8.8227

corr. B = 48/ 41" Prop. log. 0.5679

"8 Calculate the corrections of Table C [B., p. 152] for the pole-



188 SPHERICAL ASTRONOMY. ‘ [cm. 111,

star and the latitude of 80°, when the polar distance of this star is
1° 8237,

Solution. By (396) and (397),

0.0664846 ' 8.82273 8.82273
-a=1000" - 8.00000 3.00000
p=1°382' 37" ¢ cosec. 11.5694 11.56964
p+ L =231° 32/ 37" cos. 9.93056 -
p—L=—2827 23" 9.94407

corr, C upper trans. — 2103* -8.32293
corr. C lower trans. — 2170¢ 3.33644

4. An observer in Boston in the year 1840, wishing to determine
his meridian line, observed three successive transits of @ Cephei over
the central vertical wire of his transit instrument, by means of a clock
regulated to solar time, and found them to occur as follows ; the first
upper transit at 7% 45™ 28¢ P. M., the next inferior transit the next day
at 7% 41m A, M., thé third transit at 74 41m32* P. M. What were the
times of the star’s passing the meridian the second day? and what
was the azimuth error in the position of the instrument ?

Solution. ‘
The first interval = 194 41%— 75 45m 28¢ = 11% 55m 32¢
The second interval — 194 41m 32¢ — 74 41m — 12% (0™ 32,
Hence 8¢ =5 =300, ‘
Now L =42°21',D=69°52,p= 20° 8.
Hence, by Tables A and B

corr. A —=83* X 0.3 = 25+,
corr. B =31’ 6" X 0.3 =19'19";
so that the error in the time of the upper transit is
1.800f — 256 = 75* — 25* = 50,*

and the error in the lower transit is
38004 25 = 75 4 25 = 100 = 1™ 40°.
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The times of the star’s passing the meridian the second day were,
then,
T 41m 4 17 40° = 7 42" 40° A. M.
~ and T 417 32° — 50° = 7 40" 42" P. M.
the error in the azimuth of the instrument was 9’ 19" to the west of
north.

5. An observer at Boston, wishing to determine his meridian line,
on the morning of January 1, 1840, observed, by means of a clock
regulated to solar time, the superior transit of y Urse Majoris at
5" 6™ 54° A. M., and the inferior transit of Polaris at 6* 12™ 23* A. M.
What was the azimuth error in the position of the transit instru-
ment ? '

Solution. The interval between these two transits is
6* 12™ 23* — 5* 6™ 54 — 1* 5™ 29°,

But, by the Nautical Almanac,

12* 4 R. A. of Polaris = 13" 159"
R. A. of y Urse Majoris = 11 45 25°
Sideral Interval = 1* 16" 84’
Solar Interval = 1*"16™ 22
. Observed Interval = 1 529
Error of Interval = 10" 53 = 653

Now for 1000” of azimuth error, and the latitude of Boston, Table
C gives, since
Dec. of y Ursee Majoris . . . . = 54° 85’

Error of lower trans. of Polaris . . = 1866° .
Error of upper trans. of y Urse Majoris . = 25
Sum of errors . . . . . . = 1891’

Then the proportion )
1891¢: 653* = 1000” : azimuth error,

gives
azimuth error — 845" — 5/ 45" W.
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6. An observer at Boston wishing to determine his meridian line,
in the evening of December 17, 1839, observed by means of a
clock regulated to solar time, the superior transit of « Cassiopes at
6* 48™ 35¢ P. M., and that of Poloris at 6* 53™ 15 P. M. What was
the azimuth error in the position of the transit instrument ?

Solution. By the Nautical Almanac,

R. A. of Polaris =1 2= 26
R. A. of a Cassiope = 0* 31~ 28*
Sideral Interval ; = 0* 30~ 58°
Solar Interval = 0" 30™ 53¢
Observed Interval = 0* 4™ 40*
Error of Interval . = 0* 26™ 13* = 1573".

Now Table C gives, for 1000” of azimuth error and the latitude of
Boston, since

* Dec. of & Cassiopes = 55° 40
Error of trans. of Polaris = 1777
Error of trans. of & Cassibpem = 26

Diff. of errors = 1751¢,

Then, the proportion
1751* : 1578" = 1000” : azimuth error
gives
' azimuth error = 900" : = 15’ 0" E.
7. Calculate the proportional logarithm of 0° 2' 33”.
' Ans, 1.8487.

8. Calculate the proportional logarithm of 2° 59/ 12",
' Ans.  0.0019.

9. Calculate the corrections of Tables A and B, when the latitude
is 54°, and the star’s polar distance 20°.

Ans. Corr. A. = 125*
Corr. B, — 38’ 48",



~
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10. Calculate the corrections of Table C, when the latitude is 20°,
and the polar distance 5°,

Ans. For the upper transit, corr. C — 6917,

For the lower tfansij:, corr. C = 737,

11. An observer at Boston, in the year 1840, wishing to deter-
mine his meridian line, observed three successive transits of Polaris,
by means of a clock regulated to solar time. The first lower transit
was observed at 64 A. M., the next transit at 6% 2» 11 P. M., and
the second lower transit at 54 56™ 4* A. M. What was the time of
the star’s passing the meridian the second morning? and what was
the azimuth error in the position of the instrument?

Ans. The time of the third merid. trans. was 5% 58m49¢s A. M.
The azimuth error = _15’ 27" W.

12. .An observer at Boston, wishing to determine his meridian line
by means of a clock regulated to solar time, observed the inferior
transit of Polaris on April 4, 1839, at 0» A.M., and the superior
transit of 5 Urse Majoris at 04 53 59¢ A. M. What was the azimuth
error in the position of his transit instrument ? '

The R. A. of Polaris is 13 0m 50+, that of 5 Ursee Majoris is 13 -
41m 14+, and the declination of 5 Urse Majoris is 50° 7/ N.

Ans. The azimuth error = 7/ 18 W.

13. An observer at Boston, wishing to determine his meridian
line, in the evening of May 1, 1839, observed, by means of a clock
regulated to solar time, the lower transit of Polaris at 9% 49m 22¢
P. M., and that of « Cassiopese at 9% 52» P. M. What was the azi-
muth error of the instrument ? '

The R. A. of Polaris = 1% 0™ 56r.
The R. A. of « Cassiopese = 0A 31m 227,
The Dec: of & Cassiopes = 55° 39’ N.

Ans. The azimuth error — 18’ 34" W.
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CHAPTER 1IV.
LATITUDE.
46. Problem. To find the latitude of a place.

Solution. The latitude of the place is evidently, from (ﬁg 34),
equal to the altitude of the pole; so that this problem is the same
as to find the altitude of the pole, which would be done without
difficulty if the pole were a visible point of the celestial sphere.

First Method. By Meridian Altitudes. [B., p. 166 —175.]

_ Observe the altitude of a star at its transit over the meridian, and
let
A = the altitude of the star,

A’ = %k’s dist. from point of horizon below the pole ;

then, if the notation of § 28 is used, it is evident, from (fig. 34),
that .
L=A=F P (403)

' the upper sign being used when the transit is a superior one, and the
lower sign when it is an inferior one.. :

1. Suppose the observed transit to be a superior one; then, if it
passes upon the side of the zenith opposite to the pole, we have

A'=180°— A4, p — 90° -'-'-FD?
and (403) becomes
L=90°—(AF D)= (90°—A4)x+D =24 D; (404)

the upper sign being used when the declination and latitude are of
the same name, and the lower sign when they are of different names.

But if the star passes upon the same side of the zenith with the
pole, we have
A=A, p=90"—D,
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and (403) becomes
L=(A+D)—90°=D—(90°—A)=D—z.  (406)
II. If the transit is an inferior one, we have
_ A'= A, p=90°—D,
and (403) becomes
. L=(A— D)+ 90°= A+ (90°— D). (406)
Equations (404) and (405) agree with the rule of Case I, [B., p. 166],
and (406) with Case II, [B., p. 167.]
III. If both transits are observed, and if A’and A are referred.
to the upper transits, and
A; = the altitude at the lower transit,
we have, by (403),

L=A—p
L=A4 +p,
the sum of which is .
' L=} (44 4); (407)

so that the latitude is determined in this case without knowing the
star’s declination.

Second Method. By a Single Altitude.

Observe the altitude and the time of the observation.

I. If the star is considerably distant from the meridian, we have
given in the triangle PBZ (fig. 35), PB, BZ,and BPZ to find PZ,
which may be solved by Sph. Trig. § 60, and gives by the notation
of § 28, .

tang. PC = cos. A tang. p — +4- cos. k cotan. D (408)
cos. ZC = cos. PC . cos. z sec. p
= z=cos. PC . cos. z cosec D, (409)

in which the upper sign is used if the declination and latitude are of
the same name, otherwise. the lower sign.

L ]
90°— L =PZ— PC 4 ZC
L=90° — (PC = ZC); (410)
17 ¢



194 SPHERICAL ASTRONOMY. [cH. 1V.

in which both signs may be used if they give values of L contained
between 0° and 90°, and in this case other data must be resorted to,
in order to determine which is the true value of L.

Scholium. 'The problem is, by Sph. Trig. § 61, impossible, if the
altitude is greater than the declination, when the hour angle is more
.than six hours.

II. If the latitude is known within a few miles, it may be exactly
calculated by means of (876), or

cos. z = cos. [90° — (L 4 p)] — 2 cos. L cos. D (sin. ). (411)

But if A is the star’s observed altitude, and A; its meridian altitude
at its upper transit, (403) gives

Ay = L+p, or=180°— (L4 p),
and (411) becomes, by transposition, _
sin. A) =sin. 4 + 2 cos. L cos. D (sin. § h)?; (412) .

from which the meridian altitude may be calculated by means of
Table XXIII, as in the Rule. [B., p. 200.]

III. A formula can also be obtained from (840), which is partic-
ularly valuable when the star is, as it always should be in these
observations, near the meridian.

In this case we have in (340)\ applied to PBZ
28=90°—L+4p+2=180°—L+4p—A4 (413)
28—2PZ=L+4p—A4

=A; — A or=180°— (4, +A) ' (414)
238—2PB=180°—L—p— A
=180°— (A1 4+ A)or= 41— 4; (415)

and if these values are substituted in (840), after it is squared and

freed from fractions, they give

(sin. § A)2cos. L cos. D = sin. § (41 — A) cos. § (41 + 4), (416)
’

or

sin. § (41 — A) = (sin. § )2 cos. L cos. D sec. } (A1 + 4); (417)
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and if, in the second member of this equation, the value of A4, is
used, which is obtained from the approximate value of the latitude,
the difference between the observed and the meridian altitudes may
be found at once; and this difference is to be added to the observed
altitude to obtain the meridian altitude. 1

IV. If the star is very near the meridian, } (4, — A4) and } & will
be so small, that we may put

sin. 3 (4, — 4) = 3 A’ — A)sin. 1/
sin.3 A = % A sin. 1 = 15 A sin. 1/; .
which, substituted in (417) give, by supposing 4, equal to 4 in the
second member, which is very nearly the case,
A, — 1 = 4 h3sin. 1 cos. L cos. D sec. A,. (418)

This value of 4, — A is proportional to A3, so that if it were cal-
culated for
h=1¢,

any other value might be calculated by multiplying by A2 Now
Table XXXII, of the Navigator, contains the values of 4, — A for
all latitudes and for all declinations less than 24°, excepting a few
latitudes in which the meridian transit of the observed body is too
near the zenith for this observation to be accurate ; and Table XX XIII
contains all the values of A2, where A is less than 18™.

V. If the observed star is very near the pole, we have in (408) ’

tang. PC — cos. h tang. p; (419)
8o that as p is very small, PC must be likewise small, and we have
“cos. b = 208 1€ LY = pc
tang. p P
PC=pcos. h; . (420)

and, by Pl Trig. § 22,
cos. PC=1,sin. D = cos. p = 1,
whence, by (409), and (410),
' cos. ZC = cos. 2z, ZC = 2,
L=90°—PC—2Z2C=190°—z— PC
= A-—-;)cos. hs (421)




‘196 SPHERICAL ASTRONOMY. [cm. 1v.

80 that p cos. k may be regarded as a correction to be subtracted
from A when it is positive, that is, when the hour angle is less than
6 hours, or greater than 18 hours; and it is to be added when the
hour angle is greater than 6 hours and less than 18 hours.

The table [B., p. 206] for the pole star was calculated for the year
. 1840, when

its R. A. = 1* 2™; its dec. — 88° 27/ nearly.

VI. The method of determining the latitude by means of the pole
star is 80 accurate in practice, that tables are given in the Nautical
Almanac for correcting the observed altitude for differences of lati-
tude, and for changes in the right ascension and declination of the
star. Of these corrections the first is the same as that of the Navi-

- gator, and is computed from (421) by usimg the pole star’s mean

right ascension and declination for the year; and the third is the
correction for the change in the star’s right ascension and declination.
Both of these corrections may, however, be full as readily obtained
by direct computation from (421), if the actual right ascension and

" declination of the star are at once substituted in the formula. The

second correction of the Nautical Almanac arises from the error in
supposing ZC to be equal to z, and is so small that the mean right
ascension and declination of the pole star may be used in its com-
putation.

We have, then, in the right triangle BPC, since p and B( are
small, )
BC _ sin. BC

p ~ sin.p
or BO = psin. h;

— sin. A,

and the right triangle BCZ gives, since

BZ =90°— 4

CZ=90°—PC—L=90°—pcos. h— L
cos. BZ = cos. CZ cos. BC
sin. A = sin. (p cos. A 4 L) cos. BC
sin. (p cos. A 4 L) — sin, A = sin. (p cos. A 4 L) (1 —cos. BC)
2cos. 3 (p cos. h 4 L 4 A)sin. } (p cos. b 4 L — A)

= 2sin. (p cos. h 4 L) sint’ 4 BC;
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or, since A differs but little from L, and p and BC are small,
cos. L. (p cos. h 4 L — A) sin. 1” = } sin. L.(BC)?sin2.1"
pcos. h 4+ L — A =} p? tan. L.sin2.h sin, 1", (422)

which gives the required second correction, and this method of com-
puting the latitude is most accurate when 4 is nearly 6 or 18 hours.

VII. The formula (417) may, however, be used directly for obser-
vations of the pole star more readily than the tables of the Nautical
Almanac, and gives at once

L=Ap+p(sin.§h)2cos. Lsec. 3 (A+ L+p, (423)

and is most accurate when A is small.

VIII. By applying (417) to the lower transit of the pole star, that
is, substituting its supplement for k, and making

A, =L—p,
it becomes
L=A+4 p—p (cos. k)2 cos. L sec.  (A+ M—p), (424)

which is most accurate when 4 is nearly 12 hours.

Third Method. By Circummeridian Altitudes.

1. If several altitudes are observed near the meridian, each obser-
vation may be reduced separately by (417) and (418), and the mean
of the resulting latitudes is the correct latitude.

II. But if (418) is used, the mean of the values of 4, — A is
evidently obtained by multiplying the mean of the values of A2 by
the constant factor; and if to the mean of the values of 4, — 4, the
mean of the values of A is added, the sum is the mean of the value
of A,, whence precisely the same mean of resulting latitude is ob-
tained as by the former method, but with much less calculation.

ITI. If the star is changing its declination in the course of the
observations, this change may, in all cases which can occur if the
hour angle is small, be heglected in the value of cos. . But the
value of A, will not, in this case, be at each observation equal to the
meridian altitude, but will differ from it by the difference of the star’s
declination. Let the change of the star’s declination in one minute

17 '

.
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be denoted by 3 D, which is positive when the star is approaching the
elevated pole ; and if 4 is the star’s hour angle at the time of obser-
vation, which is negative before the star arrives at the meridian and .
afterwards positive, the whole change of declination is 2 8 D, so that
the correct meridian altitude is

A4, —h3D.

The mean of the values of the corrected meridian altitude is, there-
fore, equal to the mean of the values of A, diminished by the mean

of the values of 2 8 D; and, if H denotes the mean of the hour
angles % (regard being had to their signs), the correct meridian

altitude is the mean of the values of A, diminished by H & D.

Fourth Method By Double Altitudes.

I. Let two altitudes of a star, which does not change its declination,
be observed, and the intervening time. Then (fig. 39) let Z be the
zenith, P the pole, S and & the positions of the star; join ZS, ZS,
PS, PS, and SS'M; draw PT to the middle T of SS, join ZT, and
draw ZV perpendicular to PT. Let

p=PS=P8=90°— D, SPS = elapsed time =4
ST= A=S8T, PT=90°—B
A =90°—2Z8S, A, =90°—ZS8
ZTP=T,ZT=F,2V=C
TV=2,PV=90°—E;
in which D and B are positive, when the latitude and declination are
of the same name, but negative, if they are of contrary names; Z is
positive, if the zenith is nearer the elevated pole than the point M.
‘Now the triangle TPS gives
" gin, A = sin, PS sin. SPT = cos. Dsin. }§ &
cos. PS = cos. PT cos. 4, or sin. D =sin. B cos. 4, (425)
or cosec. A = sec. D cosec. § A (426)
cosec. B = cos. A cosec. D. (427)

The triangles ZTS and ZTY give
sin. 4, = cos. F cos. A — sin. F.sin. A'sin. T, (428)
sin. A; = cos. F cos. A 4 sin. F.sin. Asin. T. (429)
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The sum and difference of which is, by (43) and (44),
sin. } (4,4 4;) cos. § (4, — A,) = cos. F cos. 4, (430)
sin, § (A; — A,) cos. } (A, + 4;) = sin. Fsin. Asin. T. (431)
But triangle ZT'V gives
sin. C = sin. F sin. T, (432)
cos. F—cos. C cos. Z; i (433)
which, substituted in (430) and (431), give

sin. C =sin. } (4; — 4,) cos. } (4, 4 4;) cosec. 4, (434)
sec. Z — cos. A cos. C sec. § (4, — A})cosec. } (4,4 A,). (435)
But PV=PT—TV,
or 90° — E=90°—B—Z
E=B+Z. (436)

- Lastly, triangle ZPV gives
cos. PZ —cos. ZV cos. PV
sin. L = cos. C sin. E. (437)

Equations (426, 427, 434 — 437) correspond to the rule and formula
given in the Navigator. [B., p. 180.]

II. Another method of calculating the values of B, C, and Z, has
been given, which dispenses with 4 and one opening of the tables,
.and may therefore be preferred by some computers, although it
requires one more logarithm. Triangle TPS gives

tang. PT = cos. § & tang. PS,
or cotan, B = cos. } A cotan. D. -(438)
 The substitution of (426) in (434) gives
sin. C = cos. § (4, 4;) % sin. (41— A,) sec. D cosec. 3 h. (439)
Triangle PTS gives
cos. A = sin. D cosec. B; ‘ (440)
which, substituted in (435), gives (441)
gec. Z — cos. C. sin. D cosec. Bcosec. § (4, + 4;) sec. 3 (4, — A,).
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Co;'allary. The hour angle ZPT is the mean between the hour
angles ZPS and ZPS, and if we put '
ZPT=H,
the triangle ZPV gives
tang. H = tang. C sec. E, (442)
as in [B., p. 181.]

III. When the latitude is known within a few miles. In this case
let
L' = the assumed latitude,
and the triangle ZPV gives

sin, C =cos. L' sin. H; (443)

whence, by (4389), : (444)
sin. H= cos. } (4, — 4,) sin. } (4; — 4,) sec. L' sec. D cosec. § h.
ZPS' =H—%h, (445)

whence the hour angle ZPS', corresponding to the observation at &,
is known, and the latitude may be found by the method of a single
altitude.

IV. Douwes’s Method. Formula (444) is, by (44),

2 sin. H= (sin. 4; — sin. 4,) sec. L' sec. D cosec. § h. (446)

- The combination of the formulas (446, 445,) and the method of
computing the latitude by a single altitude, corresponds exactly to the
rule given in the Navigator. [B., p. 185.]

The log. cosec. & is not only given in Table XX VII, but also in
Table XXIII, where it is called the log. } elapsed time of 4 k.

The value of
log. 2 sin. H— 5 = log. sin. H+4-log. 2 — 5
= log. sin. H—ar. co. log. 245

= log. sin. H — 4.69897
= 5.80103 — log. elapsed time of H  (447)
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is inserted in Table XXIII, and is called the log. middle time of H.
The 5 is subtracted from log. 2 sin H, on account of the different
values of the radius in Tables XXIV and XXVII.

Scholium. When the calculated latitudes differ much from the
assumed latitude, the calculation must be gone over again, with the
calculated latitude instead of the assumed latitude. This labor may
be avoided by noticing, in the course of the original calculation, the
difference which would arise from a change of 10/ in the value of the
assumed latitude, and calculating the correction of the latitude by the
rule of double position. The error of the hypothesis is, in each case,
the excess of the calculated above the assumed latitude, and the pro-
portion is

diff. of errors : diff. of hyp. = least error : corr. of hyp. (448)

V. If the star has increased its declination a little during the
interval between the observations, the second altitude will also be
increased, and will require a reduction, before applying either of these

methods, in which the declination is supposed to be unchanged; or
else the first declination and the first altitude must be increased.

Thus if Sa is the increase of declination, and if a b is drawn
perpendicular to ZS, Sb will be the increase of altitude. By putting

Sa=28D, Sb=28A4,
we have ' dA =cos.S.8D, (449)
or, from the triangle ZSP, ‘

sin. L — sin. 4, sin. D

84 = cos. A, cos. D

3D, © (450)

and, by (41) and (42),

2 sin. I — cos. (4, — D) 4 cos. (4,4 D)

04 = —o (4, — D) + cos. (4, + D)

3D, (451)

in which D is to be negative, when the latitude and declination are
of contrary names. - Hence the value of 8 4, can be computed by
this formula, and it is to be added to the first altitude when the
declination is increasing, and subtracted when the declination is
decreasing. Since the value of § A4, is proportional to § D, it may be
computed for some assumed valued of 8 D, and arranged in a table
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like Table XLVI of the Navigator, and the value of 3 A, can be
computed from this table by a simple proportion. The rest of the
calculation can be conducted according to the preceding methods, as
in [B., p. 189.]

VI If two stars are observed, whose declinations are quite differ-
ent, 'lhen, if P (fig. 40) is the pole, Z the zenith, S and & the
places of the stars.

A, = 90° — ZS = the less altitude,
A} = 90° — ZS _ the greater altitude,
D — 90° — PS = the declination of star at S,
D' = 90° — PSS = the declination of star at S,
H — SPS' = hour angle = interv. of sideral time.
Then, in the triangle PSS, PS, PS', and H, are given to find
S8 = C, and 'SP = 90° — F.

Next, in the triangle ZSS', the three sides are known, to find the
angle

A ZSS = Z.
Hence ZSP=90°—~G=90°— F—2Z
G=F+4 Z.

Lastly, in the triangles ZSP, CS, SP and the mcluded angle ZSP
are given to find

ZP = 90° — L.

This solution is precisely similat to the Rule in [B., p. 193]; and
it is easy to prove the rules for the signs which are there given.

VII. If the distance SS’ were observed, the angles ZSS and §'SP
might be found from the triangles ZSS’ and §'SP, in which the sides
are all known, and the rest of the calculation would be as in the last
method, and this method corresponds exactly to the Rule in [B.,
p- 197.] .

47. EXAMPLES.

1. The correct meridian altitude of Aldebaran was found by
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observation, in the year 1838, to be 55° 45/, when its bearing was
south ; what was the latitude ?

Solution. . The zenith distance — 384° 15’ N.
The declination = 16° 11’ N.
The latitude = 50° 26’ N.

2. The correct meridian altitude of Canopus was found by obser-
vation, in the year 1839, to be 16° 25/, when its bearing was south ;
what was the latitude ?

Solution. The zenith distance =— 73° 85’ N.
The declination = 52° 36' 8.
The latitude =20° 59’ N.

8. The correct meridian altitude of Dubhe was found by obser-
vation, in the year 1830, to be 50° 45', when its bearing was north ;
what was the latitude ?

Solution. The zenith distance = 39° 15’ S.
' The declination - = 62° 40’ N,
The latitude =23° 25’ N.

4. If the correct meridian altitude of Dubhe, at its greatest
- elevation, were found by observation, in the year 1830, to be 50° 45/,
when its bearing was south ; what would be the latitude ?

Solutson. The zenith distance = 39° 15/ N.
The declination = 62° 40’ N.
The latitude = 107° 55' N.

The problem is impossible.

5. The correct meridian altitude of Dubhe, at its least elevation,
was found by observation, in the year 1830, to be 50° 45'; what was
the latitude ? .
Solutton. ) The polar distance = 27° 20/
The altitude - = 50° 45'

The latitude @ = 78° 5'N.
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6. The correct meridian altitudes of Dubhe, at. its greatest end
least elevations, which were on opposite sides of the zenith, were
found by observation to be 72° 4/ and 53° 16/; what was the latitude?

Solution. The greatest aititude = 72° 4~
The least altitude — 53°16’
Diff. of altitudes = 18° 48’
180° — Diff. of altitudes = 161° 12/
Latitude . . .. = 80° 36’

7. The correct meridian altitudes of Dubhe, at itsh greatest and
least altitudes, which were on the same side of the zenith, were found
by observation to be 15° 1/ and 69° 41/; what was the latitude ?

Solution. ' “ Greatest alt. — 69° 41/

Least alt. = 15° v

Sum of alts. — 84 42/
Latitude = 42° 21’ N.

8. In a northern latitude, the altitude of Aldebaran was found by

observation, in the year 1339, to be:25° 38/, when its hour angle was
44 13" 20° ; what was the latitude ? »

Solution. By (408, 409, 410),

h= 4k12"20° cos. 9.65580
D=16°11' _  cotan. 10.53729  cosec. 10.55484
90°—PO=352°40 cotan. 10.19309 sin. 9.73215
A=25°38  sin. 9.63610
ZC=133° ¢ ' " cos. 9.92309
L= 65° 46’ N.

. Ty .‘ . .o
9. In lat. 65° 40’ N. nearly, the latitude of Aldebaran was found
by observation, in the year 1839, to be 25° 38/, when its hour angle
was 4% 12 20¢ ; what was the true latitude? ,
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Solution. 1. By (412),

65° 40’ cos. 9.61494

16° 11- cos. 9.98244

4 12 200 log. Ris. 4.73823

Nat. num. 21657 4.33561
25° 38/ Nat.sin. 43261
49° 31°N. Nat. cos. 64918

16° 11’ N,

65° 42' N, = the latitude.

Had the assumed latitude been taken 10’ more, the calculated lati-
tude would have been 65° 483’ N.; hence, by (448),

83 : 13 =10’ : 4/ = corr. of second hypothesis,
or the latitude — 65° 46’ N., as in the preceding example.
I1. By (417),

3 h =24 6m 10 2 log. sin. 9.43720

L = 65° 40’ cos. 9.61494
D=16°1V1 cos. 9.98244
A, = 40° 31/
A = 25° 38’ A = 25° 38’
A A—=1451'} (4, + 4) =383 4y sec. 10.07678
A,=40°29'} (4, — )= 7° 23} sin. 9.11136
corr. A, = 2' = corr, lat.

Lat. = 65° 40’ 4 2 = 65° 42" as before.

10. Calculate the variation of a star’s altitude in one minute from
the meridian, when the declination is 12° N., and the latitude 5° N.
18 ’
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Solution. If A, — A is required in seconds, (418)- gives
A, — A — 450 sin. 1™ cos. L cos. D sec. 4,
log. 450 sin. 1™ — log. 450 }- log. sin. 1™
' = 2.65321 - 7.63982 = 0.29303

D=12° cos. 9.99040
L= 8° cos. 9.99834
A, —83° ~ sec. 0.91411

A, — A =15".7, as in Table XXXII. 1.19588

[cm. 1v.

11. Calculate the tabular number for 11™ 48* in Table XXXIIL

Solution. 11m 48° = 708 log. 2.85003
60° log. 1.77815

1.07188

2

139.2, as in Table XXXIIT. 2.14376

12. In lat. 45° 28’ N. nearly, the correct altitude of Aldebaran was
found by observation, in the year 1839, to be 60° 40’ 20", when its
hour angle was 7% 17s. What was the true latitude, if the déclina-

tion of Aldebaran was 16° 11/ 9.2 N.?

Solutton. From Table XXXI1I .7
' From Table XXXIII 53

2/ 281 = 148".1
60° 40 20"

Third alt. — 60° 42/ 438".1
Dec. =16°11’ 9.2

Lat. = 45° 28/ 26".1 N.

13. In lat. 40° N. nearly, the sum of ten correct central altitudes
of the sum, when its declination was 20° S. were 300° 6/ 40”. The
hour angles of these observations were 4™ 15, 8™, 2""6', 1m 8% 30°,
505, 1™ 125, 2m 154, 3™ 10¢, 4™ 25, What is the true latitude, if the

change of declination is neglected ?
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Solution. The numbers of Table XXXIII are
4~ 15° gives 18.1

3 0 9.0
2 6 4.5
1 8 1.3
0 30 0.2
0 50 0.7
1 12 . 1.4
2 15 sl
3 10 10.0
4 25 19.5

Sum =— 69.7

Mean — 6.97

Table XXXII gives 1.6

1 1 n
Mean. of observations = 30° 0’ 40"

Merid. alt. = 30° 0’ §1”
Dec, = 20° - 8.

Lat. = 39° 59' 9 N.

14. At Gottingen, in lat. 51° 32/ N. nearly, the correct central alti-
. tudes of the sun on the 11th of March, 1794, were by observation

34° 54 46 when the hour angle was — 9™ 41°

34 55 26 —8 19
34 56 8 —6 39
34 56 31 © —5 16
34 56 53 —3 49
34 57 6 —2 47
34 57 18 019
34 57 11 2 5
34 57 8 3 9
34 56 48 S
34 56 26 6 8
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The sun's meridian declination was 3° 30’ 38” S., and it was de-
creasing at the rate of 0".98 in a minute. What is the true latitude ?

.

Solution. The mean of the altitude is = 34° 56’ 30".5;
that of the numbers of Table XXXIII is
30”.0 ; which, multiplied by 1.5 from Table
XXXII, gives . . . . 45'.0

""The mean of the hour angles is, regarding -
their signs, — 1™ 50°, which, multiplied by

0,98, gives by (418); for the correction of -
the meridian altitude . .. ) 1.8

— Cp—

The meridian altitude — 34° 57’ 17".3
The declination = 8°80'88" 8.

The latitude =4§1° 82’ 4".IN.
which agrees exactly with the calculations of Littrow in his Astro-

nomy.

15. Calculate the correction for the altitude of the pole star [B., p.
2067, when the Tight ascension of the zenith is 2* 7™ o

Solution. By (421),.

h=2 7" —1* 2" = 1" 5" sec. 0.0177
=1° 8% Prop. log. 0.2868
Corr. alt. = 1° 29/, as in the table, Prop. log. 0.3045

' 16. When the right ascension of the zenith was 7* 93", the alti-
tude of the pole star was observed at Newburyport to be 42° 44
What is the latitude of Newburyport ?

Solution. The correction of table — 0° 8’
Altitude . . . = 42° 44’

Latitude . . . == 42° 47

17. Calculate the log. efapsed time and log. mld&le txme of Table
XXIII for 3* 7= 10°. - R
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 Solution.. By Table XXVII and (447);
87" 10" cosec. 0.13635 — log. elapsed time
’ 5.30103

5.16368 = log. mid. time.

18. Calculate the variation of the altitude of a star arising from
the change of 100 seconds in the declination, when the latitude is
40°, the declination 10, and the altitude 30°.

Solution. By (451),
© L'=40°,2 X Nat. sin. 1.2856  1.2856
;1, — D = 20° Nat. cos. 0.9397 — 0.9397  0.9397
A, 4 D = 40° Nat. cos. 0.7660 0.7660 — 0.7660

1.7057 1.1119 1.4593
1.7057 (ar.co.) 9.7681 9.7681
1007 X 1.1119 . . 2.0461
100" X 1.4593 - 2.1641

" 65" = var. when Dis 4, 1.8142

N

86/ = var. when D is —, o 1.9322

19. The moon’s correct central altitude was found, by observation,
to be 63° 43', when her declination was 14° 16/ N. After an interval, in
which the hour angle was 1* 44™ 15°, her correct central altitude was
42° 29’, and her declination 13° 52’ N. The latitude was 48° 50
nearly; what was it exactly?

Soiutiqu. Table XLVI gives, for the second alt. . 83"
‘Whole change of declination . . . 24

.. Correction of second altitude . .« . 20
Corrected second alt. —= 42° 49/, dec. = 14° 16N,
18°
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1. By Bowditch’s first method. ST

14 44m15¢ cosec. 0.64689°
14° 16/ - sec. 0.01360

3 compp——

A . cosec. 0.66049 - cos. 9.98937

. B=14°38'N, cosec, 0.59767

" cos. 9.82326 } sum alts. = 48° 16/

© " gin, 897762 } diff. alts. = 5° 27

C. . sin. 9.46137 cos. 9.98102

Z =37 19°N.

E=51°57N.  in. 9.89624

Latitude — 48° 55’ N. sin. 9.87726

" IL By the method (438 - 441).
1* 44 15*  cos. 9.98867 cosec. 0.64_689

14° 16/ cotan. 0.59469  sec. 0.01360

t——

B =14°38'N. cotan. 0.58336
4 sum alts. — 48° 16’ cos. 9.82326

 diff. alte. = 5° 27’ sin. 8.97762

c cos. 9.98102 sin, 9.46137

Z=37°17N.

E=51°57N. sin. 9.89624

Lat.—=48°55'N. sin. 9.87726

cosec. 0.66530

COS8.

cosec.

sec.

sin.
cosec.
cosec.

sec.

8ec..

[emi 1v

9.98937

0.12712

. 9.00197

. 0.98102

0.09948

9.839170

0.59767

0.12712

0.00197

. 9.98102

0.09948
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I11. By Douwes’s method. : :
48° 50’ sec. 0.18161

53° 43/ N. sin. 80610 14° 16’ sec. 0.01360

42° 49/ N. sin. 67965 log. ratio 0.19521
T 12645 . log. 4.10192
(1 aam 15 = 52m Ty log. el. time 0.64674
14 44™ 154  log. mid, time 4.94387

e - - 52™ 8 . . log, ria. 3.41097

' log. ratio 0.19521

' “ 16438 log. 8.21576

80610

84° 394’ N. N. cos. 82253
14° 16/ N.

Lat. = 48° 55}’ N.
IV. By Bowditch’s fourth method.

1% 44~ 15 sec. 0.04657 ' tan. 9.68938
14° 16’ N. tan. 9.40531  sin. 9.89170 '
A=15° 44}’ 8. tan. 9.45188 cosec. 0.56485 cos. 9.98326
13° 52’ N. _ oo
B= 1°56}) 8. cos. 9.99975 cosec. 1.47003

C = 25° 16}’ cosec. 0.36961  cos. 9.95630

F= 4 6¥N. cotan. 1.14367
T .. 58° 43’ S Z=51°38 N.. = . .

N ‘ G =55°44)'N.  sin. 9.91724
, 42°20' sec. 0.13225  sin. 9.82955 cotan. 0.03820

3sum =—60°44'  cos. 9.68920 Isec. 0.12938 ~ tan. 9.95544
Rem. = 7° 1’ sin. 9.08692 K sin. 9.91823 I— 42°> 4’ N,

2) 19.27798 lat. sin. 9.87716  18° 52' N.

3 Z=25° 49’ N. sin. 9.63899 lat. = 48° 54}’ N« K== §5° 56'.N, -
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20. The correct meridian altitude of Aldebaran was, by observa-
tion, 56° 25’ 40" bearing south, and its declination at the time of the
observation was 16° 8’ 44” N.; what was the latitude ?

Ans. 49° 43 4" N.
21. The correct meridian altitude of Sirius was 70° 59’ 33" bearing
north, and its declination 16° 28/ 9” S.; what was the latitude?"
Ans. 35° 28 367 8.

22. The meridian altitude of the sun’s centre was 25° 88’ 30"
bearing south, and 1ts declination 22° 18’ 14/ 8.; what was the
latitude ? - o

Ans. 42°3/16'N.

23. The meridian altitude of the planet’ Jupxter was 50° 20/ 8"
bearing south, and 1ts declination 18° 47’ 37" N.; what was the
latitude ?

_ Ans. 58° 27 29" N,
" 24, The altitude of the pole star was 30° 17 30” below the pole,
and its polar distance 1° 88’ 2”/; what was the lantude? '
Ans. 31° 389/ 32 N.
25. The altitude of Capella on the meridian below the pole was
9° 52/ 42", and its polar distance 44° 11’ 33"/ ; what was the latitude ?
' Ans. 54° 4’ 5" N
26. The meridian altitide of the sun’s centre was 7° 9' 11" below
the pole, and its declination 23° 8 17 N.; what was the latitude? -
Ans. 74° O 54" N.
87. The two meridian altitudes of a northern circumpolar star
were 61° 49’ 13" and 47° 24’ 27/ ; what was the latitude ? -
' Ans. 54° 36' 50" N.
28. In a northern laﬂitude, the altitude of the sun’s centre was

54° 9’, when its hoor angle was 32" 40°, and its declmatxon 11° 17’ N
what was the latitude ? . e .

Ans. 46° 27 N
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29. In latitude 49° 15 N. nearly, the altitude of the sun’s centre
was 14° 15, when its hour angle was 1* 40™, and its declination
28° 28’ 8.; what was the true latitude o
- Ans. 48° 55' N,

30. Calculate the variation of a star’s altitude in one minute from
the meridian, when the declination is 3° and the latitude 7°.

. Ans. It is 27".9 when the dec. and lat. are of the same name,
and 11/.2 when they are of contrary names.

31. Calculate the tabular number for 13m 59 in Table XXXIIL
' Ans.  168.6.

32. In lat. 50° 30’ N. nearly, the altitude of Sirius was 22° 59’ 36",
when its hour angle was 4™ 15¢, and its declination 16°29'11” 8. ;
what was the true latitude ?

Ans. 50° 30' 49" N.

83. In lat. 20° 27’ N. nearly, the sum of seven altitudes of Sirius
was 871° 21/; the hour angles of the observations were 7™, 5™ 8s,
2m 123, 99, 3m 4m 65, 8m 13¢ ; what was the true latitude, if the
declination of Sirius was 16° 29/ 80" 8. ?

' i Ans. 20°26' 18" N. -

84, In lat. 60° N. nearly, the sum of twelve central altitudes of .
the moon was 590°; the hour angles of the observations were
— 9™ 3, — T™ 405, — 67 125, — 57 302, — 3™ 25, — 1™, — 12¢,
— 504, 1™ §9¢, 4m Tm 30¢, 10™ ; the moon’s meridian declination
was 19° 0’ 58“.4 N., and her change of declination for one minute
13".875; what was the true latitude ?

‘ Ans. 59° 50/ 2.6 N.

35. Caleulate the correction for the. altitude of the pole star [B.,
P. 2067, when the right ascension of the zenith is 9% 77,
Ans. 48'.

36. The altitude of the pole-star was 25° 9/, when the right ascen-
sion of the zenith was 21» 477 ; what was the latitude ?

Ans. 24° 8’ N.
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87. Calculate the log. elapsed time and log. middle time of Table
XXIII for 5* 58™ 102,
Ans. Log. elapsed time = 0.00001
Log. middle time — 6.30102,

38. Calculate the variation of the altitude of a star arising from
the change of 100 seconds in declination, when the latitude is 60°,
the declination 20°, the altitude 30°, and the declination and latitude
of the same name.

Ans. 85.

39. Calculate the variation of the altitude of a star arising from
the change of 100 seconds in declination, when the latitude is 50°,
the declination 24°, and the altitude 20°.

Ans. It is 73" when the lat. and dec. are of the'same name,

and 105" when they are of contrary names.

40. The sun’s correct central altitudes were found by observation
to be 30° 13’ and 50° 4/; his declination was 20° 7’ N., and the
interval of solar time between the observations was 2% 55 32¢ ; the
assumed latitude was 56° 29’ N.; what was the true latitude ?

Ans. 56° 47 N.

41, The sun’s correct central altitude was 41° 88’ 12/, his declina-

tion 14° N. ; after an interval of 1% 30™, his correct central altitude

was 50° 1/ 127, and declination 13°58/ 38 N. ; the assumed latitude
‘was 52° 5' N.; what was the true latitude ? '

Ans. 52° §' N.

42. The moon’s correct central altitude was 55° 38/, her declina-
tion 0° 20’ 8.; after an interval in which the hour angle was
5% 30™ 49s, her correct central altitude was 29° 57/, and her declina-
tion 1° 10’ N. ; the assumed latitude was 23° 25’ S.; what was the
true latitude ? )

Ans. 238°24'S.

43. The sun’s correct central altitude was 16° 6’, his declination
8° 18’ N.; after an interval in which the hour angle was 3%, his
correct central altitude was 42° 14’ 9/, and his declination 8° 15’ N. ;
the assumed latitude was 49° N, ; what was the true latitude ?

Ans, 48° 50’ N,
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44. The moon’s correct central altitude was 85° 21/, and her de-
clination 5° 31/ 6 8. ; after an interval in which the hour angle was
2* 20™, her correct central altitude was 70° 1/, and her declination
5° 28’ 54/ 8. ; the assumed latitude was 1° 80’ S.; what was the true
latitude ?

Ans. 1° 83'8S.

45. The altitude of Capella was 60° 45’ 36", and her declination
45° 48’ 21”7 N.; at the same instant, the altitude of Sirius was
17° 54/ 127, and his declination 16° 28’ 40” S. ; the hour angle be-
tween the stars was 1* 33™ 37¢, and the latitude wasabout 53° 15’ N, ;
what was the true latitude ?

) Ans. 53°19'N.

46, The altitude of a Bootis was 50° 3’ 39", and its declination
20° 10’ 56" N.; the altitude of & Aquilee was 41° 27/, and its declina-
tion 8° 22/ 85” N.; the difference of the hour angles of the obser-
vations was 5* 35™ 53°, and the assumed latitude 38° 27/ N.; what
was the true latitude ?

Ans. 38° 28/ N.

47. The distance of the centres of the sun and moon was found,
by observation, to be 75° ; the sun’s central altitude was 37° 40/ ; the
moon’s central altitude was 55° 20’; the sun’s declination was
0° 17/ S.; the moon’s declination was 0° 36/ N.; what was the
latitude, supposing it to be north ? _

Ans. 28° 24’ N.

48. The observation has been supposed stationary, in the preceding
observations ; but if he is in motion, his second altitude will differ
from the altitude for this time at the first station, by the number of
minutes by which the observer has approached the star or receded
from it; so that the correction arising from this change of place is
obviously computed by the method in [B., p. 183.]

49, In observing the meridian altitude of a star, the position of the
meridian has been supposed to be known; but if it were not known
the meridian altitude can be distinguished from any other altitude

from the fact that it is the greatest or the least altitude; so that it is
only necessary to observe the greatest or the least altitude of the
star. :
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50. But if the star changes its declination, the greatest altitude
ceases to be the meridian altitude. Let & denote the hour angle of
the star at the time of observation. Then if the star did not change
its declination, and if B were the number of seconds given by Table
XXXII for the diminution of altitude in one minute from the meridian
passage, k2 B would be the diminution of altitude in 2 minutes. But,
since A is small, the altitude, at this time, is increased by the change
of declination ; so that if 4 is the number of minutes by which the
star changes its declination in one hour, that is, the number of
seconds by which it changes its declination in one minute, A A4 will
be the increase of altitude in the time of &, so that the altitude at the
time A exceeds the meridian altitude by

hA—m B. (452)

If, then, A denotes the time of the greatest altitude, and A 4- 3 A
a time which differs very slightly from the greatest altitude; the
greatest altitude exceeds the altitude at the time h 4 3 A by the
quantity
(hA—hB)—[(h+43h) A— (h+ 8 k) B)
=0h([(—A+2Bh)4 B3k, (458) -

and 3 A can be supposed so small that B 3 & may be insensible, and
(453) becomes :

3h(—A42Bh). (454)

Now — A +4 2 B h cannot be negative, because h is supposed to
correspond to the greatest altitude, and cannot be less than the
altitude at the time A4 8 A. Neither can— 4 - 2 B A be positive,
for the altitude at the time A exceeds that at the time A — 3 4 by the
quantity

—3h(—A+2Bh),

which, in this case, would be negative, and the altitude at the
time A — 8 A would exceed the greatest altitude, Since, then,
— A 4 2 B & can neither be greater nor less than zero, we -must
have

l—A+2Bh=0
A

'2'_BT ’ (455)

or A=
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and this value of A, substituted in (452}, gives

A2 A2 A%
2B—4B—4B (456)

for the excess of the greatest altitude above the meridian altitude.

51. If the observer were not at rest, his change of latitude wnll
affect his observed greatest altitude in the same way in which it
would be affected by an equal change in the declination of the star;
so that the calculation of the correction on this account may be made
by means of (455) and (456) precisely as in [B., p. 169.]

52. ExAMPLES.

1. An observer sailing N. N. W. 9 miles per hour, found by obser-
vation, the greatest central altitude of the moon bearing south, to be
54° 18/; what was the latitude, if the moon’s declination was 6° 30’
8., and her ingrease of declination per hour 16°.52 ¢ :

Solution. D’s zenith dist. — 35° 42’ N. .

D’s dec. ‘= 6°30'S.

Approx. lat, . = 29° 12'N..
* D’s increase of dec. per hour = 16'.52 8.
Ship’s change of lat." « = 8.3

_ A =2482, 4°=6160
- By Table XXXIL - B= 29,4B= 116
‘Corr. of gr. alt. = corr. of lat. — 52" = 17 nearly,

Lat. = 29° 12/ 4 1/ = 29° 18' N,

2. An observer sailing south 12} miles per hour, found, by obser-
vatlon, the greatest central altitude of the moon bearing south,’ to be
25° 15/; what was the latitude, if the moon 8 declination was l° 12’
N., and her increase of dechnatmn per hour 18'.5?

dAns. 66° 1'N.

19
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CHAPTER V.

THE ECLIPTIC.

58. THE careful observation of the sun’s motion shows this
. body to move nearly in the circumference of a great circle.
~ This circle is called the ecliptic. [B., p. 48.]

54. The angle which the ecliptic makes with the equator is
called the obliqusty of the ecliptic.

55. The points, where the ecliptic intersects the equator, are
called the equinoctial poinis; or- the equinozes. The point
through which the sun ascends from the southern to the north-
ern side of the equator, is called the vernal equinox; and the
other equinox is called the autumnal equinoz.

The points 90° distant from the ecliptic are called the sol-
stitial points, or the solstices. [B., p. 49.]

56. The circumference of the ecliptic is divided into twelve
equal parts, called signs, beginning with the vernal equinox,
and proceeding with the sun from west to east.

The names of these signs are Aries (%), Taurus (8 ), Gemini (II),
Cancer (25), Leo (), Virgo (m), Libra (£), Scorpio (M), Sa-
gittarius (1), Capricornus (V8), Aquarius (&%), Pisces (). The
vernal equinox is therefore the first point, or beginning of Aries, and
the autumnal equinox is the first point of Libra; the first six signs
are north of the equator, and the last six south of the equator. The
northern solstice is the first point of Cancer, and the southern solstice
the first point of Capricorn. [B., p. 49.] /

57. Secondary circles, drawn perpendicular to the ecliptic,
are called curcles of latitude.
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The circle of latitude drawn through the equinoxes is called
the equinoctial colure.

The circle of latitude drawn through the solstices is called
the solstitial colure. [B., p. 49.] .

Corollary. The solstitial colure is also a secondiry to the equator,
so that it passes through the poles of both the equator and the
ecliptic.

58. Small circles, drawn parallel to the equator through the
solstitial points, are called tropics.

The northern tropic is called the tropic of Cancer; the
southern tropic the tropic of Capricorn.

Small circles, drawn at the same distance from the poles
which the tropics are from the equator, are called polar circles.

- The northern polar circle is called the arctic circle, the
southern the antarctic.

59. The latitude of a star is its distance from the ecliptic
measured upon the circle of latitude, which passes through the
star. If the observer is supposed to be at the earth, the latitude
is called geocentric latitude; but if he is at the sun, it is
heliocentric latitude. [B., p. 49.]

60. The longitude of a star is the arc of the ecliptic con-
tained between the circle of latitude drawn through the star
and the vernal equinox. [B., p. 50.]

Corollary. The longitude and right ascension of the first point of
Cancer are each equal to 6%, and those of the first point of Capricorn
are each equal to 18%,

61. The nonagesimal point of the ecliptic is the higixest point
at any time.

Corollary. The distance of the nonagesimal from tixe zenith is
therefore equal to the distance of the zenith from the ecliptic, that is,
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to the celestial latitude of the zenith; and the longitude of the
nonagesimal is the celestial longitude of the zenith.

62. Problem. To find the latitude and lomgitude of a star,

when its right ascension and declination are known.

Solution. Let P (fig. 35) be the north pole of the equator, Z the
north pole of the ecliptic, and B the star. Then EQW will be the
equator, NESW the ecliptic, and NPZS the solstitial colure, so
that the point S is the southern solstice, and IV the northern solstice.
Now if the arc PB be produced to cut the equator at M, and ZB to
cut the ecliptic at L; the angle ZPB is measured by the arc QM.
that is, by the difference of the right ascensions of Q and M, or by
the difference of the %’s right ascension and 18%; that is,

ZPB—=18"—R. A. =24 — (6* 4 R. A.)
or =R. A. —‘18" = (R’ A. 4 64) — 244
or =24/ 4 R. A.— 18" =R. A. 4 6%
In the same way '
PZB = NL = Long. — 90°
or _ = 860° — (Long. — 90°)
= — (Long. — 90°),
in which the first values of ZPB and PZB correspond to the star’s
being east of the solstitial colure; the second and third values to
the star’s being west of the colure, We also have
PB = 90° — Dec.
BZ — 90° — Lat.
PZ=90°—2ZQ=QS
= obliquity of ecliptic = & E, (457)

in which the declination and latitude are positive when nort]i,' and
negative when south, and E has the same sign with R. A. —12%,

The present problem does not, then, differ from that of § 28, and
if we put

' _-_EA:PC—-QO°,
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in which the upper sign is used, when R. A.— 12 is positive, and
otherwise the lower sign, we have, by (298, 299, and 800),

tang. PC = —Fcotan. A = cos. (R. A. 4 6%) cotan Dec.

= —sin. R. A. cotan. Dec. (458)

in which the signs are used as in the preceding equation; so that A4
and Dec. are always positive or negative at the same time. Instead
of (458), its reciprocal may be used, which is

= tang. A — — cosec. R. A. tang. Dec. (459)
If, then, B=E+4 A4, i . (460)
we have
AP==FE—90°FA=FB—90° (461)
or =90°4+- A4+ E=90°4+ B,

in which the upper or lower signs are used, as in (457). Hence

cos. PC: cos. AP = =Fsin, A: I sin. B —=sin. 4 : sin. B
= sin. Dec. : sin. Lat. (462)

so that, since Dec. and A are both positive or both negative, B and
Lat. must also be both positive or both negative. Again,

sin, PC : sin. PA —cos. A : 4-cos. B (463)
= cotan. (R. A 4 6*) : 4= cotan. (Long. — 90°)
= 4 tang. R. A. : 4 tang. Long.

in which the signs may be neglected, and Long. is to be found in
the same quadrant with R. A., unless the foot P of the perpendicular
falls within the triangle; in which case the first value of AP (461)
is used, so that B is obtuse. In this case, the longitude is in the
adjacent quadrant on the same side of the solstitial colure with the
right ascension. These results agree with the Rule in [B., p. 145].

63. Corollary. The latitude and longitude of the zenith, that is,
the zenith distance and longitude of the nonagesimal, might be found
by the same method. But another rule can be used, which is of

peculiar advantage, where these quantities are often to be calculated
19*
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for the same place. We have by (369) and (370), calling B the
zenith, and putting - .

e :

T—24% — ZPB or— ZPB

F=3} (PZB — ZBP) or = 180> — } (PZB 4 ZBP) (464)

G =% (PZB+ ZBP) or =180°—} (PZB+ ZPB) (465)
tang. F'= — cosec. } (PB + PZ) sin. } (PB— PZ)cot. 4 T

= tang. (24b — F) (466)

tang G = —sec. 3 (PB+ PZ) cos. § (PB— PZ) cot. $ T (467)

90° + F+ G = PZB + 90° or = 360° — PZB 4 90° (468)

= Long. or = 360"'—'{- Long. (469)

" in which the first member of (466) is used when PB is greater than

PZ, and the third when'PB is less than PZ, that is, within the north

polar circle; and the second members of (464, 465, 468) correspond

to the position of the zenith at the east of the solstitial colure, but
the third members to the west of the colure.

Again, by (354),
. tang. J (90° — lat.) — tang. } alt. nonagesimal

= cos. G. sec. F tang. } (PB4 PZ), (470)

and the preceding formulas correspond to the rule in [B., p. 402].

64. Scholium. The rule with regard to the values of G appears .

to be a little different, but the difference is only apparent, for it
follows from (467), that G and 12» — } T are, at the same time,
both acute or both obtuse, unless

4 (PB4 PZ)> 90°, .

or PB>180°—P2Z, (471)
which corresponds to the south polar circle. |

65. The abridged method of calculating the altitude and longi-

tude of the nonagesimal [B., p. 403], only consists in the previous
computation of the values.
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A = log. [cos. } (PB — PZ)sec. } (PB + PZ)] (472)

C = log. tang.-} (PB + PZ) . (413)

B = log. tang. } (PB— PZ) — C (474)
= log.[tang. } (PB — PZ) cotan.  (PB+ PZ)]

= log.[cosec.} (PB + PZ) sin. 3 (PB— PZ)]— A
whence : '

log. [cosec. } (PB+ PZ)sin. 3 (PB—PZ)] =B+ A (475)
and log. tang. G = A 4 log. (— cotan. } T) (476)
log. tang. F = A + B - log. (— cotan. § T) (477)

= log. tang. G + B ‘
log. tang. # alt. non. = log. cos. G 4 log. sec. F + C.  (478)
66. The rule in [B., p. 436] for finding right ascension and decli-

nation, when the longitude and latifude are given, may be obtained
by a process precisely similar to that for the rule before it.

67. ExXAMPLES.

1. Calculate the latitude and longitude of the moon, when its
right ascension is 4* 42™ 567, and its declination 27° 21/ 58 N., and
the obliquity of the ecliptic 28° 27/ 45",

Solution. 27° 21/ 58" N. tang. 9.71400
4* 42™ 567 tang. 0.45650 cosec. 0.02503 .

A —28°44"12"N.  sec. 0.05708  tang. 9.73903
E = 23° 27 45" 8.

B = 5°16'27"N. cos. 9.99816 tang. 8.96524

long. = 72° 5% 81 tang. 0.51174 sin. 9.98034

lat. = 5° 2/ 33" N. tang. 8.94558
2. Calculate the values of 4, B, and C, for the obliquity 23° 77/
40", and the reduced latitude of 42° 12’ 2 N.
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Solution. Polar dist. = 47° 47’ 58"
47° 47’ 58"
23° 27’ 40"
3 sum = 35° 37’ 49" sec. 0.09002 tang. 9.855?;5 =C
3 diff. = 12° 10’ 9” cos. 9.99013 tang. 9.83374

A = 0.08015, B — 9.47839

3. Calculate the altitude and longitude of the nonagesimal, when
the right ascension of the meridian is 19* 50™, the latitude 42° 12’
2/'N., and the obliquity 23° 27 40”,

]

Solution. T = 19" 50" 4 6" — 24* — 1* 50"
3 (1* 507) cotan. 0.61137 '
4 = 0.08015

G = 101° 30’ 2  tang, 0.69152 cos. 9.29968

90° B = 9.47839 C = 9.85535
F=124°43"  tang. 0.16991 sec. 0.25168
long. = 315° 34/ 57 14° 18740”  tang. 9.40671

alt. = 28° 87 20”.

4. Calculate the latitude and longitude of the moon, when its
right ascension is 18* 27™ 12°, and its declination 27° 49’ 38 8., and
the obliquity of the ecliptic 23° 27/ 45",

Ans. The D’s long. = 276° 1/ 447
Its lat. = 4° 30/ 27/ 8.1

5. Calculate the values of A, B, and C, for Albany in reduced
latitude 42° 27/ 89", and for the obliquity 28° 27/ 40",

Ans. A = 0.07965

B = 9.47565
C = 9.85327
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6. Calculate the longitude and altitude of the nonagesimal, when
the obliquity of the ecliptic is 23° 27’ 40", the latitude 42° 12’ 2 N.,
and the R. A. of the meridian 10* 10~.

Ans. The long. — 138° 30’ 25"
alt. = 61° 18’ 46".
7. Calculate the moon’s right ascension and declination, when its

latitude is 5° 0’ 77 N., its longitude 64° 54’/ 17, and the obliquity of
the ecliptic 28° 27/ 45",

Ans. ItsR.A. = 4b Tp 46-.
Its Dec. —26°3' 0" N.

68. Problem. 'To find the dectination of a star.

Solution. 1. Observe its meridian altitude, and its declination is
at once found by one of the equations (404 — 406).

. II, If the star does not set, and both its transits are observed, we
have

p=090°—Dec. = } (4, — 4°). (478)

69. Problem. To find the position of the equinoctial points.

Solution. Since the right ascension of all stars is counted from
the vernal equinox, and since the two equinoxes are 12* gpart, the
present problem is the same as to find the right ascension of some
one of the stars, which .may afterwards serve as a fixed point for
determining the right ascension of the other stars.

Observe the declination of the sun for several successive noons
near the equinox, until two noons are found between which its decli-
nation has changed its sign ; and observe also the instant of the sun’s
transit across the meridian on these days, by a clock whose rate of
going is known. Then, by supposing the sun’s motions in declina-
tion and right ascension to be uniform at this time, whieh they
nearly are, the time of the equinox, that is, of the sun’s being in the
equator, is found by the proportion

the whole change of declination : either declination — the .
sideral interval between the transits — 244 : the sideral
interval between the transits of the equinox and that of the

sun at this declination ; . . . . . . (479)
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and this interval is the difference between the right ascensions of the
sun at this declination and the equinox. If the passage of a star had
been observed in the same day, the right ascension of the star would
have been the interval of sideral time of. its passage after that of the*
vernal equinox.

70. ExaMPLES.

1. If the sun’s declination is found at one transit to be 7/ 9/.5 8.,
and at the next transit to be 16/ 31”.1 N.; what is the sun’s right
ascension at the second transit, if the sideral interval of the transits
is 244 3m, 382.21?

Solution.

7/ 9.5 4 16’ 817.1 — 23’ 40".6 = 1420".6 = ar. co. 6.84753
16/ 817.1 = 991".1 ' 2.99612
3= 38°.21 = 218°.21 2.33887
©'s R. A. = 0k 27 3282 — 152:.2 2.18252

2. If the sun’s declination is found at one transit to be 18/ 38".8 S.,
and at the next transit to be 5 8.2 N.; what is the sun’s right
ascension at the second transit, if the sideral interval of the transits
is 245 8m 3854 ?

Ans 0k 0™ 46°.6.

3. If the sun’s declination is found at one transit to be 5/ §77.9 N.,
and at the next transit to be 17/ 26".3 S.; what is the sun’s right
ascension at the second transit, if the sideral interval of the transits
is 24* 8" 85°.71?

Ans. 12* 2™ 40°.7,

71. Problem. To find the obliquity of the ecliptic.

Solution. Observe the right ascension and declination of the sun,
when he is nearly at his greatest declination ; that is, when his
ascension is nearly 6* or 18", If he were observed at exactly his
greatest declination, the observed declination would obviously be the
requircd obliquity. But for any other time, the sun’s declination and
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right ascension are the legs of a right triangle, of which the obliquity
of the ecliptic is the angle opposite the declination. Hence

tang. (3’s Dec. — sin. (9’s R. A. tang. oblig. ' k&BO)
Now if we put
h = the diff. of &)’s R. A. and R. A. of solstice,
we have

tang. (9’s dec.

cos. h = tang. obliq.

(481)

and by (346) and 847),

sin. (oblig. — (®’sdec.) 1 —cos. k __ 2sin2} A
sin. (oblig. 4 @’sdec.) ~ 1 —ocos. A~ 2cos. } k

= tang3 } h (482)
sin. (obliq. — @’s dec.) = (obliq. — ()’s dec.) sin. 1

= tang.? 1 A sin. (obl. 4 @’sdec.) (483)

obl. — (9)’s dec. = cosec. 1" tan.? } A sin. (obl. 4- @’sdec.) (484)
= } h®cosec. 1/ tan.2 1° sin. (obl. 4 @’s dec.)

and the second member of 484 may be regarded as a correction in
seconds to be added to the (9)’s dec. to obtain the obliquity, and the
obliquity in the second member need only be known approximately.

-

72. EXAMPLES.

1. The right ascensions and declinations of the sun on several
successive days were as follows :

June 19, R. A, = 5*50m53° Dec. — 28°26' 45.2 N.

20 555 8 23 27 27 .3
21 559 12 28 27 44 .7
22 6 3821 23 27 87..3
23 6 781 23 27 4 .6

To find the obliquity of the ecliptic.
Solution. Assnme for the obliquity the greatest observed declina-
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tion, or 23° 27/ 45", and the corrections of all the observations may
be computed in the same way as that of the first, which is thus found,

} cosec. 17 tang.? 1° — 225 tang. 1 6.43570
h= 9™ 7 = 547 2 log. 5.47598
23° 26’ 45" 4 28° 27’ 45" = 46° 54’ 30" sin. 9.86348
cor. dec. = 59 ".59 1.77516
23° 26/ 45".2
obliquity = 23° 27’ 44".8 = 23°27 44".8
In the same way the 2d observation gives 23 27 44 9
the 3d observation gives 23 27 45 2
the 4th observation gives 23 27 45 .8
the 5th observation gives 238 27 45 3

sum — 117° 18/ 45".5
Fhe mean = 28°27’ 45".1

2. The right ascensions and.declinations of the sun on several
successive days, were as follows:

Dec. 20 ®sR. A = 175117 23°26' 48".4 8.
21 17 55 40 23 27 30 .0
22 : 18 0 7 23 27 44 .0
23 18 4 33 23 27 29 .5
24 18 9 0 2826 45 .5

what was the obliquity ?
Ans. 28° 47/ 44'.7.
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CHAPTER VI.

PRECESSION AND NUTATION.

- T73. THE ecliptic is not a fixed, but a moving plane; and its
observed position in the year 1750 is here adopted as a fized
' plane, to which its situation at any other time is referred.

The motion of the ecliptic is shown by the changes in the latitudes
of the stars.

74. Celestial motions are generally separated into two por-
tions, secular and periodical.

Secular motions are those portions of the celestial motions
which either remain nearly unchanged, or else are subject to a
nearly uniform increase or diminution, which lasts for so many
ages that their limits and times of duration have not yet been
determined with any accuracy.

Periodical motions are those whose limits are small, and
periods so short that they have been determined with consider-
able accuracy.

75."The true position of a heavenly body or of a celestial
plane is that which it actually has; its mean position is that
which it would have if it were freed from the effects of its
periodical motions.

The mean position is, consequently, subject to all the secular
changes.

76. The mean ecliptic has, from the time of the earliest
observations, been approaching the plane of the equator at a
20 .
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little less than the half of a second each year, thus causing a
dimination of the obliquity of the ecliptic.

Let NAA’ (fig. 41) be the fixed plane of 1750, and NA, the
mean ecliptic for the number of years ¢ after 1750. Let A be the
vernal equinox of 1750, and AQ the equator. Let

IT = NA and n — the angle ANA,;

then, upon the authority of Bessel, the point of intersection IV of
the ecliptic, which is called the node of the ecliptic, with the fixed
plane, has a retrograde motion, by which it approaches A at the
annual rate of 5”.18, and if this point could have existed in 1750,
its longitude would have been 171° 36’ 10”, so that

II=171° 86’ 10— 5".18 ¢.* (485)

Moreover, the angle which the mean ecliptic makes with the fixed

plane increases at the annual rate of 0/.48892, but this rate of in-

"crease is itself decreasing at such a rate, that at the time # this
angle is

= 0".48892 ¢ — 0".0000080719 #. (486)

T7. Problem. To find the change of the mean latitude of a
star, which arises from the motion ¢f the ecliptic.
Solution, 1.t )
L =the %’s lat. in 1750
8 L = its change of lat,
A =its long. in 1750 — 171° 36/ 10" 4- 5.”18 ¢  (487)
= its long. referred to the node of the ecliptic
3 A — its change of long. from the node ;

then, if Z (fig. 42) is the pole of the fixed plane, P that of the
ecliptic, and B the star; we have

PZ=n, ZB=90°—L, PB—=90°—L—38L
PZB=90°4 4, P=90°— A4 —3 A.
Draw ZC perpendicular to PB, and we have, since PZ, PC, and
CZ are very small,
PC = PZ cos. P=mn sin, (4 4 8 A),
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or PC =n sin. 4
cos. PZ : cos. PC = cos. BZ : cos. BC,
or BZ = BC

PC=PB—BZ —=—3 L =nsin. A.
8 L=—msin. 4 .
= — (0".48892 ¢ — 00000030719 ) sin. A. (488)
Again, the triangle ZBP gives, by (354),
cos.} (PZB + P): cos.} (PZB— P) = tan. } n: tan. § (PB4 BZ)
But
. §(PZB4P)=90°—} 3.4, } (PZB—P)=A+33 4,
whence * 8 4d=mncos. Atang. L )
= (0".48892 ¢ — 070000030719 2) cos. A tang. L. (489)

78. The mean celestial equator has a motion by which its
node upon the fixed plane moves from the node of the ecliptic
at the annual rate of about 50”, while its inclination to the
fixed plane has a very small increase proportloned to the square
of the time from 1750. .

Thus if AQ (fig. 41) is the equator of 1750, and A’Q’ that for the
time ¢, so that A4 is the vernal eqmnox of 1750, and A, that for the
time ¢.

Let Y =A4A4", o= NA'Q,
then A’ moves from A at the annual rate of 507.840499, and this
. rate is diminishing, so that at the time ¢
Y = 50".340499 ¢ — 0/.0001217945 &2, (490)
and the value of o in the year 1750 was
o' = 23° 28’ 18",
and is increasing at a rate proportioned to the square of the time, so
that .
o = o' 4 07.00000984233 2. (491)

79. Problem. To find the change of the mean obliquity of the
ecliptic and that of longitude.
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Solution. Let (fig. 41)
NA\Q'=w,, NA, =4+ 1II;
then, by (369) and (370),

sin. (1143 (W4 ¥)] _ tang. 3 (0 + )

sin. § (Y — ) - tang. § (““’2)
cos. [IT4 3 (¥ +¥,)] __tang. } (0, — o)
cos. & (V— 1) - tang. § @ (493)

Now in calculating the parts of {,— ¢ and @, —® which are
proportional to the time, we may, since ¢ and ¥, differ but little,
as well as » and w,, and since # is small, put

D43 W4+W)=I, sin. } (¢ —¢,)= 3% (¢ —1) sin. 17
tang. } w =% n tang. 1 =} sin. 17 =} (0".48892) ¢ sin. 17
% (0 4+ o)) = o/, tang. § (0, —w) = § (00, — o) sin. 1"
cos. 3 (Y —)=1;
which, substituted in (492) and (493), give

Y —1, == 0".48892 ¢ sin. IT cotan. o’ (494)
o, —o0 = 0".48892 ¢ cos. IT; (495)
which are thus computed, |
0//,48892 9.68924 9.68924
171° 36/ 10" cos. 9.99532a sin. 9.16446
— 0".48368 9.68456a

23° 28/ 18”7 cotan. 0.36229

— 07,1644381 9.21599
that is, 0, — 00 = — 0//.48368 ¢ (496)
Y—y,= 0164431 ¢ (4!;7)
or o0, — 23° 28’ 18" — 0".48368 ¢ (498)

¥, = 50".840499 t — 0”,164431 ¢ = 50".176068 ¢. (499)

But, in computing the parts of 0, — o and ¥ — ¢, which depend
upon #2, we need only retain the part depending upon 2 in the value
of tang. } n, and neglect these parts in the other terms of (492) and
(493); and we thus have
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sin. [IT4 3} (¥ + %)) = sin. (IT+ 45".08 t) (500)

= sin. IT 4 45".08 ¢ sin. 1’ cos. IT
cos. [IT+4 % (¥ + ¥1)] = cos. IT— 45”.08 ¢ sin. 1” sin. IT (501)
tan, § 7w =3} 7 sin.17=} sin.17(0".48892 £-—0.0000030719 £2) (502)
cotan. } (@ <4 0,) = cotan. (w’'— 0".24184 ¢) (503)

_1 4 0.24184 ¢ sin. 1/ tang. o’
— tang. o' — 0.24184 ¢ sin. 1”

= cotan. o’ 4 0".24184 ¢ sin. 1 (1 -} cotan? o')
— cotan. o' 4 0".24184 ¢ sin. 1/ cosec.? o’
cos. § (W —¥) =1, sin. } W—¥%)=3 W —1,)sin. 1”
sin. § (0, — @) = § (w, — w) sin.. 1,
which, substituted in (492) and (493), give
Y — ¥, = 0.164431 ¢ - 0.48892 £ sin. 1 45,08 cos. IT cotan. o
- 01.48892 ® sin. 17 X 07.24184 sin. IT cosec.? '
— 0,0000080719 2 sin. IT cotan. o’
o, — o = — 0.48368 t — 0/.48892 ¢2 sin. 1" 45",08 sin. IT
— 0.0000030719 ¢ cos. IT; (504)

which are thus computed,

0.48892 9.68924
14 sin, 4.68557
45".08 1.65398
171° 86/ 107 sin. 9.16446 cos. 9.995324
— 0,000015605 5.19325
00000030719 4.48741
407000003039 4.48273a
—0.000012566
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0.0000030719 4.48741
171° 86’ 10” sin. 9.16446 cos. 9.99532. sin. 9.16446

23° 28/ 18" cotan. 0.36229 0.36229  cosec.® 0.79958
— 07000001033 4.01416 sin. 17 4.68557 4.68557
45".08 1.65398
0.48892 9.68924 9.68924
— 07000243445 6.386404
0".24184 9.38353
0".000000528 3.72238
— 0000243950
sothat ¥ —,=0".164431 ¢t — 0”.000243950 £
©,— o = — 0".48368 £ — 0".000012566 {3
Y, = 50".176068 ¢ — 0.0001217945 2 - 0.000243950 2
= 50".176068 ¢ - 0'.000122156 ¢3 (505)

0, = 23° 28’ 18"’/ — 0/.48368 ¢t — 0".000002724 13, (506)

or, more accurately, from Bessel’s Fundamenta Astronomiae,
¢, =50".176068 ¢t 4 0".0001221483 2 (507)
o, = 23° 28’ 18" — 0".48368 ¢t — 07.00000272295 13, (508)

These values were afterwards changed by Bessel in his Tabulae
Regiomontanae to

¥ = 50".37572 t — 00001217945 2 (509)
WY1 = 50".21129 ¢ 4 00001221483 £3 (510)
o, = 28° 28’ 18" — 0".48368 ¢ — 0.00000272295 2.  (511)

But these formulas were obtained from the physical i;heory, and are,
as Bessel says, subject to errors, on account of the uncertainty with
regard to some of the data; so that we shall adopt Poisson’s formulas,
because they agree in the variation of the obliquity almost exactly
with Bessel’s observations, and shall change the value of @’ to that
determined by Bessel from observations; our formulas are, then,
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o' —23° 28 17".65 (512)
Y = 50".87572 t — 0”.00010905 £2 (518)
Y, = 50".22800 ¢ 4- 0"7.00011637 2 (514)
o —23° 28’ 17,65 4 07.00008001 ¢3 (515)

0o, = 23° 28’ 17".65 — 0'.45692 t — 0",000002242 ¢2. (516)

The formulas at present adopted in the American Ephemeris and
Nautical Almanac are those of Peters, given in his Numerus Constans
Nutationis.

If, now, the value of {, is added to that of & £ (489), the result-
ing value is the total change of a star’s mean longitade.

80. The backward motion ¥, of the equinoxes is called the
Dprecession of the equinoxes.

81. Problem. To find the intersection of the mean equator
with the equator of 1750 and its inclination to it.

Solution. Produce AQ and A'Q (fig. 41) till they meet at T,
and let

AT=¢, AT=@
and the triangle A T4’ gives, by (350, 354, and 369),
cos. § (w'—w) : cos. } (0’ +- ) = tang. § ¥: tang. } (&' — @) (517)
sin. § (o' — ) : sin. § (o' 4 w) =tang. § ¥: tang. § (¢’ 4 @) (518)
sin. § (@' @) : sin. § (d'— @) =cotan. § T': cot. § (o’ 4-w) (519)
so that {2 may be neglected in all the terms but ¥, and we have ‘
1:cos. @' =% ¢sin. 17: } (¥ — @) sin, 17° (520)

0: sin. ' = § ¥ sin. 17 : tang. § (@ 4 D) (521)
1:3(®'— d)sin. 1” =tang. ’: § T sin. 1, (522)

Hence 3 (V' 4 D) =90° (528)
3 (@' — D) =% Y cos. o’ (524)

T= (¢ — d) tang. o/, (525)
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which are thus computed,

o’ cos. 9.96249 cos. 9.96249
25'.18786 1.40120
23,103 . 1.36369
07.000054525 5.78660
0.000050013 5.69909
o tang. 9.63771 9.63771
107,032 1.00140
0%.000021717 5.33680
so that '
&b =90°—23".103 t ~+ 07.000050013 2 (526)
T =20".0640 t — 0".000043434 3. (527)

82. Problem. To ﬁnd the variation of a star’s mean right
ascension and declination.

I. The variation which arises from the change of the equator’s
inclination may be found precisely in the same way in which the
variations of latitude and longitude were found in § 77, for a similar
change in the position of the ecliptic; so that formulas (488) and
(489) give, by substituting for 4, L and =,

A= %'sR. A. —90° 4 23".103 t = R— 90°
L=%'s Dec. =D, a=T
8 D=— Tcos: R (528)
dR=  Tsin. Rtang. D; (529)
or instead of counting the value of T and ¢ from 1750, they may be

reduced to the beginning of each year, and the squaré of ¢ may then
be neglected.

II. The variation in right ascension is to be increased by the
change in the position of the equinox arising from its pretession,
which is thus found. Had the ecliptic remained stationary, the
equinox would have removed from A to 4’, so that if AP is perpen-
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dicular to the equator, we should have for the increase of right
ascension by (515) and (524),

A'P= AA’ cos. AA'P= Y cos. » (530)

= (¢ — D)
= 46".206 ¢t — 07.000100026 £3.

But the equinox advances upon the equator from the motion of the
ecliptic by the arc A’A,, which is thus found. We have, by (350),

c08. § (w,— ) : cos. § (0, 4 w) =tang. § 4’4, : tang. § (¥ — ).

But cos. § (0, — ) =1
cos. § (0, 4 @) = cos. (0o’ — 0".22846 t)
= cos. o’ 4 0".22846 ¢ sin. 1" sin. o’
sec. § (@, + o) = sec. o’ — 0//.22846 ¢ sin. 1” sin. @’ sec.? o’
tang. § A’A, =} A'A, sin. 17
tang. 3 (Y—¥) = 3 (Y —+) sin. 17
= } sin. 17 (0”.15272 t — 0".00022542 ),
whence A’4, = 0".15272 ¢ sec. @' — 0”.00022542 {2 sec. o',

which is thus computed,

0".15272 9.18390
o’ sec. 0.03751 0.03751
,0".1665 9.22141

07.00022542 6.35299

0,00024575 6.39050
so that
A'A, = 0".1665 t — 0".00024575 2,
and, by (489) and (490),
3 R = 46".0395 {4 0".00016593 2} T'sin. R tang. D.

(531)

(532)
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88. By the motions of precession and of diminution of the
obliquity, the mean pole of the equator is carried round the
pole of the ecliptic, gradually approaching it; but the true
pole of the equator has a motion round the mean pole, which
is called nutation. This motion is in an oval, at the centre of
which is the mean pole, and is such that the position of the
mean equinox differs from that of the true equinox by the lon-
gitude
‘8 long. = ¢ sin. Q, + ¢, 8in. 2 Q, + 45 8in 2 D +4-4;8in. 2 @, (533)
where

Q, = the mean longitude of that point of intersection of
the moon’s orbit with the ecliptic, through which the
moon ascends from the south to the north side of the
ecliptic, and which is called the moon's ascending
node,

D =the moon’s true longitude,

© = the sun’s true longitude,

The values of 4, 4,, 4, i3, are given differently by different astrono-
mers ; and those which are used in the following examples are those
of Bailly, adopted in the Nautical Almanacs of 1839, 1840,
&e. ; viz.,

t =—17"2985, i, = 0".2082 }

. . (534)
=— 072074, i,=—14.2550.

This nutation of the pole causes also the true obliquity of the eclip-
tic to change froin the mean obliquity by the quantity

Soy=Fkecos. O, 4k cos. 2 Q, + k; cos. 2 D f-kycos. 3 O, (535)

in which the values of k, &c., adopted in the following examples
are s
=9, = —0".0903
k =9".2500, k, o (536)
ks =0".0900, k, = 0/.5447,

The values of the above coefficients now adopted in the British and
American Nautical Almanacs are those given by Peters in his Nu-
merus Constans Nutationis. :

84. Corollary. The effect of nutation upon the right ascen-
sions and declinations of the stars may be computed by § 82,
and the formulas which are obtained agree with those given in




§85.] PBECESSION AND NUTATION. 239

the Nautical Almanac, and depend upon the terms called C
and D in the Formulas for Reduction in the Almanac; these
terms contain also the changes arising from the mean motion
of the equinoxes, and the formulas are so reduced that ¢ is
counted from the beginning of each year.

85. ExXAMPLE.

1. Find the mean obliquity of the ecliptic for the year 1840, and
reduce the formulas for finding the variations of right ascension and
declination to the beginning of that year.

Solution. In (516) let ¢ = 1840 — 1750 = 90,
and it gives
o, = 28° 28’ 17,65 — 41".12 — 0".03 — 23° 27 86".51.

In (527, 528, and 582), let ¢t = 90+t’ and neglect the terms
depending upon t" so that
T=380' 5”.76— 0/.35 4-20".0640 ¢' — 0".0078 ¢'
=30’ §".41 - 20".0562 ¢/,

and the mean variations, counted from the beginning of the year,
are

&' D=20".0562 t' cos. R

& R = 46".0693 ¢’ 4- 20~.0562 ¢’ sin. R tang. D.

Finaliy, the variations arising from nutation are thus found. The
change in the obliquity of the ecliptic gives at once, from (488) and
(489), by referring the positions to the mean ecliptic instead of to
that of 1750, v

D= domsin.R
& B =— 3 w, cos. R tang. D,
and the change in the position of the equinox gives by (525, 528,
529, and 580).
T—=—238 A4 sin. o,
¥ D=3 Asin. @ cos. B
& R =23 A cos. w; 4 3 A sin. o, sin. R tang. D..

\
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Hence, if we take

46,0693 C = 46".0693 t'4 8 A cos. o,
¢ = 46".0693 +4- 20".0562sin. R tang. D
¢ = 20".0562 cos. R
d =cos. R tang. D -
d' = —sin. R,

cos. o, o _sin. o,
46',0698 4=t~ 20,0562 .

=1 —0.3448 sin, §, + 0.00415 sin. 3 §,
—0.00413 sin. 3 D — 0.02502 sin. 2 O,

we have C=t+4

and the entire changes of declination and right ascension are

¢ D=Cc—80,.d

3 R=Cc—8wm,.d;
which agree with the Formulas for Reduction in the British and
American Nautical Almanacs; but the Nautical Almanac for 1840
gives 46".0206 and 20.0426 instead of 46/.0693 and 20".0562.

If, again, we take
f=46".0693 C,
gcos. G=20".0562 C, gsin. G=—28m,,

the above formulas become

8 D=g cos. G cos. R — g sin. G sin. R = g cos. (G + R)
8’ B = f+ g sin. R cos. G tang. D 4 g sin. G cos. R tang. D

) = f+ g sin. (G 4 R) tang. D,
as in the Nautical Almanac.

2. Find the annual variations in the right ascension and declina-
tion of @ Hydre for the year 1840, and its true place for mean
" midnight at Greenwich, January 1, 1840; its mean right ascension
for January 1, 1839, being 9* 19" 40°.620, and its declination
—7° 57/ 49,50 ; and using the numbers of the Nautical Almanac
for 1840, '
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Solution.
20,0426 . 1.80195 1.30195
R = 9* 19™ 40".620 cos. 9.88374, sin. 9.80872
8 D= — 15".335 1.18569,
D = —"1° 57" 49,50 tang. 9.14584,
3 R = 46".0206 — 1/.8051 0.25651,

= 44,2155 — 2°.948.
Hence its mean place for Jan. 1, 1840, is
R — 9* 19™ 43°.568
D = — 7° 58’ 4".83.
To calculate the eﬁ'ecté of nutation, we have
Q = 339° 40/, D — 242° 30/, @ = 281°15'

—~—0.3448 sin. Q, = 0.1205, 97.25 «cos. §, = 87673 .
0.00415 sin, 2 ), = — 0.0027, — 0”.0903 cos. 2 §}, — — 0".068
— 0.00413 sin. 2 D — — 0.0034, 0”.0900 cos.2 D — — 0".032
— 0.02502 sin. 2 ® =  0.0096, 0".5447 cos. 2 © =—0"504
C =t 4 0.1240, 8o, = 8".049 -

Ccd =t 4 20".0426 X 0.1240 cos. R
=t — 151335 X 0.1240 = ¢’ ¢’ — 1,901
— 3 w.d = 87.049 sin. R = 5".181
Cec =ct -+ 0.1240 X 2.948 = ¢t + 04365
—3wd = — 8".049 cos. R tang. D = — 0".861 = — 0.058,
whence the variations arising from nutation are
& D= 3".28, & R = 030,
and the true places are
D= —17°581"55 R = 9"19™ 43*.87.

d. Find the mean obliquity of the ecliptic for the year 1950, and
21
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reduce the formulas for finding the variations of mean right ascension
and declination to the beginning of that year.

Ans. o, = 23° 26’ 36".18.

& D = 19".8903 ¢ cos. R
& R = 46".1059 ¢ 4 19".8903 ¢ sin. R tang. D.

4. Find the annual variations in the right ascension and declination
of B Urs® Minoris for the year 1839, and its true place for mean
midnight at Greenwich, Aug. 9, 1839 ; its mean right ascension for
Jan. 1, 1839, being 14* 51™ 142.943, its declination 74° 48’ 48".89 N.,
_ the longitude of the moon’s ascending node for Aug. 9, 1839, being
847° 17/, that of the moon 144° 2/, and that of the sun 136° 30/, and
using the constants of the Nautical Almanac, which give for Aug. 9,
1839, -
f= 3233, g = 16".70, G = 327° 30"

Ans. Var.in R. A. = — 04.277; var. in Dec. — 14".71;

and for Aug. 9, 1839,
B = 14* 51" 16°.36

D = 74° 48' 32".46.

“ §. Calculate the values of f, g, and G for April 1, 1839, mean
midnight at Greenwich, when §}, = 854° 10, © = 11°34/, and D is
neglected. ' _
Ans. f=12".53, g = 11'.05, G — 299° 34'.

In Table XL of the Navigator, the decimal is neglected, and 20
used instead of 20.0562. Table XLIII is calculated from the for-
mulas of Bessel, which differ a little from those of Bailly used in the
Nautical ‘Almanac. The construction of these two tables is suffi-
ciently simple from the calculations already given.
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CHAPTER VII.

TIME.

86. THE intervals between the successive returns of the mean
. place of a star to the meridian are precisely equal, and the
mean daily motion of the star is perfectly uniform; so that
sideral time is adapted to all the wants of astronomy. The
instant, which has been adopted as the commencement of the
sideral day, is the dpper transit of the vernal equinoz.

The length of the sideral day, which is thus adoptefl, differs there-
fore from the true sideral or star day by the daily change in the right
ascension of the vernal equinox. But this change is annually about
50" or 8°.3, so that the daily change is less than 0°.01, and is alto-
gether insensible.

87. Corollary. The difference between the sideral time of
different places. is exactly equal to the difference of the longltndo
of the places. "

88. The interval between two successive upper transits of the
sun over the meridian, is called a solar day ; and the hour angle
of the sun is called solar time. This is the measure of time best
fitted to the common purposes of life. /‘

The intervals between the successive returns of the sun to the
meridian, are not exactly equal, but depend upon the variable motion
of the sun in right ascension, and can only be determined by an
accurate knowledge of this motion.

89. The want of uniformity in the sun’s motion in right
ascension arises from two different causes.
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I. The sun does not move in the equator, but in the
ecliptic. '
II. The sun’s motion in the ecliptic is not uniform.

The variable motion of the sun along the ecliptic, and its devia-
tions from the plane of the mean ecliptic, cannot be distinctly repre-
sented, without reference to the variations of its distance from the
earth, and to the nature of the curve which it describes. This portion
of the subject, therefore, which involves the determination of the
sun’s exact daily position, that is, the calculation of its ephemeris,
must be reserved for the Physical Astronomy. It is sufficient, for
our present purpose, to know that the sun moves with the greatest
velocity when it is nearest the earth, that is, in its perigee; and
that it moves most slowly when it is farthest from the earth, that is,

in its apogee.

90. The sup arrives at its perigee about 8 days after the
winter solstice, and at its apogee about 8 days after the summer
gsolstice. The mean longitude of the perigee at the beginning
of the year 1800, was 279° 80V 57, and it is advancing towards
the eastward at the annual rate of about 117.8 ; so that, by
adding the precession of the equinoxes, the annual increase of
its longitude is about 62,

91. To avoid the irregularity of time arising from the want of
uniformity of the sun’s motion, a fictitious sun, called a mean
8un, is supposed to move uniformly in the ecliptic, at such a
rate as to return to the perigee at the same time with the true
sun. A second mean sun is also supposed to move in the equa-
tor at the same rate with the first mean sun, and to return to
each equinox at the same time with the first mean sun.

We shall denote the first mean sun by ©,, and the second mean
sun by ©,.

92. Corollary. The rigilt ascension of the second mean sun
is equal to the longitude of the first mean sun.

93. The time which is denoted by the second mean sun is
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perfectly uniform in its increase, and is called mean time;
while that which is denoted by the true sun is called true or
apparent time ; the difference between mean and true time is

called the equation of time.

94. The time which it takes the sun to complete a revolution
about the earth is called a year.

The time which it takes the mean sun to return to the same
longitude is the common or tropical year.

The time which it takes it to return to the same star is the
sideral year ; and the time which it takes it to return to the
perigee is the anomalistic year.

The length of the mean tropical year is
Y =365 5 48" 47°.808, (537)
so that the daily mean motion of the sun is found by the proportion

Y: 14 =3860° : daily motion — 59’ 8".3302. (538)

95. The fraction of a day is necessarily neglected in the length of
the year in common life, and the common year is taken equal to 365°.
By this approximation, the error in four years amounts to

23* 15™ 11°.232 — 14— 44™ 48°.768, (539)

or nearly a day, aud an additional day is consequently added to the
fourth year, which is called the leap year. At the end of a century
the remaining error amounts to nearly — 0%.75, which is noticed by
the neglect of three leap years in four centuries. For practical
convenience, those years are taken as leap years which are exactly
divisible by 4, but only those centurial years are retained as leap
years which are divisible by 400.

96. When the mean sun has returned to the same mean longitude,
it has not returned to the same star, because the equinox from which

the longitude is counted has retrograded by 50,223, so that the mean
21*
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sun has 50".223 farther to go, and the time of describing this arc
is the fourth term of the proportion

59/ 8.3302 : 1= 50".223 : 20™ 22°.786, (540)
so that the length of the sideral year is
Y, = Y 4 20" 22°.786 = 365¢ 6* 9™ 10°.594. (541)

97. The length of the mean solar day is also different from that of
the sideral day, because when the ©,, in its diurnal motion, returns
to the meridian, it is 59’ 87.3302 advanced in right ascension; so
that 360° 59/ 8/.3302 pass the meridian in a solar day, instead of
360°, which pass in a sideral day. Hence the excess of the solar day
above the sideral day, expressed in solar time, is the fourth term of
the proportion

360° 59’ 8/.3302 : 59’ 8”.3302 = 1¢ : 00027305

or 3™ 55°.9094 ; (542)
that is, 1 sid. day = 0.9972695 sol. day,
or 24* sid. time — 23* 56™ 4°.0906 of sotar time ; (543)

which agrees with (394) and the table for changing sideral to solar
time in the Nautical Almanac and with Table LII of the Navigator.

In the same way this excess expressed in sideral time is the fourth
term of the proportion
360° : 59/ 87.3302 — 1¢: 0°.002738 or 3™ 56'.5554 ;
that is, 1 sol. day — 1.002738 sid. day, (544)
or 24" gol. time — 24* 3™ 56.5554 sid. time ; (545)

which agrees with the table for changing solar to sideral time in the
Nautical Almanac and with Table LI of the Navigator. The re-
mainder of Tables LI and LII, as well as the corresponding ones given
in the Nautical Almanac, are calculated by simple proportions from
the numbers which are given for 24*,

The sideral day begins with the transit of the true vernal equinox.
At the time of the transit of g, then; that is, at mean noon ; we

have the sid. time = R. A. of ©, from the equinox
= R. A. of ®, from mean equinox
- Nutation of equinox in R. A.
— sun’s mean long. 4 Nutation in R. A.  (546)
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98. The sun’s mean long. for Jan. 1, 1800, at Paris, was found by
Bessel to be 279° 54’ 11/.86. Its longitude for Jan. 1, of any other
year ¢, may thus be found. Let f be the remainder after the division
of t by 4; the number of days, then, by which Jan. 1 of the year ¢ is
removed from Jan. 1, 1800, is

865} (t—f) 4 365 f=t. 365} —1f
=Y.t4t.1112.192 —} f (547)
=Y.t4t.0%00778—} f.

But in Y ¢ days the sun’s longitude increases exactly ¢ . 360°, which
is to be neglected ; and its increase in longitude is

)
59/ 8/.3302 (¢ 0.00778 —} f)=t.27".61 — f. 14/ 47".083, (548)

or more accurately from Bessel, the mean longitude E, for the first
of January of the year 1800 - ¢ at Paris, is

E =279° 54’ 11,36 4 ¢ 27.605844 4 2 . 0/.0001221805
—f. 14’ 477.083. (549)

The mean longitude is found for the first .of January for any other
meridian by the following proportion, derived from the interval of
time between the (.'s passage over this meridian and that of Paris,

24* : long. from Par. — 59’ 8/.3302 : change in value of E. (550)

The sun’s mean longitude for any mean noon n of the year after
that of the first of Jan. is

E+n. 59 8".3302. (551)

Hence the sideral time of the mean noon n is

S = f)—s + n . 3" 56555348 4 Nutation in R. A.  (552)

so that the solar time of the transit of the equinox from the pre¢eding
noon is
24* — S (converted into solar time). (553)

.

99. ExAMPLES.

1. Find the sideral interval which corresponds to 10* of solar time.
Ans. 10* 1™ 38°.5647.
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2. Find the solar interval which corresponds to 10* of sideral time.
' Ans. 9* 58= 21°.7044.

3. Find the sideral interval which corresponds to 10 of solar
time.

Ans. 10" 1°.6428.

4. Find the solar interval which corresponds to 10™ of sideral
time,

Ans. 9™ 58°.3617.

5. Find the sideral interval which corresponds to 10 of solar time.
. Ans. 10°.0274.

6. Find the solar interval which corresponds to 10* of sideral
time.
Ans. 9°.9727.

7. Find the sideral interval which corresponds to 0°.85 of solar
time.

.

Ans. 0°.85233.

8. Find the solar interval which corresponds to 0°.85 of sideral
time.
Ans. 0°.84768.

9. Find the sun’s mean longitude at Greenwich for the mean noon
of April 4, 1839, the sideral time at this noon, and the solar time of
the transit of the vernal equinox from the preceding noon; the
meridian of Greenwich is 9™ 21°.5 west of that of Paris.

Ans. The sun’s mean longitude = 12° 7’ 3".02.
The sideral time of mean noon — 48™ 31°.27,
Time of tran. ver. equi. = April 3d, 23* 11™ 39°.68.

100. Problem. To find the time by observation.
Solution. First Method. By equal altitudes.

I. If the star does not change its declination. Observe the times
when the star is at equal altitudes before and after passing the
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meridian; the arithmetical mean between these two times is the
time of the star’s passing the meridian, which, compared with the
known time of this passage, gives the error of the clock at this
time, and the correction of this error gives the time of each obser-
vation. '

II. When the declination of the star is changing, the time of the
star’s arriving at the observed altitude 4 is affected ; thus if

L — the latitude,

D — the declination at the meridian,
8 D — the increase of declination from the meridian,

h = the hour angle, supposing no change in the declination,
8 h — the increase of the hour angle in time,

we have, by (429),

sin. A = sin. L sin. D + cos. L cos. D cos. h (554)

= sin. Lsin. (D 4 8D) 4 cos. Lcos. (D + 8 D) cos. (h 0 £)
- =sin: L sin. D 4 8 Dsin. 1sin.L cos. D 4- cos. L cos. D cos. h
— 8D sin. 1cos. L sin.D cos.h—15 8 A sin. 1 cos. L cos.D sin. h,

whence
0=43D sin. Lcos. D —8 D cos. L sin. D cos. k
~— 15084 cos. L cos. D sin. X
8 h = {5 0 D tang. L cosec. h— % 8 D tang. D cotan.h

_ 3D 3D
15 cotan. Lsin. A 15 cotan. D tang. &’

(555)

and since the two observations are at nearly the same distance from
the meridian, the value of & A is the same for both of them ; so that
their mean is augmented by 8 &, and 8 & is consequently to be sub-
tracted from the mean of the observed times, in order to obtain the
true time of the star’s passing the meridian.

In calculating the value of & 4, its two terms may be calculated
scparately. Now if 8’ D is the daily variation of the star’s declina-
tion, we have
_h¥D 28D

0D= g = 224’ (656)
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and in nsing proportional logarithms, the proportional logarithm of
the hours and minutes of 2 A, which is the elapsed time, may be
taken as if they were minutes and seconds, provided the same is
done with the 24 in the denominator. Finally, the value of 3 A is
reduced from minutes and seconds to seconds and thirds by multi-
plying by 60, so that if M is taken for the denominator, of either of
the parts of (555), this part P is caculated by the formula

2X24m X 15

Prop. log. P — — Prop. log. 50 ~+log. M4-Prop. log. 2 &
~ Prop. log. & D, ) (557)
which agrees with [B., p. 219], for
— Prop. log. 2X 246012 = — Prop. log. 12m = — 1.1761

—8.8239. (558)

IIL. If the altitude at the two observations had differed slightly,
the mean time would require to be corrected ; for this purpose, let
¢ A = the excess of the second altitude above the first,

4 h — the increase of the hour angle,

and we easily deduee from (554)

cos. A 8 A=—15cos. L cos. Dsin. hdh, (559)
cos. A3 A
t RA— — —
so that h 15 cos. L cos.' D sin. A (560)

The time of the second observation being thus increased by é A,
that of the mean is increased by } ¢ &, which is, therefore the cor-
rection to be subtracted from this mean.

The corrections (555) and (560) must be both of them applied
when the star is changing its declination, and at the same time the
observed altitudes are slightly different.

Second Method, By a single altitude. [B., p. 208 - 218.]

When a single altitude is observed, there are known in the triangle




§ 100.] TIME. 2Bt

PZB (fig. 35), the three sides, to find the hour angle ZPB, which
is thus found by (336),

Ts=3(249°—L+ P) (561)
cos. 3 h =4/ (sins.hz:.)(‘)"ﬁ-n—.(“l.)—.si:? 2/ (662)

which corresponds to [B., p. 2107.

The hour angle may also be found by (341); thus, if we put
f=3A+L+p), (569)

we have
s=3(180°— A —L+4p)=90°—s +p=90°—A—L++
8 —p=190° =g, §—(90° — L) =5 — A4,

whence

cos. s sin._(:’ —_ A))’ (564)

cos. L sin. p

sin}h=a/ (
which corresponds to [B., p. 209].

Third Method. By the distance from a fived terrestrial object.

If the position of the terrestrial object has been before de‘ermined,
its hour angle and polar distance may be considered as known.

Hence, if T (fg. 40) is the position of the terrestrial object pro-
jected upon the celestial sphere, P the pole, and S the star. Let the
distance T'S be observed, and let

PT=P, PS=p, TS=d,
TPZ —= H, TPS=F, SPZ = A,

s=3(P+p+4d), (565)
we have :

sin. } ¥ = V(’“" (‘;.PI), £2 (; —?) (566)
or .

on 3§ = (TR E=9), (567)

k= H+ k.
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If the polar distance and hour angle of the terrestrial object is not
known, but only its altitude and azimuth, the polar distance and hour
angle can be easily found by solving the triangle PZT. '

Fourth Method. By a meridian transit. [B., p.221.]

If the passage of a star is observed over the different wires of a
transit instrument, the mean of the observed times is the time of the
meridian transit, which should agree with the known time of this
transit. This method surpasses all others in accuracy and brevity.

" Fifth Method. By a disappearance behind a terrestrial object.

If the instant of a star’s disappearance behind a vertical tower has
been observed repeatedly with great care, the observed time of this
disappearance may afterwards be used for correcting the chronome-
ter. For this purpose, the position of the observer must always be
precisely the same. Any change in the right ascension of the star
does not affect. the star’s hout angle, that is, the elapsed time from
the meridian transit; this change, consequently, affects the observed
time exactly as if the observation were that of a meridian transit.

A small change in the declination of the star affects the hour angle,
and therefore the time of observation. Thus, if P (fig. 44) is the
pole, Z the zenith, ZSS' the vertical plane of the terrestrial object ;

then if the polar distance PS is diminished by
| RS=3D,
the hour angle ZPS is diminished by the angle
SPS = 8h,

But S'R is nearly perpendicular to SP, and the sides of SS'R are

80 small, that their curvature may be neglected, whence
RS = 8 D tang. S = 15 cos. D. 3k,
so that 8 h = ¢ 8 D tang. S sec. D. (568)

101. ExaMPLEs.

1. On May 20, 1823, in latitude 54° 20 N., the sun was at equal
altitudes, the observed interval was 6* 1™ 36¢; find the correction for
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the mean of the observed times. The sun’s declination is 19° 48’ N.,
and his daily increase of declination 12" 44",

Solution. . 8.8239 8.8239
54° 20/ cotan. 9.8559  19° 48’  cotan. 04437
6 1m 36 sin. 9.8510 tang. 0.0030
6m 2° P. L. 1.4747 1.4747
12/ 447 P. L. 1.1508 ' 1.1508

— 12057 1.1558  20.29 1.8956

24.29

— 10%.3 — the required correction.

2. On September 1, 1824, in latitude 46° 50’ N., the interval be-
tween the observations, when the sun was at equal altitudes, was
7k 46™ 35° ; the sun’s declination was 8° 14/ N., and his daily increase
of declination — 21’ 49 ; what is the correction for the mean of
the obser;afions ?

Ass. 16°4.
L

8. On March 5, 1825, in latitude 38° 34’ N., the interval hetween
the ‘observations, when the sun was at equal altitudes, was 84 29m 283 ;
the sun’s declination was 6° 2’ 8., and his daily increase of declina-
tion was 23/ 9 ; what is the correction for the mean of the obser-
vations ?

Ans. 15%.4.

4. On March 27, 1794, in latitude 51° 32’ N., the interval between
the observations, when the sun was at equal altitudes, was 74 29m 553 ;
the sun’s declination was 2° 47’ N, and his daily increase of declina-
tion 28’ 26” ; what is the correction for the mean of the observations ?

Ans. — 2127,

5. In latitude 20° 26’ N., the altitude of Aldebaran, before arriv-
ing at the meridian, was found to be 45° 20’, and, after passing the
meridian, to be 45° 10’; the interval between the observations was
7% 16™ 35°, and the declination of Aldebaran was 16° 10/ N. ; what is
the correction for the mean of the observations?

Ans. 19
22
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6. In latitude 36° 39’ S., the sun’s correct central altitude was
found to be 10° 40/, when his declination was 9° 27’ N.; what was
the hour angle?

Ans.® 44 36™ 95,

7. In latitude 13° 17’ N., the sun’s .correct central altitude was
found to be 86° 37/, when his declination was 22° 10’ S. ; what was
the hour angle?

Ans. 2% 49m 52,

8. In latitude 50° 56’ 17 N,, the zenith distance of a terrestrial
object was found to be 90° 24/'28%, and its azimuth 35° 47/ 4 from
the south ; what were its polar distance and hour angle ?

T ‘ Ans. Its polar distance = 121° 6' 43"
At : Its hour angle: —24 52™ 18°,

9. From the preceding terrestrial object, three distances of the
sun were found to be.78° 9/ 26/, 77° 39’ 26", and 77° 29/ 26, when
his declination was 14° 7/ 18" S.; what were the sun’s hour angles,
if he was on the opposite side of the meridian from the terrestrial
object ? : o
- _ Ans, 2% 45m 49°, 2% 43m 267, and 2b 497 40°.,

Vepre
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CHAPTER VIII.

LONGITUDE. |
102. Problem. To find the longitude of a place.
First Method. By terresirial mwcmt.

If the longitude of a place is known, that of another place, which
is near it, can be found by measuring the bearing and distance ;
whence the difference of longitude may be calculated by the rules
already given in Navigation.

Second Method. By signals,

The stars, by their diurnal motion, pass round the earth once in
‘24 gideral hours ; hence they arrive at each meridian by a dxﬁ'erence
of sideral time equal to the difference of longitude. In the - same
way, the sun passes round the earth once in 24 solar hours; so that
it arrives at each meridian by a difference of solar time equal to the
difference of longitude. The difference of longitude of two places
is, consequently, equal to their difference of time. Now if any sig-
nal, as the bursting of a rocket, is observed at two places; the
instant of this event, as noticed by the clocks of the two places, glves
their difference of time.

Third Method. By a chronometer.

The difference of time of two places can, obviously, be deter-
mined by carrying a chronometer, whose rate is well ascertained,
from one place to the other ; and if the chronometer did not change
its rate during the passage, this method would be perfectly accurate,

Fourth Method. By an eclipse of one of Jupiter's satellites,
(B., p. 252.]

The signal of the second method cannot be used, when the places
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are more than 20 or 30 miles apart; and, when. the distance is very
great, a celestial signal must be used, such as the immersion or emer-
sion of one of Jupiter’s satellites. For this purpose, the instant,
when any such event would happen to an observer at Greenwich, is
inserted in the Nautical Almanac; and the observer at any other
place has only to compare the time of his olservation with that of
the Almanac to obtain his longitude from Greenwich.

Fifth Method. By an eclipse of the moon. [B., p. 253.]

The beginning or ending of an eclipse of the moon may also be
substituted for the signal of the second method to determine the
. difference .of time.

Sizth Method. By a meridian transit of the moon. [B., p. 431.]

The motion of the moon is so rapid, that the instant of its arrival
at a given place in the heavens may be used for the signal. Of the
elements of its position its right ascension is changing most rapidly,
and this element is easily determined at the instant of its passage
over the meridian by the difference of time between its passage and

"that of a known star. The instant of Greenwich time, when the
‘moon’s right ascension is equal to the observed right ascension,
‘might be determined from the right ascensiow; which is given in the
Nautical Almanac for every hour. But this compution involves
the observation of the solar time, whereas the observed interval
‘gives at once the sideral time of the observation.

The calculation is then more simple, by means of the Table of
Moon-Culminating stars given in the Nautical Almanac, in which the
right ascensions of the suitable stars and of the moon’s bright limb
are given at the instant of their upper transits over the meridian of
Greenwich, and also the right ascension of the moon’s bright limb
at the instant of its lower transit. Hence the difference between the
right ascensions of the moon’s limb, at two successive transits, is the
change of its right ascension in passing from the meridian of Green-
wich to that which is 12* from Greenwich ; so that if the motion in
right ascension were perfectly uniform, the right ascension, which
‘corresponded to a given meridian, or the meridian, which corresponded
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/
to a given right ascension, might be found by the following simp}
proportion, -
12*: long. of place = diff. of right ascensions for 12* : diff. of
right ascensions for long. of place, (569)

in which the longitude of the place may be counted from the me-
ridian 12* from that of Greenwich, provided the change of right
ascension for an upper transit is comptted from the preceding right
ascension, which is that of a lower transit at Greenwich, that is, if
the place is in east longitude.

Let then T — long., if west,
or =12* — long. (if. the long. i§ east);

and let A4 = diff of right ascension for the Greenwich transits,
which immediately precede and follow the re-
quired or observed transit, '

and let 3 A = change of right ascension from the preceding
Greenwich transit to the observed transit,

and we have, by (569),

122: T=A:35 4, (570)
AT 1243 A
whence JA= io% and T = =4 (571)
and if T is reduced to seconds, we have
_ AT
43200 (572)
log. 8 A =log. A+ log. T+ (ar. co.) log. 43200
=log. A 4 log. T+ 5.36452 (578)
432008 A4
and T= y (574)

log. T'=4.63548 |- (ar. co.) log. A+ log. 8 A4, (675)

and formulas (573) and (575) agree with the parts of the rules in
the Navigator, which depend upon 4, and are independent of the
want of uniformity in the moon’s motion.

The corrections which arise from the change of the moon’s
motion may be calculated, on the supposition that this motion is

uniformly increasing or decreasing so that the mean motion for any
22*
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interval is equal to the motion which it has at the middle instant of
that interval. If we put, then,

B = the increase of motion in 125, (576)

A is not the mean daily motion for the interval of longitude T and
the instant § T after the meridian transit at Greenwich, but for the
jnterval 12% and the instant 6* after this transit. The mean daily
motion for the instant § T is gherefore,

A— (Gh"lghT) B (577)

so that the correction for A is

(6*—3$ T) B__ (21600—3 T) B ‘
A - 12 - 43200 ’ (578)
and the correction of 8 4 in (572) is
_ T(21600—3} T).,  T(43200—T)
O B=—"Tgmoer 5= —g(aseoop © ")

and the.value of 3 B is easily calculated and put into tables, like
Table XLV of the Navigator.

I correcting the value of T (574), the correction of 8 4 is to be
computed from Table XLV by means of the approximate value of 7,
and the correction of T'is then found by the formula to be

432003 B

8§ T= 1

(580)

It only remains, to show how to find the value of B from the
Nautical Almanac. Now if A’ denotes the motion in right ascension
for the 12* interval of longitude, which precedes that to which A
corresponds ; and if 4" denotes the motion in right ascension for the
12 interval of longitude which follows that of 4 ; we have

2B=A4"—A'
B=13}(4"— A4, (581)
and the calculation agrees entirely with that given in the Navigator.
‘When the longitude is small, or nearly 12%, the correction for the
variation of motion may be neglected, provided, instead of 4, the

motion is used which corresponds to the time of the nearest Green-
wich transit, Now, in the Nautical Almanac, this motion is given
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for an hour’s interval, of which the middle instant is that of the
transit, so that if H = this hourly motion, the motion for the time
T may be found by the formula

1*": T=H:8A,

whence

_3AX1* 26000 X34
- H o H

‘log. T = 8.55630 + log. 8 4 -+ (ar. co.) log. H, (583)
which agrees with [B., p. 432].

The formula (583) may be rendered more correct, if the value of
H is taken for the instant } T of longitude; and the value can be
computed precisely in the same way in which the right ascension
was computed for the time T, by noticing the want of uniformity in
its increase; and the formula thus corrected is accurate for small
differnces of longitude.

T (582)

Seventh Method. By a lunar distance.

The distance of the moon from the sun or a star may be used as
the signal ; but the true places of these bodies differ from their ap-
parent places, as will be shown in succeeding chapters, so that the
observed distance requires to be corrected ; and the correction cannot
be found without knowing the altitudes of the bodies. It is sufficient,
far the present purpose, to know that the difference between the true
and apparent places is only a difference of altitude, and not one of
azimuth, and that the apparent place of the sun or a star is higher
than its true place, while that of the moon is lower. The true distance
may, then, be calculated from the observed distance by one of the
following methods.

I. Let Z (fig. 45) be the zenith, S the apparent place of the sun
or star, and §' the true place, M the apparent place of the moon,
M' the true place; let

a = the star’s apparent alt. = 90° — ZS
a’ = its true alt, = 90° — ZS'

b = the moon’s app. alt. = 90° — ZM
b’ = its true alt. = 90° — ZM'
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E = the app. dist. = SM
E’ — the true dist. — S'M'
Z = the angle Z
8a=S8S"=a—a
Sb=MM'=¥—10
3b=FE —E.
Then the triangles ZSM and ZS'M’ give, by (332),

o__08. E4-cos.(a4-b)  cos. E' 4 cos.&z’-{-b’)- 584
2(cos- 3 2)* = c08. @ c08. b - cos. a’ cos. b’ (584)
cos. a’ cos. b’
Let COB. 11 = 5 ———) (585)

and we have, by (584),
cos. E' < cos. (a’ 4 b') = 2 cos. m cos. E - 2 cos. m cos. (a |- b)
= cos. (E 4 m) - cos. (E — m) -~ cos. (a4 b+ m) 4 cos. (a{-b—m)
cos. E' = — cos. (a'+ ") + cos. (E 4 m) 4 cos. (E — m)
+ cos. (a 4 & 4 m) 4 cos. (a 4 b — m), (586)

whence E’ can be found by a table of natural sines and cosines, when
m has been found from (585).

II. In the same way by (338), we find

cos. (2—b) —cos.E __ cos. (@' — ') — cos. EY

: 9__
2(sin- 3 2)*= €08, a cos. b - cos. @ cos. b

(587)

cos. (@' — ') — cos. E' = 2 cos. m cos. (¢ — b) — 2 cos. m cos. E
= cos. (a—b+4-m) +- cos. (a — b — m) — cos.( E 4 m) — cos.(E —m)
cos. E' = cos. (a/ — b) — cos. (a — b 4 m) — cos. (a — b — m)
~+ cos. (E 4 m) 4 cos. (E — m). (588)

III. The correction may be separated into two parts, one of which

depends only upon the sun or star, and the other upon the moon ;
and let '

8’ E = the part of 3 E which depends upon the sun or star,
8" E = the part which depends upon the moon.
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Now if the correction were only to be made for the moon, SM would
be decreased to SM’, whence
SM =E-+4¢E,

and if we put
S=2ZSM, M= ZMS,

s=1% (a+b+4 E), (589)
the triangles SMM', and SZM give

(sin. '} M)Q= 0%'3;0%1)

_ sin.[E44 (¢ E—3b)]sin. § (" E49)
- sin 35 sin. E
_VE43}

543 L1+ 4 cotan. Esin. 1% (3" E—37)] (590)

cos. s sin., (s—a) 29b
sin, E " cos. b

60' 49" E = (59' 42" — 3 b) +

+ 18" — } cotan. E sin. 17 [(3” E)?— (3 3)?]. (591)
The triangles SS'M and SZM give, by (336) and (340), ‘
(cos. } S = cos. (s — E) sin. (s —a)

sin. E cos. a

=sin. [E4 3} (¥ E—3a)]sin.}3 (¥ E43a)

sin. ¢ a sin, B

a4V E

P (592)

60! ¥ E = (60'— s a) - 228 ﬂ'g =9 30:‘; . (593)

If now M'K and S'L are drawn perpendicular to MS, and 'L to
M'S, we have nearly

‘ SM = E+E=SM + SL'= E+ ¥ E+ SL
SE=3" E4-SL'=¢'E4¥ E4(SL'—¥ E) (594)
E=SL=¢acos. S (595)
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SL'= 3 a cos. (SSL') = § a cos. (S— MSAM)
=23dacos. S48 a sin. S sin. MSH

=¥ E 4 SLsin. MSM' - (596)
SL'— & E = S'L sin. MSM'. : (597)
But from M'SK,
: sin. MK MK sin. 1"
sin. MSM = — = = ——— (598)
whence
, __ SL X MK.sin. 17
SL'—§ E= i E (599)
and
3E=¥E4 o E4 SLXMK. sin 1" (600)

sin. E

2° 43 E=(60'+ # E) 4 (60'+8" E) S & xs{:II;in- 1% (s01)

in which 1°is added to & E and ¢’ E, in order to render them
positive. Now, of 60’4 & E (593), the part 60’ —34 ais given in
Table XVII or Table XVIII; and the remaining term is computed
by proportional logarithms, and is the first correction of the First
Method of the Navigator. [B., p. 231.] The proportional logarithm
of the factor 2 3 a sec. a, is the logarithm of the Table from which
60’ — 3 a is taken.

In the same way, the two first terms of 60’ 4 3" E are taken from
Table XIX and (591). The remainder of (591) combined with the
third term of (601), is computed and inserted in Table XX of the
Navigator.

In calculating Table XX, the value of ¢ E is used, which is
obtained from the two first terms of (591); and 'L and M'K are
found from S'SL and MK in which the sides are so small that
their curvature may be neglected, and we have, nearly,

SL=x/ (3 a*—¥ E?) | (602)
MEK=a/ (352—8" E?). (603)

IV. The calculation of the values of ¢ a and 4 & will be fully
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explained in subsequent chapters; but we need only remark, in this
place, that the value of 3 a, for a star, is given in Table XII ; for the
sun, it is the number of Table XII diminished by that of Table XIV ;
and for a planet, it is that of Table XII diminished by that of Table X,
A. The value of ¢ b is obtained by the formula

4b=Pcos. b= 4b, (604)

in which ¢ b is the number of Table XII, and P is the number taken
from the Nautical Almanac, and which is called the horizontal par-
allax, In computing Table XX, the value of P is taken at its mean
of 57’ 307,

In the formulas for the corrections, the zenith dista.hces may be
* introduced instead of the altitudes, and if we put

90°—a=2Z,90° —b=17,
W=4G+2Z+B), (605)

we have, by neglecting the term depending upon the correction of
Table XX, as well as the other small quantities,

sin. 3, sin. (s, — %)
sin. FE sin. z

cos?} M —

" sin.[E43 (% E425)]sin. § (35— E)

sin. E sin. 9 b

ot
cos. 23 S= _—su:u:. ;;n;ir(:l' Z_ r=’ E2 ':': g
e~ = I

Then the second term of the value of & E is the first correction of
the Third Method of the Navigator [B., p. 242], and the second term
of the value of 8 E is the second correction of this method ; and the
computation from (604, 607, 608) agrees entirely with this method."
The third correction is taken from Table XX, as in the first method.
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V. Draw ZN perpendicular to MS, so as to make SNV acute. In
the right triangle ZSIN and ZSM let

' B =90°— SN, B’==90°+MNA i(B'-{-B) (609)

and we have

E=MN+4 SN=B'— B, (610)
and by Bowditch’s Rules for oblique triangles,
cos. ZS: cos. ZM — cos. NS : cos. MN,

or sin. @ : sin, b =sin. B : sin. B'; (611)
' and, by the theory of proportions,
' sin. a4-sin.3 _ sin. B4 sin. B’

sin, b —sin.a ~_ sin. B’ —sin. B’

fhat is, _
tang. § (a4-5)  tang. A
tang. § (b—a)  tang. 3 E
tang. 4 — tang. § (a4-b) cotan. } (b—a) tang. § E (613)
=A+43E,B=A—]}E, (614)
{ and the right triangles ZSN, MZN, SLS', MKM', give

(612)

cos. S= rE = cotan. Z8 tang. a cotan. B

da
I E ~
. —cos. M= 55 7 = — cot. ZM tang. MN — tang. b cotan. B’
¥ E =4 a tang. & cotan, B (615)
8" E = 4 b tang. b cotan. B/, (616)

* and the formulas (613—‘616) correspond to the Fourth Method of the
Navigator. [B., p. 243.]

It may be observed, that since cotan. § (b — @) is the only term of
- (613) which can change-its sign, A is acute when & is greater than
a, and obtuse when b is less than a.

VI. The meost importa‘nt of eorrections of the distance arise from
that term of ¢ b (604), which depends upon the perallax. If we
consider this, therefore, as the only correction of the meon’s alti-
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4ude, we may calculate the corrections of the distance arising from it
by putting

85 = MM — P cos. b. (6189

The triangles ZSM and M'MK, give then

" — .
cos. M = — Pacof.1 b= — ‘:in. g,:of;lm ' (618)
8" E — — P sin. a cosec. E 4 P cotan. E sin. 5, (619)
and if we put

8, E = P sin. a cosec. E (620)
8; E = + P cotan. E sin. b, - (621)

in which the signs are taken so that 3, E is always positive, we have
E=—8Ex+4E

10°43"E = (5°— 8, E) 4 (5° £ & E). (623)

Now Table XLLVII is a common table of proportional lopﬁthﬁ.

like Table XXII; but the angle which is placed at the top of the
table is

5° — the angle of Tahle XXII, (624)
and the angle at the bottom of the table is
5° 4 the angle of Table XXII; (625)

so that the terms of (623) may be directly obtained from these tables-;
and this method of computing the corrections which depend upon
the moon’s parallax agrees with the second method of the Navigator.
[B., p. 239.]

The remainiilg corrections may be computed from the formulas
(607 and 608), and the corrections of Table XX may be neglected,
provided the value of E is corrected for the parallax. These com-
bined corrections may be inserted in a table like Table XLVIII,
which serves for the star, and, by means of  the part P, for the sun;
or like Tables XLIX and L, which serve - for the planets. "In caloa-
lating those tables, the moon’s horizontal parallax is taken at its
mean value of 57/ 30" ;- and the planet’s or sun’s parallax in altitude
is obtained from the formula

8’ a = — P cos. a,
28
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in which P is the horizontal parallax. The value of P, used in the
construction of the part P of Table XLVIII, is 8”.6; that used for
Fable XLIX is 35" ; and since these corrections are proportional to
the parallax, they are easily reduced to any other parallax. This
reduction is actually made in Table L.

' VIL The value of 3" E (618), might be found by the formula

2 sin. a — sin. (b4 E) — sin. (b— -
3 E — — sin. @ — sIn (2-:;n‘E_)E s1n, ( E)P, (626)

.which is easily calculated by means of the table of natural sines and
cosines.

. VIIL. The true distance may be obtained from observation by
either of the preteding methods, and the time of the observation
must be compared with the time when the distance is the same to an
‘observer at Greenwich. Now this latter time can be obtained from
the Nautical Almanac by precisely the same process of interpolation
‘which has been applied to the changes of right ascension. The dis-
tances are given in the Nautical Almanac for every three hours, and
the proportional logarithm of the difference of these distances. If,
‘then, the distance increases uniformly at the rate of increase, F,
for every three hours; the interval T, at which it has increased by
the quantity F’, is found by the proportion

F:Fl=3:T (627)
" Prop. log. T'= Prop. log. F’— Prop. log. F 4 Prop. log. 3*. (628)
Baut Prop. log. 3* = 0; 1(629)
and if we put . ‘
) Prop. log. F = Q, (630)
.(628) becomes
Prop. log. T'= Prop. log. F' — Q. (631)

If the distance increased uniformly, the value of Q would be in-
variable ; but Q is variable, and must be regarded as belonging to the
middle instant of the interval to which it belongs; and it increases
-while the distance decreases, and the reverse. Let then

3 Q = the decrease of Q in three hours,

3 T = the correction of 7, arising from the change of Q,
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and the value of Q for the interval T'is
3T

e+ lie=a+ve (632)

60 that by (631) and (399)
Prop. log. (F4- 8 T) = Prop. log. T—# Q  (633)

log. (T4 3 T) =1log. T+ Q (634)

log. (T4-3 T) —log. T = 103.(1 +"TT) =Q (635)
But if in (167) we substitute -
sT
T

)

=i - (636)
we have, by (635), » » e
T¥ | .

log. e -—(l + = T = TQ’ (637)

#o that by (632) and (164) o s

_T¥Q (180 —T) T3 Q
= Tog.e 2 X 180~ X 0.434
(180 — T) T3 Q

= T H (639)

- (638)

and the table [B., p. 245] for correcting by second differences may
be calculated by this formula ; and, in order to obtain the value of
8 T expressed in seconds, the factor T should be expressed in seconds, .
while (180™ — T') is expressed in minutes ; and it must not be for-
gotten, that the proportional logarithms are decimals.

IX. When the distance is observed for a star whose distance ig
not given in the Nautical Almanac, the Greenwich time of the obsex-
vation can be found approximately by adding the assumed longitude,
if: west, to the observed time, or subtracting it, if east; or the time
can be taken from the chronometer, if it is: regulated to Greenwich

Find, in the Nautical Almanac, the right ascension and declination

- of the star, and the declination of the moon, for this time. Then, if
T and S (fig. 40) are supposed to be the moon and star, and P the
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pole of the equator, D and I their declinations, disregarding their
names, so that their polar distances are 90° - I and 90° 4 D/,
and if R’ is their difference of right ascension, we have, when their
declinations are of the same name, by putting

S=§(D+D+E), (640)
cos. S cos. (S— E)

“cos. Dcos. D'

cos. } R’ —cos. 3 SPT = V( . (641)

Bat if the declinations are of the same name,

sin. § R’ sin. § SPT = 4("“‘;0 o “il‘;'cif;m), . (s42)

and the right ascension of the moon being thus found, the Greenwich
time, when it has this right ascension, is easily found from the moon'’s
hourly ephemeris in” the Nautical Almanac, and this method is the
same with that in [ B., p. 428].

X. The latitudes and longitudes may be used instead of the right
ascensions and declinations, and the calculation will be as in [B., p.

.. 427]. The variation of daily motion is, in this case, to be regarded

precisely as explained in (606 - 611).

XI. The distances of the Nautical Almanac can be calculated from
the right ascensions and declinations of the sun, moon, and stars, or
their latitudes and longitudes, by resolving the triangles TP S (fig. 40)
by either of the methods which have been given, when two sides and
the included angle are known, as in [B., p. 434].

In calculating the distance of the sun and moon, the latitude of the
sun may be usually neglected ; so that if SR (fig. 46) is an arc of
the ecliptic, S the sun’s place, M the moon’s, and MR perpendicular
o SR,

MR = L — the moon’s latitude, *
SR = L, = the diff. of long. of &) and D,
md “cos. E = cos, SM = cos. L cos. L,, (643)

as in [B., p. 483].

It would, however, be rather more accurate to take

L = the diff. of lat. of (2 and D.
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XII. The determination of the longitude by solar eclipses and
occultations, will be reserved for another chapter.

103. ExAMPLES.

1. Calculate the correction of Table XLV, when
T=1450™, and B— 9™ — 5407,

Solution. 1» 50m P, L. 1™ 50 _ar. co. 8.0080
12* — 1% 50™ — 10* 10™ P. L. 10™ 10* ar. co..8.7519
2P. L. 12™ 2.8522

3 B = 270 2.4314

corr. — 349 1.54356

2. Calculate the correction of Table XLV, when

T =38"10m, and B — 11™,
Ans. 64:.1.

8. Find the right ascension of the moon’s bright limb, Sept. 25,
1830, at the time of the transit over the meridian of New York. The
right ascension of the moon for the two preceding and the two
following transits at Greenwich are ' '

Sept. 25.° Moon II. L. T. 24 0™ 36°.69
Moon II. U.T. 2 80 38 .08
Sept. 26. MoonII.L.T.8 1 33.18
Moon II. U.T. 3 83 19 .89
The Longitude of New York is 456 4.5

Ans. 2h 48m 1424,

4. At a place in west longitpde, Oct. 25, 1839, the moon’s bﬁght
limb passed the meridian 10™ 6¢.83 sideral time before the star
C. Tauri; find the longitude of the place of observation.

The right ascension of the star C. Tauri was 5% 43™ 16s.84, and

those of the moon
24+
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QOct. 25. Moon II. L. T. 4* 43" 535.55
Moon II. U.T. 5 18 28.40
Oct. 26. Moon II. L. T. 5§ 52 51.91

Moon II. U. T. 6 26 40.00
Ans. 76° 53' 33" W.

5. Find the moon’s parallax, in altitude, and the correction and
logarithm of Table XIX, when the altitude is 40° 40, and the horizon-
tal parallax is 58,

Solution. 58/ P. L. 0.4918
: 40° 40/ sec. 0.1200
Parallax in alt. = 44/ P. L. 06118

By Table XII. Refrac. — 1/ 6" 9.6990

Corr. — 16/ 48" * — 59' 42" — 42’ 54" P. L. 0.6228

Log. of Table XIX — 0.2018

6. Find the correction and logarithm of Table XVII for a star,
when the altitude is 13° 15'.

Ans. Corr.—= 56’ 2", Log. — 1.3433.
7. Find the correction and logarithm of Table XVII for Vénus or
M4rs, when the parallax is 20, and the altitude 24° 30'. .
Ans. Corr. = 58’ 14", Log. — 1.6647.
8. Find the correction and logarithm of Table XVIII, when the
altitude is 56°.
Ans. Corr. = 59’ 26", Log. = 1.9544.
9. Find the correction and logarithm of Table XIX, when the alti-
tude is 70°, and the horizontal parallax 54.
Ans. Corr. = 41’ 34", Log. = 0.2299.

* The numbers of Table XIX are so disposed in the Navigator, that the
-eorrections of proportional parts of parallax are all additive. This is effected
by placing each number opposite that parallax, which is 10/ less than the one
to which it belongs. There is, therefore, a correction for 0/ of parallax.
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10. Compute the value of the auxiliary angle m, in the first and
second methods of correcting the lunar distance, when the moon’s
apparent altitude is 40° 40/, its horizontal parallax 58/, and the sun’s
apparent altitude 70°.

Solution. The values of m might be computed directly from (585),
but it is more convenient to obtain it by some process of approxima-
tion. For this purpose let

m = 60° +4 3m.
and we have o -
. __cos.(b4-35)cos. (a—da)
2 cos. (60° - dm) = cos. b cos. @
= 2 cos. 60° cos. § m — 2 sin. 60° sin. I m (644)

= (cos. 35— tang. b sin. 3 b) (cos. 3a - tang. a sin. 3 a),
in which we may put
2c08.60°=1,c08.80—=1—25in233b=1—33sin31"
cos. dm=—=1— 33 m¥sin.? 17,
and (644) becomes : ]
28msin.60°=86tang.b.—bqtang.¢ (645)
+ 3 (3 % — 8 m?) sin. 1”.
But if we take

e=23bsec. b,and e = 2 3 a sec. a, o

Prop. log. e is the logarithm of Table XIX, and Prop. log. ¢’ is the
corresponding logarithm for the sun, star, or planet; and by (645),

Om = } e sin. b cosec. 60° — } ¢ sin. a cosec. 60° (646)
+ 3 (8 58 — 3 m?) sin. 1” cotan. 60°,

whence in the present case

¢ P.L. 0.2018 ¢ P. L. 2.0178
40° 40’ cosec. 0.1860 70° cosce. 0.0270
60° sin. 9.9375 . 9.9375

1° 258/ 7 0.3258 1/ 53" 1.9818
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approx. 3m =] (1°25' 7"—1’ 53") = } (1°28' 14”) = 20’ 48"=1248"
35 = 42’ 54" = 2574

304 dm— 3822 3.5823
3b—3m—1326 3.1225
L sin. 4.6856
60° cotan. 9.7614
. corr. dm = 7" = } (14") 1.1518

dm— 20 48" 4 7" = 20’ 55".

11. Compute the value of the auxiliary angle m, when the moon’s
apparent altitude is 25° 30/, the horizontal parallax 60/, and the star’s
apparent altitude 10°.

Axs. 60° 14’ 3".

12. Find the correction of Table XX, when the distance is 25°,
the sun’s altitude 10°, and the moon’s altitude 25°.

Solution. We should find, in this case,

3b= 50 6" 3a= &5 6
3 E=—27 22" ' ¥E=—3 15"
3b—3' E=1°17'28" —4648"3a — ¥ E = & 21" = 501"
3b43"E= 22 44v 3a4¥E= 151"=111"
22/ 44/ — P. L. 0.8986 0.899
1°17' 28" = 4648" (ar. co.) 6.3327 P. L. 0.366
25° tang. 9.6687 2 sin. 9.252

1 cosec. 5.3144 17 2 cosec. 0.629

1/ 6" = 66" 2.2144 501” (ar. co.) 7.300

3 66") = 33" 1117 (ar. co.) 7.955
2)6.401
24" = ©o18 46" 3.200

57" = corr. Table XX.
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18. Calculate the correction of Table XX, when the distance is
120°, the sun’s altitude 20°, and the moon’s altitude 10°.

14. Calculate the corrections of

Ans. 10“.

Tables XLVIII, XLIX, and L,

when the apparent distance is 28°, the moon’s apparent altitude 38°,
the planet’s apparent altitude 18°, and its horizontal parallax 16”.

Solution.
57 30" P. L. 0.4956
18° cosec. 0.5100
28° sin, 9.6716

5° — 1st. cor. — 4° 22’ 9" 0.6772

0.4956
88° cosec. 0.2107
tang. 9.7257

5° 4 2d cor. — 6° 6’ 34" 0.4320

6° 6’ 34" moon’s par. in alt. = 45’
28° moon’s approx. alt. — 38° 45
28° 29" — approx. dist.
- 18° - 45’ 4 29’ — 74’ = 4440 ar. co. 6.3526
38° 45 45' — 29' =16/ P. L. 1.0512

28° 22' = } sum tang. 9.73235
10° 22! = } diff. cotan. 0.78771

}(28°)=14°  tang. 9.39677

A = 86° 21’ tang. 9.86683

1st ang. = 22° 21’ tang. 9.6140
18°  cotan. 0.4882
By Table XII 2/ 54 P. L. 1.7929

2/ 187 1.8951

2d ang.= 50° 21’ tang. 0.0816
88°  cotan. 0.1072

By Table XII1/18"P. L. 2.1701

477 2.3589

28° tang. 9.7257
1" cosec. 5.3144

2)39" 2.4439
20"

9.61¢

0.488

Table X, A. 33" P. L. 2.5156

25" — cor. Table XIX 2.617
3% X 25" = 11" = cor. Table L.

Cor. Table XLVIII — 2’ 18" — 47" 4~ 20" =1’ 51",
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15. Calculate the corrections of Tables XLVIII, XLIX, and L,
when the apparent distance is 60°, the moon’s apparent altitude 50°,
the planet’s apparent altitude 80°, and its horizontal parallax 30*.

~Ans.  Cor. Table XLVIII = 1’ 25"
XLIX =—21"
L =—=-—18"
16. Find the correction of the Table [B., p. 2457 for the interval

of 2* 30m, and the difference of the Proportional Logarithms equal
to 88.

Ans. 15°.
17. If the observed distance were 45° 34’ 10", the moon’s apparent
altitude 22° 19', its horizontal parallax 60’ 19", the planet’s apparent

altitude 42° 12/, its horizontal parallax 15”:3 ; what is the true
distance ?

Solution. 1. In this case m = 60° 12/ 28"

a—=42°12 da=51" a=42° 11" 9"
b—=22°19’ 3b=53 31" ¥=28°12 81"
a4 b = 65°23 40" —N. cos.—= — 0.41637 E = 45° 34’ 10"
E 4+ m=105° 46/ 38" N. cos. = — 0.27189
a4-b4m = 124° 43’ 28" N. cos. = — 0.56963
— 1.25789
E—m=—14°3818" N.cos.— 0.96754
a4-b—m = 4° 18/ 82" N. cos. = . 0.99717
E'= 45° 1'24” N.cos. = 0.70682

II. a—b4m=80° 528"  —N.cos.=—0.17208

a—b—m=—40 1928 — N. cos. = —0.76239
E4m= 105 46 38 N. cos. = —0.27189

—1.20636

a—Y = 18° 58 38" N.cos.=  0.94565

E—m=—14 38 18 N.cos. = 0.96754

E= 45 121 N.cos. =  0.70683
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IIL s8=14} (a+ b4 E) =552 85" sec. 0.2419
E = 45° 34’ 10" sin. 9.8538 9.8538
$—a =12 50 35 cosec. 0.6531 - ©.0.6531
s—E= 9 28 25 sec. 0.0060 6’ 117. T. XIX. 0.1920
59/ 8. Table X VII 1.8907 20/ 38" P. L. 0.9408
43", P. L. 2.4036 82" Table XX.
59' 517 . 27/ 217

E' = 45° 34’ 10" 4 59’ 51" 4- 27/ 21" — 2° = 45°' 1/ 227,

IV. Z — 47° 48’ z = 67° 41’
8, = 80° 81/ 85" cosec, 0.0060 ’
E = 45° 34’ 10" sin. 9.8538

9.6990
) 9.5588 9.5588
Z = 47° 48' sin. 9.8697 "z = 67° 41’ sin, 9.9662
8 — 2= 12°50'35" cosec. 0.6531 .
8, — Z — 32° 43' 35" cosec. 0.2671
da— 51" P. L. 2.3259 35 = 53'31" P.L. 0.5268
1stcor.— 42" P.. L. 2.4075 2d cor. 1°26/22” 0.3189
3b—= 63 317 da—= 517

E' = 54/18" 4 45° 34'10"4-31"—18"— 1°27' 13" = 45° 1/ 28"

V. }(a+3) = 32°1530" tang. 9.80014
(@a—b= 9 5630 cotan. 0.75627
3 E = 22 47 5 tang: 9.62330
A =123 28 14 tang. 0.17971
1stang. = 100° 41’ 9” tang. 0.7242
2d ang. — 146° 15’ 19" tang. 9.8248
a= 42°12 cotan. 0.0425 b — 22°19’ cotan. 0.3867
da= 517 P.L. 2.325993b = 58/ 31" P.L. 0.5268
1st cor. = * —9” P.L. 3.0926
2d cor. — — 82’ 63" P.L. 0.7383

B — 45° 34/ 10" — 9/~ 32/ 58" 4 81" — 18" = 45° 1/ 21",
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VI 60’ 19" P. L. 0.4748 . 0.4748
a = 42° 12 cosec. 0.1728 b — 22° 19’ cosec. 0.4205

E — 45°34/10” sin. 9.8538 tang. 0.0086

1st cor. = 4° 3/16" 0.5014 2d cor. — 5° 22’ 28” 0.9039

Cor. Table XL VIII, XLIX, and L = 1/ 31"
‘B — 45° 34/ 10" - 4°3/16"4-5° 22/ 28"41/31" — 10°=45"1' 25".
VIL
a—= 42°12 N. sin. 0.67172
b+ E= 67° 5310”7, % N. sin.—0.46322 60’19” P. L. 0.4748
b—E—=—28°15'10", % N.sin. 0.19739

0.40589 ar. co. 0.3916
E = 45°34'10", sin. 9.8538
Cor. Table XLVIII, &c. = 1’ 31" cor. — — 34/ 17" 0.7202

E = 45°34/10" 4 1/ 31" — 34/ 17" = 45° 1/ 24",

18. The apparent distance of the sun and moon is 70° 50’ 33",
the moon’s apparent altitude is 835° 45’ 4", its horizontal parallax is
54/ 24", the sun’s apparent altitude is 70° 48’ 1//; what is the true
distance ?

In this example m = 60° 17’ 28".
Ans. 70° 8’ 47",

19. The apparent distance of a star from the moon is 31° 13’ 26",
the moon’s apparent altitude is 8° 26’ 18", its horizontal parallax is
60/, the star’s apparent altitude is 35° 40’; what is the true dis-
tance ? '

In this example m = 60° ¢ 16",
o Ans.  30° 24’ 48"

'20. Find the Greenwich time, Oct. 3, 1839, when the moon’s dis-
tance from the sun was 38° 12/ 9/,
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Solution.
Distance 1839, Oct. 3, 154 88° 5921 P. L. 0.3180
3812 9 )
184 P. L. 8189 4712  P.L. 0.5818
3180 T — 14 33m 16¢ P.L. 0.2633
9cor.T. = — 8

Greenwich time — 16» 38™ 73, \

21. Find the Greenwich time, Jan. 2, 1839, when the moon’s dis-
tance from Aldebaran was 70° 45’ 18,

1839. Jan. 2, 9% Greenwich time, Dist. = 69° 26’ 297
: ) P. L. = 0.2852
124 P. L. = 0.2863

Ans. 112 31m 47s,
22. The correct distance of the moon from g Corvi, 1839, April
8d, 114 20™, in longitude 70° W. by account, was 54° 8’ 15" ; what
was the longitude? ’

Solution. 54° 8/ 15" Gr. T. = 112 20= |- 45 40m — 164
D’s Dec. — 26 48 52 by N. A. sec. 0.04940
k’s Dec. = 22 30 11 sec. 0.03439
4 sum — 51°43/ 39" cos. 9.79198
Dist. — } sum — 2 24 386 cos. 9.99961
2)19.87538
3% 59m 43¢ cos. 9.93769

*'sR.A. =12 25 56

P’sR. A. = 16* 25m 87 at Greenw. time — 164
Long. — 164 — 144 20™ — 4% 40™ — 70°, as supposed.

23. The correct distance of the moon from Castor, 1889, Nov.
24
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294 194, in longitude 45° W. by account, was 78° 8'; what was the
longitude ?
Greenwich, 1839,
Nov. 294 214 D’sR.A. =124 15m 16%.5, Dec. — 3° 48/31”8S.
225 DP'sR.A.=1217 2.9, Dec.—4 2 389 S.
Castor’s R. A. 7 24 24 4, Dec.—38214 2 N.

Ans. 44° 18'W.

24. Find the distance of the moon from the sun, 1839, August 129,
,Greenwich time at mean noon.

@’s R. A. = 94257 51572, Dec.=15° 7'51".5N.
DPsR.A. =11 42 23.48, Dec.— 057 27 9N.

Ans. 36° 33’ 14",

25. Find the distance of the moon from the sun, 1839, August 144,
Greenwich time at mean noon.

@'sR.A.= 9433m 24557, Dec.—14°31/28".2N.
PsR.A.=13 8 27.62, Dec. =10 25 54 .5 8.
Ans. 58° 50’ 38".
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CHAPTER IX.
ABERRATION.

104. THE apparent position of the stars is affected by two
sources of optical deception, so that they are not in the direc-
tion in which they appear to be.

The first of these sources is the motion of the earth, and the
corresponding correction is called aberration.

Aberration, like the earth’s motion, is either annual or di-
urnal.

105. Problem. To find the aberration of a star.

Solution. The apparent direction of a star is obviously that of
the telescope, through which the star is seen. Let S (fig. 47) be
the star, and O the place of the observer at the instant of the ob-
servation; SO is the true direction of the star, or the path of the
particle of light which proceeded from the star to the observer ; and it
would be the direction of the telescope if the observer were stationary.
But if he is moving in the direction OP, the direction of the telescope
OT must be such, that the end T was at the point R, in the line
OS, at the same instant in which the particle of light was at this
point. The length RT is, therefore, the distance gone by the
observer while the light is describing the line OR.

If, then, we put .
V = thg velocity of light,
v = the earth’s velocity,
I=TOP=RTO,
3 I = — ROT = the aberration from the true place,

v
¥ sin. 1/

(647
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we have,
V:o=OR: TR=sin. I : — 3 Isin. 1”
8I=—msin. L (648)

106. Problem. To find the annual aberration in latitude
and long-itude.

\
Solution. The earth is moving in the plane of the ecliptic at
'nearly right angles to the direction of the sun. Hence if TP
(fig. 48) is the ecliptic, T' the point toward which the earth is
moving, S the true star, ' the apparent star,

© — the sun’s longitude,

A = the star’s longitude, & .4 — the aberration in long.

L —the star's latitude, 8 L — the aberration in lat.
we have .

ST=I SP=1,
long.of T=® —90°, PT= Q@ —90°— A=,
 PPP=3A4A=TP—TP,38 L=SP —SP
cos. T —cotan. I tang. .4, = cotan. (I 4 & I) tang. (4, — 8 4),

tang. (/1 —8 4) _ tang. (I4-8 1)

h = . 649
whence tang. 7, tang. T A( )
and, by (346 and 347),

sin. 8§ 4 : sin. 8§ I (650)

sin(2 4, —34)  sin. (2 L+ 8 1)

or omitting 8 £ and 3 I in the denominators, and reducing by means
of (648),

- sin.24, . sin. A4, cos. 4,
dd=~— sin. 2 1 I=— sin. I cos. I.

sin. A, cos. A,

651
. - cos. I (651)
But cos. I = cos. A, cos. L, (652)
whence , 8 4 =msin. A, sec. L -(653)

= —m cos. (® — A) sec. L.
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‘We also have
. _sin.L_sin. (L4838 L)
sin I = S 1= s (T3 )’ (654)
whence
sin. L sin, (I 4 8 I) =sin. Isin. (L4838 L,) (655)
and 3L sin. L cos. IGI

= cos. L sin. I
= —m tang. L cos. I

— —mcos. A, sin. L
= —m sin. (@ — A) sin. L. (656)

107. Problem. To find the annual aberration in distance
and direction from the vernal equinox.

Solution. - Let A (fig. 48) be the vernal equinox,' and let
M = SA, & M = aberration of M
N=— SAT, 3 N = aberration of IV.

Now we have

3 M =28TIcos. AST= "~ © — cos. M cos. IBI

sin. M sin. I
_ gin, © —cos. M cos. I (657)
- sin. M :
But '
cos. I=sin. O cos. M — cos. @ sin. M cos. NN, (658)
whence if we put . .
B= — msin. © (659)
C=—mcos. O, (660)
we have ’ ’
8 M.= B sin. M+ C cos. M cos. N.'
Again; the triangles ASS' and ATS give, by (302),
. sin. M.8N __  cos. © sin. N o
fun. AST = — 3T =——07 (661)
3 N=m cos. ® sin. N _ C sin. N. (662)

gin. M sin. M
24 : '
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108. Problem. To find the annual aberration in n_qht as-
~ cension and declination. :

Solution. If AT (fig. 48) were the equator, we should have
D=SP,R—=AP,

and if we put
N, = SAP, » = obliquity of ecliptic,
we have '
N=N+4o,
and the triangles ASP, AS'P’ give
sin. D= sin. M sin. IV, (663

sin. (D— 48 D) = sin. (M — & M) sin. (N,— 8 N) (664)
c0s. D3 D= sin. M cos. N, 8 N+ cos. M sin. N,8 M (665)
= B sin. M cos. M sin. N, '
— C (sin. N cos. N, —cos.2 M sin. NV, cos. N),

and if we put
A= C cos. ® (666)
b = sin. M cos. M sin. NN, sec. D (667)
/ = — (sin. N cos. IV, —co0s8.2 M sin. IV, cos. N) sec. D sec. m, (668)
we have
cos. M= cos. D cos. R (669)
cotdn. N, = sin. R cotan. D (670)
sin. M cos. IV, = sin. Deos. M _ o D eotan. N, (671)
“sin. IV,
= sin. D sin. R cotan. D = sin. R cos. D
b’ =sin. D cos. R cos. D sec. D = sin. D cos. R (672)

= — [sin. (N— NV;) 4 sin.2 M sin. IV, cos. N]sec. D sec. ®
= [sin. @ —sin.2 M sin.2 N, sin. o] sec. D sec. ®
— 8in.2 M sin. N, cos. NNV, cos. m sec. D sec. ®
= (1 —sin.2 D) sin. o sec. D sec. » — sin. M sin. D cos. NN, sec. D
= cos. D tan. w — sin. R sin. D (673)
8D=Ag¢ 4 BYV. (674)
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Again, we have
cos.. M = cos. R cos. D (675)
cos, (M +4-3 M) = cos. (R4 8 R) cos. (D4 3 D)
cos. Dsin. R8 R — sin. M 8 M — cos. R sin, Da D
= B (sin.2 M — ¥’ cos. R sin. D)
~+ A (sin. M cos. M cos. N sec. @ — a’ cos. R sin. D), (676)
and if we put
a = (sin. M cos. M cos. IV sec. ® — a’ cos. R sin. D) sec. D cosec. R
b= (sin.2 M — ¥ cos. R sin. D) sec. D cosec. R,
we have .
a cos. D sin. R= sin. M cos. M cos. N, 4 sin. R cos. Rsin.2 D
+ (sin. M cos. M sin IV, — cos. R sin. D cos. D) tan.
= sin. R cos. R (cos.? D 4 sin2 D)
+ (sin. M sin. NV, cos. R cos. D — cos. R sin. M sin. IV, cos. D) tan. w
=sin. R cos. R
a =cos. R sec. D (677) .
- bcos, D sin, R=1-—co08.2 M —sin.2 D cos.2 R
=1-—co0s.2 D cos.? R—3sin2 D cos.2 B
=1—cos.2 R—5sin2 R
= sin. R sec. D _ (678)
SR=Aa+Bb, - : ' (679)
and formulas (659, 660, 672, 673, 674, 677, 678, 679) agree with

those given in the Nautical Almanac for finding the annual aberra-
tion.
109. Corollary.. The value of m, which is used in the Nautical
Almanac, is
] m = 20".3600,
which gives
m cos. o = 20'/.3600 cos. 23° 27’/ 36,98 — 18'/.6768.

110. Scholium. In the values of the aberration in right ascension
and declination, each term consists of two factors, one of which is the
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same each instant for all the stars, and the other is the same for each
star, during several years.

" 111. Corollary. If in (674) and (679) we put

i=Atan o (680)
B="hcos. H (681)
A = hsin. H; (682)

they become
8 D=1 cos. D —h sin. H sin. R sin. D 4 & cos. H cos. R sin. D

=i cos. D+ h cos. (H+ R) sin. D (683)
8 R = h sin. H cos. R sec. D+ h cos. H sin. R sec. I)
= h sin. (H+ R) sec. D, - (684)

which agree with the formulas in the Nautical Almanac.

112. We have from (659 — 679)
3 R=sec. D [—m cos. ® cos. © cos. R— m sin. @ sin. R] (685)
=sec. D [— 3 m (cos. 4 1) (cos. @ cos. R+ sin. @ sin. R)
4 3m(1—cos. ) (cos. © cos." R —'sin. © sin. R)]
— sec. D[—mcos? § cos. (R — ©) 4 msin2  wcos. (B4 )],

and if we put

Q=R—0.Q@=R+0 (686)
n=-—mcos2 } o, n' = m sin.3 + o, (687)

(645) becomes
8 B = sec. D (n cos. Q-+ n' cos. Q), (688)

and the values of n cos Q and n’ cos. Q' may be put in tables like
Parts I and IT of Table XLII of the Navigator. ‘
\

Again, we have
8 D =sin. D (m cos. @ sin. R cos. @ —m cos. R sin. @)

— m 8in. o cos. © cos. D



§ 115.] ABERRATION. 285

=sin. D [} m (cos. ® 4 1)sin. Q— % m (1 — cos. w) sin. Q']
— 3 m sin. @ [cos. (O + D) 4 cos. (© — D)]
= sin. D [— m cos.? § @ cos. (Q < 90°) + msin.2 } w cos. (Q'+4-90°) T
— 3 m sin. @ [cos. (© + D) 4 cos. (® — D)]
= sin. D [n cos. (Q + 90°) 4’ cos. (Q' 4 90°)]
| — }m sin. o [cos. (O + D) + cos. (® — D)], (689)
and the values of

— 3 msin. o cos. (® 4+ D)and — i m ;in. o cos. (@ — D)

may be put in a table like Part ITI of Table XLIL. The rules for
finding the variations in right ascension and declination are then the
same as in the explanation of this table.

118. In constructing Table XLII, the values of m and o were
taken '

m = 20", 0 = 23°27' 28", - (690)
whence
' n=—19".173, n' = 0.827, (691)
— % m sin. @ —='— 3/.9841. (692)
114. By putting

O=4=P, ‘ (693)

we have, by (653 and 656),
3 L= —m cos. (P — 90°) sin. L (694)
8.4 =—m cos. P sec. L, (695)

so that if the values of
—m cos. P

are inserted in tables like Table XLI of the Navigator, the variations
of latitude and longitude are found by the rule given in the explana-
tion of this table. '

115. If the star is nearly in the ecliptic, the aberration in latitude
may be neglected, and the aberration in longitude will be by (695)

84— —mcos. P. . (696)
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116. Problem. To find the diurnal aberration in right ascen-
ston and declination.
. '
Solution. Let
. v’ = the velocity of a point of the equator, arising
froem the earth’s rotation,

L (697)

P= Vsin. 17

The velocity of the observer is evidently in proportion to the circum-
ference which he describes in a day, that is, to the radius of this
circumference, or to the cosine of the latitude.

The velocity of the observer — v’ cos. lat.

Now, the diurnal motion is parallel to the equator, whence the
formulas (653) and (656) may be referred at once to the present
case by putting .

Z — the right ascension of the zenith,
and changing m into m’ cos. lat., @ — 4 into Z — R, and L into D;
whence the diurnal aberrations in right ascension and declination are
8’ R =~—m' cos. (Z — R) sec. D cos. lat. (698)
8’ D= —m' sin. (Z — R) sin. D cos. lat. (699)

117. The value of m’ is nearly
m' = 0.31. © (700)

118. Problem. To find the aberration which arises from the
motion of a planet.

Solution. The most important planets revolve about the sun almost
uniformly in circles, and in the plane of the ecliptic. At the instant,
then, of the light’s reaching the earth, the planet has advanced in its
orbit by a distance proportioned to its velocity, and to the time which
the light takes in reaching the earth. Let then S(fig. 49) be the sun,
and O, O, perpendicular to O,S the path of the planet; and put

v, — the velocity of the planet,

Y,
Vsin 17’

r—= OS, rHnh= 0|S,

P,= 00,5,

m =
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we have

8, 4 =— 0,08 =— 20icos. P

00, sin. 17 =
But it will be shown in Theoretical Astronomy that

vivi=r:r;

—m, cos. P,. (701)

hence ) m:mi=0v:vi=r:r
m:m = AN a/r
m, = m~/—— (702)
l
' BlAz—ma\/—:— cos. Py; (703)
1

and this aberration being combined with (696) gives the whole aber-
ration in longitude, from which a table, like Table XXXIX of the
Navigator, may be constructed.

119. ExAMPLES.
1. Find the values of log. 4, log: B, h, H, and ¢ for May 1, 1839,
when © = 40° 52/ 56
Ans. log. A = 1.1498»
log. B = 1.1248»

h = 19".42
H — 226° 40/
—6".13

2. Find the values of log. a, log b, log. a’, log. b’ for Altair in the
year 1839.

Solution. .
R — 19* 42" 55° cos. 9.63760 sin. 9.95466=
D = 8° 26’ 52" sec. 0.00474 sec, 0.00474
log. a = 9.64234 log. b == 9.95940~

R cos. 9.63760 _ sin. 9.95466»
D sin. 9.16704 sin. 9.16704 ~ cos. 9.99526
' log. b = 8.80464 0.13234 9.12170n o tan. 9.63747
0.42927 ‘ 9.63273

@' = 0.56161 log. &’ = 9.74944
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8. Find the values of log. a, log. b, log. a', log. ¥/, for Regulus in
)

the year 1839 ; for which,

-

R = 9*59™ 48", D = 12° 45’ 7",

4. Find the numbers of the different parts of Table XLII for the

argument 7° 20° = 230°

Ans. log.a = 9.94816s
log. b = 9.71048
log. &' = 9.49516
log. b’ = 9.28122»

Ans. 1232 for Part I,

— 0".53 for Part II,

21,56 for Part IIIL,

5. Find the number of Table XLI for 7¢ 20°.

6. Find the aberration in right ascension and declination of Altair

for May 1, 1839.

Solution, 1.
A 1.1498= .
a 9.6423
— 6,20 0.7921»
B 1.12484
5 9.9594»
12,14 1.0842

3R = 5"9 = 0.39

Ans. 1279,

1.1498
a' 9.7494

— 71,93 0.8992x
1.1248+
b’ 8.8046

—

—0".85 9.9294~

8D = —8".78
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1I. .
H+4 ¢ =162° 44' 4 3‘60o sin. 9.4725 cos. 9.9300»
h=19".42 » 1.2882 1.2882
D= 8°27 sec. 0.0047 sin. 9.1670
6 R—=5".83 =039 0.7654 — 272 0.4352n
' 1 cos. D —=—6".06
§D=— 87:1; '
I
R— © = 255° 40’ = 8" 15° 50’ P.I.—=4".75

R4 O =176°4360=2"16°+412* P.IL =0".20

——

4,95 0.6946
D sec. 0.0047
dR=5"=10.33 0.6993
8°15°40' 4 3'=11"15° 40’ P. Il.—18”.57
2°16°4-3'=5"16° P.II.— 0.80
— 19,37 1.2871
D sin. 9.1670
— 21,85 0.4541n
O+D=48=118  —2".66
O—D=32°=1" 2° — 3'.38
§D = —_ E;’—;)

7. Find the aberration in right ascension and declination of
Regulus for May 1, 1839.

Ans. By Naut. Alm. 8 R=" 038
' § D= —1".87

By the Navigator § R—=  0°.38
§D=—1"91

26
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8. Find the aberration of Regulus in latitude and ldngitnde for
May 1, 1839. :

Ans. 3 4 —=6"5
3 D=0".15.

9. Find the aberration of Venus in longitude, when the difference
of longitude of Venus and the sun is 45°.

Solution. r 0.0000 0.0000
T, ar. co. 0.1407 3 (ar. co.) 0.0703

P =45° sin. 9.8495 20" log. 1.3010
P,= sin. 9.9902 cos. 9.3214
0.6927

— 5" when P, is acute, 4 5" when P, is obtuse,
— 14" from Table XLI, — 14"

— —

8 4 = —19" when P,is ac., =—9" when P, is obtuse.

10. Find the aberration of each of the planets in longitude, when
the difference of longitude of the sun and planet is 15°. The mean
values of log. 7, for the several planets are :

for Mercury  9.5878
Venus 9.8593
The Earth 0.0000
Mars 0.1829
Jupiter  0.7161
Saturn 0.9795
Uranus 1.2829
Neptune 1.4756.

Ans.” For Mercury — 43"/ when P, is acute,

4" when P, is obtuse,
Venus — 41’ when P, is acute,

3" when P, is obtuse,

Mars — 35"
Jupiter — 28"
‘Saturn  — 26/ .

Uranus — 24’

Neptune — 23",
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11. Find the diurnal aberration of right ascension and declination
of Polaris for Jan. 1, 1839, and latitude 45°, when the hour angle is
0k 30m,

Solution 0131 9.4914 9.4914
45° cos. 9.8495 9.8495

D — 88° 27 sec. 1.5678 sin. 9.9998

04 30m cos. 9.9963 sin. 9.1157 )

8 R=—8".04= — 053 0.9050 &' D = 0".03 8.4564

12. Find the diurnal aberration of 8 Ursa Minoris in right ascension
and declination for Jan. 1, 1839, and latitude 0°, when the star is
wpon the meridian.

Dec. of 8 Ursee Minoris — 86° 35'.
Ans. 8 R —— 035
8 D=0,
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CHAPTER X.
REFRACTION.

120. LicHT proceeds in exactly straight lines only in the
void spaces of the heavens; but when it enters the atmos-
phere of a planet, it is sensibly bent from its original direction
according to known optical laws, and its path becomes curved.
This change of direction is called refraction; and the corres-
ponding change in the position of each star is the refraction of
that star.

121. Problem. To find the refraction of a star. .

Solution. Let O (fig. 50) be the earth’s centre, A the position of
the observer, AOK the section of the surface formed by a vertical
plane passing through the star. It is then a law of optics that

Astronomical Refraction takes place in vertical planes, so as
to increase the altitude of each star without affecting its azimuth.

Let, now, ZIH be the section of the upper surface of the upper
atmosphere formed by the vertical plane, SI the direction of the ray
of light which comes to the eye of the observer. This ray begins to
be bent at I and describes the curve IA, which is such that the
direction AC is that at which it enters the eye. Let, now,

¢ = ZAC = the s apparent zenith distance,
r — the refraction,

‘= the diff. of directions of AC and IS,

= SIL— S'CL
u= COZ,
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and we have
LCS' = ¢—u,
SIL=¢—u-r.

Again, it is a law of optics that the ratio of the sines of the
two angles LIS and ZAS is constant for all heights and de-
pendent upon the refractive power of the air at the observer.

Denote this ratio by n, and we have

sin. (p—utr) _ (104)
sin. ¢
and if
U and R — the values of u and 7 at the horizon,
we have
w —=n =cos. (U— R), (705)
sin. @ . )
whence )

. sin, @ —sin. (p —u—+4r) 1-—cos. (U—R)
sin. ¢ 4 sin. (p—u—+7) ~ 14 cos. (U—R)

tang. % (u —7‘) _ no —_ —
tang. (9—F (u—r)] g24 (U— R) =N, (707)

and since § (4 — r) is small,
3 (u—r) = Ntang. [¢—§ (u—r)] (708)
Again, to find u, the triangie COA gives

(706)

sin. (p—u) 04
sin. ¢  OC°
Now the point G is at different heights for different zenith dis-

tances of the star; but this difference in the values of OC is small,
and may be neglected in this approximation ; so that

(709)

sin. (@—uw) __ 04
—in e = cos. U = oK’ (710)
sin. ¢ —sin. (¢—u) 1 —cos. U
Sin. ¢ 4 sin. (p—u)  1-4cos. U’
tang. 3 u —tang 3} U tang. (¢ —%u); (712)
26+ .

(711)
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se=ta=z2} Dazz 2—3a. 713)

I wmiarsl wll Sl oz valze oY 3 w—r) from (708,

} y—r; =Nz 3 -1y 714)
e

r -
= =XNr, (715)

Ti1—NciiU

2N
=53 716)
p=3'N—1) (717)
we Lave, by (70%,,
}u—r=pr (118)
r=mtang. (3—pr, (119)

and the values of m anid p must be determined by observation;
and theis mean values, as found by Bradley, and adopted in the
Narigator, are

m=57".035, p—3, (720) -
by which Table XII is calculated.

122. The variation in the values of m and p for different altitudes
of the star can only be determined from a knowledge of the curve
which the ray of light descripes. Rut this curve depends upon the
law of the refractive power of the air at different heights; and this
law is not known, so that the variations of m and p must be deter-
mined by observation. At altitudes greater than 12 degrees, the
mean values of m and p are found to be nearly constant, and obser-
vations at lower altitudes are rarely to be used.

123. The mean values of m and p, which are given in (720),
correspond to

the height of the barometer — 29.6 inches (721)
the thermometer = 50° Fahrenheit. (722)

Now the refraction is proportional to the density of the air; but,
at the same temperature, the density of the air is proportional to its
elastic power, that is, to the height of the barometer. If then
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h = the height of the barometer in inches,
r — the refraction of Table XII,

8 r — the correction for the baromefer; .

we have
r:r4+8r=296:4% (723)
©29.6 §r=(h—29.6) r o (7124)
(h—29.6)
8r= %06 r, (725)

whence the corresponding correction of Table XXXVI is calculated.

Again, the density of the air, for the same elastic force, increases
by one four-hundredth part for every depression of 1° of Fahrenheit ;

hence the refraction increases at the same rate, so that if 4
8’ r = the correction for the thermometer,
)
f = the temperature in degrees of Fahrenheit,
we have
50 —f
8r= 200 " (726)

.whence the corresponding correction of Table XXXVI is calculated.

124. EXAMPLES.

1. Find the refraction, when the altitude of the star is 14°, and the
corrections for this altitude, when the barometer is 81.32 inches, and
the thermometer 72° Fahrenheit.

Solution. 57.035 log. 1.75614
76° tan. 0.60323

1st app. r = 228/.7 = 8’ 48/.7 2.35937
57".035 1.75614
76°—3r = 75° 48’ 34" tan. 0.59711

2d app. r — 226" = 3’ 46"  2.35325 2.353
31.82 — 29.6 = 1.72 0.235 50— 72 = —22 1.342»
29.6 ar. co. 8.529 400 ar. co. 7.398

8r=13" 1.117 8¢ r=—12" 1.093»
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2. Find the refraction, when the altitude of the star is 50°, and the
corrections for this altitude, when the barometer is 31.66 inches, and
the thermometer 36°. .

Ans. The refraction — 48"
Correction for barometer — 3

Correction for théermom. — 27,

3. Find the refraction, when the altitude of the star is 10°, and the
corrections for this altitude, when the barometer is 27.80 inches, and
the thermometer 32°.

Ans. The refraction = 515"
o . Correction for barometer — — 19/
Correction for thermom. —  15”.

125. Problem. To find the radius of curvatyre of the path of
the ray of light in the earth’s atmosphere.

Solution. By the radius of curvature is meant the radius of the
circular arc which most nearly coincides with the curve. Now this
radius may be found with sufficient accuracy by regarding the whole
curve AT as the arc of a circle ; and if we put

r, — the radius of curvature,

R, = OA — the earth’s radius,
we have

AC : R, —sin. u : sin. {§ —u), (727)
or, nearly,

AI: R, —usin. 17 : sin. ¢

R, usin. 17

Ar= = (728)

Again, the radii of the arc AI which are drawn to the points 4
and I are perpendicular tq the tangents AS'.and IS, so that the
angle which they make with each other is

S AS=r;
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that is, 7 is the angle at the centre, which is measured by the arc
A1 consequently

Al = r, sin, r = 7, r8in 17, ) - (729)
whence ’
_ u Rl q
"= em e (730)
But, by (718), u=1r, ' (131)
__ TR,
whence = s’ (732)

so that at the horizon .

r="TR,, (733)
as in (284, 285).

126. Problem. To find the dip of the horizon.

Solutron. The dip of the horizon is the error of supposing the ap-
parent horizon to be only 90° from the zenith, whereas it is more
than 90°. If O (fig. 51) is the centre of the earth, B the position of
- the observer at the height AB above the surface, O’ the centre of
curvature of the visual ray BT, which just touches the earth’s sur-
face at Ty BT' perpendicular to O'B, is the direction of the apparent
horizon, and :

8 H= HBT' = OBO' = the dip.
The triangle BOO' gives
BO': 00" = sin. BOO' : sin. § H = sin. BOT : sin. § H,

or, since BO' = 7 BO nearly, and 00’ = 6 BO,
and 6 H and BOT are small,
7:6=BOT:0 H
AT

§H=$BOT =% (734)

But, by (285), we have, if we put
R = A0, h = AB,
$AT=4(FRH)
—2N(FRE), (135)
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whence
2
VH= ey v (736)
and

log. 8 H=1og. 2 —log. (¢/ § R) —log. sin. 1”4 X log. h
= 1.77128 + 3 log. A, (737)

which is the same with the formula, given in the preface to the Navi-
gator, for calculating Table XIII.

127. Problem. To find the dip of the sea at different distances
Jrom the observer.

Solution. Let O (fig. 52) be the centre of the earth, B the ob-
server at the height ’
h = AB (in feet)

above the sea, and A’ the point of the sea which is observed at the
distance

d = AA’ (in sea miles) = A0A'
from B; and let
M — the length of a sea mile in feet..
If the radius OA’ is produced to B, so that

A'B' = AB,

the point B’ will be elevated by refraction nearly as much as the point
A’. But the visual ray BB’ will, from the equal heights of B and
B, be perpendicular to the radius OC, which is half way between B
and B, so that the dip of B’ is, by (734),

3B=§BOC =3 AO4' = ¥d. (738)
The dip of the point A’ will be greater than B’ by the angle
1 = B'BA,

which it subtends at B, and which is found with sufficient accuracy

by the formula
A'B' h

sin, 1 = ——

oE = g = e v (739)

Il
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h

= Mo 1d’ (740)
But, by (286,)
= R
M= To80% (741)
1 10800/

Mol = = Bem 1 = 026514 (742)

s0 that the dip of A’is
34=gd+ 0565140, (743)

d

which is the same with the formula, given in the preface to the Navi-
gator, for calculating Table XVI.

128. Refraction, by elevating the stars in the horizon, will
affect the times of their rising and setting ; and the star will
not set until its zenith distance is

90° 4 horizontal refraction,

and the corresponding hour angle is easily found by solving the
triangle PZB (fig. 35).

129. Another astronomical phenomenon, connected with the
atmosphere, and dependent upon the combination of reflection
and refraction, is the twilight, or the light before and after sun-
set, which arises from the illuminated atmosphere in the horizon.
This light begins and ends when the sun is about 18° below
the horizon ; so that the time of its beginning or ending is
easily calculated from the triangle PZB (fig. 85).

130. ExAMPLES.
1. Find the dip of the horizon, when the height of the eye is

twenty feet.
Ans. 264" = 4/ 24/,
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2. Find the dip of the sea at the distance of 3 miles, when the
height of the eye is thirty feet.

Solution. $IX3=%=13
0.56514 X 2 = 5.6
dip = 7.

3. Find the dip of the sea at the distance of 23 miles, when the

height of the eye is forty feet.
Ans. 10’

4. Find the dip of the sea at the distance of } of a mile, when

the height of the eye is thirty feet.
Ans. 68"
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CHAPTER XL
PARALLAX.

131. THE fixed stars are at such immense distances from
the earth that their apparent positions are the same for all
observers. But this is not the case with the sun, moon, and
planets ; so that, in order to compare together observations
taken at different places, they must be reduced to some one
point of observation. The point of observation which has
been adopted for this purpose is the earth’s centre; and the
difference between the apparent positions of a heavenly body,
as seen from the surface and from the centre of the earth, is
called its parallaz.

132. Problem. To find the parallaz of a star.

Solution. Let O (fig. 53) be the earth’s centre, A the observer, S
the star, and OSA4, being the difference of the directions of the visual
rays drawn to the observer and to the earth’s centre, is the parallax.
Now since SAZ is the apparent zenith distance of the star, and SOZ
is its distance from the same zenith to an observer at O, the parallax

OSA=p

is the excess of the apparent zenith distance above the true zenith
_distance. If, then, *

2= SAZ, R = OA — the earth’s radius,

r — OS = the distance of the star from the earth’s centre, -

we have r: R = sin. z : sin. p,

. R sin. z -
or sin.p=——, (744)
or __ Rsin.z (145)

r= rsin. 1"’
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133. Corollary. If P is the horizontal parallax, we have

. R
sin, P = - (746)
R
or P= m ’ (747)
whence sin. p = sin. P . sin. z, (748)
or r= P . sin. 2, (749)

which agrees with (604), and Tables X. A., XIV, and XXIX are
computed by this formula, combined, in the last Table, with the re-
fraction of Table XII.

1384. Corollary. In common cases, the value of the hori-
zontal parallax can be taken from the Nautical Almanac; but,
in eclipses and occultations, regard must be had to the length
- of the earth’s radius, which is different for: different places. -
The earth is not a sphere, but a spheroid slightly compressed at
the poles ; the polar radius being less than the equatorial one by
about 534" part. The spheroid may be obtained from the sphere
by such a compression over the whole surface parallel to the
polar axis that each place’ is brought nearer to the plane of the
equator by 45" part.

Thus, if OEAP (fig. 54) is a section of the earth through the
polar axis OP, and OEA'P the section of the sphere of which the
equatorial semidiameter OE is the radius; and if A’AM, B'BN, &ec.
are drawn parallel to OP, each of the distances 4’4, B'B, P'P, &c.
will be 335" part of the distances A’M, B'N, P'0O, &ec.

135. Problem. To find the reduction of parallaz.

" The horizontal parallax is, by (747), proportional to the earth’s
radius, so that it diminishes at the same rate from the equatorial
value which is given in the Nautical Almanac. Hence, if AR is
drawn perpendicular to O4, and if

L'"= A'OL,
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8 R = the diminution of R for the latitude L,
3 P — that of P, ‘ '
R = the radius at the equator,
P = the parallax at the equator,
m = gjv,
we have
A'M = OA' sin, A’OM = R sin. L"
AA'=m R sin. L" = m R sin. L nearly
8 R = A'R nearly
= AA'sin. A’/AR=m Rsin2 L

= g}y Rsin2 L

= gdv B (1—cos. 2 L) (750)
8 P= 4}y 1.’sin.9 L

= g35 P (1 —cos. 2 L), (751)

and if P is-expressed in minutes, while 8 P is expressed in seconds,
(751) becomes

8 P in seconds = v (P in minutes) (1 — cos. 2 L), (752)

which agrees with the formulas for calculating the reduction of
parallax given in the explanation to Table XXX VIII of the Navi-
gator.

136. In reducing delicate observations to the centre of the earth, it
must be observed, that the centre is not exactly in the direction of the
vertical. Thus, if 4 is the observer, Z the zenith, ZAL the vertical,
Z' the point where the radius O4 produced meets the celestial sphere,
Z' is called the true zenith, and Z the apparent zenith. The 'angle
ZAZ', which is the difference between the polar distances of the true
and the apparent zenith, is called the reduction of the latitude and must
be subtracted from the angle ALE, or the latitude, to obtain the
angle AOE, or the direction of the observer from the earth’s centre.
The angle AOE is called the reduced latitude and is to be substituted
for the latitude in reducing delicate observations to the centre of the
earth.

187. Problem. To find the reduction of the latitude.
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Solution. Draw AC and A’C’ (fig. 54) parallel to OFE ; and since
AB is perpendicnlar to AL, the angle
L= ALE — CBA.
Let L'= AOE,
and SL=L-—-1L
is the reduction of the latitude.

Let also 2= OM, ' = ON
AM,y=BN

n=1—m=333 (753)
so that ' AM=ny, BN=ny,

and we have

A'C _z—2 _AM y
[ — 54
ang. 1 = 5.0 = y—y T MO~ (754)
AC z—2 1 "
- - 755
tang. L —= =3¢ = =0 y’) ;5 tang. L (755)
) AM _u — " 756
tang. L =30 =5 —ntag L (756)

a
pope L _ 1 - ( 300) = 1.0067001
tang. L’ n? 299
_ tang. L
" tang. (L—8 L)’
which agrees with the formula given in the explanation of Table

XXXVIII in the Navigator, and which must be computed by means
of tables of 7 places of decimals.

(757)

138. Corollary. By applying (346 and 347) to (757), we obtain

sin. 8 L 1—n? 2 m—m? 2
o = —_—— = &e.=m'
sin QL—31L) —1Fm —i—gmfm_mTimt&e.=n
=.0033389
" = m nearly

_m . ’
OL_m sin. (2 L—38 L) (759)
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/
= -2 &n2L nearly

sin. 17
1 ; 1 __ gin. 2 L nearly (760
=msm.2L=mmn.2 neary( )
sin. 2 L
= nearly.

189. Problem. To find the parallas in latitude and longi-
tude.

Solution. Let Z (fig 55) be the zenith, P the pole of the ecliptic,
M' the apparent place of the body whose parallax is sought, and
M its true place. Let also A

B = PZ = the zenith distance of the pole,
= the altitude of the nohaéesimal,
A =90° — ZM' = the apparent altitude,
‘A’ = 90° — Z M = the true altitude,
D =90° — PM — the true latitude of the body,
h=ZPM  =the true diff. of long. of the body and the
! zenith,
¢ P — the horizontal parallax,
2= Pcos. A= MM' = the parallax in altitude,
8h= ZPM'—ZPM = the parallax in longitude,
8 D= PM'—PM = the parallax in latitude,
D=D—éD.
The triangles PMM' and ZPM' give

sh—? sin. M’ _ psin. Bsin. (h4-3 k)
~ cos.D T cos. A cos. D
= P sin. B sec. D sin. (k4 8 h). (761)
Draw PN to bisect the angle MPM', draw MH and M'H' perpen-
dicular to PN, join ZH and ZH', and we have
§D=HH = HN4 HN'
= MN cos. N+4 M'N cos. N
= (MN 4 M'N) cos, N= MM cos. N

= P cos. 4 cos. N. (752)
26"




306 SPHERICAL ASTRONOMY. [cm. xI1.

But the triangle ZH' M gives, by putting
N =ZHH, ZH = 90° — 4",

since HMN=90°—N, _
cos. A" : cos. N=cos. A4 : cos. \N';
whence cos. A cos. N = cos. A" cos. N
and 8 D= P cos. A" cos. .
Produce H'Z and H'P to E and C,

making 90°= HE = H'C.
The ﬁght triangle ZEC will give .
EC=N,ZE=90°—ZH = A"
cos. ZC = cos. ZE cos. EC = cos. A" cos. N,
whenee 3D=Pcos. ZC; (763)
and the triangle ZPC gives
PC=90°— PH = D nearly,
ZPC=180°— ZPH —180°— (k4 } 8 k),
whence, by (367), .
cos. ZC = cos. B cos. D' —sin. B sin. D' cos. (h43%h)

8 D= P cos. B cos. D'— P sin. B sin. D' cos. (A4301), (764)

and formulas (761) and (764) agree with the rule in the Navigator
[B., p. 406.]

140. Corollary. By putting
k= P sin. Bsec. D, (765)
(761) becomes
8h=ksin. (k43 h)
- =ksin. hcos. 3 h 4k cos. h & h.

Hence, if
n==Fkcos. A - (766)
(1—mn) Jh:Ifsin. hcos. 8 4
3h ksin. A _ Psin. Bsec. Dsin. h

=(l—n) sec.3h —  (1—m)sec.8h (767)
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The logarithm of the reciprocal of 1 — n is called the correction
for n and is found from Table I, at the end of this volume, where it
is placed opposite to the log.n.

141. Corollary. Another process for computing 3 D may be ob-
tained from (762). This equation gives

8D = P cos. N cos. (4' — p)

= P cos. NV cos. A’ cos. P+ Ppcos. Nsin. 4’

= P cos. Ncos. A’ cos. p 4+ P.P cos. Acos. N sin. 4’

= P cos. N cos. A’ cos. p4 P 8 D sin. 4'. (768)
Let ' n = P sin. 4, (769)
and (768) gives

(1—n') 8D = P cos. N cos. 4’ cos. p

. P cos. N cos. A’

8D = T—wysecp" (770)
The triangle ZMH gives, by putting
N' = ZHH', ZH = 90° — A",
since ' HMZ = 90° 4 N,
~ cos. A" : cos. N = cos. A’ : cos. N";
whence . cos. A" cos. N = cos. N cos. A
wofEimr

and A7 and N” can be deduced by direct solution of the triangle
ZHP, in which

ZPH="h+4 }8h, PH= PM = 90° — D nearly,

and A’/ may be substituted for A’ in determining the value of the

small quantity n/ by means of (769), and sec. 3 D may be substituted
for sec. p.

142. Problem. To find the parallaz in right ascension and

.



308 SPHERICAL ASTRONOMY. [cm. x1.

Solution. Formulas (761-771) may be applied immediatély to
this case, by putting

B = the altitude of the equator — the co-latitude,
D = the true declination,
D’ = the appa;‘ept ‘déchnatum,

h = the nght a&censwn of the body diminished by that
of the zemth the hour angle of the body,

8 D = the parallax m ahchnatmn
3 h = the pu’all&x in nght ascension.

And formulas (761, 767, 77I) correspond to those given by Wood-
house, in his method of calculating eclipses and occultations, in the
British Nautical Almanac for 1826. The mean value of sec. § D
and sec. p, which is 0.00006, is there substituted for them.

143. The apparent diameter of a heavenly body is the a.ngle
which its disc subtends.

144. Problem. To find the apparent semidiameter qf a heavenly
body.

Solution. Let O’ (fig. 56) be the centre of the heavenly body, 4
the observer, and AT the tangent to the disc of the body. The
angle TA(Q is the apparent semidiameter. Let

R=0T
c — O'AT
r = A0,
OT R
we have sin. 6 — a0 = L (772)

Hence, by (fig. 53), if 4 is the apparent altitude of the body, A’
the true altitude,

R, sin. p __ Rysin.p

81 0 = R cos. (4 +p) Recos A

(773)
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o= poec. (44 )
- 1-221-) %’:—j, (714)
But if 3 is the horizontal semfdiameter, we have
=L (775)

which is also the semidiameter, as seen from the earth’s centre;
whence (774) becomes

__ Cos. A _ cos. (A'—p)
o=2 cos. A" cos, A’
cos. A’ 4 p sin. A’ s Ay
= = . , 6
E} s A7 X (14 Psin. A’), (776)
or, by (769),
: 6=3(14n') (777)
5 .
- : 778
T— (nearly) (778) |
_p R 1
=P E =

145. Corollary. We have, for the moon,

R, = 02725 R (779)
R =38.67 R, (780)
R, '

whence log. 7= 9.43537, (ar. co.) = 0.5646, (781)

so that formula (775) agrees with [B., p. 443 ; No. 10 of the Rule .

146. Corollarj. If 8 ¢ is the augmentation of the semidiameter for
the altitude 4, we have, by (776),

86=2.Psin. /=3 Psin. 4

R .
= ﬁl P2gin. A, ' (782)
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or, in order to express § ¢ and P in seconds,
R, . .
8o = 7 P2 gin. 17 sin. 4. (783)
Now for the mean horizontal parallax of 57/ 30", we have
B o .
log.  P?sin. 17 = 1.19658 (784)
A R| . )
% Prein. 17 = 15.72, (785)

agreeing very nearly with the explanation to Table XV of the
Navigator. :

147. Corollary. The augmentation can also be calculated without
determining the altitude. Thus, from (774)

cos. A :
_ —1\. 786

3o z<cos.A’. l) (789)
But from (fig. 55) and (761)

cos. A — sin. 'ZM, _ sin, (A} 3 4) . cos. (D —8 D) (7‘87)

sin, Z
cos. 4’ =sin. ZM — Sil .hﬁ)s'—l—) (788)
: sin. Z
cos. 4 sin. (k48 1) . cos. (D — 8§ D)
T 1 — o —1 89
cos. A’ 1= sin. h cos. D (789)
cos hcos. (D—3 D)8k  cos. (D—38 D)
= + p— |
cos. Dsin. h cos. D
__P.cos. h.sin. Bsin. (h +.6h)+cos. (D—-ﬁ.D)__1
- cos. D sin. & cos. D

Now the latitude of the moon is so small that,in the first term, we
may put

cos. D=1, . (790)
which gives by (786), and putting
H=2X P .cos. hsin. B ’ (791)
, COS.(D—BD)_ 92
H=Z2 ( cos. D ! (792)
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S6=H-+ Hcot.h 8 h+ H'
=H+4 H.P.cos.hsin B4 H'

=H+4 —I; + H. (793)

Now we have, by (791) and (7923,
H=}X.P.[sin (B+h)+sin. (B—K]  (194)
H'=2X (tang. D .3 D+ cos. § D— 1), (795)

and formulas (793 to 795) agree with the method of calculating the
augmentation of the semidiameter given:in Table XLIV of the Navi-
gator. The three first parts of this table are calculated for the value
of =,

=16'= 960"
whence 32.P=28"18.
The fourth part of the table is the correction which arises from the

difference between the actual and value of = that assumed in the
three former parts. If we put '

8 o= the value of 3 ¢ for 3 =16/,
we have, by (782) and (795), '

30:¥0=3%: (168 (796)
2’[
60’—2'3660'
>
Y] - - Y]
._60'-{-(256 1)6«
2—-256

=& 0'+ —2—56——6’6'

= o4 T EZ 0 (ror)

as in the explanation of this table.

148. ExaMPLEs.

1. Find a planet’s parallax in altitude, when its horizontal parallax
is 25", and its altitude 30°.

Ans. 22/,
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2. Calculate the reduction of parallax for parallax 61/, and lati-
tude 82°.

Solution. We have, in (752), &SP=61 *
2 L —=164° cos.2 L=—.961, 1—cos. 2 L —1.961
3p=12"0

3. Calculate the reduction of parallax for parallax 57/, and lati-
tude 22°. .
Ans. 1".6.

4. Calculate the reduction of parallax for parallax 53/, and lati-
tude 68°.
Ans. 7".9.

5. Calculate the reduction of latitude for latitude 70°.

Solution. We have by (759),
Egl" cos. 2.83804
2 L = 140° sin.  9.80807
1st. app. 8 L = 0° 7' 23" = 443"  2.64611
2L—3L =139 52’;;1” sin. 9.80918
SL = 7 23".8 = 443".8  2.64722

6. Calculate the reduction of latitude for latitude 20°.
Ans. 7.21.5.

7. Calculate the reduction of latitude for latitude 50°.
Ans. 11’ 18".6.

8. Find the moon’s parallax in latitude and longitude, when her
horizontal parallax is 59/ 10”.3, her latitude 3° 7/ 19 S., her longi-
tude 44° 36’ 16", the altitude of the nonagesimal 37° 56/ 14/, its
longitude 25° 27’ 16", the latitude of the place 43° 17/ 18 N.

Solution. By (761) and (764),
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Reduced parallax = 59/ 10.8 — 5.3 = 59’ 5" = 3545"
Reduced latitude = 43° 17/ 18" — 11/ 27" = 43° &' 51"

3545
37° 56/ 14"
3° 7197

19° 9o
12/

19° 21/

.bh =12/3"

19° 21/ 3’1

h = 44° 36/ 16" — 25° 27' 16" = 19° ¢

sin.

8sec.

sin,

sin.

3.54962
9.78873
0.00064 3° 7197
3.33809 46/ 32"
9.51593 3° 53' 517
2.85492 46’ 30"
9.52027 3° 53’ 49
2.85926
—2' 20"
3D = 44'10"

3.54962
cos. 9.89691
cos. 9.99936

3.44589

cos. 9.99899

3.44552

19° 15/

8.550
sin. 9.789

sin. 8.831

cos. 9.975

2.145

9. Find the moon’s parallax in latitude and Mbngitude, when the
horizontal parallax is 60’ 6”.2 ; her latitude 1° 30’ 12" N, her Iongi-'
tude 130° 17/; the altitude of the nonagesimal 85° 14/, its longitude
125° 17/, the latitude of the place 46° 11/ 28”.4 N.

Ans.

Parallax in longitude — 5/ 18"

Parallax in latitude

= 4/ 30".5.

10. Calculate the parts of Table XLIV, when the argument of the
first part is 3* 19° — 109°, that of the second 12”.4, the moon’s
true latitude 1° 20’ N., the moon’s parallax in latitude 50/, the sum
of the three first parts 13", and the moon’s horizontal semidiameter

14/ 50."
Solution.

8/.1845 sin. 109° — 7/.74 — Part I.

Part II =

(127.4)2
960"

0”.16.

Part III — 960" [sin. 50 tang. 1° 20’ — 1 4~ cos. 50']

= 960" [sin. 50’ tang. 1° 20’ — 2 sin.2 25']
= 960" [0.00023] = 0.22.

27
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80’ 50" X 110" 13" % 30.83 X 1.17
— — 18" T A Y e
Part IV= — 13" X 256/ = 956

= — 1/.83.
|
11. Calculate the parts of Table XLIV, when the argument of the
first part is 2¢ 16°, that of the second 15”.5, the moon’s true latitude
8° 8., the moon’s parallax in latitude 30/, the sum of the first three
parts 11/, and the moon’s horizontal semidiameter 15’ 20,

Ans. Part I = 77.94

Part II = 0 .25

Part III—=—0 .48

Part IV=—0 .90

12. Calculate the number of Table XV, when the altitude is
45°.
Ans. 117,

18. Calculate the augmentation of the moon’s semidizmeter,
in Example 8, when the horizontal semidiameter is 16’ 50/,

Solution. Part I = 6".87 4 2'.58 = 9".45
Part II = 0 .09
Part IIT = — 0.75
’ sum — 8.79
Part IV = 0 .92

augmentation — 9/.71

14. Calculate the augmentation of the moon’s semidiameter, in
‘Example 9, when the horizontal semidiameter is 15/ 30",

Ans. 15".54.

15. Calculate the moon’s parallax in right ascension and declina-
nation and her augmented semidiameter, for the Cambridge Observa-
tory, when her hour angle is 57° 46/ 48", declination 21° 42/ 55" S.,
and horizontal parallax 61/ 16”.9.
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Solution.
P — thereduced parallax — 61’/ 16”.9 — 5.6 = 61/11".3 = 3671".3
90° — B = reduced latitude — 42° 22/ 48" — 11’ 26/ = 42° 11’ 22

P 3.66482 h= 57° 46/ 48"
sin. B 9.86978 33h 20 48 tang. B. 0.04268
sec. D 0.03197 h-+%38h 58 7' 36" cos. 9.72268
k 3.46657 3.46657 tang. § 9.76536
h cos. 9.72687 sin. 9.92737 6= 30° 13 30"
n 3.1934; corr. 330 D = —21° 42’ 55"
sec. 3 Rk ) 3 - 6= 8° 30 35"
8h = 2495".8 3.39721 sin. § 9.70191
o tang. 9.17500 sec. 0.00481
' tang. (k43 81%) 0.20635
N c:s. 9.88863 tang. 9.91307
A . tang. 9.06363 sin. 9.06074
A cos. 9.99711 P 38.56482
P 38.56482 - n' 2.62556
n’ corr. ‘ 89 . 1
sec. § D 6 . hor.par. 8.36548
8 D—2827".4 3.45139 const. 9.43537

8=1004".0 3.00179

16. Calculate the moon’s parallax in right ascension and declination
and her augmented semidiameter, for Providence, whef her hour
angle is 58° 0’ 18", declination 21° 42/ 52" 8., and horizontal paral-
lax 61/ 16".2. '

The latitude of Providence is 41° 49’ 22" N,

Ans. The parallax in right ascension — 2523".2
“  «  declination .= 2803".9

The augmented semidiameter — 1003".8
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17. Calculate the moon’s parallax in right ascension and declina-
nation and her augmented semidiameter, for Mount Joy Obsérvatory,
Portland, when her hour angle is 58° 15’ 54", declination 21° 42/ 52"
S., and horizontal parallax 61’ 16".2.

The latitude of Mount Joy Observatory is 43° 39’ 52" N.

Ans. The parallax in right ascension — 2426".0

declination — 2864".2

The augmented semidiameter — 1003".8

18. Calculate the moon’s parallax in right ascension and decli-
nation and her augmented semidiameter, for Mr. Bond’s observatory,
in Dorchester, when her hour angle is 60° 38’ 34/, declination
22° 42' 8” N., and horizontal parallax 56/ 14/.4.

The latitude of Mr. Bond’s observatory is 42° 19/ 10",
Ans. The parallax in right ascension — 2375".3 - -

. o ¢ ~declination = 1632".9

The augmented semidiameter — 928".5




§ 151.] ECLIPSES. ‘ 317

CHAPTER XII.

ECLIPSES.

149. A 8S0LAR eclipse is an obscuration of the sun, arising
from the moon’s coming between the sun and the earth; and
it occurs therefore at the time of new moon. ¢

It is central to an observer when the centre of the moon
passes over the sun’s centre. It is ¢ofal when the moon’s
apparent disc is larger than the sun’s and totally hides the
sun. It is annular when the moon’s apparent disc is smaller
than the sun’s, but is wholly projected upon the sun’s disc.

A lunar eclipse is an obscuration of the moon by the earth’s
shadow ; and it occurs at the time of full moon.

The phase of an eclipse is its state as to magnitude.

150. An oceultation of a star or planet is an eclipse of this
star or planet by the moon.

A transit of Venus or Mercury is an eclipse of the sun by
one of these planets.

151. Problem. T) find when a solar eclipse will take place.

Solution. Let O (fig. 57) be the sun’s centre, and O, the moon’s
centre at the time of new moon, and let

B = the latitude of the moon at new moon = 0O,.

Let ON be the ecliptic, and IV the moon’s node, so that IVO, is the
moon’s path. Let

NN = the inclination of the moon’s orbit to the ecliptic ;

Draw OP perpendicular to the moon’s orbit, and 'if, when the moon
27+
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arrives at P, the sun arrives at O, the least distance of the centres
of sun and moon is nearly equal to O'P. Now the triangle OPO,
gives
OP = B cos. N =8 — (1 —cos. N)
=pf—2Psin23 N=f— 3} fBsin2 N;

and if
n = rati6 of sun’s mean motion to moon’s = % nearly, (798)
we have 00=nX0,P=n B sin. IN.

Draw O'B perpendicular to OP, and we have nearly
OB= OP — O'P = 00’ sin. N
*=nfsin.2 N.
Hence
OP=8—(3+n)Bsin2 N=8— Bsin2 N. (799)
The apparent distance of the centres of the sun and moon is
affected by parallax, and the true distance is diminished as much as
possible for that observer who sees the sun and moon in the horizon

and OP vertical, in which case the diminution is equal to the differ-
ence of the horizontal parallaxes of the sun and moon. Let, then,

7 = the moon’s horizontal parallax,
IT = the sun’s horizontal parallax,
4 = the apparent distance of the centres,
we have ’
the least apparent dist. = OP — (7 — II)
: =B— 7 Bsin? N—r41IL (800)
Now, an eclipse will take place, when this least’ apparent distance

of the centres is less than the sum of the semidiameters of the sun
and moon. Thus, let

s — the moon’s semidiameter,

¢ — the sun’s semidiameter.
In case of an eclipse, we must have

B— 1 Bsin2 N—a4II<s+o, (801)
or L n—I+ s+ e+ {5 Bsin3 N (802)
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152. Corollary. - We have, by observation,

the greatest value of # — 61’ 32”,
the least value = 52/ 50",
the mean value = - 57" 117,
the greatest value of IT— 9/,
the least value = 8/,
the greatest value of 8§ = 16/ 46/,
the least value = 14’24/,
the mean value = 15'85",
the greatest valueof ¢ = 16/ 18",
the least value = 15 45",
the mean value = 16 14,

the greatest value of IN = 5°20/ 6,
the least value —=4° 57 22/,
the mean value =5° 8’44/,
Now, in the last term of (802) we may put for IV its mean value

and for § its mean value obtained by supposing )t equal to the pre=
ceding terms, which gives

B=rmn—1II+ s+ = 88 38" = 5318 (803)
1 B = 3102"
sin, IV = sin. 5° 8/ 44" = 0.09, sm’N-— 0.008
vz B sin2 N = 25", (804)

whence (802) becomes
B n—II+4 s+ o4 25 (805)

153. Corollary. If, in (805), the greatest values of =, s, and o,
and the least value of IT are substituted, the limit

B < 1° 34/ 52

i$ the greatest limit of the moon’s latitude at the time of new moon
for which an eclipse can oceur.
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154, Corollary. If, in (805), the least values of z, s, and ¢, and
the greatest value of IT are substituted, the limit

B < 1°28 15"

is the least limit of the moon’s latitude at the time of new moon for

which an eclipse can fail to occur.
’

155. Problem. To find when a lunar eclipse will happen.

Solution. The solution is the same as in § 151, except that the
semidiameter of the earth’s shadow at the distance of the moon is to
be substituted for that of the sun; and the change in the position
and apparent magnitude of the moon from parallax may be neglected,
because when the earth’s shadow falls upon the moon, the moon is
eclipsed to all who can see it. Now if S (fig. 63) is the sun, E the
earth, GF the semidiameter of the earth’s shadow at the moon, w
have ’

the app. semi. = FEG — EFL — EJF = n — EIF
= n — (KES — EKI)
=n—oc+II, .
or rather, this would be the apparent semidiameter, if it were not for
the earth’s atmosphere, which increases the breadth of the shadow
about glth part; se that
the app. semidiam. = §} (w — ¢ 4 II),
and therefore, in order that an eclipse must happen, we must have,
by (802), :
B = the latitude at the time of full moon,

B< 8§+ T —0)+ s+ 7 Bein2 N.  (806)
156. Corollary.l In the last term of (806), we may put for IV its

mean value and for 8 its mean value obtained by supposing it equal
to the preceding terms, which gives

B = 57 35/ == 3455", {%; B = 2015"
sin2 N = 0.008, {; B sin3 N = 16/,
whence (806) becomes

By (e4+ MM —0)+s4 16" (807)
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157. Corollary. If, in (807), the greatest values of , IT, and s
are substituted, and the least value of ¢, the limit

B < 63’ 45"

is the greatest limit of the moon’s latitude at the time of full moon
for which an eclipse can occur.

158. Corollary. 1If, in (807), the least values of =, II, and s are
substituted, and the greatest value of g, the limit

B <51 57"

is the least limit at which an eclipse can fail to occur.

159. Problem. To calculate when a given phase of a lunar
eclipse will occur.

Solution. If, in fig. 57, NPO, is the path of the moon relatively
to the centre of the earth’s shadow which is at O, the required com-
putation consists, simply, in finding the instant when the moon’s
distance from O is that which corresponds to the required phase.
The indefiniteness of the outline of the earth’s shadow renders an
accurate calculation superfluous, and it is sufficient to regard O, ON
as a plane triangle.

160. Corollary. At the beginning or end of the lunar eclipse, we
have .

A — the distance of the centres of the moon and the shadow
=44 (n+M—o) s, \ (808)

"in which the upper sign corresponds to the first and last contacts .
with the shadow, and the lower sign to the beginning and end of the
total phase.

161. Problem. To compute the gemeral circumstances of a
solar eclipse. .

Solution. This problem will be found to subdivide itself naturally
into several others, but the general mode of solution may be de-
veloped in a preliminary view of the whole question. The method
here given is substantially Bessel’s.
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The moon’s shadow upon the earth is the gcometrical intersection
of a right cone which is in contact with the sun and moon, and for
every point within this shadow there is a total eclipse of the sun. If,
. however, this shadow does not reach the earth, there will still be,
within the limits of the umbral cone produced beyond its vertex, an
eclipse of a portion of the sun equal to the apparent size of the
moon, and this dark portion, surrounded by the bright ring of the
uneclipsed portion of the sun, consitutes an annular eclipse. But
there is also an eclipse, beyond the limits of this cone, of all that
portion of the sun which is hidden by the moon, and, therefore, for
every place included within the penumbral cone which is drawn in
contact with the sun and moon, and which has its vertex between
these two bodies ; but this is a partial eclipse.

A plane may now be supposed to be drawn through the earth’s
centre, perpendicular to the line which joins the centres of the sun
and moon. The moon’s shadow and penumbra upon this plane are
concentric circles, and the path of their common centre upon this
plane may be computed and described. Any point of the earth may
be referred to this plane by a line drawn from the vertex of the
cone through the point, and the relative position of the common
intersection of this line with the plane and the moving shadow or .
penumbra of the moon, will show the successive phases of an eclipse
at that point.

It will promote persplcmty to carve the problem into several sub-
divisions.

162. Problem. To find the position of the line which is
drawn through the earth’s centre parallel to the line joining the
centres of the sun and moon.

Solution. In the triangle formed by joining the centres of the sun,
moon, and earth, the angle at the earth is the apparent angular
distance of the sun and moon, and the angle at the sun is the angle
which the required line makes with the line drawn to the sun.

Let y = the angular distance of the sun and moon,
& = the angle at the sun;
r' — the distance of the moon from the earth
r — the distance of the sun;
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we have

rl

\
sin. g = ——sin 7, ' (809)
or on account of the smallness of g
E=,r (810)

Since the line which is drawn from the earth’s centre parallel to
that which joins the centres of the sun and moon is in the plane of
the above triangle, it cuts the surface of the celestial sphere at a
poing (F) which is in the arc of the great circle joining the sun and
moon, and produced on the side of the sun by a distance equal to g.

163. Corollary. By putting

I1 = the sun’s equatorial horizontal parallax
n = the moon’s equatorial horizontal parallax
IT' — the mean value of IT = 8".5776
r/ ’ L]

q=7—

we have the following form in the computation of ¢,

__sin, IT __ sin. I’
T gin.x ~ rsin.z

log. ¢ =1log. sin. IT" — log. r — log. sin. 7
= 5.6189 —log. r — log. sin. (811)

in which # is expressed in units of the sun’s mean distance.

164. Corollary. The right ascénsion and declination of the point
(F) may easily be computed from the sun’s right ascension and

declination, Let
« = the sun’s right ascension
a = the right ascension of F
& — the sun’s declination
d = the declination of F
’ 1= the sun’s longitude
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4, = the (moon’s — sun’s) longitude

B, = the (moon’s — sun’s) latitude

O = the obliquity of the ecliptic '

1 = the angle which y makes with the circle of latitude drawn
through the sun

o — the angle which y makes with the circle of declination drawn
through the sun.

If then (fig. 59) Sis the sun’s place in the ecliptic, M the moon’s
relative place, IV the pole of thé ecliptic, Z that of the equator, we
have

MSN = u, MSZ = o,

MS=y ZN= 0,
tang. u = sin. 4, cot. B, (812)
tang. y — tang. 4, cosec. u, (813)

v I;eing taken between 0° and 90° ; and from these formule u and Y
may be computed, and the substitution of (813) in (809) gives by
(811) . » : ,
& = q sin. y cosec. 1. (814)
The sun’s place in the ecliptic gives
cosin. I =cot. O . tang. ZSN = cot. O tang. (u— )

tang. (¥ — ®) = cos. [ tang. O, (815)

from which ¥ — o may be computed, and thence w. We then have
obviously, taking o of the same sign as 4,,

§—d =g cos. o, (816)

o —a =g sin. o sec. 8. (817)

165. Problem. To find the path of the centre of the moon’s
shadow upon the plane which passes through the earth’s centre
perpendicular to the line which joins the centres of the sun and
moon.

Solution. The angle which the line drawn from the moon to the
earth makes with that drawn to the centre of the shadow, which is
simply the continuation of the line drawn from the sun,is g 4 7.
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Hence if g is the distance from the earth’s centre to the centre of
the shadow, we have ’

o=1'sin. (g+7)= —— sin. (g+ 1), (818)

sin. 7

in which 7’ and g are expressed in units of the earth’s equatorial
radius.

The direction of the line p ,may be conveniently referred to the
intersection of the plane of reference with the circle of declination
drawn through the earth’s centre and the point (F). Let

«’ = the angle which ¢ makes with the line of intersection,

and ' is evidently the inclination of the arc g to the circle of decli-
nation drawn through (F). It differs, therefore, very little from w,
and the difference, may be found from the triangle formed with g and
the circles of declination passing through (F') and the sun to be

o — o' = g sin.  tan. § = (¢ — a) sin. 3. (819)

166. Corollary. Let z be the distance towards the east of the
centre of the shadow from the above line of intersection, and y
the elevation towards the north of the foot of the perpendicular let
fall from the centre of the shadow upon this line of intersection
above the earth’s centre, and we have

z = g sin. o/, (820)
Yy = o cos. o', (821)

167. Problem. To find the umbral and penumbral radii upon
the plane of reference of the preceding problem.
Solution. Either of these radii is plainly equal to the product of

the distance of the vertex of the cone from the plane by the tangent
of the angle of the cone. If then

H— the apparent semidiameter of the sun at his mean distance
=959'.788 ’
K = the ratio of the moon’s radius to that of the earth
=0.27227
f = the angle of the cone
28
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S = the distance of the vertex of the cone from the piane of reference
s' — the distance of the centres of the sun and moon,

we have, since g is very small,

-8/ =171 cos. g— 17/ cos. (g +7)
=r—r'cos. (g+7)
=r[1—gqcos. (g+7)] (822)
the sun’s radius — sin. H
the earth’s radius = sin, IT
the ‘moon’s radius = K sin. IT

sin. H & K sin. IT

sl

sin. f= , (823)
in which the upper sign corresponds to the umbral and the lower to
the penumbral cone and s’ is expressed in units of the sun’s mean
distance ; we have, moreover, by taking the earth’s equatorial radius
as the unit,

z — the moon’s distance from the plane of reference

=1’ cos. = . COS. 24
=r'cos.(g+7)= - cos.(g+7) (824)
K
S==z=F Wi 7 (825)
¢’ = the radius of the shadow
= Stan. f
=z tan. f F K sec. f. (826)
168. Corollary. We have in (823)
log. (sin. H— K sin. IT) = 7.66669 (827)
log. (sin. H+- K sin. IT) = 7.66880, (828)

169. Corollary. For any plane which is drawn parallel to the
plane of reference, and at a distance z/ from it towards the vertex of
the cone, the radius of the shadow will be diminished by

2’ tan. f, (829)
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and the relative position of the centre of the shadow and of the point
of intersection with the line drawn through the centre of the earth
parallel to the axis of the cone will remain unchanged.

170. Problem. To find the position of any point of the
earth’s surface with reference to the axis of the shadow.

Solution. Let (fig. 35) NESW represent the plane of reference
drawn through the centre of the earth, P the north pole, Z the point
in which the line drawn from the earth’s centre parallel to the axis of
the cone cuts the surface, and B the place. Let

¢ = the latitude of the place,
¢’ = its reduced latitude,
A = its west longitude,
R —its distance from the earth’s centre,
. = BPC,
- d=PN,

and let now that plane of reference be adopted which is drawn
through B parallel to the original plane. The line of intersection
of this plarie with the plane of the meridian NZS corresponds to the
line VS in the original plane. If BC is drawn perpendicular to
NZS, we have

z, = the distance of B towards the east from this line
= R sin. BC
= R cos. ¢’ sin. p (830)
y, = the distance by which the foot of the perpendicular from
B upon this line is north of the intersection of the
plane with the line from the centre to Z
= R cos. BN = Rsin. ¢’ cos. d— R cos. ¢’ sin. d cos, g, (831)
z, = the height of B above the original plane ’

= R cos. BZ = R sin. ¢’ sin. d 4~ R cos. ¢’ cos. d cos. y;. (832)

171. Corollary. The radius of the shadow or penumbra for thi
plane is :

¢ % tan. f, (833)
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the upper sign being for the shadow in a total eclipse, and the lower
for the other cases.

172. Corollary. The distance 4 of the place B from the axis of
the shadow is obviously given by the equation

£= (o —z )2+ (y— 3y (834)

173. Problem. To investigate the condition of the commence-
ment or termination of an eclipse.

Solution. At either of these phases of an eclipse, the distance
4 is exactly equal to the radius of the shadow, or by (833 and
834)

(¢ &z tan. [P = (c— &) +(y — )% (835)
or by transposition, if we put
a=r—2=,

@= (¢ & 7 tan. f)2 — (y — y)2 (836)

The sccond member of this equation, being the difference of two
squares, may be separated into the two factors

b=(¢' = tan. )+ (¥ — %) (837)
c=(0'x % tan. f) — (y — u1), (838)
or by (831 and 832)
b = ¢’ 4 y— R sin. ¢’ (cos. d =F sin. d tan. f)
~+ R cos. ¢’ cos. p, (sin. d 4= cos. d tan. f) . (839)
¢=¢ —y-+ Rsin. ¢’ (cos. d 4 sin. d tan. f)
— R cos. ¢’ cos. g, (sin. d 7 cos. d tan. f). (840)

Hence, if we put

A=z

B=y¢'+y . (841)
C=—c¢'+vy (842)
'E =cos. d + sin. d tan. f= cos. (d —f) sec. f (843)
F = cos. d —sin. d tan. f= cos. (d 1) sec. f (844)
G = sin. d — cos. d tan. f = sin. (d — f) sec. f (845)

H = sin. d 4 cos. d tan. f=sin. (d 4 f) sec. f, (846)
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we have, by a modification of Bessel's formule suggested by Mr.
Truman Henry Safford, Jr., for the penumbra

b=  B— ERsin. ¢’ 4 GR cos. ¢’ cos. g, (847)
¢=— C+ FRsin. ¢’ — HR cos. ¢’ cos. p,, (848)

and, at the time of commencement or termination,
a®=bec. (849)

The formule for the shadow in a total eclipse are obtained from
(847 and 848) by interchanging E with F and G with H, or if we
make ¢’ negative in this case, the formulee may remain unchanged.

174. The values of 4, B, C, E, F, G, and H are independent of
the place; and the * American Ephemeris and Nautical Almanac”
gives their values for every eclipse, computed at intervals of five
minutes of time during the period of the eclipse and arranged in a
tabular form.

The value of R may be found from (750).

The value of y, changes for different places with the longitude ;
so that if ' '

p = the value of y, for the first meridian,

= R. A. of the first meridian — R. A. of the point (F) of § 162,
we have :
' pm=p—1i; (850)
and the value of pis given in the Ephemeris at intervals of five
minutes.

175. Problem. To find the time of the beginning or ending
of an eclipse at any place. ‘

Solution. If for any time the value of bcis found to differ but
little from a2, the instant of the required phase may be computed
by the following process of approximation. Let for the assumed
time :

m2=">c.
Let also
A’ — the change of 4 in one sccond
B’ = that of B
C' —that of C

p' = that of u, expressad, asin (16), in terms of its arc in
the circle of which the radius is unity.
28+ ’
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The changes of ¢/, E, F, G and H are so small that they may be
neglected, and B’ may for the present be regarded as equal to C'.
Hence, if a', ¥/, ¢/, and m’ are the changes of a, b, ¢, and m in one
second, we have very nearly

= B —GRcos. ¢'sin. , . o (851)
¢’ =— B’'+4 HR cos. ¢ sin. y, . ' (852)
2mm' =bc' 4 ¢b' = (¢ —b) B'—p' (G c— Hb) Rcos. ¢’ sin.pu, (853)
a' = A'— R cos. ¢’ cos. p, . p'. (854)

Owing to the smallness of tan. f we may by (845) and (846) put
in (853) .
G = H=s5in. d, (855)

whence (853) becomes

2 mm' = (c— b) (B'— p' R cos. ¢’ sin. d sin. pu,) = ¥’ (¢ — b). (856) .

If now we put

c m
tan.i\P:;:T, (857)
we have
c2—mb =3 tan. 3 v — L cot. 3 ¥
sin2 3 ¢ —cos2 1 ¢ cos. ¢ y—1y,
= gsin jveos i — smg— V=g
m' = —cot. ¥ (B'— ' R cos. ¢’ sin. d sin p,)

= —"¥ cot. Y. (858)

The change of m —a in one second is then m’— a/, so that the
number of seconds in which it will decrease by the whole amount of
difference m — a is

m—a m—a

t = = - .
a'— m' a' 4 &' cot.

(855)

176. Corollary. Tt is easy to see that is the angle which the
line joining the centre of the shadow with the place makes with the
line of reference ; it is nearly the angle from the north point of the

sun measured towards the east to the point of contact at the end of the

eclipse.
177. It is sufficiently aceurate in this solution to put
log. ' = 5.8617 = log. sin. 15", (860)
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The values of A/, B/, and C’, multiplied by 1¢00000, afe given
in the American Ephemeris at intervals of fifteen minutes of time.

The value of p’ there assumed is also 1000000 times the true
value. Hence 1000000 must be multiplied into the numerator of
(859), if a/, ¥', and m/' are calculated from the Ephemeris.

178. Problem. To find the limits within which the eclipse is
seen in the horizon.

Solution. In this case the place is nearlyin the plane of reference
which passes through the earth’s centre, and the deviation from this
plane may be neglected without much error. If then (fig. 62) Sis
the earth’s centre, AB the path of the centre of the shadow, M the
position of the centre at the instant when the eclipse is seen in the
horizon at m, the sides of the triangle MS m are

e=SM,¢=Mm, R= Sm,
Let =M Sm,
and we have by (152)

sin.gq:iv< 9—"+4Rg(lg +("fR)) (861)

in the first computation of which we may suppose R to be the earth’s
mean radius, or that for the latitude of 45°. :
If, then, SC is the line of reference already adopted, we have
CSM = o’
CSm=ow Lq9=19, (862)
in which both signs must be used for the two different solutions of
the problem.

If now in fig. 35, L represents the place m of fig. 62, we have by
the right triangle ZNP

sin. ' =  cos. 7’ cos. d (863)
cot. p; = — cot. ¢’ sin. d (864)
A=p—u. (865)

179. Corollary. The beginning or ending of the eclipse upon the
earth corresponds to the cascs of

o0=¢ =+ R,n=0. (866)
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180> Problem. To find the northern and southern limits of
the eclipse upon the earth.

Solution. For this problem, it is accurate enough to regard the
shadow upon the primitive plane of reference as being of uniform
width and the path of its centre as a straight line. If fig. 62 repre-
sents a plane of reference at any height

42— R sin. J, (867)
above the original plane, and if AB is one of the bounding lines of

the shadow which is drawn parallel to the path of the centre at the
distance

¢—ztan.f (868)
from this path. If FS is the perpendicular let fall upon AB, let
P'=FS
1= FSC,
FSC being counted from F to C, we have
tan. l: T ) (869)
P — the perpendicular upon the path
= p cos. (o' 4 1) (870)
P =P—¢ +ztan. f. (871)
Let CSB =1,
and we have
SB=Rcos. {
n_ P
CO0S. (‘ + 1]) = m. (872)
We have, then, (fig. 35)
BZP =+
BL=¢

whence the triangle BZP gives by Napier’s analogies

tan.  (B—up,) =sin. § ({—d) sec. § (54 d)cot. 394 (873)
tan. } (B —u;) = sin. § ({— d) cosec. 3 ({4 d) cot. 3 5/ (874)
cos, @' = sin. 5’ cos. { cosec. pu;. (875)
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The value of u may be found from the value of A by inspection of
the table, and the value of 4 is given by the equation

A = R cos. [ sin. 5/ — (o' —z tan. f) sin. %. (876)
This solution may be corrected by introducing the actual motion
of the shadow’s centre at the instant and the motion of the point upon
the earth’s surface, which is effected by substituting in (869) for B’
and A’ the motion of y — y, and z— z,, by which it becomes
b
tan. y —= - (877)

/

181. Corollary. The phenomena of the central eclipse may be
determined by putting

=0 (878)

in the various equations. /

182. Problem. To find the instant and amount of greatest
obscuration.

Solution. The instant of greatest obscuration must be when the
motion of the axis of the shadow and of the place are neither
towards nor from each other, but in parallel lines. In this case the
relative motion of the centre of the shadow on the plane of reference
is perpendicular to the line drawn from the place, or in other words
we then have '

4 :——\l/.. ' (879)

Now when y has been found for a time near that of greatest con-
junction, it changes so slowly, that it is only necessary to find when
— v has this same value.

But if for any time we have — ¢ different from y, and denote by
P the perpendicular upon the relative path of the centre, we have

P =mcos. (Y41, (880)

and the distance by which the centre must approach the line of
reference before it arrives at the point of nearest approach is

m sin. ¢ 4 m cos. (Y 4y) sin. y =m sin. (Y 4-y) cos. y.  (881)
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Hence the interval of time required for this approach is

=" sin. (\l;l—f- x) cos. x. (882)

The amount of obscuration is proportioned to the distance by
which the place is immersed within the penumbra, and is denoted
by 12 digits when it is total; that is, when it is immersed by the
distance

o' for penumbra — g’ for shadow —= M. (883)
‘When it is therefore immersed, as in this case, by the quantity
o' for penumbra — P — N, (884)
we have A
n = the number of digits eclipsed
N

=12.5 (885)

183. Corollary. In the case of an annular eclipse ¢’ in the second
term of M must be taken negatively.

184. Corollary. In the case of the first or last instant of contact,
when

m — o' for penumbra, (886)
we have
N=m[l—cos. (¥4y)]=2msin23 ¥4y - (887)
and by putting
¢’ for shadow

= ' for penumbra (888)
we have
24 <9
n=-T_—, sin 3 W41 (889)

185. Corollary. In the case of occultations we have
=0
o' =.27227. (890)
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186. Problem. To compute the longitude of a place from an
observed eclipse. ‘

Solution. By means of an assumed longitude find the approxi-
mate Greenwich time of the observation; and compute the eclipse
for this time by art. 175. The principal effect of an error in the
assumed longitude is to change the Greenwich time, and does not
materially affect the value of y,. 1If, then, in computing the correction
of the time, u’is supposed to be zero, the correction obtained becomes
one of longitude, to be added to the western longitude.

187. Problem. To compute the effect of an increase of ome
second of arc in the moon’s relative longitude upon the computed
time of an eclipse. ’

Solution. By this change in longitude, the moon’s shadow is
carried back upon the plane of reference by a quantity
8 = 7/ 8in. 1/,

in a direction which is inclined by an angle 90° — (u — @) to the
line of reference, so that

A and a are decreased by r/ sin. 1” cos. (4 — ),
and '

y, B, and C are increased by r' sin. 1" sin. (u— ).
Hence m? will be increased by

(¢ — B) ' sin. 17,

and m by
c—b , . . .
oo T sin 1" = — cot. ¢y 7/ sin. 1" sin. (4 — o), (891)
and m— a by
— [cot. ¥ sin. (4 — w) -+ cos. (u— )] #/ sin. 1/
=— ﬂ%"l 7 sin. 17, (892)

and the corresponding change of time is found from (859).
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188. Problem. To compute the effect of an increase of one
second in the moon’s relative latitude upon the computed time

of an eclipse.
Solution. By this increase of latitude the values of 4 and a are
increased by
— 7! gin. 1" sin. (v — w),
and y, B and C are increased by
r' sin, 1/ cos. (v — ).
" Hence m is increased by
— cot. ¢ 7' sin. 1” cos. (¥ — ),
and m — a by
— cos. (Y + u — ) cosec. ¢ 7 sin. 17, (893)
and the change of time is found by (859).

189. Problem. To compute the effect of an tncrease in the
moon’s semidiameter upon the time of an eclipse.

Solution. An increase of §s in the moon’s sémidiameter in-
creases g’ for the total shadow and penumbra, and decreases it for
the annular phase by about this same amount. Hence m? is in-
creased by

(b+4c)ds

and m is increased by

b+cﬁs:(% tan. ¥ ¢ + % cot. $¢) 8 s = cosec. \l/és, (894)

2m

and the change of the time is computed by (859).

190. Problem. To compute the effect of an increase of the
moon’s parallax upon the time of an eclipse.

Solution. By an increase of a fractional part § # in the moon’s
parallax, the quantities x, y, z are proportionally diminished, the
moon’s distance from the earth is propcrtionally diminished, and, to
preserve the same apparent semidiameter of the moon, K must be
proportionally diminished, and therefore also g'. '
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Hence B is diminished by

('+9) 3
C is diminished by
(y—o)dm
m? is diminished by
e
cle'+y)dntd(—y)dm (895)
m is diminished by
c+d c—b _ Ca 896
T d3n4 o y 8 m = cosec. Y o' § w— cot. Yy 3 n, (896)

and a is diminished by
zdm
Hence m — a is diminished by

cosec. Yo' mw—cot. Y ydnw—z8m
= cosec. ¥ ¢’ 8 x—p cot. Y cos. o' 8 w—g sin. o’ 3
= cosec. ¥ 8 # [¢' — g cos. (Y —w')]. (897)
The effect upon the time is computed by (859).

191. ExXAMPLES.

1. In the solar eclipse of July 28, 1851, to find the position of
the line which is drawn through the earth’s centre parallel to the
line joining the centres of the sun and moon.

Solution. The following data ase taken from the Nautical Alma-
nac and Airy’s Lunar Tables with Longstreth’s corrections.

Greenw. D’'s—(Q’s Ps—Q’s ©’slong. =1

m.s. t. long. =1, lat. =g,
0 —1°82 55".6 0°37' 16".0 124° 45/ 14.2
1 —05824.0 0 40 39 2 124 47 87 7
2 —02351.0 044 2 .2 124 50 1 .2
3 0 10 43 4 04724 9 124 52 24 .6
4 045 19 .1 0 50 47 4 124 54 48 .1
5 119 56 .1 054 9.7° 12457 11.6

29
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Greenw. OsR. A. @©’s Dec. D’s hor. par.
m. 8. t. —a =3 =n
o 127° 6 5.0 19° 5 2477 60’ 30".6
1 127 832 .6 19 450 2 60 31 .7
2 12711 0.0 19 415 .7 60 32 .8
3 12713273 ., 19 341 .2 60 33 .8
4 127 15 54 .6 19 3 6.6 60 34 8
5 127 18 21 8 19 232 .1 60 35 .9.
O = obliquity of the ecliptic =23°27' 27".1
log. r =log. of dist. from sun to earth — 0.00657
sideral time of mean noon =822 1327
q is thus compntled for 0* from (811)
const, 5.6189
log. r 0.0066
log. sin. 7 8.2455
log. ¢ 7.3668
a and d are found from (812 - 817)
. 1, sin. 8.43181. tan. 8.43197.
1 cot. 1.96494
u tan. 0.39675, cosec. 0.03240
y= 1°4007"2 tan. 8.46437
u = — 68° 8’ 40" y cos. 9.99982
q 7.3668
cosec. 17 5.3144
g= 147.0 g 1.1454
g+r= 1° 40’ 2172 cos. I 9.75599.
tan. O 9.63742

t—o=-—13°53'38” tan. 9.39333
0=—54°15 2" sin. 9.90933.
cos. w 9.76659 sec, 8 0.02457
g 1.1454 1.1454

8 —d 0.9120 a—a 1.0793.
d—d 8’2 a—a —12"0
§=19°5'24".T7 a=127°6' 5".0
d=19°5'16"5 a=127°6'17".0
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Similar computations for the other dates give

a d © g+
127° 61770 19°5/16".5 —54°15 2 100’ 21".2
127 889.5 194428 —4115 5 7119.2
12711 1.8 194 9.0 —1431 4 5011.8
127 1324.0 19 3 35.1 426 40 36 48 43 .6
127 1546.3 193 1.2 4554110 6813 .5
12718 8.5 19227.6 4695 6 96 46 .4

e ]
.

u»wn-—ggm

2. In the solar eclipse of July 28, 1851, to find the path of the
centre of the moon’s shadow upon the plane which passes through the
earth’s centre perpendicular to the line which joins the centres of
the sun and moon.

Solution. We have for 0* by (818 - 821)

g 1.1454
sin, o 9.90933.
. tan. 8 9.53919
0 —0 = —3"9 o — o' 0.5939
o' =—54° 14' 58"  cosec. # 1.75447
sin. (7 4 g) 8.46520

e 0.21967

sin. o’ 9.90933.

cos. ' 9.76661

z — — 1.34586 0.12900.
y= 96890 9.98628

The same computation for the other dates gives

Gr. m. s. t. z v
{1 — 1.34586 0.96890
1 —0.77694 0.88585
2 —0.20786 0.80260
3 -+ 0.36121 0.71897
4 0.93018 - 0.63487
5 1.49895 0.55048
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3. In the solar eclipse of July 28, 1851, to find the umbral and
penumbral radii upon the plane of reference of the preceding ex-
ample.

Solution. Equations (822 —828) give for 0*

g '7.3668
cos. (g47) 9.99982

geos. (g47) = .002326 7.3666
1— g cos. (g + 7) = 997674 9.99899
r 0.00657
¢ 0.00556
log. (sin. H— K sin. IT) 7.66669
log. (sin. H+ K sin. IT) 7.66880
for shadow sin. f= tan. f 7.66113

for penumbra sin. f—tan. f 7.66324 °

cosec. 7 1.75447
cos. (g4 7) 9.99982

z 175429
for shadow ztan. f = 26027 9.41542
for penumbra  z tan. f = .26154 9.41753
K = Ksec.f = 27227
for shadow o = .01200
for penumbra e = .53381
Similar computations give for the other dates
Gr. m. s. t. ¢’ for shadow. ¢’ for penumbra.
o . 0.01200 0.53381
1 0.01203 0.53378
2 . 0.01207 0.53373
3 0.01214 ) 0.53366
4 0.01225 0.53356
5 0.01237 0.53343

f does not perceptibly change its values.
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4. To find the elements for determining the beginning or end of
the solar eclipse of July 28, 1851, for any place.

Solution. The value of A — z is already determined. The values
of B, C, E, F, G and H are computed for 0* from equations (841-
846).

For shadow For penumbra.
y 0.96890 0.96890
e —0.01200 0.53381
B 0.95670 1.50271
c 0.98090 0.43509
d4f  19°2l' 17.8 19° 21’ 6".4
Cd—f 18° 49’ 31'.2 18° 49/ 26".6
sec. f © 0.00000 0.00000
log. E 9.97612 9.97613
log. F 9.97475 9.97475
log. G 9.50878 9.50874
log. H 9.52028 9.52031

Right ascension of Greenwich meridian 0* = 8 22~ 13-.27
= 125°83 19”0
Right ascension of (F) —=aof Ex. 1= 127 6 17 0

p= — 13258 0

These values may be computed in the same way for other dates,
and being interpolated by differences for every five minutes, may be
arranged in a table as follows.

For penumbra
Greenw, log. E log.® log.G log. H
m. s t. 4 B C 997 9.97 950 9.5 »
0 Om —1.84686 1.50271 .48509 618 475 874 2081 —1°382 58”.0

6 «-1.20846 1.49580 .42818 13 76 872 2029 0 17 67 .8
10 —1.25104 1.48889 42127 18 76 871 2027 +0 67 2 .8
16 ~—1.20863 1.48197 .41486 18 76 869 2026 212 8.8
20 —1.15622 1.47606 .40744 14 76 867 2024 8 271 8.7
25 —1.10881 1.46813 .40052 14 76 866 2022 4 42 4 .1
80 —1.06140 1.46121 .89860 14 76 864 2021 6567 4.9

29+
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4
—1.01399
—0.96658
—0.91917
—0.87176
—0.82435
—0.77694
—0.72952
—0.68210
—0.63468
—0.58726
—0.53983
—0.49241

© —0.44499

—0.397566
—0.35014
—0.30272
—0.25529
—0.20786
—0.16043
—0.11300
—0.08568
—0.01816
+0.02927
0.07669
0.12411
0.17168
0.218956
0.26637
0.31879
0.36121
0.40863
0.4560&
0.50347
0.56088

SPHERICAL ASTROXOMY.

B
1.45429

1.44737
1.44044
1.43351
1.42658
1.41965
1.41272
1.40578
1.39884
1.39190
1.38496
1.37

1.37108
1.36413
1.36718
1.85023
1.34328
1.33633
1.32987
1.82241
1.81545
1.30848
1.80151
1.29454
1.28767
1.28059
1.27861
1.26663
1.25965
1.256267
1.24568
1.23868
1.28169
1.22467

log. E log. P

C 997 997
38668 614 476
387976 15 76
87284 16 77
86592 15 %7
35900 16 77
85207 16 77
34514 16 77
83821 16 77
83128 17 78
82435 17 78
81742 17 98
31049 17 78
80356 17 78
29668 17 78
28969 18 79
28276 18 79
27581 18 79
.26887 18 79
26192 18 79
25497 18 79
24802 19 80
24106 19 80
23410 19 80
22714 19 80
22018 19 81
21828 19 81
20624 20 81
19927 20 81
19229 20 82
18581 20 82
17832 20 82
17188 20 82
J6424 21 83

16734 621 488

og. G
9.50

863
861
859
857
855
853
851
850
848
846
845
843
842
840
838
837
835
833
831
830
828
826
825
828
821
820
818
816
814
812
810

807

log. B
9.5

2019
2017
2016
2014
2012
2011

2007

2001
1999
1997
1996
1994
1992
1990
1988
1987
1985
1988
1982
1980
1978
1977
1976
1978
1972
1970
1968
1967
1966
1963

o ® ® ®» i ©

oo o = o
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Greenw.

m. 8. t. A
8h 256m 0.59830
30 0.64571
86 0.69312
40 0.74064
45 0.78796
650 0.83586
56 0.88277
4 0 0.93018
5 0.97768
10 1.02498
15 1.07288
20 111978
26 1.16718
80 1.21458
86 1.26198
40 1.80987
45 1.86687
50 1.40416
b6 1.45166
50 1.49896
Gr. m. 8. t.
1*25™
30
35 .
40
45
50
b5
2 0
5

B

1.21764

1.21061
1.20858
1.19666
1.18952
1.18249
1.17646
1.16848
1.16140
1.15486

1.14782
1.14028
1.18824
1.12620
1.11916
111211
1.10606
1.09801
1.09096

1.08891

Al
BI

ECLIPSES.

Yog. E log. I log. G
c 9.97 9.97 9.60

15084 621 488
14384 21
18634 21
.12934
12284
11588
.10882
10181
.09430
.08729
08027
.07325
.06628
05921
.05219
04517
08814
08111
.02408
017056 625 487

= 0.0001580
= — 0.0000232

RRBRR

233223822 R

ERRRRPYBYB8EBIR

For shadow.
B
83914
83220
82526
81832
81138
.80443
79748
79053
18358

804
802
800
799
791
795
798
791
789
787
788
784

780
779
(i
716
74
7712
770

Jlog. H
9.6

1962
1960
19568
1967
1966
1968
1952
1950
1948
1947
1945
1948
1942
1940
1988
1987
1986
1988
1982
1980

»®

343

49° 42’ 20”.8

50 57
52 12
58 27

b4 42
55 57
57 12
58 27
59 42
60 57
62 12

68 27

64 42

65 57

67 12

68 27

69 42

70 &7

72 12

21

EIRERRNRRBYIBR

28NN
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3
°
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w o o

.

78 27 29. 4

c
.86322
.85629
84936
84243
.83549
.82856
82151
81467
80772
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Gr. m. s. t. . For shadow.
B c

2* 10~ 1662 80077
15 76966 79382
20 16269 18686
25 75512 17990
30 14874 1294
35 14176 16598
40 13477 15901
45 o 2718 15204
50 72079 14507
55 71379 73809
30 70679 73111
5 . .69979 12413

10 69279 J J1715
15 68579 71016
20 67879 0317
25 67178 69618
30 66477 .68919
35 63176 ' 68219
40 65075 67519
45 64374 .66019

A and p are the same, and log. E and log. F are sensibly the same,
for shadow and for penumbra, while log. G and log. H for shadow
are obtained from the corresponding values for penumbra by increas-
ing log. G by 0.00003, and decreasing log. H by the same quantity.

5. To compute the phases of the eclipse of July 28, 1851, for
Dantzic.
Solution. For Dantzic
¢ = the latitude = b54° 20’ 18"
A= the longitude =— 1* 14™ 41°.5
=—18° 40’ 22"".5
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Reduction of latitude = 10/ 53
¢ =54° 9’25/
then by (750)
sin2 ¢ 9.8196

ks 7.5229

SR = 0.002201 7.3425
R = .997799 9.99904
sin. ¢’ 9.90882
cos. ¢’ 9.76758
R sin. ¢’ =k 9.90786
Rcos. o'=h 9.76642

I. For the beginning, computing now for 2* 15™ by the equations
(830 - 859) we have
p 382°1214"3

—2  18°40'22"5
wm  50° 52’ 36".8

k 9.90786 9.90786
E 997619 F 9.97480
Ek 9.88405 Fk  9.88266
h 9.76662 9.76662
G 9.50828 H 9.51985
CO8. 1, 9.80002 9.80002
G h cos. p, 9.07492  Hh cos. p 9.08649
B = 131545 —C =— 24820
—Ek =—=-— 16568 Fk = .76323
Ghcos, y = .11883  — Hhcos. yy=— .12204
b = .66860 ¢ = .39317
9.59458

b 9.82517

be 9.41975

m =— .51271 9.70987
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= —.51271
45327
= —.06558
= —.51885
.00614
.0000268
.0001580
.0001312
= —.0000232
= .0000108

" = —.0000340

I

k
sin. g,

h cos. p,
const.

x,
const.
sin. d

—37°28'58"  tan. 3 ¥

—=—T74°57'56" —cot. ¥

=—.0000091
= .0001403

= 43".8

Gr. time of beg. — 2"15'43".8 )

long.

=114 41.5

Dant. time of beg. — 8 80 25 .3

II. For the end, computing at 4* 17",

cos. p,
G hcos.

"

—2

"
9.90786
9.97623
9.88409
9.76662
9.50785
9.17575
8.45022

[cm. x11.

9.76662
9.88974

9.65636

9.5666
5.8617
5.4283
9.6564
5.8617
9.5142

5.0323
5.6315x
9.88471.
9.4291
4.96064
6.1471
7.7882
1.6411

62° 42/ 25''.6

18 40 22 .5
81 22 48 .1
9.90786
F 9.97485
Fk 19.88271
9.76662
H 9.51944
9.17575

H heos. g,

8.46181
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1.14450 —C = —.07746
— 76575  Fk = .76332
02820  — Hhcos. p =—.02896
40695 ¢ = .65690
9.81750
9.60955
be 9.42705
.51704 9.71852
h 9.76662
sin. g, 9.99507
.57769 9.76169
1.09134
513865 h cos. 8.9424
.00339 const. 5.8617
.0000064 4.8041
0001580 =, 9.7617
.0001516 sin. 15”sin.d  5.3759
.0000137 5.1376
—.0000232
—.0000369 5.5670a
51° 47’ 40" tan. } ¥ 0.10398
103 35 20 —cot. ¥ 9.3833
— .0000089 4.95084
.0001605 6.2054
7.5302
2171 1.3248

Greenw.time of end. 4*17™21%.1

long.

114 41.5

Dantzic timeofend. 5 32 2 .6
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II1. For beginning of total phase, computing at 3* 17=.

CO8.

G h cos. y,

—Ek
G hcos. y,

Ty

m—a

¢ hcos. u
A

a

@ x, sin. d
B

Il

9.90786
9.97621
9.88407
9.76662
9.50809
9.60281
8.87752

.68299

— 76572

07542

— .00731

— 01255

52243
.535631

— .01288

.00033
.0000170
.0001580
.0001410
0000127

— .0000232
— .0000359

" 47° 42/ 201
—1 18 40 22.5
e 66 22 42.6
9.90786
F 9.97483
Fk 9.88269
9.76662
H 9.51961
9.60281
H h cos. p, 8.88904
—C = —.70736
Fk = .76328
—Hhcos.pu, = — .07745
c - =—.02153
8.33304x
7.863924
be 6.19696
8.09848,
h 9.76662
sin. gy 9.96199
9.728-61
h cos. g 9.3694
const. 5.8617
5.2311
sin. 15” sin. d  5.8759
A 9.7286
5.1045
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v = — .0000359 5.5651x
¥ = 59°46' 14" tan. § ¢ 0.23456
¥ = 119° 32’ 28" — cot, ¥ 9.7534
m' = — .0000203 ) 5.30854
a' —m' = .0001613 6.2076
m—a 6.5185
t = 2.0 0.3109
Greenwich time of beg. 3*17™ 2.0
long. 114 41.5
Dantzic time of beg. 4 31 43.5
IV. For end of total phase, computing at 3* 20™.
p 48°27' 20".3
—_2 18 40 22 .5
67 742 .8
k © 9.90786 9.90786
E 9.97621 F 9.97483
Ek 9.88407 Fk 9.88269
h 9.76662 9.76662
G 9.50808 H 9.561960
co8. i 9.58958 9.58958
G h cos. p, 8.86428  H hcos. 8.87580
B = .67879 —C = —.70317
—Ek =-—.76572 Fk = .76328
Ghcos.py, = 07316 —Hhcos. uy=— .07513
b =— .013877 c = — .01502
¢ 8.17667x
8.13893a
be 6.31560
m = .01438 8.15780
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m = .01438 B 9.76662
z = .55088 sin. 9.96443
x = .03833 9.73105
a =. .01255 h cos. p, 9.8562
m—a = .00183 const, 5.8617
wheos.sy = .0000338 5.2179
A = .0001580 sin, 15" sin. d 5.3759
a’ = .0001242 N 9.7311
p z sin. d = .0000128 5.1070
B = — .0000232

4 - = — .0000360 5.5563s
3y = 133° 45’ 21/ tan. ¥ ¢ 0.01887x
N =267 30 42 —cot.  8.6381,
m’ = .0000016 4.1944
a' —m! = .0001226 6.0885
m—a 7.2625
t 14°.9 1.1760
Greenwich time of end. 3* 20™14°.9

long. 1 14 41.5

Dantzic time of end. 4 84 56 .4

6. To compute the places for which the solar eclipse of July 28,
1851, is visible in the horizon at 2* 0™, Greenwich mean solar time.

Solution. By formulas (861 —866) we find for lat. 45°

= .99833 " (ar. co.) 0.00073
o= .53378 . log. }  9.39794
o= .82910 (ar. co.) 0.08139
¢ —e+ B= .70296 9.84698
¢'+o— R= .36450 9.56170
sin? 4 n 8.88869
dn= 16° o' 9» sin., 9.44434

= 32 18 18

o=—14 31 4
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Ist = 17°47 14" cos. 9.97873 cot. 0.49374
d= 19 4 9 cos. 9.97548 sin. 9.51411
[ o= 64 9 sin. 9.95421
m= 185 81 cot. 0.00785.
p= 28 27
L=—107 4
= 64 18
2d g=— 46 49 22 cos. 9.83522 cot. 9.97235,
d= 19 4 9 cos. 9.97548 sin. 9.51411
¢ = 40 ‘18 sin. 9.81070
m=—107 2 cot. 9.48646
= 28 27
A= 135 29
p= 40 29

7. To find a place upon the southern limits of the eclipse of
July 28, 1851, at an angular height of 40° from the plane of
reference.

Solution. By equations (867 -877) we find
B 5.36554
A 6.1987
1 = — 8°2l tan. 9.16684
at 2% o' = —14 81 0 9.9186
o 4 g =—22 52 cos. 9.9644
P = .7638 9.8830
¢ = .5387 R for 45° 9.9993
sin. 40°  9.8081
tan.f  7.6632
z tan. f= .0030 7.4706
P = .2331
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) o = 2331 9.3676
d =19° & R (ar. co.)  0.0007
¢ =40 sec.  0.1157
1+ =172 15 ) cos. 9.4840
7 =80 36
37 =40 18 cot. 0.0716 cot. 0.0716
3+ =29 32 sec. 0.0604 cosec. 0.3072
3({f—d) =10 28 sin. 9.2593 cos. 9.9927
3(B—p) =13 50  tan. 9.3913
3(B+wm) =66 58 tan.  0.8715
m =53 8 “ cosec. 0.0969
t =40 cos. 9.8843
7 =80 36 sin, 9.9941
9’ =19 6 cos. 9.9753
R cos. {sing = 7546 9.8777
o' —z tan, f 9.7249
sin. g 9.1620
(¢' — # tan. f) sin. y = .0771 8.8869
y. | ‘ =.6775
whence p = 52° 36
A =— 0 32

‘Whence a second approximation may be made with greater accu-
racy for 3* 30™.

R 9.9999 R 9.9999

cos. ' 9.9753 cos. ¢' 9.9753

cos. u, 9.7781 sin. g, 9.7081

sin. 15" 5.8617 sin, 15" 5.8617

' h cos. py = .0000412 5.6150 sin, d 9.5141

y.U =.0001580 w z sin.d = .00001138 5.0541
a =.0001168 B = —.0000232

4 = —.0000345 5.5378

a : 6.0674

1 =—1627 tan. 9.4704s
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2 = —16°27
o' = 43 389 e 9.9710
o' 4y = 27 12 cos. 9.9491
P = .8320 9.9201
0 =.5336
ztan, f =.0030
P =.3014 9.4791
(R cos. £)~' 0.1158
1+ = 66°50' cos. 9.5949
5 = 83 17
i = 41 38  cot. 0.0512 cot.  0.0512
d(¢+d = 29 32 sec. 0.0604 cosec. 0.3072
3(—d) = 10 28  sin. 9.2598 cos.  9.9927
3(B—m) = 1313 tan. 9.3709
3(B4wm) = 65 59 tan.  0.3511
[ = 52 46 cosec. 0.0990
¢ = 40 cos.  9.8843
7 sin. 9.9970
9 = 1 ¥ : cos.  9.9803
(] = 17 14
R cos. { sin. ' =.7607 9.8812
¢ —z tan. f 9.7248
sin. 9.4521
(¢’ —ztan. f)sin.y =.1508 9.1769
A =.6104
p = 50° I
. =—245

8. To find the instant and amount of greatest obscuration in the

total eclipse of July 28, 1851, for Dantzic.
80*
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Solution. From the computation for 8* 17™ by (879 - 889) we
have ‘

b . 5.6551s

a 6.1045

1 =— 15°46' tan. 9.4506s

¥ = 119 32

v+-7 = 103 46 sin. 9.9873 cos. 9.3765

m 8.0985 - 8.0985

2 cos. 9.9833

a’ (ar. co.) 3.8955

t = 92°.2 1.9646

Gr. t. of gr. obs. — 3* 18 32 .2

long. =1 14 41.5

Dantzic t. =4 383 13.7
¢’ for penumbra —.5337
¢ for shadow =.0121
M =.5216 9.7173
P =.0030 ©7.4750
N =.5307 9.7248
12 : 1.0792

digits eclipsed = 12.2 1.0867

9. To compute the longitude of the Cambridge Observatory from
the solar eclipse of July 28, 1851, the beginning of which was ob-
served at 19* 49™ 35°.3.

Solution. The longitude of Cambridge being about 4* 44™ 30°, the
Greenwich time is not far from 0* 34", for which time the following
computation is made.

The latitude = 42°22' 49"
assumed longitude=171 7 30
reduction of lat. — 11 25

¢ =42 11 24
sin.? lat. 9.6574
- 7.5229

dR= 001515 7.1808
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R .998485 9.99933
sin. g/ 9.82711
cos. @' 9.86977
k 9.82644
h 9.86910
p 6°57 5.0
i 71 7 30
o —64 10 25
k 9.82644 9.82644
E 9.97614 F 9.97476
Ek 9.80258 Fk 9.80120
h 9.86910 9.86910
G 9.50863 H 9.52019
CO8. 9.63913 . 9.63913
G hcos. iy 9.01686 H h cos. py 9.02842
B = 1.45567 —C = — .38806 -
—Ek = — 63471 Fk = .63270
G hcos. pu = .10396 —H hcos. = — .10676
b = .92492 c = .13788
c 9.13950
b 9.96610
be 9.10560
m = — .35711 9.55280,
h 9.86910
z=A —=—1.02347 sin. g 9.95430x
z, = — .66589 9.823404
a = — .35758
m—a = .00047 6.6721
3V = —21° 642" tan, 3 ¢ 9.58670x
g =—42 13 24 —cot. 7 0.0422
A = .0001580 B 5.36554
— B’ cot. Y = — .0000256 5.4077x
A'— B'cot. .0001324 6.1219
corr. of long. 3.5 0.5502
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corr. of long. = 8.5
assumed long. = 444" 30
comimted =4 44 83.5

10. To compute the effect of changes in the moon’s relative longi-
tude and latitude, semidiameter and horizontal parallax, upon the
time of the beginning of the eclipse of July 28, 1851, for Dantzic.

Solution. By equations (892 ~897) we find

¥ = —74°57'.9 cosec. 0.0151a
a'—m' 6.1471
cosee. ¥ _ 737ge 3.8680x
a' —m
r ' 1.7544 !
sin. 1 4.6856
0% ¥ o gin. 17 0.3080s_ 0.30804
a' —m'
% — 0 = —13°55.6
Y4u—o —=—88 53.3 sin. 9.9999 cos. 8.2866
—_— (892) 2°.032 0.3079 — (893) — —0°.039 8.59464
a' —m' a'—m'
o’ —— 4°48.7 9.8946
Y—ao =—70 9.2 cos. 9.5308
ocus. (¥ —w) = .2663  9.4254
¢ = .5337 -‘;—‘,’s—‘fm—‘f’ 3.8680
o'—o cos.(Y - o’)= .2674 9.4272
(897) = — 1978 8.29524

(¢/—m')dn

Hence the changes of the time of beginning for a change of 31 and
3 B expressed in seconds of arc in the moon’s relative longitude and
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latitude, a change 3 s in the moon’s semidiameter, and a change of a
fractional part 8 7 in the moon’s horizontal parallax are respectively
—2°.032 8 A
0°.039 3 B
—7378* 8¢
—1973* 3 .

11. To compute the beginning and end of tht; solar eclipse of July
28, 1851, for Washington, Paris, Gottingen, Rome and Konigsberg.

The latitudes and longitudes of these places are as follows : —

Latitude. Longitude.
Washington 38° 53/ 84" 18* 51 48*
Paris 48 50 13 0 9 21.5
Gottingen 51 81 48 0 39 46.5
Rome 41 53 52 0 49 54.7
Konigsberg 54 42 50 122 0.5

Ans. The times of beginning and end of the general eclipse are
as follows : —

Beginning. End.
‘Washington 19*21"16%.5 20* 50™ 24°.7
Paris 221 0.4 4 30 52 4
Gottingen 2 53 42.3 5 0 14.4
Rome 3 24 27.3 3 24 32.7
Konigsberg 8 88 20.1 5388 48.3

For the total phase we have
Beginning. End.

Konigsberg 44397 10%9 4 427 0.8,
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TABLE 1.
Log.n CorriILo‘n Coni Log.n Cmi Log. » | Cor. ',Ing.u Corr.
0.00 Ti-zzso Fiizsso srzii 2.060 | 102 || 3.260 | 884
010 | 02870 | 60 ||2670 | 99 | 2970 197 is.mo 394
020 | 02880 51 izsso 101 ' 2.980 | 202 || 8.280 | 408
030 | 0239062 |- 2690 108 | | 2990 | 207 || 3.200 | 418
040 ;| 02400 63 | 2700 [ 106 || 8.000 | 211 || 3.300 | 428
050 | 1||2410 54 || 2710 | 108 || 8.010 | 216 || 8.310 | 438
060 | 1 |[2420| 65 || 2720|111 || 8.020 [ 221 || 8.320 | 448
070 | 1 |[2430| 66 ||2730| 118 || 8.080 [ 227 || 3.330 | 458
080 | 1||2440| 68 ||2.740| 116 || 8.040 | 282 || 3.340 | 464
090 | 2 ||2450 | 59 || 2750 | 119 || 8.050 | 288 || 8.850 | 475
100 | 2 ||2460| 61 || 2760 | 122 || 3.060 | 243 || 3.360 | 486
110 | 2 {2470 | 62 || 2770 | 124 || 8.070 | 249 || 3.370 | 497
120 | 8 ||2480 64 2780|127 || 8.080 | 255 || 3.380 | 508
1.30 | 4 [|2490 | 65 || 2790 | 130 || 8.090 | 261 || 3.890 | 520
140 | 6 |[2500( 67 ||2.800 | 133 || 8.100 | 267 || 8.400 | 582
160 | 7 ||2510| 69 || 2810|136 || 8.110 | 278 || 8.410 | 545
160 | 9 ||2520| 70 || 2820|139 || 8.120 | 279 || 3.420 | 558
170 | 11 | {2530 | 72 ||2.830 | 143 || 8.130 | 286 || 8.430 | 571
1.80 |14 | 2540 | 73 || 2.840 | 146 || 8.140 | 292 || 8.440 | 584
1.90 |17 ||2.550 | 756 ||2.850 | 150 || 8.150 | 299 || 3.450 | 598
200 | 21 ||2660( 77 || 2860 | 158 || 8.160 | 306 || 8.460 | 612
2.0 | 26 ||2.670| 78 |[2870 | 1567 || 8.170 | 812 || 3.470 | 626
2.20 | 83 || 2.580 | 80 ||2880 | 160 || 8.180 | 820 || 8.480 | 641
2.30 | 42 || 2590 | 82 || 2890 | 164 || 8.190 | 828 || 8.490 | 657
"2800 | 42 || 2600 | 84 ||2900 | 167 || 3.200 | 385 || 8.500 | 672
2.310 | 48 ||2.610| 86 |[2.910 | 171 || 8.210 | 848 || 8.5610 | €88
2.320 | 44 ||2.620 | 88 || 2920 | 175 || 3.220 | 851 || 8.520 | 704
2.830 | 45 || 2.680 | 90 || 2.980 | 179 || 8.280 | 360 || 8.680 | 720
2340 | 47 || 2.640 | 92 ||2.940 | 184 | | 8.240 | 868 || 8.640 | 737
2.850 | 48 || 2.650 | 94 | 2.950 | 189 | | 8.250 | 876 || 8.650 | 754




TABLES.
'TABLE 1II.
3z R
D02 46810 12|14 16(18]20| 22|24
0°|00o.0/0olo|.0l.0].0f.0.0].0/.0/.0
ilololololo olal.al.a]alel.2e
alololools] alal 2|.2|.s|s|.els
3lo .ol.o ol1] a].2|.2|.8].4].5].6].7
4/0lo l.o 1(1| 2| .2 .8|.4].6].7].810
slolololila| 2| sl 4|57 8otz
6lolololi]2]|.8|.4].56].6].8/1001.2015
7lololol1]2] .8|.4].6] 8100120407
8lololalile| .8|.8].7].91[r3/1610
9lololalale] 4| .6].70.9/L2(15/1822
10|00 ‘.1 1ls] ale .8 1.0(1.3[1.7/2.0 2.4
1m|ololal2ls| 5|.7]. |1.2 1.5(1.8/2.2(2.6
12]0lo'1l2l8]| 5].7[10 ishislolaals
18]00l1l2l8] 5 .81 Lalrrlesslbo
1lo0lolilele| 6| sli1lieislslsles
150 lolal2lal 6].9lehsle 2.4(2.9(3.5
16]0lol1]2la| 6| ols 1.7'2.112.6(8.1 (8.7
1l olol1zla| 7]1olalir'zelrlaale
18|olol1]8ls| .71.0/14[18 o lzslaalia
190 lolalsls| 81lisie 2als0lseles
200 lol1]8|s]| .8[11]1.5[20 |2.5 3.13.814.5
or | o lol1lsls| 812 luel21less2lsolr
22|0lol1]8ls| .8[12[17]22 !2.7 |s.4 4148
280 ol1]8le| .9f18]17[22 |zs 3.5 (4.2(5.0
24| 0ol1]8|6| .0[1.8/1.8/28293.6[d4]5.2
250 lol1]8]6| .0(1.818]2480/8.7/4.5/54
2610 lol1lslel10(1.4/19'25 8.1 's.s 4.6 5.5
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TABLE III

Log.

0.0
1.0
2.0
8.0

8.2
8.8
34
8.6
8.6
8.7

8.8

8.1-

8hordD

L

0.00000

Sec.

0.00000
0.00000
0.00000
0.00001
0.00001
0.00002
0.00003
0.00005
0.00008
0.00018
0.00020
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