TD 5 - Logique propositionnelle

1 Les incontournables

Exercice 1 [Tables]Déterminer les tables de vérité des expressions suivantes

- 1. $(x \to y) \lor (y \to z)$
- 2. $(\neg x \lor y) \land (z \to x)$
- 3. $(x \oplus y) \to z$ où \oplus est le "ou exclusif" : $V \oplus V = F \oplus F = F$ et $V \oplus F = F \oplus V = V$

Exercice 2 [Archéologie] Un groupe d'archéologues arrive à la porte d'un laboratoire Atlante intact, comportant deux leviers A et B placés en position haute. Le laboratoire peut s'auto-détruire si l'on ne répond pas correctement à l'énigme proposée sous forme de 3 propositions, écrites sur la porte.

- P_1 : Il faut baisser le levier A.
- P_2 : Il faut baisser simultanément les leviers A et B.
- P_3 : Il ne faut pas baisser le levier B.
- 1. Exprimer P_1 , P_2 et P_3 à l'aide de formules propositionnelles dépendant de variables a et b à définir.
- 2. La règle Atlante veut que les propositions soient alternativement vraies et fausses (ou fausses et vraies). Exprimer cette règle en fonction des propositions P_1 , P_2 et P_3 .
- 3. En utilisant le calcul des propositions (formules logiques ou tables de vérité) résoudre l'énigme.

Exercice 3 [Tiers exclus] En utilisant le principe du tiers exclus, démontrer qu'il est possible de trouver deux irrationnels a et b tels que a^b soit rationnel.

Exercice 4 [Système complet de connecteurs]

- 1. Montrer que toute formule propositionnelle est équivalente à une formule propositionnelle n'utilisant que les connecteurs \wedge et \neg . On dit que $S = \{ \wedge, \neg \}$ est un système complet de connecteurs.
- 2. Soit le connecteur ternaire G défini par $G(a,b,c)=((\neg a \land b \land c) \lor (a \land \neg b)) \lor (\neg b \land \neg c)$. où a,b,c sont des variables propositionnelles. Montrer que toute formule propositionnelle est équivalente à une formule n'utilisant que le connecteur G.

2 Pour s'entrainer

Exercice 5 [Tautologie, antilogie] Soit $\star \in \{\land, \lor, \rightarrow, \leftrightarrow, \text{xor}\}\$, déterminer si $x\star(y\star z)$ et $(x\star y)\star(\neg(x\star y))$ sont des tautologie, des antilogie ou aucun des deux.

Exercice 6 [Problème des 4 menteurs] On a établi les quatre vérités suivantes :

- P₁ Si l'Amiral dit la vérité alors le Maître d'hôtel la dit aussi.
- P_2 Le Maître d'hôtel et le Comte ne peuvent dire la vérité ensemble.
- P_3 Le Comte et le Pasteur ne mentent pas ensemble.
- P_4 Si le Pasteur dit la vérité alors le Maître d'hôtel ment.

Sachant, d'autre part, que deux personnes, et deux seulement, ont menti, déterminez leur identité.

Correction 1 Les tables des 3 expressions :

\boldsymbol{x}	y	z	[1]	[2]	[3]
V	V	V	V	V	V
V	V	F	V	V	V
V	F	V	V	F	V
V	F	F	V	F	F
F	V	V	V	F	V
F	V	F	V	V	F
F	F	V	V	F	V
F	F	F	V	V	V

Correction 2 1. $P_1 = a$; $P_2 = a \wedge b$ et $P_3 = \neg b$.

- 2. $R = (P_1 \wedge \neg P_2 \wedge P_3) \vee (\neg P_1 \wedge P_2 \wedge \neg P_3)$
- 3. On cherche donc une valuation μ sur $\{a,b\}$ telle que $[\![R]\!]_{\mu} = V$. Réalisons une table de vérité :

a	b	P_1	P_2	P_3	$P_1 \wedge \neg P_2 \wedge P_3$	$\neg P_1 \wedge P_2 \wedge \neg P_3$	R
V	V	V	V	F	F	F	F
V	F	V	F	V	V	F	V
F	V	F	F	F	F	F	F
F	F	F	F	V	F	F	F

Le seul modèle pour R est μ tel que $\mu(a) = V$ et $\mu(b) = F$. Il faut donc uniquement baisser le levier A.

 ${\it Correction~3}$ On sait que $\sqrt{2}$ est irrationnel. 2 possibilités :

- si $\sqrt{2}^{\sqrt{2}}$ est rationnel, alors il suffit de poser $a = b = \sqrt{2}$.
- sinon $\sqrt{2}^{\sqrt{2}}$ est irrationnel (c'est le principe du tiers exclus). On peut poser $a = \sqrt{2}^{\sqrt{2}}$ et $b = \sqrt{2}$ alors : $a^b = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \times \sqrt{2}} = \sqrt{2}^2 = 2$

Correction 4 1. Montrons qu'en plus de $x \wedge y$, on peut construire toutes les formules de base :

- $\bullet \perp \equiv x \land \neg x$
- $\bullet \ \top \equiv \neg \bot \equiv \neg (x \land \neg x)$
- $x \vee y \equiv \neg(\neg x \wedge \neg y)$ d'après les loi de De Morgan.

Par induction, toute formule propositionnelle s'écrit à l'aide des connecteurs \wedge et \neg .

- 2. Un utilisant la question précédente :
 - $\bullet \ \neg x \equiv G(x, x, x)$
 - $x \wedge y \equiv G(\neg x, \neg x, \neg y) \equiv G(G(x, x, x), G(y, y, y), G(z, z, z))$

comme le système $\{\neg, \land\}$ est complet, formule propositionnelle peut s'écrire à l'aide de G.

Correction 5 Après étude de chacun des cas on a

*	\wedge	V	\rightarrow	\leftrightarrow	xor
$x \star (y \star z)$	Rien	Rien	Tautologie	Rien	Rien
$(x \star y) \star (\neg (x \star y))$	Antilogie	Tautologie	Rien	Antilogie	Tautologie

Correction 6 L'Amiral et le maître d'hôtel mentent, preuve sur demande.