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[terations of the Terdragon Curve

Kevin Ryde
Draft 15, April 2021

Abstract

Various results on the terdragon curve, including coordinates, area,
boundary, enclosure sequence, convex hull, centroid, moment of inertia,
some trees, fractionals, and some results on the alternate terdragon curve.
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Notation

Various coordinates and other expressions use complex 3rd, 6th and 12th roots
of unity, usually to express directions.

wy=—1+31V3i = e2mi/3 3rd root of unity, 120°
we = %+31V3i = 20 = e + 1 6th root of unity, 60°
Wis = %\/g +1i = e2mi/12 12th root of unity, 30°
w3 . we
+
N
L
0 1

A few formulas have terms going in a repeating pattern of say 4 values
according as an index k = 0to3 mod 4. It’s convenient to write them as for
example

[5, 8, =5, 9] values according as k mod 4

meaning 5 when £ = 0 mod 4, or 8 when £ = 1 mod 4, etc. Likewise periodic
patterns of other lengths, usually at most 8.

Periodic patterns like this can also be expressed using powers of —1 or i or
other roots of unity, but except in simple cases that tends to be less clear than
the values.

1 Terdragon Curve

The terdragon curve by Davis and Knuth[3] is defined recursively as a repeated
replacement of each line segment by 3 segments in an “S” shape

O—0 = @ ®
@

The curve touches at vertices. The following diagram has the vertices cham-
fered off to better see the turns and joins.

n=3*=81
at z=—92+4+3V3

~
end "~ - - —

end
.

end

end
end S
—e
start start start start start
k=0 k=1 k=2 k=3 k=4
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1.1 Plane Filling

Davis and Knuth show the terdragon is non-crossing and plane filling from the
revolving cubic representations of its vertices. This can also be seen geometri-
cally.

Theorem 1 (Davis and Knuth). The terdragon curve touches at vertices but
does not cross itself.

Proof. Consider an infinite triangular grid with unit line segments connecting
the points. Each line segment expands to the base pattern as follows. The
corners of the new line segments are chamfered off here to show how they meet
the expansions from other lines but do not cross.

Figure 1: segment expansions

The expanded segments are the same grid pattern rotated by 30°.

Any subset of the full grid expands to a new bigger set with the number
of crossings unchanged. The terdragon curve begins with a single line segment
which is such a subset with no crossings and so on repeated expansions has no
crossings. [

The expansion replaces each line segment with a rhombus shaped three seg-
ments. This is a classical tiling pattern[9].

Theorem 2 (Davis and Knuth). Siz copies of the terdragon curve arranged at
60° angles fill the plane.

Proof. The initial 6 line segments expand

%
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Take the central 2x2 hexagon. With two expansions it grows

NININ/N/N
NININONININ/
ININONININTN

INININININ/N
VAVAVAVAN

iy

The dashed outline is a 4x4 hexagon at the origin. Each 2x2 hexagon (possibly
overlapping) grows to at least 4x4. By repeated expansion they grow to an
arbitrarily large hexagon at the origin. O

See end of section 10.1 for the actual diameter of 6 arm filling.

1.2 Turn Sequence

Number points of the terdragon curve starting n=0 at the origin. Per Davis
and Knuth, the replications give a turn sequence which is 120° turns according
to the lowest non-0 digit of n in ternary,

+1 if LowestNonZero(n) =

1
—1 if LowestNonZero(n) = 2
(_l)LowestNonZero(n)

turn(n) = { n>1 (1)

=4ttt ——F =t — =+ — ..
turn(3n) = turn(n), turn(3n+1) =1, turn(3n+2) = —1 (2)
LowestNonZero(n) =1,2,1,1,2,2,1,2,1,1,2,... n>1 A060236

Or next turn,

furn(n-+1) +1 if LowestNonTwo(n) =0
urn(n+1) =
—1 if LowestNonTwo(n) =1

(_ 1)LowestNonTwo(n)

n>0 (3)

LowestNonTwo(n) =0,1,0,0,1,1,0,1,0,0,1,0,... n>0 offset A080846

3%—1 consists entirely of 2-digits and is taken to have a 0 above the highest
so LowestNonTwo(3*—1) = 0.

turn(n) and turn(n+1) are related simply by n+1 changing low 2s into low
0Os and increment the digit above.

n ’ ‘ d ‘2‘--2‘ ternary digits, d # 2

ntl | - [d+1]0--0]

LowestNonTwo(n) = LowestNonZero(n+1) — 1
On a binary computer, it can be convenient to represent ternary digits in 2

bits each. Arndt[1] gives an example iterating turn like this with bits 00, 01, 10
to represent 0, 1,2 respectively and a loop for carry propagation.
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Another possibility is bits 00,01,11. This allows a binary increment to
propagate a carry through 2s. If it increments 01 to 10 then a normalize from
10 up to 11 is necessary. Representing ternary 1 by bits 01 (rather than 10)
allows the lowest non-0 digit to be determined by bit above lowest 1-bit, which
can be found by bit-twiddling.

nbits has bits 00,01, 11 representing ternary digits 0, 1, 2 A023713

turn(nbits) — +1 if BitAboveLowestOne(nbits) =0
"~ | =1 if BitAboveLowestOne(nbits) =

increment(nbits) = PostIncFiz(nbits + 1) (4)
PostIncFiz(n) = BITOR(n, BITAND(1010...101,, RIGHTSHIFT(n)))

0 if BITAND(n, MaskAboveLowestOne(n)) = 0

BitAboveL tO =
itAboveLowestOne(n) {1 if BITAND (n, MaskAboveLowestOne(n)) # 0

=0,0,1,0,0,1,1,0,0,0,1,1,0,1,1,0,... A038189
MaskAboveLowestOne(n) = BITXOR(n, n—1) + 1 n>1
=2,4,2,8,2,4,2,16,2,4,2,8,2,4,2,32,...  A171977

These bit operations are best suited to n in a single machine word. In a big
number, masks etc on the whole number would act on a lot of unchanged bits
(since carry rarely propagates very far). For a big number represented in words,
fixing can stop where the carry stops.

Predicates for left and right turns are

1 if n>1 and LowestNonZero(n) = 1
TurnLpred(n) = {O otherwise

=1,0,1,1,0,0,1,0,1,1,0,1,1,0,0,1,0,... n>1 A137893
1 if n>1 and LowestNonZero(n) = 2

TurnRpred(n) = {0 otherwise

=0,1,0,0,1,1,0,1,0,0,1,0,0,1,1,0,1,... n>1 A080846

Generating functions for these sequences follow by considering the ternary
digits of those n which are a left or right turn. A left turn is k& low zeros then
digit 1 so n = 3¥ + m.3%*1 for integer m. Generating function 1/(1—23""") is
1 at m.3**! then multiply 23" to add 3. Similarly a right turn is k& low zeros
then digit 2 so n = 2.3% + m.3¥+1 which is multiply by 223" to add 2.3,

9] o0 3k

gTurnLpred(x Z 3k+1 gTurnRpred(x Z 3k+1 (5)
1- 1—-
k=0 k=0

With turn(n) = TurnLpred(n) — TurnRpred(n), a generating function for

turn is their difference. Factor 1 — 23" cancels from numerator and denominator,
though replications in 3*! blocks are then less clear.
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0 43" 423" = 23"
gturn(z) = ) —— =) (6)
kzz;) 1-— :c?’Hl Z 14+ wS + x2'3k

Paul D. Hanna in OEIS A080846 gives a generating function for TurnRpred
based on a generating function for net directions (dir ahead in section 1.3).
Shifting it to the numbering here so first turn n=1 term ! is

k

gTurnRpred(x) = l— — _—
2w ? ;0 1+x3 + 223"

This can be thought of as changing turn form (6) values from +1 to 0,1 by
TurnRpred(n) = 3 (1 — turn(n))

If a generating function for just an initial part of the sequence is required
then stopping the sum (either form) at k suffices for n < 3¥*! where the next
term would begin (a left turn at k+1 low zeros and digit 1 above).

On expanding the curve, 2 new turns LR are inserted into each segment. A
segment is before each existing turn.

... existing turns Figure 2

LR LR LR LR LR ... new turns

The new R and L each side of an existing turn make a run either RR or LL
with the existing turn according to whether it is R or L. So run lengths in the
turn sequence are an initial 1 then pairs either 1,2 or 2,1 according as turn = +1
or —1 respectively. With an index m starting m=0 for the first run,

1 if m=0 (left turns)
TurnRun(m) = < 2 + L turn(2) if m even >2 (left turns)
3 — Lturn(™tL) if m odd (right turns)

1 if m=0
B S+ i(-Dmturn([Z]) ifm>1
—1, 1,2, 2,1, 1,2, 1,2, 2,1, 2.1, 1,2,...
turn = 41, —1, +1, +1, -1, —1, +1,
1

1
gTurnRun(z) = —% + 71— + 5 (177) gturn(z?)
x

For finite curve k, the run lengths end with a final 1 which is per the initial
1. The curve is the same in 180° rotation, so the run length sequence for finite
k is a palindrome.

The n which is the start of a run follows from figure 2 turns too. In each
LR, the left n = 1 mod 3 is the start of a run unless preceded by an existing
turn L. The right at n = 2 mod 3 is always the start of a run. With index m
starting m=0 for the first run again,

m—1

TurnRunStart(m) = 1 + Z TurnRun(j)
3=0
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[\l

if m odd

[ SIS

m {1 — TurnLpred(3m) if m even
Jr

L if m=0
2 TurnLpred(m) if m even > 2
—1,2,3,5,7,8,9,11,12,14,16,17,19, . ..

(7)

Form (7) eliminates factor 3 on even m by firstly factor of 3 is no change
since turn(3n) = turn(n). Then 2.3m instead of {m is turn(2n) = —turn(n)
since factor 2 flips the lowest non-zero 1+ 2. This swaps to TurnRpred, and
then 1 — TurnRpred is back to TurnLpred, for m # 0.

Theorem 3. The offset dNextL(n) from n to the next n which is a left turn
is given by the low ternary digits of n in the following patterns, where 2 means
zero or more 2-digits. High 0 digits are understood on n as necessary.

1 ifn=..02
dNextL(n) =<2 ifn=...021 or...122 (8)
3 ifn=..121
1 if n =0mod 3
=< 2+ TurnRpred(n+2) ifn=1mod 3 (9)
1+ TurnRpred(n+1) if n =2 mod 3
)2+ TurnRpred(n+2) if n =1mod 3 (10)
|1+ TwrnRpred(n+1) if n# 1 mod 3
And dNextR offset to the next right turn,
1 ifn=..12
dNextR(n) =<2 ifn=... 0
3 ifn=..022
2 if n =0mod 3
=<1 if n=1mod 3 (11)
2+ turn(n+1) if n =2 mod 3
2 if n =
_ Z.f n =0 mod 3 (12)
2+ turn(n+1) if n # 0mod 3

dNextL(n) =1,2,1,1,3,2,1,2,1,1,2,1,1,3,2,1,. ..
dNextR(n) =2,1,3,2,1,1,2,1,3,2,1,3,2,1,1,2,...

Proof. Segment expansion inserts a new pair of turns LR after each existing
point n=0 onwards. With existing points X and Y, dNeztL steps are
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+1 +2or +3
,K\ // "‘\ \\
‘ Y | existing turns, XY each either L or R
L R new turns

--* +1lor +2

n= 01 2 0 1 2 mod3

X \
dNextL v
L R

/

X always steps +1 to the first L. That L steps to Y if Y is an L or to the
second L otherwise. TurnRpred(n+2) is the possible extra 1 to add for this.
Similarly R to Y or L according to TurnRpred(n+1), and hence (9).

For the two case (10), n=0 has TurnRpred(n+1) = 0 always, allowing it to
combine with n=2.

dNextL(X) before expansion determines whether Y is L or R. If +1 then
it is step +1 to L at Y, and otherwise a bigger step because Y not L. So a
morphism expansion can be written as follows with 1 or not 1 determining the
new steps at n = 1,2 mod 3 (steps either 2,1 or 3,2).

dNextL= 1 — 1,21 2 —= 13,2 3 — 1,3,2 starting 1

Such expansions are a state machine by ternary digits of n from high to low.
Some state machine manipulations to reverse gives low to high and which are
the digit patterns at (8). Those patterns can also be seen just by considering
possible combinations of low digits of n and what increment is needed to reach
LowestNonZero = 1.

start ‘/—\0 +1 — 0
F=0=0 o
o2 s w20 Y2 @

) ‘O\@Al/
Figure 3: dNextL(n) state machine, +3 ‘1/ 02

) low to high
ternary high to low

For dNeztR, similar X and Y existing points and steps are

+2 +1or +3

A VRN

AN A N
X v Y S existing turns, XY each either L or R
dNextR !
L R L R new turns
N _e +1

01 2 0 1 2 mod3

n

X always steps +2 to the R for the first LR pair. The L of that pair always
steps +1 likewise. R steps to Y if that is an R or to the R of the secont LR pair
otherwise, so +1 or +3 depending on the turn at Y, and hence (11).

For the two case (12), n =1 mod 3 has turn(n+1) = —1 always, allowing it
to combine with n=2.

Again a morphism expansion can be written based on X having been 1 or
not 1 and hence Y being R or not. Then state machine reversal low to high for
the digit patterns.

dNextR= 1 — 2,1,1 2 — 21,3 3 — 2,1,3 starting 2

Draft 15 page 8 of 124



ol .
start / 13 0

1
@D? ~7
+2
Figure 4: dNeztR.(n) state machine, low to high
ternary high to low O

start

)

Second Proof of Theorem 3. A mechanical approach can be made using state
machines for TurnLpred and TurnRpred. dNextL(n) =1 is at those n where
n+1 is L. This is next turn left per (3), and is a pair “any,L” at n.

dNextL(n) = 2 is a triplet “any,R,L” at n, so an R at n+1 and make some
state machine manipulations for a test of L at n+2, which is the digit strings
of left turns all subtract 2. The intersection of R next and L second next is all
the dNextL = 2.

Similarly dNextL(n) =3 is four “any,R,R,L” at n.

dNextR is similarly any,R, any,L,R, any,L.L,R. O

Arithmetically, the cases of one or two following opposite R or L can be
written out

dNextL(n) = 1 + TurnRpred(n+1) + TurnRpred(n+1). TurnRpred(n+2)
=1+ TurnRpred(n+1).(1 4+ TurnRpred(n+2))
dNextR(n) = 1+ TurnLpred(n+1).(1 + TurnLpred(n+2))

Exactly one of dNextL(n) = 1 or dNexztR(n) = 1, and which one goes ac-
cording to whether turn(n+1) is L or R. The other is then 2 or 3 according to
turn(n+2).

When n is known to be a left turn, its lowest non-zero digit is 1, so in figure 3
low to high, digit 2 at the start state does not occur. So arithmetically just two
cases in (9). Effectively this is simply n=1 always step +2 to the following n=0
and there TurnRpred to see if it’s not L and so step 4+1 more.

dNextL(n) = 1 Tf n=0mod3 for left turn n
2 + TurnRpred(n+2) ifn=1mod3

Similar applies in dNeztR, in that it never has lowest digit 1, but the states
and cases are not reduced.
Generating functions for dNextL and dNeztR follow from (9) and (11).

1+ 2z + 22 11 3
gdNextL(z) = s + (; + —2) gTurnRpred(x”) (13)
1 + z 1 o ~
=(1+2) ( + = > - zskH) (14)
k=1
2+x+222 1 3
gdNeztR(x) = 5 + p gturn(z?) (15)
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_ 2+ + 222 i x3k_1

_—— 16
1— a3 =142 42 1o

The offsets n+2 and n+1 used in the TurnRpred and turn cases each go to
the same following 0 mod 3 and that 0 mod 3 is a factor of 3 which is no change
to the turn sequence. So the whole turn sequence can be spread (by z?®) and
replicated for (13),(15). In (14),(16), that spread is by starting the sums at
k=1.

Factor 1+x on the whole of (14) is, in the usual way for a generating function,
sum pairs of terms of the rest. That rest is

1 if n=0mod 3
slnz(n) = ¢ LowestNonZero(n+2) if n =1 mod 3 (17)
0 if n=2mod 3
-1,1,0, 1,2,0, 1,1,0, 1,1,0, 1,2,0, 1,2,0,. ..
dNextL(n) = slnz(n) + sinz(n—1) (18)

gdNextL(x) = (14x) gsinz(x)

The cases at (17) are LowestNonZero(n+2) except that n+2 = 1,2 mod 3
are result 0,1 instead. The two sinz at (18) give cases equivalent to dNextL
form (9). For n=0, sinz(—1) =0 is per its n=2 case.

The converse sinz in terms of dNeztL is an alternating sign sum, either by
expanding repeatedly or the usual way for generating function factor 1/(1+4x).

slnz(n) = dNextL(n) — slnz(n—1)
= dNextL(n) — dNextL(n—1) + dNextL(n—2) — - - - + dNextL(0)

Consecutive n = 3h+1,3h+2 in dNextL have their TurnRpred testing the
same 3h+3 which then cancel due to the alternating signs. The constant parts
of a block of 3 in dNextL similarly cancel 1 —2+1 = 0, leaving just the top-most
one or two terms,

dNextL(n) if n =0 mod 3
slnz(n) = { dNextL(n) — dNextL(n—1) if n =1 mod 3
0 if n =2mod 3

Theorem 4. The m’th left or right turn point n is given by the following re-
currences, for turns indezed by m and first turn m=0,

1 if m=0
TurnLeft(m) = < 3% + TurnLeft(m — 3(3¥+1)) if m < 3%, m#0  (19)
2.3k 4 TurnLeﬁ(m — 3’“) if m > 3F
where for m>1 have biggest k with %(3’C +1)<m
~1,3,4,7,9,10,12,13,16,19, 21,22, . .. 026225
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3F + TurnRight(m — 3(3*—1)) if m < 3%—1

TurnRight(m) = < 2.3* if m=3"-1 (20)
2.3 4+ TurnRight (m — 3’“) if m > 3k
where k biggest 3(3F —1) <m
=2,5,6,8,11,14,15,17,18,20, 23,24, ... A026179

Proof. In an expansion level k, there are 3* segments and 3 — 1 turns between
them. Since the curve is symmetric in 180° rotation, there are half lefts and
half rights £ (3% — 1) each.

The recurrences follow from how many turns of each direction in each sub-
part and between. Expansion level k+1 comprises the following sub-parts for
level k> 1.

m=g % R
® part 2 @ m:%(Sk-H_l) ///
TurnLeft parts L7
k+1, sub-parts k> 1 S m
part 1 7 range

Part 0 has £ (3%—1) left turns so that the L after it is m = 1(3"—1) and the
first m within part 1is m = 3(3¥+1). Taking k as the biggest with 3(3*+1) <m
is then m ranging from the first turn in part 1 to the L after part 2, inclusive.

The m which is the first L in part 2 is the number of L preceding there,
which is 2.1(3"—1) 4+ 1 = 3*. Comparing m to 3* thus determines whether it is
in part 1, or after.

For part 1, subtracting its start 1 (3%+1) reduces to an m within part 0.

1(3F+1) <m < 3F-1 part 1
0 <mo @41 < 1

For part 2 and the L following it, subtracting the first m = 3* in part 2
reduces to an m which is in part 0 or the L following it.

3F<m <
0 <m-3F<

(351 — 1) part 2

These reductions reach case m=0 eventually, which is the first L at n=1.
Similarly TurnRight, but its m range does not take in either of the L.

m = 3F »3'
k .
m=3"-1 ® part 2 @
777777 1
TurnRight parts L om
k+1, sub-parts k>1 part 1 o %(3k_1) 3 range

T -©
part 0
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The R between parts 1 and 2 is m=3*—1 and is an exception in the cases
since part 0 ends with an L not the desired R. O

As noted, TurnLeft always ends in its m=0 case TurnLeft(0) = 1. If that is
made 0 instead then the result is TurnLeft(m)— 1 which is the segment number
whose end is the m’th turn left, or equivalently the point number where the
next point n+1 is the m’th left.

Theorem 5. n = TurnLeft(m) can be calculated by the following digit procedure

n < 2m
for each ternary digit position high to low in n
if digit =1 then n < n—1
n<+< n+l (21)

And n = TurnRight(m) can be calculated by the following digit procedure

n <+ 2m+2
for each ternary digit position high to low in n
if digit =1 then n < n+1

The digit tested at each digit position is in the successively modified n, not
just the original 2m or 2m+-2.

Proof. These procedures are implicit in the recurrences (19). For TurnlLeft,
consider the recurrence acting on a p = 2m instead of m. Such doubling is

TurnLeft2(p) = TurnLeft(m) where p=2m
1 if p=0
=< 3% 4 TurnLeft2(p — 3% —1) if 38 <p < 2.3k
2.3% + TurnLeft2 (p — 2.3%)  if p > 2.3k
where k biggest 3* +1 < p (22)

The effect of the procedure is to hold the TurnLeft result so far in the high
ternary digits of n, and p in the low digits.

high k low

n = ’ result ‘ P ‘ ternary Figure 5

p is always even so condition (22) is the same as 3* < p so the TurnLeft2
cases are on high ternary digit 1 or 2 in p.

Case p > 2.3% is ternary digit 2 subtracted from p and added to the result,
so no change to the combined n.

Case 3% < p < 2.3* is ternary digit 1 subtracted from p and added to the
result, and an additional —1 on p, so decrease to n — 1. This decrement does
not modify the 1 digit moved to the result since p is even so it has at least two
1 digits and any borrow stops at the lowest of them. The smaller new p is even
again since it is an even amount 3*+1 subtracted altogether from p.

Case p=0 result 1 is the final n+1 in the procedure. The procedure works
through all 0 digits of p, leaving them unchanged, and applies this +1 last.
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For TurnRight, consider its recurrence (20) acting on a p = 2m-+2,

TurnRight2 (p) = TurnRight(m) where p = 2m+2
3% 4 TurnRight(p — 3% +1) if p < 2.3%
=<23F if p=2.3*
2.3% + TurnRight(p — 2.3%)  if p > 2.3%
where k biggest 3 +1 < p

Again n is high result digits and low p as in figure 5, and p is even so the
cases are ternary digit 1 or 2 of p.

Case p<2.3F is ternary digit 1 and it adds additional +1 to p. This increment
does not modify the 1 digit moved to the result since again p is even so has at
least two 1 digits and any carry will stop at the lowest of them.

Cases p > 2.3% are ternary digit 2 put to the result unchanged. For p = 2.3",
the recurrence stops. The procedure continues but the low digits of p=2.3* are
Os which the procedure leaves unchanged. O

In a ternary computer, testing for digit 1 is simple. In a binary computer, it
may be desirable to use a vector of ternary digits and apply increments or decre-
ments there, either with an explicit carry loop or bit twiddling. The increment
and bit twiddling at (4) suits the TurnRight procedure. A similar decrement
and bit twiddling PostDecFix would suit the TurnLeft procedure. In both cases
the increment and decrement can be applied to ternary digits for the procedure
tests to examine, and simultaneously to an ordinary n which will be the result.

Both TurnLeft and TurnRight are close to 2m, roughly speaking since the
number of each is the same at the end of an expansion level. Or algebraically in
(19),(20) a 1(3%+1) subtracted from m is 3" added to n, and in part 2 similarly
3% subtracted from m is 2.3% added to n. Offsets from 2m can be expressed

TurnLeftOff (m) = 2m — TurnLeft(m) (23)
= 1,-1,0,—1,-1,0,0,1,0, -1, —1,0, -1, —1, ...

TurnRight(m) — 2m

—92,3,2,2,3,4,3,3,2,2,3,2,2,3,. ..

TurnRightOff (m)

Substituting into (19),(20) gives recurrences

-1 if m=0
TurnLeftOff (m) = < TurnLeftOff (m — £(3%+1)) +1 if m < 3*
TurnLeftOff (m — Sk) if m > 3*

where k biggest 2(3F +1) <m
TurnRightOff (m — $(3F=1)) +1 if m < 3F—1
TurnRightOff (m) = ¢ 2 if m=3F-1
TurnRight Off (m — 3k) if m > 3F—1

where k biggest (3" —1) <m

In part 2, the L and R turns between parts 0,1 and 1,2 balance, so offsets
are unchanged on descending. In part 1 the preceding L is an extra, making
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smaller TurnLeft. The offsets thus grow according to how many middle parts,
and in particular

TurnLeftOff (m) > —1
TurnRightOff (m) > 2

See ahead at (40),(41) for new highs in the offsets.
The increments between successive turns L or R are

dTurnLeft(m) = TurnLeft(m~+1) — TurnLeft(m)
= 2 — (TurnLeftOff (m+1) — TurnLeftOff (m))
-21,3,2,1,2,1,3,3,2,1,3,2,1,2,1,3, .. A026141
dTurnRight(m) = TurnRight(m~+1) — TurnRight(m)
TurnRightOff (m~+1) — TurnRightOff (m) + 2
—3,1,2,3,3,1,2,1,2,3,1,2,3,3,1,2,3. . .. A026181

The expansions in figure 2 show these increments are always 1, 2 or 3. The
m’th such increment can be expressed by recurrences by expanding TurnLeft or
TurnLeftOff etc.

2.1 if m=0,1
dTurnLeft(m) dTurnLeft(m — £ (3%+1)) ?f m < 3F-1
3 if m=3F-1
dTurnLeft (m — 3’“) if m > 3k
where k biggest (3" +1) <m and k > 1
3 iftm=0
dTurnRight(m — 1(3-1)) if m < 3%-2
dTurnRight(m) =< 1 if m =3F-2 (24)
2 if m=3F-1
dTurnRight (m — 3’“) if m > 3k

where k biggest %(3’“ —1)<mand k>1

In these recurrences, nothing is accumulated, just descend down m by parts
until reaching one of the 1, 2 or 3 cases.

For dTurnLeft, case m=3F—1 is the L of the last LR pair in part 1. It must
step across the R between parts 1 and 2, so dTurnLeft = 3 there.

For dTurnRight, case m=3*—1 is the R between parts 1 and 2, and m=3*—2
preceding that is R of the last LR pair in part 1.

The cases at (24) correspond to the recurrence given by Neil Sloane in
A131989 (indexed there starting from 1). That sequence is defined by run
lengths in a symbol substitution

k= k| x starting from * x| %
run lengths =2,3,1,2,3,3,1,2,1,2,... A131989

This is the terdragon curve expansion with * as a segment and | as the R
turn between parts 1 and 2. The sequence values are the lengths of runs of
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separated by |, and thus steps between successive R turns. The run lengths
include the initial two ** at the start of the symbol sequence as a run 2. That
would be a step from the origin n=0 to the first R at n=2, which dTurnRight
here does not include. (The * and | symbols as integers 1,2 are A133162.)

Sloane also in A131989 gives an expansion where copies of the sequence are
concatenated and the terms each side of the first join are added together. That
first join is a new left turn so sum the distances each side to be between right
turns.

23121 23121 2312L dTurnRight three copies,
first join extra initial 2 final 1

sum

Dekking gives a morphism for the sequence by repeated expansions,
A131989 = 1—2,1 2—23,1 3—23,3,1 starting from2 (25)

reached by considering return words in the symbol sequence. In the curve these
correspond to runs of 1, 2 or 3 segments between the L turns. The expansions of
the return words correspond to inserting LR into each segment and consequent
new runs. Notice in (25) each term expands to 2,3,1 where 3 means 0, 1 or 2
many 3s.

Another approach can be made for dTurnLeft and dTurnRight (the latter
without the initial 2 which A131989 has) by considering LR each side of an
existing turn.

Theorem 6. The dTurnLeft sequence is the turn sequence mapped
L — 21 R — 3 (26)
and the dTurnRight sequence is the turn sequence mapped

L —3 R — 1,2 (27)

Proof. On expansion, each existing turn in the curve gains a new pair LR before,
per figure 2. The steps between successive lefts or rights each side of an existing
turn are

2 1 3 3 1 2

2 T AN N /A BVASRN
JLoy SR Y S P 'R\ existing turn
LR LR LR LR LR LR LR LR new turns

dTurnLeft dTurnRight

For dTurnLeft, in the second-last expansion level identify a 2,1 pair with
each L and a 3 with each R.

For dTurnRight, similarly in the second-last expansion level identify 3 with
each L and a 1,2 pair with each R. O

The effect of (26) is to insert an extra symbol 1 after each L, or the effect
of (27) is to insert an extra symbol 2 after each R (or in both cases a symbol
before if preferred).

The turn sequence expansion per figure 2 is
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turn= L — LR, L R —- LR, R starting from L
Substituting (26) and (27) into this is
dTurnLeft = 2,1 — 2,1,3,2,1 3 — 2,1,3,3 starting from 2,1
dTurnRight = 3 — 3,1,2,3 1,2 — 3,1,2,1,2  starting from 3

The expanding pairs 2,1 or 1,2 can be split at any point to become expansions
of individual symbols. For example,

dTurnLeft= 1 — 1 2—2132 3— 21,3,3 starting from 2
dTurnRight = 1 — 3,1,2,1 2—>2 3—3,1,2,3 starting from 3
These highlight the way dTurnLeft has a 1 after every 2, and vice versa in

dTurnRight. The start for dTurnLeft can be just 2 as long as the split makes 2
expand to more than just itself.

Theorem 7. d = dTurnLeft(m) can be calculated by the following procedure

n 4 2m and d < 2
for each ternary digit position high to low in n
if digit =0 then if d =0 then d + 3

else d <« 2 (28)
if digit =1 then d <+ 0 and n <+ n—1
if digit =2 and d # 0 then d <1 (29)

Proof. This procedure finds TurnLeft by calculating n from m as in the proce-
dure of theorem 5, and puts the resulting digits of n through dNeztL.

dTurnLeft(m) = dNestL( TurnLeft(m))

The final n<n+1 step (21) of the TurnLeft procedure is eliminated by using
the digits of n—1, ie. the digits before that final step, to determine dNextL(n).
Some state machine manipulations can apply a decrement to the digit strings
of dNextL in figure 3 giving

dNextL(n), for n>1,

by state machine on

ternary digits of n—1
high to low

This state machine is for any n, but TurnLeft is only left turn n so only
n—1 from such an n will be a final state. State d=2' is a final state for n—1 =
...1 which is n = ...2 not a left turn. State d=1’ is a final state for n—1 =
...12, where the underline means zero or more repetitions, which is n = ...20
and likewise not left. So their different d=1 or d=2 results do not need to be
distinguished. They are combined as special d=0 in the procedure.
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Digit 0 in the state machine goes from d=0 to d=3 or from anywhere else to
d=2, and hence (28).

Digit 1 goes from anywhere to the special d=0.

Digit 2 stays in d=0, or anywhere else goes to d=1, hence (29). O

As a remark, digit 1 from anywhere goes to d=0 and that state always
eventually goes to d=3, but it does not suffice to have digit 1 go directly to d=3
because the result of a following digit 0 is different according to whether in d=0
or d=3.

The digit string cases are as follows. The n—1 column is the digits seen by
the procedure,

n—1 n dTurnLeft(n)  next n
...02 ... 100 +1 ... 101
...020 ...021 +2 ... 100
.. 120 L0121 +3 ...201

Theorem 8. d = dTurnRight(m) can be calculated by the following procedure

n<2m+2 and d <+ 2

for each ternary digit position high to low in n
if digit =0 then d < 2
if digit =1 then d <+ 1 and n < n—+1
if digit =2 and d = 2 then d < 3

Proof. Similar to theorem 7, this procedure finds TurnRight by calculating n
from m as in theorem 5 and puts the digits of n through dNeztR,

dTurnRight(m) = dNextR( TurnRight(m))
The digit and d steps are dNextR figure 4 state machine high to low. O

Sequences dTurnLeft and dNextL are related by inserting into d TurnLeft the
successive steps down which are non-lefts skipped, 1—1, 2—2,1, 3—3,2,1,
and an initial 1 at the start for dNextL(0)=1. The same for dTurnRight to
dNextR, and for it initial 2, 1.

1.3 Direction

The total turn is a count of ternary 1 digits since each “1” sub-part is rotated
+120° and sub-parts “0” and “2” are unchanged.

n—1
dir(n) = Z turn(j)
§=0

= count ternary 1 digits in n (30)
~0,1,0,1,2,1,0,1,0,1,2,1,2,3,2,1,2,1, ... A062756
1
gdir(z) = T gturn(z) (31)
—x
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> 23 23t

e %
oo 3k

- a (33)

= -a) 1+ a3

Generating function (31) is the usual factor 1/(1—2) for cumulative turns.
In (32), each term is a generating function which has coefficient 1 where n has
a 1-digit at position k in n, so summing to count 1-digits. (33) has a factor
1 — 22" cancelled between numerator and denominator.

Some of the structure of dir can be illustrated in a plot.

dir(n)

=N W s O

Blocks of n = 3" to 3.3*—1 are shown scaled to the same width (and linear
within them) in order to see successive refinements. The next block is the same
overall shape of its predecessor but adds a middle-third excursion up in each n
(being those n with a new low 1-digit).

The successive new highs are where n is entirely 1 digits.

DirMazN . = AllOnesy, = %(3’“ -1)
= ternary 11...11 of k£ many digits
—0,1,4,13,40,121, 364,1093, . .. A003462

The number of left and right turns from 1 to n inclusive are

TurnsL(n) = Z TurnLpred(n)
j=1

=0,1,1,2,3,3,3,4,4,5,6,6,7,8, ... A189674

n
TurnsR(n) = Z TurnRpred(n)
j=1
=0,0,1,1,1,2,3,3,4,4,4,5,5,5, ... A189672

Generating functions are again factor 1/(1—x) for cumulative left or right
predicate,

1 > 2"
gTurnsL(x) = —— gTurnLpred(z) = Z "
1=z imo (L—2)(1-2"")
: O
gTurnsR(x) = —— gTurnRpred(x) =
1w i (1-o) (-2
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All turns are left or right so total lefts plus rights is simply n. The difference
lefts minus rights is net dir for (35). In the generating functions, this difference
is gdir form (32).

TurnsL(n) + TurnsR(n) =n (34)

TurnsL(n) — TurnsR(n) = dir(n) (35)
Sum and difference of (34),(35) are

TurnsL(n) = % (n + dir(n))

TurnsR(n) = 1 (n — dir(n))

Clark Kimberling in OEIS A189674 and A189672 gives the following recur-
rences, with the first adapted here to TurnsL numbered first turn at n=1,

TurnsL(n) = Tumqu%J) + L%HJ
TurnsR(n) = TumqugJ) + {nTHJ (36)

These forms can be seen from the turn expansions in figure 2 (and general
morphism expansions like A189674, A189672). TurnsL(|n/3]) counts lefts in
the “existing turns”. Each point is preceded by a new pair LR so +|n/3] further
lefts. When n = 1,2 mod 3 the new L following the last “existing” is to be
included too, so total +|(n+2)/3]. Similarly TurnsR, but for it the following
new R is only when n = 2 mod 3, so +|(n+1)/3].

TurnLeft from theorem 4 and TurnsL are inverses in the sense that

TurnsL(TurnLeft(m)) = m+ 1

The left turn at n = TurnLeft(m) increments TurnsL so this n is the smallest
for which TurnsL(n) = m+1, or equivalently n—1 is the greatest for which
TurnsL(n—1) = m. Similarly TurnRight and TurnsR.

The TurnLeft procedure in theorem 5 finds, for given m, the least solution
n to

TurnsL(n) =m + 1
i(n+dir(n)) =m+1 (37)
n=2m+ 2 — dir(n) (38)

The successive decrements in the procedure effectively adjust for count of
1-digits, which is dir, in order to satisfy (38). Of course the correctness of
the procedure depends on a decrement for a given 1-digit not upsetting higher

1-digits already considered.
The procedure for TurnRight finds in a similar way

n=2m+ 2+ dir(n) (39)
These relations show too TurnLeftOff and TurnRightOff from (23) are

TurnLeftOff (m) = dir(n) — 2 where n = TurnLeft(m)
TurnLeftRight(m) = dir(n) + 2 where n = TurnRight(m)
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New highs in TurnLeftOff are new highs in dir among left turn n. dir is a
maximum when n = 11...11 ternary and this is a left turn. For £ many ternary
digits, its index m per (37) is

m = % (AllOnesy, + k) — 1 for k>1 (40)
=1(3"+2k-5)
=0,2,7,21,62,184,549, ... —14 A047926

New highs in TurnRightOff are new highs in dir among right turn n. To
be a right turn is lowest non-zero digit 2, so take low digit 2 so n = 11...112
ternary. For k many ternary digits, its index m per (39) is

m = 3 (AllOnes, + 1 — (k—1)) — 1 for k>1 (41)
=1(3"—2k-1)
=0,1,5,18,58,179,543, ... A000340

These offsets are the maximum number of decrements or increments made
by the TurnLeft and TurnRight procedures in theorem 5. In both cases for n
of k digits they make at most k—1 decrements or increments in their respective
loops, and the n and m where that maximum occurs is unique.

dir(n) mod 3 is a net direction East, North West or South West. This net
angle suffices for drawing etc.

1
0 dir(n) mod 3
) =0,1,0,1,2,1,0,1,0,1,2,1,2,0,2,1,...

=0atn=0, 2, 6, 813,18,20,24,26,...
=latn=1, 3, 5 7, 9,11,15,17,19,...
=2at n=4,10,12,14, 16,22, 28,30, 32, ...

On expansion, each middle part is 1 greater direction, with wrap-around.
(Philippe Deléham has this in OEIS A062756 for the full dir, no wrap-around.)

dirmod3= 0—0,1,0 1 —1,2,1 2 — 2,0,2 starting from 0

1.4 Coordinates

It’s convenient to calculate terdragon curve coordinates in complex numbers
using ws or wg roots of unity and a base b which is the end of a 3-segment unit
expansion. The roots of unity act as rotations by 120° or 60°.

b=w3+2 = wg+1 base

w3 We b
. e-—-—-eo

\
\
\

o — — — -\

0
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Per Davis and Knuth, and counting vertices starting n=0 at the origin, point
number n is given by ternary digits of n = ag_1...a2a1a9-
digit(a) = 0,1,wg for a =10,1,2
point(n) = b~ digit(az_1) high digit (42)
+ "2 digit(ay_») wgdir(ak’l)
+ %73 digit(ap_o) wgd"(a’“_lak_g)
+ b digit(ay) wfir(ak’l @k —2---02)
+ 0% digit(ao) wfir(ak’la"'” -aza1) low digit
=0, 1, wg, 14+wsg, 2wg, wg, wg, —1 + 2wg, 2wg, —1 4+ 3ws, - . .
=0, 1, 2+1v3i, 24+1v3i, 1+v/3i, 3+1v3i, V3i, 14+V3i, 14+3v3i, ...
Digits can be taken high to low as

point(3Fay + np_1) = b* digit(ay) + point(nk_l).wgdir(ak)

a is the highest digit and is located per the base pattern scaled by b*.
The ny_y digits below it go in direction dir(ax) by multiplying ws. Repeated
expansion is

point(n) = b* digit(ay,) (43)
g™ (41 digit (ap )

—|— wgd"(@) (b1 digit(ay)
+ w i) (bo digit(ao) )))

Digits can be taken low to high by segment replacement,
. o . dir(n1) .
point(3n1 + ag) = point(ni).b + ws .digit(ag) (44)

ag is the low ternary digit and n; the digits above it. dir(n;) is the seg-
ment direction before expansion, so rotating the new base figure. This direction
depends on all of ny. Evaluating the nested (43) from innermost to outermost
builds it successively by multiplying each direction onto all below.

For computer calculation, integer coordinates x,y representing x+yws can
be maintained. Or z+ywg if preferred. Multiplication by ws, wg or b are then
various integer additions or subtractions of x,y.

It’s also possible to calculate with an z,y representing 1 (z+y+/34) so that y
is a purely imaginary term (vertical). In this case x,y are integers = y mod 2,
ie. both even or both odd. The effect of plotting those xz,y directly on an
integer grid, without % or v/3 factors, is to flatten to right triangles height 1
base 2 (instead of equilateral triangles).
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0,2 N 1 ;
. «777——\/\ . . m’yaSQ(m—i_y\/gZ) (45)
AN for terdragon k=2
. 1,10 - - - =" .
. ] —\\4 . .
0.0 2,0

This form can be useful for a graphics display using every second pixel of
a square grid. It avoids uneven spacing at small scales. If a factor v/3 for
equilateral triangles is used then it’s necessary to round to an integer pixel and
at resolutions near a few pixels this rounding becomes noticeable.

A grid of every second integer position is the same as a square grid rotated
45°. A further possible integer coordinate system is to take triangles on a 45°
angle. This corresponds to integers x, y representing points xwg + vy ws-

L] L] L] * $ L]
N N
00 1 ‘v s T,y as Twe + yws
. . [ «--» » 3,0
NN for terdragon k=2
N N
L] L] L] \‘ \‘ L]

The low to high point formula (44) can be reversed to calculate n for a given
segment. Suppose a segment is at z = point(n) in direction d = 0, 1,2 = dir(n)
mod 3.

unpoint (z, d) d=0,1,2
loop
if z=0 then arm = 2d end loop

if z=wg, d=2 then arm =1 end loop
if z=—1, d=0 then arm =3 end loop
if z=Wg, d=1 then arm =5 end loop

0 ifz=0 modbd
a=<¢1 ifz=1 modbd ternary digit a
2 if z=wg modbd

d + d— dir(a) mod 3

Z (z — digit(a) wg) /b

n digits low to high < a
end loop

if arm even then n
if arm odd then 3¥—n
where k is the number of digits of n generated

z mod b determines the low ternary digit a of n since all terms of point(n)
except the lowest are multiples of b, and in that low term w3 = 1 mod b so

z = digit(ag) mod b
The direction factor in (44) is all digits except ag,

dir(ak...a1) = d— dir(ap)
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Then the low digit is subtracted, b divided out, and the procedure repeated
for the second lowest digit aq, etc.

For segments in the terdragon curve starting in direction d=0 this ends with
location z=0 and direction d=0.

For segments in a 120° rotated curve z.ws, the procedure also ends with z=0
but direction d=1. This is since ws = 1 mod b so that factor ws does not change
digits generated from z, and the initial d includes +1 for the rotation. Similarly
segments in a 240° rotated curve z.w3 reach z=0 and direction d=2.

For segments in a 60° rotated curve,

point(n).ws = b*.ws + point(3F—n).w?
Geometrically this is starting at a 60° endpoint b*.wgs and going in direction
d=2.

So the procedure gives digits of a 240° curve point(3*—n).w2, and loop
ending z=wg. Similarly for 180° and 300° rotated curves as arms 3 and 5.
Notice these odd arms all take segment direction d as 0,120, 240, the same as
the even arms. For the odd arms this is reverse along those arms, but the arm
is not known until the end of the procedure.

If calculations are made in coordinates z +yws then low digit a is simply
a=0,1,2 =z+y mod 3

If using x+yws then a similar x—y mod 3. Or every second point coordi-
nates of (45) is —x mod 3

The geometric interpretation of the procedure is to find which rhombus
shaped expansion from figure 1 contains the segment, then step back to the
multiple of b which is its start. The rhombus tiling and directions are a repeat-
ing pattern and, depending on the z,y coordinate style used, can also be done
in a 12x12 table lookup.

,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,

1.5 Other N

Each curve location z is visited 1, 2 or 3 times. Applying the unpoint procedure
above for d=0, 1,2 gives the n which are those visits. For a given n, the other
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n1, no at the same location can be calculated from the ternary digits of n without
going via the location.

Theorem 9. For n>1, the other ny and ns at the same location are given by
the ternary digits of n put low to high though the following state machine.

out —1 mod 3 out +1 mod 3
5 70 . 0 ) 12 0 Figure 6:
unch %@ -« @ > 4> unch other(n, d)
start 51 by ternary
1110 1112 digits
start =2 low to high
unch - 1 @~ 1 5 'T' unch
24 o o
out +1 mod 3 out —1 mod 3

other(n,d) = start in S5, output digits +1 mod 3 in L,R
other(n,1)=0, 2, 5, 6, 17, 1, 15, 4, 11, 18,...
0,-1, 0, -1, -1, 1, 0, 0, 0, —1,...
other(n,2)=0, 5, 1, 15, 7, 2, 3, 17, 14, 45,...
earm =0,-1, 1, -1, 0, 0, 1, -1, 0, —1,...

arm =

)

The start state is S1 or S2 for § = 1,2 respectively for other direction dir(ns)
= dir(n) + § mod 3. In states L1,R1 the output digit is the n digit +1 mod 3.
In states L2,R2 the output digit is the n digit —1 mod 3. In S states the output
digits are n digits unchanged, as are all further digits after reaching “unch’.

One additional high 0 is reckoned on n. The final state is L2, R2, or unch.

If final L2 then this is a left turn on the right boundary and the further visit
is in arm —1. The output is reversed ns = 3 — output to count from the origin,
where k is the number of digits.

If final R2 then this is a right turn on the left boundary and further visit in
arm 1. The output is again reversed ns = 3% — output to count from the origin.

Proof. Suppose m is the same location as n but direction +4, and a certain dz
offset away from n,

dir(m) = dir(n) +§ mod 3 (46)
point(m) = point(n) + wgdir(n).dz
Factor wgdir(n) on dz makes dz relative to the direction of segment n, like a
low term of point formula (42). This allows step (48) to require only the low
digit of n.

The digits of m are to be determined from J, dz and the digits of n. Let a
be the low digit of n and ¢ be the low digit of m so that

n=3n"+a m=3m'+c
From the low digit point formula (44), a and c¢ are related by

w3d”(m/). digit(c) = w3d"("/). digit(a) + wgd”("). dz modb (47)
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w3 = 1 mod b so all factors of w3 can be ignored, leaving ¢ determined by «a
and dz. New direction difference ¢’ is those two low digits dropped from (46)

8 =46 — dir(c) + dir(a)

New location offset is the low digits taken off (44). The whole m' is not
known yet, but dir(m’) = dir(n’) + ¢ mod 3 is enough for its w3 power.

dz/.w;”("l) = point(m’) — point(n’)
= (point(m) — w;"(m,).digit(c))/b
— (point(n) — w:f”(n/).digit(a)) /b
= (dz.wém(n) - wgir(n/)Jré/.digit(c) + w;ir(n/).digit(a)) /b
dz' = (dz.wgm(a) — W' digit(c) + digit(a)) /b (48)

From (47), the bracketed part of (48) is a multiple of b.

These steps begin from dz =0 initially so m and n are the same location,
and 6 = 1or2 other direction. The possible digits a =0,1,2 from n then give
the following transitions between §, dz combinations, and output digit ¢ related
to a. These are per figure 6.

ac—El (o (o ()2 afl
5=1

6=1 1 = 2 0=1
012() 2 |d=w dz =0 =1|_0 {)o12
A/ \

§=0 1( 0 start ) ) 5§=0
dz=0 start dz=0
\ /

1 6=2 0=2 0=2 1
dz=1 1 dz=0 2 dz = ws

acf12u OU 0 ;_El

6=0, dz=0 gives ¢ = a unchanged from there onwards.

A high 0 digit on n goes to state L2 or R2, or from R1 it goes to unchanged.
The latter is when m is bigger than n, representing a further visit to the same
location in a higher curve level.

In states L2 or R2, high 0 digits on n loop. To see the rule for these as
adjacent arms, first for L2 suppose n had an extra high digit 2, so it goes to
“unch”, with new high ¢ =a—1 =1 on m.

So the other visit to n is at m along a curve directed from 1. Taking 2 as
the origin means it is 3* — m along a curve directed away from that 2, in arm
—1 at —60°.

Draft 15 page 25 of 124



For R2 suppose n has an extra high digit 1, so it goes to “unch”, with new
high ¢ = a—1 = 0. Taking 1 as the origin, this is m in the 0 curve which is
3¥ —m away from 1 in arm 1 at +60°. O

L states are for n a left turn and R for n a right turn. They are reached
from the S starts by lowest non-zero digit 1 or 2 respectively as per turn at (1).

Right boundary single-visited points are always left turns, otherwise non-
overlapping plane filling would not be possible. So arm —1 is from R when high
0s on n don’t reach “unch”. Conversely left boundary points are right turns and
arm +1 is from L. So the arm is either 0 when within the curve or —turn(n)
when adjacent arm.

The states of figure 6 and outputs can be expressed arithmetically using §
and the lowest non-zero digit of n,

other(n, §) for 6 =1or2
digits n = arar_1...ap and extra high aypyq =0
output digits cx41CxCr—1--.Co

a; = lowest non-zero of n

Ci...Co  Qy...Qq unchanged
loop j =1t+1 to k+1
¢; =0,1,2 = (aj — 6.a;) mod 3 (49)
§ « 6+ dir(a;) — dir(c;) (50)
end loop
if 6 = 0 mod 3 then ns = Ck+1---Co, Same arm

if 6 =1 mod 3 then ns = 3! — Ck41---Co, arm —1

if § = 2 mod 3 then ns = 3*! — Ck41---Co, arm +1

For ¢ at (50), taking dir of a single digit is simply 1 or 0 according as digit 1
or not. ¢ can be kept mod 3 at all stages.

ay is the transition digit out of S states. Its use as 0.a; at (49) flips the sense
of § for the R states. For example from S1 which is =1, an a;=1 goes to L2
and a;=2 goes to R1. Multiplying a; gives —d.a; = 2,1 to add for the output
digit in those respective states.

The new ns can have up to 1 extra ternary digit over what n has. This is
output digit cx41 and the input ax4; taken as 0.

If §=0 is reached in the loop then all further digits are unchanged c; =a;.
0=0 means c¢; =a; at (49) so dir(c;) — dir(a;) = 0 at (50), maintaining 6=0. If
0=0 initially then is no change other(n,0) = n.

The L and R state J, dz segments are located
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Z + we

’n
R2 =2, dz=ws ,/  6=1, dz=1 Rl
, n Figure 7:
Ze——>o z+1 adjacent
‘\ ) segments
L2 =1, dz=ws °\ ,;0=2,dz=1 L1
\\ ¥
z + We

Starting from these states gives, from n, the segment numbers of those seg-
ments. If in an adjacent arm then the reversal is 3*—1 — output for segment,
rather than point.

Similar initial d, dz can be used for other segments or points at further loca-
tions relative to n. Bigger dz may extend further than just one adjacent arm,
going into other of the 6 arms which fill the plane.

Adjacent segment numbers as in figure 7 can be found by digits high to low
(instead of low to high). Suppose a segment n has segment numbers s and e on
its right. Expansion is a new low digit on n, and on the other segments, is

n 4 n2.

.‘—y/. °_ nl ° Fi 8
\\ /, — A TLO\I #e() .1gure. :
EIN Je s2 PRGRS right side

\ , | \\\

Ly :A,sl | - segmept
! - expansion
‘A//

For example new low 0 on n means new adjacent segments are s with new
low 2 or 1. The new segments for a given low digit of n are

/ !/

n digit s e
0 s2 sl
1 el n2
2 nl e0

(51)

Initial n=0 is no digits yet,

n=0
start @ ——p- o L
» KA initial
\
\ )/ \ s=2,e=1
\ \ ?
s=2 \ /’ e=1
A\ A\
\ ’ \

arm —1 start

Initial s=2,e=1 are segments in arm —1, on the right, directed towards the
origin. Or instead start s=0 and an extra high 0 on n to step in (51) to 2,1
(initial e being unused by this). A segment in arm —1 directed away from the
origin is reversal 3*—1 — output. After all digits of n are processed, an adjacent
arm is identified by having high initial 1 or 2, above the digits of n.

other visits at the point of a left-turn n are given by one further low digit
expansion. A further low 1 digit or 100...00 sequence on all of n, s, e are their
middle common point. e is in direction =1 and s in direction d=2. So for
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other(n) go high to low, not including the 1 which is lowest non-zero, and copy
that 1 and low Os to s and e.

Similar high to low holds for left side segments, and from them other of right
turn n. The pattern of new low digits is the same as in (51), but which of n, s, e
they take differs.

/ n digit s €
left )/ ‘\\ Og 9 1
. s,
side , \\e 1 ZO 22 (52)
segments Y n N
o—— 3o 2 el €0

In tables (51),(52), some entries copy n for the new s’ or ¢’. This is where
the output digits are to be n unchanged. This is somewhere at or above where
the low to high of theorem 9 would be in “unch”.

Theorem 10. Differences ‘n — 0ther(n,6)| which occur are sums of distinct
powers of 3 with alternating signs,

|n — other(n, 5)| — gko _gk1 L gk _ .. (—1)! gkt (53)
where kg >k1 >ko > >k >1
=3,6,9,18,21,24,27,54,57,. .. 3x A306556

Proof. Consider the segment number next around a unit triangle,

left side n\ segment m
n next around a unit triangle
¢ — > 0
either left side or right side
right side ™

Here “next” around the triangle means n in its segment direction, and the
following m either +120° on the left side unit triangle or —120° on the right side.
One of these sides is where the curve turns, so that one of them is m=n+1. The
other side, when there is a segment there, can be a bigger or smaller segment
number.

The claim will be that difference m—n is a sum of the following form, and
that all such sums with py < k occur in curve k.

m—mn=(—1)"3P0... 4 3P-1 — 3Pt 4 3Pt (54)
powers pg > -+ > pi_1 > py=0
low term +3° = 41, signs alternating above there
= positives 1, 7, 19, 25, 55, 61, 73, 79, ... A055246
negatives —2, —8, —20, —26, —56, —62, —74, —80, . .. — A190640

In curve k=1, the only m—n difference occurring is +1, which is of this form.
Segments n and m expand
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A

Figure 9 \
| ° ~

|

3m—+2 :

|

|

l§ft p .

side Ie

|

|

n 1

L]
Ny ‘
> |
S 3n+1
3n S~ :

A

New sides 3n,3n+1 are difference +1, as are 3n+1,3n+2, and likewise
3m,3m+1 and 3m+1, 3m+2.
On the left side, the remaining new difference is 3n+2 to 3m,

3m—(3n+2) =3(m—mn—1) +1 (55)

3(m—n —1) is sum (54) with its low +1 term removed and the rest raised
by a factor of 3 so all p powers increment. Final +1 in (55) restores the low +1
term.

On the right side, the remaining new difference is

(3n+2) — (3m+1) = =3(m—n) +1

Factor —3 increments each p power and flips their sign, then 41 introduces
a new low +1 term. Notice this introduces a p;_1 =1 term in the sum, whereas
the left side (55) skips such a term.

These power increments either making or skipping p;—1 =1 build all forms
(54) in curve k+1.

For point differences, and in the manner of figure 8, or the new point P
here in figure 9, expansion of sides of a unit triangle gives a new double or
triple visited point. For segment n, the middle point on the right is 3n+1. Two
segment sides expanding to there are point difference

(3m+1) — (3n+1) =3(m —n)

and thus the difference form (54). On further expansion, the point visits are 3x
each, so give any low k; in (53). O

Second Proof of Theorem 10. Differences can also be calculated from the other
digit transformation of theorem 9. This shows where the difference powers fall
in the other digit transformation.

The states of figure 6 loop on digit 0 or digit 2. For §=1 the digit runs which
loop and their resulting outputs are net +1,
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or 1 go or 2 go or 1go or 0 go (56)

to unch to unch to unch to unch
e 4 L1 L L2 tow e L R2 LRI tow
no...]022.22]100..00[10.0] n ...[200..00]122..22]20..0]
ni ...[100..00 [022..22[10..0] o ... [122..22]200...00 | 20...0 |
+1 -1 +1 +1 -1 +1

For =2 the runs are the same, but starting opposite lowest L1 and R2.
The states alternate and hence the signs for the increment. O

0=1 can go to low run either R1 or L2, giving it either +1 or —1 lowest
term. 6=2 low run R2 or L1 likewise. So d=1 and =2 give the same set of
differences.

turn =1 goes to low R1,L1 always, but with an odd number of runs its
highest can be —1 too and the absolute value flips all signs so that again turn =1
or turn = —1 are the same set of differences.

Triangle side differences (54) in ternary are

high low

m—n = ternary triangle next side difference

[ —

> 0 digits

This is each pair of terms 3% — 3¥ giving a run of ternary 022...22; and final
+1 term a single 1 digit. Negatives m—n < 0 this way too, with infinite high 2s
for a “3’s complement” negative.

Or negatives written with a — sign are a low 2 digit instead

high low

m—n = ternary — triangle next side difference

[ —

> 0 digits

other differences (53) in ternary are at least one low 0 digit, then an arbitrary
digit, then digits 0or2 above. This is again since each pair 30 — 31 is a run
022...22 and if the lowest term is ¢ even then it is an unpaired +3** so lowest
non-zero digit can be 1.

1 if p = |n — other(n,d) for some n
Opred(p) = {0 if not |

= p ternary digits 0,2 with low 0, and lowest non-zero can be 1
ternary 10, 20, 100, 200, 210, 220, 1000, 2000, 2010, . ..

high low
...00r2...‘any‘0...0‘ (57)
> 0 digits > 1 digits

The unpaired +3%* can be taken as +1 of a 2220 low run, so ternary 0,2s,
or 0,2s + 1.
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Opred(p) = p>3 and p=0mod 3 and (C’pred(p/i’)) or Cpred(p/3 — 1))

Cpred(n) = ternary digits 0,2 only (58)

=1,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1, ... A088917
=lat n=0,2,6,8,18,20,24,26,54,56,... A005823
=0at n=1,3,4,5,7,9,10,11,12,13, ... A081606

1.6 Segments in Direction

Theorem 11. With the curve starting in direction d=0, the number of segments
of terdragon k in each direction dir(n) =d =0,1,2 mod 3 is

k—1
S(k,d) = 3+1 +s(1<;—4d).3L ] (59)
= %(3’“+o73db’“+w3d5k) (60)
= % <’bk+Q}3|2 —1)

s(j) =12,1,1,0,—1,-1,-2,—1,-1,0,1, 1] s(j—1) = A214438
S(k,0)=1,2,4, 9,24,72,225,702,2160, 6561, ... A092236
S(k,1)=0,1,4,12,33,90, 252, 729, 2160, 6480, . . . A135254
S(k,2) =0,0,1, 6,24,81,252,756,2241,6642, ... A133474

N sk =4 o
— Sk,1) =4 % segments in direction
\ / \ relative to start

»\4’ S k,? =1 /

start >

Proof. When the curve replicates the new sub-part 2 is in the same direction as
the preceding level, so the segment counts double. The new sub-part 1 rotates
+120°. The rotation means those segments in direction d=2 move to direction
d=0. Similarly the other directions. So mutual recurrences

S(k+1,0) = 2S(k,0) + S(k,2) (61)
S(k+1,1) = 28(k,1) + S(k,0) (62)
S(k+1,2) = 25(k,2) + S(k,1) (63)

)

Using (63) for S(k, 1) and substituting into (62) then using (61) for S(k,2
and substituting again gives the following recurrence for d=0. By symmetry the
same for d=1 and d=2.

S(k+3,d) =6 S(k+2,d) — 12S(k+1,d) + 9S(k,d)
The characteristic polynomial is

23—622 + 122 —9 = (x —3)(z —b)(z — b)

So S(k,d) has a power form X.3¥ + Yb* 4+ Zb". From the initial values the
coefficients are per (60).
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The imaginary parts of the conjugate powers cancel out. Their real part

gives factor s(j) on the half power 3L(*=1)/2] for (59).
There are 3% segments in total. The selector function s has
s(j) + s(j+4) + s(j+8) = 0 for all j
so the half powers cancel out leaving

S(k,0) + S(k,1) + S(k,2) = 3*

O

S(k,d) can also be calculated by dir from (30). The segments in direction
d=0 are those n which have dir(n) = 0,3,6,etc. This means count 0, 3,6, etc
many 1-digits among k ternary digits of n. The number of arrangements of those
1-digit positions is a binomial coefficient in k and then the remaining digits are

each 0 or 2. So

S(k,0) = 28(5) +2573(5) + 257 (F) + - -
Sk, 1) =251 (F) + 2574 () + 2577 (5) + -+
S(k,2) =282 (5) + 2572 (5) + 275 (5) + - -
S(k,d) = 2479 (5)

These forms are among the power-weighted binomial sums considered by
Justus[7] as a generalization of the binomial sums of Cournot and Ramus (see

Lines ahead in section 5.1 for the latter).

S(k,0) was also a proposed International Mathematical Olympiad problem
[6]. In that problem dividing out factors of 3 is ternary lowest non-0 which is
the terdragon turn sequence. Summing is the direction dir(n). Counting sums

divisible by 3 is segments in direction d=0.

Theorem 12. The number of segments in each direction dir(n) =d =0,1,2

mod 3 relative to the middle segment are

SM(k,d) = S(k, d+k)
k—1
_ gkl sm(k,d).?ﬂTJ
= (35 + W (V3)" +wf(iVE))

=3 (Java) + |2 - 1)
[
[

sm(k,0)=1[ 2, 0,—2, 0]

sm(k,1)=[-1,-1, 1, 1]

sm(k,2)=1[-1, 1, 1,-1] =sm(k+1,1)
SM(k,0)=1,1,1, 9,33,81,225,729,2241, 6561, ...
SM(k,1) = 0,0,4,12, 24, 72, 252, 756, 2160, 6480, . . .
SM(k,2) = 0,2,4, 6,24,90,252, 702, 2160, 6642, . ..
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/\/\ SM(k,0) =1 — k=2
segments in direction

end SM(k,1) =4 X

/ \;/ start relative to middle
~ middle SM(k,2)=4 )/

Proof. The middle segment is in direction k¥ mod 3 so SM(k,d) = S(k,d+k).
In S(k,d+k) the factor s(k — 4(d+k)) = s(—3k — 4d) gives sm(k,d). The
—3k mod 12 becomes k mod 4 for sm(k,d). O

The periodic factors sm(k,d) can be expressed variously as powers of —1.
For example sm(k,2) = (—1)L=1/2] gives

155

SM(k,2) =31 4+ (=3)

Theorem 13. With the curve starting in direction d=0, the number of the first
n segments of the terdragon curve in each direction d =0,1,2 is

SN (n,d) = %(n + 2Re @dpoint(n)) (64)
SN(n,0) =0,1,1,2,2,2,2,3,3,4,4,4,4,4,5, ...
SN(n,1) =0,0,1,1,2,2,3,3,4,4,5,5,6,6,6, ...
SN (n,2) =0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,...

Proof. There are total n segments,
SN(n,0)+ SN(n,1)+ SN(n,2) =n (65)

The real part of segments in direction 0 is +1 each. The real part of segments
in directions 1 and 2 are f% each. The total of these is net horizontal position
point,

SN (n,0) — £SN(n,1) — 35N (n,2) = Re point(n) (66)

(65)+2x(66) cancels the direction 1 and 2 terms, giving the theorem for
d=0. The other directions have corresponding forms after rotating by ws or w732
so the desired d is the real part,

SN(n,1) — 1SN(n,0) — 35N (n,2) = Re w; point(n)
SN (n,2) — SN (n,0) — SN (n,1) = Re w3 point(n)

Each combined with (65) gives the general case (64). O

2 Boundary

2.1 Boundary Triangles

A unit triangle can be placed on each boundary segment of the curve.
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A

k=2
AY boundary triangles
A/Y BT, =2*"' =38
AY RT5 = BT5/2=2>=14
v

These boundary triangles are similar in style to the boundary squares which
Daykin and Tucker[5] count on the Heighway/Harter dragon curve.

Theorem 14. The number of triangles on the boundary of terdragon curve k
8

BT, = 2F+1 boundary triangles
The curve is symmetric on each side so half on one side

RT, = BT;/2 = 2F one-side boundary triangles (67)
The number of triangles in a “V” pair of curves is the same as “R”

VT = RTy “V” part boundary triangles

Proof. The “V” part boundary is between two level k curves at a 60° angle as
in the following diagram. A level k curve can be drawn across the V endpoints
to make a triangle.
Vi Figure 10:
R,V boundary parts
and triangle

Ry

Per plane filling theorem 2, all segments within the triangle are traversed
precisely once so the unit triangles on the R boundary and those on the V
boundary are identical VT, = RTk.

The left diagram shows that Rj; comprises an Ry and a Vj,. They meet as
the outside of a 60° angle so do not have any boundary triangles in common.

RT4s1 = RT) + VT), = 2RT), (68)

Starting from RTo = 1 gives RT}, = 2. O

Each boundary triangle touches either 1 or 2 boundary segments. The two
can be counted separately. The total is BT,
BT, = BTi, + BT2;

Theorem 15. The triangles on the terdragon boundary touch alternately 1 and
2 sides. For k > 1 there are half 1-side and half 2-side.

2 if k=0
BT1y = k Zf 1-side triangles (69)
BTy/2=2" ifk>1
—2,24,8,16,. ..
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BT./2=2% ifk>1
=0,2,4,8,16,32,... A155559

0 if k=0
BT2) = { if 2-side triangles (70)

The curve is symmetric on each side so one side

RT1,=1BT1,=1,1,2,4,8,16,... A011782
RT2y = %BT,?;C =0,1,2,4,8,16,... A131577

The 1s and 2s in a “V” part are opposite to an “R”

VTl = RT2; opposites 1 <> 2
VT2, = RT1y,

Proof. For k=1 the R boundary is two triangles, a 1-side and a 2-side, so they
alternate.

Per the triangle of figure 10, the V boundary is the opposite side of an R,
so each 1-side triangle of R is a 2-side triangle of V and vice-versa. These V
triangles are in reverse order to R, so they are 1-side and 2-side alternately the
same as R.

Level k+1 is an Ry followed by Vj and so alternates. O

2.2 Boundary Segments

The boundary of the curve can be measured by unit line segments around the
outside of the curve.

k=2 boundary
By =12
Ry =B2/2=6

The boundary on one side is counted from start to end. The full boundary
is counted by continuing around to the origin again.

The ends of the curve are isolated line segments (see theorem 21 for more
on this). For the full boundary both the left and right sides of those ends are
counted.

Theorem 16. The boundary length of the terdragon curve after k iterations is
2 if k=0
By, = A Zf boundary (71)
3.2% ifk>1
=2,6,12,24,48,96,...

The curve is symmetric on its two sides so one side

1 ifk=0 .
Ry = B/2 = {3.2161 k> 1 right boundary (72)
=1,3,6,12,24,48, ... A003945

The length in a “V” part is
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3.2 ifk>1
=2,3,6,12,24,48, ... A042950

Vi = {2 ifk=0 “V” boundary (73)

Proof. The boundary segments are found by counting the sides of the 1-side and
2-side boundary triangles (69),(70)

By = BT1, + 2BT2;
R = RT1, + 2RT2y
Vi=VT1, + 2VT2, O

Second Proof of Theorem 16. R and V parts expand as

\4 Figure 11:
R and V expansion,
R initial segments
Ro=1
Vo=2
giving mutual recurrences
Ryy1 =R+ Vg (74)
Vi1 = R + Vi (75)

which are the same right-hand sides so Rj;;1 = V41 and hence

Rk+2 = 2Rk+1 k 2 0
Viero = 2Vi41 k>0 O
Recurrence (74) is the equivalent of (68) for the boundary triangles. (75)
also holds for the boundary triangles per the expansion in figure 11, but doesn’t

show as clearly that the shape is opposite to R the way the triangle in figure 10
does.

VTji1 = RT), + VT,

2.3 Boundary Segment Numbers

8
7
right boundary
6
\; ?\3 segment numbers
N2 0,1,2,3,7,8,...
1
—0—N

Theorem 17. Number the segments of the terdragon curve starting n=0 for
the first segment. The right boundary segments are characterized by
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1 if n in ternary has no digit pair 11, 12 or 20

Rpred(n) = {

=1,1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0,0, . ..

0 if n in ternary does have

Proof. Take the boundary in three types of part

T VIR e

R has both endpoints on the boundary and is the right side of the full curve.
M has an adjacent sub-curve at its end and so only some segments at its start
are on the boundary. E has a sub-curve at its start.

Let Ry, My, Ex be the segment numbers which are on the boundary in the
respective configurations at level k. These numbers are in the range 0 to 3% — 1
and hence can be written with & many ternary digits. The initial sets are a
single 0 in each so Ry = My = Fy = 0 corresponding to a single line segment.
These zeros are understood as 0 many digits.

The curve expands as

—®

M

%@ ©),
M R
O 5 Y
M

O—

The R segment 0-1 expands to sub-parts 0.R, 1.M, 2.E. The number 0, 1,
2 is the high ternary digit on top of the digits of the subsection. Treating each
section this way gives

Ry= O0.Ryp_1, 1.Myp_1, 2.Fp_1
My = 0.Ry_1 (77)
By = .My 1, 2.E. 4

Taking ternary digits from high to low, this expansion is a state machine.
In state R, any digit is permitted and switch to state R, M, E according to that
digit. In state M, only 0 is allowed and switch to state R. In state E, either 1
or 2 is allowed and switch to state M or E.

2 —»non

Figure 12:
start / \ Rpred(n) state machine,

0 C 2+ non ternary high to low
‘\/

Digit 0, when permitted, always goes to state R. Digit 1 always goes to state
M. Digit 2 always goes to state E. This means the state at any position is given
by the preceding higher digit. A state transition permitted or not is therefore a
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digit pair permitted or not. So 11, 12, 20 not permitted. Possible runs of digits
in n follow from this. O

The lengths of sub-parts M and E are

M, = {;2’@2 ii : ; (2)’1 “M” part boundary length
=1,1,3,6,12,24, 48,96, . ..
1 ifk=0
Er=<2 ifk=1 “E” part boundary length

3282 ifk>2
=1,2,3,6,12,24,48,96, ...
This is by writing the expansions as recurrences, My = Ey = 1, and substituting

Riy1 = R + My + Ej,
My 41 = Ry,
By = My, + Ey,

M and E together are the V part My, + Ey = Vj.

The states also give a count of how many sides the triangle on the right of
segment n has. This is 1 or 2 for a boundary segment, or 3 for a non-boundary.

1 if Rpred state R right triangle sides

Rsides(n) = < 2 if Rpred state M or E (78)
3 if Rpred state “non”
=3-12,1,1]. Rpred(n) (79)

=1,2,2,1,3,3,3,2,2,1,2,2,3.3,3,3,3,3,3,3,3, 1, ...

For (79), low 0 on n goes to state R and low 1 or 2 to states M,E, so n mod 3
determines respective factor 2 or 1 on Rpred to reduce from 3 sides.

M.E always occur in pairs, since the expansions at (77) always produce them
in pairs. The 0-digit there is an R or non which separate such pairs. So each
pair 2,2 in Rsides is M, F and Rsides can be written as a morphism expansion

Rsides 1—1,2,2 2,2—+1,3,3,3,2,2 3—3,3,3 starting 1

Total Rsides in a level is 1 for each RT'I triangle, 2 for each of the 2 segments
of RT2, and 3 for each of the 3 segments of enclosed AR (ahead in section 3),

3k_1

>~ Rsides(n) = RT1), +2.2.RT2; + 3.3.AR), = AR (80)
n=0

The geometric interpretation of total ARy is that each respective 1,2,3
side triangle after 2 expansions has 1,4,9 unit triangles enclosed on the right,
which are the coefficients 1, 2.2, 3.3 in (80).
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A state machine for Rpred on ternary digits low to high follows by usual
state machine manipulations reversing the high to low form, or just from the
allowed and disallowed digit pairs. State sO is when the digit immediately below
is a 0. State s12 is when the digit immediately below is 1 or 2.

2 0 O
non <«— .ﬂ:’
‘\0 Rpred(n) state machine,
0 T l 1 / ternary low to high
non <— @ 1,2
1
2

Theorem 18. Let Rn(m) be the m’th right boundary segment number, for
m > 0.

Rn(m) =0,1,2, 3,7,8,  9,10,11,  21,25,26,  27,28,...
ternary = 0,1,2, 10,21, 22, 100,101, 102, 210, 221,222, 1000, 1001, . ..

Rn can be calculated by writing m in mized radiz with low ternary digit and
then binary above. For m < 2, write a single ternary digit.

high low
m= ] 1 ‘Oorl \ ...‘Oorl \0,1,2‘

binary binary binary  ternary

Rn(m) = change each “1, non-zero” to “2, non-zero”
and interpret the result as ternary

The effect of the change rule is that each maximal run 1, 1,...,1, NZ becomes
2,2,...,2,NZ, where NZ is a non-zero digit. If NZ is within the binary then it
is 1. If NZ is the low ternary digit then it can be 1 or 2. In both cases its value
is unchanged. So ternary runs of digit 2 ending 1, except least significant digit
can be either 1 or 2.

Rn(m) = 222...221 00...00 222...221 00...00 222...222 ternary

Proof. The allowed digit pairs in Rn are those not disallowed in theorem 17,

10 00
21 01
22 02

In a pair with a given low digit, there are two choices for its high digit. For
example 0 can have above it either 1 or 0 (the first row of the table). Start from
low digit any 0,1,2. Above it take each of the two choices in the table, which
steps through all and only allowed pairs. The highest digit must be non-zero
and so the top-most pair is a single choice from the high 1-bit of the mixed base
representation. O

A generating function for Rn can be formed by following the mixed radix
conversion. The generating function has periodic terms of the usual form for
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each digit, but with longer periods so as to apply the 1—2 change rule. The
low ternary digit is a repeating 0,1, 2,

0+ 1z + 227

3 =04 1z+22% 4022 + 124+ 225 + -+
— T

g012(x)
For base conversion, start from a generating function with coefficient 1 when
bit k of n is a 1. This is repeating blocks of period 2.2%

Bit, (z) 22" Jr352’“+1 Jr,,,er2,2’t1 22" 22
1w (x) = =
9o 1— 222 (1—2)1—227)

The change rule 1—2 in the binary part is +1 where a 1-bit below. This is
periodic blocks for bit position k£ > 1 (so there is a bit below k),

3 ok 2281 3 ok 2.2F
) €2 + "'+.’L‘ €Tr2 — X
Bitll, (x) = =
g £(@) 1— 22 (1—2)(1 — 222")

These bit forms are raised above the low ternary by substituting 23 and
multiplying 1+x+22 to apply at each n mod 3. Bit position k=0 has its change
1—2 when n = 4,5 mod 6, and k£ >1 has it by gBit11.

3 (zt + )
1—af

(o)
+3(1+ata?) Y 3 (gBitk(xg') + gBitZlk(a:3)>
k=1

gRn(z) = g012(x) +3(1 + x + 22) gBity(x3) +

6.2 + x9'2k . 2x12'2k

(1—z)(1 — x122%)

(81)

T+212 234+2x44-225 LT
123 1—2ab +9 Z 3
k=0
At (81), each term is a successive ternary digit (low to high) added to the
coefficients. For Rn(m) < 3!, which is m < 3.2!71, it suffices to take the first [
terms (so the sum part up to k = {—3 inclusive).
In the sum numerator, —22122" is the top end of two ranges 6 to 12 and 9
to 12. This is 6 to 9 digit 1 and then where they overlap 9 to 12 is digit 2.

2.4 Left Boundary Segment Numbers

Some of the left boundary in level k is enclosed by level k+1 and so is no longer
on the boundary. (Unlike the right boundary which is never enclosed and so
its level £ boundary segment numbers are a prefix of the level k+1 boundary
segment numbers.)

Three forms of left boundary segment numbers can be considered

e segments on boundary for particular level k&
e segments on boundary for every level, so the curve continued infinitely
e segments on boundary for some level, a union of all left boundaries
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left boundary left boundary left boundary
level k =5 infinite curve all levels

Theorem 19. Number the segments of the terdragon curve starting from 0.
The left boundary segments are those which written in ternary do not have any
digit pair 02, 10 or 11.

Within curve k, pad to k many digits with high 0 digits as necessary. This
means the highest non-zero cannot be 2 except when that 2 is the most significant
digit (position k—1).

Lpred,(n) = no 02,10, 11 within k ternary digits of n
= Rpred(3F—1 —n)
=1 for k=0
1,1,1 for k=1
1,1,0,0,0,1,1,1,1 for k=2
For the curve continued infinitely, write infinitely many digits, with high O

digits. One high 0 suffices for the digits rule and means the most significant
non-zero digit cannot be 2.

Lpred (n) = no 02,10, 11 in n with high 0
= Lpredy(n) for k with 3" > 3n

=1,1,0,0,0,1,0,0,0,0,...
1 at n — decimal 0.1, 5, 1516,17, 45,46,50,51,52,53,...
N = terpary 0,1, 12, 120,121,122, 1200,1201,1212,1220,1221,1222, ...

For the union of all left boundary segments, do not write any high 0 digits.

Lpred ,;;(n) = any Lpred,(n), least k with 3" > n suffices

=1,1,1,0,0,1,1,1,1,0,...

1 at n — decimal 01,2, 56,78, 15,16,17,18,19,23,24,25,26,...
= ternary 0,1,2, 12,20,21,22, 120,121,122,200,201,212,220,221,222, ...

Proof. The curve is symmetric on its left and right sides, so the left boundary
segment numbers are the right segment numbers but numbered in reverse 3¥ —1—
n. This means digits 0,1,2 become 2,1,0. The digit pairs to exclude are the digit
reversals of those in the right boundary pairs.

For the curve to level k the reversal is from endpoint 3*—1 and therefore
applied to k digits.

For the curve extended infinitely the sub-part 2 is enclosed by the continuing
curve, so the high digit cannot be 2, only 1.
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For the union of all levels the reversal is made from any endpoint 3* —1 > n.
The endpoint giving no high 0 digits is the minimum disallowing. O

The number of sides on the triangle to the left of segment n follows in a
similar way as the reversal of Rsides within k.

Lsidesy(n) = Rsides(3"—1 — n) left triangle sides
=1 for k=0
2,2,1 for k=1
2,2,3,3,3,1,2,2,1 for k=2
Lsidesoo(n) = Lsides(n) for 3¢ > 3n
—92.2.33.3,1,3,3,3,3,3,3,3,3,3,2,2,1,3,3,3.3, ...

Theorem 20. Left boundary segment number Ln(m) for m > 0 can be calcu-
lated as follows. Write m in mized radiz with a ternary low digit then binary
above.

For curve level k, write a total k many digits.

binary  binary binary  ternary
m= ’Oorl‘OOrl‘...‘Oorl‘O,l,Z‘ k digits

high low

For the curve continuing infinitely, write an extra 0 at the high end.

binary binary binary ternary
m = ] 0 \ 1 ‘Oorl \ \ Oor1 \0,1,2‘

high low

For the union of all levels, for m <2 take Ln(m)=m. For m=3 take Ln(3)
=5. For m>4 write m+2 in mized radiz and then change the high two bits
10 — 1 (a single 1 bit) or 11 — 01.

binary binary binary ternary
m42 = ] lor01 \ Oor1 \ \ Oor1 \0,1,2‘

high low

Take each binary digit from low to high and transform according to the digit
below it and the following table. The digit below is reckoned after any transfor-
mation in that lower position.

bit digit below change bit to
0 0

-0 OO
N = O N
N NN = O

The resulting digits interpreted as ternary are Ln(m).

Draft 15 page 42 of 124



For example for the curve continued infinitely, m=8 is mixed radix 0102.
The low 0 bit has digit 2 below it so in the table 0,2 (third row) is bit change
to a digit 1, giving 0112. Then the next higher position is a 1 bit and the digit
1 below so per table change that bit to digit 2 giving 0212. Finally the high
0 bit has a 2 below so per table change that bit to digit 1 for final ternary
1212 = decimal 50. This is the m=8 sample value shown in theorem 19 (the
first value as m=0).

Proof. The allowed digit pairs for the left boundary are those not disallowed in
theorem 19. The transformations give all and only these pairs.

20 00
21 01
22 12

For the curve continued infinitely, the extra high O bit ensures the high
ternary digit is not 2 since first three rows of the table map that bit to digit 0
or 1.

For the union of all levels, the mixed radix forms are to be those of all k.
When there is one high 0 bit it becomes either 0 or 1 per the bit 0 column of
the table. Any further high 0 bits would remain as 0, per the first two rows of
the bit 0 column. Therefore the values resulting from two or more high 0Os are
the same as from a single high 0. So it suffices to take mixed forms with and
without a single extra 0 bit. The rule in the theorem uses the second highest
bit to choose with or without. The mixed radix is formed on m+2 since there
are just 4 initial values 0,1,2,5 before beginning this mixed form. O

Theorem 21. The only terdragon level k segments which are on both the left
and right boundary are the first two and last two segments.

~ - - last two segments

_ - - first two segments

Proof. For k=0 the single segment is on the left and right boundary.

For k=1 the three segments 0, 1,2 are on the left and right boundary.

For k>2, combining digit pair conditions of theorem 17 and theorem 19
gives permitted digit pairs only 00,01, 21, 22 for segment on both left and right
boundaries. The only numbers which can be made with these pairs are

(1) } first two segments
222 ...221
222 ...222 } last two segments

These are the first two and last two segments. For two digits they are simply
the four permitted pairs. O
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2.5 Boundary Turn Sequence

The right boundary of the terdragon at each point turns either +120° (left),
—120° (right), or goes straight ahead. Number the right boundary points start-
ing from m=0 so the first turn is at m=1.

The following diagram illustrates the first few boundary turns.

+1 = Rturn(6) m=6, h=4
-1 Rturn(5) m=5

0 = Rturn(4) m=4,h=3

+1 = Rturn(3) m=3,h=2
-1 Rturn(2) m=2

+1 = Rturn(l) m=1,h=1

Theorem 22. The terdragon right boundary turn sequence is the Heighway/
Harter dragon curve with —1 inserted at every third position starting from the
second.

—1 (right)  if m =2 mod 3
Rturn(m) = < +1 (left) if m # 2 mod 3 and BitAboveLowestOne(h) =0
0 (straight) if m % 2 mod 3 and BitAboveLowestOne(h) =1

where h =m — |m/3] counts positions excluding —1 right turns,
— 41, =1, 41,0, =1, 41, +1, =1, 0,0, -1, +1, +1, -1, ...

Proof. Take the curve boundary in two parts R and V

initial turns
Ry = empty
Vo = —1 (right)

The turn at 1 is always left, so
Riy1 = Rg, +1, Vi
As per figure 11, Vi 11 is an R and V with 0° turn (straight ahead) in between,
Vi+1 = Ry, 0, Vi

These expansion rules are the dragon curve turn sequence, and per Davis
and Knuth[3] those turns are bit above lowest 1-bit. The initial Ry = empty and
Vo = —1 mean the final V' expansion adds an extra —1 at every third position
starting from m=2. O
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3 Area

The area enclosed by the curve can be counted in unit triangles. The curve does
not cross itself so each enclosed triangle is either on the left or the right side of
the curve.

Figure 13:
k=4 enclosed area

black right of curve

grey left of curve

ALy = AR5 =19
total A4 = 38

The left and right side triangles alternate along each row and each diagonal.
The left side is all the upward pointing triangles. The right side is all the
downward pointing triangles. (This arises later in theorem 26 with the Cantor
dust.)

Lemma 1. Consider line segments on a triangular grid where any enclosed unit
triangle has segments on all 8 sides. The enclosed area A and boundary B are
related to total line segments N by

3A+ B =2N (82)

Proof. Count the sides of the line segments. There are IV segments so total 2NV
sides. Each side is either on a boundary or is inside.

side _ __ _ 3sides
—e inside
side

There are B outside sides on the boundary. The inside sides are all in
enclosed unit triangles. Each area triangle A has 3 inside sides, so 34 inside
sides and total B + 34 = 2N. O

Theorem 23. The number of unit triangles enclosed by the terdragon k is

0 ifk=0
A = 83
* {2 (351 —21) ik >1 e (83)
=0,0,2,10,38,130,422,1330,4118, ... k>1 A056182

Each side is symmetric so half area on each side

ARy = ALy = Ay/2

0 if k=0 .
= area one side
gl k=1 ik >1
=0,0,1,5,19,65,211,665,2059, ... kE>1 A001047

Proof. Non-crossing theorem 1 and plane filling theorem 2 mean that for all
lengths every enclosed unit triangle has all three sides traversed. If this were
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not so then the curve would have to cross itself, or another copy of the curve
cross in, to fill that area to make 6 copies plane filling.
So lemma 1 applies with N = 3* line segments and boundary B, from (71).

340 +2 =23 for k=0
34, + 3.2F = 2.3F for k> 1

Non-crossing means each enclosed unit triangle is either on the left or right
side of the curve. By symmetry the two sides are equal so half the area each. [

Second Proof of Theorem 23. When three terdragon curves are arranged in a
triangle all segments inside are traversed precisely once (by non-crossing plane
filling again) so the unit triangles are either enclosed by one side of the curve or
are boundary triangles. The boundary triangles from the three curves overlap
as in the following diagram.

side .
(\/E) RT even
(k=>1)

Boundary triangles of adjacent sides overlap. If RT}, is even then by sym-
metry there is a vertex in the middle common to all three. If RT is odd then
there is a unit triangle in the middle which is common to all three.

The curve length end-to-end is (v/3)* and triangles of curves like this parti-
tion the plane into identical shapes so there are 3* unit triangles inside.

3" =3 ARy + 3RT}/2 if RT}, even (84)
3* =3 AR, +3(RT, —1)/2+1 if RT} odd O

RTY, from (67) is odd only for k=0. When RT is even, (84) is equivalent to
3A+B = 2N from (82). The boundary triangles alternate 1-side and 2-side from
theorem 15 giving R, = 3RT), for k > 1, so that (84) is 3* =34, /2 + By/2.

As from TurnRun in section 1.2, the curve turns go in runs of either 1 or 2
consecutive left or right. A run of 2 consecutive turns encloses a unit triangle.
A~ L, turn = +1
2 consecutive left turns,
is left-side enclosed unit triangle

2L

The run lengths are pairs either 1,2 or 2,1. There is one 2 for each of the
3¥=1_1 turns of the previous expansion level. So the number of runs of 2 turns
in curve k is
0 if k=0
3Fl—1 ifk>1
=0,0,2,8,26,80,242,... k>1 A024023

TurnRuns2;, = {
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k=3
LL squares black
RR squares grey

total
TurnRuns23 = 8
Az =10

The proportion of enclosed unit triangles formed by 2-turns, out of the total
area, is
TurnRuns2y, 1 2k1 1

= — %7
A, 5T A, 5

This limit is approached from above since 2¥—1 > 0 for k >2 which is where
A >0. For example in k=3 the ratio is 2,

Some segments have these triangles on both sides. Such pairs are a sequence
of turns LLRR. As from the turn expansion in figure 2, such consecutive 2-runs
occur only as an LR with L,R existing turns surrounding. An L,R is then only
the middle of an LLRR of preceding segment expansion. So there is one LLRR
for each k—2 segment.

There are no RRLL pairs, since the Rs could only be an LRR with existing
R, but then LR follows, not LL.

0 if k=01

TurnRunsZpairs,, = {3k_2 T
1 Z

3.1 Join Area

The join between two terdragon curves at 60° angle encloses new area.

Jo =2

Ji=1 A

Jo=0 A
RS

Theorem 24. The join area between two terdragon curves k is the previous
level right boundary triangles

0 ifk=0 .
Ji = ; join area
RTy 1 ifk>1
=0,1,2,4,8,16,32,64, ... A131577

Proof. Two curves k > 1 have their k—1 sub-curves touching at point T as
follows.
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T is on the boundary since there are two absent sub-curves there (West and
South-West). The join start J through to T is a curve side so the join area is
its right boundary triangles RTj_1. O

Join area can also be calculated from the excess of area Ajy; over three
copies of the previous Ag. This counts the join triangles but doesn’t give their
shape.

One join area is on the left side of the curve and one is on the right. The
curve is symmetric left and right so the two joins are the same size.

Agg1 — 3Ag = 2Jy

The joins are also the shortfall of the boundary Bj; over three copies of
the previous By. Each unit triangle enclosed by the joins reduces the boundary
by 3 segments,

3Bj, — Byy1 =2.3 Ji

3.2 Hanging Triangles

On the boundary of the terdragon curve there are some hanging unit triangles
which touch the rest of the curve at only a single point.

k=4

hanging triangles
Hy=4

HRy = Hy/2 =2

Theorem 25. The number of hanging triangles on terdragon k is

0 if k=0,1,2
Hy = {2k_2 Z k> 3’ ’ hanging triangles

=0,0,0,2,4,8,16,32,...
Each side is symmetric so half on one side

0 ifk=0,1,2
HR;, = %Hk = Zf T one side
k=3 ifk >3

=0,0,0,1,2,4,8,16,...
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Proof. A hanging triangle is boundary turn sequence —1,1,1,—1 as from sec-
tion 2.5.

This is a pair BitAboveLowestOne(j) =0 and BitAboveLowestOne(j+1) =0
with j even. This requires j is binary low 0100, and possible further low 0 bits.

j= |any Jo]1]o]0]0.0]  total k bits

[
>0 zeros

The “any” bits at the high end can be any value of length 0 to k£ — 4 bits.
In addition the “1” shown can be the highest bit for value j = 100...00 binary.
The total number of such values is therefore

k—4
HRi=1+)» 2 = 2873 for k>3
=0

For k=3 the sum is understood as empty so HR3=1 which is single value
7 =100 in binary. When k£ <2 there are not enough bits to have any “100” at
all and so HR = 0. O

4 Cantor Dust

The Cantor dust fractal is formed by removing the middle third of a line segment
and doing the same to each remaining line segment recursively.

An integer version can be formed by multiplying by 3*. The effect is to start
with a unit line segment and triple out by a gap then a copy.

0 9 18 27 54 72 81

Counting the first segment as 0, segment number 7 is present when no digit
1s as per Cpred(n) from (58).

Theorem 26. The right side of the terdragon can be placed in one-to-one cor-
respondence with the Cantor dust.

Right-side boundary segments occur in triplets. FEach unit segment of the
Cantor dust corresponds to such a triplet.

Right-side non-boundary segments occur in triplets making a right-side en-
closed unit triangle. Each unit gap in the Cantor dust corresponds to such a
unit triangle.
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Proof. Let Tperm change ternary digit pairs 10 to 20 and vice versa 20 to 10.
This is a self-inverse permutation of the integers.

Tperm(n) = flip ternary digit pairs 10 <> 20 of n
=0,1,2,6,4,5,3,7,8,18,19,20, 15,13, 14, 12, 16, . ..
ternary = 0, 1,2, 20, 11,12, 10, 21, 22, 200,201, 202, 120, 111, . ..

In Rpred (76), with Tperm applied the digit pairs 10 allowed and 20 disal-
lowed become instead 10 disallowed and 20 allowed. So Rpred(Tperm(n)) has
pairs 10, 11, 12 disallowed and hence

Cpred(n) = Rpred( Tperm(3n)) (85)

The terdragon right boundary segments occur in triplets which have succes-
sively n = 0,1,2 mod 3 (since any non-boundary excursion is a multiple of 3
length). A Cantor unit segment is identified with such a triplet.

For the enclosed unit triangles, the terdragon curve always steps in direction
0°, 120° or —120°. Any path taking such steps has each unit triangle with
segment numbers going 0, 1,2 mod 3 in the following pattern.

For a point at x4+yws the number shown is z+y mod 3. Stepping in direction
1, ws or —1—ws which are 0°, 120° or —120° change that 4y index by +1 mod
3. Hence the pattern.

Each unit triangle is either on the left or right side of each segment. Those
on the left have segment numbers going clockwise. Those on the right have
segment numbers going anti-clockwise.

The right-side unit triangles are all the right-side non-boundary segments.
Each unit triangle can be identified by its 0 mod 3 segment and this corresponds
to the Cantor non-segments as per (85). O

5 Points

The terdragon curve touches at various vertices. Each point may be visited 1,
2 or 3 times.
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0-0

\

- Level k=4
N /N
- O

_o-0-0 o-0- O singles S;s =18
N/ N/ N/ N/ NN
o \7/.\7/.\7/.\7/ \ doubles D4 =14

\7/.\7/.\7/.\7/ \ /()\ . t M 1 T — 12

0-@- -0-0-0 riples 4 =
N/ N/ N/ N/ N\
\ :)O total Py =44
O-0

Theorem 27. The number of single, double, and triple visited points in ter-
dragon k are

2 if k=0
Sk=14 .. Zf single-visited (86)
k42 ifk>1
=2,4,6,10,18,34, 66,130,258, ... A133140
0 if k=0
D=+ _, 2f double-visited
2 -2 ifk>1
=0,0,2, 6,14,30, 62,126,254,...
0 ifk=0 . i,
T, = {3k_1 ook li ifk>1 triple-visited
=0,0,0, 2,12,50,180,602,1932,... A028243

Proof. For k=0 the curve is a single line segment. Each end is a single-visited
point.

For k > 1, when each line segment of the previous level expands it makes a
new vertex in the middle of an adjacent triangle.

Figure 14:

e— @ - new vertex
beside segment

The visits to the original vertex points are unchanged by the expansion.
The visits to each new middle point are the number of sides of the triangle.
Triangles with three sides are the enclosed area A (83). Each of them gives a
new triple-visited point. Triangles with 1 or 2 sides are the boundary triangles
BT1y and BT2y, from (69),(70). Each of them gives a single or double visited
point respectively. So the following recurrences, giving sums. The sums are
taken as empty when k=0.

k—1
Sk =Sk1+ BT1,—y =2+ BTI,

=0
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k-1
Dy=Dy1+BT21 =) BT2;
7=0

k—1
To=Tioa+ Ae1 =) 4 O
7=0

Second Proof of Theorem 27. When the curve triples to make its next level
there are three copies of the points. Where they join some point visits merge.
Each sub-curve endpoint is single-visited and when they join it remains a

single,
/Ai second copy

join start

first copy single + single — single

Adjacent join area triangles touch at a corner as follows.
M between join triangles

B single 4+ double — triple

The join touches are always a single meeting a double this way, since other-
wise there would be untraversed segments within the curve.

The boundary at the end of a join is always a straight line. This is so for
the first join in level k=2 and for any subsequent level the expansion is

M straight boundary
\/l remains straight

A straight line at the join end can only be formed from two single-visited
points becoming double-visited.

\_/‘\ join end triangle
. single + single — double

There are two identical join areas so the above merges apply twice. When
there is at least one join triangle Ji_; > 1, which is when k& > 2, the following
recurrences

S =3SL_1 +2(*(Jk_1*1)73) for k > 2
Dy =3Dy_1+2 (—(Jk,1 - 1) + 1)
Ty =3Tp—1 +2( Jpo1—1 ) (87)

There are Ji_1 — 1 new triple points in between join triangles. They reduce
the singles and doubles and increase the triples. The singles are further —1 at
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the join start and —2 at the join end. The doubles are +1 at the join end. With
Je—1 = 2F72 and the initial S,D,T values the formulas (86) etc follow. O

Per OEIS A028243, the triples T} are twice Stirling numbers of the second

kind
T, =2 St(k,3) Stirling second kind

The triples recurrence in J at (87) is the usual Stirling recurrence since Ji—1

=2k11 = St(k,2) for k > 1.
Ti/2 =3Tk—1/2 + Jp_1—1 (87)/2, for k > 2
St(k,3) = 3S5t(k—1,3) + St(k—1,2) Stirling recurrence

On each visit to a given location, the curve turns the same way either left
or right, as otherwise it would cross or overlap (see ahead section 12.1). By
symmetry, the left-turn points and right-turn points are on one-to-one corre-

spondence. So St(k,3) = Tj/2 is the number of right-turn triple visited points,
or left turn the same.

All single and double visited points are on the boundary. Some triple visited
points are on the boundary too.

end

. - - triple-visited point in boundary “V”
hanging triangle

- k=3, TBs; =2

start

A boundary triple is in each V shape 2-side boundary triangle, except the 4
such at curve start and end are not triple visited, and at a hanging triangle the
V each side is the same triple point.

TBk:BTQk—Hk—4 fork22

_Jo if k<2
3224 ifk>3

=0,0,0,2,8,20,44,92, 188, ... k>3 A131128

triple-visited on boundary

The total number of distinct visited points is

P, =S+ D+ Ty,

2 ifk=0 distinet point
= istinct points
1ok 41 if k> 1 P
=2,4,8,18,44,114, 308, 858, . .. k>1 2xA099754

It can be noticed

Pk—l—Ak:?)k—l—l
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In general P+ A = N +1 for any path with N line segments on a triangular
grid which is non-overlapping and each enclosed unit triangle has all three sides
traversed. Such a path starts as a single point and no line segments. Then each
further line segment either goes to an unvisited point which increases P, or it
revisits a point and encloses a new unit triangle which increases A. So for each
N either A or P increments.

Per figure 14, the number of sides of the triangle adjacent to a segment
determines the number of visits to new points n = 1,2 mod 3. The number of
visits is unchanged by further expansions, which are low ternary 0-digits.

1 if n =0o0r3*
Visitsy(n) = { Rsides(n) if n=(3m+1).3!, m>1
Lsidesj,_;_1(n) if n = (3m+2).3!
=1,1 for k=0

1,1,1,1 for k=1
1,1,2,1,2,2,1,2,1,1 for k=2

For the curve continued infinitely, Lsides, is used. Or it suffices to take 1
level bigger,

Visitsoo (n) = Visitsy(n)  for 38 > 3n
~1,1,2,1,2,2,2,2,3,1,1,3,2,3,3,2,3,1,2,3, ...
=latn=0, 1, 3, 9,10,17,27,28,30,51,53,64,...
=2atn=2 4, 5, 6, 7,12,15,18,21,22,25,31,...
—3at n =8, 11,13, 14, 16, 19, 20, 23, 24, 26,29, 32, . ..

Visits also follow from other(n,d) from theorem 9. The visits are all those
occurring in the same curve arm and within the same k, or same arm and
anywhere for the curve continued infinitely.

Visitsi,(n) = count (other(n,d) same arm and < 3") (88)
6=0to2

Visitsoo(n) = count (other(n,d) same arm)
6=0to2

The total of this Visits count within level k is 1 for each single, 2 each for
the 2 visits to doubles, and 3 each for the 3 visits to triples.

3k
> Visitsg(n) = Sp +4Dg + 9T, =33" —4.2" 43
n=0

=2,4,14,52,182,604, 1934, . . . 2% A134063

5.1 Lines

Some unit segments in the terdragon are consecutive and they can be considered
in runs making lines in directions d = 0,1,2 x120°. In the following samples,
d=0 and d=1 both have lines which are co-linear but not consecutive. Those
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lines are counted separately, so that number of lines is more than just curve
width or height.

—e end e end e end

T /

— \\\ )
- \ \ / //

d=0  start — d=1 start o d=2  start e

Lines4(0) = 12 Liness(1) =9 Lines4(2) = 10
k=4, total Liness = 31

Theorem 28. The number of lines in terdragon level k is
=2k 1

=1,3,7,15,31,63,127,255, ... A126646

Linesy,

Proof. There are 3% curve segments in level k. If none are consecutive then
the segments are the lines. This occurs for k=0 and k=1 with Linesy = 1 and
Linesy = 3.

At each triple-visited point, there are consecutive line segments in all 3
directions, reducing the lines by 3.

At each double-visited point, the two absent segments must be adjacent or
the curve would cross or overlap when filling the plane.

E i double-visited point
missing segments are

/N adjacent around the point

So at each double-visited point, there are consecutive segments in one direc-
tion, reducing the lines by 1.

Lines = 3* — (3T} + Dy) (89)
O

Second Proof of Theorem 28. A similar argument can be made counting line
ends.

At a single visited point there are 2 line ends, except for the curve start and
end where just 1 each, so 25, — 2 line ends from singles.

At a double-visited point there is one line continuing across and 2 lines
ending.

At a triple-visited point there are no line ends (all 3 directions continue
across).

Every line has 2 ends so

Lines, = £ (25, —2 + 2Dy,) (90)
O
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The visits considered in (89) and (90) are together the total 3% + 1 visits to
all points,

S, +2D,+3T, =3"+1

Theorem 29. The number of lines in directions d = 0,1,2 of terdragon k is

Lines(0) = 1 (25! + 1d(k))
Linesi(1) = % (2]chl —ld(k —1))
Lines,(2) = 1 (2"t —ld(k + 1))
ld(m) = [1,2,4,5,4, 2],
Linesy,(0) = 1,2,4,7,12,22, 43,86, 172, 343, 684, . ..
Linesy(1) =0,1,2,4, 9,20,42,85,170,340,681,...
Linesy(2) =0,0,1,4, 10,21, 42,84, 169, 340, 682, . ... A111927

Lines in the three directions are each % of the total except for the variation
by the periodic Id, giving differences up to 3, depending on k.

Proof. Use line ends similar to the second proof above, but with ends in each
direction d. Start with boundary triangles. Count 1-side boundary triangles by
the direction of their segment. Count 2-side boundary triangles by the direction
of their missing segment.

1-side 2-side

d=
. 1-side and 2-side

d=0 0
o —» 0 ° o
right boundary triangles
v v in direction d=0
L]

Let RTSy(d) be the number of 1-side triangles plus 2-side triangles on the
right boundary and in direction d. The R,V expansion of figure 10 applies. In
the “V” part triangles are swapped 1 <> 2 sides but their direction is unchanged.
The whole of V is turned —1 relative to the desired direction, so the count of
d+1 there is required.

Initial RTS(¢(0) =1 and RTSo(1) = RTSo(2) = 0 gives

RTS,(d) = %(2’c F[2,1,-1,-2, 1, 1]k+2d) 142 side triangles by d

RTS,(0) =1,1,1,2,5,11,22,43,85,170, 341, . .. A024493
RTSj(1) =0,0,1,3,6,11,21,42,85, 171,342, . .. A024495
RTS(2) =0,1,2,3,5,10,21,43,86, 171,341, . .. A131708

The triangles on the left side of the curve are a 180° rotation. A horizontal
d=0 remains horizontal in 180° rotation and similarly d=1 and d=2 unchanged.
So total triangles 2 RTS(d).

Draft 15 page 56 of 124


http://oeis.org/A111927
http://oeis.org/A024493
http://oeis.org/A024495
http://oeis.org/A131708

Count a double-visited point by the direction of its two cross segments.
Count a single-visited point by the direction of its absent two cross segments.

VARV

d=0 d=0
single-visited double-visited

Let SDy(d) be the number of single and double points in direction d, exclud-
ing the first and last points of the curve which are singles but only one segment
at each.

When the curve expands, the existing single-visited and double-visited points
and their direction are unchanged. Each 1-side or 2-side boundary triangle gives
a new single-visited or double-visited point respectively, per theorem 27. A new
SD in direction d arises from an RTS triangle direction d+1.

k-1
SDy(d) = Z RTS;(d+1) single, double points by d
3=0
= 2 RTS(k,d) — (2 if d=0)
SD(0) =0,0,0,2, 8,20,42,84,168,338, ... 2xA111927
SDi(1) = 0,0,2,6,12,22,42, 84,170, 342, . .. A086953
SDy(2) = 0,2, 4,6,10, 20,42, 86,172,342, . .. 2% A131708

Lines in a given direction have an end at a non-crossing segment of a single
or double visited point. For example each SD point d=0 is the end of a line
in directions d=1 and d=2. So Lines(d) is SD of directions other than d. The
very first and very last points of the curve are ends of a horizontal d=0.

Linesy(d) = %(SDk(dJrl) + SD(d+2) + (2if d:O)) O
RTS}(d) is the 3-period binomial sums of Cournot[2], but with —d meaning
d=1 is the 2 mod 3 binomials and d=2 is the 1 mod 3 binomials.
RTSk(d) = (L) + (Lies) + (Liye) +- d=0,1,2

The sum in SDy(d) is total of those binomials in columns down to row k—1.

k—1
SDx(d) =Y 2 RTSk(d+1 mod 3)
7=0

d=0, columns 2 mod 3

Then Linesy(d) is the “other” two SDj(d) which means 2 out of 3 columns
down to row k.
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)
@ @G Linesy(d) = %(SDk(dJ.rl)+SDk(d+2))
® 0ol + 2 if d=0
G Ololo o
© Olele o|g 90 columns 0,1mod 3

RTS}, combines 1-side and 2-side triangles, and SDj combines 1 and 2 points,
since those combinations suffice for the lines calculation. The 1s and 2s of
each can be counted separately if desired and they are mod 6 columns of the
binomials. When expressed as powers, they have a 12-periodic half-power term
3L%/2] By taking 1s and 2s together, those half-powers cancel out leaving just
a 6-periodic constant term.

6 Enclosure Sequence

When a segment is appended to the curve it can be the first, second or third
segment of the unit triangle on its right. Let RsideNum(n) = 1,2,3 be the side
number of n on that triangle. A segment may have one or both segments s or
e as follows,

n * 2\ RsideNum =1
¢ —p 0 ° 1 e o —> 0
\ / ' No -
\\ // > | \Ir/ e
S /e S : PEN RsideNum =2  RsideNum =3
NS L7 AN °—> 0 °—> o

|
L |
-
! -
-
| -
-

The expansion shows how a segment with s and/or e expands to a new
combination. For new low digit 1 on n it can be noted that segment 2 is after n
so is not yet present. This means e occurs only with s so there is only a single
RsideNum =2 form.

0,1() 2() 0,2()

- 2 - 0 - Figure 15:
RsideNum | — | RsideNum | — > | RsideNum
-1 —9 —3 n ternary
1 1 high to low

start

RsideNum(n) = figure 15 final state
=1,1,2,1,1,2,3,1,2,1,1,2,1,1,2,3,1,2, ...
=lat n=0,1,3,4,7,9,10,12,13,16,...
—2at n=258,11,14,17,19,23,26,29, ...
—3at n=6,15,18,20,24,33,42,45,47,51, ...

Left side segments follow similarly
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, / /\

o —> o o —> o

.o |
S /’ ‘\ € S S~ : e LsideNum =2 LsideNum =3
P N > s - Ng I
/ n \ P A 'S |
@ — e [ ] N 1 [ ] o —> o
0 -l LsideNum =1
0.2() o) 1,2()
- 1 - - Figure 16:
LsideNum | — | LsideNum LsideNum
1 —9 _3 ternary
2 0 high to low
start

LsideNum(n) = figure 16 final state
=1,2,1,2,3,1,1,2,1,2,3,1,2,3,3,1,2,1, ...
=lat n=0,2,5,6,8,11,15,17,18, 20, ...
=2at n=1,3,7,9,12,16,19,21,25,27, ...
=3at n=4,10,13,14,22,28,31, 32,37,40, ...
LsideNum state machine figure 16 is a reversal of RsideNum state machine
figure 15. Digits are reversed 0<+2 and the side number reversed 14+3.
Geometrically this is simply the curve being the same in 180° rotation, so
that the left side counted from the end is the same as the right side counted

forward. The reversal of the side number counts downwards from how many
sides it will have, so

LsideNum(3¥—1 —n) = Rsides(n)+1 — RsideNum(n)

RsideNum(n) = 3 is where n encloses a unit triangle on the right. Similarly
LsideNum(n) = 3 on the left.
YA NN
- - y (T Ty T
NSNS, IS\
\-> Pt /,,k\ \,ﬁ/( - .
NV CH0N
/F\// N4 N (/f\\g i //\// \/ N (F \/f\\
. [— —— - (,/ f\,ﬁ) == e 7
NS Y4 N A Y NV WA v
< - -
/
left enclosures he /71 right enclosures \k/fi
EpredL(n) { EpredR(n) {

1 if RsideNum(n) =3
0 if not

EpredR(n) = {

(91)

1 if pair 20 and any 1s below it are in pairs 10
0 otherwise

=0,0,0, 0,0,0, 1,0,0, 0,0,0, 0,0,0, 1,0,0, ...

1 if LsideNum(n) =3
EpredL(n) = {O £ 0t
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=0,0,0, 0,1,0, 0,0,0, 0,1,0, 0,1,1, 0,0,0, ...

Form (91) is since 20 in figure 15 goes to or stays in side 3. A 1 digit would
leave there, unless it’s a 10 pair which goes back. The digit 2 loop in side 2
would be another 20 if it goes back to side 3 that way.

Some usual state machine manipulations can take digits of n low to high
instead. Reaching EpredR is a right enclosure. Reaching “not” or ending in rm0
or rml is not. Similarly EpredL.

00y 2(y 0y 2(y
0 start 1 start
oD 2 D™ G O™ e
L 2 1 L 1 L 1 2 L 0 1 terna}?/h
EpredR not FEpredL not ow to hig

Each enclosure is an enclosed unit triangle on the respective side right or
left, so totals AR and AL from theorem 23.

3k—1 3F—1
ARy, = AL, = Z EpredR(n) = Z EpredL(n) (92)
n=0 n=0

When EpredR(n) encloses a unit triangle the next turn is left turn(n+1) =
+1, since otherwise the next segment would overlap the triangle just enclosed.
Conversely EpredL is followed by a right turn

SR, S
EpredR turn(n+1) = 1 left

or would overlap segment
of triangle just enclosed

As from section 1.2, aleft turn at n+1 is LowestNonTwo(n) = 0. For EpredR
in figure 17, low 2s loop in rm0 and then if a 1 go to “not” so never a right turn.
For EpredL conversely 0 goes to “not” so never left turn.

EpredR can enclosure 2 triangles consecutively. This occurs first at n=>56,
57 which are ternary 2002 and 2010. There cannot be 3 or more consecutive
EpredR or that would be 3 left turns and the segments would overlap. Similarly
EpredL pair, which first occurs at n=13, 14, ternary 111, 112.

Some state machine manipulations can test whether n+1 is also the respec-
tive enclosure, then intersection n and n+1 for a pair. Taking that low to high
shows enclosure pairs are the original digit forms with extra low.

high low high low
EpredRpair :’ EpredR ‘ 0 ‘ 2.2 ‘ EpredLpair =
> 1 digits

The last segment of curve k is not an enclosure, since it is the first visit to
its endpoint, so pairs do not cross a level. The number of pairs within a level
follow from (92) and the extra digits.
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3k_1

= 0 if k=0

EpredRpai =Y AR, = N 93
Z;) 'predRpair(n) hz; I {lTkl ith> 1 (93)
n= =0 2

=0,0,0,0,1,6,25,90, 301, 966, . ... A000392

3k_1
Z EpredLpair(n) = AL
n=0

At (93), cumulative AR is 1T in the manner of theorem 27. New triples are
formed when segments expand into each triangle A, here it is just AR triangles
so half. The result is the Stirling numbers of the second kind.

When 2 consecutive EpredR occur the next segment is always an EpredL left

enclosure, since it was 2 left turns. Conversely 2 consecutive EpredL is always
followed by EpredR.

—— T 2 right enclosures
\EpredL / are 2 left turns T
EpredR EpredR so next segment
' v/ g is left enclosure
T

Runs of right and left enclosures can occur. For example at n=373 ternary
111211 there is a run of 12 consecutive enclosures. The following diagrams show
how this run falls within its surrounding segments.

start

n =373
ternary 111211

Figure 18:
enclosure sides
LLR, LLR,
LRR, LLR

There are no runs longer than 12. That can be seen by some state machine
manipulations on Epred left or right to ask whether n+1, n+2 etc also enclosing.
The intersection of Epred on 13 terms n through n+12 inclusive is empty.

State machine manipulations on the 12 intersection shows it is EpredL with
some extra low digits,

high low
EpredTwelve = | EpredL ‘ 1 ‘ 2...2 ‘ 11 ‘ ternary (94)
> 1 digits
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The count of how many 12 runs in k is the same as EpredRpair in k—2. The
digit form for Epred Twelve is like EpredRpair but with 2 extra fixed digits. The
high here is EpredL rather than EpredR, but their counts are the same (92).

Runs of 12 all have the same enclosure side sequence shown in figure 18. The
enclosed side is the opposite of turn(n+1) and turn(n+1) is LowestNonTwo on
low digits of 1211 through 2020 of EpredTwelve at (94). It is the same when
more 2s for 12...211 there.

6.1 Point Visit Number

Each n is visit number 1, 2 or 3 to its point. This is given by RsideNum or
LsideNum when the sides of such a triangle expand to meet in the middle.
n = 1mod 3 is the right side or n = 2 mod 3 is the left side, and then any
number of low Os since those Os do not change existing points.

1 if n=0
VisitNum(n) = { RsideNum(m) if n = (3m+1).3!
LsideNum(m) if n = (3m+2).3!
-1,1,1,1,1,2,1,2,1,1,1,2,1,1,3,2,2,1,1,3, ...

high low high low

RsideNum ‘ 1 ‘ 0...0 ‘ or ’ LsideNum ‘ 2 ‘ 0...0 ‘

[ — N —

> 0 digits > 0 digits
The visit number is also how many other(n,d) are on the same arm and

preceding n.

VisitNum(n) = 1 + count (other(n, ) same arm and < n)
5=1,2

or count with =0 to include n itself unchanged

VisitNum(n) = count <0ther(n, 0) same arm and < n)
6=0,1,2
Total of VisitNum within level k£ counts 1 each single, 142 each double, and
14243 each triple,

Sk
> VisitNum(n) = Sg + 3Dy + 6T}, = 2.3% —2.25 42

n=0

=2,4,12,40,132,424,1332, ... 2x A083323

7 Multiple Arms

Six copies of the terdragon at 60° angles mesh perfectly and fill the plane (the-
orem 2). The boundary of 2 to 6 such arms can be calculated simply as Ry, (72)
on the ends and one or more Vi (73) in between. The area follows from the
boundary by (82).
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Arms Boundary Area

4 0 ifk=0
9.2k—1 4381 _392k-1 §fk>1

12.2k-1 6.3k—1 — 4.2k—1

8 0 ifk=0
15.2k-1 8.3k-1 _52k=1 ifk>1
10 0 ifk=0
18.2k1 10.35=1 —6.25=1 if gk >1

12 0 ifk=0
x 18.2k—1 12.3k=1 — 6.2k if k> 1

The boundary increases by an extra Vi with each extra arm. For 3 arms the
k=0 and k& > 1 cases coincide.

In 3 arms, the boundary and area are By and Ay, ie. the plain curve
one level bigger. This is since the 3 arms are 3 sub-curves and 2 joins which is
the same as the whole curve k+1, just the orientation of the joins changed (to
the k=1 base shape).

In 5 arms the gap is 2Ry and in 6 arms the corresponding section is 2V.
With Ry, = Vj, for k > 1 from (72)(73) the 5 and 6 arm curves are B6 (k) = B5 (k)
for k> 1.

/.
AV
s AN
%L.

=2}

8 Shortcut Boundary

The terdragon boundary has “V” notches at every third boundary position.
These are the 2-side boundary triangles BT2; from theorem 15 and the —1
boundary turns from theorem 22. A variation on the curve can be made by
taking shortcuts across those Vs.

k=3
shortcut boundary

(dragon curve #=120°)

Theorem 30. The shortcut boundary length is
BSH,, = 2k+1 boundary
RSH) = BSH}, /2 = 2F one side
and the area enclosed is

0 ifk=0

95
231 ifk>1 area (95)

ASHk::{

Draft 15 page 63 of 124



Proof. The shortcuts add the 2-sided boundary triangles as additional area,
ASH; = A, + BT2y

_Jo+o if k=0
2@t =2k 42k itk >1

The shortcuts shorten the boundary by 1 side at each 2-sided boundary
triangle,

BSH,, = By — BT2,
{2+o if k=0

O

32k 9k ifk>1

The shortcuts maintain the three-sides-enclosed property of lemma 1 and so
shortcut area and boundary are related to total line segments by

3ASH + BSH; = 2(3* + BT2y,)

Riddle[8] takes this shortcut curve form to show the terdragon as a fractal
has area 1/(2v/3). Scaling ASH}, by the curve endpoint distance v/3% squared
gives

ASH 2381 2
LA = - of base triangle area

(VapE ~ E Tl

A base equilateral triangle of unit side has height %\/?: SO area i\/g, giving

g V3 = i = 0.288675... A020769

374 23
Going instead from the plain enclosed area Ay (83) the result is the same

@Ak_l_@ 1

2\ k
(\/§)2k72\/§ 4(5) %m

Theorem 31. The shortcut boundary is the Heighway/Harter dragon curve
with unfolding angle 6 = 120°.

Proof. In turn sequence Rturn(i) from theorem 22 the —1 turns are eliminated
leaving just the dragon turns. The turns before and after the shortcut are both
reduced by 60°. In Rturn(:) the turns +120° and 0 become +60° and —60°
respectively. Those 60° turns correspond to unfolding the dragon by 6 = 120°.

turns before and
after shortcut
reduced by 60°
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The shortcut area (95) has ASHy11 = 3ASH for k > 1 so the area is
exactly 3 copies of the previous level, with no join area in between.

k=3
shortcut boundary

join length
JBSH3 = 4

Theorem 32. The shortcut join boundary length is

JBSH,, = 2F1 for k>1

Proof. For k > 1 the total shortcut boundary BSH 1 is 3 copies of the previous
level boundary less 4 copies of the join boundary (2 in each join).

BSH 11 = 3 BSHy, — 4 JBSH},
JBSH), = (3.2FT1 — 2M2) /4 = ok~1 O

Exact matching of the shortcut sides can also be seen in the dragon curve
turn sequence of theorem 31. In a dragon curve with 2* segments the turns in
the second half are reverse order and opposite direction to the first half, so the
second half of one boundary matches the first half of the next. (It would then
have to be shown that the matching goes no further.)

9 Centroid

The terdragon curve is symmetric in 180° rotation so the centroid of the seg-
ments, points or area are all the midpoint of the curve at b*/2. But some
measures can be made on just one side of the curve.

Theorem 33. The centroid of the right boundary triangles of terdragon k is
— Kk
772006 k 577@06 Wwe
Tp=——0 —— | =
GRT. = =33 LT < 2 )

3—V3Bi 9+v3i 24+14+/3i 33+67V3i —99+233/3i
6 12 > 24 48 ’ 96 LR

)

Proof. For k=0 the curve is a single line segment with a single triangle. The
centroid of the triangle is the mean of its corners.

\ [ ] // 0 1 .
= GRT, — % _

[SCARS

As in theorem 14, the boundary triangles in a V part are a reversal of the
R part, so the centroid is the mean of the two copies in the previous level.
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Figure 19

GRT) = 3(GRT)_1 + b" + (we)* GRT 1)

2
-arm (5)' W5 (5) v
= g (%)k + éb(wf)k_bk -

Per theorem 31, the line segments of the shortcut boundary are the Heigh-
way/Harter dragon curve unfolding by 120°. The same reversing calculation
as above is made for its centroid, but with initial line centroid GRSHy = %
Equating the sum parts of the two gives

GRSH, — GRSH,.(3) = GRT, — GRT,. (%)

—k
7—2 —1+4
GRSH = 13w6 b+ 2+6 6 <u;6) terdragon 120° centroid
_ 2 7T+V/Bi 174930 2244430 —67+155/3i
=1 T8 16 32 64 AR

Theorem 34. The centroid of the right boundary segments of terdragon k is

ifk=0
CRE = GRI, + 2 (1) 'fk>
pt(5)" k>l

N[ =

_ 2 943v3i 2141737 2447037 —117+233+/3i
= 12 2 s 96 RN
And across a V part (other sides of an R),
11/ .
5— 7V31 k=20
Gy, =4z aV3 7
GRT, — 2 (5)" ifk>1

4—2v3i 9—/3i 27+11V3i 42+464v3i —81+2333i
8 ? 12 24 ? 48 ? 96 [

Proof. The centroid of the R right and V part boundaries are

GV
0 — 0 R

GRy,
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These parts expand, similar to the R,V expansion of figure 11,

bk bk + (W6)4GR]971 bk
; ® b+ (we) GV i1
0 — k-1 0

Py b

GRr—1

For k > 1 there are the same number of segments Ry = Vj in each part so
the centroids are the mean of the previous level.

GRy = $GR1 + 5 (0" + (we)' GVi_1) k>2 (96)
GVi=1aVi1 + L (0% + (we) GRy_1) (97)
Taking (96) for GV and substituting into (97) gives
GR = GRy—1 — BGRy_o + 10F k>3
The characteristic polynomial of the GR terms alone is

P-z+l=@-F)-Y)
so GRy, is powers of %, g and the further b. From the initial values the coeffi-
cients of b and % are the same as for GRT. The coefficient of the % power is
“%. Substituting into (96) gives G'V, in the same form but coefficient —=¢. [
For the terdragon fractal, all four right boundary centroid forms above can
be scaled by b* for a unit length curve. The limit as k—oo is the coefficient
of the b¥ term and so is the same in each case. Notice this is not the middle
horizontally but a little towards the start at 1%

0 start

centroid of right boundary

7T—2ws 6 V3.
3 13 1.

= 0.461538... — 0.133234...¢

— GRf =

The equivalent of figure 19 in the fractal is two suitably rotated halves whose
mean is the centroid of the whole.

R @ GRI/b +1- GRI/D
‘ . — GRf
o GRf 2

GRf/b o GRS = 1 _
L 2-1/b+1/b
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9.1 Centroid of Join

k=2 join,
centroid of 2 triangles

0

Theorem 35. For k>1 there are enclosed triangles in the join between two
level k terdragon curves. The centroid of those triangles is

GJj = b — 2ws GRT), E>1

13 39 2
=1+2V/3i,

— k
9+3 —14+4
_ 9t w6 i I +4ws (%) (99)
SHITVEi, —14+2V3i, 84103, .
Proof. For k > 1 the right boundary triangles are two joins, per the triangle

arrangement in the second proof of area theorem 23. So, with suitable rotations
and offsets, the mean of the join centroids is the right triangles centroid GRT'k.

®  Wes bk

LGy + ;(bu(wﬁ)?cuk) = web® + (we)’ GRT,
bk SGRT) — v*
G, = 2o T (o) GRT — O
3 T 3(we)?

DO

Scaled by b* for a fractal of unit length, the limit is the coefficient of the b*
term in (99).

GJ 9+3 21 +3v3i
Tk%GJfZ +3ws +3v/3i

= = 0.807692... + 0.199852.. .7 100
b 13 2% + i (100)
P ﬁ.,_ﬁﬁw
] ;wg' 3
T AT R
AL Lav g7
GIf
ey
o
N
4
77777777777777777777777 1w
Draft 15
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9.2 Centroid of Right Enclosed Area

Theorem 36. The centroid of the unit triangles enclosed by the right side of
the terdragon curve level k > 2 is

CARe = Lo o L (5341206 270F — 26web® + (~10+14ws) we"
§ 2 156 3]@-,1 _ 21671
_ 345vB3i —12446v3i —306+248/3i —2769+799+/3i k>2
oo 1 390 s >

Proof. Each segment is either a right boundary or a side of a right-side enclosed
unit triangle. Weighted by the number of segments, the centroid of the enclosed
triangles and the boundary segments sum to the centroid of all segments which
is the midpoint b".

381" = 3AR,.GAR), + Ry.GRy, O

The right side area is three copies of the previous level and one join, so
ARy = 3ARj_1 + Jip—1. The centroids of those give a recurrence for GAR with
the join centroid GJ.

ARjp_1.GARy_4
GAR, — L +ARp_1. (V7 + w3 GARy 1)
ARi | + ARj_1. (web"™' + GARy_1)
+ Jper (W + GJgoa)
Scaled by b* to make a fractal of unit length the limit is % which is the
midpoint of the whole.

GARf, = GARy /b — i ask— oo

. GARf, = 3 + X£V3i

v GARfs3 = 28 + 2/3i

L]
(d
L]
+  limit 4

10 Convex Hull

A convex hull is the smallest convex polygon which can be drawn around a given
set of points.
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/ /
p7 P6 P5 Figure 20:
k=6

P4’ convex hull

60° , P3’
: P1 P2/
00° ' P2 P1’
P3
60° ‘., P4
P6—P7 = ws(P2—P3),
AN P5 P6 same turned 120°
30° "~ ““a00
OO

Theorem 37. The convex hull around terdragon k > 6 is a set of 14 vertices
located at

Pl(k) = —5 (0F  +p(k) ) (101)
P2(k) = =55 (0" + p(k+1))
P3(k) = — o ("% + p(k+2))
PA(k) = — 35 (013 4+ p(k+3))
P5(k) = —o (0F* + p(k+4))
P6(k) = —5 (0F7 + p(k+5))
P1(k) = — 2 ((14+5we)b" ™ + p(k+6) )
and their reversals from the end of the curve
Pl (k) =b"—P1(k), P4(k)=0b"~P4(k), P6'(k)=0b"—-P6(k),
P2/ (k) =b*—P2(k), P5(k)=b"~P5(k), P7(k)=0b"~P7(k)
P3'(k) = b*—P3(k),
where periodic term
p(m) = [-9, 6+15ws, —3—3ws, —3—6ws,

—9ws, (6-‘1-15&)3)&)3, (—3—3&)3)&13, (—3—6&13)&03,
—9w32, (6+15w3)w32, (—3—3w3)w32, (—3—6w3)w32 ]
for m =0to11 mod 12

Sides P1-P2 through P6—-P7 are at successive +30° angles as illustrated in
figure 20. Side P6-P7 is the same as P2-P3 but turned +120°. And likewise
reversals P1’ etc.

For k <6 the above points are the hull vertices but with some duplications
and some points excluded.

k  wvertices duplication exclude
0 2 P3=P4=P5=P6’ (P1 on boundary) P2, P7
1 4 P2=P3=P4 and P5=P6=P7 P1

Draft 15 page 70 of 124



6 P1=P2=P3 and P4=P5 and P6=P7
8 P1=P2 and P3=P4 (P7 on boundary)
10 P2=P3 and P6=P7

12 P1=P2

Qv . W

Proof. For k = 0to5 the convex hulls can be formed explicitly. For k=0 the

hull is merely a line 0 to 1. P1 = % is on that line but not a vertex. For k=3

point P7 = P6 + w3 is on the boundary but not a vertex.

. ® ® end
. Figure 21 end o
(P1=3) o e (P7)
i end « . ° P6
Pe’ start M start * P6=P7
ol e ) o o
P3 P6 P2 P5 Pl P4 start .° P5
= = = g 5
—P4 471)3 471)6 471)2 P5 P1 P3
=P4 =P7 =P3
—p5 =pP2 =P4
k=0 k=1 k=2 k=3
P7 P6
e o
® @ end end
[ 3
e P6=P7 e P5
[ 3
. P5 o P4
L] L]
start * P4 * P3
> start g
Pl P2 ¢ o Pl=P2
k=4 =P3 k=5

Side P1-P2 is at 60° relative to the b* endpoint since

P1(k) — P2(k) 1. ip(lH—l) —p(k)
ph+2 Y ph+2

and the periodic values of p(m) have difference p(k+1) — p(k) which is always
aligned to the b**2 direction. These p differences can be illustrated

r(1)
. (8)
T Figure 22:
(11)
/. 10 p(m) steps
A (7)
oo 4 [P

7 (6)
(2) o
N
Q‘ )
(5) «

p(0) to p(1) at the top left is 60° since p(1)—p(0) = 15w, corresponding to
b2. At each point the direction turns +30° the same as argb = 30°. At m =
0,1, 4,6, 8,9 there is an additional reversal 180° but still +30°.
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Similarly the other sides P2-P3 aligned to b**3 etc through P6-P7 aligned
to bF 7.

The sides P2-P3 and P6-P7 are the same length but turned +120° since,
using b* = 9wz and p(m+4) = wsp(m),

P2(k) — P3(k) = ws(P6(k) — P7(k))

For the vertex formulas, proceed by induction. Suppose the formulas are
true of k—1. Terdragon k comprises three k—1. The convex hull around k is
the hull around the hulls of the three sub-parts.

The expansion is shown in the following diagram. 0 is the origin. b* is
the endpoint of level k. The three sub-parts are A,B,C and their vertices are
labelled P1A, P1B, P1C etc.

P3B’ P2B’

P7'(k) = PAB’

0 60° b* ’
P1A -~
Pl(k) = P2A -
P2(k) = P3A
P3(k) = PAA
Figure 23:
P4(k) = P5A 7 convex
“PAB = P7(k) hull
fffffff parts

P6A PTA  P1B pop p3B
= P5(k) = P6(k)

For the dashed bottom side, both P6A-P7A and P2B-P3B are horizontal
(aligned to the b* endpoint) as per the side angles above and the respective A
and B parts turned —30° and +90°. They are at the same position vertically
since, with p(k+5) — p(k+4) aligned to b* (the bottom horizontal p(4) to p(5)
in figure 22),

P6A — P3B p(k+5) — p(k+4)

So the hull is P5(k) at P6A across to P6(k) at P3B.
For the dashed top left P2A-P4B’, the sub-part sides P1A-P2A and P3B’—
P4B’ are both 60° per the side angles. But P2A-P4B’ is steeper than 60° since

P2A — PAB’ p(k+10) + p(k+4)
hh+2 = Im (_é + %O‘B - % bk

:i\/g <17 (7%)%/21) >0 fork>7

So P1A is inside the hull and P1(k) is at P2A. Likewise at the top P7'(k) is
at P4B’. The side P1A-P2A is quite short so a little difficult to see in figure 23.

The other new sides are the same rotated 180°.

So mutual recurrences for the vertices
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P1(k) = P2(k-1) P5(k) = P6(k—1)

P2(k) = P3(k—1) P6(k) = b*~1 + w3 P3(k—1)
P3(k) = P4(k-1) P7(k) = b"! + w3 P4(k—1)
P4(k) = P5(k—1)

The power forms (101) of the theorem satisfy these recurrences starting from
an initial £=6 hull calculated explicitly, which completes the induction. The
power forms can be found by writing the recurrences in generating functions and
solving simultaneously by some linear algebra or solving directly by expanding.
The chain of dependencies is

P1— P2 — P3 — P4 «— P7

IR

P6 «— P5
Starting at P3(k) and expanding to reach P3(k—4) again,
P3(k) = b** + w3 P3(k—4)

Apply this repeatedly until reaching k = 6,7,8 or 9. Let this be ¢ > 0 many
times so that k—6 = 4¢ + r with 0 < r < 3 so ending at P1(6+r).

P3(k) = b +w3bF 8 - w4 P3(64r)

T (b4)q — wy?
=WV e Pa(6)
=g (2 bty — 240, P3(6+)) (102)
using b*2/(b4—w3) = —i

In (102) the right hand terms are periodic in r = 0,1,2,3 and ¢ = 0,1,2. It
uses the initial P3(6) through P3(9) which are calculated from the recurrences
or by explicitly forming those hulls. The result is the 12 terms of p(m).

p(m) could be numbered starting anywhere mod 12. The choice here is to
match the b power in each P1 etc. So the expression in (102) is reckoned as
p(k+2) to match its b¥*2.

p(k+2) = —b"Bw,? — 24w, P3(6+r) O

In figure 23, the A sub-part vertex P6A’ is close to the B sub-part vertical
P5B’ to P6B’. The vertex is on the line for k¥ = 0,2,3 mod 4 but is 1 unit
triangle to the left when & = 1 mod 4.

P6A'(k) = P6'(k—1)  P6B'(k) = b"' + w3 P6'(k—1)
P6A'(k) — P6B’ (k) L p(k+4) — wsp(k+4)
e - = Re 54 =
Wig Wig

R

_{0 if k=0,2,3mod 4

—% 3 ifk=1 mod 4
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P5B’
0 =——p F
k=9

P6A’ sub-part vertex P6A’

. 1 unit triangle away

— .

from P5B’-P6B’ vertical

P6B’

For the curve scaled to a unit length, the limits for the hull vertex locations
are the coefficients of the b* terms in each P1 etc. They and the resulting hull
extents are

Pé6t’ P5t’
P7t’ _
!
P33 = 0.324759. .
, P3f
Plf = —1/24 por’ | (A212952)
P2f = —b/24 P 1
P3f = —b%/24
/ V3
Paf = —b7/24 (—b>+b)/24 =PTE |
P5f = —b*/24 —b°/24 = P6f
i f—
1 1 1
16 16

Each hull vertex is a single-visited point since a double or triple has 4 or 6
segments around it so is not a convex vertex. Point numbers n in the curve for
each hull vertex follow from the sub-parts similar to the vertex locations.

PN1(k) = PN2(k-1) PN5(k) = PN6(k—1)
PN2(k) = PN3(k—1) PNG(k) = 3*=! + PN3(k—1)
PN3(k) = PNj(k—1) PN7(k) = 3*"! + PN/ (k—1)
PN4(k) = PN5(k—1)

P3B and P4B are the middle sub-part (ternary digit 1) so add 3*~! in PN6
and PN7. Initial values at k=6 determine the low digits and then the 4-cycle
P3-P4-P5-P6 is a high repeating pattern 1000. It’s convenient to take that
pattern as high 1 then repeat 0001 zero or more times, so as to simplify the low
digit forms.

PN1(k) = 53" + £[-9,53, —1,-3]

= ternary 1 0001 0001... empty,0,000r001 for k—5 digits
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=1,3,9,28,82,246, 738, 2215, 6643, . . . k> 6

PN2(k) = PN1(k+1)  PNj(k) = PN1(k+3)  PN6(k) = PN1(k+5)
PN3(k) = PN1(k+2)  PN5(k) = PN1(k+4)

PN7(k) = £33F + L[-1,-3,-9, 53]
= ternary 1001 0001 0001... empty,0,000r001 for k digits
= 252, 757,2269,6807,20421,61264, . .. k>6

In PN7, the 3*~1 high ternary 1 digit is only 3 places above the rest of
PN/ (k—1) so an initial 100 before the 1000 pattern.

The area of the hull can be calculated by taking triangular sectors from origin
to consecutive points P1, P2 etc in the usual way. The area of such a sector is
%Im(zl.fg), for z; to z9 anti-clockwise around. It’s convenient to measure the
area as number of unit triangle equivalents (the area of each such being /3/4).
This corresponds to curve area A measured in unit triangles (theorem 23).

i 0,2, if k=0,1 (103
k pu—
23k _ 1115,23,11,25/.3"% — 1(53,1,3] ifk>2

=0,2,8,26,86,276,856, 2586, . ..

The area of hulls £ = 0,1 can be calculated explicitly. k=1 is a rhombus
comprising 2 unit triangles, as seen in figure 21. For 2 <k <5, the duplications
and extra vertices on the hull boundary give empty or split sectors but the
general formula found from the vertex formulas for k > 6 still holds.

Scaled by 3* for curve start to end a unit length, the hull area limit, as a
multiple of unit triangles, is the coefficient of the 3* term in (103).

HAy 29 o .
—— — — = 1.208333... unit triangles limit 14+ A212832
3k 24

This can be compared to the limit number of triangles enclosed by the curve
Ag /3% — 2 =0.666....

Then with v/3/4 unit triangle area, the area of the hull around the fractal is

2
HAf = 72 V3 523223, hull area limit

The hull boundary length is the total side lengths

HBy, = |P1(k)—P2(k)| + |P3(k)—P2(k)| +---

2,4 if k=0,1
) (B+3V3) VB if k> 2

+1+/37.3F +[—30, 162, 30, 7162] 3Lk/21 + 9, 63]

HE-IVE IV 35VE §5VE]

=2, 4, 44+2V3, 10+2V/3, 12+2f+2\/ 9, 1248v3+2V73,. ..
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The middle root term 37.3% 4 --- is from sides P7-P1’ and P7—P1 which
are not at 30° angles.
Scaled down by /3% for the curve a unit length, the hull boundary length
limit is
HBy,

13 5 1
7 HBf=E+E\/§+6«/§ = 2.818814. ..

hull boundary
side length

2—14 limits
1.3 (and top sides
S 137 repeating these),

8 12 total HBf

wlw
N
&

Theorem 38. The two points of the terdragon curve furthest apart are P3 and
P3' of the convex hull. For curve k they are at a distance

k
HDy, = 3(?;3’“ —1[3,9,9, 15].3L2J + £[1,3,9, 19]) (104)

=/ 1,3,9,31,103, 309,927, 2821, . ..

Proof. The points furthest apart must be vertices of the convex hull. For k <9
the furthest points can be verified explicitly and their distances apart are per
the formula.

For k>9, points P1 through P7 of the convex hull are located at various
factors of b* and offsets p(m) from those powers. The offsets are at most

pmaz = max(gy [p(m)]) = §V19

Comparing factors of b* on the hull vertices, P3-P3’ are the furthest apart.
Their distance is at least

k
|P3(k) — P3'(k)| > |b"+2505"2| — 2pmaz = $v21.V3" — 2pmaz

The second furthest by b* factors is P2-P2’ and their distance, or the dis-
tance of any pair with smaller b* factor, is at most

k
|P2(k) — P2 (k)| < [bF+25b" ] 4 2pmaz = 11/5 V3" + 2pmax

For k>9 the difference between the two bounds is positive, as seen by de-
creasing and increasing terms to convenient squares,

1 1 /61 9
(ZVZ 71\/7)\/3 — dpmazx k>9
1 4582 1 4512 1 436> _ 27
> (Z\/mooo - Z\/mooo )'140 - 4'§ 10000 =100 ~ 0 [

Scaled by v/3F for start to end a unit length, the distance is square root of
the coefficient of the 3% term in (104).
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curve points
furthest apart,

distance
Dk, ppy = V2l _ ) s,
NEL 4

HD is between any two points of the curve. It’s also possible to consider
only points on some line parallel to curve start to end.

Theorem 39. Consider a line parallel to curve start to end, and the points of
the curve which may be on it. The greatest distance between two points on any
such line is uniquely attained between the following locations P1S and P1S’

0 ifk=0,1
P1Si =< P1(k)+whyt ifk=1mod4 and k >5
P1(k) otherwise

P1S}, = b* — P1S,

They are on the curve centreline through curve start and end. Their distance
apart s

HSD,, = |P1S), — P15},

1,v3 if k=0,1
= 13fk 3 3 11 f (105)
HV3¥—=13,9V3,7,7V3] ifk>1

=1,V3, 3,3V3, 9,9V3, 29,29V/3, 87,873, . ..

For k=2m, HSDj, = ternary 100202... with m+1 digits, and for k=2m+1
the same with further factor /3.

Proof. Greatest distances can be verified explicitly for k£ <6. For k>7, hull
vertex P1 is on the start to end line when k£ # 1 mod 4 since its formula is

Impl(k)/w]f2 - [0,7%,0,0}

Hull side P1-P2 is at 60° to the line start to end and side P1-P7’ is at less
than 60°, so any parallel line points away from P1 are shorter than P1 to P1’.

For k =1 mod 4, in the k—1 hulls of figure 23, P1 = P2A has adjacent sides
60° and 30° so that anywhere other the overlap arising from Im P1(k) = —1 is

2
shorter.

77777 start to end
line
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P1 is at 30° down from P1S. Distance P1S to P1S’ could be equalled by
P1 to a point below left 30° from P1S’. Or likewise from P1’ to a point above
right 30° of P1S. But these points are not in the curve. They are not in k=9
and thereafter the P1-P1S segment expands 4 times as follows for new PI(k+4)
also without point above right.

no point - - -x

P1(k+4)
k=1mod4

O

For the curve scaled to a unit length, the limit is the distance P1 to P1’
which is the coefficient of /3% in (105),
HSD(k) N 13
bk 12
A maximum distance between two points on a line perpendicular to start
to end is the corresponding points in the middle third of the curve, which is
P1S(k—1) and P1S’'(k—1) in the k—1 middle part of figure 23. These points
are not on the whole curve hull boundary. Their width limit is simply /v/3,

HSD(k—1) N 13v3

=0.625462...
bk 36

10.1 Middle Nearest

Theorem 40. The left boundary point or points nearest to the terdragon middle
%bk are located at

Oand 1 if k=0
Land §+3v/3i if k=1
Lnear, — 4 3+3V/3i and 1++/3 if k=2
19 +/3i .
— 5 b + Lpt(k+1) ifk>3
and when k=5 also equal nearest —%—l—%\/gi
where
pt(m) = [15, 6—9ws, —3—2Tws, —3+18ws, (106)

15ws, (6—9ws3)ws, (—3—27ws)ws, (—3+18ws)ws,
15ws, (6—9ws)ws, (—3—2Tw3)ws, (—3+18ws)ws ]

By symmetry the right boundary point nearest the middle is

Rneary, = b* — Lneary,

Proof. For k <5 the points nearest the middle can be calculated explicitly.
For k > 6, boundary points correspond to corners of triangles on the bound-
ary of surrounding curves. Form the convex hull around segments plus boundary
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triangles. This can be calculated the same as the segments hull in theorem 37,
since the curve with boundary triangles is an unfold of sub-curves k—1 and their
boundary triangles. For k > 6 there are 14 vertices (like the segments hull).

P i A o
s /' b S
e ™
s 7 \
L .
PT1 .~ )
start end 37
PT2 ¢ - k=6
PT3 ‘\\ I convex hull
BT » s segments and
YRAN - .
~ W 8K LW PTT boundary triangles
PT5 PT6

The boundary triangles push the segments hull vertices out by 1 unit triangle
on each straight side. The triangles hull vertices are at corners of a triangle,
since a curve point would have triangles each side of it and so not be a hull
vertex.

Working through the hull recurrences the result is the same location forms
as segments P1 etc (101), but different offset terms. Each p in P1 etc becomes
pt at (106) in PT1 etc.

PT1(k) = —o (b" + pt(k)) etc

Consider then curve k& comprising k—2 sub-curves and surrounding k—2 sub-
curves. The triangle hulls around those surrounding sub-curves are

Figure 24:
k—2 hulls
surrounding
left side

The boundary triangles push into the left boundary L so that minimum
extents for the left boundary points are given by maximum extents of the sur-
rounding hulls.

The claimed Lnear is the marked PT4 in figure 24, being PT/ in that
surrounding £—2 hull. Its sub-curve starts at %bk . Its sub-curve endpoint b*—2
is directed —60° relative to the b* end. So +120° direction in figure 24 is total
turn 180° so negate,

Lneary, = %bk — PT4(k—2)

Working through the hull formulas it can be verified that this is nearer than
the other hulls, and that the slopes of the sides adjacent to PT/ are more than
90° to a line M—PT/ so that nothing else in the surrounding hull is nearer. [

Draft 15 page 79 of 124



The offsets in pt can be illustrated

The difference between p and pt is effectively which sides are pushed out by
the boundary triangles in the way noted above.
i(pt(k) - p(k)) = [17 —Wws, —Ws, w3, ws, _w?2,7 _wga w§7w§7 _17 _la 1]
_ wg(k+3)/4J.(_1)L(k+1)/2J

For endpoints scaled to a unit length, the limits for Lnear and Rnear are
their b* coefficients.

Lneary, 194+v3i  104ws ,

o — Lnearf = 15 =—r = 0.3958333... + 0.036084...i (107)
Rneary, 20—/3i 14—ws3 .
—_— = = = . 41 e . 4. .

o — Rnearf 18 o 0.6041666 0.036084.. .4

A line between Lnearf and Rnearf is the narrowest part through the middle.
The length of that line and the angle down from the curve start to end are

|Rnearf — Lnear| = 1—12\[7 = 0.220479...
arg(Rnearf — Lnear) = — arctan %\/g = —19.106605° . ..

Lnearf
=3 +4 i R )
start N ﬁ\ﬁ L Lnear, Rnear limits,
GO end width and angle
Rnearf = ——4—‘/52‘ " o _19.1°
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Theorem 41. For two curves at 60°, the point or points of the left boundary
which are nearest to the join are

1 if k=0
1 and wg if k=1
V3i if k=2

J = -
neark JnearPT2; and JnearPT2; — b if k=3

JnearPT2y and JnearPT2y, —ws if k=6
JnearPT2,, otherwise

JnearPT2), = we (bk‘l + wgPTQ(k—1)>
= (8 + LV3i)vh + Lpt(k) (108)

Proof. The nearest points for £ < 6 can be calculated explicitly.

Jneary
equal
Jnearg \
=1 \\\

Jnears [ _
equal 0

The k—1 triangle hulls of the absent left k side are

Figure 25:
absent
k—1 hulls

Working through the formulas shows the nearest to J is PT2 of the mid-
dle hull. TIts adjacent sides are 30° before and 60° after which are past 90°
perpendicular to the line from J, so other points are further away. O

The limit for join of curves scaled to unit lengths is the b* coefficient in
(108).

Jneary,
bk

— Jnearf = 3+ §V3i = §1 + Jws (109)

= 0.541666... + 0.288675...1 imag A020769
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|Jnearf| = 55217

1
_ 0 613788 . |1—Jnearf| = 2—i = 0.541666
0 == 1
arg Jnearf = arctan {3 1./3 arg(1—Jnearf) = arctan %\/g
= 28.054880...° = 32.204227...°

Jnearf is located +4; right of the middle b/3 = $+2/3i. The middle is a
double-visited endpoint of sub-curves. The absent third visit sub-curves are the
first two hulls in figure 25. They spiral around the middle, as all curve ends do,
giving boundary points which closer to J than the middle is.

Jnearf — 1 is the narrowest part through the middle of 6 arm plane filling
per section 7 (and by symmetry the same at successive 60°).

UJS we

Jnearf —1 = — 22+ \/
/\ )

2 [1—Jnear| = 13 across

10.2 Minimum Area Rectangle

P1’
P1

Figure 26: k=6
minimum area rectangle
aligned to side P7-P1’
area MRg = 292207

unit triangles equivalents

P4

Theorem 42. The minimum-area rectangle around terdragon level k has area
MRy, unit triangle equivalents (v/3/4 each),
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0,3,9,33 if k=0to3

MRy, = § MrW .. MrH}, fh> 4 (110)
_
MrDeny, -
_ 2187 25392 205407
_07379’33>T9’ 73 0193 0t

where

MrW = 33" + (9,18, 1, -30].31%/%) + §[0, -3, -2,1]

— 81,276, 787,2302, 7047,21444, ... k>4
MrH; = 3% + L[-3,6,-1,-16].31/2) + 1[0, -1,0,1]
— 27,92,261,754,2349, 7148, . .. k>4
MrDeny, = |P7(k) — P1'(k)|?
= 33k 4+ L[-5,27,5,—27].30/2 4 L117]

=19, 73,193,532, 1669, 5149, . .. k>4

For k> 4, the rectangle is aligned to the side P7-P1'. For k=1t%o03, it is aligned
+30° to the curve endpoint. For k=0 the curve is a line segment and the mini-
mum rectangle is trivially aligned to that segment.

Proof. A minimum area rectangle has at least one side aligned to a side of the
convex hull, so it suffices to consider rectangles on the hull sides.

For k=0, the curve is a unit line segment with area MRy = 0.

For k=1, the two rectangle alignments both have area MR; = 3 triangles.

k=1
\ [ area 3x2v3 [ avea Ly 8 =38

MRy =3

For k=2 and k=3, the possible alignments and areas are as follows. In each
case the first is the minimum and is per the general formula.

k=2 area, area
MRy =9 3x3V3 V3 x3=12¥3
k=3
MRs = 33
11 3
L x3v3 3x3V3 5 9 4xiB
— 333 = 3643 FV3x3 =10

For k >4, the hull vertices P1(k) through P7(k) from the convex hull theo-
rem 37 can be used, allowing for repetitions which occur in for k=4 and k=5.

There are 7 sides (and 180° reversals). The first 6 are 30° turns which means
90° after the first 3, so total 4 distinct rectangle alignments.
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A rectangle aligned —30° to the b* endpoint, which is the P1-P2 and P4-P5
sides for k> 6, is

It’s convenient to divide by b*+2 for the alignment and factor 35+2 = |p*+2|2
to scale back up to unit segments. P2-P2" and P5-P5’ are suitable rectangle
extents for k> 1. So, measured in unit triangles,

, P5/(k) — P5(k) | P2(k) — P2 (k) /3
4

_ 9k+2
MR12(k) = 3"*2. R e o2

k>1

To allow any k, for completeness, P2 is used rather than P1 since P1(1) is
not on the hull boundary, though actually its extents are the same as P2 there.
Then with a —30° hull explicitly calculated around the k=0 line segment,

MR12(k) = 1 if k=0
B 913k — L[51,69,17,51].31k/2) + L[9,3,1,3] ifk>1
=1,3,15,45,135,435, ... k>0
A rectangle aligned to the b* curve endpoint, which is sides P2-P3 and
P5-P6 sides for k> 5, is

P6’ P5’

P2 { start
P3

P5 P6

P3(k) — P3'(k) : P5(k) — P5'(k)
o .Im o /

MR23(k) = 3*.Re

£

= 2138 1015,9,9,27).37/2 + 1[3,1,3,9]
=0,4,12,36,120,400,... k>0
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A rectangle aligned +30° to the b* endpoint, which is the P3-P4 and P6-P7
sides for k>4, is

P3(k) — P3(K) P60 — PO(K)

_ qk+1
MR34 (k) = 351 Re === === Im =205

=23k _1[515,15,251.3%/2) + L [1,3,9,3]
=1,3,9,33,121, 363, ... k>0
MRS/ is the alignment of the minimum area rectangles around k = 1to3

illustrated above, but not beyond those.

The final alignment is to the P7-P1’ side, which is the claimed minimum.
That side turns away from P6-P7 and since P3-P4 is at 90° to P6-P7, the P4
vertex is the rectangle width, as shown in the sample figure 26.

Pa(k) = PY(k) | PT(k) = PT'(k) , 5
Pk = PUh) P =P | T

_ Re(P4—P4')(P7T—P1’). Im(P7—PT7')(P7T—P1’) /3B
B |PT — P12 4

MR71(k) = |P7(k) — P1'(k)|*. Re

MrW and MrH at (110) are the real and imaginary parts here, and the unit
triangle divisor \/§/4 split between them in a convenient way so as to make
integers.

MrWy = Re(P4—P4')(PT-PY) /4
MrHj, = Im(P7—P7") (PT—P1") /3
To compare to MR12, MR23, and MR3/, divide down to

k Lk/2]
MR71(k) = 1693% _ q(k)3lh/2) 4 b(k)3F + c(k)3 +d(k)

11 MrDeny,
__ 1196 3354 6994 3380
a(k) = [1369’ 13697 4107’ 1369]
_[_ 491 _ 855 471 _ 23605
b(k) = [ 54767 ~ 21904° 5476 197136]
_[299 3525 811 4003
c(k) = [5476’ 10952 5476 32856]
_ 3 1
d(k) - [07 16° 07 176}
Factor % on 3* here is smaller than the corresponding %, %—g and % of the
other alignments. For k >4, the difference exceeds the half-power and constant
terms and so MR71 is the minimum. O
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11 Moment of Inertia

The mass moment of inertia I = >~ mr? of a rigid body rotating around a given
axis is the ratio of torque to angular acceleration, similar to the way ordinary
mass is the ratio of force to linear acceleration.

QA .
! 3
T~ _end | f\)/ Figure 27:

Tl v moment

~ < of inertia

L7 start ‘{) Iz

Rotating about the z axis keeps the curve within the plane. This case is the
simplest.

Theorem 43. The terdragon curve with mass uniformly distributed along its
length, at any expansion level and any unfolding angle 6, has the same moment
of inertia I, about its centre as a straight line from start to end.

_ 172
I. = 12mL

start end

1. moment of inertia
terdragon = line segment

Proof. For k=0, the curve is a straight line so the statement is true.

Suppose the statement is true of level k. Let each of its segments have mass
1 and length s. The moment of inertia of such a segment about its centre is
I= 1—12 us2. In the next expansion, the segment unfolds by angle 6 as follows

There are now 3 segments each length ¢ and mass /3. The centre of mass is
still located at the midpoint. The moment of inertia I’ of the expanded shape
about this centre of mass is also unchanged since

B=1/(2+ ™) reduction
t=s|p] new segment length
1 1 . .
r=sy - Eﬂ to midpoints
1
I'= 35% 2 +2 % r? parallel axis theorem  (111)

= s us? (I8 + 201-51)
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1,12 ((1 + cos(m—0))? + Sin2(7r79))

= — 112
1217 (24 cos(m—0))2 + sin®(7—0) (112)

_ 1 2 _

= E s =71 O

The usual terdragon is = 60°. It has ¢t = s/+/3 and the triangle formed by
r is equilateral so r = t/2. Applying this to (111) easily gives I’ = I. For other
angles, r and ¢ vary inversely and the sin and cos terms of (112) cancel out so
I' = I always.

The following diagram shows the geometry of the expansion. AD is length
s. AB, BC and CD are the three new line segments each length ¢. B is distance
t/2 from the middle M.

H is at % along AD. The distance HB is

— 1 (14 2cos)? + (2sin)? 1
HB = |2s—bs| = =s =-s
3 | 3 \/ (2 + cos)? + sin? 3

so B is on a circle of radius % centred at H. Likewise by symmetry C on the

corresponding circle above.

The midpoint of AB, which is where r measures to, also follows a circle as
in the following diagram. This is simply because the AB midpoint follows the
circle of B but shrunk by % in both x and y directions. So where B arcs from
% to 1 the AB midpoint arcs from é to %

The first circle is centred at 3 with radius §. It and the corresponding upper
arc meet at M since both AB and C'D midpoints are in the middle when fully
overlapping AB = CD = AD for no unfold 6 =0.

The points also make circles when the line segments AB etc are fixed lengths.
This is obvious for C since it pivots from B. D is a fixed offset to the right so
is a shift of the C circle.
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Theorem 44. Consider each segment of the terdragon to have a unit mass
uniformly distributed along its length. The centre of mass is the centre of the
curve. With the x axis aligned to the endpoints, the moment of inertia tensor
about the centre is

Igg —Ixy 0 I:c _ Zy2 I:):y — ny
— 1y I, 0 I*Zzz 172z2+2
0 0o I, v z= Yy

where
L) = &(29° - 2,-3).(-3)¥/2)

=0, 1,2, 8,156, 2825, 12654, 455247 .

1, (k) = 8%1(5.9’“ + 2. —3].(—3)%/%)

_ 1 1 19 87 1563 7029 126531 569403

=124 2° 4020 4 o 2 o0

Loy (k) = %(2.9’6 - [2,4].(-3)W2J) (113)
_ 1 35 2811 227763
— \/§.{0, L.1,35 78 2L 6397 221763 }

L(k) = L(k) + I,(k) = %9 per straight line
=, 3, 21 243 2187 19683 k>1 1A013708
I, and I, are the moments of inertia rotating about the x or y axes as in

figure 27. They can be combined with I,, in the usual way for inertia about an
axis at angle « in the plane

I(k,a) = I(k).cos® a — 21,,(k).cosasina + I,(k).sin? a

\4 o I(k,a)

Proof. For k=0 the curve is a single line segment and that line has inertia
I,(0) =0, I;y(0) = 0 and I,,(0) = {5 which is per the formulas.

For k > 1 the inertia is calculated by rotations and the parallel axis theorem
from the 3 copies of level k—1.
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+30°

Figure 28

The first and last copies have the x axis at +30° relative to those copies.
The axes are turned by a matrix of rotation in the usual way

N

1
5 0

3

i V3 0 rotate axes by +30°

0 0 1

Distance r is half the k—1 curve extent r = 1(v/3)"*~! and it is at —30° to

the axes for shifting the centre of mass of the first and last sub-curves. The
middle sub-curve is axes at —90°. So total

I(k)y=2R™.I(k-1).R first and last +30°
+R®.I(k-1).R® middle —90°
+23 L (A2 R(Q9)R™T me? first and last —30°

Multiplying through is mutual recurrences

L(k)=  3IL(k—1) —V3ILy(k-1) + 3I,(k—1) + 19! (114)
I(k)=  3I(k—1) + V31, (k—1) + 2I,(k—1) + 39! (115)
Ly (k) = V3L, (k-1) - VB, (k-1) + 1V3.9"1

(
I, has difference I, — I, and subtracting (114)—(115) is that I, — I, in
terms of I, again so a recurrence for I,, which can be expanded and summed
down to either I,,(0) or I, (1) according as k even or odd.

Ly (k) = =31, (k—2) 4+ v/3.9572
9k _ 9(k mod 2)(_3) lk/2]
=3
V3 81 — (—3)

where k mod 2 means 0 or 1 as k even or odd

+ Iy (k mod 2).(—3) /2]

With initial I,,(0) = 0 and I,,(1) = -+/3 from the mutual recurrences (or
explicit calculation) this gives (113).

I, is equivalent to a straight line as from theorem 43. The line here is extent
(v/3)* and mass 3% so I, = %9’“. I, = I,+1, for any plane figure. Substituting
Iy and I, = %9’“ — I, into (114) gives I, and from which I,,. O

Variations can be made with a different mass distribution on each line seg-
ment. For example a unit mass at the midpoint of each segment would make
the initial 7, (0) zero and change I,,(1) and the factor on (—3)%/2) in I,,. Sub-
tracting the individual line segments inertia -53* from I, introduces a 3’“ term
into I and I,.
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An inertia matrix is real and symmetric so can be diagonalized with a suit-
able matrix of rotation turning to the eigenvectors which are its principal axes.
The physical significance of this is that rotation about those axes is perfectly
balanced with no torque exerted on the mounting points.

In the usual way for a 2x2 matrix, the eigenvectors are in direction d where

d* = (Iz(k) - Iy(k)) — 2l (k)i

k)
o= laurctani( + (Oor %
- (Oor3)
= %arctan( Gk) +
14f .
——— if k even
€ =14 9.(=27)k/2 + 12
0 if k odd

€x — 0 as k—o0 so the limit for the principal axes is the 1 5 arctan f The

hypotenuse |24++/3i| = v/7 and a double-angle can square that up to hypotenuse
7 in an arccos,

X yniim — %arccos _71 = 24.553302...° arccos second quadrant  (116)

_ s
Qmaz = Qmin T 2

— T — %arccos _71 = 114.553302...° arccos third quadrant

I maximum
Omaz = 114.55...°

_ I minimum
Omin = 24.55...°

Roughly speaking, the minimum inertia is where the curve is closest to the
axis and the maximum is where the curve is furthest from the axis, as measured
by mr2.

For the curve scaled to unit length, unit mass, and rotated —a,;, so = axis
minimum, the inertia limit is

1 1

-2l 0 0
0 EHt+1esV2l 0
0 0 +

The inertia of the convex hull can be compared to that of the curve it
surrounds. The inertia of the hull is calculated from its polygon. Its limit
scaled to a unit length and with mass equal to its area is
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HI, = 26l /3 = 0.0142148... hull inertia

884736

HI, = 538999-/3 = 0.0385008.. ..
449

HI,, = 45 = 0.0081199...

Hopin = %arctan (%\/ﬁ) = 16.885199° ...

‘ segments i, = 24.55°

The segments axis auy,;, is close to hull vertex P4 but does not pass through
it since P4 is at a slightly smaller slope,

P4 (k)
bk
arg(3 — P4f) = arctan 1v/3 = 23.413224° . ..

= %arctan %\/?: < Qlppin = %arctan %\/3

— P4f = —3V3i

12 Terdragon Graph

The terdragon as a graph has an Euler path from start to end (traverse all edges
exactly once) simply by its construction.

There is no Hamiltonian path start to end (visit all vertices exactly once) for
k > 3 since the vertices in hanging triangles cannot be visited without repeating
the vertex they attach to. There is no such path in k=2 either.

Theorem 45. The path length between the endpoints of the terdragon curve as
a graph is

3 if k=1
5]

%([11719]3 2l 4 op +[—37—5,3,1]) if k£1

—1,3,5,8,13,22,39, 66,113, 194, . ..

EndLength,, = (117)
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start
end
k=8 graph path
start to end

EndLengthg = 113

Proof. Firstly take k even and let h = k/2. Curve k comprises 9 sub-curves,
- > \/@/\

The shortest path start to end would be a straight line which is 3" segments.
But it’s necessary to detour away from that midline up and down to go around

the V shaped indent at start and end.

Making such a detour on a triangular grid adds a distance equal to the detour

extent,
. V} detour by 2,
N adds 2 to distance
[ ] °

A straight line has a V indent sub-curve as shown above. Such a V comprises

18 sub-curves

3 straight segments

The three straight lines then are V indent sub-curves again. The first and

last might be partly enclosed by the angled curves adjacent to them, but the
middle is not. All are located at 1 sub-curve length into the V, which is 3"~!

So the sub-curves alternating straight or V down to h=0 give
IndentSy =0

IndentVy =1,
IndentV, = 3" + IndentS),_1
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IndentS), = IndentVj,_q
=1 (3" +[-1,5))
=0,1,1,4,10,31,91,274, 820, ... A006342
ternary 1010... ending 101 or 1011 for A—1 digits, h > 2
The detour around the indent reaches the centre line of the end sub-curves.
They then have further perpendicular indents. This can be illustrated in the
following k=6 curve. The dots are the ends of the final sub-curve. The path
shown detours around IndentSs and reaches the centre line of that end sub-

curve. The arrow shown cannot go straight but must take a further detour
out.

k=6

IndentSs '
=4 further
indent
IndentS, =1

There is always a straight path across the tops of the indent since level k
comprising 81 sub-curves of k—4 is

The top horizontal lines indent at most IndentSy_» downwards and the path
shown indents at most IndentSj,_s up. But

2 IndentS;_o < 3"2

so the top does not interfere with the path. Likewise on the diagonal up from
the middle.

So for k even the distance start to end is its length 3" plus detours at both
ends which are sum of IndentS spiralling around. This is k even of (117).

h
EndLengthEven,, = 3" 4+ 2 Z IndentS;
J=0

For k odd let h = |k/2]. The shortest path start to end would be straight
across stepping along the sides of rhombus shaped pairs of triangles. This is
distance 2.3". The following diagram shows a k curve expanded 3 times to 27
sub-curves.
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The dashed section is an indent across a V the same as for even k. A path
start to end must detour around these at each end. FEndLengthEven includes
one 3%, so adding another gives 2.3" and two detours. This is & odd of the
theorem (117).

EndLengthOdd,, = 3" + EndLengthEven,, h>1

This odd case effectively cuts an even path in half and inserts an extra 3"
segments which is the 3-long line in the middle of the diagram above. That
middle part goes along parallel straight sides so per above the indent on its two
sides do not interfere and there is a straight path of segments. O

12.1 Turn Tree

When the terdragon revisits a location z, the second and third visits are the same
turn as the first. This is so for any non-crossing closed curve or curve continuing
infinitely and not encircling its start. An opposite turn would enclose either the
end or the start,

opposite turns would opposite turns would
enclose curve end enclose curve start

When three terdragons are arranged in a triangle, the locations with right
turns and the segments between them form a tree.

@ m— ./.
\.
@ m— l/
ATAY e

om0 —o/. -—o/. start
\. \. \‘
/.-.( /.-.( ; Figure 29:
VAV VaWiWa S triangle of k=4 terdragons,
/ i * right turn points
IONS start
e and segments between

Each unit triangle has a right turn at the corner where it connects to the rest
of the curve. Each unit triangle expands per figure 14 to a new right turn in the
middle. The curve segments in that expansion go from the connection corners
to that new right turn. An existing edge across a side becomes two segments
going through the new point.
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So a bottom-up expansion rule is to increase all existing vertices to degree-3
by adding new leaf vertices, and insert a new vertex in the middle of each old
edge. Or equivalently a kind of star-replacement where each vertex is replaced
with a claw (4-star) and each existing edge becomes a vertex in common between
the new claws.

claw
replacement,
new vertex
in common

Three triangles of terdragons interlock per theorem 2 plane filling, The fol-
lowing diagram has each turn tree vertex drawn as a hexagon.

VAN

—

Figure 30:
3 triangles of k=5,
right turn points
(as hexagons)

The tree copy shown in black is the terdragon triangle with first segment
East per figure 29. The spiralling of the terdragons directs it around to the
right.

Taking only arms of the triangles at the origin continued infinitely gives the
trees continuing infinitely. If curve arms are considered all going outward the 3
interlocking trees are right turns in the even arms 0,2,4 and left turns in the
odd arms 1, 3, 5.

The gaps between the hexagons in figure 30 are left turn points from the
terdragon triangles. They are the same tree structures as the right turns, as
can be seen by rotating the pattern 60° to swap the odd and even arms and so
swap which of left or right turn is taken in the arms.

The number of vertices in the tree follows from the claw replacement. Each
vertex becomes 4, but in each edge there is 1 in common so

TTV) =4TTVy 1+ (TTVj_1 —1)  starting TTV; =1

= %(3’c -1) A003462

Theorem 46. Vertices of the terdragon triangle turn tree are degrees 1,2,3 after
the initial degree-0 in k=1. The number of each degree in tree k are

1 ifk=1
TTDegCount(k,0) = if ) A000007
0 otherwise
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0 if k=0,1
TTDegCount(k,1) = {1 (3-143) ifk>2
2 paiy
=0,0,3,6,15,42,123, 366, . .. A067771
0 if k=0,1
TTDegCount(k,2) = {1 (31-8) ko
2 puiy
=0,0,0,3,12,39,120, 363, ... A029858
0 if k=0

13t =1) fk>1
=0,0,1,4,13,40,121, 364, . ..

TTDegCount(k,3) = {

Proof. Claw replacement gives degree-3 vertices as the preceding total vertices
TTDegCount(k,3) = TTV_1

Degree-2 vertices are likewise in each existing edge. There are TTV — 1
edges once the tree is not empty.

TTDegCount(k,2) = TTV 1 — 1 k>2

The claw replacement leaves only degree 1,2,3 vertices so the remainder of
TTV in level k are degree-1. Or alternatively the claw replacement gives 1
degree-1 for each previous degree-2, and 2 for each previous degree-1 and 3 for
each previous degree-0.

TTDegCount(k,1) = 3TTDegCount(k—1,0) + 2 TTDegCount(k—1,1)
+ TTDegCount(k—1,2) O

Theorem 47. The diameter of terdragon triangle turn tree k is

none  if k=0

2k —2 ifk>1

=0,2,6,14,30,62,126,. .. kE>1 A000918

TTdiametery, = {

The total number of paths attaining the diameter is

0,1 if k=0,1

3.4F2 fk>2

=1,1,3,12,48,192, 768, ... A002001

TTdiameterCounty, = {

The number of diameter endpoints, and total number of vertices on some diam-
eter are

0,1 ifk=0,1
3.2572 if k> 2
=0,1,3,6,12,24,48, ... A003945

TTdiameterEnds;, = {
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0 if k=0
TTdiameter Verticesy, = { 4 i lf
Z(kf—l)Q +1 ifk>1
=0,1,4,13,37,97,241, ... A048474

Proof. For any path in level k—1, the bottom-up replacement inserts 1 fur-
ther edge into it for level k, so 2x the length. A path between any of those
new vertices is shorter. If the path in k—1 ends at a degree-1 vertex then the
replacement there has new leaf vertices attached.

A diameter must be between degree-1 vertices (otherwise could be extended).
So the longest is between new leaf vertices on what was a longest path in level
k—1. Starting then from diameter 0 for the single vertex of k=1,

TTdiameter;, = 2 TTdiametery,_1 + 2 starting TTdiameter; =0  (118)

There are 2 new leaves at the end of the new path in k. They give endpoints,
once the diameter is not 0,

TTdiameterEndsy, = 2 TTdiameterEndsy—1 starting TTdiameterEndse =3
and combinations of the 2 new at each end is 4 new paths for each existing one

TTdiameterCounty, = 4 TTdiameterCounty_1
starting TTdiameterCounty = 3

For total vertices of diameters, on bottom-up replacement each existing di-
ameter vertex has 1 new vertex towards the middle of the tree, except at the
middle vertex itself. The new TTdiameterEndsy outer vertices are immediately
adjacent to existing diameter vertices. So

TTdiameterVerticesy, = 2 TTdiameterVerticesy,_1 — 1 + TTdiameterEndsy,
starting TTdiameterVertices; =1 O

In k£ = 1,2 all the degree-1 vertices are diameter endpoints, but in k£ > 3 some
degree-1 are not diameter endpoints. The degree-1 vertices grow as 5* whereas
the diameter endpoints grow only as 3*.

TTdiameterEnds,, = TTDegCount(k,1) k=2,3
TTdiameterEndsy, < TTDegCount(k,1) k>4

A top-down definition of the tree is to take the expansion of figure 14 as a
level k triangle comprising 3 level k—1 triangles with a new vertex in between
which is where what were left turns at connection corners are a right turn going
to the next copy.

(k=1 )
T Y.;, /l; ) i ~ Figure 31: turns tree k as 3 copies
PN ! of k—1 and new vertex in between
k=1

The connections to the k—1 are at vertices there attaining the diameter, so
that the total is per (118). The three trees filling the plane can be considered
like this too if the origin point is included.
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The tree is half the Sierpinski triangle as a tree. That triangle has various
definitions, among them is to take integer points x,y where x BITAND y = 0.
Tree edges are between points a unit distance apart.

(7; . Figure 32:

5 . Sierpinski triangle half k=4,

4 s—e—e—e eighth plane 0 <y <z

; :7 . :7 to depth z+y < 2¥—1=15
y:é o1 1 [

z=12 4 6 8 10 12 1415

This Sierpinski triangle has the same definition as figure 31. In figure 32 the
middle vertex is at £=8,y=0 and the 3 sub-trees attached to it are the same.

The 3 copies in figure 31 or usual properties of the Sierpinski triangle give
number of vertices vy = 3v; + 1 starting vo = 0 so vi, = (3¥—1)/2.

Theorem 48. Take the terdragon triple turn tree vertex nearest the curve start
as the root. The width (number of vertices there) at a given depth d, starting
d=0 as the root, is

TT’LUZdthoo(d) _ QCountOneBits(dJrl)fl (119)
=1,1,2,1,2,2,4,1,2,2,4,2,4,4,8, ... A048896

Proof. In the top-down figure 31, the new trees attach at the diameter of the
first, so the first does not overlap the others.

The distance to those others is TTdiameter,_1 +2 = 28— for k > 2, so that
a depth e into them has

TTwidth(2"~ + ) = 2 TTwidth(e)  for 0 < e < TTdiameter)_;

so factor 2 for a 1-bit in d. The vertex in between is at d = 2¥~! —1 and its width
is 1. That is conveniently handled by taking d+1 giving CountOneBits(2F~1)
= 1. Together with the initial values gives (119). O

n # 0 mod 3 are right turns when n are n = 2 mod 3. They are at locations
z = wg mod b, from the lowest base figure expansion. This is a repeating pattern,

R R R R R R

R R R R R R
R R R R R R

R R R R R R
R R R R R R

R R R o R R R
R R R R R R

R R R R R R
R R R R R R

R R R R R R
R R R R R R

These locations are like k=1 trees formed from the surrounding 9 segments.
Right turns with one low 0 digit on n is the same pattern with a factor of b.
Those further points connect to make k=2 claws, and so on, generating the trees
from a simple repeating pattern.
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A related “area graph” can be formed by a vertex for each unit triangle
inside the terdragon triangle and edges between those which are consecutive in
the curve. Or equivalently, if corners of the curve are chamfered off to leave
little gaps then edges are between unit triangles touching through those gaps.

o—e

Y4

A

I oy s
NOYEAD Y4 N4 /\
QYR VaVareYoVian \
N
NSNS NINT NS
YAVaANV VeV

triangle of k=4 terdragons,

N/ Ya Ya vertex for each inside unit triangle,
SN NS sare edge between consecutive in the curve
LN
N/ N/

Inside unit triangles occur in connected 3s as from the figure 14 expansion
again. Each original side expands to have 2 new triangles consecutive, so the 3
new unit triangles are consecutive in pairs and so a 3-cycle in the graph.

These 3-cycles are connected like the turns tree. Each turn tree vertex is a
3-cycle and turn tree edges are where those 3-cycles share a vertex. This is a
“contact triangles” form of the tree.

Or equivalently, increase all existing vertices to degree-3 by adding new leaf
vertices (like the second bottom-up form above). Then the area graph is the
line graph of this padded tree.

13 Fractional Locations

The location of a point 0 < f < 1 along the terdragon fractal is a limit

point(| f.3%])

o fractional point

fooint(f) = lim
k— o0

n = | f.3%] is the first k digits below the ternary point of f written in ternary.
The location is powers b’ at each digit per (43), with rotation below each 1-digit.
The sub-curve there has extent decreasing as 1/v/3* so the limit converges to
some location z.

When f is rational, its digits are an initial fixed part then repeating periodic
part (of length at most denominator—1). The b powers are then likewise periodic
and give a location as some x+4wsy with rational x,y.

If the periodic part of f has number of 1-digits not a multiple of 3 then
there is a net rotation in the periodic part. That can be accounted for in the
calculation, or repeating the part 3 times gives a multiple of 3 and so purely
periodic ¥ powers.

13.1 Fractional Boundary

Theorem 49. The only points on both left and right boundary of the terdragon
fractal are curve start and end f=0,1.
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Proof. k=3 sub-curves and convex hulls around them are as follows

k=3 sub-curves
right and left hulls

The curve is non-crossing so all left boundary locations are within the convex
hulls around the left boundary segment sub-curves.

The right boundary is within corresponding convex hulls around right bound-
ary segments. The hulls drawn A through C, and the hanging triangle on the
right side, are disjoint from the left boundary hulls. So the spiralling and curling
within those parts of the right boundary never reaches the left boundary.

The sub-curves expand to k=4 as

VARV

end

A A k=4

Expanded right boundary parts from start to A are the same as start to B
of k=3. That leaves only sub-curves through to the corresponding new smaller
A as possible both boundary. Repeating this excludes points an arbitrarily
small distance away from the start, leaving only the start as both left and right
boundary.

Expanded right boundary parts end to C are the same as end to B of k=3.
Likewise this leaves only sub-curves through to the corresponding new smaller
C as possible both boundary and so anything except the end as not both left
and right boundary. O

Theorem 50. The terdragon fractal has no cut points, ie. is a topological disc.

Proof. If a cut point separates start and end then it is on both left and right
boundary, but from theorem 49 there are no such points.

Suppose a cut point separates a lobe from the boundary. If this point is
somewhere within a sub-curve then it separates start and end of that sub-curve,
but again no such point exists.

Otherwise the point is always at the start or end of some sub-curve. The
only cut points in the finite iterations are the hanging triangle attachments, but
they are triple-visited so by the plane filling they are not on the boundary and
so not cut points of the fractal. O
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Theorem 51. Fractional f on the boundary of the terdragon fractal are char-
acterized by the ternary digits of f as

fRpred(f) =1 if no ternary digit pair 11,12,20
except 11 allowed if all Os below, and 20 allowed if all 2s below  (120)
fLpred(f) = fRpred(1—f)
=1 if no ternary digit pair 02,10,11,
ezxcept 02 allowed if all Os below, and 11 allowed if all 2s below

[Bpred(f) = fRpred(f) or fLpred(f)

The digit pairs disallowed are the same as the finite Rpred and Lpred, but
with exceptions for certain exact f = n/3%. The 11 at (120) is n ending 11. The
20 is n ending 20222... which is = 21000... in the usual way. These exceptions
introduce an extra state each into Rpred high to low figure 12.

0 2 0 2 01 Figure 33:
@ "~ > non fRpred(f) by

ternary digits
start HOH o » high to low
i SR S S

Proof. An Rpred non-boundary segment has 2 enclosing segments on its right
side. Since those sub-curves have no cut points, they enclose all of that side
except start and end.

——
R

right side enclosed by 2 sub-curves
when Rpred non-boundary

Segment start is on the right boundary when it is single or double visited and
turn left (since the curve does not overlap). Single visited turn left is accepted
by Rpred already, since there is no first segment beside it. Double-visited left
turn arises from a 2-side triangle in manner of figure 14. From Rpred state M
this is

state M

A B A S B
=
L]
D

Segment A-B expands to have S fully enclosed. This is ternary digit 1 to
reach state M then digit 1 for part S. For fRpred the start of S is on the
boundary, which is f with all 0 digits below.

A double-visited left turn from Rpred state E is
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Segment A-B expands again to S fully enclosed for Rpred, but its end is on
the boundary for fRpred. This is digit 2 to reach state E then digit 0 for part
S. The end of S is all 2s per .222... = 1.

A triple-visited start or end is not on the boundary, since the 6 sub-curves
enclose that point per the curve plane filling.

For fLpred similarly with Lpred and double-visited turn right on the left
boundary. O

Second Proof of Theorem 51. A sub-curve m has its convex hull touched or
overlapped by the hulls of the following surrounding sub-curves,

Figure 34:
- surrounding segments
> whose hulls touch
or overlap
hull of m

If m has all segments of figure 34 surrounding it then it is non-boundary
since, by construction, it is does not touch or overlap the hull of any absent
outside. Conversely, if m has one or more of the segments of figure 34 absent,
then that is some part of the hull of m which is outside the curve and therefore
some of m possibly on the boundary.

Hulls beyond figure 34, so not touching m, can be illustrated

Figure 35:
non-touching
hulls

When m is surrounded by all segments of figure 34, the grey area here is a
minimum amount of filled region surrounding m. The closest approach of an
absent outside is % / V/3F between the horizontal sides.

The hulls in figure 35 are those necessary to delimit the surrounding grey
gap region shown. Actually that region may be bigger, since the curve turns
4+120° at the ends of the segments in figure 34 and so some more in figure 35,
but knowing that is not necessary.

A given sub-curve m has some of figure 34 surrounding segments. The initial
single segment k=0 has none. On expansion there are new segments around
the three new sub-curves. The segments of figure 34 suffice to determine the
corresponding set of segments around each new segment. A finite set of segment
configurations arise and give a state machine traversed by ternary digits of f.
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A fully surrounded configuration expands to fully surrounded for any next
digit 0,1,2. So if the digits of f ever reach fully surrounded then it remains
so always. If f never reaches fully surrounded then that is an absent sub-curve
at distance < 1/ V3 so m an arbitrarily small distance from the outside, and
hence a boundary point.

0 if ever reach fully surrounded
1 if never fully surrounded

[Bpred(f) = {

To distinguish right and left boundary, segments of the curve always turn left
or right and so divide the plane into alternating left or right side triangles (eg.
as previously for area in figure 13). The actual sub-curves are curling spiralling
shapes, but they divide into logical triangles.

R R

L\./ L\./ g possible boundary triangles,
g e left and right sides

R R R

/ L\ / L\

Triangles are shown with just the touching hull segments of figure 34. If a
triangle has at least 1 of its sides segments shown, but not all of them, then this
is some of its R or L as boundary for m.

A configuration with no R expands to no R again for next digit 0,1, 2.
Similarly L.

0 if ever reach no 1,2 side R triangles

Rpred(f) =
fRpred(f) {1 if always a 1,2 side R triangle

0 if ever reach no 1,2 side L triangles

‘Lpred =
fLpred(f) {1 if always a 1,2 side L triangle

Total 31 configurations arise. There are 11 with R fully enclosed and 11 with
L fully enclosed. 1 configuration is both L and R fully enclosed, being the full
set of segments.

Some usual state machine comparison shows the result is the same as fRpred
in figure 33. Likewise fLpred. O

This second proof does not use theorem 49 for no points on both left and
right boundary. That theorem can follow mechanically from the state machine
by getting the intersection of fRpred and fLpred. State machine manipulations
show the only arbitrarily long strings matched by both are f =.000... =0 and
f=.222...=1.

For computer calculation or similar, it might be decided to take only the low
0s representation of exact f = n/3. In that case state E2 in figure 33 is not
needed and can go straight to non-boundary. Similarly instead if only low 2s
representation is taken then M2 is not needed.

A given f might be known or proved to be not an exact /3% so that neither
E2 nor M2 is needed, leaving just ternary without 11,12, 20 the same as Rpred.

The number of f which are fNonRpred is uncountably infinite, since once
reaching “non”, further ternary digits of f can be an arbitrary real.
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The number of f which are boundary fRpred is uncountably infinite too.
That can be seen in the fRpred state machine where there are various different
ways digits of f can loop among R,M,E so as to always stay away from “non”. For
example 10 is R—M returning to R, and 210 is R—-E—M returning to R. The
bits of an arbitrary real can be coded to ternary digits as 0-bit — 10, 1-bit — 210
so there are at least as many fRpred as reals. The same holds for fLpred, and
then union for fBpred.

Theorem 52. The number of visits to the location of a given f in the terdragon
fractal is

Visitsy(n) if f =n/3F for integer n,k; and otherwise
fVisits(f) = 2 if fNonBpred but sub-digits eventually fBpred
1 otherwise

Proof. An exact fraction f=n/3" is a vertex of curve k and the visits there are
the same as Visitsy, from (88). By plane filling, those visits enclose the point so
no other sub-curves touch it.
The claimed cases whole curve fBpred boundary or not, and sub-curve even-
tually or never fBpred, are
whole curve
fBpred fNonBpred
sub-curve eventually fBpred 1 2
sub-curve never fBpred no such 1

An f which is on the boundary of some sub-curve, meaning its digits at some
digit position and below are fBpred, might have an adjacent sub-curve like

Figure 36:

S f on sub-curve boundary
<> and adjacent other sub-curve

If it has this further sub-curve then by plane filling and no cut points the
two enclose the location so visits there are only visits arising from the two.

If no such further sub-curve then the visits are only those arising from the
f sub-curve itself. An f which is on a sub-curve boundary like this has only 1
visit because any other would be, for suitable yet smaller sub-curves, an adjacent
enclosing further sub-curve like figure 36 and so not on the boundary. So in the
table the first row cases are sub-curve boundary 1 or 2 visits according as whole
curve boundary or not.

An f which is fNonBpred non-boundary, and its digits at all positions below
are also fNonBpred, is never on the boundary of any sub-curve and so always a
non-zero distance away from any other sub-curve and so just 1 visit. O

fNonBpred of a non-3* means somewhere a ternary digit pair 02,10,11 so

fNonLpred and also somewhere 11,12,20 so fNonRpred. Pair 11 is common to
these so a 11 anywhere is fNonBpred.
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The fVisits =2 case is therefore at least one each 02,10, 11 and 11,12, 20, so
as to be non-boundary, but only finitely many of one of them so eventually on
a sub-curve boundary.

The fVisits=1 case is the converse. FKither none at all of 02,10,11 or
11,12,20 so whole curve fBpred, or infinitely many of both of them so always
fNonBpred in all sub-curves.

The latter case, infinitely many of both, can be either rational or irrational.
Suitable pairs in an infinite repeating pattern is rational, or non-repeating is
irrational. The simplest rational is f = .111... = % which is infinite 11 pairs.
This is the middle of the curve, then middle of the middle sub-curve, and so on.

It can be noted fVisits is not decided by initial digits of f. After some digits,
a suitable exact /3% below can be Visits = 3. Or all 1s below is middle of the
sub-curve fVisits =1. Or a sub-curve boundary by suitable pairs is fVisits = 2.

Theorem 53. For fVisits(f)=2 by eventually sub-curve right boundary, its
other visit fOther(f) is digit runs flipped

fRpred disallowed pair

high — low
f ... [122..22] 100...00 [ 022...22 ] ...
(121)
fOther(f) ... [200...00] 022...22 [ 100...00 | ...
+1 -1 +1

Runs begin at and including the lowest fRpred disallowed pair 11, 12 or 20.
A 11 is initial run single digit 1, then next run 100....

The runs are alternating 0222 and 1000, except the highest which are 1222
and 2000. Each run is > 1 digit. fOther flips between their two respective forms.

For fVisits(f)=2 by eventually sub-curve left boundary, the same but digit
pattern reversed 0<>2, starting from the lowest fLpred disallowed pair

fLpred disallowed pair

high — low
f ...]100...00] 122...22 [ 200...00 | ...
(122)
fother(f) ... |022..22] 200...00 [ 122...22 ] ...
-1 +1 -1

All runs are maximal in the sense that they take as many of their repeating
digits as possible, consistent with the next run. So 100...00 in (121) takes all Os
except one for the following 022...22.

The effect for the right side is runs begin at 1, and at 0 with non-0 below it.
Or for the left side at 1, and at 2 with non-2 below it.

Proof. For the right side, the sub-curves on its right are calculated high to low
as per other table (51). There are 2 segments on the right, but in the next
expansion only one of them is used. n digits 0 or 1 use only s, and digit 2 uses
only e. So a digit of fOther is determined by two digits of f.

f pair 00 01 02 10 11 12 20 21 22

12
output 2 1 1 0 f2 f2 f1 0 0 (123)
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When table (51) has an “n” it is a copy of f for the output. This is shown
as output f in (123) here. It occurs for the Rpred disallowed pairs 11,12, 20 so
that fOther is unchanged above such a pair.

At the lowest disallowed pair, following the pairs there onwards in f and the
output digits in (123) gives the run forms (121).

For the left side similarly, with the pairs being

fpair 00 01 02 10 11 12 20 21 22
output 2 2 f1 f0  fO 2 0 1 1 O

The left side cases are 0<+2 digit reversals of the right and its outputs. This
is since the curve is the same in 180° reverse, so that 1— f measures back from
the end and then 1 — fOther(1—f) measures again from the start. 1—f is an
0<>2 reversal.

Differences | f — fOther(f)| which occur follow from the runs (121),(122).
The £1 shown under each run is the increment to add to go from f to fOther,
being difference of the two ternary numbers in the runs. The runs alternate so
the signs alternate.

For exact f = n/3*, in theorem 10 differences are also alternating signs. For
fVisits(f) =2 by eventually sub-curve boundary, there are infinite such terms.
For exact f there are finite terms. All differences of this form occur by choosing
suitable run lengths in f.

1 1 1 1
}f—fOther(f)’ = 370— 3Tl+372_373

where 0> ko >ky >ko>---
= fraction ternary .0 then digits Oor2, or 1 if all Os below

The ternary form is digit 2s for each pair 1/3%0 — 1/3%1 etc, and possible 1
like other differences from (57).

The runs have no choices within, so for the fVisits(f)=2 case a difference
determines f below its first 1/3¥ term. When this is ko=1 first digit, each
difference occurs for just one f, fOther pair.

14 Locations Summary

Various limit locations in the terdragon curve can be illustrated together,
GRf = right boundary centroid (98)
GJf = join area centroid (100)
Lnearf, Rnearf = boundary nearest middle (107)
Jnearf = join nearest (109)
P1,... = convex hull vertices, section 10
Qmin, Qmag = iNertia principal axes (116)
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15 Alternate Terdragon

Davis and Knuth[3] also consider an alternate terdragon where the unfolding is
to the opposite side L <+ R in alternate expansion levels.

. end
Figure 37
end
.
end E end end
*~—e . L
start start start start start
k=0 k=1 k=2 k=3
k=4

The expansion is

even odd Figure 38:
oO—0 = @\‘®\‘® @/ ? alternate terdragon
expansions

The form here is taken so level k is a prefix of k+1. For unfolding, this means
first unfold “even” is the same as the terdragon, then second “odd” is opposite,
and so on.

For segment replacement, the last replacement is to be even, so begin with
whichever odd or even to give that last. Another equivalent is to conjugate
(mirror vertically) the existing curve and each time replace by the terdragon
“even” base.

Taking two expansions is a flip and flip back again so becomes a plain 9
segment replacement,

e —p o
Figure 39:
\ Y gure 39
- — = e —> e —> alternate terdragon
start start .
,/ \ two expansions
k=0 k=2 «—> o

The turn sequence goes as LowestNonZero but the sense is flipped when that
digit is at an odd position (least significant digit as position 0).
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+1 if LowestNonZero(n) + CountLowZeros(n) = 1 mod 2

AltTurn(n) = .
—1 if LowestNonZero(n) + CountLowZeros(n) = 0 mod 2
_ (_ 1)LowestNonZero(n)+CountLowZeros(n)

e e T T = S A SRR B R
CountLowZeros(n) = 0,0,1,0,0,1,0,0,2,0,0,1,0,0,... n>1 A007949

Or next turn, for n >0,

+1 if LowestNonTwo(n) + CountLowTwos(n) = 0 mod 2
—1 if LowestNonTwo(n) + CountLowTwos(n) = 1 mod 2
_ (71)LowestNonTwo(n)+CountLowTwos(n)

AltTurn(n+1)= {

CountLowTwos(n) = CountLowZeros(n+1)
A turn recurrence differs from the terdragon (2) in negating the 3n case,

AltTurn(3n) = —AltTurn(n), AltTurn(3n+1)=1, AltTurn(3n+2)=-1
(124)

The two expansions of figure 39 gives turns from base-9 digits of n (as for
example in program code by Arndt[1], who calls the curve R9 there),

AltTurn(n) = +1 if Base9LowestNon0O(n) =1,4,6,7
I S Base9LowestNon0(n) = 2,3,5,8

Base9LowestNon0(n) = 1,2,3,4,5,6,7,8,1,1,2,3,4,... n>1 A277547
Predicates for left and right turns are

1 if AltTurn(n) =1

AltTurnLpred(n) = {0 otherwise

=1,0,0,1,0,1,1,0,1,1,0,0,1,0,1,1,0,... n>1
=latn=14,6,7,9,10,13,15,16,19,22,24, ... A189715

1 if AltTurn(n) = —1

AltTurnRpred(n) = {0 otherwise

=0,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0,1,... n>1 A156595
=latn=2,3,5,8,11,12,14,17, 18,20, 21,23, ... A189716

Generating functions for these in the style of (5) have powers in L or R form
in alternate terms,

0o k k
x[1’2]’“'3 2,1]x .3

gAltTurnLpred(z) = —— gAlt TurnRpred(x Z *

3k+1
k=0 1+ — T k=0 1—

Combining them as AltTurn = AltTurnLpred — AltTurnRpred has both 1,2

powers in opposite signs and alternating with k. Then like (6), cancel a common
factor with the denominator.
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i (_1)k (x3k _ x2'3k) _ i (71)1%3’“

gAltTurn(z) = 1 3Ft1 P m

k=0

Segment direction is £1 for each ternary digit 1 sub-part, with sign according
as its digit position which is its level. Or base-9 parts 1,3,5,7 which are the
directions shown in figure 39.

n—1

AltDir(n Z AltTurn(j)
7=0
+1 if digit=1 and even position
Z —1 if digit=1 and odd position

nternary | () otherwise

(count 1, 7) — (count 3, 5) of n base-9 digits
=0,1,0,-1,0,-1,0,1,0,1,2,1,0,1,0,1,2,1,. ..

The number of left and right turns from 1 to n inclusive are

AltTurnsL(n Z AltTurnLpred(n)
j=1
—1,1,1,2,2,3,4,4,5,6,6,6,7,7,8,9,9,9, ...

AltTurnsR(n Z Alt TurnRpred(n)
Jj=1
=0,1,2,2,3,3,3,4,4,4,5,6,6,7,7,7,8,9, ... A189717

All turns are left or right so total lefts plus rights is simply n. The difference
lefts minus rights is AltDir.

AltTurnsL(n) + AltTurnsR(n) = (125)

AltTurnsL(n) — AltTurnsR(n) = AltDir(n) (126)
Sum and difference of (125),(126) are

AltTurnsL(n) = & (n+ AltDir(n))

AltTurnsR(n) = % (n — AltDir(n))

Clark Kimberling in OEIS A189717 gives a recurrence
n+1 n n
AltTurnsR(n) = LTJ + LgJ - AltTurnqugJ)
The last two parts are AltTurnsL in terms of AltTurnsR from (125) so

1
AltTurnsR(n) = L%J + AltTurnsL( LgJ)
This can be seen in the AltTurn expansions, similar to the terdragon TurnsR
at (36) in its turn expansions. Here | (n+1)/3] is the same new L,R as there, but
here the “existing” turns are the opposite AltTurnsL count because the unfolding
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direction alternates.

The alternating unfolding is new curve end at factor b or b of the preceding,

AltEndy, = [b,b] . AltEndy_, starting AltEndg = 1
= plk/2] plk/2] curve end
= [1,b].3Lk/2

=1, 14wg, 3, 3+3we, 9, 9+9ws, ...
Re = 1 A038754, Im = 1/3.A254006

As noted above, expansion can be treated as conjugate to flip turns then
multiply b. The low digit is then the terdragon digit positions. So the equivalent
of (44) is

AltPoint(3n+a) = b. AltPoint(n) + digit(a).w?ltmr(?’")

This form uses AltDir(3n), which is the direction of the new first segment,
to rotate digit(a) suitably. From (124) this is equivalent to —AltDir(n). That
negation is a conjugate the same as AltPoint(n).

The alternate terdragon boundary is a different shape than the terdragon,
but its length is the same. That follows since the “odd” expansion in figure 38
gives R,V parts like figure 11 but opposite order, R — V,R and V — V,R

0 e‘
A%
\Y%
—0

The enclosed area is likewise a different shape but the same number of unit
triangles since each V expands to enclose a new unit triangle and each existing
enclosed triangle expands to 3 new.

The number of single, double and triple visited points are likewise the same
as terdragon S, D, T since they arise from the middles of 1,2,3 side triangles.

In figure 37 it can be seen a single bridge segment goes between two blobs
of triangles. By symmetry this is the middle segment n = (3" —1).

k=2 is the first with a bridge segment. On expansion to k=3 there is the same
form, with some additional triangles before and after, so on repeated expansion
there is a single such segment in each level.

The bridge in k+1 is not the same segment number as in k. The k bridge
is enclosed by the continuing curve, and the new bridge is the middle of the
middle k sub-curve.
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k bridge _

Theorem 54. Number segments of the alternate terdragon curve starting from
n=0. The right boundary segments are given by

1 if FlipOdd,(n) has no digit pair 10,21, 22

AltRpred =
predi(n) { 0 if any such pair

FlipOdd,,(n) = n in k many ternary digits, flip 032 at odd positions

Proof. Take right boundary sub-curves in parts R,M,E similar to theorem 17.

Re,Me,Ee are even k sub-curves. They comprise odd k—1 sub-curves in the
conjugate base pattern. Ro,Mo,Eo are odd k sub-curves. They comprise even
k—1 sub-curves in the plain base pattern. Ro has no adjacent sub-curves, like Re
has none, and then Mo and Eo are back from there. Consequently for example
Re goes to sub-curves in order Eo,Mo,Ro for digit 0, 1,2 respectively.

The expansions give the following state machine of new sub-curve type or
“non” when enclosed and so not right boundary.

start 2 start
k even /q’, k odd
0 0 9 Figure 40:
/0 1 1 ;\\\ AltRpred, (n)
non <£ @ 0,1 non state machine,
ternary

0\ ) /24 high to low
e ()
2 1 0

Each successive digit goes alternately to an e or o state. Transitions out of
e or o are the same but digit flipped 0<>2. e is an even k sub-curve so its next
digit is an odd position. Reckoning those odd positions flipped for unified R,M,E
states means they are always reached by digit 0, 1, 2 respectively. Transitions to
“non” are then the disallowed pairs 10, 21, 22. O
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Some state machine manipulations can make a single starting state, rather
than Re,Ro for k even,odd. This becomes 8 states by what is effectively simul-
taneous traversal with accepting or not for when no more digits (or when both
reach non).

Some state machine manipulations or just following the disallowed pairs
gives the following low to high form. This is a single starting state. o states
are an odd number of digits below. 00 is 0 immediately below. 012 is either 1
or 2 immediately below. e states are an even number of digits below, with e01
having either 0 or 1 immediately below and e2 having 2 immediately below.

non
0'//' W Figure 41:
1 2 ‘(N 9 AltRpred(n)

non <«—— @ H non state machine,

V‘ 1/' ternary
X 1 1,2 low to high

A yet further approach is to take base-9 digits. Going high to low is R,M,E
parts expanding per base-9 figure 39. The start state is R for even k, or an
extra O for odd k and the high digit goes to R,M,E.

@ start k odd

0 1 L 2
AltRpred, (n)
@ =4 state machine,

4,7 b base-9
start k even 0 58 7 high to low

0,6 c@ @DS

The alternate terdragon is symmetric in 180° rotation, so left boundary
segment numbers are the right boundary counted from the end, which means
04+2 digit reversal. Disallowed pairs are the same by flipping at even instead of
odd positions,

AltLpred, (n) = AltRpred, (3*—1 — n)
{ 1 if FlipFven,(n) has no digit pair 10,21, 22

0 if any such pair
FlipEven,(n) = n in k many ternary digits, flip 04> 2 at even positions
For the alternate terdragon continued infinitely, an infinite number of high
0 digits can be considered. After one high 0, the AltRpred result is unchanged.

This can be seen in low to high figure 41 where a 0 goes to “non” from 012 and
otherwise Os go to and bounce between 00 and e01.

AltRpred (n) = AltRpred,(n) for k with 3% > 3n
-1,0,0,0,1,1,1,1,1,0,0,0,...
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=latn=0,4,5,6,7,8,36,40,41, ...
AltLpred . (n) = AltLpred,(n)  for k with 3% > 3n
=1,1,1,0,0,0,0,0,0,0,0,0,...
=latn=0,1,2,12,13,17,18,19, 20, ...
Those n which are AltRpred can be formed from an index m written in
mixed radix ternary low and rest binary, similar to Rn theorem 18. Working

low to high through figure 41, at each state after the start there are two digits
continuing. For example at 00 either 0,2. The binary digits choose those two.

The R,M,E states of figure 40 give a count of how many sides the triangle on
the right of a segment has, like Rsides from (78). This is 1 or 2 for a boundary
segment or 3 for a non-boundary.

1 if AltRpred, (n) state Re or Ro
AltRsidesy(n) = ¢ 2 if AltRpred,(n) state Me, Mo, Ee or Eo
3 if AltRpred,(n) state “non”
= 3 — AltRpred;(n).[2,1,1], (127)
AltRsides,(n) = AltRsidesy(n)  for k with 3% > 3n
=1,3,3,3,2,2,1,2,2,3,3,3,...

For (127), the least significant digit of n goes from an o to an e, and those
transitions in figure 40 are 0 to Re, or 1,2 to Me,Ee, so n mod 3 determines the
reduction from 3 sides.

Since the number of 1 or 2 side triangles on the alternate terdragon bound-

ary are the same as the terdragon boundary, AltRsidesy is a permutation of
terdragon Rsides and so for example the total is the same as from (80).

As noted above, the alternate terdragon number of single, double and triple
visited points are the same as the plain terdragon. The argument of theorem 28
therefore gives the same Lines,. But the line lengths and arrangement is dif-
ferent.

N /
start ___ - start \ start
= \\\ 75
d=0 -
=10

AltLines4(0) = 11 AltheS4 = AltheS4( ) =10

Figure 42: k=4, total Liness = 31

Theorem 55. The number of lines in direction d = 0,1,2 x120° of alternate
terdragon k are

AltLines(0) = 1 (2541 +[1,2))

=1,2,3,6,11,22,43,86,171,... A005578
AltLinesg(1) = 3 (281 — [2,1))
=0,1,2,5,10,21,42,85,170,. .. A000975
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AltLines;(2) = & (2M1 — [2,4))
=0,0,2,4,10,20,42,84,170,... A167030

Proof. Single and double visited points as line endpoints of each direction can
be counted the same as theorem 29 Lines(d). The alternate terdragon expands
by a conjugate then replace. The conjugate reverses directions d, so AltRTS
recurrence in —d and —(d+1).

AMRTS,(d) = AURTS),_1(—d) + AURTS_1(—d—1)

Starting AItRTS¢(0)=1 and AltRTSo(1)= AltRTS((2)=0 is then as fol-
lows. Case d = 2 is the Jacobsthal numbers.

[2,1] ifd=0
AURTSy(d) =+ [ 28 +{ [-1,-2] ifd=1 1+2 side triangles by d
[-1,1] ifd=2
AItRTS;(0) = 1,1,2,3,6,11,22,43,86,171, ... A005578
AltRTS,(1) =0,0,1,2,5,10,21,42,85,170, . .. A000975
AURTS;(2) = 0,1,1,3,5,11,21,43,85,171, ... A001045

Singles and doubles by direction follow from these AItRTS triangles expand-
ing, but with relative directions from the triangles alternating with k,

k—1
AltSDy(d) = > AURTS;(d+ (~1)’)  single, double points by d
3=0
= 2 AltRTS (k,d) — (2 if d=0)
AltSDy(0or 1) = 0,0,2,4, 10, 20,42, 84,170, 340, . .. A167030
AltSDy(2) = 0,2,2,6,10, 22,42, 86,170, 342, ... A014113

Then lines from single and double endpoints,
AltLines,(d) = %(AltSDk(d—H) + ASDL(d+2) + (2 if d:())) O
AltLinesy (1) = AltLinesy(2) when k even, so the same number of line, but

in general the set of line lengths are not the same. In k=4 figure 42 they are
the same set of lengths, but for example in k=6 they are not.
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The convex hull around the alternate terdragon is a rectangle with truncated
corners.

k=5 AltP2’  AltP1’ AltP2’  ALtP1’ b=
—30° =
convex hull . AltEnd _ag° convex hull
o
start, 0 60 start, O AltEnd
—30°
AltP1  AltP2

AltP1  AltP2

Theorem 56. The convex hull around alternate terdragon k>2 is a 6 sided
polygon comprising curve start, end, and further points

AltP1), = b (313 — 1)  AiP1) = AltEnd,—AltP1), = AltP2' +1 (128)
AltP2y = AltP1), + 1 AltP2), = AltEnd),—AltP2), = Lwe (321 — 1)

For k=0 these are the hull points, but AltP1o=AltP2{=0 and AltP2¢=
AltP1y=1 coincide with curve start and end.

For k=1 these are the hull points, but AltP1;=0 and AltP1}=0b coincide
with curve start and end.

Proof. The hull around curve k is formed from the hulls around its three k—1
sub-curves. The odd and even cases are

+60° k even

start

—30°

Figure 43:
alternate terdragon AltP1,  AltP2,
hull sub-curves

start

AltP1, AltP2,

AltP1, AltP2 shift down along the b line to form k even, or are unchanged
for k odd. Conversely AltP1', AltP2', giving (128). O

AltP1, AltP2 are horizontal 1 segment apart. They cut off a half unit triangle
from what is otherwise a rectangle. The rectangle corners are

AltPC), = 10 31+/2) AltPC), = AltEnd),— AltPC, = +wg 317/?1

1
2

The hull sub-curves in figure 43 also give the points which are on the hull
boundary. The side 0 down to AltP1 replicates in k even at a point which is
1+ Fg)AltEndk_l = 0.3k/2=1 The first of these is k=2 at b. So locations

z = m.b where m in ternary is digits 0,1 only. Similarly by replication, these
are point numbers n with base-9 digits 0,6 only.
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The side 0 up to AItP2’ replicates for k odd. Its first replication is k=1 to
wg. So locations z = m.wg where m in ternary has only digits 0,1, and point
numbers n with base-9 digits 0, 2 only.

The hull extents are at angles —30° to +60° for total arc 90°. Adjacent arms
of the curve at 60° have 30° of interlacing with their adjacent arms before and
after, and 30° which is solely the arm itself.

~ « 60°
£

Moment of inertia of the alternate terdragon rotating about the z axis
(within the z,y plane), at its centre of mass, is the same as the terdragon I,.
Terdragon theorem 43 applies for any unfold angle, including (by symmetry)
what would be negative angles at odd expansions in the alternate terdragon.

Theorem 57. Consider each segment of the alternate terdragon to have a unit
mass uniformly distributed along its length. The centre of mass is the centre
of the curve. With the x axis aligned to the endpoints, the moment of inertia
tensor about the centre is

Altl,  —Altl,, 0
—Altl,,  Altl, 0
0 0

Altl, =Y y*  Altl,, =Y wy
Altl, =22 I, =3 a?+y?

&

where I, is from the plain terdragon and the rest are

AU, (k) = %(5 9k — [5,6].3Lk/2J)
= O7

15 93 910 7569 34065
47 27 4 ’ 2 e
AU, (k) = ﬁ(s 9F 4 [5,6].3W2J)

1 1 17 75 1347 6057 109017

1227 497 29 4 °» 2 1 g o e
AT (F) = ~(-1" 4 (29" — [2.5)31/ )
7 3027
_f{ ) 12u_ 7?7_84,T,_6813,}

Proof. Odd k comprises even k—1 sub-parts the same as figure 28 and mutual
recurrences (114). Even k is odd k—1 sub-parts turning the other way. Working
through those is opposite signs on Altl,, for mutual recurrences

AltT (k) = 3AUL,(k—1) + (—1)*VB AU 4, (k—1) + 2 AUl (k—1) + 19F!
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Al (k) = 3 AU, (k—1) — (—1)*V3Altl,, (k1) + 3 AlL,(k—1) + 29%~!

Altl (k) = (—1)F <f%\/§AltI$(k:fl) + LVBARL,(k—1) — 5\/5.9’“1) 0

Principal axes are at

—2 Al 4, (k)
AltI, (k) — AlI, (k)

= %arctan((—l)k% —er) +(0or%)

26.[—2, 3].3Lk/2]
3(3.9% + [10,12].3Lk/2])

Altoe = L arctan +(0or %)

where ¢, =

€ —0 as k— 00 so the limit is term %arctan %. Factor (—1)* is conjugate
negating y when k odd. Taking the fractal as repeated “unpoint”, which means
the even case, limits are

1 4 o o
Altomin — —5 arctan BT —33.293387...
Altamae = Altotmim + 5 — 56.706612...°

7 Altama, = 56.70...°

Altamy, slope

T V3+V19

start

\\ 4
~

> \\—300

" AltQumin = —33.29...°

The convex hull around the curve has limit rectangle aligned at —30°.
Altamn is a little below that. Roughly speaking, there is a little more curve in
the quarters clockwise from it than anti-clockwise.

For the curve scaled to unit length, unit mass, and rotated — Altau,;, so that
x axis is the minimum, the inertia limit is

1 1

= V/BT 1 0 0
0 2 +315V07 0
0 0 <

15.1 Alternate Terdragon Graph

The diameter of the alternate terdragon curve as a graph is attained between
curve start and end, and for even k£ between some additional points. In both
cases all diameter paths cross the middle bridge.
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k=5 end hanging ’ k=6
. / \VAN triangles .
diameter X \ \ diameter
V4 X
\
/
/
// \ \& end
start start \\ A
AltDiameters AltDiameterg
=19 Figure 44 =27

Theorem 58. The diameter of the alternate terdragon as a graph is
3Lk/2]) if k even

2.3/2 1 ifk odd

=1,3,3,7,9,19,27,55,81,163, ...

AltDiametery, = {

Diameter endpoints (ie. vertices with eccentricity AltDiameter, peripheral
vertices) are the curve start and end, and for k even also points on the upper
left and lower right convex hull boundaries and one to the right or left respectively
when a hanging triangle there. The number of endpoints is

2 if k=0 or k odd
AltDiameterEndpoints, = ¢ 6 if k=2
5.9k/2-1 if k even > 4

=2,2,6,2,10,2,20,2,40, ...

Proof. For k even, the claimed AltDiameter is the geometric distance through
the grid. For k odd, it is geometric distance 41, that extra being since the
middle bridge segment crossed is perpendicular to curve start to end.

To see that suitable segments of the curve exist for these distances, for k
even curve start to end is a straight line and remains so on replacement by the
base-9 figure 39. For points on the diagonal hull boundaries, suppose they exist
in some even k—2, then the first half of curve £ made from those sub-curves is

k—2
first half k
first half

start middle start M

T is a k—2 sub-curve. The hull points in it have lines down to the big triangle.
That triangle has straight sides and is a full grid inside by plane filling. Then
sub-curve M has the same lines as T.
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The longest of those lines just precedes the sub-curve midpoint, again by
replication. So for k& odd, the longest line in the middle sub-curve k—1 goes
down to the first sub-curve.

end

middle - _ _ »

start

To see no other paths attain or are shorter than the claimed AltDiameter,
when a segment expands twice, new points are at most +2 from an existing,

+2 +2
11 Figure 45:
a . .
— ~ new vertices distance
+1 E to expanded originals
+2 +2

For paths entirely within the first half of the curve, meaning up to and
not including the middle bridge segment, it can be verified explicitly all are
< AltDiameter through to k=4. In k=3,4 those paths are lengths at most 3,6
respectively. Thereafter on each expansion points are at most +2 each end so
an upper bound

hy =3hg_o+4 starting h3 =3, hy =6
=8, 2132 —2 fork>3
< AltDiametery,

For paths crossing the middle bridge segment, points not a diameter endpoint
are distance < AltDiameter — 1 and on expansion the +2 at that end is new
3.—1+2 = —1 shorter than diameter still. So only new points of figure 45 which
are <42 from what was an existing diameter endpoint need be considered.

For k odd the only existing diameter endpoint is curve start and end. It
expands

L. k odd
curve start
[ expansion
AN
A B,D are at +1, +2 from the start. D is on the expanded existing diameter
path so is shorter. A,B can go to C. There is a horizontal line there across to
the diameter path, since there is trivially in k=1 and thereafter that line passes

through enclosed triangles underneath the corresponding line of k—2.
For k even,
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k even
curve start
expansion

At T, new points A,B are diameter ends per the theorem. CE are 1,2
shorter down from A so are not. D is 1 shorter down from T so is not. At S,
the same except its I is not a diameter end because it can go to the right to the
line down from T so 1 shorter.

At U, all of UEF,GK are < 2 from J and that J is —3 on the diameter
path of A, so U,E,F,G,K not diameter ends.

For AltDiameterEndpoints in even k, after k=4 the sets of 5 diagonal points
and extra hanging triangle are replicated. The convex hull around the sub-
curves and the replication locations mean there is no touching of those points
and hanging triangles. Two sets of 5 are shown in figure 44 sample k=6.

AltDiameterEndpoints, = 2 AltDiameterEndpoints;_q keven >6 [

For both k even and odd there are various different paths between diameter
endpoints. For k even the lines can go across as far as the last line before going
down. For k odd the line shown in figure 44 can variously go up and then across.
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dNextL, 7
dNextR, 7

E part boundary length, 38
enclosure sequence, 58
EndLength of graph, 91
EpredL enclosure, 59
EpredR enclosure, 59

fBpred fractional boundary, 101
fLpred fractional boundary, 101
fpoint fractional, 99

fRpred fractional boundary, 101
fVisits, 104

GAR right area centroid, 69

GJ centroid of join, 68

GJf centroid of fractal join, 68

GR centroid right boundary, 66

graphs, 91

GRSH centroid shortcut right
boundary, 66

GRT centroid right boundary
triangles, 65

GV centroid V boundary, 66

H hanging triangles, 48

HA convex hull area, 75

Ha hull principal axis angles, 91
HAf hull area limit, 75
Hamiltonian path, 91

HB hull boundary, 75

HBf hull boundary limit, 76
HD maximum distance, 76

HDf hull diameter limit, 77
HI, , hull inertia, 91

HR hanging triangles one side, 48

I .. moment of inertia, 88
inertia, 86, 116

J join area, 47
Jacobsthal numbers, 114
JBSH shortcut join length, 65
Jnear, 81
join, 47

centroid, 68

shortcut, 64

Lines, 55
Lines(d) in direction, 56

Ln left boundary segment, 42

Lnear boundary nearest middle,
78

LowestNonTwo, 4

LowestNonZero, 4

Lpred left boundary predicate, 41

LsideNum, 59

Lsides boundary triangle sides, 42

M part boundary length, 38
minimum area rectangle, 82
moment of inertia, see inertia
morphism, 15, 19, 38

MR minimum area rectangle, 83
multiple arms, 62

non-crossing, 3
other, 26

p hull vertex term, 70
P hull vertices, 70

P points, 53
palindrome, 6

plane filling, 3

PN hull vertex n, 74
point, 21

points, 50
PostDecFix, 13
PostIncFiz, 5
principal axes of inertia, 89, 117
pt hull vertex term, 78
PT hull vertices, 79

R right boundary length, 35

Rn boundary segment, 39

Rnear boundary nearest middle,
78

Rpred right boundary predicate,
37

RSH shortcut right boundary
length, 63

RsideNum, 58

Rsides boundary triangle sides, 38

RT right boundary triangles, 34

RT1, 2 sided right boundary, 35

RTS right 1,2 boundary triangles,
56

Rturn right boundary turns, 44

S single-visited points, 51
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S(k,d) segments in direction, 31

SD single,double points, 57

segments in direction, 31

Sierpinski triangle, 97-98

SM (k,d) segments in direction
relative to middle, 32

SN segments in direction, 33

star-replacement, 95

Stirling numbers, 53, 61

T triple-visited points, 51
TB triple-visited boundary points,
53

threes complement, 30
topological disc, 100
Tperm 1020 digits, 50
TTDegCount area tree degrees, 95
TTdiameterEnds, 96
TTdiameterVertices, 97
turn sequence

boundary, 44

shortcut boundary, 64

OEIS A-Numbers

A000007 1 then 0s, 95

A000340 1 37+t —2n —3), 20
A000392 [1(3"~'+1) —2"~1], 61
A000918 2n—2, 96

A000975 [227], 113, 114
A001045 Jacobsthals, 114
A001047 32", 45

A002001 [3.4"7, 96

A003462 ternary all 1s, 18, 95
A003945 [227), 35, 96
A005578 12, 113, 114
A005823 ternary digits 0, 2, 31
A006342 1 (3~+145)], 93
A007949 ternary count low Os, 108
A011782 omax©n—1) 35
A013708 3.97, 88

A014113 2.round(i2™), 114
A020769 1/ (2v3), 64, 81
A023713 base 4 no 2, b

A024023 37—1, 46

A 024493 sum binomials 0 mod 3, 56
A024495 sum binomials 2 mod 3, 56
A026141 dTurnLeft, 14
A026179 1owest non-0 is 2, 11

123

turn sequence, 4
turn tree, 94
TurnLeft, 10, 19
TurnLpred, 5
TurnRight, 11, 19
TurnRpred, 5
TurnRun, 6
TurnRuns2 consecutive turns, 46
TurnRunStart, 6
TurnsL count, 18
TurnsR count, 18

uncountably infinite, 103-104
unpoint coordinate, 22

V part boundary length, 36
VisitNum, 62

Visits, 54

VT boundary triangles in V, 34
VT1, 2 sided V boundary, 35

w3, wg, w12 roots of unity, 2

A026181 dTurnRight (offset), 14
A026225 10west non-0 is 1, 10
A028243 31211, 51, 53
A029858 1 (3" —3), 96
A 038189 bit above lowest 1, 9
A038754 3* and 2.3%, 110
A042950 2 then 3.2" ', 36
A047926 (37t +2n 4+ 1)/4, 20
A048474 3.27 +1, 97
A048896 gCountOneBits(n)~1 Q8
A055246 ternary 0, 2 except lowest 1, 28
A056182 2 (3" —2m), 45
A060236 10west non-0, 4
A062756 count ternary 1s, 17, 20
A067771 33" +1), 96
A080846 TurnRpred, 4-6
A081606 ternary includes digit 1, 31
A083323 37 —27 +1, 62
A086953, 57
A088917 pred ternary digits 0, 2, 31
A092236 num 0° segments, 31
A099754 L (3741) +27, 53
A101990 num middle-relative 0°
segments, 32


http://oeis.org/A000007
http://oeis.org/A000340
http://oeis.org/A000392
http://oeis.org/A000918
http://oeis.org/A000975
http://oeis.org/A001045
http://oeis.org/A001047
http://oeis.org/A002001
http://oeis.org/A003462
http://oeis.org/A003945
http://oeis.org/A005578
http://oeis.org/A005823
http://oeis.org/A006342
http://oeis.org/A007949
http://oeis.org/A011782
http://oeis.org/A013708
http://oeis.org/A014113
http://oeis.org/A020769
http://oeis.org/A023713
http://oeis.org/A024023
http://oeis.org/A024493
http://oeis.org/A024495
http://oeis.org/A026141
http://oeis.org/A026179
http://oeis.org/A026181
http://oeis.org/A026225
http://oeis.org/A028243
http://oeis.org/A029858
http://oeis.org/A038189
http://oeis.org/A038754
http://oeis.org/A042950
http://oeis.org/A047926
http://oeis.org/A048474
http://oeis.org/A048896
http://oeis.org/A055246
http://oeis.org/A056182
http://oeis.org/A060236
http://oeis.org/A062756
http://oeis.org/A067771
http://oeis.org/A080846
http://oeis.org/A081606
http://oeis.org/A083323
http://oeis.org/A086953
http://oeis.org/A088917
http://oeis.org/A092236
http://oeis.org/A099754
http://oeis.org/A101990

A111927 —1 4 sum binomials 0 mod 3,
56, 57

A126646 27 —1, 55

A131128 1 then 3.2"—4, 53

A131577 0 then 271, 35, 47

A131708 sum binomials 1 mod 3, 56, 57

A131989 dTurnRight, 14-15

A133140 2 then 2" 42, 51

A133162 1 points and 2 rights, 15

A133474 num 240° segments, 31

A134063 1 (37+3) — 2", 54

A135254 num 120° segments, 31

A137893 TurnLpred, O

A155559 0 then o, 35

A156595 AltTurnRpred, 108

A167030 round 12" —1, 114

A171977 MaskAboveLowestOne, 5

A189672 TurnsR, 18, 19

Draft 15

A189674 TurnsL, ].8, 19

A189715 AltTurnLpred, 108

A189716 alternate terdragon right turns,
108

A189717 AltTurnsR, 109

A190640 ternary 0, 2 with lowest 2, 28

A212832 524, 75

A212952 23, T4

A214438 ¢ periodic, 31

A254006 3* with 0s between, 110

A277547 base 9 lowest non-0, 108

A306556 ternary digits 0,2, +0 and +1,
28

A318609 num middle-relative 240°
segments, 32

A318610 num middle-relative 120°
segments, 32
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http://oeis.org/A111927
http://oeis.org/A126646
http://oeis.org/A131128
http://oeis.org/A131577
http://oeis.org/A131708
http://oeis.org/A131989
http://oeis.org/A133140
http://oeis.org/A133162
http://oeis.org/A133474
http://oeis.org/A134063
http://oeis.org/A135254
http://oeis.org/A137893
http://oeis.org/A155559
http://oeis.org/A156595
http://oeis.org/A167030
http://oeis.org/A171977
http://oeis.org/A189672
http://oeis.org/A189674
http://oeis.org/A189715
http://oeis.org/A189716
http://oeis.org/A189717
http://oeis.org/A190640
http://oeis.org/A212832
http://oeis.org/A212952
http://oeis.org/A214438
http://oeis.org/A254006
http://oeis.org/A277547
http://oeis.org/A306556
http://oeis.org/A318609
http://oeis.org/A318610
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